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Abstract

Optical microcavities confine light at resonant frequencies for extended periods of

time and fundamentally alter the interaction of light with matter. They are the basis

of numerous applied and fundamental studies, such as cavity QED, photonics and

sensing. Of all resonant geometries, surface tension-induced microcavities, such as

silica micro-spheres, exhibit the highest Q-factor to date of nearly 9 billion. Despite

these high Q-factor and the intense interest in these structures, the nonlinear optical

properties of silica micro-spheres have remained nearly entirely unexplored. In this

thesis the nonlinear optical phenomena which can occur in ultra-high-Q microcavities

are investigated. To e ciently excite the whispering-gallery modes, tapered optical

fibers are used and the coupling to ultra-high-Q modes studied. It is found, that

microcavities with ultra-high enter a regime where scattering of light into the degen-

erate pair of clockwise and counter-clockwise mode is the dominant scattering process.

In this regime the coupling properties are significantly altered, but the cavities still

retain their ability to achieve significant cavity build-up fields. This allowed exceed-

ing the threshold for all common nonlinearities encountered in silica. In particular,

stimulated Raman scattering is observed in taper fiber coupled silica micro-spheres

at threshold levels typically in the micro-Watt range, which usually is considered the

regime of linear optics. Cascaded Raman lasing is also observed in these structures.

The tapered optical fiber in these experiments functions to both pump WGMs as

well as to extract the nonlinear Raman fields. In addition, the tapered-fiber cou-

pling junction is highly ideal, making it possible to strongly over-couple ultra-high-Q

cavities with negligible junction loss. This feature allows for the observation of very

high internal di erential photon conversion e ciencies approaching unity. Whereas
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micro-spheres are both compact and e cient nonlinear oscillators, their fabrication

properties lack the control and parallelism typical of micro-fabrication techniques. A

synergistic approach of micro-fabrication and a laser assisted reflow process, allows

to create toroidally silica microcavities on a chip. In this thesis it is demonstrated,

that these cavities can exhibit ultra-high-Q whispering-gallery modes, allowing to

achieve ultra-high-Q modes on a chip. This results is a nearly four-order of magni-

tude improvement with respect to other wafer-scale microcavities. In addition their

azimuthal mode-spectrum is strongly reduced. Nonlinear oscillation in these cavities

has also been studied, and stimulated Raman scattering observed, allowing to achieve

the first Raman laser on a chip. The devices show improved performance compared

to micro-spheres due to a strongly reduced azimuthal mode spectrum, which allowed

to observe single mode emission. The enhanced geometric control of these cavities is

also studied and found to profoundly alter the nonlinear optical processes the toroid

microcavities. Reduction of toroidal cross section is observed to cause a transition

from stimulated Raman to parametric oscillation regime. This allowed to observe

Kerr nonlinearity induced parametric oscillation in a microcavity for the first time.

The parametrically generated "twin beams" exhibit high conversion e ciency and

show near unity signal-to-idler ratio.
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