

Nonlinear Optics in Ultra-high-Q Whispering-Gallery Optical Microcavities

Thesis by

Tobias Jan August Kippenberg

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2004

(Defended May 14, 2004)

© 2004

Tobias Jan August Kippenberg

All Rights Reserved

To my parents,

Hans and Karola,

Acknowledgements

First and foremost I would like to thank my academic advisor, professor Kerry Vahala, for the support and guidance he has provided me throughout my dissertation, but also for the freedom he has given me to choose my research topics. He created a space in which ideas could be explored without financial constraints. His scientific intuition and insights have always been very helpful. Despite his at times busy schedule, he has always made time for discussion. In addition to the scientific side, he has also provided me with invaluable help in carefully planning and managing research projects. I have always appreciated his calm, precise and carefully evaluating manner. I have truly learned a lot during my thesis, which go beyond science itself, and thank professor Vahala for this. Also, he had always had patience for the many, sometimes quiet extended, trips to Europe I took during my dissertation.

Caltech is a truly special place, and I have deeply enjoyed having the privilege to do my graduate work at such a unique institution, which hosts so many great minds. I have enjoyed taking classes here, and it was my pleasure in particular to take classes from great teachers, in particular Kerry Vahala, Hideo Mabuchi, Jeff Kimble and Amnon Yariv. In the initial stages of my graduate work, I have greatly profited from the experimental skills that my colleagues Dr. Per Olof Hedekvist, Dr. Oskar Painter, Ashish Bhardwaj and Ming Cai have taught me. During my thesis work, I have enjoyed interacting with other students and post-docs of my group, Dr. Mark Brongersma, Bumki Min, Deniz Armani, Lan Yang and Hossein Rokhsari. In particular I have enjoyed working with Sean Spillane, and we have been a team from the first day I joined the group. I have shared an office and experimental setup with him during my entire thesis, and our healthy competitive nature has always benefited

us both. We have equally shared the successes as well as the failures, and working together has always been a source of motivation for me. It was a pleasure to work with Sean, and I thank him for the many interesting and stimulating discussions throughout the years.

In addition I have enjoyed working together with Professor Albert Polman from the AMOLF institute during his sabbatical year in the group of professor Atwater in 2003. It was my pleasure to collaborate with him, and he provided me great insights into a different area -material science-. I truly enjoyed our many stimulating and interesting discussions, and I am glad to have had the opportunity to meet him.

Outside of Caltech, I would like to thank my friends, Will Green and Andy Westhead, for their friendship over the past 5 years. They have helped me many times. I also thank Will Green for teaching and helping me with micro fabrication techniques. In addition I have had great pleasure to join a team of highly motivated and talented group of triathletes. Thanks to them, I always was well equilibrated and explored Southern California. In particular I would like to thank Richard Byrd, John Moss, Matt Connery and Peter Meinholt for taking me along on countless rides to the Seal Beach, Malibu Creek canyon and to Mount Wilson. During the few thousands miles we have cycled together I have enjoyed their friendship. The sometimes quiet intense training not only showed me the limits of my endurance, but it also helped me to achieve my goals outside of athletics.

Special thanks goes also to Carl Hansen, for his patience waiting for me on our early-morning bike-rides (often more than the academic five minutes), which have become a regular habit in the last three years. I will certainly miss the obligatory Peet's coffee and the interesting and stimulating discussions with him!

Last but not least, I wish to thank a special group of people. I am fortunate to have met Anna Fontcuberta-i-Morral who has enriched my life in every aspect in the last two years. I thank her for all the love and support. In addition, I wish to thank my parents, my mother Karola and my father Hans and my brother Colin, for their support, love and patience during my entire time at Caltech. Their support and help, went far beyond the true fortune they have spend on transatlantic flights for me! In

particular my father Hans, who I deeply admire, has provided me with invaluable advice and help during my entire thesis, and helped me maneuver many challenging situations. He was a constant source of inspiration and motivation for me. It is to them, I wish to dedicate this thesis.

Pasadena, May 4th 2004

List of Publications

- [1] T. J. Kippenberg, S. M. Spillane, and K. J. Vahala. Modal coupling in traveling-wave resonators. *Optics Letters*, 27(19):1669–1671, 2002.
- [2] S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala. Ideality in a fiber-taper-coupled micro-resonator system for application to cavity Quantum Electrodynamics. *Physical Review Letters*, 91(4):art. no.–043902, 2003.
- [3] S. M. Spillane, T. J. Kippenberg, and K. J. Vahala. Ultralow-threshold Raman laser using a spherical dielectric microcavity. *Nature*, 415(6872):621–623, 2002.
- [4] B. K. Min, T. J. Kippenberg, and K. J. Vahala. Compact, fiber-compatible, cascaded Raman laser. *Optics Letters*, 28(17):1507–1509, 2003.
- [5] T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala. Theoretical and experimental analysis of stimulated and cascaded Raman scattering in ultra-high-Q optical microcavities. *Selected Topics Journal of Quantum Electronics*, submitted(2004).
- [6] D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala. Ultra-high-Q toroid microcavity on a chip. *Nature*, 421(6926), 2003.
- [7] T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala. Fabrication and coupling to planar high-Q silica disk microcavities. *Applied Physics Letters*, 83(4):797–799, 2003.
- [8] T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala. Ultralow threshold microcavity Raman laser on a microelectronic chip. *Optics Letters*, 2004.

[9] T. J. Kippenberg, S. M. Spillane, and K. J. Vahala. Kerr nonlinearity induced optical parametric oscillation in a toroid microcavity. *Physical Review Letters*, submitted(2004).

Abstract

Optical microcavities confine light at resonant frequencies for extended periods of time and fundamentally alter the interaction of light with matter. They are the basis of numerous applied and fundamental studies, such as cavity QED, photonics and sensing. Of all resonant geometries, surface tension-induced microcavities, such as silica micro-spheres, exhibit the highest Q-factor to date of nearly 9 billion. Despite these high Q-factor and the intense interest in these structures, the nonlinear optical properties of silica micro-spheres have remained nearly entirely unexplored. In this thesis the nonlinear optical phenomena which can occur in ultra-high-Q microcavities are investigated. To efficiently excite the whispering-gallery modes, tapered optical fibers are used and the coupling to ultra-high-Q modes studied. It is found, that microcavities with ultra-high enter a regime where scattering of light into the degenerate pair of clockwise and counter-clockwise mode is the dominant scattering process. In this regime the coupling properties are significantly altered, but the cavities still retain their ability to achieve significant cavity build-up fields. This allowed exceeding the threshold for all common nonlinearities encountered in silica. In particular, stimulated Raman scattering is observed in taper fiber coupled silica micro-spheres at threshold levels typically in the micro-Watt range, which usually is considered the regime of linear optics. Cascaded Raman lasing is also observed in these structures. The tapered optical fiber in these experiments functions to both pump WGMs as well as to extract the nonlinear Raman fields. In addition, the tapered-fiber coupling junction is highly ideal, making it possible to strongly over-couple ultra-high-Q cavities with negligible junction loss. This feature allows for the observation of very high internal differential photon conversion efficiencies approaching unity. Whereas

micro-spheres are both compact and efficient nonlinear oscillators, their fabrication properties lack the control and parallelism typical of micro-fabrication techniques. A synergistic approach of micro-fabrication and a laser assisted reflow process, allows to create toroidally silica microcavities on a chip. In this thesis it is demonstrated, that these cavities can exhibit ultra-high-Q whispering-gallery modes, allowing to achieve ultra-high-Q modes on a chip. This results is a nearly four-order of magnitude improvement with respect to other wafer-scale microcavities. In addition their azimuthal mode-spectrum is strongly reduced. Nonlinear oscillation in these cavities has also been studied, and stimulated Raman scattering observed, allowing to achieve the first Raman laser on a chip. The devices show improved performance compared to micro-spheres due to a strongly reduced azimuthal mode spectrum, which allowed to observe single mode emission. The enhanced geometric control of these cavities is also studied and found to profoundly alter the nonlinear optical processes the toroid microcavities. Reduction of toroidal cross section is observed to cause a transition from stimulated Raman to parametric oscillation regime. This allowed to observe Kerr nonlinearity induced parametric oscillation in a microcavity for the first time. The parametrically generated "twin beams" exhibit high conversion efficiency and show near unity signal-to-idler ratio.

Contents

	iii
Acknowledgements	iv
Bibliography	vii
Abstract	ix
Glossary of Acronyms	xxi
1 Introduction	2
1.1 Thesis outline	3
1.2 Chapter overview and collaborative work	5
2 Optical modes of dielectric spheres (Microsphere Resonators)	8
2.1 Introduction	8
2.2 Optical modes of a dielectric sphere	9
2.3 Intensity distribution for a microsphere WGM	10
2.4 Asymptotic solutions	11
2.5 Eccentricity splitting	15
2.6 Loss mechanisms in a microsphere	16
2.6.1 Intrinsic material loss	17
2.6.2 Whispering gallery loss	17
2.7 Mode volume of microspheres	21

3 Tapered optical fiber coupling	27
3.1 Introduction	27
3.2 Evanescent coupling to microspheres using tapered optical fibers . . .	27
3.3 Fabrication of tapered-optical fibers	28
3.3.1 Optical properties of tapered optical fibers	30
3.3.2 Mathematical description of the waveguide-resonator coupling junction	32
3.3.3 Cavity-buildup factor	35
3.3.4 Experimental observation of controlled evanescent taper-fiber coupling to microsphere resonators	35
3.4 Linewidth measurements and thermal effects	42
3.5 Cavity ring-down measurements	43
4 Modal coupling in whispering-gallery-type resonators	47
4.1 Introduction ¹	47
4.2 Modal coupling in whispering-gallery-type resonators	48
4.3 Experimental observation of the regime of strong modal coupling . . .	53
4.4 Physical mechanism giving rise to strong modal coupling in microsphere resonators	60
4.5 Summary	63
5 Ultralow-threshold Raman Lasing in spherical microcavities	64
5.1 Introduction ²	
5.2 Nonlinear optics in fiber	65

¹This chapter has appeared in "Modal Coupling in traveling-wave resonators" *Optics Letters*, 27 (19) 1669-1671, 2002.

²Work presented in this chapter has been published in: "Ultra-low threshold Raman laser using a spherical microcavity", *Nature*, 415, 621-623 (2002).

5.2.1	Kerr nonlinearity	66
5.2.2	Raman scattering	67
5.2.3	Brillouin scattering	68
5.3	Stimulated Raman scattering in microcavities	68
5.4	Observation of stimulated Raman scattering in microspheres	71
5.4.1	Coupling dependence of stimulated Raman threshold	76
5.4.2	Mode volume dependence of the Raman threshold	80
5.5	Conclusion	82
6	Theoretical and experimental analysis of cascaded Raman scattering in ultra-high-Q microcavities	83
6.1	Introduction ³	83
6.2	Theoretical analysis of stimulated Raman scattering in microcavities	84
6.2.1	Coupled-mode equations for 1 st order Raman scattering in microcavities	84
6.2.2	Effective mode volume and modal coupling	88
6.2.3	Stimulated Raman scattering threshold and conversion efficiency	89
6.2.4	Analysis of cascaded Raman scattering in high-Q microcavities	95
6.3	Observation of cascaded Raman scattering in ultra-high-Q microspheres	98
6.4	Summary	100
7	Ultra-high-Q toroid microcavities on a chip	101
7.1	Introduction ⁴	101
7.2	Taper coupling to toroid microcavities	102
7.3	Cavity ringdown Q-factor measurements of toroid microcavities . . .	104

³Work in this chapter has been published in: "Fiber-coupled cascaded Raman laser", Optics Letters, 2003 and "Theoretical and Experimental Analysis of Stimulated Raman scattering in ultra-high-Q optical microcavities", submitted (JSTQE).

⁴Section 1.1-1.3 have appeared in: "Ultra-high-Q toroid microcavity on a chip", *Nature*, 421, No. 6926 (2003). Remaining sections are in preparation (2004).

7.4	Modeling of toroidal whispering-gallery modes	111
7.4.1	Weak modal compression regime	114
7.4.2	Strong mode volume compression	116
7.5	Fabrication of small mode volume toroid microcavities	116
7.6	Summary	119
8	Optical properties of microdisk resonators	121
8.1	Introduction ⁵	121
8.2	Taper coupling to microdisk resonators	122
8.3	Microdisk mode Structure	124
8.4	Application of disk microcavities for add-drop devices	126
8.5	Summary	130
9	Ultra-low-threshold microcavity Raman laser on a chip	131
9.1	Abstract ⁶	131
9.2	Stimulated Raman scattering in toroid microcavities	132
9.3	Numerical modeling of the effective mode volume	135
9.4	Measurement of effective mode volume via Raman scattering	141
9.5	Summary	143
10	Kerr-nonlinearity optical parametric oscillation in an ultra-high-Q toroid microcavity	144
10.1	Abstract ⁷	144
10.2	Introduction	144
10.3	Summary	154

⁵This chapter has been published in "Fabrication and coupling of high-Q silica disk microcavities", *Applied Physics Letters*, 83(4), p.797-799 (2003).

⁶Work in this chapter has appeared in "Ultra-low threshold microcavity Raman Laser on a microelectronic Chip", *Optics Letters*, Vol. 29, No. 11 (2004).

⁷This chapter has been submitted to *Physical Review Letters* (2004)

A Theoretical analysis of Kerr-nonlinearity parametric oscillation in a whispering-gallery microcavity	156
A.1 Introduction	156
A.2 Third order nonlinear polarization	156
A.3 Coupled mode equations for Kerr-parametric interactions in a whispering-gallery-microcavity	158
A.4 Parametric oscillation threshold	166
A.5 Material and cavity mode dispersion	167
B Modelling of whispering-gallery microcavity modes	169
B.1 Wave equation for whispering-gallery resonators with rotational symmetry	169
C Experimental techniques: Fabrication of toroid and disk microcavities on a silicon chip	173
C.1 Properties of Silica and Silicon at CO ₂ laser wavelength	177
C.2 Toroid dimensional control by preform design	179
Bibliography	182
Curriculum Vitae	194

List of Figures

2.1	Calculated intensity distribution $ E_\phi ^2$ in the radial direction for a microsphere.	12
2.2	Numerical modeling of the intensity profile ($ E_\phi ^2$) of the whispering-gallery modes.	13
2.3	Free-spectral range $\Delta\lambda_{FSR} = \lambda_{nml} - \lambda_{nml+1} $ for a fundamental microsphere mode.	14
2.4	The effective radial potential for a microsphere.	19
2.5	Radial intensity distribution ($ E_\phi ^2$) for a fundamental ($n = 1, \ell = m$) mode of a $5\text{-}\mu\text{m}$ -radius microsphere.	20
2.6	The whispering-gallery-loss limited Q for a fundamental microsphere mode.	22
2.7	Whispering gallery loss versus microsphere radius for a polar mode number ℓ consistent with a resonance wavelength near 1550 nm.	23
2.8	Numerically calculated mode volume V_m for a microsphere as a function of radius.	25
3.1	Tapered fiber pulling setup.	29
3.2	Optical micrograph of the waist region of a tapered optical fiber.	30
3.3	Main figure: Numerically calculated effective index n_{eff} of the fundamental HE_{11} taper mode.	31
3.4	Schematic of a waveguide-coupled resonator.	32
3.5	Microsphere coupled to a tapered optical fiber.	36
3.6	Photograph of the fiber-taper coupling setup.	38
3.7	Coupling regimes for a tapered-optical-fiber resonator system.	39

3.8	Up-conversion from the $^2H_{11/2}$ stark level of erbium visualizing the whispering-gallery modes in a microsphere.	40
3.9	Broadband transmission spectrum of a microsphere.	41
3.10	Schematic of the cavity ring-down setup to measure photon lifetimes. .	44
3.11	Cavity ringdown measurement trace.	46
4.1	Schematic of a traveling-wave resonator coupled to a waveguide.	49
4.2	Spectral transmission and reflection properties of a $70\ \mu\text{m}$ sphere with $Q_0 = 1.2 \cdot 10^8$, in the presence of strong modal coupling.	52
4.3	Transmission (stars) and reflection (diamonds) behavior for the case of symmetric $\Delta\omega = 0$ excitation vs. K	54
4.4	Experimentally observed and theoretically determined reflection at the critical point as a function of modal coupling Γ	57
4.5	Calculation of the resonant circulating power in the microcavity.	59
4.6	Power correction factor as a function of modal coupling parameter Γ . .	61
4.7	Observation of a-symmetric mode splitting.	62
5.1	Raman gain spectrum of SiO_2	69
5.2	Spectrum of a $70\text{-}\mu\text{m}$ diameter Raman microsphere laser with pump powers of 2 mW.	72
5.3	Single longitudinal mode Raman lasing. Raman spectrum.	74
5.4	High resolution scan of the Raman output emission slightly above threshold.	75
5.5	Coupling gap and size dependence of the Raman threshold.	78
5.6	Stimulated Raman scattering threshold versus transmission past the microsphere.	79
5.7	The Raman oscillation pump threshold of a microsphere as a function of cavity radius.	81
6.1	Theoretical calculation of the stimulated Raman threshold as a function of coupling.	92

6.2	External and internal pump to Raman differential conversion efficiency.	94
6.3	Microcavity stimulated Raman threshold as a function of Cascaded Raman order (N).	97
6.4	Cascaded Raman scattering in a $58\text{-}\mu\text{m}$ -diameter microcavity.	99
7.1	SEM of a toroid microcavity	103
7.2	SEM-side profile of the toroid microcavity periphery.	103
7.3	Array of toroid microcavities.	104
7.4	Optical micrograph of a tapered-optical fiber coupled to a toroid microcavity.	105
7.5	Typical transmission broadband spectrum of a toroid microcavity.	106
7.6	Broadband transmission and reflection spectrum of a UHQ toroid microcavity.	107
7.7	Cavity ringdown measurement of a toroid microcavity.	109
7.8	Cavity ringdown measurement of a toroid microcavity.	110
7.9	Mode area versus minor toroid diameter (constant ℓ -index)	112
7.10	Mode area versus minor toroid diameter (constant wavelength)	113
7.11	Intensity distribution a toroidal and spherical whispering-gallery mode.	114
7.12	Radial and vertical intensity distribution for a microsphere ($D = d = 25\mu\text{m}$) and a toroid microcavity ($d = 6\mu\text{m}$) in the weak compression regime	115
7.13	Mode volume of toroid microcavities for $D = 25, 50, 75\mu\text{m}$.	117
7.14	Experimentally measured toroid Q-factor versus principal diameter.	119
8.1	SEM of a silica micro-disk resonator	122
8.2	Transmission and reflection of a tapered-fiber coupled microdisk resonator.	125
8.3	Modeling of microdisk modes for different wedge angles.	127
8.4	Broadband transmission TE/TM spectrum of a disk microcavity.	128
9.1	Toroid microcavity geometry parameters.	133
9.2	Emission spectrum of a toroid microcavity Raman laser.	134

9.3	Effective mode A_{eff} area of a toroid microcavity,	137
9.4	The mode area A_m of a toroid microcavity.	138
9.5	Effective mode area A_{eff} for different toroid microcavity diameters. . .	139
9.6	Effective mode area for the fundamental and higher order azimuthal mode as a function of d	140
9.7	Experimental and theoretical mode volume (in cubic-microns) of toroid microcavities.	142
10.1	Theoretical plot of the cavity nonlinear optical regimes.	148
10.2	Calculated WGM mode area as a function of minor toroid diameter. .	150
10.3	Parametric-oscillation spectrum measured for a $67\text{-}\mu\text{m}$ -diameter toroidal micro-cavity.	151
10.4	The coupling-gap-dependence of the parametric threshold.	153
A.1	Schematic of the effect of cavity detuning on the occurrence of parametric oscillation.	164
B.1	Whispering-gallery field components for TE and TM.	170
B.2	Comparisson of the analytical and numerically calculated intensity distribution.	172
C.1	Microcavity fabrication steps	176
C.2	Schematic of the CO_2 -laser selective reflow process	176
C.3	SEM of a microdisk structure fabricated from a 1 micron thermal oxide. .	180
C.4	Annular preform for toroid microcavity dimensional control.	181

List of Tables

5.1	Nonlinear optical processes of silica and their associated modal gain.	68
5.2	Comparison of the Raman properties for the substances used in cavity nonlinear optical experiments using microdroplets and microspheres.	71
7.1	Microcavity application areas and their respective figure of merit, expressed in mode volume (V), and Quality factor (Q).	118
7.2	Characteristic parameters of an ultra-high-Q small mode volume toroid microcavity.	120
A.1	Nonlinear optical effects associated with the third-order susceptibility .	158
C.1	The optical and thermal properties of silica and silicon.	178

Glossary of Acronyms

WGM Whispering-gallery mode

XPM Cross-phase modulation

FWM Four-wave mixing

UHQ Ultra-high Q

SPM Self-phase modulation

SEM Scanning electron microscope

SRS Stimulated Raman scattering

SBS Stimulated Brillouin scattering

STIM Surface-tension-induced microcavity

LL Light-in light-out

FSR Free-spectral-range

OSA Optical spectrum analyzer