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Appendix A

Theoretical analysis of
Kerr-nonlinearity parametric
oscillation in a whispering-gallery
microcavity

A.1 Introduction

This section complements the discussion of the Kerr nonlinearity parametric oscilla-
tion in a microcavity as presented in chapter 10. Starting from the classical equations
of four-wave-interaction for plane waves, the equations for parametric interaction in
a microcavity are derived. The treatment in the case for optical modes of a resonator
will lead to identical coupled-wave-equations, however with modified coupling coef-
ficients. These coupling coefficients are determined by the pump, signal and idler

overlap factors.

A.2 Third order nonlinear polarization

The nonlinear Polarization can be introduced phenomenologically by expanding the
polarization in terms of the electric field. In the case of Kerr-nonlinear interaction,

the 2" order nonlinearity is not present due to inversion symmetry, such that the
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first nonlinear contribution is third order:
P, = XE; + X\ BE;Ey, + ...

The physical process underlying the third order nonlinearity is a four-photon interac-
tion. For the present treatment, it is assumed that the two pump fields are frequency
degenerate. Inserting four fields and their amplitudes E, ,(E),), E, E; into the above
equation (i.e. E,(t) = 3E,e™*" + c.c.) for the nonlinear polarization, and neglecting
anti-resonant terms such as E,E,E, « e 3“r! (i.e. using the rotating wave approxi-
mation) several nonlinear optical terms can be identified, which lead to the generation
of new frequency components, as well as phase shifts.

The phase insensitive terms o< |Ez|2 E; give rise to a change in the index of re-
fraction n the field experiences and are referred to as self-phase modulation(SPM),
and cross-phase modulation (XPM). The change of index is related to then nonlinear
index of refraction by: n = ng+1-ny'. As the name implies SPM refers to the change
in index induced by the field itself, whereas XPM refers to the situation where the
index of refraction is modified by the presence of a different field.

The phase sensitive polarization terms, such as F;FE;E; (where i # j), give rise
to parametric frequency conversion. In a classical picture this process can be viewed
as being due to the temporal modulation of the refractive index n(t) = ng + Ang(t)
due the beat-frequency caused by two fields at different frequencies. Whereas the
spatial modulation of the refractive index, gives rise to Bragg reflection, the temporal
modulation of the refractive index gives rise to a frequency shift. The governing

equations of motion are particularly simple for plane waves, assuming;:

E(rt) = %E(z) exp(i(wt — kz)) + c.c

—

P(r,t) = %P(z) exp(i(wt — kz)) + c.c

12
1'Some authors also define the nonlinear index of refraction as: n = ng + na |E
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Susceptibility expression | Associated Nonlinear Optical Processes
Xg)e) E; |E;? Self-phase modulation (SPM)

XR3e E; |E;|? Cross-phase modulation (XPM)

x&ﬁ EEE;, ... Four wave mixing process (FWM)

le E;|E;” two-photon absorption

Xg E; |E;|? Raman-process (Stokes gain,...)

Xim EiLiES, ... coherent anti-stokes Raman scattering

Table A.1: Nonlinear optical effects associated with the third-order susceptibility

the governing equations for four-wave mixing are given by [91][93]:

OF wp 3
52 = (pr) X X4 (E2E; + 2E,E,E; + 2E,E,E: + 4E,E,E; + 2E,E,E})
z
ES S
aa _ (“")g ) (E2Er +2E,EE; + AE,E,E} + 2E,E,E})
z
8EZ —iwi 3 *
— = ( )_ng nyEy+2fE|E| +4fE|E| +2fE,E,E"
SPM XPM (Idler) XPM(Pump) FWM-Term

If one assumes that the pump field is not depleted, and that the signal and idler fields

are weak, the coupled mode equations simplify considerably:

. .
OF, _ (M—I’)?’ ) (E*E; + AB,E,E;, + AE,E,E)

0z 8 XRe
OF, 3 .
0 = (—)8 X! (Af B |B,|* + 2f E,E,E})

8E1 — W 3 %
() S m e s

A.3 Coupled mode equations for Kerr-parametric
interactions in a whispering-gallery-microcavity

To formulate the coupled mode equations for Kerr oscillations in a cavity, the gov-

erning equations are first formulated in the temporal domain, and cavity losses and
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pumping via a waveguide are introduced using the previously introduced formalism.

Starting point for the derivation of the coupled mode equations is the wave-equation:

2 92 2
(—V2 + %%) E = NO%?NL
To derive an equation for the coupled amplitudes of the whispering-gallery waves,
the Helmholtz equation is first solved for the case of a whispering gallery mode of
the system (i.e. the homogeneous solution, without the nonlinear polarization term).
The general form of a whispering gallery mode, expressed in cylindrical coordinates
for the case of a TM mode is:

; 1 A A
E; (7“, Z, gb’ t) = §E;(7", Z)@wid)—HWt +c.c.

Here /¢ is the angular mode number of the whispering gallery mode. Due to the
presence of the nonlinear polarization the whispering gallery modes will exhibit an
additional time dependence, expressing the fact that fields might be created, or ab-
sorbed. To describe the growth of the WGM the amplitude is introduced, which only

depends on the time,

; 1 . . , ,
E,Zz(r7 Z, ¢7 t) - §Az(t) . E;(’T’, Z)elgi(b-l—zwt + c.c

The effect of the nonlinear polarization can now be investigated, by deriving a coupled

mode equation for the field amplitude A*(¢):

9? —

= ftg== D
M()atg NL

2 n® o i i il p+iwt
—-V° + 290 A'(t) - El(r,z)e

c? Ot?

(. J/

¢z Ot? c2 Ot

2 92 2 02 gi 2 i
Az(t)(_v2 + n_a_) Ei(?", Z)ez'fi(ﬁ-‘riwq;t_’_ (n_a A (t) + 2%0”_%) Ez (7,7 Z)ez‘eiqu-z‘wi o

=0



160
The first term on the right hand side is zero, since E is assumed to be a mode i.e.
a solution of the homogenous problem. To arrive at a coupled wave equation, the

slowly varying amplitude approximation can be made, i.e. assuming;:

D?A(t)
ot?

leading to:

<2iwi2—§a/§t(t)> Ei(r, z)ewi(p%w"t = Mog—;]_j]\u:
This is a good approximation, since the conversion due to nonlinear optical processes
is slow compared to the time-scale of the optical cycle w. Next, the polarization term
has to be re-casted:
0? — 0?

o F e = g (B BBl

The nonlinear susceptibility has been treated in the last section. The product of the
three whispering-gallery mode fields on the L.h.s. contains a rapidly varying term
(due to the phase of the whispering-gallery modes o< e™it), and a slowly varying part
(given by the amplitude A(t)). In taking their derivative with respect to time, the
slow time dependence of the fields can be neglected. Assuming that the total three
fields vary as F;E;E), ox el@itwitwn)t = it

32

- 2
Fog £ NL = How (Xiju By EnEr)

In addition each of the field contains a azimuthal dependence due to the eigenfunctions

exp(+ile). Therefore the polarization also contains a term:
EzE]Ek o ei(li-‘rlj-f-lk)(b

Inserting the phasor and angular dependence into the polarization leads to:
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2aAz . ) . 3 ~ ~ ~ o oy
(2%‘}1 > at( )) E;(T, Z)ezfi¢+zwit _ MOW? (gXUkE]EkEZAJAkAl> ez(wJerkerl)tez(€j+€k+21)¢

) o2
(814(1%(15)) va; _ _2 zwé (:X”kE EkElA AkAl> i(wjt+wk+w;—wi)t z(Z]Jer:Jrll 4
EoN“W;

The latter equation is cumbersome to evaluate, since the explicit fields E, = Ei(T, z)
enter in the equation. It is desirable to arrive at an equation which describes only
the energy or amplitude of the mode i.e. A(z). This can be achieved by integrating
over the transverse extend of the WG mode and by multiplying the conjugate field
Ei(r,z)* from the left.

i 2
(&égt(t))/ E; JA — _%2 zwé (kaEE B AA, Ak) i(wiHwk-wr—wilt Gi(Cj+ -+ —L)
rz €EoN“W;
DA (t 3 aw? ~ o~~~ o .
( at( )) _ 82;22&} X”kA A Ak / E’LE_]EZE;* dA ez(wﬁrwk:erlfwz)tez(ZjJerJrél

J/

=A%
In the last expression, the fact that the mode function are normalized has been used,
ie. | |E;|* dA = 1. The last term is the effective mode area and has units of inverse
area, which as in the case of Raman scattering deviates from the mode area, as defined
by the energy density definition. In the case E is describes the electric field and is not

normalized, the effective area is given by:

fACM E*E*EkEldA
i <fA |EZ| dA)1/2

eff = fzgk:

Since in a microcavity the susceptibility vanishes outside the cavity (i.e. in air) the
integral in the denominator is carried out only over the dielectric cavity area). As in
the case of stimulated Raman scattering, the effective mode area can actually differ
from the actual mode area (and for microspheres and microtoroids is approximately
x2 larger). The above definition of effective mode area describes all third order

nonlinear optical phenomena, and as such also yields again the Raman gain coefficient
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(i.e. which is proportional to P o< EfEFE}) i.e. yielding Agflf = A,pss.). Hence the

coupled mode equations are given by:

OA (¢t 0’2 3 o N, g .
( 8t( )) _ _25(’:;2w fijkl . gXSI)c . AjAkAlez(w]+wk+wl—wz)tez(EJ—I—Ek—Ml—Ez)(b

Furthermore it is common to introduce the nonlinear coefficient:

_ NaWw;

NaW;
Vi = Tfijkl R

CAEff

Where the third order nonlinear susceptibility is related to the nonlinear index of

refraction n, by, and A, is assumed to identical for all coupling processes.

SINIC)

n2:8_nX

The fields entering the expression of the nonlinear polarization can only couple to the
Lh.s. of the Helmholtz equation, if the time dependence is the same as on the left, i.e.
if P o e™it. The remaining terms are anti-resonant (and in a full quantum mechanical
treatment are seen to violate energy conservation with respect to the photon energy).
Therefore only terms, in which w; &~ w’ will induce an efficient coupling by means of
the nonlinear susceptibility. In addition the angular dependence €”? on both sides
of the equation needs to be identical, to achieve coupling of modes. The latter two
conditions, can be shown to be equivalent to the requirement of energy and angular
momentum conservation. To arrive at a set of coupled mode equations for parametric
oscillation, which parametrically converts two pump photons into signal and idler,
only resonant terms have to be kept in the treatment. For i, j, k, [ equal to two pump

fields, as well as signal and idler, this leads to the coupled mode equations for signal



163

and idler.
0A .(C Now 2 % _iAwt 1 * 1AWt 1
(9_tp - (ﬁ) 2cAe;f (AP |Ap|” + 4A,Ap Al e Buteltlo 4 44, A, Aje Bete Al¢>)
c

aéjs — (E> n2wsf (4143 |Ap|2 + 2ApApAz<€7iAwt€fiAl¢)

0A;
ot

— (E) NnoWw; (414@ |Ap‘2 + 2ApApA:67iAwt€fiAl¢)
n

In this set of equations, the pump has been assumed strong |A,| > |A4;|,|As|, and
for the idler and signal only the XPM and FWM term included, whereas the pump
field experiences only SPM and FWM to signal and idler frequencies. In addition the

angular momentum and frequency detuning parameters have been introduced:

Aw

2wy — Wy — wg

Al = 2, —l;— (g

(Angular) Momentum conservation for WGM
It is important to note, that if the signal and idler mode numbers are chosen
symmetrically around the pump field, the (angular) momentum matching condition

is satisfied intrinsically (since 5 = #-):

Be+ 8o+ Beyn+Bei-n=0

Energy conservation
On the other hand, energy conservation is not a priori assumed to be satisfied, due
to the presence of waveguide and material dispersion. The detuning Aw effectively

describes the extent to which strict energy conservation is violated and is given by:
Aw = 2w, —wr —wg

It is interesting to note, in the case of a cavity, the role of frequency and momentum

in the context of parametric gain are reversed. In the waveguide case, a continuum of
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signal pump idler
P<Poaem o Bm-N) ~ @pp(m)  @ip(m+N)
Am>L2 : .

>

P:"Pparam
Aw<C

— —p ()

signal pump idler

Figure A.1: Schematic of the effect of cavity detuning on the occurrence of parametric
oscillation. For Aw > 0, parametric oscillation can only occur if the detuning Aw =
2w, — ws — w; is less than the parametric band-width (given by 0 < Aw < ).Note
that the parametric band-width exists only for positive detuning, due to the shift of
resonant frequency caused by XPM and SPM.
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frequencies w exists, such that energy conservation is a priori satisfied, whereas the
momentum distribution is discrete E(w) In contrast, for a whispering-gallery micro-
cavity, momentum is satisfied intrinsically, whereas only a discrete set of frequencies
exist wymp, Which are required to satisfy energy conservation. Using the frequency

detuning, the coupled-mode-equations are:

DA, 1 .
5= o Ay + ik Ay + ikAfe B!
OA; 1

= —— A, —ir A — ikAS B
8t 2Ti ! 5

Where:

X(3)4f ‘Apyz =4 ’Ap|27

o (2)
- ()

In the case of a whispering-gallery microcavity, the governing equation for the pump

ol Wwoo| w

x®2fA, A, = 24,A,7

whispering gallery mode is given by the equation:

OA 1 , . iru 1
8_tp = _Q_TPAP +ikgpAp + KrpAje g Texs
3
Rkgp = _X(g)f ’ 2ASAZ

Ksp gX )f' ‘Ap’2

This set of equations of coupled equations for signal and idler fields can be formally
solved. By the transforming into a rotating frame ie. A, = A,e A2 A, =

Are "2 and eliminating the time dependence yields the linear system of coupled

equations:
8145 - Aw Aw - Aw 1 - Aw . - Aw . .
e AT = AT R bk Ae TR g Afe AW
ot 2 27
aAZ - Awt Aw - Awt ]_ s Aw . - Aw . .
eI —i—— AT = —— AT ik AT — ik ATeTAW2
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If the idler equation is conjugated a linear differential equation system is obtained:
. - Aw .
9 (A, _ —% + iRy 150 K A, (A1)
ot \ Az - L Aw A* '
1

The eigenvalues are given by: A = {j: ( 1 \/|,@|2 — K2 — Awky — A_w2>} and

5= —

the parametric gain be identified correspondingly as:

Graran( ) = \/<7|Ep|2>2—(v|Ep|2+%) (A2

Aw?
= \/27|Ep|2Aw—Tw

The parametric gain is non-zero only for 0 < Aw < €, where €, is the parametric
gain bandwidth:
0, = 47 |E,’ (A.3)

The maximum parametric occurs shifted away from ideal energy conservation, at
non-zero detuning:

Awmax = 27 | B, (A4)

This shift is due to the effect of cross phase modulation of the signal and idler due to

the pump.

A.4 Parametric oscillation threshold

The parametric oscillation threshold is reached when the gain exceeds the cavity losses

i.e. in steady state for A\; » = 0.Thus:

g AN? (1 1\ 1
\/27|Ep| Aw (2 = 270+27m —270(1—1—}() (A.5)
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From this equation the necessary circulating pump power in the cavity can be derived:
1 2 Aw)?2
(%(1 + K)) + (%)

2 JR—
B = A (A.6)

Taking into account the cavity buildup factor, the threshold for parametric oscillation

as a function of coupling and detuning is obtained:

PKerr — nga2 (1 + K)2 + (Aw/2)2 7T2Rneff (K + 1)2 (A 7)
! 27Aw - e CI)Xo QoK '
NaW;
= A.
gl A, (A.8)

A.5 Material and cavity mode dispersion

The optical modes within a cavity are in general not regularly spaced due to the
presence of material and cavity dispersion. First, material dispersion is considered.
The detuning frequency can be related to n’ = % by noting that w; = ¢X\; /27 Rn. s

and in a simple model n.s; ~ n(w).

Aw:£<2£p_ o“ el>
R \nley) " nlwn) ~ nlwn
e 2,  L-N L+ N n,:dn(w)|
R\ n(wy) nlwy)—nAw n(w,)+n'Aw/)’ T dw 7
(2 b 4 N N
R \n(wy) nwy) —nAw  n(w,) +n'Aw  n(w,) —n'Aw  n(w,) +n'Aw
c l, [ n' n' } N [ n' Aw n’Aw}
S 2 14— Aw—1-— " Aw|+ 1+ e
R (n(wp)\ n(wp) n(wp) n(wp) n(wp) n(wp)
=0
!/
= Son— " _Aw
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In the case of silica in the 1550 nm bandg—z > 0. Therefore the parametric detuning
frequency due to material dispersion is always positive, as is required in order for
parametric oscillation to occur. Secondarily, the free-spectral range is naturally not

constant. In the case of a microsphere, the analysis of chapter 1 yielded:

c 1 023
AWFSR = ‘wnmé - wnmf-‘rl’ Z;l n R E - tn 3 (Ag)

Therefore the detuning frequency contribution from the WGM dispersion is always

positive, since the FSR (Awpgr) increases for increasing angular mode number /.

— L — p—i p—s

As a result both material dispersion and cavity mode dispersion, cause the parametric

detuning frequency to be Aw > 0.
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Appendix B

Modelling of whispering-gallery
microcavity modes

B.1 Wave equation for whispering-gallery resonators
with rotational symmetry

Whereas the optical quality factor (Q) is dependent upon many external factors (such
as cavity surface roughness, water adsorption, defects in the oxide layer etc.), and
can vary significantly across micro-spheres and micro-cavities with nearly-identical
geometry parameters, the mode volume of the optical modes is entirely dependent
upon the cavity geometry. However, while Q-factor can be measured directly and is
experimentally accessible, the same is not true for the optical mode volume, which
can only be probed indirectly, such as by near field optical probes or as be presented
in chapter 7, using the oscillation threshold of stimulated Raman scattering. In
this section the optical mode-volumes as well as the effective nonlinear optical mode
volumes are calculated for toroid and disk microcavities using numerical modelling
using a PDE finite-element solver. To accomplish this task the Helmholtz equation
for the whipering-gallery resonator case is derived and transformed in the required
standard PDE form.

The whispering gallery resonators studied in this thesis (i.e. spheres, disks and

toroids) all exhibit (if the presence of eccentricity is neglected, and only treated
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TE-case z
(TM-case) A

Hz,Ez (Ez,Hz)

Ho (Eo)

Figure B.1: Direction of the field components of the whispering-gallery modes of
magnetic type (i.e.TE-case) for a toroid. TE (TM) modes posses a E-field (H-field)
which is perpendicular to the equatorial plane of the torus.

as a weak pertubation) a rotational symmetry. Therefore the choice of cylindrical
coordinates for the modelling is a natural choice. The optical modes of a whispering
gallery type resonator are described in their most general form by a total of six
field components, (H,, Hy H,, E,, E4 E.). The boundary condition couples the electric
and magnetic field components. A significant simplification occurs, if the index of
refraction n(r) is homogeneous throughout the dielectric cavity, and the polarization
is constant. In this case the scalar-wave equation approximation can be used. The
solutions of the scalar wave equation fall into two classes; the optical modes are
either electric in character (referred to as transverse-magnetic TM case) or magnetic
in character (referred to as transverse electric TE case). In the case of TM-modes
in a WGM resonator (with the symmetry axis along the z-axis) , the magnetic field
is transverse to the direction of propagation (which occurs along e’,) implying that
H, = 0, whereas for the TE-case E, = 0. All the remaining field components can
be expressed in terms by only one field component (Hy for TE-modes and E; TM-
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modes) , reducing the problem to a scalar Helmholtz equation for one field component.
An additional simplification of the Helmholtz equation occurs due to the rotational
symmetry in case of a perfect whipering-gallery resonator. Due to the periodicity

condition (exp(—(,2m) = 1) the TE and TM-mode can be expressed as:

Ey(riz.0) | _ | Bolrz) -exp(i([£86 — wt))andB, =1 (B.1)
Hy(r, z,¢) Hy(r, 2)

Where [ is the angular mode number. The Helmholtz in cylindrical coordinates is

given by (considering in what follows only the TM case):
2 2 2 2 2
=2 W d 1d 1 d d w
V+=n)Ey=||— +-— ———t+—+=n?|E;=0 B.2
( +c2n) ¢ |:<d7’2+7’d7')+7'2d¢2+d22+62n ¢ (B-2)

Using the separation of variables approach for the angular direction (and introducing

the angular mode [ number correspondingly):

Ey(r,z,¢0) = Ey(r, z) - exp(Filo) (B.3)
this yields the equation:
d? 1d 1 2 W2
o) P2y 202 E = B4
l(er +rd7’) 72 +dz2 + C2n] »=0 (B4)

multiply by r- from the left and rearranging:

dr? = dr dz?2 r c?
d d d? 1, w? 9

Rearranging and the expression thus produces the Helmholtz equation in the required

PDE format (TM -case):
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Figure B.2: Comparisson of the analytical and numerically calculated intensity dis-
tribution of the |E¢|2 component plotted in the radial direction, for a microsphere of
10 pm radius.The numerical and analytical models show excellent agreement.

_ _ w2 l2
Vr,z'<rvr,zE¢)+ (§n2 - ﬁ) I‘E¢ =0 (B5)
. . /62 W2
—V,«,Z'(rvryzE(ﬁ)—i-?E(b = gﬂQI‘Eqﬁ

To test the accuracy of the numerical modelling, the calculated resonance locations
for a microsphere were compared to the resonance locations obtained by an asymptotic
expansion (see chapter 1). The deviations were less than 2.5e-004 for both TE and
TM polarization, and assure the accuracy of the simulation results. Furthermore, in
figure B.2 the numerical and theoretical results of the radial equation are plotted,

showing excellent agreement.
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Appendix C

Experimental techniques:
Fabrication of toroid and disk
microcavities on a silicon chip

Surface-tension induced microcavities such as droplets of microspheres undergo a
liquid phase, in which surface tension induces the spherical cavity shape and in ad-
dition provides exceptionally smooth surfaces. For silica microspheres, atomic-force
microscopy has revealed surface roughness in the range of less than 1 nm r.m.s. The
quality of the surface has enabled to observe absorption limited Q-factors in mi-
crospheres of nearly 9x10°[41], which are the highest Q-factors to date in the optical
domain. In this chapter the fabrication of toroidally shaped silica microcavities on
a silicon chip is described. The fabrication technique is a combination of standard
micro-fabrication techniques with a selective reflow process inherent to fabrication of
surface-tension-induced microcavities. As in the case of microspheres, toroid micro-
cavities undergo a liquid state during their fabrication, enabling them to obtain sur-
face roughness characteristics similar to other surface-tension-induced microcavities
such as microspheres. This allows, under proper preparation, to observe ultra-high-
Q optical modes, as has been demonstrated in chapter 7, and constitutes the first
demonstration of ultra-high-Q microcavity on a chip[81].

The fabrication sequence involves as a first step the fabrication of silica disk micro-
cavities on a silicon substrate. Microdisk also fall into the class of whispering-gallery

devices, as their modes are confined by continuous total internal reflection at the disk



174
perimeter. In a second step, the disk-cavities are laser irradiated causing a selective
reflow of the silica. This process causes the disk surface to collapse and to from
a toroidally shaped boundary, whose limiting dimensions are defined by the pillar
geometry.

Starting material for the fabrication process are oxidized silicon wafers (in the
work intrinsic oxidized wafers with resistivity of typically more than >10 Ohm/cm?
and [100] crystal orientation, Virginia Semiconductors ). Processing involved the
etching of circular pads into the oxidized wafers. In this thesis work positive photo-
resist (Shipley-1813) was used and spun for 2 minutes at 3000 rpm. To promote
adhesion of the photo-resist the wafer was exposed to HDMS prior to spinning. After
soft-bake (115 C at 2 minutes) the wafers were exposed and developed (MF-319),
and hard-baked (120 C for 15 minutes). After visual inspection on the uniformity of
the pads, the wafers were etched with hydrofluoric acid until all oxide was removed,
leaving circular pads on a silicon wafer. Since silicon is hydrophilic as opposed to
silica, the removal of the entire layer of oxide can be inferred visually. Due to the
isotropy of the HF etching, combined with the effect of undercutting of the photo-
resist, the silica disks exhibit wedge shaped side-wall profiles. The wedge angle is
dependent on the amount of undercutting of the photo-resist pads and was less than
45 degree in this work. After etching the sample was cleaned with acetone, methanol
and DI. Critical in the processing is avoiding particles during cleaving of the wafer
into individual chips. This was achieved by spinning (and subsequently soft-baking)
a second time photo-resist on the etched sample. The layer of photo-resist in this
case functioned as a protection layer for particles during cleaving. The processed
wafer was cleaved into ca. 5 x 20mm chips, in order to facilitate the coupling using
tapered optical fibers. Each chip contained one single row of resonators, to ensure
rapid testing of resonators. After cleaving individual chips containing the photo-resist
layer were rinsed with water and all particles removed. Subsequently the samples
were cleaned in acetone, at a temperature of 60 degrees for 15 minutes followed by
a methanol and DI rinse. This ensured complete removal of the photo-resist. To

optically isolate the silica disks from the silicon a dry (gas-) etch employing XeF5 at
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room temperature was used. Figure 77 shows a scanning electron micrograph of the
resulting structure. The amount of undercut can be controlled by the XeF, etching
parameters, however large variations were found at the edges of the samples, likely
due to proximity and inhomogeneous gas-flow. The resulting structures are microdisk
cavities, and their optical modes will be examined in chapter 7. Nonetheless, the
above process flow leaves lithographic blemishes, visible in an optical microscope,
at the all-important disk periphery. Therefore additional processing was pursued to
achieve the surface finish characteristic of STIM structures exhibiting rms roughness
of several nanometers or less[41].

Next, a processing step was introduced to selectively heat and reflow the undercut
SiO,disks without affecting the underlying silicon support pillar similar to techniques
used for integrated circuit planarization[113]. This steps leaves toroidally shaped
cavities with a surface roughness which is comparable to surface-tension induced mi-
crocavities such as microspheres. The reflow step was performed using a Carbon
dioxide laser (Synradt Inc., 10W optical power), which was also used for the fabrica-
tion of microsphere resonators. The CO, laser emitted in a TEMgg mode and had a
beam diameter of ca. 1 mm. Improved beam profiles were obtained when increasing
the optical path length of the laser to the sample ca. 4 feet. The laser was focused
using a 5 inch focal length lens (Umicore Inc.), resulting in a beam diameter of ca.
200 pm diameter. As during the reflow process alignment of the Gaussian laser beam
with the silica disk is critical, a 45-degree ZeSn alignment beam-splitter with a 633
nm reflective coating was used. The beam-splitter was placed directly after the ZeSn
lens and a x20 objective with a focal length of 6 cm was used to image the laser spot.
The chips with the silica disks were mounted vertically on a sample holder mounted
on a stage, to allow relative positioning with respect to the image and laser spot. The

schematic of the setup is shown in C.1.
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Cleaving of oxidized Silicon wafer

Photoresist spinning (1813), lithography and developping

Hydrofluoric etching

|

cleaning step (Acetone, Methanol, DI) and XeF2
Dry gas-etch

Figure C.1: Microcavity fabrication steps: 1. Cleaving 2. Photolithography 3. Wet-
etching using hydrofluoric acid 4. Dry etching using XeFs.

Waveform generator

CO2-Laser

x20 Objective Zesn Lens (f=5")
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and Screen
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Figure C.2: Schematic of the COy—laser selective reflow process to create toroidally
shaped microcavities.
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C.1 Properties of Silica and Silicon at CO, laser

wavelength

Silicon, due to its band-gap of 1.12 eV, does not absorb the energetically lower photons
from the CO, laser (10.6 um wavelength which corresponds to 0.12 eV) through direct
optical excitation of valence band electrons. Heating and corresponding absorption
is primarily caused by free-carrier-absorption (FCA) of thermally excited electrons
in the conduction band. At room temperature silicon is therefore nearly transparent
to COs laser light. At higher temperature the silicon absorption increases through
thermally excited carriers, which in turn increase the absorption due to free-carriers
excitation. This positive feedback of the heating is referred to as thermal runaway
heating. For the laser intensities in this work, thermal run-away heating of silicon
was not observed, as the laser intensities were below 100 MW /cm?.

Silica, on the contrary does strongly absorb CO, laser light due to the presence of
resonant vibrational levels near 10.6 um . Strong absorption occurs due to excitation
of the transverse optical and longitudinal optical phonon mode of the O —Si—O bond
which is located at 1090 cm™ and 1200 cm™! respectively. The room temperature
absorption coefficient is 32 inverse micron. For higher temperature the silica absorp-
tion increases to a good degree linearly due to thermal run-away. The temperature
dependent silica extinction coefficient is given approximately by the expression[114]:
E'=a-T+bwherea=1.8-10"2 and b = 10-107°, and is related to the absorption

Ak’ _

coefficient by: o = Z-= (i.e. the e”! penetration depth). The expression is valid in

the temperature range of 25-1800 °C. The optical and thermal properties are given
in the table C.1. The strong increase in temperature during the illumination process
can also lead to temperature levels, which are sufficient to induce evaporation of the
silica from the surface, This effect has been observed during microsphere fabrication
and has been discussed in chapter 5 in the context of modal coupling.

Due to this strong temperature dependence of the silica optical extinction coeffi-
cient, as well as the thermal isolation of the undercut SiO, disk, irradiation of silica

disks on a silicon pillar, will cause melting of the silica disk along the periphery. In
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| Properties | Silica (Thermal Oxide) | Silicon |
| Melting Point ‘ 1710 °C | 1414 °C ‘
| Boiling Point | 2590 °C | 3173°C |
| Thermal Conductivity ‘ 150 m—”;{ | 1.3 % ‘

Table C.1: The optical and thermal properties of silica and silicon.

addition to having a far weaker optical absorption at 10.6 microns, silicon is 100 times
more thermally conductive than silica[115][114]. The silicon pillar therefore remains
significantly cooler and physically unaffected throughout the silica reflow process,
serving as a heat sink to the selectively absorbed optical power in the silica layer.
Due to the melting of the periphery and the action of surface tension, the disk was
observed to shrink and more significantly form a toroidally shaped cavity boundary, in
width exceeding that of the initial silica disk. As the disk diameter shrinks, the effec-
tive cross-section available to absorb laser power decreases and shrinkage is observed
to terminate. Beyond this point, continued laser treatment at the same intensity re-
sults in no observable change of the structure. The process is therefore self-quenching
with the final diameter of the molten disk rim controlled by lithography and chemi-
cal etch steps. It should be noted that it is possible to interrupt the reflow prior to
quenching thereby producing a toroid with a diameter intermediate to the initial disk
diameter and terminal diameter. The irradiation parameters (amplitude, pulse shape
and duration), were controlled using a function generator driving the CO, laser, and
pulse durations were in the range of typically several tens of milliseconds. Compar-
ison of the final toroidal cavity volume to the initial preforms shows, that for high
intensity illumination a significant fraction of the silica is lost during the selective
reflow, due to evaporation which has been mentioned in Chapter 4.

Figure C.3 shows a scanning electron micrograph of a reflown disk structure. The
imaging reveal the high degree of symmetry of the structure. The cross-sectional area

of the cavity is circular and the resulting cavity geometry therefore a torus, which
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can be characterized by two parameters:

Minor diameter : d

Principal diameter : D

As silica is consumed to form the toroidal cross sectional area, the minor diameter is
larger or equal to the thickness of the silica microdisk prior to reflow. Reduction of
the toroidal cross-sectional area can therefore be achieved by using thinner thermal
oxide layers in the disk processing as well as by reducing the amount of undercut and
limiting the amount of silica undergoing the liquid state. However, the use of thinner
oxides leads to shape deformed disk microcavities, due to relaxation of the compressive
strain inherent to thermally oxidized silicon wafers. This leads to a silica disk which
exhibits wave-like cavity boundaries, which can transfer into shape deformed toroids
during the reflow process. In addition the decreased silica film thickness requires more
optical power to induce melting. For the CO, laser and focusing optics used in this
work, the minimum oxide thickness that could be molten was 500 nm.

In some cases deviations from the toroidal geometry were observed, in which the
toroid cross-sectional area was elliptic, however in the large majority of the toroids
used in this work, the action of surface tension causes formation of a circular cross

sectional areas with low eccentricity.

C.2 'Toroid dimensional control by preform design

Increased lithographic control over the toroid geometry can be achieved by suitable
design of the silica disk preform. Due to the thermal runaway effect, the thickness
of the preform is an important parameter determining the required flux of CO, laser
illumination to initiate silica reflow and toroid formation. As noted above, for thin
oxide layers the required flux is strongly increased, and thus by using a variable
preform thickness profile, the temperature distribution of the silica in the laser illu-

mination process can be controlled. For example, an annular preform (i.e., thicker at
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Figure C.3: SEM of a microdisk structure fabricated from a 1 micron thermal oxide.
Due to the compressive strain induced by the thermal growth process used to oxidize
silicon, the formed microdisk cavities exhibit warping around the perimeter due to
strain relaxation. The effect increases as the pillar diameter is decreased and the oxide
thickness is reduced. The inset shows the cavity geometry parameters; principal toroid
diameter (D) and minor toroid diameter (d).
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Annulus Preform Melted Annulus Preform

Figure C.4: An annular preform can be used to control the dimensions of the toroid.
The left panel shows an annular preform prior to melting and the right panel shows
the preform after irradiation. The CO, laser radiation selectively melts the thicker
annulus perimeter, leaving the thinner interior disk unaffected.

the perimeter) will be preferentially heated at the perimeter, where the oxide thick-
ness is large. We have found that not only does this mean that the melt initiates in
the annulus, but significantly it is prevented from proceeding into thinner interior.
The left panel of figure C.4 is an optical micrograph of an annular preform, featuring
a thick rim at the perimeter (2 ym), and a thinner, interior disk (1 gm). In order
to fabricate this structure two consecutive lithographic steps and buffered HF ox-
ide etching were performed. The right panel in figure C.4 shows the structure after
pulsed laser illumination. The outer annulus region preferentially melts and surface
tension causes it to form a toroid. The process is observed to self-quench when the
inner toroid diameter reaches the inner annulus diameter, and, significantly, prior to
reaching the silicon pillar, The advantage of this fabrication technique is that the
amount of material used to form the toroid as well as the inner diameter of the toroid
micro-cavity can be accurately controlled by lithography. In addition, the supporting
disk structure can be made very thin, which thereby increases the optical confinement

of the modes within the toroidal periphery.



