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Appendix A

Theoretical analysis of
Kerr-nonlinearity parametric
oscillation in a whispering-gallery
microcavity

A.1 Introduction

This section complements the discussion of the Kerr nonlinearity parametric oscilla-

tion in a microcavity as presented in chapter 10. Starting from the classical equations

of four-wave-interaction for plane waves, the equations for parametric interaction in

a microcavity are derived. The treatment in the case for optical modes of a resonator

will lead to identical coupled-wave-equations, however with modified coupling coef-

ficients. These coupling coe cients are determined by the pump, signal and idler

overlap factors.

A.2 Third order nonlinear polarization

The nonlinear Polarization can be introduced phenomenologically by expanding the

polarization in terms of the electric field. In the case of Kerr-nonlinear interaction,

the 2 order nonlinearity is not present due to inversion symmetry, such that the
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first nonlinear contribution is third order:

= +
(3)

+

The physical process underlying the third order nonlinearity is a four-photon interac-

tion. For the present treatment, it is assumed that the two pump fields are frequency

degenerate. Inserting four fields and their amplitudes ,( ) into the above

equation (i.e. ( ) = 1
2

+ ) for the nonlinear polarization, and neglecting

anti-resonant terms such as 3 (i.e. using the rotating wave approxi-

mation) several nonlinear optical terms can be identified, which lead to the generation

of new frequency components, as well as phase shifts.

The phase insensitive terms | |2 give rise to a change in the index of re-

fraction the field experiences and are referred to as self-phase modulation(SPM),

and cross-phase modulation (XPM). The change of index is related to then nonlinear

index of refraction by: = 0+ · 2
1 As the name implies SPM refers to the change

in index induced by the field itself, whereas XPM refers to the situation where the

index of refraction is modified by the presence of a di erent field.

The phase sensitive polarization terms, such as (where 6= ), give rise

to parametric frequency conversion. In a classical picture this process can be viewed

as being due to the temporal modulation of the refractive index ( ) = 0 + 2( )

due the beat-frequency caused by two fields at di erent frequencies. Whereas the

spatial modulation of the refractive index, gives rise to Bragg reflection, the temporal

modulation of the refractive index gives rise to a frequency shift. The governing

equations of motion are particularly simple for plane waves, assuming:

( ) =
1

2
( ) exp( ( )) +

( ) =
1

2
( ) exp( ( )) +

1Some authors also define the nonlinear index of refraction as: = 0 + 2

¯̄̄ ¯̄̄
2
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Susceptibility expression Associated Nonlinear Optical Processes
(3)
Re | |2 Self-phase modulation (SPM)
(3)
Re | |2 Cross-phase modulation (XPM)
(3)
Re Four wave mixing process (FWM)
(3)
Im | |2 two-photon absorption
(3)
Im | |2 Raman-process (Stokes gain,...)
(3)
Im coherent anti-stokes Raman scattering

Table A.1: Nonlinear optical e ects associated with the third-order susceptibility

the governing equations for four-wave mixing are given by [91][93]:
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If one assumes that the pump field is not depleted, and that the signal and idler fields

are weak, the coupled mode equations simplify considerably:
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A.3 Coupled mode equations for Kerr-parametric

interactions in a whispering-gallery-microcavity

To formulate the coupled mode equations for Kerr oscillations in a cavity, the gov-

erning equations are first formulated in the temporal domain, and cavity losses and
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pumping via a waveguide are introduced using the previously introduced formalism.

Starting point for the derivation of the coupled mode equations is the wave-equation:

µ
2 +

2

2

2

2

¶
= 0

2

2

To derive an equation for the coupled amplitudes of the whispering-gallery waves,

the Helmholtz equation is first solved for the case of a whispering gallery mode of

the system (i.e. the homogeneous solution, without the nonlinear polarization term).

The general form of a whispering gallery mode, expressed in cylindrical coordinates

for the case of a TM mode is:

( ) =
1

2
( ) + +

Here is the angular mode number of the whispering gallery mode. Due to the

presence of the nonlinear polarization the whispering gallery modes will exhibit an

additional time dependence, expressing the fact that fields might be created, or ab-

sorbed. To describe the growth of the WGM the amplitude is introduced, which only

depends on the time,

( ) =
1

2
( ) · ( ) + +

The e ect of the nonlinear polarization can now be investigated, by deriving a coupled

mode equation for the field amplitude ( ):
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The first term on the right hand side is zero, since E is assumed to be a mode i.e.

a solution of the homogenous problem. To arrive at a coupled wave equation, the

slowly varying amplitude approximation can be made, i.e. assuming:

¯̄̄̄
2 ( )

2

¯̄̄̄
¿

¯̄̄̄
2

( )
¯̄̄̄

leading to: µ
2

2

2

( )
¶

( ) + = 0

2

2

This is a good approximation, since the conversion due to nonlinear optical processes

is slow compared to the time-scale of the optical cycle Next, the polarization term

has to be re-casted:
2

2
=

2

2

¡ ¢
The nonlinear susceptibility has been treated in the last section. The product of the

three whispering-gallery mode fields on the l.h.s. contains a rapidly varying term

(due to the phase of the whispering-gallery modes ), and a slowly varying part

(given by the amplitude ( )). In taking their derivative with respect to time, the

slow time dependence of the fields can be neglected. Assuming that the total three

fields vary as ( + + ) 0

0

2

2
= 0

02
¡ ¢

In addition each of the field contains a azimuthal dependence due to the eigenfunctions

(± ) Therefore the polarization also contains a term:

( + + )

Inserting the phasor and angular dependence into the polarization leads to:



161

µ
2

2

2

( )
¶ e ( ) + = 0

02

µ
3

8
e e e ¶

( + + ) ( + + )µ
( )
¶ e =

02

2 2

µ
3

8
e e e ¶

( + + ) ( + +

The latter equation is cumbersome to evaluate, since the explicit fields e = e ( )

enter in the equation. It is desirable to arrive at an equation which describes only

the energy or amplitude of the mode i.e. ( ). This can be achieved by integrating

over the transverse extend of the WG mode and by multiplying the conjugate fielde ( ) from the left.

µ
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¶Z ¯̄̄ e ¯̄̄ =
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In the last expression, the fact that the mode function are normalized has been used,

i.e.
R

| |2 = 1. The last term is the e ective mode area and has units of inverse

area, which as in the case of Raman scattering deviates from the mode area, as defined

by the energy density definition. In the case E is describes the electric field and is not

normalized, the e ective area is given by:

1 =

R ¡R
| |2

¢1 2
Since in a microcavity the susceptibility vanishes outside the cavity (i.e. in air) the

integral in the denominator is carried out only over the dielectric cavity area). As in

the case of stimulated Raman scattering, the e ective mode area can actually di er

from the actual mode area (and for microspheres and microtoroids is approximately

×2 larger). The above definition of e ective mode area describes all third order

nonlinear optical phenomena, and as such also yields again the Raman gain coe cient
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(i.e. which is proportional to i.e. yielding 1 = ). Hence the

coupled mode equations are given by:

µ
( )
¶
=

02

2 2
·
3

8
(3)
· ( + + ) ( + + )

Furthermore it is common to introduce the nonlinear coe cient:

2 2

Where the third order nonlinear susceptibility is related to the nonlinear index of

refraction 2 by, and is assumed to identical for all coupling processes.

2 =
3

8
(3)

The fields entering the expression of the nonlinear polarization can only couple to the

l.h.s. of the Helmholtz equation, if the time dependence is the same as on the left, i.e.

if The remaining terms are anti-resonant (and in a full quantummechanical

treatment are seen to violate energy conservation with respect to the photon energy).

Therefore only terms, in which 0 will induce an e cient coupling by means of

the nonlinear susceptibility. In addition the angular dependence on both sides

of the equation needs to be identical, to achieve coupling of modes. The latter two

conditions, can be shown to be equivalent to the requirement of energy and angular

momentum conservation. To arrive at a set of coupled mode equations for parametric

oscillation, which parametrically converts two pump photons into signal and idler,

only resonant terms have to be kept in the treatment. For equal to two pump

fields, as well as signal and idler, this leads to the coupled mode equations for signal
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and idler.
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In this set of equations, the pump has been assumed strong | | À | | | | and

for the idler and signal only the XPM and FWM term included, whereas the pump

field experiences only SPM and FWM to signal and idler frequencies. In addition the

angular momentum and frequency detuning parameters have been introduced:

2

= 2

(Angular) Momentum conservation for WGM

It is important to note, that if the signal and idler mode numbers are chosen

symmetrically around the pump field, the (angular) momentum matching condition

is satisfied intrinsically (since =
0

):

+ + + + = 0

Energy conservation

On the other hand, energy conservation is not a priori assumed to be satisfied, due

to the presence of waveguide and material dispersion. The detuning e ectively

describes the extent to which strict energy conservation is violated and is given by:

2

It is interesting to note, in the case of a cavity, the role of frequency and momentum

in the context of parametric gain are reversed. In the waveguide case, a continuum of
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Figure A.1: Schematic of the e ect of cavity detuning on the occurrence of parametric
oscillation. For 0 parametric oscillation can only occur if the detuning =
2 is less than the parametric band-width (given by 0 ) Note
that the parametric band-width exists only for positive detuning, due to the shift of
resonant frequency caused by XPM and SPM.
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frequencies exists, such that energy conservation is a priori satisfied, whereas the

momentum distribution is discrete ( ). In contrast, for a whispering-gallery micro-

cavity, momentum is satisfied intrinsically, whereas only a discrete set of frequencies

exist , which are required to satisfy energy conservation. Using the frequency

detuning, the coupled-mode-equations are:

=
1

2
+ 1 +

=
1

2
1

Where:

1

³ ´ 3
8

(3)4 | |2 = 4 | |2³ ´ 3
8

(3)2 = 2

In the case of a whispering-gallery microcavity, the governing equation for the pump

whispering gallery mode is given by the equation:

e
=

1

2
+ + +

r
1

3

8
(3) · 2

3

8
(3) · | |2

This set of equations of coupled equations for signal and idler fields can be formally

solved. By the transforming into a rotating frame i.e. = 2 , =

2 and eliminating the time dependence yields the linear system of coupled

equations:

2

2
2 =

1

2
2 + 1 2 + + 2

2

2
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2
2 1 2

+ 2
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If the idler equation is conjugated a linear di erential equation system is obtained:

µ ¶
=

1
2
+ 1 + 2

1
2 2 1

µ ¶
(A.1)

The eigenvalues are given by: 1 2 =

½
±

µ
1
2

q
| |2 2

1 1
2

4

¶¾
and

the parametric gain be identified correspondingly as:

( ) =

s¡
| |2

¢2 µ
| |2 +

2

¶2
(A.2)

=

r
2 | |2

2

4

The parametric gain is non-zero only for 0 where is the parametric

gain bandwidth:

4 | |2 (A.3)

The maximum parametric occurs shifted away from ideal energy conservation, at

non-zero detuning:

max 2 | |2 (A.4)

This shift is due to the e ect of cross phase modulation of the signal and idler due to

the pump.

A.4 Parametric oscillation threshold

The parametric oscillation threshold is reached when the gain exceeds the cavity losses

i.e. in steady state for 1 2 = 0 Thus:s
2 | |2

µ
2

¶2
=

µ
1

2 0
+
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2

¶
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2 0
(1 + ) (A.5)
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From this equation the necessary circulating pump power in the cavity can be derived:
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(A.6)

Taking into account the cavity buildup factor, the threshold for parametric oscillation

as a function of coupling and detuning is obtained:
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A.5 Material and cavity mode dispersion

The optical modes within a cavity are in general not regularly spaced due to the

presence of material and cavity dispersion. First, material dispersion is considered.

The detuning frequency can be related to 0 = by noting that = 2

and in a simple model ( )

=
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In the case of silica in the 1550 nm band 0 Therefore the parametric detuning

frequency due to material dispersion is always positive, as is required in order for

parametric oscillation to occur. Secondarily, the free-spectral range is naturally not

constant. In the case of a microsphere, the analysis of chapter 1 yielded:

| +1|
À1

µ
1 0

2 3

3

¶
(A.9)

Therefore the detuning frequency contribution from the WGM dispersion is always

positive, since the FSR ( ) increases for increasing angular mode number .

= 2 =

As a result both material dispersion and cavity mode dispersion, cause the parametric

detuning frequency to be 0
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Appendix B

Modelling of whispering-gallery
microcavity modes

B.1 Wave equation for whispering-gallery resonators

with rotational symmetry

Whereas the optical quality factor (Q) is dependent upon many external factors (such

as cavity surface roughness, water adsorption, defects in the oxide layer etc.), and

can vary significantly across micro-spheres and micro-cavities with nearly-identical

geometry parameters, the mode volume of the optical modes is entirely dependent

upon the cavity geometry. However, while Q-factor can be measured directly and is

experimentally accessible, the same is not true for the optical mode volume, which

can only be probed indirectly, such as by near field optical probes or as be presented

in chapter 7, using the oscillation threshold of stimulated Raman scattering. In

this section the optical mode-volumes as well as the e ective nonlinear optical mode

volumes are calculated for toroid and disk microcavities using numerical modelling

using a PDE finite-element solver. To accomplish this task the Helmholtz equation

for the whipering-gallery resonator case is derived and transformed in the required

standard PDE form.

The whispering gallery resonators studied in this thesis (i.e. spheres, disks and

toroids) all exhibit (if the presence of eccentricity is neglected, and only treated
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Figure B.1: Direction of the field components of the whispering-gallery modes of
magnetic type (i.e.TE-case) for a toroid. TE (TM) modes posses a E-field (H-field)
which is perpendicular to the equatorial plane of the torus.

as a weak pertubation) a rotational symmetry. Therefore the choice of cylindrical

coordinates for the modelling is a natural choice. The optical modes of a whispering

gallery type resonator are described in their most general form by a total of six

field components, ( ) The boundary condition couples the electric

and magnetic field components. A significant simplification occurs, if the index of

refraction ( ) is homogeneous throughout the dielectric cavity, and the polarization

is constant. In this case the scalar-wave equation approximation can be used. The

solutions of the scalar wave equation fall into two classes; the optical modes are

either electric in character (referred to as transverse-magnetic TM case) or magnetic

in character (referred to as transverse electric TE case). In the case of TM-modes

in a WGM resonator (with the symmetry axis along the z-axis) , the magnetic field

is transverse to the direction of propagation (which occurs along ) implying that

= 0 whereas for the TE-case = 0 All the remaining field components can

be expressed in terms by only one field component ( for TE-modes and TM-
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modes) , reducing the problem to a scalar Helmholtz equation for one field component.

An additional simplification of the Helmholtz equation occurs due to the rotational

symmetry in case of a perfect whipering-gallery resonator. Due to the periodicity

condition (exp( 2 ) = 1) the TE and TM-mode can be expressed as:

( )

( )
=

( )

( )
· exp( ([± ]) = (B.1)

Where is the angular mode number. The Helmholtz in cylindrical coordinates is

given by (considering in what follows only the TM case):
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Using the separation of variables approach for the angular direction (and introducing

the angular mode number correspondingly):

( ) = ( ) · exp(± ) (B.3)

this yields the equation:
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multiply by · from the left and rearranging:
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Rearranging and the expression thus produces the Helmholtz equation in the required

PDE format (TM -case):
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Figure B.2: Comparisson of the analytical and numerically calculated intensity dis-
tribution of the | |2 component plotted in the radial direction, for a microsphere of
10 radius.The numerical and analytical models show excellent agreement.
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To test the accuracy of the numerical modelling, the calculated resonance locations

for a microsphere were compared to the resonance locations obtained by an asymptotic

expansion (see chapter 1). The deviations were less than 2.5e-004 for both TE and

TM polarization, and assure the accuracy of the simulation results. Furthermore, in

figure B.2 the numerical and theoretical results of the radial equation are plotted,

showing excellent agreement.
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Appendix C

Experimental techniques:
Fabrication of toroid and disk
microcavities on a silicon chip

Surface-tension induced microcavities such as droplets of microspheres undergo a

liquid phase, in which surface tension induces the spherical cavity shape and in ad-

dition provides exceptionally smooth surfaces. For silica microspheres, atomic-force

microscopy has revealed surface roughness in the range of less than 1 nm r.m.s. The

quality of the surface has enabled to observe absorption limited Q-factors in mi-

crospheres of nearly 9×109[41], which are the highest Q-factors to date in the optical

domain. In this chapter the fabrication of toroidally shaped silica microcavities on

a silicon chip is described. The fabrication technique is a combination of standard

micro-fabrication techniques with a selective reflow process inherent to fabrication of

surface-tension-induced microcavities. As in the case of microspheres, toroid micro-

cavities undergo a liquid state during their fabrication, enabling them to obtain sur-

face roughness characteristics similar to other surface-tension-induced microcavities

such as microspheres. This allows, under proper preparation, to observe ultra-high-

Q optical modes, as has been demonstrated in chapter 7, and constitutes the first

demonstration of ultra-high-Q microcavity on a chip[81].

The fabrication sequence involves as a first step the fabrication of silica disk micro-

cavities on a silicon substrate. Microdisk also fall into the class of whispering-gallery

devices, as their modes are confined by continuous total internal reflection at the disk
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perimeter. In a second step, the disk-cavities are laser irradiated causing a selective

reflow of the silica. This process causes the disk surface to collapse and to from

a toroidally shaped boundary, whose limiting dimensions are defined by the pillar

geometry.

Starting material for the fabrication process are oxidized silicon wafers (in the

work intrinsic oxidized wafers with resistivity of typically more than 10 Ohm/cm2

and [100] crystal orientation, Virginia Semiconductors ). Processing involved the

etching of circular pads into the oxidized wafers. In this thesis work positive photo-

resist (Shipley-1813) was used and spun for 2 minutes at 3000 rpm. To promote

adhesion of the photo-resist the wafer was exposed to HDMS prior to spinning. After

soft-bake (115 C at 2 minutes) the wafers were exposed and developed (MF-319),

and hard-baked (120 C for 15 minutes). After visual inspection on the uniformity of

the pads, the wafers were etched with hydrofluoric acid until all oxide was removed,

leaving circular pads on a silicon wafer. Since silicon is hydrophilic as opposed to

silica, the removal of the entire layer of oxide can be inferred visually. Due to the

isotropy of the HF etching, combined with the e ect of undercutting of the photo-

resist, the silica disks exhibit wedge shaped side-wall profiles. The wedge angle is

dependent on the amount of undercutting of the photo-resist pads and was less than

45 degree in this work. After etching the sample was cleaned with acetone, methanol

and DI. Critical in the processing is avoiding particles during cleaving of the wafer

into individual chips. This was achieved by spinning (and subsequently soft-baking)

a second time photo-resist on the etched sample. The layer of photo-resist in this

case functioned as a protection layer for particles during cleaving. The processed

wafer was cleaved into ca. 5 × 20mm chips, in order to facilitate the coupling using

tapered optical fibers. Each chip contained one single row of resonators, to ensure

rapid testing of resonators. After cleaving individual chips containing the photo-resist

layer were rinsed with water and all particles removed. Subsequently the samples

were cleaned in acetone, at a temperature of 60 degrees for 15 minutes followed by

a methanol and DI rinse. This ensured complete removal of the photo-resist. To

optically isolate the silica disks from the silicon a dry (gas-) etch employing XeF2 at
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room temperature was used. Figure ?? shows a scanning electron micrograph of the

resulting structure. The amount of undercut can be controlled by the XeF2 etching

parameters, however large variations were found at the edges of the samples, likely

due to proximity and inhomogeneous gas-flow. The resulting structures are microdisk

cavities, and their optical modes will be examined in chapter 7. Nonetheless, the

above process flow leaves lithographic blemishes, visible in an optical microscope,

at the all-important disk periphery. Therefore additional processing was pursued to

achieve the surface finish characteristic of STIM structures exhibiting rms roughness

of several nanometers or less[41].

Next, a processing step was introduced to selectively heat and reflow the undercut

SiO2disks without a ecting the underlying silicon support pillar similar to techniques

used for integrated circuit planarization[113]. This steps leaves toroidally shaped

cavities with a surface roughness which is comparable to surface-tension induced mi-

crocavities such as microspheres. The reflow step was performed using a Carbon

dioxide laser (Synradt Inc., 10W optical power), which was also used for the fabrica-

tion of microsphere resonators. The CO2 laser emitted in a TEM00 mode and had a

beam diameter of ca. 1 mm. Improved beam profiles were obtained when increasing

the optical path length of the laser to the sample ca. 4 feet. The laser was focused

using a 5 inch focal length lens (Umicore Inc.), resulting in a beam diameter of ca.

200 diameter. As during the reflow process alignment of the Gaussian laser beam

with the silica disk is critical, a 45-degree ZeSn alignment beam-splitter with a 633

nm reflective coating was used. The beam-splitter was placed directly after the ZeSn

lens and a ×20 objective with a focal length of 6 cm was used to image the laser spot.

The chips with the silica disks were mounted vertically on a sample holder mounted

on a stage, to allow relative positioning with respect to the image and laser spot. The

schematic of the setup is shown in C.1.
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Figure C.1: Microcavity fabrication steps: 1. Cleaving 2. Photolithography 3. Wet-
etching using hydrofluoric acid 4. Dry etching using XeF2

Figure C.2: Schematic of the CO2 laser selective reflow process to create toroidally
shaped microcavities.
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C.1 Properties of Silica and Silicon at CO2 laser

wavelength

Silicon, due to its band-gap of 1.12 eV, does not absorb the energetically lower photons

from the CO2 laser (10.6 wavelength which corresponds to 0.12 eV) through direct

optical excitation of valence band electrons. Heating and corresponding absorption

is primarily caused by free-carrier-absorption (FCA) of thermally excited electrons

in the conduction band. At room temperature silicon is therefore nearly transparent

to CO2 laser light. At higher temperature the silicon absorption increases through

thermally excited carriers, which in turn increase the absorption due to free-carriers

excitation. This positive feedback of the heating is referred to as thermal runaway

heating. For the laser intensities in this work, thermal run-away heating of silicon

was not observed, as the laser intensities were below 100 MW/cm2.

Silica, on the contrary does strongly absorb CO2 laser light due to the presence of

resonant vibrational levels near 10.6 . Strong absorption occurs due to excitation

of the transverse optical and longitudinal optical phonon mode of the bond

which is located at 1090 cm 1 and 1200 cm 1 respectively. The room temperature

absorption coe cient is 32 inverse micron. For higher temperature the silica absorp-

tion increases to a good degree linearly due to thermal run-away. The temperature

dependent silica extinction coe cient is given approximately by the expression[114]:

00 = · + where = 1 8 · 10 2 and = 10 · 10 5, and is related to the absorption

coe cient by: = 4 00

= (i.e. the 1 penetration depth). The expression is valid in

the temperature range of 25-1800 . The optical and thermal properties are given

in the table C.1. The strong increase in temperature during the illumination process

can also lead to temperature levels, which are su cient to induce evaporation of the

silica from the surface, This e ect has been observed during microsphere fabrication

and has been discussed in chapter 5 in the context of modal coupling.

Due to this strong temperature dependence of the silica optical extinction coe -

cient, as well as the thermal isolation of the undercut SiO2 disk, irradiation of silica

disks on a silicon pillar, will cause melting of the silica disk along the periphery. In
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Properties Silica (Thermal Oxide) Silicon

Melting Point 1710 1414

Boiling Point 2590 3173

Thermal Conductivity 150 1.3

Table C.1: The optical and thermal properties of silica and silicon.

addition to having a far weaker optical absorption at 10.6 microns, silicon is 100 times

more thermally conductive than silica[115][114]. The silicon pillar therefore remains

significantly cooler and physically una ected throughout the silica reflow process,

serving as a heat sink to the selectively absorbed optical power in the silica layer.

Due to the melting of the periphery and the action of surface tension, the disk was

observed to shrink and more significantly form a toroidally shaped cavity boundary, in

width exceeding that of the initial silica disk. As the disk diameter shrinks, the e ec-

tive cross-section available to absorb laser power decreases and shrinkage is observed

to terminate. Beyond this point, continued laser treatment at the same intensity re-

sults in no observable change of the structure. The process is therefore self-quenching

with the final diameter of the molten disk rim controlled by lithography and chemi-

cal etch steps. It should be noted that it is possible to interrupt the reflow prior to

quenching thereby producing a toroid with a diameter intermediate to the initial disk

diameter and terminal diameter. The irradiation parameters (amplitude, pulse shape

and duration), were controlled using a function generator driving the CO2 laser, and

pulse durations were in the range of typically several tens of milliseconds. Compar-

ison of the final toroidal cavity volume to the initial preforms shows, that for high

intensity illumination a significant fraction of the silica is lost during the selective

reflow, due to evaporation which has been mentioned in Chapter 4.

Figure C.3 shows a scanning electron micrograph of a reflown disk structure. The

imaging reveal the high degree of symmetry of the structure. The cross-sectional area

of the cavity is circular and the resulting cavity geometry therefore a torus, which
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can be characterized by two parameters:

Minor diameter :

Principal diameter :

As silica is consumed to form the toroidal cross sectional area, the minor diameter is

larger or equal to the thickness of the silica microdisk prior to reflow. Reduction of

the toroidal cross-sectional area can therefore be achieved by using thinner thermal

oxide layers in the disk processing as well as by reducing the amount of undercut and

limiting the amount of silica undergoing the liquid state. However, the use of thinner

oxides leads to shape deformed disk microcavities, due to relaxation of the compressive

strain inherent to thermally oxidized silicon wafers. This leads to a silica disk which

exhibits wave-like cavity boundaries, which can transfer into shape deformed toroids

during the reflow process. In addition the decreased silica film thickness requires more

optical power to induce melting. For the CO2 laser and focusing optics used in this

work, the minimum oxide thickness that could be molten was 500 nm.

In some cases deviations from the toroidal geometry were observed, in which the

toroid cross-sectional area was elliptic, however in the large majority of the toroids

used in this work, the action of surface tension causes formation of a circular cross

sectional areas with low eccentricity.

C.2 Toroid dimensional control by preform design

Increased lithographic control over the toroid geometry can be achieved by suitable

design of the silica disk preform. Due to the thermal runaway e ect, the thickness

of the preform is an important parameter determining the required flux of CO2 laser

illumination to initiate silica reflow and toroid formation. As noted above, for thin

oxide layers the required flux is strongly increased, and thus by using a variable

preform thickness profile, the temperature distribution of the silica in the laser illu-

mination process can be controlled. For example, an annular preform (i.e., thicker at
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Figure C.3: SEM of a microdisk structure fabricated from a 1 micron thermal oxide.
Due to the compressive strain induced by the thermal growth process used to oxidize
silicon, the formed microdisk cavities exhibit warping around the perimeter due to
strain relaxation. The e ect increases as the pillar diameter is decreased and the oxide
thickness is reduced. The inset shows the cavity geometry parameters; principal toroid
diameter (D) and minor toroid diameter (d).
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Figure C.4: An annular preform can be used to control the dimensions of the toroid.
The left panel shows an annular preform prior to melting and the right panel shows
the preform after irradiation. The CO2 laser radiation selectively melts the thicker
annulus perimeter, leaving the thinner interior disk una ected.

the perimeter) will be preferentially heated at the perimeter, where the oxide thick-

ness is large. We have found that not only does this mean that the melt initiates in

the annulus, but significantly it is prevented from proceeding into thinner interior.

The left panel of figure C.4 is an optical micrograph of an annular preform, featuring

a thick rim at the perimeter (2 m), and a thinner, interior disk (1 m). In order

to fabricate this structure two consecutive lithographic steps and bu ered HF ox-

ide etching were performed. The right panel in figure C.4 shows the structure after

pulsed laser illumination. The outer annulus region preferentially melts and surface

tension causes it to form a toroid. The process is observed to self-quench when the

inner toroid diameter reaches the inner annulus diameter, and, significantly, prior to

reaching the silicon pillar, The advantage of this fabrication technique is that the

amount of material used to form the toroid as well as the inner diameter of the toroid

micro-cavity can be accurately controlled by lithography. In addition, the supporting

disk structure can be made very thin, which thereby increases the optical confinement

of the modes within the toroidal periphery.


