

**Intramolecular Electron Transfer in an Iridium d⁸-d⁸
Donor-Acceptor System**

Thesis by
Lucius Seiberling Fox

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1989

(Submitted January 31, 1989)

© 1989
Lucius S. Fox
All Rights Reserved

Acknowledgment

Well, at this point with all of the experiments done and the body of my thesis written, it is time to reflect on my tenure at Caltech and try to thank many of the people who have enriched my graduate career. I owe a special debt of thanks to my research advisor and friend Harry Gray. Apart from being an outstanding scientist, Harry is probably the most generous and supportive person I have ever had the opportunity to work for. I can not count the number of meals at the Acapulco Lounge that I have enjoyed at Harry's expense; each accompanied by numerous rounds of Margaritas! He has cheered me on in lab, thumbs always pointing toward the ceiling, and cheered me up when things weren't going so well. Most importantly, he has provided me with the opportunity to independently seek out my own graduate education. When I joined his group in 1983, I found this "hands off approach" somewhat frustrating. Over the years I believe that the "Gray Way" of graduate education has developed my ability to identify and pursue interesting chemical problems. I value this single skill more than any other and know that I will continue to appreciate it as my career unfolds.

One of the exciting aspects of my graduate research was that it involved collaborating with several outstanding scientists at Caltech, SERI, and Brookhaven National Laboratory. Dan DuBois at SERI was responsible for initiating research surrounding the preparation of the redox phosphine ligands and was a valuable source of information during the synthesis phase of this project. Janet Marshall coached me in preparing the iridium dimer complexes and was involved in their initial characterization. Professor Dick Marsh at Caltech solved the crystal structure of $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py}^+)_2](\text{Ph}_4\text{B})_2$ and my interactions with him enhance my appreciation for the science of crystallography and proper data analysis. I thank him for the time he took to make sure that our data were sound, our interpretations were correct and to answer all of my questions. During the winter

quarter of 1987 I had the unique opportunity to travel to Brookhaven National Laboratory to conduct picosecond laser experiments on my compounds with Jay Winkler. Needless to say without these data my thesis would not be complete. I thank Jay and his wife Melissa for their hospitality during my visit. It was certainly nice to spend Sunday afternoons having dinner with the Winklers rather than having the "entree du jour" at the Brookhaven cafeteria. Through my interactions with Jay I learned what I know about reaction kinetics and picosecond laser spectroscopy and I am grateful to him for his advice and insights.

As I read about the many theories of electron transfer, I found that they are based on readily understandable concepts which are often enshrouded in technical jargon and complicated mathematical formalisms. Luckily for me John Hopfield employed two of electron-transfer's up and coming theoreticians who were willing to answer many of my questions. Jose and Dave, I think I understand your latest papers but I'll give you a call just to be sure.

When I arrived at Caltech in 1983, the photogroup was inhabited by three seasoned group members. Mike Hopkins, Tom Zeitlow, and Janet Marshall made key contributions to my education by showing me the ropes in lab, talking to me about potential projects, and teaching me the ins and outs of inorganic photochemistry. Mike and I became good friends and I thank him for the many hours we spent talking about research ideas and graduate school survival techniques. "Jedi Master" Walther Ellis provided me with seemingly endless torture at the hands of his Ligand Field Theory course. Walther is a man who continues to amaze me; master scientist, master drinker, and photocopy machine expert! I certainly wish him and the Xerox machine at Utah all the best. Special thanks go to David Smith, Miriam Zeitlow, and Steve Mayo as my comrades at arms during graduate school and for their friendship. It has been a lot of fun being in the Gray Group thanks to the great people that I have had the opportunity to

work with and count among my friends. John Brewer and Mike Therien proofread and critiqued my thesis and I thank them for their insights.

Outside of the Gray Group there are several people who have had an influence on my development both prior to and during my graduate career. Gary Christoph and Bruce Bursten gave me my first opportunity to conduct research in inorganic chemistry. Both men have helped me realize many of my goals and I thank them for their friendship and support. Sunney Chan has been a valuable friend and sounding board during graduate school and I truly appreciate his kindness. He introduced me to real Chinese food and I will miss our regular trips to "Sun Tung Loc" for dim sum.

Most importantly, I want to thank my mother, father, and my lovely wife Jayne for all the love and support they have given me during my education. My parents have stood behind me through out college and graduate school and Jayne has made these last two years at Caltech my happiest. Mom, Dad, I think I am finished with school now. Jayne, I promise that we'll never live near an earthquake fault again! I also want to thank my good friend Chris Thompson for helping me keep things in perspective.

Finally, I thank the British Petroleum America Corporation for a fellowship during the spring quarter of 1988.

To Mom, Dad, and Jayne

Abstract: A series of donor-acceptor complexes, $[\text{Ir}_2(\mu\text{-Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py}^+\text{-R})_2](\text{Ph}_4\text{B})_2$ ($\text{Py}^+\text{-R}$ = 2,4,6-trimethylpyridinium, 4-methylpyridinium, pyridinium, and 4-phenylpyridinium; $\text{Pz}^*=3,5\text{-dimethylpyrazole}$), have been synthesized for studying the rate of photoinduced electron transfer from the metal localized ($d\sigma^*p\sigma$) excited states of d^8 - d^8 chromophores. The pyridinium electron acceptors are covalently attached to the iridium metal centers (donor) via a three atom hydrocarbon linker bound to the terminal phosphine ligands. The x-ray crystallographic structure of $[\text{Ir}_2(\mu\text{-Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py}^+)_2](\text{Ph}_4\text{B})_2$ reveals a metal-metal distance of $3.219(1)$ Å and a solid state donor-acceptor separation of $5.84(1)$ Å. Additional donor-acceptor separations and orientations are available to the compounds in fluid solution through rotations about the Ir-P and linker group C-O, C-N, and C-C bonds. Steady state emission spectra show that the fluorescence and phosphorescence quantum yields in these compounds are substantially reduced relative to an appropriate model complex. To date the excited state reactivity of d^8 - d^8 metal dimers has been exclusively attributed to their $^3(d\sigma^*p\sigma)$ states. These findings represent the first evidence for reactivity from a shorter lived $^1(d\sigma^*p\sigma)$ state.

Picosecond and nanosecond laser flash-photolysis techniques were employed to measure the rates of photoinduced electron transfer and charge recombination in these systems. Values of k_{ET} , obtained from these studies, vary between 10^6 sec $^{-1}$ and 10^{12} sec $^{-1}$ as a function of reaction exoergicity ($\Delta G^0 = -0.8$ eV to 1.92 eV). Clear evidence for the inverted behavior predicted by classical and semiclassical electron transfer models is seen at high driving force. Rate constants for reactions involving the $^1(d\sigma^*p\sigma)$ and $^3(d\sigma^*p\sigma)$ excited states, as well as the rates of charge recombination are characterized by very similar values of λ and H_{ab} . Our data are adequately modeled by the classical theory of electron transfer proposed by Marcus ($\lambda=1.0$ eV, $H_{ab}=35$ cm $^{-1}$) or by a semiclassical model for k_{ET} where nuclear tunneling involves a low frequency metal-ligand mode ($\lambda=1.0$ eV, $H_{ab}=35$ cm $^{-1}$, $\omega=400$ cm $^{-1}$). These findings are

explored with regard to utilizing the donor-acceptor complexes as molecular photochemical energy storage systems.

Contents

Acknowledgment	iii
Abstract	vii
List of Figures	x
List of Tables	xiii
Chapter 1: Introduction.	1
Chapter 2: Synthesis and Structure.	24
Chapter 3: Electronic Spectroscopy and Electrochemistry.	117
Chapter 4: Time-resolved Experiments.	197
Appendix: Structure Factor Tables.	284

List of Figures

Chapter 1

Figure 1.1: A schematic representation of an electron-transfer hypersurface.	8
Figure 1.2: A simplified MO diagram for d ⁸ -d ⁸ metal dimers.	11
Figure 1.3: [Ir ₂ (Pz) ₂ (COD) ₂].	14
Figure 1.4 : The driving force data of Marshall et al.	16

Chapter 2

Figure 2.1: A schematic representation of the donor-acceptor complexes.	26
Figure 2.2: Structures and abbreviations for the phosphinite redox ligands.	45
Figure 2.3: Synthetic scheme for the phosphinite ligands.	47
Figure 2.4: Synthetic scheme for the donor-acceptor complexes.	51
Figure 2.5: Structures for the cis and trans isomers of Ir ₂ (Pz [*]) ₂ (CO) ₂ (Ph ₂ POCH ₂ CH ₃) ₂ .	59
Figure 2.6: Proton NMR spectra of [Ir ₂ (Pz [*]) ₂ (CO) ₄] and [Ir ₂ (Pz [*]) ₂ (CO) ₂ (Ph ₂ POCH ₂ CH ₃) ₂].	61
Figure 2.7: Chemical shift assignments in Ir ₂ (Pz [*]) ₂ (CO) ₂ (Ph ₂ POCH ₂ CH ₃) ₂ .	64
Figure 2.8: Diastereotopic protons in Ir ₂ (Pz [*]) ₂ (CO) ₂ (Ph ₂ POCH ₂ CH ₃) ₂ .	66
Figure 2.9: Proton NMR spectrum of Ir ₂ (Pz [*]) ₂ (CO) ₂ (Ph ₂ POCH ₂ CH ₂ -Me ₃ Py ⁺) ₂ .	69
Figure 2.10: Diastereotopic protons in Ir ₂ (Pz [*]) ₂ (CO) ₂ (Ph ₂ POCH ₂ CH ₂ -Me ₃ Py ⁺) ₂ .	71
Figure 2.11: NMR spectrum of Ir ₂ (Pz [*]) ₂ (CO) ₂ (Ph ₂ POCH ₂ CH ₂ CH ₂ CH ₃) ₂ .	73
Figure 2.12: Proton NMR spectra of [Ir ₂ (Pz ^{**}) ₂ (CO) ₄] and Ir ₂ (Pz ^{**}) ₂ (CO) ₂ (Ph ₂ POCH ₂ CH ₂ -4PhPy ⁺) ₂ .	75
Figure 2.13: ORTEP of Ir ₂ (Pz [*]) ₂ (CO) ₂ (Ph ₂ POCH ₂ CH ₂ -Py ⁺) ₂ .	79

Figure 2.14: Preparative scheme for high driving force ligands.	87
Figure 2.15: Structure showing phosphinite ligands' different degrees of freedom	93
Figure 2.16: Structures showing Ir-P rotational conformers.	95
Figure 2.17: Structures showing O-C and C-C rotational conformers.	101
Figure 2.18: Proton NMR spectrum of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_3$.	110

Chapter 3

Figure 3.1: Electrochemical cell used in CV experiments.	123
Figure 3.2: Molecular orbital diagram for d^8 - d^8 metal dimers.	127
Figure 3.3: Absorption spectrum of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$.	133
Figure 3.4: 77° K absorption spectrum of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$.	136
Figure 3.5: Emission spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$.	139
Figure 3.6: Room T emission spectra of the donor-acceptor complexes.	143
Figure 3.7: Excitation spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$.	145
Figure 3.8: Potential energy surfaces showing the origin of rigidochromic effects.	152
Figure 3.9: CVs of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$.	161
Figure 3.10: CVs of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ following bulk electrolysis.	163
Figure 3.11: IR spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ prior to and following bulk electrolysis.	166
Figure 3.12: CVs of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$.	169
Figure 3.13: CVs of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-NEt}_3^+)_2(\text{PF}_6)_2$.	172
Figure 3.14: CVs of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_3$ prior to and following bulk electrolysis.	177
Figure 3.15: IR spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_2$ prior to and following bulk electrolysis.	179
Figure 3.16: Electronic spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_3$ and $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_3]^+$.	181

Figure 3.17: State diagram for the donor-acceptor complexes.	188
---	-----

Chapter 4

Figure 4.1: Block diagram of the picosecond laser used in our kinetics studies.	200
Figure 4.2: Inert atmosphere cell used in picosecond absorption studies.	203
Figure 4.3: Difference spectra and kinetics for the model compounds.	206
Figure 4.4: Difference spectra and kinetics for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4PhPy}^+)_2$.	213
Figure 4.5: Difference spectra and kinetics for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py}^+)_2$.	216
Figure 4.6: Difference spectra and kinetics for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4MePy}^+)_2$.	219
Figure 4.7: Difference spectra and kinetics for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-246Me}_3\text{Py}^+)_2$.	222 & 227
Figure 4.8: Kinetic scheme for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$.	232
Figure 4.9: Excitation spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$.	241
Figure 4.10: Potential energy surfaces showing the origin of the inverted region.	246
Figure 4.11: Driving force plot for the charge separation and recombination reactions in the donor-acceptor systems.	254
Figure 4.12: Driving force data fit to a classical Marcus model.	257
Figure 4.13: Driving force data fit to a semiclassical model as a function of ω .	261
Figure 4.14: Driving force data fit to a semiclassical model as a function of λ_o , λ_i , and ω	264
Figure 4.15: Photophysical scheme for the photosynthetic reaction center.	272
Figure 4.16: A kinetic scheme for the donor-acceptor complexes.	276

List of Tables

Chapter 2

Table 2.1: Atomic Coordinates and Anisotropic Thermal Parameters.	38
Table 2.2: Final Crystallographic Parameters.	41
Table 2.3a: ^1H and ^{31}P NMR Data for the Phosphinite Redox Ligands.	49
Table 2.3b: ^1H and ^{31}P NMR Data for the Iridium Dimer Complexes.	54
Table 2.4: Selected Distances and Angles.	24
Table 2.5: Selected Torsional Angles.	83
Table 2.6: Metal-metal Distances for Selected A-Frame Complexes.	91

Chapter 3

Table 3.1: Spectral Parameters for the Iridium Dimer Complexes.	130
Table 3.2: Oscillator Strengths for the $(\text{d}\sigma^* \rightarrow \text{p}\sigma)^{1,3}$ and Band III Electronic Transitions.	131
Table 3.3: 77° K Emission Parameters for the Iridium Dimer Complexes.	141
Table 3.4: Spectral Data for Selected A-Frame Complexes.	142
Table 3.5: Emission Spectral Parameters for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$.	149
Table 3.6: Temperature Dependent Emission Data for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$.	150
Table 3.7: Photophysical Data for the Iridium Dimer Complexes.	156
Table 3.8: Electrochemical Potentials for the Iridium Dimer Complexes.	175
Table 3.9: Final Energetic Parameters for the Donor-Acceptor Complexes.	190

Chapter 4

Table 4.1: Quantum Yield and Lifetime Data for Selected A-Frame Complexes.	211
Table 4.2: Kinetic Parameters for the 2,4,6-Me ₃ Py Complex.	238
Table 4.3: Photophysical Parameters for the Iridium Dimer Complexes.	251
Table 4.4: Driving Force and Rate Data.	252
Table 4.5: Predicted Electron-Transfer Rates and Photophysical Parameters.	278

Chapter 1
Introduction

Electron transfer (ET) is one of Nature's most fundamental chemical reactions. Charge transfer processes are of central importance in a wide number of complex biological and chemical systems that are currently being explored in the scientific community. For example, photosynthesis continues to be an area of interest in chemistry and chemical biology,¹ especially due to the recent crystallographic characterization of the photosynthetic reaction center of *Rhodopseudomonas viridis* by Deisenhofer and coworkers.^{1c} Electron-transfer studies concerning model systems^{1a} and the reaction center itself^{1a,3} have greatly enhanced our understanding of this remarkable photoredox system. Efficient long distance electron-transfer events are also important in the energy storage reactions that take place via the membrane-bound proteins in the mitochondria of cells.² Here, electron-transfer reactions, which are coupled to a proton pumping process, produce a membrane potential that is used to synthesize ATP from ADP and inorganic phosphate. Electron transfer is also a fundamental solid state process and an area of significant interest with regard to the renaissance taking place in solid state chemistry.⁴ Many of the same fundamental principles that govern electron transfer between molecules must also play a role in the transport of charges through a semiconducting solid. In fact, some of the theories for molecular electron-transfer reactions have been developed by analogy to the theories of small polarons in solid state systems. One area where a fundamental understanding of electron-transfer processes will certainly have an impact in coming years is Scanning Tunneling Microscopy (STM).⁵ STM is of intense interest to the physics and chemistry communities, because this technique offers the unique capability of being able to record real time images of surfaces and surface adsorbates with molecular and, in some instances, atomic resolution. Because the STM technique is based on electron tunneling between the tunneling-tip and surface, an understanding of the molecular properties that govern charge-transfer processes will be important for interpreting images of surface-bound molecular species. In addition to being of academic interest, electron-

transfer processes are also important to a number of current and developing commercial technologies. Electron-transfer reactions form the basis of the photographic and xerographic processes.⁶ From exposure to development, the transformations required to capture an image on photographic film involve both solid state and molecular redox reactions. Finally, photoinduced and thermal electron-transfer reactions are intimately linked to developing solar energy storage technologies. Recent reports have indicated that solar energy conversion efficiencies as high as 28% can be attained using solid state photoelectrochemical devices.⁷ These considerations indicate that detailed studies, concerning the fundamental parameters which control the rates of electron transfer, are certainly warranted.

This thesis deals with the mechanistic aspects of excited state intramolecular electron transfer in an iridium d⁸-d⁸ A-frame metal complex. A long range goal of our electron-transfer research is to couple photoinduced charge separation to bond forming chemical reactions. Our studies have focused on d⁸-d⁸ complexes, because they are powerful excited state reductants^{21d,22i} and their d⁸-d⁷ counterparts are reactive toward C-X and C-H bond activation.²⁴ The following chapter introduces the concepts and terminology surrounding electron transfer and d⁸-d⁸ compounds that are called upon in later discussions. We first review some of the theoretical models associated with electron-transfer reactions followed by some background information on d⁸-d⁸ metal dimers and an outline of the objectives of this research program.

Electron-Transfer Theory: Over the past two decades the theoretical models for electron-transfer reactions have played a central role in developing an understanding of these fascinating chemical processes.⁸ These models have provided a central framework for designing and interpreting experiments that explore the roles played by various molecular parameters in determining k_{et} . Because many of the concepts expressed in these theories will be important in later discussions, we will give a brief overview of these concepts and introduce some of the terminology associated with electron-transfer

models. A detailed treatment of these models can be obtained by referring to the review articles and original papers cited at the end of this chapter.

In principle, a redox system must overcome two types of barriers to electron transfer in going from reactants to products. The first of these is related to the energy required to reorganize the reactant bond distances, angles, and solvation environments to a configuration indicative of the transition state. While bonds are neither formed nor broken in an outer-sphere electron-transfer reaction, the bond distances, angles, and solvation environments in the reactants and products are different. Thus, to form the transition state, these degrees of freedom in the donor and acceptor must rearrange to some configuration intermediate between the reactants and the products. This reorganization process assures that energy is conserved in the transition state by equalizing the energy levels of the transferring electron on the donor and acceptor. Once a transition state configuration has been achieved, the system must overcome an electronic barrier to electron transfer imposed by the intervening medium between the donor and acceptor. If the medium between the redox partners is a good electron-transfer mediator, then the electronic barrier is small and electron transfer occurs with near unit efficiency. Conversely, if the intervening medium is an insulator, then electron transfer will be a less probable event. According to the classical, semiclassical, and quantum mechanical theories of electron transfer, k_{et} for a given reaction can be described by the three kinetic quantities seen in equation 1.1.

$$k_{et} = v\kappa(FC) \quad \text{eq. 1.1}$$

Here, v is the frequency of the vibrations that destroy the transition state, κ is an electronic transmission factor that expresses the probability of charge transfer in the transition state region, and FC is the Frank-Condon factor for electron transfer. These quantities represent the different barriers to electron transfer encountered by a

reactive redox system along its reaction coordinate. They have been treated using several different theoretical approaches.

The thermal barriers to electron transfer or Frank-Condon factors have been described using both classical and quantum mechanical models. Most notable amongst the classical models is the theory proposed by Marcus for the rate of outer-sphere electron-transfer reactions (equations 1.2 to 1.4).^{8f,g,h}

$$k_{et} = \kappa A \sigma^2 \exp\left[-\frac{\Delta G^*}{RT}\right] \text{ eq. 1.2}$$

$$\Delta G^* = \frac{(\lambda + \Delta G^0)^2}{4\lambda} \text{ eq. 1.3}$$

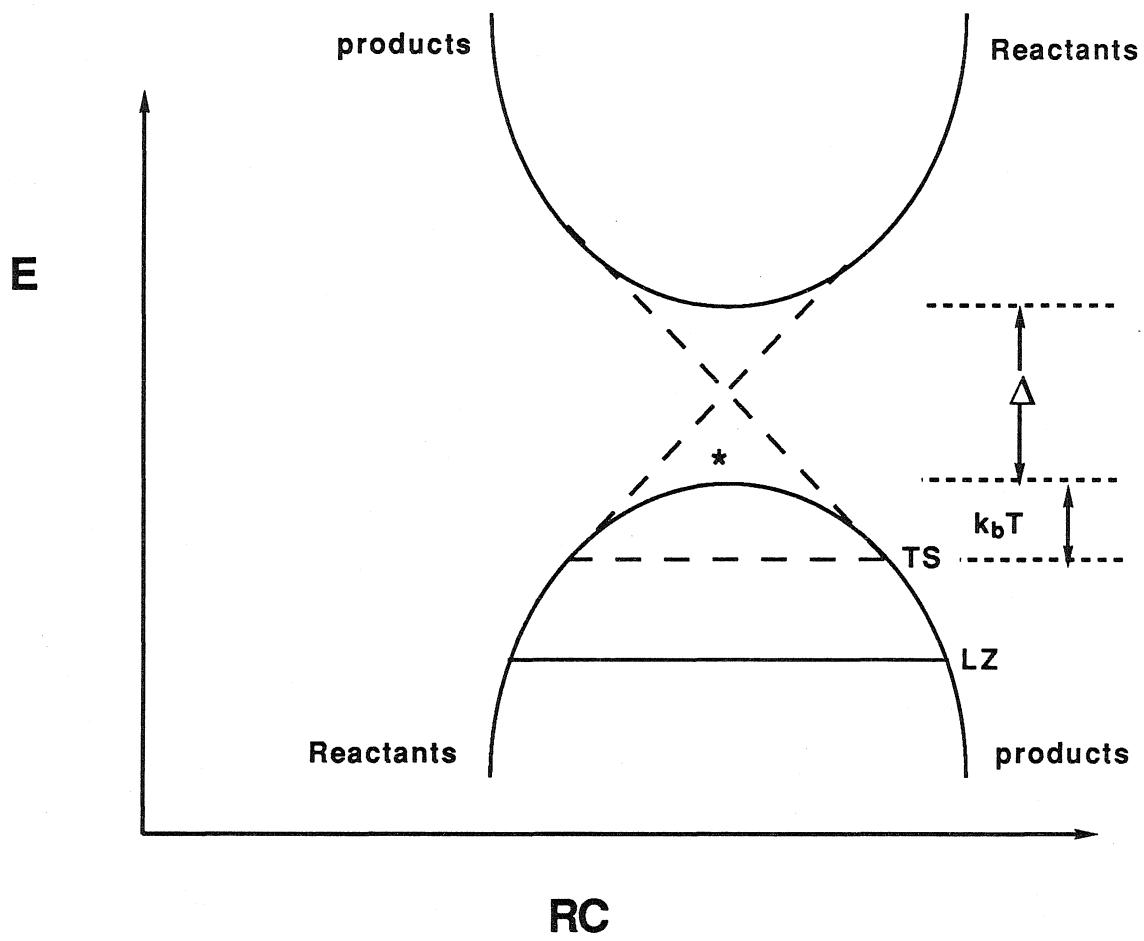
$$\lambda = \lambda_i + \lambda_o \text{ eq. 1.4}$$

The total activation free energy in the Marcus model is a function of the reaction free energy (ΔG^0) and the intrinsic thermal barrier λ , which is the sum of a molecular (λ_i) and solvent related component (λ_o). λ_i is referred to as the *inner-sphere* reorganization energy and represents the energy required to rearrange the bond distances and angles of the reactants to their transition state configurations. The later quantity, λ_o , represents the energy required to reorganize the solvation environment of the reactants. Marcus derived specific expressions for these parameters by assuming that the molecular degrees of freedom could be modeled by classical harmonic oscillators and that the surrounding solvent was a dielectric continuum. One feature of the Marcus model that has stimulated considerable experimental interest concerns its predictions regarding the variation of k_{et} as a function of reaction exoergicity. Taking the natural log of equation 1.2 and plotting $RT\ln(k_{et})$ versus ΔG^0 reveals that the rate of electron transfer should increase as a function of driving force in what has been termed the *normal region* until $\Delta G^0 = \lambda$ and then decrease as a function of driving force into what

Marcus labeled the *inverted region*. In addition to the Marcus model, several quantum mechanical and semiclassical models for electron-transfer reactions have also been proposed. One of the more popular semiclassical relationships for k_{et} is has been developed by Jortner and Bixon (equations 1.5 and 1.6).^{8i,j,k,l}

$$k_{et} = \left(\frac{\pi}{\hbar^2 \lambda_s k_b T} \right)^{1/2} |V|^2 \sum_{w=0}^{\infty} (e^{-S} S^w / w!) \exp \left\{ \frac{(\lambda_s + \Delta G + w \hbar \nu)^2}{4 \lambda_s k_b T} \right\} \quad \text{eq. 1.5}$$

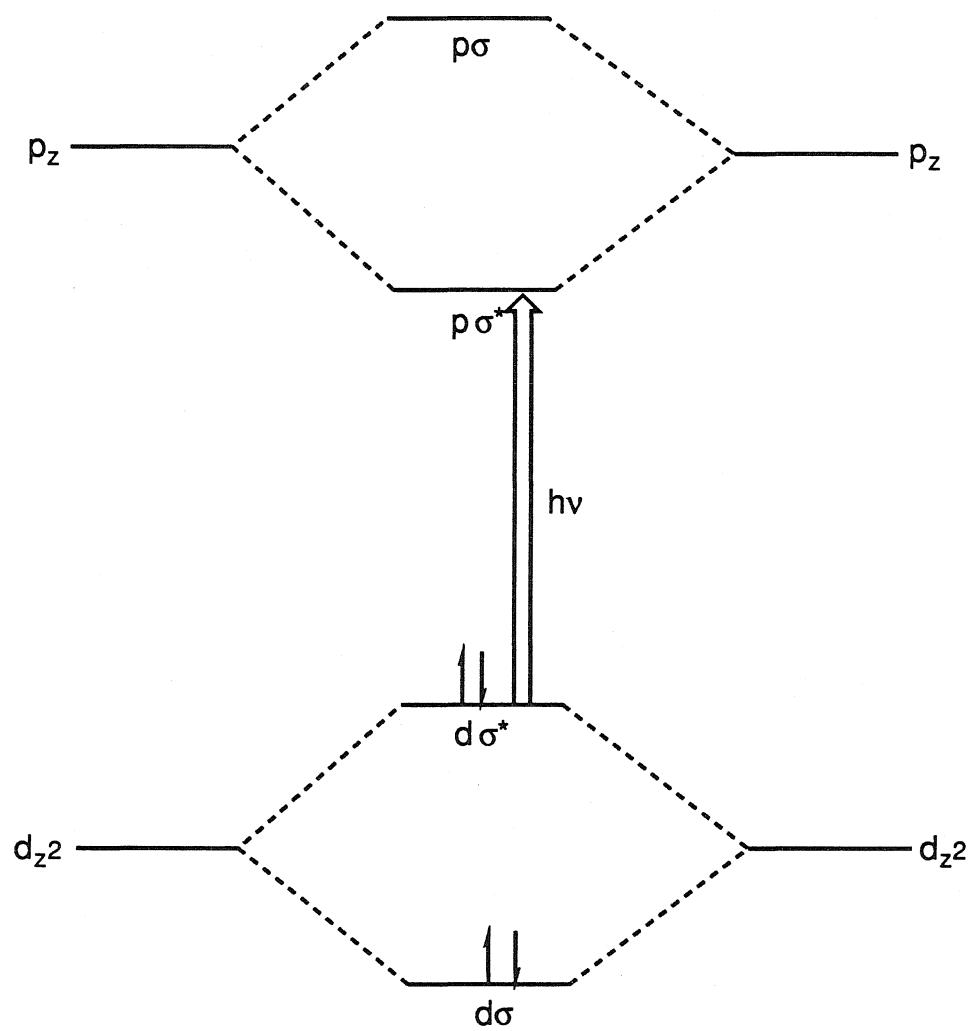
$$S = \frac{\lambda_v}{\hbar \nu} \quad \text{eq. 1.6}$$


In equations 1.5 and 1.6 the outer-sphere reorganization energy (λ_s) is treated classically using a dielectric continuum model. However, the higher frequency molecular vibrations of the donor and acceptor are treated quantum mechanically to allow for nuclear tunneling. This equation reduces to the Marcus relationships at high temperature and has been useful in describing electron-transfer reactions at low temperature and at high driving force where nuclear tunneling effects are most important. While electron transfer in the normal region is for the most part understood, reactions in the inverted region have remained largely unexplored. A lack of information regarding the mechanism of electron transfer at large reaction exoergicities is directly related to the fact that prior to 1984 little experimental evidence for inverted behavior had been observed.⁹ Thus, high driving force reactions are of continued interest in electron-transfer research.¹⁰

The electronic transmission coefficient (κ) controls the rate of electron transfer in the transition state region. When multiplied by the nuclear frequency, ν , it represents the activationless reaction rate constant. This factor is determined by the electronic coupling between the two redox partners, the velocity of the reaction

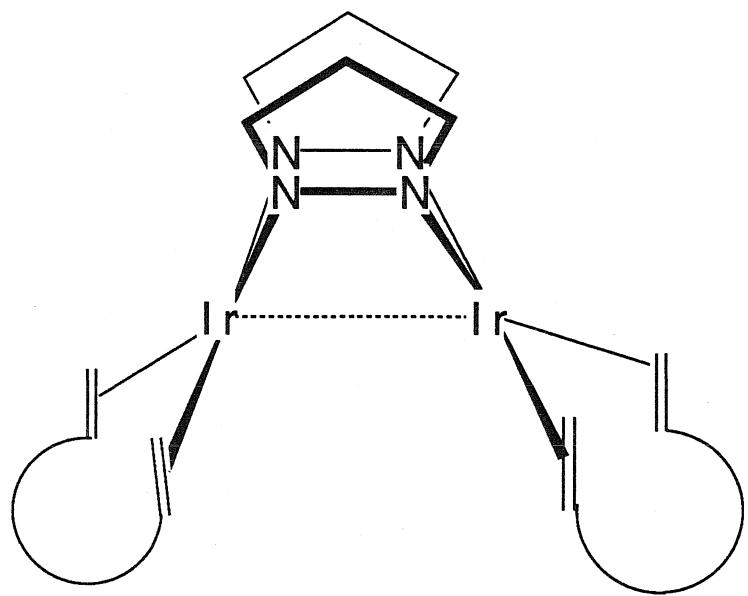
coordinate through the transition state region, and the time scale for energy exchange between the reaction coordinate and other degrees of freedom.¹¹ As stated earlier, κ represents the probability that charge transfer will take place once the system has reached the transition state. When $\kappa=1$ charge transfer takes place with unit efficiency and the reaction is termed *adiabatic*. A $\kappa<1$ is associated with a less efficient *nonadiabatic* electron-transfer process. The reaction adiabaticity is directly related to the relative magnitudes of the electronic coupling between the redox partners and the kinetic energy of their nuclei near the top of the col (figure 1.1). If the kinetic energy of the reaction coordinate ($k_B T$) is less than the electronic interaction (Δ), then the system is confined to the lower energy surface and passes ballistically from reactants to products. In contrast, if $\Delta < k_B T$, then the system can make transitions to an excited state surface (i.e. follow the dashed line figure 1.1) and remain in an electronic state corresponding to the reactants. This makes electron transfer a less probable event and requires that the system make multiple crossings through the transition state region before forming products. Recent theories have indicated that the electronic coupling between two redox partners is an exponential function of their through space separation and is related to the structural and electronic properties of the intervening medium.¹² Understanding the molecular factors that govern the electronic interactions between donor and acceptor is an area of significant interest in experimental electron-transfer research and is currently being investigated in a number of synthetic^{10a,g,13e-h} and biological redox systems.^{10b, 13a-d,24d}

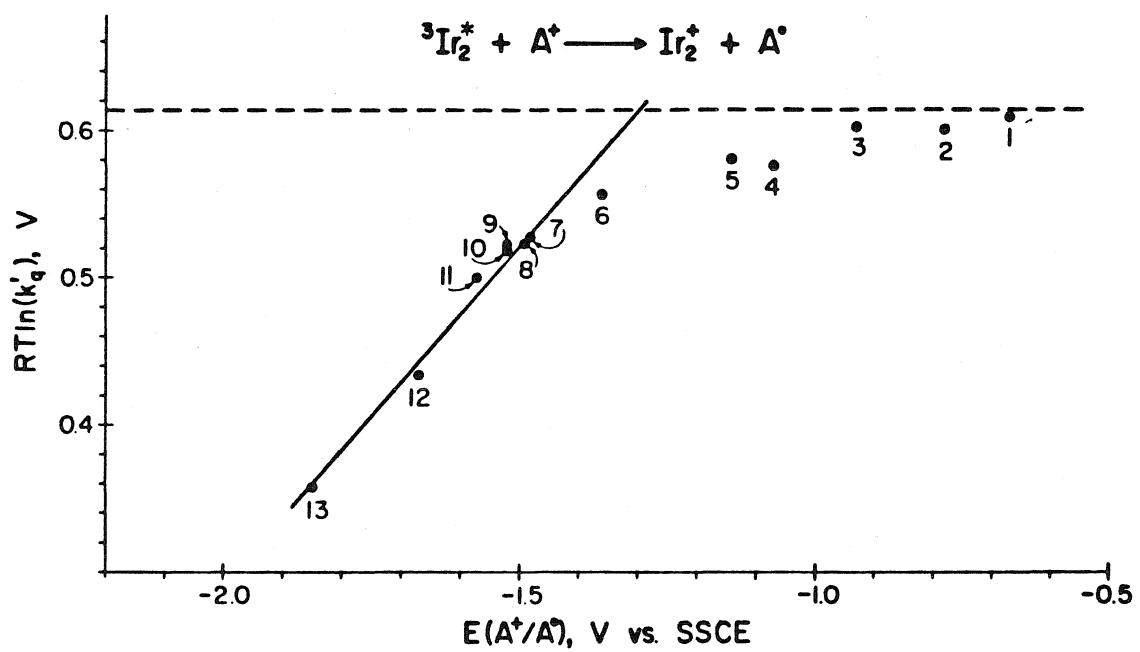
In addition to being sensitive to electronic coupling effects, κ is also a function of the rate of energy exchange between the reaction coordinate and *bath modes*.¹⁴ Bath modes correspond to degrees of freedom that are not included in the reaction coordinate but are coupled to it. They essentially accept excess energy associated with the transition state and allow the products to relax to an equilibrium configuration. Energy exchange between the RC and bath has been explored in theoretical studies by associating


Figure 1.1: A schematic representation of an electron-transfer hypersurface near the transition state region. If electron transfer is adiabatic, the reactants are confined to the lower surface and pass ballistically through the transition state region. If the reaction is nonadiabatic, the system can be excited to higher energy surface in the transition state region and retain an electronic configuration indicative of the reactants. * marks the position of the transition state along the reaction coordinate. TS labels the transition state region, which is defined as that portion of phase space within $k_B T$ of the transition state. LZ (Landau-Zener region) is that portion of phase space where the electronic coupling between the redox partners is strong. It includes an area within Δ of the transition state.

a classical friction with motion of the system through the transition state region. Under conditions of low friction (i.e. slow energy exchange between the RC and bath modes) the system can not relax rapidly enough to an equilibrium "products configuration" and must make multiple crossings before being trapped in the products well. Such a situation is referred to as *underdamped*. Under conditions of high friction (i.e. rapid energy exchange between the RC and bath modes), the system moves through the transition state region by Brownian diffusion. In this *overdamped* situation the system also makes multiple crossings through the transition state region before forming products. Finally, when the reaction friction is optimal (i.e. *critically damped*) energy exchanges between the RC and bath on a time scale commensurate with the formation of products. Under these conditions, the reaction adiabaticity is controlled predominantly by electronic coupling. Behavior characteristic of an overdamped ET system has recently been observed by Kosower,¹⁵ Simon,¹⁶ and Eisenthal¹⁷ in organic charge transfer systems dissolved in alcoholic solutions. In these studies the rate of electron transfer was shown to directly correlate with the longitudinal relaxation time of the solvent medium. A greater understanding of the role played by solvent dynamics in electron-transfer reactions will unfold as additional systems with ET rates greater than or equal to 10^{13} sec⁻¹ become available.

d⁸-d⁸ Metal Dimers: The electronic structure and excited properties of d⁸-d⁸ transition metal complexes are areas of current interest in inorganic photochemistry.¹⁸ Recent research has indicated that their low lying excited states display a variety of different chemical reactivities including the excited state oxidative addition of halocarbons,¹⁹ carbon-hydrogen bond activation,²⁰ and outer-sphere electron transfer.²¹ These diverse photochemical and photophysical properties can be traced to their (dσ*pdσ) excited states, which result from the axial metal-metal interactions inherent in these compounds. According to Gray and coworkers,²² the electronic structure of these intriguing chromophores can be schematically represented by the


Figure 1.2: A simplified MO diagram for a d^8-d^8 metal dimer showing the ground state electronic configuration. The $(d\sigma^* \rightarrow p\sigma)$ excited states can be accessed by exciting the complex with visible light as indicated by the white arrow.


molecular orbital diagram in figure 1.2. Covalently linking two square planar d⁸ complexes into a dimer molecule forces an axial interaction between the d_{z2} and p_z orbitals of the monomer fragments, which leads to the formation of dσ and pσ bonding and antibonding dimer MOs. Filling this MO scheme with the 16 metal electrons from the two monomer fragments leaves the dσ* level as the compound's highest occupied molecular orbital. The long lived excited states in these complexes are generated by exciting one dσ* electron into a vacant pσ orbital. This electronic configuration yields a singlet and corresponding triplet state as the reactive excited states in these systems.

At the inception of this research, our studies regarding excited state electron transfer in d⁸-d⁸ compounds had centered around a series of iridium pyrazolate bridged COD complexes first prepared by Stobart and coworkers (figure 1.3).²³ Marshall *et al.* conducted a thorough examination of the driving force dependence of the bimolecular triplet electron-transfer quenching reactions in $[\text{Ir}_2(\text{Pz})_2(\text{COD})_2]$ using a homologous series of pyridinium electron acceptors.^{21d,22i} Results from this study are summarized in figure 1.4. Several important conclusions were drawn from these findings: 1) In contrast to the predictions made by the Marcus model, the rate of triplet electron transfer in this photoredox system tends to a diffusion limit at high driving force. We, like others, speculated that our failure to observe inverted behavior in this study was tied to the limitations placed on rapid electron transfer reactions by diffusion. 2) Steady-state quenching experiments showed that the excited state electron-transfer reactivity in this complex was restricted to its triplet state. Because, the singlet state in this compound lies approximately 4000 cm⁻¹ above its triplet state, in principle should be a powerful reductant. This lack of reactivity was presumed to be due to the subnanosecond fluorescence lifetime in $[\text{Ir}_2(\text{Pz})_2(\text{COD})_2]$. These key observations suggested that our understanding of electron-transfer reactions involving d⁸-d⁸ A-frame compounds could potentially be extended by designing a redox system which eliminated bimolecular diffusion as a rate limiting kinetic process.

Figure 1.3: The iridium dimer complex used by Marshall *et al.* in their bimolecular quenching studies. This complex possesses terminal chelating COD ligands.

Figure 1.4: The driving force dependence data of Marshall et al. adapted from reference 22i.

In this study we remove the constraints place on excited state electron-transfer reactions due to diffusion, by covalently linking an iridium dimer chromophore (donor) and a pyridinium cation (acceptor) into a single molecular unit. An analogous approach has been recently demonstrated in a number of synthetic^{10a,c,13e-h,24a-c} and biological redox systems.^{10b,13a-d,24d} Our particular strategy employs a series of redox-active phosphinite ligands. We feel this approach has potential generality, because phosphine ligands are found in a wide variety of inorganic and organometallic compounds. In principle our ligands could be used to prepare and study a number of different inorganic photoredox compounds. Our objectives in this study are; 1) to further characterize the driving force dependence of electron transfer reactions in d⁸-d⁸ A-frame complexes and look for evidence of inverted behavior, 2) to explore the possibility of observing singlet quenching reactions that might readily occur in an intramolecular electron-transfer complex, and 3) to determine what differences, if any, exist between the factors that govern the triplet, singlet and charge recombination ET processes in these compounds. Evidence for singlet electron-transfer quenching would be of significant interest, because at present the excited state reactivity of d⁸-d⁸ metal dimers has been exclusively attributed to their long lived triplet states. Our research regarding these issues is organized as follows. Chapter 2 outlines the preparation and characterization of our d⁸-d⁸ donor-acceptor complexes. Careful consideration is given to their structural properties determined by NMR spectroscopy and from a crystal structure of [Ir₂(Pz⁺)₂(CO)₂(Ph₂POCH₂CH₂-Py⁺)₂](Ph₄B)₂. Chapter 3 summarizes our results concerning the spectroscopic and electrochemical properties of the complexes. These data are used to construct an approximate state diagram for their metal localized and charge-transfer excited states. Finally, in chapter 4, rate constants for their photoinduced electron-transfer and charge recombination reactions are measured using nanosecond and picosecond laser spectroscopy.

These data are analyzed with regard to the photophysical properties of the compounds and the driving force dependence of k_{et} .

References

- 1a. Budil, D. E.; Gast, P.; Chang, C.-H.; Schriffer, M.; Norris, J. R., *Ann. Rev. Phys. Chem.*, **1987**, *38*, 561-583.
- b. Boxer, S. G., *Biochim. Biophys. Acta*, **1983**, *726*, 265-292.
- c. Deisenhofer, J.; Epp, O.; Miki, K.; Huber, M. R., *Mol. Biol.*, **1984**, *180*, 385-398.
2. Hatefi, Y., *Ann. Rev. Phys. Chem.*, **1985**, *54*, 1015-1069.
- 3a. Gunner, M. R.; Robertson, D. E.; Dutton, P. L., *J. Phys. Chem.*, **1986**, *90*, 3783-3795.
- b. Ogrodnik, A.; Remy-Richter, N.; Michel-Beyerele, M. E.; Feick, R., *Chem. Phys. Lett.*, **1987**, *135*, 576-581.
4. Mikkelsen, K. V.; Ratner, M. A., *Chem. Rev.*, **1987**, *87*, 113-153.
- 5a. Hansma, P. K.; Tersof, J., *J. Appl. Phys.*, **1987**, *61*, R1-R23.
- b. Hansma, P. K.; Elings, V. B.; Marti, C. E.; Bracker, C. E., *Science*, **1988**, *242*, 209-216.
6. James, T. H., "Theory of the Photographic Process", **1977**, Macmillan Publishing Co., New York.
- 7a. *C&E News*, **1988**, *66*, 30.
- b. *C&E News*, **1988**, *66*, 15.
- 8a. Marcus, R. A.; Sutin, N., *Biochim. Biophys. Acta*, **1985**, *811*, 265-322.
- b. Newton, M. D.; Sutin, N., *Ann. Rev. Phys. Chem.*, **1984**, *35*, 437-480.
- c. Sutin, N., *Prog. Inorg. Chem.*, **1984**, *30*, 441-498.
- d. Jortner, J., *Biochim. Biophys. Acta*, **1980**, *594*, 193-230.
- e. Sutin, N., *Acc. Chem. Res.*, **1982**, *15*, 275-282.
- f. Marcus, R. A., *J. Chem. Phys.*, **1956**, *24*, 966-978.

- g. Marcus, R. A., *J. Chem. Phys.*, **1957**, *26*, 867-871.
- h. Marcus, R. A., *J. Chem. Phys.*, **1957**, *26*, 872-877.
- i. Kestner, N. R.; Logan, J.; Jortner, J., *J. Phys. Chem.*, **1984**, *78*, 2148-2166.
- j. Jortner, J., *J. Chem. Phys.*, **1976**, *64*, 4860-4867.
- k. Efrima, S.; Bixon, M., *Chem. Phys.*, **1976**, *13*, 447-460.
- l. Van Duyne, R. P.; Fischer, S. F. M., *Chem. Phys.*, **1974**, *5*, 183-197.
- m. Jotrner, J., *J. Amer. Chem. Soc.*, **1980**, *102*, 6676-6686.
- n. Siders, P.; Marcus, R. A., *J. Amer. Chem. Soc.*, **1981**, *103*, 748-752.
- 9. Miller, J. R.; Beitz, J. V.; Huddleston, R. K., *J. Amer. Chem. Soc.*, **1984**, *106*, 5057-5068.
- 10a. Closs, G. L.; Miller, J. R., *Science*, **1988**, *240*, 440-447.
- b. McLendon, G., *Acc. Chem. Res.*, **1988**, *21*, 160-167.
- c. Wasieleski, M. R.; Niemczyk, M. R.; Svec, W. A.; Pewitt, E. B., *J. Amer. Chem. Soc.*, **1985**, *107*, 1080-1082.
- d. Ohno, T.; Yoshimura, A.; Shioyama, H.; Mataga, N., *J. Phys. Chem.*, **1987**, *91*, 4365-4370.
- e. Ohno, T.; Yoshimura, A.; Mataga, N., *J. Phys. Chem.*, **1986**, *90*, 3295-3297.
- f. Gould, I. R.; Ege, D.; Mattes, S. L; Farid, S., *J. Amer. Chem. Soc.*, **1987**, *89*, 3675-3679.
- g. Meade, T. J.; Gray, H. B.; Winkler, J. R., *manuscript in preparation*.
- h. Elias, H.; Chou, M. H.; Winkler, J. R., *J. Amer. Chem. Soc.*, **1988**, *110*, P.
- 11. Frauenfelder, H.; Wolynes, P. G., *Science*, **1985**, *229*, 337-345.
- 12a. Beratan, D. N.; Onuchic, J. N.; Hopfield, J. J., *J. Chem. Phys.*, **1987**, *86*, 4488-4498.
- b. Onuchic, J. N.; Beratan, D. N., *J. Amer. Chem. Soc.*, **1987**, *109*, 6771-6778.
- c. Beratan, D. N.; Hopfield, J. J., *J. Amer. Chem. Soc.*, **1984**, *106*, 1584-1594.

13a. Lieber, C. M.; Karas, J. L.; Mayo, S. L.; Axup, A. W.; Albin, M.; Crutchley, R. J.;
Ellis, W. R.; Gray, H. B., "Trace Elements in Man and Animals", Plenum, New York,
1987.

b. Crutchley, R. J.; Ellis, W. R.; Gray, H. B., "Frontiers in Bioinorganic Chemistry";
VCH Verlagsgesellschaft: Weinheim, FRG, 1986, 679-693.

c. Gray, H. B., *Chem. Soc. Rev.*, 1986, 15, 17-30.

d. Mayo, S. L.; Ellis, W. R.; Crutchley, R. J.; Gray, H. B., *Science*, 1986, 233, 948-
952.

e. Verhoven, J. W., *Pure & Appl. Chem.*, 1986, 58, 1285-1290.

f. Oevering, H.; Paddon-Row, M. N.; Heppener, M.; Oliver, A. M.; Cotsaris, E.; Verhoven,
J. W.; Hush, N. S., *J. Amer. Chem. Soc.*, 1987, 109, 3258-3269.

g. Oliver, A. M.; Craig, D. C.; Paddon-Row, M. N.; Kroon, J.; Verhoven, J. W., *Chem.*
Phys. Lett., 1988, 150, 366-373.

h. Leland, B. A.; Joran, A. D.; Felker, P. M.; Hofield, J. J.; Zewail, A. H.; Dervan, P. B.,
J. Phys. Chem., 1985, 89, 5571-5573.

14a. Garg, A.; Onuchic, J. N.; Ambegaokar, V., *J. Chem. Phys.*, 1985, 83, 4491-4503.

b. Onuchic, J. N., *J. Chem. Phys.*, 1987, 86, 3925-3943.

15a. Kosower, E. M., *Acc. Chem. Res.*, 1982, 15, 259-266.

b. Kosower, E. M.; Huppert, D., *Chem. Phys. Lett.*, 1983, 96, 433-435.

16a. Su, S.-G.; Simon, J. D., *J. Phys. Chem.*, 1987, 91, 2693-2696.

b. Su, S.-G.; Simon, J. D., *J. Phys. Chem.*, 1986, 90, 6475-6479.

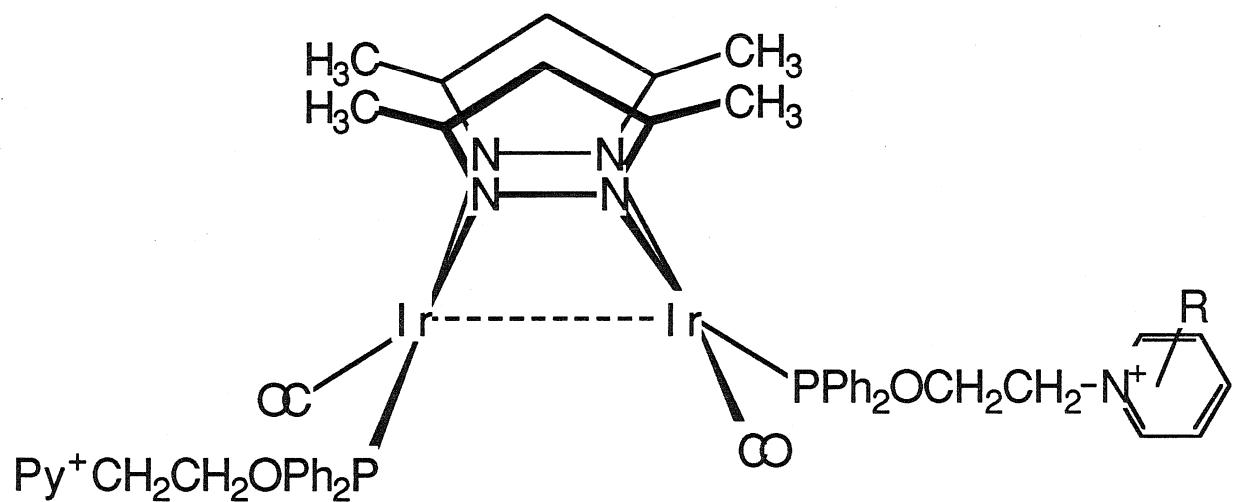
c. Su, S.-G.; Simon, J. D., *Chem. Phys. Lett.*, 1986, 132, 345-350.

17a. Crawford, M. K.; Wang, Y.; Eisenthal, K. B., *Chem. Phys. Lett.*, 1981, 79, 529-
533.

b. Wang, Y.; Eisenthal, K. B., *J. Chem. Phys.*, 1982, 77, 6076-6082.

18a. Zipp, A. P., *Coord. Chem. Rev.*, 1988, 84, 47-83.

- b. Marshall, J. L.; Stiegman, A. E.; Gray, H. B., *ACS Symp. Ser.*, **1986**, *307*, 166-176.
- c. Roundhill, D. M., *J. Amer. Chem. Soc.*, **1985**, *107*, 4354-4356.
- d. Che, C.-M.; Lee, W.-M., *J. Chem. Soc. Chem. Comm.*, **1986**, 512-513.
- e. Alexander, K. A.; Stein, P.; Hedden, D. B.; Roundhill, D. M., *Polyhedron*, **1983**, 1389-1392.
- f. Roundhill, D. M.; Atherton, S. F., *submitted for publication*.
- g. Roundhill, D. M.; Atherton, S. J.; Shen, Z.-P., *J. Amer. Chem. Soc.*, **1987**, *109*, 6076-6079.
19. Caspar, J. V.; Gray, H. B., *J. Amer. Chem. Soc.*, **1984**, *106*, 3029-3030.
- 20a. Vlcek, A.; Gray, H. B., *Inorg. Chem.*, **1987**, *26*, 1997-2001.
- b. Harvey, E. L.; Stiegman, A. E.; Vlcek, A.; Gray, H. B., *J. Amer. Chem. Soc.*, **1987**, *109*, 5233-5235.
- c. Vlcek, A.; Gray, H. B., *J. Amer. Chem. Soc.*, **1987**, *109*, 286-287.
- d. Harvey, P. D.; Gray, H. B., *Nouv. J. Chem.*, **1987**, *11*, 595-596.
- 21a. Che, C.-M.; Butler, L. G.; Gray, H. B., *J. Amer. Chem. Soc.*, **1981**, *103*, 7796-7797.
- b. Che, C.-M.; Cho, K.-C.; Chan, W.-S.; Gray, H. B., *Inorg. Chem.*, **1986**, *25*, 4906-4909.
- c. Milder, S. J.; Goldbeck, R. A.; Kliger, D. S.; Gray, H. B., *J. Amer. Chem. Soc.*, **1980**, *102*, 6761-6764.
- d. Marshall, J. L.; Stobart, S. R.; Gray, H. B., *J. Amer. Chem. Soc.*, **1984**, *106*, 3027-3029.
- 22a. Rice, S. F., Ph.D. Dissertation, California Institute of Technology, Pasadena, CA, 1982.
- b. Rice, S. F.; Miskowski, V. M.; Gray, H. B., *Inorg. Chem.*, **1988**, *manuscript in press*.


- c. Rice, S. F.; Gray, H. B., *J. Amer. Chem. Soc.*, **1981**, *103*, 1593-1595.
 - d. Rice, S. F.; Gray, H. B., *J. Amer. Chem. Soc.*, **1983**, *105*, 4571-4575.
 - e. Mann, K. R.; Thich, J. A.; Bell, R. A.; Coyle, C. A.; Gray, H. B., *Inorg. Chem.*, **1980**, *19*, 2462-2468.
 - f. Stiegman, A. E.; Rice, S. F.; Gray, H. B.; Miskowski, V. M., *Inorg. Chem.*, **1987**, *109*, 1112-1116.
 - g. Mann, K. R.; Gordon, J. G.; Gray, H. B., *J. Amer. Chem. Soc.*, **97**, 1975, 3553-3555.
 - h. Smith, T. P., Ph.D. Dissertation, California Institute of Technology, Pasadena, CA, 1982.
 - i. Marshall, J. L., Ph.D. Dissertation, California Institute of Technology, Pasadena, CA, 1987.
23. Beveridge, K. A.; Bushnell, G. W.; Dixon, K. R.; Eadie, D. T.; Stobart, S. R., *J. Amer. Chem. Soc.*, **1982**, *104*, 920-922.
- 24a. Westmoreland, T. D.; Le Bozec, H.; Murray, R. W.; Meyer, T. J., *J. Amer. Chem. Soc.*, **1983**, *105*, 5952-5954.
- b. Chen, P.; Westmoreland, T. D.; Danielson, E.; Schanze, K. S.; Anthon, D.; Neveux, P. E.; Meyer, T. J., *Inorg. Chem.*, **1987**, *26*, 1116-1126.
- c. Danielson, E.; Elliot, C. M.; Merkert, J. E.; Meyer, T. J., *J. Amer. Chem. Soc.*, **1987**, *109*, 2519-2520.
- d. Heitele, H.; Michek-Beyerle, M. E.; Finckh, P., *Chem. Phys. Lett.*, **1987**, *134*, 273-278.
- e. Peterson-Kennedy, S. E.; McGourty, J. L.; Ho, P. S.; Sutaris, C. J.; Learig, N.; Zernel, H.; Blough, N. V.; Margoliash, E.; Hoffman, B. M., *Coord. Chem. Rev.*, **1985**, *64*, 125-133.
- 25a. Boyd, D. C.; Rodman, G. S.; Mann, K. R., *J. Amer. Chem. Soc.*, **1986**, *108*, 1779-1784.
- b. Smith, D. C.; Gray, H. B., *manuscript in preparation*.

Chapter 2
Synthesis
and
Structure

Introduction

The basic components of an intramolecular electron-transfer system are an electron donor, an electron acceptor, and a bridging group, which covalently links the two redox partners into a single molecular unit. Each component plays a crucial role in determining the rate of photoinduced and thermal electron transfer in such a system by controlling fundamental electron-transfer parameters such as reaction free energy; donor-acceptor separation, orientation, and electronic coupling; and inner-sphere reorganization energies.¹ By varying the chemical and physical properties of these three elements, information concerning the factors that control electron-transfer reactions can be obtained. For example, the driving force dependence of k_{ET} has been traditionally investigated by systematically varying the redox energy of a structurally homologous series of electron acceptors.² This type of study provides valuable information concerning the reorganization energy controlling the charge-transfer process and probes the system for the inverted behavior predicted by current theoretical models.^{1a} Bridging groups can play a number of roles in intramolecular ET systems. In addition to holding the two redox partners at a well-defined separation and orientation, they can also act as a "conducting medium" for transmitting an electron between the donor and acceptor.³ This type of through-bond mechanism may be important in the long range electron-transfer reactions seen in metalloproteins⁴ and is an area of intense interest. These considerations suggest that a successful donor-acceptor system is one that can be systematically modified so that k_{ET} can be studied as a function of different donor, acceptor, and bridging group properties. Thus, our goal has been to develop synthetic routes that are flexible enough to allow for these types of

Figure 2.1: Structure of the iridium d⁸-d⁸ donor-acceptor complexes.

systematic modifications.

This chapter details the preparation and characterization of the series of donor-acceptor molecules schematically represented in figure 2.1. These compounds are similar to the d^8 - d^8 compounds used in a previous bimolecular electron-transfer study in that they are based on an Ir(I) A-frame metal dimer chromophore.⁵ The reaction driving force for excited state electron transfer in these systems can be controlled by varying the aromatic substituents on their pyridinium electron acceptors. These acceptors are covalently attached to the terminal phosphinite ligands in the complexes via a three atom hydrocarbon spacer. Because the distance dependence of an electron-transfer reaction is difficult to predict *a priori*, compounds with short simplistic spacers represent the best starting point for initiating studies surrounding a new intramolecular redox system. The short donor-acceptor separations imposed by this bridging group should insure that electron transfer will occur during the lifetime of the iridium dimer's electronic excited states.⁶

In the results section of this chapter a detailed account of the preparation of these compounds is given. The complexes have been characterized by high field proton and phosphorous NMR spectroscopy, IR spectroscopy, and x-ray diffraction crystallography. Results from these studies are subsequently discussed in terms of the synthetic routes reported here, the structural properties of the molecules, and the possible solution dynamics of the bridging group.

Experimental

Materials

Solvents

All solvents used in the preparation of the phosphinite redox ligands and iridium dimer complexes were of reagent grade quality or better. Acetonitrile was dried over Linde 4Å sieves, vacuum transferred to a Schlenk storage flask, and blanketed with dry nitrogen. Tetrahydrofuran and diethyl ether were distilled from sodium/benzophenone. Methylene chloride was distilled from CaH₂ and acetone was distilled from activated alumina. Toluene and ethanol were spectral grade in quality and used as received. THF, ethanol, diethyl ether, methylene chloride, and acetone were degassed by evacuation at 80° C for one hour and then stored under a nitrogen atmosphere. Benzene-d6, acetone-d6, DMSO-d6 and acetonitrile-d3 were purchased from MSD Isotopes and used without further purification.

Ligands

Chlorodiphenylphosphine, diphenylethoxyphosphine, diphenylmethoxyphosphine, and butoxydiphenylphosphine were purchased from Strem Chemical Company and used as received. Pyridine, 4-methylpyridine, 4-phenylpyridine, and triethylamine were purchased from Aldrich Chemical Company and were used without further purification. 2-Bromoethanol, also purchased from Aldrich, was vacuum distilled prior to use to remove polymeric impurities. Dimethylamine was purchased in 2 lb lecture bottles from Matheson Company and used as received. 3-isobutyl acetylacetone was obtained from Pfaltz and Bauer Chemical Company and used without further purification.

3,5-dimethyl-4-isobutylpyrazole was prepared using a published procedure for the preparation of 3,5-dimethylpyrazole.⁷

Metal Complexes

Iridium trichloride trihydrate was purchased from Johnson Matthey (AESAR). 3,5-Dimethylpyrazole and 1,5-cyclooctadiene were purchased from Aldrich Chemical Company. Carbon monoxide was obtained from Matheson Company. Each was used as received.

Synthetic Procedures

General Procedures

All manipulations involving both the phosphinite ligands and iridium dimer complexes were conducted under a nitrogen atmosphere using standard Schlenk techniques or in a Vacuum Atmospheres Co. dry box. ¹H and ³¹P NMR spectra were recorded on either a Jeol FX-90-Q or a Jeol GX-400 fourier transform spectrometer. IR spectra were recorded as fluorolube mulls on a Beckman Instruments IR-4240 Spectrometer.

Phosphinite Redox Ligands

Preparation of (C₆H₆)₂P-N(CH₃)₂: N,N-dimethyl-P,P-diphenylphosphine was synthesized using a procedure similar to that reported for related compounds.⁸ 300 mls of dry deoxygenated diethyl ether was placed in a 1000 ml round bottom Schlenk flask and charged with 10g (45 mmoles) of chlorodiphenylphosphine. The reaction mixture was cooled to 0° C and dimethylamine was slowly bubbled through cold ethereal solution. Almost immediately, dimethylamine hydrochloride began to form as a flocculent white

precipitate. The reaction mixture was stirred and dimethylamine was added until hydrochloride salt formation ceased. The resulting suspension was stirred for an additional hour to ensure that all of the starting materials had been consumed.

Dimethylamine hydrochloride was separated by cannula filtration and washed with two 100 ml portions of ether. The washings and filtrate were transferred to a second 1000 ml Schlenk flask and rinsed with three 50 ml portions of deoxygenated distilled water to remove any residual hydrochloride salt, which was complexed to the phosphine product. The ether solution was dried first over anhydrous Li_2CO_3 for 15 minutes and subsequently stirred over CaH_2 for 24 hours. CaH_2 was separated by filtration through a fine porosity glass frit. The filtrate was concentrated to one-tenth of its original volume and transferred to a 100 ml round bottom flask fitted with a short path distillation head⁹. The residual ether was removed in vacuo leaving a white waxy residue. This crude product was purified by vacuum distillation producing a clear viscous liquid which solidified upon cooling (b.p. 76-85 °C/0.04 mm Hg). The product was characterized by ^{31}P and ^1H NMR spectroscopy. ^1H : 2.5(d; NCH_3) and 7.3(m; $(\text{C}_6\text{H}_6)_2\text{P}$); ^{31}P : 64.0 ppm (versus ext. H_3PO_4).

Preparation of 1-(2-hydroxyethyl)pyridinium and (2-hydroxyethyl)triethylammonium Salts: With the exception of 1-(2-hydroxyethyl)-2,4,6-trimethylpyridinium tetraphenylborate, all other pyridinium salts were synthesized using a procedure analogous to that reported earlier for preparing 1-alkylpyridinium compounds⁶. 1-(2-hydroxyethyl)-2,4,6-trimethylpyridinium tetraphenylborate was prepared from 2-aminoethanol and 2,4,6-trimethylpyrylium tosylate by the method of Balaban *et al.*¹⁰ Each compound was characterized by ^1H NMR spectroscopy and their spectra were compared to those reported in the literature.¹¹

Preparation of $[\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-R}](\text{Ph}_4\text{B})$: The general methodology outlined below was used in the preparation of all the phosphinite redox ligands, except where noted. In all cases a slight excess of N,N-dimethyl-P,P-diphenylphosphine was used to ensure complete consumption of the hydroxyethylpyridinium starting material. 2.0g (9.0 mmoles) of N,N-dimethyl-P,P-diphenylphosphine and 8.0 mmoles of a 1-(2-hydroxyethyl)pyridinium salt were dissolved in approximately 150 mls of oxygen free acetonitrile. 0.1g of benzoic acid was added and the reaction mixture was stirred for four hours at room temperature under an inert atmosphere. The solvent was removed in vacuo leaving an oily residue, which was rinsed with three 20 ml portions of either diethyl ether or toluene until it began to solidify into a crude powder. With the exception of $(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4Ph-Py})(\text{Ph}_4\text{B})$, the product was purified by recrystallization from acetonitrile/toluene solutions. All of phosphinite ligands were characterized by elemental analysis, and ^1H NMR and ^{31}P spectroscopy. The NMR spectra are summarized in table 2.3a.

$(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-NEt}_3)(\text{Ph}_4\text{B})$: Anal. Calcd. for $\text{C}_{44}\text{H}_{49}\text{NOBP}$: C,81.4; H,7.6; N,2.2. Found: C,80.8; H,7.7; N,2.5.

$(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py})(\text{Ph}_4\text{B})$: Anal. Calcd. for $\text{C}_{43}\text{H}_{39}\text{NOBP}$: C,82.3; H,6.3; N,2.2. Found: C,82.7; H,6.5; N,2.4.

$(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4Me-Py})(\text{Ph}_4\text{B})$: Anal. Calcd. for $\text{C}_{44}\text{H}_{41}\text{NOBP}$: C,82.4; H,6.3; N,2.2. Found: C,82.2; H,6.4; N,2.4.

$(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-2,4,6Me}_3\text{-Py})(\text{Ph}_4\text{B})$: Anal. Calcd. for $\text{C}_{46}\text{H}_{45}\text{NOBP}$: C,82.6; H,6.7; N,2.1. Found: C,82.3; H,6.7; N,2.1.

$(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-NEt}_3)(\text{PF}_6)$: Anal. Calcd. for $\text{C}_{20}\text{H}_{29}\text{NOF}_6\text{P}$: C,49.5; H,5.97; N,2.88. Found: C,50.1; H,6.2; N,3.1.

Preparation of $(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4Ph-Py})(\text{Ph}_4\text{B})$: Because this compound had greater propensity to form oils in acetonitrile/toluene solutions, the crude product was

rinsed with three 50 ml portions of ethanol containing 0.5 mls of dichloromethane. This procedure yielded a crude powder, which was purified by recrystallization from acetone/diethyl ether solutions.

(Ph₂POCH₂CH₂-4Ph-Py)(Ph₄B): Anal. Calcd. for C₄₉H₃₃BNOP: C, 83.8; H, 6.1; N, 2.0. Found: C, 83.8; H, 6.1; N, 1.9.

Inorganic Complexes

Starting Materials: Di- μ -chloro-bis(1,5-cyclooctadiene)diiridium(I), bis(1,5-cyclooctadiene)bis(μ -3,5-dimethylpyrazole)diiridium(I), tetracarbonylbis(μ -3,5-dimethylpyrazole)diiridium(I), bis(1,5-cyclooctadiene)bis(μ -3,5-dimethyl-4-isobutylpyrazole)diiridium(I), and tetracarbonylbis(μ -3,5-dimethyl-4-isobutylpyrazole)diiridium(I) were prepared according to previously established procedures.^{12,6} The bis μ -3,5-dimethyl-4-isobutyl pyrazolate bridge complexes had not been previously reported and were characterized by elemental analysis and ¹H NMR spectroscopy.

Bis(1,5-cyclooctadiene)bis(μ -3,5-dimethyl-4-isobutylpyrazole)diiridium(I): Anal. Calcd. for C₂₆H₃₈N₄Ir₂: C, 44.93; H, 6.60; N, 6.16. Found: C, 44.97; H, 5.98; N, 6.15. ¹H NMR (d₆-Benzene): δ = 2.6 (m; COD), δ = 4.0 (m; COD), δ = 4.4 (m, COD), δ = 1.85 (m; COD), δ = 0.8 (d; isobutyl CH₃), δ = 1.5 (septet; isobutyl -CH), δ = 2.4 (s; pyrazole CH₃), δ = 1.9 (d; isobutyl CH₂).

Tetracarbonylbis(μ -3,5-dimethyl-4-isobutylpyrazole)diiridium(I): Anal. Calcd. for C₉H₁₄N₄O₄Ir₂: C, 33.07; H, 3.78; N, 7.01. Found: C, 33.09; H, 3.79; N, 7.01. ¹H NMR (d₆-Benzene): δ = 2.2 (s; pyrazole CH₃), δ = 1.9 (d; isobutyl CH₂), δ = 1.45 (septet; isobutyl -CH), δ = 0.7 (d; isobutyl CH₃).

Preparation of the [Ir₂(Pz^{*})₂(CO)₂(Ph₂POCH₂CH₂R)₂](Ph₄B)₂ and [Ir₂(Pz^{})₂(CO)₂(Ph₂POCH₂CH₂R)₂](Ph₄B)₂ Complexes:** The same

general procedure outlined for preparing $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py})_2](\text{Ph}_4\text{B})_2$ was used in the synthesis of all the iridium dimer complexes, except where noted. Each of the compounds was characterized by elemental analysis, ^1H NMR and ^{31}P NMR spectroscopy. Their proton and ^{31}P NMR spectra are summarized in table 2.3b.

$[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py})_2](\text{Ph}_4\text{B})_2$ (1): 0.1g (0.14mmoles) of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_4$ was placed in a 250 round bottom Schlenk flask and dissolved in 150 mls of dry THF. A THF (ca. 50 mls) solution containing 0.30 mmoles of $(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py})(\text{Ph}_4\text{B})$ was added to the reaction mixture dropwise over the course of approximately 2 to 3 minutes. With each addition of phosphinite ligand, carbon monoxide gas was liberated from the solution. The reaction mixture was stirred for four hours under a nitrogen atmosphere to ensure that all of the reactants had been consumed. During this time period the solution changed color from orange to red/orange. THF was removed in vacuo leaving an orange/red residue, which was taken up in 10 mls of acetonitrile. The solution was chilled to 0°C and toluene was slowly added until the product began to crystallize. $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py})_2](\text{Ph}_4\text{B})_2$ was isolated by cannula filtration as a bright red solid. Anal. Calcd. for $\text{C}_{98}\text{H}_{92}\text{B}_2\text{N}_6\text{O}_4\text{P}_2\text{Ir}_2$: C, 62.41; H, 4.91; N, 4.45. Found: C, 62.26; H, 5.05; N, 4.53.

$[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4Me-Py})_2](\text{Ph}_4\text{B})_2$ (2): 0.1g (0.14mmoles) of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_4$ was placed in a 250 ml round bottom Schlenk flask and dissolved in 150 mls of THF. 50 mls of THF containing 0.3 mmoles of $(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4Me-Py})(\text{Ph}_4\text{B})$ was added over a period of 2 to 3 minutes. The reaction mixture was sealed under a nitrogen atmosphere and allowed to stand undisturbed for 48 hours during which time the product formed as bright red crystals. The product was separated by cannula filtration and washed with three 20 ml portions of

THF. Anal. Calcd. for $C_{100}H_{96}B_2N_6O_4P_2Ir_2$: C, 63.40; H, 5.32; N, 4.26. Found: C, 63.63; H, 5.37; N, 4.30.

$[Ir_2(Pz^*)_2(CO)_2(Ph_2POCH_2CH_3)_2]$ (3): 0.1g (0.14 mmoles) of $Ir_2(Pz^*)_2(CO)_4$ was placed in a 250 round bottom Schlenk flask and dissolved in 150 mls of THF. 0.1 ml (0.7 mmoles) of $Ph_2POCH_2CH_3$ was added via a gas tight syringe. An immediate liberation of carbon monoxide gas was observed followed by a change in solution color from orange to orange/red. The reaction mixture was stirred for four hours to ensure complete consumption of the starting materials. THF was removed in vacuo leaving an orange/red residue, which was taken up in 20 mls of 2:1 ethanol/dichloromethane. Slow evaporation of this solution under a steady stream of nitrogen afforded the product as bright orange crystals. Anal. Calcd. for $C_{40}H_{44}N_4O_2P_2Ir_2$: C, 44.04; H, 4.03; N, 5.13. Found: C, 43.74; H, 4.08; N, 5.06.

$[Ir_2(Pz^*)_2(CO)_2(Ph_2POCH_2CH_2-NEt_3)_2](PF_6)_2$ (4): This complex was prepared using the same procedure as that outlined for complex 1 except that a slightly different isolation procedure was employed. After the solvent was removed from the reaction mixture, the orange/red residue was rinsed with three 20 ml portions of ethanol containing 0.1 ml of dichloromethane. This produced a crude solid, which was purified by soxhlet extraction into dichloromethane. Anal. Calcd. for $C_{52}H_{72}F_{12}N_6O_4P_4Ir_2$: C, 39.5; H, 5.46; N, 5.323. Found: C, 39.32; H, 5.16; N, 4.58.

The following complexes were prepared using the procedure outlined for complex 1.

$[Ir_2(Pz^*)_2(CO)_2(Ph_2POCH_2CH_2-2,4,6Me_3-Py)_2](Ph_4B)_2$ (5): Anal. Calcd. for $C_{104}H_{104}B_2N_6O_4P_2Ir_2$: C, 63.40; H, 5.32; N, 4.26. Found: C, 63.63; H, 5.37; N, 4.30.

$[Ir_2(Pz^*)_2(CO)_2(Ph_2POCH_2CH_2-4Ph-Py)_2](Ph_4B)_2$ (6): Anal. Calcd. for $C_{110}H_{100}B_2N_6O_4P_2Ir_2$: C, 64.62; H, 4.95; N, 4.10. Found: C, 63.52; H, 4.96; N, 3.94.

[Ir₂(Pz^{*})₂(CO)₂(Ph₂POCH₂CH₂-NEt₃)₂](Ph₄B)₂(7): Anal. Calcd. for C₁₀₀H₁₁₂B₂N₆O₄P₂Ir₂: C,62.23; H,5.85; N,4.35. Found: C,62.3; H,5.70; N,4.37.

The following complexes were prepared using the procedure outline for complex 3.

Ir₂(Pz^{*})₂(CO)₂(Ph₂POCH₂CH₂CH₂CH₃)₂(8): Anal. Calcd. for C₄₄H₅₀N₄O₄P₂Ir₂: C,46.15; H,4.40; N,4.88. Found: C,46.06; H,4.53; N,4.87.

Ir₂(Pz^{*})₂(CO)₂(Ph₂POCH₃)₂(9): Anal. Calcd. for C₃₈H₄₀N₄O₄P₂Ir₂: C,42.94; H,3.76; N,5.27. Found: C,43.10; H,3.83; N,5.22.

Ir₂(Pz^{*})₂(CO)₂(Ph₃P)₃·CH₂Cl₂(10): Anal. Calcd. for C₄₉H₄₆Cl₂N₄O₄P₂Ir₂: C,46.27; H,3.62; N,4.41. Found: C,47.50; H,3.95; N,5.38.

[Ir₂(Pz^{})₂(CO)₂(Ph₂POCH₂CH₂-Py)₂](Ph₄B)₂**(11): Anal. Calcd. for C₁₀₆H₁₀₈B₂N₆O₄P₂Ir₂: C,63.60; H,5.69; N,4.20. Found: C,63.58; H,5.36; N,4.23.

[Ir₂(Pz^{})₂(CO)₂(Ph₂POCH₂CH₂-4Me-Py)₂](Ph₄B)₂**(12): Anal. Calcd. for C₁₀₈H₁₁₂B₂N₆O₄P₂Ir₂: C,64.02; H,5.57; N,4.14. Found: C,63.52; H,5.60; N,4.13.

[Ir₂(Pz^{})₂(CO)₂(Ph₂POCH₂CH₂-4Ph-Py)₂](Ph₄B)₂**(13): Anal. Calcd. for C₁₁₈H₁₁₆B₂N₆O₄P₂Ir₂: C,65.94; H,5.40; N,3.91. Found: C,65.80; H,5.59; N,3.55.

X-Ray Crystallography

Crystals of **[Ir₂(Pz^{*})₂(CO)₂(Ph₂POCH₂CH₂-Py)₂](Ph₄B)₂** suitable for x-ray diffraction studies were grown from DMF solutions layered with dry diethyl ether. An irregularly shaped crystal with approximate dimensions 0.10x0.40x0.70 mm was sealed inside a glass capillary tube under an inert atmosphere and centered on a CAD4 diffractometer equipped with graphite-monochromated MoK α radiation for intensity data collection. Unit cell dimensions were obtained from the angle settings of 25 reflections

with $25^\circ < 2\theta < 31^\circ$. The space group P21/c was chosen based on the systematic absences $h0l$ ($l=2n+1$) and $0k0$ ($k=2n+1$). Three data sets were collected in the quadrants h,k,l ; $-h,-k,-l$; $h,-k,l$; and $-h,k,-l$ with a total of 18453 reflections and were successfully merged into a final data set having 8019 independent reflections. Check reflections were monitored every 10000 seconds to record crystal decay; only minor variations were observed and the data were corrected accordingly.

The data were corrected for absorption, Lorentz, and polarization effects. An absorption coefficient of 26 cm^{-1} was found to yield the best correction of both the high and low intensity reflections. Special considerations were given to correcting individual reflections for background x-ray scatter. The unusually long c axis of this particular monoclinic lattice lead to partial overlap between adjacent reflections in approximately 1/3 of the data and precluded the use of standard correction procedures. To circumvent this problem an "average" background correction factor was calculated from the remaining well resolved reflections and was applied to the entire data set. Because systematic errors arising from this procedure should affect the low intensity data to the greatest extent, least squares refinements were carried out, which included and excluded the low intensity reflections. The minor differences observed between values of R, the GOF, and the atomic coordinates for each of these different refinements were taken to indicate that this background correction procedure was valid.

Initial coordinates for the four iridium atoms were determined by interpreting Patterson maps. The remaining non-hydrogen atoms were located from structure-factor Fourier calculations. The iridium atoms were given anisotropic thermal factors, while the remaining atoms were treated isotropically. Several cycles of least squares refinement lead to convergence with R of 0.0697 for 7212 reflections. For the strong

Table 2.1a Coordinates ($\times 10^4$) x, y, z and $U_{eq}^a \times 10^4$

Atom	<i>x</i>	<i>y</i>	<i>z</i>	U_{eq} or <i>B</i>
IR1	3025(.4)	394(.3)	7838(.1)	317(1)
IR2	2296(.4)	580(.3)	7152(.1)	311(1)
P1	1995(2)	-267(2)	8137(1)	355(9)
P2	3001(2)	-269(2)	6832(1)	327(8)
C1	4015(10)	-443(9)	7894(3)	4.2(3)*
O1	4683(7)	-1023(6)	7906(2)	5.9(2)*
C2	1031(11)	193(9)	7085(3)	4.7(3)*
O2	66(8)	-102(7)	7030(2)	6.7(3)*
ND1A	1937(7)	1382(6)	7719(2)	3.1(2)*
ND1B	1694(7)	1476(6)	7427(2)	2.7(2)*
CD1A	1443(9)	2069(8)	7840(3)	3.6(3)*
CD1B	1078(10)	2192(9)	7370(3)	4.1(3)*
CD1C	918(10)	2592(9)	7631(3)	4.8(3)*
CD1D	1578(11)	2165(10)	8163(3)	6.0(4)*
CD1E	745(12)	2480(10)	7068(4)	6.4(4)*
ND2A	4052(7)	1102(6)	7587(2)	2.8(2)*
ND2B	3791(7)	1144(6)	7298(2)	2.8(2)*
CD2A	4977(10)	1553(9)	7669(3)	4.3(3)*
CD2B	4556(10)	1669(8)	7200(3)	3.9(3)*
CD2C	5311(11)	1918(9)	7417(3)	4.8(3)*
CD2D	5457(12)	1665(10)	7976(4)	6.8(4)*
CD2E	4469(11)	1872(9)	6878(3)	5.3(3)*
OA1	2182(6)	49(5)	8476(2)	3.8(2)*
CA1	3234(11)	477(9)	8585(3)	5.5(3)*
CB1	3153(11)	697(10)	8896(3)	5.8(4)*
NP1	3277(8)	-68(7)	9093(2)	4.2(2)*
CP1A	2385(10)	-458(9)	9179(3)	4.8(3)*
CP1B	2481(12)	-1195(10)	9344(3)	5.9(4)*
CP1C	3516(14)	-1545(11)	9414(4)	7.4(4)*
CP1D	4397(13)	-1133(11)	9328(4)	7.2(4)*
CP1E	4283(12)	-410(10)	9170(4)	6.2(4)*
OA2	2921(6)	123(5)	6501(2)	3.1(2)*
CA2	1929(9)	618(8)	6405(3)	3.4(3)*
CB2	2015(10)	824(8)	6079(3)	4.3(3)*
NP2	1829(8)	37(7)	5897(2)	3.7(2)*
CP2A	786(11)	-251(9)	5826(3)	5.2(3)*
CP2B	617(13)	-1032(11)	5675(4)	6.7(4)*
CP2C	1479(13)	-1465(11)	5596(4)	6.9(4)*
CP2D	2517(12)	-1159(10)	5657(3)	6.0(4)*
CP2E	2689(10)	-414(9)	5813(3)	4.8(3)*
CB1A	2208(10)	-1433(8)	8182(3)	3.9(3)*
CB1B	2420(12)	-1836(10)	8451(4)	6.2(4)*
CB1C	2593(14)	-2756(13)	8475(4)	8.5(5)*
CB1D	2484(14)	-3199(12)	8228(5)	8.1(5)*
CB1E	2243(14)	-2893(13)	7949(5)	8.8(5)*

Table 2.1a (Cont.)

Atom	<i>x</i>	<i>y</i>	<i>z</i>	<i>U_{eq}</i> or <i>B</i>
CB1F	2148(12)	-1969(11)	7940(4)	6.8(4)*
CB2A	506(8)	-204(7)	8078(3)	2.7(3)*
CB2B	-137(9)	-369(8)	8299(3)	3.8(3)*
CB2C	-1280(10)	-392(9)	8239(3)	4.6(3)*
CB2D	-1779(11)	-213(9)	7974(3)	5.4(3)*
CB2E	-1155(12)	-27(10)	7757(3)	5.8(4)*
CB2F	15(10)	-4(8)	7805(3)	4.2(3)*
CB3A	2407(9)	-1340(8)	6765(3)	3.0(3)*
CB3B	2446(10)	-1759(8)	6500(3)	4.1(3)*
CB3C	1961(11)	-2580(10)	6439(3)	5.6(4)*
CB3D	1502(12)	-2976(10)	6658(4)	5.9(4)*
CB3E	1481(11)	-2629(10)	6923(3)	5.6(4)*
CB3F	1921(10)	-1773(8)	6975(3)	4.2(3)*
CB4A	4449(9)	-517(8)	6883(3)	3.1(3)*
CB4B	5150(10)	-460(8)	6669(3)	4.2(3)*
CB4C	6248(11)	-682(9)	6731(3)	5.2(3)*
CB4D	6670(12)	-916(10)	7004(4)	5.7(4)*
CB4E	6020(13)	-987(10)	7221(4)	6.8(4)*
CB4F	4889(11)	-770(9)	7155(3)	5.0(3)*
B1	1474(10)	741(9)	694(3)	2.6(3)*
C11A	2199(9)	734(8)	416(3)	3.0(3)*
C11B	2666(9)	1493(8)	311(3)	3.2(3)*
C11C	3360(10)	1468(9)	91(3)	4.4(3)*
C11D	3656(10)	692(9)	-16(3)	4.5(3)*
C11E	3243(10)	-73(9)	78(3)	4.8(3)*
C11F	2519(10)	-54(8)	296(3)	4.0(3)*
C12A	2420(9)	678(8)	972(3)	3.4(3)*
C12B	2854(10)	-113(9)	1081(3)	4.3(3)*
C12C	3651(12)	-204(10)	1316(4)	6.1(4)*
C12D	4058(12)	562(12)	1434(4)	7.2(4)*
C12E	3748(13)	1339(11)	1344(4)	7.1(4)*
C12F	2911(11)	1421(10)	1107(3)	5.5(4)*
C13A	620(9)	-79(7)	680(3)	3.0(3)*
C13B	-19(10)	-285(9)	421(3)	4.7(3)*
C13C	-771(12)	-985(10)	400(4)	6.2(4)*
C13D	-914(11)	-1470(10)	631(4)	5.8(4)*
C13E	-352(11)	-1275(9)	900(3)	5.2(3)*
C13F	395(10)	-569(8)	917(3)	4.1(3)*
C14A	707(9)	1623(8)	708(3)	3.2(3)*
C14B	379(11)	1903(9)	971(3)	4.8(3)*
C14C	-355(12)	2618(11)	981(4)	6.7(4)*
C14D	-707(12)	3036(11)	737(4)	6.7(4)*
C14E	-465(12)	2790(10)	469(4)	6.2(4)*
C14F	265(11)	2054(9)	462(3)	4.9(3)*
B2	3507(11)	671(9)	4313(3)	3.3(3)*

Table 2.1a (Cont.)

Atom	<i>x</i>	<i>y</i>	<i>z</i>	U_{eq} or <i>B</i>
C21A	4306(9)	1550(8)	4312(3)	3.4(3)*
C21B	4633(10)	1879(9)	4047(3)	4.7(3)*
C21C	5348(12)	2614(10)	4052(4)	5.9(4)*
C21D	5715(12)	2993(10)	4302(4)	6.0(4)*
C21E	5460(12)	2690(10)	4560(4)	6.2(4)*
C21F	4764(10)	1948(9)	4561(3)	4.4(3)*
C22A	2814(9)	645(8)	4596(3)	3.2(3)*
C22B	2354(10)	1401(8)	4704(3)	3.7(3)*
C22C	1648(10)	1387(9)	4920(3)	4.5(3)*
C22D	1375(10)	611(9)	5032(3)	5.0(3)*
C22E	1796(11)	-149(9)	4937(3)	5.4(4)*
C22F	2509(10)	-148(9)	4718(3)	4.5(3)*
C23A	2546(9)	731(8)	4044(3)	3.1(3)*
C23B	2020(9)	1(8)	3901(3)	3.1(3)*
C23C	1131(9)	46(8)	3684(3)	3.4(3)*
C23D	689(10)	864(8)	3605(3)	4.1(3)*
C23E	1137(10)	1599(8)	3750(3)	4.1(3)*
C23F	2033(10)	1514(8)	3955(3)	3.7(3)*
C24A	4320(9)	-178(7)	4302(3)	2.9(3)*
C24B	4978(10)	-436(9)	4553(3)	4.7(3)*
C24C	5701(11)	-1160(10)	4552(3)	5.5(4)*
C24D	5763(12)	-1614(10)	4308(4)	6.1(4)*
C24E	5155(11)	-1389(9)	4053(3)	5.0(3)*
C24F	4448(9)	-640(8)	4053(3)	3.3(3)*

$$^a U_{eq} = \frac{1}{3} \sum_i \sum_j [U_{ij} (a_i^* a_j^*) (\vec{a}_i \cdot \vec{a}_j)]$$

*Isotropic displacement parameter, *B*

Table 2.1b Anisotropic Temperature Factors

Atom	<i>U</i> ₁₁	<i>U</i> ₂₂	<i>U</i> ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	<i>U</i> ₂₃
IR1	346(3)	336(3)	281(4)	-42(3)	82(2)	31(3)
IR2	345(3)	310(3)	284(4)	31(3)	62(2)	-17(3)
P1	401(20)	350(21)	322(23)	-64(17)	77(16)	74(18)
P2	353(19)	322(20)	311(22)	17(16)	61(16)	-11(18)

The form of the displacement factor is:

$$\exp -2\pi^2 (U_{11}h^2a^*{}^2 + U_{22}k^2b^*{}^2 + U_{33}l^2c^*{}^2 + 2U_{12}hka^*b^* + 2U_{13}hla^*c^* + 2U_{23}klb^*c^*)$$

Table 2.2: Final Crystallographic Parameters

Mol. Wt. 1828.98

Cell Dimensions

a, Å 12.189(1)

b, Å 15.298(2)

c, Å 46.372(6)

α , deg. 90

β , deg. 90.406(10)

γ , deg. 90

V, Å³ 8646(7)

Z 4

ρ , g/cm³ 1.41

μ , cm⁻¹ 26.0

Crystal Dimensions 0.1 x 0.4 x 0.7 mm

Scan Width ω scans (1°)

No. of Observed Reflections

Total 8019

> 0 7212

>3 σ 6131

No. of Parameters Varied 477

R 0.0697

R₃ σ 0.055

GOF 2.32

Space Group P21/c

data with $F_0^2 > 3\sigma F_0^2$, $R = 0.055$ for 6131 reflections. The goodness of fit was 2.32 for $n = 8019$ data and $p = 477$ parameters. Atomic coordinates and final unit cell parameters are found in tables 2.1 and 2.2.

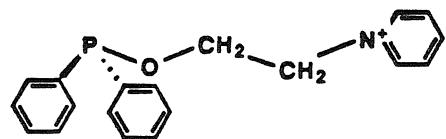
Calculational Details

Molecular mechanics calculations were carried out on $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py})_2](\text{Ph}_4\text{B})_2$ using Biograf III version 1.40.¹³ Initial atom positions were taken from its crystallographic coordinates. Energy minimizations for the three ligand rotational conformations seen in figure 2.16 were carried out using a Dreiding force field, which had been modified to reproduce the experimentally observed bond distances and angles. In each case the coordinates of the Ir, P, CO, and pyrazolate nitrogen atoms were held fixed to preserve their coordination geometries. All calculations were carried out in the absence of atom charges, counter-ions, and solvent molecules in an extended atom approximation.

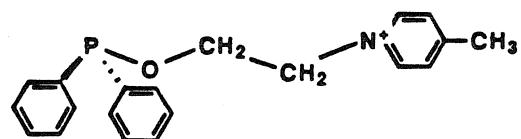
Rigid geometry conformational mapping involving the four torsional angles seen in figure 2.15 was carried out using procedures described previously by Karplus *et al.*¹⁴ It was found that conformations in which ϕ_{B1} and ϕ_{B2} are both acute were physically impossible. Thus, calculations were carried out in which $\phi_{B1}(\phi_{B2})$ was held at 180° and $\phi_{B2}(\phi_{B1})$ was varied between 60° and 300° in 120° increments. For pairs of values in ϕ_{B1} and ϕ_{B2} , ϕ_{B3} varied between 60° and 300° in 120° increments and ϕ_{B4} varied between 90° and 270° in 30° increments. The van der Waals energy of each conformation was determined using a Lennard-Jones 6-12 potential function of the form

$$E_{vdW} = \sum_{R_{ij} < R_{cut}} \left\{ \left[\frac{(R_0)_{ij}}{R_{ij}} \right]^{12} - 2 \left[\frac{(R^*)_{ij}}{R_{ij}} \right]^6 \right\} (D_0)_{ij}$$

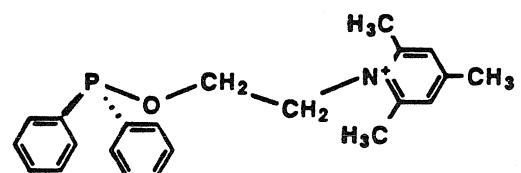
where D_0 is the van der Waals bond energy in Kcal/mole, R_0 is the van der Waals bond length in Å and R is the interatomic distance in Å. Only those interactions within an interval less than a cutoff distance (R_{cut}) of 9.0 Å were included in this sum. This procedure was repeated for each of the three different Ir-P conformations.

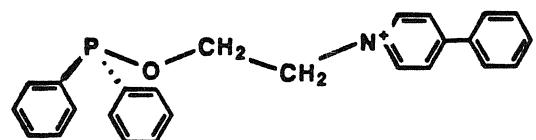

Results

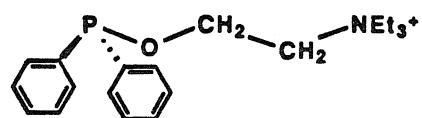
Phosphinite Redox Ligands


The two step reaction sequence outlined in figure 2.3 was used to synthesize a series of redox phosphinite ligands with different electrochemical reduction potentials (figure 2.2). A number of 1-(2-hydroxyethyl)pyridinium salts were prepared in good yield by reacting pyridine or a para-substituted pyridine with 2-bromoethanol using a previously established procedure (reaction 1a.).⁶ 1-(2-hydroxyethyl)-2,4,6-trimethylpyridinium tosylate was synthesized using a ring open reaction between a corresponding pyrylium cation and (2-hydroxyethyl)amine, due to the poor nucleophilicity of ortho disubstituted pyridines (reaction 1b.).^{10a,b} Each of the pyridinium salts was metathesized to its corresponding tetraphenylborate salt to enhance the solubility of the phosphinite ligands and iridium dimer complexes in organic solvents. ¹H NMR spectra of these compounds compared favorably with spectra found in the literature.¹¹

Step two involved the alcoholysis of N,N-dimethyl-P,P-diphenylphosphine by a 1-(hydroxyethyl)pyridinium compound to produce its corresponding phosphinite ligand (reaction 2.).¹⁵ This transformation was carried out at room temperature in approximately 90% isolated yield by catalyzing the reaction with a small amount of benzoic acid. This approach avoided the higher reaction temperatures and forcing conditions associated with more traditional methods of preparing alkoxy diphenylphosphines and minimized the possibility of Arbuzov rearrangements¹⁵ and side reactions involving the pyridinium cations.¹⁶ Each of the redox ligands prepared in this manner was characterized by ¹H and ³¹P NMR spectroscopy. These data are summarized in table 2.3a.


Figure 2.2: Structures of the phosphinite redox ligands and their abbreviations.


Ph₂POCH₂CH₂-Py


Ph₂POCH₂CH₂-4Me-Py

Ph₂POCH₂CH₂-2,4,6Me₃-Py

Ph₂POCH₂CH₂-4Ph-Py

Ph₂POCH₂CH₂-NEt₃

Figure 2.3: Synthetic scheme for preparing the phosphinite redox ligands.

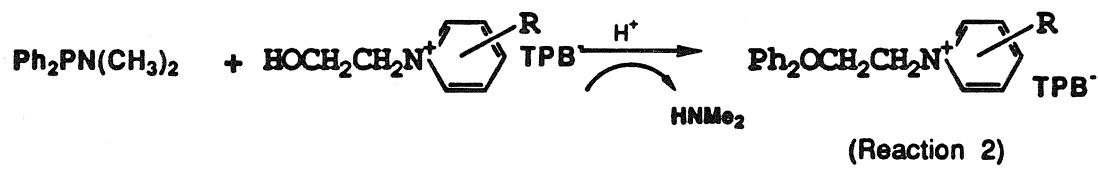
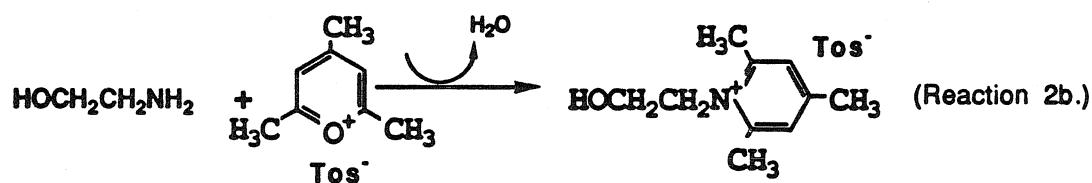
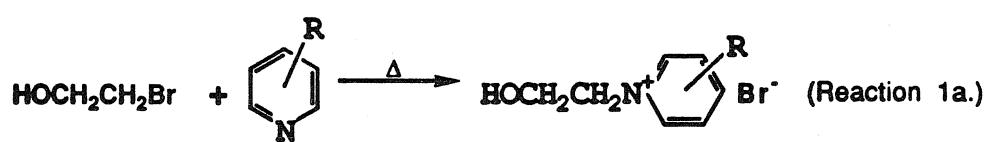
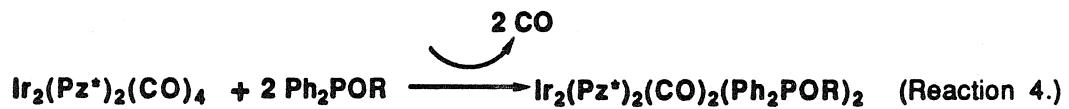
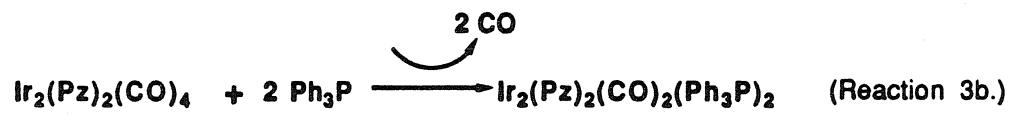
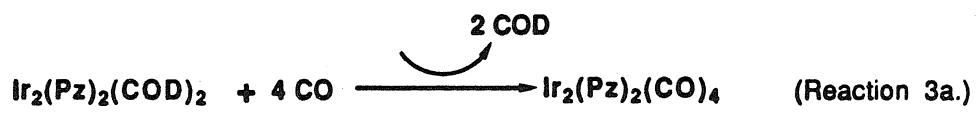




Table 2.3a: ^1H and ^{31}P NMR Data for Phosphinite Redox Ligands

Compound	Assignment	δ/ppm^a	
		^1H	$^{31}\text{P}^b$
(Ph ₂ POCH ₂ CH ₂ -Py)(Ph ₄ B)	Ph ₂ P- -Py (ortho H) -Py (para H) -Py (meta H) -OCH ₂ CH ₂ - -OCH ₂ CH ₂ -	----- 9.00(d) 8.50(t) 8.00(t) 4.28(dt) 4.84(t)	116.1
(Ph ₂ POCH ₂ CH ₂ -4-MePy)(Ph ₄ B)	Ph ₂ P- -Py-CH ₃ -Py (ortho H) -Py (meta H) -OCH ₂ CH ₂ - -OCH ₂ CH ₂ -	----- 2.50(s) 8.70(d) 7.75(d) 4.25(dt) 4.69(t)	115.6
(Ph ₂ POCH ₂ CH ₂ -4-PhPy)(Ph ₄ B)	Ph ₂ P- -Py (ortho H) -Py (meta H) -Ph (ortho H) -Ph (meta H) -Ph (para H) -OCH ₂ CH ₂ - -OCH ₂ CH ₂ -	----- 8.10(d) 7.75(d) 7.80(d) 7.55(m) 7.55(m) 4.20(dt) 4.50(t)	115.1
(Ph ₂ POCH ₂ CH ₂ -246Me ₃ -Py)(Ph ₄ B)	Ph ₂ P- -Py (meta H) -Py (ortho CH ₃) -Py (para CH ₃) -OCH ₂ CH ₂ - -OCH ₂ CH ₂ -	----- 7.50(s) 2.65(s) 2.40(s) 4.25(dt) 4.69(t)	117.8
(Ph ₂ POCH ₂ CH ₂ -NEt ₃)(Ph ₄ B)	Ph ₂ P- -OCH ₂ CH ₂ - -OCH ₂ CH ₂ - (CH ₃ CH ₂)- (CH ₃ CH ₂)-	----- 3.52(dt) 4.12(t) 1.20(t) 3.30(q)	116.1
(Ph ₂ POCH ₂ CH ₂ -NEt ₃)(PF ₆)	Ph ₂ P- PF ₆ -OCH ₂ CH ₂ - -OCH ₂ CH ₂ - (CH ₃ CH ₂)- (CH ₃ CH ₂)-	----- ----- 3.77(dt) 4.27(t) 1.29(t) 3.53(q)	118.5 -143.5




a. Spectra were measured in d⁶-DMSO. b. Chemical shifts are versus ext.H₃PO₄.

NMR spectra of the ligands show proton chemical shifts and multiplicities for the pyridinium aromatic protons and ring substituents, which are similar to those seen in spectra of their 1-(2-hydroxyethyl)pyridinium precursors. The phosphine phenyl groups show up as a pair of complex multiplets at δ = 7.6 and δ = 7.3 ppm. Notably, the β -methylene protons appear as a doublet of triplets at 4.2 ppm due to proton-phosphorous coupling (J_{PH} = 6.50 Hz). In addition, ^{31}P NMR spectra show ligand phosphorous chemical shifts ranging from δ = 115.1 to δ = 118.5 ppm. These spectroscopic data identify the ligands as esters of diphenylphosphinous acid.¹⁷

Iridium Dimer Preparation

Synthetic Methodology: The series of iridium(I) donor-acceptor complexes and corresponding model compounds reported in this study were prepared using procedures similar to those described previously for a number of analogous rhodium¹⁸ and iridium¹⁹ pyrazolate bridge compounds. Initial attempts at preparing redox phosphinite complexes of diiridium bis(μ -pyrazolate) using the two step method of Stobart and coworkers (figure 2.4) were complicated by the propensity of the products to form as intractable oils. This oil formation was attributed to small amounts of cyclooctadiene released during the preparation of the tetracarbonyl intermediate, $\text{Ir}_2(\text{Pz})_2(\text{CO})_4$ (reaction 3a.). $\text{Ir}_2(\text{Pz})_2(\text{CO})_4$ could not be isolated and purified for use as a primary starting material because it precipitates from concentrated solutions as a black intractable polymer. However, Nussbaum *et al.*²⁰ had reported a procedure for preparing its bis μ -3,5-dimethylpyrazolate bridge analog in good overall yield. By reacting pure $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_4$ with two equivalents of a phosphinite ligand of choice, its corresponding bis carbonyl, bis phosphinite iridium dimer was isolated as an orange/red crystalline solid in approximately 90% overall yield (reaction 4.). This

Figure 2.4: Synthetic scheme for preparing $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{R})_2$ complexes.

approach proved to be general for a variety of phosphine ligands and permitted the preparation of a complete series of donor-acceptor molecules and their corresponding model complexes.²¹

The donor-acceptor complexes based on the 3,5-dimethylpyrazole bridge framework proved to be soluble in most polar organic solvents, but were fairly insoluble in lower polarity solvents such as dichloromethane. Because some of the electrochemical and spectroscopic studies discussed in later chapters had to be carried out in less polar organic solvents, a second series of compounds was prepared containing 3,5-dimethyl-4-isobutylpyrazole ligands. Each of the complexes was characterized by ¹H and ³¹P NMR spectroscopy. These data are summarized in table 2.3b.

¹H NMR: Unlike d⁸-d⁸ A-frame compounds containing identical terminal ligands, the carbon monoxide phosphine complexes can exist as cis and trans structural isomers as seen in figure 2.5. Based on x-ray crystallographic data available for a number of rhodium and iridium pyrazolate bridge systems,²² the trans substitutional isomer is favored in the solid state. In solution, however, these two entities could exist in dynamic equilibrium. While Stobart and coworkers have reported that Ir₂(Pz)₂(CO)₂(Ph₃P)₂ exists as its trans isomer in solution and in the solid state,¹⁹ evidence for the presence of both the cis and trans isomers of Rh₂(Pz^{*})₂(CO)₂(Ph₃P)₂ has been observed in its proton NMR spectra.²³ The structural and electronic similarities between these two complexes and the donor-acceptor compounds prepared in this study suggest that structural isomerism should be considered in assigning their NMR spectra. Previous studies have indicated that the bridge substituent magnetic environments in d⁸-d⁸ A-frame complexes are perturbed by the nature and disposition of the dimer's terminal ligands.^{23,12,19} Thus, a careful analysis of the signals due to the pyrazole methyl

Table 2.3b: ^1H and ^{31}P NMR Data for Iridium Dimer Complexes

Compound	Assignment	δ (ppm)
$[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py})_2]^b$	$\text{Pz}^*-\text{CH}_{3A}$	1.4(s)
$(\text{Ph}_4\text{B})_2^d$	$\text{Pz}^*-\text{CH}_{3B}$	2.2(s)
$\delta_{\text{P}} = 97.79^e$	Pz^*-H	5.35(s)
	-OCH ₂ CH ₂ -	5.1(m)
	-OCH ₂ CH ₂ -	4.9(m)
		4.3(m)
	Py ortho	9.3(d)
	Py para	9.6(t)
	Py meta	9.2(t)
	$\text{Ph}_2\text{P-}$ ortho	7.85(d,d)
		7.6(d,d)
	$\text{Ph}_2\text{P-}$ para	7.45(t)
		7.15(m)
	$\text{Ph}_2\text{P-}$ meta	7.35(t)
		7.15(m)
$[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4CH}_3\text{-Py})_2]^b$	$\text{Pz}^*-\text{CH}_{3A}$	1.42(s)
$(\text{Ph}_4\text{B})_2$	$\text{Pz}^*-\text{CH}_{3B}$	2.2(s)
$\delta_{\text{P}} = 100.8$	Pz^*-H	5.4(s)
	-OCH ₂ CH ₂ -	5.0(m)
	-OCH ₂ CH ₂ -	4.9(m)
		4.25(m)
	Py ortho	9.1(d)
	Py meta	8.0(d)
	Py-CH ₃	2.6(s)
	$\text{Ph}_2\text{P-}$ ortho	7.6(d,d)
		7.85(d,d)
	$\text{Ph}_2\text{P-}$ meta	7.35(t)
		7.15(t)
	$\text{Ph}_2\text{P-}$ para	7.45(t)
		7.22(t)
$[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4Ph-Py})_2]^b$	$\text{Pz}^*-\text{CH}_{3A}$	2.2(s)
$(\text{Ph}_4\text{B})_2$	$\text{Pz}^*-\text{CH}_{3B}$	1.4(s)
$\delta_{\text{P}} = 99.04$	Pz^*-H	5.35(s)
	-OCH ₂ CH ₂ -	5.2(m)
	-OCH ₂ CH ₂ -	4.4(m)
		5.0(m)
	Py-Ph ortho	9.4(d)
	Py-Ph meta	8.65(d)
	Py-Ph ortho	8.1(d)
	Py-Ph para+meta	7.65(m)
	$\text{Ph}_2\text{P-}$ ortho	7.9(d,d)
		7.65(d,d)

Table 2.3b: (cont.)

Compound

Assignment

 δ (ppm)

$\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-2,4,6Me}_3\text{-Py})_2^a$	$\text{Pz}^*\text{-CH}_{3A}$	1.6(s)
$(\text{Ph}_4\text{B})_2$	$\text{Pz}^*\text{-CH}_{3B}$	2.25(s)
$\delta_{\text{P}} = 95.20$	$\text{Pz}^*\text{-H}$	5.5(s)
	Py-CH_3 ortho	2.67(s)
	Py-CH_3 para	2.45(s)
	Py-H	7.62(s)
	$\text{Ph}_2\text{P-}$ ortho	7.8(d,d)
		7.6(d,d)
	$\text{Ph}_2\text{P-}$ para	7.48(t)
		7.30(t)
	$\text{Ph}_2\text{P-}$ meta	7.4(t)
		7.22(t)
$\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-NEt}_3)_2^b$	$\text{Pz}^*\text{-CH}_{3A}$	1.85(s)
$(\text{Ph}_4\text{B})_2$	$\text{Pz}^*\text{-CH}_{3B}$	2.3(s)
$\delta_{\text{P}} = 104.29$	$\text{Pz}^*\text{-H}$	5.65(s)
	$-\text{OCH}_2\text{CH}_2\text{-}$	3.55(m)
	$-\text{OCH}_2\text{CH}_2\text{-}$	3.65(m)
	$-\text{N}(\text{CH}_2\text{CH}_3)_3$	4.35(m)
	$-\text{N}(\text{CH}_2\text{CH}_3)_3$	4.45(m)
	$\text{Ph}_2\text{P-}$ ortho	1.2(t)
		3.3(q)
	$\text{Ph}_2\text{P-}$ ortho	8.1(d,d)
		7.8(d,d)
	$\text{Ph}_2\text{P-}$ para	7.4(t)
		7.2(m)
	$\text{Ph}_2\text{P-}$ meta	7.3(t)
		7.2(m)
$\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_3)_2^c$	$\text{Pz}^*\text{-CH}_{3A}$	2.45(s)
$(\text{Ph}_4\text{B})_2$	$\text{Pz}^*\text{-CH}_{3B}$	2.10(s)
$\delta_{\text{P}} = 100.82$	$\text{Pz}^*\text{-H}$	5.6(s)
	P-O-CH_3	3.8(d)
	$\text{Ph}_2\text{P-}$ ortho	8.2(m)
	$\text{Ph}_2\text{P-}$ para	7.0(t)
		6.95(t)
	$\text{Ph}_2\text{P-}$ meta	7.1(m)
$\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2^c$	$\text{Pz}^*\text{-CH}_{3A}$	2.05(s)
$(\text{Ph}_4\text{B})_2$	$\text{Pz}^*\text{-CH}_{3B}$	2.55(s)
$\delta_{\text{P}} = 96.15$	$\text{Pz}^*\text{-H}$	5.60(t)

Table 2.3b: (cont.)

Compound	Assignment	δ (ppm)
	-OCH ₂ CH ₃	1.3(t)
	-OCH ₂ CH ₃	4.31(m)
		4.55(m)
	<i>Ph</i> ₂ P- ortho	8.23(d,d)
		8.30(d,d)
	<i>Ph</i> ₂ P- para	6.95(t)
		7.04(t)
	<i>Ph</i> ₂ P- meta	7.2(m)
Ir ₂ (Pz [*]) ₂ (CO) ₂ (Ph ₂ POCH ₂ CH ₂ CH ₂ CH ₃) ₂ ^c (Ph ₄ B) ₂ δ_P = 96.11	Pz [*] -CH _{3A}	2.2(s)
	Pz [*] -CH _{3B}	2.5(s)
	Pz [*] -H	5.6(s)
	OCH ₂ CH ₂ CH ₂ CH ₃	0.87(t)
	OCH ₂ CH ₂ CH ₂ CH ₃	1.44(sextet)
	OCH ₂ CH ₂ CH ₂ CH ₃	1.68(d,quintet)
	OCH ₂ CH ₂ CH ₂ CH ₃	4.16(m)
		4.56(m)
	<i>Ph</i> ₂ P- ortho	8.37(d,d)
		8.23(d,d)
	<i>Ph</i> ₂ P- para	6.95(t)
		7.05(t)
	<i>Ph</i> ₂ P- meta	7.15(m)
Ir ₂ (Pz [*]) ₂ (CO) ₂ (Ph ₂ POCH ₂ CH ₂ -NEt ₃) ₂ ^a (PF ₆) ₂ δ_P = 100.5	Pz [*] -CH _{3A}	2.0(s)
	Pz [*] -CH _{3B}	2.4(s)
	Pz [*] -H	5.55(s)
	-OCH ₂ CH ₂ -	3.45(m)
		3.49(m)
	-OCH ₂ CH ₂ -	4.6(m)
		4.45(m)
	-N(CH ₂ CH ₃) ₃	1.3(t)
	-N(CH ₂ CH ₃) ₃	3.3(q)
	<i>Ph</i> ₂ P- ortho	8.16(d,d)
		7.95(d,d)
	<i>Ph</i> ₂ P- para	7.53(t)
		7.65(m)
	<i>Ph</i> ₂ P- meta	7.47(t)
		7.65(m)
Ir ₂ (Pz ^{**}) ₂ (CO) ₂ (Ph ₂ POCH ₂ CH ₂ -Py) ₂ ^a (Ph ₄ B) ₂ δ_P = 99.17	Pz ^{**} -CH ₂ CH(CH ₃) ₂	0.54(d)
		0.39(d)
	Pz ^{**} -CH ₂ CH(CH ₃) ₂	1.05(septet)
	Pz ^{**} -CH ₂ CH(CH ₃) ₂	1.72(d)
	Pz [*] -CH _{3A}	1.5(s)

Table 2.3b: (cont.)

Compound

Assignment

 δ (ppm)

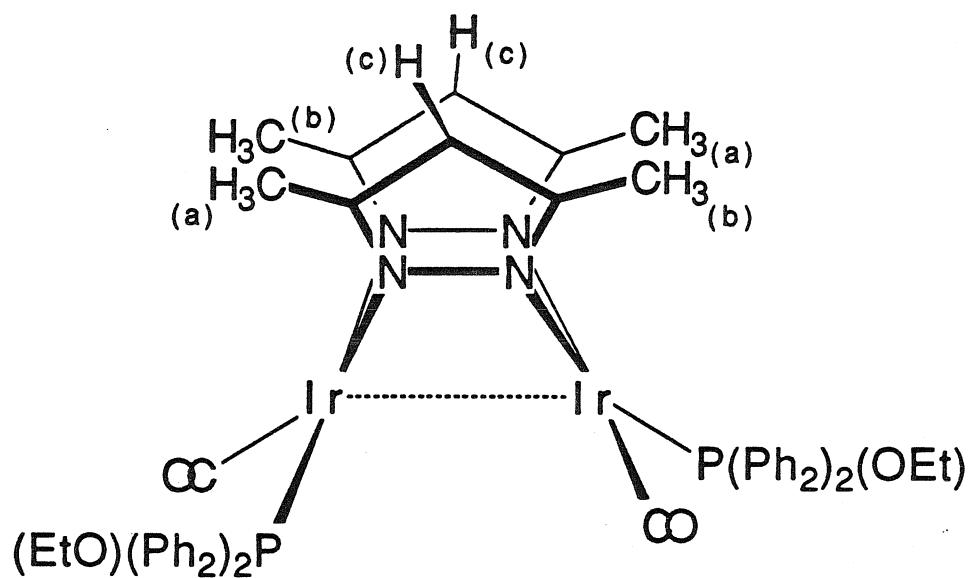
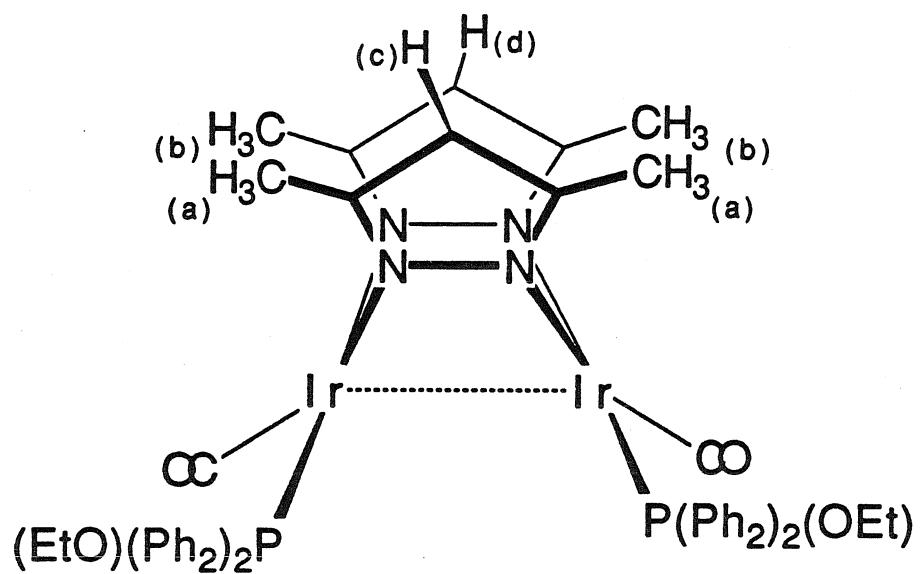

	Pz⁺-CH₃_B	2.2(s)
	-OCH ₂ CH₂ -	4.9(m)
	-OCH ₂ CH ₂ -	4.41(m)
		5.02(m)
	Ph₂P- ortho	7.77(d,d)
		7.61(d,d)
	Ph₂P- para	7.34(t)
		7.14(t)
	Ph₂P- meta	7.08(t)
		7.25(t)
	Py- ortho	8.68(d)
	Py- para	8.45(t)
	Py- meta	8.20(t)
Ir ₂ (Pz ^{**}) ₂ (CO) ₂ (Ph ₂ POCH ₂ CH ₂ -4Me-Py) ₂ ^a (Ph ₄ B) ₂ $\delta_P = 99.54$	Pz ^{**} -CH ₂ CH(CH₃) ₂	0.63(d,d)
	Pz ^{**} -CH ₂ CH (CH ₃) ₂	1.2(octet)
	Pz ^{**} - CH₂CH (CH ₃) ₂	1.87(d)
	-OCH ₂ CH₂ -	4.6(m)
	-OCH ₂ CH ₂ -	5.0(m)
		4.4(m)
	Ph₂P- ortho	7.89(d,d)
		7.77(d,d)
	Ph₂P- para	7.47(t)
		7.26(m)
	Ph₂P- meta	7.42(m)
	Py- H ortho	8.23(d)
	Py- H meta	7.63(d)
Ir ₂ (Pz ^{**}) ₂ (CO) ₂ (Ph ₂ POCH ₂ CH ₂ -4Ph-Py) ₂ ^a (Ph ₄ B) ₂ $\delta_P = 99.34$	Pz ^{**} -CH ₂ CH(CH₃) ₂	0.6(d)
	Pz ^{**} -CH ₂ CH (CH ₃) ₂	0.65(d)
	Pz ^{**} - CH₂CH (CH ₃) ₂	1.2(m)
	Pz ^{**} - CH₂CH (CH ₃) ₂	1.9(t)
	Pz ⁺ - CH₃_A	1.6(s)
	Pz ⁺ - CH₃_B	2.2(s)
	-OCH ₂ CH₂ -	4.9(m)
	-OCH ₂ CH ₂ -	4.6(m)
		5.2(m)
	Ph₂P- ortho	8.0(d,d)
		7.8(d,d)
	Ph₂P- para	7.45(d,d)
		7.40(d,d)
	Ph₂P- meta	7.2(m)
	Py- Ph ortho	8.55(d)
	Py- Ph meta	8.15(d)
	Py- Ph ortho	7.9(d)
	Py- Ph para+meta	7.7(m)

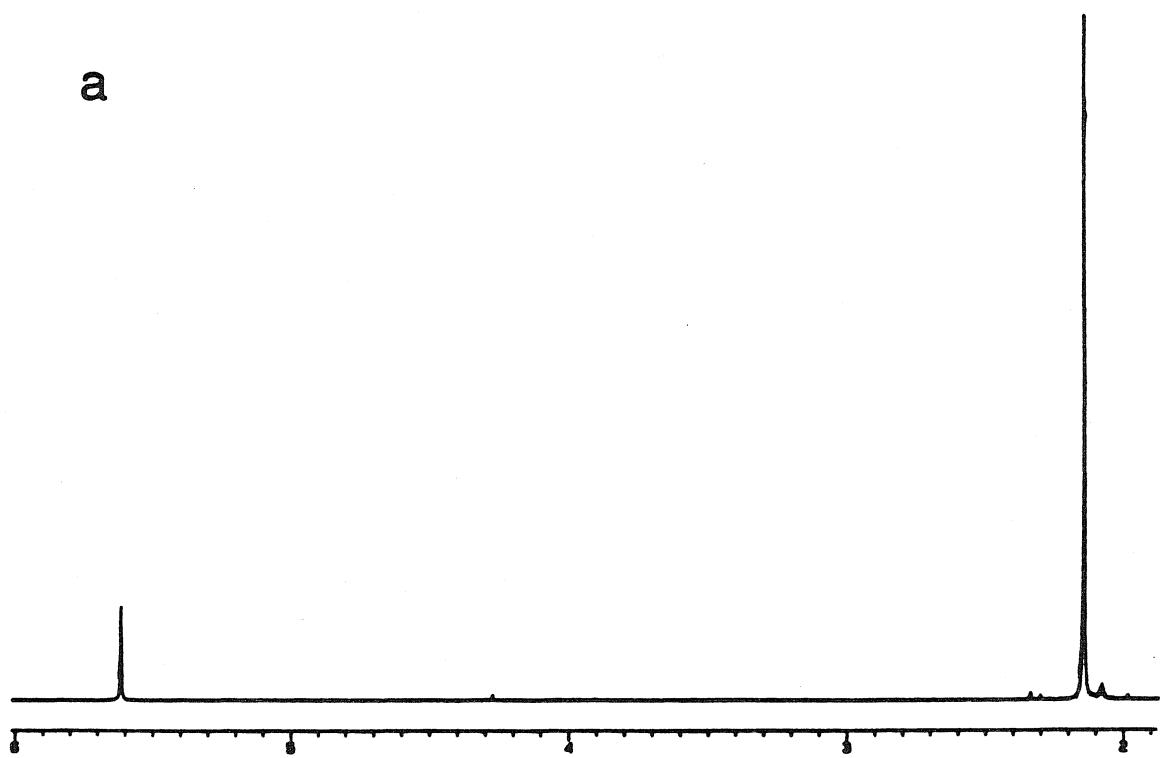
Table 2.3b: (cont.)


Compound	Assignment	δ (ppm)
$\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3)_2^c$	Pz^*-CH_3A	1.8(s)
$\delta_P = 17.56$	Pz^*-CH_3B	2.6(s)
	Pz^*-H	5.6(s)
	Ph_3P ortho	7.8(m)
	Ph_3P meta+para	7.0(s)

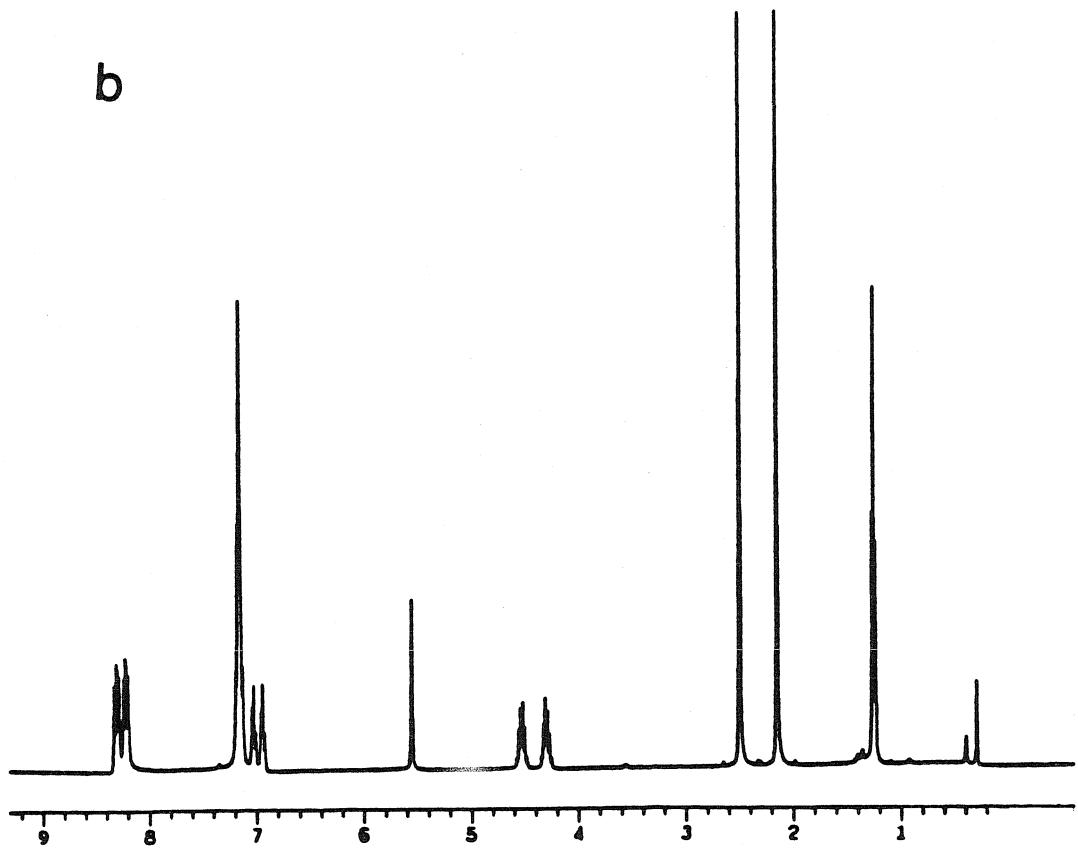
a. d3-Acetonitrile. b. d6-DMSO c. d6-Benzene. d. Signals for the tetraphenylborate counterions appeared at 6.9(t), 7.0(t), and 7.2(m). e. Chemical shifts are referenced to external H_3PO_4 .

Figure 2.5: Molecular structures for the *cis* and *trans* isomers of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$. The bridging pyrazole substituents are labeled according to their magnetic environments.

Trans



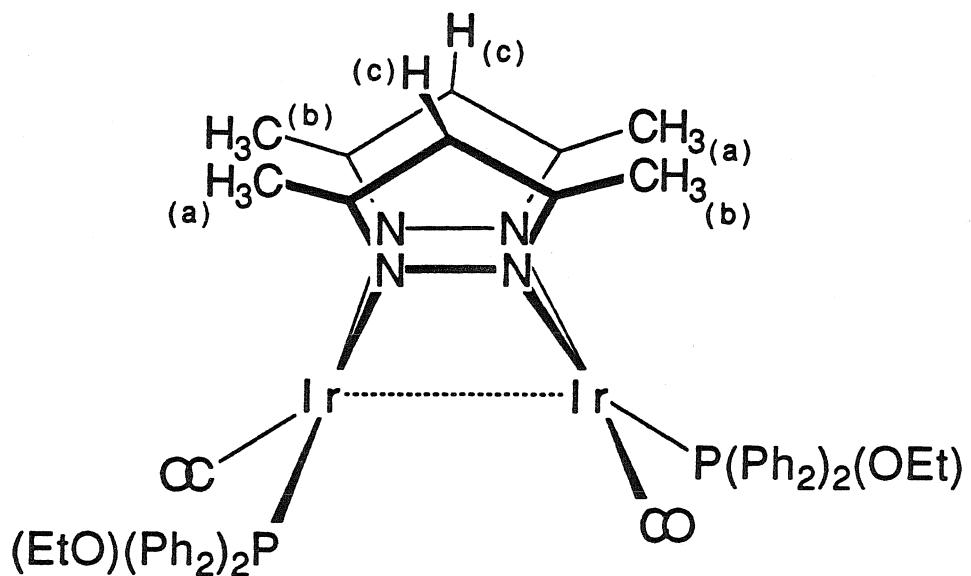
Cis


Figure 2.6: a) ^1H NMR spectrum of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_4$ in d6-benzene; $\delta = 2.13$ ppm (s; pyrazole CH_3), $\delta = 5.60$ ppm (s; pyrazole C-4 H). b) ^1H NMR spectrum of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ in d6-benzene.

62

a

b



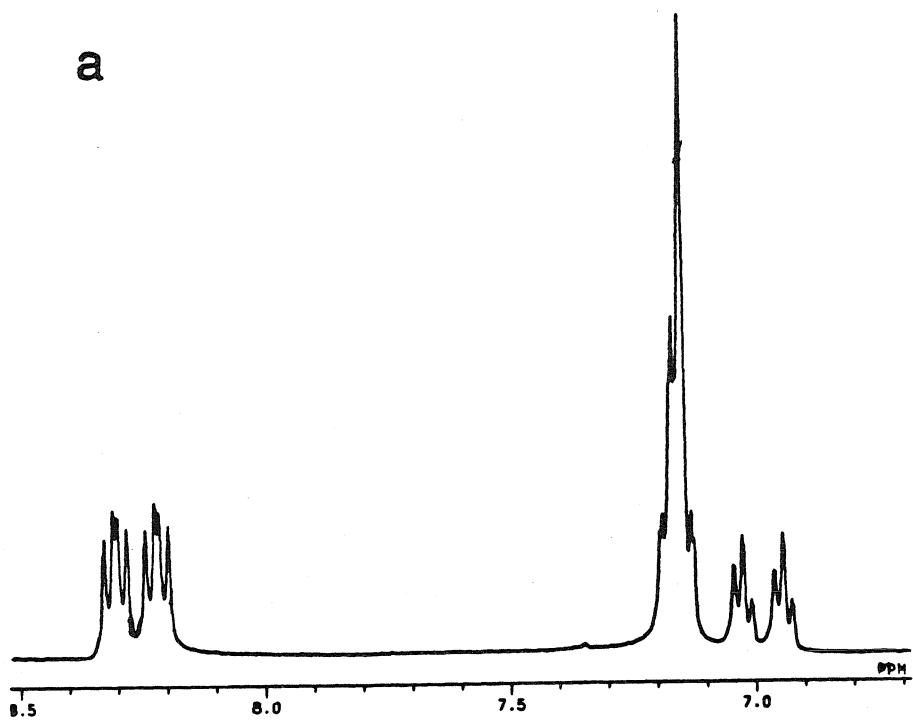
groups and C-4 protons in our complexes should disclose their solution coordination geometry.

In addition to containing a number of multiplets for the phenyl and ethoxy substituents on the phosphinite ligands, the ^1H NMR spectrum of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ (figure 2.6b) shows three signals at $\delta = 5.60$, $\delta = 2.50$, and $\delta = 2.05$ ppm (integration 1:3:3), which are assigned to the pyrazole C-4 proton and the two pair of inequivalent bridge methyl groups respectively. These spectral data indicate that a solitary isomer of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ is present in solution. This conclusion is substantiated by the presence of a single pair of singlet bands for the pyrazole methyl groups. Spectra of a mixture would show at least four bands for the magnetically inequivalent methyl groups in the cis and trans isomers. The unique singlet band assigned to pyrazole C-4 protons suggests that this complex exists as its trans isomer. In the corresponding cis isomer these protons occupy magnetically inequivalent C-4 sites (figure 2.5). In addition, based on the assignments made for the pyrazolate substituents in $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_4$ (figure 2.5a), the chemical shifts of the pyrazole methyl groups in $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ can be assigned according to the labeling scheme seen in figure 2.7.

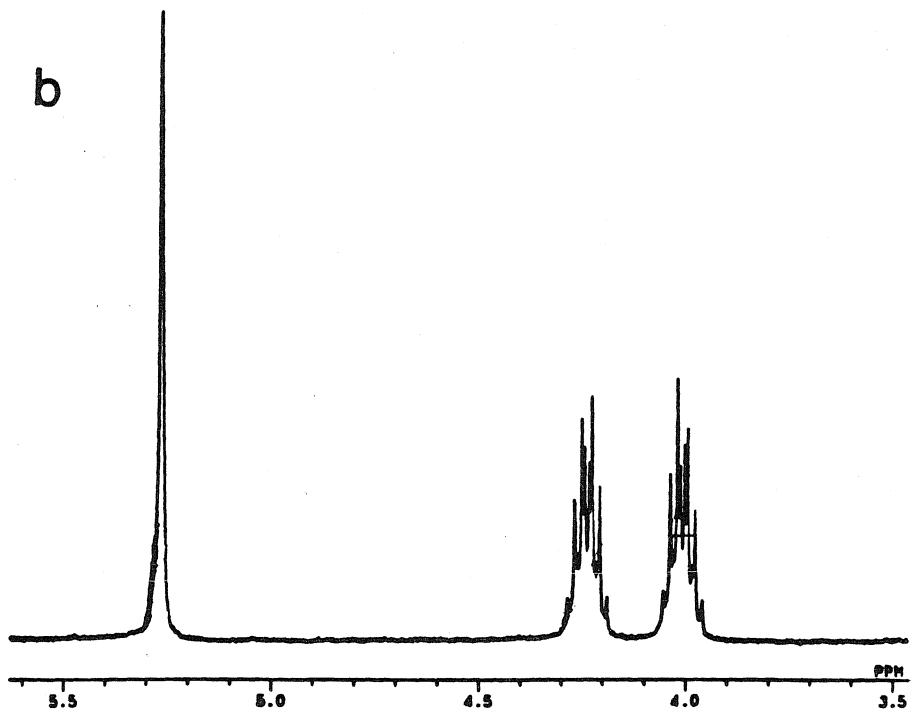
Due to the trans configuration of its terminal ligands, $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ lacks internal mirror symmetry. As prepared, this compound is, presumably, a racemic mixture of its two enantiomers. The chiral nature of the complex is manifested in its NMR spectra through the diastereotopic chemical shifts observed for magnetically inequivalent protons bound to the phosphinite ligand alkoxy and phenyl substituents. Figure 2.8a shows the aromatic region of a 400 MHz ^1H spectrum of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ taken in d6-benzene. The

Figure 2.7: Chemical shift assignments for the bridging pyrazole substituents in $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$.

$$\delta_{(a)} = 2.05 \text{ ppm}$$

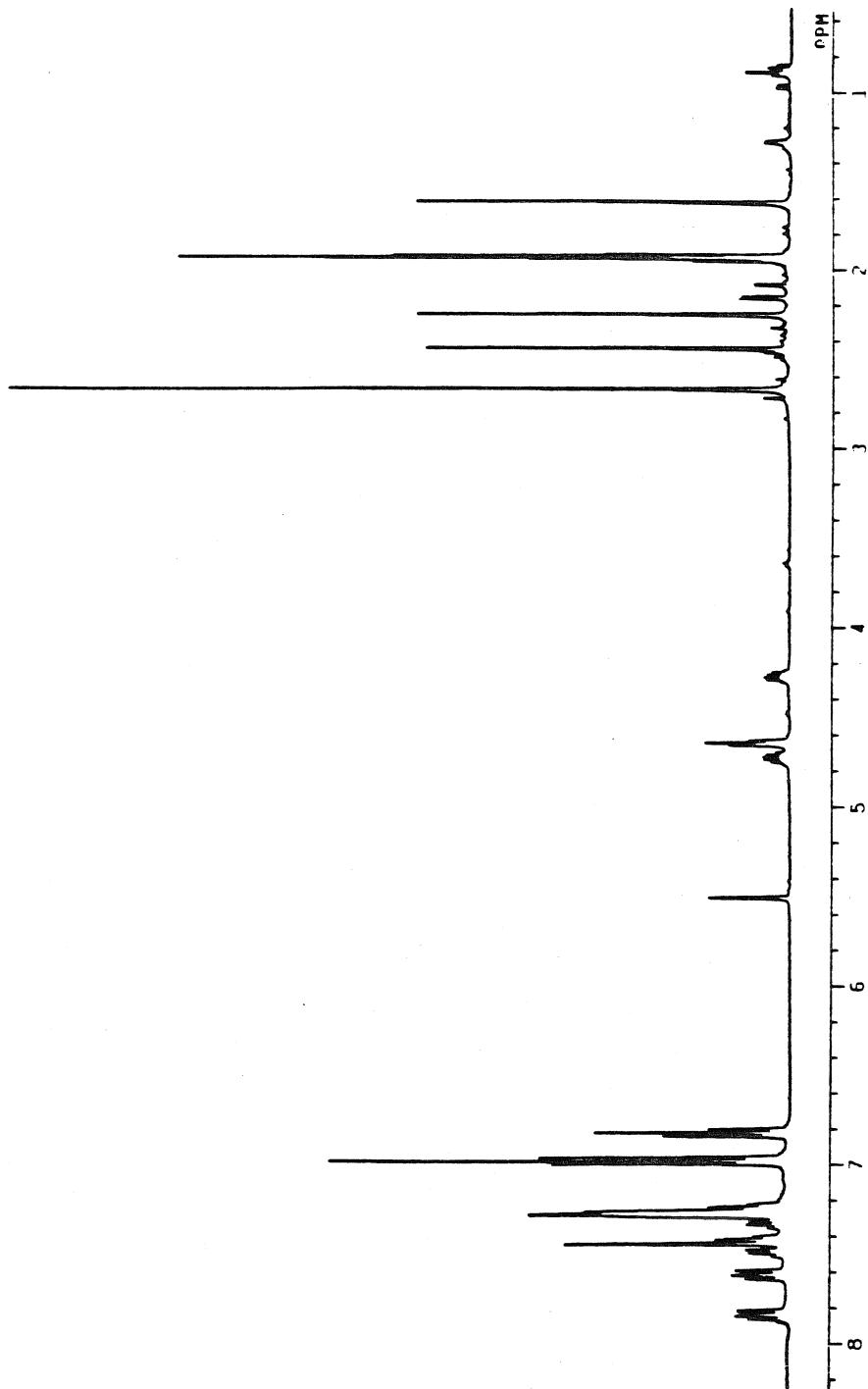

$$\delta_{(b)} = 2.50 \text{ ppm}$$

$$\delta_{(c)} = 5.60 \text{ ppm}$$


Figure 2.8: a) ^1H NMR spectrum of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ showing diasteriotopic chemical shifts for the phosphinite phenyl substituents. b) Diasteriotopic chemical shifts for the ethoxy group methylene protons.

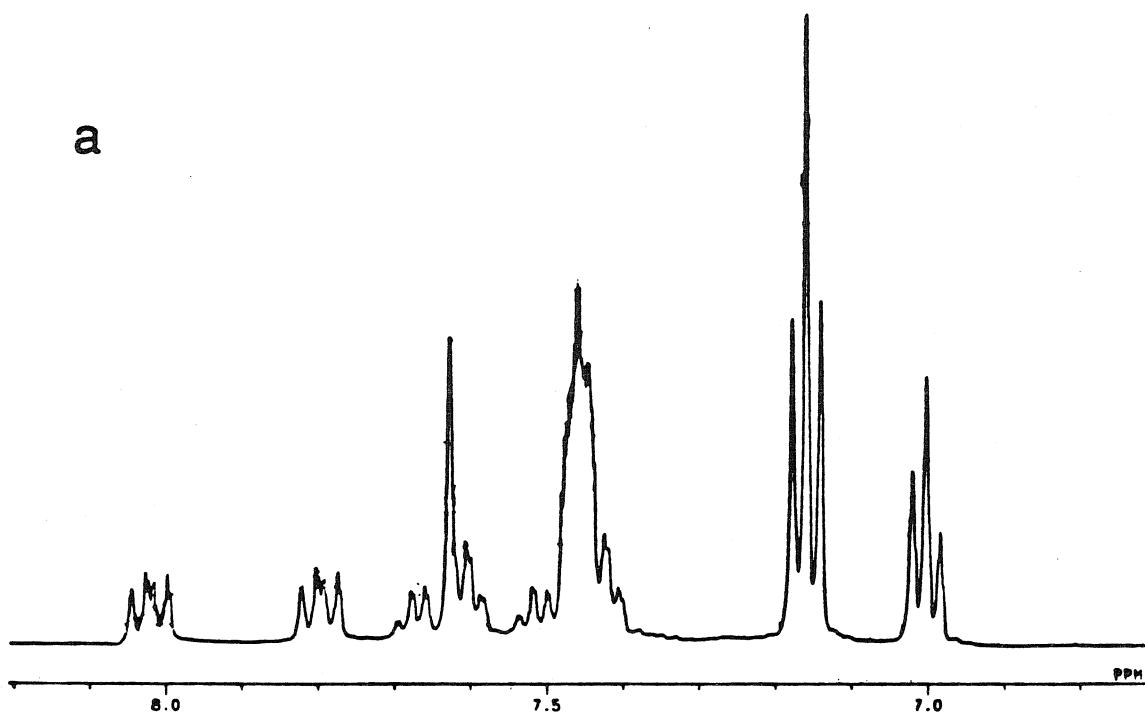
67

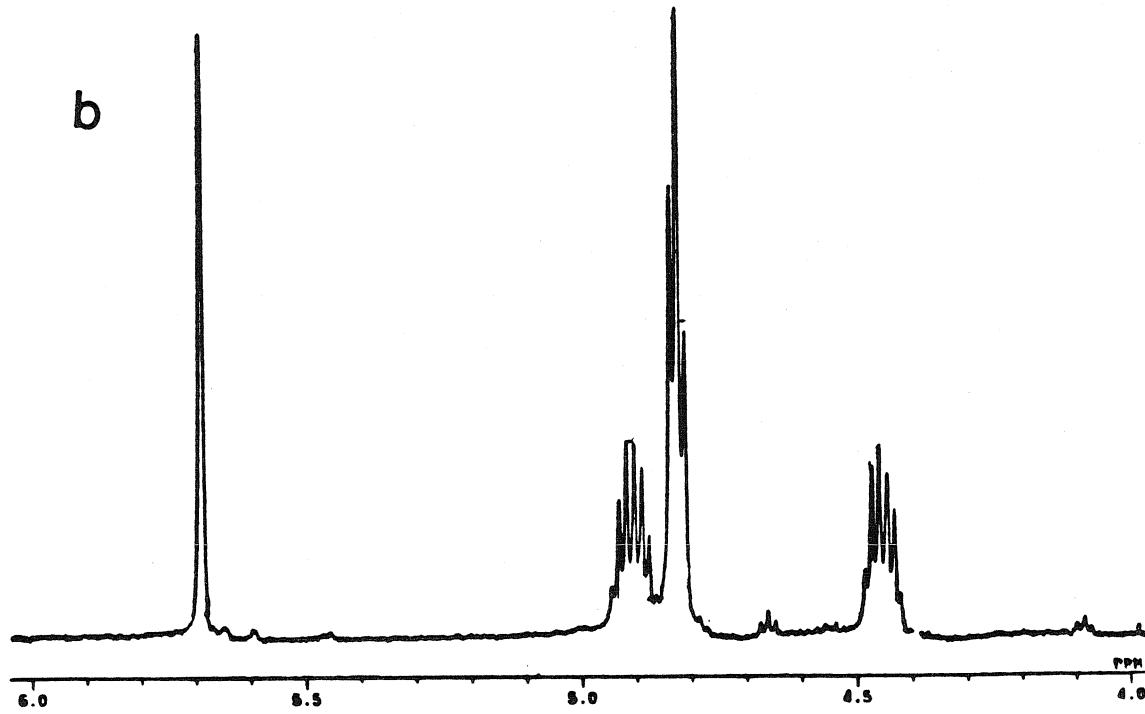
a


b

phenyl group ortho protons appear as a pair of closely spaced doublets at $\delta = 8.23$ and $\delta = 8.30$ ppm ($J_{PH} = 6.25$ Hz) along with a pair of slightly second order triplets at $\delta = 6.95$ and $\delta = 7.04$ ppm assigned to pairs of magnetically distinct para protons. The meta proton chemical shifts are not affected as much by the magnetic inequivalence of the ligand phenyl groups and are observed as a complex multiplet at $\delta = 7.2$ ppm. A similar effect is seen in the phosphine ethoxy group β -methylene protons (figure 2.8b.), which appear as a pair of complex multiplets at $\delta_1 = 4.30$ and $\delta_2 = 4.55$ ppm.

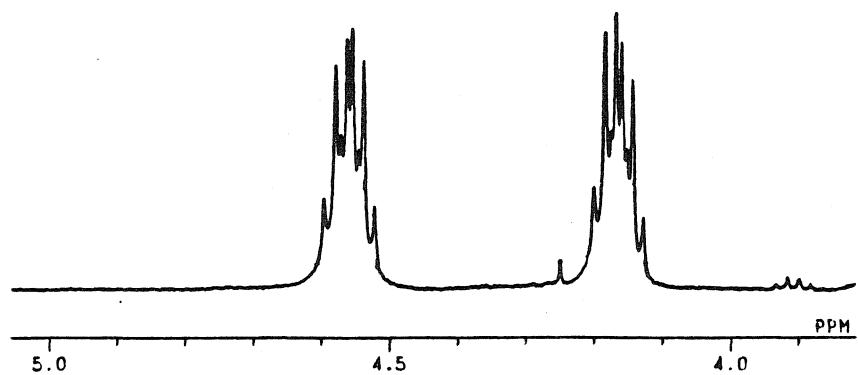
The spectroscopic properties of all of the donor-acceptor complexes reported here are similar to those seen in the $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ (table 2.3b). The proton NMR spectra of $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-2,4,6-Me}_3\text{-Py})_2](\text{Ph}_4\text{B})_2$ in d3-acetonitrile, seen in figures 2.9-2.10, exemplify those spectral features common to this series of compounds. The singlet bands at $\delta = 1.6$, $\delta = 2.25$, and $\delta = 5.5$ ppm, which are assigned to the pyrazole bridge methyl groups and C-4 proton, establish that this complex exists in solution as its trans isomer. This conclusion is further substantiated by the diastereotopic doubling of bands due to protons on the phosphinite ligand phenyl and alkoxy substituents. Figure 2.10a shows the aromatic region of this compound's 400 MHz NMR spectrum. The pair of overlapping doublets at $\delta = 7.8$ and $\delta = 7.6$ ppm are assigned to phosphinite ligand ortho protons. Signals for the corresponding meta and para protons appear as pairs of second order triplets at $\delta = 7.4$, $\delta = 7.22$ ppm and at $\delta = 7.48$, $\delta = 7.30$ ppm respectively. Figure 2.10b shows signals for the β and γ -methylene protons on the ligand alkoxy group. The β -methylene protons occupy significantly different magnetic environments in the metal complex and are split into a pair of complex multiplets at $\delta = 4.8$ and $\delta = 4.25$ ppm. In contrast, the γ -methylene protons are not resolved into their individual diastereotopic bands at 400


Figure 2.9: ^1H NMR spectrum of $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-2,4,6Me}_3\text{-Py})_2](\text{Ph}_4\text{B})_2$ in $\text{d}_3\text{-acetonitrile}$.


Figure 2.10: a) ^1H NMR spectrum of $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-2,4,6Me}_3\text{-Py})_2](\text{Ph}_4\text{B})_2$ showing the diasteriotopic chemical shifts for the phosphinite phenyl substituents. The pair of triplets ($\delta = 7.0$ and $\delta = 7.15$ ppm) and the complex multiplet ($\delta = 7.45$ ppm) are due to the tetraphenylborate counterions. b) Diasteriotopic chemical shifts for the alkoxy group methylene protons.

72

a



b

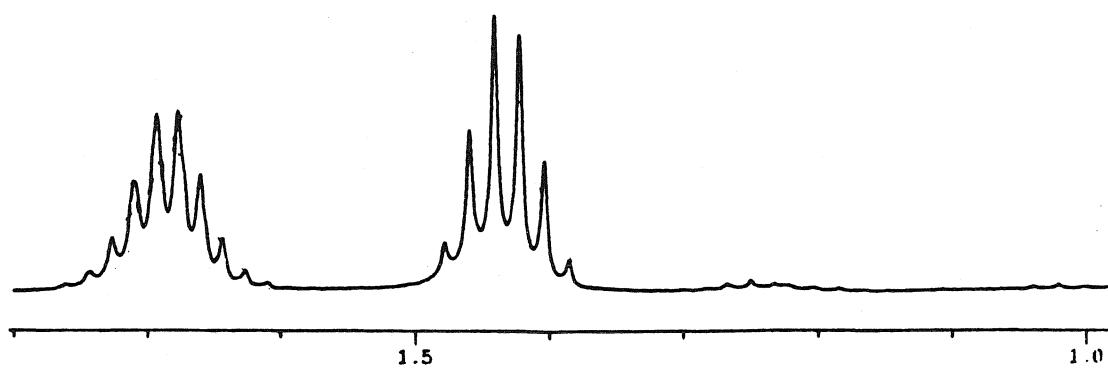
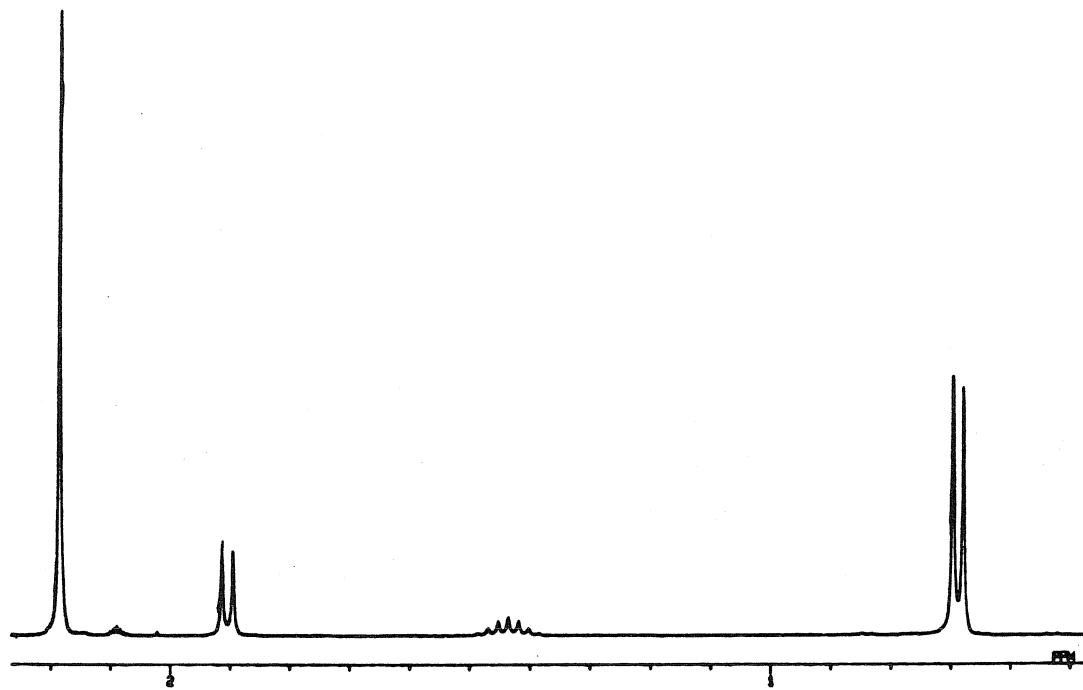
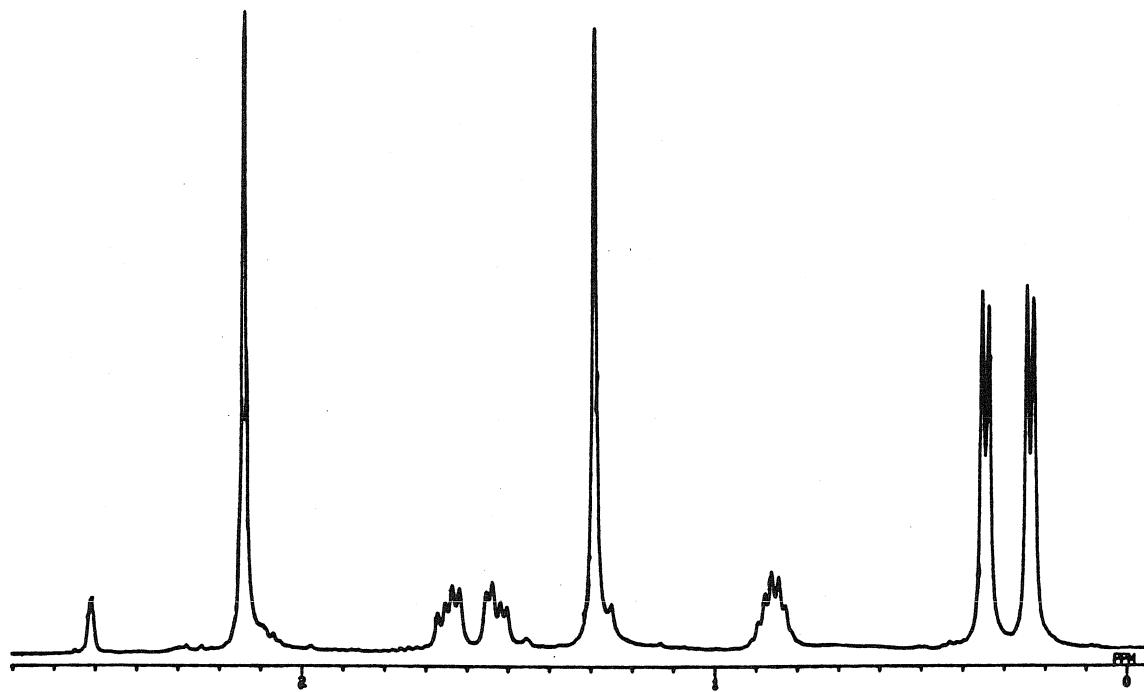


Figure 2.11 a and b: ^1H NMR spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{CH}_2\text{CH}_3)_2$ showing the change in the magnetic environments of the alkoxy group methylene protons as a function of distance from the compound's chiral center.

74



a



b

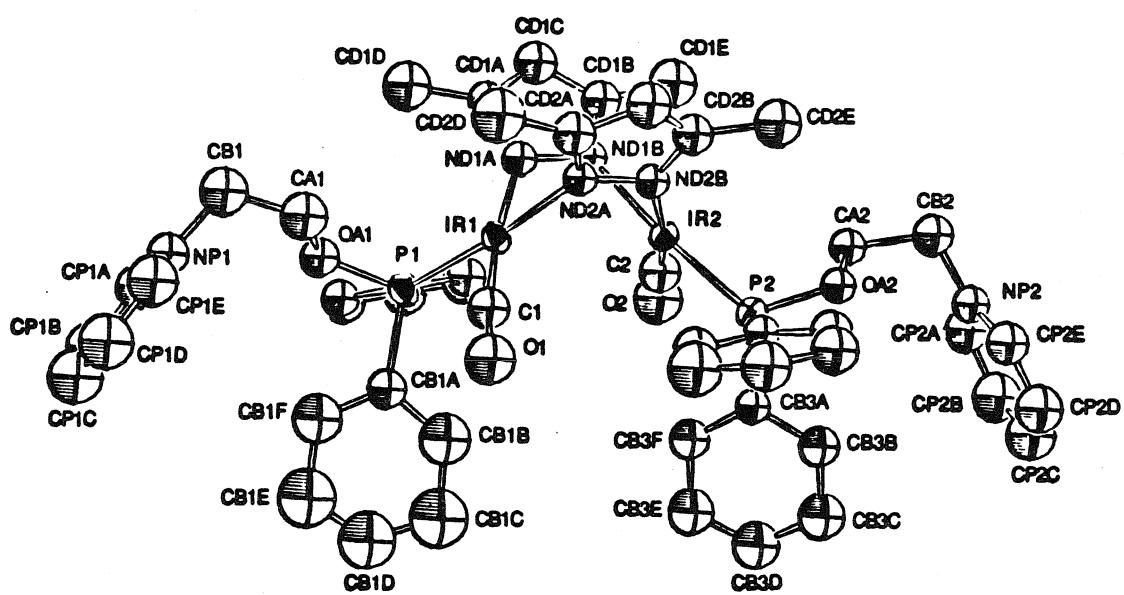
Figure 2.12: a) ^1H NMR spectrum of $\text{Ir}_2(\text{Pz}^{**})_2(\text{CO})_4$ in d6-benzene. $\delta = 2.20$ ppm (s; pyrazole CH_3), $\delta = 1.90$ ppm (d; $-\text{CH}_2\text{CH}(\text{CH}_3)_2$), $\delta = 1.45$ (septet; $-\text{CH}_2\text{CH}(\text{CH}_3)_2$), $\delta = 0.7$ ppm (d; $-\text{CH}_2\text{CH}(\text{CH}_3)_2$). b) ^1H NMR spectrum of $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4Ph-Py})_2](\text{Ph}_4\text{B})_2$ in d6-DMSO showing diasteriotopic chemical shifts for the pyrazole isobutyl substituents.

a

b

MHz and appear as a slightly second order triplet at $\delta = 4.74$ ppm. A similar trend is observed for the β , γ , and δ -methylene bands in spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{CH}_2\text{CH}_3)_2$ (figure 2.11).

The diastereotopic chemical shifts seen in spectra of the bis (μ -3,5-dimethyl-4-isobutylpyrazole) complexes indicate that these compounds also possess a trans configuration of their terminal ligands. Figure 2.12a shows a 400 MHz proton spectrum of $[\text{Ir}_2(\text{Pz}^{**})_2(\text{CO})_4](\text{d}_6\text{-benzene})$ and figure 2.12b the same spectral region for $[\text{Ir}_2(\text{Pz}^{**})_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4-Ph-Py})_2(\text{Ph}_4\text{B})_2]$ ($\text{d}_6\text{-DMSO}$) . The familiar doubling of signals for asymmetric ligand substituents seen earlier, is observed for the methyl and α -methylene protons of the pyrazole bridge isobutyl groups ($\delta = 0.35$ and $\delta = 0.23$; $\delta = 1.63$ and $\delta = 1.55$ ppm respectively). In addition to the diastereotopic doubling, the methylene protons are split into pairs of doublets most likely indicative of slowly introconverting rotational isomers along the isobutyl chain.


IR and ^{31}P NMR Spectra: Infrared spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ as fluorolube mulls show two strong bands attributable to CO stretches at $\nu_{\text{CO}} = 1955 \text{ cm}^{-1}$ and 2010 cm^{-1} . The lower energy band is analogous to the CO bands seen in the redox active complexes and previously reported phosphine CO dimer compounds.^{19,18,22} The higher energy band has not been reported previously and is most likely due to a solid state effect as it is not seen in solution spectra of this complex. Spectra of the remaining complexes all show a single broad CO stretch at 1955 cm^{-1} . ^{31}P NMR spectra showed a solitary singlet with chemical shifts between 95.02 and 104.29 ppm consistent with coordination of the phosphinite ligands to an Ir(I) metal center.²⁴

Crystallographic Structure

To probe the structural properties of the iridium donor-acceptor complexes, the structure of $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py})_2](\text{Ph}_4\text{B})_2$ was determined using x-ray crystallographic structure techniques. Results from this study indicate that this complex possesses structural properties similar to those seen in a number of related iridium and rhodium pyrazolate bridge dimers.^{19,18,22,25} An ORTEP drawing of this compound with atomic numbering is shown in figure 2.13; selected bond distances and angles are summarized in table 2.4.

The complex consists of two d^8 monomer fragments held in a face-to-face, A-frame configuration by a pair of 3,5-dimethylpyrazole bridging ligands. These ligands are nearly perpendicular to each other in the complex ($\theta = 94.2^\circ$) and deviate only slightly from a planar geometry. The ND1A, ND1B, CD1A, CD1B, CD1C, CD1D, and CD1E atoms of the first pyrazole ring are displaced from the mean plane passing through them by 0.0, 0.0, 0.01, 0.03, 0.02, -0.02, and -0.03 Å; the ND2A, ND2B, CD2A, CD2B, CD2C, CD2D, CD2E atoms deviate from the plane passing through their pyrazolate ring by 0.0, -0.1, -0.02, 0.0, -0.04, -0.04, and -0.03 Å. The torsional angles summarized in table 2.5 indicate that the two iridium atoms and four pyrazole nitrogen atoms define a nearly perfect boat conformation. Interestingly, the two pairs of Ir-N-N angles in the boat differ by approximately 5° and are related by the molecule's C_2 axis. These minor deviations may reflect the different steric requirements of the complex's terminal CO and phosphine ligands. The metal-metal separation of 3.219(1) Å found in this complex is intermediate between those seen in the structures of $\text{Ir}_2(\text{Pz})_2(\text{CO})_2(\text{Ph}_3)_2$ and $\text{Ir}_2(\text{Pz})_2(\text{CO})_2(\text{Ph}_3)_2(\text{C}_6\text{H}_6)$ and is indicative of a

Figure 2.13: ORTEP drawing of $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py})_2](\text{Ph}_4\text{B})_2$.

Table 2.4 Selected Distances and Angles**Iridium Coordination Sphere**

	Distance(Å)		Angle(°)
IR1 -IR2	3.219(1)	ND1A-IR1	-ND2A 83.0(4)
IR1 -C1	1.759(13)	C1 -IR1	-P1 90.1(4)
IR2 -C2	1.648(13)	ND2A-IR1	-C1 91.0(5)
IR1 -P1	2.217(3)	P1 -IR1	-ND1A 96.3(3)
IR2 -P2	2.216(3)	C1 -IR1	-ND1A 172.6(5)
IR2 -ND1B	2.066(9)	P1 -IR1	-ND2A 174.4(3)
IR1 -ND1A	2.045(9)	ND1B-IR2	-ND2B 83.2(3)
IR2 -ND2B	2.061(9)	C2 -IR2	-P2 95.1(5)
IR1 -ND2A	2.101(9)	ND1B-IR2	-C2 87.9(5)
		P2 -IR2	-ND2B 94.1(3)
		C2 -IR2	-ND2B 170.4(5)
		P2 -IR2	-ND1B 174.3(3)
		IR1 -ND2A-ND2B	119.2(7)
		IR1 -ND1A-ND1B	114.2(7)
		IR2 -ND1B-ND1A	119.5(7)
		ND2A-ND2B-IR2	114.2(7)

CO Ligands

	Distance(Å)		Angle(°)
C1 -O1	1.201(16)	O2 -C2 -IR2	179.1(12)
C2 -O2	1.260(17)	O1 -C1 -IR1	174.0(11)

Iridium to Pyridinium Distances**Distance(Å)**

IR1 -NP1	5.838(10)
IR2 -NP1	9.003(10)
IR2 -NP2	5.841(10)
IR1 -NP2	8.971(10)

82
Phosphine Ligands

Distance(Å)			Angle(°)		
P1	-OA1	1.635(8)	IR1	-P1	-OA1
P1	-CB1A	1.812(13)	IR1	-P1	-CB1A
P1	-CB2A	1.809(11)	IR1	-P1	-CB2A
OA1	-CA1	1.478(16)	CB1A-P1	-CB2A	101.4(6)
CA1	-CB1	1.49(2)	CB1A-P1	-OA1	100.3(5)
CB1	-NP1	1.482(18)	CB2A-P1	-OA1	99.2(5)
P2	-OA2	1.639(8)	CB2A-P1	-CB1A	101.4(6)
P2	-CB3A	1.803(12)	P1	-OA1	-CA1
P2	-CB4A	1.795(12)	OA1	-CA1	-CB1
OA2	-CA2	1.454(14)	CA1	-CB1	-NP1
CA2	-CB2	1.557(17)	IR2	-P2	-OA2
CB2	-NP2	1.474(16)	IR2	-P2	-CB3A
			IR2	-P2	-CB4A
			CB3A-P2	-CB4A	101.6(5)
			CB3A-P2	-OA2	101.0(5)
			CB4A-P2	-OA2	99.1(5)
			CB4A-P2	-CB3A	101.6(5)
			P2	-OA2	-CA2
			OA2	-CA2	-CB2
			CA2	-CB2	-NP2
					111.5(10)

Pyrazole Bridging Ligands

Distance(Å)			Angle(°)		
ND1A-ND1B	1.359(13)		CD1A-ND1A-IR1	139.6(8)	
ND1A-CD1A	1.365(15)		CD1A-ND1A-ND1B	105.7(9)	
ND1B-CD1B	1.337(16)		CD1B-ND1B-ND1A	109.8(9)	
CD1A-CD1C	1.360(18)		CD1B-ND1B-IR2	130.7(8)	
CD1A-CD1D	1.49(2)		CD1C-CD1A-ND1A	110.7(11)	
CD1B-CD1C	1.39(2)		CD1D-CD1A-ND1A	118.9(11)	
CD1B-CD1E	1.48(2)		CD1D-CD1A-CD1C	130.3(12)	
ND2A-ND2B	1.345(13)		CD1C-CD1B-ND1B	108.6(11)	
ND2A-CD2A	1.340(16)		CD1E-CD1B-ND1B	121.2(12)	
ND2B-CD2B	1.347(15)		CD1E-CD1B-CD1C	130.0(12)	
CD2A-CD2C	1.39(2)		CD1B-CD1C-CD1A	105.1(12)	
CD2A-CD2D	1.49(2)		CD2A-ND2A-ND2B	110.8(9)	
CD2B-CD2C	1.34(2)		CD2B-ND2B-IR2	139.3(8)	
CD2B-CD2E	1.52(2)		CD2B-ND2B-ND2A	105.6(9)	
			CD2C-CD2A-ND2A	106.6(11)	
			CD2D-CD2A-ND2A	123.9(12)	
			CD2D-CD2A-CD2C	129.4(13)	
			CD2C-CD2B-ND2B	111.1(11)	
			CD2E-CD2B-ND2B	118.6(11)	
			CD2E-CD2B-CD2C	130.4(12)	
			CD2B-CD2C-CD2A	105.9(12)	

Table 2.5 Selected Torsional Angles

Atoms	Angle (°)
Ir1-P1-OA1-CA1	-22.03
P1-OA1-CA1-CB1	-180.74
OA1-CA1-CB1-NP1	-285.02
Ir2-P2-OA2-CA2	-36.19
P2-OA2-CA2-CB2	185.65
OA2-CA2-CB2-NP	272.19
Ir1-ND1A-ND1B-Ir	25.76
Ir1-ND2A-ND2B-Ir	25.61
ND1A-ND1B-Ir2-ND2B	-68.88
ND2B-ND2A-Ir1-ND1A	-68.45
ND2A-ND2B-Ir2-ND1B	58.25
ND1B-ND1A-Ir1-ND2A	58.18

ground state metal-metal interaction similar to that described earlier for a number of d⁸-d⁸ metal dimers.^{26,19,6} Notably, the terminal phosphinite and carbon monoxide ligands adopt a trans configuration with respect to the compound's metal-metal axis, which is consistent with the NMR spectroscopic data discussed in the previous section.

The coordination environment around each of the two iridium atoms in $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py})_2](\text{Ph}_4\text{B})_2$ is approximately square planar. The bond angles between adjacent ligands in each of the square planes are close to 90° with the N-Ir-N angles consistently smaller than the other L-P-L angles. Both of the d⁸ monomer fragments deviate from a rigorous planar geometry. The displacements of the Ir1, ND1A, ND2A, C1, P1 and Ir2, ND1B, ND2B, C2, P2 atoms from the mean planes passing through them are -0.015, -0.076, 0.095, -0.087, 0.083 and 0.017, -0.082, 0.061, 0.072, -0.068 Å, respectively. The Ir1-C1 and Ir2-C2 bond lengths differ by approximately 0.1 Å. This difference can be attributed to systematic errors in correcting the diffraction intensities for iridium absorption effects based on two observations made during the structure refinement process. Least squares refinements were carried out on two different data sets. One was corrected for heavy atom absorption, while a second data set was left in its uncorrected form. With the exception of the Ir1-C1 and Ir2-C2 bonds, structures refined from both data sets were nearly identical. It was found that the disparity in the Ir-CO bond lengths was larger in structures refined from uncorrected diffraction data. Secondly, structures refined using only high angle reflections had Ir-CO bond lengths that were the same within their estimated standard deviations. Because low angle reflections are more sensitive to errors incurred from heavy atom absorption, this result further substantiates that the 0.1 Å difference in the Ir-CO bond lengths is due to Ir x-ray absorption effects.

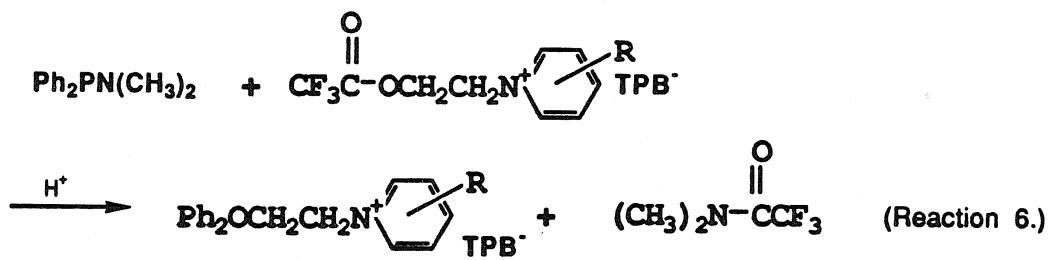
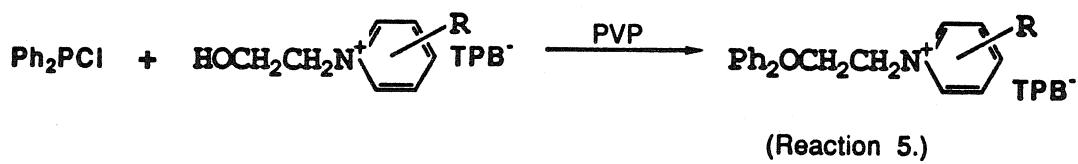
The bond lengths and angles for comparable substituents on each of the phosphinite ligands in this complex are the same within their estimated standard

deviations. In addition, the torsional angles along the ligands' alkoxy substituents are similar indicating that the molecules possess implicit C_2 symmetry in the solid state. Both ligands adopt a rotational conformation about the Ir-P bond which avoids less favorable steric interactions between the phosphine phenyl groups and the bridging pyrazole ligands. While this solid state conformation represents a lower energy configuration of the Ir-P rotational coordinate, other conformations are most likely accessible in fluid solution (vida infra). The Ir-P-O-C and P-O-C-C torsional angles in the ligand alkoxy groups are substantially less than 180° and leave the three atom bridging group linking the pyridinium cation to the metal complex partially extended. This particular solid state conformation occurs, most likely, as a result of crystal packing forces. The 5.9 Å through space distance between the two redox partners is intermediate in value between that for a fully extended chain (6.9 Å) and for their Van der Waals contact distance.

Discussion

In the previous sections a detailed description was given of the preparation and characterization of the d^8-d^8 intramolecular redox molecules, which will form the focus of the subsequent chapters of this thesis. These results will now be examined with regards to: 1) the scope of the synthetic methodologies developed toward preparing a wide variety of donor-acceptor molecules. 2) Structural relationships amongst these complexes and related d^8-d^8 A-frame complexes. 3) The conformational properties of the redox ligands and the range of intramolecular electron-transfer distances available in these complexes.

Synthetic Methodology: A long term goal of this research program is to design, synthesize, and study intramolecular electron-transfer systems to understand kinetic



factors such as reaction exoergicity, donor-acceptor separation and orientation, and solvent dynamical effects in electron-transfer reactions. Central to the pursuance of this goal is the development of synthetic methodologies that are flexible enough to allow the redox potentials of the donor and acceptor, the electronic properties of the bridging group, and the donor-acceptor separation to be readily varied within a series of redox complexes. The approach to forming a covalent linkage between an electron donor and acceptor presented in this study possesses two important features for developing a range of different donor-acceptor systems. In contrast to some recently reported excited state donor-acceptor systems based on porphyrins^{27,2b} and bipyridyl transition metal complexes,²⁸ the redox active phosphine approach outlined in this study is not restricted to a particular inorganic complex. In principle, redox phosphinite ligands could be used to probe excited state ET reactions in any chromophore containing phosphine ligands. Studies spanning a range of different inorganic chromophores will be important in understanding variations in electron transfer rates as a function of the nature of the excited donor. In addition, the synthetic methodology developed here may prove to be general enough to allow for detailed studies of the medium effects that control excited state ET processes. The range of electronically different bridging groups, which could be incorporated into a series of redox active ligands, should be limited only by the availability of a corresponding haloalcohol. Research involving the preparation and study of new ligands and complexes is currently being pursued in our laboratories.

Future studies designed to explore the driving force dependence of electron transfer in the $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py-R})_2]$ systems will require a series of complexes spanning a range of reaction driving forces. The reaction exoergicity in these complexes can, in principle, be controlled by varying substituents on the pyridinium aromatic ring. The viability of this approach has been demonstrated in bimolecular driving force studies.^{5,6} While the synthetic methodologies developed in

this chapter can be used to prepare ligands containing several different pyridinium cations, there were some notable exceptions, which warrant further discussion. The alcoholysis reaction of N,N-dimethyl-P,P-diphenylphosphine proved useful in synthesizing a number of redox ligands with higher electrochemical reduction potentials, but it could not be extended to the preparation of ligands containing more activated pyridinium cations. Based on the current literature, the difficulties surrounding these reactions were attributed to irreversible ring opening reactions between dimethylamine and the more reactive cyano and carbomethoxy pyridinium cations.¹⁶ Several different R₂NH leaving groups were assayed with regard to their reactivity toward 4-cyano-1-methylpyridinium, but none were found to be inert enough to avoid pyridinium ring opening as a rapid side reaction. Thus, reactions that avoid secondary amines as a reaction side product must be developed to prepare ligands with lower electrochemical reduction potentials.

Two alternative approaches to preparing diphenylphosphine esters, which would circumvent this problem, are shown in figure 2.14. Reaction 5 is based on the facile alcoholysis reactions of phosphinous acid chlorides.¹⁵ In this particular case, polyvinylpyridine (PVP) acts as a proton sponge for scavenging HCl liberated during the reaction. Features of this approach, which make it attractive, are its mild reaction conditions and the ease with which the products can be isolated from PVP-HCl. Preliminary results along these lines have shown promise.²⁹ Reaction 6 is based on some recent work published by Batyeva³⁰ and coworkers and represents an extension of Nifant'ev's research on acid catalyzed reactions of phosphorous III amides.³¹ Attractive features of this approach are that it could be carried out under mild reaction conditions and that the dimethylamine liberated during the reaction is sequestered as its corresponding acetamide. Either of these approaches could serve as viable routes to

Figure 2.14: Alternative reactions for preparing high driving force redox ligands.

ligands with redox potentials outside the range available with the current compounds.

Structural Properties: An understanding of intramolecular electron transfer in the donor-acceptor systems prepared here will be developed by making comparisons between the photophysical properties of the redox active complexes and their corresponding "model compounds." An underlying assumption of this approach is that the complexes represent a structurally and electronically homologous series of compounds. The electronic properties of the redox complexes and model compounds are investigated in detail in chapter three. The structural similarity between these molecules follows from the NMR and IR spectroscopic results presented in this chapter. These data clearly establish that all of the d⁸-d⁸ complexes contain two terminal carbon monoxide and phosphinite ligands arranged in a trans configuration with respect to the metal-metal axis.

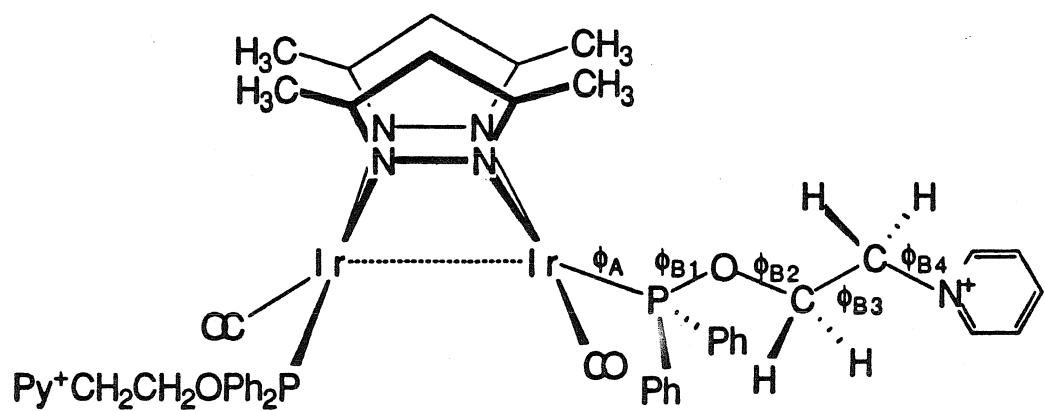
The crystal structure of $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py})_2](\text{Ph}_4\text{B})_2$ shows that the complexes are structurally related to previously reported d⁸-d⁸ A-frame complexes.³⁸ As seen in table 2.16 the metal-metal separation in this complex is similar to those reported earlier for a number of analogous metal dimers. Previous studies have shown that the unique electronic and photophysical properties of d⁸-d⁸ A-frame metal dimers arise from the pseudoaxial interactions between their Ir(I) metal centers.³⁹ These data (table 2.16) suggest that the photophysical models developed for $[\text{Ir}_2(\text{Pz-R})_2(\text{COD})_2]^6$ and $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_2^{32}$ may serve as reference points for understanding the photophysics of the donor-acceptor complexes. This concept will be explored to a greater extent in chapter 3.

ET Distance: During the past decade detailed theoretical and experimental studies concerning the electronic factors that control electron-transfer reactions have

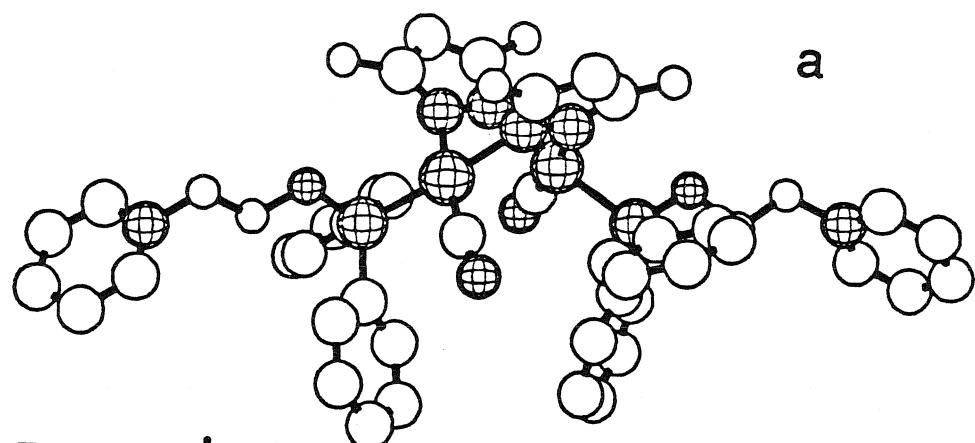
Table 2.6: Metal-Metal Bond Distances for Selected A-Frame Complexes

Compound	d (Å)
[Ir ₂ (Pz [*]) ₂ (CO) ₂ (Ph ₂ POCH ₂ CH ₂ -Py) ₂](Ph ₄ B) ₂	3.219(1)
^a Ir ₂ (Pz) ₂ (CO) ₂ (Ph ₃ P) ₂	3.163(2)
^b Ir ₂ (Pz) ₂ (COD) ₂	3.216(1)
^b Ir ₂ (3,4,5-Me ₃) ₂ (COD) ₂	3.096(1)

a. See reference 19.

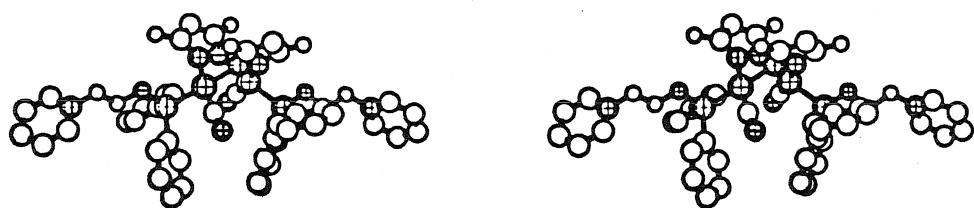

b. See reference 6 and references cited there.

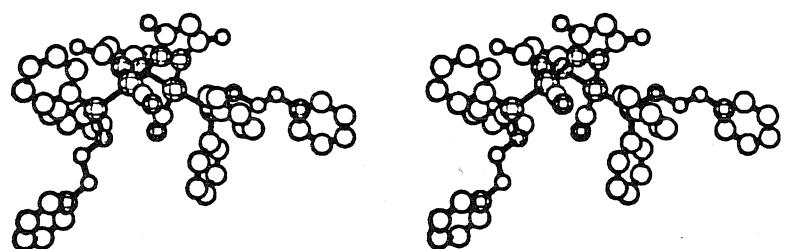
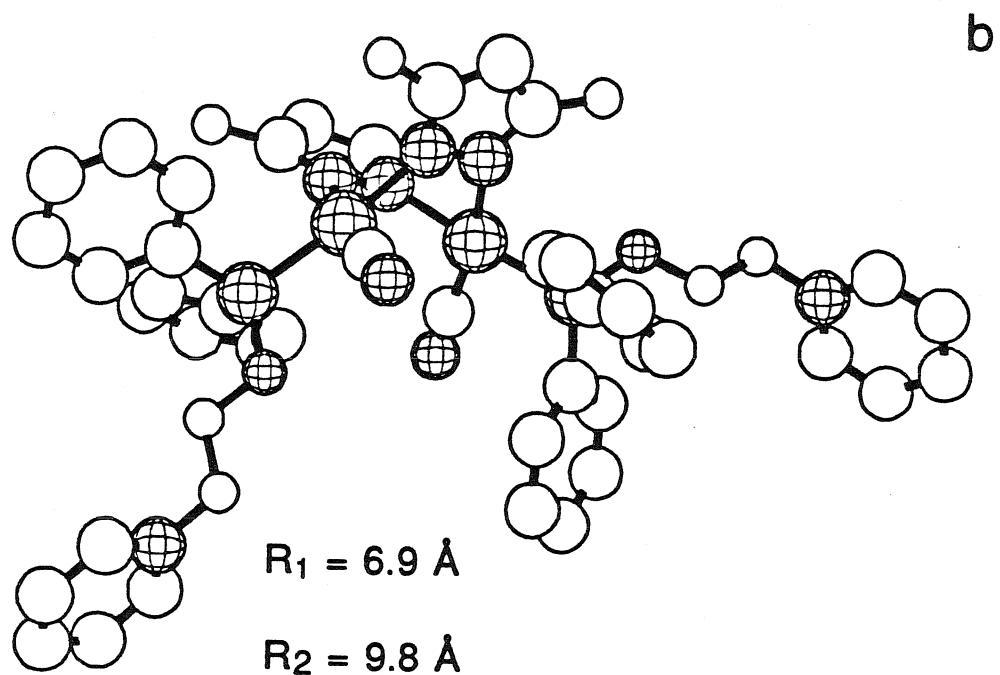
identified donor-acceptor separation and orientation as two primary ET variables. Hopfield has proposed an approximately exponential distance dependence for ET reactions as a consequence of long range overlap between the "wavefunction tails" for the transferring electron.³³ Explicit models directed toward understanding the roles played by bridging groups in donor-acceptor systems have more recently been developed by Beratan and Onuchic within this general framework.³⁴ Concurrent with developing theories, a number of fixed distance, fixed orientation donor-acceptor systems have appeared in the literature for studying medium effects in electron-transfer reactions. Such systems have employed a variety of bridging groups, ranging from synthetically prepared organic spacers to genetically engineered metalloproteins.^{4a} Central to this area of electron-transfer research is understanding what constitutes the "electron-transfer medium" and how this medium facilitates the ET process. A detailed understanding of these effects will develop from the design and study of systems that carefully vary molecular ET parameters in a systematic fashion.

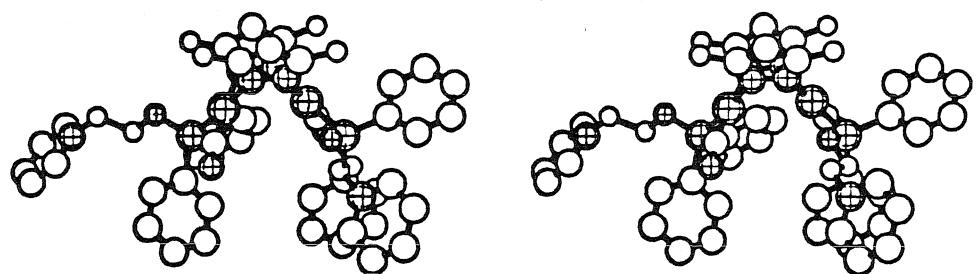
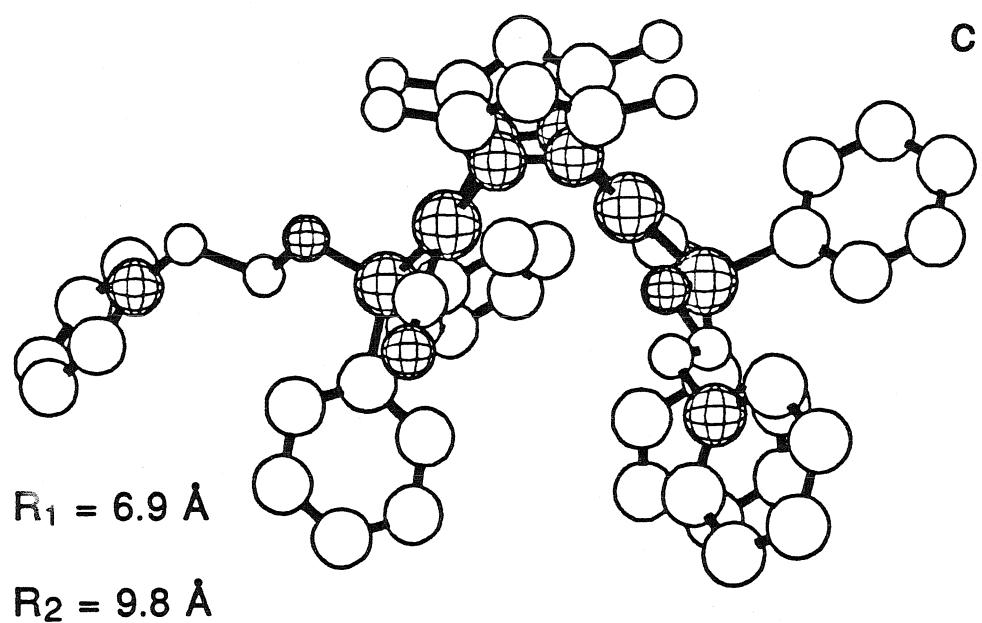

While the donor-acceptor systems reported in this chapter lack the structural rigidity necessary for studying distance and orientation effects in electron transfer, the three atom linker in these d⁸-d⁸ complexes should restrict the distances and orientations for ET to a more limited range of values than those available in bimolecular reactions. A qualitative understanding of this range of values can be developed by using NMR spectra of $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_2]$ in conjunction with results from a molecular graphics and mechanics analysis of $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{Py})_2](\text{Ph}_4\text{B})_2$.

A consideration of CPK models of $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{Py})_2](\text{Ph}_4\text{B})_2$ shows that there are essentially two types of internal rotations that alter the distance and orientation between the iridium atoms and pyridinium aromatic

Figure 2.15: Structure showing the torsional angles pertinent to variations in the electron-transfer distance in $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py})_2](\text{Ph}_4\text{B})_2$.

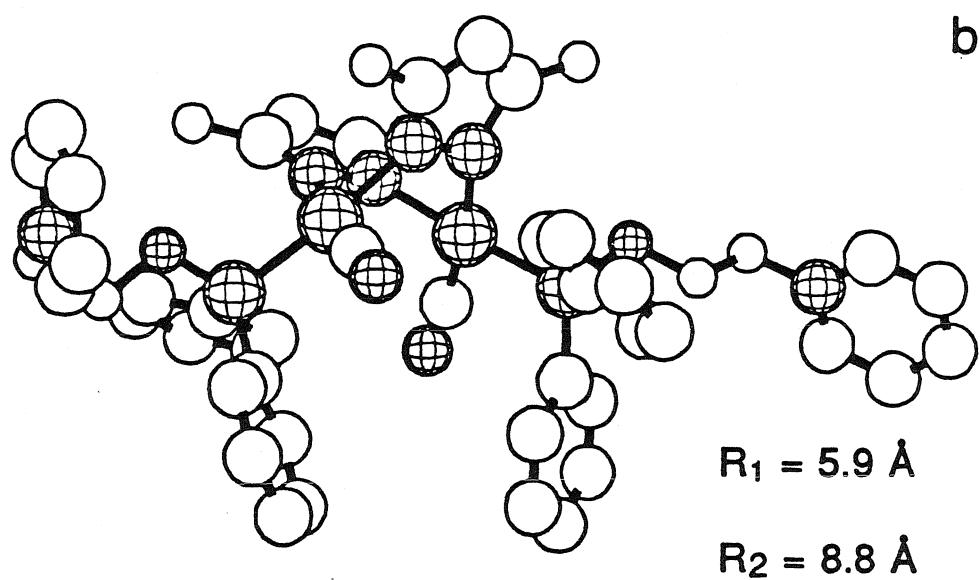
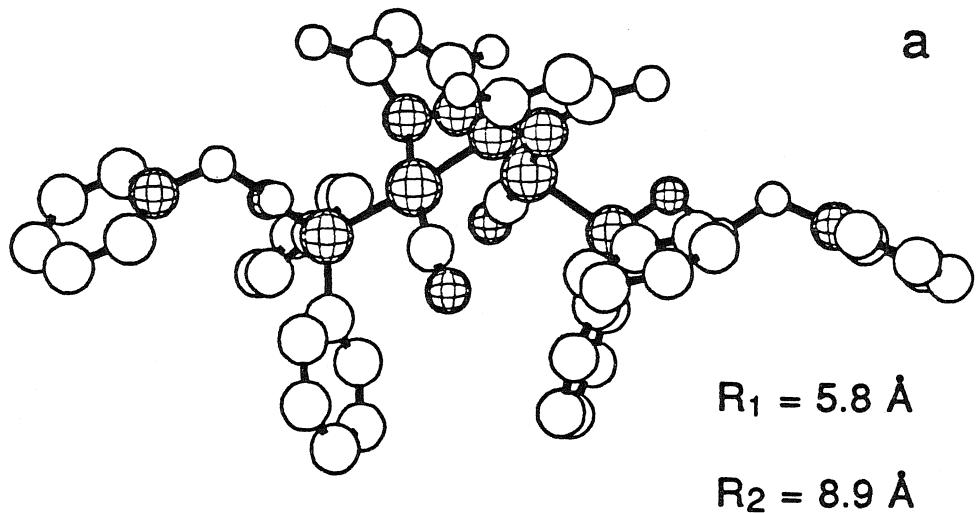


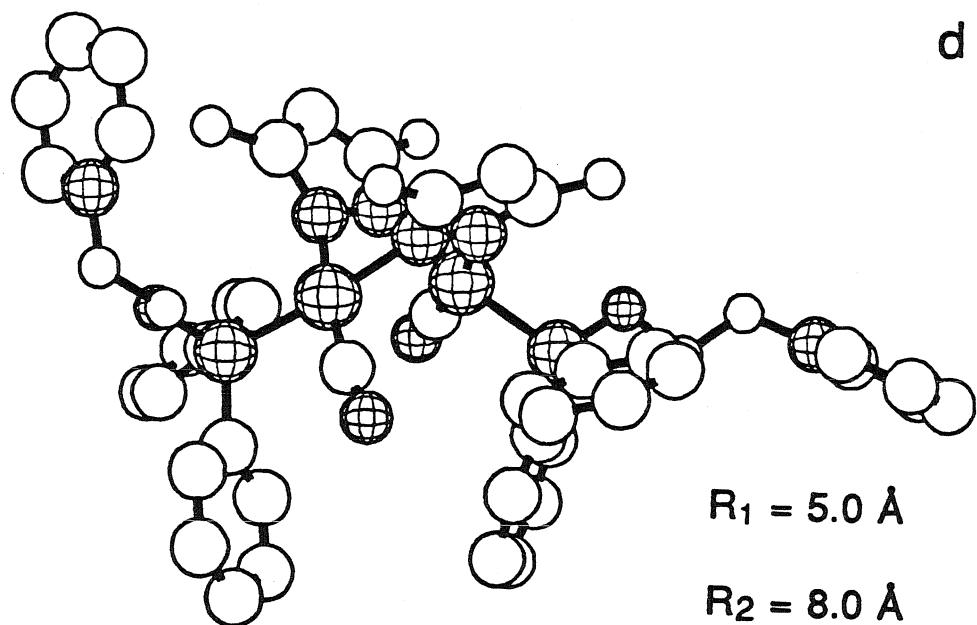
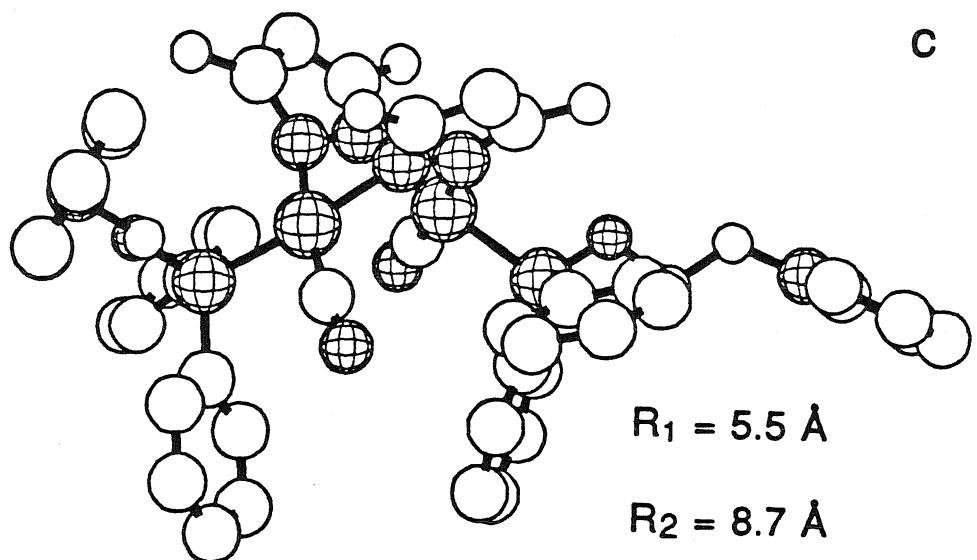


Figure 2.16 a, b, and c: Structures showing three different phosphinite ligand rotational conformations, which are related by a 120° rotation about the Ir-P bond (ϕ_A). R_1 and R_2 are the through space distances between the lefthand pyridinium nitrogen and its proximal and distal iridium atoms respectively. Cross hatched spheres represent the heteroatoms. Sphere sizes were chosen for the purpose of clarity and should not be interpreted as thermal ellipsoids. In each case $\phi_B1 = \phi_B2 = \phi_B3 = 180^\circ$; $\phi_B4 = 90^\circ$.

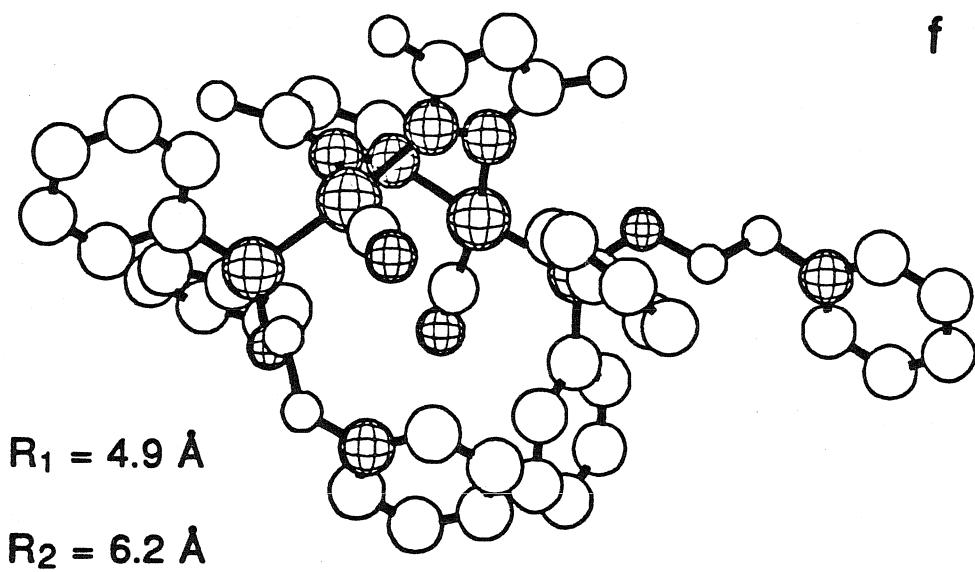
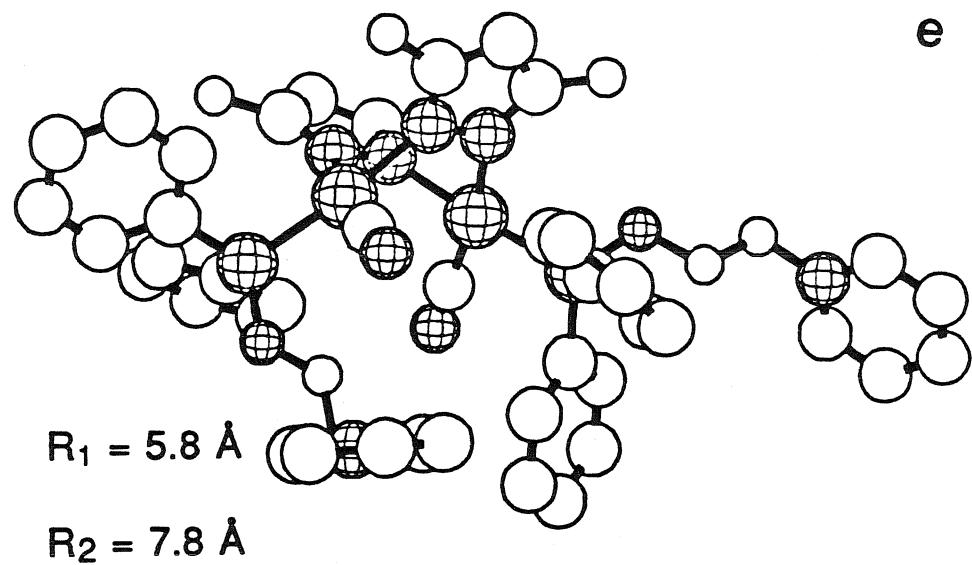
$R_1 = 6.9 \text{ \AA}$

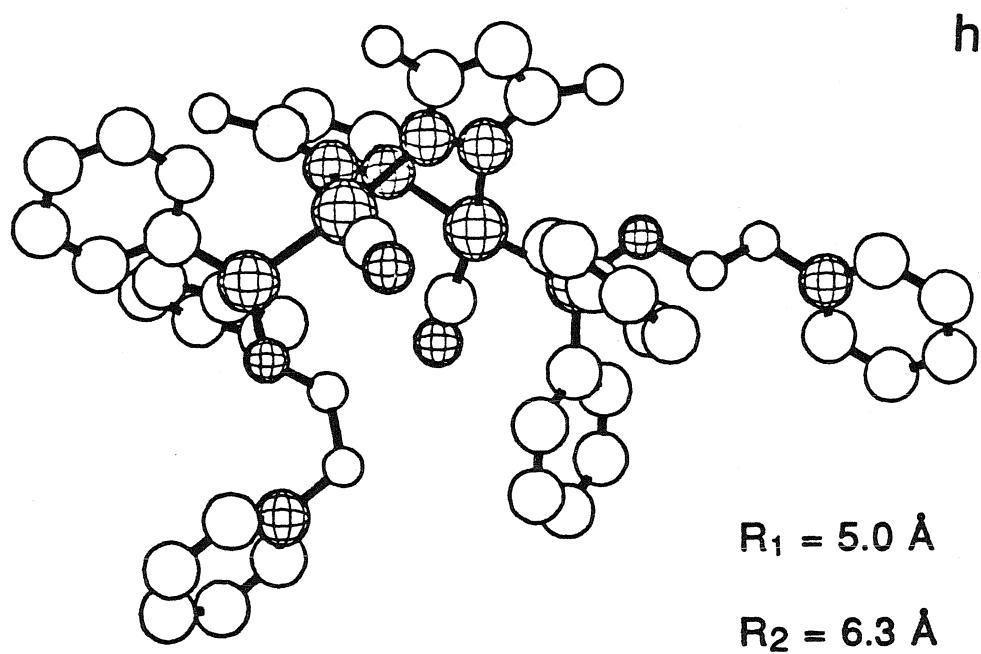
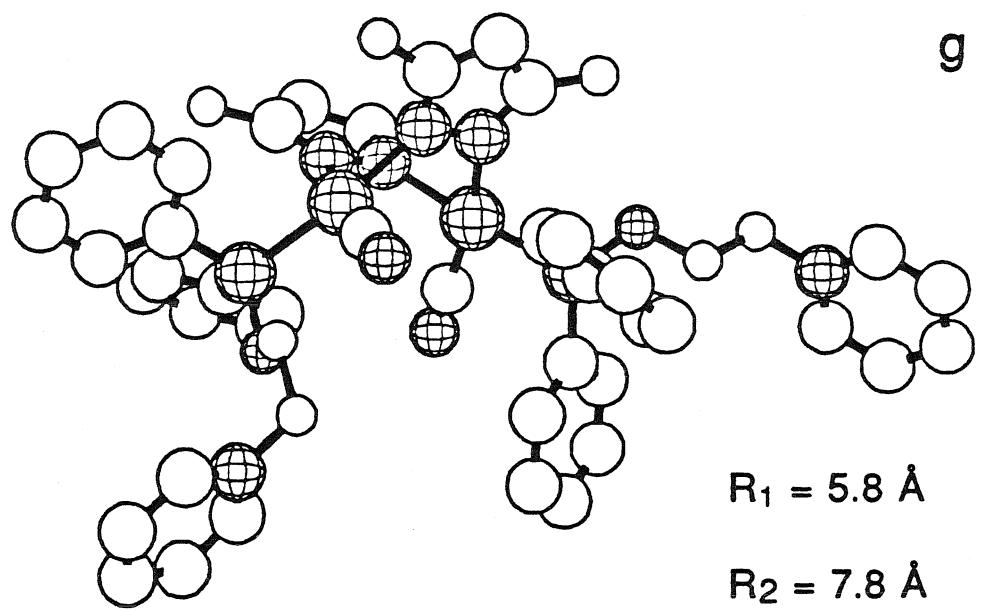
$R_2 = 9.8 \text{ \AA}$

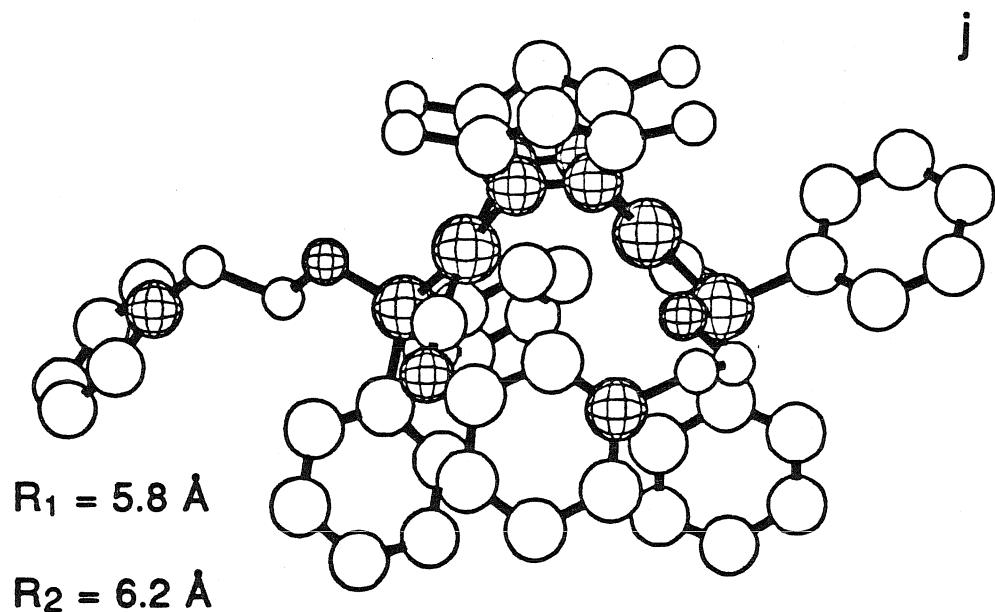
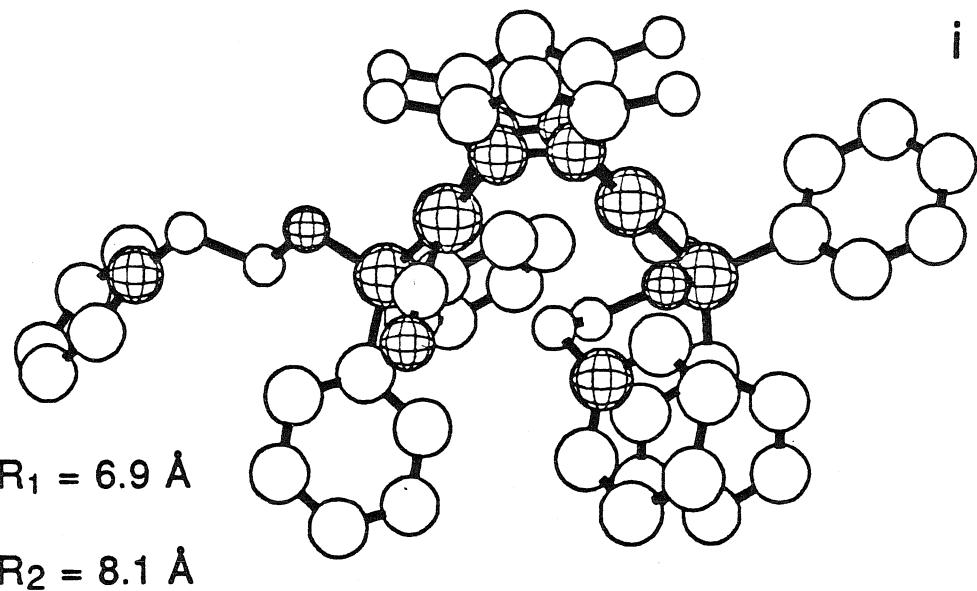


ring (figure 2.15). Rotations about either of its Ir-P bonds (ϕ_A) drastically affects the relative orientation of the two redox partners. As seen in figures 2.16 a,b,c this rotation essentially allows the pyridinium cation to access different regions of the iridium dimer chromophore. Conformation I (figure 2.16a) probes distances and orientations over one of the square planar ends of the molecule, while conformations II (figure 2.16b) and III (figure 2.16c) access regions below the terminal ligands and approximately perpendicular to the pyrazole ligands, respectively. Within each of these three Ir-P conformers, rotations about bonds along the linker backbone (ϕ_{B1} , ϕ_{B2} , ϕ_{B3} , ϕ_{B4}) change the donor-acceptor distance over a region of the iridium dimer dictated by ϕ_A . Rigid geometry conformational mapping calculations indicate that the through space distance separating the two redox partners varies between limiting values of 6.9 to 5.0 Å as a function of ϕ_{B1} , ϕ_{B2} , ϕ_{B3} , and ϕ_{B4} . Examples of the different ligand geometries found from this analysis are shown in figures 2.17a-k. In some configurations, the through space separation³⁵ between each of the complex's iridium metal centers and pyridinium ring are almost identical, while in other conformations these distances are very different. Therefore, distances from a pyridinium nitrogen atom to both of the iridium metal centers are reported with each structure.

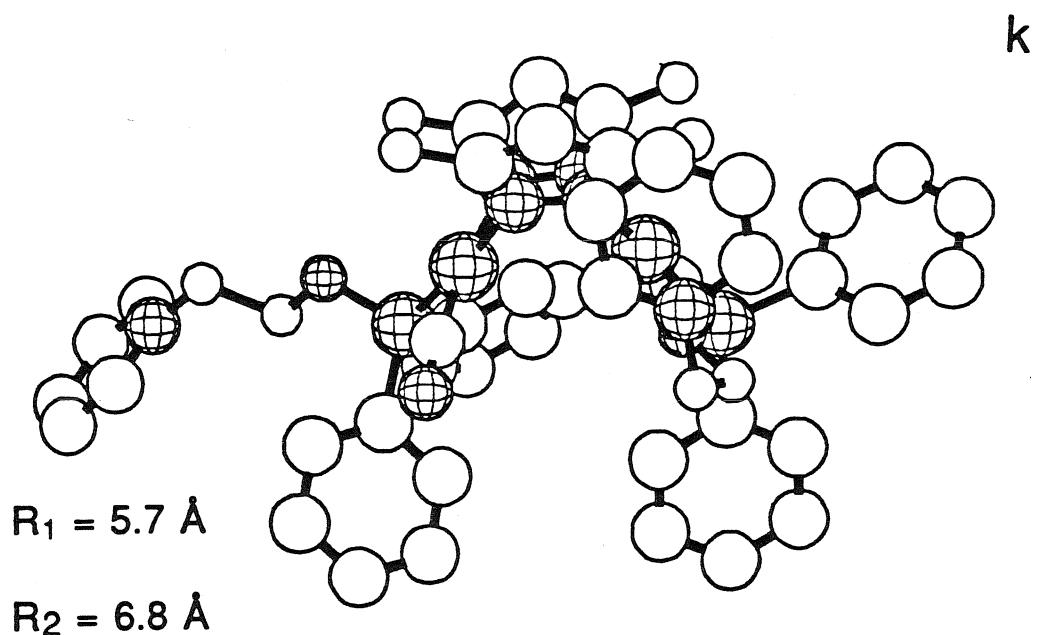


This analysis indicates that there are a considerable number of orientations and donor-acceptor separations available to the $[\text{Ir}_2(\text{Pz}^+)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py-R})_2]$ redox systems. The true range of conformers present in solutions of these complexes will depend on the activity of each of their internal rotational degrees of freedom. C^{13} NMR T_1 measurements have indicated that internal rotations in aliphatic hydrocarbons produce a distribution of solution conformers that exchange on a picosecond time scale. At the present time, the activity of the spacer group rotations can be inferred from these results. Further studies will be necessary to characterize these degrees of freedom and their effect on photoinduced electron transfer processes in our compounds. Careful

consideration of the proton NMR spectrum of $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_2]$ indicates that motion about the Ir-P bonds in the $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py-R})_2]$ complexes must also be important in determining their range of solution conformations. If the triphenylphosphine phenyl groups in $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_2]$ interconvert via intramolecular rotations, NMR spectra of this complex should show at most three groups of multiplets for its ligand aromatic protons. As seen in figure 2.18 the ortho, meta and para protons in this complex appear a complex multiplet at $\delta = 7.8$ ppm (ortho) and a singlet at $\delta = 7.0$ ppm (meta+para), indicating that the ligand phenyl groups exchange magnetic environments on an NMR timescale. Based on Tolman cone angle arguments,³⁶ rotations about ϕ_A in $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py})_2]$ should be hindered mainly by its phosphinite phenyl substituents. Because this rotational degree of freedom is active in $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_2]$, it should be active in the donor-acceptor complexes as well.



In a bimolecular electron-transfer reaction the value of k_{obs} is controlled by the relative rates of electron transfer and molecular diffusion. Under steady-state conditions, "reactive pairs" of redox partners are formed via diffusional processes and are subsequently transformed into products³⁷. If $k_{\text{ET}} \gg k_{\text{diff}}$, as is the case in many excited state ET reactions, then the observed reaction rate becomes diffusion limited. In a "fixed site" donor-acceptor system the redox partners are held at a constant distance and orientation by a rigid covalent linkage. Here, k_{obs} is determined solely by factors that govern k_{et} , because the reactants have been synthetically preassembled into reactant pairs. The structural analysis presented above suggests that electron transfer in these $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py-R})_2]$ complexes may occur under the influence of a pairwise diffusional process not found in either bimolecular reactions or in fixed site ET systems. The redox partners in these complexes are assembled into



Figure 2.17 a-d: Structures showing variations in the orientation and distance between the pyridinium cation and iridium dimer as a function of ϕ_{B1} , ϕ_{B2} , ϕ_{B3} , and ϕ_{B4} for ligand conformation I (figure 2.15a). R_1 and R_2 are the through space distance between the lefthand pyridinium nitrogen and its proximal and distal iridium atoms respectively.


Figure 2.17 e-h: Structures showing variations in the orientation and distance between the pyridinium cation and iridium dimer as a function of ϕ_{B1} , ϕ_{B2} , ϕ_{B3} , and ϕ_{B4} for ligand conformation II (figure 2.15b). R_1 and R_2 are the through space distance between the lefthand pyridinium nitrogen and its proximal and distal iridium atoms respectively.

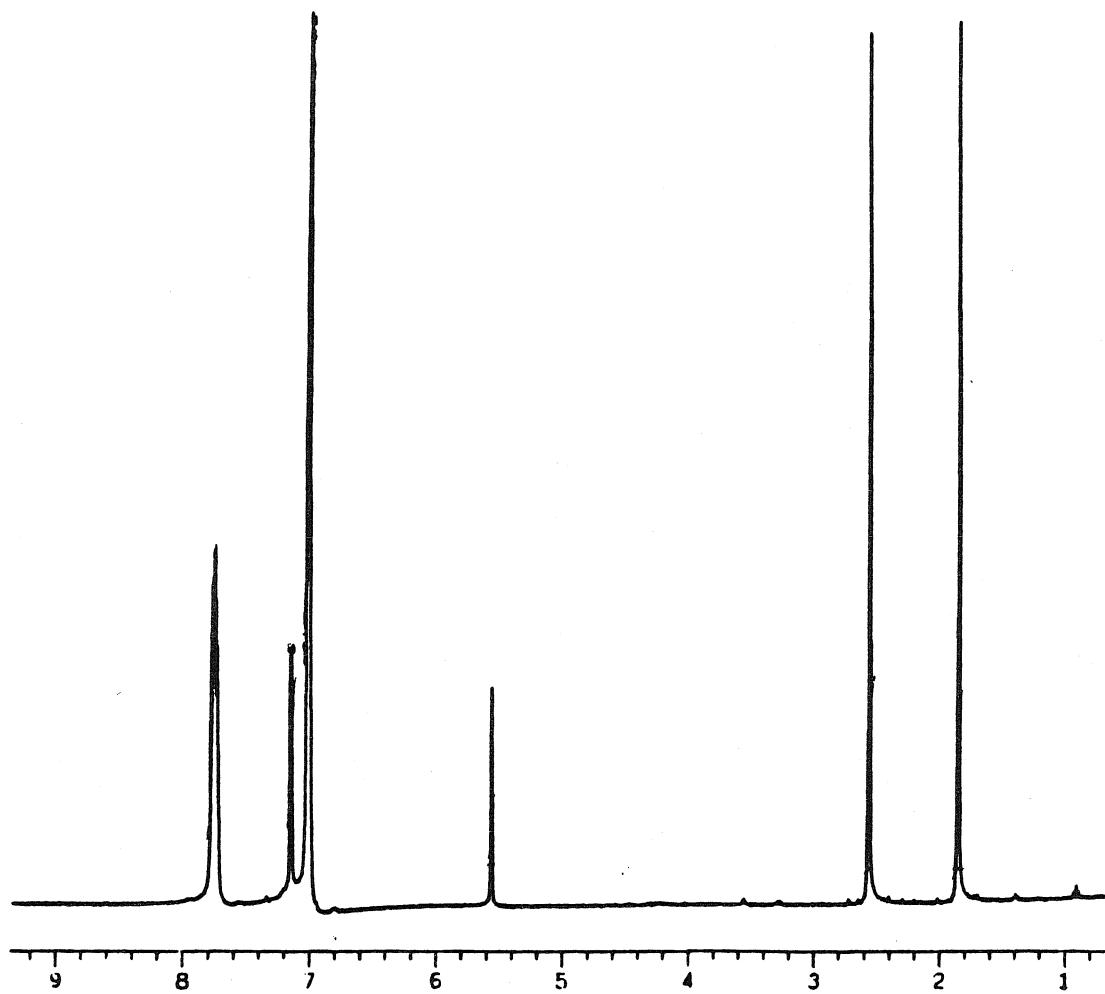

Figure 2.17 i-k: Structures showing variations in the orientation and distance between the pyridinium cation and iridium dimer as a function of ϕ_{B1} , ϕ_{B2} , ϕ_{B3} , and ϕ_{B4} for ligand conformation III (figure 2.15c). R_1 and R_2 are the through space distance between the righthand pyridinium nitrogen and its proximal and distal iridium atoms respectively.

Figure 2.18: ^1H NMR spectrum of $[\text{Ir}_2(\text{Pz}^+)_2(\text{CO})_2(\text{Ph}_3\text{P})_2]$ in d6-benzene.

111

reactant pairs as in a fixed site compound, but are free to diffuse within a restricted region of solution defined by the conformational properties of the phosphinite ligands. The effect that intramolecular motion has on the observed rate of electron transfer in these complexes is at present poorly understood and represents an important area for future research. However, as we will see in chapters 3 and 4 the restrictions placed on bimolecular diffusion in these systems will be sufficient for studying excited state ET reactions with rate constants well above k_{diff} .

References

- 1a. Marcus, R. A.; Sutin, N., *Biochim. Biophys. Acta*, **1985**, *811*, 265-322.
- b. Guarr, T.; McLendon, G., *Coord. Chem. Rev.*, **1985**, *68*, 1-52.
- c. Sutin, N., *Prog. Inorg. Chem.*, **1983**, *30*, 441-498.
- d. Newton, M. D.; Sutin, N., *Ann. Rev. Phys. Chem.*, **1984**, *35*, 437-480.
- e. Meyer, T. J., *Prog. Inorg. Chem.*, **1983**, *30*, 389-440.
- f. Sutin, N., *Acc. Chem. Res.*, **1982**, *15*, 275-282.
- 2a. Gould, I. R.; Ege, D.; Mattes, S. L.; Farid, S., *J. Amer. Chem. Soc.*, **1987**, *109*, 3794-3796.
- b. Wasielewski, M. R.; Niemczyk, M. P.; Svec, W. A.; Pewitt, E. B., *J. Amer. Chem. Soc.*, **1985**, *107*, 1080-1082.
- c. Closs, G. L.; Miller, J. R., *Science*, **1988**, *240*, 440-447.
- d. Bock, C. R.; Connor, J. A.; Gertierrez, A. R.; Meyer, T. J.; Whitten, D. G.; Sullivan, B. P.; Nagel, J. K., *J. Amer. Chem. Soc.*, **1979**, *101*, 4815-?.
- 3a. Closs, G. L.; Calcaterra, L. T.; Green, N. J.; Penfield, K. W.; Miller, J. R., *J. Phys. Chem.*, **1986**, *90*, 3673-3683.

- b. Oevering, H.; Paddon-Row, M. N.; Heppener, M.; Oliver, A. M.; Cotsaris, E.; Verhoven, J. W.; Hush, N. S., *J. Amer. Chem. Soc.*, **1987**, *109*, 3258-3269.
- 4a. Mayo, S. L.; Ellis, W. R.; Crutchley, R. J.; Gray, H. B., *Science*, **1986**, *233*, 948-952.
- b. Isied, S. S., *Prog. Inorg. Chem.*, **1984**, *32*, 443-?.
5. Marshall, J. L.; Stobart, S. R.; Gray, H. B., *J. Amer. Chem. Soc.*, **1984**, *106*, 3027-3029.
6. Marshall, J. L., Ph.D. Dissertation, California Institute of Technology, 1986.
7. Wiley, R. H.; Hexner, P. E., *Org. Synth.*, **1951**, *31*, 43-44.
- 8a. Ewart, G.; Payne, D. S.; Porte, A. L.; Lane, A. P., *J. Chem. Soc.*, **1962**, 3984-3990.
- b. Noth, H.; Vetter, H. J., *Chem. Ber.*, **1963**, *96*, 1109-1118.
- c. Maier, L., *Helv. Chim. Acta*, **1964**, *47*, 2129-2137.
9. The distillate has a tendency to solidify upon cooling and clog condensers. To avoid this problem, the distillation head and condenser should be wrapped with heating tape and kept warm.
- 10a. Balaban, A. T.; Boulton, A. J., *Org. Synth.*, **3**, 1112-1117.
- b. Balaban, A. T.; Toma, C., *Tetrahedron*, Supplement No. 7, 9-25.
11. Katritzky, A. R.; Bopart, J. B.; Clarament-Elguero, R. M.; Yates, F. S.; Dinculescu, A.; Balaban, A. T.; Chiraleu, F., *J. Chem. Res. (M)*, **1978**, 4783-4797.
12. Bushnell, G. W.; Fjeldsted, D. O.K.; Stobart, S. R.; Zaworotko, M. J.; Knox, S. A. R.; MacPherson, K. A., *Organomet.*, **1985**, *4*, 1107-1114.
13. Biograf III was licensed from Bio-Design Inc., Pasadena, CA.
- 14a. Gelin, B. R.; Karplus, M., *Biochem.*, **1979**, *18*, 1256-1268.
- b. Gelin, B. R.; Karplus, M., *Proc. Nat. Acad. Sci.*, **1975**, *72*, 2002-2006.

- c. Brooks, B.R.; Brucolieri, R. B.; Olafson, B. P.; States, D. J.; Swaminathan, S.; Karplus, M., *J. Comp. Chem.*, 1983, 187-217.
15. Maier, L.; Karsolapoff, G. M., "Organic Phosphorous Compounds", 1972, Wiley-Interscience, New York.
- 16a. Moracci, F. M.; Di Rienzo, B.; Tortorella, S.; Liberatore, F., *Tetrahedron*, 1980, 36, 785-787.
- b. Landquist, *J. Chem. Soc. Perkin I*, 1976, 454-456.
- c. Moracci, F. M.; Liberatore, F.; Tortorella, S.; Di Rienzo, B., *Tetrahedron*, 1979, 35, 809-812.
17. Mavel, G., *Ann. Rev. NMR Spectr.*, 1973, 58, 1-89.
18. Powell, J.; Kuksis, A.; Nyberg, S. C.; Ng, W. W., *Inorg. Chim. Acta*, 1982, 64, L211-L212.
19. Atwood, J. L.; Beveridge, K. A.; Bushnell, G. W.; Dixon, K. R.; Eadie, D. T.; Stobart, S. R.; Zaworotko, M. J., *Inorg. Chem.*, 1984, 23, 4050-4057.
20. Nussbaum, S.; Rettig, S. J.; Storr, A.; Trotter, J., *Can. J. Chem.*, 1985, 63, 692-702.
21. Model compounds have ligands, which are similar to those found in the donor-acceptor complexes, but lack pyridinium electron acceptors.
- 22a. Uson, R.; Oro, L. A.; Ciriano, M. A.; Carmona, D.; Tiripicchio, A.; Camellini, M. T., *J. Organomet. Chem.*, 1982, 224, 69-80.
- b. Uson, R.; Oro, L. A.; Ciriano, M. A.; Pinillos, M. T.; Tiripicchio, A.; Camellini, M. T., *J. Organomet. Chem.*, 1981, 205, 247-257.
23. Banditelli, G.; Bandini, A. L.; Bonati, F.; Minghetti, G., *J. Organomet. Chem.*, 1981, 218, 229-239.
24. Nixon, J. F.; Pidcock, A., *Ann. Rev. NMR Spec.*, 1969, 2, 346-422.

- 25a. Coleman, A. W.; Eadie, D. T.; Stobart, S. R., *J. Amer. Chem. Soc.*, **1982**, *104*, 922-923.
- b. Beveridge, K. A.; Bushnell, G. W.; Stobart, S. R.; Atwood, J. L.; Zaworotko, M. J., *Organomet.*, **1983**, *2*, 1447-1451.
- 26a. Rice, S. F.; Gray, H. B., *J. Amer. Chem. Soc.*, **1981**, *103*, 1593-1596.
- b. Dallinger, R. F.; Miskowski, V. M.; Gray, H. B.; Woodruff, W. H., *J. Amer. Chem. Soc.*, **1981**, *103*, 1595-1596.
- 27a. McMahon, R. J.; Force, R. K.; Patterson, H. H.; Wrighton, M. S., *J. Amer. Chem. Soc.*, **1988**, *110*, 2670-2672.
- b. Gust, D.; Moore, T. A.; Liddell, P. A.; Nemeth, G. A.; Makings, L. R.; Moore, A. L.; Barrett, D.; Pessiki, P. J.; Bensasson, R. V.; Roniger, M.; Chachaty, C; De Schyver, F. C.; Van der Anwerau, M.; Holzwarth, A. R.; Connolly, J. S., *J. Amer. Chem. Soc.*, **1987**, *109*, 846-856.
28. Chen, P.; Westmoreland, T. D.; Danielson, E.; Schanze, K. S.; Anthon, D.; Neveux, P. E.; Meyer, T. J., *Inorg. Chem.*, **1987**, *26*, 1116-1126.
29. Fox, L. S.; Farid, R. S.; Gray, H. B.; *unpublished results*.
- 30a. Batyeva, E. S.; Ofitserov, E. N.; Ivanyuk, N. V.; Pydovik, A. N., *Zh. Obsh. Khim.*, **1976**, *46*, 2282.
- b. Papers from *Zhurnal Obshchey Khimi* are cited with pages numbers from their English translations.
- 31a. Nifant'ev, E. E.; Borisov, E. V., *Zh. Obsh. Khim.*, **1985**, *55*, 1478-1480.
- b. Petrov, K. A.; Nifant'ev, E. E.; Lysenko, T. N.; Evdakov, V. P., *Zh. Obsh. Khim.*, **1961**, *31*, 2214-2217.
- c. Nifant'ev, E. E.; Ivanova, N. L.; Fursenko, I. V., *Zh. Obsh. Khim.*, **1969**, *46*, 2282.
- d. Evdakov, V. P.; Bektov, V. P.; Svergun, V. I., *Zh. Obsh. Khim.*, **1973**, *43*, 51-55.

- e. Evdakov, V. P.; Bektov, V. P.; Bryantsev, B. I., *Zh. Obsh. Khim.*, **1977**, *47*, 1579-1583.
- f. Batyeva, E. S.; Al'fonsov, V. A.; Zamaletdinova, G. U.; Pudivik, A. N., *Zh. Obsh. Khim.*, **1976**, *46*, 2120-2123.
32. Smith, T., *Ph. D. Dissertation, California Institute of Technology*, **1982**.
- 33a. Hopfield, J. J., *Biophys. Journ.*, **1977**, *18*, 311-321.
- b. Redi, M.; Hopfield, J. J., *J. Chem. Phys.*, **1980**, *72*, 6651-6660.
- c. Beratan, D. N.; Hopfield, J. J., *J. Amer. Chem. Soc.*, **1984**, *106*, 1584-1594.
34. Onuchic, J. N.; Beratan, D. N., *J. Amer. Chem. Soc.*, **1987**, *109*, 6771-6778.
35. The through space distance is arbitrarily defined using the iridium metal atoms and pyridinium nitrogen atom.
36. Tolman, C. A., *Chem. Rev.*, **1977**, *77*, 313-348.
37. Marcus, R. A.; Siders, P. J., *J. Phys. Chem.*, **1982**, *86*, 622-630.

Chapter 3
Electronic Spectra
and
Electrochemistry

Introduction

Having prepared and characterized a series of d⁸-d⁸ donor-acceptor complexes, our attention will now turn toward investigating their photophysical properties. As we saw in the previous chapter, one consequence of covalently binding electron acceptors to an iridium dimer chromophore was to restrict the range of available distances and orientations between the metal centers and acceptors. This binding together of redox partners also has some important photophysical implications. In principle the donor-acceptor complexes represent unique molecular electronic systems. They possess an additional charge-separated excited state that arises solely due to interactions between their redox partners. This state can potentially be accessed from the donor (acceptor) localized levels through radiative and nonradiative processes. Depending upon the nature of the interactions between these charge-transfer and donor (acceptor) localized states, certain photophysical properties of the donor-acceptor molecules will be perturbed. For example, if the charge-transfer state is populated via an electron transfer from a donor localized excited state, then the emission quantum yield and lifetime of the donor state should be diminished relative to an appropriate model compound. Previous studies have established that d⁸-d⁸ metal dimers possess low lying singlet and triplet excited states which arise from a (dσ*πσ) electronic configuration. Thus, an important aspect of our studies was to determine how the photophysical properties of these d⁸-d⁸ excited states are perturbed by the presence of a covalently attached electron acceptor. Ir₂(Pz^{*})₂(CO)₂(Ph₂POCH₂CH₃)₂ and Ir₂(Pz^{*})₂(CO)₂(Ph₂POCH₂CH₂-NEt₃⁺)₂ were employed as two model systems for these investigations. In terms of their composition, both compounds are similar to the donor-acceptor complexes. The later compound contains two non-reducible NEt₃⁺ groups to model the effects that positive charges have on the quantum yields and lifetimes of the metal localized (dσ*πσ) excited states.

In the following chapter the electronic and photophysical properties of the donor-acceptor complexes are examined using steady-state absorption and emission

spectroscopy, and electrochemical techniques. Important objectives of this aspect of our research were; 1) to determine, either spectroscopically or through some indirect means, the relative energies of the ($d\sigma^*p\sigma$) and charge-transfer states in these complexes, and 2) to obtain photophysical evidence for excited state electron transfer. Objective number one is clearly important with regard to characterizing the electron transfer reactions in the donor-acceptor complexes as a function of reaction driving force. Cyclic voltammetry and constant potential bulk electrolysis experiments were conducted to determine potentials for the ground state redox processes available in these systems. In the discussion section of this chapter these electrochemical data are used in conjunction with our spectroscopic results to evaluate the energies of the ($d\sigma^*p\sigma$) and charge-transfer excited states in these redox systems. Objective number two was important with regard to some of the time-resolved spectroscopic experiments discussed in chapter 4. In interpreting spectra from these studies, it was essential to know which of the ($d\sigma^*p\sigma$) excited states was involved in electron-transfer reactions. In the past the reactivity of d^8 - d^8 compounds has been exclusively associated with their long lived triplet states. The quantum yield data presented in this chapter represent the first evidence that their shorter lived singlet states are also highly reactive under the appropriate kinetic conditions. In addition, it was important to characterize the spectroscopic properties of the charge-transfer states in these systems. In principle these states should relax ground via both radiative and nonradiative processes. Absorption and emission spectra of the compounds were central to identifying the dominant deactivation pathways available to the charge-transfer states in the complexes.

Experimental

General Procedures: All manipulations involving the iridium dimer complexes were carried out using standard Schlenk and high vacuum techniques. Solvents used in

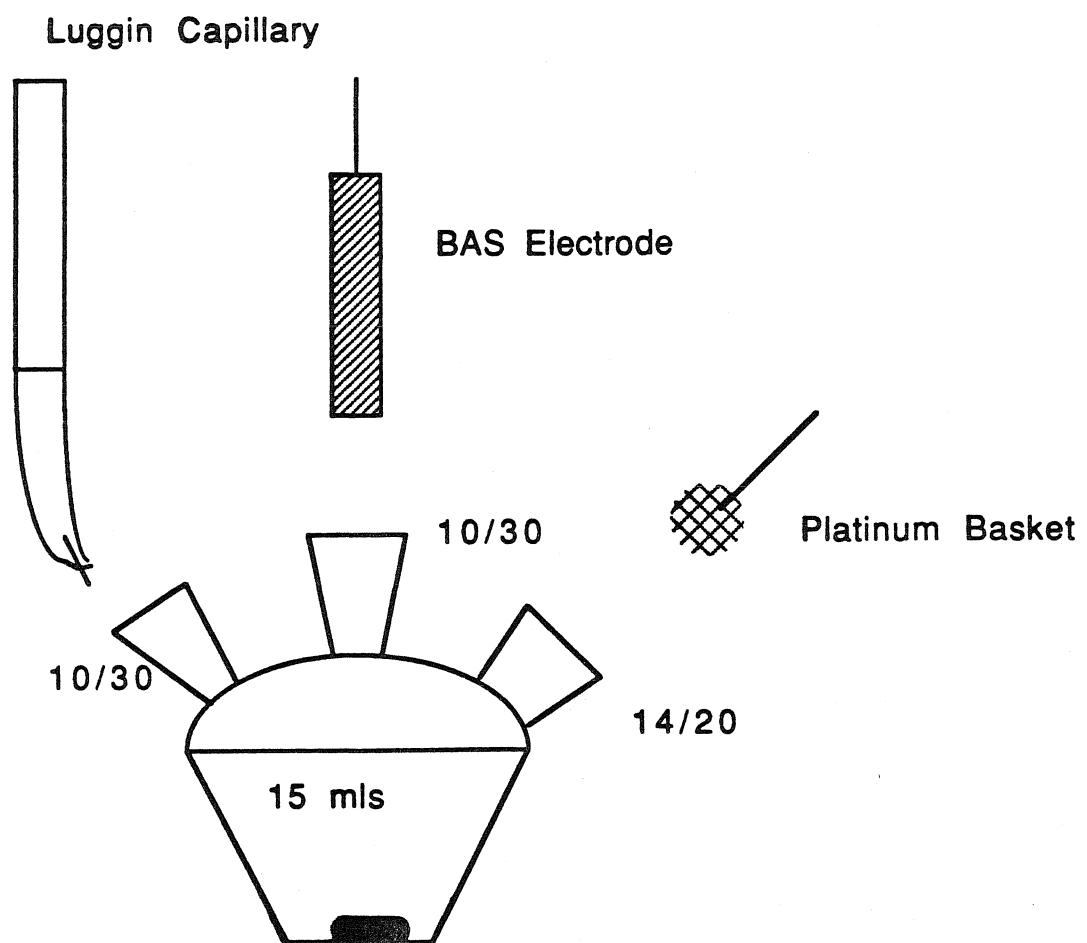
spectroscopic and electrochemical experiments were reagent grade or better in quality. They were purified as indicated, subjected to a minimum of five freeze/pump/thaw cycles, and stored in a round bottom storage flask fitted with a Kontes teflon stopcock. 2-Methyltetrahydrofuran was purified by distillation from a 0.5% (w/w) suspension of cuprous chloride, followed by distillation from CaH_2 and finally from sodium/benzophenone. It was stored under vacuum over sodium/benzophenone as an indicator. Acetonitrile and propionitrile were distilled from CaH_2 under nitrogen and stored in vacuo. Methylene chloride was distilled from CaH_2 , subjected to five freeze/pump/thaw cycles and stored in a Schlenk storage flask under a nitrogen atmosphere.

Electronic Absorption Spectroscopy: Electronic Absorption spectra were recorded using a Cary 17 UV-Vis Spectrometer. Room temperature spectra were obtained from 2:1 2-methyltetrahydrofuran/propionitrile solutions that were prepared under vacuum in a 1 cm quartz cuvette attached to a Kontes Teflon stopcock. Low temperature spectra were measured using a quartz optical dewar of local design. Samples were chilled to 77° K in liquid nitrogen and maintained at that temperature via thermal contact with a copper block, which was immersed in a liquid nitrogen bath. Spectra were corrected for absorption due to the solvent, cuvette, and dewar. They were hand digitized using a Calcomp 2000 digitizing pad, an IBM-AT clone PC, and Pro-Design II version 2.5. Extinction coefficients and band widths (fwhm) were determined by fitting the observed band shapes to gaussian envelope functions using Peakfit version 1.2 (EMF Software). Oscillator strengths were calculated using equation 3.1.

$$f = 4.6 \times 10^{-9} \epsilon_{\max} \bar{v}_{1/2} \quad \text{eq. 3.1}$$

Electronic Emission Spectroscopy: Electronic emission spectra were recorded on an in-house emission spectrometer whose construction and specifications have been previously described.^{5a} Samples were excited with the 436 nm line of an oriel 200 watt Hg/Xe lamp. This line was selected with a Spex 1670 monochromator and filtered with an Oriel 436 nm (#5645) interference filter (fwhm = 80 cm⁻¹) to remove stray excitation frequencies. Sample emission was collimated, focused on the slit of a Spex 1870 monochromator, and detected with a Hamamatsu R955 PMT. Scattered excitation was removed using a Corning 3387 sharp-cut filter. The signal was amplified with an EG&G 182-A lock-in amplifier and transferred to a Horizon North Star computer where it was digitized and corrected for PMT response. The corrected intensity data were transformed to a linear energy scale and plotted as a function of emission frequency. Room temperature spectra were measured of solutions consisting of an iridium dimer complex in dry oxygen-free acetonitrile. Samples were handled in a 1 cm high precision quartz fluorimetry cell that was attached to a Kontes Teflon stopcock. Low temperature spectra were obtained from 2:1 2-methyltetrahydrofuran/propionitrile solutions that were prepared under vacuum in an NMR tube attached to a Kontes Teflon stopcock. The samples were cooled to 77° K by immersing them in a liquid nitrogen bath contained in a quartz finger dewar. Room temperature quantum yields were determined by the optically dilute solution method of Crosby and Demas.³⁷ Integrated emission intensities were determined by the cut and weigh method of integration and used to calculate quantum yields according to equation 3.2. Ru(Bipy)₃²⁺ served as a reference.³⁸

$$Q_s = Q_r \left[\frac{I_s}{I_r} \left[\frac{n_s}{n_r} \right] \right]^2 \quad \text{eq. 3.2}$$


The ODs of the samples and reference at 436 nm were adjusted so that they were equivalent within experimental error and were less than or equal to 0.1.

Temperature dependent emission spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ were recorded using a CTI-Cryogenics model 70 Cryodyne Cryocooler. Samples were prepared under vacuum as 2-methyltetrahydrofuran solutions and flame sealed in 1 mm path length optical glass cuvettes. Cuvettes were mounted on a copper block, which was attached to the cold stage of the Cryocooler. Thermal contact between the sample and cold stage was achieved via copper grease. The sample temperature was measured using a copper/constantan thermocouple and was controlled with a CTI temperature controller. Samples were allowed to thermally equilibrate at each temperature for 1/2 hour.

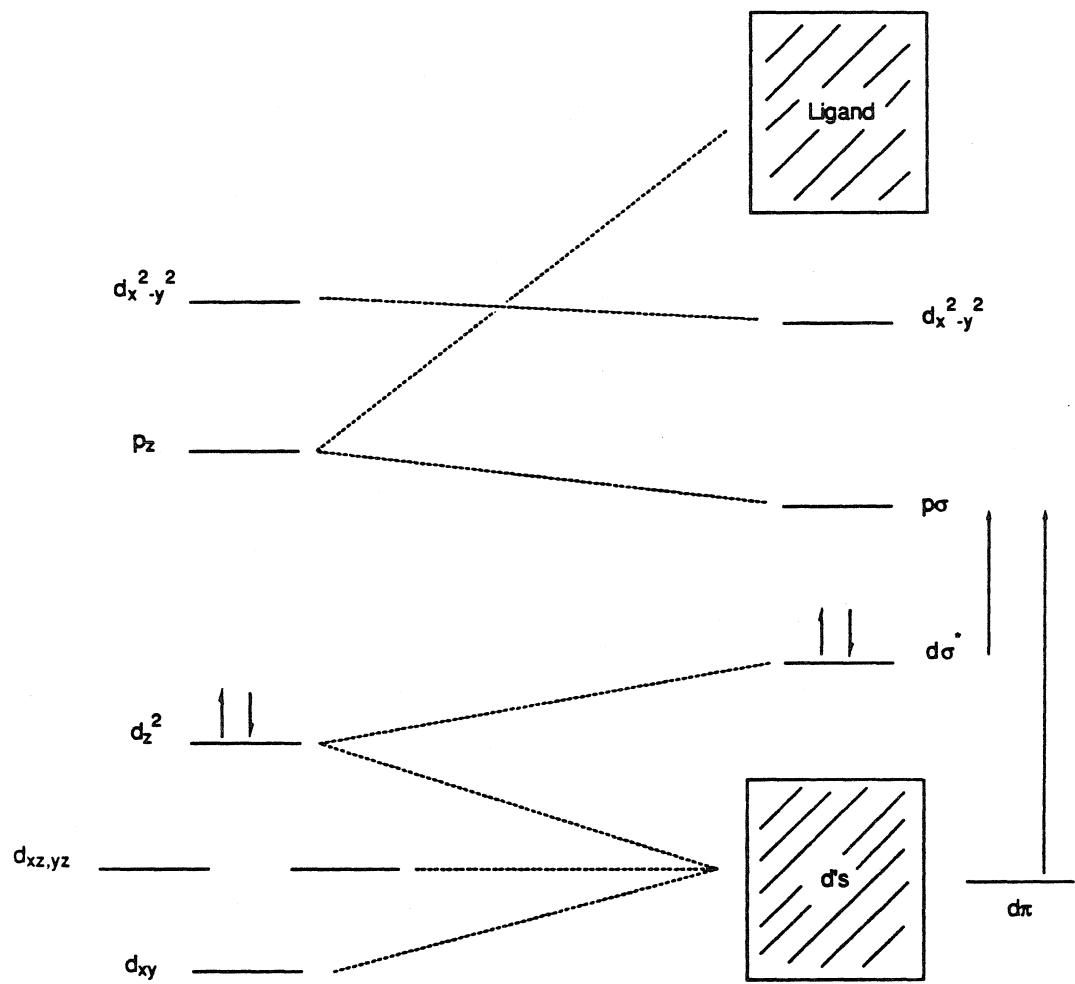
Excitation Spectroscopy: Electronic excitation spectra of optically dilute solutions were recorded using a Perkin-Elmer model WPF-66 fluorimeter. Intensity data were corrected for variations in the lamp intensity profile using a Rhodamine B quantum counter and were plotted as a function of excitation frequency.

Electrochemistry: Cyclic voltammetry (CV) and constant potential bulk electrolysis experiments were performed using an EG&G 173 Potentiostat/Galvanostat, a 175 Universal Programmer, and a 179 Digital Coulometer. CVs were plotted on a Houston Instruments Omniphotic 2000 XY-Recorder. Two different cell geometries were used to measure cyclic voltammograms and conduct constant potential coulometry experiments. CVs were measured at BAS platinum and glassy carbon electrodes using the electrochemical cell seen in figure 3.1. An SSCE, fitted with a vycor salt bridge, and a platinum basket electrode were employed as reference and counter electrodes respectively. Contact between the reference electrode and working electrode compartment was made through a luggin-capillary with a cracked glass tip. Positioning the luggin-capillary tip close to the surface of the working electrode reduced effects due to IR-drop inherent in electrochemical cells containing organic solvents. The properties of this cell were checked periodically using ferrocene as a test system. This cell

Figure 3.1. A schematic drawing of the electrochemical cell used in cyclic voltammetry experiments. The Luggin capillary arrangement used in this cell reduces effects due to IR drop, which are inherent in electrochemical experiments.

design and electrode geometry consistently reproduced literature $E_{1/2}$ values for ferrocene and showed minor IR drop effects.

Interfacial electron-transfer kinetics between platinum electrodes and the iridium dimers were sensitive to the electrode pretreatment procedure. The following pretreatment suggested by Anson and Long⁴² was used to obtain active platinum electrode surfaces. 1) Polish to a metallic luster using 0.3 μm polishing alumina. 2) Sonicate in a 1:1 methanol/ water solution for 15 minutes. 3) Cycle the electrode in 0.5 M sulfuric acid between 1.0 V and -0.05 V versus SSCE until good H_2/O_2 characteristics are seen. 4) Sonicate in the solvent used in the experiment at hand for 15 minutes. 5) Cycle the electrode in the supporting electrolyte solution to be used in the experiments until a constant background is observed. Cyclic voltammograms were typically measured on 0.5×10^{-3} M solutions of an iridium dimer complex in 10 mls of 0.1 M TBAPF₆/CH₂Cl₂. Measurements were carried out under an argon atmosphere.


Constant potential coulometry experiments were conducted in an H-tube type electrolysis cell. Electrolysis experiments were carried out at either a platinum basket or pyrolytic graphite working electrode and a platinum basket counter electrode. The working and counter electrode compartments were separated by a medium porosity glass frit. Potentials were measured with respect to an SSCE, which made contact with the working electrode compartment via a cracked glass luggin-capillary. Measurements were made in 0.1 M TBAPF₆/CH₂Cl₂ solutions under an argon atmosphere.

Results**Electronic Spectroscopy**

The electronic structure and excited state properties of d⁸-d⁸ transition metal complexes are areas of current interest in inorganic photochemistry.¹ Recent research in our laboratories has indicated that the low lying excited states in these compounds display a variety of different chemical reactivities including the excited state oxidative addition of halocarbons,^{1b,2} carbon-hydrogen bond activation,^{1b,3} and outer-sphere electron transfer.^{1b,4} These diverse photochemical and photophysical properties can be traced to the electronic excited states, which result from the axial metal-metal interactions inherent in these compounds. In the past, electronic spectroscopy has played a central role in understanding the electronic structure and excited state reactivity of these unique inorganic chromophores.^{5,6} Thus, a logical starting point for research directed toward investigating the photophysics and photochemistry of a new class of d⁸-d⁸ complexes is an examination of their electronic spectra.

The current body of spectroscopic data concerning face-to-face d⁸-d⁸ complexes, such as [Pt₂(P₂O₅H₂)₄]²⁻ and [Rh₂(Bridge)₄]²⁺, indicates that the electronic structure of these systems can be schematically represented by the molecular orbital diagram shown in figure 3.2. Covalently linking two square planar d⁸ complexes into a dimeric molecule forces an axial interaction between the d_{z2} and p_z orbitals of the monomeric fragments, which leads to the formation of d σ and p σ dimer MOs. Filling this MO scheme with the 16 metal electrons from the two monomer fragments leaves the d σ^* level as the compound's highest occupied molecular orbital. The low-lying electronic excited states in these complexes are generated by exciting one d σ^* electron into a vacant p σ orbital. This model makes some important predictions concerning the electronic

Figure 3.2. Molecular orbital diagram showing the metal based orbitals important to the electronic structure of d^8 - d^8 metal dimers adapted from reference 22.

spectra and excited properties of d^8 - d^8 metal complexes. First, the metal-metal interactions in these compounds should red shift their $d \rightarrow p$ charge-transfer transitions with respect to transitions localized on a single d^8 monomer. Thus, the electronic absorption spectra of d^8 - d^8 metal dimers should show low energy $d \rightarrow p$ bands that are well removed from a manifold of higher energy monomer transitions. In addition, because their low energy excited states involve $d\sigma^* \rightarrow p\sigma$ electronic excitations, the strength of the metal-metal bond in these complexes should be greater in their $d\sigma^*p\sigma$ excited states. Both of these predictions have been verified by recent single crystal spectroscopic studies^{5a,b,f,g} and excited state resonance raman experiments⁷ involving $[\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4]^{2-}$ and $[\text{Rh}_2(\text{Bridge})_4]^{2+}$. While the MO model predicts that the energies of the $(d\sigma^* \rightarrow p\sigma)^1$ and $(d\sigma^* \rightarrow p\sigma)^3$ electronic transitions in d^8 - d^8 complexes are a function of a compound's metal-metal separation, the current body of data concerning face-to-face and A-frame metal dimers indicates that these energies are more intimately related to the type of metal centers, the bridging and terminal ligands, and the metal-metal separations found in these complexes. In this respect some care must be exercised when using this approach to make comparisons between d^8 - d^8 dimers with substantially different coordination environments. However, within a structurally homologous series of complexes with identical metal centers and similar ligands, an MO approach should be adequate for understanding the $(d\sigma^*p\sigma)$ excited states in these chromophores.

Recent spectroscopic studies, concerning a series of $\text{Ir}_2(\mu\text{-pyrazolate})_2(\text{COD})_2$ complexes, have indicated that the molecular orbital model developed for face-to-face d^8 - d^8 compounds can be extended to describe the spectroscopic properties of A-frame metal dimers.^{8,3d} The low energy excited states in these chromophores have been identified as the $(d\sigma^*p\sigma)^1$ and $(d\sigma^*p\sigma)^3$ states by virtue of their visible absorption bands and fluid solution emission spectra. Because detailed experiments, regarding

Table 3.1: Spectral Parameters for the Iridium Donor-Acceptor Complexes.

Complex ^a	Room T			77° K		
Ir ₂ (Pz [*]) ₂ (CO) ₂ L ₂	ν _{max} ^f cm ⁻¹	ε _{max} ^g M ⁻¹ cm ⁻¹	ν _{1/2} ^f cm ⁻¹	ν _{max} cm ⁻¹	ε _{max} M ⁻¹ cm ⁻¹	ν _{1/2} cm ⁻¹
Band I (dσ* → pσ)¹						
Ph ₂ OCH ₂ CH ₃	22,100	8900	2400	22,300	12,000	1600
Ph ₂ OCH ₂ CH ₂ -NEt ₃	21,300	8500	24000	22,000	12,000	1600
Ph ₂ OCH ₂ CH ₂ -Me ₃ Py	21,600	8500	2300	22,000	13,000	1600
Ph ₂ OCH ₂ CH ₂ -4MePy ^b	21,500	7800	2400	21,500	11,000	1500
Ph ₂ OCH ₂ CH ₂ -Py	21,700	7700	2600	21,800	11,000	1500
Ph ₂ OCH ₂ CH ₂ -4PhPy ^c	21,900	6800	2500	.. ^d
Band II (dσ* → pσ)³						
Ph ₂ OCH ₂ CH ₃	19,200 ^h	19,300	420	1400
Ph ₂ OCH ₂ CH ₂ -4MePy	.. ^e	18,600	450	1800
Ph ₂ OCH ₂ CH ₂ -NEt ₃	.. ^e	19,600	410	1700
Band III						
Ph ₂ OCH ₂ CH ₃	28,200	5000	3800	28,100	5700	3200
Ph ₂ OCH ₂ CH ₂ -NEt ₃	27,700	5000	4600	28,200	6000	3000
Ph ₂ OCH ₂ CH ₂ -Me ₃ Py	28,300	5600	3700	28,700	8500	4200
Ph ₂ OCH ₂ CH ₂ -4MePy	27,300	5300	5300	27,000	5800	2900
Ph ₂ OCH ₂ CH ₂ -Py	27,600	4000	4500	27,600	.. ^d	4500
Ph ₂ OCH ₂ CH ₂ -4PhPy ^c	28,400	4400	4400	.. ^d

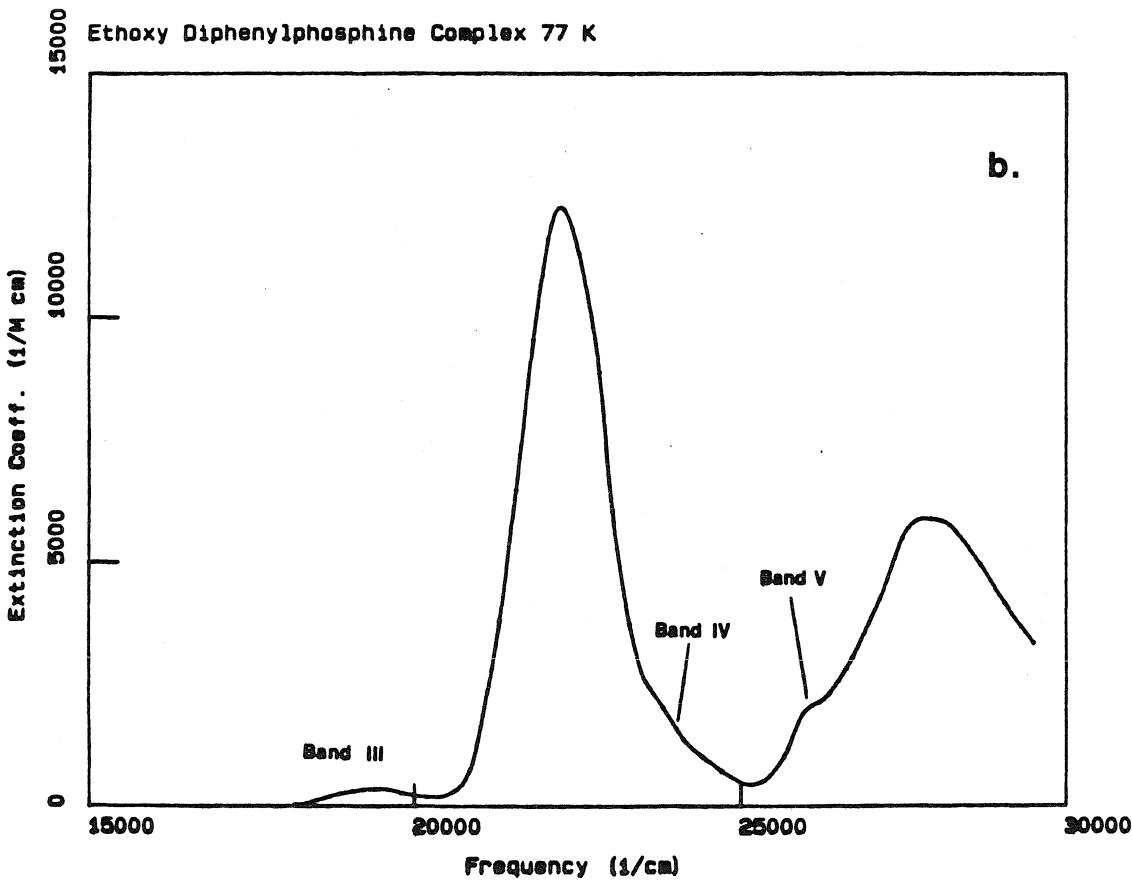
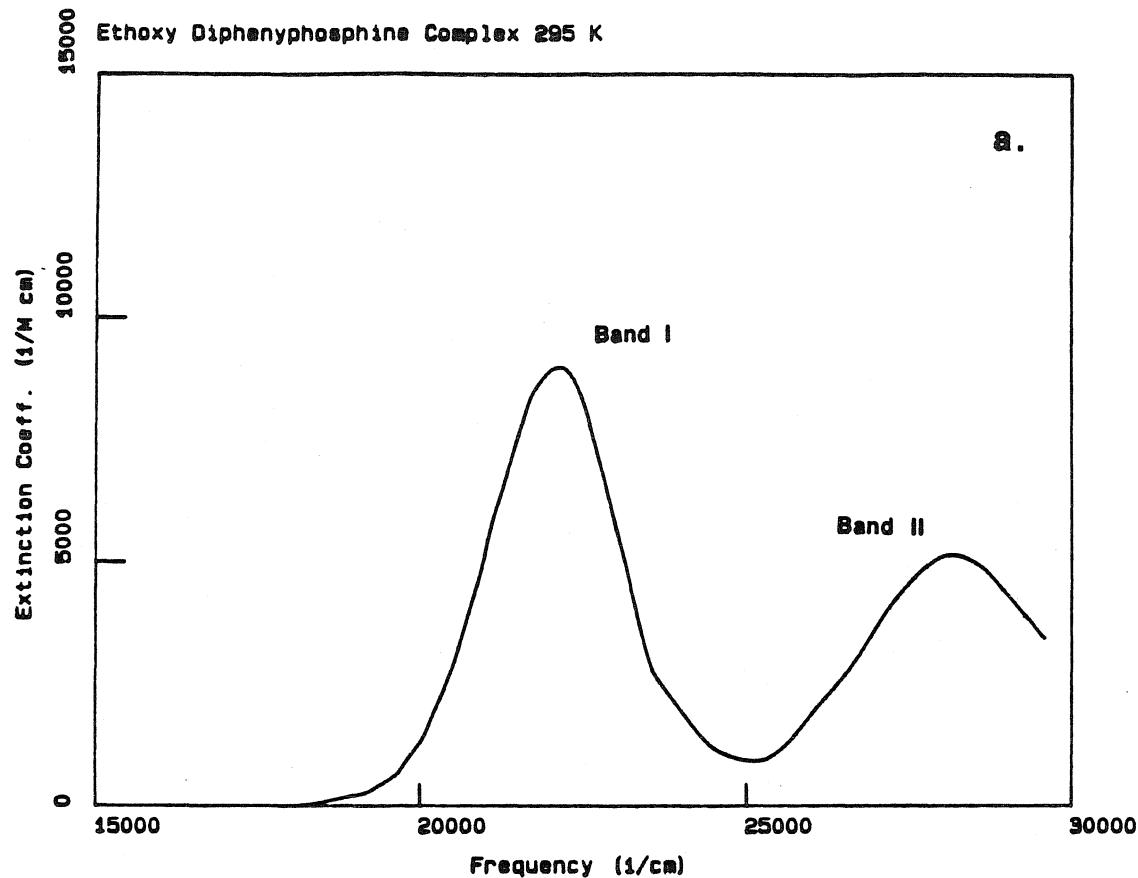
a. Spectra were measured in 2:1 2-methyltetrahydrofuran/propionitrile solutions unless otherwise indicated. b. A 3,5-dimethyl-4-isobutylpyrazole complex was used due to the poor solubility of the corresponding 3,5-dimethylpyrazole complex. c. Spectra measured in acetonitrile. d. Spectral parameters could not be determined due to the presence of intense Ph₄B → 4-PhPy charge-transfer bands. e. Not observed at room temperature. f. +, - 100 cm⁻¹.

g. +, - 10%. h. Determined from room temperature excitation spectra.

Table 3.2: Oscillator Strengths for the $(d\sigma^* \rightarrow p\sigma)^1,3$ and Band III Electronic Transitions.

Complex	Room T ^a f	77° K ^a f
$(d\sigma^* \rightarrow p\sigma)^1$		
Ph ₂ OCH ₂ CH ₃	0.1	0.09
Ph ₂ OCH ₂ CH ₂ -NEt ₃	0.09	0.09
Ph ₂ OCH ₂ CH ₂ -Me ₃ Py	0.09	0.10
Ph ₂ OCH ₂ CH ₂ -4MePy	0.09	0.08
Ph ₂ OCH ₂ CH ₂ -Py	0.09	0.08
Ph ₂ OCH ₂ CH ₂ -4PhPy	0.08	-- ^b
Band III		
Ph ₂ OCH ₂ CH ₃	0.09	0.08
Ph ₂ OCH ₂ CH ₂ -NEt ₃	0.10	0.08
Ph ₂ OCH ₂ CH ₂ -Me ₃ Py	0.09	0.10
Ph ₂ OCH ₂ CH ₂ -4MePy	0.10	0.08
Ph ₂ OCH ₂ CH ₂ -Py	0.08	-- ^b
Ph ₂ OCH ₂ CH ₂ -4PhPy	0.09	-- ^b
$(d\sigma^* \rightarrow p\sigma)^3$		
Ph ₂ OCH ₂ CH ₃	--	0.03
Ph ₂ OCH ₂ CH ₂ -NEt ₃	--	0.03
Ph ₂ OCH ₂ CH ₂ -4MePy	--	0.04

a. +- 0.01

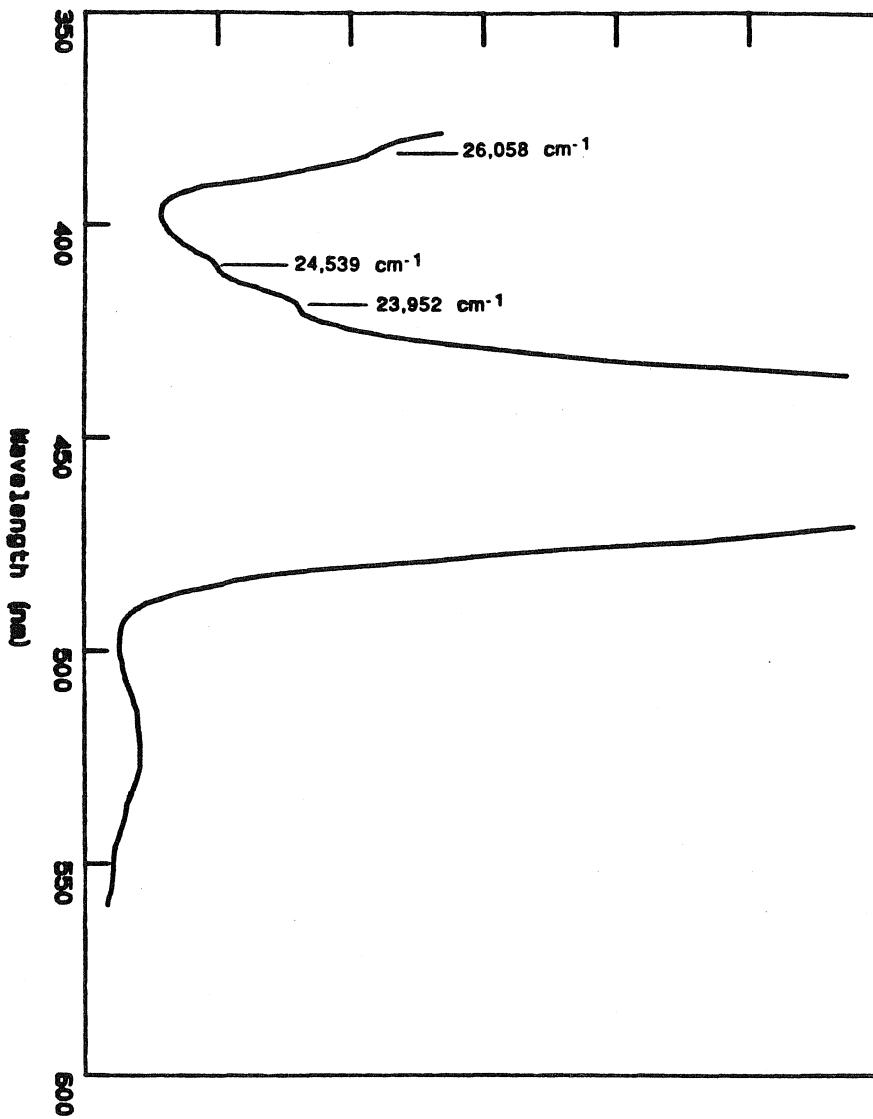


b. Not determined due to Ph₄B \rightarrow Py charge-transfer bands which distorted the transition's band shape

complexes with terminal phosphine and carbon monoxide ligand have not been carried out, spectroscopic studies of the donor-acceptor and model complexes were undertaken to characterize their low lying excited states.⁶

Electronic absorption and emission spectra of the model compounds and donor-acceptor complexes were for the most part identical within their experimental uncertainties. Spectroscopic parameters for all of the d⁸-d⁸ dimers are summarized in tables 3.1 to 3.3. The spectroscopic properties common to this series of compounds are discussed below by referring to absorption, emission, and excitation spectra of Ir₂(Pz^{*})₂(CO)₂(Ph₂POCH₂CH₃)₂ as illustrative examples.

Absorption Spectra: The room temperature absorption spectra of the donor-acceptor complexes and model compounds in 2:1 2-methylTHF/propionitrile solutions show two intense absorption features with maxima at approximately 21,000 cm⁻¹ (ϵ = 8500) and 27,900 cm⁻¹ (ϵ = 5000). These transitions are labeled Band I and Band II in figure 3.3a. As seen in figure 3.3b Bands I and II sharpen and blue shift slightly in 77° K glass spectra of the complexes, revealing three lower intensity transitions with maxima at approximately 19,000 cm⁻¹ (Band III), 24,000 cm⁻¹ (Band IV), and 26,000 cm⁻¹ (Band V). Band III represents the lowest energy spectroscopic transition in these compounds and is well resolved from the low energy wing of Band I at low temperature. Bands IV and V appear as shoulders on the high energy side of Band I and the low energy side of Band II, respectively. In terms of the relative intensities and energies of Bands I, II, and III, the electronic absorption spectra of the carbon monoxide, phosphine metal dimers, are strikingly similar to spectra of a series of [Ir₂(Pz)₂(COD)₂] complexes.⁸ Thus, assignments for each of these transitions can be made by analogy to similar spectral features observed for the corresponding cyclooctadiene systems. Based on its intensity and temperature independent oscillator strength, Band I is assigned to a fully

Figure 3.3. Absorption spectrum of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ in 2:1 2-methyltetrahydrofuran/propionitrile solutions. a) Room temperature. b) 77° K.

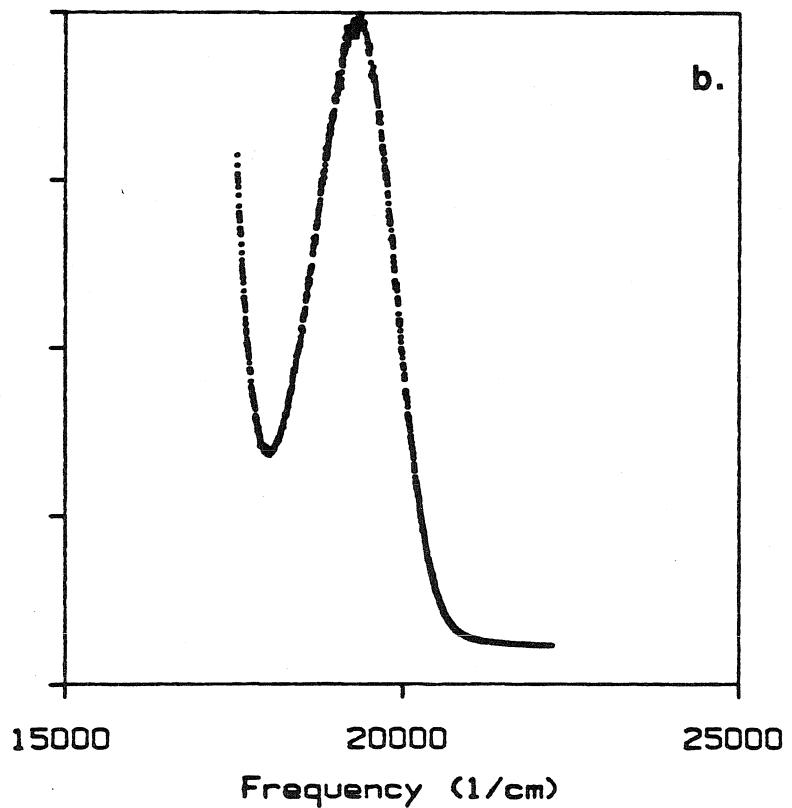
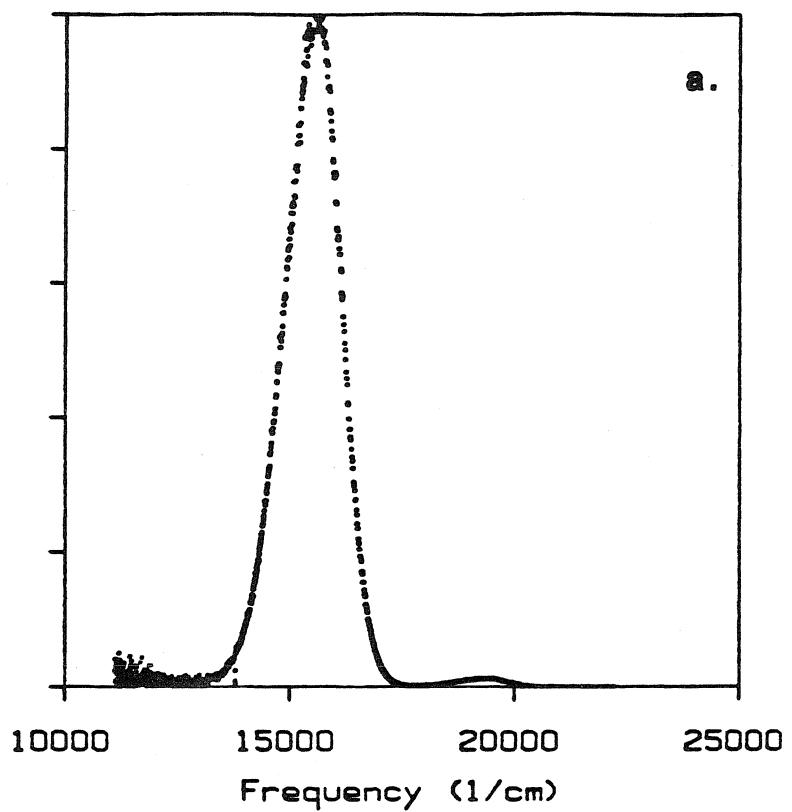


allowed ${}^1\text{A} \rightarrow {}^1\text{B}$ ($\text{d}\sigma^* \rightarrow \text{p}\sigma$) electronic transition. Band III is logically assigned to the corresponding triplet transition, ${}^1\text{A} \rightarrow {}^3\text{B}$ ($\text{d}\sigma^* \rightarrow \text{p}\sigma$), due to its substantially weaker intensity. These assignments are consistent with the MO diagram seen figure in 3.2 and are supported by previous arguments, regarding the spectra of several A-frame and face-to-face $\text{d}^8\text{-d}^8$ complexes.^{3d,5,6,8,9}

The higher energy excited states of $\text{d}^8\text{-d}^8$ A-frame metal dimers are poorly understood. In contrast to the face-to-face complexes, definitive assignments for the higher lying electronic transitions in these complexes are precluded by their lower symmetry, their more complicated ligand systems, and a lack of information concerning spectra of their corresponding monomers.¹⁰ In general, these states rapidly internally convert to the lower energy ($\text{d}\sigma^*\text{p}\sigma$)^{1,3} states and are not responsible for the photochemical reactivity associated with $\text{d}^8\text{-d}^8$ systems.^{5a,13} While a complete assignment of the higher energy absorption bands in spectra of the donor-acceptor molecules is outside the scope of this thesis, some parallels can be drawn between these bands and analogous features in spectra of related A-frame systems.

Absorption features similar to Band II have been observed in spectra of $[\text{Ir}_2(\text{Pz})_2(\text{COD})_2]$ (381 nm), $[\text{Ir}_2(\text{Pz})_2(\text{CO})_4]$ (325 nm), and their analogs. These bands have been attributed to ($\text{d}_{xz},\text{d}_{yz} \rightarrow \text{p}_z$) transitions in the $[\text{Ir}_2(\text{Pz})_2(\text{COD})_2]$ systems by analogy to assignments made for $\text{Rh}_2(\text{Bridge})_4^{2+}$ and $\text{Ir}_2(\text{TMB})_4^{2+}$.^{5a,b} However, in comparison to the bandshapes observed for the $\text{d}_\pi \rightarrow \text{p}$ transitions in face-to-face $\text{d}^8\text{-d}^8$ systems, Band II has a much larger half-width at both room temperature and 77° K. This distinction in bandshapes indicates that Band II involves excited state distortions not found in the d_π excited states of face-to-face metal dimers. One possible explanation for the substantial half-widths associated with Band II is that this transition contains a considerable amount of metal-to-pyrazole charge transfer character. This interpretation is suggested by the low energy MLCT transitions seen in orthometallated Ir(III) monomers.¹¹ Careful inspection of Bands IV and V at 77° K shows that they are

Figure 3.4. 77° K absorption spectrum of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ showing a 587 cm^{-1} progression in $\nu_{\text{Ir-C}}$ superimposed on Bands IV and V.

weakly structured in a 587 cm^{-1} vibrational progression (figure 3.4). Similar bands appear in spectra of $[\text{Ir}_2(\text{Pz})_2(\text{CO})_4]$ and its analogs, but are absent in spectra of the corresponding pyrazolate bridged COD systems.⁸ These bands have been tentatively assigned to ($d_{\pi} \rightarrow p, \pi^* \text{CO}$) transitions based on their 500 cm^{-1} vibrational progressions and their similarity to features observed in monomer spectra.¹² Their low intensity in spectra of the $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POR})_2$ systems and absence in spectra of the COD dimers suggests that they are forbidden transitions, which gain substantial intensity via vibronic coupling to an Ir-C vibrational mode. Further detailed spectroscopic studies, involving both the pyrazolate bridged dimers and their corresponding monomers, will be necessary to definitively assign these higher energy bands.

Emission Spectra: Electronic emission spectra of the donor-acceptor complexes and model compounds at 77° K show two emission bands in the spectral region between $10,000$ and $25,000\text{ cm}^{-1}$ with maxima at approximately $19,000\text{ cm}^{-1}$ and $15,000\text{ cm}^{-1}$ (figure 3.5). These bands are logically assigned to ${}^1\text{B} \rightarrow {}^1\text{A}(p\sigma \rightarrow d\sigma^*)$ and ${}^3\text{B} \rightarrow {}^1\text{A}(p\sigma \rightarrow d\sigma^*)$ electronic transitions, respectively, by analogy to emission features observed for a number of A-frame and face-to-face dimer compounds.^{3d,5,6,8,9} At 77° K the singlet and triplet emission intensities of donor-acceptor compounds were similar to the intensities of the $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ and $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-NEt}_3^+)_2$. Further, the 77° K phosphorescence lifetimes of the donor-acceptor and model compounds were the same within their experimental uncertainties. These indicate that rapid photoinduced electron transfer does not take place from either the ${}^1\text{B}$ or ${}^3\text{B}$ excited states in a rigid low temperature matrix. Spectral parameters for all the complexes are summarized in table 3.3.

The energies and intensities of the ${}^1\text{B} \rightarrow {}^1\text{A}$ and ${}^3\text{B} \rightarrow {}^1\text{A}$ emission bands in the model and donor-acceptor compounds change substantially as a function of temperature between 77° K and 295° K . As seen in figure 3.6, at room temperature both emission bands broaden and are red shifted with respect to their 77° K band maxima. Table 3.4

Figure 3.5. a) Electronic emission spectrum of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ at 77° K. b) Higher sensitivity spectrum showing the singlet emission band at 77° K.

Table 3.3: 77° K Emission Parameters for the Iridium Dimer Complexes.^a

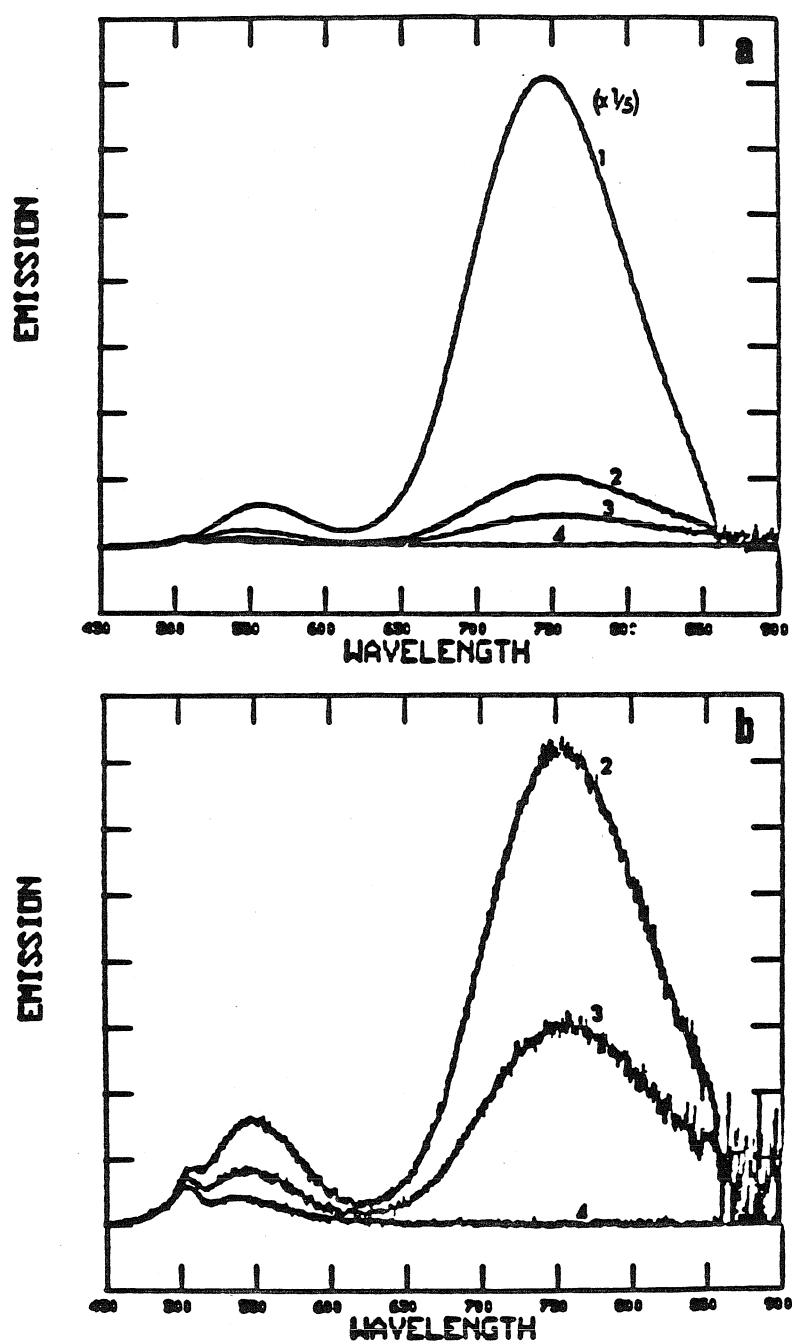
Complex	(1B → 1A)		(3B → 1A)	
	v _{max} cm ⁻¹	v _{1/2} cm ⁻¹	v _{max} cm ⁻¹	v _{1/2} cm ⁻¹
Ir ₂ (Pz [*]) ₂ (CO) ₂ L ₂				
Ph ₂ OCH ₂ CH ₃	19,300	1500	15,500	1500
Ph ₂ OCH ₂ CH ₂ -NEt ₃	19,200	1500	15,400	1600
Ph ₂ OCH ₂ CH ₂ -Me ₃ Py	19,200	1600	15,400	1600
Ph ₂ OCH ₂ CH ₂ -4MePy	19,300	1500	15,500	1500
Ph ₂ OCH ₂ CH ₂ -Py	19,300	1600	15,500	1500
Ph ₂ OCH ₂ CH ₂ -4PhPy	19,300	1800	15,500	1500

a. Spectra were measured of 2:1 2-methyltetrahydrofuran/propionitrile solutions.

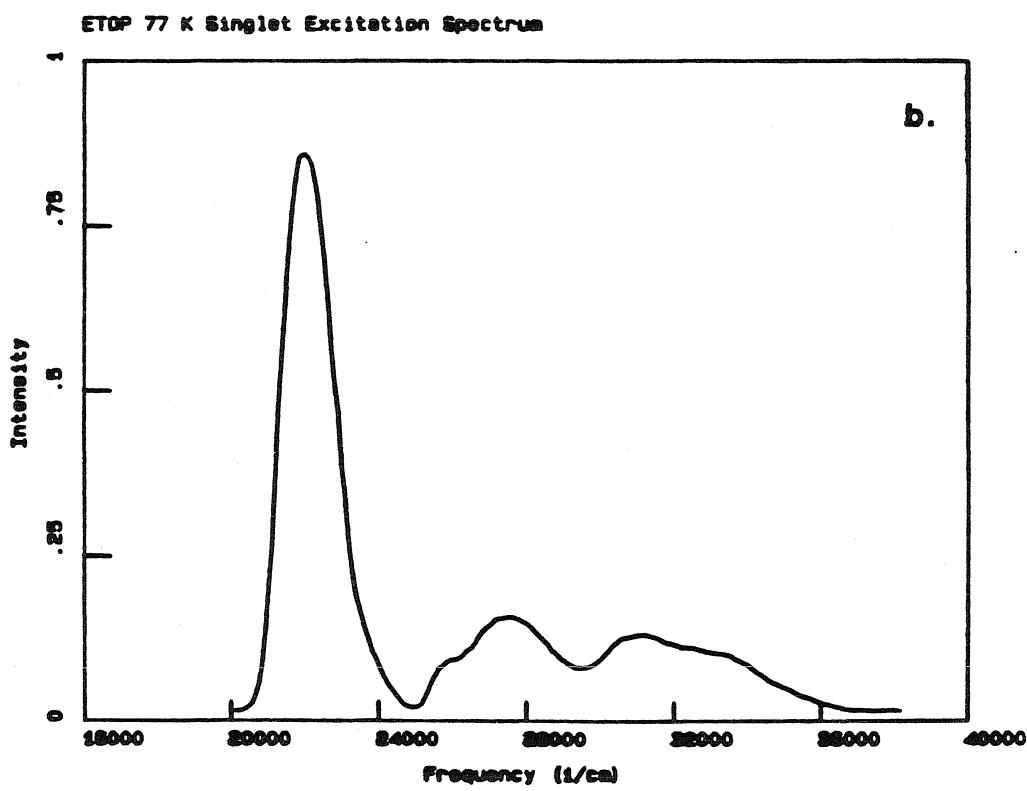
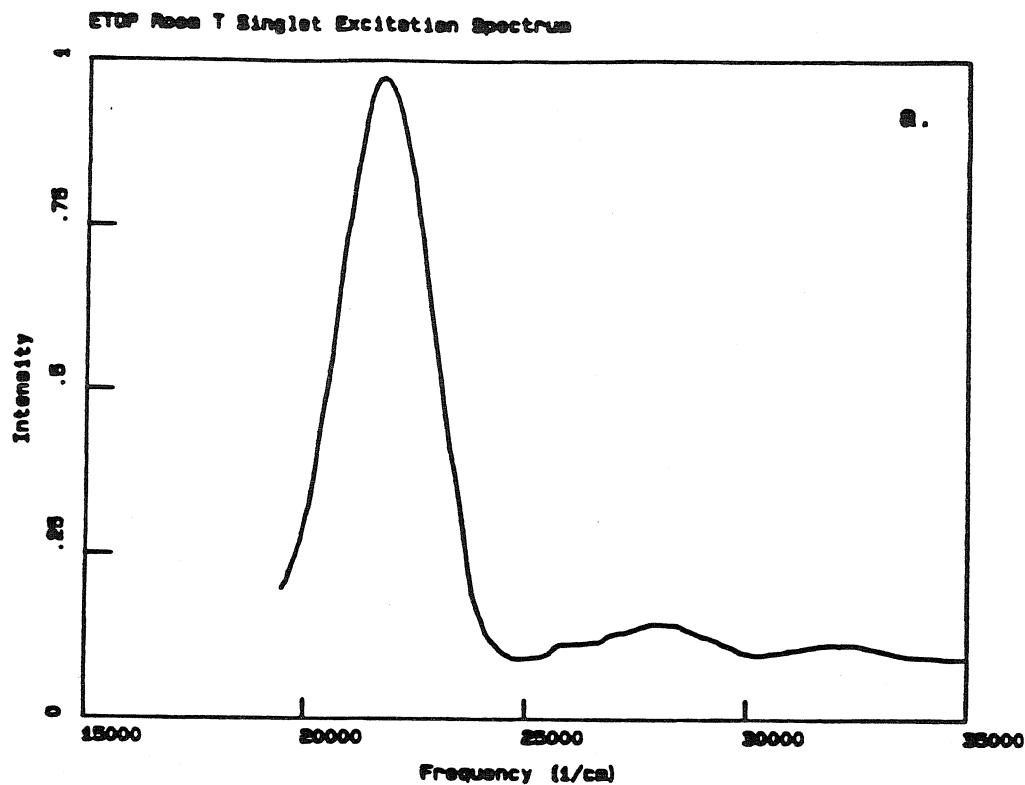
b. A 4-isobutyl-3,5-dimethylpyrazole complex was used due to the poor solubility of the corresponding 3,5-dimethylpyrazole complex.

Table 3.4: Spectral Data for Selected A-Frame Complexes.

Complex	$\nu_{\text{max}} ({}^1\text{B} \rightarrow {}^1\text{A})$ cm ⁻¹	$\nu_{\text{max}} ({}^3\text{B} \rightarrow {}^1\text{A})$ cm ⁻¹	T °K
$\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2^{\text{a}}$	17,900	13,500	298
	19,400	15,500	77
$\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{PO}(\text{CH}_2)_2\text{NEt}_3)_2^{\text{b}}$	18,200	13,300	298
	19,200	15,400	77
$\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_4^{\text{c,d}}$	18,800	13,600	298
	20,000	14,900	77
$\text{Ir}_2(\text{Pz})_2(\text{CO})_4^{\text{c,d}}$	18,800	13,300	298
	19,600	15,400	77
$\text{Ir}_2(3\text{-Methyl-Pz})_2(\text{CO})_4^{\text{c,d}}$	18,800	13,300	298
	19,400	14,800	77
$\text{Ir}_2(\text{Pz})_2(\text{COD})_2^{\text{a}}$	17,900	14,600	298
	18,000	14,700	77


a. 2-Methyltetrahydronfuran solutions.

b. 2:1 2-methylTHF/propionitrile solutions



c. 2-Methylpentane solutions

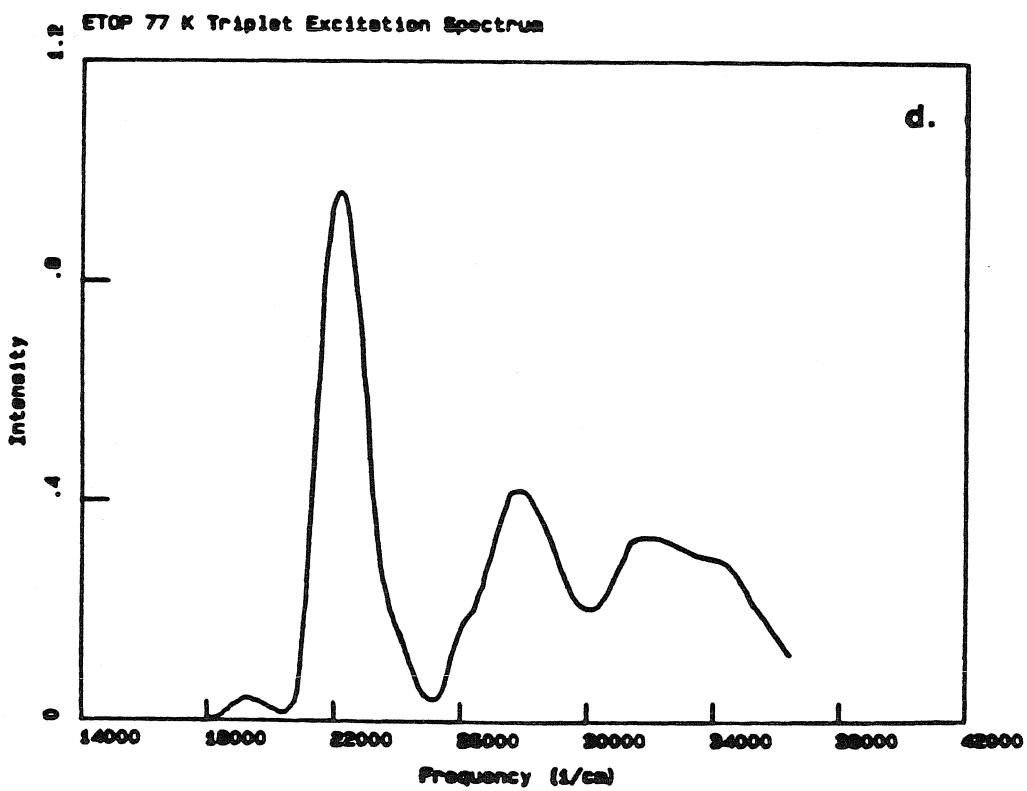
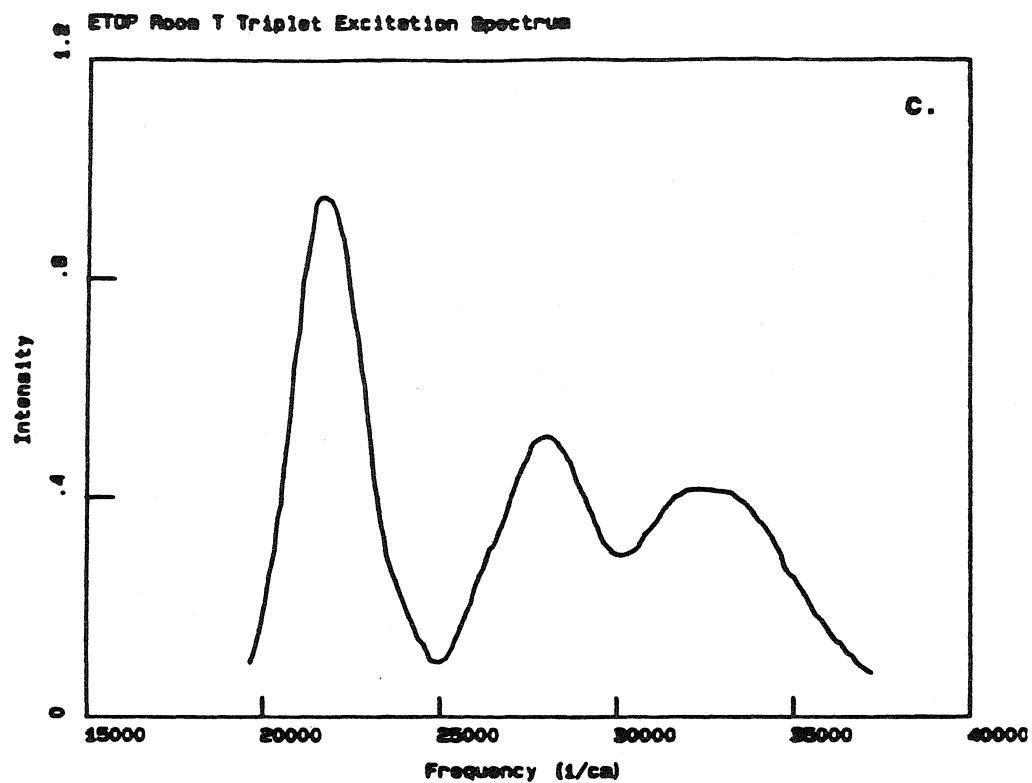


d. See reference 8.

Figure 3.6. a) Room temperature emission spectra of (1) $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{NEt}_3^+)_2$, (2) $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-246Me}_3\text{Py}^+)_2$, (3) $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4MePy}^+)_2$, and (4) $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py}^+)_2$ in acetonitrile comparing their relative intensities and band maxima. Note that the spectrum of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{NEt}_3^+)_2$ has been reduced by a factor of five. b) Spectra 2,3, and 4 enlarged. The feature at 500 nm is a mercury line.

Figure 3.7. Electronic excitation spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ in 2-methyltetrahydrofuran. a) and b) Room temperature and 77° K singlet spectra. c) and d) Room temperature and 77° K triplet spectra.

shows that similar changes as a function of temperatures are observed in emission spectra of $[\text{Ir}_2(\text{Pz})_2(\text{CO})_4]$ and its analogs, but are curiously absent in spectra of the corresponding $[\text{Ir}_2(\text{Pz})_2(\text{COD})_2]$ systems.⁸ One plausible explanation for this phenomenon is that photoemission in the tetra-CO and CO-phosphine systems occurs from different electronic excited states as a function of temperature. This possibility can be ruled out by examining the excitation spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ seen in figure 3.7. In terms of their band maxima and relative extinctions, the transitions observed in room temperature excitation spectra of this complex correlate well with those observed in its 77° K spectra. In addition, its triplet excitation spectrum is superimposable with its absorption spectrum. These findings indicate that the emission bands found in the high and low temperature spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ both correspond to its $(\text{p}\sigma \rightarrow \text{d}\sigma^*)$ electronic transitions. The intense high energy bands ($\nu > 25,000 \text{ cm}^{-1}$) seen in triplet excitation spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ lose intensity in the corresponding singlet spectrum, due to efficient intersystem crossing between its $(\text{d}\pi\text{p}\sigma)$ and ^3B excited states. Enhancement in the intersystem crossing rates in this complex can be attributed to spin-orbit effects associated with the iridium metal centers.¹³ Similar intensity differences have been observed in spectra of other d^8 - d^8 systems.^{5a,14,13b}

Further insight into the origin of this "blue shift" effect can be obtained by examining the spectral data for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ summarized in tables 3.5 and 3.6. Room temperature and 77° K solid state emission spectra of this complex show phosphorescence band maxima that are isoenergetic with those found in its 77° K solution spectrum. In addition, the blue shift in both its singlet and triplet emission band maxima takes place via a completely reversible process over an approximately 10° temperature range between 90° and 100° K. (table 3.6). These data are consistent with a medium induced alteration of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ that modifies its

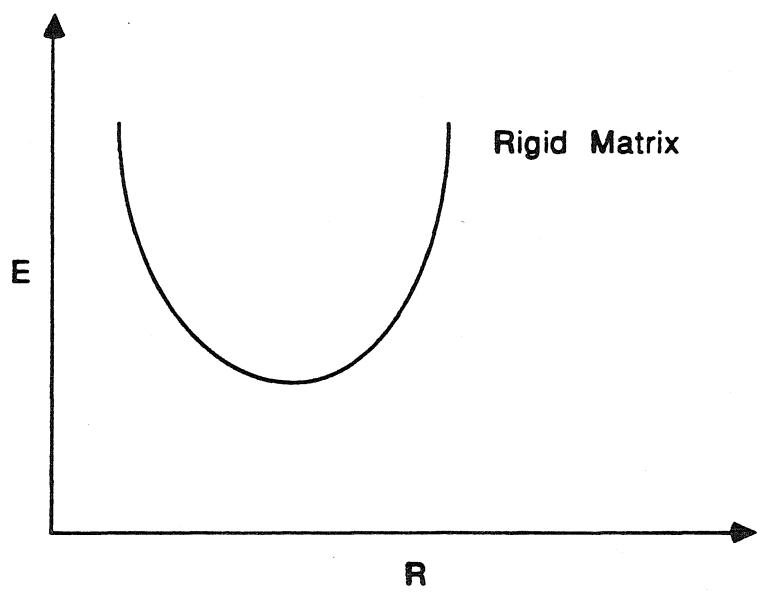
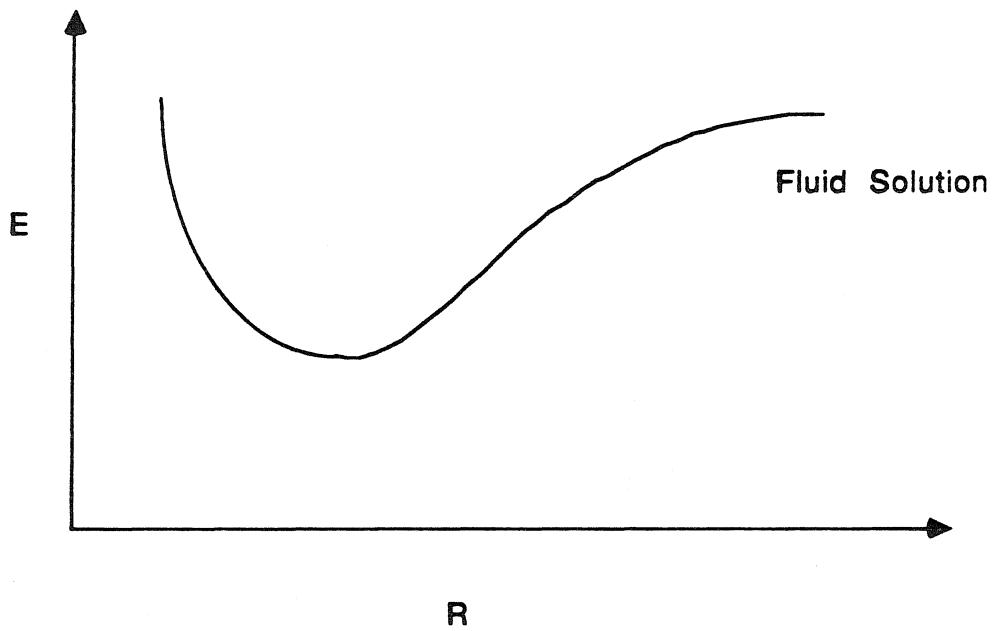
Table 3.5: Emission Spectral Parameters for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$

Phase	$\nu_{\text{max}} ({}^1\text{B} \rightarrow {}^1\text{A})$ cm ⁻¹	$\nu_{\text{max}} ({}^3\text{B} \rightarrow {}^1\text{A})$ cm ⁻¹	T °K
Solid	.. ^b	15,300	298
Solid	.. ^b	15,400	77
Solution ^a	17,900	13,500	298
Solution	19,400	15,500	77

a. 2-Methyl THF solutions

b. Not observed

Table 3.6: Temperature Dependent Emission Data for
 $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$



$\nu_{\text{max}} ({}^3\text{B} \rightarrow {}^1\text{A})$	$\nu_{1/2}$ cm^{-1}	T $^{\circ}\text{K}$
13,600	1940	302
13,500	1800	270
13,400	1700	230
13,400	1700	200
13,400	1600	180
13,400	1600	160
13,400	1500	150
13,400	1500	140
13,400	1500	120
13,400	1500	100
15,000	1800	90
15,400	1600	80
15,500	1600	70

emission bandshapes. Analogous effects were first observed by Wrighton and coworkers in the emission spectra of $\text{Re}(\text{Phen})(\text{CO})_3\text{Cl}$ and were labeled "rigidochromic luminescence."¹⁵

The origin of luminescence rigidochromism has been discussed in detail by Dellinger and Kasha and can be understood in terms of the potential energy surfaces portrayed in figure 3.8.¹⁶ The extent to which a molecular system can distort in response to any perturbation (i.e., electronic or vibrational) is determined not only by its normal modes and vibrational force constants but also by the ability of its surrounding medium to respond to changes in its overall shape. In a fluid solution the surrounding solvent molecules define a mutable cage, which can readily respond to changes in the shape of an enclosed solute. However, in a low temperature matrix or in a molecular crystal, the surrounding medium is more rigidly fixed and is less able to accommodate changes in a molecule's structure. These limitations alter the nature of the normal vibrational modes of a solute molecule by restricting certain low frequency molecular distortions. As seen in figure 3.8, these restrictions effectively change the shape of the molecule's potential surface along one or more of its normal coordinates. In terms of its electronic spectra, these changes effect the Frank-Condon factors for emission (absorption) which can drastically change its emission (absorption) band maximum and half width.

While our spectroscopic data do not point to a particular molecular distortion as being primarily responsible for the rigidochromic effects in spectra of d^8-d^8 A-frame metal dimers, it can be safely concluded that these distortions must be coupled to the metal-metal coordinate. It is well known from the low temperature single crystal spectra of $\text{Rh}_2(\text{Bridge})_4^{2+}$ and $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{2-}$ that metal-metal vibrations are strongly coupled to their ($d\sigma^* \rightarrow p\sigma$) electronic transitions.^{5a,f,g} The metal-metal bond distances in A-frame dimer complexes has both an angular as well as a distance

Figure 3.8. A schematic representation of a pair of potential energy surfaces illustrating the origin of rigidochromic spectroscopic effects according to the Dellinger-Kasha model. Medium rigidity effects spectroscopically relevant normal modes by restricting the low frequency torsional motions of the chromophore.

dependence.⁶ Thus, changes in the metal-metal separation in these systems may involve rearrangement of their bridging pyrazole ligands. This type of torsional motion would be susceptible to medium rigidity effects.^{15c} Further conclusions, regarding rigidochromic effects in d⁸-d⁸ A-frame complexes, can be drawn by examining the spectroscopic data summarized in table 3.4. As mentioned earlier, rigidochromic emission appears only in spectra of the $[\text{Ir}_2(\text{Pz})_2(\text{CO})_4]$ and $[\text{Ir}_2(\text{Pz})_2(\text{CO})_2(\text{Ph}_2\text{POR})_2]$ systems but is curiously absent in spectra of $[\text{Ir}_2(\text{Pz})_2(\text{COD})_2]$ and its analogs. These differences can be understood by considering the distinct steric environments provided by the various terminal ligands found in these complexes. Recent x-ray crystallographic results have indicated that the 0.375 Å difference in metal-metal distances found in oxidative addition adducts of $[\text{Ir}_2(\text{Pz})_2(\text{COD})_2]$ and $[\text{Ir}_2(\text{Pz})_2(\text{CO})_2(\text{Ph}_3\text{P})_2]$ can be attributed in part to the larger steric repulsion between opposing COD ligands in the former compounds.¹⁷ Similar types of steric interactions must also play a role in controlling the excited state metal-metal contractions in these A-frame metal dimers. This premise is supported by comparing the room temperature Stoke's shift seen in $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_4]$ (5000 cm⁻¹), $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2]$ (5,800 cm⁻¹), and $[\text{Ir}_2(\text{Pz})_2(\text{COD})_2]$. The larger Stoke's shifts in the former two cases are consistent with a larger excited state metal-metal contraction made possible by their less sterically demanding terminal ligands. In contrast to these less sterically hindered systems, contractions along metal-metal coordinate in $[\text{Ir}_2(\text{Pz}^*)_2(\text{COD})_2]$ are restricted by steric repulsion between its COD ligands; therefore, this compound does not exhibit rigidochromic effects.

In contrast to the low temperature emission data presented earlier, the room temperature emission intensities of both the singlet and triplet excited states in the donor-acceptor complexes are substantially quenched when compared to the corresponding model compounds (figure 3.6).⁴⁰ This pronounced emission intensity quenching can be attributed to an excited state intramolecular electron-transfer process

based on several lines of evidence. In some instances the excited state lifetimes and emission quantum yields of inorganic chromophores can be affected by simple nonchromophoric changes in the nature of their ligands. Nonchromophoric lifetime effects have been previously reported for a series of $\text{Mo}_2\text{X}_4(\text{PR}_3)_4$ complexes¹⁸ and were interpreted within the frame work of Engleman and Jortner's model for nonradiative processes.¹⁹ As seen in table 3.7, the quantum yields and triplet lifetimes of the four model complexes are essentially unperturbed by changes in the phosphinite ligand alkyl substituents. Thus, the intensity quenching seen in spectra of the donor-acceptor complexes can not be attributed to changes in k_{nr} brought on by the introduction of additional accepting or promoting vibrational modes. This emission quenching must be due to an additional nonradiative deactivation pathway involving intramolecular electron transfer. This conclusion is substantiated by the fact that the decrease in emission intensities across the series of donor-acceptor compounds, presented in figure 3.6, parallels changes in the redox potentials of their covalently attached pyridinium cations (vida infra).

Of significant interest is the intensity quenching observed in the singlet emission bands of the donor-acceptor compounds. These changes can be attributed to a *direct* singlet quenching process rather than a diminished back intersystem crossing yield due to a reactive triplet state. Control experiments show that the singlet emission intensity in $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ is not diminished when > 75% of its triplet emission is quenched via bimolecular energy transfer reactions. Thus, back intersystem crossing is not an active photophysical process in the donor-acceptor and model complexes. This conclusion is in agreement with equilibrium constants ($K_{\text{eq}}^{\text{isc}}$) calculated from the 3700 cm^{-1} singlet-triplet energy gap in these complexes. In addition, triplet electron-transfer quenching in these systems can be inferred from the quantum yield data in table 3.7. Because $\phi_f^0/\phi_f < \phi_p^0/\phi_p$, some of the intensity quenching observed in the triplet

Table 3.7: Photophysical Parameters for the Donor-Acceptor Complexes.^a

Complex	Φ_f	Φ_p	τ_p μs
$\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2\text{L}_2$			
$\text{Ph}_2\text{OCH}_2\text{CH}_2\text{-NEt}_3^b$	0.0015	0.032	1.2
$\text{Ph}_2\text{OCH}_2\text{CH}_3$	0.0023	0.025	1.1
Ph_2OCH_3	0.0027	0.040	1.2
$\text{Ph}_2\text{O}(\text{CH}_2)_3\text{CH}_3$	0.0025	0.030	1.1
$\text{Ph}_2\text{OCH}_2\text{CH}_2\text{-Me}_3\text{Py}^c$	0.00017	0.0013	- -
$\text{Ph}_2\text{OCH}_2\text{CH}_2\text{-4MePy}$	0.00006	0.0004	- -
$\text{Ph}_2\text{OCH}_2\text{CH}_2\text{-Py}$	0.00003	- - ^d	- -
$\text{Ph}_2\text{OCH}_2\text{CH}_2\text{-4PhPy}$	- - ^d	- -	- -

a. Quantum yields taken from spectra measured in acetonitrile solutions at room temperature using $\text{Ru}(\text{Bipy})_3^{2+}$ as a standard.

b. Singlet quantum yields for the model compounds are accurate to $\pm 10\%$; triplet quantum yields are accurate to $\pm 30\%$.

c. Quantum yields for the donor-acceptor compounds are accurate to $\pm 80\%$.

d. Emission too weak to measure.

emission bands of the donor-acceptor complexes must be due to a direct triplet electron-transfer process.²⁰

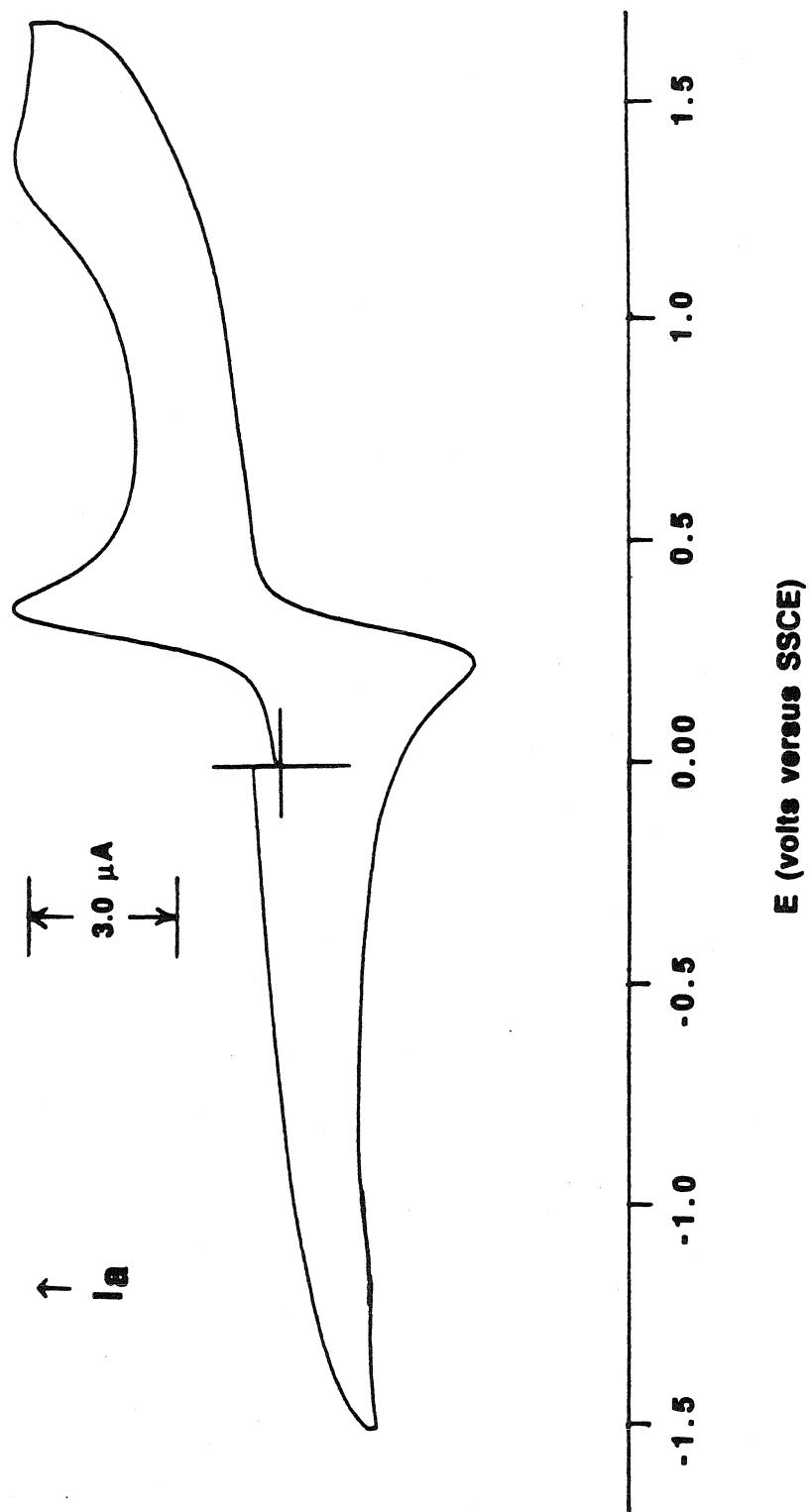
To date, the photochemical reactivity of d⁸-d⁸ complexes has been solely attributed to their long-lived triplet excited states. The spectra, reported here, represent the first evidence for reactivity from the shorter lived singlet states. Analyzing the quantum yield data in table 3.7 along with a singlet lifetime for Ir₂(Pz⁺)₂(CO)₂(Ph₂POCH₂CH₃)₂ of 100 ps, places the singlet electron-transfer rates in these complexes between 5x10¹⁰ sec⁻¹ and 10¹² sec⁻¹. In comparison to the singlet reactivity reported here, the singlet state of [Ir₂(Pz)₂(COD)₂] was found to be unreactive in an earlier bimolecular electron-transfer study.^{3d,8} This lack of reactivity was attributed to its subnanosecond fluorescence lifetime. This shorter lived state can be intercepted by a rapid quenching process in the donor-acceptor complexes, presumably because the two redox partners are only several bond rotations away from being within the required distance for rapid electron transfer. Thus, covalently linking pyridinium cations to an iridium dimer chromophore appears to be essential for observing singlet excited state ET reactions. In addition, these reactions must have almost activationless thermal barriers, considering their substantial unimolecular rate constants. A more detailed account of the electron-transfer reactions seen in the donor-acceptor systems will be presented in chapter 4.

Electrochemistry

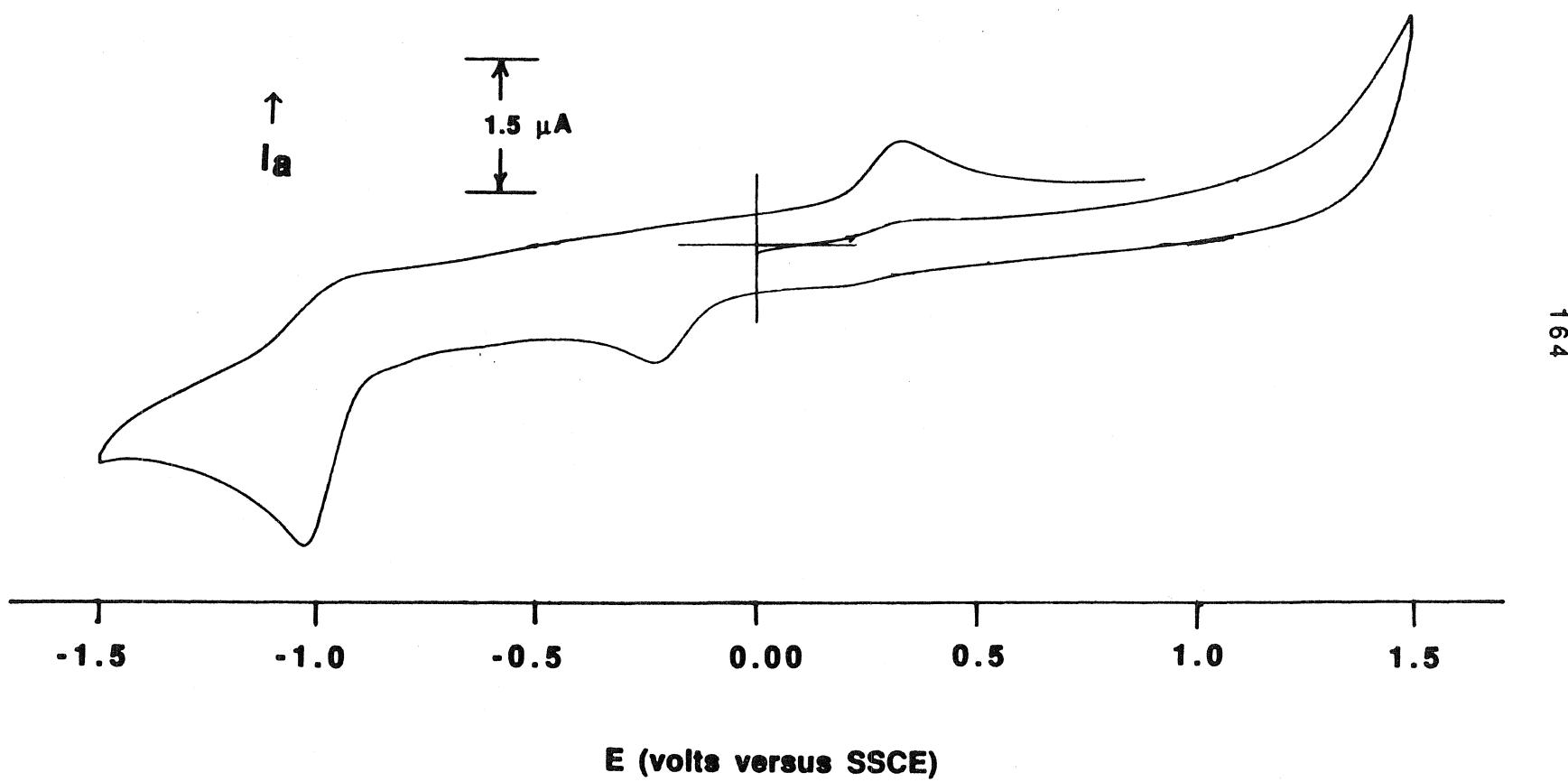
Previous studies regarding the electrochemical properties of d⁸-d⁸ metal dimers have played an important role in our understanding of the thermodynamic and kinetic factors that control their ground and excited state redox reactions. Electrochemical studies have lead to the generation and characterization of both d⁸-d⁷ and d⁷-d⁷ complexes. These species have been identified as key intermediates in photocatalytic cycles involving Pt₂(P₂O₅H₂)₄²⁻ and Ir₂(TMB)₄²⁺.^{22,1,3} In some instances stable d⁸-d⁷ complexes have been generated and characterized by electronic spectroscopy and x-ray crystallography.^{21e,f} In addition, recent electrochemical studies involving Rh₂(TMB)₄²⁺ have indicated that its one electron oxidized state, Rh₂(TMB)₄³⁺, is a reactive C-H bond activation catalyst.²² These results have greatly enhanced our understanding of the excited state properties of d⁸-d⁸ complexes by uncovering a new type of ground state reactivity.

The electrochemical properties of the donor-acceptor and model compounds were of interest from several different standpoints. An understanding of the reaction exoergicities found in the donor-acceptor systems is important in characterizing their excited state electron-transfer reactions. Based on arguments presented below, a good estimate of the reaction driving force for photoinduced electron-transfer in our compounds can be obtained from the one electron redox potentials of their iridium metal centers and pyridinium cations and the spectroscopic energies of their ¹B, ³B excited states. Thus, one goal of our electrochemical studies was to measure the one electron redox potentials for the iridium dimer chromophores and pyridinium cations. In chapter four, the photophysics of the donor-acceptor complexes is explored using picosecond time-resolved absorption spectroscopy. In principle an iridium dimer cation species, [Ir₂(Pz^{*})₂(CO)₂(Ph₂POR)₂]⁺, should be one of several transients produced in these experiments. Identifying this species in time-resolved absorption spectra of the donor-acceptor complexes would be greatly facilitated, if an

$[\text{Ir}_2^+(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{PR})_2]$ d⁸-d⁷ complex could be electrochemically generated and characterized. Finally, it was of interest to determine how covalently linking two pyridinium electron acceptors to an iridium dimer complex perturbs its one electron oxidation potentials. If sufficient ground state electronic coupling exists between the iridium metal centers and pyridinium cations in these systems, the electronic properties of both redox partners should be affected. While evidence for ground state donor-acceptor interactions was not observed in any of the electronic spectra presented earlier, electrochemical experiments offered an additional opportunity for investigating electron coupling effects.


Previous studies have indicated that the electrochemical behavior of d⁸-d⁸ dimers strongly depends on the nature of the solvent and supporting electrolyte.^{21d,e,g} Much like d⁸ monomers, these complexes have a propensity to acquire axial ligands upon oxidation. Thus, the presence of axial ligands as either a coordinating solvent or supporting electrolyte can drastically effect the shape of the waves in cyclic voltammograms of these compounds. Cyclic voltammograms (CV) of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ in 0.1 M TBAPF₆/CH₃CN showed a single irreversible oxidation wave with $E_{\text{pa}} = 0.33$ V and an irreversible electrode process at $E_{\text{pc}} = -0.84$ V corresponding to the reduction of an $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2]^{n+}$ species.⁴³ While this behavior was not investigated in detail, it is presumed that the irreversible nature of both these couples is related to a complex process involving the coordination of one or more acetonitrile molecules to the oxidized iridium dimer. To avoid these complicating factors, CV experiments concerning the donor-acceptor complexes and model compounds were carried out in 0.1 M TBAP₆/CH₂Cl₂ solutions. In some instances complexes containing 3,5-dimethyl-4-isobutyl-pyrazole ligands were used due to the poor solubility of the corresponding 3,5-dimethylpyrazole complexes in methylene chloride. Differences between these compounds and those containing 3,5-dimethylpyrazole bridging ligands

will be discussed when necessary. The following section details our results concerning the electrochemistry of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$, $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_3$, and the donor-acceptor complexes as seen in their cyclic voltammograms and bulk electrolysis data.


[$\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$]: Cyclic voltammograms of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ in 0.1 M TBAPF₆/CH₂Cl₂ solutions, taken at a BAS platinum button working electrode, show two electrochemical couples within the potential window between -1.5 and 1.5 volts (figure 3.9). Values of E_{pc} , E_{pa} , ΔE , and $E_{1/2}$ for the first electrode process ($E_{p,a}=0.34$ volts) were constant as a function of scan rate(v) for $v=20$ to 500 mv/sec. Ratios of the anodic and cathodic peak currents for this couple varied between 1.3 and 1.1 and approached unity with increasing scan rate. Similar results were obtained at BAS glassy carbon electrodes. Constant potential bulk electrolysis experiments carried out at a pyrolytic graphite electrode ($E_{app}=0.6$ volts) yielded values of $n=1$ for this oxidation process. These data are consistent with a quasireversible one electron oxidation of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ at $E_{1/2}=0.30$ volts which is followed by a slow chemical reaction. The second electrode process, seen in figure 3.9 at more positive potentials, was found to be irreversible for $v=20$ to 500 mv/sec. This couple is logically assigned to a second one electron oxidation of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2^+$ by analogy to results from a recent study concerning $[\text{Ir}_2(\text{Pz})_2(\text{COD})_2]$.^{21g} Because our interest in this study was focused primarily on the one electron oxidation of the model compounds and donor-acceptor complexes, this couple and its analogs in other systems were not investigated in detail.

Additional information regarding the nature of the chemical reactions which follow the one electron oxidation of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ was obtained by examining cyclic voltammograms and infrared spectra of methylene chloride solutions of

Figure 3.9. Cyclic voltammograms of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ in 0.1 M TBAPF₆/CH₂Cl₂. This compound shows two single electron oxidations between 0.0 and 1.5 volts versus SSCE.

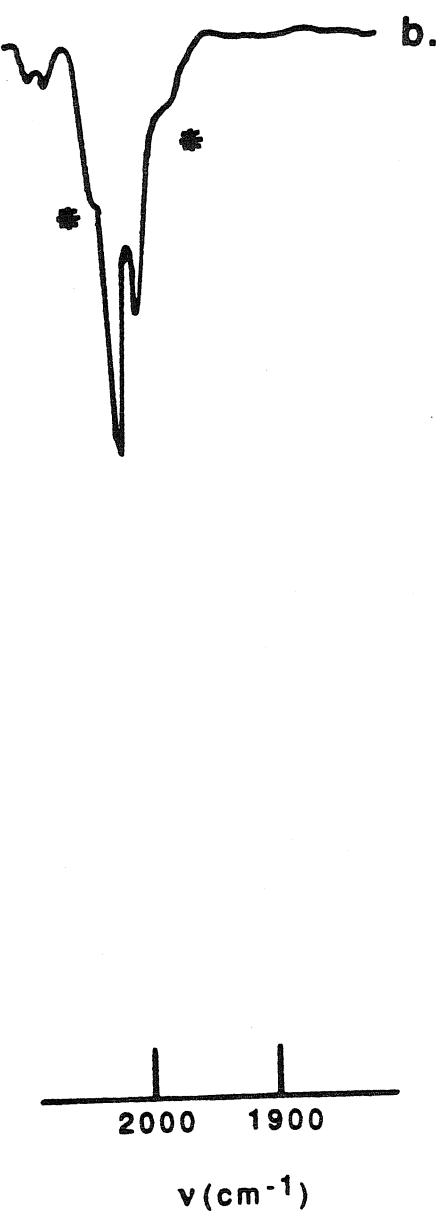
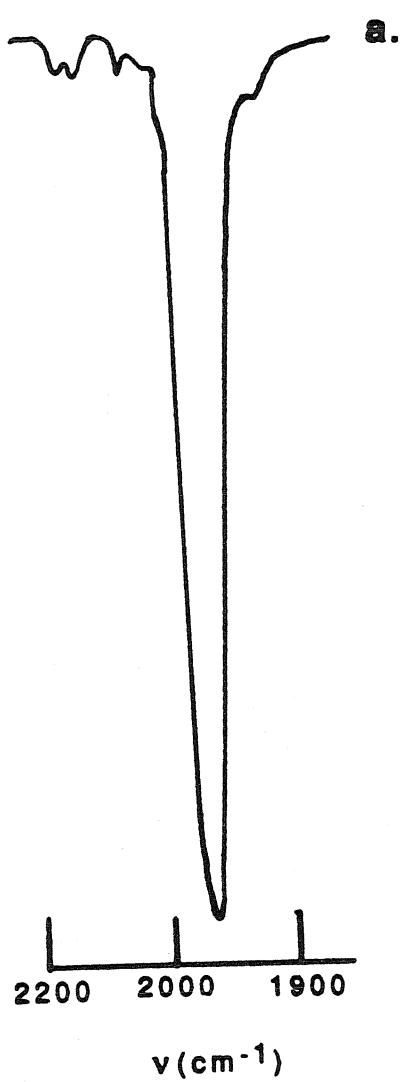
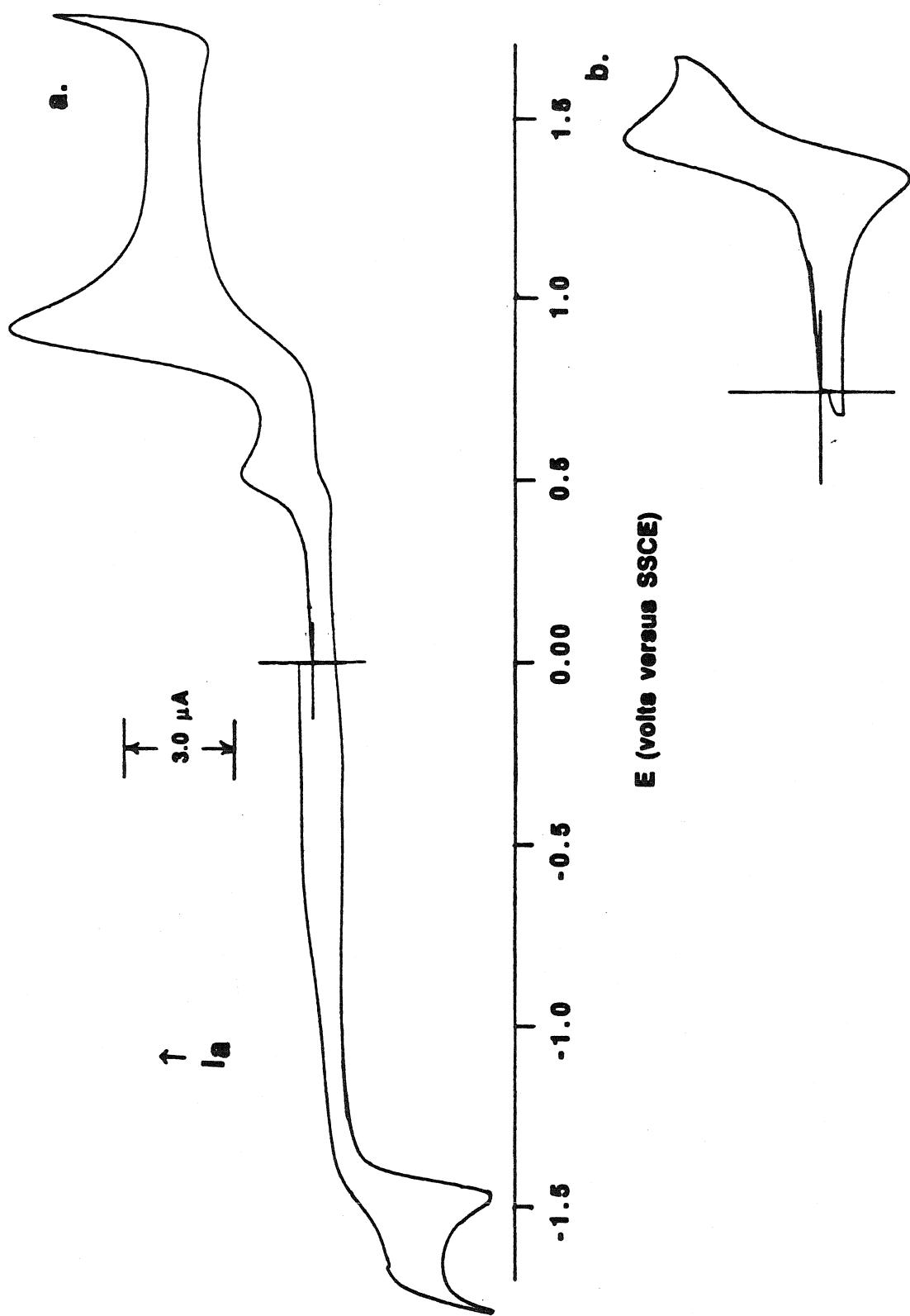



Figure 3.10. Cyclic voltammogram of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ following bulk electrolysis at $E_{\text{app}}=0.6$ volts. $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2^+$ is not chemically stable on a bulk electrolysis time scale and reacts to form two unidentified products $E_{\text{pc}}=-0.23$ and $E_{\text{pc}}=-1.0$ volts.

this complex following bulk electrolysis. Electrochemical oxidation of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ at a pyrolytic graphite electrode ($E_{\text{app}} = +0.6$ volts) produces a color change from orange/red to light yellow. The intense visible absorption bands characteristic of the starting material decrease in intensity over the course of the experiment and are replaced by a higher energy absorption feature at $\lambda_{\text{max}}=376$ nm. Cyclic voltammograms of the electrolysis products are substantially different from CVs of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$. As seen in figure 3.10, in addition to the quasireversible couple at $E_{1/2}=+0.30$ volts discussed earlier, CVs of the electrolysis products show two irreversible couples at $E_{\text{pc}}=-0.23$ volts and $E_{\text{pc}}=-1.0$ volts. Scanning cathodically over either of these couples in CV experiments leads to the formation of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ as indicated by the appearance of its oxidation wave at 0.3 volts. Bulk electrolysis of product solutions at potentials greater than -1.0 volts regenerates $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ in almost quantitative yield. These data show that the reactions associated with the oxidation of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ are chemically reversible and that both electrolysis products are related to their d⁸-d⁸ precursor via what is presumed to be a one electron reduction. Specifically, they indicate that the metal-metal unit in the oxidized complex remains intact. If $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2^+$ fragmented into its corresponding monomers, it is not likely that electrochemically reducing these monomers would efficiently regenerate $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$. In addition, the absence of either the -0.23 or -1.0 volt electrode couples in CVs of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ supports the premise that the one electron oxidation of this complex can be characterized by an "ECE type" mechanism where the following chemical step does not significantly perturb the reversible electrode process.²³

Figure 3.11. Infrared spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ in methylene chloride, a) before and b) following bulk electrolysis at $E_{\text{app}}=0.6$ volts. Asterisks in part b) label bands due to the solvent. The single CO band in the reactants splits into two separate bands in the products which are assigned to the symmetric and asymmetric CO modes. The stronger interaction between these two modes in spectrum b is consistent with the formation of a partial metal-metal bond in the electrolysis products.



Solution IR spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ and its electrolysis products show features that are consistent with the oxidation of the compound's iridium metal centers. As seen in figure 3.11, the broad band at $\nu=1960 \text{ cm}^{-1}$, attributed to overlapping symmetric and asymmetric CO vibrational modes in $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$, shifts to higher frequency in spectra of the electrolysis products and splits into two well resolved bands with maxima at $2,150 \text{ cm}^{-1}$ and $2,000 \text{ cm}^{-1}$. These bands are assigned to the symmetric ($\nu_A=2,150 \text{ cm}^{-1}$) and asymmetric ($\nu_B=2,000 \text{ cm}^{-1}$) CO vibrations in the products.^{24,41} In addition, the larger splitting between the symmetric and asymmetric CO bands in the product is consistent with an increase in the metal-metal bond order that would accompany the oxidation of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$.^{21f}

Unfortunately, these data say very little concerning the structures of the two electrolysis products. Several possibilities can be offered based on related d^8 - d^8 systems. One plausible reaction, which could follow the oxidation of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$, is the sequential coordination of PF_6^- counter ions to the dimer's axial coordination sites. The coordination of weak field ligands to d^8 - d^7 systems has been previously reported in studies involving $\text{Rh}(\text{Dimen})_4^{2+}$ and a series of different counter ions ($\text{PF}_6^- < \text{ClO}_4^- < \text{Cl}^-$).^{21d} A more remote possibility would involve the oligomerization of the oxidized metal dimers. A similar dimerization reaction is known to occur in solutions of $\text{Rh}_2(\text{Bridge})_4^{3+}$.²⁵ It is clear, however, that the nature of the electrolysis products formed from $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ is an area that is open to speculation and to further detailed investigations.

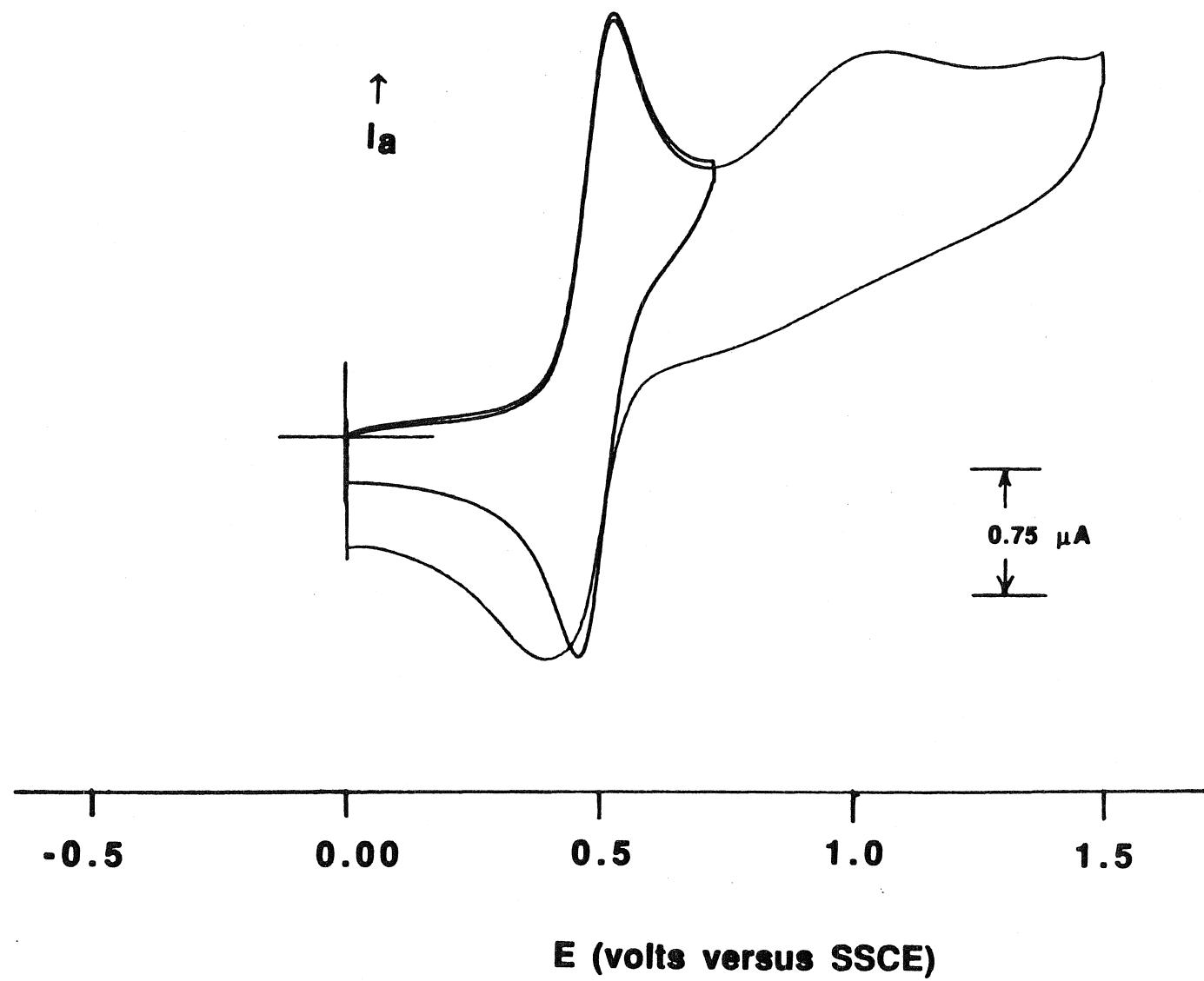

Donor-Acceptor Complexes: Cyclic voltammograms of the donor-acceptor compounds were, in general, qualitatively similar. Features common to all of these complexes are exemplified by the CVs of

Figure 3.12. Cyclic voltammograms of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2^- \text{246Me}_3\text{Py}^+)_2$ in 0.1 M TBAPF₆/CH₂Cl₂ solutions. Part a shows all of the redox couples seen in CVs of the donor-acceptor complexes between ± 1.5 volts. Part b shows that a return wave for the couple at $E_{pa}=0.5$ volts can be observed if the potential scan direction is reversed at the foot of the tetraphenylborate wave.

$\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2(\text{Ph}_4\text{B})_2$ seen in figure 3.12. Final electrochemical parameters for these compounds are summarized in table 3.8. In contrast to $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$, CVs of the donor-acceptor compounds show three electrochemical couples in the potential range between +1.5 and -1.5 volts versus SSCE. The two anodic couples, found at $E_{\text{pa}}=0.5$ volts and $E_{\text{pa}}=0.95$ volts, appear at approximately the same peak potentials in all the donor-acceptor complexes and were observed in CVs of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-NEt}_3^+)_2(\text{Ph}_4\text{B})_2$ as well. The peak potentials of the cathodic couple, found at $E_{\text{pc}}=-1.47$ volts in figure 3.12a, varied as a function of the pyridinium cation in the donor-acceptor complexes and was absent in CVs of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-NEt}_3^+)_2$. This couple is assigned to the one electron reduction of the two covalently bound pyridinium cations in the donor-acceptor systems. The irreversible nature of this electrode process can be attributed to the rapid dimerization reactions of pyridyl radicals.²⁶ Control experiments involving CVs of $(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)(\text{Ph}_4\text{B})$ and TBA(Ph_4B) verified that the irreversible couple at $E_{\text{pa}}=0.95$ volts is due to the electrochemical oxidation of Ph_4B^- . If the scan direction was reversed at the foot of this wave, a return wave was observed for the couple at $E_{\text{pa}}=0.5$ volts (figure 3.11b). Scan rate dependence studies in a potential window between 0.0 and 0.6 volts indicated that the values of E_{pa} , E_{pc} , ΔE , and $E_{1/2}$ for this couple were scan rate independent for $v=20$ to 500 mv/sec. Bulk electrolysis experiments regarding this oxidation process were precluded in the donor-acceptor compounds by its proximity to the oxidation of Ph_4B^- . However, as seen in figure 3.13, CVs of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-NEt}_3^+)_2(\text{PF}_6)_2$ contain an identical quasireversible electrochemical couple. Bulk electrolysis of this complex at a pyrolytic graphite electrode($E_{\text{app}}=+0.7$ volts) yielded a value of $n=1$ for this electrode process. Reduction of the electrolysis products at $E_{\text{app}}=-1.0$ volts regenerated $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-NEt}_3^+)_2$ in close to quantitative yield. These data

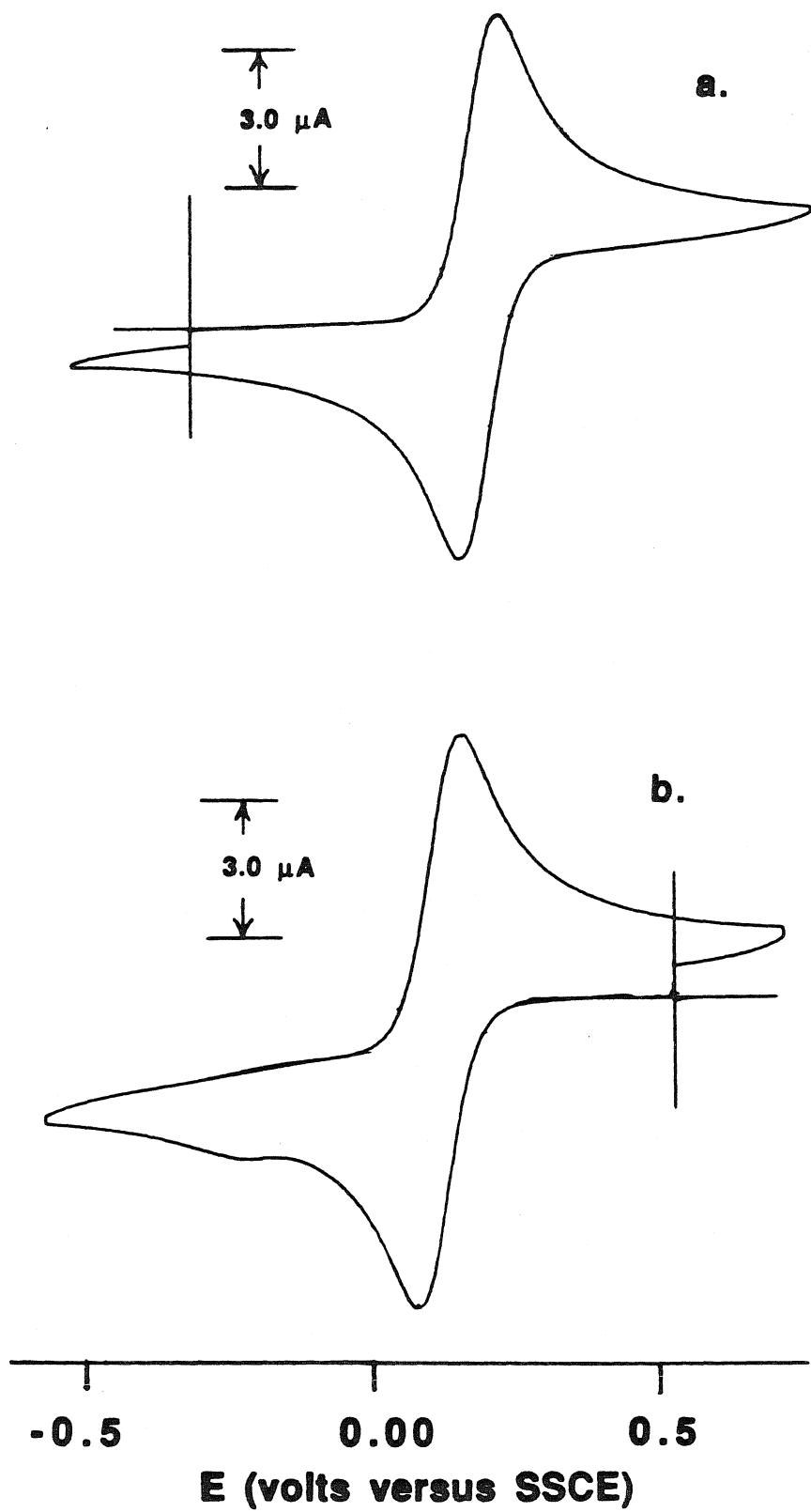
Figure 3.13. Cyclic voltammograms of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{NEt}_3^+)_2(\text{PF}_6^-)_2$ in 0.1 M TBAPF₆/CH₂Cl₂.

indicate that this electrochemical couple in CVs of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$ and $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-NEt}_3^+)_2$ corresponds to the one electron oxidation of their iridium metal centers. Analogous quasireversible waves were seen in CVs of $\text{Ir}_2(\text{Pz}^{**})_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4MePy}^+)_2$, $\text{Ir}_2(\text{Pz}^{**})_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py}^+)_2$, and $\text{Ir}_2(\text{Pz}^{**})_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4PhPy}^+)_2$ at $E_{1/2} \approx 0.42$ volts. The 50 mv difference between the oxidation potential of these compounds and $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$ can be attributed to their more electron donating 3,5-dimethyl-4-isobutylpyrazole ligands. Similar trends have been observed in the photoelectron spectra of a series of $[\text{Ir}_2(\text{Pz})_2(\text{CO})_4]$ complexes (Pz=pyrazole, 3-methylpyrazole, and 3,5-dimethylpyrazole).²⁷

A careful examination of the redox potentials for the donor-acceptor complexes and model compounds reveals an important trend in their electrochemical properties. As seen in table 3.8, the oxidation potentials of the donor-acceptor complexes lie approximately 150 mv anodic of the oxidation potential of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$. In addition, the oxidation potentials of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-NEt}_3^+)_2$ and $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$ are the same within experimental error. These findings indicate that the donor-acceptor compounds and $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-NEt}_3^+)_2$ are more difficult to oxidize due to their overall 2+ charge. Our data show little evidence for ground state electronic interactions between the iridium metal centers and pyridinium cations in the donor-acceptor complexes.

$[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_2]$: Cyclic voltammograms of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_2$ show two anodic electrode processes at $E_{pa}^{(1)}=0.2$ volts and $E_{pa}^{(2)}=1.3$ volts, which are qualitatively similar to the electrochemical couples observed in CVs of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$. Values of E_{pa} , E_{pc} , $E_{1/2}$, and ΔE for the first electrode process were independent of scan rate and $I_{pa}/I_{pc}=1.0$ for $v=20$ to 500

Table 3.8: Electrochemical Potentials for the Iridium Dimer Complexes.^a


Complex	$\text{Ir}_2 \rightarrow \text{Ir}_2^+ + e^-$				$e^- + \text{Py}^+ \rightarrow \text{Py}$
	E_{pa}	E_{pc}	ΔE	$E_{1/2}$	
$\text{Ir}_2(\text{Pz})_2(\text{CO})_2\text{L}_2$	V	V	mv	V	V ^c
$\text{Ph}_2\text{OCH}_2\text{CH}_2\text{-NEt}_3(\text{Ph}_4\text{B})$	0.52	0.43	90	0.48	--
$\text{Ph}_2\text{OCH}_2\text{CH}_2\text{-NEt}_3(\text{PF}_6)$	0.53	0.43	100	0.48	--
$\text{Ph}_2\text{OCH}_2\text{CH}_3$	0.35	0.26	90	0.30	--
$\text{Ph}_2\text{OCH}_2\text{CH}_2\text{-Me}_3\text{Py}$	0.52	0.42	110	0.47	-1.49
$\text{Ph}_2\text{OCH}_2\text{CH}_2\text{-4MePy}^b$	0.47	0.37	100	0.42	-1.32
$\text{Ph}_2\text{OCH}_2\text{CH}_2\text{-Py}^b$	0.44	0.36	80	0.40	-1.17
$\text{Ph}_2\text{OCH}_2\text{CH}_2\text{-4PhPy}^b$	0.47	0.37	100	0.42	-1.10

a. Measured in 0.1 M TBAPF₆/CH₂Cl₂ versus SSCE.b. Potentials were measured using a 4-isobutyl-3,5-dimethylpyrazole derivative due to the poor solubility of the 3,5-dimethylpyrazole derivative in CH₂Cl₂.

c. Peak potentials measured at a sweep rate of 100 mv/sec.

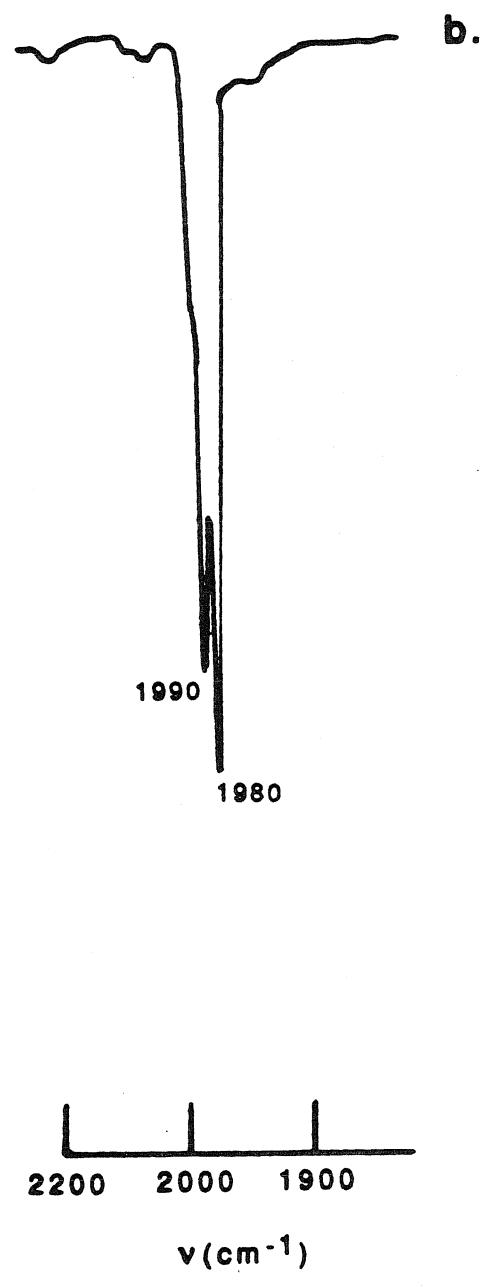

mv/sec. These data indicated that $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_2$ was a suitable system for electrochemically generating and characterizing a stable d^8-d^7 A-frame complex. Bulk electrolysis of this complex, in 0.1 M TBAPF₆/CH₂Cl₂ solutions at a platinum basket electrode ($E_{\text{app}}=0.4$ volts), produced a color change from red/orange to light yellow and yielded a value of $n=1$ for this redox process. The intense $d \rightarrow p$ transitions attributed to the starting material decrease in intensity during the electrolysis experiment and are replaced by absorption bands characteristic of the electrolysis products. As seen in figure 3.14, CVs of the electrolysis products are nearly identical to CVs of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_2$. Thus, in contrast to $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2]^+$, $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_2]^+$ is a chemically stable species under the prevailing reaction conditions. IR spectra of this d^8-d^7 complex were similar to those seen earlier for the $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2]^{0/+}$ system. As in IR spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ and its corresponding cations, ν_{CO} for $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_3]^+$ is greater than ν_{CO} for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_2$ (figure 3.15 $\nu_A=1990 \text{ cm}^{-1}$; $\nu_B=1980 \text{ cm}^{-1}$). Electronic absorption spectra of $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_2]^+$ show four bands with maxima at 373 nm, 460 nm, 500 nm, and 770 nm (figure 3.16). Extinction coefficients for these transitions were estimated from the known concentration of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_2$ in the electrolysis experiment. The intense band at 373 nm is assigned to a $^2\text{B} \rightarrow ^2\text{A}$ ($d\sigma \rightarrow d\sigma^*$) electronic transition by analogy to a similar spectroscopic feature found in spectra of $\text{Rh}_2(\text{Bridge})_4^{2+}$.²⁸ The weaker bands at 460 nm and 500 nm are tentatively assigned to ligand field transitions ($d_{xz}, d_{yz} \rightarrow d\sigma^*$). The broad low energy transition at 770 nm is not assigned.²⁹

Figure 3.14. Cyclic voltammograms of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_2$ a) before and b) following bulk electrolysis at $E_{\text{app}}=0.4$ volts. CVs of the reactant and product of this reaction are identical, indicating that $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_2^+$ is a chemically stable species.

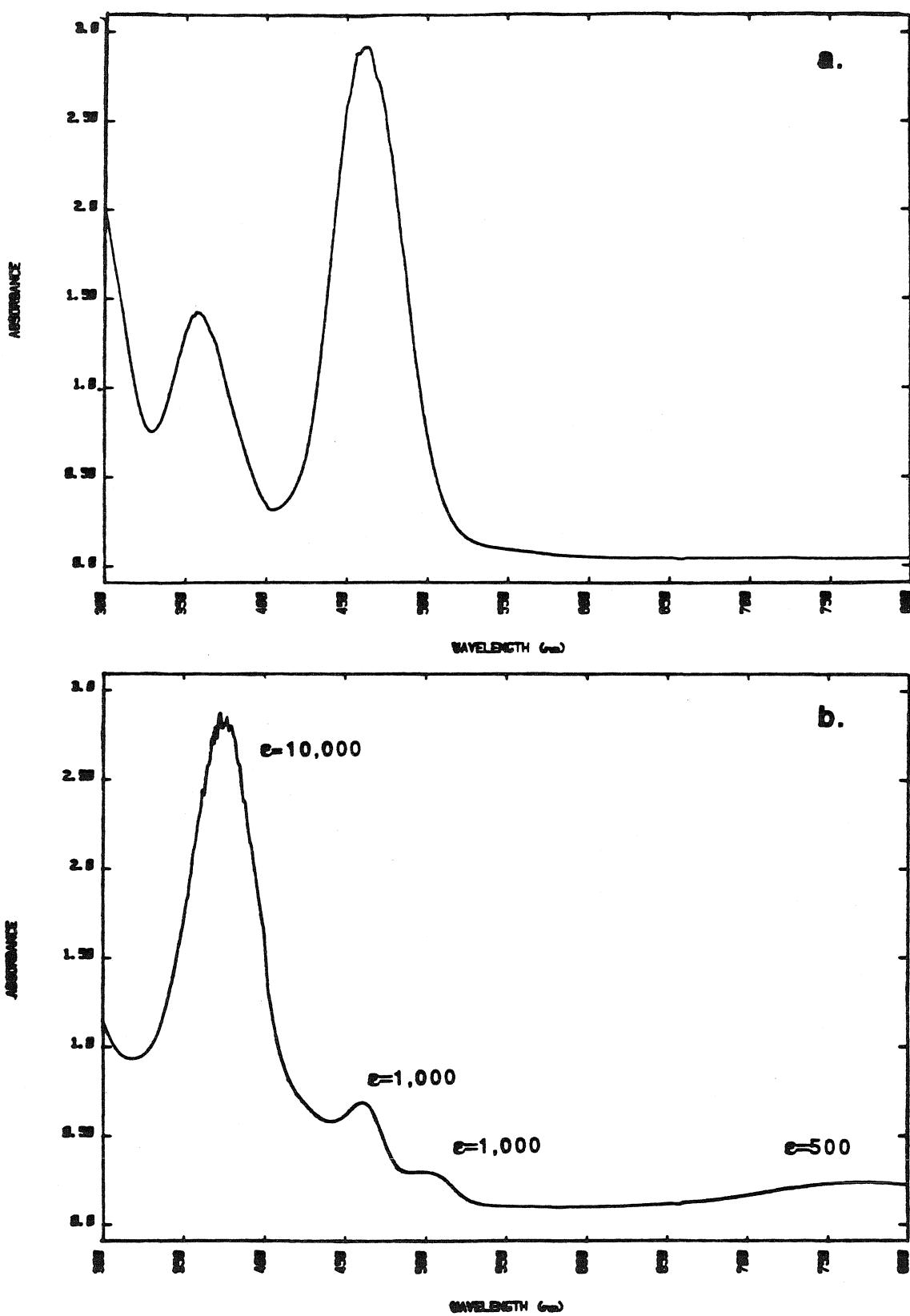


Figure 3.15. Infrared spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_2$ in methylene chloride
a)before and b) following bulk electrolysis.

180

Figure 3.16. Electronic absorption spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_2$ a) before and b) following bulk electrolysis. During the electrolysis experiment the ${}^1\text{A} \rightarrow {}^1\text{B}$ ($\text{d}\sigma^* \rightarrow \text{p}\sigma$) absorption band of the reactants disappears and is replaced by an intense feature at 377 nm which is assigned to a ${}^2\text{B} \rightarrow {}^2\text{A}$ ($\text{d}\sigma \rightarrow \text{d}\sigma^*$) transition.

Excited State Energetics

A central objective of our studies, regarding the electrochemical and spectroscopic properties of the donor-acceptor compounds, was to determine estimates for electron-transfer driving forces. This type of information is important from several stand points. First, reaction exoergicity is known to be a fundamental kinetic parameter in electron-transfer reactions.³⁰ The driving force dependence is an important characteristic of an electron-transfer process, because exoergicity, along with inner-sphere and outer-sphere reorganization energies, determines the thermal barriers to electron transfer. Secondly, in contrast to a bimolecular ET system, the charge separated state in the donor-acceptor complexes can be thought of as an additional molecular electronic state. Characterizing the relative energies of the metal localized (¹B and ³B) and charge-transfer (CT) states in the donor-acceptor systems is important to understanding their photophysical properties.

The reaction exoergicities in the donor-acceptor complexes can be estimated from the one electron oxidation and reduction potentials of their ¹B and ³B excited states, and pyridinium cations using the spectroscopic and electrochemical data presented in this chapter.^{31,32} The oxidation potential of the ¹B and ³B excited states are given by equations 3.3a and b.

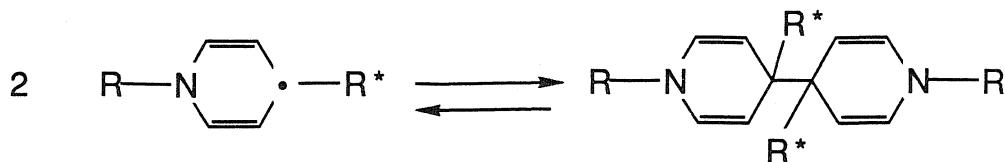
$$E^\circ(\text{Ir}_2; {}^1\text{B}/\text{Ir}_2^+) = E_{\text{oo}}({}^1\text{B}) - E_{1/2}(\text{Ir}_2/\text{Ir}_2^+) \quad \text{eq. 3.3a}$$

$$E^\circ(\text{Ir}_2; {}^3\text{B}/\text{Ir}_2^+) = E_{\text{oo}}({}^3\text{B}) - E_{1/2}(\text{Ir}_2/\text{Ir}_2^+) \quad \text{eq. 3.3b}$$


These equations are essentially electrochemical analogs of Förster's equations for excited state acid-base reactions as discussed by Grabowski *et al.*³³ They assume that $\Delta H(M^*/M^+) - \Delta H(M/M^+) = E_{\text{oo}}(M^*)$ and $\Delta S(M^*/M^+) - \Delta S(M^*/M^+) \approx 0$. The former assumption is reasonable for condensed phase reactions at 1 atm. The validity of the

latter assumption depends on the nature M and M*. Differences in the entropy of the ground and excited states of a molecule can arise from several different effects: 1) changes in dipole moment that lead to changes in solvation, 2) changes in internal degrees of freedom, and 3) changes in orbital and spin degeneracies. This last factor can usually be neglected, because it amounts to about 0.03 eV at 25° C.³¹ Changes in solvation are not likely to contribute to $\Delta\Delta S$ in the donor-acceptor systems due to the low polarity of the ¹B and ³B metal localized excited states. Entropy effects due to changes in a chromophore's internal degrees of freedom are difficult to predict. However, a good estimate of $\Delta\Delta S$ can be obtained from the Stoke's shift between a compound's absorption and emission maxima; larger Stoke's shifts are associated with larger entropy changes. Previous studies have indicated that the triplet state oxidation potentials for $[\text{Ir}_2(\text{Pz})_2(\text{COD})_2]$, obtained from equation 3b and from bimolecular quenching studies are the same within experimental error; this compound's Stoke's shift is approximately 2500 cm^{-1} .⁸ Considering that the Stoke's shift for the donor-acceptor complexes is a factor of two greater than this value suggests that $\Delta\Delta S$ contributions in these complexes are negligible as well. Thus, a knowledge of E_{oo} and $E_{1/2}$ is required to estimate the excited state redox potentials of the ¹B and ³B excited states in these complexes. Values of $E_{\text{oo}}(\text{¹B})$ and $E_{\text{oo}}(\text{³B})$ were estimated from the arithmetic mean of their corresponding emission and absorption maxima. This procedure yields exact values of E_{oo} provided that the ground and excited state vibrational frequencies for the complexes are the same.³⁴ However, the ground and excited state metal-metal vibrational frequencies in d⁸-d⁸ complexes are known to differ by as much as 100 cm^{-1} . The error incurred by using this approximation was found to be about $\pm 150 \text{ cm}^{-1}$ by carrying out similar calculations on $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{2-}$ and $\text{Rh}_2(\text{Bridge})_4^{2+}$. The oxidation potential of the iridium dimer chromophore is approximated as the average of the oxidation potential for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ and $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-NEt}_3^+)_2$ based on the following argument. In contrast

to a bimolecular ET reaction, charge in a donor-acceptor system is redistributed with a single molecular unit, rather than transferred from one molecule to another. As seen in equation 3.4, the electron-transfer reactions in the $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{--Q}^+)_2$ systems can be formally characterized by the redistribution of a positive charge from a single pyridinium cation (Q^+) to a pair of iridium metal centers.



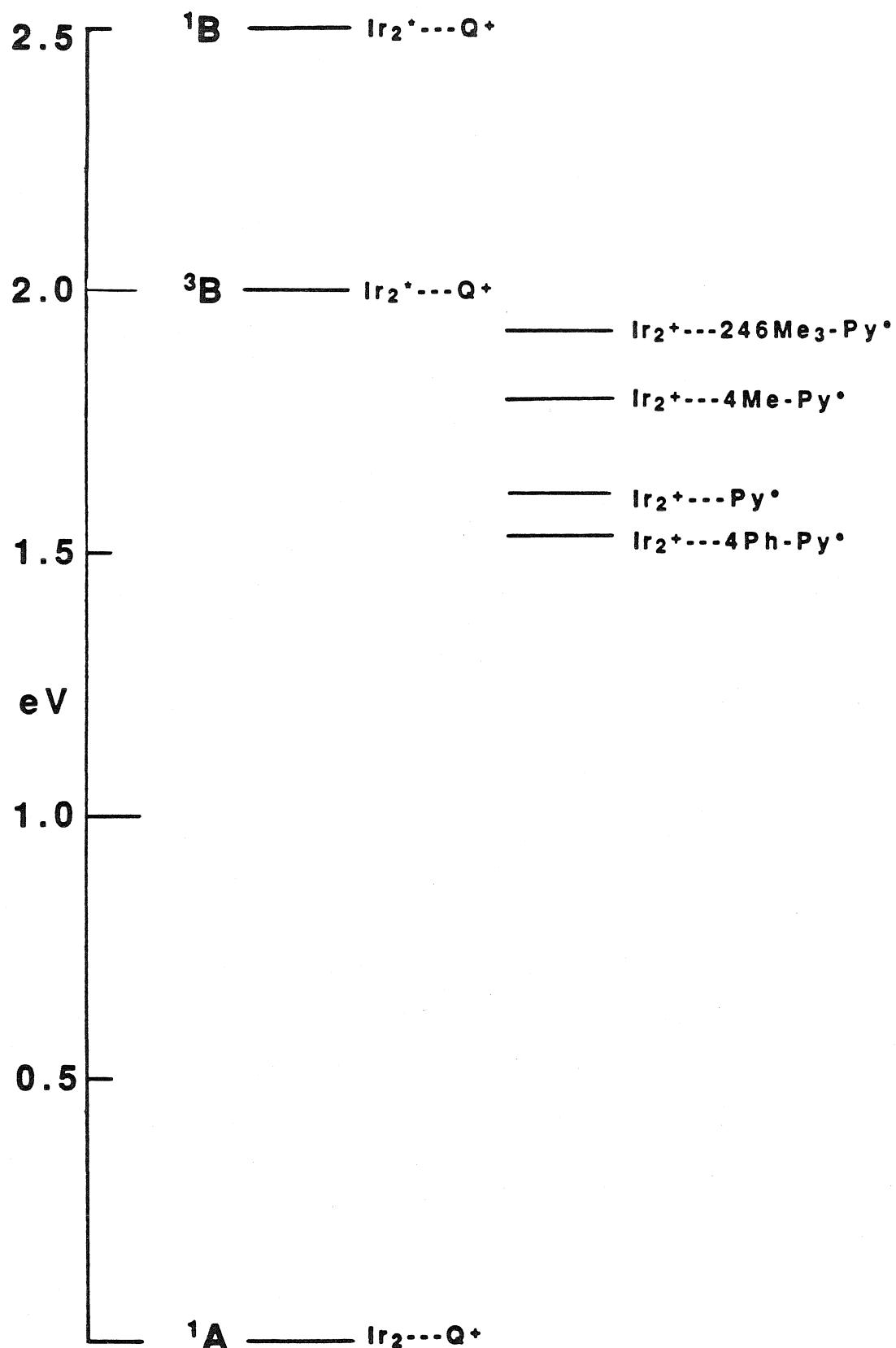
Within this formalism the oxidation half reaction for the donor-acceptor complexes is represented by the one electron oxidation of their iridium metal centers under the influence of a single pyridinium cation (equation 3.5.).

The redox potential for this half reaction could be easily determined using a complex that contains one neutral and one charged phosphinite ligand. However, asymmetrically substituted compounds are not readily prepared. It was shown in the previous section that the pyridinium cations alter the oxidation potentials of the donor-acceptor complexes by acting as inert electrostatic charges. Assuming that these effects are additive, a good estimate for the redox potential of reaction 5 is the mean value of the oxidation potential of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ and $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{--NEt}_3^+)_2$.

Determining reduction potentials for the pyridinium cations in the donor-acceptor complexes is complicated by the dimerization reactions of pyridyl radical, which distort the pyridinium CV waves.²⁶ Earlier studies have established that pyridyl radicals exist in solution in equilibrium with their "4,4'-dihydropyridine like" counter parts (equation 3.6.).³⁵

eq. 3.6

At room temperature these reactions take place at approximately $10^8 \text{ M}^{-1}\text{s}^{-1}$, favoring the dihydrobipyridine adduct. When R is an electron withdrawing substituent, such as CN or a carbomethoxy group, K_{eq} is approximately 10^5 M^{-1} ; For $\text{R}^* = \text{alkyl or H}$, K_{eq} is greater than 10^{11} M^{-1} . Electrochemical EC mechanisms, involving dimerization reactions such as those surrounding pyridyl radicals, have been discussed in detail by Saveant *et al.*³⁶ According to the kinetic analysis reported by these authors, the characteristics of an EC electrochemical couple are a function of the sweep rate (v), substrate concentration (C_0), and equilibrium constant and rate constant for the dimerization reaction. The dimerization rates for the type of pyridinium cations employed in the donor-acceptor complexes place their electrochemical couples in the pure kinetic region of a $\log\lambda$ versus $\log\chi$ plot. Under these conditions, the value of $E_{1/2}$ for their one electron reduction is related to their peak potentials through equation 3.7;


$$E_{1/2} = E_{\text{pc}} + 0.058 - 0.0197 \log \left[\frac{kC_0}{v} \right] \text{ eq. 3.7.}$$

where k is the dimerization rate constant. Reduction potentials for the pyridinium cations in the donor-acceptor complexes were calculated from their peak potentials using equation 3.7 and are summarized in table 3.9. This analysis assumes that the dimerization rate constants for pyridyl radicals bound to the donor-acceptor compounds can be approximated by rate constants for free pyridyl radicals.

Using the spectroscopic and electrochemical data found in table 3.9, an approximate state diagram for the donor-acceptor systems can be constructed. As seen

in figure 3.17, in addition to their 1B and 3B metal localized excited states, each of the donor-acceptor complexes possesses a charge-transfer state whose energy varies with the reduction potential of the compound's covalently attached pyridinium cation. Notably, the charge-transfer states in the complexes are all well below the 3B excited state; However, no evidence for direct electronic transitions between these CT states and the 1A ground state was found in the electronic absorption and emission spectra of the compounds. Such transitions might be loosely thought of as analogs of the MLCT transitions associated with $M(CO)_5(Py-R)$ ($M=W$, $R=CN$, Ph , Cl , etc.) or $M(Bipy)_3^{3+}$ ($M=Ru$ or Os) complexes³⁹. Absorption bands corresponding to a direct optical charge-transfer process must be low enough in intensity in the donor-acceptor complexes that they are not detected with our instrumentation. Based on the photophysical data presented in table 3.7, k_r for the $^3B \rightarrow ^1A$ transition in these compounds is approximately 10^4 sec^{-1} . The absence of $^1A \rightarrow \text{CT}$ absorption bands in their electronic spectra suggests that k_r for this process is less than 10^4 sec^{-1} . In the following chapter we will see that the excited state lifetimes of the CT state in the donor-acceptor compounds ranges from 100 ps to 10 ns. These relatively short lifetimes must correspond to rapid nonradiative charge recombination reactions, which return these systems to their ground states. Thus, charge separation in our donor-acceptor systems occurs via excited state electron transfer, involving the 1B and 3B excited states of their iridium dimer redox chromophores, and charge recombination occurs by a primarily nonradiative process.

Figure 3.17. A state diagram for the donor-acceptor systems, constructed from the spectroscopic and electrochemical data found in table 3.9. While the charge-transfer states in these complexes are energetic enough to have absorption bands in the visible and near IR, such absorption features were not observed.

Table 3.9: Final Energetic Parameters for the Donor-Acceptor Complexes.

Transition	E(ev)	σ
$^1\text{A} \rightarrow ^1\text{B}$	2.5	± 0.02
$^1\text{A} \rightarrow ^3\text{B}$	2.0	± 0.02
$\text{Ir}_2 \rightarrow \text{Ir}_2^+ + \text{e}^-$	0.39	± 0.03
$\text{Ir}_2(^1\text{B}) \rightarrow \text{Ir}_2^+ + \text{e}^-$	2.11	± 0.04
$\text{Ir}_2(^3\text{B}) \rightarrow \text{Ir}_2^+ + \text{e}^-$	1.61	± 0.04
$\text{e}^- + 246\text{Me}_3\text{-Py}^+ \rightarrow 246\text{Me}_3\text{-Py}$	-1.53	± 0.05
$\text{e}^- + 4\text{Me-Py}^+ \rightarrow 4\text{Me-Py}$	-1.40	± 0.05
$\text{e}^- + \text{Py}^+ \rightarrow \text{Py}$	-1.22	± 0.05
$\text{e}^- + 4\text{Ph-Py}^+ \rightarrow 4\text{Ph-Py}$	-1.14	± 0.05

References

- 1a. Zipp, A. P., *Coord. Chem. Rev.*, **1988**, *84*, 47-83.
- b. Marshall, J. L.; Stiegman, A. E.; Gray, H. B., *ACS Symp. Ser.*, **1986**, *307*, 166-176.
- c. Roundhill, D. M., *J. Amer. Chem. Soc.*, **1985**, *107*, 4354-4356.
- d. Che, C.-M.; Lee, W.-M., *J. Chem. Soc. Chem. Comm.*, **1986**, 512-513.
- e. Alexander, K. A.; Stein, P.; Hedden, D. B.; Roundhill, D. M., *Polyhedron*, **1983**, 1389-1392.
- f. Roundhill, D. M.; Atherton, S. F., *submitted for publication*.
- g. Roundhill, D. M.; Atherton, S. J.; Shen, Z.-P., *J. Amer. Chem. Soc.*, **1987**, *109*, 6076-6079.
2. Caspar, J. V.; Gray, H. B., *J. Amer. Chem. Soc.*, **1984**, *106*, 3029-3030.
- 3a. Vlcek, A.; Gray, H. B., *Inorg. Chem.*, **1987**, *26*, 1997-2001.
- b. Harvey, E. L.; Stiegman, A. E.; Vlcek, A.; Gray, H. B., *J. Amer. Chem. Soc.*, **1987**, *109*, 5233-5235.
- c. Vlcek, A.; Gray, H. B., *J. Amer. Chem. Soc.*, **1987**, *109*, 286-287.
- d. Harvey, P. D.; Gray, H. B., *Nouv. J. Chem.*, **1987**, *11*, 595-596.
- 4a. Che, C.-M.; Butler, L. G.; Gray, H. B., *J. Amer. Chem. Soc.*, **1981**, *103*, 7796-7797.
- b. Che, C.-M.; Cho, K.-C.; Chan, W.-S.; Gray, H. B., *Inorg. Chem.*, **1986**, *25*, 4906-4909.
- c. Milder, S. J.; Goldbeck, R. A.; Kliger, D. S.; Gray, H. B., *J. Amer. Chem. Soc.*, **1980**, *102*, 6761-6764.
- d. Marshall, J. L.; Stobart, S. R.; Gray, H. B., *J. Amer. Chem. Soc.*, **1984**, *106*, 3027-3029.

- 5a. Rice, S. F., Ph.D. Dissertation, California Institute of Technology, Pasadena, CA, 1982.
- b. Fordyce, W. A.; Brummer, J. G.; Crosby, G. A., *J. Amer. Chem. Soc.*, **1981**, *103*, 7061-7064.
- c. Rice, S. F.; Miskowski, V. M.; Gray, H. B., *Inorg. Chem.*, **1988**, *manuscript in press*.
- d. Balch, A., *J. Amer. Chem. Soc.*, **1976**, *98*, 8049-8054.
- e. Isci, H.; Mason, W. R., *Inorg. Chem.*, **1985**, *24*, 1761-1765.
- f. Rice, S. F.; Gray, H. B., *J. Amer. Chem. Soc.*, **1981**, *103*, 1593-1595.
- g. Rice, S. F.; Gray, H. B., *J. Amer. Chem. Soc.*, **1983**, *105*, 4571-4575.
- h. Mann, K. R.; Thich, J. A.; Bell, R. A.; Coyle, C. A.; Gray, H. B., *Inorg. Chem.*, **1980**, *19*, 2462-2468.
- i. Stiegman, A. E.; Rice, S. F.; Gray, H. B.; Miskowski, V. M., *Inorg. Chem.*, **1987**, *109*, 1112-1116.
6. Smith, T. P., Ph.D. Dissertation, California Institute of Technology, Pasadena, CA, 1982.
7. Che, C.-M.; Butler, L. G.; Gray, H. B.; Crooks, R. M.; Woodruff, W. H., *J. Amer. Chem. Soc.*, **1983**, *105*, 5492-5494.
8. Marshall, J. L., Ph. D. Dissertation, California Institute of Technology, Pasadena, CA, 1987.
- 9a. Rodman, G. S.; Mann, K. R., *Inorg. Chem.*, **1985**, *24*, 3507-3508.
- b. Kenney, M. I. S.; Kenny, J. W.; Crosby, G. A., *Inorg. Chem.*, **1986**, *25*, 1506-1508.
- c. Rodman, G. S.; Daws, C. A.; Mann, K. R., *Inorg. Chem.*, **1988**, *27*, 3347-3353.
- 10a. Brady, R.; Plynn, B. R.; Geoffroy, G. L.; Gray, H. B.; Peonne, J.; Vaska, L., *Inorg. Chem.*, **1976**, *15*, 1485-1488.
- b. Bandini, A. L.; Banditelli, G.; Bonati, F.; Minghetti, G.; Demartin, F.; Manasuro, M., *J. Organomet. Chem.*, **1984**, *269*, 91-105.

- c. The compound reported in reference b is a monohapto Ir(I) pyrazole complex, which might serve as a suitable monomer system for investigating the higher lying excited states of iridium pyrazolate bridge complexes.
11. King, K. A.; Spellane, P. J.; Watts, R. J., *J. Amer. Chem. Soc.*, **1985**, *107*, 1431-1432.
12. Geoffroy, G.; Isci, H.; Mason, W. R., *Inorg. Chem.*, **1977**, *16*, 1950-1955.
- 13a. The spin-orbit coupling constant for iridium is approximately 4000 cm⁻¹.
- b. Milder, S. J.; Kliger, D. S., *J. Phys. Chem.*, **1985**, *89*, 4170-4171.
14. V. M. Miskowski, private communication.
- 15a. Wrighton, M.; Morse, D. L., *J. Amer. Chem. Soc.*, **1974**, *96*, 998-1003.
- b. Giordano, P. J.; Redericks, S. M.; Wrighton, M. S.; Morse, D. L., *J. Amer. Chem. Soc.*, **1978**, *100*, 2257-2259.
- c. Barigelletti, F.; Belser, P.; Zelewsky, A.; Juris, A.; Balzani V., *J. Phys. Chem.*, **1985**, *89*, 3680-3684.
- d. Servaas, P. C.; Dijk, H. K.; Snocek, T. L.; Sterkens, D. J.; Oskam, A., *Inorg. Chem.*, **1985**, *24*, 4494-4498.
- 16a. Dellinger, B.; Kasha, M., *Chem. Phys. Lett.*, **1975**, *36*, 410-414.
- b. Dellinger, B.; Kasha, M., *Chem. Phys. Lett.*, **1976**, *38*, 9-14.
- c. Gardner, D. J.; Kasha, M., *J. Chem. Phys.*, **1969**, *50*, 1543-1552.
- 17a. Bushnell, G. W.; Fjeldsted, D. O. K.; Stobart, S. R.; Zaworotko, M. J.; Knox, S. A. R.; Macpherson, K. A., *Organomet.*, **1985**, *4*, 1107-1114.
- b. Coleman, A. W.; Eadie, D. T.; Stobart, S. R., *J. Amer. Chem. Soc.*, **1982**, *104*, 922-923.
- c. Beveridge, K. A.; Bushnell, G. W.; Dixon, K. R.; Eadie, D. T.; Stobart, S. R., *J. Amer. Chem. Soc.*, **1982**, *104*, 920-922.
18. Hopkins, M. D., Ph.D. Dissertation, California Institute of Technology, Pasadena, CA, 1986.

- 19a. Engleman, R.; Jortner, J., *J. Mol. Phys.*, 1970, 18, 145-164.
- b. Freed, K. F.; Jortner, J., *J. Chem. Phys.*, 1970, 52, 6272-6291.
- 20a. Balzani, V.; Moggi, L.; Manfrin, M. F.; Bolletta, F.; Laurence, G. S., *Coord. Chem. Rev.*, 1975, 15, 321-433.
- b. Kemp, T. J., *Prog. React. Kinet.*, 1980, 10, 301-398.
- 21a. Mann, K. R.; Parkinson, B. A., *Inorg. Chem.*, 1981, 20, 1921-1924.
- b. Enlow, P. D.; Woods, C., *Inorg. Chem.*, 1985, 24, 1273-1274.
- c. Womack, D. R.; Enlow, P. D.; Woods, C., *Inorg. Chem.*, 1983, 22, 2653-2656.
- d. Rhodes, M. R.; Mann, K. R., *Inorg. Chem.*, 1984, 23, 2053-2058.
- e. Boyd, D. C.; Matsch, P. A.; Mixa, M. M.; Mann, K. R., *Inorg. Chem.*, 1986, 25, 3331-3333.
- f. Bullock, J. P.; Boyd, D. C.; Mann, K. R., *Inorg. Chem.*, 1987, 26, 3084-3086.
- g. Boyd, D. C.; Rodman, G. S.; Mann, K. R., *J. Amer. Chem. Soc.*, 1986, 108, 1779-1784.
22. Smith, D. C., Ph.D. Dissertation, California Institute of Technology, Pasadena, CA, 1989.
- 23a. Bard, A. J.; Faulkner, L. R., *"Electrochemical Methods, Fundamentals and Applications,"* Chapter 11, Wiley, 1980.
- b. Nicholson, R. S.; Shain, I., *Anal. Chem.*, 1964, 36, 706-723.
24. Cotton, F. A.; Wilkinson, G., *"Advanced Inorganic Chemistry,"* Wiley-Interscience, 1980, page 1070 and references therein.
25. Miskowski, V. M.; Sigal, I. S.; Mann, K. R.; Gray, H. B.; Milder, S. J.; Hammond, G. S.; Ryason, P. R., *J. Amer. Chem. Soc.*, 1979, 101, 4383-4385.
- 26a. Volke, J.; Naarova, M., *Coll. Czech. Chem. Comm.*, 1972, 37, 3361-3375.
- b. Raghavan, R.; Iwamoto, R. T., *J. Electroanal. Chem.*, 1978, 92, 101-114.
- c. Gaudiello, J. G.; Larkin, D.; Rason, J. D.; Sosnowski, J. J.; Bancroft, E. E.; Blount, H. N., *J. Electroanal. Chem.*, 1982, 131, 203-214.

- d. Yu, F. R.; Wang, Y. Y.; Wan, C. C., *Electrochem. Acta*, **1985**, *30*, 1693-1701.
27. Lichtenberger, D. L.; Copenhaver, A. S.; Gray, H. B.; Marshall, J. L.; Hopkins, M. D., *submitted for publication to Inorg. Chem.*
28. Milder, S. J.; Kliger, D. S.; Butler, L. G.; Gray, H. B., *J. Phys. Chem.*, **1986**, *90*, 5567-5570.
29. This transition has been observed in spectra of several d⁸-d⁷ compounds. Its assignment remains an area of controversy in the literature.
- 30a. Marcus, R. A.; Sutin, N., *Biochim. Biophys. Acta*, **1985**, *811*, 265-322.
- b. Guerr, T.; McLendon, G., *Coord. Chem. Rev.*, **1985**, *68*, 1-52.
- c. Sutin, N., *Prog. Inorg. Chem.*, **1983**, *30*, 441-498.
- d. Newton, M. D.; Sutin, N., *Ann. Rev. Phys. Chem.*, **1984**, *35*, 437-480.
- e. Meyer, T. J., *Prog. Inorg. Chem.*, **1983**, *30*, 389-440.
- f. Sutin, N., *Acc. Chem. Res.*, **1982**, *15*, 275-282.
31. Balzani, V.; Bolletta, F.; Gandolfi, M. T.; Maestri, M., *Top. Curr. Chem.*, **1978**, *75*, 1-64.
32. Chanon, M.; Julliard, M., *Chem. Rev.*, **1983**, *83*, 425-506.
- 33a. Grabowski, Z. R.; Grabowski, A., *Z. Phys. Chem. Neue Folge*, **1976**, *101*, 197-208.
- b. Grabowski, Z. R.; Rubaszewska, W., *J. Chem. Soc. Faraday Trans. I*, **1977**, *73*, 11-28.
34. Marcus, R. A., *manuscript in preparation*.
- 35a. Ikegami, Y., *Rev. Chem. Intermed.*, **1986**, *7*, 91-109.
- b. Akiyama, K.; Kubota, S.; Ikegami, Y., *Chem. Lett.*, **1981**, 469-472.
- c. Tero-Kubota, S.; Sano, Y.; Ikegami, Y., *J. Amer. Chem. Soc.*, **1982**, *104*, 3711-3714.
- d. Akiyama, K.; Tero-Kubota, S.; Ikegami, Y., *J. Amer. Chem. Soc.*, **1983**, *105*, 3601-3604.

- e. Akiyama, K.; Ishi, T.; Tero-Kubota, S.; Ikegami, Y., *Bull. Chem. Soc. Jpn.*, 1985, 38, 3535-3539.
- f. Akiyama, K.; Tero-Kubota, S.; Ikegami, Y.; Ikenone, T., *J. Phys. Chem.*, 1985, 89, 339-342.
36. Andrieux, C. P.; Nadjo, L.; Saveant, J. M., *J. Electroanal. Chem. Interfacial Electrochem.*, 1970, 26, 147-186.
37. Demas, J. N.; Crosby, G. A., *J. Phys. Chem.*, 1971, 75, 991-1024.
38. Caspar, J. V.; Meyer, T. J., *J. Amer. Chem. Soc.*, 1983, 105, 5583-5590.
39. Wrighton, M. S.; Geoffroy, G. L.; "Organometallic Photochemistry," Wiley Interscience.
40. Note that the emission spectrum of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-NEt}_3)_2^{2+}$ has been reduced by a factor of five so that all four spectra could be plotted on the same intensity scale. $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4PhPy})_2^{2+}$ has been omitted in this figure because its low emission quantum yield ($< 10^{-5}$) precluded measuring its emission spectrum. The weak feature at approximately 500 nm in spectra of the donor-acceptor complexes is an artifact due to scattered light from the excitation source.
41. This interpretation is suggested by the similar changes seen in the triphenylphosphine complex.
42. Che, C.-M.; Wong, K.-Y.; Anson, F. C., *J. Electroanal. Chem.*, 1987, 226, 211-226.
43. Electrochemical couples corresponding to the one electron reduction of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ were not observed.

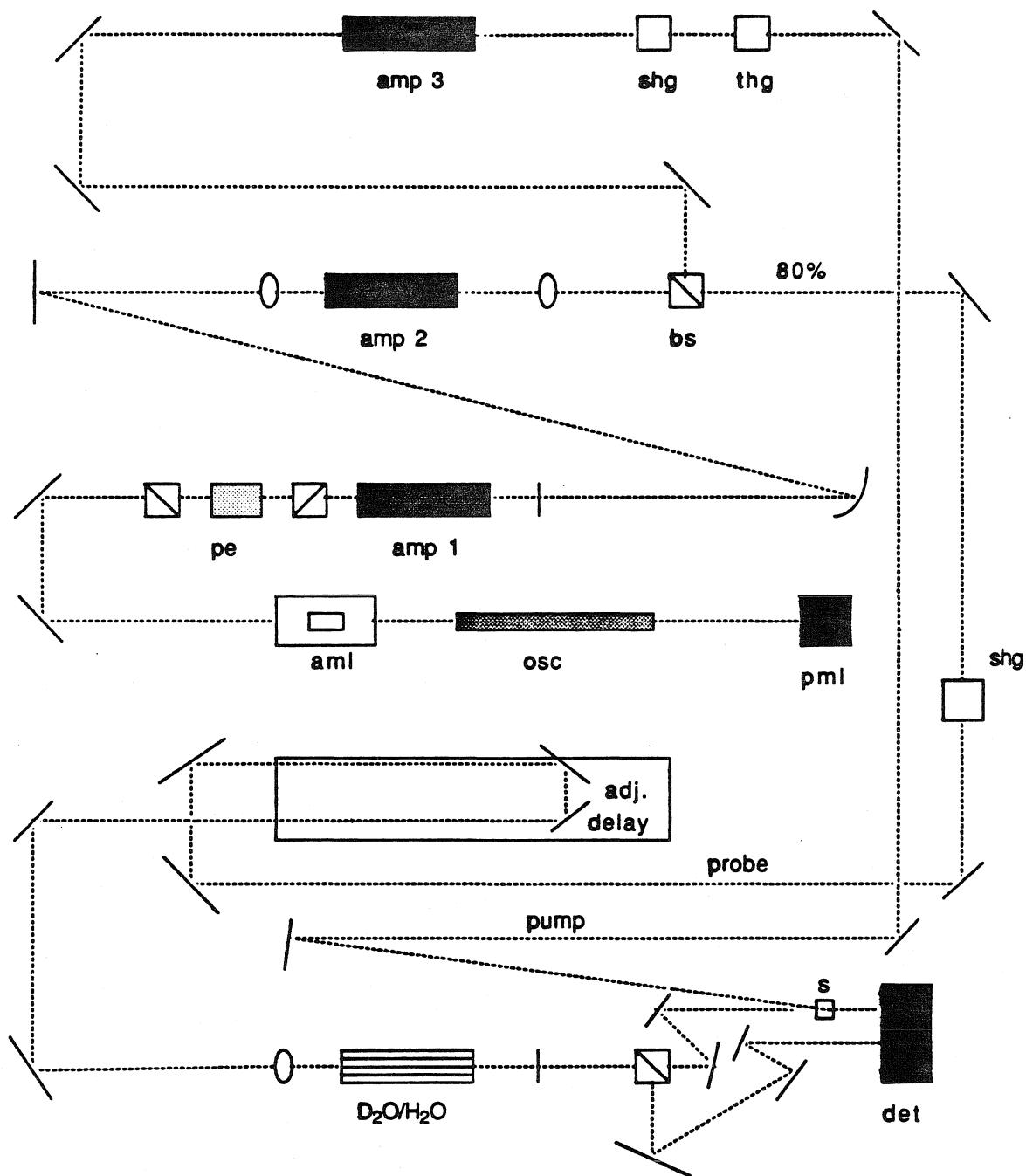
Chapter 4
Time-resolved Experiments

Introduction

The steady-state spectroscopic results presented in chapter 3 clearly establish that a quenching process involving both singlet and triplet ($d\sigma^*p\sigma$) excited states is active in the donor-acceptor complexes. We have proposed that the decrease in the emission intensities from both these states is due to excited state electron transfer. This chapter deals with characterizing the charge transfer reactions of the singlet, triplet, and CT excited states in our intramolecular redox systems using picosecond time-resolved absorption and emission techniques. Results from these experiments provide direct kinetic and spectroscopic information regarding the rates of the charge separation and the charge recombination reactions involving these three excited states. In particular the transient absorption data obtained in this phase of our research conclusively assigns the singlet and triplet quenching processes in our compounds to excited state ET by spectroscopically identifying the charge transfer products. In the discussion section of this chapter the electron transfer rate data are evaluated in terms of their dependence on reaction driving force. Clear evidence for inverted behavior is seen in the charge recombination reactions in our systems. Finally, the photophysical properties of these iridium d^8 - d^8 donor-acceptor complexes are examined with regard to designing directional charge-transfer systems

Experimental

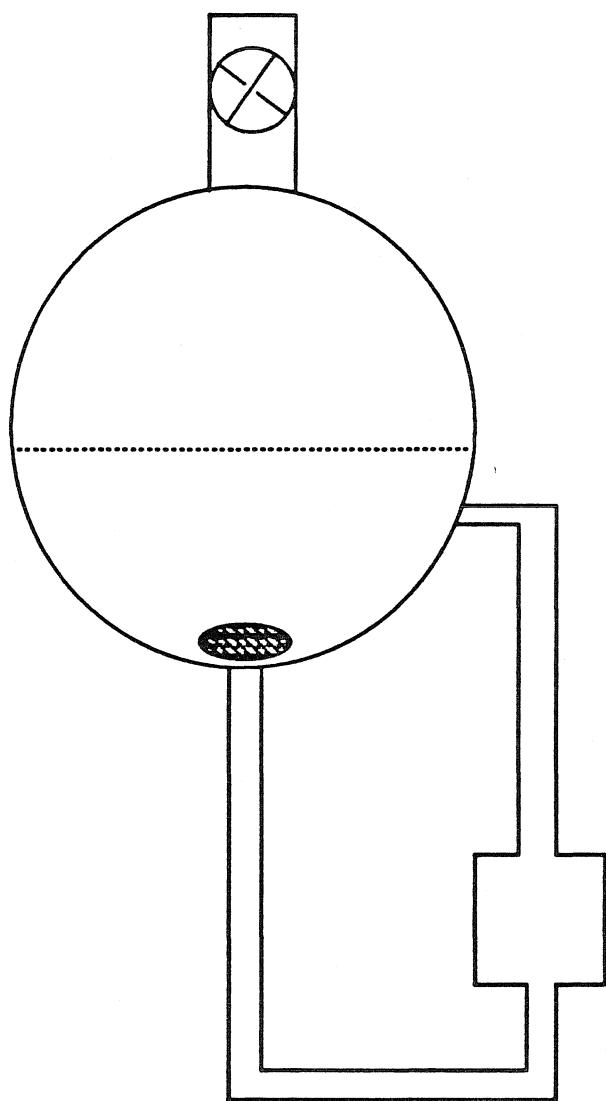
General Procedures: All manipulations involving the iridium dimer complexes were carried out using standard Schlenk and high vacuum techniques. Solvents used in spectroscopic experiments were reagent grade or better in quality. They were purified as indicated, subjected to a minimum of five freeze/pump/thaw cycles, and stored in a round bottom storage flask fitted with a Kontes Teflon stopcock. 2-


Methyltetrahydrofuran was purified by distillation from a 0.5% (w/w) suspension of cuprous chloride, followed by distillation from CaH_2 and finally from sodium/benzophenone. It was stored under vacuum over sodium/benzophenone as an indicator. Acetonitrile was distilled from CaH_2 under nitrogen and stored in vacuo.

Kinetics and Spectral Measurements

Difference spectra and kinetics as well as emission lifetimes were recorded using two types of laser systems depending on the time scale required for a particular measurement. Both instruments have been fully described elsewhere,^{1,2} and only their highlights are reported here. Phosphorescence lifetimes were recorded using a nanosecond laser system built at Caltech. The excitation source was a Quanta Ray DCR-1 Q-switched Nd:YAG laser, which was frequency doubled and tripled with a Quanta Ray HG-1 harmonic generator (KDP). Doubled and tripled 8 ns (fwhm) laser pulses were separated from the YAG fundamental using a Quanta Ray PHS-1 prism harmonic separator. Light emitted by the sample was collimated at 90° to the excitation beam and focused through a Corning 3483 sharp cut filter onto the entrance slit of a MacPherson 0.35 m monochromator. Luminescence was detected using a Hamamatsu R955 photomultiplier tube, and the signal was amplified with a LeCroy VV101ATM amplifier. Signals were digitized with a Biomation 6500 waveform recorder and transferred to a Digital PDP11/103-L computer. Data sets were analyzed on an IBM-AT PC using kinetics software developed in-house by Dr. Michael Albin. Samples were prepared under vacuum as acetonitrile solutions in an NMR tube which, was attached to a Kontes Teflon stopcock.

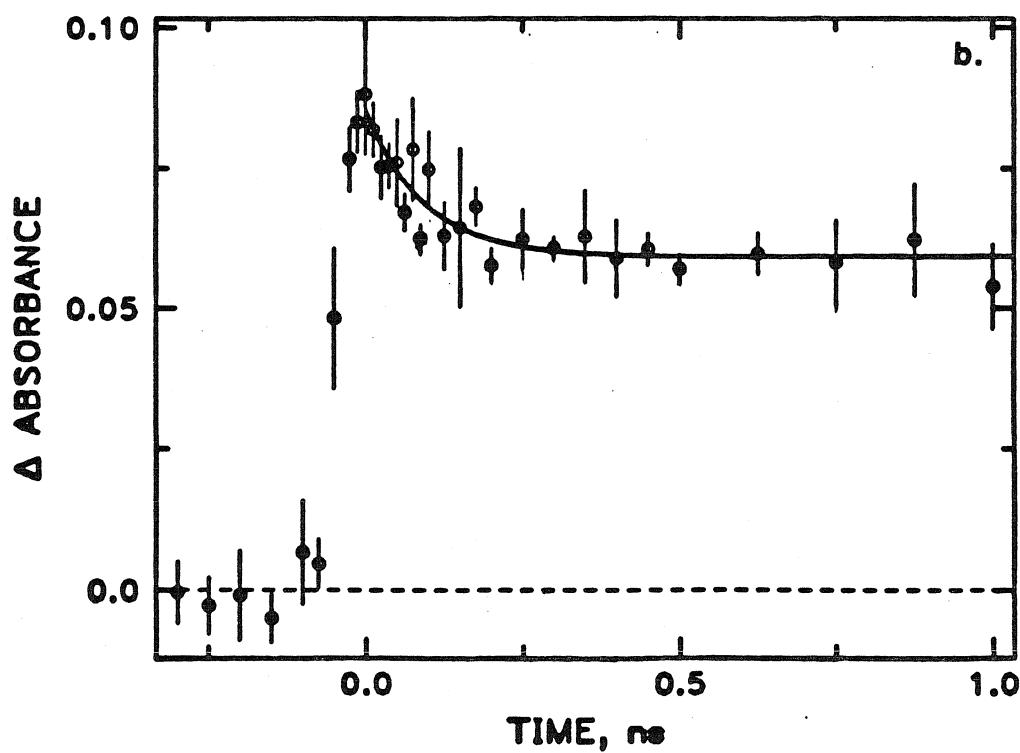
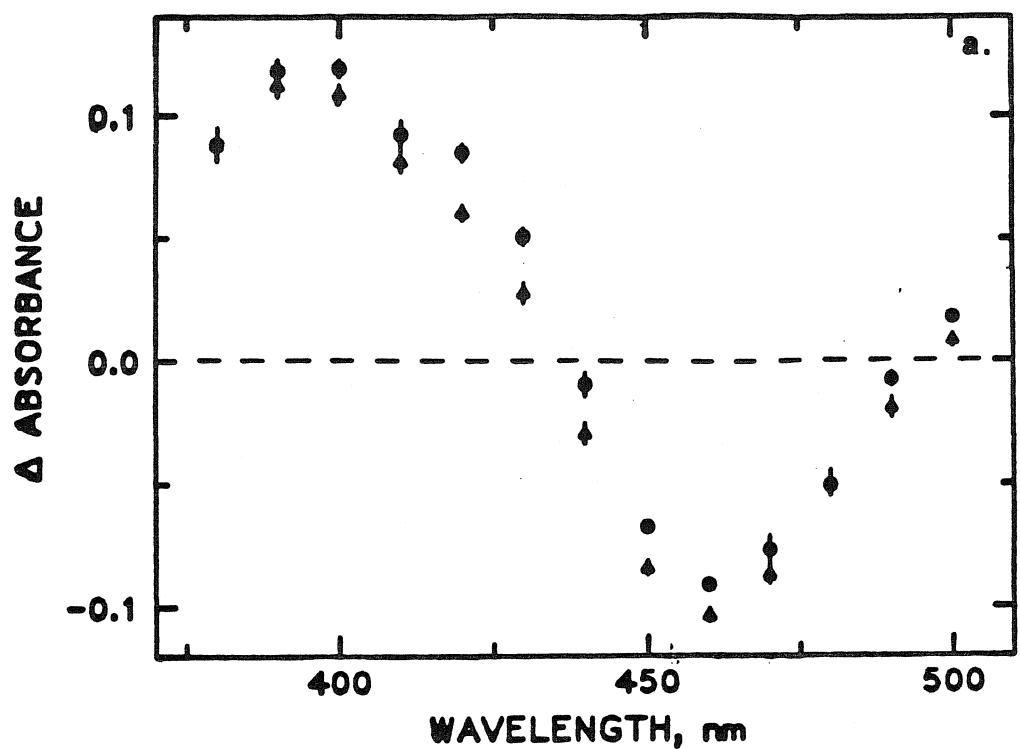
Picosecond time-resolved absorption and emission experiments were conducted at Brookhaven National Laboratory in collaboration with Dr. Jay R. Winkler. Figure 4.1 shows a schematic representation of the mode-locked Nd:YAG laser used in these experiments. A train of 30 ps (fwhm) pulses was generated in an actively-passively

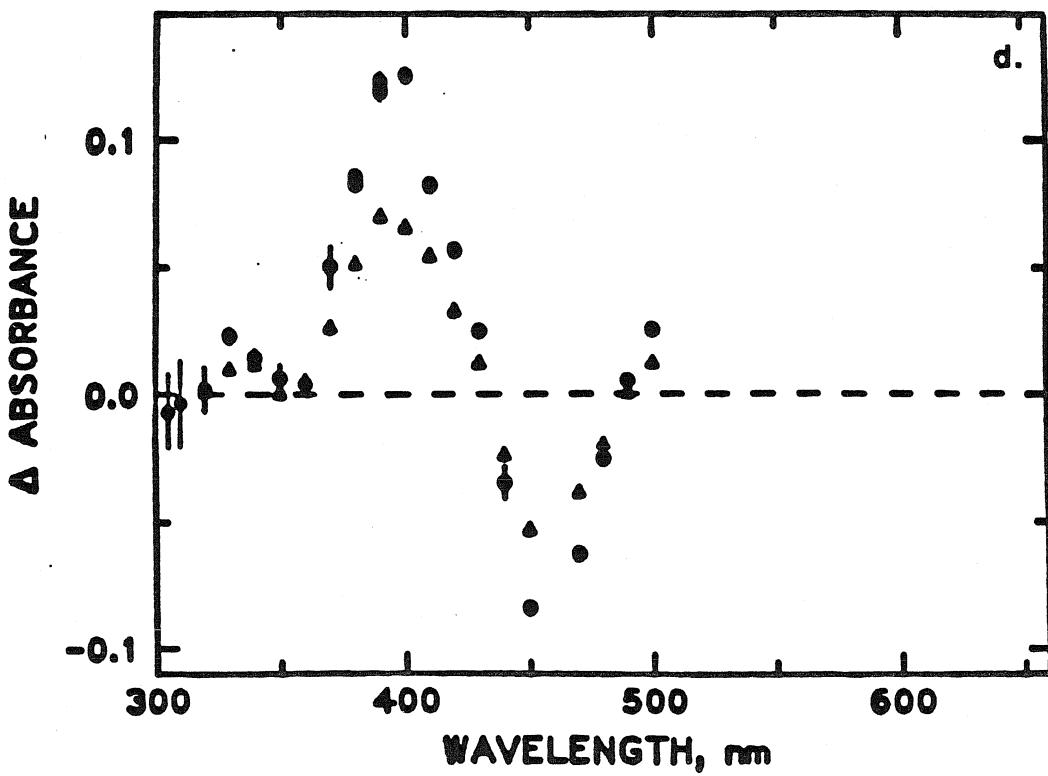
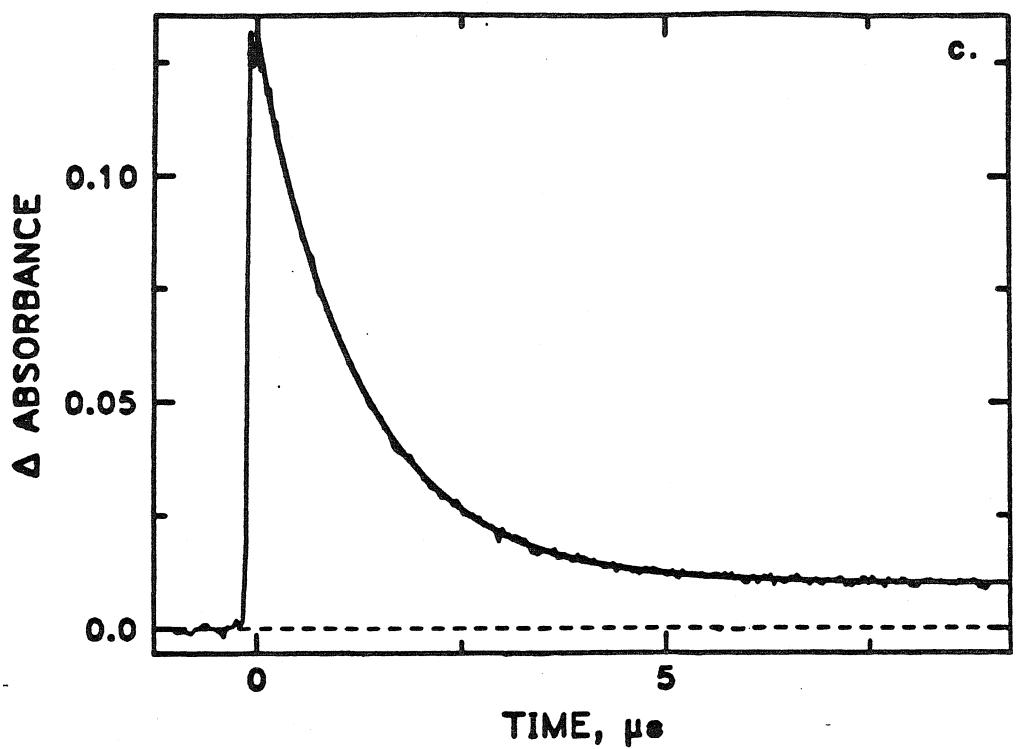

Figure 4.1. Schematic representation of the picosecond laser system used in time-resolved emission and absorption measurements. A train of picosecond pulses is generated in an active-passive mode-locked Nd:YAG laser cavity (aml, osc, pml). A single pulse is selected using a pulse extraction device (pe) and amplified by two single pass YAG amplifiers (amp1, amp2). The amplified pulse is split into two components; one is amplified and used as an excitation source and the other component is used as a probe beam. Probe light is generated by passing the focused probe beam (either 532 nm or 355 nm) through a 10 cm pathlength cell containing 80:20 D₂O/H₂O.

mode-locked laser cavity (osc). A single pulse was removed from the pulse train using a Quantel SPS411 Pulse Selector (pe) and amplified twice by two Quantel single pass Nd:YAG amplifiers. The pulse was split into two components; 20% was passed through a third single pass amplifier and frequency doubled or tripled (KDP) for use as a pump beam. The remaining 80% of the pulse intensity was frequency doubled and used to generate picosecond probe light. The probe beam was passed through a series of mirrors and a translation stage to provide time delays between the pump beam and probe. Probe light was generated by focusing the probe beam into a 10 cm quartz cell containing an 80:20 by volume mixture of D_2O/H_2O and was focused onto a 400 μm -diameter aperture in contact with a sand blasted glass slide. Light from this aperture was collected and transferred to a beam splitter; one third of its intensity was reflected around the sample and used as a reference beam. The probe and reference beams were passed to the entrance slit of a DMC monochromator and then to two photomultiplier tubes. For each delay time and wavelength 100 laser shots were used. Fifty ratios of the probe and reference beams were measured without sample excitation and fifty ratios were measured with sample excitation. The log of the ratio of these ratios is equal to ΔA . Picosecond time-resolved emission experiments were conducted using this same laser system except that the sample luminescence was recorded using a Hamamatsu streak camera. Data were transferred to a PDP 11/23 computer and analyzed using kinetics software developed at BNL. Picosecond time-resolved emission data were analyzed using a deconvolution software package developed at Caltech-JPL by Dr. David Brinza.

Samples were prepared under vacuum as acetonitrile solutions and were held under argon in the flow cell seen in figure 4.2. Stirring in the main reservoir causes the solution to flow through the 2 mm optical glass cuvette at the bottom of the cell. This procedure assures that a fresh portion of solution is explored in each measurement. Samples were stable to laser radiation under these conditions for several weeks.

Figure 4.2. Inert atmosphere cell used in picosecond absorption measurements. The sample is contained under nitrogen in a 250 ml reservoir. When the solution is stirred, the hydrodynamic force created by the stirring action draws the solution through the optical cell. This procedure ensures that each laser shot interrogates a fresh and identical sample solution.



Results**Kinetic and Spectral Data*****Model Complexes $Ir_2(Pz^*)_2(CO)_2(Ph_2POCH_2CH_3)_2$ and***

$Ir_2(Pz^*)_2(CO)_2(Ph_2POCH_2CH_2-NEt_3^+)_2$: Figures 4.3a-d show spectral and kinetic results for the two model compounds, $Ir_2(Pz^*)_2(CO)_2(Ph_2POCH_2CH_3)_2$ and $Ir_2(Pz^*)_2(CO)_2(Ph_2POCH_2CH_2-NEt_3^+)_2$, in acetonitrile solutions after a 30 ps laser pulse at 355 nm. Both compounds exhibit a biphasic transient absorption signal, which rises with the laser pulse and returns to baseline at long delay times ($t > 10 \mu s$). The shorter component decays with a lifetime of approximately $\tau_1 = 100$ ps; the second transient is much longer lived and decays on a microsecond timescale ($\tau_2 = 1.2 \mu s$).

Kinetic results for both complexes were independent of λ_{ex} (either 355 nm or 532 nm) and λ_{obs} . Emission lifetimes for the 1B and 3B excited states in these molecules were determined independently to be $\tau(^1B) = 100$ ps and $\tau(^3B) = 1.3 \mu s$ via time-resolved emission measurements. Thus, the two transients seen in difference spectra of $Ir_2(Pz^*)_2(CO)_2(Ph_2POCH_2CH_3)_2$ and $Ir_2(Pz^*)_2(CO)_2(Ph_2POCH_2CH_2-NEt_3^+)_2$ are logically attributed to their singlet and triplet ($d\sigma^*p\sigma$) excited states. Figures 4.3a and d show spectral data for the compounds in the wavelength range between 300 nm and 500 nm at delay times immediately following and well after the laser pulse. In addition to a ground state bleach at 450 nm both compounds exhibit a single transient absorption feature at approximately 400 nm. Data for $Ir_2(Pz^*)_2(CO)_2(Ph_2POCH_2CH_3)_2$ were obtained at probe wavelengths below 380 nm by exciting this complex at 532 nm and generating probe pulses with the 355 nm laser line. Unfortunately, higher energy excited state transitions were not observed in these experiments. Adequate UV probe light could only be generated up to 310 nm and spectral data above 500 nm could not be

Figure 4.3. Difference spectra and kinetics of the model compounds. a) Transient spectrum of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-NEt}_3^+)_2$ in acetonitrile ($\lambda_{\text{ex}}=355$ nm, 0: $t=0.0$ ps, Δ : $t=12.35$ ns). b) Kinetics for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-NEt}_3^+)_2$ ($\lambda_{\text{ex}}=355$ nm, $\lambda_{\text{obs}}=420$ nm, $\tau_{\text{fit}}=93$ ps). c) Kinetics for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-NEt}_3^+)_2$ ($\lambda_{\text{ex}}=355$ nm, $\lambda_{\text{obs}}=400$ nm, $\tau_{\text{fit}}=1.26$ μs). d) Transient spectrum of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ ($\lambda_{\text{ex}}=532$ nm, 0: $t=0.0$ ps, Δ : $t=5.0$ ns).

recorded due to luminescence backgrounds. Additional excited state transitions may occur in these complexes, but must lie outside the spectral range available in our experiments.

The excited state spectra and kinetics of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ and $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-NEt}_3^+)_2$ are interesting not only as points of reference for investigating electron transfer in the donor-acceptor complexes, but also with regard to the photophysical and excited state properties of d^8 - d^8 A-frame chromophores. The excited state spectra and kinetics of d^8 - d^8 compounds have been the focus of several previous studies.³ In compounds such as $\text{Rh}_2(\text{Bridge})_4^{2+}$ and $\text{Rh}_2(\text{TMB})_4^{2+}$, the $^1\text{A}_{2\text{u}}$ and $^3\text{A}_{2\text{u}}$ ($d\sigma^*p\sigma$) excited states are easily differentiated by their transient absorption bands.^{3c} The former excited states show an intense $^1\text{A}_{2\text{u}} \rightarrow ^1\text{A}_{1\text{g}}$ ($d\sigma^*p\sigma \rightarrow p\sigma^2$) (ca. 450 nm) band in their transient spectrum. This transition is formally spin forbidden from a $^3\text{A}_{2\text{u}}$ excited state and is too weak to observe in transient difference spectra. The longer lived triplet state characteristically exhibits two transient absorption features which, in $\text{Rh}_2(\text{Bridge})_4^{2+}$ and $\text{Rh}_2(\text{TMB})_4^{2+}$ have been assigned to $^3\text{A}_{2\text{u}} \rightarrow ^3\text{A}_{1\text{g}}$ ($d\sigma^*p\sigma \rightarrow d\sigma p\sigma$) (ca. 470 nm) and $^3\text{A}_{2\text{u}} \rightarrow ^3\text{E}_{2\text{g}}$ ($d\pi \rightarrow p\sigma$) (ca. 420 nm) electronic transitions. Prior to this study, the only d^8 - d^8 A-frame complex that had been examined using time-resolved spectroscopy was $[\text{Ir}_2(\text{Pz})_2(\text{COD})_2]$.^{3a} In this particular system, only spectra of the ^3B excited state could be recorded due to its prohibitively short singlet lifetime ($\tau < 30$ ps). Thus, the data reported here provide the first opportunity for comparing the spectroscopic properties of the ^1B and ^3B excited states in a d^8 - d^8 A-frame complex. In contrast to the transient spectra of $[\text{Rh}_2(\text{Bridge})_4]^{2+}$ and $[\text{Rh}_2(\text{TMB})_4]^{2+}$, the singlet and triplet excited state spectra in $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ and $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-NEt}_3^+)_2$ are remarkably similar. Both states are characterized by an apparently identical absorption feature. At present it is difficult to assign these transitions with any degree of certainty. However, it can be safely

concluded that this band does not correspond to a ($d\sigma^*p\sigma \rightarrow p\sigma^2$) transition in the triplet spectra of these compounds. Further, based on the transient absorption spectra of $[\text{Rh}_2(\text{Bridge})_4]^{2+}$ and $[\text{Rh}_2(\text{TMB})_4]^{2+}$, it is unlikely that this transition in the singlet spectrum of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ or $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2-\text{NEt}_3^+)_2$ would be isoenergetic with either the ($d\sigma^*p\sigma \rightarrow d\sigma p\sigma$) or ($d\pi \rightarrow p\sigma$) transition originating from its triplet excited state. One plausible explanation for this behavior is that the ($d\sigma^*p\sigma \rightarrow p\sigma^2$) transitions in these complexes are near in energy to their ($d\sigma^* \rightarrow p\sigma$) transitions and are obscured in the bleach region of their transient difference spectra. Under this assumption the two bands at 400 nm are tentatively assigned to ($d\pi \rightarrow p\sigma$) and ($d\sigma \rightarrow d\sigma^*$) transitions by analogy to assignments made in spectra of $\text{Rh}_2(\text{Bridge})_4^{2+}$ and $\text{Rh}_2(\text{TMB})_4^{2+}$. Further studies directed toward measuring the extinction coefficients and polarizations of these bands will be necessary to conclusively assign them to specific transitions.

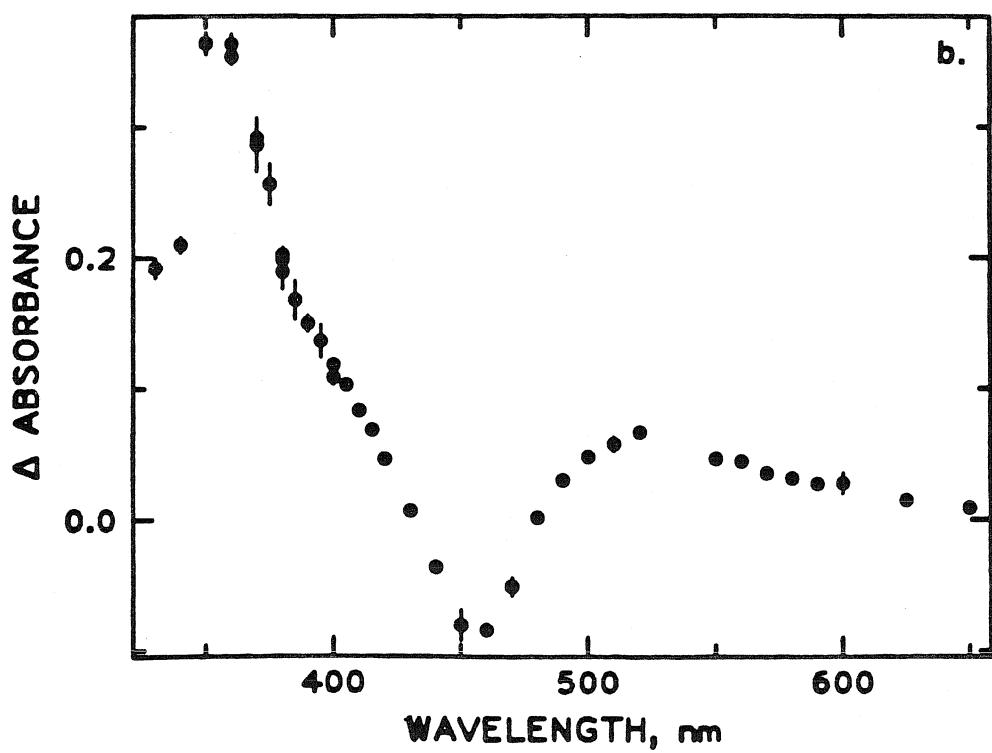
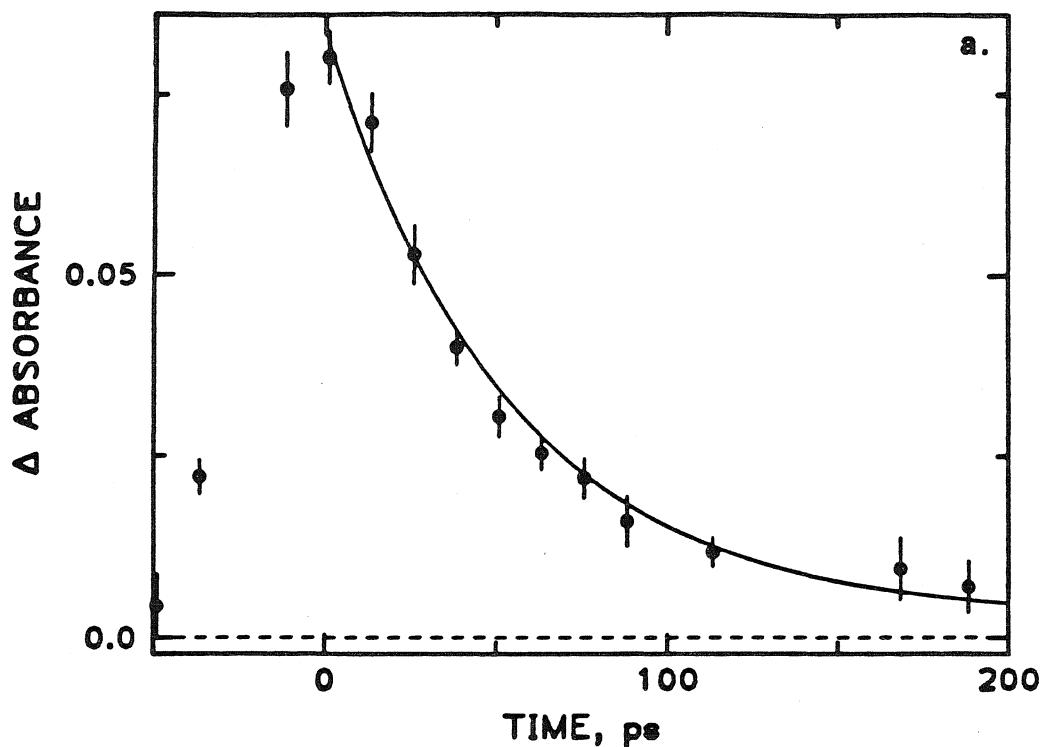
With regard to their photophysical properties,

$\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ and $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2-\text{NEt}_3^+)_2$ have some of the longest lived singlet and triplet excited states found in A-frame complexes. We propose that the longer lifetimes in these compounds result from their smaller nonradiative decay rates. As seen in table 4.1, while the radiative rates for a series of different d^8 - d^8 A-frame complexes are essentially the same, the quantum yields and emission lifetimes of these compounds vary as a function of their terminal and bridging ligands. These trends are indicative of variations in the nonradiative deactivation rates for their ($d\sigma^*p\sigma$) excited states due to differences in their coordination environments. While theoretical models for nonradiative decay processes are available,⁴ the specific molecular parameters, which control these processes in large inorganic complexes are poorly understood. Thus, cause-effect relationships between molecular structure, and nonradiative rate constants in our metal dimers are difficult to evaluate. However, we

Table 4.1: Quantum Yield and Lifetime Data for Selected A-Frame Complexes.

Complex	$\phi(^1B)$	$\phi(^3B)$	$\tau(^1B)$ ns	$\tau(^3B)$ ns
$[\text{Ir}_2(\text{Pz})_2(\text{COD})_2]^a$	0.0001	0.0078	<0.03	250
$[\text{Ir}_2(\text{Pz}^*)_2(\text{COD})_2]^a$	0.0001	0.0038	<0.03	80
$[\text{Ir}_2(\text{Pz})_2(\text{CO})_2(\text{Ph}_3\text{P})_2]^b$	--	--	--	<8
$[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_2]$	0.0003	0.0015	<0.03	60
$[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2$ ($\text{Ph}_2\text{POCH}_2\text{CH}_2\text{NEt}_3)_2$]	0.0015	0.039	0.09	1200
$[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2]$	0.0023	0.0250	0.1	1100
Complex	$k_r(^1B)$ sec ⁻¹	$k_r(^3B)$ sec ⁻¹		
$[\text{Ir}_2(\text{Pz})_2(\text{COD})_2]^a$	3.0×10^6	3.0×10^4		
$[\text{Ir}_2(\text{Pz}^*)_2(\text{COD})_2]^a$	3.0×10^6	4.75×10^4		
$[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_2]$	1.0×10^7	2.5×10^4		
$[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2$ ($\text{Ph}_2\text{POCH}_2\text{CH}_2\text{NEt}_3)_2$]	1.7×10^7	3.25×10^4		
$[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2]$	2.3×10^7	2.3×10^4		

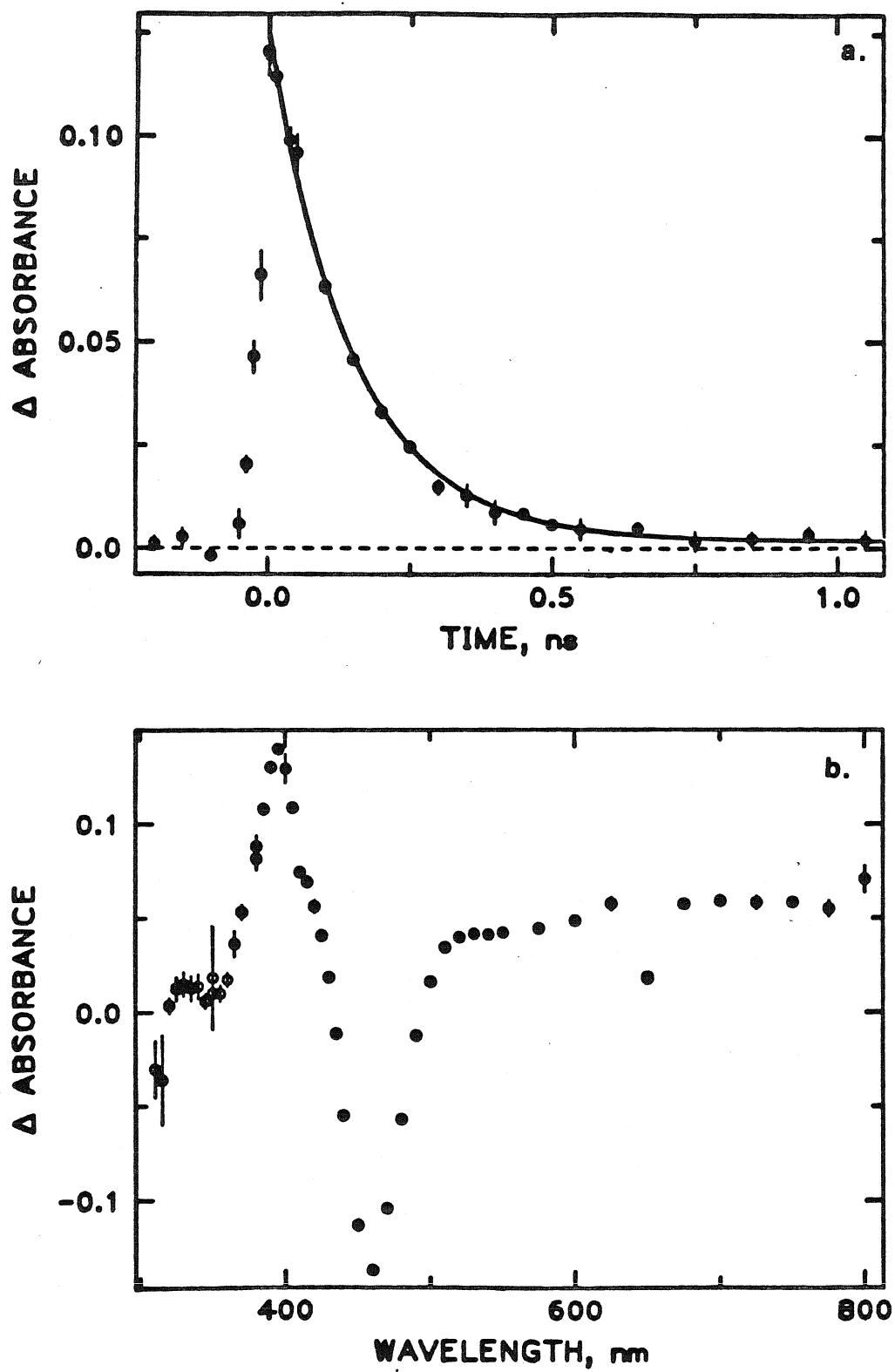
a. Marshall, J. L., Ph. D. Dissertation, Caltech, 1987.



b. Smith, T. J., Ph. D. Dissertation, Caltech, 1982.

can conclude from the data in table 4.1 that the nonradiative rates in d⁸-d⁸ A-frame complexes are strongly affected by the electronic and steric properties of their terminal and bridging ligands.

Ir₂(Pz^{})₂(CO)₂(Ph₂POCH₂CH₂-4PhPy⁺)₂*:

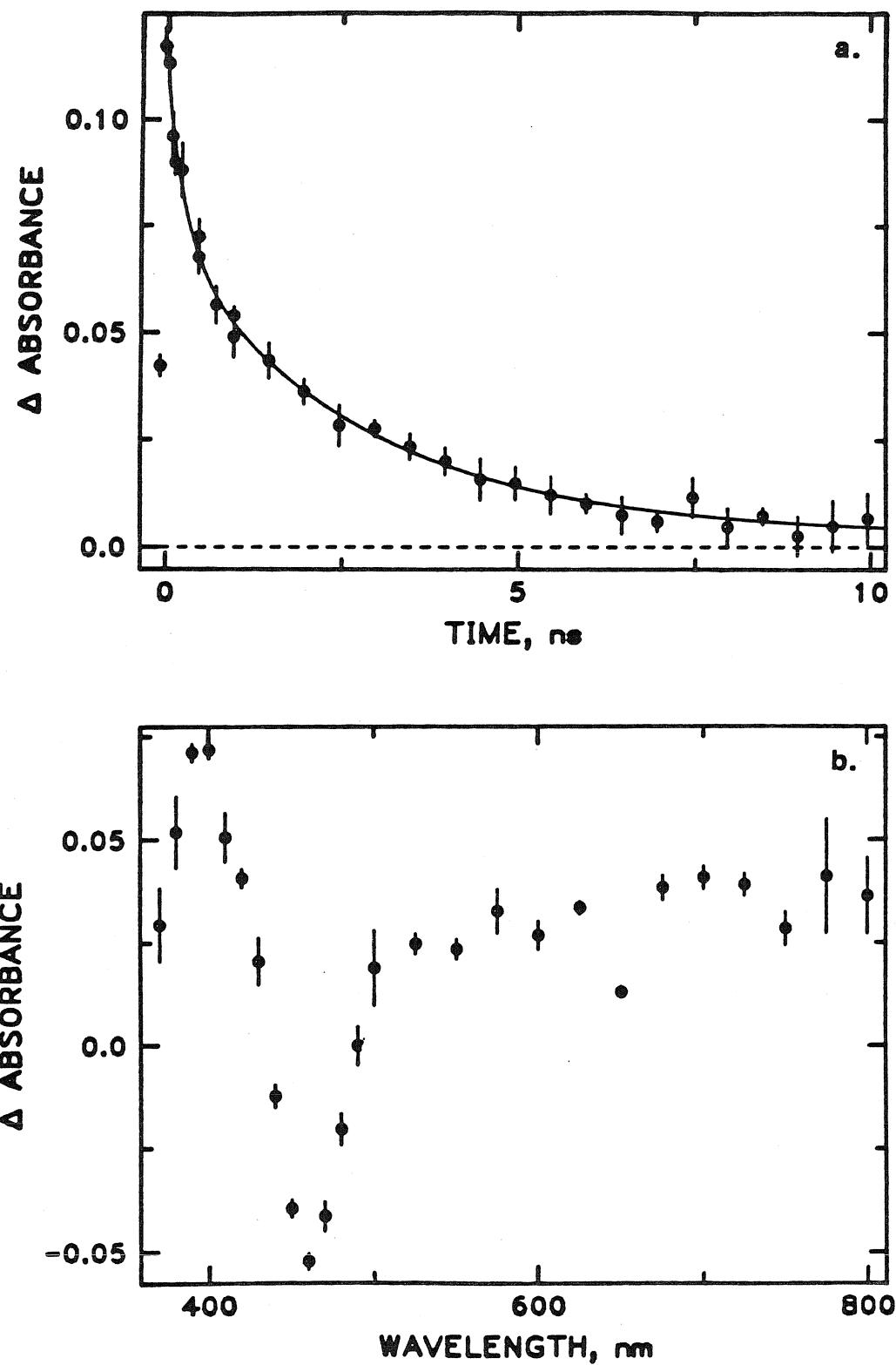
Figure 4.4 shows spectral and kinetic data for *Ir₂(Pz^{*})₂(CO)₂(Ph₂POCH₂CH₂-4PhPy⁺)₂* in acetonitrile solutions after a 30 ps laser pulse at 532 nm. This particular complex was excited using the frequency doubled Nd:YAG laser line, because strong fluorescence backgrounds from 4Ph-Py⁺ localized excited states complicated the analysis of spectra obtained with 355 nm excitation. Kinetics measured at 380 nm and in the bleach region were characteristic of a single transient species whose concentration rises on the time scale of the laser pulse and returns to zero at long delay times (t > 500 ps). The kinetic data for this compound were fit to a single exponential intensity function yielding a lifetime of 50 ps for its long lived excited state. Figure 4.4b shows spectral data in the wavelength range between 340 nm and 650nm immediately after the laser pulse. In this case spectroscopic data were readily obtained at wavelengths greater than 500 nm due to this compound's low fluorescence and phosphorescence quantum yields. The spectroscopic properties of *Ir₂(Pz^{*})₂(CO)₂(Ph₂POCH₂CH₂-4PhPy⁺)₂* differ substantially from those found in *Ir₂(Pz^{*})₂(CO)₂(Ph₂POCH₂CH₃)₂* and *Ir₂(Pz^{*})₂(CO)₂(Ph₂POCH₂CH₂-NEt₃⁺)₂*. Its difference spectra show two prominent absorption features at 350 nm and 525 nm. These bands can be assigned to transitions localized on a 4-phenyl pyridyl radical, based on previous spectroscopic studies.⁵ Our data indicate that the marked luminescence quenching seen in emission spectra of the donor-acceptor complexes can be attributed to an electron-transfer process. Further, electron transfer to form a charge separated state in this particular complex occurs on a timescale equal to or less than the duration of the laser pulse. This conclusion is in line with its low emission quantum yields. An upper limit of 1 ps for its ¹B lifetime can be estimated from its fluorescence


Figure 4.4. Difference spectra and kinetics of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-}4\text{PhPy}^+)_2$ in acetonitrile solutions. a) Kinetics ($\lambda_{\text{ex}}=532$ nm, $\lambda_{\text{obs}}=380$ nm, $\tau_{\text{fit}}=50$ ps). b) Difference spectrum at $t=0.0$ ps.

quantum yield and the quantum yield and singlet lifetime of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$. Thus, the measured $2.0 \times 10^{10} \text{ sec}^{-1}$ rate constant in this complex corresponds to electron-hole recombination.

$\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py}^+)_2$: Figure 4.5 summarizes kinetic and spectral data for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py}^+)_2$ in acetonitrile solutions after an excitation pulse at 355 nm. The fluorescence backgrounds that necessitated exciting $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4PhPy}^+)_2$ at 532 nm were not observed in experiments involving $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py}^+)_2$ and this complex was excited at higher energies where it has a larger absorption cross section. Kinetic results for $\lambda_{\text{ex}}=532 \text{ nm}$ and $\lambda_{\text{ex}}=355 \text{ nm}$ were the same within experimental error making comparisons between results for this complex and $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4PhPy}^+)_2$ possible. Kinetics measured at 400 nm and in the bleach region (450 nm) exhibited a single transient species whose concentration rises on the time scale of the laser pulse and returns to baseline at long delay times ($t > 500 \text{ ps}$). The kinetic data for this complex were adequately modeled by an exponential intensity function with a time constant of 150 ps. Figure 4.5b shows a transient difference spectrum between 310 nm and 800 nm. In contrast to $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4PhPy}^+)_2$, $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py}^+)_2$ exhibits a single absorption feature at 390 nm. The apparent bleach feature at 620 nm can be attributed to Raman scattering from the probe light generation process. Because N-alkyl pyridyl radicals lack strong absorption bands in the 310 nm to 700 nm spectral region, this 390 nm band cannot be ascribed to this particular chromophore.⁶ Notably, it is very similar to the strong high energy absorption features characteristic of an iridium dimer cation. Recall from chapter 3 that $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_3\text{P})_3]^+$ has an intense band at approximately 380 nm. However, this transient absorption feature is also very similar to transitions ascribed to the metal localized ^1B and ^3B excited states

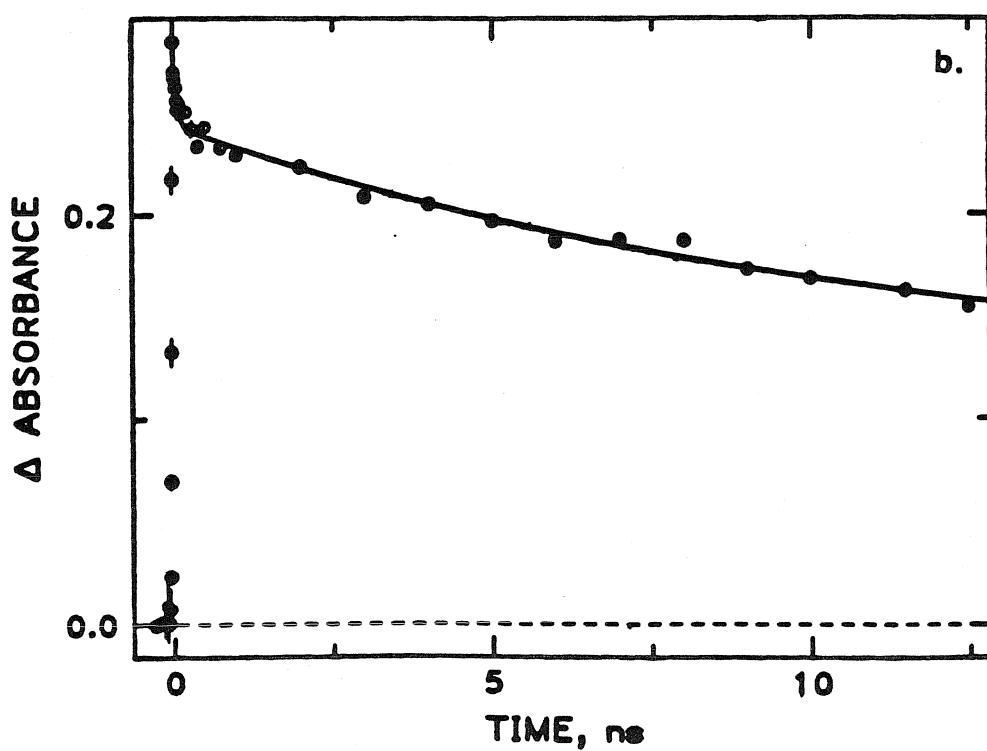
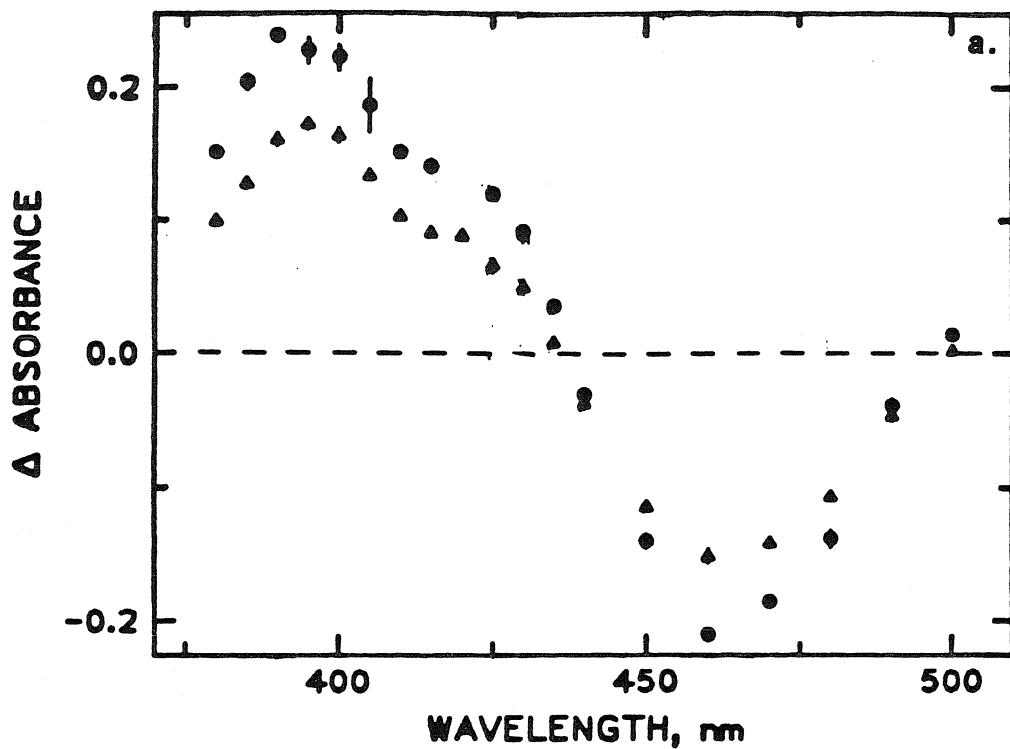
Figure 4.5. Difference spectra and kinetics of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{Py}^+)_2$ in acetonitrile solutions. a) Kinetics ($\lambda_{\text{ex}}=355$ nm, $\lambda_{\text{obs}}=400$ nm, $\tau_{\text{fit}}=150$ ps). b) Difference spectrum at $t=25$ ps ($\lambda_{\text{ex}}=532$ nm).

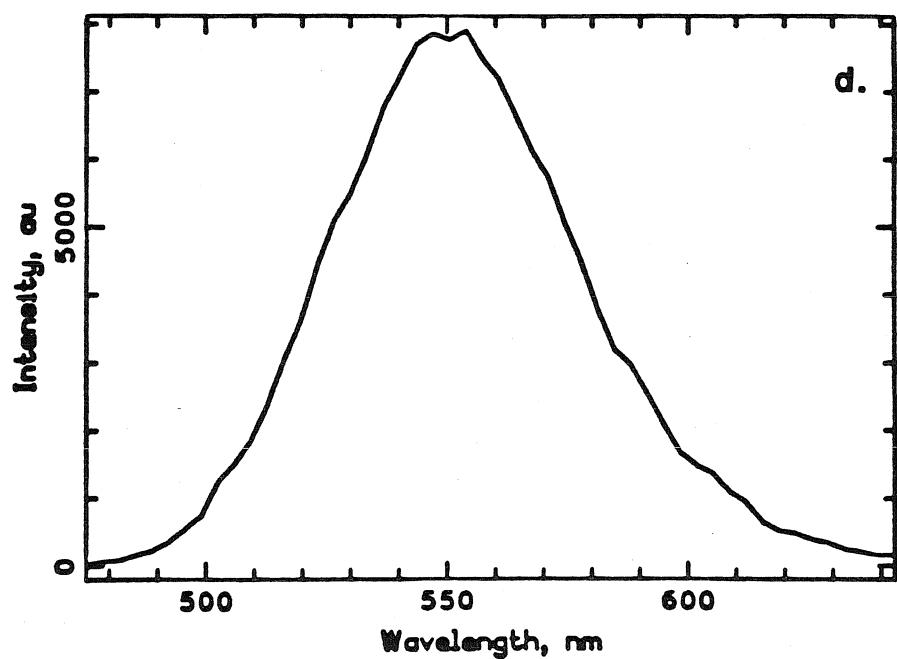
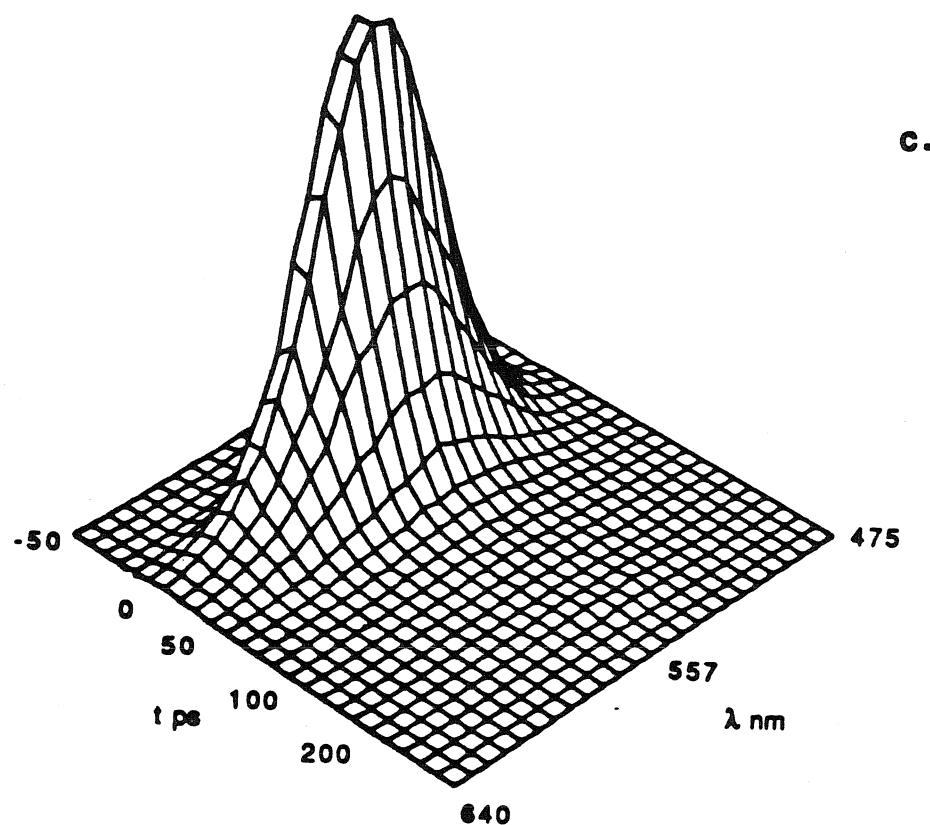


in the model complexes. Thus, additional information is required to assign this band to a particular excited state species. A ^1B excited state lifetime of 2 ps for this complex can be estimated from its fluorescence quantum yield and the quantum yield and singlet lifetime of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$. This analysis indicates that, as for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4PhPy}^+)_2$, charge transfer from the ^1B state in this complex occurs on a timescale that is shorter than the laser pulse.

$\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py}^+)_2$ has a triplet quantum yield that is less than or equal to 10^{-5} . Thus, the $t=0$ yield of formation of its ^3B excited state should be reduced relative to the yield of formation of the ^3B state in a model complex. However, under identical experimental conditions, the yield of formation of the triplet state in $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ and the 390 nm transient in $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py}^+)_2$ were the same within experimental error. These data support the conclusion that this absorption feature is due to transitions associated with a transient iridium dimer cation species and can be attributed to the charge separated state in $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py}^+)_2$. The measured $6.7 \times 10^9 \text{ sec}^{-1}$ rate constant in this complex corresponds to a hole-electron charge recombination process.

$\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4MePy}^+)_2$: Figure 4.6 shows kinetic and spectral data for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4MePy}^+)_2$ in acetonitrile solutions. Flash photolysis of this complex with a 30 ps laser pulse at 355 nm leads to a ground state bleach at 450 nm and the formation of a transient absorption feature at 390 nm, which is similar to the absorption band seen in spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py}^+)_2$. This transient is formed on a timescale that is equivalent to or less than that of the laser pulse and returns to baseline at long delay times ($t > 1 \text{ ns}$). Kinetic data for this compound fit well to a biexponential intensity function with time constants of $\tau_1 = 300 \text{ ps}$ and $\tau_2 = 3.0 \text{ ns}$. As with



Figure 4.6. Difference spectra and kinetics of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4MePy}^+)_2$ in acetonitrile solutions. a) Kinetics ($\lambda_{\text{ex}}=355$ nm, $\lambda_{\text{obs}}=400$ nm, $\tau_{\text{fit1}}=300$ ps, $\tau_{\text{fit2}}=3$ ns). b) Difference spectrum at $t=1.25$ ns ($\lambda_{\text{ex}}=355$ nm).



$\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py}^+)_2$ and $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4PhPy}^+)_2$, the singlet lifetime ($\tau_1=2$ ps) for this complex is much too short for its 390 nm absorption band to be assigned to a singlet excited state. Its phosphorescence lifetime was found to be 3.0 ns from transient emission measurements. Thus, the longer lived component in transient absorption spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4MePy}^+)_2$ can be assigned to its ^3B excited state; the shorter lived component is logically assigned to a charge recombination process involving its CT excited state.

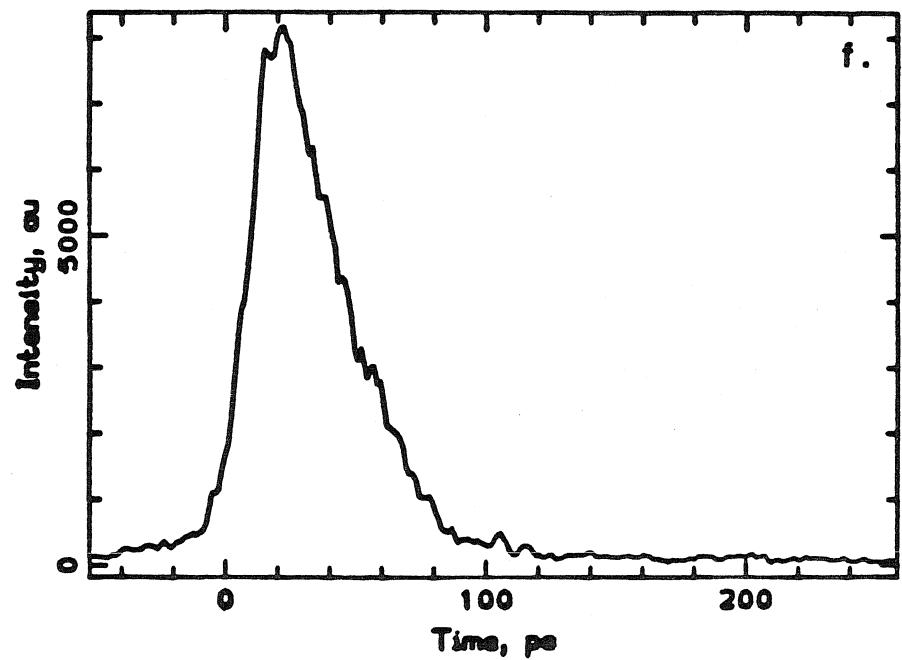
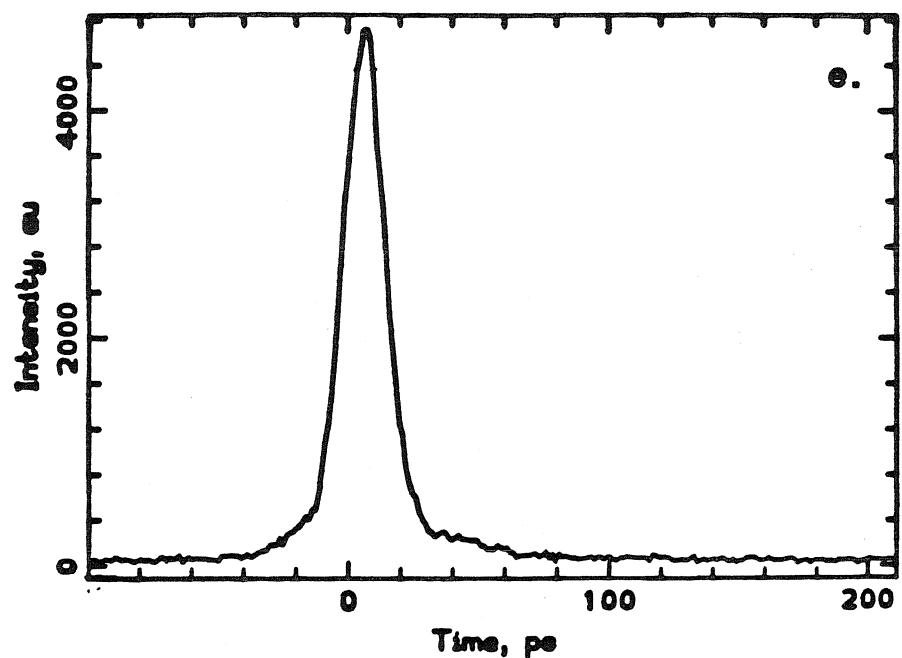
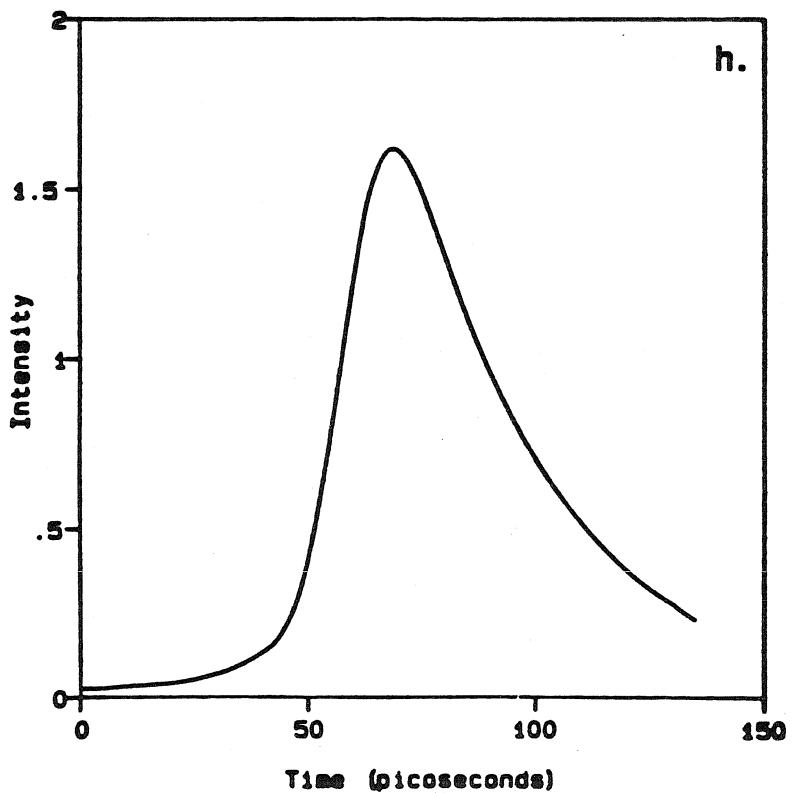
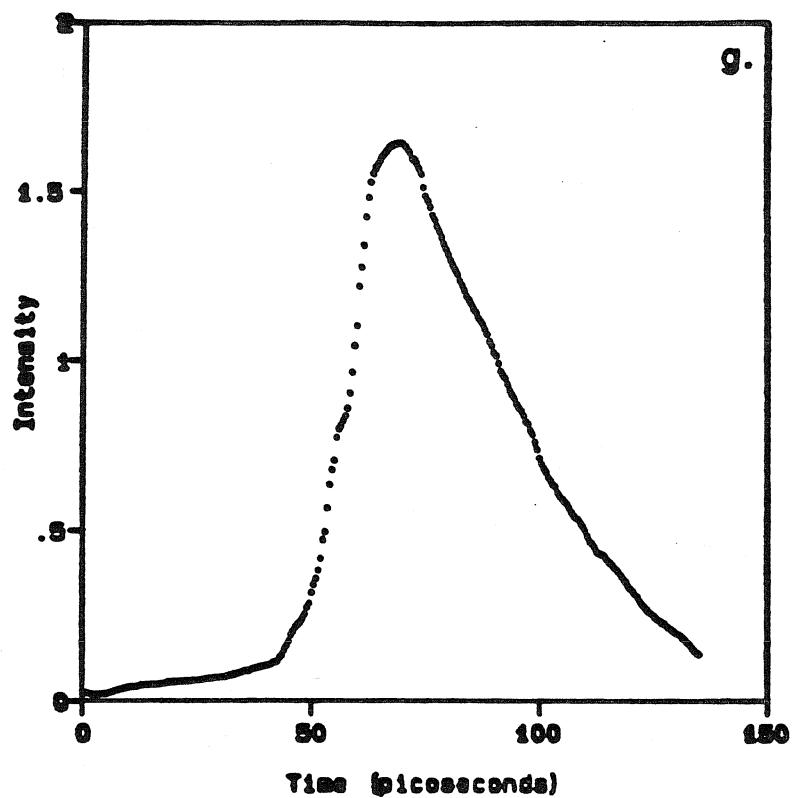
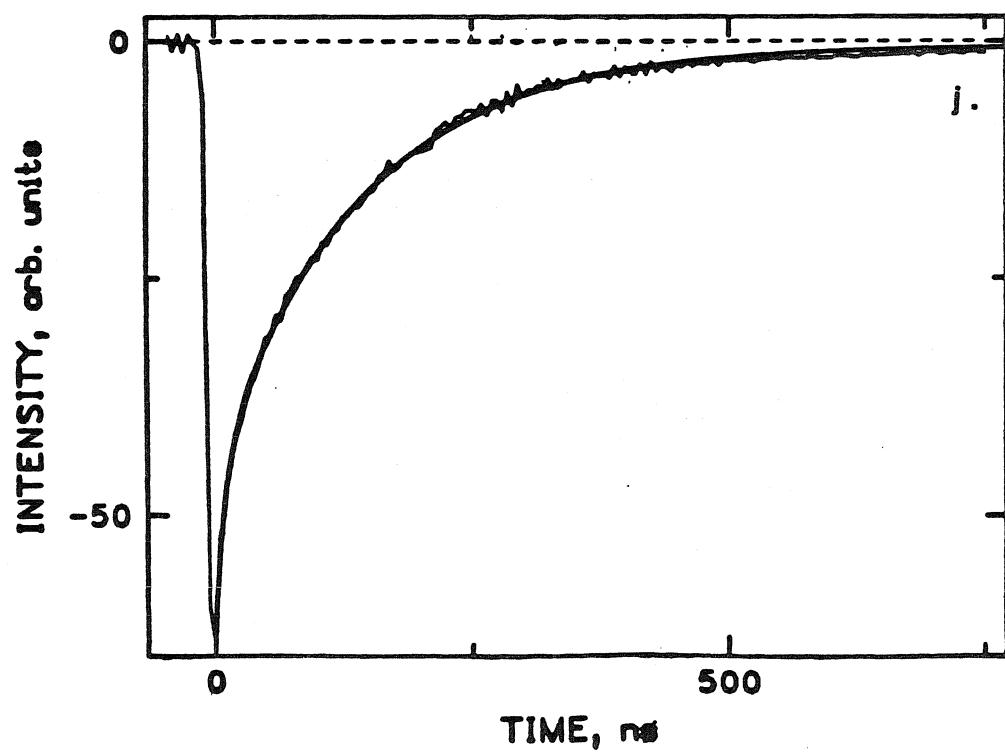
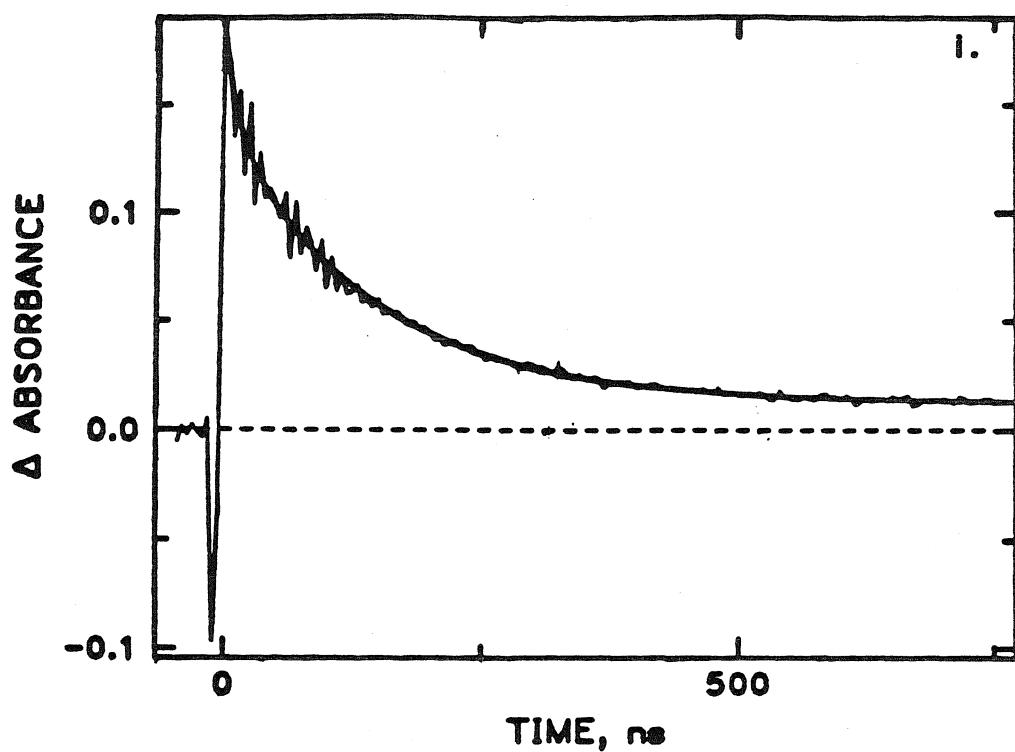


$\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$: Figures 4.7 a through j summarize the kinetic and spectral data for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$ in acetonitrile solutions after a 30 ps excitation pulse at 355 nm. Flash photolysis of this complex leads to a ground state bleach at 450 nm and the formation of a transient absorption feature at 390 nm, which is similar to the absorption bands seen in difference spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py}^+)_2$ and $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4MePy}^+)_2$. This transient is formed on a timescale equivalent to or less than the duration of the laser pulse and returns to baseline for delay times greater than 500 ns. On a picosecond timescale (figure 4.7b) kinetic data for this complex are adequately modeled using a biexponential intensity function, yielding time constants of 11 ns and 65 ps. The later time constant should be viewed as an upper limit, due to the relative intensities of the short and long lived absorption components. Kinetic data recorded on a nanosecond timescale (figure 4.7i) also fit well to a biexponential decay function with time constants of 14 ns and 144 ns. The former time constant is the same as the 11 ns lifetime found from analyzing the data in figure 4.7b. Thus, the 390 nm transient in this compound's difference spectrum represents three kinetically resolvable processes with time constants of approximately 65 ps, 12 ns, and 144 ns. As with $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py}^+)_2$ and

Figure 4.7. Difference spectra and kinetics for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2-246\text{Me}_3\text{Py}^+)_2$ in acetonitrile solutions. a) Difference spectra ($\lambda_{\text{ex}}=355$ nm, 0: $t=0.0$ ps, Δ : $t=5$ ns). b) Picosecond kinetics ($\lambda_{\text{ex}}=355$ nm, $\lambda_{\text{obs}}=400$ nm, $\tau_{\text{fit}1}=65$ ps, $\tau_{\text{fit}2}=11$ ns). c) and d) Streak camera data showing the temporal and spectral response of the compound's fluorescence after a 30ps (fwhm) laser pulse at 355 nm. e) Response function for our laser system determined by scattering laser pulses from neat acetonitrile. f) Time-resolved emission profile of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2-246\text{Me}_3\text{Py}^+)_2$.

224

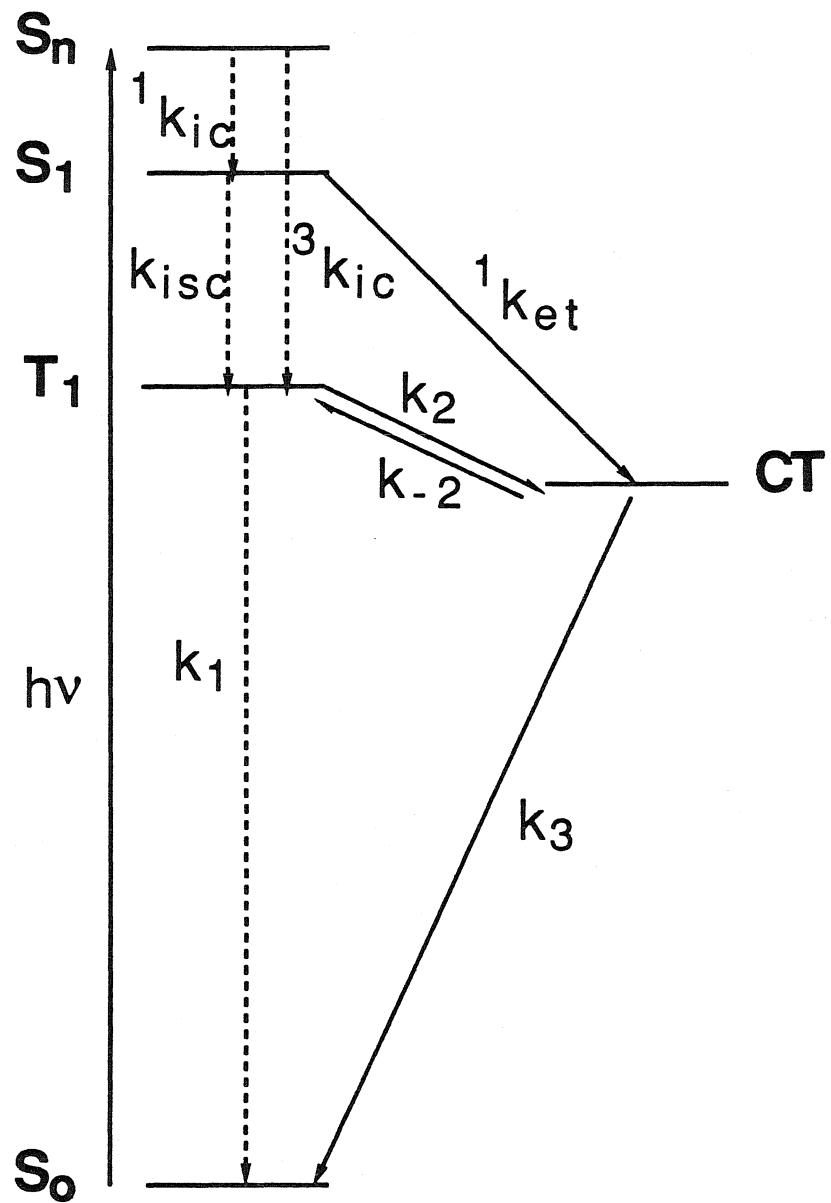





$\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4MePy}^+)_2$ transient absorption features, which distinguish the ^1B , ^3B , and CT excited states in this complex were not observed. Therefore, time-resolved emission studies were conducted to assign these time constants to specific excited state species.

In contrast to the donor-acceptor complexes discussed earlier, $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$ exhibited a fluorescence lifetime, which was long enough to be directly determined from picosecond time-resolved emission measurements. As seen in figures 4.7 c and d, the time-resolved fluorescence spectrum of this complex is identical to its steady-state emission spectrum; thus, its ^1B excited state thermally equilibrates on a subpicosecond timescale. Figures 4.7e and f show the response function of our laser system, measured by scattering its 355 nm line from neat acetonitrile, and time-resolved emission data for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$ ($\lambda_{\text{ex}}=355$ nm ; $\lambda_{\text{em}}=550$ nm). The emission profile in figure 4.7e is broadened with respect to the temporal width of our system response function, indicating that this compound's singlet excited state decays on a timescale commensurate with the duration of the laser pulse. A fluorescence lifetime of 25 ps was determined by fitting the experimental data to an emission intensity function, constructed from the convolution of our system response function with an exponentially decaying fluorescence intensity. The experimental and theoretical emission profiles are compared in figures 4.7g and h. This analysis indicates that the nominal 65 ps process found in the transient difference spectrum of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$ can be attributed to its ^1B excited state.

As seen in figure 4.7 j, $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$ exhibits a biphasic phosphorescence profile ($\lambda_{\text{em}}=750$ nm) with lifetimes of 140 ns and 10 ns. This type of nonexponential behavior indicates that the phosphorescence from this complex is tied to at least two individual molecular species or states. Because the emission

Figure 4.7. Difference spectra and kinetics for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-246Me}_3\text{Py}^+)_2$ in acetonitrile solutions. g) and h) These two figures compare the experimental fluorescence data (g) with a theoretical curve (h) generated by convoluting the system response function with an exponential emission function; $\tau_f=25$ ps. i) Kinetics measured at a longer delay time ($\lambda_{\text{ex}}=355$ nm, $\lambda_{\text{obs}}=400$ nm, $\tau_{\text{fit}1}=14$ ns, $\tau_{\text{fit}2}=144$ ns). j) Time-resolved emission profiles measured at longer delay times ($\lambda_{\text{ex}}=355$ nm, $\lambda_{\text{obs}}=700$ nm, $\tau_{\text{fit}1}=10$ ns, $\tau_{\text{fit}2}=139$ ns).



bandshapes and maxima for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$ are identical to those of the model compounds, its biexponential phosphorescence profiles cannot be attributed to two electronically distinct triplet states. One plausible explanation for this behavior is that two non-interconverting populations of this donor-acceptor molecule with substantially different triplet electron-transfer rates exist in fluid solution. The differences in k_{ET} for these two isomers could result from significant differences in their donor-acceptor separations and orientations. Leland and coworkers have recently observed nonexponential emission behavior in a porphyrin-quinone ET system in low temperature matrices.⁷ At 77° K the solvent matrix restricts rotations about the system's three-fold axis and leads to the resolution of kinetically distinct ET processes. Lindsey⁸ and Bolton⁹ have observed multiexponential fluorescence decays in porphyrin-quinone systems at room temperature in fluid solutions. In both studies, multiple solution conformers were invoked to explain this behavior and were identified in the electronic and NMR spectra of the compounds. While a similar interpretation for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$ in room temperature acetonitrile solutions is conceptually attractive, it is at odds with the known conformational variability of the redox ligands in this complex. Recall from chapter 2 of this thesis that intramolecular rotations about the Ir-P and linker group single bonds make a distribution of donor-acceptor separations and orientations available to the iridium dimer compounds in fluid solution. Further, based on the structural similarities between $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$ and $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4MePy}^+)_2$, it is difficult to rationalize profound differences in the distribution of solution conformations available to their redox ligands. Yet as seen earlier, the time resolved emission data for the former compound were readily modeled by a single exponential intensity function. These considerations indicate that a model involving two non-interconverting donor-acceptor complexes is not reasonable for explaining the biphasic emission behavior associated with this complex.

A more plausible model, which accounts for the nonexponential emission decays found in $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$, involves the equilibration of this compound's ${}^3\text{B}$ and CT states on a timescale commensurate with their excited state lifetimes (figure 4.8). This kinetic scheme is based on an analogous model for the biphasic emission decays found in exciplex donor-acceptor systems and is in line with the approximate 80 nm separation between the ${}^3\text{B}$ and CT states in this complex reported in chapter 3.¹⁰ Because of this added complication, rates for triplet state electron transfer and charge recombination must be extracted from a detailed analysis of the time resolved emission data in figure 4.7j. To simplify a derivation for the time dependent concentrations of the ${}^3\text{B}$ and CT excited states in $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$, we make several fundamental assumptions. The first of these is that electron transfer does not take place from any of the higher-lying excited states in the donor-acceptor complexes. This assumption is necessary because the time-resolved emission data for this complex were recorded using 355 nm excitation pulses which populate the compound's higher-lying ($d\pi p\sigma$) states. It will greatly simplify expressions for the yield of formation of triplet and CT state from these higher lying electronic levels, which will play an important role in interpreting the results of our kinetic analysis. This premise is reasonable because a lower limit for k_{ic} in these complexes is 10^{13} sec^{-1} and their activationless ET rate is approximately two orders of magnitude slower (vida infra).¹¹ Further, order of magnitude estimates for the reaction driving force from these ($d\pi p\sigma$) states indicate that k_{et} for these reactions would be well below this activationless limit.¹² A second assumption underlying our kinetic model is that the ${}^3\text{B}$ and CT states are populated on a timescale that is shorter than their excited state lifetimes. This assumption is valid based on the rapid rates of internal conversion and ${}^1\text{B}$ electron transfer in this complex. With these assumptions in place, the kinetic scheme in figure 4.8 indicates that the rate of disappearance of the ${}^3\text{B}$ and CT states in

Figure 4.8. A kinetic scheme for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-246Me}_3\text{Py}^+)_2$ that includes back electron transfer from the CT to triplet state (T_1). Similar models have been used to describe biphasic emission profiles in exciplex donor-acceptor systems (S_1 =lowest energy singlet state, T_1 =lowest energy triplet state, CT=charge transfer state, S_n =higher energy singlet state being pumped by the laser pulse).

this complex can be written in differential form as seen in equations 4.1 and 4.2.

$$\frac{-d[T_1]}{dt} = (k_1 + k_2)[T_1] - k_{-2}[CT] \quad \text{eq. 4.1}$$

$$\frac{-d[CT]}{dt} = (k_3 + k_{-2})[CT] - k_2[T_1] \quad \text{eq. 4.2}$$

Here k_1 represents the sum of radiative and nonradiative rates for the triplet state in a model compound. Equations 4.1 and 4.2 are a system of homogeneous first order differential equations with constant coefficients and can be solved using standard techniques.¹³ Substituting the general exponential functions in 4.3 and 4.4 for the concentration terms in 4.1 and 4.2 leads to a matrix equation relating the fundamental rate constants and emission lifetimes (equation 4.5);

$$[T_1] = T_1^0 \exp(-\lambda t) \quad \text{eq. 4.3}$$

$$[CT] = CT^0 \exp(-\lambda t) \quad \text{eq. 4.4}$$

$$\begin{bmatrix} k_A - \lambda & -k_{-2} \\ -k_2 & k_B - \lambda \end{bmatrix} \begin{pmatrix} T_1^0 \\ CT^0 \end{pmatrix} = 0 \quad \text{eq. 4.5}$$

where $k_A = k_1 + k_2$ and $k_B = k_3 + k_{-2}$. Solving equation 4.5 by requiring that its determinant equal zero produces a Characteristic Equation whose roots are

$$\lambda_{1,2} = \frac{(k_A + k_B) \pm \sqrt{(k_A - k_B)^2 + 4k_2k_{-2}}}{2} \quad \text{eq. 4.6.}$$

It is interesting to note that as $k_{-2} \rightarrow 0$, $\lambda_1 \rightarrow k_1 + k_2$ and the triplet emission profile becomes monophasic. Thus, the eigenvalues in equation 4.6 tend to their proper limits as the energy gap between T_1 and CT increases. Eigenvectors for λ_1 and λ_2 can be found by substituting each of these eigenvalues into equation 4.5 and solving for T_1^0 in terms of CT^0 . This procedure yields general equations for the time dependent concentrations of T_1 and CT (4.7 and 4.8).

$$[T_1] = k_{-2} \left\{ \frac{C_1}{k_A - \lambda_1} \exp(-\lambda_1 t) + \frac{C_2}{k_A - \lambda_2} \exp(-\lambda_2 t) \right\} \quad \text{eq. 4.7}$$

$$[CT] = C_1 \exp(-\lambda_1 t) + C_2 \exp(-\lambda_2 t) \quad \text{eq. 4.8}$$

The coefficients C_1 and C_2 are determined by the boundary conditions found in equations 4.9 and 4.10.

$$[T_1]_{t=0} = t_0 \quad \text{eq. 4.9}$$

$$[CT]_{t=0} = p_0 \quad \text{eq. 4.10}$$

In contrast to exciplex systems where $[CT]_{t=0}=0$, in our particular case the $t=0$ populations of the triplet and CT states are not readily determined.¹⁰ This situation arises because these states are populated from higher-lying levels rather than by direct excitation and because they cannot be spectroscopically differentiated in transient absorption data. We will deal with this problem later using order of magnitude arguments regarding the yields of formation of T_1 and CT from upper excited states. Applying these general boundary conditions and solving for C_1 and C_2 leads to equations 4.11 and 4.12.

$$C_1 = \frac{p_o k_{-2} - t_o (k_A - \lambda_2)}{k_{-2} (\lambda_2 - \lambda_1)} (k_A - \lambda_1) \quad \text{eq. 4.11}$$

$$C_2 = \frac{t_o (k_A - \lambda_1) - p_o k_{-2}}{k_{-2} (\lambda_2 - \lambda_1)} (k_A - \lambda_2) \quad \text{eq. 4.12}$$

These relationships can be further simplified by requiring that the total number of excited molecules at $t=0$ (I_0) be equal to the sum of the $t=0$ triplet and CT state populations.

$$\begin{aligned} t_o + p_o &= I_0 \\ \phi_1 &= \frac{t_o}{I_0} \\ \phi_2 &= \frac{p_o}{I_0} \\ \phi_1 + \phi_2 &= 1 \end{aligned} \quad \text{eq. 4.13}$$

Replacing t_o and p_o in 4.11 and 4.12 by their corresponding fractional populations, ϕ_1 and $1-\phi_1$, leads to 4.14 and 4.15.

$$C_1^* = \frac{(1-\phi_1)k_{-2} - \phi_1(k_A - \lambda_2)}{(\lambda_2 - \lambda_1)k_{-2}} (k_A - \lambda_1) I_0 \quad \text{eq. 4.14}$$

$$C_2^* = \frac{\phi_1(k_A - \lambda_1) - (1-\phi_1)k_{-2}}{(\lambda_2 - \lambda_1)k_{-2}} (k_A - \lambda_2) I_0 \quad \text{eq. 4.15}$$

Thus, the time dependent concentration of T_1 is,

$$[T_1] = I_0 \left\{ \left[\frac{(1 - \phi_1)k_{-2} - \phi_1(k_A - \lambda_2)}{\lambda_2 - \lambda_1} \right] \exp(-\lambda_1 t) + \left[\frac{\phi_1(k_A - \lambda_1) - k_{-2}(1 - \phi_1)}{\lambda_2 - \lambda_1} \right] \exp(-\lambda_2 t) \right\}$$

Values for k_2 , k_{-2} , k_3 , and ϕ_1 can be determined from the two time constants (λ_1 and λ_2), the integrated intensities of the two emission components, and the equilibrium constant k_{-2}/k_2 using equations 4.16 through 4.19.

$$\lambda_1 + \lambda_2 = k_A + k_B \quad \text{eq. 4.16}$$

$$\lambda_1 \lambda_2 = k_A k_B - k_2 k_{-2} \quad \text{eq. 4.17}$$

$$\frac{k_{-2}}{k_2} = \exp(-\Delta E) = 0.04384 \quad \text{eq. 4.18}$$

$$\frac{I_1}{I_2} = \frac{(1 - \phi_1)k_{-2} - \phi_1(k_A - \lambda_2)}{\phi_1(k_A - \lambda_1) - k_{-2}(1 - \phi_1)} \quad \text{eq. 4.19}$$

Solving equations 4.16, 4.17, and 4.18 leads to an equation, which is quadratic in k_2 ; its solution yields two positive roots, $k_2^a = 6.5 \times 10^7 \text{ sec}^{-1}$ and $k_2^b = 7.0 \times 10^6 \text{ sec}^{-1}$.

Sequential substitution of these values into equations 4.16, 4.17, 4.18, and 4.19 produces values for k_{-2} , k_3 , and ϕ_1 . ϕ_2 can be determined from equation 4.13.

Numerical values for these fundamental kinetic parameters from each of the roots in k_2 are summarized in table 4.2.

Table 4.2: Kinetic Parameters for the 2,4,6-Me₃Py Complex.

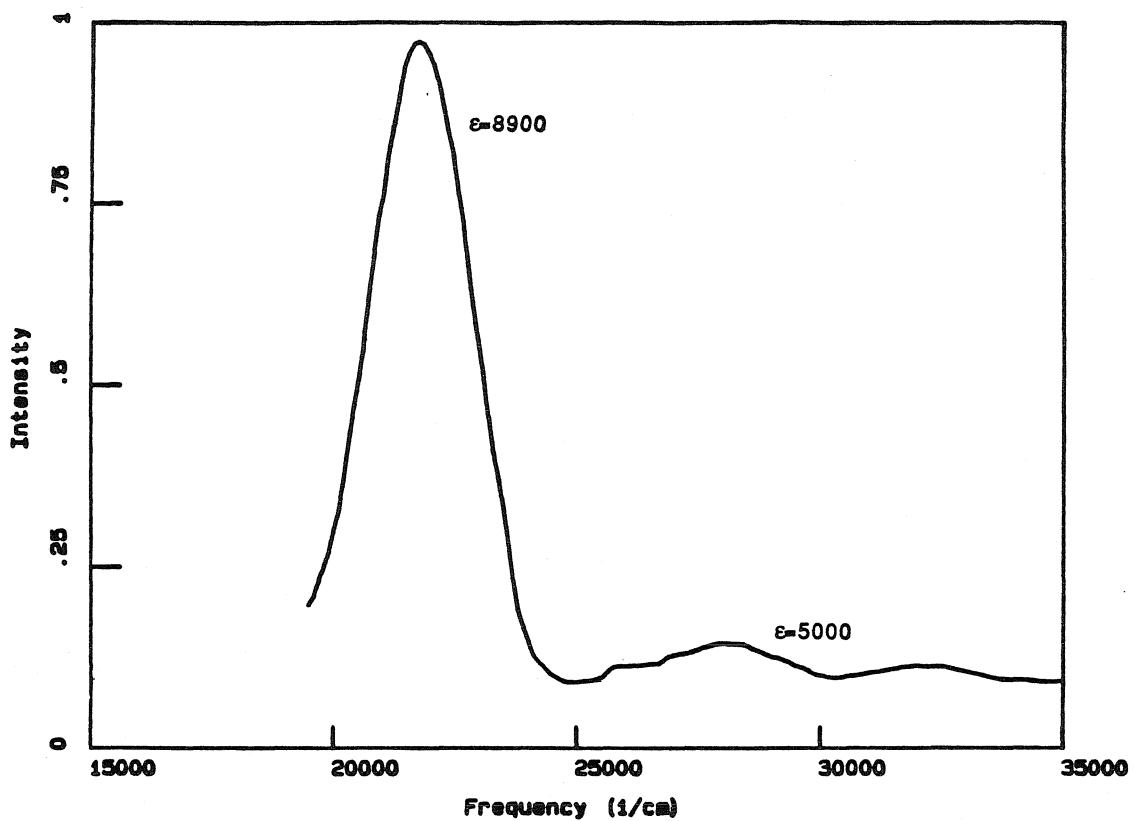
Root	k_2 sec ⁻¹	k_{-2} sec ⁻¹	k_3 sec ⁻¹	ϕ_1	ϕ_2
a	6.5×10^7	2.8×10^6	3.9×10^6	0.046	0.95
b	7.0×10^6	3.1×10^5	6.4×10^7	0.67	0.33

Two sets of rate constants, describing different kinetic scenarios, arise from this analysis because the boundary conditions in equations 4.9 and 4.10 are not uniquely determined. For $k_2=k_2^a$, $k_2>k_3$ and the initial populations of the triplet and CT states are close to their equilibrium values. This situation can be contrasted with a second case where $k_2< k_3$ and the initial populations of T_1 and CT lie in favor of the triplet state. Because these two cases are readily differentiated by their substantially different values of ϕ_1 and ϕ_2 , additional information regarding the relative yields of formation of T_1 and CT will identify the correct set of rate constants for the $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$ system.

Recall that the luminescence data for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$ were obtained by exciting this complex at 355 nm. Electronic transitions at this wavelength populate one of its higher-lying ${}^1(\text{d}\pi\text{p}\sigma)$ excited states. According to the Jablonski diagram in figure 4.8 and our initial assumptions, this state rapidly relaxes to form a distribution of ${}^1\text{B}$ and ${}^3\text{B}$ excited states. The singlet states in this initial distribution are subsequently converted to triplet and CT states via intersystem crossing and electron transfer, respectively. Thus, a knowledge of the ${}^1(\text{d}\pi\text{p}\sigma)$ to ${}^1\text{B}$ and ${}^3\text{B}$ internal conversion and intersystem crossing efficiencies, and the ${}^1\text{B}$ to ${}^3\text{B}$ intersystem crossing efficiency in this complex is required to fully characterize the initial yields of its triplet and CT states. Information regarding the former two quantities can be obtained by analyzing the excitation spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ (figure 4.9) using equations 4.20 and 4.21.

$$\frac{I_{355}}{I_{460}} = \frac{\epsilon_{355}}{\epsilon_{460}} \phi_{ic}^{\text{singlet}} \quad \text{eq. 4.20.}$$

$$\frac{I_{355}}{I_{460}} = \frac{\epsilon_{355}}{\epsilon_{460}} \left[\phi_{ic}^{\text{singlet}} + \phi_{ic}^{\text{triplet}} \right] \quad \text{eq. 4.21.}$$


From these relationships, if the conversion efficiencies between the ${}^1(\text{d}\pi\text{p}\sigma)$ and ${}^{1,3}(\text{d}\sigma^*\text{p}\sigma)$ excited states in $\text{d}^8\text{-d}^8$ A-frame complexes are close to unity, then the ratio of the excitation band intensities for these states should be equal to the ratio of their extinction coefficients. As seen in figure 4.9a, in triplet excitation spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ I_{355}/I_{460} is equal to the ratio of extinction coefficients at these wavelengths. This implies that $\phi_{\text{ic}}^{\text{singlet}} + \phi_{\text{isc}}^{\text{triplet}} = 1$. In contrast I_{355}/I_{460} in its singlet excitation spectrum is much less than $\epsilon_{355}/\epsilon_{460}$ (figure 4.9b); thus, $\phi_{\text{ic}}^{\text{singlet}} = 0.15$ and $\phi_{\text{isc}}^{\text{triplet}} = 0.85$. These results indicate that ${}^1(\text{d}\pi\text{p}\sigma)$ to ${}^3\text{B}$ intersystem crossing in $\text{d}^8\text{-d}^8$ A-frame complexes is more efficient than internal conversion to their lowest-lying singlet states. Similar results have been reported for $\text{Rh}_2(\text{Bridge})_4^{2+}$ and ascribed to the substantial spin-orbit coupling associated with this chromophore's metal centers.¹¹ An analogous effect must also play a role in the relaxation of the upper excited states in iridium A-frame compounds. The ${}^1\text{B}$ to ${}^3\text{B}$ intersystem crossing efficiency in $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$ can be estimated from equation 4.22;

$$\frac{\tau}{\tau^0} \phi_{\text{isc}}^0 = \phi_{\text{isc}} \quad \text{eq. 4.22}$$

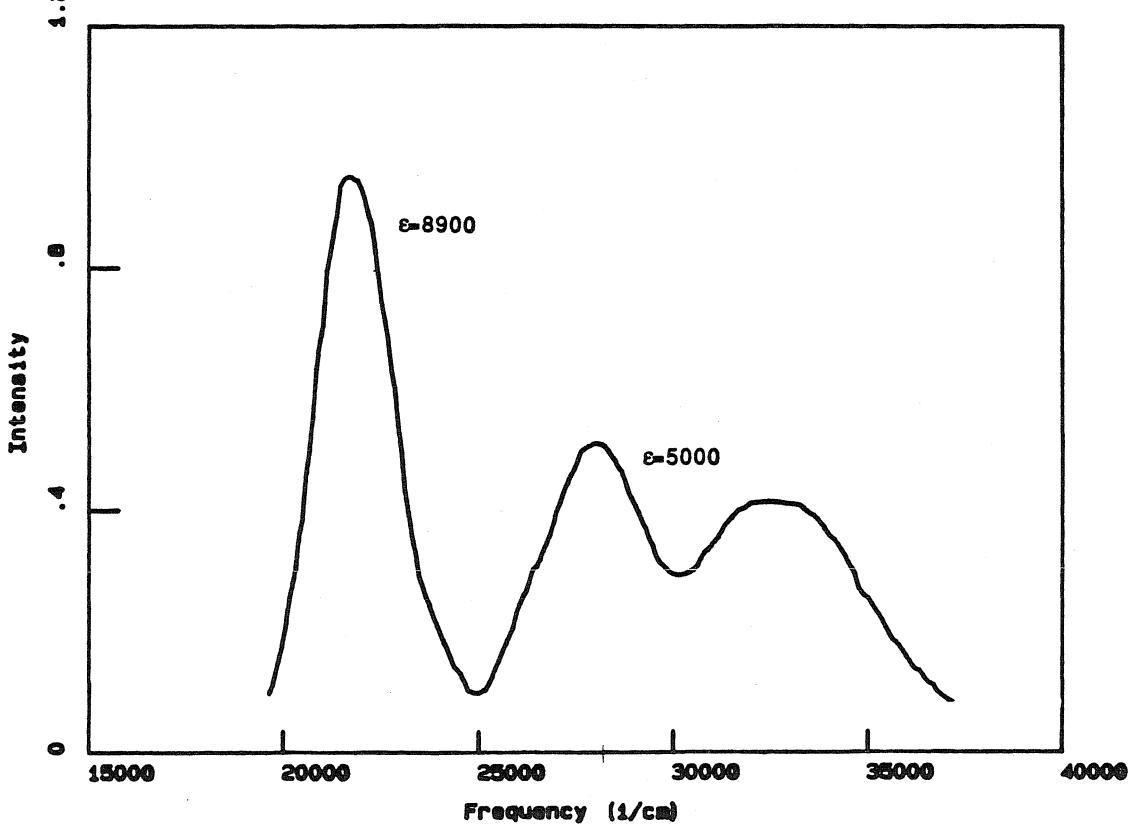

where τ^0 and τ are the fluorescence lifetimes of a model complex and $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$, respectively. Here, we assume that k_{isc} is the same for the donor-acceptor and model compounds; a reasonable premise because k_{isc} is a quantity associated with the iridium dimer chromophore. For iridium $\text{d}^8\text{-d}^8$ complexes ϕ_{isc}^0 is close to unity.^{3b,e} Thus, ϕ_{isc} is approximately 0.25 in $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$. Using these values for the internal

Figure 4.9. Electronic excitation spectra of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ in 2-methyltetrahydrofuran. a) Room temperature triplet spectrum. b) Room temperature singlet spectrum.

ETOP Room T Singlet Excitation Spectrum

a ETOP Room T Triplet Excitation Spectrum

conversion and intersystem crossing efficiencies, the yields of formation of the ^3B and CT excited states are found to be $\eta_{\text{triplet}}=0.88$ and $\eta_{\text{CT}}=0.12$. The ratio of these two quantities ($\eta_{\text{CT}}/\eta_{\text{triplet}}=0.14$) compares most favorably with $\phi_2^b/\phi_1^b=0.49$ calculated from the kinetic data in table 4.2. These results indicate that k_2^b, k_{-2}^b , and k_3^b are the correct electron-transfer rate constants for this complex and that at $t=0$ the populations of its triplet and charge-transfer states lie in favor of the ^3B state; a situation that is primarily due to efficient intersystem between its $^1(\text{d}\pi\text{p}\sigma)$ and ^3B excited states.

Discussion

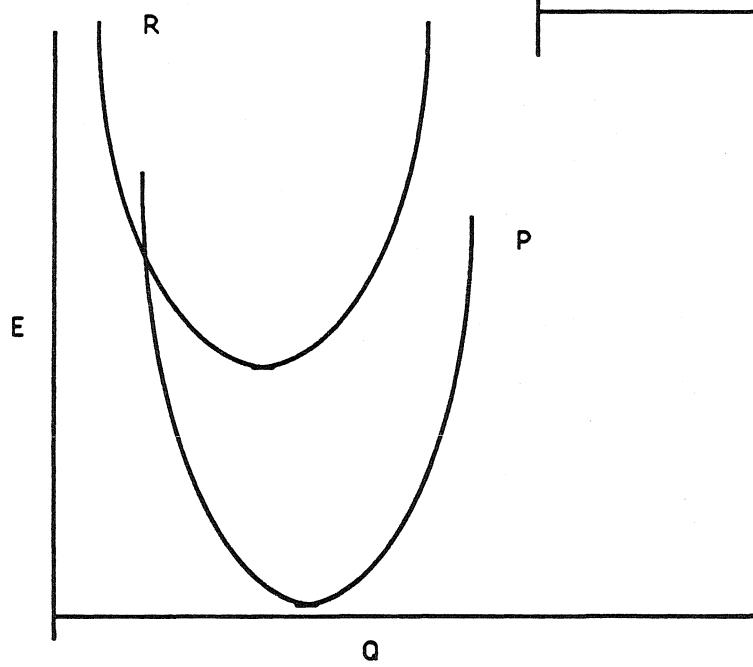
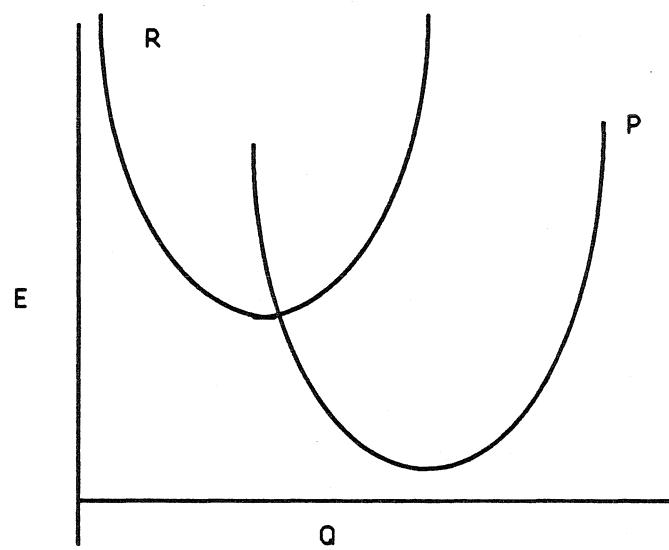
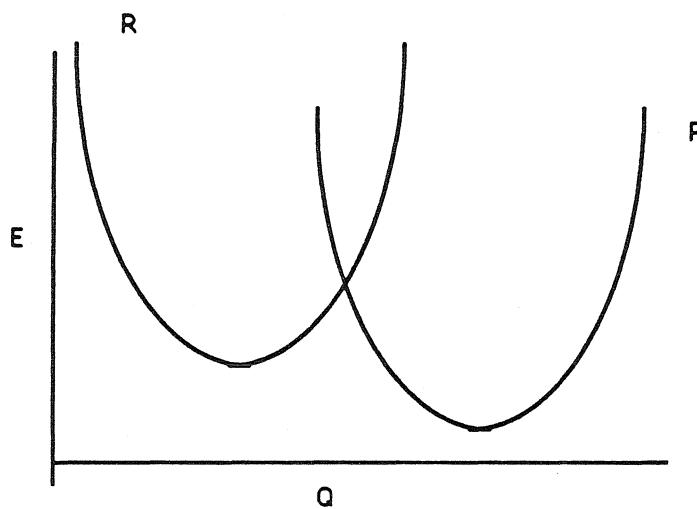
Driving Force Dependence: Previous experimental¹⁴ and theoretical¹⁵ studies have established reaction exoergicity as a fundamental kinetic parameter in electron-transfer reactions. Together with the inner-sphere and outer-sphere reorganization energies, reaction driving force determines the thermal barriers to electron transfer. In the classical theory for outer-sphere electron transfer, first developed by Marcus,¹⁶ the reaction rate and activation free energy are described by equations 4.23 to 4.28,

$$k_{et} = \kappa A \sigma^2 \exp\left[-\frac{\Delta G^*}{RT}\right] \text{ eq. 4.23}$$

$$\Delta G^* = \frac{(\lambda + \Delta G^o)^2}{4\lambda} \text{ eq. 4.24}$$

$$\Delta G^o = \Delta G^o + w^r + w^p \text{ eq. 4.25}$$

$$\lambda = \lambda_i + \lambda_o \text{ eq. 4.26}$$




$$\lambda_i = \sum_i \frac{f_i^r f_i^p}{f_i^r + f_i^p} (\Delta q_i)^2 \text{ eq. 4.27}$$

$$\lambda_o = (\Delta e)^2 \left[\frac{1}{2a_1} + \frac{1}{2a_2} - \frac{1}{r} \left[\frac{1}{n^2} - \frac{1}{\epsilon} \right] \right] \text{ eq. 4.28}$$

where $A\sigma^2$ is an effective solution collision frequency, discussed in detail elsewhere. σ is the average center-to-center distance between the two redox partners in an encounter complex and κ is the electronic transmission coefficient. The latter quantity represents

the probability that charge transfer will take place once the reactants have reached the transition state. In the Landau-Zener formalism κ is related to the electronic interaction between the reactants and their rate of passage through the transition state region.^{15a,c} When $\kappa=1$, charge transfer takes place with unit efficiency and the reaction is termed adiabatic. A $\kappa<1$ is associated with a less efficient nonadiabatic charge transfer process. The intrinsic thermal barrier (λ) is composed of two reorganization components. The inner-sphere component (λ_i) describes the energy required to adjust the molecular bond lengths and angles in the two redox partners to their transition state configurations, while λ_o refers to the energy needed to reorient solvent molecules in the surrounding medium. Both are treated classically in the Marcus model as seen in equations 4.26 and 4.27, where f_j^r and f_j^p are the normal mode force constants for the j th vibration in the reactants and products, respectively, Δq_j is the change in the j th normal coordinate, a_1 and a_2 are the hard-sphere radii of the two reactants, and r is their center-to-center separation. w^r and w^p are the free energies required to bring the reactants and products from $r=\infty$ to $r=\sigma$. According to equation 4.24 the free energy of activation should vary quadratically as a function of the reaction driving force. When the driving force is small compared to the reorganization energy (i.e., the normal region), the reaction rate should increase as a function of $\Delta G^0'$ and maximize at $\Delta G^0'=\lambda$; for $\Delta G^0'>\lambda$ the reaction rate decreases as a function of driving force into what has been termed "the inverted region." Fundamentally, this model asserts that the total activation free energy for electron transfer is a function of the free energy change of the reaction and the energy required to rearrange the reactant normal coordinates into their transition state configurations. In the normal region the system must extract energy from its surroundings to reach the transition state. As $\Delta G^0'$ increases, the thermal barrier to electron transfer decreases until at $-\Delta G^0'=\lambda$ the reaction proceeds at its quantum mechanical rate (effectively $k=A\sigma^2\kappa$). In the inverted region the system must

Figure 4.10. Schematic potential energy surfaces illustrating the origin of the normal and invert driving force regions in the Marcus model for electron transfer. Increasing the reaction driving force decreases the energy of the crossing point between the reactant and product surfaces along the reaction coordinate until at $\Delta G^0' = \lambda$ there is no thermal barrier to electron transfer. As the reaction driving force increases further, the reactant and product surfaces cross at larger energies and the rate of electron transfer decreases into the inverted region.

release excess energy into its surroundings to relax from a transition state configuration to one associated with the products and a thermal barrier once again controls the rate of electron transfer. These concepts are pictorially illustrated in figure 4.10. Experimental evidence, collected over the past two decades, has indicated that the Marcus model embodies most of the fundamental principles required to describe adiabatic electron-transfer reactions.^{15a} In particular, the Marcus equations in conjunction with the Marcus Cross Relation have proven to be powerful relationships for predicting electron-transfer rates in a normal driving force regime. Several models, based on quantum mechanical and semiclassical descriptions,¹⁶ have appeared for interpreting ET kinetics at low temperature and in the inverted region; however, these relationships reduce to the classical Marcus equations on going to a high temperature limit.

While the driving force dependence of electron transfer in the normal region is for the most part well understood, reactions in the inverted region have remained largely unexplored. This situation has arisen primarily because until recently, evidence for inverted behavior had not been observed. Failure to observe inverted behavior at high reaction driving forces has been attributed to a number of experimental difficulties including rate limiting effects due to bimolecular diffusion¹⁷ and the formation of electronically excited products at driving forces associated with the inverted region.¹⁸ In addition, theoretical studies have indicated that the driving force dependence found in the inverted region is more gradual than predicted by the Marcus equations due to nuclear tunneling effects. As seen in equation 4.29, developed by Jortner and coworkers,^{16a,b} for $h\nu >> kT$ the rate of electron transfer at high driving force will be enhanced in comparison to the rate predicted by classical theories due to the formation of vibrationally excited normal modes in the products. This leads to less pronounced variations in k_{ET} as a function ΔG° in the inverted region.

$$k_{et} = \left(\frac{\pi}{h^2 \lambda_s k_b T} \right)^{1/2} M^2 \sum_{w=0}^{\infty} (e^{-S_s w / w}) \exp \left\{ \frac{(\lambda_s + \Delta G + w h v)^2}{4 \lambda_s k_b T} \right\}$$

eq. 4.29

$$S = \frac{\lambda_v}{h v} \quad \text{eq. 4.30}$$

More recently, Mataga and coworkers¹⁹ have proposed that the lack of inverted behavior seen in photoinduced charge separation reactions can be attributed to differences in the librational frequencies of solvent molecules surrounding the neutral (charged) reactants and charged (neutral) products. This model challenges the dielectric continuum model for solvent reorganization by suggesting that partial dielectric saturation around charged redox partners is responsible for mitigating inverted behavior. Considering the mechanistic complexity of electron-transfer processes, it is not likely that any single factor controls the driving force behavior of highly exothermic reactions. A greater understanding of the roles played by nuclear tunneling, solvent motion, and electronic excited states in determining the rates of electron-transfer reactions in the inverted region will develop as additional examples of inverted behavior are discovered.

In a previous bimolecular study we examined the driving force dependence of triplet electron transfer in $[\text{Ir}_2(\text{Pz})_2(\text{COD})_2]$ for $\Delta G^{\circ'} = 0.13$ to 1.1 eV.^{14a} Plots of $RT \ln(k_{et})$ versus $\Delta G^{\circ'}$ showed a driving force dependent region, where $\ln(k_{et})$ increased as a function of $\Delta G^{\circ'}$, and a plateau region where no further driving force dependence was observed. We, like others, have speculated that our failure to observe inverted behavior in this study is tied to the limitations placed on rapid bimolecular electron transfer reactions by diffusion. Our current intramolecular electron-transfer systems have allowed use to measure electron-transfer rates, which are well above the diffusion limit and at driving forces in excess of 1.0 eV.

Table 4.3 summarizes the photophysical data for the donor-acceptor complexes and model compounds obtained from the time-resolved spectroscopic experiments discussed in this chapter and from measurements reported in chapter 3. With the exception of the fluorescence lifetimes of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4MePy}^+)_2$, $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Py}^+)_2$, and $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4PhPy}^+)_2$, all of the excited state lifetimes reported here were determined using time-resolved spectroscopic techniques. The three former parameters were calculated from the fluorescence quantum yields of the complexes, and the fluorescence quantum yield and lifetime of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$ using equation 4.31.

$$\frac{\Phi}{\Phi^0} \tau^0 = \tau \quad \text{eq. 4.31.}$$

While this procedure is expected to introduce a larger degree of uncertainty in these quantities, similar calculations involving $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$ indicated that reasonable values of τ_f can be obtained using this approach; τ_f^{calc} for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2$ is 7.5 ps as compared with its measured 25 ps fluorescence lifetime. These lifetimes carry an accuracy of $\pm 30\%$ based on the uncertainties in their corresponding fluorescence quantum yields. Values of ϕ_{isc} for the donor-acceptor complexes were estimated from equation 4.22, assuming that intersystem crossing in the model complexes occurs with near unit efficiency.^{3b,e} The fluorescence lifetime and intersystem crossing efficiency for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4PhPy}^+)_2$ are reported as upper limits due to its negligible emission quantum yields. Electron-transfer rate constants and electrochemical driving forces for the complexes are given in table 4.4. Rate constants

Table 4.3: Photophysical Parameters for the Iridium Dimer Complexes.^a

Complex	Φ_f	Φ_p	τ_f ps	τ_p^g μs	Φ_{isc}
$\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2\text{L}_2$					
$\text{Ph}_2\text{OCH}_2\text{CH}_2\text{-NEt}_3^b$	0.0015	0.032	95 ^g	1.2	1.0
$\text{Ph}_2\text{OCH}_2\text{CH}_3$	0.0023	0.025	100 ^g	1.1	1.0
Ph_2OCH_3	0.0027	0.040	100 ^f	1.2	1.0
$\text{Ph}_2\text{O}(\text{CH}_2)_3\text{CH}_3$	0.0025	0.030	100 ^f	1.1	1.0
$\text{Ph}_2\text{OCH}_2\text{CH}_2\text{-Me}_3\text{Py}^c$	0.00017	0.0013	25 ^g 0.144	0.012 0.144	0.25
$\text{Ph}_2\text{OCH}_2\text{CH}_2\text{-4MePy}$	0.00006	0.0004	2.6 ^e	0.003	0.06
$\text{Ph}_2\text{OCH}_2\text{CH}_2\text{-Py}$	0.00003	-- ^d	1.3 ^e	--	0.03
$\text{Ph}_2\text{OCH}_2\text{CH}_2\text{-4PhPy}$	-- ^d	--	$\leq 1.0^e$	--	≤ 0.02

a. Quantum yields taken from spectra measured in acetonitrile solutions at room temperature using $\text{Ru}(\text{Bipy})_3^{2+}$ as a standard; $\lambda_{ex}=436$ nm.

b. Singlet quantum yields for the model compounds are accurate to $\pm 10\%$; triplet quantum yields are accurate to $\pm 30\%$.

c. Singlet quantum yields for the donor-acceptor compounds are accurate to $\pm 30\%$; triplet quantum yields are accurate to $\pm 80\%$.

d. Emission too weak to measure.

e. Estimated using quantum yields and the singlet lifetime of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$; accurate to $\pm 30\%$.

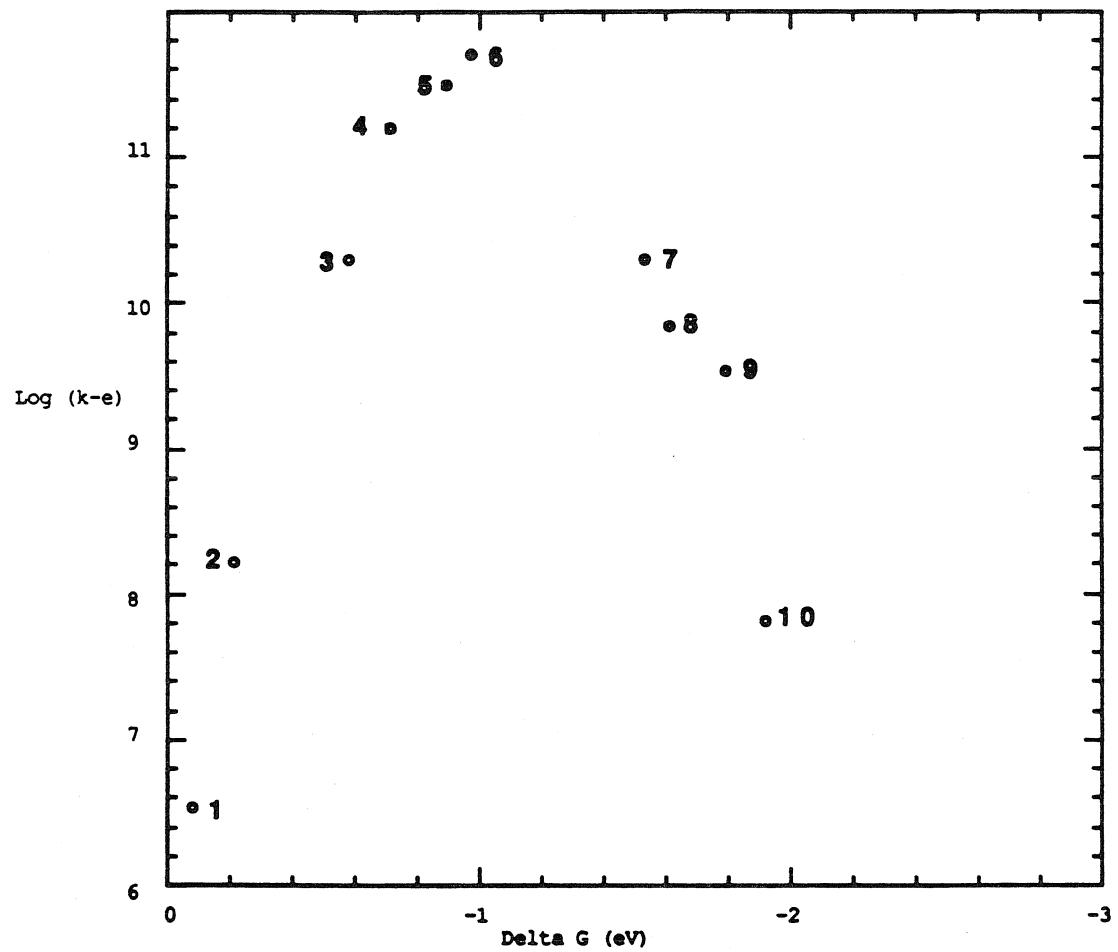
f. Estimated using quantum yields and the singlet lifetime of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_3)_2$; accurate to $\pm 10\%$.

g. Determined from time-resolved emission measurements; accurate to $\pm 10\%$.

Table 4.4: Driving Force and Rate Data.

	Donor	Acceptor	ΔE (eV) ^a	$k_{ET}(\text{sec}^{-1})$
1	$^3\text{Ir}_2$		-0.08	^b 3.5×10^6
2	$^3\text{Ir}_2$		-0.21	^b 1.7×10^8
3	$^1\text{Ir}_2$		-0.58	^b 2.0×10^{10}
4	$^1\text{Ir}_2$		-0.71	^c 1.5×10^{11}
5	$^1\text{Ir}_2$		-0.89	^c 3.2×10^{11}
6	$^1\text{Ir}_2$		-0.97	^d 5.0×10^{11}
7		$^+ \text{Ir}_2$	-1.53	^b 2.0×10^{10}
8		$^+ \text{Ir}_2$	-1.61	^b 6.7×10^9
9		$^+ \text{Ir}_2$	-1.79	^b 3.3×10^9
10		$^+ \text{Ir}_2$	-1.92	^b 6.7×10^7

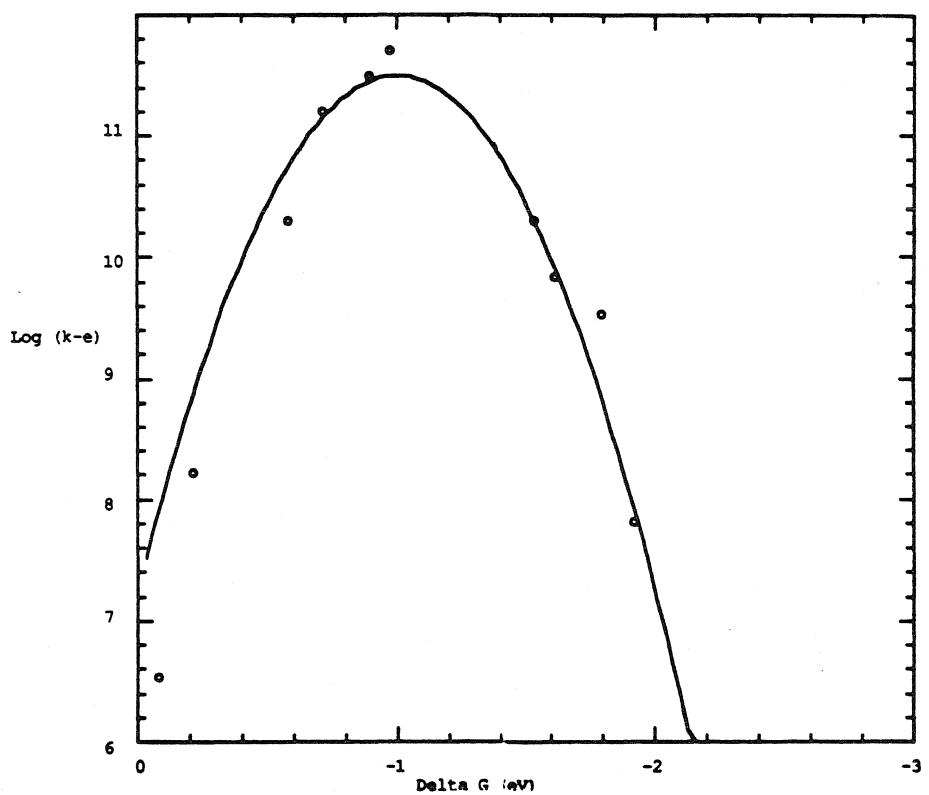
a. Potentials are accurate to ± 100 mv versus SSCE in 0.1 M TBAPF₆/CH₂Cl₂.b. Accurate to $\pm 10\%$. c. Accurate to $\pm 30\%$. d. Lower limit.


for the photoinduced charge separation reactions (#2-6) were determined from equation 4.32,

$$k_{et} = 1/2 \left(\frac{1}{\tau} + \frac{1}{\tau_0} \right) \text{ eq. 4.32}$$

assuming that the radiative and nonradiative rates intrinsic to the d⁸-d⁸ chromophores are not perturbed by the pyridinium cations. This premise is firmly substantiated by the spectroscopic and photophysical data presented in chapter 3 (see tables 3.1, 3.2, and 3.7). The factor of 1/2 in this equation is required by the 1:2 donor-acceptor stoichiometry in these redox systems; it assumes that motions of the quenchers with respect to the iridium dimer chromophores are not correlated. Rate constants for the charge recombination reactions (#7-10) are the reciprocals of the charge transfer state lifetimes.³¹ The driving forces found in table 4.4 are taken from the electrochemical data discussed in chapter 3. Peak potentials for the pyridinium reduction waves and iridium dimer oxidation waves are the same in methylene chloride and acetonitrile. However, electrochemical oxidation of the iridium dimer complexes in acetonitrile is an irreversible two electron process, making its one electron oxidation potential less certain in this solvent. Thus, the driving forces in table 4.4 are accurate to only ± 100 mv.

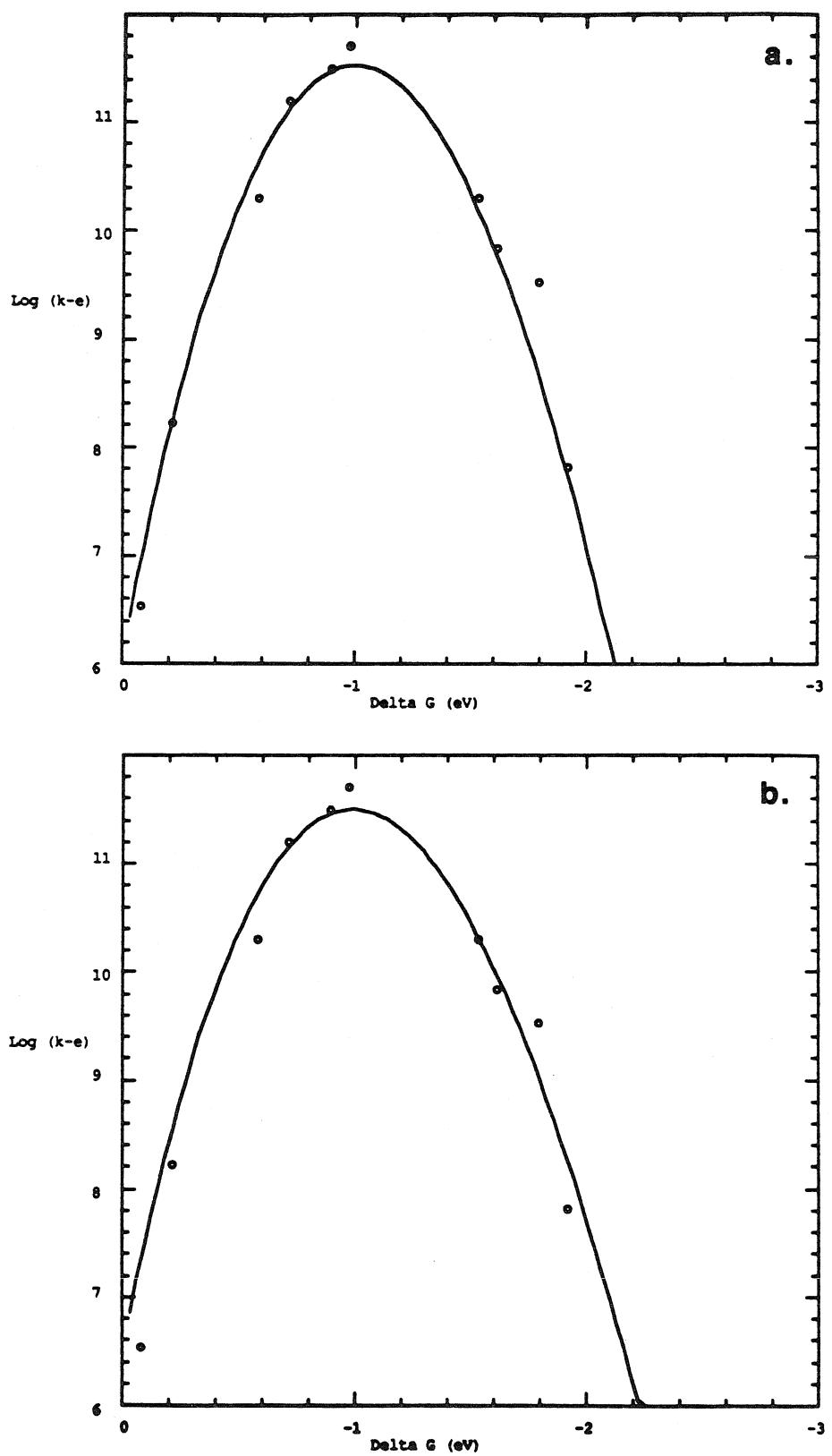
Figure 4.11 shows a plot of $\log(k_{et})$ versus ΔG° for the triplet and singlet charge separation reactions and the charge recombination reactions in our systems. The rate of photoinduced charge separation (#1-6) increases as a function of driving force and maximizes near $\Delta G^{\circ}=1.0$ eV, consistent with previous estimates for the total reorganization energy associated with iridium dimer/pyridinium redox systems.²⁰ In contrast, rates for the charge recombination processes, which return these compounds

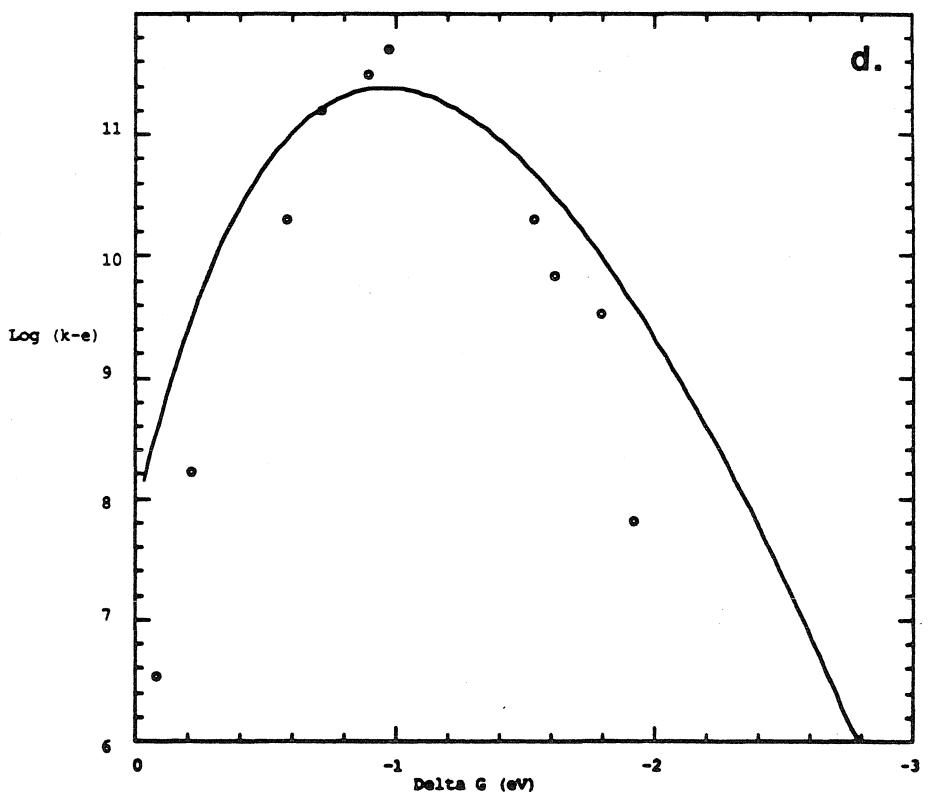
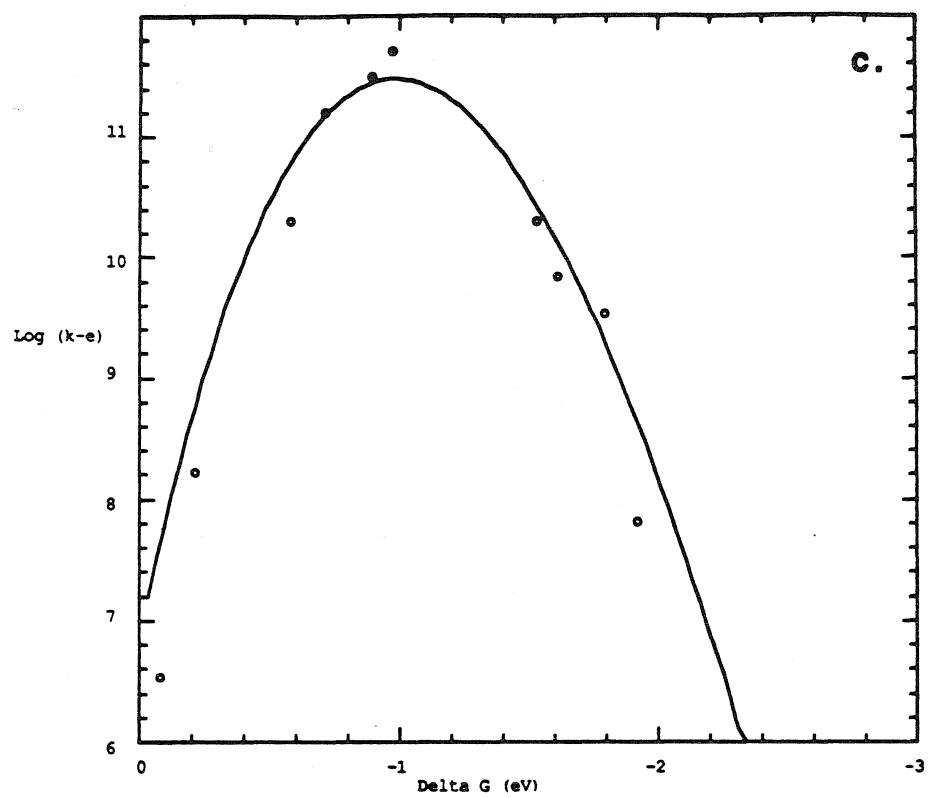

Figure 4.11. Plot of $\text{Log}(k_{\text{et}})$ versus ΔG° for the charge separation (#1-6) and charge recombination (#7-10) reactions in the donor-acceptor complexes. Driving forces are accurate to ± 100 mv; log values are accurate to ± 0.05 log units.

to their electronic ground states (#7-10), decrease by over two orders of magnitude in the driving force range 1.5 to 2.0 eV. This large decrease in k_{et} can be attributed to the inverted behavior predicted by classical Marcus theory and by more recent semiclassical and quantum mechanical electron-transfer models. Inverted effects have been observed in a number of different bimolecular^{14b,f,21} and donor-acceptor redox systems.^{14e,h} Indications of inverted behavior have also been observed in biological donor-acceptor molecules^{14g} including the photosynthetic reaction center.^{14c} One common feature found among these chemically diverse systems is that they all have been studied at driving forces well above 1.0 eV. Thus, a principal criterion for observing inverted behavior may be that the redox system probe exoergicities approaching 2.0 eV. This conclusion is borne out in our results as well.

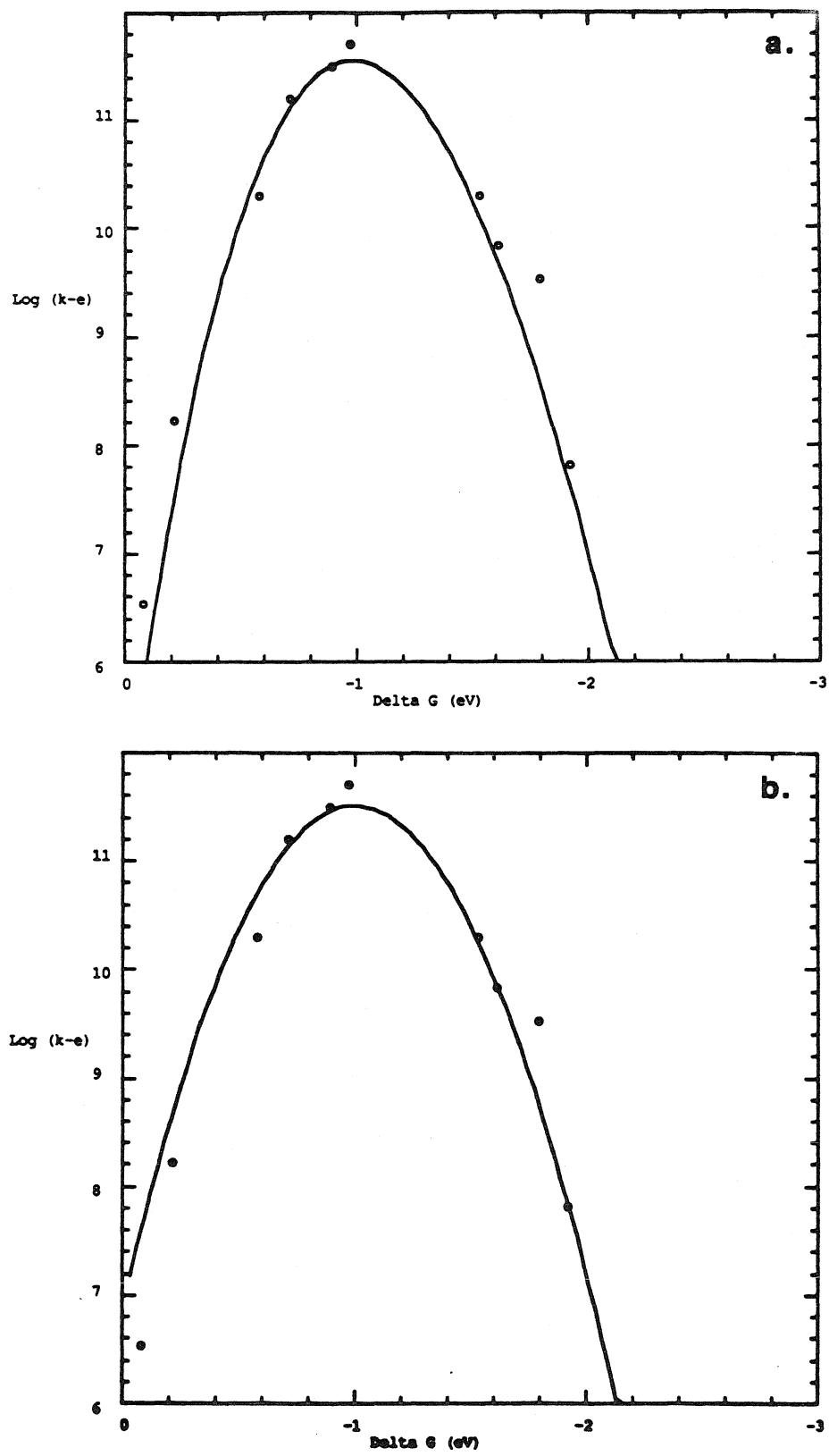
Figures 4.12 to 4.14 summarize results from the analysis of our driving force dependence data using the classical and semiclassical models for electron transfer found in equations 4.23 and 4.29.³³ Figure 4.12 shows a fit of our data to a classical Marcus relationship. Recalling that the estimated standard error along the potential axis in this plot is ± 100 mv, the data are adequately approximated by this model, with the exception of point #1. This analysis yields a total reorganization energy of 1.0 eV and an electronic coupling matrix element of 35 cm^{-1} . Our value of λ is strikingly similar to the reorganization energies determined in several recent driving force dependence studies on a variety of organic and biological donor-acceptor molecules.^{14b,c,e,f,g,h} It is not likely that λ_i would be the same for our compounds and systems based solely on organic donors and acceptors. Therefore, the similarity between our reorganization energy and values found in the literature suggests that $\lambda \approx \lambda_o$ in redox systems whose donors and acceptors are exposed to the solvent. Our value of H_{ab} is comparable to values obtained by Closs and Miller^{14e} for reactions at substantially longer donor-acceptor separations. Because the Closs-Miller systems are known to transfer electrons

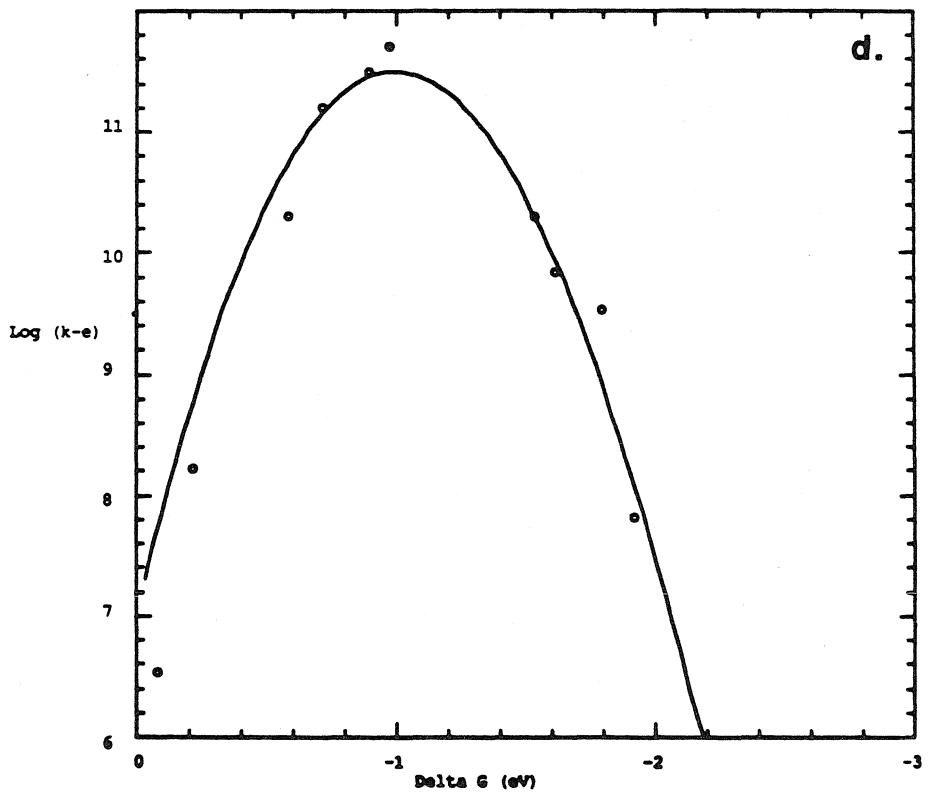
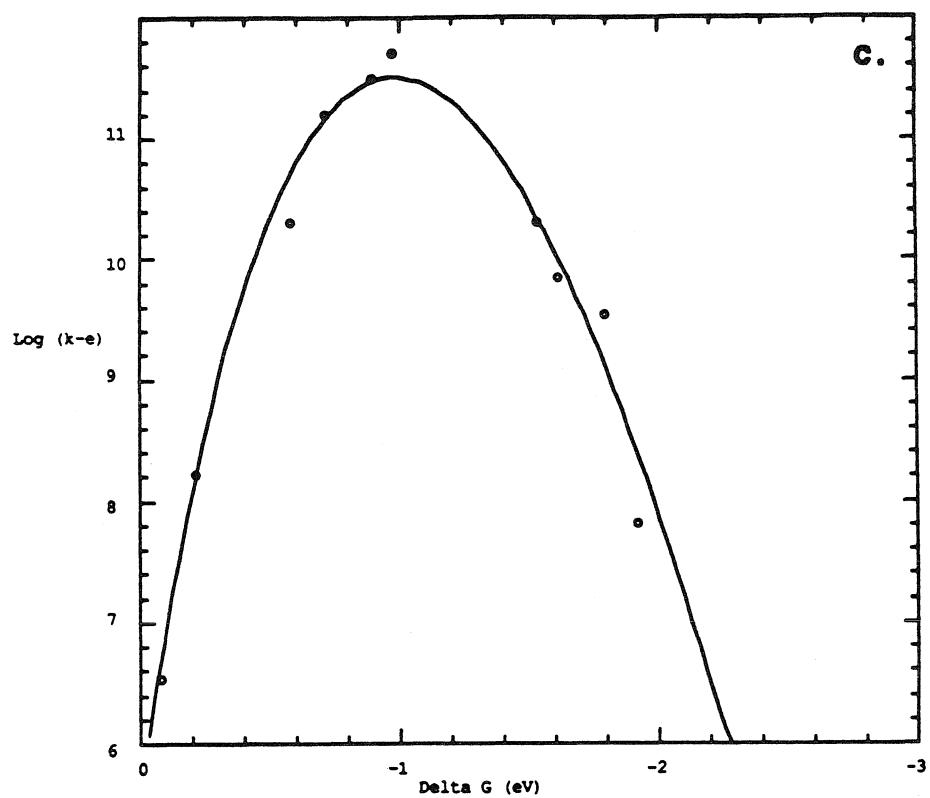
Figure 4.12. Driving force data fit to a classical Marcus model (solid curve). $\lambda=1.0$ eV, $H_{ab}=35$ cm^{-1} .

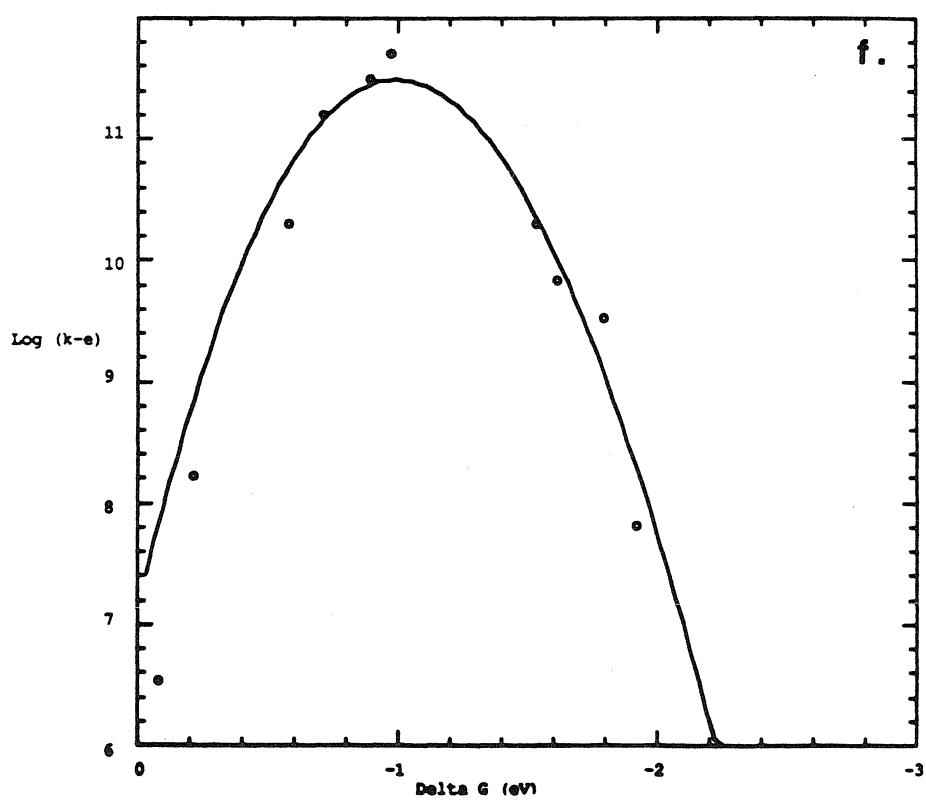
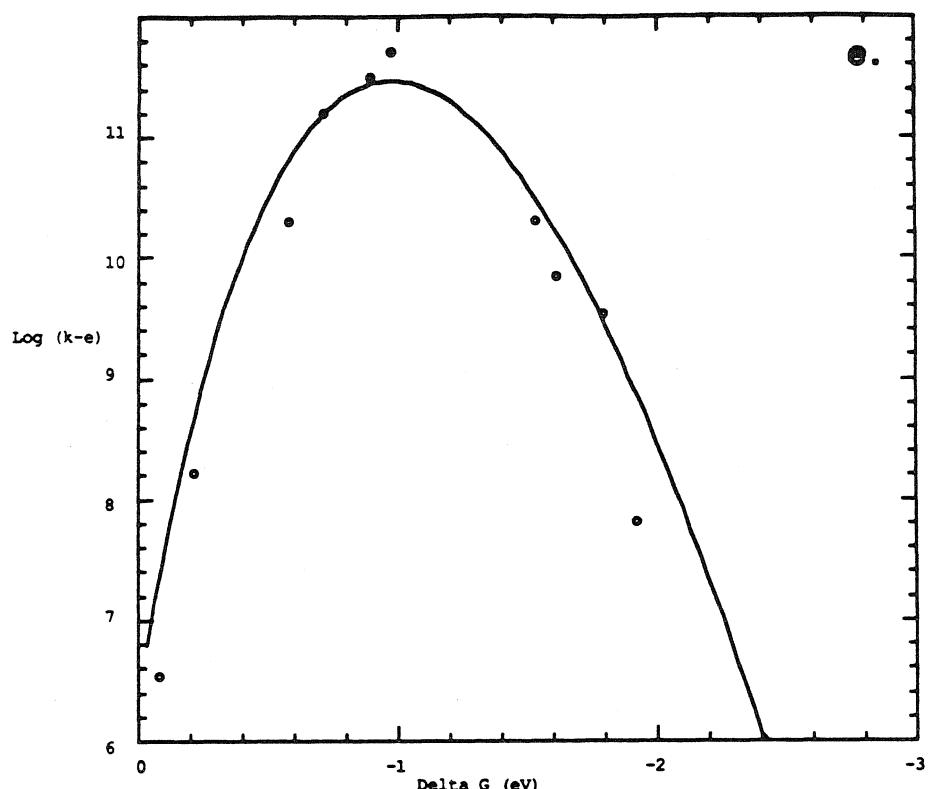




via a through bond mechanism, this comparison suggests that electron transfer in our compounds does not involve through bond pathways. This conclusion is in line with the absence of ICT bands in the electronic spectra of the iridium dimer complexes.²²

Figures 4.13 and 4.14 show results from the analysis of our data using the semiclassical model for electron-transfer found in equation 4.29. This equation includes effects due to nuclear tunneling of high frequency modes in the donor and acceptor by using an average frequency (ν) for the tunneling coordinate and by representing the solvent as a dielectric continuum. Closs and Miller,^{14e,f} Dutton and coworkers,^{14c} and Farid *et al.*^{14b} have observed significant nuclear tunneling effects in their driving force dependence studies and have successfully utilized this relationship in analyzing their data. In figures 4.13 and 4.14, we have fixed $H_{ab}^2=35\text{ cm}^{-1}$ and $\lambda=1.0\text{ eV}$ in accord with our findings using equation 4.23. λ_o , λ_i , and ν were allowed to vary to determine how changes in the tunneling frequency and inner-sphere and outer-sphere reorganization energies affect the shapes of driving force curves predicted by this model. As seen in figures 4.13a-d for constant values of the inner-sphere and outer-sphere reorganization energies, as ν increases from 300 cm^{-1} to 1000 cm^{-1} , the theoretical driving force curves (solid line) drastically depart from the experimental data; when $\nu=1000\text{ cm}^{-1}$ variations in λ_o , λ_i , and H_{ab}^2 do not improve the fit between the model and data. In comparison to the results presented in figure 4.11, the data appear to be better represented by the semiclassical equations when $\nu=300$ to 400 cm^{-1} . It is well known that oxidation of d^8 - d^8 metal complexes leads to significant rearrangement of their metal-metal and metal ligand bond lengths.²³ A tunneling frequency of 400 cm^{-1} would be consistent with a nuclear tunneling mechanism involving the metal ligand modes in the donor-acceptor compounds.²⁴ Figures 4.14a-h show how emphasizing either λ_o or λ_i in the total reorganization energy changes the shape of the theoretical driving force curves for several different tunneling frequencies. Here again, good correlations between the model and data are obtained for smaller values of ν or larger values of λ_o .


Due to the 100 mv esds in our values of $\Delta G^0'$, it is difficult to differentiate between a classical or semiclassical kinetic model as being more appropriate for describing electron transfer in the iridium dimer complexes. These results do, however, indicate that in contrast to many of the organic donor-acceptor systems found in the literature, our complexes do not exhibit substantial nuclear tunneling contributions from modes associated with their pyridinium electron acceptors.^{14b,e,f,h}



Figure 4.13. Driving force data fit to the semiclassical model of Jortner *et al.* showing changes in the theoretical curves as a function of the tunneling frequency ω for $\lambda=1.0$ eV and $H_{ab}=35$. a) $\omega=300$ cm^{-1} . b) $\omega=400$ cm^{-1} . c) $\omega=500$ cm^{-1} . d) $\omega=1000$ cm^{-1} .

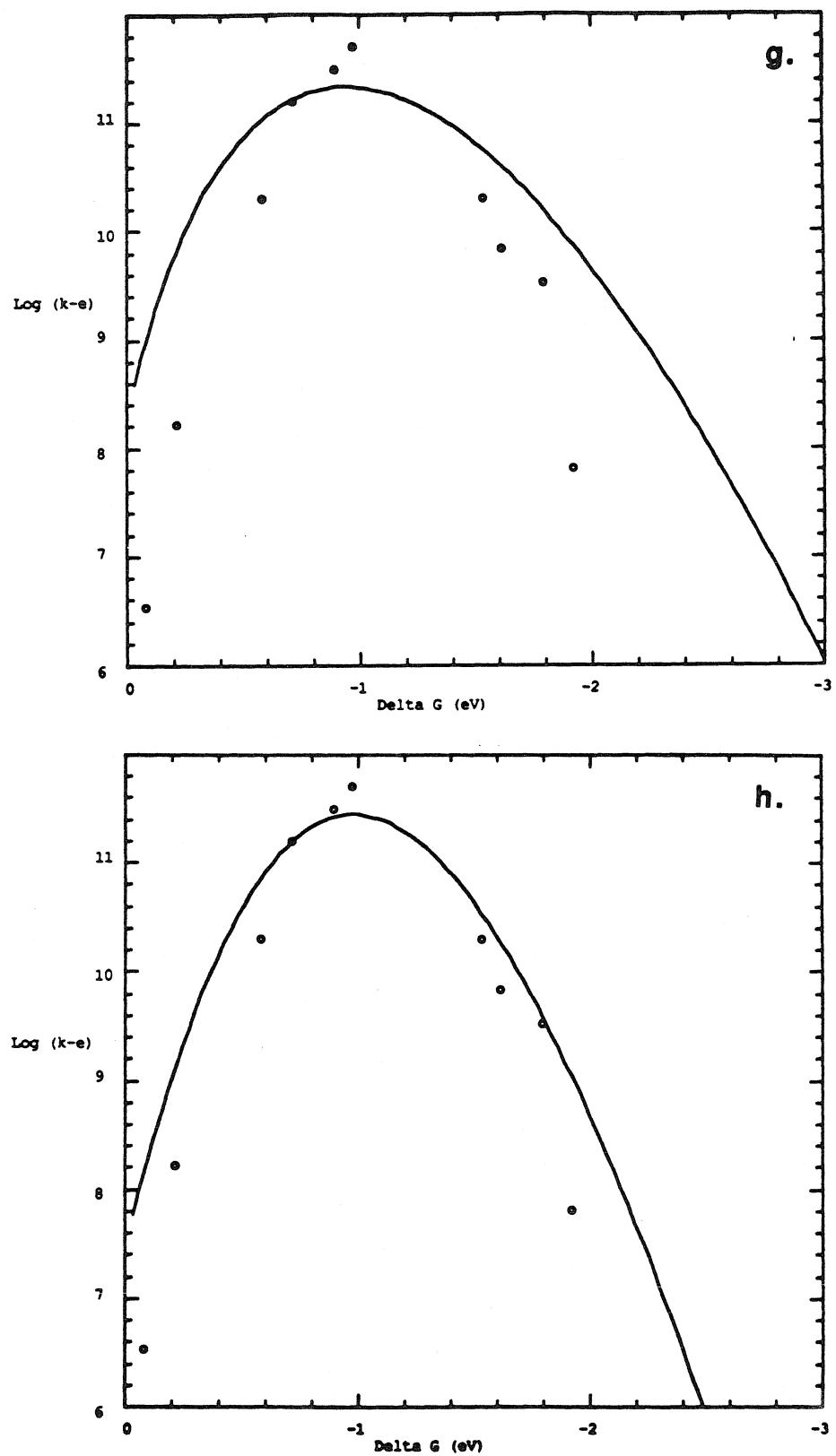
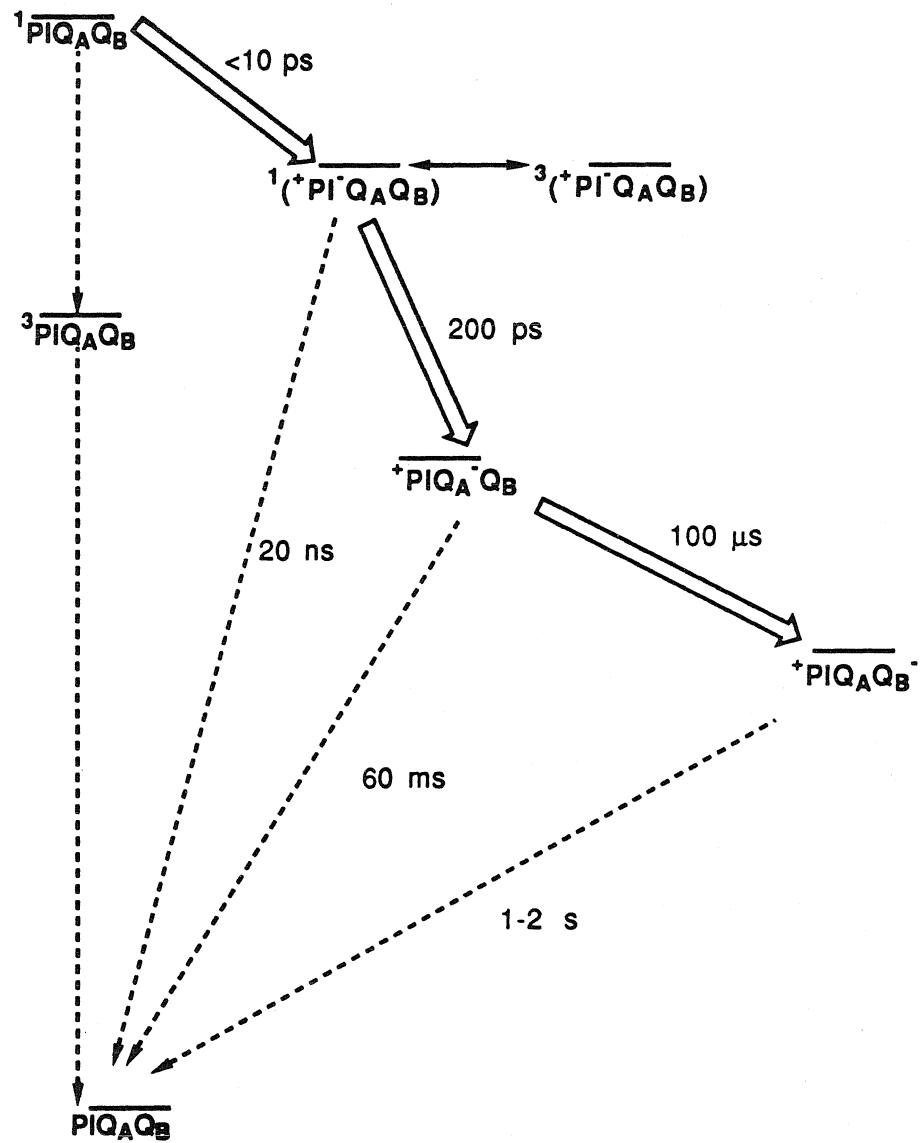


Figure 4.14. Driving force data fit to the semiclassical model of Jortner *et al.* showing changes in the theoretical curves as a function of λ_i and λ_o for $\lambda=1.0$ eV and $H_{ab}=35$. a) $\omega=300$ cm $^{-1}$, $\lambda_i=0.2$ eV, $\lambda_o=0.8$ eV. b) $\omega=300$ cm $^{-1}$, $\lambda_i=0.8$ eV, $\lambda_o=0.2$ eV. c) $\omega=400$ cm $^{-1}$, $\lambda_i=0.2$ eV, $\lambda_o=0.8$ eV. d) $\omega=500$ cm $^{-1}$, $\lambda_i=0.80$ eV, $\lambda_o=0.20$ eV. e) $\omega=500$ cm $^{-1}$, $\lambda_i=0.2$ eV, $\lambda_o=0.8$ eV. f) $\omega=500$ cm $^{-1}$, $\lambda_i=0.8$ eV, $\lambda_o=0.2$ eV. g) $\omega=1000$ cm $^{-1}$, $\lambda_i=0.2$ eV, $\lambda_o=0.8$ eV. h) $\omega=1000$ cm $^{-1}$, $\lambda_i=0.8$ eV, $\lambda_o=0.2$ eV.

Our driving force analysis assumes that the reorganization energies and electronic coupling factors for charge separation and charge recombination in these systems are the same. The validity of this assumption is currently an area of significant interest in electron-transfer research.^{13d,14h,25} Available data regarding this issue from biological and synthetic donor-acceptor systems suggest that the driving force dependence for charge separation and recombination reactions can be described by the same thermal and electronic barriers; however, further investigation will be necessary to resolve these issues. In this light, the correlations between the experimental data and theoretical models in figures 4.12 to 4.14 are remarkable. From these plots it appears that rate data for the triplet and singlet photoinduced electron transfer reactions and charge recombination reactions in our molecules are adequately represented by the same electronic coupling and reorganization parameters.³² At present we are particularly intrigued by the premise that the charge separation and recombination reactions in photoredox molecules may be controlled by different reorganization energies, electronic coupling matrix elements, and spin selection rules. An understanding of these factors is clearly important for designing redox systems that perform vectorial photoinduced charge separation. Experiments designed to address these issues are currently in progress in our laboratories.

Photophysics and Vectorial Electron Transfer: In addition to providing further evidence for inverted behavior, the quantum yield and lifetime data presented in this chapter also differentiate the photophysical properties of bimolecular and intramolecular photoredox systems based on iridium d⁸-d⁸ complexes and pyridinium electron acceptors. Much like photoredox systems based on porphyrin electron donors, our iridium donor-acceptor compounds possess a low lying singlet and triplet redox active excited state. Due to the moderate rates for intersystem crossing in the porphyrin based compounds,²⁷ their primary photoredox reactions occur from their singlet excited states. This preferred singlet reactivity is found in synthetic donor-


acceptor systems and also in the photosynthetic reaction center. In contrast photoinduced electron transfer in redox systems based on inorganic chromophores largely involves their lowest lying high spin excited states. This apparent change in the excited state reactivities of the spin allowed and spin forbidden states is a direct consequence of the decreased fluorescence lifetimes and increased intersystem crossing rates characteristic of inorganic chromophores. In our earlier bimolecular electron transfer studies, we found that charge transfer occurred solely from the 3B excited states of iridium A-frame complexes.^{20,14a} However, much like photoredox systems containing porphyrin electron donors, photoinduced electron transfer in our intramolecular ET complexes is primarily a 1B process. As seen in table 4.3, the intersystem crossing efficiencies for the donor-acceptor compounds are ≤ 0.25 ; for $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-4PhPy}^+)_2$ intersystem crossing is essentially a negligible singlet deactivation pathway. Thus the initial charge separation reactions in these compounds occur with close to unit efficiency. The recent findings of Closs and Miller^{14e}, Wasielewski,^{14h} Gust,²⁸ Dervan,⁷ and Bolton⁹ have suggested that one of the primary motives for linking two redox partners into a single molecular unit is to remove diffusion as the rate limiting step in electron transfer. Our results expand upon this notion by indicating that a covalent linkage between donor and acceptor can also allow higher energy, shorter lived excited states to be efficiently intercepted by rapid electron transfer processes. This concept clearly has implications with regard to photochemical energy storage and is discussed in this context below.

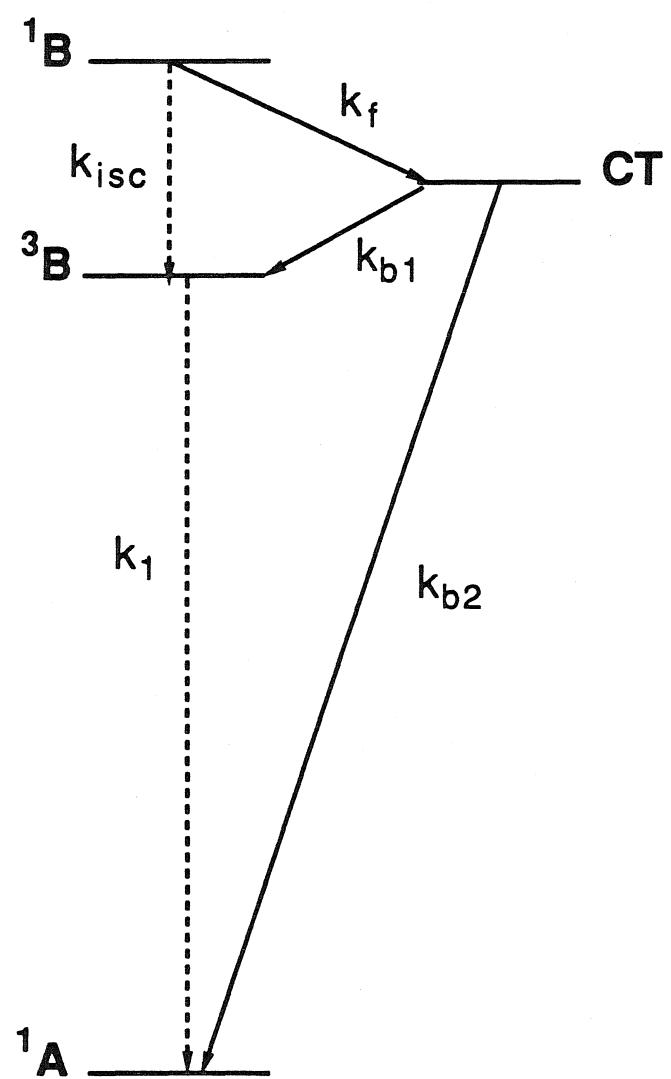
A second aspect of the photophysical behavior of the donor-acceptor complexes, which differentiates them from their bimolecular analogues, concerns charge recombination to form electronic excited states of the iridium dimer chromophore. In our bimolecular ET studies involving $[\text{Ir}_2(\text{Pz})_2(\text{COD})_2]$ no evidence for back electron transfer to form its triplet excited state was observed. In particular, values of k_{et} , determined from quantum yield and lifetime quenching experiments, were the same

within experimental error, indicating that charge recombination formed exclusively ground state iridium dimer products. In contrast, back electron transfer to form a 3B d^8 - d^8 excited state occurs in $[\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{-Me}_3\text{Py}^+)_2]$. It is well known that in some reactions where ΔG° is greater than the energy of an electronic transition associated with the donor or acceptor, electron transfer leads to the formation of electronically excited products. For example, electrogenerated chemiluminescence has been observed in a number of inorganic redox systems,²⁹ most notably $\text{Ru}(\text{Bipy})_3^{2+}$. In addition, back electron transfer to the special pair triplet state is a well characterized process in photosynthetic reaction centers that are missing their ubiquinone electron acceptors.²⁷ This particular process was most likely not observed in our bimolecular studies involving $[\text{Ir}_2(\text{Pz})_2(\text{COD})_2]$ because the charge transfer state, $[\text{Ir}_2(\text{Pz})_2(\text{COD})_2]^+/\text{Py}^\cdot$, is not energetically within k_bT of the triplet state.

In a highly efficient photochemical energy storage system a photoinduced charge separation must take place with a minimum loss of the captured photon energy and the charge separated state must be maintained long enough to allow bond forming reactions to occur. The realization of well defined molecular systems that execute vectorial charge transfer reactions is an extremely challenging area of current research. In the photosynthetic reaction centers of green plants, transmembrane electron transfer takes place on a picosecond timescale creating an excited state whose energy can be harnessed into chemical bonds (figure 4.15).²⁷ When all of the intermediate redox partners are in place, directional charge transfer occurs with near unit efficiency. An important kinetic feature of photosynthesis is that it achieves this high charge separation efficiency by sequentially coupling two very rapid electron-transfer processes. A primary photoredox reaction occurs directly from the excited special pair yielding a charge separated state ($^+P\text{-IQAQ}_B^-$) that is approximately 950 cm^{-1} above the special pair triplet state. This transient CT state is transformed by a second rapid reaction into

Figure 4.15. A photophysical scheme for the photosynthetic reaction center in *Rhodopseudomonas viridis*. White arrows correspond to the charge separation pathway in this photoredox system.

lower energy states that can interact with reaction center redox enzymes. An analogous two step approach has recently been employed by Gust and coworkers to produce long lived charge separated states in synthetic redox triads.²⁸ The large conversion efficiencies found in these naturally occurring and synthetic photoredox systems can be traced to their ability to rapidly create a substantial spatial separation between a hole and an electron. However, they utilize close to 50% of the total energy made available by their initial donor localized excited states to affect this separation .


It is intriguing to consider designing a synthetic photoredox system where a single high energy charge-transfer state is created and then directly utilized to drive bond forming chemical reactions. If efficient, such a system might surpass the photosynthetic reaction center as a light energy conversion device. To our knowledge this issue has not been directly addressed in any of the recent studies concerning synthetic donor-acceptor compounds. The iridium d⁸-d⁸ complexes reported here possess two important characteristics, which suggest that they might be utilized in this capacity. As mentioned earlier, the covalent linkage between the metal complex and pyridinium electron acceptors in these systems allows their more potent singlet excited states to be intercepted by rapid electron-transfer reactions. In addition, we have seen that due to the inverted behavior associated with their charge recombination reactions, these systems possess charge separation and recombination rates, which differ by close to three orders of magnitude. If these two features can be profitably combined, then a CT state with enhanced reactivity relative to the ³B state in these systems might be available for subsequent bond forming reactions.

Rate constants for the charge separation (k_f) and charge recombination steps (k_{b1} and k_{b2}) in figure 4.16 were calculated as a function of the CT state energy (ΔG_{b2}) using $\lambda=1.0$ eV and $H_{ab}=35$ cm⁻¹. Results from these calculations reveal several important trends (table 4.5). First, the lifetime of the CT state increases slightly as a function of ΔG_{b2} and then decreases to near 100 ps. This trend arises from competition

between the parallel recombination processes k_{b1} and k_{b2} . If charge recombination to form the triplet state were not an active excited state process, the lifetime of the CT state would increase as a function of ΔG_{b2} to hundreds of nanoseconds, based on the values of k_{b2} predicted by our calculations. However, back electron transfer to form the 3B state is known to be important in the photophysics of these complexes from earlier discussions regarding the emission properties of $\text{Ir}_2(\text{Pz}^*)_2(\text{CO})_2(\text{Ph}_2\text{POCH}_2\text{CH}_2\text{Me}_3\text{Py}^+)_2$ and will clearly decrease the lifetime of a high energy CT state. A second and somewhat more limiting trend concerns the lifetime of the 1B state. As the driving force for singlet electron transfer decreases from 0.5 to 0.3 eV, the rate constant for this process decreases to well below the rate of intersystem crossing (10^{10} sec^{-1}). These changes in k_f are paralleled by a substantial decrease in the yield of formation of the CT state. From our calculations, the CT state systems cannot be generated efficiently from the metal localized 1B state when $E_{CT} > 0.1 + E_{\text{triplet}}$.

This analysis indicates that a single high energy, long lived CT state in our donor-acceptor complexes cannot be generated and maintained on the basis of driving force effects alone. Designing a photoredox system with a CT state between the triplet and singlet donor states will require the manipulation of additional electron-transfer parameters. Clearly, one possible avenue of investigation would be to utilize electronic coupling as a second means of controlling the rates of charge separation and recombination in these systems. We are currently investigating the factors that govern through bond ET reactions in these complexes. Our preliminary studies indicate that the singlet and triplet electron-transfer reactions in systems utilizing rigid aromatic spacers have very different distance dependencies. Research along these lines may lead to more efficient photoredox systems.³⁰

Figure 4.16. A Kinetic scheme showing the rate processes important to directional electron transfer in the iridium d^8-d^8 donor-acceptor complexes.

Table 4.5: Predicted Electron-Transfer Rates and Photophysical Parameters.

ΔG_f	ΔG_{b1}	ΔG_{b2}	k_f	k_{b1}	k_{b2}	τ_f	τ_{CT}	ϕ_{CT}
eV	eV	eV	sec^{-1} $\times 10^{10}$	sec^{-1} $\times 10^9$	sec^{-1} $\times 10^7$	ps	ns	-
-0.5	0	-2.0	2.4	0.003	5.7	3.0	1.7	0.70
-0.4	-0.1	-2.1	0.72	0.036	0.97	5.8	2.2	0.42
-0.3	-0.2	-2.2	0.16	0.28	0.16	8.6	3.6	0.14
-0.2	-0.3	-2.3	0.028	1.6	0.025	9.7	0.6	0.03
-0.1	-0.4	-2.4	0.004	7.2	0.003	100	0.1	0

Calculated for $\lambda_i=0.5$ eV, $\lambda_o=0.5$ eV, $\omega=400$ cm^{-1} .

References

1. Nocera, D. G.; Winkler, J. R.; Yocom, K. M.; Bordignon, E.; Gray, H. B., *J. Amer. Chem. Soc.*, 1984, 106, 5145-5150.
- 2a. Winkler, J. R.; Netzel, T. L.; Creutz, C.; Sutin, N., *J. Amer. Chem. Soc.*, 1987, 109, 2381-2392.
- 2b. Winkler, J. R.; Nocera, D. G.; Netzel, T. L., *J. Amer. Chem. Soc.*, 1986, 108, 4451-4458.
- 3a. Winkler, J. R.; Marshall, J. L.; Netzel, T. L.; Gray, H. B., *J. Amer. Chem. Soc.*, 1986, 108, 2263-2266.
- 3b. Miskowski, V. M.; Nobinger, G. L.; Kliger, D. S.; Hammond, G. S.; Lewis N. S.; Mann, K. R.; Gray, H. B., *J. Amer. Chem. Soc.*, 1978, 100, 485-488.
- 3c. Milder, S. J.; Kliger, D. S.; Butler, L. G.; Gray, H. B., *J. Phys. Chem.*, 1986, 90, 5567-5570.
- 3d. Che., C.-M.; Butler, L. G.; Gray, H. B., *J. Amer. Chem. Soc.*, 1981, 103, 7796-7797.
- 3e. Dallinger, R. F.; Miskowski, V. M.; Gray, H. B.; Woodruff, W. H., *J. Amer. Chem. Soc.*, 1981, 103, 1595-1596.
- 3f. Che. C.-M.; Butler, L. G.; Gray, H. B.; Crooks, R. M.; Woodruff, W. H., *J. Amer. Chem. Soc.*, 1983, 105, 5492-5494.
- 4a. Freed, K. F.; Jortner, J., *J. Chem. Phys.*, 1970, 52, 6272-6291.
- 4b. Englman, R.; Jortner, J., *J. Mol. Phys.*, 1970, 18, 145-164.
5. Akiyama, K.; Kubota, S.; Ikegami, Y., *Chem. Lett.*, 1981, 469-472.
6. Kosower, E. D.; Land, E. J.; Swallow, A. J., *J. Amer. Chem. Soc.*, 1972, 94, 986-987.
7. Leland, B. A.; Joran, A. H. D.; Felker, P. M.; Hopfield, J. J.; Zewail, A. H.; Dervan, P. B., *J. Phys. Chem.*, 1985, 89, 5571-5573.

- 8a. Lindsey, J. S.; Delany, J. K.; Manzerall, D. C.; Linschitz, H., *J. Amer. Chem. Soc.*, **1988**, *110*, 3610-3620.
- b. Lisecki, M. A.; Mishra, P. K.; Bothner-By, A. A.; Lindsey, J. S., *J. Phys. Chem.*, **1988**, *92*, 3400-3403.
9. Siemianczuk, A.; McIntosh, A. R.; Ho, T.F.; Stillman, M. J.; Roach, K. J.; Weedon, A. C.; Bolton, J. R.; Connolly, J. S., *J. Amer. Chem. Soc.*, **1983**, *105*, 7224-7230.
- 10a. Memming, R.; Hobs, K. J., *J. Phys. Chem.*, **1981**, *85*, 2771-2777.
- b. Evers, F.; Memming, R.; Kobs, K.; Terrill, D. R., *J. Amer. Chem. Soc.*, **1983**, *105*, 5988-5995.
- c. Birckner, E.; Partzold, R.; Kozmenko, M. V.; Kregmin, M. G., *Chem. Phys. Lett.*, **1983**, *96*, 38-42.
- d. Karstens, T.; Kobs, K.; Memming, R.; Schroppel, F., *Chem. Phys. Lett.*, **1977**, *V*, 540-544.
11. Milder, S. J.; Kliger, D. S., *J. Phys. Chem.*, **1985**, *89*, 4170-4171.
12. Driving forces for $(d\pi\sigma)$ electron transfer would be greater than 2.0 eV in this complex making k_{et} approximately 10^8 sec⁻¹.
13. Zill, D. G., "A First Course in Differential Equations with Applications", **1980**, Prindle, Weber, Schmidt, Boston, Mass.
- 14a. Gould, I. R.; Ege, D.; Mattes, S. L.; Farid, S., *J. Amer. Chem. Soc.*, **1987**, *89*, 3675-3679.
- b. Snadrini, D.; Maestri, M.; Belser, P.; von Zelewsky, A.; Balzani, V., *J. Phys. Chem.*, **1985**, *89*, 3675-3679.
- c. Gunner, M. R.; Robertson, D. E.; Dutton, P. L., *J. Phys. Chem.*, **1986**, *90*, 3783-3795.
- d. Meade, T. J.; Gray, H. B.; Winkler, J. R., *manuscript in preparation*.
- e. Closs, G. L.; Miller, J. R., *Science*, **1988**, *240*, 440-447.

- f. Miller, J. R.; Beitz, J. V.; Huddleston, R. K., *J. Amer. Chem. Soc.*, **1984**, *106*, 5057-5068.
- g. McLendon, G., *Acc. Chem. Res.*, **1988**, *21*, 160-167.
- h. Wasieleski, M. R.; Niemczyk, M. R.; Svec, W. A.; Pewitt, E. B., *J. Amer. Chem. Soc.*, **1985**, *107*, 1080-1082.
- i. Elias, H.; Chou, M. H.; Winkler, J. R., *J. Amer. Chem. Soc.*, **1988**, *110*, P.
- j. Meyer, T. J., *Prog. Inorg. Chem.*, **1984**, *30*, 389-440.
- 15a. Marcus, R. A.; Sutin, N., *Biochim. Biophys. Acta*, **1985**, *811*, 265-322.
- b. Newton, M. D.; Sutin, N., *Ann. Rev. Phys. Chem.*, **1984**, *35*, 437-480.
- c. Sutin, N., *Prog. Inorg. Chem.*, **1984**, *30*, 441-498.
- d. Jortner, J., *Biochim. Biophys. Acta*, **1980**, *594*, 193-230.
- 16a. Marcus, R. A., *J. Chem. Phys.*, **1956**, *24*, 966-978.
- b. Marcus, R. A., *J. Chem. Phys.*, **1957**, *26*, 867-871.
- c. Marcus, R. A., *J. Chem. Phys.*, **1957**, *26*, 872-877.
- d. Kestner, N. R.; Logan, J.; Jortner, J., *J. Phys. Chem.*, **1984**, *78*, 2148-2166.
- e. Jortner, J., *J. Chem. Phys.*, **1976**, *64*, 4860-4867.
- f. Efrima, S.; Bixon, M., *Chem. Phys.*, **1976**, *13*, 447-460.
- g. Van Duyne, R. P.; Fischer, S. F., M., *Chem. Phys.*, **1974**, *5*, 183-197.
- h. Jortner, J., *J. Amer. Chem. Soc.*, **1980**, *102*, 6676-6686.
17. Marcus, R. A.; Siders, P., *J. Phys. Chem.*, **1982**, *86*, 622-630.
18. Siders, P.; Marcus, R. A., *J. Amer. Chem. Soc.*, **1981**, *103*, 748-752.
- 19a. Kakitani, T.; Mataga, N., *Chem. Phys.*, **1985**, *93*, 381-397.
- b. Kakitani, T.; Mataga, N., *J. Phys. Chem.*, **1985**, *89*, 4752-4757.
- c. Kakitani, T.; Mataga, N., *J. Phys. Chem.*, **1985**, *89*, 8-10.
- d. Kakitani, T.; Mataga, N., *J. Phys. Chem.*, **1986**, *90*, 993-995.
- e. Kakitani, T.; Mataga, N., *J. Phys. Chem.*, **1985**, *91*, 6277-6285.

- f. Hatano, Y.; Saito, M.; Kakitani, T.; Mataga, N., *J. Phys. Chem.*, **1988**, *92*, 1008-1010.
20. Marshall, J. L., *Ph. D. Dissertation*, **1987**, California Institute of Technology, Pasadena, California.
- 21a. Ohno, T.; Yoshimura, A.; Shioyama, H.; Mataga, N., *J. Phys. Chem.*, **1987**, *91*, 4365-4370.
- b. Ohno, T.; Yoshimura, A.; Mataga, N., *J. Phys. Chem.*, **1986**, *90*, 3295-3297.
- 22a. Verhoven, J. W., *Pure & Appl. Chem.*, **1986**, *58*, 1285-1290.
- b. Stiegman, A. E.; Miskowski, V. M.; Perry, J. W.; Coulter, D. R., *J. Amer. Chem. Soc.*, **1087**, *109*, 5884-5886.
- 23a. Brost, R. D.; Harrison, D. G.; Fjeldsted, D. O. K.; Stobart, S. R.; *submitted for publication*.
- b. Coleman, A. W.; Eadie, D. T.; Stobart, S. R., *J. Amer. Chem. Soc.*, **1982**, *104*, 922-923.
- c. Atwood, J. L.; Beveridge, K. A.; Bushnell, G. W.; Dixon, K. R.; Eadie, D. T.; Stobart, S. R.; Zaworotko, M. J., *J. Amer. Chem. Soc.*, **1984**, *23*, 4050-4057.
24. Nakamoto, K., *"Infrared and Raman Spectra of Inorganic Coordination Compounds,"* **1980**, John Wiley and Sons, New York.
25. Schmidt, J. A.; McIntosh, A. R.; Weedon, A. C.; Bolton, J. R.; Connolly, J. S.; Hurly, J. K.; Wasielewski, M. R., *J. Amer. Chem. Soc.*, **1988**, *110*, 1733-1740.
26. Kikuchi, K.; Kurabayashi, Y.; Kokubun, H.; Kaizer, Y.; Kobayashi, H., *J. Photochem. Photobio. A:Chem.*, **1988**, *45*, 261-263 and references therein.
27. Boxer, S. G., *Biochem. Biophys. Acta*, **1983**, *726*, 265-292.
- 28.a. Gust, D.; Moore, T. A.; Makings, L. R.; Liddell, P. A.; Nemeth, G. A.; Moore, A. L., *J. Amer. Chem. Soc.*, **1986**, *108*, 8028-8031.
- b. Gust, D.; Moore, T. A.; Liddell, P. A.; Nemeth, G. A.; Makings, L. R.; Moore, A. L.; Barrett, D.; Pessiki, P. J.; Bensasson, R. V.; Roniger, M.; Chachaty, C; De Schyver, F. C.;

Van der Anverau, M.; Holzwarth, A. R.; Connolly, J. S., *J. Amer. Chem. Soc.*, 1987, 109, 846-856.

c. Moore, T. A.; Gust, D.; Mathis, P.; Mialocq, J.-C.; Chachaty, C.; Bensasson R. V.; Land, E. J.; Doizi, D.; Lidell, P. A.; Lehman, W. R.; Nemeth, G. A.; Moore, A. L., *Science*, 1984, 307, 630-632.

d. Liddel, P. A.; Barrett, D.; Makings, L. R.; Pessiki, P. J.; Gust, D.; Moore, T. A., *J. Amer. Chem. Soc.*, 1986, 108, 5350-5352.

e. Gust, A.; Moore, T. A.; Moore, A. L.; Makings, L. R.; Gilbert, R. S.; Ma, X.; Trier, T. T.; Gao, F., *J. Amer. Chem. Soc.*, 1988, 110, 7567-7569.

29. Kalyanasundaram, K., *Coord. Chem. Rev.*, 1982, 46, 159-244.

30. Farid, R. S.; Larson, W.; Gray, H. B., *research in progress*.

31. Rigorously, $\tau=0.7/k$. However, making this minor correction does not change our values of k_{et} outside their experimental uncertainties.

32. This result suggests that electron transfer must occur by a predominantly through space mechanism. Based on current theories, H_{ab}^f should not equal H_{ab}^b if a through bond mechanism is active.

33. Kinetic data were fit to classical and semiclassical models for k_{et} on a Macintosh Plus PC using the program "INVERT" developed by Samir Farid and Ian Gould at the Eastman Kodak Company.

Appendix

Structure Factor Tables

Data appears in the following format:

	h	k	
l	F_{obs}	F_{calc}	$\Delta F^2/\sigma F^2$

Iridium Dimer										Page	1				
- 11	0	1	16	237	-388	-28	34	1847	-1727	38	44	319	362	-4	
			18	1660	1672	-4	36	1478	1493	-4		0	0	1	
			20	2155	-2192	-13	38	1540	-1485	17		6	3516	-3428	
2	982	975	2	22	1953	1975	-8	40	1139	1113	7	8	4868	-4867	
4	-317	-53	-25	24	1795	-1818	-8	42	-232	346	-31	10	4826	4686	
6	902	-872	8	26	1449	1492	-15					12	4228	-4088	
8	1433	1447	-4	28	326	-489	-25		-3	0	1	14	5793	5678	
10	1798	-1801	0	30	613	-585	6	2	501	612	-62	16	5075	-4950	
12	1758	1767	-3	32	1113	1124	-3	4	463	-506	-21	18	2808	2806	
14	1522	-1536	-4	34	1307	-1387	-26	6	118	-113	0	20	602	-662	
16	1222	1262	-13	36	1544	1586	-13	8	1238	1261	-13	22	1160	1076	
18	582	-590	-1	38	1582	-1590	-2	10	1042	-1059	-9	24	899	974	
20	498	-516	-3					12	427	-431	-1	26	2592	-2578	
- 10	0	1			-6	0	1	14	1317	1339	-11	28	4854	4841	
			2	511	566	-20	16	1237	-1273	-18	30	2937	-2829		
2	1664	-1588	28	4	855	-886	-14	18	1303	1325	-10	32	3141	3033	
4	-186	-287	-29	6	3234	3198	11	20	1299	-1306	-3	34	1220	-1352	
6	1247	1285	13	8	2426	2433	-2	22	940	910	11			-60	
8	374	-299	11	10	4002	3924	20	24	300	-320	-3	36	449	-686	
10	1193	1214	-7	12	2096	-1946	58	26	388	-472	-19	38	810	815	
12	1419	-1402	5	14	387	-439	-14	28	1245	1220	9	40	2168	-2027	
14	551	513	8	16	2307	2291	6	30	1486	-1497	-3	42	2394	2474	
16	851	-824	7	18	1873	-1982	-45	32	1329	1321	2	44	1707	-1579	
18	-228	143	-17	20	3639	3641	0	34	1054	-1081	-8			48	
20	374	462	-16	22	2354	-2459	-38	36	924	893	8	1	0	1	
22	499	-469	6	24	2449	2470	-7	38	665	-662	0				
24	1120	1135	-4	26	546	-582	-9	40	-436	203	-46	4	665	-725	
26	593	-563	6	28	1210	-1201	3	42	-388	72	-30	6	785	843	
- 9	0	1		30	498	649	-36	44	256	-568	-43	8	559	-554	
			32	1089	-1182	-32					10	-113	112		
			34	1394	1488	-32		-2	0	1	12	250	155		
2	-225	-182	-23	36	1334	-1229	32				14	138	-128		
4	972	-956	5	38	1197	1233	-11	2	5531	5521	2	16	-179	120	
6	1895	1883	4	40	1674	-1628	13	4	2593	-2508	35	18	279	-338	
8	2585	-2550	11					6	1028	974	37	20	84	335	
10	2704	2687	5		-5	0	1	8	4677	-4593	20	22	208	-341	
12	2144	-2194	-17	10	2	811	874	-34	10	2577	-2479	38	24	-339	180
14	1415	1443	-10	12	1031	1002	15	12	1031	1002	15	26	-413	94	
16	554	-683	-20	14	1667	-1704	-17	14	2223	-2197	10	28	-388	-161	
18	383	-314	11	16	2416	2438	-8	16	4586	4548	9	30	-237	-217	
20	1305	1309	-1	18	2332	-2378	-18	18	4823	-4815	1	32	-359	-73	
22	1858	-1889	-11	10	1321	1331	-4	20	3921	3872	12	34	-316	234	
24	2188	2125	20	12	-136	182	-23	22	1870	-1800	27	36	-423	-40	
26	2034	-1969	21	14	959	-1049	-44	24	527	550	-6	38	-408	79	
28	1276	1262	4	16	1365	1363	1	26	1457	1490	-13	40	-349	11	
30	665	-715	-12	18	2259	-2271	-4	28	4766	-4646	25	42	-291	-127	
32	-214	75	-10	20	2706	2719	-4	30	4217	4143	17				
				22	2008	-2003	1	32	3887	-3683	49	2	0	1	
- 8	0	1		24	1206	1183	8	34	1651	1626	8				
				26	756	-778	-6	36	1134	-1253	-37	0	5874	-5905	
2	399	519	-30	28	-271	-37	-19	38	-317	-285	-36	2	3163	3135	
4	1521	1603	-34	30	1097	1081	5	40	-366	70	-27	4	656	-634	
6	1488	-1634	-61	32	1404	-1533	-46	42	694	-604	17	6	5307	-5258	
8	3000	2930	21	34	1377	1455	-26	44	1749	1742	2	8	3226	3232	
10	3226	-3167	17	36	1197	-1188	2				10	3419	-3504		
12	1332	1345	-4	38	868	839	7	-1	0	1	12	4981	5013		
14	971	-937	12	40	-15	-430	-35				14	4248	4186		
16	970	-1019	-18	42	-400	-27	-30	4	618	-686	-62	16	2980	2955	
18	1541	1556	-5					6	258	320	-36	18	362	-328	
20	1971	-2014	-15		-4	0	1	8	128	-5	13	20	1186	-1075	
22	2018	1985	11					10	140	54	10	22	2150	2156	
24	1341	-1358	-6	2	3242	-3265	-7	12	84	176	-11	24	1084	-1145	
26	526	627	-24	4	3014	2950	21	14	949	-875	34	26	2229	2178	
28	1078	-1205	-43	6	3699	-3590	31	16	1324	1231	42	28	2871	-2855	
30	257	434	-26	8	466	487	0	18	703	-713	-3	30	2644	2700	
32	-256	248	-28	10	1643	-1633	4	20	-188	245	-33	32	1516	-1561	
34	390	-599	-39	12	232	-192	7	22	-101	-74	-5	34	-411	-228	
- 7	0	1		14	969	954	7	24	-248	-80	-20	36	173	413	
				16	5837	-5725	21	26	366	447	-16	38	2326	-2242	
2	676	-681	-1	18	4236	4306	-23	28	931	-897	10	40	2750	2775	
4	1835	1800	14	22	2600	2686	-30	32	639	-678	-9	42	1629	-1517	
6	2166	-2230	-25	24	1591	-1601	-4	34	-256	261	-28	3	0	1	
8	2230	2285	-21	26	217	-348	-20	36	-318	175	-27				
10	2183	-2177	2	28	1858	1839	6	38	-234	-164	-16	0	928	-1015	
12	1488	1480	3	30	2239	-2355	-40	40	403	312	11	2	605	675	
14	551	-606	-17	32	2452	2400	16	42	525	-517	1	4	146	245	

Iridium Dimer

Page 2

6 285 -359 -24	24 2158-2087	23	4 1766-1655	36	20 435 -453	-3	
8 449 -411 14	26 922 953	-9	6 1524 1380	46	21 695 799	-30	
10 1253 1248	3 28 280 -539	-43	8 619 -650	-7	22 675 683	-1	
12 1377-1367	5 30 -205 -274	-24	10 -315 122	-26	23 371 -530	-31	
14 1172 1170	0 32 -217 340	-32			24 526 -540	-3	
16 942 -956 -6	34 1308-1267	11	-11 1 1		25 1166 1130	12	
18 218 179	5				26 209 232	-2	
20 -273 -37 -27	7 0 1		1 1045-1158	-38	27 928 -948	-6	
22 572 -584 -3			2 125 43	3	28 155 -339	-20	
24 888 838	17 0 350 -341	2	3 586 568	4	29 -49 350	-27	
26 678 -627 13	2 866 889	-9	4 -235 -84	-15	30 -218 -64	-11	
28 -213 302 -31	4 1435-1471	-15	5 199 326	-15	31 600 -721	-28	
30 -421 -63 -41	6 2035 2180	-58	6 -273 80	-20	32 -81 341	-24	
32 -70 -263 -14	8 2493-2498	-1	7 553 -583	-6			
34 -95 362 -26	10 1777 1759	6	8 -84 -204	-11	-8 1 1		
36 131 -206 -4	12 838 -866	-10	9 817 820	0			
38 -71 364 -25	14 -334 116	-37	10 177 7	7	1 -190 264	-32	
40 271 -352 -8	16 517 583	-17	11 1058-1067	-2	2 -154 -245	-25	
	18 1133-1143	-3	12 -260 -114	-19	3 952 998	-19	
4 0 1	20 1290 1320	-7	13 -470 484	-1	4 457 485	-7	
	22 1820-1805	5	14 -64 -14	0	5 1957-1947	3	
0 4975 4795	39 24 1380 1344	5	15 477 -692	-51	6 551 -485	17	
2 589 -551 17	26 822 -977	-46	16 132 -159	-1	7 2474 2446	9	
4 1574-1604 -15	28 244 524	-44	17 111 298	-16	8 743 600	43	
6 2022 1997	10 30 -353 94	-28	18 -154 12	-5	9 2495-2510	-5	
8 4291-4336 -11	32 274 -354	-9	19 -110 66	-3	10 853 -728	41	
10 5116 5004	24				11 1968 1986	-6	
12 4903-4953 -11	8 0 1		-10 1 1		12 589 630	-12	
14 358 91	45				13 1133-1158	-9	
16 3352-3365 -4	0 961 -978	-6	1 1074-1068	1	14 304 -389	-16	
18 1719-1653 26	2 410 491	-20	2 -116 -128	-7	15 385 404	-3	
20 1611 1643 -13	4 1406-1419	-4	3 -272 129	-23	16 -286 84	-26	
22 2594-2567 9	6 2579 2503	25	4 -169 -31	-7	17 325 443	-23	
24 2865 2795	21 8 1671-1683	-4	5 1105 1084	7	18 220 138	7	
26 2113-2226 -40	10 1292 1268	9	6 276 306	4	19 1410-1421	-4	
28 2011 1990	7 12 832 -864	-10	7 1615-1641	-9	20 485 -294	34	
30 1624-1717 -31	14 -310 -209	-37	8 703 -559	38	21 2020 2034	-4	
32 452 625 -34	16 439 449	-2	9 1790 1837	-17	22 628 428	44	
34 -196 321 -27	18 1260-1266	-2	10 937 775	47	23 1900-1946	-16	
36 1590-1627 -11	20 1581 1572	2	11 2166-2116	16	24 688 -501	44	
38 2108 2072	10 22 1902-1856	15	12 1050 -834	65	25 1512 1510	0	
	24 2043 2033	3	13 1840 1812	9	26 523 500	4	
5 0 1	26 507 -714	-47	14 725 624	26	27 1145-1143	0	
	28 -402 -88	-36	15 1235-1183	17	28 250 -145	9	
0 -132 -155 -20			16 273 -377	-15	29 687 664	5	
2 336 -401 -21	9 0 1		17 421 501	-16	30 -337 -51	-27	
4 726 751	-12		18 -147 114	-8	31 -291 123	-23	
6 1460-1487 -13	0 1217 1185	12	19 448 482	-6	32 -404 67	-39	
8 1778 1819	-18	2 1742-1746	-1	20 248 245	0	33 866 -940	-21
10 1406-1410 -1	4 1957 1926	11	21 1247-1268	-7	34 458 -150	35	
12 1126 1159 -15	6 1899-1906	-2	22 583 -470	23	35 1346 1381	-11	
14 -116 -306	8 1534 1535	0	23 1662 1674	-3			
16 -182 164	-21 10 859 -873	-4	24 778 565	49	-7 1 1		
18 428 450	-5 12 -312 -45	-25	25 1887-1832	17			
20 902 -920	-6 14 648 638	2	26 783 -557	50	1 555 -625	-24	
22 1431 1479	-18 16 909 -986	-25	27 1777 1735	13	2 760 757	1	
24 1630-1659 -10	18 1363 1407	-14			3 1426-1371	23	
26 1455 1491	-12 20 1515-1525	-3	-9 1 1		4 1205-1147	24	
28 815 -863	-13 22 1326 1233	28			5 2011 2060	-19	
30 -300 299	-39 24 810 -798	3					
32 -377 183	-37		1 1414 1367	17	6 1427 1499	-9	
34 455 -650	-38 10 0 1		2 -303 152	-33	7 2715-2743		
36 767 872	-25		3 158 336	-23	8 1092-1040	21	
	0 1017 929	28	4 681 676	1	9 2822 2887	-22	
6 0 1	2 1544-1608	-23	5 803 -793	3	10 486 381	27	
	4 1381 1359	7	6 553 -550	0	11 2668-2711	-14	
0 1094-1129	-16 6 1067-1153	-30	7 2010 2033	-8	12 116 175	-5	
2 749 -658 40	8 585 625	-9	8 508 525	-3	13 782 839	-22	
4 1182 1196	-6 10 290 -405	-18	9 1994-1988	2	14 79 195	-10	
6 1051-1092	-19 12 483 -635	-34	10 265 -59	17	15 314 -263	8	
8 3555 3592	-10 14 -119 411	-42	11 1522 1507	5	16 446 424	5	
10 2467-2512	-16 16 442 -490	-8	12 324 279	6	17 1274-1291	-6	
12 2936 2923	-4 18 1130 1178	-14	13 154 -244	-9	18 282 -292	-1	
14 1130-1170	-16		14 -65 -291	-23	19 2529 2592	-21	
16 503 -506 0	11 0 1		15 -294 -72	-24	20 901 890	3	
18 2277 2314	-12		16 -302 -103	-27	21 2077-2093	-5	
20 1494-1516 -8	0 1461-1460	0	17 -348 159	-39	22 709 -745	-11	
22 3494 3559	-17 2 1722 1675	15	18 -225 35	-13	23 1580 1654	-28	
	19 867 -844	6	24 530 576	-11			

Iridium Dimer

Page 3

25	1230	-1304	-27	19	4258	-4308	-12	6	1478	1483	-2	37	-395	-81	-33
26	183	-188	0	20	798	-656	50	7	1863	-1900	-18	38	-143	436	-40
27	829	840	-3	21	3384	3433	-14	8	1264	-1244	11	39	-300	120	-20
28	-149	283	-24	22	994	950	17	9	3102	3052	17	40	-416	-40	-34
29	63	270	-16	23	1471	-1527	-23	10	1003	-967	19	41	189	-345	-16
30	-314	-54	-24	24	836	-822	4	11	1563	-1483	39	42	-156	-263	-17
31	-71	-298	-21	25	1227	1220	2	12	842	819	11	43	-249	405	-41
32	384	-449	-11	26	-191	-79	-11	13	2512	-2396	44	44	-449	67	-39
33	301	453	-23	27	229	-381	-23	14	76	-78	0		-1	1	1
34	422	562	-27	28	-266	-33	-19	15	3294	3300	-1				
35	823	-821	0	29	1938	-1836	35	16	2223	2189	13				
36	511	-601	-18	30	380	-320	9	17	2745	-2798	-18	1	6402	-6548	26
37	1663	1633	9	31	1470	1524	-19	18	968	-979	-5	2	1031	-995	28
38	508	315	27	32	713	777	-17	19	5364	5359	1	3	5421	5390	6
				33	1583	-1620	-12	20	480	531	-17	4	1876	1904	-15
	-6	1	1	34	918	-940	-6	21	2685	-2750	-22	5	2024	-1966	29
				35	1449	1508	-19	22	523	-498	7	6	2456	-2450	2
1	765	807	-19	36	961	932	8	23	3033	2914	36	7	803	-808	-3
2	679	702	-10	37	1371	-1482	-36	24	366	-424	-13	8	2875	2920	-17
3	1613	-1646	-15	38	386	-397	-1	25	-193	-302	-40	9	478	456	11
4	961	-1008	-23	39	1067	1122	-16	26	299	227	10	10	1273	1258	8
5	1945	2026	-35	40	-244	34	-11	27	1914	-1863	18	11	313	-222	21
6	859	840	9	41	476	-630	-28	28	817	-737	24	12	1917	-1886	14
7	2023	-2081	-24	42	315	461	-19	29	2984	2987	0	13	3749	3617	36
8	649	-579	27					30	1229	982	76	14	432	439	-2
9	1807	1870	-27	-4	1	1		31	2875	-2830	13	15	6916	-6717	32
10	411	325	22					32	1304	-1243	20	16	1529	-1534	-2
11	1147	-1154	-3	1	1089	-1086	2	33	2574	2556	5	17	4236	4157	19
12	-126	-26	-6	2	1456	-1517	-33	34	1125	1144	-6	18	2131	2098	13
13	-112	82	-7	3	1580	1590	-5	35	1821	-1842	-6	19	3011	-3008	0
14	-158	-50	-10	4	1079	1136	-33	36	974	-937	10	20	883	-797	33
15	790	812	-9	5	1654	-1728	-38	37	1526	1456	21	21	1737	1755	-7
16	236	233	0	6	517	-588	-32	38	278	307	-3	22	512	522	-2
17	1290	-1353	-27	7	1078	1138	-33	39	1220	-1154	18	23	638	-703	-21
18	677	-666	3	8	147	168	-3	40	-320	81	-20	24	680	666	4
19	1747	1790	-17	9	452	-475	-9	41	-264	-229	-22	25	1580	-1559	8
20	937	790	52	10	128	197	-10	42	-364	-454	-64	26	927	-803	41
21	2156	-2135	7	11	-247	94	-35	43	785	896	-26	27	3059	2921	40
22	823	-715	35	12	638	-671	-16	44	465	432	3	28	1686	1328	115
23	2117	2095	8	13	552	582	-12					29	4487	-4409	17
24	644	552	24	14	756	770	-6	-2	1	1		30	1437	-958	138
25	1221	-1253	-12	15	1516	-1532	-7					31	4865	4809	11
26	566	-536	7	16	379	-208	39	1	1056	1191	-107	32	1030	639	97
27	-236	206	-25	17	2088	2098	-3	2	196	110	26	33	2261	-2241	6
28	226	294	-8	18	316	241	15	3	952	-1083	-105	34	651	-697	-10
29	400	520	-24	19	1702	-1793	-40	4	128	111	3	35	580	757	-41
30	76	256	-13	20	578	-530	16	5	794	889	-74	36	-421	386	-69
31	922	-978	-17	21	1238	1241	-1	6	516	-557	-27	37	-256	-351	-37
32	473	-334	22	22	237	215	3	7	698	-790	-67	38	359	471	-16
33	1203	1236	-10	23	884	-876	3	8	341	293	18	39	1445	-1463	-5
34	508	312	30	24	-89	-117	-6	9	-240	2	-34	40	572	-327	36
35	1470	-1482	-4	25	465	520	-14	10	294	327	-10	41	2187	2075	32
36	594	-433	29	26	-247	142	-23	11	566	601	-17	42	691	666	5
37	1297	1295	0	27	455	487	-7	12	161	-223	-11	43	1447	-1471	-7
38	489	382	16	28	-105	-66	-4	13	491	-599	-45	44	797	-753	9
39	971	-989	-4	29	1168	-1166	0	14	129	-170	-5				
40	-117	-192	-9	30	392	1	34	15	815	815	0	0	1	1	
	-5	1	1	31	1393	1448	-19	16	381	354	7				
				32	456	280	26	17	1338	-1354	-7	4	66	-17	4
				33	1305	-1349	-15	18	372	-385	-3	5	215	210	2
1	2102	-2032	29	34	461	-339	18	19	1039	1101	-29	6	471	-479	-6
2	772	-693	37	35	1115	1082	10	20	405	357	12	7	266	-241	12
3	2953	2969	-5	36	581	524	11	21	882	-877	2	8	531	551	-15
4	1036	988	24	37	867	-885	-4	22	323	-397	-16	9	364	351	6
5	2030	-1989	17	38	415	-484	-11	23	223	280	-8	10	326	-254	27
6	1622	-1634	-5	39	477	578	-18	24	-192	127	-16	11	527	-508	9
7	2855	2934	-28	40	-348	118	-26	25	-128	223	-19	12	-219	144	-39
8	551	539	4	41	-378	-97	-29	26	-194	-58	-11	13	331	306	7
9	3096	-3094	0	42	-513	-47	-51	27	771	-788	-5	14	-171	80	-18
10	635	-578	23	43	285	-505	-28	28	258	-110	13	15	354	-299	16
11	1440	1393	22					29	1248	1269	-7	16	8	-289	-39
12	627	-500	48	-3	1	1		30	318	237	9	17	-270	8	-36
13	930	839	41					31	1262	-1247	4	18	469	531	-25
14	259	225	6	1	7362	7334	4	32	471	-323	22	19	-296	42	-44
15	1594	-1525	30	2	1150	-1094	33	33	914	911	0	20	410	-500	-34
16	1020	-980	18	3	2908	-2861	17	34	425	585	-30	21	-261	-54	-33
17	1226	1340	-54	4	1723	-1740	-9	35	-101	-331	-23	22	-248	194	-45
18	1097	1065	14	5	550	335	89	36	273	-467	-27	23	-359	45	-60

Iridium Dimer

Page 4

24	-369	-76	-63	7	117	103	1	39	2335	-2245	25	29	941	1008	-20
25	-318	-138	-50	8	549	-613	-32	40	939	-654	59	30	-283	96	-19
26	-299	1	-35	9	296	349	-16	41	2282	2258	7	31	-358	-231	-39
27	-329	402	-18	10	473	509	-14					32	-338	18	-24
28	-251	77	-24	11	379	-456	-26		4	1	1	33	-214	-345	-33
29	423	-533	-32	12	243	-306	-14					34	-320	-251	-33
30	290	-486	-46	13	916	928	-5	0	846	-898	-29	35	750	787	-8
31	321	451	-29	14	323	398	-20	1	-173	36	-16	36	361	381	-2
32	180	384	-34	15	707	-726	-7	2	251	-337	-23	37	1854	-1704	43
33	-319	-160	-39	16	-234	-81	-25	3	635	635	0				
34	-237	-324	-47	17	571	628	-21	4	911	983	-40		6	1	1
35	-414	40	-52	18	-211	-150	-25	5	918	-944	-13				
36	126	449	-51	19	526	-573	-15	6	1089	-1155	-36	0	-195	13	-16
37	-343	211	-46	20	-56	222	-17	7	960	970	-5	1	182	287	-20
38	-300	-27	-25	21	-283	134	-33	8	730	792	-31	2	676	702	-10
39	-105	-427	-52	22	-199	-278	-37	9	1294	-1320	-13	3	1204	-1208	-2
40	-340	-100	-35	23	-267	309	-51	10	619	-647	-12	4	1138	-1126	5
41	-366	202	-48	24	-348	-117	-40	11	1299	1265	16	5	1620	1638	-7
42	-291	76	-24	25	279	-429	-27	12	484	508	-8	6	1188	1221	-15
43	-119	-287	-24	26	-137	262	-22	13	952	-955	-1	7	1989	-1992	-1
44	-254	-201	-26	27	291	387	-14	14	115	-119	0	8	976	-916	26
				28	-386	-47	-36	15	658	673	-6	9	1959	1952	2
	1	1	1	29	-347	-208	-37	16	-88	-23	-3	10	463	458	1
				30	-346	30	-26	17	-146	-252	-31	11	1531	-1551	-8
0	2438	-2460	-10	31	-388	25	-33	18	604	662	-20	12	419	-374	10
1	7055	7184	-21	32	-466	-200	-57	19	454	-452	0	13	1173	1189	-6
2	568	543	20	33	-402	172	-40	20	921	-958	-15	14	-201	-23	-13
3	5000	-5076	-17	34	-349	90	-26	21	802	786	5	15	232	-331	-16
4	2626	-2746	-51	35	-373	105	-30	22	815	792	7	16	450	495	-11
5	1492	1567	-47	36	-474	138	-51	23	1039	-1074	-13	17	296	-377	-14
6	878	878	0	37	-375	119	-31	24	488	-558	-16	18	442	-563	-30
7	981	-970	-5	38	-282	63	-16	25	1089	1143	-19	19	722	724	0
8	1422	-1390	18	39	-237	-104	-12	26	277	265	1	20	525	506	4
9	6548	-6683	-23	40	-410	56	-34	27	781	-824	-12	21	1461	-1454	2
10	1456	-1459	-1	41	-269	75	-14	28	-338	9	-26	22	653	-611	10
11	2531	2540	-3	42	-479	-147	-49	29	258	391	-18	23	1605	1605	0
12	1235	1198	18					30	-348	-134	-30	24	434	356	13
13	5533	-5587	-10		3	1	1	31	-463	16	-48	25	1499	-1498	0
14	678	-651	10					32	-211	344	-33	26	201	-255	-5
15	2498	2527	-10	0	895	-940	-28	33	-228	-303	-28	27	992	1070	-24
16	1871	1832	16	1	1969	-1852	55	34	465	-569	-19	28	164	265	-9
17	1809	-1861	-22	2	253	-211	11	35	408	498	-14	29	489	-609	-25
18	474	-564	-28	3	2034	1978	26	36	292	446	-20	30	-367	-114	-32
19	650	782	-50	4	184	-190	-1	37	400	-495	-14	31	-397	-68	-35
20	393	505	-29	5	1598	1627	-15	38	165	-271	-8	32	-436	-7	-41
21	256	-222	4	6	623	-681	-30	39	452	414	5	33	414	524	-18
22	-269	-93	-25	7	1135	-1152	-9					34	-251	222	-21
23	426	-582	-41	8	1225	-1195	15	5	1	1		35	820	-789	7
24	471	-421	11	9	5804	5879	-14								
25	1882	1846	12	10	1515	1506	4	0	311	309	0	7	1	1	
26	659	673	-3	11	2244	-2297	-22	1	1685	1595	41				
27	2117	-2209	-32	12	1844	-1832	5	2	846	-860	-6	0	96	169	-7
28	1320	-1179	47	13	4758	4750	1	3	1013	-1021	-4	1	964	945	8
29	3266	3307	-11	14	413	444	-9	4	473	466	2	2	138	338	-33
30	809	183	107	15	3504	-3314	54	5	1791	-1836	-20	3	1528	-1506	9
31	3130	-3175	-12	16	1029	-1003	11	6	655	-687	-14	4	380	-343	8
32	710	-649	14	17	447	508	-19	7	3879	3797	22	5	1305	1364	-25
33	873	999	-37	18	136	361	-39	8	1052	1023	13	6	826	855	-11
34	417	392	3	19	476	598	-39	9	5223	-5037	50	7	2470	-2401	24
35	242	-510	-38	20	385	377	1	10	1010	-982	13	8	851	-828	8
36	-235	235	-22	21	843	-951	-43	11	2622	2580	14	9	2657	2604	17
37	1493	-1581	-28	22	1028	-1061	-13	12	1518	1524	-2	10	414	434	-4
38	422	-88	30	23	2741	2719	7	13	3002	-2991	3	11	1471	-1506	-14
39	1817	1821	-1	24	800	810	-3	14	346	282	13	12	510	-587	-21
40	799	808	-2	25	2879	-2783	29	15	1244	1243	0	13	827	863	-12
41	1960	-1958	0	26	1152	-1013	45	16	856	816	15	14	134	-181	-4
42	876	-764	25	27	2692	2628	19	17	569	695	-43	15	364	-484	-26
43	1996	2052	16	28	761	610	37	18	-175	357	-51	16	-40	393	-42
				29	2192	-2124	22	19	1592	1596	-1	17	1247	-1221	9
	2	1	1	30	-151	-275	-21	20	368	-367	0	18	553	-527	6
				31	1620	1576	14	21	2837	2894	-18	19	1787	1696	31
0	152	-31	22	32	-316	-92	-22	22	666	716	-14	20	708	655	14
1	874	-961	-70	33	184	-434	-29	23	2218	-2193	8	21	3289	-3242	13
2	108	98	1	34	-325	125	-24	24	996	-1008	-3	22	740	-657	21
3	732	792	-47	35	618	-743	-27	25	2527	2489	12	23	2405	2306	31
4	663	-726	-46	36	405	-220	20	26	702	660	10	24	809	705	27
5	153	-107	9	37	2091	2109	-5	27	1226	-1238	-3	25	1756	-1691	21
6	1030	1104	-49	38	884	668	46	28	370	-372	0	26	315	-370	-7

Iridium Dimer										Page	5
27	-262	174	-21	9	923	859	19	2	-256	21	-18
28	-242	152	-17	10	62	194	-7	3	-200	181	-20
29	-149	285	-21	11	-107	-182	-10	4	774	-840	-21
30	-324	232	-33	12	-338	66	-29	5	794	-778	5
31	1350	-1312	11	13	474	-511	-7	6	1424	1481	-14
32	-160	-211	-13	14	108	-296	-17	7	1284	1273	4
				15	965	959	1	8	1818	-1832	-5
8	1	1		16	462	320	22	9	1430	-1424	2
				17	1362	-1272	28	10	2010	1986	8
0	-317	130	-37	18	512	-369	23	11	1468	1440	9
1	923	-907	6					12	1605	-1560	16
2	283	-332	-8		11	1	1	13	1393	-1345	17
3	1533	1498	13					14	894	854	12
4	572	512	15	0	176	-250	-7	15	869	834	10
5	2068	-2075	-2	1	872	911	-11	16	71	-280	-18
6	673	-567	30	2	387	248	19	17	-237	-156	-20
7	1938	1965	-9	3	833	-880	-13	18	431	-463	-6
8	675	527	39	4	281	22	17	19	396	-394	0
9	1408	-1452	-17	5	940	980	-12	20	1241	1209	10
10	390	-366	4	6	338	337	0	21	996	947	15
11	775	859	-28	7	-286	-158	-24	22	1528	-1526	0
12	156	96	3	8	-233	-253	-27	23	1201	-1145	18
13	-316	-14	-27	9	-258	-114	-18	24	1675	1641	11
14	-155	120	-9	10	-311	167	-28	25	1146	993	46
15	726	-773	-14					26	1617	-1538	26
16	409	-397	2		-11	2	1	27	1163	-985	53
17	1378	1323	19					28	986	978	2
18	615	583	7	1	766	-724	11	29	735	791	-14
19	1576	-1522	18	2	770	861	-26	30	283	-376	-12
20	605	-443	33	3	388	401	-2	31	139	-230	-6
21	1552	1556	-1	4	-237	-137	-18				
22	456	311	22	5	-125	101	-6				
23	1171	-1197	-8	6	483	-550	-14				
24	178	-318	-14	7	485	-476	1	1	-334	204	-49
25	743	755	-3	3	1042	1015	8	2	585	590	-1
26	-382	182	-40	9	949	859	26	3	1487	-1456	12
27	-357	-55	-28	10	1398	-1408	-3	4	881	891	-3
28	-456	-15	-46	11	1246	-1154	30	5	918	963	-17
				12	1500	1462	12	6	1935	-1963	-10
9	1	1		13	1151	1064	26	7	1455	-1453	0
				14	1258	-1235	7	8	2014	2021	-2
0	196	303	-14	15	748	-758	-2	9	930	947	-6
1	1470	-1467	1	16	870	872	0	10	2322	-2317	1
2	456	-452	0	17	359	458	-16	11	651	-649	0
3	1441	1484	-16	18	287	-297	-1	12	1110	1089	8
4	658	694	-10					13	-237	151	-23
5	1280	-1216	23		-10	2	1	14	290	-453	-32
6	830	-860	-9					15	167	-96	5
7	1125	1200	-28	1	-56	163	-7	16	-238	-216	-29
8	518	556	-9	2	1166	-1085	27	17	302	-335	-5
9	1035	-1113	-27	3	164	294	-14	18	856	878	-7
10	515	-552	-8	4	417	-399	3	19	795	811	-5
11	348	365	-2	5	57	-91	-1	20	1335	-1395	-22
12	-283	176	-28	6	1102	1128	-9	21	954	-995	-14
13	-324	61	-27	7	659	656	0	22	1255	1317	-22
14	-228	43	-13	8	848	-949	-33	23	1058	1064	-2
15	837	-833	1	9	495	-459	7	24	727	-748	-6
16	-87	-131	-5	10	1152	1160	-2	25	1166	-1186	-6
17	1059	1071	-4	11	296	310	-2	26	419	540	-25
18	360	389	-4	12	984	-925	19	27	601	632	-7
19	990	-1018	-9	13	550	-554	0	28	425	-545	-24
20	406	-342	9	14	425	459	-6	29	-132	-26	-4
21	1769	1827	-19	15	-272	64	-19	30	506	611	-23
22	182	174	0	16	783	-705	21	31	-148	-289	-23
23	688	-794	-26	17	155	163	0	32	232	-209	2
24	499	-547	-9	18	-90	272	-19	33	722	742	-5
				19	-220	-102	-14	34	622	-605	3
10	1	1		20	467	479	-2	35	799	-789	2
				21	970	969	0				
0	441	-295	24	22	382	-356	3	-7	2	1	
1	1405	1391	4	23	356	-430	-12				
2	631	462	37	24	793	814	-5	1	-132	136	-13
3	1662	-1674	-4	25	113	282	-14	2	1240	-1245	-2
4	629	-510	27	26	775	-741	8	3	618	-584	11
5	1792	1788	1					4	1850	1901	-20
6	703	561	34	-9	2	1		5	890	899	-3
7	1356	-1398	-14					6	2003	-2038	-14
3	459	-377	14	1	79	321	-25	7	1149	-1160	-4

Iridium Dimer

Page 6

2	1216	1226	-5	36	1463	1503	-13	23	220	9	15	6	175	-81	22	
3	781	822	-20	37	1182	1085	-27	24	930	870	22	7	2569	-2542	11	
4	1357-1357	0	38	923-1040	-32	25	977	-967	3	8	861	-818	31			
5	960	-999	-20	39	250	-423	-21	26	811	790	6	9	567	390	92	
6	1008	1056	-25	40	252	391	-16	27	1699	1690	3	10	4084	4006	23	
7	945	1005	-30	41	-242	-277	-24	28	2759	-2726	10	11	2135	2032	50	
8	978-1034	-28	42	-40	366	-23	29	2098	-1890	67	12	2884	-2754	51		
9	913	-968	-28				30	3124	3073	14	13	1798	-1657	73		
10	604	646	-17	-3	2	1	31	2167	2023	45	14	4656	4566	23		
11	749	712	18				32	2813	-2712	29	15	2568	2531	15		
12	-137	112	-14	1	431	-360	28	33	1615	-1560	17	16	4312	-4145	46	
13	-31	-47	-1	2	2905	-3087	-68	34	1837	1885	-15	17	3150	-3036	40	
14	634	-680	-10	3	461	429	14	35	1585	1501	26	18	2007	1981	40	
15	877	-905	-12	4	1804	1913	-56	36	558	-473	14	19	870	918	-26	
16	1131	1094	16	5	264	-211	13	37	1027	-1118	-26	20	1683	-1716	-17	
17	1314	1269	20	6	1084	-1197	-69	38	-346	-241	-35	21	583	-595	-5	
18	1617-1614	1	7	272	-272	0	39	-229	-179	-16	22	764	727	17		
19	1264-1194	29	8	287	288	0	40	-325	336	-42	23	302	-385	-22		
20	1716	1744	-11	9	130	54	6	41	621	832	-48	24	1362	1355	3	
21	1249	1154	38	10	487	545	-24	42	1024	-1148	-35	25	1401	1360	20	
22	1229-1241	-5	11	342	384	-13	43	1099	-1079	5	26	2098	-2067	13		
23	1292-1257	13	12	1094	-1113	-10	44	1213	1191	5	27	1266	-1244	10		
24	687	702	-4	13	269	-326	-14				28	3578	3413	50		
25	889	945	-20	14	1363	1355	3	-1	2	1	29	1924	1817	46		
26	-229	111	-17	15	621	612	4				30	3102	-3096	2		
27	-75	-339	-31	16	1500	-1534	-16	1	427	-491	-51	31	1656	-1607	21	
28	798	-838	-12	17	1093	-1015	36	2	827	927	-87	32	2433	2470	-14	
29	183	-89	6	18	1259	1313	-26	3	722	773	-43	33	733	760	-9	
30	1105	1129	-8	19	849	830	7	4	327	-313	7	34	1146	-1126	8	
31	669	529	31	20	1046	-1068	-9	5	737	-797	-45	35	645	-699	-17	
32	1260-1252	2	21	512	-434	22	6	179	156	6	36	-284	409	-70		
33	846	-791	14	22	691	715	-8	7	1352	1417	-40	37	-124	-171	-12	
34	1268	1238	9	23	-169	149	-17	8	364	-232	46	38	735	790	-18	
35	983	930	15	24	-152	-111	-11	9	1164	-1182	-10	39	757	749	2	
36	1137-1103	10	25	-272	-241	-41	10	274	-249	6	40	1619	-1676	-23		
37	951	-853	25	26	405	-502	-22	11	511	451	22	41	1213	-1237	-9	
38	811	826	-3	27	-137	-123	-9	12	382	356	7	42	1639	1542	37	
39	556	602	-9	28	1154	1139	5	13	97	-229	-17	43	1272	1231	15	
40	311	-469	-21	29	601	547	12	14	391	-419	-8					
41	-317	-174	-24	30	1163	-1172	-3	15	41	220	-17	1	2	1		
			-4	31	830	-774	15	16	419	466	-13					
			2	32	913	940	-8	17	386	400	-3	0	610	-663	-47	
			1	33	955	911	12	18	513	-559	-15	1	221	-208	5	
1	3213	3157	18	34	736	-750	-3	19	560	-617	-19	2	461	498	-29	
2	2072-1931	60	35	810	-829	-4	20	-150	209	-22	3	277	-305	-15		
3	2451-2461	-4	36	426	475	-7	21	429	476	-12	4	136	225	-29		
4	3917	3789	34	37	656	717	-13	22	-233	-43	-17	5	307	343	-17	
5	1395	1406	-6	38	-201	-197	-15	23	455	-519	-16	6	177	-127	10	
6	3103-3107	-1	39	-171	-367	-30	24	48	26	0	7	336	-400	-27		
7	3202-3152	15	40	-319	-270	-33	25	240	338	-15	8	230	-168	13		
8	1611	1674	-32	41	-437	24	-37	26	472	515	-10	9	595	646	-24	
9	885	930	-23	42	235	561	-44	27	-257	84	-19	10	288	271	4	
10	2333-2348	-5	43	-176	219	-13	28	692	-689	0	11	228	-250	-4		
11	604	629	-11				29	199	-101	6	12	-225	115	-25		
12	51	-158	-10	-2	2	1	30	849	867	-5	13	-239	-55	-23		
13	1359-1407	-24					31	257	111	11	14	421	-428	-1		
14	1165	1022	66	1	1058	-1001	38	32	401	-555	-29	15	625	615	3	
15	1786	1766	9	2	3521	3582	-19	33	226	-430	-26	16	546	528	5	
16	2687-2659	9	3	4772	4821	-11	34	-141	229	-14	17	737	-784	-18		
17	1481-1583	-48	4	2206	-2139	30	35	279	550	-43	18	591	-568	7		
18	3535	3595	-17	5	831	-769	40	36	-210	239	-20	19	414	555	-40	
19	2418	2412	2	6	5131	5116	3	37	-205	-278	-23	20	-249	58	-21	
20	2883-2943	-19	7	1521	-1465	31	38	602	-751	-33	21	198	-299	-14		
21	2106-2061	17	8	3661	-3561	29	39	221	312	-9	22	-180	73	-11		
22	2104	2121	-6	9	2478	-2452	10	40	547	668	-24	23	-345	-23	-36	
23	1241	1241	0	10	1461	-1496	-19	41	23	-10	0	24	-262	-230	-34	
24	1660-1583	30	11	1458	-1391	34	42	482	-615	-24	25	-324	262	-48		
25	-280	-138	-29	12	1150	1111	20	43	-432	-364	-31	26	219	159	-19	
26	-287	24	-24	13	3199	3119	25	44	235	458	-26	27	303	-340	-5	
27	84	241	-13	14	1016	-1020	-2				28	-334	0	-27		
28	1403	1408	-1	15	2743	-2734	3	0	2	1	29	103	236	-9		
29	1312	1300	4	16	3814	3770	11				30	-390	-13	-35		
30	1867-1847	7	17	2433	2525	-35	0	8446	8983	-75	31	-276	-243	-29		
31	1602-1565	12	18	3240	-3319	-25	1	2107	2135	-16	32	-350	200	-35		
32	1928	1929	0	19	2519	-2557	-13	2	3423	-3341	29	33	-199	208	-17	
33	1531	1428	34	20	2826	2837	-3	3	4816	-4844	-7	34	-409	-29	-36	
34	1710-1708	0	21	139	-15	6	4	1682	1561	76	35	-146	-379	-32		
35	1768-1639	40	22	3148	-3038	33	5	2122	2026	50	36	-381	-143	-34		

Iridium Dimer

Page 7

37	367	483	-17	22	-76	-225	-16	12	1263	1271	-3	10	1493	1505	-4
38	-367	202	-35	23	366	-449	-17	13	300	301	0	11	634	666	-9
39	-485	7	-49	24	429	406	4	14	1062	1116	-23	12	837	-856	-6
40	-252	-426	-46	25	446	453	-1	15	337	460	-31	13	-253	-181	-26
41	-314	-35	-19	26	403	-552	-31	16	472	527	-15	14	-175	197	-19
42	-448	-15	-39	27	-184	-195	-16	17	573	-618	-14	15	-129	-272	-24
43	-254	50	-12	28	305	436	-20	18	-242	113	-22	16	-80	220	-14
				29	-380	63	-34	19	966	993	-10	17	601	701	-28
	2	2	1	30	-215	-269	-25	20	457	-496	-9	18	909	-929	-6
				31	-288	-11	-17	21	1079	-1074	1	19	888	-947	-19
0	5772	-5765	1	32	-361	350	-52	22	687	682	1	20	1182	1168	4
1	2490	-2444	18	33	-95	-342	-24	23	722	733	-3	21	1121	1118	0
2	377	48	96	34	-375	59	-28	24	764	-756	2	22	1154	-1129	8
3	2438	2353	35	35	472	551	-13	25	768	-750	5	23	971	-884	25
4	1801	-1796	2	36	52	-190	-6	26	959	912	14	24	986	1014	-8
5	1130	1097	19	37	461	-624	-29	27	400	524	-23	25	681	595	20
6	723	-751	-15	38	-250	-44	-12	28	707	-715	-2	26	785	-825	-16
7	3102	3027	25	39	230	412	-20	29	-263	-100	-17	27	-115	-302	-22
8	3647	3681	-10	40	-162	-201	-11	30	75	394	-30	28	300	514	-34
9	2953	2959	-2	41	207	-177	1	31	-263	-124	-17	29	-382	130	-35
10	3722	-3716	1					32	-459	59	-46	30	-485	29	-52
11	1747	-1804	-27		4	2	1	33	-316	311	-40	31	-189	256	-19
12	3608	3683	-16					34	-312	-248	-31	32	386	-489	-16
13	3244	3297	-17	0	2594	2547	18	35	323	-503	-26				
14	2959	-2909	16	1	1332	-1383	-28	36	445	523	-12	8	2	1	
15	3016	-2902	36	2	1933	-1856	34	37	420	528	-16				
16	2299	2270	10	3	498	-517	-7					0	736	-812	-26
17	1551	1585	-15	4	546	-531	6	6	2	1		1	681	-776	-32
18	449	-526	-23	5	907	-863	22					2	850	931	-30
19	1408	-1286	50	6	1800	1803	-1	0	94	158	-6	3	857	850	2
20	1240	-1252	-5	7	1772	1710	28	1	-78	-21	-2	4	864	-919	-20
21	-133	176	-15	8	3841	-3849	-2	2	745	-776	-13	5	1071	-1051	7
22	1640	1659	-7	9	2083	-2055	12	3	633	-624	3	6	1816	1760	21
23	1556	1590	-13	10	4383	4231	37	4	602	619	-6	7	1424	1442	-7
24	1984	-1942	15	11	1837	1828	4	5	1073	1040	14	8	1415	-1358	21
25	1740	-1777	-13	12	3111	-3129	-5	6	1673	-1680	-2	9	1311	-1316	-2
26	2270	2308	-12	13	2210	-2159	20	7	2050	-2063	-5	10	1054	1131	-28
27	2079	1906	56	14	1357	1330	12	8	2712	2792	-28	11	718	781	-3
28	2435	-2403	10	15	1085	1077	3	9	1876	1817	23	12	810	-822	-3
29	1659	-1664	-1	16	1159	-1146	5	10	2401	-2434	-12	13	-304	47	-25
30	2160	2062	31	17	201	-305	-18	11	1531	-1511	8	14	-229	-221	-26
31	723	685	8	18	1106	-1157	-21	12	1877	1939	-25	15	-237	-253	-30
32	1388	-1415	-8	19	407	-380	6	13	1025	1019	2	16	286	414	-21
33	-399	61	-34	20	1110	1166	-22	14	641	-561	24	17	990	940	16
34	-365	153	-32	21	1575	1421	57	15	120	-253	-14	18	985	-1073	-36
35	-456	110	-46	22	2577	-2623	-15	16	-163	-170	-16	19	678	-771	-25
36	668	707	-8	23	1356	-1383	-10	17	-247	-119	-21	20	1423	1335	29
37	1311	1256	16	24	2423	2371	17	18	1850	1874	-9	21	1098	1086	3
38	1763	-1559	59	25	2132	2100	11	19	336	313	3	22	1639	-1614	8
39	1304	-1193	32	26	1685	-1617	23	20	1750	-1798	-18	23	666	-691	-6
40	2139	2062	22	27	1719	-1749	-10	21	1664	-1665	0	24	1239	1258	-6
41	1449	1219	62	28	1229	1186	13	22	2399	2370	9	25	605	665	-13
42	1639	-1668	-8	29	608	725	-28	23	1177	1128	16	26	-148	-397	-37
				30	1009	-1071	-18	24	1752	-1746	2	27	-325	-72	-23
	3	2	1	31	32	-291	-17	25	1913	-1857	18	28	-434	-275	-57
0	2869	3046	-66	33	-327	-292	-39	27	725	917	-55	9	2	1	
1	332	-305	8	34	-69	311	-19	28	-213	31	-10				
2	1307	-1335	-16	35	723	812	-21	29	198	-462	-35	0	787	797	-3
3	-174	-100	-22	36	1137	-1032	27	30	-403	-12	-36	1	736	691	13
4	84	-22	3	37	1103	-1027	19	31	-144	-301	-22	2	1310	-1350	-15
5	-157	-37	-13	38	1787	1703	24	32	-245	269	-26	3	998	-997	0
6	749	835	-47	39	1145	1024	30	33	378	621	-43	4	1609	1569	14
7	550	593	-19					34	749	-737	2	5	1177	1187	-3
8	989	-1071	-45	5	2	1		35	791	-704	18	6	1653	-1643	3
9	980	-1009	-15									7	1068	-1060	2
10	757	807	-25	0	654	-673	-8	7	2	1		8	1401	1403	0
11	679	747	-31	1	-107	178	-21					9	713	692	5
12	734	-775	-20	2	-210	-59	-23	0	153	257	-14	10	865	-861	1
13	630	-639	-3	3	642	-696	-24	1	-177	-180	-23	11	-252	-98	-18
14	701	683	7	4	785	733	23	2	619	621	0	12	-300	172	-30
15	285	374	-22	5	1256	1297	-20	3	854	807	18	13	515	-482	6
16	456	-410	13	6	1116	-1137	-10	4	1212	-1236	-10	14	490	516	-5
17	-109	224	-23	7	1716	-1768	-24	5	1277	-1284	-3	15	686	725	-10
18	-225	-184	-28	8	1362	1424	-30	6	1596	1593	1	16	1043	-1023	6
19	304	-376	-15	9	1488	1509	-9	7	1554	1529	10	17	935	-922	3
20	-255	66	-23	10	1140	-1169	-13	8	1695	-1714	-7	18	1165	1193	-9
21	-191	215	-26	11	983	-1007	-10	9	1348	-1327	8	19	1006	903	30

Iridium Dimer

Page 8

20	1298	1313	-4	17	88	87	0	34	876	-829	12	35	948	-858	24
21	790	-740	12	18	-257	140	-20		-7	3 1		36	1193	-1202	-2
22	1161	1129	10	19	532	570	-8					37	1040	989	14
23	403	440	-6	20	756	722	8					38	1188	1070	32
				21	1084	-1068	4	1	645	-619	8	39	845	-784	14
10	2	1		22	1505	-1421	27	2	899	945	-19		-5	3 1	
				23	1206	1136	21	3	416	-454	-10				
0	1472	1465	2	24	1512	1468	14	4	2009	-2018	-3				
1	562	557	1	25	1187	-1071	34	5	1036	1001	14	1	1019	-1034	-7
2	1099	-1178	-28					6	1721	1691	12	2	2943	-2923	6
3	345	-239	14		-9	3 1		7	1909	-1920	-4	3	1361	-1333	13
4	1180	1149	10					8	1639	-1618	8	4	2885	2975	-31
5	976	987	-3	1	1259	1292	-12	9	1825	1779	18	5	1767	-1688	35
6	469	-606	-31	2	476	-473	0	10	1499	1459	16	6	2644	-2676	-11
7	1001	-918	25	3	226	-166	6	11	1622	-1689	-28	7	2145	2078	27
8	32	134	-4	4	160	403	-35	12	432	-427	1	8	2490	2460	11
9	429	547	-24	5	621	-666	-12	13	814	880	-24	9	2626	-2633	-2
10	-334	-181	-35	6	876	-915	-13	14	-200	63	-13	10	1804	-1613	-4
11	371	-471	-18	7	1032	1106	-27	15	-332	-53	-36	11	1066	1045	9
12	663	-667	0	8	1130	1141	-4	16	403	483	-19	12	329	-326	0
13	-232	-139	-17	9	1511	-1416	34	17	-118	-89	-6	13	154	-185	-4
14	273	453	-28	10	618	-719	-29	18	1294	-1307	-5	14	682	743	-25
15	629	746	-29	11	853	860	-2	19	1511	1506	1	15	216	-208	1
16	600	-681	-19	12	1359	1375	-5	20	1150	1124	9	16	2913	-2851	20
17	457	-460	0	13	515	-608	-23	21	1436	-1382	19	17	1074	1089	-6
18	950	1020	-20	14	951	-955	-1	22	1518	-1649	-51	18	2082	2246	-66
				15	-108	181	-11	23	892	930	-12	19	1757	-1766	-4
11	2	1		16	218	307	-11	24	1570	1581	-3	20	1716	-1772	-23
				17	-182	-202	-18	25	882	-914	-10	21	1870	1867	1
0	1140	-1191	-17	18	589	632	-10	26	720	-790	-20	22	2193	2167	9
1	941	-812	36	19	220	-158	5	27	530	596	-15	23	1543	-1597	-21
2	1394	1354	13	20	758	-894	-42	28	360	552	-38	24	1099	-1077	8
3	938	832	29	21	184	210	-2	29	260	-279	-2	25	900	978	-27
4	1534	-1419	37	22	1347	1375	-9	30	301	452	-24	26	498	627	-33
5	988	-885	29	23	254	-138	10	31	180	5	7	27	-291	37	-22
6	1214	1138	23	24	1374	-1383	-3	32	1407	-1428	-7	28	-137	241	-19
7	737	639	23	25	674	546	29	33	225	46	10	29	457	-525	-14
8	683	-645	8	26	713	834	-33	34	1320	1316	1	30	1547	-1607	-21
9	-177	-130	-10	27	797	-808	-2	35	731	-634	22	31	641	669	-6
				28	580	-623	-14	36	1198	-1220	-6	32	1734	1695	13
-11	3	1		29	513	604	-19	37	1043	1044	0	33	852	-822	8
				30	-252	71	-14					34	1827	-1812	5
1	933	-1018	-26					-6	3 1			35	1126	1093	9
2	-237	-209	-23		-8	3 1						36	1580	1499	25
3	298	276	2									37	866	-840	6
4	-128	-125	-7	1	-308	-143	-35	2	124	87	3	38	1215	-1151	18
5	-205	119	-13	2	324	-300	4	3	1028	-1016	5	39	930	962	-8
6	245	440	-29	3	701	723	-7	4	983	-950	14	40	137	333	-16
7	21	-349	-27	4	1098	1092	2	5	1067	978	40	41	749	-760	-2
8	252	-436	-28	5	1145	-1120	9	6	1329	1360	-14				
9	297	425	-20	6	1588	-1610	-8	7	1356	-1347	4	-4	3 1		
10	347	531	-34	7	1332	1251	31	8	1607	-1653	-20				
11	481	-450	5	8	2003	1923	29	9	1174	1154	9	1	1918	-2007	-41
12	457	-606	-32	9	1400	-1291	41	10	1565	1579	-5	2	520	-428	34
13	367	472	-18	10	2003	-1927	27	11	487	-463	7	3	1575	1636	-31
14	127	418	-35	11	1013	958	19	12	995	-1008	-5	4	555	529	10
15	323	-434	-17	12	1535	1553	-7	13	56	-136	-5	5	1181	-1246	-35
16	286	-304	-2	13	-55	-198	-11	14	330	348	-4	6	854	-835	9
17	742	616	29	14	763	-818	-18	15	667	690	-8	7	696	767	-37
				15	210	-378	-26	16	344	411	-15	8	673	679	-2
-10	3	1		16	-224	190	-23	17	1170	-1138	13	9	266	-429	-51
				17	786	840	-17	18	1214	-1251	-15	10	351	-439	-30
1	573	-617	-10	18	705	547	41	19	1366	1318	19	11	212	-179	5
2	586	-598	-2	19	1361	-1341	7	20	1685	1687	0	12	30	-74	-2
3	190	168	1	20	1313	-1266	17	21	1169	-1111	22	13	924	904	9
4	-122	-123	-7	21	1381	1272	37	22	1459	-1466	-2	14	649	600	19
5	490	501	-2	22	1667	1645	7	23	731	750	-6	15	1138	-1114	11
6	961	964	0	23	1243	-1145	33	24	1255	1218	13	16	877	-863	6
7	940	-914	8	24	1681	-1670	3	25	424	-419	0	17	988	991	-1
8	1532	-1518	5	25	1085	915	51	26	916	-955	-13	18	1237	1241	-1
9	1298	1234	22	26	1607	1487	40	27	-84	-101	-4	19	934	-889	19
10	1743	1716	9	27	495	-438	10	28	180	415	-32	20	1429	-1443	-6
11	1417	-1302	39	28	1032	-976	17	29	494	608	-26	21	772	713	21
12	1869	-1752	39	29	-216	91	-12	30	377	376	0	22	1145	1196	-21
13	1158	995	51	30	-266	223	-27	31	754	-703	12	23	-38	-119	-4
14	1463	1402	20	31	147	213	-5	32	1010	-980	8	24	688	-756	-22
15	674	-590	20	32	167	381	-24	33	803	754	12	25	-163	-254	-25
16	812	-813	0	33	609	-588	4	34	1241	1194	14	26	-164	223	-20

Iridium Dimer

Page 9

27	605	638	-8	14	230	-320	-20	1	495	510	-13	31	2012	-2029	-5
28	434	425	1	15	260	292	-8	2	298	-217	41	32	1070	-986	25
29	1146	-1084	20	16	615	689	-30	3	924	-908	13	33	940	920	5
30	1026	-967	19	17	210	-123	11	4	385	294	47	34	652	734	-19
31	1066	974	29	18	937	-952	-8	5	881	828	39	35	-205	-227	-18
32	1226	1206	6	19	-28	16	0	6	384	-222	61	36	346	460	-16
33	757	-689	16	20	659	694	-12	7	1004	-971	22	38	654	-736	-18
34	1069	-1134	-20	21	-194	-82	-15	8	388	321	24	39	970	-1020	-13
35	486	463	3	22	533	-522	3	9	1078	1034	27	40	1240	1270	-8
36	999	1027	-8	23	31	248	-18	10	382	-240	41	41	1384	1239	40
37	203	-93	6	24	440	488	-11	11	728	-738	-6	42	1279	-1298	-5
38	562	-709	-31	25	92	345	-30	12	102	-38	4	42	2121	-1982	45
39	-365	-41	-26	26	270	-310	-5	13	399	438	-13	2	3	1	
40	-245	301	-28	27	453	-570	-26	14	245	227	3	0	779	881	-66
41	-258	296	-27	28	-254	-149	-21	15	684	-625	18	1	1400	-1521	-73
42	-298	57	-16	29	517	519	0	16	476	-515	-15	2	488	-497	-3
-3	3	1		30	474	555	-18	17	-150	95	-14	3	1804	1952	-78
31	549	-621		32	624	-686	-14	18	626	671	-21	4	359	280	25
1	2402	2401	0	33	239	279	-4	19	-192	86	-19	5	1111	-1183	-43
2	6733	6771	-6	34	556	623	-13	20	308	-405	-28	6	-75	97	-7
3	2807	-2713	34	35	-293	-33	-17	21	-171	-133	-20	7	520	530	-4
4	2537	-2559	-8	36	645	-726	-18	22	-56	371	-58	8	449	-350	32
5	2203	2211	-3	37	-447	-35	-41	23	255	466	-58	9	-135	-70	-10
6	3928	3877	14	38	420	603	-32	24	375	-452	-22	10	388	377	3
7	1800	-1611	-5	39	-360	210	-33	25	560	-596	-13	11	564	-615	-20
8	2087	-2090	-1	40	-336	-146	-25	26	-197	191	-27	12	403	-412	-2
9	1807	1750	26	41	-125	-417	-34	27	502	542	-12	13	861	843	8
10	1262	-1251	5	42	210	-279	-5	28	-388	0	-52	14	-169	142	-20
11	1245	-1314	-36	43	254	353	-10	29	167	-351	-29	15	1100	-1066	15
12	2684	2499	65	30	233	-294		31	109	188	-6	16	82	47	1
13	169	-245	-14	-1	3	1		32	185	327	-20	17	1114	1103	5
14	3243	-3177	20					33	-353	161	-45	18	141	205	-7
15	1696	1634	27	1	3585	-3472	34	34	-210	-350	-47	19	805	-808	-1
16	3994	3948	12	2	2743	-2856	-45	35	364	-498	-30	20	-308	28	-32
17	2437	-2383	20	3	2077	1991	40	36	-216	337	-44	21	277	289	-1
18	3482	-3515	-9	4	6051	6068	-3	37	412	414	0	22	187	-255	-8
19	2882	2800	26	5	444	385	26	38	-340	-151	-38	23	-357	38	-38
20	1244	1227	7	6	1175	-1049	71	39	609	-609	0	24	-106	364	-38
21	2843	-2841	0	7	859	862	-2	40	-211	110	-15	25	158	-356	-24
22	885	-883	0	8	1175	1165	5	41	597	748	-45	26	168	-306	-15
23	2307	2301	2	9	218	205	2	42	-258	185	-26	27	848	884	-10
24	682	717	-11	10	1247	1159	44	43	257	-466	-36	28	-59	159	-6
25	517	-489	7	11	2267	-2179	35				29	512	-671	-35	
26	550	614	-17	12	3787	-3731	15				30	-397	27	-34	
27	791	-947	-52	13	1297	1230	30	1	3	1	31	387	512	-21	
28	1208	-1288	-29	14	3641	3544	27				32	-219	-235	-20	
29	1587	1564	8	15	3348	-3264	25	0	6565	-6558	1	33	-171	-190	-12
30	2460	2410	16	16	4321	-4233	21	1	2794	2799	-1	34	246	365	-13
31	1855	-1770	28	17	3196	3088	32	2	4300	4286	3	35	-297	112	-19
32	2247	-2209	12	18	1649	1681	-13	3	1464	-1410	31	36	204	-498	-38
33	1457	1295	49	19	1332	-1386	-23	4	1679	1647	17	37	-107	-266	-15
34	2249	2129	36	20	978	-960	7	5	310	334	-8	38	352	585	-38
35	965	-870	24	21	1502	1516	-5	6	-85	50	-5	39	-335	-74	-22
36	1244	-1211	9	22	152	261	-13	7	744	723	10	40	-296	-319	-35
37	773	892	-30	23	854	-843	4	8	711	-714	-1	41	-340	-39	-21
38	282	386	-12	24	1295	1247	17	9	3497	-3495	0				
39	68	-374	-24	25	830	-693	40	10	1847	-1939	-43	3	3	1	
40	-310	94	-19	26	1237	-1232	2	11	2468	2417	19				
41	-118	-247	-13	27	1300	1390	-32	12	3865	3914	-13				
42	1274	-1213	16	28	2509	2470	12	13	2160	-2139	8	0	3000	2987	4
43	864	699	34	29	2460	-2446	4	14	3885	-3904	-5	1	2062	-1957	46
				30	1980	-1994	-4	15	3235	3184	15	2	288	178	24
				31	2681	2461	64	16	4328	4241	21	3	801	741	30
				32	1876	1869	2	17	623	-637	-4	4	528	477	21
1	1447	1540	-55	33	1643	-1622	6	18	3766	-3553	55	5	932	997	-36
2	1584	1769	-108	34	1539	-1483	17	19	468	-330	30	6	1393	1445	-28
3	767	-769	-1	35	744	754	-2	20	589	-627	-11	7	1670	1636	16
4	1720	-1851	-71	36	914	896	4	21	350	-528	-42	8	2508	-2420	33
5	281	155	29	37	-233	-44	-10	22	794	854	-20	9	2806	2817	-3
6	1233	1323	-54	38	397	-562	-27	23	1432	-1405	10	10	3328	3324	1
7	245	178	14	39	714	-686	5	24	1585	-1632	-17	11	2453	-2473	-7
8	1190	-1240	-28	40	729	-783	-12	25	1862	1773	31	12	3383	-3362	6
9	571	-578	-3	41	1017	1076	-16	26	2717	2682	11	13	2772	2714	20
10	924	946	-11	42	1306	1297	2	27	1514	-1407	36	14	2334	2489	-61
11	599	581	7	43	1275	-1304	-8	28	3031	2880	43	15	1596	-1474	52
12	184	-206	-3	29	2473	2457	5	16	2461	-2514	-19				
13	700	-703	-1	0	3	1		30	1730	1688	13	17	624	663	-13

Iridium Dimer

Page 10

18	-226	-158	-27	10	1896-1908	-4	10	2061	2150	-34	22	979	955	6	
19	311	356	-9	11	1756	1764	-3	11	1337-1285	19	23	377	-451	-11	
20	772	820	-18	12	2822	2711	36	12	861	-867	-2				
21	1074-1187	-46	13	1597-1638	-15	13	794	803	-2	10	3	1			
22	1884-1806	28	14	508	-640	-44	14	-224	99	-16					
23	1733	1681	19	15	267	244	3	15	-248	8	-16	0	1097-1039	19	
24	2635	2587	15	16	869	867	0	16	-291	52	-23	1	833	773	
25	1511-1613	-38	17	383	413	-6	17	466	-525	-13	2	1362	1328	11	
26	2678-2620	18	18	259	305	-7	18	1039-1026	4	3	1153-1076	25			
27	1706	1739	-11	19	1509-1464	17	19	1174	1132	14	4	1557-1498	20		
28	2078	2056	7	20	1340-1437	-38	20	1049	987	19	5	1218	1138	26	
29	1307-1328	-7	21	1547	1544	1	21	1735-1736	0	6	1476	1408	23		
30	944-1039	-28	22	1628	1737	-41	22	1028-1016	3	7	1024-1034	-3			
31	1169	1272	-33	23	1842-1816	9	23	1920	1769	49	8	913	-866	14	
32	629	890	-13	24	2172-2157	5	24	1359	1400	-13	9	712	721	-2	
33	529	-580	-9	25	1335	1268	22	25	887	-875	3	10	-119	188	
34	510	645	-26	26	2294	2290	1	26	994-1010	-4	11	-282	-29	-19	
35	-142	-242	-14	27	379	-402	-3	27	-389	22	-34	12	369	439	
36	1191-1234	-13	28	1347-1372	-8	28	611	719	-25	13	255	-402	-21		
37	1132	1009	32	29	-319	397	-56	29	-343	347	-51	14	681	-752	
38	1433	1318	32	30	199	512	-44	30	-454	-28	-44	15	700	598	
39	1601-1541	17	31	-481	41	-52	31	605	-747	-31	16	1024	972	14	
40	1822-1851	-8	32	-301	201	-27					17	1063	-971	26	
			33	433	-457	-3			8	3	1				
	4	3	1	34	574	-732	-34					11	3	1	
			35	291	473	-24									
0	264	-176	18	36	1339	1401	-18	0	479	525	-11				
1	2168	2243	-32					1	159	-260	-12	0	524	-470	10
2	71	-125	-5		6	3	1	2	912	-945	-11	1	604	650	-11
3	1109-1178	-37						3	755	750	1	2	584	613	-6
4	406	450	-15	0	609	-633	-9	4	1454	1393	23	3	591	-631	-9
5	-109	174	-20	1	589	-572	6	5	1486-1462	9	4	506	-582	-16	
6	1109-1135	-13	2	961	906	24	6	1675-1667	2	5	445	462	-3		
7	694	670	11	3	188	161	3	7	1655	1618	14	6	824	883	-16
8	1597	1582	7	4	1186-1173	5	8	1346	1340	2	7	136	136	0	
9	1360-1350	4	5	589	544	15	9	1114-1160	-17						
10	1696-1697	0	6	1625	1647	-9	10	744	-800	-17	-11	4	1		
11	1390	1375	7	7	1150-1096	23	11	737	826	-28					
12	1140	1101	18	8	1842-1873	-12	12	-273	52	-20	1	1183-1134	15		
13	1184-1114	31	9	1314	1244	29	13	-217	-265	-30	2	-72	230	-13	
14	357	-397	-10	10	1312	1344	-13	14	405	519	-24	3	507	594	-18
15	699	697	0	11	910	-966	-22	15	442	-470	-5	4	-152	0	-5
16	-227	15	-19	12	764	-711	18	16	947	-943	1	5	142	170	-1
17	546	-633	-28	13	573	596	-7	17	522	563	-9	6	287	-325	-4
18	370	424	-12	14	-241	-8	-18	18	1175	1119	19	7	834	-802	8
19	381	425	-10	15	-132	-280	-28	19	696	-671	6	8	652	523	28
20	629	-618	3	16	570	598	-7	20	1109-1150	-14	9	1333	1348	-4	
21	-303	-17	-27	17	91	-171	-5	21	768	742	7	10	812	-666	36
22	715	785	-22	18	985	-966	6	22	1010	1065	-17	11	1608-1552	17	
23	236	-251	-1	19	312	295	2	23	578	-512	13	12	758	587	43
24	701	-766	-18	20	1269	1285	-5	24	689	-727	-9	13	1578	1527	16
25	241	214	2	21	697	-615	21	25	326	398	-10	14	600	-420	34
26	531	599	-15	22	1401-1376	8	26	-125	264	-17					
27	613	-530	18	23	1024	916	33	27	-158	-174	-11	-10	4	1	
28	283	-376	-12	24	1144	1082	19		9	3	1	1	477	552	-16
29	767	867	-27	25	710	-708	0				2	1003	-862	44	
30	-278	107	-18	26	621	-529	19	0	176	302	-15	3	240	-44	13
31	226	-400	-21	27	387	433	-7	1	1063-1094	-10	4	263	180	8	
32	-435	36	-40	28	-347	120	-30	2	1069-1044	9	5	415	-504	-18	
33	-282	131	-19	29	-238	-301	-31	3	825	764	18	6	295	299	0
34	-173	-342	-28	30	-373	122	-33	4	786	849	-20	7	738	766	-7
35	-377	-131	-31	31	-414	118	-40	5	552	-590	-9	8	347	-310	5
36	77	505	-45	32	207	-350	-15	6	1518-1484	12	9	1344-1357	-4		
37	-95	-103	-3	33	177	404	-24	7	638	608	7	10	551	474	16
38	453	-548	-15	34	431	539	-17	8	1396	1387	3	11	905	969	-20
								9	224	-177	4	12	485	-375	20
	5	3	1		7	3	1	10	936	-931	1	13	978	-1088	-36
								11	-183	119	-11	14	699	672	7
0	557	-603	-19	0	291	289	0	12	-205	-158	-16	15	453	458	0
1	1108	1075	16	1	879	971	-38	13	383	327	8	16	672	-607	16
2	912	-951	-19	2	247	289	-7	14	24	265	-16	17	-121	63	-4
3	273	-209	13	3	97	-334	-33	15	1170-1127	14	18	707	737	-7	
4	1442	1457	-7	4	1228-1270	-17	16	650	-707	-14	19	663	-629	8	
5	236	67	21	5	1065	1031	13	17	615	620	-1	20	127	-299	-16
6	1868	-1837	13	6	1962	1942	7	18	1038	1038	0	21	597	719	-30
7	2013	1946	27	7	1484-1405	31	19	1047-1020	8	22	203	181	1		
8	1799	1897	-43	8	2143-2050	33	20	933	-953	-5	23	1259-1268	-2		
9	2925	-2855	23	9	1538	1475	24	21	1063	1012	14	24	243	-32	12

Iridium Dimer										Page	11	41	433	-575	-23
-9	4	1	8	741	664	25	6	810	840	-14					
			9	2096	2093	1	7	1234	1203	14					
			10	425	-304	24	8	860	-822	18					
			11	1541	-1544	-1	9	1438	-1442	-1					
1	644	697	-15	12	280	-177	13	10	427	315	29	1	2188	2302	-50
2	-278	-68	-22	13	923	874	17	11	818	766	21	2	478	-409	25
3	-29	230	-14	14	247	358	-19	12	151	7	8	3	2244	-2347	-44
4	10	-210	-11	15	-150	0	-6	13	-91	-50	-4	4	491	500	-3
5	1017	-1051	-12	16	513	-602	-24	14	385	-486	-29	5	1714	1823	-54
6	454	406	9	17	852	-874	-7	15	446	-464	-5	6	194	-48	16
7	1513	1551	-13	18	818	813	1	16	870	928	-24	7	1396	-1436	-21
8	558	-397	33	19	1550	1583	-12	17	1237	1291	-23	8	604	-658	-25
9	1797	-1810	-4	20	1091	-1045	16	18	959	-956	1	9	626	656	-13
10	646	471	40	21	1985	-1932	18	19	1758	-1777	-7	10	855	873	-9
11	1842	1823	6	22	1121	911	67	20	934	833	36	11	-136	-116	-15
12	455	-190	38	23	2061	2016	15	21	1604	1612	-3	12	1123	-1137	-6
13	1632	-1588	15	24	739	-482	61	22	851	-771	26	13	396	-447	-16
14	171	109	4	25	1661	-1685	-8	23	1228	-1193	13	14	1010	986	11
15	1031	1009	7	26	451	126	40	24	297	290	1	15	891	894	-1
16	-110	-1	-3	27	1120	1133	-4	25	763	737	7	16	906	-862	19
17	-148	-181	-13	28	275	321	-6	26	284	275	-1	17	1196	-1211	-6
18	387	-418	-5	29	348	-323	3	27	-200	-183	-18	18	559	487	22
19	682	-663	4	30	403	-385	2	28	761	-829	-20	19	1188	1220	-14
20	705	630	19	31	561	-580	-4	29	714	-687	7	20	229	233	0
21	1410	1391	6	32	609	570	8	30	838	744	25	21	924	-939	-5
22	842	-618	56	33	1114	1121	-2	31	1347	1307	13	22	408	-382	5
23	1790	-1772	6	34	864	-728	33	32	828	-692	34	23	487	508	-5
24	827	586	58	35	1457	-1397	18	33	1311	-1375	-21	24	232	449	-40
25	1874	1840	11	36	1034	761	66	34	723	621	23	25	-109	-252	-20
26	679	-386	56	-6	4	1	35	1219	1248	-8	26	754	-802	-14	
27	1524	-1477	15	36	525	-231	39	27	-260	-59	-17	28	829	828	0
28	414	207	25	37	1197	-1241	-13	29	610	677	-16	30	529	-538	-2
29	891	824	18	1	2298	-2169	47	38	207	34	7	31	1009	-990	5
			2	291	-150	22	39	787	822	-8					
			3	3946	3895	13	40	-284	77	-16					
			4	416	-125	53									
1	158	-185	-2	5	2450	-2413	6	-4	4	1					
2	637	631	1	6	946	950	-1								
3	1395	-1304	34	7	3254	3163	27	1	1550	1658	-54	35	963	-1017	-15
4	162	-64	6	8	1897	-1840	23	2	225	2	23	36	97	-229	-8
5	1738	1729	3	9	2115	-2207	-36	3	3789	-3774	4	37	359	532	-27
6	687	-682	1	10	1360	1352	3	4	980	920	29	38	291	426	-17
7	1256	-1212	16	11	851	805	18	5	4195	4240	-11	39	-283	-221	-24
8	1114	1054	22	12	1245	-1269	-10	6	901	-795	50	40	-149	-403	-33
9	1664	1709	-17	13	-168	-107	-14	7	2083	-2131	-20	41	-166	-224	-13
10	1423	-1369	20	14	256	349	-17	8	1579	1627	-23	42	94	445	-32
11	1019	-1057	-14	15	744	-850	-40	9	2034	2022	5				
12	570	592	-5	16	297	269	4	10	1917	-1916	0	-2	4	1	
13	870	984	-40	17	1756	1726	11	11	469	-461	2				
14	199	-347	-21	18	503	-554	-13	12	399	466	-22	1	6305	6290	2
15	-290	-29	-23	19	1851	-1956	-41	13	1457	-1420	17	2	2103	1994	47
16	-215	129	-16	20	756	759	0	14	364	-265	22	3	5301	5365	-13
17	-254	106	-20	21	1903	1964	-22	15	2406	2486	-30	4	748	-609	70
18	-158	71	-7	22	927	-927	0	16	825	-818	2	5	2266	-2222	18
19	452	561	-25	23	1646	-1615	11	17	3010	-3050	-13	6	937	926	5
20	317	-324	-1	24	967	1040	-25	18	1221	1124	40	7	2813	2746	23
21	2088	-2088	0	25	1957	1937	6	19	2477	2555	-28	8	1592	-1532	29
22	445	304	23	26	605	-588	4	20	662	-737	-26	9	822	-845	-11
23	1202	1269	-23	27	302	-380	-12	21	2632	-2529	34	10	354	388	-10
24	374	-212	20	28	128	172	-3	22	962	1025	-24	11	2191	-2137	22
25	1582	-1531	17	29	-276	31	-18	23	1791	1697	35	12	170	-129	5
26	648	641	1	30	-137	-276	-21	24	906	-948	-15	13	3968	3791	46
27	1133	1143	-3	31	634	-500	26	25	946	-989	-16	14	1194	-1046	66
28	254	-434	-26	32	1203	1221	-5	26	503	529	-6	15	5225	-5067	32
29	-293	130	-23	33	194	165	2	27	690	-745	-15	16	2128	1916	80
30	703	701	0	34	1580	-1613	-10	28	203	348	-18	17	3625	3699	-21
31	723	-751	-6	35	1743	1806	-20	29	1490	1352	46	18	1368	-1287	34
32	634	-633	0	36	634	-500	26	30	467	-384	14	19	3760	-3665	25
33	906	862	11	37	1201	-1285	-26	31	2491	-2506	-4	20	1065	1010	23
			38	724	572	30	32	526	326	32	21	566	644	-25	
							33	2314	2334	-6	22	1451	-1430	8	
1	-60	-111	-5	-5	4	1	34	767	-666	23	23	-323	45	-32	
2	871	-897	-10				35	1685	-1685	0	24	797	888	-31	
3	1186	-1093	37	1	623	-604	7	36	796	628	37	25	-219	295	-35
4	924	891	13	2	1461	1423	17	37	1682	1745	-19	26	205	295	-10
5	1967	1927	15	3	1310	1340	-14	38	677	-696	-4	27	1655	1601	18
6	807	-775	11	4	900	-888	5	39	414	-579	-28	28	939	-796	40
7	2407	-2384	8	5	1403	-1419	-7	40	815	762	11	29	2453	-2361	28

Iridium Dimer												Page	12		
30	1539	1368	54	17	4222	-4270	-13	3	2895	2899	-1	36	-233	97	-11
31	2534	2451	25	18	416	-194	53	4	298	180	26	37	-187	-305	-23
32	1325-1143	55	19	1609	1616	-3	5	358	386	-9	38	-330	-272	-33	
33	2111-2098	4	20	-187	78	-17	6	1295-1288	3	39	498	640	-25		
34	520	198	40	21	310	333	-5	7	2051-2032	8		4	4	1	
35	1881	1961	-25	22	668	780	-50	8	1273	1244	14				
36	137	-27	3	23	658	-608	19	9	2197	2236	-16				
37	1298-1263	10	24	781	736	18	10	2056-2023	14	0	950	907	21		
38	-445	-94	-41	25	2114	2152	-16	11	3549-3633	-24	1	2855	2842	4	
39	454	-492	-5	26	624	-453	51	12	1256	1208	22	2	-94	-76	-7
40	-251	169	-17	27	2649	-2624	9	13	4322	4252	17	3	616	623	-2
41	700	759	-12	28	1153	973	75	14	2283-2254	11	4	251	80	25	
42	604	-367	35	29	2778	2754	8	15	3257-3282	-7	5	1884-1847	16		
				30	2011	-1867	58	16	777	687	33	6	1019	988	15
	-1	4	1	31	2209	-2276	-27	17	1866	1904	-15	7	2479	2549	-27
				32	1138	996	57	18	625	683	-19	8	1578-1531	21	
1	357	352	1	33	1627	1601	10	19	1210-1161	19	9	3213-3207	1		
2	1710-1746	-19	34	442	-581	-36	20	-223	-318	-46	10	1231	1220	5	
3	483	403	32	35	469	-613	-38	21	1059-1130	-27	11	3261	3264	0	
4	1459	1475	-9	36	-276	104	-24	22	873	1000	-45	12	1249-1266	-7	
5	669	-654	7	37	-344	-123	-37	23	2118	2190	-25	13	2664-2730	-23	
6	731	-737	-2	38	397	552	-36	24	955	-846	33	14	889	852	14
7	770	770	0	39	965	1023	-22	25	3056-2919	39	15	1890	1849	16	
8	364	334	8	40	576	-595	-5	26	885	554	79	16	-150	-226	-25
9	1074-1031	21	41	1282	-1364	-32	27	3815	3707	26	17	1231-1119	44		
10	292	-289	0	42	751	746	1	28	1129	-948	52	18	248	-428	-36
11	604	589	5					29	2635-2650	-4	19	436	-482	-11	
12	62	129	-4		1	4	1	30	1402	1380	7	20	1003	1006	-1
13	45	153	-8					31	1729	1697	10	21	1938	1898	14
14	-237	-126	-28	0	1903	1995	-46	32	962	-955	1	22	1058-1131	-26	
15	424	-489	-19	1	736	823	-52	33	-277	-179	-21	23	2760-2849	-28	
16	-93	152	-11	2	1295-1391	-1391	-57	34	-297	228	-27	24	996	949	15
17	1037	1023	5	3	1027	-1100	-43	35	-370	-187	-34	25	2480	2425	17
18	494	391	26	4	400	427	-10	36	-381	-75	-29	26	419	-247	23
19	768	-783	-6	5	787	867	-45	37	1003	1035	-8	27	2668-2600	20	
20	479	-523	-11	6	254	228	5	38	790	-693	20	28	297	140	14
21	479	432	11	7	582	-621	-16	39	2115-2042	21	29	1819	1867	-16	
22	677	679	0	8	1016	-1026	-4	40	1043	898	35	30	586	-580	1
23	509	-557	-12	9	192	141	6	41	1655	1660	-1	31	236	-278	-4
24	514	-572	-14	10	1304	1301	1					32	-264	164	-19
25	-223	175	-20	11	86	-40	2	3	4	1	33	441	-539	-16	
26	609	694	-22	12	1099	-1058	18				34	-363	1	-26	
27	92	162	-4	13	-229	44	-20	0	1355	1387	-16	35	784	831	-11
28	640	-745	-27	14	-181	171	-22	1	964	1053	-50	36	189	-333	-13
29	-94	-307	-22	15	344	475	-34	2	1445-1498	-27	37	1937-1958	-6		
30	293	450	-23	16	150	160	-1	3	-43	-194	-19	38	733	624	20
31	123	471	-42	17	526	-535	-2	4	1420	1465	-23				
32	-173	-177	-12	18	547	-629	-25	5	401	-394	2		5	4	1
33	247	-409	-20	19	351	375	-4	6	1217-1284	-35					
34	-303	-328	-40	20	1004	1009	-1	7	621	640	-8	0	1313-1307	2	
35	220	391	-19	21	304	-327	-3	8	177	341	-38	1	90	147	-5
36	334	656	-57	22	729	-758	-8	9	795	-837	-20	2	1190	1199	-4
37	-197	-299	-24	23	102	284	-18	10	135	161	-33	3	835	-784	22
38	562	-602	-7	24	356	497	-28	11	834	821	6	4	1171-1136	16	
39	-424	160	-40	25	117	-340	-23	12	557	-576	-7	5	980	985	-2
40	338	589	-40	26	-225	-270	-28	13	600	-624	-8	6	385	362	6
41	-277	216	-23	27	-382	161	-40	14	762	851	-39	7	1355-1338	7	
42	170	-307	-11	28	-310	-4	-21	15	509	488	6	8	346	176	31
	0	4	1	30	268	418	-20	16	1126-1148	-9	9	1289	1344	-25	
				31	-261	-229	-25	17	232	-223	1	10	423	-348	18
0	3694	3572	35	32	487	-598	-21	18	1195	1268	-30	11	1422-1458	-15	
1	2078	1967	58	33	-351	172	-31	20	842	-897	-20	13	1152	1113	16
2	2756-2695	25	34	495	593	-18	21	249	280	-4	14	648	-668	-6	
3	1665-1630	21	35	-350	31	-24	22	258	373	-18	15	302	-318	-2	
4	208	22	26	36	744	-795	-12	23	316	-439	-22	16	472	593	-34
5	2064	2026	19	37	-240	136	-14	24	-306	87	-25	17	197	-339	-21
6	1373	1310	38	38	568	636	-9	25	475	521	-9	18	514	-524	-2
7	1756-1672	45	39	-334	-131	-24	26	497	-544	-9	19	790	788	0	
8	961	-954	4	40	86	-384	-25	27	600	-676	-18	20	475	507	-7
9	1218	1186	19	41	-416	-31	-33	28	630	692	-14	21	1066-1042	8	
10	2167	2076	42	42	-306	139	-20	29	248	368	-14	22	74	-127	-2
11	4601	4304	76					30	506	-667	-34	23	1164	1178	-4
12	1452-1312	75	2	4	1			31	-238	-305	-30	24	358	-328	4
13	4186-4218	-9						32	640	778	-32	25	723	-722	0
14	1383	1253	89	0	1427-1361	35		33	-234	-110	-12	26	737	589	34
15	4230	4186	12	1	3534-3519	4		34	503	-623	-22	27	451	400	8
16	2299-2132	72	2	1136	1096	22		35	-209	284	-23	28	212	-426	-28

Iridium Dimer							Page			13					
29	143	-166	-1	30	210	-240	-2	0	473	-311	25	8	1819	1765	19
30	193	447	-32		1	1530	-1470	1	19	9	416	82	41		
31	-188	-312	-26		2	617	442	34	10	1930	-1920	3			
32	-244	-164	-17		3	1648	1576	23	11	553	-392	35			
33	28	428	-34	0	1016	-1060	-16	4	671	-514	33	12	1448	1410	14
34	-392	37	-31	1	508	-457	12					13	673	648	6
35	382	-470	-12	2	482	641	-44		-11	5	1	14	619	-626	-2
36	-383	132	-30	3	1385	1290	35					15	815	-843	-8
				4	207	-230	-2	2	69	-79	0	16	-65	11	-1
	6	4	1	5	1815	-1872	-21	3	597	602	-1	17	469	559	-20
				6	845	742	32	4	414	459	-8	18	712	746	-10
0	1007	888	49	7	2200	2250	-17	5	516	-627	-24	19	526	-527	0
1	268	246	3	8	259	-213	5	6	393	471	-13	20	1515	-1547	-11
2	132	-64	4	9	1140	-1108	11	7	242	9	12	21	646	207	74
3	1110	-1159	-21	10	10	180	53	-5				22	1982	2016	-11
4	99	30	3	11	832	832	0	-10	5	1		23	580	49	67
5	2151	2247	-38	12	-227	-297	-36					24	1832	-1845	-4
6	680	-504	55	13	635	-754	-34	1	-197	-52	-10	25	621	-183	68
7	3355	-3292	18	14	553	-535	4	2	718	-684	9	26	1521	1531	-3
8	665	526	43	15	1223	-1131	30	3	-242	-25	-14	27	660	490	36
9	2440	2408	11	16	470	364	18	4	173	-115	3	28	1032	-981	15
10	981	-951	11	17	1022	983	12	5	-218	102	-14	29	628	-606	5
11	1745	-1607	52	18	490	-551	-13	6	839	860	-8	30	8	-113	-2
12	523	675	-47	19	1198	-1179	6	7	420	-207	29	31	451	340	16
13	871	897	-9	20	702	718	-4	8	1324	-1326	0	32	1013	954	16
14	156	-413	-41	21	1541	1572	-10	9	348	182	19				
15	-238	-283	-39	22	770	-804	-9	10	1513	1555	-14		-7	5	1
16	384	-413	-5	23	892	-908	-4	11	491	-176	43				
17	407	-489	-18	24	130	433	-35	12	1628	-1591	12	1	748	-767	-6
18	884	887	-1	25	809	683	30	13	455	91	41	2	1144	1169	-10
19	603	643	-10	26	-203	-32	-8	14	1289	1348	-20	3	1407	1373	13
20	955	-1001	-15					15	217	-3	10	4	2072	-2061	4
21	1830	-1753	26		9	4	1	16	707	-722	-3	5	326	-140	24
22	1555	1494	21					17	-287	-105	-21	6	2867	2788	25
23	2493	2391	31	0	291	274	2	18	-166	-12	-6	7	533	-440	23
24	828	-751	20	1	1522	1426	34	19	453	396	9	8	2229	-2227	0
25	2051	-1967	27	2	521	-464	12	20	767	774	-1	9	797	808	-3
26	249	23	12	3	1673	-1630	15	21	547	-411	24	10	1676	1693	-6
27	1520	1581	-20	4	704	653	13					11	640	-765	-41
28	638	575	13	5	1631	1605	9	-9	5	1		12	1143	-1091	19
29	512	-578	-13	6	929	-896	10					13	-146	253	-24
30	-278	-237	-27	7	1585	-1585	0	1	1115	958	50	14	131	296	-19
31	-348	-15	-25	8	1031	1009	7	2	166	-324	-19	15	982	-924	20
32	234	450	-27	9	1149	1046	33	3	611	-612	0	16	131	49	4
33	810	799	2	10	684	-641	11	4	298	424	-21	17	-210	-51	-12
				11	298	-326	-4	5	389	373	2	18	1675	-1687	-4
	7	4	1	12	104	177	-4	6	702	-836	-41	19	208	13	11
				13	-202	-281	-28	7	295	313	-2	20	952	948	1
0	849	885	-14	14	217	177	3	8	1045	1012	11	21	514	462	11
1	923	-977	-23	15	973	907	19	9	373	-319	8	22	2468	-2486	-5
2	550	-570	-5	16	403	-325	11	10	1119	1238	-44	23	750	596	39
3	1514	1535	-9	17	1285	-1233	16	11	567	475	20	24	1911	1897	4
4	336	-48	31	18	433	393	6	12	1536	1462	26	25	295	175	12
5	1724	-1788	-25	19	1361	1333	9	13	312	-132	18	26	1301	-1302	0
6	837	773	22	20	772	-585	42	14	1090	-1054	11	27	510	441	13
7	1599	1618	-7	21	1257	-1158	29	15	385	322	9	28	729	851	-34
8	1086	-1012	28					16	942	967	-8	29	369	-439	-11
9	1480	-1376	39		10	4	1	17	761	-736	6	30	265	372	-14
10	995	968	10					18	595	598	0	31	717	782	-17
11	925	925	0	0	1059	1058	0	19	261	363	-14	32	1279	-1209	21
12	684	-652	9	1	650	729	-21	20	979	-928	15	33	694	-713	-4
13	-196	-258	-28	2	489	-539	-11	21	491	-537	-9	34	1396	1364	10
14	286	372	-14	3	650	-699	-13	22	1487	1433	18	35	532	297	33
15	233	-280	-6	4	436	407	5	23	548	472	15				
16	315	-551	-49	5	1236	1220	5	24	1308	1403	-32				
17	893	913	-6	6	-125	-11	-3	25	662	331	59				
18	-140	201	-14	7	1107	-1176	-23	26	1220	1215	1	1	759	780	-8
19	1442	-1413	10	8	398	-319	12	27	431	-287	20	2	1525	1581	24
20	218	136	6	9	677	802	-34					3	820	-685	49
21	1592	1517	25	10	174	242	-6	-3	5	1		4	2100	-2049	19
22	303	-164	14	11	-211	-49	-10					5	773	657	41
23	1287	-1307	-6	12	394	-425	-5	1	501	-516	-3	6	2100	2066	12
24	411	296	16	13	299	-361	-8	2	-100	-57	-3	7	604	-359	65
25	881	964	-24	14	347	503	-27	3	460	482	-5	8	2257	-2266	-3
26	467	-578	-22	15	672	655	3	4	940	1000	-22	9	481	-241	50
27	324	-361	-5					5	463	-249	37	10	1682	1614	27
28	343	542	-34		11	4	1	6	1644	-1628	6	11	449	400	12
29	-168	-316	-25					7	526	47	65	12	705	-714	-3

Iridium Dimer

Page 14

13	540	-478	17	9	723	690	13	1	364	251	30	34	1495	1553	-18	
14	257	-366	-20	10	942	-901	19	2	546	541	2	35	487	-369	17	
15	611	619	-2	11	1117	-1087	14	3	889	927	-20	36	513	555	-7	
16	1264	1267	-1	12	255	-55	23	4	651	-561	39	37	-459	202	-50	
17	705	-608	28	13	1007	965	18	5	1455	-1490	-18	38	173	-317	-12	
18	1644	-1640	1	14	815	763	21	6	728	694	16	39	-498	-8	-50	
19	592	460	32	15	738	-726	4	7	1502	1548	-23	40	930	-944	-3	
20	1843	1842	0	16	1311	-1315	-1	8	822	-776	24	41	327	256	6	
21	514	-116	58	17	484	408	20	9	1505	-1521	-8	0	5	1		
22	1710	-1675	12	18	1365	1349	8	10	319	248	16					
23	362	103	28	19	265	85	19	11	949	989	-19	1	556	520	20	
24	1431	1433	0	20	1024	-1051	-10	12	284	243	8	2	219	-8	29	
25	435	263	26	21	565	-526	10	13	703	-713	-4	3	1294	-1303	-6	
26	780	-834	-15	22	971	999	-10	14	571	-544	9	4	348	148	53	
27	676	-656	5	23	648	613	9	15	321	310	2	5	1896	1877	10	
28	193	28	8	24	572	-680	-30	16	1069	1037	13	6	503	-380	49	
29	616	678	-15	25	691	-695	-1	17	315	48	31	7	1576	-1576	0	
30	510	550	-8	26	203	192	1	18	1199	-1177	9	8	484	428	21	
31	568	-521	9	27	692	816	-36	19	407	-204	36	9	1162	1155	4	
32	1263	-1295	-10	28	481	539	-12	20	533	508	6	10	248	-132	20	
33	694	255	71	29	449	-510	-12	21	486	601	-32	11	1006	-995	5	
34	1621	1596	7	30	871	-889	-5	22	147	-242	-10	12	-220	0	-23	
35	654	-198	65	31	368	230	16	23	610	-741	-39	13	484	456	10	
36	1470	-1492	-6	32	1097	1123	-8	24	-142	217	-17	14	-100	168	-17	
37	557	-5	52	33	558	274	42	25	409	606	-44	15	-200	-125	-24	
	-5	5	1		34	1106	-1128	-6	26	-193	55	-9	16	626	-803	9
					35	630	-380	42	27	413	-532	-23	17	587	-536	19
1	1208	1151	25	37	498	498	0	28	463	-401	10	18	737	707	13	
2	4296	-4190	26	38	478	-540	-10	29	-129	206	-12	19	1322	1293	14	
3	403	-101	55	39	463	-493	-4	30	455	576	-23	20	624	-494	45	
4	3550	3517	9	40	-432	67	-35	31	32	-23	0	21	1351	-1299	25	
5	1672	1749	-35					32	670	-723	-12	22	339	-179	28	
6	2485	-2481	1		-3	5	1	33	179	-302	-11	23	1238	1195	19	
7	824	818	2					34	685	710	-5	24	407	225	35	
8	3855	3928	-19	1	1403	1263	67	35	567	485	14	25	1339	-1299	18	
9	1683	-1678	2	2	4530	4577	-11	36	643	-701	-12	26	497	-464	9	
10	1696	-1693	1	3	1374	1414	-20	37	392	-610	-37	27	751	657	32	
11	180	45	11	4	2602	-2698	-36	38	-345	314	-41	28	420	427	-1	
12	389	-478	-25	5	504	488	6	39	-253	415	-43	29	-114	-264	-24	
13	874	-958	-38	6	4807	4809	0	40	-376	4	-26	30	-228	-169	-23	
14	556	608	-17	7	871	-784	43	41	-298	-252	-27	31	-366	140	-45	
15	175	79	8	8	1383	-1437	-27					32	-316	217	-42	
16	1647	-1743	-40	9	1008	1043	-17					33	-99	257	-20	
17	328	-147	25	10	637	663	-11					34	-275	-24	-21	
18	2625	2730	-36	11	1815	-1740	32	1	556	-308	83	35	571	-596	-7	
19	252	-82	16	12	1565	1567	0	2	6002	-5959	7	36	-154	168	-13	
20	2319	-2369	-17	13	524	484	20	3	469	311	49	37	607	701	-27	
21	383	363	3	14	3112	-3176	-20	4	3850	3837	3	38	237	306	-9	
22	2242	2306	-22	15	444	-273	40	5	1354	1323	15	39	579	-707	-37	
23	745	-679	19	16	3494	3527	-9	6	2035	-1962	30	40	-112	-254	-19	
24	1531	-1492	14	17	328	-22	35	7	345	-337	22	41	264	438	-29	
25	409	382	4	18	2918	-3000	-27	8	624	-472	54					
26	802	860	-17	19	322	-104	28	9	76	139	-5	1	5	1		
27	649	-686	-9	20	2678	2587	29	10	772	757	6					
28	-160	34	-6	21	530	-526	0	11	413	480	-20	0	3905	3866	11	
29	181	223	-3	22	1880	-1898	-6	12	3748	-3694	14	1	693	650	20	
30	1385	-1472	-30	23	661	726	-19	13	336	-32	38	2	2957	2908	17	
31	449	-399	8	24	730	778	-14	14	4737	4725	2	3	1164	-1110	27	
32	1432	1501	-23	25	-114	-275	-22	15	749	-500	77	4	1149	-1053	48	
33	312	350	-4	26	499	577	-18	16	3701	-3753	-14	5	386	-445	-19	
34	2003	-2059	-18	27	276	308	-4	17	744	677	22	6	630	-714	-37	
35	258	3	12	28	1339	-1250	29	18	3642	3739	-26	7	803	872	-32	
36	1740	1779	-12	29	445	96	38	19	1034	863	59	8	1863	1803	25	
37	585	-377	33	30	2605	2504	30	20	2051	-2044	2	9	1777	-1848	-31	
38	1633	-1545	25	31	540	255	41	21	441	538	-23	10	2160	-2183	-9	
39	651	532	21	32	2373	-2425	-16	22	454	424	6	11	169	-192	-3	
				33	618	189	58	23	1056	-1117	-22	12	3608	3676	-19	
	-4	5	1	34	2606	2589	5	24	410	410	0	13	271	46	23	
				35	389	124	24	25	357	-256	13	14	4323	-4344	-5	
1	1231	-1214	8	36	903	-987	-22	26	2229	-2243	-4	15	922	725	68	
2	1634	-1711	-36	37	334	-286	5	27	530	32	53	16	3889	3820	17	
3	1173	1155	9	38	992	1074	-22	28	2798	2782	4	17	671	408	66	
4	2016	2128	-49	39	897	-878	4	29	592	-199	56	18	3061	-3027	10	
5	497	-416	27	40	424	474	-7	30	2312	-2394	-26	19	1136	-1000	48	
6	1876	-1857	8	41	316	335	-2	31	964	932	8	20	231	-276	-6	
7	228	-6	22					32	1980	1963	5	21	190	-332	-18	
8	1172	1190	-8		-2	5	1	33	285	-171	9	22	1022	1049	-9	

Iridium Dimer

Page 15

23	450	27	43	12	3433-3359	21	7	422	328	23	10	2419	2487	-23
24	2774-2859	-26	13	388	237	31	8	2688	2699	-3	11	175	189	-1
25	801	-268	99	14	2915 2935	-6	9	334	-166	27	12	117	23	3
26	3402	3436	-9	15	250 -18	20	10	2456-2425	10	13	488	-580	-22	
27	1042	616	103	16	1930-1901	11	11	353	-303	10	14	496	-499	0
28	3239-3156	22	17	-159	-102	-11	12	1872	1865	2	15	-206	-161	-17
29	950	533	92	18	1097 1104	-2	13	144	202	-6	16	-53	292	-21
30	2375	2403	-8	19	545 681	-41	14	1586-1573	5	17	57	-1	0	
31	972	-936	9	20	1065 1052	4	15	305	-310	0	18	1422-1387	12	
32	1630-1582	15	21	134	-288	-16	16	-220	234	-29	19	774	756	4
33	305	401	-12	22	1551-1589	-14	17	399	447	-10	20	1507	1476	10
34	444	465	-3	23	399 309	14	18	594	566	7	21	559	-566	-1
35	-254	-139	-16	24	2870 2780	26	19	734	-818	-26	22	1221-1071	46	
36	256	445	-23	25	545 57	58	20	1726-1697	10	23	619	537	17	
37	-272	-26	-14	26	3124-3171	-13	21	299	434	-23	24	1153	1179	-8
38	828	-940	-28	27	588 -523	13	22	2168	2144	8	25	58	178	-6
39	119	-175	-2	28	2481 2561	-25	23	404	211	25	26	1141-1216	-23	
40	1439	1453	-4	29	264 160	8	24	2652-2568	25	27	375	-419	-6	
41	502	-42	39	30	1314-1330	-5	25	349	-144	21	28	744	733	2
				31	242 170	5	26	2655	2511	42	29	-282	228	-26
	2	5	1	32	1137 1094	12	27	967	866	28		8	5	1
				33	414 -594	-31	28	1464-1421	13					
0	275	101	30	34	-391 133	-33	29	253	-456	-28				
1	1008	-985	12	35	268 -342	-7	30	212	439	-28	0	830	801	9
2	87	-36	3	36	1294-1353	-17	31	-424	-47	-38	1	532	459	17
3	815	874	-31	37	232 296	-5	32	407	490	-13	2	1500-1492	2	
4	65	-246	-26	38	1266 1152	30	33	-236	-124	-13	3	523	-329	38
5	1063-1112	-26					34	998-1059	-16	4	1788	1781	2	
6	335	388	-16	4	5 1		35	355	-244	11	5	385	132	31
7	1139	1170	-15								6	1884-1878	2	
8	403	-353	14	0	1430-1497	-33	6	5 1			7	364	-31	31
9	908	-891	8	1	1386 1420	-17					8	1347	1386	-14
10	442	465	-7	2	596 641	-19	0	200	296	-16	9	451	-303	25
11	179	205	-3	3	990-1022	-16	1	494	-535	-12	10	1043	-1049	-1
12	621	-531	31	4	78 -83	0	2	546	577	-10	11	540	588	-11
13	338	326	2	5	375 415	-12	3	415	463	-12	12	606	616	-2
14	763	719	16	6	484 -451	10	4	1109-1151	-17	13	454	-467	-2	
15	715	-706	3	7	406 -472	-20	5	380	-373	1	14	-223	117	-15
16	291	-33	26	8	779 745	14	6	1372	1388	-6	15	-247	67	-16
17	1350	1295	22	9	297 310	-2	7	355	247	19	16	679	-607	17
18	298	-146	19	10	1178-1173	2	8	1427-1478	-21	17	235	-148	7	
19	1250-1273	-9	11	183	75	10	9	252	187	8	18	1037	963	22
20	421	342	15	12	1323 1360	-16	10	1437	1448	-4	19	384	241	18
21	1071	1157	-32	13	624 -628	-1	11	466	-406	13	20	1327-1268	19	
22	488	-418	14	14	998 -995	1	12	1063-1028	13	21	169	-177	0	
23	617	-589	6	15	748 760	-4	13	601	606	-1	22	1110	1185	-24
24	347	285	8	16	498 504	-2	14	579	575	1	23	-74	-27	-1
25	-336	57	-27	17	766 -819	-18	15	561	-679	-33	24	876	-830	12
26	-113	-276	-19	18	-254 21	-19	16	219	279	-7	25	421	268	19
27	411	410	0	19	398 560	-38	17	648	783	-40				
28	297	251	4	20	313 -369	-9	18	938	-971	-10	9	5	1	
29	466	-477	-2	21	156 -425	-39	19	656	-736	-22				
30	67	-397	-29	22	482 520	-8	20	1343	1340	1	0	289	266	3
31	645	641	0	23	99 127	-1	21	398	300	15	1	926	-795	39
32	-179	375	-32	24	582 -685	-25	22	1356-1266	29	2	1324-1321	1		
33	866	-864	0	25	-159 221	-16	23	211	-6	9	3	519	501	3
34	-298	-65	-18	26	651 660	-2	24	1183	1086	30	4	1264	1297	-11
35	739	833	-22	27	353 -481	-21	25	277	-102	13	5	393	63	34
36	-306	83	-19	28	696 -630	15	26	798	-756	10	6	1467-1475	-2	
37	787	-767	4	29	671 712	-9	27	482	472	1	7	489	-399	17
38	-384	30	-28	30	-354 235	-37	28	-258	77	-15	8	1765	1755	3
39	186	463	-31	31	499 -437	10	29	482	-629	-29	9	524	369	29
40	-291	-133	-18	32	-334 -134	-26	30	-241	263	-25	10	588	-604	-3
				33	-210 389	-37	31	265	414	-18	11	458	-491	-6
				34	-432 91	-39	32	712	-673	8	12	311	-414	-16
				35	-31 -567	-58					13	314	426	-18
0	4145	4195	-13	36	294 498	-27	7	5 1			14	98	340	-24
1	-47	34	-1	37	-197 402	-34					15	566	-442	24
2	391	-355	11				0	774	747	9	16	1260-1246	4	
3	116	-162	-6	5	5 1		1	788	744	14	17	182	116	4
4	342	-357	-4				2	917	869	17	18	765	869	-28
5	716	-630	37	0	422 -384	10	3	213	-223	-1	19	269	187	7
6	1072	1013	29	1	622 -585	13	4	1889-1947	-22	20	885	-895	-2	
7	1084	-1086	-1	2	175 -97	8	5	315	165	19				
8	3340	-3274	19	3	992 -977	6	6	2686	2653	10	10	5	1	
9	678	566	43	4	1239 1184	24	7	363	101	32				
10	3892	3902	-2	5	1211-1236	-11	8	2347-2341	2	0	1336-1283	17		
11	358	46	46	6	3172-3272	-31	9	338	-66	28	1	343	-137	22

Iridium Dimer

Page 16

2	1641	1583	19	15	918	-864	17	24	441	248	29	23	1888	1870	6		
3	359	9	28	16	-27	-125	-4	25	2226	2227	0	24	842	-741	29		
4	1614-1604	3	17	360	345		2	26	238	1	12	25	1307-1297	3			
5	342	231	14	18	1274-1221		18	27	374	-489	-20	26	444	391	9		
6	1398	1361	12	19	353	477	-23	28	270	-263	0	27	380	-427	-8		
7	502	-242	39	20	524	491	7	29	331	341	-1	28	-91	58	-2		
8	1116	-999	36	21	1413-1413	0	30	939	-924	4	29	734	888	-43			
9	131	307	-17	22	520	-409	21	31	891	926	-9	30	1415	1322	29		
10	313	337	-3	23	1725	1711	4	32	996	913	23	31	1942-1980	-12			
11	65	-285	-16	24	603	434	33	33	1688-1677	3	32	639	-510	25			
12	302	336	-4	25	1658-1644		4	34	773	-585	40	33	1833	1800	10		
13	139	227	-6	26	439	-241	27	35	1772	1679	28	34	1035	952	22		
				27	1152	1234	-26	36	644	309	51	35	1746-1712	10			
-10	6	1		28	597	-499	19					36	409	-176	23		
				29	519	-539	-3					37	1694	1640	16		
1	353	396	-7	30	643	628	3					38	159	-79	3		
2	969	-947	6					1	1456-1518	-27		39	653	-664	-1		
3	-272	-100	-20		-7	6	1	2	430	175	50						
4	250	323						3	2106	2210	-42		-3	6	1		
5	-22	-319	-24		1	582	626	-12	4	749	613	48					
6	768	-690	20		2	545	-497	12	5	1965-2007	-17	1	986	1009	-11		
7	105	276	-15		3	1280-1279	0	6	766	-662	38	2	584	636	-22		
8	187	328	-16		4	343	71	30	7	1793	1805	-4	3	1014	-975	19	
9	961	-976	-4		5	1950	1992	-16	8	485	357	33	4	946	-989	-21	
10	-273	24	-18		6	556	310	51	9	1311-1279	13	5	773	705	29		
11	679	809	-36		7	2083-2058	9	10	598	-605	-2	6	1486	1572	-41		
12	253	192	5		8	555	-501	13	11	19	-25	0	7	990	-915	35	
13	1376-1379	0	9		9	1604	1580	9	12	666	670	-1	8	1614-1701	-40		
14	375	190	21		10	752	624	37	13	685	634	16	9	402	315	22	
15	773	818	-12		11	1200-1184	5	14	715	-752	-13	10	1342	1385	-20		
16	421	-394	4		12	955-1024	-25	15	1030	-971	22	11	454	325	34		
17	485	-572	-18		13	353	319	5	16	563	523	10	12	1440-1445	-2		
18	782	768	3		14	649	646	1	17	1417	1430	-5	13	1026	-926	44	
				15	466	568	-25	18	292	-142	17	14	1217	1158	25		
-9	6	1		16	334	-362	-4	19	1321-1319	0	15	1046	1028	7			
				17	992	-998	-2	20	294	-227	9	16	504	-414	23		
1	413	518	-22		18	521	299	40	21	1055	1052	1	17	1050-1063	-5		
2	336	356	-3		19	1657	1681	-8	22	441	353	16	18	540	-471	18	
3	262	169	9		20	628	272	66	23	885	-948	-21	19	979	941	14	
4	192	-287	-11		21	1608-1576	11	24	757	-678	21	20	881	838	14		
5	780	-723	16		22	725	-520	48	25	506	527	-4	21	701	-612	25	
6	279	-12	18		23	1632	1588	15	26	775	691	22	22	1000	-964	13	
7	1330	1275	19		24	914	726	51	27	262	-146	10	23	424	363	11	
8	476	317	27		25	1446-1369	25	28	635	-643	-1	24	1129	1176	-17		
9	1522-1531	-3	26		790	-639	37	29	512	-602	-19	25	277	-51	17		
10	615	-412	42		27	683	574	25	30	505	332	27	26	1158-1151	2		
11	1360	1354	2		28	790	702	22	31	1100	1103	-1	27	372	-199	20	
12	601	471	28		29	280	238	4	32	492	6	45	28	710	718	-1	
13	1193-1084	36	30		433	-390	6	33	1177-1188	-3	29	418	597	-35			
14	423	-328	15		31	1056	-991	18	34	668	-337	55	30	-195	-161	-13	
15	518	494	5		32	434	39	35	35	1214	1182	9	31	891	-922	-8	
16	368	349	3		33	1503	1469	10	36	686	549	26	32	269	-131	10	
17	271	190	8					37	900	-883	4	33	750	737	2		
18	-93	-175	-9		-6	6	1					34	505	362	21		
19	852	-862	-2					-4	6	1		35	676	-722	-10		
20	302	-27	19		1	966	-986	-7				36	788	-794	-1		
21	1403	1383	6		2	1793-1721	28	1	2146	2148	0	37	304	284	2		
22	529	316	35		3	2575	2603	-9	2	1737	1703	14	38	599	697	-19	
23	1745-1771	-8	4		2004	1974	11	3	3688-3693	-1	39	-322	25	-18			
24	670	-262	67		5	2662-2609	17	4	411	-140	54	40	514	-690	-32		
25	1523	1538	-4		6	1338-1271	27	5	3711	3801	-25						
				7	2561	2561	0	6	1153	1126	12	-2	6	1			
-8	6	1		8	801	698	34	7	2711-2678	11							
				9	1721-1734	-5		8	514	563	-17	1	3892	-3900	-2		
1	-184	71	-10		10	297	166	17	9	1805	1841	-15	2	1659	-1684	-11	
2	1295	1283	4		11	1141	1165	-9	10	218	-208	1	3	3992	3937	14	
3	941	-993	-18		12	605	-572	9	11	464	-431	9	4	1511	1583	-35	
4	918	-870	15		13	459	-549	23	12	1087	1035	21	5	2929	-2857	24	
5	1328	1418	-34		14	342	327	2	13	1024-1124	-45	6	1377	-1380	-1		
6	919	926	-2		15	565	-668	-30	14	1299-1305	-2	7	2054	2078	-10		
7	1157-1156	0	16		887	-794	30	15	1552	1574	-9	8	721	-646	30		
8	112	7	3		17	1130	1117	4	16	555	556	0	9	1103	-1061	19	
9	1393	1436	-16		18	1259	1294	-13	17	2433-2546	-40	10	253	178	12		
10	328	-263	9		19	1611-1611	0	18	990	-938	19	11	1272	-1158	50		
11	1151-1157	-2	20		394	-207	26	19	2430	2413	5	12	1683	-1621	26		
12	295	-297	0		21	2215	2140	25	20	524	464	14	13	2151	2142	3	
13	1108	1094	4		22	855	765	26	21	2230-2225	1	14	1941	1842	39		
14	565	-519	10		23	1868-1836	11	22	172	134	3	15	3715	-3683	8		

Iridium Dimer

Page 17

16	881	-860	8	7	-53	-311	-51	2	6	1	34	702	-767	-14	
17	3476	3443	9	8	339	-335	1	35	257	-230	2				
18	592	426	42	9	255	-300	-11	0	426	329	30	36	675	722	-9
19	2958	-2793	50	10	282	-341	-16	1	3179	-3185	-1	37	-321	29	-18
20	989	-886	35	11	3029	2963	24	2	360	229	33	4	6	1	
21	1309	1319	-3	12	1362	1233	66	3	1151	1138	6				
22	328	-387	-10	13	4668	-4664	1	4	266	-106	26				
23	276	-363	-13	14	957	-788	77	5	934	906	13	0	379	-241	31
24	445	569	-26	15	4092	4006	24	6	1403	-1372	14	1	1253	1239	6
25	379	-477	-17	16	1498	1342	74	7	1969	-2001	-13	2	1070	-1049	9
26	450	-388	10	17	2764	-2748	6	8	529	-407	38	3	523	595	-26
27	1603	1577	8	18	1105	-927	80	9	1993	2026	-13	4	226	15	19
28	542	431	20	19	2714	2734	-7	10	1064	1043	9	5	1123	-1130	-2
29	1783	-1759	7	20	459	-411	13	11	3681	-3691	-2	6	807	818	-4
30	549	-437	19	21	-134	240	-26	12	837	-701	49	7	2574	2594	-7
31	1971	1971	0	22	-180	-201	-24	13	3362	3459	-29	8	295	-228	12
32	469	160	33	23	1005	-1042	-16	14	1153	1079	29	9	2253	-2235	6
33	2003	-1987	4	24	1070	-1023	20	15	3076	-3025	15	10	1142	-1052	37
34	1087	-951	35	25	1766	1724	18	16	315	-252	10	11	2592	2620	-9
35	1486	1502	-4	26	1193	973	89	17	2421	2338	28	12	882	924	-16
36	245	83	9	27	3133	-3177	-14	18	916	1012	-37	13	2308	-2266	15
37	1072	-1170	-27	28	1116	-784	117	19	967	-953	4	14	1255	-1213	16
38	-269	-215	-21	29	2708	2698	3	20	-242	32	-15	15	1394	1367	10
39	-288	-91	-16	30	591	384	48	21	645	-741	-26	16	629	723	-29
40	559	-634	-13	31	2005	-2000	1	22	-274	-240	-31	17	320	-445	-24
			32	398	66	38	23	1676	1695	-6	18	573	-528	11	
	-1	6	1	33	1781	1718	25	24	860	767	25	19	155	-337	-22
			34	343	282	9	25	2978	-2913	18	20	-169	-68	-8	
1	374	-340	10	35	400	-582	-43	26	1060	-944	33	21	1554	1620	-24
2	888	-906	-8	36	-375	54	-39	27	3165	3136	8	22	253	-186	8
3	223	76	18	37	-326	40	-28	28	1033	911	32	23	2812	2809	0
4	1034	999	16	38	-383	-104	-42	29	2257	-2235	6	24	854	-884	-8
5	343	332	2	39	873	964	-31	30	404	55	28	25	2407	2256	46
6	993	-952	19	40	652	563	22	31	1527	1603	-24	26	1866	1773	30
7	293	-295	0				32	260	249	0	27	2402	-2467	-20	
8	1083	1011	32	1	6	1	33	185	-299	-9	28	960	-902	15	
9	584	506	26				34	-403	-259	-44	29	1540	1569	-9	
10	789	-773	6	0	377	424	-15	35	-401	-166	-36	30	-310	-77	-20
11	514	-485	8	1	425	-425	0	36	-159	-298	-20	31	-277	-242	-26
12	662	597	22	2	300	253	11	37	617	714	-19	32	351	-465	-16
13	693	697	-1	3	408	368	12	38	-243	56	-11	33	537	-552	-2
14	-159	-22	-8	4	853	-815	18				34	-407	65	-32	
15	496	-448	12	5	722	-725	-1	3	6	1	35	1130	1173	-11	
16	233	-224	1	6	1053	1003	22								
17	256	125	14	7	446	404	12	0	314	202	24	5	6	1	
18	880	853	9	8	1497	-1432	28	1	782	810	-13				
19	191	-138	4	9	282	-37	26	2	921	-914	3	0	667	-687	-7
20	1048	-1100	-18	10	1386	1390	-1	3	465	-405	19	1	1101	-1201	-45
21	374	-228	20	11	377	-273	20	4	1382	1399	-8	2	658	658	0
22	913	920	-2	12	848	-863	-5	5	229	75	19	3	445	411	9
23	501	410	17	13	577	503	20	6	1200	-1200	0	4	896	-941	-19
24	737	-872	-39	14	169	-94	5	7	213	-27	17	5	586	570	5
25	611	-597	3	15	108	-135	-1	8	1103	1095	3	6	1116	1106	3
26	854	861	-1	16	362	286	13	9	421	-298	30	7	1094	-1063	12
27	785	816	-8	17	269	44	18	10	674	-659	5	8	898	-904	-2
28	502	-532	-5	18	672	-642	8	11	1161	1060	42	9	1382	1400	-7
29	403	-423	-3	19	416	-334	14	12	46	43	0	10	487	433	13
30	-288	51	-17	20	1103	1102	0	13	1074	-1080	-2	11	1375	-1358	6
31	-408	282	-50	21	344	144	21	14	340	353	-2	12	336	166	23
32	-265	394	-43	22	1091	-1130	-13	15	832	888	-22	13	1269	1273	-1
33	-136	-221	-12	23	208	-128	5	16	852	-834	6	14	579	594	-4
34	726	-722	0	24	1156	1281	-42	17	592	-598	-1	15	753	-785	-10
35	179	85	4	25	298	356	-7	18	1018	1015	1	16	706	647	16
36	888	1008	-31	26	737	-743	-1	19	-222	-41	-13	17	-183	205	-20
37	-376	29	-27	27	-196	-105	-10	20	1119	-1158	-13	18	899	-866	10
38	563	-706	-28	28	-85	151	-6	21	171	176	0	19	454	470	-3
39	-379	-16	-26	29	-337	-14	-23	22	954	975	-6	20	1010	996	4
40	561	568	-1	30	-326	130	-24	23	462	-472	-1	21	980	-992	-3
			31	-324	257	-34	24	636	-683	-11	22	759	-737	5	
	0	6	1	32	120	-374	-23	25	430	459	-5	23	1127	1100	8
			33	76	-324	-18	26	232	201	2	24	426	271	21	
0	1596	1520	35	34	578	697	-24	27	546	-686	-31	25	796	-822	-7
1	3718	3650	21	35	454	825	16	28	421	471	-8	26	424	344	12
2	826	855	-19	36	829	-851	-5	29	416	539	-21	27	691	641	11
3	2320	-2239	37	37	-159	-223	-13	30	764	-872	-27	28	404	-421	-2
4	750	-798	-30	38	440	595	-26	31	341	-361	-2	29	471	-508	-6
5	2148	2097	24	39	-215	67	-9	32	639	697	-12	30	561	672	-23
6	465	461	1				33	-199	436	-42	31	-384	65	-31	

Iridium Dimer										Page	18
32	671	-706	-7	8	1072	917	50	8	486	563	-17
33	167	347	-16	9	1025	1142	-41	9	1094	1167	-26
				10	1342	1329	4	10	533	-572	-8
6	6	1		11	754	825	-21	11	-174	-72	-8
				12	-148	-14	-5	12	1041	1039	0
0	1212	1139	29	13	102	85	0	13	430	321	17
1	-214	3	-15	14	637	-638	0	14	1503	1515	-4
2	231	-280	-7	15	1175	-1102	23	15	610	453	32
3	1915	-1886	11	16	317	272	5	16	1097	1037	18
4	-118	-77	-6	17	1106	1053	17	17	374	-405	-5
5	2204	2197	2	18	-84	146	-6	18	-185	-236	-20
6	445	140	47	19	1364	-1379	-5	19	945	866	22
7	2946	-2908	11	20	128	-119	0	20	268	-305	-4
8	376	-192	28	21	990	1037	-14	21	909	-947	-10
9	2529	2419	36	22	400	363	5	22	1085	1063	6
10	1219	1270	-19	23	1082	-1092	-2				
11	1167	-1203	-13					-8	7	1	
12	537	-453	19		9	6	1				
13	769	799	-9					1	514	-626	-28
14	398	417	-3	0	345	-369	-3	2	456	-453	0
15	161	442	-43	1	1145	1216	-25	3	189	228	-4
16	769	-831	-19	2	607	420	39	4	1086	1143	-21
17	887	-786	30	3	1579	-1577	0	5	372	273	15
18	169	-84	5	4	615	-473	31	6	1340	-1381	-15
19	487	558	-15	5	1654	1588	22	7	668	-603	17
20	609	668	-15	6	683	570	27	8	1372	1426	-19
21	1721	-1729	-2	7	1348	-1426	-28	9	799	768	9
22	563	429	25	8	267	-128	12	10	1176	-1192	-5
23	2118	2079	12	9	935	904	9	11	1175	-1175	0
24	832	710	31	10	127	-225	-8	12	633	512	28
25	1685	-1598	28	11	143	-271	-12	13	1062	1068	-2
26	1250	-1249	0	12	140	224	-6	14	308	-262	6
27	1499	1463	11	13	37	-117	-2	15	817	-797	5
28	524	595	-14	14	-249	-235	-27	16	232	-139	8
29	-182	-230	-17	15	733	717	4	17	-64	173	-8
30	-281	-372	-43	16	477	481	0	18	794	812	-5
				17	1027	-1008	5	19	415	398	2
7	6	1		18	521	-267	37	20	1277	-1315	-12
								21	891	-738	41
0	843	854	-3		10	6	1	22	1457	1459	0
1	58	-193	-9					23	1003	842	45
2	935	-982	-17	0	564	588	-5	24	1463	-1433	9
3	1012	998	4	1	291	386	-14	25	984	-837	40
4	1018	970	18	2	-141	230	-17	26	1107	1071	10
5	1492	-1457	13	3	725	-758	-8	27	809	808	0
6	632	-517	29	4	353	-387	-5	28	465	-385	12
7	1685	1613	26	5	941	965	-7				
8	471	366	21	6	464	470	-1				
9	1707	-1669	13	7	1163	-1151	3				
10	319	-32	24	8	831	-739	23				
11	1215	1213	0	9	821	813	2				
12	684	-655	2	10	931	900	8				
13	501	-528	-6					4	954	-945	3
14	959	962	-1		-10	7	1	5	1889	-1873	5
15	221	70	10					6	1406	1463	-22
16	978	-963	4	1	669	650	4	7	1434	1529	-37
17	292	285	0	2	201	-203	0	8	1255	-1236	6
18	746	739	1	3	398	-428	-5	9	289	-280	1
19	947	-928	5	4	407	-329	12	10	1059	1103	-16
20	736	-715	5	5	124	180	-3	11	319	476	-31
21	1263	1281	-5	6	940	928	3	12	969	-1056	-31
22	450	272	25	7	297	139	14	13	381	-338	7
23	995	-1084	-27	8	1136	-1111	8	14	505	463	9
24	88	104	0	9	677	-535	31	15	1348	-1389	-15
25	615	621	-1	10	1252	1236	5	16	655	-690	-9
26	487	-488	0	11	698	611	20	17	804	868	-19
27	112	-226	-7	12	1058	-997	18	18	81	-349	-28
				13	753	-644	23	19	502	-518	-3
8	8	1						20	882	940	-18
					-9	7	1	21	1754	1752	0
0	981	-905	18					22	1393	-1420	-9
1	914	923	-2	1	114	286	-16	23	605	-370	45
2	-152	-241	-21	2	281	197	9	24	1647	1671	-8
3	1176	1182	-2	3	1250	-1246	1	25	604	474	26
4	290	-43	20	4	325	328	0	26	1416	-1532	-40
5	1877	-1891	-4	5	1102	1117	-4	27	64	-75	0
6	372	-109	29	6	460	-418	8	28	980	1014	-10
7	2196	2121	25	7	632	-588	10	29	-138	-296	-22

Iridium Dimer

Page 19

- 4	7	1	36	1551-1580	- 8	31	890	- 754	31	24	1761-1728	10				
			37	689	- 564	19	32	1467	1579	- 35	25	1394-1282	34			
			38	1016	962	12	33	734	695	8	26	2661-2633	8			
1	276	50	26			34	1274-1311	- 10		27	2089	2026	19			
2	1260-1317	- 26	- 2	7	1	35	682	- 791	- 24	28	2311-2252	17				
3	687	- 680	2			36	433	656	- 40	29	1453-1419	10				
4	1232	1283	- 23	1	186	- 4	14	37	- 412	74	- 33	30	1506-1494	3		
5	1312	1326	- 6	2	467	320	42	38	341	- 340	0	31	715	680		
6	633	- 572	20	3	564	548	6	39	1035	1098	- 16	32	1321-1351	- 8		
7	1471-1493	- 9	4	504	- 506	0						33	417	- 466		
8	400	233	33	5	1018	- 988	13	0	7	1		34	541	564		
9	1771	1795	- 9	6	331	- 75	38					35	310	489		
10	361	122	36	7	1165	1144	9	1	308	322	- 4	36	- 422	98		
11	1703-1711	- 3	8	767	674	35	2	226	- 23	28	37	- 190	146			
12	738	- 663	25	9	1224-1158	29	3	1063-1093	- 18	38	326	- 355	- 3			
13	983	1001	- 7	10	863	- 738	48	4	448	- 358	35					
14	1044	1053	- 3	11	1139	1065	30	5	1656	1673	- 9		2	7	1	
15	358	- 323	6	12	1235	1161	30	6	485	280	68					
16	991-1109	- 48	13	563	- 500	18	7	1704-1654	25	0	693	505	70			
17	439	- 408	6	14	1249-1227	9	8	949	- 806	72	1	490	- 539	- 18		
18	1089	1102	- 4	15	341	- 108	30	9	1443	1388	28	2	720	- 662	23	
19	1045	1002	15	16	1245	1261	- 6	10	1098	971	63	3	871	944	- 34	
20	857	- 785	22	17	688	624	19	11	1320-1270	25	4	593	545	17		
21	1280-1233	17	18	584	- 593	- 2	12	586	- 493	33	5	1190-1166	11			
22	418	457	- 7	19	912	- 912	0	13	658	628	11	6	338	- 159	32	
23	1045	1077	- 10	20	257	- 35	15	14	26	- 90	- 2	7	1330	1265	28	
24	- 144	- 131	- 9	21	1029	1056	- 9	15	114	0	4	8	273	207	11	
25	867	- 913	- 14	22	380	398	- 3	16	- 211	- 111	- 20	9	1287-1288	0		
26	269	- 268	0	23	896	- 993	- 30	17	353	- 414	- 15	10	142	37	6	
27	909	920	- 3	24	605	- 562	9	18	617	- 585	10	11	582	587	- 1	
28	766	765	0	25	700	775	- 19	19	728	746	- 6	12	- 164	- 155	- 16	
29	361	- 383	- 3	26	821	822	0	20	874	878	- 1	13	90	23	2	
30	684	- 718	- 8	27	578	- 593	- 3	21	808	- 850	- 16	14	546	569	- 6	
31	427	- 107	31	28	882	- 950	- 18	22	901	- 890	4	15	603	- 684	- 24	
32	933	975	- 11	29	- 338	132	- 27	23	772	819	- 17	16	705	- 709	- 1	
33	728	699	6	30	574	647	- 15	24	712	725	- 4	17	1332	1367	- 13	
34	853	- 882	- 7	31	224	251	- 2	25	763	- 831	- 24	18	538	448	19	
35	916	- 800	27	32	465	- 535	- 12	26	428	- 470	- 9	19	1336-1351	- 5		
36	617	520	17	33	424	- 523	- 16	27	400	440	- 8	20	487	- 436	9	
37	907	923	- 3	34	369	273	10	28	- 187	349	- 43	21	1313	1291	7	
			35	616	744	- 27	29	- 221	- 85	- 15	22	481	355	20		
- 3	7	1	36	- 209	114	- 10	30	- 276	- 133	- 25	23	1002	- 931	20		
			37	522	- 680	- 25	31	- 306	- 204	- 36	24	- 131	- 246	- 16		
1	750	- 787	- 15	38	111	- 321	- 15	32	- 208	- 16	- 11	25	395	512	- 20	
2	3023	3052	- 9	39	143	382	- 20	33	425	519	- 21	26	- 337	243	- 35	
3	1788	1794	- 2				34	- 198	205	- 21	27	- 225	- 77	- 11		
4	3640	3824	4	- 1	7	1	35	588	- 699	- 31	28	- 292	215	- 25		
5	2576	2569	2				36	210	- 402	- 29	29	124	- 203	- 4		
6	3440	3401	11	1	1201	1165	17	37	611	727	- 33	30	582	- 608	- 5	
7	966	951	6	2	3061	- 3068	- 2	38	- 206	241	- 24	31	269	391	- 14	
8	2199	- 2145	20	3	1636	- 1598	16	39	517	- 645	- 15	32	643	553	16	
9	139	- 159	- 2	4	2885	2770	37					33	660	- 714	- 11	
10	1191	1153	16	5	920	1004	- 38	1	7	1		34	479	- 571	- 15	
11	899	- 904	- 2	6	2100	- 2022	30					35	508	592	- 14	
12	970	998	- 11	7	1109	- 951	64	0	2010-1982	11	36	483	588	- 17		
13	1093	1025	27	8	520	403	32	1	949	- 946	1	37	288	- 478	- 24	
14	2097	- 2067	11	9	231	57	16	2	1421	1385	17					
15	1555	- 1600	- 18	10	693	694	0	3	1792	1808	- 7	3	7	1		
16	2302	2396	- 34	11	2569	2428	47	4	644	- 649	- 1					
17	1955	1981	- 10	12	2522	- 2389	44	5	839	- 838	0	0	1775	1801	- 11	
18	1920	- 1933	- 4	13	1326	- 1290	14	6	- 126	- 97	- 9	1	2160	2098	24	
19	1225	- 1196	11	14	3342	3369	- 7	7	107	222	- 13	2	837	- 799	17	
20	1399	1423	- 9	15	2359	2195	54	8	406	334	15	3	275	76	26	
21	279	254	3	16	3147	- 3114	9	9	138	55	5	4	149	- 155	0	
22	1342	- 1360	- 6	17	1205	- 1191	5	10	1246-1195	20	5	5	85	- 93	0	
23	- 239	226	- 26	18	2473	2458	5	11	3378-3294	23	6	938	1035	- 44		
24	942	913	9	19	1686	1685	0	12	2881	2870	3	7	336	267	14	
25	422	- 437	- 2	20	1244	- 1344	- 38	13	2543	2507	11	8	1700	- 1723	- 9	
26	- 301	- 188	- 28	21	88	- 262	- 13	14	3318-3327	- 2	9	1213	- 1139	31		
27	944	922	6	22	- 263	177	- 22	15	1591-1635	- 16	10	2065	2090	- 9		
28	271	- 343	- 8	23	1065	- 1108	- 14	16	2616	2595	6	11	2302	2349	- 17	
29	918	- 867	13	24	332	517	- 31	17	1265	1138	45	12	2288	- 2343	- 20	
30	1413	1396	5	25	591	600	- 1	18	2272-2287	- 4	13	1497	- 1412	33		
31	1330	1305	8	26	1390	- 1441	- 16	19	1426-1406	6	14	2150	2178	- 10		
32	1675	- 1695	- 6	27	1004	- 836	43	20	347	361	- 2	15	1521	1515	2	
33	766	- 768	0	28	2005	2028	- 7	21	443	- 501	- 10	16	1353	- 1410	- 22	
34	1796	1876	- 25	29	1673	1565	33	22	783	945	- 47	17	1043	- 1093	- 18	
35	895	842	12	30	1645	- 1732	- 27	23	868	888	- 5	18	411	499	- 18	

Iridium Dimer

Page 20

19	-180	66	-9	19	-163	-290	-26	0	196	123	5	5	508	476	6	
20	321	321	0	20	1046	-1123	-25	1	871	906	-11	6	1189	1313	-44	
21	-131	309	-26	21	801	-759	11	2	643	-541	24	7	384	-342	6	
22	1378	-1518	-50	22	1758	1733	8	3	840	-874	-10	8	955	-989	-11	
23	1093	-1117	-7	23	1809	1758	16	4	1145	1092	17	9	438	458	-3	
24	2398	2426	-8	24	1825	-1808	5	5	904	853	15	10	1042	1044	0	
25	1318	1255	19	25	981	-969	3	6	1458	-1459	0	11	624	-627	0	
26	2426	-2311	34	26	1732	1717	4	7	856	-819	11	12	755	-774	-5	
27	1647	-1634	4	27	1341	1333	2	8	1232	1240	-2	13	928	908	6	
28	2009	1931	24	28	1020	-969	14	9	623	470	33	14	423	-318	16	
29	1110	1116	-1	29	650	-814	-39	10	878	-820	17	15	1325	-1326	0	
30	552	-796	-55	30	-405	-4	-33	11	113	-71	1	16	600	442	32	
31	79	-396	-27	31	-190	355	-30	12	403	388	2	17	527	598	-16	
32	-420	8	-34					13	-303	-327	-48	18	1328	-1354	-8	
33	-274	-233	-23		6	7	1	14	-156	-57	-6	19	447	-336	17	
34	249	609	-52					15	365	473	-19	20	941	910	8	
35	258	-160	6	0	1321	1387	-26	16	125	-247	-10	21	719	-644	18	
36	1033	-990	10	1	550	-513	9	17	730	-717	3	22	1248	-1198	15	
				2	280	-331	-8	18	913	859	15	23	1286	1255	9	
				3	1001	998	1	19	865	782	21	24	581	523	11	
				4	356	-273	14	20	1319	-1170	44	25	1338	-1336	0	
4	7	1						21	796	-639	36					
0	1062	-1067	-2	5	1029	-1008	8					-7	8	1		
1	880	869	4	6	1063	1075	-4									
2	939	897	17	7	945	1005	-22	9	7	1		1	601	605	0	
3	1156	-1199	-19	8	1432	-1332	37					2	209	-87	9	
4	670	-758	-34	9	634	-677	-12	0	342	332	1	3	1013	-1016	0	
5	1212	1261	-21	10	1525	1518	2	1	-229	-124	-16					
6	307	198	17	11	333	117	24	2	929	-918	3	4	222	-176	4	
7	1003	-1066	-27	12	1487	-1537	-18	3	229	-45	11	5	1289	1304	-5	
8	269	266	0	13	409	346	11	4	1086	1120	-11	6	720	750	-8	
9	580	611	-9	14	1094	1097	-1	5	933	951	-5	7	1029	-998	10	
10	753	-774	-7	15	617	-674	-15	6	1212	-1134	25	8	1027	-989	12	
11	423	-386	8	16	485	-472	2	7	1100	-1087	4	9	820	741	23	
12	961	1090	-53	17	911	894	5	8	1029	1127	-32	10	1234	1248	-4	
13	348	-302	8	18	221	-95	9	9	954	785	46	11	513	-359	29	
14	1012	-1041	-10	19	877	-882	-1	10	301	-348	-6	12	1377	-1435	-21	
15	652	675	-6	20	614	528	18	11	386	-495	-19	13	349	-269	11	
16	751	793	-13	21	486	404	14	12	274	-378	-14	14	761	716	12	
17	728	-803	-23	22	811	-840	-8	13	881	846	9	15	927	907	6	
18	752	-796	-13	23	208	-175	2	14	822	829	-1	16	306	-92	19	
19	814	851	-11	24	873	889	-4	15	323	-240	9	17	1042	-1036	1	
20	119	144	-1	25	221	152	5					18	443	-378	11	
21	934	-926	2	26	849	-835	3	10	7	1		19	1128	1147	-6	
22	464	548	-17	27	182	381	-21					20	935	906	8	
23	736	786	-13	28	368	370	0	0	774	-736	10	21	1134	-1031	32	
24	527	-605	-16	29	379	-517	-22	1	1060	-935	36	22	1152	-1038	35	
25	410	-299	15					2	1179	1167	3	23	868	873	-1	
26	570	601	-6	7	7	1		3	1143	936	59	24	1197	1106	28	
27	79	100	0					4	1138	-1155	-5	25	583	-543	8	
28	616	-667	-11	0	744	-705	11	5	717	-574	32	26	833	-859	-7	
29	470	368	15	1	303	305	0					27	230	61	10	
30	705	806	-23	2	1344	1341	1	-9	8	1		28	524	566	-8	
31	416	-572	-26	3	755	769	-4					29	562	540	4	
32	424	-553	-21	4	1651	-1622	10	1	-122	-216	-14					
33	638	682	-8	5	484	-473	2	2	426	501	-14	-6	8	1525	1482	16
34	230	383	-16	6	2289	2355	-22	3	492	482	2					
				7	1242	1266	-9	4	-199	78	-10	1	317	282	5	
				8	1801	-1770	11	5	781	-781	0	2	1900	-1956	-21	
				9	640	-569	18	6	586	-429	31	3	744	737	1	
0	503	-574	-21	10	1126	1168	-14	7	1281	1238	14	4	1220	1277	-22	
1	1052	-1087	-14	11	1244	1241	1	8	1008	954	16	5	1100	-1064	13	
2	1090	-1082	3	12	257	-185	7	9	1181	-1199	-6	6	1656	-1653	1	
3	229	-273	-6	13	1174	-1094	26	10	1275	1258	6	7	1511	1536	-9	
4	1886	1867	7	14	719	-695	6	11	1046	982	19	8	1525	1482	16	
5	434	220	39	15	186	-153	2	12	968	990	-7	9	694	-682	3	
6	1875	-1885	-3	16	1338	1308	10	13	740	-730	2	10	437	-371	13	
7	874	-848	9	17	362	-226	17	14	733	-776	-11	11	543	650	-29	
8	2383	2407	-3	18	1194	-1132	20	15	-176	35	-7	12	100	-116	-6	
9	1321	1305	6	19	642	-549	20	16	89	166	-4	13	307	-231	10	
10	1671	-1630	15	20	979	1041	-19	17	293	281	1	14	480	528	-11	
11	1259	-1256	1	21	308	526	-37	18	453	377	12	15	488	426	12	
12	1257	1365	-43	22	1161	-1148	4					16	919	-1015	-33	
13	1142	1199	-21	23	734	-709	6	-8	8	1		17	239	-133	13	
14	744	-819	-24	24	936	896	10					18	2015	1956	20	
15	583	-652	-19	25	1179	1094	25	1	528	-505	5	19	668	-700	-8	
16	-198	-31	-10					2	584	617	-8	20	846	-935	-28	
17	-129	-116	-7		8	7	1	3	113	233	-10	21	587	504	18	
18	-188	-11	-8					4	1413	-1339	25	22	1306	1254	18	

Iridium Dimer

Page 21

23	1578	-1593	-5	29	424	300	16	30	1632	-1659	-8	27	1451	-1503	-21		
24	829	-817	3	30	1706	1816	-36	31	972	1038	-17	28	1970	-1995	-9		
25	1316	1365	-16	31	1075	-945	35	32	1038	1082	-11	29	1167	1142	9		
26	415	167	29	32	1130	-1132	0	33	1457	-1374	24	30	1609	1649	-16		
27	753	-875	-33	33	1571	1494	22	34	1414	-1296	33	31	910	-949	-13		
28	-23	11	0	34	1669	1603	19	35	1540	1542	0	32	1146	-1110	13		
29	628	630	0	35	1425	-1338	25	36	341	336	0	33	934	974	-14		
30	1111	-1121	-3					37	904	-933	-6	34	1035	977	20		
31	503	247	34		-3	8	1					35	145	-452	-45		
32	1387	1354	9									36	-376	-23	-36		
				1	1073	1022	21		-1	8	1	37	-331	196	-37		
	-5	8	1		2	84	100	-1	1	791	-792	0		1	8	1	
1	1611	-1597	5		3	476	-450	7	2	758	-780	-9					
2	555	-501	14		4	684	-607	26	3	267	-147	16		0	760	813	-21
3	1488	1519	-12		5	461	-463	0	4	992	1012	-8	1	1265	-1286	-9	
4	1227	1283	-22		6	1294	1244	21	5	1168	1194	-11	2	381	-223	33	
5	1000	-1029	-10		7	812	776	13	6	961	-924	15	3	1504	1574	-31	
6	1419	-1430	-4		8	1384	-1400	-6	7	1383	-1377	2	4	597	-570	9	
7	675	638	11		9	1222	-1152	28	8	764	657	35	5	1396	-1421	-10	
8	1556	1561	-1		10	1372	1357	6	9	1648	1650	0	6	901	961	-23	
9	419	301	22		11	1305	1280	10	10	682	-552	38	7	1060	1006	21	
10	1454	-1471	-6		12	1027	-955	28	11	1594	-1632	-15	8	1290	-1276	5	
11	883	-817	22		13	1130	-1137	-2	12	479	371	22	9	569	-487	20	
12	937	980	-15		14	440	308	25	13	1256	1204	19	10	1113	1112	0	
13	1230	1198	12		15	860	886	-9	14	303	1	23					
14	401	-432	-6		16	389	263	20	15	656	-607	12	11	211	55	10	
15	1268	-1249	6		17	625	-597	7	16	347	-371	-4	12	703	-686	4	
16	440	-321	21		18	999	-1020	-7	17	288	82	17	13	297	93	19	
17	1200	1175	9		19	356	97	27	18	509	569	-13	14	-282	190	-28	
18	700	693	2		20	1135	1143	-2	19	-193	288	-27	15	537	-477	12	
19	988	-898	28		21	527	359	31	20	765	-808	-11	16	453	411	7	
20	1061	-1107	-15		22	1138	-1174	-12	21	848	-851	0	17	878	847	8	
21	388	197	24		23	725	-637	21	22	740	685	13	18	698	-649	11	
22	1052	1059	-2		24	1061	1060	0	23	1123	1144	-6	19	1018	-1061	-13	
23	364	-196	20		25	805	676	31	24	624	-639	-3	20	917	875	11	
24	988	-964	7		26	616	-550	13	25	1089	-1077	3	21	1202	1225	-7	
25	423	-199	28		27	817	-886	-18	26	513	504	1	22	713	-664	11	
26	1146	1101	14		28	202	183	1	27	740	767	-6	23	862	-819	11	
27	827	755	18		29	252	191	5	28	-256	-107	-14	24	608	565	8	
28	575	-464	21		30	790	-770	4	29	-145	-386	-31	25	600	707	-23	
29	719	-722	0		31	532	-476	9	30	-266	-189	-19	344	-447	-14	-38	
30	334	-2	21		32	326	372	-5	31	-224	72	-10	27	-368	-249	-38	
31	902	811	23		34	578	510	11	32	481	520	-6	28	-466	150	-48	
32	575	484	16		35	134	-182	-2	33	259	32	11	29	-100	-235	-11	
33	733	-616	24		36	657	-730	-14	34	587	-726	-28	30	-440	89	-39	
34	928	-862	16						35	-250	-69	-12	31	370	490	-17	
	-4	8	1						36	822	813	2	32	185	-270	-6	
				1	1498	-1508	-4		0	8	1		33	393	-564	-27	
1	1248	1264	-6		2	3315	-3207	32					34	385	594	-34	
2	2816	2894	-26		3	2232	2209	8	0	2115	2100	5		35	307	494	-24
3	1992	-2048	-22		4	2006	2097	-37	1	1095	1100	-3	2	8	1	-11	
4	2652	-2694	-14		5	2463	-2411	18	2	2151	2168	-8					
5	2780	2767	4		6	1555	-1650	-41	3	1956	-1986	-14	0	1994	1891	40	
6	2616	2512	35		7	1903	1851	20	4	1292	-1269	13	1	607	-554	18	
7	2187	-2196	-3		8	323	-153	25	5	1787	1749	19	2	1380	-1306	32	
8	961	-936	9		9	994	-916	30	6	514	349	55	3	587	521	21	
9	1569	1594	-10		10	413	427	-3	7	1049	-1027	11	4	1093	1050	18	
10	491	546	-15		11	159	-137	2	8	864	736	58	5	390	488	-28	
11	283	-50	22		12	2228	-2235	-2	9	277	204	13	6	448	-454	-1	
12	519	516	0		13	1801	1768	12	10	1563	-1554	4	7	633	-704	-25	
13	217	-293	-10		14	2151	2287	-50	11	1192	1220	-14	8	992	-981	4	
14	1656	-1568	32		15	1927	-1944	-6	12	2055	2093	-17	9	1119	1082	15	
15	869	807	20		16	1962	-1975	-4	13	2865	-2888	-8	10	2395	2404	-3	
16	2286	2304	-6		17	1995	1926	24	14	2359	-2308	20	11	1302	-1348	-18	
17	1336	-1299	13		18	2013	1941	25	15	2873	2837	13	12	2356	-2333	8	
18	1204	-1262	-21		19	1402	-1425	-8	16	2473	2395	30	13	1168	1206	-14	
19	376	818	18		20	1113	-1141	-9	17	2328	-2329	0	14	2718	2766	-15	
20	1875	1874	0		21	828	835	-2	18	1773	-1722	21	15	1723	-1715	2	
21	1546	-1421	42		22	-227	313	-33	19	1101	1103	-1	16	2196	-2157	13	
22	1381	-1358	8		23	479	-493	-2	20	308	446	-28	17	1006	1091	-30	
23	1414	1411	1		24	370	409	-5	21	-367	-36	-40	18	943	937	1	
24	382	-292	12		25	83	-83	0	22	-324	11	-30	19	104	-344	-23	
25	952	-908	13		26	1195	-1200	-1	23	531	-600	-19	20	-191	161	-13	
26	195	-226	-2		27	93	136	-1	24	1549	-1534	6	21	393	-597	-39	
27	606	639	-7		28	1335	1343	-2	25	1224	1220	1	22	779	-739	10	
28	101	-219	-7		29	519	-510	1	26	1652	1647	2	23	1632	1641	-2	

Iridium Dimer										Page	22				
24	2010	2029	-6	25	1781	1727	17	4	1043	1039	1	4	710	679	8
25	1945	-1847	30	26	2117	2144	-8	5	609	-600	2	5	645	669	-6
26	1754	-1742	3	27	1060	-1087	-7	6	959	-943	5	6	677	-623	13
27	1694	1695	0	28	1171	-1230	-17	7	693	694	0	7	991	-999	-2
28	1729	1723	1	29	115	478	-40	8	722	739	-4	8	739	668	18
29	1071	-1074	0	30	173	440	-29	9	1031	-1124	-32	9	1189	1197	-2
30	960	-978	-4	31	-523	147	-59	10	777	-675	27	10	628	-452	37
31	520	549	-5	32	-328	-281	-34	11	1094	1035	19	11	1267	-1276	-3
32	755	866	-26					12	330	55	23	12	199	105	6
33	-275	-156	-18		5	8	1	13	683	-637	11	13	821	895	-22
34	-327	-270	-32					14	402	426	-4	14	194	-31	8
35	248	-482	-28	0	400	-149	37	15	360	253	14	15	343	-425	-13
				1	1343	-1413	-28	16	762	-777	-4	16	252	-417	-24
	3	8	1	2	877	816	21	17	-139	20	-4	17	-35	-246	-13
0	407	369	9	4	1157	-1106	19	18	952	992	-11	18	689	695	-1
1	1359	1419	-26	5	186	33	9	19	560	-448	21	19	904	880	6
2	764	-758	2	6	1317	1225	34	20	849	-778	18	20	804	-763	10
3	952	-927	10	7	563	-428	32	21	824	849	-6	21	1111	-1034	22
4	989	1032	-18	8	1249	-1169	30	22	846	521	25				
5	617	554	20	9	924	840	28	23	774	-838	-16	-7	9	1	
6	1152	-1150	1	10	753	683	20		8	8	1	1	435	-439	0
7	427	-417	2	11	1133	-1160	-9					2	416	-403	2
8	1026	1030	-1	12	438	-352	16	0	402	-412	-1	3	1193	1270	-27
9	52	233	-15	13	1290	1248	14	1	906	-891	4	4	187	-12	8
10	1035	-980	20	14	447	-428	3	2	559	-500	13	5	1346	-1397	-18
11	532	532	0	15	1185	-1126	20	3	1456	1452	1	6	448	336	19
12	485	413	16	16	892	702	-2	4	1061	1043	6	7	1130	1203	-26
13	951	-1021	-25	17	745	749	-1	5	1187	-1138	16	8	534	-356	34
14	199	48	9	18	643	-687	-11	6	1210	-1217	-2	9	791	-770	6
15	950	941	2	19	-151	-68	-6	7	1034	1026	2	10	485	579	-21
16	577	-527	11	20	848	835	3	8	1154	1174	-6	11	760	885	-38
17	1090	-1059	10	21	397	-336	9	9	695	-649	11	12	421	-415	1
18	968	1002	-11	22	620	-645	-5	10	1400	-1361	13	13	327	-275	7
19	832	852	-5	23	224	248	-2	11	85	-44	1	14	750	660	23
20	945	-988	-13	24	512	565	-10	12	505	397	19	15	849	-850	0
21	870	-749	-20	25	458	-517	-10	13	960	922	11	16	857	-809	13
22	886	934	-13	26	353	-302	6	14	319	-150	16	17	1227	1312	-30
23	419	440	-3	27	854	870	-4	15	978	-1040	-19	18	669	700	-7
24	685	-666	4	28	-193	27	-7	16	-141	-97	-6	19	1227	-1319	-31
25	-342	78	-25	29	704	-782	-17	17	986	947	11	20	232	-204	2
26	500	329	24					18	523	484	7	21	1534	1580	-15
27	595	-538	11		6	8	1					22	553	-466	17
28	-149	-100	-6					9	8	1		23	1133	-1040	27
29	734	699	7	0	831	951	-43					24	1368	1363	1
30	-53	-270	-13	1	1098	1067	11	0	825	-860	-10	25	778	723	13
31	688	-784	-21	2	440	317	22	1	382	303	11	26	1096	-1214	-25
32	425	485	-8	3	1128	-1213	-32	2	1080	1100	-6				
33	902	910	-1	4	620	-633	-3	3	736	-739	0	-6	9	1	
34	615	-635	-3	5	2081	2130	-17	4	1079	-1047	9				
				6	1089	995	32	5	911	902	2	1	-217	-63	-13
	4	8	1	7	2048	-1987	21	6	1054	993	18	2	1020	1103	-31
				8	1479	-1448	11	7	894	-804	24	3	638	567	18
0	1980	-1808	64	9	1139	1075	22	8	682	-640	10	4	749	-773	-7
1	282	246	5	10	2387	2388	0	9	795	804	-2	5	854	-955	-34
2	768	724	15	11	514	-397	23	10	347	48	24	6	483	410	15
3	917	867	19	12	755	-789	-10	11	596	-569	5	7	1194	1282	-33
4	273	429	-33	13	312	-416	-17					8	385	-198	26
5	962	-936	9	14	1061	1134	-25	-9	9	1		9	1201	-1116	29
6	712	-631	25	15	491	397	17					10	272	-56	17
7	1636	1613	8	16	865	-890	-7	1	343	23	24	11	989	993	-1
8	1141	980	58	17	612	-547	14	2	695	649	11	12	574	543	7
9	1513	-1465	18	18	1082	-1080	0	3	372	-488	-20	13	761	-723	10
10	1927	-2015	-33	19	362	445	-13	4	612	-666	-12	14	918	-1021	-34
11	1178	1123	20	20	874	928	-15	5	903	824	21	15	285	-27	18
12	2298	2331	-11	21	834	-902	-19	6	860	749	29	16	1004	1046	-13
13	1314	-1346	-12	22	657	-578	17	7	1051	-1012	11	17	527	449	15
14	1157	-1056	35	23	825	804	5	8	421	83	34	18	1031	-922	33
15	540	618	-20	24	1253	1346	-30	9	1328	1393	-21	19	979	-988	-2
16	815	892	-24	25	969	-850	30	10	270	-99	13	20	700	524	40
17	181	-445	-39	26	1156	-1178	-6	11	894	-940	-13	21	1344	1289	18
18	474	-513	-8					12	780	784	-1	22	561	-318	41
19	-291	-36	-20		7	8	1					23	1165	-1124	12
20	1339	-1290	16	0	596	547	12	-8	9	1		24	242	-65	11
21	961	1027	-20									25	931	1001	-20
22	749	661	21	1	287	247	5	1	273	-399	-19	26	380	315	8
23	1247	-1288	-13	2	901	-898	1	2	581	-596	-3	27	687	-665	5
24	1369	-1354	4	3	399	279	19	3	-203	-92	-12	28	760	-708	12

Iridium Dimer										Page	23				
29	-158	128	-8	5	2555-2648	-32	8	958	1024	-25	9	1370	1470	-37	
	-5	9	1	6	1477	1495	-7	9	154	-69	5	10	446	-150	38
				7	1790	1721	26	10	226	-272	-5	11	2905	-3036	-40
				8	1327-1362	-14	11	1529	1551	-8	12	748	881	-39	
1	1356	1337	7	9	591	-637	-13	12	1096-1070	-8	13	2923	2968	-13	
2	480	-295	35	10	362	402	-8	13	2634	-2555	24	14	1410	-1445	-11
3	2293	-2390	-34	11	509	-433	17	14	1582	1557	8	15	2441	-2330	34
4	1192	1265	-29	12	579	425	35	15	2845	2734	33	16	1499	1498	0
5	2090	2119	-10	13	1335	1308	9	16	1644-1596	16	17	1464	1447	5	
6	1188	-1153	13	14	793	-918	-42	17	2021-2052	-10	18	955	-928	7	
7	1514	-1549	-13	15	2365	-2350	5	18	1022	982	12	19	906	-943	-10
8	1101	1156	-20	16	1086	964	41	19	1772	1797	-8	20	-384	164	-36
9	1018	962	19	17	2302	2246	18	20	386	-434	-7	21	-238	-240	-22
10	490	-492	0	18	937	-839	29	21	383	-567	-33	22	775	848	-18
11	655	-633	6	19	2138	-2206	-23	22	145	-329	-16	23	1017	1073	-15
12	602	539	15	20	411	273	20	23	-318	-277	-35	24	899	-912	-3
13	291	-276	2	21	1337	1293	14	24	-225	240	-20	25	1594	-1630	-10
14	291	-24	20	22	806	-881	-21	25	925	1029	-28	26	916	855	14
15	1455	1496	-15	23	373	-315	8	26	153	-248	-6	27	2165	2149	4
16	351	137	24	24	927	941	-4	27	1272	-1314	-12	28	661	-392	43
17	1589	-1643	-19	25	-223	-88	-12	28	468	297	21	29	2154	-2178	-7
18	567	-411	31	26	616	-617	0	29	1818	1761	16	30	514	408	15
19	1754	1739	5	27	799	863	-16	30	623	-356	40	31	1431	1346	23
20	675	-506	38	28	487	415	11	31	1773	-1725	14	32	-175	-62	-6
21	1823	-1845	-7	29	1380	-1475	-30	32	710	655	10	33	611	-712	-19
22	507	478	5	30	269	194	6	33	1155	1154	0	34	-408	62	-30
23	646	666	-4	31	1821	1602	5	34	405	-523	-17				
24	970	-1048	-24	32	980	-876	25	35	837	-914	-17	2	9	1	
25	810	-793	4	33	1465	-1351	32								
26	1014	1071	-17	34	1235	1125	28	0	9	1	0	516	533	-5	
27	196	-140	3					1	392	347	13	1	186	12	11
28	785	-615	38	-2	9	1		2	611	583	11	3	606	530	22
29	1175	1186	-3					3	629	-576	22	4	1501	1437	25
30	583	431	26	1	187	-158	3	4	955	-951	2	5	803	-657	48
31	1861	-1559	30	2	215	-146	7	5	897	898	0	6	1339	-1315	9
	-4	9	1	3	579	601	-6	6	1379	1292	43	7	748	674	23
				4	752	655	32	7	912	-826	39	8	1116	1142	-10
1	271	310	-6	6	1055	-1022	13	8	1673	-1561	52	9	1074	-1096	-8
2	613	-610	0	7	704	602	30	9	595	503	30	10	708	-821	-36
3	709	-736	-9	8	1246	1197	19	10	1429	1389	18	11	775	832	-18
4	258	19	18	9	383	-303	14	11	503	-325	43	12	-169	-32	-7
5	1136	1105	11	10	1346	-1357	-4	12	1015	-1013	0	13	194	-385	-26
6	565	539	6	11	407	213	30	13	-186	-61	-12	14	586	643	-14
7	1319	-1314	1	12	1511	1554	-16	14	240	329	-14	15	-322	-31	-25
8	838	-829	3	13	368	-61	31	15	-239	143	-23	16	1001	-978	6
9	1183	1198	-6	14	1055	-1071	-5	16	-250	103	-21	17	262	352	-11
10	1032	1040	-3	15	485	-484	0	17	225	-339	-17	18	1213	1161	16
11	952	-998	-16	16	603	555	11	18	687	-645	13	19	542	-346	32
12	1303	-1306	0	17	631	680	-12	19	515	543	-7	20	1353	-1348	1
13	457	307	27	18	328	320	1	20	1105	1080	9	21	442	368	11
14	1455	1453	0	19	785	-810	-12	21	611	-600	3	22	1246	1336	-28
15	375	171	26	20	980	-912	19	22	1263	-1226	14	23	582	-550	6
16	1095	-1078	5	21	813	763	12	23	628	586	11	24	1064	-1148	-26
17	906	-951	-14	22	1099	1137	-11	24	1175	1162	5	25	374	357	2
18	481	518	-8	23	506	-386	19	25	489	-442	10	26	378	525	-22
19	1057	1115	-20	24	1262	-1196	19	26	864	-860	1	27	-166	-174	-10
20	304	-84	18	25	477	254	28	27	263	245	2	28	330	380	-6
21	963	-899	19	26	1219	1259	-12	28	216	372	-22	29	-306	28	-17
22	477	-442	6	27	95	99	0	29	-216	66	-13	30	890	-928	-9
23	1044	1064	-6	28	989	-936	13	30	-187	176	-16	31	-273	85	-14
24	779	696	20	29	531	-509	3	31	-365	-166	-42	32	768	875	-24
25	539	-564	-5	30	515	433	12	32	392	-511	-24	33	478	-213	28
26	692	-814	-31	31	587	743	-32	33	504	514	-2				
27	342	216	13	32	-145	-233	-13	34	705	744	-11				
28	917	997	-22	33	491	-613	-21	35	662	-735	-20	3	9	1	
29	53	127	-2	34	-371	-42	-24					0	322	194	19
30	721	-766	-10	35	460	482	-5	1	9	1		1	1686	1698	-4
31	581	-530	9									2	158	180	-2
32	602	588	2	-1	9	1		0	540	-328	48	3	460	-414	10
33	536	615	-14	1	2349	2290	20	1	3021	-2958	19	4	483	-591	-30
	-3	9	1	2	1167	-1129	14	3	2182	2223	-15	6	1203	1251	-19
1	2867	-2932	-21	4	2497	2482	4	4	394	325	14	7	1142	1108	13
2	945	831	41	5	1983	2017	-12	6	-152	190	-16	8	847	-704	-17
3	3248	3188	17	6	844	-781	21	7	112	-26	3	9	1873	-1976	-39
4	1461	-1377	32	7	304	-280	3	8	517	-555	-9	10	599	478	29
												11	2445	2514	-23

Iridium Dimer

Page 24

12	672	-674	0	22	1013	1047	-10	0	872	840	8	1	1005	-989	5
13	2002	-2081	-28	23	1101	1148	-14	1	577	556	4	2	825	-798	8
14	607	649	-10	24	719	-634	19	2	449	-456	-1	3	699	622	20
15	1620	1644	-8	25	1514	-1420	28	3	748	-783	-9	4	1180	1254	-28
16	716	-666	13	26	527	467	10	4	598	611	-2	5	370	-85	31
17	663	-654	2	27	1057	1157	-28					6	1186	-1199	-4
18	-155	-110	-8									7	425	-439	-2
19	298	-334	-4		6	9	1					8	1005	935	23
20	265	312	-5												
21	806	807	0	0	1190	1230	-16	1	409	-411	0	9	879	967	-29
22	1039	-1039	0	1	305	-300	0	2	261	155	9	10	724	-702	6
23	1637	-1619	5	2	942	-963	-7	3	679	679	0	11	1202	-1248	-17
24	1280	1171	32	3	837	759	23	4	563	-588	-5	12	369	290	11
25	1890	1883	2	4	493	409	17	5	449	-516	-13	13	1400	1497	-35
26	662	-651	2	5	1010	-957	17	6	981	1000	-5	14	320	26	23
27	1671	-1792	-38	6	112	129	-1	7	320	187	14	15	1156	-1149	2
28	693	615	15	7	913	918	-1	8	997	-1073	-24	16	765	-651	29
29	1320	1345	-7	8	433	-259	27	9	386	-116	28	17	730	670	15
30	-318	-230	-28	9	1053	-1058	-1	10	942	1145	-86	18	1194	1216	-7
31	630	-722	-18	10	877	854	7	11	331	-188	15	19	475	-254	32
				11	528	452	15	12	973	-970	0	20	1026	-1040	-4
				12	1094	-1120	-8	13	885	859	7	21	495	-337	25
				13	298	60	19	14	467	456	2	22	874	897	-6
0	1147	-1141	2	14	894	881	3	15	1419	-1242	53	23	712	647	15
1	475	320	31	15	309	-223	10					24	627	-605	4
2	1361	1366	-1	16	626	-613	3					25	751	-767	-4
3	651	-654	0	17	537	584	-10					26	441	362	11
4	1377	-1402	-9	18	458	491	-6	1	769	826	-16	27	946	981	-9
5	914	959	-17	19	672	-762	-23	2	269	214	6	28	298	-48	16
6	982	936	16	20	-164	-118	-8	3	733	-753	-5				
7	1042	-1013	10	21	610	736	-30	4	758	-698	16				
8	331	-288	6	22	-124	-170	-9	5	627	650	-6				
9	883	858	8	23	449	-457	-1	6	955	949	1	1	497	-387	23
10	299	-104	19	24	449	483	-5	7	265	-263	0	2	2141	2222	-29
11	906	-918	-4					8	945	-1005	-19	3	427	270	26
12	907	810	29		7	9	1	9	221	-5	11	4	2244	-2353	-39
13	482	466	3					10	818	932	-35	5	663	478	45
14	1043	-1095	-17	0	708	-652	14	11	411	294	17	6	2140	2200	-21
15	48	65	0	1	238	8	13	12	646	-735	-23	7	849	-839	2
16	1004	1003	0	2	1010	1054	-14	13	666	-589	18	8	1390	-1320	25
17	331	-297	4	3	960	998	-12	14	315	320	0	9	597	623	-7
18	1115	-1184	-24	4	1406	-1374	10	15	616	687	-17	10	804	782	6
19	666	711	-11	5	1352	-1278	25	16	340	209	15	11	381	-196	25
20	855	934	-23	6	1364	1309	19	17	578	-659	-19	12	48	-267	-17
21	882	-846	9	7	1206	1193	4	18	656	-633	5	13	331	285	6
22	551	-541	1	8	785	-700	22	19	451	456	0	14	920	-915	1
23	827	773	13	9	1345	-1430	-30	20	1005	1040	-10	15	392	-190	26
24	-62	91	-2	10	311	-176	14	21	445	-234	27	16	1908	1926	-6
25	687	-759	-17	11	1283	1287	-1				17	349	-322	4	
26	339	408	-9	12	526	474	10				18	1921	-1957	-12	
27	425	471	-7	13	732	-605	30				19	872	-891	47	
28	833	-894	-15	14	1138	-1155	-5	1	665	508	37	20	2192	2238	-15
29	300	22	15	15	452	370	13	2	1061	-1050	3	21	457	72	40
				16	1102	1060	12	3	406	-277	20	22	1664	-1463	62
5	9	1	17	725	675	12	4	1576	1584	-2	23	1038	1011	7	
0	538	499	9	18	883	-672	51	5	296	-208	10	24	598	572	5
1	779	-883	-35	19	1101	-1080	6	6	1452	-1503	-18	25	649	-683	-7
2	696	-728	-9	20	328	428	-14	7	528	377	29	26	-212	-85	-10
3	370	-387	-3		8	9	1	9	525	-590	-15	28	763	-670	20
4	1341	1378	-13					10	809	-802	2	29	826	-739	20
5	949	988	-13	0	170	-434	-37	11	339	435	-17	30	1394	1346	13
6	1199	-1269	-27	1	887	874	3	12	681	669	3				
7	1618	-1516	36	2	360	7	28	13	561	-593	-7				
8	1153	1032	43	3	1090	-1085	1	14	356	158	22				
9	1781	1810	-10	4	402	272	18	15	674	709	-9	1	732	724	2
10	401	115	34	5	1127	1049	24	16	1077	-1154	-25	2	540	492	12
11	1934	2093	-60	6	584	-543	9	17	890	-787	28	3	257	-87	15
12	363	121	27	7	1011	969	13	18	1347	1349	0	4	541	-522	4
13	1806	1655	51	8	708	708	0	19	922	808	31	5	681	-709	-8
14	127	-200	-5	9	791	791	0	20	1662	-1662	0	6	585	548	9
15	672	-718	-12	10	709	-685	5	21	428	-160	31	7	1210	1164	17
16	462	-452	2	11	365	-324	5	22	1400	1435	-11	8	552	-497	13
17	-106	135	-6	12	698	625	16	23	581	-623	-9	9	1448	-1394	19
18	293	-318	-3	13	175	-211	-2	24	740	-770	-7	10	272	28	18
19	181	286	-10	14	627	-547	16	25	995	956	10	11	1517	1451	23
20	329	-404	-11									12	286	72	18
21	900	-921	-5		9	9	1					13	1335	-1368	-12

Iridium Dimer

Page 25

14	386	-411	-4	23	1630	1578	15	29	-183	-312	-22	5	804	-834	-9
15	962	986	-7	24	501	-68	41	30	-143	171	-8	6	1144	-1070	25
16	718	692	6	25	1427	-1382	13	31	793	734	12	7	528	491	8
17	433	-309	19	26	438	-164	27					8	1663	1702	-14
18	851	-752	26	27	740	730	2		2	10	1	9	596	413	39
19	393	-312	11	28	342	343	0					10	2359	-2337	7
20	998	1011	-3	29	-215	-239	-18	0	2395	2486	-32	11	365	-135	26
21	826	797	7	30	322	-448	-16	1	462	213	43	12	2054	2189	-47
22	473	-370	16	31	252	-329	-7	2	1454	-1529	-30	13	726	635	23
23	942	-1031	-26	32	343	497	-20	3	306	-338	-5	14	1125	-1072	17
24	216	-1	9					4	921	970	-17	15	-79	87	-3
25	1051	1063	-3		0	10	1	5	638	705	-20	16	941	996	-16
26	387	180	21					6	244	206	4	17	-13	-48	0
27	922	-1030	-29	0	2771	-2783	-4	7	445	-509	-14	18	-124	229	-14
28	692	-520	32	1	492	252	60	8	1131	-1150	-7	19	667	-564	22
29	666	674	-1	2	2265	2241	10	9	536	-490	10	20	662	-691	-6
30	630	573	10	3	459	328	35	10	1862	1943	-29	21	-331	162	-29
31	326	-325	0	4	1530	-1573	-21	11	326	64	23	22	740	745	-1
				5	749	673	31	12	2696	-2764	-21	23	526	-522	0
				6	674	607	25	13	454	117	39	24	1441	-1574	-42
				7	484	-516	-10	14	2001	2020	-6	25	504	430	11
1	463	-7	54	8	396	458	-16	15	427	-403	3	26	1579	1652	-22
2	2684	-2676	2	9	718	874	-65	16	1119	-1249	-45	27	132	58	2
3	894	754	45	10	1486	-1506	-9	17	401	403	0				
4	2699	2817	-39	11	262	-167	12	18	497	622	-25		5	10	1
5	763	-632	38	12	1838	1754	35	19	-328	-73	-23				
6	1792	-1775	6	13	581	-575	1	20	-272	31	-14	0	454	370	16
7	1002	1094	-34	14	2104	-2167	-26	21	430	-558	-22	1	1234	-1283	-18
8	484	348	26	15	888	821	24	22	577	-824	-56	2	393	219	25
9	494	-467	6	16	1933	1949	-6	23	302	166	11	3	1127	1145	-6
10	325	228	12	17	851	-943	-34	24	1398	1547	-46	4	628	-587	10
11	356	167	22	18	1674	-1660	5	25	460	-281	21	5	803	-748	16
12	1338	-1443	-38	19	-97	-157	-8	26	1921	-1920	0	6	786	730	16
13	261	224	4	20	979	1053	-28	27	446	74	31	7	530	451	16
14	2164	2170	-2	21	-176	137	-12	28	1887	1996	-33	8	949	-981	-10
15	960	-825	38	22	-325	-231	-41	29	347	297	5	9	385	-11	33
16	2199	-2181	5	23	-281	-137	-24	30	1126	-1201	-20	10	954	976	-7
17	586	306	47	24	715	-875	-52					11	643	-659	-4
18	1947	2024	-26	25	-178	28	-8	3	10	1		12	741	-744	0
19	504	276	33	26	1590	1666	-30					13	875	911	-11
20	1839	-1872	-10	27	264	76	15	0	281	-175	13	14	394	270	17
21	189	122	4	28	1954	-1932	8	1	1226	1224	0	15	1102	-1173	-23
22	1110	1095	4	29	442	-134	40	2	235	56	14	16	320	20	21
23	42	135	-3	30	1682	1704	-8	3	1565	-1507	21	17	1075	1072	0
24	-336	28	-22	31	190	185	0	4	550	267	54	18	358	-278	10
25	506	477	4	32	1273	-1367	-37	5	1671	1597	27	19	737	-799	-16
26	659	-741	-18					6	583	-475	25	20	497	580	-16
27	781	688	20	1	10	1		7	1393	-1359	12	21	350	387	-5
28	1639	1680	-12					8	583	634	-13	22	682	-816	-33
29	670	342	50	0	401	542	-31	9	1010	1017	-2	23	-117	-125	-5
30	1978	-1973	1	1	697	-747	-15	10	687	-594	24	24	678	707	-6
31	543	-81	44	2	383	136	31	11	-104	-208	-13				
32	1674	1657	4	3	1464	1496	-12	12	807	777	8	6	10	1	
			4	601	-529	19	13	550	-521	6					
			5	1654	-1700	-17	14	453	-479	-5	0	295	390	-15	
			6	447	230	32	15	952	954	0	1	815	800	4	
1	205	-54	9	7	1575	1524	17	16	449	285	24	2	309	232	9
2	315	-305	1	8	602	-375	42	17	1188	-1214	-8	3	952	-974	-7
3	850	-778	22	9	1377	-1345	10	18	379	1	28	4	1082	-1192	-40
4	518	453	14	10	392	342	7	19	1306	1346	-13	5	1218	1264	-16
5	1352	1369	-6	11	867	830	10	20	543	-446	17	6	1184	1098	28
6	474	-204	41	12	289	-381	-12	21	1017	-1060	-12	7	544	-465	16
7	1788	-1821	-12	13	380	-304	9	22	666	579	17	8	1811	-1606	1
8	426	-157	35	14	-221	209	-18	23	714	762	-11	9	520	-333	33
9	1588	1550	13	15	398	-359	5	24	541	-546	0	10	1947	2032	-29
10	294	-22	19	16	103	-20	1	25	-248	-247	-23	11	784	632	38
11	1369	-1346	8	17	908	955	-12	26	429	460	-4	12	1475	-1440	11
12	437	-342	15	18	237	-93	8	27	131	-347	-18	13	1061	-999	18
13	834	881	-13	19	1363	-1359	1	28	213	-332	-11	14	708	648	14
14	443	532	-17	20	402	-1	28	29	576	707	-25	15	892	872	5
15	302	-215	9	21	1675	1665	3					16	236	-5	11
16	591	-682	-21	22	464	-58	35	4	10	1		17	308	-360	-7
17	306	-278	3	23	1475	-1440	10					18	808	-879	-19
18	631	485	28	24	439	149	28	0	1410	-1424	-5	19	237	256	-1
19	973	962	3	25	957	970	-3	1	1067	-1125	-22	20	1219	1180	11
20	572	-309	39	26	228	-36	8	2	564	579	-4				
21	1500	-1483	5	27	214	-333	-11	3	1227	1242	-5	7	10	1	
22	584	241	46	28	-168	24	-5	4	517	580	-15				

Iridium Dimer

Page 26

0	338	140	21	5	1599	1655	-20	26	886	-896	-2	9	612	-482	37	
1	745	776	-8	6	335	285	7	27	715	737	-4	10	1336	1343	-3	
2	634	-723	-23	7	1430	-1378	18	28	873	746	28	11	421	247	31	
3	628	-601	6	8	398	443	-8					12	814	-866	-19	
4	890	958	-21	9	942	884	18		-2	11	1	13	131	-50	4	
5	312	224	10	10	383	37	32					14	-102	317	-30	
6	918	-929	-3	11	971	-1000	-9	1	506	-444	13	15	-266	-211	-31	
7	313	126	18	12	577	482	20	2	93	44	1	16	384	415	-6	
8	912	929	-5	13	431	356	12	3	284	300	-2	17	91	262	-15	
9	412	-431	-3	14	1011	-910	31	4	751	713	10	18	985	-938	16	
10	812	-769	11	15	741	734	1	5	235	-95	11	19	417	-90	38	
11	827	845	-5	16	881	850	8	6	1229	-1205	8	20	1397	1381	6	
12	555	432	23	17	1071	-1040	9	7	526	-420	21	21	566	185	62	
13	777	-821	-11	18	942	-928	3	8	1298	1349	-18	22	1664	-1615	19	
14	296	1	18	19	1555	1581	-8	9	876	655	5	23	652	-378	58	
15	724	731	-1	20	778	695	20	10	1274	-1360	-30	24	1413	1368	17	
				21	1761	-1771	-3	11	670	-618	12	25	319	419	-16	
	8	10	1	22	590	316	44	12	1239	1205	11	26	894	-906	-3	
				23	1222	1202	6	13	354	336	2	27	193	-248	-5	
0	187	196	0	24	569	-375	31	14	682	-623	13	28	-254	247	-29	
1	702	-645	13					15	548	-518	6	29	-192	235	-21	
2	1029	-1059	-9	-4	11	1		16	338	291	5			1	11	1
3	646	610	8					17	606	605	0					
4	1158	1132	8	1	911	831	24	18	-90	299	-19					
5	477	-563	-17	2	493	-468	5	19	219	-88	7	0	1626	1648	-7	
6	1096	-1178	-27	3	928	-873	17	20	1067	-1063	1	1	2266	-2248	5	
7	134	113	1	4	258	-23	16	21	423	18	32	2	521	-143	51	
8	1179	1204	-7	5	771	632	37	22	1213	1284	-22	3	1793	1845	-18	
				6	604	606	0	23	344	134	17	4	656	523	33	
	-7	11	1	7	516	-339	32	24	1261	-1289	-8	5	745	-834	-25	
				8	987	-983	1	25	678	-499	32	6	305	100	17	
1	-144	-132	-8	9	255	2	15	26	1001	925	19	7	537	-544	-1	
2	359	-418	-9	10	1130	1106	8	27	539	493	7	8	556	-554	0	
3	513	480	6	11	394	163	28	28	453	-469	-2	9	1674	1737	-20	
4	438	254	26	12	1154	-1129	8	29	608	-635	-4	10	813	644	38	
5	1120	-1079	13	13	921	-777	40					11	2162	-2222	-19	
6	615	-500	24	14	1152	1118	10		-1	11	1	12	615	-565	10	
7	1182	1150	10	15	1130	1009	37					13	2143	2296	-49	
8	329	-45	22	16	885	-785	27	1	2473	2512	-12	14	428	224	23	
9	950	-864	24	17	966	-883	24	2	467	140	41	15	1726	-1713	3	
10	395	161	26	18	493	201	39	3	2004	-2048	-15	16	193	212	-1	
11	989	1028	-11	19	947	804	38	4	421	19	37	17	1111	1154	-12	
12	599	-438	31	20	547	412	24	5	1847	1877	-10	18	-231	174	-15	
13	680	-637	10	21	653	-604	10	6	286	144	13	19	964	-944	4	
14	1006	914	26	22	1001	-1021	-6	7	804	-809	-1	20	185	-112	3	
15	384	155	24	23	414	401	1	8	548	489	12	21	-160	274	-17	
16	1468	-1431	8	24	1097	1026	19	9	260	-334	-9	22	210	-203	0	
				25	488	-28	41	10	689	-819	-35	23	407	600	-31	
	-6	11	1	26	1139	-1128	3	11	719	765	-12	24	160	-111	2	
				27	658	-464	34	12	195	21	7	25	1346	-1363	-4	
1	589	-606	-4					13	1519	-1584	-21	26	450	-329	14	
2	734	728	1	-3	11	1		14	387	-144	24	27	1758	1867	-32	
3	855	851	1					15	1603	1688	-28	28	663	732	-13	
4	418	-295	19	1	1637	-1740	-39	16	407	94	28					
5	1111	-1144	-11	2	696	-619	21	17	1662	-1608	16	2	11	1		
6	412	-280	20	3	2086	2136	-17	18	426	-183	26					
7	993	1077	-27	4	472	166	44	19	1899	1888	3	0	761	672	25	
8	809	801	2	5	2034	-2106	-25	20	20	609	483	22	1	601	411	42
9	738	-726	3	6	440	324	20	21	1152	-1169	-4	2	1359	-1343	5	
10	955	-951	1	7	1038	1039	0	22	-106	-73	-3	3	745	-634	31	
11	589	402	36	8	462	-399	12	23	172	81	4	4	1710	1772	-23	
12	1086	1067	6	9	480	-354	23	24	404	-424	-2	5	592	265	61	
13	458	172	37	10	808	749	16	25	670	693	-4	6	1838	-1901	-23	
14	1037	-1082	-14	11	-191	-6	-8	26	400	356	5	7	482	-45	51	
15	587	-392	36	12	467	-550	-17	27	1247	-1298	-14	8	1490	1498	-2	
16	705	659	11	13	400	479	-14	28	958	-990	-7	9	388	-151	27	
17	738	708	7	14	301	-392	-13	29	1597	1636	-11	10	1016	-1026	-3	
18	445	-227	28	15	1264	-1271	-2					11	494	464	5	
19	702	-776	-19	16	979	-810	46	0	11	1		12	-137	274	-20	
20	96	-192	-5	17	1897	1920	-7					13	272	-377	-13	
21	731	834	-26	18	828	629	47	1	289	-182	16	14	190	331	-14	
				19	2111	-2092	6	2	465	542	-24	15	501	484	3	
	-5	11	1	20	554	-26	55	3	667	664	1	16	757	-683	17	
1	718	708	2	22	548	472	13	5	376	-211	31	18	963	959	1	
2	684	675	2	23	876	-862	3	6	1444	1414	14	19	445	231	25	
3	1135	-1103	11	24	321	419	-13	7	551	392	43	20	1098	-1211	-34	
4	615	-514	23	25	191	-153	2	8	1547	-1532	6	21	257	-62	11	

Iridium Dimer													Page	27	
22	1168	1258	-26	13	879	826	14	17	400	221	21	21	234	-27	9
23	315	-131	13	14	1093	1031	19	18	779	885	-28	22	782	821	-9
24	740	-949	-50	15	195	-270	-7	19	250	190	5	23	-249	-116	-13
25	-116	106	-4	16	596	-641	-10					24	289	-386	-11
26	292	504	-27	17	514	-559	-8					25	472	495	-3
27	-383	-34	-26	18	51	44	0								
				19	878	848	7	1	1211	-1282	-26		-1	12	1
	3	11	1	20	378	-306	9	2	751	711	10				
								3	881	838	12	1	220	-258	-3
0	1189	-1112	27	6	11	1		4	1130	-1148	-6	2	308	-43	18
1	1167	1212	-17					5	667	-532	31	3	370	-430	-9
2	924	975	-17	0	1002	1022	-6	6	1259	1269	-3	4	500	-406	16
3	552	-538	3	1	354	226	16	7	310	69	20	5	1187	1284	-31
4	1008	-1052	-16	2	1116	-1129	-4	8	810	-699	29	6	948	827	32
5	398	-511	-24	3	446	366	13	9	176	0	7	7	1432	-1459	-8
6	477	530	-11	4	952	879	21	10	727	825	-28	8	954	-831	33
7	1247	1157	31	5	648	-705	-14	11	103	-116	0	9	1392	1291	31
8	440	-81	41	6	538	-450	17	12	411	-525	-22	10	950	800	39
9	1798	-1802	-1	7	683	750	-18	13	771	804	-9	11	1072	-900	47
10	762	-705	15	8	322	288	4	14	357	-331	3	12	1000	-904	26
11	2198	2248	-16	9	741	-812	-19	15	1375	-1297	25	13	723	675	11
12	1117	1085	10	10	452	350	16	16	683	592	20	14	520	513	1
13	1696	-1679	5	11	811	792	5	17	1133	998	39	15	206	19	8
14	-75	-52	-1	12	744	-746	0	18	1144	-1175	-9	16	225	248	-2
15	863	801	16	13	493	-444	8	19	1197	-1187	3	17	857	-737	-17
16	936	915	5	14	821	829	-2	20	1717	1781	-20	18	584	-490	16
17	339	-394	-7	15	445	368	12	21	624	417	36	19	751	733	3
18	-169	-8	-5	16	926	-925	0	22	1170	-1265	-28	20	606	467	23
19	379	-249	15									21	1186	-1207	-5
20	-174	-190	-13	7	11	1		-3	12	1		22	884	-628	52
21	531	686	-32									23	1139	1124	3
22	352	-281	8	0	779	-759	5	1	634	534	23	24	570	512	9
23	1120	-1152	-9	1	536	-462	14	2	560	547	3	25	741	-770	-5
24	173	-123	2	2	468	346	20	3	334	242	12				
25	1541	1489	14	3	1052	1020	9	4	348	-141	22		0	12	1
	4	11	1	4	514	-493	4	5	727	-804	-22				
	6	272	241	6	409	233		7	1106	1054	16	0	1543	-1579	-12
0	884	-848	11	7	1194	1156	12	8	387	11	32	1	1468	-1400	30
1	615	-534	19	8	273	272	0	9	1119	-1032	27	2	1775	1780	-1
2	1261	1279	-6	9	1087	-1073	4	10	871	-804	19	3	1244	1199	20
3	296	5	21	10	832	-715	29	11	1176	1198	-7	4	1343	-1338	2
4	1305	-1303	0	11	5099	-1112	-3	12	997	888	31	5	278	-156	16
5	401	284	18	-6	12	1	13	867	-873	-1	6	323	248	13	
6	1261	1222	13				14	831	-764	17	7	197	5	11	
7	521	-270	42	1	566	638	-16	15	486	291	29	8	719	721	0
8	941	-904	11	2	65	-306	-20	16	820	785	9	10	774	-761	4
9	550	493	12	3	801	-882	-23	17	294	166	11	11	1000	-928	27
10	457	372	15	4	808	877	-20	18	432	-392	6	12	1125	1173	-19
11	708	-744	-9	5	585	448	27	19	666	-698	-7	13	965	903	22
12	532	357	31	6	1180	-1215	-11	20	410	400	1	14	1229	-1194	13
13	775	655	30	7	612	-586	6	21	858	806	12	15	852	-789	20
14	1059	-1006	16	8	1181	1167	4	22	223	51	-10	16	1234	1236	0
15	652	-606	10	9	448	325	19	23	1035	-1108	-20	17	719	604	31
16	1128	1045	24	10	1033	-1064	-9	24	595	-430	26	18	1178	-1121	20
17	236	80	10	11	342	24	24					19	160	-21	5
18	1234	-1240	-2	12	1026	1107	-25	-2	12	1		20	730	856	-39
19	275	12	14	13	820	-765	14					21	-320	133	-29
20	945	1038	-26	14	421	-417	0	1	1302	1317	-5	22	210	-415	-29
21	558	-408	24					2	1888	-1955	-23	23	-338	-115	-30
22	608	-714	-23	-5	12	1	3	1446	-1424	7	24	615	-712	-25	
23	542	499	7	1	691	-614	19	4	1800	1925	-44	25	691	-678	3
	5	11	1	2	700	-729	-7	5	455	328	20				
	3	507	417	7	916	-937	-6	6	916	-937	-6	1	12	1	
0	1169	1131	14	4	698	752	-14	7	514	401	20				
1	146	-326	-20	5	350	243	13	8	327	213	13	0	569	533	7
2	1052	967	28	6	508	-461	9	9	-87	127	-5	1	928	-869	16
3	637	-587	12	7	768	-739	7	10	258	-33	13	2	746	-668	18
4	938	832	31	8	305	164	14	11	418	305	16	3	1229	1139	28
5	1046	1018	9	9	1017	972	13	12	709	-649	14	4	932	653	70
6	683	-702	-5	10	461	188	36	13	1187	-1022	47	5	1460	-1410	16
7	1262	-1181	28	11	1223	-1274	-17	14	1383	1440	-18	6	1265	-1156	32
8	596	-566	7	12	637	-436	40	15	632	644	-2	7	1451	1417	10
9	1879	1885	-2	13	1244	1257	-4	16	1018	-1028	-2	8	986	880	27
10	936	893	12	14	716	613	24	17	635	-540	18	9	1199	-1087	31
11	1656	-1712	-19	15	899	-803	25	18	1540	1546	-1	10	739	-722	3
12	1359	-1344	4	16	861	-891	-8	19	1005	957	12	11	949	884	16
				20	1686	-1726	-12	20	97	72		12			

Iridium Dimer

Page 28

13	361	-260	10	10	1267	-1345	-26	1	765	-630	33	12	713	-666	14	
14	260	257	0	11	1039	-991	14	2	1207	-1205	0	13	234	-413	-29	
15	255	-234	1	12	1170	1221	-16	3	705	827	-34	14	-236	21	-14	
16	691	-595	18	13	1341	1382	-13	4	845	850	-1	15	-285	-125	-24	
17	468	448	2	14	730	-721	2	5	1066	-1113	-15	16	169	314	-16	
18	746	652	18	15	602	-627	-5	6	255	-311	-6	17	584	653	-17	
19	966	-979	-3	16	101	-192	-5	7	808	769	10	18	773	-764	2	
20	826	-711	23	17	382	298	10	8	369	300	9	19	1030	-906	39	
21	1147	1150	0	18	301	380	-10	9	-154	-254	-19	20	766	675	24	
22	544	529	2	19	-175	54	-6	10	311	330	-2					
23	1061	-1126	-16					11	411	384	4	1	13	1		
24	424	-403	2		5	12	1	12	724	-714	2					
25	838	828	1		0	651	694	-11	14	684	586	20	1	1580	-1585	-1
		2	12	1	1	1023	-1013	3	15	530	-362	26	2	1075	-1075	0
		2			2	602	-572	6	16	1392	-1405	-4	3	632	500	24
0	1303	1302	0	3	1131	1130	0	17	1124	1177	-15	4	888	925	-9	
1	1114	937	55	4	256	70	13	18	1150	1219	-20	5	541	-518	4	
2	1426	-1456	-10	5	862	-829	9					6	-70	149	-5	
3	1438	-1447	-3	6	-93	80	-3	-2	13	1		7	644	-730	-18	
4	523	434	18	7	861	782	21					8	183	-219	-2	
5	378	86	30	8	510	-453	11	1	692	-664	6	9	794	746	10	
6	367	44	29	9	384	-471	-15	2	283	-65	16	10	975	1041	-17	
7	243	6	13	10	561	659	-23	3	225	185	3	11	1220	-1277	-16	
8	920	-1031	-35	11	251	-118	10	4	612	579	7	12	1485	-1375	31	
9	1196	-1219	-7	12	679	-627	12	5	418	312	15	13	1198	1329	-37	
10	1858	1873	-4	13	495	474	3	6	930	-843	23	14	752	853	-23	
11	754	643	26	14	645	617	6	7	1035	-1002	9	15	352	-497	-20	
12	1571	-1687	-39	15	918	-875	11	8	1214	1214	0	16	615	-811	-40	
13	1411	-1376	11					9	1161	1125	11	17	433	403	3	
14	1769	1822	-16	6	12	1		10	952	-936	4	18	514	624	-18	
15	847	648	44		0	212	-200	1	11	1038	-1044	-1	19	-127	-347	-22
16	833	-779	12	1	313	280	4	12	674	593	17	20	-329	-193	-24	
17	-253	79	-13	1				13	719	710	2					
18	71	300	-15	2	562	502	12	14	347	-274	8		2	13	1	
19	-182	256	-18	3	345	-316	3	15	517	-549	-6					
20	-232	-197	-16	4	857	-915	-17	16	290	-259	3	0	589	300	50	
21	-338	-149	-24	5	250	163	7	17	224	246	-1	1	1036	965	21	
22	746	-710	7	6	903	868	9	18	314	457	-19	2	1026	-865	46	
23	404	-452	-6	7	222	316	-10	19	273	304	-3	3	1420	-1283	44	
		8	1110	-1090	6			20	942	-931	2	4	1312	1386	-27	
3	12	1	9	821	-753	17					5	1206	1168	12		
								-1	13	1		6	1142	-1059	25	
0	980	-878	31		-5	13	1					7	1004	-928	22	
1	1140	1092	17					1	1350	1321	9	8	1089	1069	6	
2	926	964	-12	1	224	-119	7	2	1185	1112	21	9	689	635	12	
3	1380	-1403	-8	2	842	889	-13	3	868	-755	27	10	599	-501	19	
4	745	-603	36	3	357	-130	23	4	894	-921	-7	11	485	-340	21	
5	1563	1613	-18	4	989	-1008	-5	5	927	932	-1	12	265	321	-6	
6	773	579	48	5	1041	1084	-13	6	348	290	7	13	104	-52	1	
7	1263	-1249	4	6	832	842	-2	7	460	-499	-7	14	228	267	-3	
8	398	-77	32	7	643	-691	-11	8	417	323	12	15	659	594	12	
9	944	1057	-36	8	362	-327	4	9	411	-236	21	16	733	-660	15	
10	318	101	19	9	1090	937	43	10	607	-746	-32	17	810	-897	-20	
11	309	-329	-2	10	522	374	24	11	554	619	-13	18	725	702	4	
12	631	543	18	11	1150	-1260	-24	12	591	608	-3					
13	589	-497	18					13	430	-421	1		3	13	1	
14	629	-697	-16	-4	13	1		14	1097	-1056	11					
15	894	889	1					15	1384	1273	33	0	1550	-1490	20	
16	782	748	8	1	919	996	-24	16	977	914	15	1	551	436	23	
17	1138	-1107	8	2	372	-111	27	17	1014	-969	11	2	907	1007	-31	
18	748	-613	28	3	618	-718	-25	18	582	-677	-18	3	112	198	-6	
19	1044	1025	5	4	304	-212	10	19	847	849	0	4	674	-735	-16	
20	458	268	23	5	271	249	2	20	631	594	6	5	532	-464	13	
21	1000	-988	2	6	783	874	-26				6	326	157	17		
		7		8	347	254	11		0	13	1	7	1012	977	10	
4	12	1	8	891	-856	10		1	428	-243	35	8	652	662	-2	
0	672	-655	4	10	816	699	29	2	501	494	2	10	1079	-1071	2	
1	1066	-1063	0	11	700	592	24	3	1025	1010	6	11	1337	1439	-33	
2	245	0	14	12	1014	-896	32	4	839	-719	43	12	1380	1498	-38	
3	876	810	19	13	981	-993	-3	5	892	-822	26	13	568	-530	7	
4	498	505	-1	14	705	652	12	6	894	788	39	14	995	-953	11	
5	411	-297	17	15	849	887	-10	7	1129	1136	-2	15	512	496	2	
6	831	-839	-2	16	426	-160	29	8	1150	-992	61	16	606	767	-36	
7	372	77	28					9	1313	-1272	17					
8	1411	1410	0		-3	13	1	10	1176	1119	22	4	13	1		
9	1039	1094	-17					11	836	800	12					

Iridium Dimer

Page 29

0	583	-495	18	6	522	-405	20	10	1191	1238	-13	7	763	652	23
1	973	-998	-7	7	742	612	28	11	647	-459	32	8	1209	1250	-11
2	931	902	8	8	758	792	-8	12	1110	-1118	-2	9	382	-341	4
3	977	911	19	9	731	-566	35	13	426	367	7	10	933	-1073	-35
4	1009	-975	10									11	405	431	-3
5	802	-661	35	-2	14	1		0	14	1		12	196	335	-11
6	899	915	-4												
7	591	467	24	1	1278	1397	-41	0	307	-164	13	2	14	1	
8	898	-957	-17	2	663	-758	-23	1	1410	-1473	-28				
9	356	-175	19	3	1154	-1210	-17	2	1112	1059	21	0	451	-29	38
10	424	468	-7	4	716	693	5	3	1104	1287	-81	1	1204	1151	16
11	472	-468	0	5	800	777	5	4	433	-430	0	2	552	-409	25
12	-103	36	-2	6	517	-378	22	5	406	-495	-21	3	998	-1028	-8
				7	290	-139	12	6	-35	-70	-1	4	337	-245	11
5	13	1		8	391	214	19	7	157	39	6	5	363	255	13
				9	305	-160	12	8	354	488	-29	6	387	326	8
0	655	720	-16	10	502	-460	7	9	700	763	-20	7	440	430	1
1	157	-118	2	11	647	634	2	10	428	-272	26	8	769	-712	13
2	474	-526	-10	12	-114	82	-3	11	884	-1035	-56	9	908	-998	-25
3	797	-919	-35					12	406	428	-4	10	827	818	2
4	192	58	7	-1	14	1		13	1085	1163	-29				
5	806	785	5									3	14	1	
6	441	274	23	1	231	-87	8		1	14	1				
				2	258	-61	11					0	1064	-1049	4
-3	14	1		3	379	-210	17	0	552	609	-11	1	499	241	37
				4	627	-504	22	1	356	-334	2	2	1340	1341	0
1	356	-126	22	5	864	820	10	2	875	-943	-17	3	721	-541	39
2	569	564	0	6	1052	1026	6	3	361	95	21	4	1235	-1219	4
3	468	475	-1	7	733	-656	18	4	1241	1269	-8	5	859	757	26
4	340	43	22	8	1218	-1285	-20	5	851	-623	53	6	1240	1192	14
5	710	-723	-3	9	616	563	9	6	1581	-1528	16				