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ABSTRACT

A fundamental study of heterogeneous reaction and diffusion in random, microstruc-
tured materials has been conducted. A detailed, ensemble averaging approach has
been developed for the analysis of diffusion-controlled reactions. The method was
used to determine the reactant flux into a bounded or semi-infinite medium contain-
ing a dilute suspension of reactive, spherical particles under steady-state or transient
conditions. The influence of the boundary was given explicit, detailed consideration
and the results were compared with a mean-field treatment. Physical motivation is
provided by the process of ash vaporization during pulverized coal combustion. The
analysis was subsequently extended to study the decay of an initially uniform distri-
bution of reactant which allows comparison with other theoretical approaches. The
result suggests that the present method reproduces the solution to this well-known
problem by a seemingly simpler, more physical approach. The configurational av-
eraging technique was employed in a study of heterogeneous reaction in a porous
material under diffusion-controlled conditions. The porous solid is assumed to have
a bimodal pore structure with a random, isotropic distribution of cylindrical macro-
pores. The results are relevant to the pulverized combustion of char from softening
coals. In the diffusion-controlled limit, the results coincide with a simpler, single
pore model.

A simplified model of char combustion has been developed which treats pore
diffusion and growth coupled to gas-phase heat and mass transport. An efficient
model-based algorithm was developed for the determination of oxidation rates from
combustion data. These models were applied in two studies involving well-defined

laboratory combustion experiments.
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Introduction

1 Problem Statement

Relating the macroscopic properties of a material to its microstructure is a problem
pervading much of modern engineering science. In most situations, the microstruc-
ture refers to the molecular scale, however, under some circumstances, there exists
an intermediate scale, much smaller than the system dimension, yet sufficiently large
to allow application of the continuum hypothesis on the molecular scale. Under
these circumstances, the microstructure refers to the structure of this intermediate
scale. Traditionally, the continuum hypothesis has been applied to the intermediate
scale as well. This approach ignores the effect of the detailed microstructure which,
in some problems, is small thereby permitting such an approach. In some problems,
however, the detailed microstructure has a significant, macroscopically observable,
manifestation thus rendering a continuum treatment useless. Frequently, such prob-
lems arise in the field of heterogeneous reaction and diffusion but only recently
have serious attempts been made to gain a fundamental understanding through the
proper analysis.

This thesis constitutes a theoretical investigation of heterogeneous reaction and
diffusion in microstructured materials. The physical processes of char combustion
and ash vaporization were used as vehicles for the study. These processes provide
excellent éxamples of the interaction between microstructure and macroscopic pro-
cesses. The relevant microstructure in the problem of char combustion is the pore
structure of the char while the distribution of mineral matter defines the microstruc-
ture for the ash vaporization problem. In both cases, the microstructure is disor-

dered and, to some extent, random. Under some conditions, the microstructure of



each problem can be effectively treated as a continuum whereas in some, practically
important, situations, the detailed structure can have a significant, macroécopic
impact.

The primary contribution of this work is the development of a configurational
averaging approach which allows explicit consideration of the detailed microstruc-
ture. Three problems are studied: (1) the flux of reactant into a bounded medium
containing reactive centers, (2) reaction and diffusion in a random, porous material,
and (3) the decay of an initially uniform distribution of reactant in an unbounded
medium. The first two problems, relevant to ash vaporization and char combustion,
have heretofore been analyzed primarily through application of the continuum hy-
pothesis to the microstructur;z of the material. Comparison with previous results
permits an assessment of the significance of the detailed microstructure. Previous
theoretical results which address the detailed microstructure relevant to the third
problem are available which allow a useful comparison.

Secondary contributions of the work contained in this thesis include computer
simulations of char oxidation under conditions which allow a continuum descrip-
tion of the char matrix. A simplified model of char oxidation was developed which
addresses the issues of pore diffusion and growth coupléd to gas-phase heat and
mass transport and an efficient, model-based algorithm was constructed for the
prediction of kinetic parameters from particle combustion data. These models were
subsequently applied to studies involving well-defined laboratory combustion exper-

iments.



2 Physical Background

Although, the majority of the work presented in this thesis is theoretical in nature
and somewhat independent of specific physical phenomena, the following general
discussion of the particular problems which motivated this work is useful and adds
concreteness. The aforementioned processes of char combustion and ash vaporiza-
tion are relevant to the industrially important problem of pulverized coal combus-
tion. Pulverized coal combustion has been a subject of numerous theoretical and
experimental investigations because of its obvious importance in the operation of
coal combustion systems. It has been well established that the burning of pulver-
ized coal particles occurs in two stages: rapid pyrolysis and evolution of volatiles
followed by the comparatively slow heterogeneous oxidation of the residue (char)
(Mulcahy and Smith 1969, Timothy et al. 1982). The initial pyrolysis process has
been given a comprehensive treatment by Gavalas (1982) while reviews on the field
of char combustion are available from several authors including Smith (1982a). The
initial thermal decomposition stage profoundly affects the structure and reactivity
of the residual char which consists of a porous carbon structure and small quan-
tities of hydrogen, oxygen, nitrogen, sulfur depending on the rank of the parent
coal. Additionally, the char contains any (inert) mineral matter contained in its
coal precursor.

The mineral content of coal can exhibit a variety of effects on the char com-
bustion process. The coalescence of mineral matter during combustion can result
in pore blockage thus hindering intraparticle mass transport. The accumulation of
ash on the particle surface can inhibit external oxygen transport by occlusion of
the particle surface (Senior 1984). Particularly significant, is the catalytic effect

of various metals on the heterogeneous oxidation process which was reviewed by



Walker et al. (1968).

The fate of. the mineral matter in coal has received much attention because of its
detrimental contribution to the particulate pollutants produced during pulverized
coal combustion. Studies have shown that the distribution of mineral matter re-
sulting from combustion is bimodally distributed with respect to particle size. The
smaller particles result largely from the vaporization and subsequent condensation
of mineral matter initially contained within the coal. A review of work in this field
was recently conducted by Flagan and Seinfeld (1988).

During char oxidation, the interior of the particle is subjected to a high-temperature,
carbon monoxide environment. Under these conditions, micron size inclusions of
refractory metal oxides (e.g., SiO;, MgO, CaO, etc.) undergo rapid reduction to
a more volatile sub-oxide which diffuses through the char matrix and escapes into
the oxidizing atmosphere which surrounds the particle (Quann and Sarofim 1982).
In the oxidizing environment, the sub-oxide species is oxidized and subsequently
condenses forming submicron size particles of the metal oxide. This chemically
augmented vaporization process accounts for only a small fraction of the particu-
late matter produced during combustion but it is an important problem because
the submicron particles produced are very difficult to capture by particulate control

devices.

3 Theoretical Background

In this section, various theoretical approaches relevant to the analysis of the forego-
ing problems are reviewed. In the first subsection, the more traditional continuum
hypothesis approach is discussed in the context of char combustion where it is often a

viable technique. The second subsection contains an overview of theoretical work in



the area of diffusion-controlled reactions which is pertinent to the ash vaporization
process. The final subsection is devoted to a review of averaging techniques which
are useful for a variety of problems including char combustion and ash vaporization

in situations where a continuum description of the material fails.

3.1 The Continuum Description

Modern char combustion modelling typically relies on a continuum description of
the char involving differential equations to treat intraparticle transport (Sotirchos
and Amundson 1984a, 1984b). Such equations require local values for transport
coefficients and structure properties such as void volume and pore surface area.
These quantities are often obtained through the use of a random pore model in con-
junction with measured physical data (Bhatia and Perlmutter 1980, 1981; Gavalas
1980). This approach yields local transport and structure properties as functions
of the local burnoff with proper account given to pore overlap. However, a tacit
assumption in this approach is the disparity of the characteristic length scales of the
particle pore structure and oxygen concentration gradients. Often the length scale
of the pore structure is orders of magnitude less than that for changes in oxygen
concentration thus justifying a continuum treatment of the char structure.
Cenospheres provide an important counter-example where a continuum descrip-
tion of the char is inappropriate. In practice, these hollow, spherical char particles
are often produced during the combustion of softening coals or heavy fuel oils and
have a bubbly pore structure which tends to exhibit a bimodal pore size distribution
(Northrop 1988). Under the typical high-temperature conditions used in practice,
the oxygen penetration length is often the same order of magnitude as the size of the
large pores (Chapter 2). In this case, the detailed pore structure must be included

in any rational analysis aimed at understanding the combustion behavior of these



particles.

3.2 Diffusion-Controlled Reactions

Diffusion-controlled reaction is a field with relevance to a variety of important engi-
neering problems which typically reduce to the consideration of a diffusing chemical
species in a medium with concentration sinks. Examples include spray evaporation
or condensation, suspension polymerization, fluorescence quenching, and the pro-
duction of metabolic products in immobilized cell systems. Smoluchowski (1916)
did the pioneering work in this field by developing the mean-field approximation in
the context of a study on the coagulation of colloidal sized particles. According to
the mean-field approximation, a macroscopic equation describes the material as a
continuum with a homogeneous reaction rate constant determined by considering
an isolated sink in the ambient concentration field.

Recently, significant advances been made in this field by several workers whose
general approach has been to determine a rate constant which characterizes the
bulk properties of the material and accounts for the details of the microstructure.
Felderhof and Deutch (1976) examined the effect of two sphere interactions and
obtained results valid for a dilute volume fraction of sinks using a superposition ap-
proximation. Subsequently, Muthukumar and Cukier (1981) extended their results
to an arbitrary volume fraction of monopole sinks. The volume fraction dependence
of the diffusion coefficient was investigated by Muthukumar (1982) and, most re-
cently, Mattern and Felderhof (1986, 1987) applied a cluster expansion approach to
the problem and discussed the discrepancies among previous results.

The time-dependent problem has received comparatively less attention but the
approach has been essentially the same, however, in this case, the desired rate con-

stant is allowed to vary with time. Felderhof (1977) considered the effect of pair-wise



interactions under dilute conditions and non-local effects relevant to this problem
were considered by Tokuyama and Cukier (1982). The techniques of multiple scat-
tering were applied by Bixon and Zwanzig (1981) and later modified by Felderhof
et al. (1982).

The ash vaporization problem is a diffusion controlled process in which the
metal oxide inclusions behave as sinks of carbon monoxide. Thus, the foregoing
results have pertinence to this problem. Quann and Sarofim (1982) have performed
an experimental investigation of this problem and modelled their results using the

mean-field theory of Smoluchowski.

3.3 Averaging Techniques

In the final category of the review of theoretical methods, several averaging tech-
niques are discussed which address the detailed microstructure. These methods
have been developed over the past few decades for use in various situations where
the details of the relevant microstructure may be important. Equation averaging
has proven to be a useful é,pproach for a variety of problems in which detailed

treatment of the microstructure is required.

3.3.1 Volume Averaging

In general, an ensemble average is the correct average for random, microstruc-
tured materials (Hashin 1964), however, in problems with statistical homogeneity
(macroscopic quantities constant on a volume large enough to properly sample the
microstructure), a volume average is equivalent to an ensemble average (Batchelor
1970). The application of volume averaging to random, microstructured materials is

the basis of Darcy’s law (1856) for the permeability of a material. A rigorous foun-



dation for this approach has been established through the work of Slattery (1967,
1970) in his investigations of viscoelastic and two-phase flows through porous media,
and the independent work of Anderson and Jackson (1967) and Whitaker (1967).
The essence of their work is the development of a spatial averaging theorem based
on an appropriate volume average of the microstructure in the material. The recent
work of Whitaker (1985) clarifies the earlier result.

Many problems exhibit the required statistical homogeneity and are amenable
to a volume averaging analysis which addresses their detailed microstructure. Such
problems include the determination of sedimentation velocity in a suspension of
particles under gravity and the bulk stress in a suspension of force-free particles
each of which was first considered in the dilute limit (no particle interactions) by
Smoluchowski (1912) and Einstein (1906). Batchelor (1972a, 1972b) improved upon
these early results by retaining the effects of pair-wise particle interactions in both
problems through the development of a volume averaging technique which involved a
renormalization procedure to eliminate divergences which commonly arise from this
long-range interaction. This approach was borrowed by Jeffery (1973) to improve
upon the dilute limit result obtained by Maxwell (1873) for the effective conductivity

of a solid suspension of spherical particles.

3.3.2 Difficulties with Volume Averaging

However, the volume averaging approach cannot be applied to a few types of impor-
tant problems. In certain problems, the particles which comprise the microstructure
exhibit especially strong interactions (Batchelor 1974). A classical example is the
problem -is fluid flow through a (dilute) array of fixed particles which was first
studied by Brinkman (1947). He suggested that the governing equations must be

modified to include a volumetric force which results from the “screening” influence
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of the fixed particles. His results were later supported by Childress (1972), Lund-
gren (1972) and Howells (1973) who retained the effect of pair-wise interactions
in the solution to this problem. Screening is also an essential feature of problems
involving diffusion-controlled reactions. The screening interaction results in a much
stronger influence of the microstructure than in the sedimentation and effective
viscosity /conductivity problems.

A second important situation in which a volume average is inappropriate is
in the vicinity of a macroscopic boundary. In this case, statistical homogeneity
is destroyed and thus the equivalence of ensemble and volumetric averages. This
situation is relevant to problems including steady heat conduction in a bounded, mi-
crostructured material and ash vaporization during pulverized coal combustion. In
the former problem, the boundary induces local, microscale order which is manifest
as a macroscopic temperature offset far from the boundary when a bulk gradient is
applied to the material (Chang and Acrivos 1987). In the latter problem, the mass
flux of metal oxide on the particle surface is sought which depends on the details
of the local concentration field in the neighborhood of the boundary. However, de-
tailed treatment of macroscopic boundaries seems to have escaped attention in the
context of diffusion-controlled reactions. A tacit assumption seems to have been
that boundaries, when present, would be accommodated through application of the
customary boundary conditions to the averaged equations which were obtained in

the absence of macroscopic boundaries.

3.3.3 Configurational Averaging

According to a configurational averaging approach, the governing equations of a
problem are averaged over all allowable realizations of the microstructure. Bulk

equations are thus produced which contain a term in which the averaging is per-
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formed with one particle fixed. This term is obtained from the solution to a con-
ditionally averaged equation which is obtained by averaging the original equétions
over all configurations in which the specified particle is fixed. However, the result-
ing equation relates to a doubly conditional averaged equation which is similarly
obtained. According to this approach, an infinite hierarchy of coupled, configura-
tionally averaged equations are produced with an additional particle fixed at each
higher level. The hierarchy is truncated under the condition that the microstruc-
ture is dilute or sparse. Using this approach, Hinch was able to reproduce, and
therefore support, Batchelor’s results for sedimentation and bulk viscosity which
were obtained by volume averaging (Hinch 1977). Furthermore, he demonstrated
that this approach could be successfully applied to determine the permeability of a

fixed array of particles, a problem intractable by volume averaging.

3.3.4 Concentrated Systems

A rather severe restriction to the results obtained by either of the foregoing averag-
ing procedures is the restriction to dilute volume fractions. Many problems of practi-
cal interest arise in concentrated systems where alternate methods are required. Re-
cently developed approaches include computer simulations (e.g., Durlofsky, Brady
and Bossis 1987), the development tight, rigorous upper and lower bounds (e.g.,
Torquato 1985) and the effective continuum approach developed by Acrivos and
Chang (1986). The topic of microstructures in concentrated systems is reviewed

further in the context of future research.
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4 Qutline of Thesis

In this thesis, a theoretical investigation of heterogeneous reaction and diffusion in
microstructured materials is presented with emphasis on the proper treatment of
the microstructure. Motivation for the study is provided by the physical processes
of char oxidation and ash vaporization, under conditions relevant to pulverized coal
combustion. The primary contribution of this work is contained in the second
portion of the thesis which consists of Chapters 5-8 which contain the derivation -
and implementation of a‘conﬁgurational averaging approach which properly treats
the detailed microstructure pertinent to the diffusion-controlled reaction problems
considered therein. The first portion of the thesis, consisting of Chapters 2-4, is
more specifically focused on the problem of char oxidation but serves, in part, to

motivate the work contained in the latter portion.

4.1 Char Combustion

In Chapter 2, cenosphere structure and combustion behavior is studied. Particles
were collected and their structure characterized. Their combustion behavior was
modelled omitting pore diffusion but retaining the effects of pore growth and gas-
phase heat and mass transport. The film transport equations were reduced by
quadrature to a set of nonlinear algebraic equations by an approach similar to that
of Libby and Blake (1979). The numerical results indicate that oxygen penetration
is on the same order of magnitude as the size of the largest voids. A continuum
description of the char is inappropriate.

In Chapter 3, a continuum-based treatment of the intraparticle transport for a
spherical particle is coupled to the gas-phase treatment developed in Chapter 2. A

highly simplified intraparticle transport model valid for high Thiele modulus as well
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as a traditional model which involved a tessellation of the particle were examined.
Numerical solutions are presented under a variety of practical conditions in which
both gas-phase and intraparticle resistances were significant.

In Chapter 4, an efficient algorithm is developed for the estimation of kinetic
parameters from combustion experiments and is applied to data gathered from
several well-characterized chars (Levendis and Flagan). This procedure was used in
conjunction with the computer simulation developed in Chapters 2 and 3 to model
the combustion behavior of these chars. The results were compared with experiment
(Levendis et al.). Appendix 1 describes an investigation of the catalytic effects of
calcium during the char oxidation process. Three procedures are described for
inducing calcium content in synthetic char particles and combustion experiments
with the calcium-enriched particles were performed. The catalytic effects of this
mineral were subsequently quantified by application of the algorithm for estimating

kinetic parameters.

4.2 Configurational Averaging Approach

In Chapter 5, the configurational averaging approach is developed. The technique is
applied to the problem of determining the steady-state reactant flux on the bound-
ary of a finite or semi-infinite material containing a dilute suspension of reactive
particles. The governing equations are explicitly averaged producing an infinite set
of coupled equations which is subsequently truncated using the physical consid-
erations of diluteness and screening. The macroscopic boundary is given detailed
consideration. The interaction between reactive centers and the boundary is treated
and shown to significantly affect the macroscopic flux and dominate pair-wise in-
teractions which are complicated by the presence of the boundary and excluded

from the analysis. Numerical solutions are presented for the flux into spherical and
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semi-infinite domains. The problem has direct application to the ash vaporization
process and the results are compared with the previous theoretical study of Quann
and Sarofim (1982). The result of the comparison demonstrates the significance of
sphere-boundary interactions in this problem.

In Chapter 6, the foregoing averaging approach developed in a steady-state con-
text is extended to consider the transient problem. The time-dependent reactant
flux into a bounded or semi-infinite domain is determined and numerical results pre-
sented for spherical and semi-infinite domains. The results are compared with those
of a mean-field analysis The decay of an initially uniform distribution of reactant
in an infinite medium of spherical sinks is studied in Chapter 7. In this, statisti-
cally homogeneous situation, two-sphere interactions are included in the analysis.
Following the approach of previous workers, a time-dependent rate coefficient is
determined which is compared with the theoretical results of Smoluchowski (1916),
Felderhof (1977), and Bixon and Zwanzig (1981). It is demonstrated that such
an approach cannot be appiied unless the domain is unbounded; the presence of
macroscopic boundaries affects the bulk equations. Numerical results are presented
which demonstrate the impact of detailed interactions upon the time-dependent,
bulk concentration.

In Chapter 8, a configurational averaging approach, similar to that presented
Chapter 5, is developed for the study of heterogeneous reaction and diffusion in
a porous material. The pore structure was assumed to consist of a bimodal pore
size distribution with a random, isotropic distribution of cylindrical macropores.
The hierarchy of coupled equations was truncated under the assumption that the
void volume attributable to the macropores was low. The resulting set of differential
equations were analytically solved to determine the overall reaction rate for a variety

of geometries and the solution contrasted with the results of a continuum approach.
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The conditions of interest correspond to the regime of diffusion control in which the
details of the macropore network become important. The analysis is shown to be
valid in this regime and thus compliments the continuum treatment. The differential
equation governing the bulk concentration field has a modified form relative to the
local reaction-diffusion equation, thus a bulk rate coefficent cannot be defined. The
approach may have important implication to the analysis of cenosphere combustion

(Chapter 2) where a continuum treatment fails.
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Abstract

Carbonaceous cenosphere particles from an oil furnace are characterized
by scanning electron microscopy, mercury intrusion and nitrogen porosimetry.
The porosimetry data are used to construct a random pore model describing
the evolution of surface area and pore volume distribution. The pore model
is combined with gas-phase transport to formulate the equations for transient

particle combustion and some numerical solutions are presented.
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1 Introduction

The analysis of particle combustion is a subject of long standing largely in connec-
tion with the modelling of coal combustion. Earlier treatments of particle combus-
tion assumed that the reaction is located on the external particle surface, and is
coupled with the surrounding gas by suitable heat and mass transfer coefficients.
Recently analyses have included a more accurate description of external transport
(Caram and Amundson 1977, Mon and Amundson 1978, Libby and Blake 1979,
Sundaresan and Amundson 1980, Sotirchos and Amundson 1984a, 1984b) and have
taken into account the effects of pore diffusion and pore enlargement (Gavalas 1981,
Sotirchos and Amundson 1984b). These and other recent analyses indicate that the
effect of pore structure is significant except when the overall rate is determined
solely by film transport.

The porous structure of carbonaceous particles is frequently established during
devolatilization of the precursor fuel upon injection in the combustion furnace. The
most common instance is the formation of coal char devolatilization of the parent
coal. Most bituminous coals melt as they are heated above 350—400°C. With further
increase of the temperature, bubbles of volatile material nucleate, grow, coalesce and
escape leaving behind the solid char residue. In combustion of pulverized coal, the
rate of heating exceeds 10*°C/s, and devolatilization proceeds very rapidly resulting
in highly spongy or bubbly char particles. Sometimes the particles contain a large
bubble surrounded by a porous carbonaceous shell, whence the name “cenospheres.”
Cenosphere particles are also produced during the combustion of atomized heavy
fuel oil with high asphaltene content. Because of the short residence time in the
oil furnaces, cenosphere particles may not burn completely and thus end up in the

exhaust gas.
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The porous structure of cenospheres from high volatile coals or oil has a feature
that sets it apart from other chars or cokes: tAhe size of the largest voids is on the
same order of magnitude as the thickness of the cenosphere shell, hence diffusion
in the cenosphere cannot be described in terms of the customary effective diffusion
coefficient. The description of pore diffusion and reaction in cenosphere combustion
must take into account the peculiarities of cenosphere structure.

The purpose of this paper is to report some results on the characterization
and modelling of cenosphere combustion. Characterization is illustrated by means
of some experimental measurements obtained from oil-derived cenosphere particles.
The modelling addresses the problem of film transport, and the problem of evolution
of the pore structure under conditions of fast pore diffusion. The analysis of the
more general case when pore diffusion is also a determinant of the rate is currently

in progress.

2 Structure of Cenosphere Particles

2.1 Experimental

Cenosphere particles were provided by KVB Corporation. They had been collected
from the exhaust of an oil-fired (#6 oil) utility boiler, hence, they were partially ox-
idized. Because of substantial impurities present in the samples, it was not possible
to determine the degree of burnoff from elemental composition data. The parti-
cles were characterized by scanning electron microscopy (SEM), optical microscopy,
mercury intrusion porosimetry, nitrogen adsorption porosimetry, and helium pyc-
nometry. Figure la shows an SEM micrograph of a collection of cenosphere particles

at 500X magnification. The particles show spongy structure with poremouths 1 to
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8um in size. The extent of burnout seems to vary from particle to particle. Figure
1b is a 2000X micrograph of a single particle showing pores 0.5 to 10um in size.
Poremouths of 0.5 to 3um diameter punctuate the external surface as well as the the
surface of the large voids. The spheroid shape of the voids reflects their generation
from the nucleation, growth, coalescence, and bursting of bubbles during the period
of fuel droplet devolatilization.

A few cenosphere particles were imbedded in resin and cured under vacuum. Af-
ter hardening, the resin surface was ground and polished, exposing various particles
cross sections. Photomicrographs of typical cenosphere cross sections are shown in
Figures 1c,d at 1100X magnification. These and other photographs show that the
cenospheres contain a large central bubble surrounded by a carbonaceous shell ap-
pearing as light-colored material. The shell itself contains bubbles of various sizes
as observed in Figures la,b. Some of the bubbles are doublets generated by coales-
cence. Some bubbles have broken through the outside surface while others seem to
be completely surrounded by the carbonaceous phase. The central bubble is often
connected to the outside by openings known as “blowholes.”

Mercury intrusion porosimetry measurements were conducted by Micromeritics,
Inc. The results are displayed in Figure 2. The pressure range corresponds to
~ pore diameters between 0.017 and 127um based on the conventional assumption of
cylindrical pores. In reality and given size refers to the diameter of the opening
and not to the maximum diameter of the void, which can be considerably larger.
Void openings above 11um correspond largely to the space between particles and
are irrelevant to the subsequent discussion. Void openings between 1 and 11um
correspond to the central bubbles and large bubbles in the shell. Openings below
lum correspond to smaller bubbles in the shell. As shown in Figure 2, only a small

fraction of the pore volume belongs to voids with openings below 1um. However,
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these voids possess the largest fraction of the surface area.

Nitrogeﬁ adsorption equilibria were also measured by Micromeritics, Inc. to
determine total surface area by the BET equation and pore volume distribution
in the range 15 — 300Aby the Kelvin equation, assuming cylindrical voids. The
pore volume distribution presented in Figure 3 is fairly even over the size range
15 to 300A. Additional data include py, = 2.41g/cm?, pg, = 0.232g/cm®, Sppr =
16.8m?/g. The density ppm, is the apparent density of the particles measured by

displacement in mercury at 0.097 atm.

2.2 Geometric Modelling

Analysis of particle combustion requires a geometric model of the porous structure.
In view of the lack of detailed knowledge about the geometry of the pores and in
the interest of simplifying the description of the intraparticle diffusion and reaction,
the pore structure will be represented by three groups of voids as defined below. As
an illustration, we will define the three groups of voids based on the porosimetry
data presented previously.

The first group of voids accessible through openings of diameter 1 to 11um. The
total volume, Vy, of these voids is obtained from mercury intrusion data (Figure 2).
To estimate the surface area, we assume that the voids are spherical and that the
opening diameter is 1/3 of the sphere diameter. On the basis of this assumption,
we calculate the surface area, S;. We represent these voids by uniform spheres of
diameter, D; = 6V, /S, preserving the volume to surface ratio.

The second group consists of voids accessible through openings of diameter 0.018
to 1um and total volume V, determined from mercury intrusion data. Making the
same geometrical assumptions as for the previous group, we can calculate the surface

area, Sz, and the average diameter, Dy = 6V,/S,.



29

The third group consists of voids with openings between 180Aand 15A. These
are not accessible to mercury at the highest pressure applied in the intrusion exper-
iment but are accessible to nitrogen during the adsorption measurements (Figure
3). We could assume again that these voids are spheres with diameters three times
the size of their opening. However, in preliminary low-temperature (450° — 500°)
thermogravimetric oxidation runs, the reaction rate was found to decline mono-
tonically with conversion. This behavior suggests that the smaller voids, which
possess most of the surface area (as illustrated below), have lenticular rather than
spherical shape. They can be represented as flat discs, in which the relevant di-
mension for Kelvin’s equation is the disc thickness. The volume of these voids will
be denoted by V3. The surface area, Sz, of these voids is approximately given by,
Ss =Sprr—S1—S2. An average void for this class can be defined as a disc with
diameter, D}, and thickness é (Dj >> §). To define D} and 6 from V3 and Ss, it is
necessary to specify D}/ 6. However, in the limit of large D3/6, 6 tends to V3/Ss.

There is another volume, V,, not considered yet. This is the volume penetrated

by helium but not by nitrogen during the adsorption isotherm measurement:

1 ) 1
V,=— =V — Vs — 1
u (pHg T,Hg) 3 DHe ()

where Vr g, is the volume penetrated by Hg at the highest pressure of intrusion,
and pg, and py. were defined previously. The quantity in the parentheses is the
total volume of the cenosphere shell not accessible to mercury but accessible to
nitrogen, and 1/pg. is the the volume of the dense carbonaceous phase, inaccessible
to helium. The openings to these voids are probably smaller than 10&, although the
void size could be considerably larger. It will be seen below that for the material
under consideration, V,, >>Vj, hence these voids could contribute substantially to

the reaction rate once they became accessible during combustion.
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It remains to be specify the overall size of the cenosphere. For this purpose it
is assumed that the cenosphere consists of a central bubble of radius b sﬁrrounded
by a shell of outer radius a. The radii a and b can be estimated from microscopic
observations. Mercury intrusion data (Figure 2) provide directly the quantities:
Vo, Vi + V1, Vs, puy and Vrgy. Nitrogen adsorption provides Vs, while helium

pycnometry provides pg.. The various volumes are related as follows:

1
Vo+Vi+Vgg = — : (2)
PHg
1
Vep =Vi+Va+ Vg +V,+V, = ;“—VT,Hg—l—Vl-i—Vz (3)
Hyg
Ve () @)
Vsg+V:  \a

Hence by specifying the ratio b/a on the basis of microscopic observations, we can
determine the remaining quantities: V;,V; and Vgg. As an example, the data
reported in Figures 2 and 3 and Table 1 provide Vo = 1.98,V; + V; = 1.48,V, =
1.50,Vr g, = 0.711. Assuming b/a = 0.75, we obtain: V; = 0.987,V; = 0.492, and
Vsg = 1.35. We also have V3 = 0.016,V, = 0.28, and V. = pg.. All volumes are

given in cm®/g.

3 Combustion of Cenospheres

The first subsection treats the evolution of the porous structure using a random pore
model. The second subsection presents an analysis of film heat and mass transfer
and the third subsection formulates and solves the particle combustion equations

for the special case of fast pore diffusion.
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3.1 Random pore model for structure evolution

The description of the evolution of porous structure is an essential feature in the
modelling of high temperature combustion (Gavalas 1980, 1981; Bhatia and Perl-
mutter 1980, 1981; Sotirchos and Amundson 1984b). It is also directly applicable
to the interpretation of low temperature oxidation experiments designed to probe
the role of the char’s porous structure. The basic requirement is to describe the
surface area and pore volume distribution as functions of conversion or burnoff.

Following the discussion of the previous section, we assume that the pore space
of the cenosphere shell consists of three groups of voids, each group containing
voids of identical shape and size. The first group consists of spheres of initial
radius a;p = D;/2 and number density A; (sphere centers per unit volume). the
second group consists of spheres of initial radius azo = D3/2 and number density
Az. The third group consists of flat discs of initial diameter Dj, initial thickness
6o and number density Az. It is assumed that the voids are completely randomly
located. This means that the centers of each group follow a three dimensional
Poisson density with parameters A;, As and A;. Furthermore, the axis of each disc
has random direction. Being randomly located, the voids partially overlap.

The assumption is usually made that every element of the pore surface remains
parallel to itself while it receds during reaction. For a spatial region, exposed to

uniform temperature and gas composition, we have:

a; = apo+q(t) (5)

5§ = bo+qt) (6)

The reaction length, ¢(¢), increases in proportion to the reaction rate:

dg 1
= _Rin 7T 7
i (¢, T) (7)
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where p, is the density of the carbonaceous phase and R, is the intrinsic rate.
A number of useful relationships can be derived for the pore volume distribution
and surface area at any conversion. If v; is the volume of a single void of type ¢ and

W; = \v;, then the volume fractions (volume per unit volume of cenosphere shell)

6 = 1—exp(—Wy) (8)
€2 = exp(—W;p) —exp(—W; — W) (9)
es = exp(—W;— Wz) —exp(—W; — Wy — W3) (10)
€ = gt+éetes=1—exp{(—W;— Wy — Ws) (11)

have the following interpretation: €; is the volume fraction of voids 1, including
their overlap with voids 2 and 3; €, is the volume fraction of voids 2 excluding their
overlap with 1 but including their overlap with voids 3; €3 is the volume fraction
of voids 3 excluding their overlap with voids 1 and 2. Finally, ¢ is the total pore

volume fraction. The conversion X and surface area S are given by:

X =
- e (12)
df ; \ N d'Ul ' d’02 d’U3\ N
S = —=(1- — 4+ Ag— + Ag— 13
S da (1 6)(A1dq+ qu+3dq} (13)

The volumes v; are functions of a;, hence functions of ¢q. Thus, ¢, ¢, S and X are
functions of the initial parameters and q.

In the previous section, we discussed the specification of the size parameters
@10, G20, Dso and hg from porosimetry data. The specification of the density pa-
rameters A; is made using the same data by setting

V; -
= 14
Von (14)

€0

where €;0 are given are given by Egs. (7)-(10) and W, are evaluated using the initial

void sizes.
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The above expressions developed for three groups of pores can be generalized
in an obvious way to any number of pore groups. In the previous section, we
identified a fourth group of pores inaccessible to nitrogen at —195.8°C but accessible
to helium at room temperatures. These pores, of volume V,, could contribute
substantially to combustion either immediately or after an induction time required
for the enlargement of their pore mouths. Measurement of the surface area and
reaction rate at various extents of conversion during oxidation at temperatures
below 500°C can be used to probe the contribution of this group of pores. For short
induction times, the fourth group of pores can be treated as immediately accessible,

and can be combined with group 3.

3.2 Analysis of Film Heat Transfer and Diffusion

The rate of particle combustion is generally controlied by reaction, pore diffusion
and film heat transfer and diffusion. Reaction and pore diffusion are intimately
coupled throughout the cenosphere shell, and their combined process in series with
heat transfer and diffusion in the surrounding film. Depending on temperature and
particle size, the overall rate may be controlled by reaction alone, reaction and pore
diffusion and film transport, and at sufficiently high temperatures, film transport
alone. This section we analyze the film transport equations in the framework of
the overall dynamic equations describing particle combustion. This problem has
been treated by Libby and Blake (1979) who assumed that heat capacities and cer-
tain transport parameters were independent of temperature to reduce the external
pseudosteady-state boundary value problem to a transcendental equation. The so-
lution of this equation could be inserted into the differential equation describing the
evolution of particle temperature. Sotirchos and Amundson (1984a,b) made a gen-

- eral and thorough analysis of particle combustion including film transport as well as
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intraparticle diffusion and reaction. The model equations were solved numerically.
In this section, we follow the approach of Libby and Blake (1979) but rembve the
assumption of constant heat capacities and transport parameters.

The gas-phase surrounding the burning particle is composed of Oy, CO, and Ny
indicated as components 1, 2, and 3. Carbon dioxide and other minor constituents

are combined with nitrogen. Combustion is represented by the reaction
1
C+ 50, = CO (15)

The reaction of carbon dioxide with carbon and the oxidation of CO in the gas-
phase are neglected. Letting Y; and F; be the mass fraction and mass flux of the ¢

component we can write the pseudosteady component balances as:
2 2
r'F; = a, Fy (16)
The fluxes, F; are related by the Stefan-Maxwell equations:

1
VY= ) —(YiF; = Y;F; 17
X orrya, 6B — ViR (1)

where the contributions of pressure and temperature gradients have been neglected.
Following the previous investigators, we assume: Djs = D13 = Dy3 = D which allows

(17) to be written in the simpler form:

dY;

E pg( )Dd?'

+ FY; (18)

where

F=YF

)

is the total mass flux satisfying:

r’F = aZFp (19)
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The stoichiometry of reaction (15) provides the relationships:

4 7
Foy =0, Fy=—2F, Fy=:F (20)

Introducing (19) and (20) into (18) we obtain by suitable linear combination

dz
2 2
pDr % = a’pFPZ (21)
where
Yi Y,
Z = —= 4 = 22
YRR (22)
Equation (18) for component 3 (N;) reads:
dYs
pwzzg—:aygﬁ (23)
Dividing (21) by (23) we obtain
iz _z
dY; Ys
with the condition at the free stream
N < Y Yo
Yo=Y Z =7y = — -
3 3b b 4 + 7
It follows that
Vi Y2 7z '
Z = —_— = —~—Y
1 + - Vo 1 ? (24)
This equation is solved along with
Yi+Ye+Ys=1 (25)
to express Y; and Y3 in terms of Yi:
TA T(4A + 1
Y, A+1), (26)

TTA+1 4(TA+ 1)
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1 3
Ys = Y; 27
STTATL 4AT D 27)
where
1 Yy Yo
A= (2422 28
L Iy (29)

The pseudosteady energy equation for a gas that does not absorb or emit radi-

ation can be written as

dT _
A s - o (29)
where
T _
ep = [“A"J; + Z E‘Hi] (30)
2 r=dp
using Equations (16) and (20) we rewrite Eq. (29) as
dT
r2)\(T)$ = a [h(T)F, — &) (31)

r=a, : T=Ty;r—o00:T—T,
where
h(T) = % [7Ha(T) — 4H,(T)] (32)
along with (31) we consider the balance for component 1,

dy; 4
r’pD EE = a’F, <Y1 + §> (33)

Dividing (33) by (31) we obtain

ppdYs 3tV

X dT  R(T) -, (34)
T=1T : Yy
where
Yo = F (35)
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Integrating (31) we obtain

/T,, A(T)dT

= a,F 36
T, ’Yp . h(T) a’P pr ( )

Likewise, integrating (34) we obtain

Y + é) T, A(T)  dT |
i (Teg) a7
(Ylp -+ % ,  pD Y, — h(T) (57)

In the case of uniform conditions within the particle, the mass flux is related to

the reaction rate R;,(¢,T) as follows

47
47ra12)Fp = ?azS(q)R,-n(clp,Tp) (38)

where S(g), the pore surface area per unit volume is given by Eq. (13). Using the

ideal gas equation of state and Eqgs. (26) and (27) we write ¢y, as a function of Y7,:

p Yy
S LR L 39
‘T RT, 4+ 3Yy, (39)
such that (38) can be expressed as follows
L (
F, = gaps(q)Rin (Y1, T3) (40)

Equations (36), (37) and (40) define implicitly the quantities F,,e, and Y3, as

functions of particle temperature T, and conversion, ¢:

F, = f1(Ty, 9) (41)
€p = f2(Tp’ q) (42)
Ylp = fS(Tpa Q) (43)

These functions must now be introduced into the differential equations describing

the evolution of particle temperature and conversion.
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3.3 The Dynamic Equations

The equations will be derived for the limiting case of fast pore diffusion, such that
the overall rate is controlled by chemical reaction and film transport. Under these
conditions, the particle radius a, is constant and temperature, gas composition and
solid conversion are uniform throughout the particle. The particle energy balance

then becomes

a(mp(j) = —4ra’(e, + eg) (44)
‘where
erp — O'(kap4 - kab4) . (45)
is the radiative flux. Now,
dm
dtp = 47ra§Fp
W i, _
d = dt Pt
so that (44) can be written as
drT, 3 _
,opcpgtﬁ = . [FpHc(Tp) —ep— eR} (46)

To carry out actual calculations we need to specify the reference state for en-

thalpies. By defining: H,(T3) = 0, H,(T}) = 0 we have Hy(T) = 18AH(Tb), where

28

AH is the heat of reaction (15). With this convention

A,(T,) = /T " edT (47)
h(T) = _1}5 {AH(Tb) +f j”(apz _ %apl)d:r] (48)

We also have

P = ppo (1 — X(q)) (49)
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where the conversion X(g) is given as a function of ¢ by Egs. (11) and (12). The

particle temperature equation then becomes

dT, 1 3 7,
= F / AT — e, — 50
dt 1— X(q) apcpppo [ P n, K €r CR} (50)

where F, and e, are functions of 7, and ¢g. We finally have Eq. (7) for in the form

d 1
@ = 5 Us(T,),T3) 1)

Equations (50) and (51) with suitable initial values 7,(0) and ¢(0) = O describe the

transient combustion.

Equations (50) and (51) were integrated with
Y1, =0.233 , T, = 1500K , T,(0) = 300K

Vi = 0.492cm®/g , D; = 4.3um
Vy, = 0.15cm®/g , Dy = 0.51um
Vs + V, = 0.296cm® /g, D; = 2704, h=2TA

The intrinsic rate was taken as
Ri, = Aexp(—E/RT)y1, (g/cm2s)

following the correlation presented by Smith (1982) with E = 42.8 kcal /gmol and A
in the range 200 — 1000g/cm?s to cover the range of reactivities of petroleum cokes
lisited in the same reference.

The results of the numerical calculations are presented in Figures 4 and 5. Figure
4 shows particle temperature and oxygen mass fraction versus time for three sets
of parameters. Combustion can be divided into three periods. During the first

period, the particle is heated by conduction and radiation form the surrounding gas
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and solid walls while reaction is negligible. The end of this period is marked by
particle ignition. During the second period, reaction becomes significant, as shown
by the rapidly decreasing oxygen concentration at the particle surface. The particle
is initially heated by reaction and heat transfer. When the particle temperature
exceeds the surrounding temperature, heat transfer becomes negative but is still
smaller than the heat of reaction. The two terms eventually reach a rough balance
marking the end of the second period. During this second period, the oxygen
concentration at the particle surface becomes very small and the combustion rate
is controlled by external diffusion. The third and last period is characterized by
approximate balance of the heat of reaction with the heat transfer. During this
period, the reaction rate is determined by external diffusion and the end of the
period is marked by a slight drop in temperature due to the essential depletion of
carbonaceous matter. Curves a and b differ only in the preexponential factor A
which is lower by a factor of 5 in curve b. The two curves are quite similar save
for a modest time delay for curve b. The parameters for curve ¢ are the same as
for a except for the particle size is lower by a factor of 2. The smaller particles
have earlier ignition and shorter burnout time although the pseudosteady particle
temperature is the same.

In Figure 5, particle temperature and oxygen fraction are plotted versus con-
version. The reaction beyond conversion 0.1 takes place under external diffusion
control. However, the temperature does not reach its pseudosteady state until con-
version 0.4. The temperature curves for the three sets of parameters essentially
coincide, a result that can be explained by the prevalence of control by external

mass trasfer.
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5 Notation

Roman Symbols

preexponential factor of intrinsic rate
external cenosphere radius

radius of the i** group of spherical voids
radius of central bubble

heat capacity of carbon

molar heat capacity of component ¢
diameter of spherical voids

diameter of disc-shaped voids

activation energy pf intrinsic rate
energy flux {other than radiative) at the particle surface
radiative energy flux

mass flux of 1** component

mass flux at the particle surface
enthalpy per unit mass of the ¢** component
enthalpy function defined by Eq. (32)
emissivities of particle and surroundings
mass of particle

reaction distance

intrinsic rate

radial position

pore surface area per unit volume
temperature

time
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\N]

43

internal energy per unit mass of solid
volume

volume of the i** void

defined by W; = A;V;

conversion

mass fraction of component ¢

defined by Eq. (22)

Greek Symbols

~p defined by Equation (35)

6 thickness of disc-shaped voids

¢ pore volume fraction of it* group of voids

¢ total pore volume fraction

A thermal conductivity

i number density of i* group of voids

pp apparent density of particle

p. density of carbonaceous phase

o Boltzmann constant

St W

c

p
SH

subscripts

oxygen
carbon monoxide

nitrogen

conditions of free stream
carbon

property at particle surface

refers to cenosphere shell
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Figure 1: (a,b) SEM micrographs of cenospheres.

(c,d) optical micrographs of cross-sectioned cenospheres.
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Figure 2: Pore size distribution of cenospheres by mercury intrusion.
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CHAPTER 3

A Simplified Description of Char Combustion
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Abstract

A simplified analysis of carbonaceous particle combustion is presented that
includes the effects of pore diffusion and growth as well as gas-phase heat and
mass transfer. The combustion dynamics are described by time-dependent
equations for particle temperature,radius and a number of intraparticle con-
version variables. These are coupled to pseudosteady equations for gas-phase
transport and internal reaction and diffusion. The differential equations for gas-
phase transport are reduced by quadrature to a nonlinear boundary condition
to the intraparticle boundary value problem. Numerical calculations are per-
formed for conditions pertaining to pulverized coal combustion. An analytical
solution of the intraparticle problem pertinent to the regime of strong diffu-
sional limitations reduces the intraparticle solution into a set of two quadra-
tures which drastically simplifies the numerical calculations. The simpliﬁéd
Intraparticle solution is in excellent agreement with the full solution at 1800K

free stream temperature and fair agreement at 1500K.
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Introduction

The analysis of particle combustion (coal,coke,etc.)is a subject of long standing.
Early analyses of particle combustion lumped the reaction on the external particle
surface and treated the gas-phase transport problem by heat and mass transfer
coefficients. Two significant advances were made in the late 70’s and early 80’s. Gas-
phase transport was described by differential equations rather than overall transfer
coefficients and intraparticle pore growth was first considered simultaneously with
diffusion and heterogeneous reaction.

Amundson and his collaborators were instrumental in these developments. In
a series of comprehensive and subtle analyses, they documented the rich complexi-
ties of this nonlinear problem and discovered some rather unexpected phenomena.
Caram and Amundson (1977), Mon and Amundson (1978) and Sundaresan and
Amundson (1980) tackled the nonlinear complications of gas-phase transport cou-
pled with reaction at the external particle surface, while Sotirchos and Amundson
(1984 a,b) extended the analysis to include the complications of intraparticle reac-
tion, diffusion and pore growth. These papers provide a valuable resource for the
detailed analysis of char combustion and gasification.

The purpose of this paper is to provide a simplified formulation and numerical
treatment of particle combustion which addresses the coupled processes of hetero-
geneous reaction, pore diffusion, pore growth and external film transport. We will
consider combustion in a regime where all rate processes are important. The anal-
ysis presented yields a straight forward solution procedure: The pseudosteady film
transport equations are reduced to a nonlinear boundary condition to the intraparti-
cle oxygen balance equation. The pseudosteady solution of this equation is then

inserted into a system of ordinary differential equations describing the dynamical
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quantities: particle temperature, radius and intraparticle conversion variables.
The solution approach outlined above can be simplified drastically by exploit-
ing a closed-form solution of the intraparticle problem that was developed for the
regime of strong pore diffusion resistance. This approach eliminates the intraparti-
cle conversion variables reducing the dynamical equations from fifty or one hundred
to two: for the particle temperature and radius. It provides a good approximation
to the more complete solution when the ambient temperature is higher than 1500K.
Such simplified solutions to the particle problem are very useful in the interpretation

of experimental data and as components in coal flame models.

Analysis of Intraparticle Transport

As in a previous paper (Gavalas, 1981), we define local conversion in terms of a
reaction distance ¢(r,t¢) which is the length that the pore surface at a location r has
receded during the time interval [0,¢]. Throughout our analysis of the intraparticle

problem, we shall make the following assumptions:

(i) The only heterogeneous reaction taking place is the direct oxidation of carbon
to form carbon monoxide

1
C+50,=CO (1)

(ii) The oxygen profile is at steady-state with respect changes in particle temper-

ature, radius, and the intraparticle conversion variables

(iii) The particle temperature,T}, is uniform throughout the particle although tem-

poral dependence is retained.

(iv) The intrinsic rate R;,(c,T,) expressed in terms of mass of carbon per unit

surface area and time is independent of the local conversion
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(v) The porous char can be treated as a continuum using a local effective diffusion

coefficient 6.(g) and local surface area (per unit volume) S(q).

Assumption (ii) constitutes the pseudosteady treatment of the intraparticle prob-
lemm. For large char particles and low values of thermal diffusivity, assumption
(iii) may be questionable (Sotirchos and Amundson, 1984 c,d and Sotirchos and
Burganos, 1986). The structure functions, S(¢) and é.(¢) may be measured, in prin-
ciple, by low-temperature (400-500°C) oxidation experiments, or can be obtained
from the initial pore surface area and pore size distribution by means of a suitable
geometric pore model. Gavalas (1980,1981), Bhatia and Perlmutter (1980,1981)
and Su and Permutter (1985) employed a random capillary model for this pur-
pose; Gavalas et al. (1985) used randomly distributed spherical voids for the same
purpose. In this paper, we shall also use spherical voids. The sphere centers are
spatially uncorrelated and thus located by a three-dimensional Poisson density.
Consideration of pore overlap between voids of all sizes in the distribution is an
implicit feature of the model.

The conservation equations for the oxygen concentration,¢, can be written as:

10 {, de
r_2—37 (7’ 5@(Q)E) N bRin(can)S(q) (2)

dg 1
o = (e 1) )
=0 : ¢=0 4)

: de Jq

o= p* (t) D C=C (6)
r=r*(t) ri(t) =ro, ¢<q (7a)

o b () .
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where r*(t) is the instantaneous particle radius and ¢* is the value of the local
conversion variable at the onset of fragmentation (Gavalas, 1981). The intrinsic
rate is given in terms of grams of carbon and the conservation equations are for
moles of oxygen, thus we introduce the stoichiometric factor,b = 1/24. Solution of
the above equations allows us to calculate the total mass flux, FpT , at the particle
surface:

Ff=F,+F; (8)

where F, is the mass flux at the particle surface resulting from chemical reaction

within the particle and is given by:

dc
F, = bé,— 9
P 87’ ( )

rer

F; is the mass flux (at the particle surface) due to fragmentation. We can write:

dr*
F* — ®

where p* is the density of the carbon matrix at the particle surface.

Equations (2) - (10) need some further comments. Equations (7a,b) result from
the observation that, initially, a particle burns with constant size until the surface
porosity reaches a critical value, €*, which causes fragmentation of the local car-

bonaceous matrix. At that instant, the boundary starts receding with a velocity

dr* /dt given by Equation (7b). The value ¢* is defined by:

Limited data by Dutta et al. (1977) suggest €' is approximately equal to 0.8. for
the char they analyzed. Kerstein and Niksa (1984) showed using percolation theory
that ¢ 1s 0.68 for a random network of cylindrical voids and 0.96 for a random

network of spherical voids. They also measured critical porosities between 0.5 and
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0.85 for various carbonaceous materials. Gavalas (1981) found that his calculations
were quite insensitive to the precise value'chosen for €* in the range 0.7 to 0.9. We
chose ¢* equal to 0.8.

Boundary condition (6) and Equation (9) couple the intraparticle equations to
the gas-phase equations. The above distinction between total mass flux, FpT, and
mass flux due to chemical reaction, F,, is important to the coupling between the
intraparticle and film transport problems. It can be readily shown that the velocity

of the gas-phase is directed radially outward with a magnitude given by:

1 1 r*?
’U(T) =—F=— 2 *P
Py Pg T

(11)

For parameters pertaining to pulverized combustion, this velocity is on the order of
1 m/s causing detached fragments to move out of the particle’s sphere of influence in
a fraction of a millisecond and, hence, without further substantial reaction. These
fragments burn in the free stream and have little influence upon the film transport.

An important special case within the framework of Equations (2) - (7) is the
high Thiele modulus limit where the particle burns with nearly constant density
and decreasing radius. Gavalas (1981) considered the pseudosteady situation in
which the surface velocity, dr*/dt has reached a constant value. Equations (2) - (7)

simplify considerably in this case yielding the following solution:

dr 1 I'/?
dt bl/2p, J1/2 (12)

where I'/? and JY? are simple quadratures which describe kinetic and physical

parameters respectively:

7= / Rin(e, Ty)de (13)
0

J = /Oq* Ei(—%-;-)f?ﬂdq (14)
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The total mass flux is simply the product of surface velocity and the (initial) particle

density; Equation (8) becomes:

dr*

FT —
p Po di

(15)

The mass flux which results from fragment shedding, F;, is given by Equation (10);
therefore, the mass flux given by chemical reaction within the particle becomes:

dr*

Fp = _(PO"p*) dt

(16)

The above analytical solution remains coupled to the gas-phase equations through
¢, in the upper limit of integration in Equation (13). We shall compare the results

of the above analytical solution with the results from full numerical solution of

Equations (2) - (7).

Analysis of Gas-Phase Transport

This section is concerned with heat and mass transport from the particle surface
to the free stream. In the first part of the section, we derive algebraic expressions
for the pseudosteady mass and energy fluxes evaluated at the particle surface which
serve as a nonlinear boundary condition of the intraparticle problem. In the second
part, we derive the equation describing the particle temperature. The approach used
is an extension of the approach of Libby and Blake (1979) to account for temperature
dependent diffusivity, thermal conductivity, and heat capacities. Throughout the

gas-phase analysis, we shall employ the following assumptions:

(i) The temperature and concentration profiles are at steady-state with respect to

the dynamical quantities 7y, r* and ¢(r,t).
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(ii) The gas-phase oxidation of CO to CO, takes place in the free stream and

therefore does not appear in the species balances.
(iii) The fluxes induced by thermal and pressure gradients are insignificant

(iv) Mass transfer is described by ternary diffusion involving O3, CO and ”inert”,
the latter including N, and COs. The three binary diffusion coefficients are

equal but not constant.

(v) The gas-phase is transparent to radiation, neither absorbing nor emitting ra-

diation.

Denoting by ¥; and F; the mass fraction and mass flux of the ¢** component (O,:i=1,

CO:i=2, inert : i=3), we can write the pseudosteady component balances as:
r2F, = r*(t)’ Fy (17)

where F;, denotes the mass flux of the ¢+t component at the particle surface. The

fluxes, F; are related by the Stefan-Maxwell equations:

VYZ

T)DU( ) YF} - YJF@) (18)

where the contributions of pressure and temperature gradients have been neglected
according to assumption (iii). Using assumption (iv) above: Dy = Di3 = Dy3 = D
simplifies this equation to :

dYi

+ FY; (19)
where F = ), F; is the total mass flux satisfying:

r*F = r*(t)*F, (20)
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The stoichiometry of the reaction given by Equation (1) yields the relationships:

4 7
ng - 0, Flp - “ng, ng = ng (21)

Introducing (20) and (21) into (19) we obtain by suitable linear combination:

, 47

p(T)NT)r* — =1 (1) F,Z (22)
where
Yi Y
Z = —+ =
4 7 (23)
Equation (19) for component 3 (N3) reads:
dY:
py(T)D(T)r* E}E = r*(t)2F,Ys (24)
We divide Equation (22) by (24) and obtain
iz 7
dys Vs
with the free stream boundary conditions:
Yloo YZoo
=Ys00: 4 = Loy = —— + —
Y;=Y; 4 + 7
It follows:
Yy Yy 7
4 = 2 + 7 —Ygooys (25)

This equation is solved along with Y, Y; = 1 to express Y> and Y3 in terms of Yi:

TA 144 +1)

Y, = — Y; 26
T A+l 4(TA+1)? (26)
1 3
Ve —
ST IATL  4(TA+ 1)Y1 27)
where A is given by:
1 Yloo YZOO)
A= 28
Y300 ( 4 * 7 (28)
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The pseudosteady energy equation for a gas transparent to radiation is:

daT _
7‘2 {_A(T)—(E: + ZEH,} =r" (t)zep (29)
where
aT _
e, = {”’\(T)TE +> EH} (30)
' r=r*(t)
By using Equations (17) and (21), we rewrite (29) as:
ar
PAT) 7 = (1) [MT)E, — e (31)
with boundary conditions:
r=r(t):T=Tyr —o00:T — Ty
where h(T) is given by:
1r - -
W(T) = ¢ [7H,(T) — 48,(T)) (32)

Using Equations (17),(19),(20) and (21) the balance for component 1 (oxygen) be-

comes:

20y (T)(T) %1 =" (t)F, (i + %) (33)

We divide Equation (33) by Equation (31) to obtain:

p,(T)D(T) dY; L+ Y

MT) 4T ~ A(T) =~ (34)
T= Too . Yloo
where 7, is the ratio of energy flux to mass flux:
€p
S 35
’YP Fp ( )
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Integrating Equation (31) and invoking (35) we obtain:

[7 20 g, (50

Too Yp — h(T)

Similarly, Equation (34) yields by integration:

Viet5) _ [ _MI) _ dT
" ( Y, + % > B /Too pe(T)0(T) ~p — h(T) (37)

Equations (36) and (37) are the algebraic expressions for the mass and energy fluxes
at the particle surface. The oxygen concentration at the particle surface,c,, can be

expressed in terms of species mass fractions at the particle surface.

1 Y1,/32
R,T, Y1,/32+ Yy,/28 + Y3, /28

(38)

Cs

Equations (26) - (28) then allow ¢, to be expressed solely in terms of the mass
fraction of oxygen at the particle at the particle surface, Yi,. Equations (36), (37)
and (38) couple to Equations (6) and (9) from the intraparticle problem via the
quantities ¢, and F,.

The particle energy balance can be written as:
d . ‘(2
= /V AV, = —tmr* (i (e + en) (39)
where
er = (e, Ty — €00Tno?) (40)

is the radiative flux. In view of the assumed uniform intraparticle temperature

profile, we can rewrite (39) as:

myp

dT . _
cP“'d—tp = 47mr*(t)? [FpHc(Tp) — Fry, — eR] (41)

having made the additional approximation: ¢,, ~ ¢,,.
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The reference states for the enthalpies are chosen as: H;(Tw) = 0,H,(T,,) = 0
which imply

Hy(T) = 5o AH(T.,)

where AH is the heat of reaction (1). Thus the quantity ~(T") defined by Equation

(32) is given by :

1 Ty 1.
h(T) == —1-5 [AH(TOO) -+ - (Cp2 —_ gcpl)dT:l (42)
Equation (41) becomes:
dT, % 1)2 Tr
mpcch:— = 47r*(t) Fp/ ¢, dT — Fypryp — €g (43)

Solution Procedure

In the present section, we shall list the values of the parameters used to describe
the combustion of hypothetical char particles and outline the solution procedure
with special attention to the coupling of the intraparticle and gas-phase equations.
We consider a spherical particle of initial radius ro = 25um. Its porous structure
consists of randomly located spherical voids of initial radii: 0.5 ¢m,0.05 pm and
0.005 pum with initial pore volume fraction 0.1 for each group. These parameters
fully define the porous structure and the functions S(g) and 6.(q) (Gavalas, 1981).
The intrinsic rate is chosen as:

—42,800

BT, Je g(C)/cm2\s; (44)

R, = 150 R,Tpexp(

taken in the range suggested by Smith (1978). The free stream is air at one at-
mosphere and temperature, T,,=1500 or 1800K. In either case, the initial particle

temperature is taken equal to the free stream temperature.
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Having chosen first order kinetics, Equation (44), we can easily solve the bound-
ary value problem defined by Equations (2) and (5) and express the total mass
ﬂUX,FpT , the mass flux due to chemical reaction,F),, and the mass flux due to frag-

mentation, F) as:

T _ AT
F, =G,c, (45a)
F, = Gpe, (450)
Fy=Gpe, (45¢)

where Gg, G, and G are calculated for fixed values of the dynamical quantities:
Tp,r*, q(r,t). Equation (36) becomes:

[F 2 )6, (46)

Too Vp — h(T)
Equations (38) in combination with Equations (26) - (28) yield ¢, as a function
of Yip,. Then Equation (37) e;(presses Y1, in terms of ~y, which ultimately yields
¢, in terms of ,. The result is inserted into Equation (46) yielding a single alge-
- braic equation for ~, which is efficiently solved using a Newton-Raphson scheme.
Equation (37) then yields Yj, directly and ¢, is found by Equations (38) and (26) -
(28) which provides a boundary condition for the intraparticle problem (Equation
(6)) and the mass fluxes are found via Equations (45a,b,c). Thus, the film-transport
equations have been reduced to a nonlinear boundary condition for the intraparticle
problem.
The dynamical equations consist of Equations (3),(7a,b) and (43) for q(f,t),
r* and T, respectively. Equation (3) is solved at a discrete set of points chosen to
describe an a priort estimated radial profile of ¢(r,¢). In the present calculations, we
used a set of 100 grid points. The corresponding dynamical equations coupled with

the equations for particle radius and temperature were solved by Gear’s method.
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Numerical Results

Two runs were made with free stream temperatures T,, = 1500 and 1800K. In both
cases, combustion was followed to 90% conversion. Using the full numerical solu-
tion, the time required to reach 90% conversion was 147 milliseconds for To, =1500K
and 46 milliseconds for T,,= 1800K. The approximate solution, employing Equa-
tion (12), predicted 143 milliseconds to reach 90% conversion for T,,=1500K and
agreed perfectly with the full intraparticle problem for T,,=1800K also predicting
46 milliseconds. Figures 1 - 4 show the results from the model and are discussed
below. The solid curves result from the full intraparticle equations (Equations (2)
- (7)) and the dashed curves refer to the approximate solution employing Equation
(12). The approximate solution shows excellent agreement to the full solution for
T = 1800K and fair agreement for T,, = 1500K. The two solutions are further
compared below.

Figures 1 and 2 show the particle temperature histories during combustion. For
both choices of free stream temperature, the particle temperature goes through a
maximum; this is most pronounced for the the lower free stream temperature. At
the higher free stream temperature the particle temperature displays a less pro-
nounced temperature maximum. Also shown in Figures 1 and 2 is the oxygen
concentration at the particle surface normalized by the free stream concentration
(air). Film diffusion is important but not rate;controlling. At T, = 1800K, film
diffusion resistance has an approximately equal effect upon the overall rate as the in-
traparticle resistance. In both cases, the surface oxygen concentration goes through
a gentle minimum and in both cases, the minimum oxygen concentration occurs
prior to the maximum in particle temperature.

Figures 3 and 4 show conversion, dimensionless radius, r*/rg, and average dimen-
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sionless particle density (p/po) as functions of time for each run. Figure 3 indicates
that for T, = 1500K, the particle burns with decreasing density and constant ra-
dius until about 18% conversion; in an 1800K free stream, the same is true only
until about 7% conversion. After shedding begins, in an 1800K free stream, the
particle burns with nearly constant density and approximately linearly decreasing
radius until complete (90%) conversion. The foregoing holds for T, = 1500K but
only until approximately 65% conversion at which point the average particle density
resumes a gradual decline until 90% conversion is attained.

For both choices of ambient temperature the average density of the particle actu-
ally increases slightly following start of particle shedding. This phenomenon can be
explained by the observation that the particle temperature is continually increasing
in the neighborhood of the point where shedding begins; the lower temperatures
prior to particle shedding allow more oxygen penetration causing the local density
near the particle surface to decrease during combustion prior to particle shedding.
As particle shedding begins, thevparticle temperature continues to increase allow-
ing less oxygen penetration thus retarding further density decrease. The shedding
removes the less-dense layer of char near the particle surface thereby increasing the
average particle density.

A tacit assumption in the foregoing analysis is that when the char reaches a
prescribed local void volume, €¢* eractly equal to 0.8, shedding of fragments from
the particle surface ensues causing a discontinuity in dr*/dt. This discontinuity is
propagated to the total mass ﬂux,FpT, as implied by Equation (8) which causes the
conversion rate to exhibit a discontinuity at the point at which fragmentation starts.
Figures 3 and 4 indicate that for both free stream temperatures, the conversion
increases smoothly with time with the exception of a slight discontinuity in slope

at the onset of fragmentation.
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Figures 1 - 4 compare the results calculated using the analytical solution with
the results of the full intraparticle solution given kby Equations (2) - (7). For an
1800K ambient, the results are in excellent agreement, but even for 7, = 1500K,
the approximate solution is adequate. The discrepancy between the approximate
and the full solution is a consequence of the fact that the former assumes that
particle fragmentation begins immediately thereby predicting smaller particle size
and higher initial conversion rate as indicated in Figures 3 and 4. Lighter particles
are heated faster and reach their maximum temperature earlier as indicated by
Figures 1 and 2. The foregoing discrepancies are more pronounced for 7,,,=1500K.
The success of the approximate solution is consistent with estima,ktes of the Thiele
modulus based upon initial structure and average particle temperature. These

estimates were 10 and 40 for T, = 1500 and 1800K respectively.

Conclusions

An efficient, simplified analysis of single-particle char combustion has been pre-
sented taking into account pore diffusion and growth coupled with gas-phase trans-
port. Assuming frozen, homogeneous reaction and equal diffusivities While main-
taining the temperature dependence of various properties allows integration of the
gas-phase equations into a sequentially-solved set of algebraic equations. These
equations serve as a nonlinear boundary condition to the intraparticle diffusion
problem.

Numerical calculations performed for parameter values representative of pulver-
ized combustion show that film diffusion and pore diffusion are both important in
determining the rate of particle combustion. In an 1800K free stream, the par-

ticle burns essentially in a shrinking core fashion. An analytical solution derived
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for the regime of strong limitations by pore diffusion gave excellent agreement to
the complete numerical solution for a free stream at 1800K and fair agreement at
1500K. The analytical intraparticle solution greatly simplifies the overall numerical

problem.
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Nomenclature
Roman Symbols

A defined by Equation (28)
b stoiciometric coefficient (= 1/24)
¢ oxygen concentration (gmoles/cm?®)
¢s oxygen concentration at particle surface (gmoles/cm?®)
cp; specific heat capacity of i*" species (cal/g K)
¢p; molar heat capacity of 1** species (cal/mol K)
D gas-phase diffusion coefficient (¢cm?/s)
e total energy flux (cal/cm?s)
er radiative energy flux
FT total mass flux (g/cm?s)
F total mass flux due to chemical reaction(g/cm?s)
F; mass flux of ¢** species(g/cm?s) see Equation (17)
F* mass flux due to particle fragmentation (g/cm?s)
GT defined by Equation (45a)
G, defined by Equation (45b)
G* defined by Equation (45c¢)
h  defined by Equation (32)
H; enthalpy of ¢** species
AH heat of reaction (Eqﬁation(l))
I defined by Equation (13)
J defined by Equation (14)
m, particle mass (g)

g local conversion variable (cm)
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q* value of ¢ at critical porosity, €

r radial position (cm)

ro initial particle radius (cm)

r* instantaneous particle radius (cm)

R;,, intrinsic rate per unit pore surface area(g/cm?s)

&

gas constant

~

temperature (K)
t time (s)
specific internal energy of carbon (cal/g)

overall conversion

<ok

mass fraction of ¢** species

defined by Equation (23)

N

Greek Symbols

7, defined by Equation (35)

6. effective diffusion coefficient (cm?®/s)
er total porosity

ero total initial porosity

€* critical porosity |

€ emissivity

p, density of gas-phase (g/cm?®)

p local value of particle density (g/cm?)
po initial particle density (g/cm?®)

p average particle density (g/cm?)

p* local particle density at critical porosity(g/cm?®)
p. true carbonaceous density(g/cm?)

o Stefan-Boltzmann constant
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subscripts

1 oxygen

2 carbon monoxide
3 nitrogen

¢ carbon

p at particle surface

oo at ambient conditions
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Figure 1: Histories of particle temperature and surface oxygen concentration
during combustion in air with T, = 1500K
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Figure 2: Histories of particle temperature and surface oxygen concentration

during combustion in air with T, = 1800K

(——): complete numerical solution; (- - - -): approximate solution.
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Figure 3: Particle radius, average density, and conversion versus time

during combustion in air with T, = 1500K

(——): complete numerical solution; (- - - -): approximate solution.
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CHAPTER 4

Combustion Behavior and Kinetics
of Synthetic and Coal-derived Chars:

Comparison of Theory and Experiment
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Abstract

A theoretical model describing the combustion of carbonaceous particles at
intermediate and high temperatures has been developed and compared with
experimental results. The analysis includes the effects of pore diffusion and
growth, inert mineral matter, gas-phase heat and mass transfer, and treats
solid spherical and cenospheric char particles. The combustion dynamics ére
described by time-dependent equations for particle temperature, radius, ash
layer thickness and a number of intraparticle conversion variables. These are
coupled to pseudosteady equations for gas-phase transport and internal reac-
tion and diffusion. Model predictions were contrasted with combustion mea-
surements obtained for several synthetic chars and two coal-derived chars. The

synthetic chars were glassy carbons produced in the form of solid monodisperse
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spheres. Cenospheric synthetic chars were also produced. All synthetic chars
were mineral free. The coal-derived chars containedA mineral matter and were
considered spherical. In each case, apparent and intrinsic rate parameters were
deduced by direct application of the combustion model to experimental data
gathered under conditions of moderate to large Thiele modulus. The estimated
kinetic parameters were subsequently used to generate temperature-time pro-
files of single burning particles. The results obtained are in good agreement
with the experimentally observed behavior of the synthetic and coal-derived
chars. The validity of the intrinsic rate calculation was tested by simulating
the combustion behavior of particles burning in the kinetically limited (low

Thiele modulus) regime.
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1 Introduction

The combustion of char particles has been the subject of numerous experimental
and theoretical investigations because of its obvious importance in the operation
of coal combustion systems. During the last ten years experimental capabilities
have been greatly expanded by the introduction of powerful optical techniques for
direct measurements of temperature, size, and velocity of individual particles[1-5].
During the same period, theoretical description of particle combustion has become
increasingly more sophisticated by including multicomponent diffusion and heat
tfansfer in the gas phase and diffusion with simultaneous pore growth phenomena
within the particle[6-11].

While experimental technique and theoretical analysis have both undergone sig-
nificant advance, they have evolved along somewhat independent paths. To ap-
preciate the difficulties encountered in bringing together theory and experiment we
consider the determination of intrinsic rate parameters from combustion experi-
ments. These typically include temperature, conversion, and perhaps porosimetry
measurements at a few locations along a drop tube furnace. The analysis of such
data by means of a particle combustion model requires treating all particles as
spherical and uniform in size and properties, and using a pore model consistent
with the available porosimetry data. However, the porosimetry data will not, in
general, provide adequate information to determine independently the evolution of
pore structure with conversion at high temperatures. Moreover, the distributions
of sizes, shapes and properties of the char particles versus the identical spherical
particles postulated in the analysis introduces an uncertainty that has not been
evaluated as yet. In view of these difficulties and uncertainties, it is not surprising

that the analysis of experimental data has not progressed rapidly since the original
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work of Field and Smith (eg. [12,13]).

This paper describes an attempt to bring closer experiment and theory by elim-
inating certain experimental uncertainties and comparing with calculations that
include diffusion and pore growth as well as external transport processes. The ex-
periments include combustion tests using synthetic chars and coal chars. The use
of synthetic chars consisting of monodisperse spherical particles removes the uncer-
tainty caused by the irregular shape and variable size and properties of individual
particles. The present work supplements previous work [14] through the use of a
more detailed treatment of gas-phase and intraparticle transport involved in the es-
timation of kinetic rate parameters. Moreover, new particle types were introduced
(cenospheres) and smaller size particles were investigated. Finally, the model was
applied to the combustion of coal-derived char particles. The analysis consists of
three steps. In the first step the apparent rate parameters are estimated from the
time-averaged combustion rate by solving the heat and mass transfer equations in
the gas film surrounding the particle. In the second step intrinsic parameters are
estimated from the apparent parameters using a random pore model and measured
physical properties. The third step consists of simulations with the complete model
and a limiting form of the model appropriate to large values of the Thiele modu-
lus. The calculated temperature-time histories are compared to the experimental

histories for a broad range of particle temperatures.

2 Theory

In this section, we develop the equations describing energy and mass transport
following the approach of Loewenberg et al.[11] Accordingly, the temperature and

concentration profiles are assumed to be at steady state with respect to the dy-
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namical quantities: particle conversion, temperature and radius. The temperature
within the particle is assumed to be uniform. The only reaction considered is the

direct oxidation of carbon to form carbon monoxide:
1 ,
C+ 50, =CO (1)

The gas-phase oxidation of CO to CO; is assumed to occur in the free stream and
therefore does not enter in the energy and material balance equations for the film.
The char is treated as a continuum with a local diffusion coefficient 6.(g) and surface
area (per unit volume) S(gq), where ¢(r,t) is the length by which the local surface
has receded by oxidation. The structure functions, S(g) and é.(¢), are determined
from given initial pore surface area and pore size distribution by means of a random
pore model. The pores may be modelled as cylindrical voids[12] and/or spherical
voids[11]. Pore overlap between voids of all sizes in the distribution is an implicit
feature of this model.

At any given time, the state of the particle is fully defined by its temperature, T),
radius, r,, and radial distribution of the structural variable, g(r) (0 <r <r,). The

radial oxygen profile within the particle is described by the pseudosteady equation:

ocC

0<r<r() : —— (rzﬁe(q)é;) = bR, (C,T,)S(q), (2)

ac

T:Tp(t) : C:C_g, r=0 —87—0 (3)

Where the intrinsic rate R;,(C,T},) is independent of local conversion and is expressed
as mass of carbon per unit surface area and time, thus, the stoichiometric factor,
b = 1/24. Solution of the boundary value problem, (2) and (3) yields a relation for

the mass flux at the particle surface caused by chemical reaction, F,, which can be
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expressed succinctly as:

Fp = GI(CS;TP7TP7Q(T)) (4)

In general, G; must be evaluated numerically.

The radial profiles of temperature and oxygen concentration outside the particle
are governed by energy and material balances[11] pseudosteady in particle temper-
ature and radius. The solution of these equations is simplified by assuming ternary
mass transfer involving O, CO and “inert,” the latter including N;, and COs.
The three binary diffusion coefficients are assumed equal but temperature depen-
dent, as are the thermal conductivity and density of the gas-phase. Fluxes induced
by thermal and pressure gradients are neglected and the gas-phase is assumed to
be transparent to radiation. These assumptions permit the solution of the film
equations which is presented in the appendix. In symbolic form, the pseudosteady

expressions for the surface oxygen concentration and energy flux are:
Cy = G(Fy, ey, Ty, 1) (5)

€p = G3(Fp:Tp3rp) (6)

where e, is the energy flux resulting from conduction and enthalpy flux at the

particle surface and the functions G; and G3 are defined by Egs. (A.12) and (A.13).

Egs. (4)-(6) yield the mass and energy fluxes, and the oxygen concentration

at the particle surface for given values of the time-dependent quantities: 7,, rp,

g(r); it remains to derive their dynamical equations.  The local structure variable
satisfies[12]:

dg 1

= —R;n (C, T, 7
at or ( p) ( )

with the initial condition:
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which is solved on a suitable discrete set of grid points simultaneously with the
equations for r, and T,,. The pseudosteady oxygen concentration at each grid point
is given by the solution of Egs. (2) and (3). The particle radius decreases by

combustion on the pore surfaces according to equations|[10]:

rp(t) =100, ¢< ¢ | (9)
dr, dq/ot I
o= <3q/87’ o q=q (10)

where ¢* is the value of the local structure variable at the onset of fragmenta-
tion[13,15] and is defined by: €(¢*) = €*. The apparent rate (total mass flux), F,
is equal to the sum of the mass flux generated by chemical reaction, F),, and the

flux of fragmented particles which is given by:

B =yt (1)
where p* is the local density at the onset of fragmentation. The detached char
fragments are assumed to burn in the free stream thereby not affecting the heat
and mass balances.[11] We chose €¢* equal to 0.8 although the combustion rate is
not very sensitive to the precise value.[10] If fragmentation does not occur or if char
fragments are retained, e.g., by an ash layer, ¢ = 1. The fragmentation process
is not sufficiently understood to be described in greater detail. The differential

equation for the particle temperature derived in the appendix is:

dT, T
mpcp—zl—f = 47rrp(t)2 [Fp/;‘ ’ cpdT — e, — eR] (12)

where ep is the radiative heat transfer which is given by the Stefan-Boltzmann law.
Mineral matter is assumed to be inert and finely distributed throughout the
carbonaceous matrix and forms an ash layer as combustion progresses.[16-18] The

additional diffusional resistance of this layer is neglected[18,19]. A volume balance
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on the mineral matter contained within the char relates the radius of the ash layer

to the radius of the carbonaceous particle:

v
rd = . _af (rﬁo - rf,') + 7';’ (13)

where 1 — ¢, is the solid volume fraction within the ash layer and v, is the volume

fraction of ash within the carbonaceous phase and is given by:

Za0P0
Vg =
Pa

(14)

where 1z, is the measured initial mass fraction of ash, p, is the density of the
mineral matter, and po is the initial apparent density of the char (including ash).
Although the volume fraction of ash within the particle increases with conversion,
v, 18 constant.

The combustion of a cenosphere that contains one or more large voids within
a thin, porous shell was also modelled. Such particles are often produced by rapid
devolatilization of softening coals or heavy oil droplets. In the present work, ceno-
spheres that have a single central void can be described by the modifications of the

above equations as described below. Two limiting cases were considered:

(I) Oxygen diffuses into the char solely through the external surface of the ceno-

sphere shell; the central void is not directly accessible.

(IT) The interior of the cenosphere shell “communicates” directly with the external
surface through several large “blow-holes” in the cenosphere shell[20]. Oxygen

penetrates the central void.

For cenospheric char, boundary condition (3) at r = 0 is replaced with the appro-
priate boundary condition at the inner cenosphere surface, r = r;. In case (I), r; is

constant, but in case (II), r; is described by equations similar to (9) and (10).
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The physical and chemical properties of the char and the ambient conditions
are required for modelling. Aﬁ assortment of independent experimental techniques,
described below, were used to determine the particle size, density, pore structure and
mineral content. The composition of the gas phase is specified by the mole (volume)
fraction of oxygen; the remainder is assumed inert. The ambient conditions also
include the gas and wall temperatures. The initial particle temperature, Ty, is
taken equal to the ambient gas temperature.

The solution procedure consists of integrating the dynamical Equations (7)-(10)
and (12) for the local structural variable, particle radius and particle temperature.
Evaluation of the dynamical equations requires the quantities C;, e, and F),, given
by simultaneous solution of Eqs. (4)-(6)[11]. An important simplification results by
the choice of an intrinsic rate linear in oxygen concentration. In this case, Eq. (4)

is separable and becomes:
F,=C, él(Tp’ r5,4(r)) (15)

In the limiting case of high Thiele modulus, the solution can be simplified dras-
tically by exploiting a closed-form solution of the intraparticle problem|[10] which
eliminates the local structural variable and the corresponding dynamical equation
at each grid point. The limiting solution is[10]:

dr, 1 V2

dt Hbl/sz J1/? (16)

where I'/? and J'/? are simple quadratures which describe kinetic and physical
parameters respectively:

I= /  Rin(C, T,)dC (17)

J = /Oq* %;)ﬁdq (18)
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Then according to Eq. (11), F, and the apparent rate, Ff , become:

__Po— p I/
P b1/2pT J1/2

_ I1/2
r bl/sz J1/2

and (19)

which reflects the assumption that detached char fragments burn in the free stream.
According to this procedure, Eq. (5), (6) and (19) are solved for C,, ¢, and F, and
the dynamical equations are reduced to two: Eq. (16) and (12) for the particle
radius and temperature.

The results of the above semi-analytical solution have been compared with those
of the full numerical solution and found in fair agreement for Thiele moduli larger
than 3 and excellent agreement for Thiele moduli larger than 15 [11] (based upon
characteristic length, r,/3). Thus, the simplified intraparticle solution procedure
can be successfully employed in the regime of strong pore diffusion resistance. This
will be shown again herein by comparison with the results of the full solution of

Equations (4)-(10) and (12).

3 Experimental

3.1 Ezperimental Methods

The foregoing model has been used to simulate the combustion of both synthetic
(glassy carbon) and coal-derived chars. Spherical glassy carbon particles of equal
size have been produced, from polyfurfuryl alcohol (PFA) and pore forming agents[21].
The pore formers used in conjunction with the present study were tannic acid, glyc-
erol, polyethylene glycol (PEG), Triton X-100 and solid carbon black spheres. The
particles were generated by atomization of the PFA-pore former mixtures in a ther-
mal reactor (650 K, 4s). Different particle sizes were produced ranging from 8-100

um in diameter. The solidified particles were subsequently carbonized at 800 K for
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1 hr. The two coal chars were derived by pyrolyzing a bituminus coal (PSOC-176
HVBA) at 1200 and 1600 K, respectively in Nj for 2 seconds.l

Combustion studies were conducted in an externally heated laminar flow furnace.
The wall temperatures were monitored by both a thermocouple and a brightness py-
rometer, the gas temperature by a suction pyrometer and the particle temperature
by a near-infrared, two-color pyrometer (800 and 1000 nm)[14]. Particle temper-
atures were calculated from the ratio of the signals of the two channels, applying
Planck’s law. Partial combustion experiments were also conducted under condi-
tions where the particle temperatures were low. The extent of burnout in those
experiments was monitored by measuring the change in the mass, size and density
of the particles.

Char characterization included determination of particle size, morphology, den-
sity and pore structure as well as density and mass of mineral matter. The param-
eters required for the intrinsic rate were empirically determined, but the form of

the intrinsic rate was chosen a priorr.

3.2 Ezperimental Results

The various synthetic and coal-derived chars have widely different porosities and
pore structures. While all synthetic chars contained micropores, only the chars
containing carbon black had transitional pores. The coal-derived chars contained a
broad distribution of pore sizes. The pore size distribution of the transitional- and
macropores was obtained by high-pressure mercury intrusion, and the results were
analyzed by means of the Washburn equation|[22]. The resulting distribution was
verified by application of Kelvin’s equation to gas adsorption measurements. SEM
microscopy was used to observe the surface morphology and the structure of the

interior of the particles, by examining ground and polished sections. Plain polymer
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particles and particles containing 25% carbon black are shown in Fig. 1 a,b and a
cenospheric particle is shown in Fig. 2a. In Fig. 2b, a section of a partially bufned
particle is shown. The particle appears dense, and no porosity can be detected with
the SEM. The average size of the micropores in the unoxidized chars, deduced by
small-angle x-ray scattering (SAXS), was around 10A. Corresponding BET sorption
experiments indicate that most of this porosity is closed and impermeable to the
outside gases. High temperature heat treatment increases pore size because of the
densification of the carbon matrix. Parallel oxidation further increases pore size
and removes constrictions at the pore entrances. The size of the micropbres for
the partially oxidized chars was determined from the BET area in conjunction with
the pore volume measurements, using the random capillary model. The agreement
with the SAXS results was good. The enhanced pore sizes (20-30 A) are reported
in Table I. As a result of the opening and enlarging of the pores, the Ny BET area,
measured at 77 K, increases dramatically from a few square meters per gram, for
the unoxidized materials, to a few hundred square meters per gram for the partially
burned materials.

Apparent densities, g, and helium densities, pr, for the synthetic chars, measured
by mercury porosimetry and helium pycnometry are given in Table I. The appar-
ent density of the synthetic chars remained almost constant (decreased slightly) in
the course of combustion at mid-range temperatures (1200-1600 K), meanwhile the
helium density increased substantially (by up to 50%). The fact that the carbon
matrix becomes denser in the course of high-temperature combustion has also been
verified by wide and small-angle scattering. Porosity values for particular inter-
vals in the transitional and macropore region can be deduced from the mercury
porosimetry data, the remaining void volume being due to micropores.

In air, the synthetic char particles burned slowly, at temperatures close to that
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of the combustion chamber walls. Temperatures of clouds of particles burning under
this condition were measured by both the two color and the brightness pyrometer,
for the latter assuming a carbon emissivity of 0.8. At higher oxygen partial pres-
sures, the particles ignited and burned with luminous flashes. At the 0.5 and 1.0
atm oxygen partial pressures selected for the present study all particles ignited and
burned at high temperature.

To account for the opening of the pore restrictions at the early stages of combus-
tion, the initial total area, true (helium) density, and pore sizes were taken as those
of the partially burned chars at about 25% conversion. This procedure is justified
for combustion under conditions of strong pore diffusion resistance in which the
particle burns with nearly constant apparent density.

A coal char particle is shown in Fig. 3; the particle is irregular in shape and
mineral matter inclusions are obvious. The mass fraction and composition of min-
eral matter (for the coal-derived chars) were obtained from ashing experiments and
from elemental analysis of the ash constituents. The mass fraction of ash was found
to be 8.5% and 10% for the chars obtained by pyrolysis at 1200 K and 1600 K,
respectively. The composition of the ash allows calculation of its heat capacity and
density. The coal chars analyzed in the present study contained mineral matter
with the approximate composition: SiOs, 46%; Fe,03, 20%; Al; 03, 30%; CaO, 4%,

which yields an ash density, p, = 3.59 gm/cm|3].

4 Estimation of Kinetic Parameters

The form of the apparent and intrinsic rates were assumed a priori. Particle tem-

peratures and apparent densities were assumed constant, as observed. The instan-
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taneous rate of mass loss is given by the elementary relation:

dm,

o= —4nrlFY (20)

The apparent rate is assumed to have the separable form:

F = ka(Tp)CF (21)

p

which is inserted into Eq. (20) and integrated under the assumption of constant

apparent particle density to yield:

Po [Te0 d?"p ‘
ko(T,) = 22 / i 22
(%) ty Jrpo(1-x)1/2 CF (22)

where t, and X are the experimentally observed burnout time and conversion. Eq.

(19) yields:

_ Po— p*
Po

Under the assumption of constant particle temperature, Eq. (12) becomes:

F, FT (23)

p

— p* T,
(”0 P > ka(T,,)cg/ " epdT — e, — ep =0 (24)
Po Too

Egs. (5) and (6) may be combined to yield the surface oxygen concentration as
a function of the apparent rate constant and the instantaneous values of particle

radius and temperature:

C, = Galka,rp, Ty) (25)

Inserting this result and (6) into Eq. (24) yields the particle temperature in terms

of the apparent rate constant and instantaneous particle radius:
Tp = Gs(ka,‘l'p) (26)
Inserting (25) and (26) into (22) yields the desired result:

ka(Tp) e G@(tb, X, ‘f’po) (27)
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where the particle temperature, assumed constant, is taken as the arithmetic mean
value within the integrand of (22). Thus, according to this approach, each particle
temperature history yields a pair: (kq,7}) in terms of the burnout time, conver-
sion and initial particle radius. An Arrhenius-type plot of the pairs, (k,,7,), yields
estimates of the observed apparent activation energy, F,, and pre-exponential fac-
tor, A,. The apparent reaction order, n, can be determined, in principle, from
rate measurements at constant particle temperature and different ambient oxygen
concentrations. However, first-order kinetics were assumed throughout.

The assumption of constant apparent particle density allows the use of the sim-
plified model defined by Egs. (16)-(19). For an intrinsic rate given by a power law
model[23] Ri, = kin(T,)C™ Eq. (19) yields:

pT o ___Po kin (T,)C7 !
p b1/2pTJ1/2 m+ 1

(28)

where J is depends only physical parameters. Comparing (28) with (21) yields

relations for the intrinsic rate parameters in terms of the apparent parameters:

Ey = 2E, (29)
m = 2n—1 (30)
2
A,
Aim = 2nbJ ("T ) (31)
Po

The foregoing approach is valid only in the case where small variations in particle
temperature are observed. In cases where the particle temperature varies signif-
icantly during combustion, the é.pproach of obtaining a pair: (k,,T,) from each
particle temperature history should not be applied. In such cases, a trial and error
procedure must be performed to determine k,(7}) such that error between predicted
and observed particle temperature histories is globally minimized on a large set of

combustion data. The present approach, when valid, is more direct and greatly
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simplifies the computations required to determine the estimated rate parameters.

5 Results and Discussion

Arrhenius plots of the apparent and the intrinsic rates, calculated as outlined above,
are shown in Figs. 4 and 5, respectively, for selected synthetic chars and the two
coal-derived chars. The apparent rates calculated by the present method are in good
agreement (within a factor of two) with rates estimated elsewhere[14] for some of the
materials examined herein. The approach used in that work does not account for the
temperature dependence of transport coefficients and thermodynamic properties of
the gas-phase.

Intrinsic activation energies are in the range of 32 to 37 kcal /mol for the synthetic
chars, and about 47 kcal/mol for the coal-derived chars. The solid line in Fig. 5
corresponds to Smith’s best-fit line for a variety of coal chars[24]. The intrinsic
reaction constants calculated in this study fall below Smith’s curve which can be
attributed to a combination of two factors: lower reactivity of the present materials
and, the inherent differences between the two methods. To address the latter issue,
a comparison was made between intrinsic rates estimated by both methods for the
same materials. This comparison revealed that the intrinsic rates estimated by the
present method are 2-3 times lower than those predicted by Smith’s method at low
temperatures, and 4-5 times lower at higher temperatures. The prediction of lower
intrinsic rates using a random pore model has been explained as a consequence of
pore enlargement which produces a larger pore surface area and diffusion coefficient
in the “reaction zone.”[10] A comparison between the apparent and the intrinsic
rates reveals that the coal-chars, although apparently more reactive because of

their enhanced macropore network, seem to be intrinsically less reactive.
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Using the intrinsic rate constants of Flg 5 and properties listed in Table I,
temperature-time proﬁies for chars oxidized under various conditions were obtained.
At the high particle temperatures encountered under most conditions investigated,
estimates of the Thiele modulus (based upon average pore structure and particle
temperature) were high (100-130 for synthetic chars and 15-20 for coal-derived
chars). Thus, application of the simplified intraparticle model (Eq. 19) was justified.
At these high values of the Thiele modulus particle combustion occurs with constant
apparent density and monotonically decreasing radius.

To reproduce the observed initial sharp increase in particle temperature exhib-
ited by the synthetic chars under oxygen-rich conditions, it was necessary to take
into account the combustion of residual volatile matter in these chars. Pyrolysis
at 1600 K resulted in mass loss up to 10% [14] on an estimated time scale of 1
ms. Further evidence for the existence of volatile material is given by high heating
values (calorimetry) in comparison to pure carbon, and the existence of H; and
O, (elemental analysis). At high oxygen concentrations, the volatiles may burn
near the particle surface and cause significant influence upon particle ignition by
inducing rapid heatup. At lower Os concentrations, the residual volatile matter
did not ignite. The coal chars were assumed volatile-free because of their previous
high-temperature pyrolysis.

Figures 6a and 7a show the experimental (dotted) and the theoretical (solid)
temperature histories for PFA particles and particles formed from 50% Tannic acid
and 50% PFA, respectively. Figures 6b and 7b show the conversion and normalized
values for surface oxygen concentration and particle radius versus time. The parti-
cles had a diameter of 45 ym and were burned in pure oxygen at a wall temperature,
Tw, of 1500 K and a free-stream gas temperature, Ty, of 1400 K.

The steep rise in particle temperature and decrease in surface oxygen concen-



97

tration within the first 1-2 milliseconds predicted by the model reflects the assumed
combustion of volatiles at the particle sﬁrface and is consistent with the observed be-
havior. After the initial heatup period, the theoretical temperature and surface oxy-
gen profiles are relatively flat. Film diffusion is important but not rate-controlling.
Figures 6b and 7b indicate that experimental extinction occurs at about 85% the-
oretical conversion when the normalized particle radius is 53% of its initial value.
Extinction may be caused by the increased convective heat losses accompanying the
decrease in particle size. |

Figures 8a and b show the combustion of 45 um glassy carbon particles contain-
ing 25% carbon black (O3, Tw = 1450 K, T,,=1350 K). These particles burn more
quickly and at higher temperatures, and exhibit a sharper initial temperature rise
than those described above because of their lower density and the presence of tran-
sitional pores which facilitate intraparticle diffusion. The calculated and measured
extinction times nearly coincide in this case.

Model predictions and experimental traces for synthetic char cenospheres are
shown in Figs. 9a and b (Og, Tw=1500 K, T, =1400 K). The particles have an outer
diameter of &~ 114 um and wall thickness of 3 — 5um. The same kinetic parameter
values as obtained for the solid particles of the same composition were used to
simulate combustion of the cenospheres. The solid line in Fig. 9a corresponds to
case (I), explained earlier, where oxygen diffuses into the char through the external
surface only, and the dashed line corresponds to case (II) where oxygen diffuses
into the char through both shell surfaces. The experimental curves clearly favor
case (I), suggesting that depletion by the oxidation reaction effectively shields the
central void from oxygen penetration under the particular experimental conditions.

Figure 9b displays particle conversion, as well as normalized values for surface

concentration and shell thickness (r, — ;) /(rpo — 7i0); these quantities are presented
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only for case (I). Particle size is essentially constant during the combustion process,
hence, neither convective heat losses nor film diffusion- are appreciably enhanced
with burnoff thereby explaining the plateaus in particle temperature and surface
oxygen concentration. This reasoning suggests that the cenospheres burn in a lumi-
nous mode throughout their history thus explaining the coincidence of experimental
extinction and theoretical burnout.

The combustion of the coal chars PSOC-176 pyrolyzed at 1600 and 1200 K are
shown in Figs. 10 and 11 (50% O3, Tw=1500 K, T=1400 K). The calculated
curves were obtained by treating the particles as spherical, with 50 um diameter.
Considerable variability is observed among the measured traces as expected from
variations in size, shape and properties of individual particles. The calculated curve
lies within the range of the measured traces in terms of temperature and burnout
time. Figures 10b and 11b include and additional curve showing the ratio of ash
layer thickness to particle radius, (r, —rp)/7p.

Synthetic chars (solid spheres) burning in air exhibit particle temperatures be-
tween the gas and wall temperatures yielding estimates for the Thiele modulus in
the range 3-6 thus allowing deeper oxygen penetration than under the conditions
investigated above. Therefore, decreasing particle density is expected to accom-
pany combustion. To describe combustion behavior under these conditions and to
justify the earlier use of the simplified intraparticle model, the full intraparticle so-
lution (Eq. (5)) is implemented (solid curves) and compared with the approximate
solution (dashed curves) in Figures 12 and 13. In both cases, the surface oxygen
concentration was predicted to be within 1% of the ambient value and, thence, is
not shown. Film diffusion is fast.

Figures 12 and 13 depict the behavior of a synthetic char particle burning in air

with T,,=1450 K, Ty =1500 K; and T.,,=1350 K, Ty =1400 K, respectively. The
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simplified solution necessarily predicts constant density and monotonically decreas-
ing radius while the full solution predicts decreasing density with cons;ca,nt radius
initially followed by shrinking-core combustion. The discrepancy between the two
solutions is most pronounced at lower temperatures (Fig. 13) but both correctly
predict the observed particle temperatures and conversion after 2 s, the residence
time in the combustor. These results support the application of the simplified in-
traparticle model to simulations at higher particle temperatures. The kinks in the
particle radius and density profiles (Figs. 12 and 13) reflect the tacit assumption
in the full intraparticle model that the char fragments upon reaching a prescribed
local void volume, €* exactly equal to 0.8[11].

The combustion behavior of all chars described in Table I, burning at various
combustor (wall) temperatures (1300 K - 1600 K) and different ambient oxygen
concentrations (air, 50%, 100%), were simulated by the model with qualitatively
similar results, although only selected cases have been shown for the sake of brevity.

The general fidelity with which temperature profiles were reproduced in the
foregoing examples demonstrates some degree of accuracy in the determination of
apparent reaction rates but not intrinsic parameters. This point is illustrated by
application of the model (case (I)) to cenosphere combustion behavior. In this case,
intrinsic rate parameters were determined from solid particles of the same material;
however, both particles (solid and hollow) have similar pore structure and burn
under conditions of high Thiele modulus. Therefore, this test cannot be used to
access the method by which intrinsic rate parameters are estimated but it does
provide support for the apparent rate determinations.

Comparison between experimental results and model predictions under a variety
of conditions which affect intraparticle transport is required to test the estimated

intrinsic kinetic parameters. This would demonstrate that indeed the intrinsic pa-
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rameters are a chemical property of the material and, thus, are independent of pore
structure and evolution. Such a test was achieved by using the intrinsic activation
energy and pre-exponential factor previously determined for a particle burning un-
der conditions of high Thiele modulus to describe the combustion of a particle with
identical material and pore structure under conditions of low diffusional resistance.

Combustion parameters for 8 um diameter PFA particles are depicted in Fig. 14
The particles burned slowly in air at particle temperatures approximately equal to
the gas (Tw = 1400 K, To, = 1350 K; and Tw = 1300 K, T\, = 1250 K). To obtain
the profiles of these parameters, the intrinsic rate previously derived from the 45
pm particles was employed. The model satisfactorily predicted the experimentally
observed conversion (at the end of the 2 s. residence time in the furnace). The
average Thiele modulus during combustion was small (less than unity) consistent
with the model predictions of continuously decreasing apparent density and nearly
constant size. The foregoing example supports the present model of intraparticle

transport which was used to infer intrinsic rate parameters from apparent rate data.

6 Conclusions

The intrinsic and apparent kinetic parameters of several synthetic chars and two
coal chars were deduced by a simple analysis of time-temperature traces of indi-
vidual particles, measured by two-color pyrometry. Estimated intrinsic parame-
ters were then used in a detailed particle combustion model to calculate complete
temperature-time histories of burning particles. Measured and calculated tempera-
ture profiles were found in good agreement for the the synthetic char particles. The
experimental temperatures of the coal char particles exhibited considerable particle-

to-particle variation and could only be described approximately by the calculated
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temperatures corresponding to nominal particle properties.

Under most conditions employed in the experiments, the Thiele modulus was in
the range of 50-200 and a limiting form of the combustion model represented the
data very well. Even at values of the Thiele modulus as low as 10, the limiting
calculations were in good agreement with the complete calculations and the exper-
imental results. It is concluded that the limiting form of the model is sufficient
under most conditions. At temperatures above 2000 K, the intrinsic rates of all
chars examined varied by less than a factor of two. The kinetic parameters deter-
mined from experiments conducted at moderate to high Thiele modulus conditions
were applied to simulate the combustion behavior of particles burning under kinetic

control. The results support the procedure by which intrinsic rate parameters were

deduced.
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8 Notation

SYMBOL

DESCRIPTION

apparent pre-exponential factor
intrinsic pre-exponential factor
stoichiometric coeflicient

oxygen concentration

oxygen concentration at particle surface
average specific heat capacity of particle
molar heat capacity of particle

gas phase diffusion coefficient

energy flux by conduction and enthalpy flow
radiative energy flux

apparent activation energy

intrinsic activation energy

total molar flux

molar flux of i* component

total mass flux; apparent rate

mass flux due to reaction at particle surface
fragmentation flux at particle surface
molar enthalpy of i** species

molar heat of reaction

apparent rate coefficient

intrinsic‘ rate coefficient

intrinsic reaction order

particle mass

UNITS

g/cm? s (atm)"
g/cm? s (atm)™
(=1/24)

atm

atm

cal/g K
cal/mole K
cm? /s

cal/cm? s
cal/cm?s
keal/g

kcal/g
moles/cm? s
moles/cm? s
g/cm? s

gfen s

g/cm? s
cal/mole
cal/mole
g/cm® s (atm)™

g/cm® s (atm)™
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apparent reaction order

local structural variable

value of ¢ at critical porosity, €*
radial position

instantaneous ash radius

instantaneous inner shell radius (cenosphere)

instantaneous particle radius

intrinsic reaction rate

pore surface area per volume

particle temperature

wall temperature

time

burnout time

specific internal energy of carbon
volume fraction of ash in carbon matrix
particle volume

conversion

mass fraction of minerals

mole fraction of it*

effective intraparticle diffusion coefficient
total porosity

volume fraction of ash in carbon matrix
critical porosity

particle density

average particle density

density of ash

cm

cm
cm
cm
cm
gm/cm? s (atm)™

cm™!

K
K
s
s

cal/mole

cm

cm?/s

g/cm®
g/cm®

g/cm?
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p* particle density at critical porosity g/cm®
oT true carbonaceous density g/cm®
SYMBOL DESCRIPTION
SUBSCRIPTS
P at particle surface

initial value

00 at ambient conditions



10.

11.

12.

13.

105

References

. McLean, W. J., Hardesty, R. D. and Pohl, J. H. Fighteen Symp. (Int.) on

Combustion, The Combustion Institute, Pittsburgh, PA. p.1239 (1981).

Mitchell, R. E., McLean, W. J. Nineteenth Symposium (International) on
Combustion. The Combustion Institute, Pittsburgh, PA. p.1113 (1982).

. Timothy, L. D., Sarofim, A. F. and Beér, J. M. Nineteenth Symp. (Int.) on

Combustion. The Combustion Institute, Pittsburgh, PA. p.1123 (1982).

Jorgensen, F. R. A. and Zuiderwyk, M. J. J. Phys. E: Sci. Instrum. 18:486
(1985).

Levendis Y. A. and Flagan R. C. Comb. Sci. Tech. 53:117 (1987).

Libby, P.A., and Blake, T.R. Comb. Flame 36:139 (1979).

Sundaresan, S. and Amundson, N.R. Ind. Eng. Chem. Fund. 19:344 (1980).
Sotirchos, S.V., and Amundson, N.R. Ind. Eng. Chem. Fund. 23:191 (1984b).
Sotirchos, 8.V., and Amundson, N.R. A.L.Ch.E.JI. 30:549 (1984d).

Gavalas, G.R. Comb. Sci. Tech. 24:197 (1981).

Loewenberg, M., Bellan, J. and Gavalas, G. R. Chem. Eng. Comm. 58:89
(1987).

Gavalas, G.R. A.I.Ch.E.JI. 26:577 (1980).

Dutta, S.,Wen, C.Y., and Belt, R.J. Ind. Eng. Chem., Process Des. Deuv.
16:20 (1977).



14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

106

Levendis Y. A., Flagan R. C. and Gavalas G. R. submitted to Comb. and

Flame.

Kerstein, A.R., and Niksa, S. Twentieth Symp. (Int.) on Combustion. The
Combustion Institute, Pittsburgh, PA. p.941 (1984).

Sarofim. A. F., Howard, J. B., and Padia, A. S. Comb. Seci. Tech. 60:187
(1977).

Hamblen, D. G., Solomon, P. R., Hobbs, R. H.: Physical and Chemical Char-
acterization of Coal, EPA Report No. EPA-600/7-80-106, 1980.

Northrop P.S.: (1987), personal communication.

Senior, C. Y. “Submicron Aerosol Formation During Combustion of Pulver-

ized Coal.” Ph.D. Thesis, Caltech, 1984.

Gavalas, G.R., Loewenberg, M.,Bellan, J. and Clayton, M. Paper presented
at the annual A.I.Ch.E. meeting, Chicago, November 10-15, 1985.

Levendis Y. A. and Flagan R. C. Submitted to Carbon.

Scholten, J. J.: From Porous Carbon Solids (R. L. Bond, Ed.), Academic
Press, p.225, 1967. |

Smith, I. W., and Tyler, R. J. Comb. Sci. Tech. 9:87 (1974).

Smith, LW. Nineteenth Symp. (Int.) on Combustion. The Combustion Insti-
tute, Pittsburgh, PA. p.1045, 1982.



107

10 Appendix

Analysis of Gas-Phase Transport

In this appendix, we develop the pseudo-steady equations describing gas-phase
transport and in particular, we derive Egs. (5), (6) and (12). Although this mate-
rial may be found elsewhere[11], a self-contained development is useful. In the first
subsection, we derive algebraic expressions for the pseudosteady mass and energy
fluxes evaluated at the particle surface (Egs. 5 and 6 in section 2). In the sec-
ond subsection, we derive the energy equation (Eq. 12 in section 2). The previous
derivation[11] is considerably simplified through the use of gas-phase concentrations

expressed in mole fractions rather than mass fractions.

10.1 Pseudosteady Mass and Energy Fluzes

Denoting by y; and f; the mole fraction and molar flux of the i*" component (0,:i=1,

CO:i=2, inert:i=3), we can write the pseudosteady component balances as:
2 2
r'fi =71, fip (A1)

where f;, denotes the molar flux of the ' component at the particle surface. The
fluxes, f; are related by the Stefan-Maxwell equations, which under the assumptions
made earlier, simplify to:

o= —p()D(T) 2 + g (42

where f = 3% | f;. The stoichiometry of Eq. (1) yields:
f3p - 07 flp = ’“fp’ f2p - zfp (A3)

which are related to the mass fluxes:

F.=Mf;,  F=24f (A.4)
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where F; is the mass flux of the i*-species of molecular weight M; and F = ¥3_, F.

Combining (A.1)-(A.3) yields the balance for oxygen (i = 1):

P o(T)D(T) L = 12, (3 1) (45)

The pseudosteady energy equation for a gas transparent to radiation is:

r’ [—/\(T)fg +2 f,-Ii-(T)} =rpe (A.6)

o= | A0S+ 5 )] )

r=r(t)

By using Egs. (A.1) and (A.3), we rewrite (A.6) as:
iar

TZA(T)E;_- =12 [h(T)f, — €] (A.8)
with boundary conditions:
r=r, : T =T, r—o0 : T - Ty
where h(T) is given by:
W(T) = [2H,(T) — Hy(T)] (4.9)

We divide Eq. (A.4) by Eq. (A.8) to obtain:

p(T)D(T) dyy i +1

=—— A.10
NT) 4T~ W(T) - (4.10)
T=Tyx : Y100
where -, is the ratio of energy flux to mass flux:
€
Vp = — All
p fp ( )
Integrating Eqgs. (A.8) and (A.10) yields, respectively:
T» XT)dT
/Tw T = (4.12)
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Vi + 1\ (T XT) AT
In ( yip + 1 ) B /w p(T)D(T) ~, — h(T) (A.13)

Egs. (A.12) and (A.13) are the algebraic expressions for the mass and energy fluxes

at the particle surface.

10.2 Energy Fquation

The particle energy balance can be written as:
d 7 2
= /V pU AV, = —a7r2(e, + er) (A.14)

where e = 0(6,,1},4 — EOOTOO4) is the radiative flux. In view of the assumed uniform

intraparticle temperature profile:

. dT, ~
mpcp—d;p- = 477’ [prc(Tp) — fo¥ — eR] (A.15)

having made the additional approximation: ¢, ~ ¢,. The reference states for the

enthalpies are chosen as:

which implies:

Hy(T) = AH(T,)

where AH is the heat of reaction (1). Thus, the quantity k(T defined by Eq. (A.9)
is given by :
1.

huq:[aﬁugy+AZ@m-§%mn} (A.16)

and the energy equation (A.15) becomes:

_dT, N
mPCP“(’it_ = 47er fp/T deT - fpf\/p — €R (A17)
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List of Figures

. SEM micrographs of solid synthetic particles: (a) plain polymer (PFA) and

(b) PFA with 25% carbon black.

. SEM micrographs of (a) a cenospheric particle (b) a section through a partially

burned PFA particle.
SEM micrograph of a PSOC-176 coal-char particle pyrolyzed at 1600 K.

Arrhenius-type plot of the apparent reaction rate coefficient vs. the inverse

of particle temperature.

Arrhenius-type plot of the intrinsic reaction rate coefficient vs. the inverse of

particle temperature.

Combustion parameters for 45 um solid PFA particles burning in O, at a
Tw of 1500 K. (a) temperature-time profile, model: solid line, experiments:
dotted line. (b) burnout, relative surface oxygen concentration and relative

radius vs time.

Combustion parameters for 45 um solid particles formed from 50% tannic acid
- 50% PFA burning in O, at a Tw of 1500 K. (a) temperature-time profile,
model: solid line, experiments: dotted line. (b) burnout, relative surface

oxygen concentration and relative radius vs time.

. Combustion parameters for 45 um solid PFA particles containing 25% carbon

black burning in O, at a Tw of 1450 K. (a) temperature-time profile, model:
solid line, experiments: dotted line. (b) burnout, relative surface oxygen

concentration and relative radius vs. time.
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Combustion parameters for 114 um cenospheric particles formed from 50%
tannic acid and 50% PFA burning in Oz at a Tw of 1500 K. (a) temperature-
time profile, model: case (I) solid line, case(II) dashed line; experiments:
dotted line. (b) burnout, relative surface oxygen concentration and relative

radius vs. time.

Combustion parameters for 50 um PSOC-176 coal-char particles (1600 K py-
rolysis) burning in O, at a Tw of 1500 K. (a) temperature-time profile, model:
solid line, experiments: dotted line. (b) burnout, relative surface oxygen con-

centration, relative particle radius and relative ash layer thickness vs. time.

Combustion parameters for 50 um PSOC-176 coal-char particles (1200 K py-
rolysis) burning in O, at a 7w of 1500 K. (a) temperature-time profile, model:
solid line, experiments: dotted line. (b) burnout, relative surface oxygen con-

centration, relative particle radius and relative ash layer thickness vs. time.

Combustion parameters for 45 um solid particles formed from 50% tannic
acid - 50% PFA burning in air at a Ty of 1500 K Temperature-time profile,
burnout, surface oxygen concentration, relative radius and apparent density

vs. time; complete model: solid line, simplified model: dotted line.

Combustion parameters for 45 um solid particles formed from 50% tannic
acid - 50% PFA burning in air at a Ty of 1400 K. Temperature-time profile,
burnout, surface oxygen concentration, relative radius and apparent density

vs. time; complete model: solid line, simplified model: dotted line.
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14. Combustion parameters for 8 um solid PFA particles burning in air at a Ty of
(a) 1400 K and (b) 1300 K. Temperature-time profile, burnout, surface oxygen
concentration, relative radius and apparent density vs. time. (Temperature

increments are 100 K.)



TABLE 1

Physical Properties of Synthetic Chars

Apparent | Helium Porosity BET | Pore Radius | Heating

CHAR Density | Density | Mic-Trans-Mac | area | Mic-Trans-Mac | Value
g/cm? g/cm?® % m? A cal/g

Plain Polymer 1.25 1.69 26-1-1 400 11-100-1000 8160
Plain Polymer 1.33 1.85 26-1-1 420 12-100-1000 7706
+ 18% Tan.Acid
Plain Polymer 1.37 1.96 28-1-1 320 13-100-1000 7655
+ 50% Tan.Acid
Plain Polymer 1.17 1.80 30-1-1 430 18-100-1000 8184
+ 18% PEG
Plain Polymer 1.26 1.80 33-1-1 620 14-100-1000 8534
+ 35% Glycerol
+ 7% Triton
Plain Polymer + 0.88 1.70 22-25-1 360 11-75-1000 7900
25% CarbonBlack
Plain Polymer 0.65 2.0 26 -.5-.5 300 12-100-1000 7690
+ 50% Tan.Acid
‘Cenospheres’
PSOC-176 0.76 1.85 30-12- 20 350 10-250-1000 7250
1600 K char Ash free
PSOD-176 0.65 1.80 28-1-27 450 10-100-1000 7800
1400 K char Ash free

eIl
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Figure 1: SEM micrographs of solid synthetic particles: (a) plain polymer (PFA)
(b) PFA with 25% carbon black.



raphs of: (a) 2 cenospheric particle

ed PFA particle.

Figure 2: SEM microg
(b) a section through a partially burn
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Figure 3: SEM micrograph of PSOC-176 coal-char particle pyrolyzed at 1600 K.
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APPARENT RATE CONSTANT vs TEMPERATURE
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INTRINSIC RATE CONSTANT vs TEMPERATURE
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Tw of 1500 K. (a) temperature-time profile, model: solid line, experiments: dotted
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acid - 50% PFA burning in O, at a Tw of 1500 K. (a) temperature-time profile,
model: solid line, experiments: dotted line. (b) burnout, relative surface oxygen
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ments: dotted line. (b) burnout, relative surface oxygen concentration and relative
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pyrolysis) burning in O at a Tw of 1500 K. (a) temperature-time profile, model:
solid line, experiments: dotted line. (b) burnout, relative surface oxygen concen-

tration, relative particle radius and relative ash layer thickness vs. time.



124
PSOC176 COAL CHAR (1200 K)

T Al T T v T - Y v Y H

3000
T
1

3
g o
28t ]
3 & a
e !
o
2 -
()
. [
o
oL
S _
A i N A i 1 " i i i |l
0 5 10
TIME (msec)
PSOC176 COAL CHAR (1200 K)
. v v Y v v . v .
e -t
rp.o/rp.o ]

X, Y'p/Yib' rp.o/rp.o o (ro.n - rp.o)/rp.o
0.5
T

TIME (msec)

Figure 11: Combustion parameters for 50 pm PSOC-176 coal-char particles (1200 K
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Figure 12: Combustion parameters for 45 um solid particles formed from 50%
tannic acid - 50% PFA burning in air at a Ty of 1500 K. Temperature-time profile,
burnout, surface oxygen concentration, relative radius and apparent density vs.

time; complete model: solid line, simplified model: dotted line.
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tannic acid - 50% PFA burning in air at a Ty of 1400 K. Temperature-time profile,
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time; complete model: solid line, simplified model: dotted line.
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Steady-State Reactant Flux

into a Medium Containing Spherical Sinks

M. Loewenberg and G. R. Gavalas
Department of Chemical Engineering 206-41

California Institute of Technology
Pasadena, California 91125

Abstract

A detailed analysis is presented for determining the reactant flux into a com-
posite material containing randomly-located, reactive spherical centers. The
governing equations are configurationally averaged assuming the spheres are
distributed according to a hard-sphere potential. The resulting infinite hierar-
chy of coupled equations is truncated using physical considerations of screening
and diluteness of the particulate phase. A general asymptotic solution is ob-
tained valid to order c¢ for all bounded and semi-infinite domains. The solution
reproduces the mean-field result and includes the previously-neglected effects
of sphere-boundary interactions. These interactions dominate the effect of two-
sphere interactions which affect the solution at order ¢3/21nc. Explicit consid-
eration is given to the case in which the domain is spherical or semi-infinite
and a solution obtained for each. The solutions obtained generally predict
an enhanced reactant flux relative to the mean-field result. The solution is

illustrated by application to the problem of coal ash vaporization.
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1 Introduction

The customary analysis of reaction and diffusion in heterogeneous catalysis is pred-
icated upon an atomic scale dispersion of the reaction sites. In some systems of
practical importance, the reaction sites are small but macroscopic particles imbed-
ded in a matrix which permits diffusion but is otherwise inert. Examples of such
discrete reaction-diffusion problems can be drawn from biotechnology and coal com-
bustion. An example from the former area is that of immobilized cell systems where
the cells are fixed within an inert matrix permitting the diffusion of nutrients and
metabolic products (Chibata and Wingard (1983)). An important example from
coal combustion is the reaction of discrete mineral inclusions within the char parti-
cles leading to the formation and vaporization of volatile inorganic species (Quann
and Sarofim (1982)).

The diffusive transport through an infinite medium containing spherical particles
with instantaneous reaction on the particle surfaces was considered by several au-
thors starting with by Smoluchowski (1916). Felderhof and Deutch (1976) employed
an electrostatic analogy to develop a governing differential equation for the reactant
concentration field at steady-state. Their results apply to dilute volume fractions
of spherical sinks and depend upon a superposition approximation. More recently,
Muthukumar and Cukier (1981) used a multiple scattering approach to extend the
work of Felderhof and Deutch to an arbitrary volume fraction of monopole sinks. A
self-consistent scheme was used by Muthukumar (1982) to obtain the simultaneous
volume fraction dependence of the effective rate and diffusion coefficients. Mattern
and Felderhof (1986, 1987) determined the rate coefficient on the basis of a cluster
expansion and discussed differences with previous results.

The general approach followed in these papers is the formulation of a differential
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equation that describes, approximately, the average concentration. This equation
is derived by some form of averaging érocedure assuming a spatially homogeneous
medium. The boundaries, if any, are taken into account by imposing the custom-
ary boundary conditions. However, in some problems, external boundaries play a
more pervasive role and must be considered in the formulation of the approximat-
ing differential equations. This feature is especially important for determining the
concentration flux into the medium which depends upon the details of the local field
near the boundary.

Related to the discrete reaction-diffusion problem is the problem of heat con-
duction through a material consisting of spherical particles imbedded in a matrix
of different conductivity. This problem has been treated by Jeffrey (1973) via a
renormalization technique, by Hinch (1977) using a truncation of a hierarchy of
configurationally averaged equations, and by Chang and Acrivos (1986) using a
modified effective medium approximation. These methods are not readily applica-
ble to finite media which do not possess translational symmetry. However, Chang
and Acrivos (1987) have recently treated the problem of heat conduction into a
composite medium adjacent to a plane wall.

The purpose of this paper is to determine the flux of reactant on the boundary
of a finite or semi-infinte region containing a dilute suspension of reactive spheres.
Our approach utilizes a hierarchy of configurationally averaged equations as intro-
duced by Hinch (1977). We explicitly include the interaction of a sphere with the
boundary which significantly affects the reactant flux and dominates the effect of
all multi-sphere interactions. Direct two- sphere interactions are confounded by
the loss of translational symmetry and are thus not included in our analysis. A
screening modulus determines the transition from a power series dependence on

sink concentration to a more complicated non-analytic behavior. Explicit solutions
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are obtained for spherical and semi-infinite domains and the solution is illustrated

- by application to the problem of coal ash vaporization.

2 Problem Formulation

The object of this paper is to seek the reactant flux, at steady-state, on the bound-
ary, 911, of a domain, {1, containing a dilute, solid suspension of reactive spheres
in an inert matrix material. The analysis is restricted to all domains which are
either bounded or semi-infinite. We will assume that the reactant diffuses within
the inert phase with a constant diffusivity, D. We will also assume that the spheres
are identical with radius, a, although the present analysis can easily be extended to
a distribution of sphere radii as demonstrated by Jeffrey (1973). The spheres can
be distributed according to any specified distribution function. A popular choice of
practical interest is the hard-sphere distribution and is the one adopted throughout:
spheres are not allowed intersection with either each other or with the boundary of
the domain but are otherwise randomly located. We can define a sphere number

density, n, which is related to the volume fraction of the spherical phase, c.

4
c= ?Wasn (2.1)

The total number of spheres in (1 is approximately given by:

N ~nV (2.2)

where V is the volume of the material. We shall be interested in the case N >> 1.
Diluteness of the spherical phase implies ¢ << 1.

At steady-state, the reactant concentration field, y(x), obeys Laplace’s equation

Viy(x) =0 (2.3)
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for all points x which lie in the inert phase of the domain. We shall assume that
chemical reaction on the spherical surfaces is essentially instantaneous relative to

interparticle diffusion which implies:
y(x) =y. when x lies on any sphere surface (2.4)

where y, is the equilibrium concentration which is assumed constant. We will as-

sume that reactant concentration is constant over the domain boundary, 90:
y(x) =yo x €00 (2.5)

Using the dimensionless variables:

x! y(x) — v.
x=— u(x) = ?(Jo—)—?;j (2.6)
we obtain the equations:
Viu(x) =0 (2.7)
u(x) =0 when x lies on any sphere surface (2.8)
u(x) =1 x € 9N (2.9)

The dimensionless reactant flux into the domain at a point x on the boundary will

be denoted:
du(x)
= - .10
F(x) ™ x € 9N (2.10)

The average flux on the boundary is given by:

1

=< [ Fx)x (2.11)

F

where S is the surface area of d{). In general, F' will depend on the sphere volume

fraction, ¢, and is specific to the particular domain.
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3 Configurational Averaging

In this section, we average the governing equations over all allowable configurations
of the spheres in the domain. The results of the averaging procedure are presented
below and follow from the derivation in Appendix A.
Before averaging over all allowable configurations of spheres, Equation (2.7) and
boundary condition (2.8) are replaced by the following equation:
Viu(x|xg, -, Xn) = D —g—z—u(xlxl,- cxn)6(|x — x| — 1) (3.1)
i=1 .
which is valid over the whole region, the spherical phase as well as the inert matrix
according to the derivation given in Appendix A. This equation is valid for all x
in {1 and is subject only to boundary condition (2.9) on 90). Excepting the sphere
surfaces where it is singular, the sink term on the right vanishes everywhere in the
domain. The set of position vectors, {x,---,Xn}, locate the NV indistinguishable
sphere centers and define a particular configuration of the spheres. Equation (3.1)
provides the starting point for configurational averaging.
According to the derivation in Appendix A, the configurational average of Equa-
tion (3.1) is:

3¢ 3
4 an d 3.2
an [U|X‘X1H=1}nﬁ on (1 (3] ) ey (3.2)

V{u(x))
where (1 is the allowed portion of the domain for sphere centers consisting of the do-
main {1 less the region within one dimensionless hard-sphere radius of the boundary,
9. The solution of Equation (3.2) must satisfy the normalized boundary condition
(2.9) on 0.

Equation (3.2) couples the unconditionally averaged field to the conditionally

averaged field with one sphere fixed at x;. Averaging Equation (3.1) over configu-

rations which have a sphere fixed at x; yields the first conditionally averaged field
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equation:

v uxar)) = oo | 2 ik xa)dxe x - > 1 (3.3)

4T J{|x-xz|=1}nf}; On

where (1 is defined by the intersection: {1 N {||x; — X3|| > 2} and, according to the
hard-sphere distribution, is the allowed portion of the domain for a second sphere
center given one center is at x;. The solution of Equation (3.3) must, in addition to
satisfying boundary condition (2.9) on 911, also satisfy (2.8) on the surface of the
sphere centered at x;.

The first conditionally averaged field equation, (3.3), is coupled to the second
conditionally averaged field in the same manner as (3.2) is coupled to (3.3). Thus,
the same averaging process used to obtain the first conditionally averaged field

equation is repeated to obtain the second. The result is:

V(u) (x]x1,%2) =

e k]
A7 J{x—xs]=1}nf; On

(u) (x|x1, X2, X3)dx3 Ix—xi|| > 1, [x—x >1 (3.4)
where (1, is defined by the intersection: (1N {||xs —x1|| > 2} N {||x3 — x2|| > 2} and
is the allowed portion of the domain for a third sphere center given centers at x;
and x,. The solution of Equation (3.4) must satisfy boundary condition (2.9) on
90 and (2.8) on the surface of both fixed spheres and is analogously coupled to the
conditionally averaged field with three spheres fixed.

As may now be apparent, the foregoing procedure may be repeated indefinitely
producing an infinite hierarchy of coupled, conditionally averaged equations with an
additional sphere fixed at each level. The hierarchy is truncated by exploiting the
diluteness condition, ¢ << 1, and employing the physics of screening as described

below. The truncated hierarchy is solved in reverse order: the equation with the

most spheres fixed is solved first because it is decoupled from the others; its solution
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provides the forcing term for the next equation. The procedure is continued until

the unconditionally averaged field is found. The truncation procedure follows.

4 Truncation of Hierarchy

The hierarchy is truncated by exploiting the diluteness condiﬁion, ¢ << 1, and em-
ploying the physics of screening: far from a fixed sphere, the influence of the sphere
is “screened” by the presence of the intervening sinks in the material (Brinkman
(1947)). Thus, the field at a point x is relatively unaffected by the presence of a

sphere fixed at x; for large separation, ||x — x1|| >> L,:

(u(x|x1)) ~ (u(x)) (4.1)

This result is exploited in Appendix B to truncate the foregoing hierarchy. L, is
the “screening length” defined by:

L= (4.2)

which is the characteristic length for the decay of reactant concentration away from
the boundary and, in general, is the characteristic decay length for all disturbances
in the field as shown below. The diluteness condition implies: L, >> a. We define

a “screening modulus”:
L,

¢=—= (ZJ—> Ve (4.3)

Ly a
where L, is a characteristic length for Q (e.g., L, = V'/3). The screening modulus,
¢, determines the extent of reactant penetration into the domain and thus the extent
by which the influence of boundary is screened by the sinks in the material. ¢ << 1

implies that all the spheres in the domain are immersed in a constant concentration
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field equal to unity according to boundary condition (2.9). ¢ >> 1 indicates signif-
icant “boundary screening”: only spheres relatively near the boundary are exposed
to significant reactant concentration.

Combining Equations (4.1) and (3.2) according to the procedure in Appendix

B, yields the lowest-order truncation:
V2 (u(x)) = 3e(u(x)) (1.4)

which constitutes the “mean-field” approximation. The solution must satisfy bound-
ary condition (2.9) and determines the reactant flux into the domain via Equation
(2.10). Rescaling Equation (4.4) by the screening length, L, balances the diffusive
and dissipative terms supporting the claim that L, is the characteristic concentra-
tion decay length.

The mean-field approximation neglects all sphere-sphere and sphere-boundary
interactions; only the collective screening effect of the spheres in the material is
retained through the dissipative term in the equation. The results obtained in this
paper indicate that the effect of sphere-boundary interactions is order ¢ for ¢ << 1
and order clne¢ for ¢ >> 1. Sphere-sphere interactions produce a higher-order
effect.

Combining the two-sphere analog of Equation (4.1) with (3.3) yields the analog

of Equation (4.4) by the procedure shown in Appendix B:
V2 u(xfx)) = Be(u(xix) (4.5)

where (u(x|x;)) mﬁst satisfy boundary condition (2.8) on the fixed sphere surface
and boundary condition (2.9) on the domain boundary. The solution determines
the sink term in the unconditionally averaged equation according to Equation (3.2).
Equation (4.5) is analogous to Equation (4.4) and is the mean-field approximation

of the first conditionally averaged equation.
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Following this program retains the primary screening effect previously treated
by the mean—-ﬁeld approximation as well as the effect of sphere-boundary interac-
tions neglected by the mean-field approximation. Sphere-sphere interactions remain
unaccounted; only the second-order screening effect upon the sphere fixed at x; is
retained through the dissipative term in Equation (4.5). The above truncation al-
lows general solution of the reactant flux to order ¢ for all domains analyzed herein.
According to Appendix B, the error commited by neglecting sphere-sphere interac-

tions is order ¢? for ¢ << 1 and order ¢*/?In ¢ for ¢ >> 1.

5 Mean-Field Solution

In the present section, we shall obtain the mean-field solution for a spherical and
semi-infinite domain. If 1 is a semi-infinite domain, the characteristic length of the
domain becomes infinite thus ¢ defined by (4.3) is infinite. The solution of (4.4)

with boundary condition (2.9) yields:
Ump(X) = eV (5.1)

where z is the distance from the plane boundary. The subscript, mf, replaces the
angled brackets indicating that the result depends upon the mean-field approxima-

tion given by Equation (4.4). The dimensionless reactant flux is:
Foms(c) = V3¢ (5.2)

where Fp.f(c) is the mean-field result defined by Equation (2.10) (or (2.11)) for a
semi-infinite domain. F,,s(c) depends explicitly upon the sphere volume fraction,
¢, but is independent of position on the boundary, 9(.

If 1 is a spherical domain with normalized radius, R, the characteristic length



140

of the domain is aR and the screening modulus is given by:
¢ = Rv/3c (5.3)

Equations (4.4) and (2.9) yield the mean-field result:

Umy(X) = % (5.4)

where 7 is the radial coordinate and is the distance from the center of the domain.

The reactant flux is:

Foy(c, R) = % [pcothe — 1] (5.5)

F.s(c, R) is the mean-field reactant flux and depends upon ¢ and R but is inde-
pendent of position on the boundary, 911.

If L. << L, (¢ << 1), all spheres in the domain are immersed in a uniform
ambient concentration field equal to unity and the total reactant flux is proportional
to the total number of spheres in the domain, NV, and is therefore order ¢. The

general result is illustrated by considering Equation (5.5) in the limit ¢ << 1:
(},iné F,s(c,R) =cR (5.6)

In the limit L, >> L, (for constant ¢) the number of spheres in the domain di-
verges yet the reactant flux remains finite. This fact is a consequence of boundary-
screening: spheres far from the boundary are immersed in a sharply depleted am-
bient concentration; the flux into a test sphere far from the boundary approaches
zero. The presence of boundary-screening yields a finite reactant flux independent
of the characteristic length of the domain, L., for ¢ >> 1. This result is exemplified
by reconsidering Equation (5.5) which in the limit ¢ >> 1 recovers the semi-infinite

domain result:

Jim Fos(c, B) = V3¢ = F oy (c) (5.7)
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which is a general limiting result for all domains in the limit ¢ >> 1.

The leading order correction to the mean-field solﬁtion results from the inter-
action of the spheres with the boundary. In the following, we will truncate the
hierarchy at the next level and thereby retain this effect which permits an order ¢

solution for all domains within the scope of this paper.

6 General Solution to Order ¢

In the following, we determine a general solution valid to order ¢. The resulting error
is bounded by order ¢3/? In ¢ for all domains within the scope of this paper. Applying
a steady-state material balance on the domain for a particular configuration of the

spheres, yields the following expression for the total reactant flux into the domain:

LQF(XIXl," , X Z./x ill= 187’1, X’ 1s° XN)dX (61)

where F(x|x1,---,xy) is defined by (2.10) for a given configuration of the sphere
centers, {X1,--+,Xy}. Similarly, we can express the average reactant flux on the

boundary:
F(X1," Z-/x =1 an Xle, ,XN)dX (6.2)

where F(x1,---,xy) is defined by (2.11). According to the derivation in Appendix
C, the configurational average of (6.2) yields:

(F) = %c_ A [4%[” i(u(x!xl))dx dx; - (6.3)

X-X;||=1 on

Equation (6.3) expresses the average flux into the domain in terms of the average
flux into a single sphere which, in general, requires the solution of Equation (3.3)
from the complete, coupled hierarchy. According to Appendix C, the above result is

exact to order ¢%, however, it cannot be evaluated without truncating the hierarchy.
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To obtain the reactant flux to order ¢, we shall truncate the hierarchy with Equa-
tion (4.5), the first conditional mean-field equation, which induces an order ¢3?lne
error in the solution according to Appendix B. The solution of (4.5) is inserted
into (6.3) to yield the reactant flux directly without solving for the unconditionally

averaged field, (u(x)).

The solution procedure is facilitated by defining a function v(x|x;):
v(x[x1) = ums(x) — (u(xx1)) (6.4)

where up,p(x) and (u(x|x;)) satisfy the mean-field equations (4.4) and (4.5) respec-
tively. By linearity, v(x|x;) is also a solution of Equation (4.5) satisfying boundary
conditions:

v(x|x1) =0 x € 90 (6.5)

and

v{xx1) = ums(x1) % —xiff =1 (6-6)

where we have neglected local gradients of un,s(x) at x; which are bounded by
order ¢'/? as shown in Appendix B. The approximation introduced by Equation
(6.6) affects the solution at order ¢*/2 as shown below. Expressing Equation (6.3)

in terms of v(x|x;) yields:

(F) = 3¢B(c) (6.7)
where B(c) is defined by:
1
B(e) = < /ﬂ o s (2 H (13 ¢) dx1 (6.8)
and H(x;;c) is defined as:
H (x; ¢) = / 9 (xlxr)dx (6.9)
je) = —v .
L 47rumf(x1) [[x—x1||=1 on !
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Equation (6.7) indicates that the flux can be calculated to order ¢ if B(c) is deter-
mined to order unity.

The order c'/? gradients in um,s(x) at x; which are neglected according to bound-
ary condition (6.6) induce a dipole of the same order at x;. The first reflection dis-
turbance of a dipole is integrable on all domains considered in this paper. Therefore,
upon integration in Equation (6.8), the first reflection disturbance due to an order
c¢'/? dipole affects B(c) also at order ¢/%2. Then, according to Equation (6.7), the
approximation embodied in boundary condition (6.6) introduces only an order ¢*/2

error to the predicted reactant flux as claimed.

In Appendix D, we develop the general approximation:
1
B(e) = ¢ /Q [umf(xl) [(1+ V3) + HO(xy3.)] + J(xl)]dxl (6.10)

which introduces an order ¢¥/21In¢ error consistent with the error induced by the
truncation as shown in the Appendix D. The quantities: (1 + v/3¢) and H)(x;; ¢)
are, respectively, the exact contributioﬁs to H(xy; ¢) resulting from the incident field
and first reflection disturbance induced by the boundary. J(x;) is the approximate
contribution from the second and all higher-order reflections with the boundary as

obtained by solution of Laplace’s equation. Inserting (6.10) into (6.7) yields the

expression:
3
F = gc A [umf(xl) [(1+ V3e) + HO (x55¢)] + I () ]dxl +0(c**Inc)  (6.11)

where we have dropped the angled brackets on (F); the configurationally averaged
reactant flux is heretofore implied.

It proves useful to consider the above solution as the sum of three distinct
contributions:

F="T,+F, +Fy+0(c?Inc) (6.12)
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where Fg, F; and F; are the approximate contributions to the reactant flux from
the incident field, the first reflection disturbance, and all higher-order reflections

with the boundary. Explicitly, these contributions are:

Fo = (1 + vV3¢)F s — 3¢ + O(c*?) (6.13)
3c (1)

F1 = —S—' a umf(xl)H (Xl,C)dX1 (614)
3

F, = »;- | I(x1)dxy + O(c** In.c) (6.15)

Equation (8.13) is derived as follows. According to (6.11), Fo is defined by:

3
Fo = g"‘ g () (1 + V3e)dxs (6.16)

We can write:

umxdx:/umxdx—/ Um r(X1)dX 6.17
JLumsba)s = [ wmsar)dxa = [ unsoxr)dxa (617)
The first integral on the right side ultimately reproduces the mean-field solution
and the second is a consequence of the hard-sphere distribution: sphere centers are

excluded from the volume within one sphere radius of the boundary. We can insert

(4.4) into the first integral and apply the divergence theorem to obtain:

1 1
/ﬂumf(xl)dxl = a‘/nvzumf(xl)dxl = QLQ me(X)dXI (618)

The term, ¢,,7(X1), in the second integrand can be approximated by the boundary

value given by Equation (2.9):

/ g () = [6 i+ 0(cH?) (6.19)

which is justified because gradients of um,s(x;) are bounded by O(c'/?) as shown in

Appendix B. Inserting (6.18) and (6.19) into (6.17) and the result into (6.16) yields:

Fo = Qfgl—/—-@ /an[me(X) — 3¢jdx + O(c*/%) | (6.20)
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which is equivalent to (6.13).

As indicated, Fy réproduces the mean-field result. Subtraction of the quantity
3¢ reflects the excluded hard-sphere volume. The leading reactant flux is order ¢/2
for ¢ >> 1 therefore this consequence of the hard-sphere distribution is a higher-
order effect but it affects the solution at leading order in the case ¢ = O(1). The
multiplicative factor, (1 + v/3c), reflects the second-order screening effect of the
spheres in the material upon the fixed sphere. This effect clearly yields a higher-
order enhancement of the mean-field solution for all ¢.

The terms F; and F; result from the sphere-boundary interaction. F; is the
additional reactant flux induced by the first reflection disturbance of the boundary
and F, is the additional flux induced by the second and all higher-order reflections.
Both contributions are necessarily positive for all domains; the sphere-boundary
interaction enhances the predicted reactant flux relative to the mean-field solution.
The excluded hard-sphere volume reduces the influence of the sphere-boundary
interaction by restricting the range of integration in Equations (6.14) and (6.15).
F; is order ¢ for ¢ = O(1) but yields a stronger, order ¢ In ¢ contribution for ¢ >> 1
as illustrated below. By construction, F; is order ¢ for all ¢.

The foregoing corrections to mean-field solution have opposing effects upon the
predicted reactant flux. The enhancing effects of second-order screening and the
sphere-boundary interaction are countered by the reducing effect of the excluded
hard-sphere volume. We shall define, A, the relative correction to the mean-field:

(F) = Fps(c,R) /3Py + T+ Ty — 3c
Fonslc,R) Fo;

A= (6.21)

where we have employed Equations (6.12) and (6.13). For a semi-infinite domain,

we can insert Equation (5.2) into (6.13) to obtain the interesting result:

FO(C) = ﬁ = me (622)
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which states that the effects of second-order screening and the excluded hard-sphere
volume just cancel each other in this case. The remaining contribution to A from the
sphere-boundary interaction is positive for all ¢ as is, therefore, the net correction
to the mean-field solution. Thus, the present results show an enhancement to the
mean-field solution in the case ¢ >> 1 for all dilute ¢ for which the analysis is valid.
We shall examine A quantitativly for more general ¢ below.

According to Appendix B, the truncation given by Equation (4.5) induces an
order ¢*?Inc error, and the approximation for B(c) given by Equation (6.10) and
derived in Appendix D induces an error of the same order of magnitude. Approx-
imations (6.3) and (6.6) are exact to higher order. Therefore, we conclude that
the above procedure yields a solution valid to order ¢ with an error bounded by
order ¢*/21In ¢ for all bounded and semi-infinite domains. We summarize the general

procedure for determining the flux of reactant into an arbitrary domain, (:
(i) Equation (4.4) is solved with boundary condition (2.9) yielding w,;(x).

(ii) The first reflection disturbance field is determined for Equation (4.5) with
boundary conditions (6.5) and (6.6) yielding H(!)(x;,¢) Laplace’s equation is

solved exactly with the same boundary conditions yielding J( bfz,).

(iii) The flux of reactant is given by the sum of (6.13)-(6.15).

7 Spherical and Semi-Infinite Domains

In the present section, the foregoing procedure is applied to determine the reactant
flux into a spherical and a semi-infinite domains to order ¢. For the spherical domain,
we will consider 1 < R < oo and obtain a solution uniformly valid in the normalized

domain radius R. The screening modulus is given by (5.3). As demonstrated by
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Equation (5.7) for the mean-field solutions, the flux into a semi-infinite domain is
the limiting case of that for a spherical domain for ¢ — oo (or, equivalently, R — oo
for fixed volume fraction, ¢). We can obtain an analytical result for the semi-infinite
domain and, therefore, will analyze the case R finite and R — oo separately.

For a semi-infinite domain, ums(x) is given by (5.1). Fo(c) was previously de-
termined and is displayed in Equation (6.22). The first reflection disturbance,
HW(xy,¢), is determined according to Equation (4.5) with boundary conditions
(6.5) and (6.6). Application of the “method of images” (Jackson, (1962)) facilitates
determination of the reflection disturbances induced by the boundary. Accordingly,
the plane boundary is replaced by an appropriate image sphere. The first reflection
disturbance is found by the method of reflections and the result inserted into (6.14)
to yield:

o e-3\/§? z
Fi(c) = 36/1 -—é—;——da: (7.1)

where integration parallel to the boundary has canceled the factor S in Equation
(6.14) and the remaining integration is in the normal direction to the boundary.

The exponential integral above can be analytically evaluated to order ¢, yielding:
' 3 3 1
Fi(e) = —chnc—3c (Zln3+ 5/7) +0 (c?’/z) (7.2)

where v = 0.57722 - - - is Euler’s constant. We obtain the exact solution to Laplace’s
equation in bi-spherical co-ordinates (Jeffery (1912)) yielding L(x;) defined by
(D.1). The first reflection disturbance for Laplace’s equation is determined by the
method of images and inserted together with L(x;) into (D.6) and the result into
Equation (6.15) to obtain:

Fyc) = 3¢ /1 ¥ J(2)ds (7.3)

where the integration is normal to the boundary and S has been cancelled as in
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Equation (7.1). Equation (7.3) is numerically evaluated yielding:
Fy(c) = 3¢(0.47472- ) (7.4)

with numerical accuracy as shown. Equations (6.22), (7.2) and (7.4) are summed
according to (6.12) to yield the reactant flux into a semi-infinite domain to order ¢

with an order ¢3/?Inc error:

3 1
F(c) = V3¢ — chnc — 3¢ (Z In3 + 27 0.47472> + O <03/2 In C) (7.5)

The mean-field result, given by Equation (5.2), is reproduced by the first term.
The first reflection with the boundary affects the solution at order c¢Ilnc¢ and is
the strongest correction to the mean-field solution. This observation supports the
foregoing assertion that neglecting the sphere-boundary interaction introduces an
order clnc error for ¢ >> 1. Higher-order reflections with the boundary produce
an order ¢ effect. The neglected two-sphere interactions produce an error of order
¢®/%1n ¢ as shown in Appendix B. The above result demonstrates that the interaction
of the spheres with the boundary is the leading order correction to the mean-field,
dominating two-sphere interactions.

Next we analyze the more general case of a spherical domain with dimensionless
radius R. In this case, the spherical symmetry implies that the quantities: w,,s(x1),
J(x1) and H(xy,¢) (for fixed ¢) depend only on r, the radial distance from the center
of the domain. Therefore the angular integration yields 47, and the surface area,
S, is 47 R* thus, the net effect is 1/R*. |

In this case, u,s(x) is given by (5.4) and F,; by (5.5). According to Equation
(6.13), we obtain:

Fole, R) = (1 + v/30) %(d)cothqﬁ _ 1)] 3¢ (7.6)
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The method of images can be used again to determine the first reflection disturbance

and Equation (6.14) yields:

R-1 &} / RZ a2
Fl(c’ R) _ 3¢ / -S-IMQXP (—\/36 —r—t—) rdr (7.7)
0

sinh(¢) R2 —r2

The exact solution to Laplace’s equation is again available in bi-spherical coordi-
nates and is inserted into (D.6) with the first reflection disturbance for Laplace’s

equation. Inserting the result into Equation (6.15) yields:

Fo(c.R) = -5 [M7 3(r)r2d 78
e B) =2 [ 3tyrtar (1.9

Equations (7.7) and (7.8) are readily evaluated numerically and the three contribu-
tions summed according to (6.12) to yield the reactant flux into a spherical domain
to order ¢ with an error of order ¢*?In¢c. By constructio}l, the solution is uniformly
valid in R.

The mean-field result, given by Equation (5.5), is recovered in the first term
which is order ¢ for ¢ = O(1) as asserted by (5.6). The second and third contri-
butions resulting from the sphere-boundary interaction also affect the solution at
order ¢ for ¢ = O(1). The contribution from the first reflection, ¥ (¢, R), rises to
order ¢lnc¢ as R — oo while higher order reflections affect the solution at order
¢ for all R. Neglected two-sphere interactions produce, at most, an order ¢*/?In¢
error according to Appendix B. In general, each of the above contributions to the
reactant flux becomes equal to the corresponding term in the semi-infinite solution
for R --> 00.

The above solution demonstrates that, in general, the interaction of the spheres
with the boundary must be included in the analysis even at leading order. This

effect dominates two-sphere interactions uniformly for all E.
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8 Numerical Solution

We will now investigate the dependence of the above solutions on the parameters
¢ and R in a range of practical importance. In compliance with the diluteness
assumption, we restrict our attention to ¢ < 0.01. For practical application, we are
usually interested in the case where the number of spherical sinks in the domain
is large. N >> 1 implies R >> ¢ /3 thus, for ¢ = 0.01, we shall consider R in
the range 5 << R < oo and for ¢ = 0.0001, in the range 22 << R < oo. The
semi-infinite and spherical domains were considered separately above; however, for
purpose of examining parametric dependence, the flux into a semi-infinite domain
is considered as the limiting result for that into a spherical domain as R — oo.

Figure (1) shows the reactant flux into the domain as a function of ¢ for several
values of R including R — oo (semi-infinite domain). For fixed ¢, the flux increases
with R and approaches the semi-infinite domain flux as B — co. For small values
of ¢ and R, the logarithm of reactant flux depends approximately linearly upon
log,, ¢ with unit slope suggesting order ¢ overall dependence, but changes to slope
1/2 indicating ¢'/? behavior for larger values.

Figure (2) shows the approach of F(c,R) to F(c) as a function of ¢ (defined
by (5.3)) for a few fixed volume fractions. The figure indicates that F(c, R) is a
monotonically increasing with ¢ and bounded above by F(c¢) which corresponds to
¢ — oco. F(c, R)/F(c) is well described by the single parameter, ¢, over the range
shown and becomes essentially independent of ¢ for ¢ > 30. The figure indicates
that for ¢ = 10, the flux into a spherical domain is about 90% of that into a semi-
infinite domain and increases to within about 1% for ¢ = 100. Thus, ¢ > 100 can be
used as an approximate criterion for application of Equation (7.5). The qualitative

features of Figure (2) hold for all bounded domains with ¢ defined, more generally,
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by Equation (4.3).

Finélly, we are interested in the relative correction to the mean-field solutions
displayed in Equations (5.2) and (5.5). We define A(c, R) according to Equation
(6.21) for a spherical domain and, similarly, A(c) for a semi-infinite domain. Figure
(3) shows A(c, R) as a function of R for several fixed values of ¢. The dashed lines |
give A(c) as the large R asymptote for each fixed volume fraction. The relative
correction to the mean-field solutions is significant. The correction is positive for
all R which satisfy: R >> ¢™1/% as required for N >> 1. A(e,R) changes sign for
very' small values of R corresponding to N = O(1) but this range is of little practical
significance. Both A(c¢) and A(e, R) increase monotonically with volume fraction
over the range of R shown. For ¢ = 0.01 and 0.001, A(c, R) increases monotonically
with R and is bounded above by A(c). However, for ¢ = 0.0001, A(c, R) exceeds
Afc) for R > 15 and exhibits a well-defined maximum at R = 33. In general, we
found that A(e, R) exceeds A(c) for a finite range of R and exhibits a maximum for
all ¢ below approximately 0.0007. The maximum becomes more pronounced with

increased dilution but its location is approximately constant.

9 Ash Vaporization in Coal;

A Practical Application

The vaporization of refra,ctory oxides during pulverized coal combustion is an im-
portant physical process relevant to the study of particulate emissions. Studies have
shown that fly-ash produced during pulverized coal combustion is bimodally dis-
tributed by particle size. The smaller size group results from the vaporization and
subsequent condensation of a small fraction of the mineral matter initially contained

in the coal. These smaller particles which are difficult to remove by particulate con-
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trol devices pose a health hazard and reduce visibility. Inasmuch as mineral matter
is distributed in particulate form Within the char particles, vaporization of mineral
components via reaction on the mineral particle surface and diffusion through the
char particle can be analyzed by the methods of this paper.

Quann and Sarofim (1982) performed a number of combustion experiments and
measured the vaporization of silicon, magnesium and calcium. They analyzed their
results assuming spherical char particles containing a random, monodisperse distri-
bution of spherical mineral inclusions. During combustion, the mineral material is
exposed to a reducing environment resulting from the carbon monoxide atmosphere
within the burning char. The mineral matter is reduced to a volatile suboxide or

metal on the surface of the inclusions via the heterogeneous reduction reaction:
MO,(s) + CO = MO,_1(g) + CO, (9.1)

where MO, refers to the refractory oxide (Si0,,CaO, MgO) and MO,_; to the
corresponding volatile suboxide (Si0O) or metal (Ca,Mg) vapor. Each mineral
inclusion acts as a source of the metal suboxide with strength given by the local

equilibrium vapor pressure,

Ye = KePCO (92)

where K, is the equilibrium constant for the reaction displayed in (9.1). The partial
pressure of carbon monoxide, Pgo, is uniform throughout the char and is obtained
by assuming that oxygen is completely consumed at the char surface and CO is
the only product. Thus, according to Equation (9.2), y. is a constant value on
all inclusion surfaces therefore, boundary condition (2.4) is satisfied. The vapor
pressure at the char surface satisfies boundary condition (2.5).

Quann and Sarofim calculated the flux of the vaporized mineral component

using the mean-field solution, Equation (5.5). We now evaluate the importance



153

of the higher-order correction for the range of parameter values relevant to their
problem. The volume fraction of spherical inclusions, ¢, was fixed at 0.01 and the
screening modulus was considered in the range: 5 < ¢ < 20. Then, according to
Equation (5.3), the normalized particle radius is in the range: 29 < R < 115. Figure
(3) indicates that for this choice of parameters the enhancement to the mean-field

solution is about 10 % for R = 29 and about 12 % for R = 115.

10 Conclusions

A detailed analysis was presented for determining the reactant flux into a composite
material containing reactive, randomly-located, spherical particles. The governing
equations were configurationally averaged yielding an infinite hierarchy of coupled
equations. The hierarchy was truncated using physical considerations of screening
and diluteness of the spherical phase. A general asymptotic solution was obtained
valid to order ¢ for all bounded and semi-infinite domains. The solution repro-
duces the mean-field result and includes the effects of three previously neglected
interactions. These are the sphere-boundary reflections, the hard-sphere interac-
tion between the spheres and the boundary, and the screening effect of spheres in
the domain upon a fixed test sphere (second-order screening). Each of these inter-
actions dominate the effect of two-sphere interactions which affect the solution at
order ¢*?Ine.

Explicit consideration was given to the case in which the domain is spherical or
semi-infinite and a solution was obtained for each. The latter solution has a par-
ticularly simple form and exhibits non-analytic dependence on ¢. The solution for
a spherical domain exhibits analytic dependence on ¢ and depends in a non-trivial

manner upon R for ¢ << 1. The transition to the semi-infinite solution behavior



154

is well characterized by a screening modulus, ¢. The corrections to the mean-field
generally enhance the predicted reactant flux. In an application to the problem of
ash vaporization in coal during pulverized coal combustion, the correction to the

mean-field solution was on the order of 10 %.
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Nomenclature
Roman Symbols
a sphere radius
B defined by Equation (6.8)
c volume fraction of particulate phase
D diffusivity of supporting matrix
F total dimensionless reactant flux
Fo flux from incident field (Equation (6.13))
F, flux from first reflection disturbance (Equation (6.14))
F, flux from higher-order reflections (Equation (6.15))
H defined by Equation (6.9)
HO defined by Equation (D.4)
J defined by Equation (D.6)
L defined by Equation (D.1)
L, characteristic dimension of domain
L, characteristic screening length
mf mean-field result
domain radius normalized by sphere radius, a
S surface area of domain boundary
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Greek Symbols

relative correction to mean-field (Equation (6.21)
domain

restricted domain (Equation (3.21))

domain boundary

screening modulus (Equation (4.3))
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Appendix A:

Configurational Averaged Equations

In this appendix, we present a detailed derivation of the configurationally averaged
equations (3.1) - (3.4). Although the technique has been employed by others (e.g.,
Hinch (1977)), a self-contained derivation is useful. The starting point is replacing
boundary condition (2.8) on the sphere surfaces by a sink term consisting of a
distribution of singularities on the sphere surfaces with strength given by the normal

field derivative at each point. Laplace’s equation then becomes:

V2u(x|x1, - }:/E e m w(€lxr, %) 8(E — x)d¢ (A1)

which is valid for all x in Q1 and the solution of which must satisfy boundary con-
dition (2.9) on 911. Excepting the sphere surfaces where it is singular, the sink
term vanishes everywhere in the domain. The set of position vectors, {xy, -+, Xy},
locate the IV indistinguishable sphere centers contained in (2 and constitutes a con-
figuration of the spheres. The sink term in Equation (A.1) can be simplified by
decomposing the 3-dimensional Dirac delta function into a product of three one-
dimensional delta functions and performing the angular integration on each sphere
surface eliminating all but a single one-dimensional delta function. Inserting the

result into (A.1) yields:

N
a .
Vi) = 3 aeulxhe, xn)6(x x| -1 (42)
i=1
which provides the starting point for configurational averaging.

The configurational average of Equation (A.2) can be written formally as:

(Voullses, - yxn)) = V2u)) = (3 -uxes, - xx)d([x - il ~ 1)) (43)

= on
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where we have used the fact that the configurational averaging operation commutes
with any linear operator. The configurational average is given explicitly by an
N-fold volume integration over the sphere positions weighted by a configurational

probability. Thus, we can rewrite the averaged sink term as:
N

> j—nu(x;xl,---,xN)é(ux x| - 1)) =

i=1

fﬂN w(xxa, - xw)8 (1% — x| — D P(xp,- -, Xn)dxy - dxy  (A4)
The func’mon, P(xy,+,Xn), is the distribution function for the configuration {x;,--,xn},

and is normalized by (Reed and Gubbins (1973)):
/ P(x1, -, Xn)dxy -+ -dxy = N! (A.5)
an.

We define a conditional distribution function for the configuration, {xy,---,xn},
given that a sphere center is fixed at x;:

P(Xl)"'axN)

P(Xla"'st}x‘i) = P(Xi) (AG)
which is normalized by:
/QN_l P(x1,- Xy |X:)dx; - - dxy = (N — 1)! (4.7)
Using the conditional distribution function, Equation (A.4) becomes:
N9
(3 w38l — x| — 1)) =
i=1
Z/ wx[xs, -, xn)6([% — x| = 1) P(xe) P(x1, -, X [x5)dxy - - - dxy
(A.8)

Then, performing all but the i** volume integration on each term in the sum yields,

by definition, the conditional average of each with the :** sphere center fixed:
N

> %u(xlxl, - X) 8 ([[x—xi]|-1)) = %Z/n gﬁ_@(xlxi))(s(ﬂx_xi”"UP(Xi)dX"

= (4.9)
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Since the spheres are indistinguishable, all terms in the sum are equal, hence:

N a ]
(; 35, v xw)8(lx = xif| — 1)) = /n 5y, (u(xxa))6 ([ — x| — 1) P(xa)dxs
(A.10)
P(x;) is the dimensionless number density of spheres given by:
P(x;) = a®n = 3¢ for all €l
x))=an=_— forall x
P(x;) =0 forall x;€0-0 (A.11)

where n is the dimensional number density defined by (2.1) and Q is the domain
Q less the region within one dimensionless sphere radius of the boundary, 3(1. In
general, the boundary induces local structure into the material producing an order ¢
relative deviation from the assumed uniform distribution in (1 in the vicinity of the
boundary (Ziman (1979)). This higher-order effect is neglected by the diluteness
assumption.

Inserting (A.11) into Equation (A.10), performing the integration to eliminate
the delta function and inserting the result into Equation (A.3) yields:

3¢ 9
i an d A.12
47 J{x—x,||=1}n0 3n<“(XIX1)> Xy ( |

VH{u(x))
which is the desired unconditionally averaged field equation.

Equation (A.12) couples the unconditionally averaged field to the conditionally
averaged field with one sphere fixed at x;. The foregoing averaging procedure can be
repeated to yield an equation for the conditionally averaged field with a sphere fixed
at x;. We proceed as above, but only average Equation (A.2) over configurations
which have a sphere fixed at x;:

N

V()] = (3 oulxer, )bl -xl - D) (413

=1
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where the subscript 1 on the angled brackets denotes the restriction to configurations
with a sphere centered at x;. The conditionally averaged sink term is given explicitly
by:
N9
; 5, P xw) 8 (x = x| — 1)) =
Z f . a w(x[x1, -, Xn)8 (% = Xs| = 1) P (%1, -, Xy [xa) g - - - dxy
(A.14)
By analogy with the foregoing procedure, we define a doubly conditional prob-

ability:
P(Xla Ut 7XNlX1)
P(x;[x1)

which is the distribution function of a configuration with spheres fixed at x; and

P(xy, -, Xn|x1,%) = (A.15)

X;. P(X1,--+,Xn|X1,X;) is normalized by analogy to Equation (A.7):
/N P(x1,- XN [X1,%X;)dX2 - - dxy = (N — 2)! (A.16)
qQN-2

In terms of a doubly conditional probability, Equation (A.14) becomes:

N9
(2 5w, -5 xn)é ([ =il = 1)1 =

i=1

" z [ - )8 el 1) Pl PO, - e, e -

(A.17)
Using the obvious relationships: P(x;|x1) = 1and P(xy, -+, Xn|X1,X1) = P(x1,- -
and the normalization given by Equation (A.7), we can evaluate the first term in

the summation:

(N—_l_i)—/m 2 ufoer, ) ([P 1) P e ) Pl e )

0
= 5 o{e(xpxa))é(llx = xff —1) (4.18)

'dXN

aXlel)

dXN
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Inserting this result into Equation (A.17) then yields:

> %u(XIXh S xXN)6(|Jx — xil| = 1)) = %<U(X5X1)>5(HX —x —1)+

i=1

— 1 Z/&"}N . an XIX1, ’XN)6(||X~Xi‘I_l)P(Xi!XI)P(XI,"',XN’Xl,Xi)dxz-

(A.19)
Then, proceeding as before, performing all but the ¢** integration on each term in
the sum yields the following expression for the conditionally averaged sink term:
N

> (f%u(x|x1, L xy)6(|[x = x| = 1))y = %(u(xlxl))f?(llx S - 1)+

i=1

,.12/ 2l x8(x ~ il ~ PGP (A20)

As before, each term in the sum is identical thus allowing the summation:

(3 g, - x)8 (e =l = 1) = 5 (ulepa)) 6 (e — x| - 1)+
/ (X1, %2)) ([ — al] = 1)P(xz 1) dxa (4.21)

where we have arbitrarily labeled the second fixed center x; thereby distinguishing it
from x; and the remaining N — 2 sphere centers P(x2|x;) is the conditional number
density function given a sphere center at x;. This is related to the hard-sphere

radial distribution function g(xz|x1) (Ziman (1979)):

P(x;]x1) = P(x2)g((xz2]x1)) (4.22)

The radial distribution function contains the local structure induced by the sphere
at x;. However, this local structure can be neglected by the diluteness assumption,

therefore:

P(x3]x1) = P(x2) %1 = Xaf| > 2

"dXN
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P(lexl) =0 HXl — Xz” <2 (A23)

where P(x;) is the single sphere distribution function defined by Equation (A.11).
Inserting (A.23) into (A.21) yields:

N
ad
Qo 5, xw)6(flx = il = 1)) =
i=1 O
17, 3¢ d
3, {wlxpa))8(lx =l = 1) + — [{}lx—xgllzl}ﬂﬁl o, el xa))dxy (A.24)

where 1 is defined by the intersection: (1 N {||x; — x2|| > 2} and is the allowed
portion of the domain for a second sphere center distinct from the center at x;.
Then, inserting the above into Equation (A.13) and replacing the first term on the
right side of (A.24) by the boundary condition on the sphere at x; yields the first
conditionally averaged field equation:

paY
U

3e

Vi ulxpa)) = - [

- Z;; {x—%2||=1}n1, 5;<U(XIX1,X2)>CZX2 ”X — XIH >1 (A25)

which, in addition to satisfying boundary condition (2.9) on 911, must also satisfy
(2.8) on the sphere surface fixed at x;.

The first conditionally averaged field equation, (A.25), is coupled to the second
conditionally averaged field in the same manner as (A.12) is coupled to (A.25).
Thus, the foregoing averaging process used to obtain the first conditionally averaged

field equation is repeated to obtain the second. The result is:
V{u)(x[x1,%2) =

3¢ o
47 In d — x| > 1 _
4 /{ux—xauﬂ}nﬁz o W (X[x1, X2, Xa) dxs x—xi)>1, [x—xf >1

(4.26)
where (), is defined by the intersection: ﬁﬂ{Hxs—XlH > 23N {||xs—x,|| > 2} and is

the allowed portion of the domain for a third sphere center distinct from the centers
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at x; and x,. The solution of Equation (A.26) must satisfy boundary condition (2.9)
on 9 and (2.8) on the surface of both fixed spheres and is analogously coupled to
the conditionally averaged field with three spheres fixed.

As may now be apparent, the foregoing procedure may be repeated indefinitely
producing an infinite hierarchy of coupled, conditionally averaged equations with

an additional sphere fixed at each level.
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Appendix B:

Truncation of Hierarchy

The hierarchy is truncated by exploiting the diluteness condition, ¢ << 1, and
employing Equation (4.1) which follows from the physics of screening: far from
a fixed sphere, the influence of the sphere is “screened” by the presence of the
intervening sinks in the material (Brinkman (1947)). The following derivation yields
the closure Equations (4.4) and (4.5) which, when used in place of (3.2) or (3.3)
respectively, transform the infinite hierarchy into a closed set of equations.

We commence the truncation procedure by observing that Equation (4.1) implies
that the flux into a sphere fixed at x3 is relatively unaffected by the presence a sphere

fixed at x; for large separation, ||x; — Xz|| >> L,:

/{ 4 (w(x[x1,%;))dx; = 0 (u(x|x5))dxy (B.1)

Ix—xz||=1}n0; On (x=xs|=1}n0t O
where L, is the “screening length” defined by Equation (4.2).

We introduce the function, v(x|x;):
v(x|xr) = (u(x)) — (ulx]x1)) (B-2)

Subtracting Equation (3.3) from Equation (3.2) and invoking the approximation

(B.1), yields Laplace’s equation:

Vio(x[x;) =0 IIx — x| >1 (B.3)
with the boundary conditions:

v(x|x;) =0 IIx —x1]] — oo (B.4)

v(xpa) = (u(x1)) X —xf =1 (B-5)
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(B.4) incorporates Equation (4.1) and is tantamount to neglecting the effect of
sphere-boundary interactions. The validity of the approximation requires that most
spheres are much further from the boundary than L, or, equivalently, ¢ >> 1
according to (4.3). (B.5) is obtained by neglecting local variations of (u(x)) on the
surface of the sphere at x; which are order ¢!/? as shown below.

The right-hand-side of Equation (3.2) expressed in terms of v(x|x;) is given by:

3¢
A - dx; =
A [{“x—xlll=l}nﬁ 5, (u(x]x1))dxy
a 3c a
Cps /nx~x11|=1 5}2<u(x)>dm ~in /nx—xluzl EZU(X|X1)dX1 (B.6)

The first integral on the right side vanishes identically by symmetry and the second
is determined by solution of Equation (B.3) with boundary conditions (B.4) and
(B.5). The spherical symmetry of the boundary conditions yield a solution which
is only a function of ||x — x;|| and is therefore symmetric with respect to x and x;.

We can therefore write:

A iv(x}xl)dxl :/ iv(xllx)dxl (B.7)

x-x||=1 On Ix—x.[=1 On

which is immediately computed from the solution of (B.3) - (B.5):

—ﬁ /n 9 o a) s = (u(x) (B.8)

x—x;||=1 On
Combining Equations (B.6), (B.7) and (B.8) and inserting into Equation (3.2) yields

the lowest order truncation:
V3 {u(x) = 3e(u(x)) (B.9)

which constitutes the “mean-field” approximation. The solution must satisfy bound-
ary condition (2.9) and determines the reactant flux into the domain via Equation

(2.10).
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V(u(x)) satisfies Equation (B.9) which is elliptic, therefore, by an appropriate
maximum principle, each component of V{(u(x)) attains a maximum on Bﬂ Accord-
ing to the discussion following Equation (5.7), the component of V(u(x)) normal
to the boundary is bounded by order ¢'/%. Boundary condition (2.9) implies that
the tangential components of V(u(x)) are zero on the boundary. Therefore, each
component of V{u(x)) is bounded by order ¢!/? which justifies the approximation
embodied by Equation (B.5). This result is also employed to bound the error of the
approximations (6.6) and (6.19).

The mean-field approximation neglects all sphere-sphere and sphere-boundary
interactions of the spheres; only the collective screening effect of the spheres in the
material is retained through the dissipative term in the equation. The leading order
correction to the mean-field solution results from the interaction of the spheres with
the boundary. In the following, we will truncate the hierarchy at the next level and
thereby retain this effect which permits an order ¢ solution for all domains within
the scope of this paper.

A truncation analogous to that performed to obtain Equation (B.9) can be
applied to the first conditionally averaged equation. By analogy to the argument
used to obtain Equation (4.1), the field at x is relatively unaffected by the presence

a sphere fixed at x; for large separation, ||x — Xs|| >> L,:
(u(x]x1,%2)) ~ (u(x|x1)) (B.10)

which, by analogy to (B.1), implies the flux into a sphere fixed at x3 is relatively

unaffected by the presence a sphere fixed at x, for large separation, ||x;—xs|| >> Ls:

/; i<u>(X|X1,X2,X3)dX3 ~ a <u(x]x1,x3)>dx3 (B.ll)

[x—xs]|=1}n{l, On {Ix~xs||=1}n0; an

Invoking (B.11), we proceed as above and define the deviation function v(x|x;,x2) =
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(u(x|x1)) — (u(x|x1,%2)) which satisfies Laplace’s equation with the boundary con-
ditions:

v(x|x1,%2) =0 |x — x2]| = o0 (B.12)
v(x|x1,%2) = (u(xz|x1)) IIx —x2|| =1 (B.13)

where, by analogy to Equation (B.4), we have incorporated Equation (B.10) to ob-
tain (B.12) thereby neglecting two-sphere interactions. An analysis of two-sphere
interactions must include their coupled interaction with the domain boundary thus
requiring treatment of a complex three-body interaction. Local (order ¢t/ ?) vari-
ations of (u(x|x;)) on the surface of the sphere at x; have been neglected as in
Equation (B.5).

Following the procedure given by Equations (B.6) - (B.8), yields the next higher-
order truncation:

V2 {u(xlx1)) = Se(u(x|x1)) (B.14)

where (u(x|x;)) must satisfy boundary condition (2.8) on the fixed sphere surface
and boundary condition (2.9) on the domain boundary. The solution determines the
sink term for the unconditionally averaged equation according to Equation (3.2).
Equation (B.14) is analogous to Equation (B.9) and is the mean-field approximation
of the first conditionally averaged equation.

Truncation of the hierarchy with Equation (B.14) implies that the present analy-
sis necessarily neglects two-sphere interactions which are confounded by the domain
boundary as discussed above. For ¢ << 1, the induced error is order ¢* as sug-
gested by the heuristic argument below. We initially assert that the error introduced
by neglecting two-sphere interactions is largest for ¢ >> 1 and, accordingly, con-
sider the solution error for a semi-infinite domain. Felderhof and Deutch (1976)

showed that, neglecting solid boundaries, the effect of two-sphere interactions upon
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H(x1;¢), the normalized flux from a sphere, is order ¢lne¢. Inserting their result
and the mean-field solution, u,s(x), for a semi-infinite domain (Equation (5.1))
into Equation (6.8) and the result into Equation (6.7) indicates that two-sphere

3/21n ¢ for a semi-infinite domain.

interactions influence the reactant flux at order ¢
The presence of solid boundaries reduces the effect of two-sphere interactions on
H(x1; ¢) because the range of integration is restricted; however, we assume that for
¢ >> 1, two-sphere interactions have the same order effect as the above result.

For the case ¢ << 1, the overall effect of two-sphere interactions upon the
reactant flux is order ¢? according to the following argument. A second sphere
in an order one neighborhood of a test sphere affects the reactant flux into the
test sphere at order one. The probability of a second sphere being located in such
a neighborhood of a test sphere is ¢. Therefore, two-sphere interactions affect
H(xi;¢), the averaged dimensionless flux into a test sphere, at order ¢. For the
case ¢ << 1, ums(x), is uniform and equal to unity as asserted by Equation (D.2).
Inserting these results into Equation (6.8) and the result into (6.7) indicates that
two-sphere interactions affect the solution at order ¢? for ¢ << 1 as claimed above.
Therefore, we conclude that the error introduced by the truncation is bounded by
order ¢*/?In¢ for all domains considered in this paper.

The truncation procedure may, in principle, be performed at any level of the
hierarchy thereby retaining the effect of an additional sphere with each higher level.
Induction of the foregoing procedure to the second conditionally averaged equation

yields the mean-field approximation of the second conditionally averaged equation:
v2<’u,>(XlX1,X2) = 30<u(x|x1,x2)) (315)

where (u(x|x1,X3)) must satisfy boundary conditions on both fixed spheres and the

domain boundary. The truncated hierarchy is then solved in reverse order as de-
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scribed above. However, solution of Equation (B.15) is prohibitive thus confounding
any attempt to adhere to such a program. In this paper, we employ the mean-field
and first conditional mean-field approximations (Equations (4.4) and (4.5)) and

abandon all higher-order truncations.
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~Appendix C:

Configurationally Averaged Reactant Flux

In the following, we apply the averaging techniques used in Appendix A to derive
Equation (6.3), the configurationally averaged reactant flux on the boundary of the
domain. The derivation begins with Equation (6.2) which is obtained via a steady-
state material balance on the domain for a particular configuration of the spheres,

{x1,--+,xn}. Following the procedure in Appendix A, the configurational average

of (6.2) yields:

SN'Z/QN [/x e 18n w(x|Xq, -, Xy )dx| P(x:)P(x1,,Xn|%:)dXs - - - dXpy
(C.1)
where we have expressed the configurational probability in terms of a conditional
probability defined by Equation (A.6). Then following the procedure in Appendix
A, we perform all but the #** integration on each term in the sum yielding the

conditional average of each with the 7** sphere center fixed. Equation (C.1) becomes:

(F) = %—]1\;% / [ /”x . 88n< (x[xi))dx} P(x:)dx; (C.2)

Fach term in the sum is identical so that:

(F) = -;7 / [ /” _ —a%(u(xlxl))dx} P(x1)dx; (C.3)

where we have arbitrarily labeled the fixed sphere center x;. Insering the approxi-

mate one-sphere distribution function defined by Equation (A.11) yields:

(F) = 3—; ) [4% /” —8—<u(x1x1)>de dx, (C.4)

x—x;]|=1 on

which is the desired result expressing the average flux into the domain in terms of the
average flux into a single sphere. Excepting the diluteness approximation embodied

in the distribution function, (A.11), the above result is exact, albeit irreducible.



173

The approximate distribution function, P(x;), given by Equation (A.11) neglects
the local, order c¢ relative deviations from the uniform probability. Deviations from
the uniform value are only significant in a layer of (dimensionless) thickness one.
Therefore, these deviations from a uniform distribution are integrable on the do-
main. Inspection of Equations (C.3) and (C.4) then imply that the solution error
induced by neglecting the local structure in the material is order ¢?. The same ar-
gument shows that the approximation made by employing the uniform distribution

function given by Equation (A.23) induces an additional error of order c¢®.
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Appendix D:

Approximation of B(c)

In the following, we derive an order one approximation for B(c¢) which, according to
Equation (6.7), is sufficient to determine the reactant flux to order ¢. The derivation
follows from a heuristic argument; a proof is not available. B(c) is given by (6.8)
which requires H({x;; ¢) defined by Equation (6.9).

The mean-field equation (4.5) reduces to Laplace’s equation in the dilute limit.
We shall define L(x;) by Equation (6.9) for the case where v(x|x;) satisfies Laplace’s

equation. This definition implies:
HI%H(Xl; ¢) = L(x;) (D.1)

which is uniformly valid on any bounded domain. Similalry Equation, (4.4), reduces
to Laplace’s equation in the limit ¢ — O implying that w,s(x;) is harmonic and
satisfies boundary condition (2.9) in the dilute limit. Then, according to Equation
(2.9):

£i_xz%umf(xl) =1 (D.2)

which is also uniformly valid on any bounded domain. Combining Equations (D.1)

and (D.2), suggests the following approximation of (6.8) for B(c):
B(e) = lim < intqtins(c)H(x1; e)dbs = < [ Lx1) (3)
¢) = lim — intqums (X: X1;¢ Xl—“S o (x4 .

which requires that the above limit exist.
We claim that the above is valid for ¢ << 1. Intuitively, we expect the screening
terms of the mean-field equations equations (4.4) and (4.5) are relatively unimpor-

tant in the case L, << L, (¢ << 1). According to this argument, Equation (4.4)
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and (4.5) could be approximated by Laplace’s equation which implies the validity of
Equation (D.3). For the case ¢ << 1, the reactant flux is order ¢ which, according
to Equation (6.7), implies that B(c) is order one thereby further supporting the
existence of the required limit in (D.3). However, as shown above, for ¢ >> 1 the
leading order reactant flux is order ¢!/ Then, according to Equation (6.7), B(c)
is order ¢~!/? which diverges as ¢ — 0. Therefore, the assumed limit in Equation
(D.3) cannot exist for ¢ >> 1.

The above approximation is remedied by subtracting the portion of the inte-
grand which causes divergence in the limit ¢ — 0 and calculating its contribution
to B(c) ezactly. The contribution from the remaining, convergent portion of the
integrand can be found to order one via (D.3). We assume the existence of a reg-
ular perturbation solution for H(x;¢) obtained by reflections with the boundary
(Happel and Brenner (1965)):

0
H(x;¢) = Y H® (x;5¢) (D.4)
k=0
where H(®)(x;;¢) is the contribution to H(x;;c) from the k™ reflection with the
boundary. The existence of an analogous solution for L(x;) is also assumed with
L{(*)(x;) defined by analogy to H(*)(x;;¢). We assert that the diverging portion of
the integrand, wm,s(x1)H(x1;¢), results from from the incident field contribution,
HO)(x;;¢), and, HM(x;;¢), the first reflection disturbance.

The foregoing suggests the revised approximation:

1

B(c)zg o

[tms (1) [(1 + V3e) + HO (315 ¢) | + I (31)] iy (D.5)

which we claim is valid to order one for all domains considered. The quantity
(14 v/3c¢) is the contribution from the incident field and is boundary-independent;

HW(x,; ¢) is boundary-specific. J(x;) is the ¢ = 0 approximation for the remaining
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portion of the integrand in Equation (6.8) obtained according to (D.3):
I(x1) = > LW (%) = Lixy) — [1+ L0 (xyp)] (D.6)
k=2

The contribution from the incident field, L% (x;) is boundary-independent and
equal to unity while L) (x;) is boundary-specific.

The naive approximation given by Equation (D.3) is valid for ¢ << 1 but
diverges for ¢ >> 1. This approximation was revised to accomodate the screening
effect for dilute, non-zero ¢ into the contributions to H(xy;¢) resulting from the
incident field and the first reflection disturbance. We now assert that the error
induced by Equation (D.5) is largest for the case ¢ >> 1. Thus, we shall consider
the solution error induced by this approximation for a semi-infinite domain which
is the limit ¢ — oco. In this case, we can determine the error introduced to B(c)
by substituting L(®)(x;) for H®)(x;;¢) is order ¢/2In¢ and L¥)(x;) for H®) (xy;¢)

for k > 2 is order ¢'/2. The resulting error in the reactant flux is order ¢*/?In ¢ and

c3/? respectively as implied by (6.7). Then, according to the assumption that the
largest error is induced for a semi-infinite domain, the solution error induced by

approximation (D.5) is bounded by order ¢*/?Inc.
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CHAPTER 6
Reactant Flux into a Medium
Containing Spherical Sinks:
The Time-Dependent Problem
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Reactant Flux into a Medium
Containing Spherical Sinks:
The Time-Dependent Problem

M. Loewenberg and G. R. Gavalas
Department of Chemical Engineering 206-41
California Institute of Technology
Pasadena, California 91125

Abstract

A previous analysis is extended to determine the transient reactant flux into a
material containing a random suspension of reactive, hard spheres. A config-
urational averaging approach is employed resulting in an infinite hierarchy of
coupled equations which is truncated using physical considerations of screening
and diluteness of the particulate phase. A uniformly valid, asymptotic solution
is obtained for bounded and semi-infinite domains to order ¢ with O(c%/?Inc)
error for long times. Numerical results are presented for a step change in
concentration on the boundary of a spherical and semi-infinite domain. The
solution exhibits algebraic decay initially and tends to the previously-obtained

steady-state solution at long times.
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1 Introduction

An important class of problems involves a distribution of discrete, reactive centers.
Examples may be drawn from a variety of fields and include such diverse processes as
ash vaporization during pulverized coal combustion, spray evaporation, suspension
polymerization, fluorescence quenching and metabolic reactions in immobilized cell
systems.

The theory of diffusion-controlled reactions was established by Smoluchowski
(1916) who developed the mean-field approximation in an investigation on the
growth of colloidal-sized particles. Most of the recent work in the area of diffusion-
controlled reactions has focused on the steady-state problem (e.g., Felderhof and
Deutch 1976, Muthukumar 1982, Mattern and Felderhof 1986, 1987). The un-
steady problem has been studied by Felderhof (1977) who determined a frequency-
dependent rate coefficient which improved upon the early results of Smoluchowski
by treating pair-wise interactions between reactive centers. His results are valid for
long times and dilute volume fractions of the reactive particles. Bixon and Zwanzig
(1981) exploited the techniques of multiple scattering’ to derive a configurationally
averaged Green’s function for the problem to first order in sink density. This ap-
proach was later refined by Felderhof, Deutch and Titulaer (1982) to account for
the absence of concentration within the sinks. Tokuyama and Cukier (1982) studied
non-local effects and used a scaling expansion approach to derive a local damping
equation to describe the time-dependent concentration field.

The general approach followed in these papers is the formulation of an effective
(time-dependent) reaction rate which characterizes the the bulk process. The im-
plicit assumption is that macroscopic boundaries would be treated by application of

the customary boundary conditions to the averaged governing equation involving an
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effective rate constant. However, the boundary condition is ignored in the deriva-
tion of the rate constant. Such an approach neglects the details of the interaction
between the macroscopic boundary and the reactive centers. Recently, Loewenberg
and Gavalas developed a configurational averaging approach for the steady-state
analysis of diffusion-controlled reactions in finite domains. Explicit consideration
was given to the detailed effect to the macroscopic boundary and the reactant flux
on the boundary was specifically evaluated for semi-infinite and spherical domains.

The purpose of this paper is to generalize the steady-state results of Loewen-
berg and Gavalas, henceforth (I), by determining the transient reactant flux on
the boundary, 911, of a finite or semi-infinite region, (2, containing a suspension of
reactive spheres. The approach involves configurational averaging of the governing
conservation equations, a concept introduced by Hinch (1977). The boundary-sink
interaction is explicitly considered but two-sphere interactions are complicated by
the presence of the boundary and are excluded from the analysis. We shall obtain

simple numerical solutions for the case where the domain is spherical or semi-infinite.

2 Problem Formulation

We will assume that the reactant diffuses within the inert phase with a constant
diffusivity, D. The spheres are equisized with radius, a, and distributed according

to a hard-sphere potential Accordingly, we define a sphere number density, n:
n=— (1)

where N is the total number of spheres and V' is the volume of the material. The
volume fraction of the spherical phase, ¢, is given by:

4
¢ = ~3£a3n (2)
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The case of interest is N >> 1, and the present analysis is restricted to dilute
volume fractions, ¢ << 1. |

The process is assumed to be diffusion-controlled; the reactant concentration of
the sphere surfaces is zero (or some equilibrium value). The initial concentration
is prescribed by a steady-state profile, yo(x'). For ¢ > 0, the boundary condition
is given by f(t) which is independent of position but may vary with time. The

governing equations are normalized by:

x=—, t=— u(x,t) = [y(x,) = o(x)] /5 (3)

where y. is some characteristic concentration. The Laplace transformed, dimen-

sionless conservation equations are:

Vii(x) — sii(x) = 0 (inert phase) (4)
i(x) = 0 (spherical phase) (5)
4(x,0) = 0 (initial condition) (6)
ax) = f x € 9N (7)

where s is the (dimensionless) frequency variable. The transformed dimensionless

reactant flux into the boundary is defined by:
F=——a(x) x € 9N (8)

which, in general, depends upon ¢, the geometry of the domain and position on the
domain boundary. Heretofore, we restrict our our attention to symmetric domains

for which T is spatially invariant.
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3 Configurational Averaging

In this section, we present the configurational average of equations (4)-(6). The
results follow easily from the derivation presented in (I) thus, a separate derivation

is not given. According to (I), we obtain the averaged equations:

Vi) - sl = o [ 9 taxpx))dx )

Z; Ix—x4||=1}n 55
. . 3c a .
Viabepa)) —sfaGepa)) = 2 S, xa)dx (10)

Ix — 4] > 1

3C 8
4 = ,X3,X3)dxs (11
4m /{llx—xaﬂﬂ}nﬁz 5 {8) (1, %2, X5 ) dxs (1)

Ix — x| > 1, |x—x >1

VEHa) (x]x1,%2) — s{@(x]|x1,%x2)) =

where (9), the (unconditionally) averaged field equation, is coupled to (10}, the
conditionally averaged equation with a sphere fixed at x;. Similarly, (10) is coupled
o (11), the second conditionally averaged equation with spheres fixed at x; and x,.
As is apparent, this coupling ultimately produces an infinite hierarchy of coupled
equations with an additional sphere fixed at each level. All averaged equations are
subject to boundary condition (7) on Q! and the conditionally averaged equations
must satisfy (6) on all fixed sphere surfaces.

The region (1 in Equation (9) is the allowed portion of the domain for sphere
centers consisting of the domain {1 less the excluded volume within one dimension-
less hard-sphere radius of the boundary, Q. Similarly, ; in is defined by thé
intersection: 2 N {||x; — x3|| > 2} and, according to the hard-sphere distribution,
is the allowed portion of the domain for a second sphere center given one center
is at x;. (1, is the allowed portion of the domain for a third sphere center given

centers at x; and X;. A tacit assumption in the foregoing is a uniform distribution
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of sphere centers except in the excluded hard-sphere volume near the boundary
and surrounding any fixed spheres. In actuality, a hard-sphere distribution éxhibits
local, order ¢, variations in the neighborhood of a boundary (or fixed sphere) which,
as shown previously (I) affect the solution higher order.

The hierarchy must be truncated to permit solution of the unconditionally aver-
aged field. The truncated hierarchy is solved in reverse order: the equation with the
most spheres fixed is solved first because it is decoupled from the others; its solution
provides the forcing term for the next equation. The procedure is continued until

the unconditionally averaged field is found. The truncation procedure follows.

4 'Truncation of Hierarchy

The hierarchy is truncated by exploiting the diluteness condition, ¢ << 1, and em-
ploying the physics of screening: far from a fixed sphere, the influence of the sphere
is’ “screened” by the presence of the intervening sinks in the material (Brinkman
1947). The screening of the spheres in the material implies that the concentration
field at a point x is relatively unaffected by the presence of a sphere fixed at x; for

large separation, ||x — x| >> L,:

(8 (x[x1)) ~ (@(x)) (12)

where L, is the “screening length” and is defined below. By diluteness, the right

side of Equation (10) is neglected yielding:
V2 (x|x1) — st(x|x1) ~ 0 (13)
which is solved subject to boundary conditions (6) and (12) yielding:

! /” 9 axlxa) Vs = (%) (14)

Z; x—X1||=1 on
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where boundary condition (7) has been neglected in favor of (12). The /s term
omitted above is significant only on the time scale, ¢ = O(1) and is consistently
omitted throughout (Felderhof 1977). Inserting the result into (9) yields the lowest

order truncation:
VHi(x)) = p(i(x)) (15)
where p is defined by:
p=3s+ 3¢ (16)

where p << 1 for long-times and diluteness of the spherical phase. Equation (15)
constitutes the “mean-field” approximation. The mean-field approximation neglects
all sphere-sphere and sphere-boundary interactions and retains only the screening
effect of the spheres. For short times, reactant penetrates an order one volume of the
domain thus sphere-interactions produce an order ¢ effect and similarly, two-sphere
interactions have an order ¢? effect. The previous steady-state results (I) indicate
that the effect of sphere-boundary and two-sphere interactions are bounded by order
¢Inc and ¢*/?1n ¢ respectively.

The two-sphere analog of the foregoing procedure yields the next higher order

truncation:
VHa(x]x1)) = p(x]x1)) (17)

The result is analogous to Equation (15) and is the mean-field approximation of the
first conditionally averaged equation. Following this program retains the effect of
sphere-boundary interactions neglected by the mean-field approximation but sphere-
sphere interactions remain unaccounted. According to the above argument, the
above truncation may be employed to obtain a uniformly valid solution to order ¢

with order ¢3/?In ¢ error.
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5 Characteristic Times

Rescaling Equation (15) or (17) to balance the diffusive and dissipative terms defines
the screening length:

L,=al p2| (18)

where p is defined by (16) and L, is the charaéteristic concentration decay length.
In general, the screening length gives the characteristic decay length in response to
a disturbance in the field and, in particular, gives the characteristic length for the
decay of reactant concentration away from the boundary. The screening length is

longest for long times and reaches its maximum value in the limit:
Looo = lim[la p72|| = a(3¢) 2 > L, (19)
S$—
We define a frequency dependent “screening modulus”:

é=L./L, = <%) Jp (20)

where L. is a characteristic length for Q (e.g., L. = V1/?). The screening modulus,
¢, determines the extent of reactant penetration into the domain. ¢ << 1 implies
that all the spheres in the domain are immersed in a uniform concentration field
equal to unity and ¢ >> 1 indicates significant “boundary screening”: only spheres
relatively near the boundary are exposed to significant reactant concentration. ¢

decreases with time, reaching a minimum value at steady-state:
L\ —
¢oo — Lc/Ls,oo = <’;> 3¢ S d) (21)

which is the previously used, steady-state screening modulus (Eq. 1.4.3). The

frequency transition of ¢ determines the transition from high to low frequency
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(short to long time) solution behavior. Equations (16) and (20) yield the “cross-

over” frequency, s., given by:
Se 1

é’; = @ +1 (22)
and a “cross-over” time, t, = s;!
2
to = i—& (23)
and upon rearrangement:
i — i + ._].; (24)
t. tp g

which is the (dimensionless) characteristic time for the process to reach steady-
state. The quantities t{g and ¢{p are the characteristic times for the boundary-
independent, local consumption of reactant and the purely diffusive process. The

local consumption of reactant gives rise to screening, occurs on the time scale:

1
%) (25)

which is independent of the domain geometry (e.g., Bixon and Zwanzig 1981). The

ts =0

diffusive time scale is approximately given by:

w=0(%) (26)

a

is independent of ¢ but depends on the specific domain. E.g., for a sphere with

normalized radius, R:
R 2
tp = (__> sphere (27)
s
(Carslaw and Jaeger 1959). The result displayed in Eq. (24) indicates:

(i) The processes of local reactant consumption and macroscopic diffusive transport

occur in parallel.
(ii) Screening reduces the time required to reach steady-state.

(iii) The overall characteristic time is given by ¢, = min [tp, (3¢) ]
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6_ Mean-Field Solution

In the present section, we shall obtain the mean-field solution for a spherical and

semi-infinite domain. If 1 is a semi-infinite domain, the solution of (15) and (7) is:

fns(x) = [ exp (—y/P 2) (28

where z is the distance from the plane boundary. The subscript, mf, replaces the
angled brackets indicating that the result depends upon the mean-field approxima-

tion. The reactant flux is:

A~

Frp=fyp (29)
which is the largest flux for all bounded domains.

For a spherical domain, {1, with normalized radius, R, the characteristic length

of the domain is aR and the screening modulus is given by:

b=Ryp | (30)

with steady-state (s = 0) limit:

o0 = lim ¢ = RV/3c (31)
In this case, Equations (15) and (7) yield:
. _ ;[Rsinh(\/pr)
Ums(X) = f [—“—”r sinh(9) ] (32)
For(R) = f[\/ﬁcothqﬁ— %] (33)

where r is the radial coordinate and is the distance from the center of the domain.
The leading order correction to the mean-field solution results from the interac-
tion of the spheres with the boundary. In the following, the hierarchy is truncated

at the next level thereby retaining this effect.
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7 Solution to Order ¢

In the following, we improve upon the foregoing mean-field results and obtain a

solution uniformly valid to order ¢. The solution of Equation (9) yields:

. . 13¢c [, ,, / 0 ' )
= —— — dx;d N (34
() = ¥o + S4n /n fo(x) {x'=x,|=13n0t On (ulefxa))dxadx x € (34)

where (F) is the transient reactant flux on the boundary and Fo(x) is the sink-

independent contribution to the flux defined:

A o .
Fo e ——-a—nuo(x) x € 9N (35)

where o(x) is the homogeneous solution of (9) and (7) and is thus the solution to
the problem in the dilute limit, ¢ = 0. The reactant flux, (ﬁ'), and the contribution,
ﬁ‘o, are independent of position on the boundary by the symmetry assumed above.
Neglecting order +/s variations in dg(x') on the surface of the sphere at x; (¢f. Eq.
14) allows interchanging the order of integration:

A . 3c [ . 1 J ,
(F) = Fy + 5 /ﬁ tio(x1) [21; /||x'——x11]:1 g(u(x'txl))dx' dx, x €90 (36)

Equation (36) expresses the reactant flux into the domain in terms of the aver-
age flux into a single sphere which, in general, requires solution of (10) from the
complete, coupled hierarchy. The above result is exact to O(cy/s) but cannot be
evaluated without truncating the hierarchy.

We shall employ Equation (17) to truncate the hierarchy thereby inducing an
error of order ¢*/?1n ¢ according to the previous argument. The solution is inserted
into (36) to yield the reactant flux directly without solving for the unconditionally
averaged field, (@(x)). The solution of (17) with boundary condition (7) is facilitated

by the definition of a function 9(x|x1):

(1) = [@mys(x) = (@(x[x1))] /s (x1) (37)
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where f,,s(x) and (@(x|x;)) satisfy the mean-field equations (15) and (17) respec-
tively. By linearity, 9(x|x;) is also a solution of Equation (17) satisfying boundary

conditions:

<>

(xpx1) = 0 x € 80 (38)

b)) = 1 x-xll=1 (39)

where we have neglected local gradients of @ms(x) at x; which are O(,/p) according
to the argument which follows. Vi, s(x) satisfies the mean-field equation which
is elliptic and by an appropriate maximum principle, each component of Vi, z(x)
attains a maximum on the boundary of Q). The component of V(i(x)) normal
to the boundary is bounded by ,/p (Eq. 29) and Eq. (7) implies that tangential
components of V(i(x)) are zero on the boundary. Therefore, each component of

V(i(x)) is bounded by ,/p. Expressing the solution (36) in terms of 9(x|x;) yields:

(F) = Fo + 3¢B (40)

where B is given by:
B — % [ 661y () FL ) s (41)
Hix) = - 9 5 (x|xr)dx (42)

A Jjx-x,|=1 On
The quantity B is the contribution to the net flux resulting from the presence of
reactive sinks in the domain. Equation (40) indicates that the flux can be calculated
to order ¢ if B is determined to order unity. In the appendix, we develop the general

approximation:

B = %/ﬁ{ao(xl)amf(xi) [(1+vp) + HO ()] + J(xl)]dxl +O(yplnp)  (43)

The quantities: (1 + 1/p) and H)(x;) are the exact contributions to H(x;) result-

ing from the incident field and first reflection disturbance induced by the boundary.
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J(x1) is the approximate contribution from the second and all higher-order reflec-
tions with the boundary as obtained by solution of Laplace’s equation. Inserting the
(43) into (40) yields the solution which may be written as the sum of four distinct

contributions:

ﬁ‘:f?o+]§‘1@+:f“1b+f“1c+0(c \/Plnp) (44)

where we have dropped the angled brackets on (ﬁ‘}, the configurationally averaged
reactant flux is henceforth assumed. The quantities: ﬁ'm,b,c reflect the reactivity
of the spheres in the domain. The reactivity induced by the incident reactant
field results in the contribution Fi,. The primary correction to the mean-field
solution lies in the contributions 1:"11) and F 1c Which result from the boundary-sphere
interaction. Specifically, Iy, results from the additional sphere reactivity induced
by the first reflection disturbance and F,. from all higher-order reflections with the

boundary. The sink-dependent contributions are explicitly given by:

. 1

fra = 3c(1+\/ﬁ)§/nﬁo(x1)ﬁmf(xl)dx1—3c (45)

A 3c .

Flb m E i ﬁo(xl)umf(xl)H(l)(xl)dxl (46)

B = 2 J(x;)d (47)
e — S Ja X1)aXy

Subtraction of the quantity 3¢ is a consequence of the hard-sphere distribution:
sphere centers are excluded from the volume within one sphere radius of the bound-
ary. This excluded hard-sphere volume is also responsible for restricting the range
of integration on 1 to the subset ( in the expressions for ﬁ‘lb and ﬁ‘lc.

In the long time limit (s — 0), Equations (45)-(47) reduce to the previous
steady-state results (Eqs. 1.6.13-15). At short times (s >> 3c), the reactant con-
centration reaches only spheres which lie in an order one volume near the boundary

and thus sinks in the domain contribute to the net reactant flux at order ¢. The
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sink-independent contribution, FO, is order one and dominates but tends to zero for
long times where it is sub-dominant to the reactant flux resulting from the spherical
sinks. The error term in the solution is order ¢*/*In ¢ for long times (s << 3¢) and
is order ¢ y/slns for s = O(1). The result is valid for all symmetric bounded or

semi-infinite domains.

8 Spherical and Semi-Infinite Domains

In the present section, the foregoing procedure is applied to determine the reactant
flux into both a semi-infinite and spherical domain. For a semi-infinite domain,
ims(x) is given by (28) and d(x)) is obtained in the dilute limit, ¢ = 0. Inserting

these functions into expressions (35) and (45) yields:

= V5] (48)

=0

Fio = 3¢f(1+ /D) /Ooo eV 2 VP 2y — 3¢ = 3cf {%\/% —~ 1} (49)

The first reflection disturbance, H(l)(xl), is determined by the “method of images”

(Jackson, 1962) and inserted into (46) yielding the exponential integral:

sz & TVPE 3¢

Py, = 3cf/1°o e 5 dz ~ ——?f [ln(\/g+ 3\/p) -{—’7} + O(cv\/ﬁ) (50)

We obtain the exact solution to Laplace’s equation in bi-spherical co-ordinates (Jef-
fery 1912) yielding L(x;) defined by (A.3). The first reflection disturbance for
Laplace’s equation is determined by the method of images and combined with (A.7)

and (47) to obtain:

Fi, = 3¢f /100 J(z)dz = 3¢(0.47472- - ) (51)
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Inserting (48)-(51) into Eq. (54) yields the transient reactant flux into a semi-infinite

domain with boundary condition given by (7):

. n 1+4/p 3¢
(52)
In the following section, we shall consider the transient reactant flux resulting from

a unit step change in boundary concentration. In this case, f = 571, The previous

steady-state result, (Eq. 1.7.5) is recovered in the long-time limit:
N 3 1 1
lir% si = Fo, = V3¢ — —f In3c¢ — 3¢ (-2— In3 + 4 0.47472) + O(c**In c) (53)

Next we analyze the more general case of a spherical domain with dimensionless
radius R. In this case, angular integration yields 47, and the surface area is 47 R?®
yielding a multiplicative factor 1/R? for each of required quadratures. In this case,

fims(x) is given by (32) and do(x) by setting ¢ = 0. Egs. (35) and (45), become:

By — f {% %ﬂ J [Vscoth(v/sR) — ] (54)

I

r—

. = f[%uwm [ (%5) (%E) ’”“36}

= f(1++/p) [V/P coth(y/PR) — V/s coth(v/sR)| — 3¢f (55)
The method of images can again be used to determine the first reflection disturbance

and Equation (46) becomes:

o 3¢f [R-1 (sinh(\/s 7) R\ (sinh(y/pr) R ( R ) R — 1%\ ,

Fu = R? Jo (Sinh(\/g R) r ) \sinh(,/p R) r ] \R? —r? exp {~vP r rdr
(56)

The exact solution to Laplace’s equation is available in bi-spherical coordinates and
is inserted into (A.7) with the first reflection disturbance for Laplace’s equation and
the result into (57) yielding:

. 3¢f rR-1
L)

1= oy J, J(r)r*dr (57)
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Equations (55)-(58) are evaluated numerically for fixed R, and summed to yield
the traﬂsient reactant flux into a spherical domain resulting from a boundary value
given by (7). The reactant flux resulting from a unit step change in boundary
concentration is considered below. It can be similarly shown that the previous

steady-state result (Eq. 1.7.6-8) is recovered by the limiting process shown in (54).

9 Numerical Solution

We shall now present a numerical investigation of the above solutions for a unit
step change in reactant concentration on the boundary ( f= s71). In compliance
with the diluteness assumption, we restrict our attention to volume fractions in the
range: 0.001 < 3¢ < 0.1. For practical purposes, we are interested in N >> 1
and shall take N = 10 as a lower bound. Egs. (1) and (2) yield the relationship:
N = ¢R? which provides R = 32 as a lower bound for volume fractions in the above
range. Results are presented for R = 32 and for a semi-infinite domain (R — o).
For the spherical domain, the steady-state screening modulus, (31), assumes the
values: @2 = 1,10,100 corresponding to the volume fractions 3¢ = 0.001,0.01,0.1.
The semi-infinite domain corresponds to the limiting case, ¢2, — oo.

Figures 1 and 2 show the (dimensionless) reactant flux for both domains para-
metric in (dimensionless) time and volume fraction respectively. The results indi-
cate that at short times, the flux exhibits algebraic decay and is almost independent
volume fraction. This observation reflects the domination at short times by the sink-
independent flux, Fo, which is given by (wt)*é for short times. The flux into the
semi-infinite domain exceeds the solution for a spherical domain (¢ fixed) and that
the difference between the two solutions increases with time and inversely with ¢,.

Fig 1. indicates that for ¢2 = 100, the spherical and semi-infinite domain solutions
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are approximately equal for all times.

According to Egs. (24)-(27), the characteristic time, t., is approximately 100
for the spherical domain and 1000 for the semi-infinite domain for 3¢ = 0.001.
At the higher concentrations, 3¢ = 0.01 and 0.1, the transition is predicted to
occur at approximately ¢, = 200 and 10 for both domains. These estimates are
in approximate agreement with the numerical results depicted in Fig. 1. The
steady-state (¢ — oo) solutions shown in Figure 2 coincide with (I). For fixed time
and volume fraction, the reactant flux for (finite) B > 32 lies between the values
computed for B = 32 and a semi-infinite (R — oo0) domain. Thus, the results
displayed in Figs. 1 and 2 provide bounds for the flux with R in the range: 32 <
R < co.

Figure 3 displays the relative correction to the mean-field solution and thus,
the significance of treating sphere-boundary interactions. The effect is a 4%-16%
enhancement of the predicted reactant flux for long times but is negligible at short
times. The time required to reach the steady-state correction is rather independent
of volume fraction. The steady value is obtained very gradually for the semi-infinite
domain, much slower than the characteristic time predicted by (23). The charac-
teristic time required for the solution of the spherical domain to attain the steady
mean-field correction seems to be correlated with the diffusive time, (27). The

correction increases monotonically in time and volume fraction.

10 Conclusions

A detailed analysis has been presented for determining the transient reactant flux
into a material containing reactive, randomly-located, spherical particles. The local

reaction and macroscopic diffusion processes occur in parallel. A long-time asymp-
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totic solution was obtained valid to order ¢ for bounded and semi-infinite domains.
Explicit consideration is given to the sphere-boundary interactions which include
long-range reflection disturbances induced by the boundary and the short-range,
hard-sphere interaction between the spheres and the boundary. These interactions
dominate the effect of two-sphere interactions which affect the solution at order
¢3?Inc. The solution reduces to a previously obtained, steady-state solution on
a characteristic time scale of ¢, = min[tp, (3(:)‘1]. Numerical results were given
for spherical and semi-infinite domains. A comparison with the simpler, mean-field
analysis indicates that, in the range of parameter values considered, the present
analysis produces a moderate enhancement of the predicted flux at long times and

a smaller correction at short times.
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DESCRIPTION

sphere radius

defined by Equation (51)

volume fraction of particulate phase

diffusivity of supporting matrix

boundary concentration

total dimensionless reactant flux

sink-independent contribution to reactant flux (Equation 42)
sink reactivity induced by incident field (Equation 55)

reactivity enhancement by first reflection disturbance (Equation 56)
reactivity enhancement by higher-order reflections (Equation 57)
defined by Equation (52)

defined by Equation (A.5)

defined by Equation (A.7)

defined by Equation (A.3)

characteristic dimension of domain

characteristic screening length

sphere center density

total number of spheres in domain

defined by Equation (16)

domain radius normalized by sphere radius, a

dimensionless frequency variable
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Greek Symbols

o]
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subscripts

mf
oo
0

superscripts
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surface area of domain boundary
dimensionless time

characteristic reaction time (dimensionless)
characteristic diffusive time (dimensionless)
dimensionless concentration

domain volume

reactant concentration

reactant concentration on sphere surfaces

domain

restricted domain (Equation (9))
domain boundary

screening modulus (Equation (20))

mean-field result

steady-state value

initial value

Laplace transform of quantity

dimensional quantity
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Appendix: Approximation of B

In the following, we derive an order one approximation for B by an extension
of a previous argument used for the steady-state problem (I). B is given by (41)
which requires H(x;) defined by Equation (42). The limit: ||p|| — O requires both
¢ — 0 and ||s|| — 0. In this limit, the diffusion equation (9) and the mean-field
equation (15) reduce to Laplace’s equation which implies that do(x;) and @ s(x1)

are harmonic, satisfy (7) and thus:

11)1—I>I(1) uo(xl) =1 (A]_)
lim iy (1) = 1 (4.2)

We shall define L(x;) by Equation (42) for the case where 9(x|x;) satisfies Laplace’s
equation:

Lix:) = lim H(x1) (A.3)

Combining Equations (A.1)-(A.3), suggests the following approximation of (41) for
B:
B ~ lim = [ io(x1)ims (x1)H( )dx—lfL(x)dx (A.4)
NlmS ﬁuoxlumfxl X1 I_Sﬁ 1 1 .

p—0

which requires that the above limit exist. The above result is generally valid for
contributions to H(x;) resulting from the second and all higher-order reflections
with the boundary. The strength of these reflections decays sufficiently fast to al-
low integration on all bounded or semi-infinite domains with p = 0. For these
terms, the error induced by (A.4) is uniformly small, as shown below. However, the
contributions to H(x;) resulting from the incident field and first reflection distur-

bance generally diverge upon integration in the limit p — 0 rendering (A.4) invalid.

The approximation is remedied by subtracting the portion of H(x;) resulting from
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the incident field and first reflection disturbance and calculating its contribution to
B exactly. The contribution from the remaining, convergent portion of the inte-
grand can be found to order one using (A.4). Assuming the existence of a regular

perturbation solution for H(x;):
= > H¥(xy) (4.5)

where H®*) (x1) is the contribution to H(x;) from the k** reflection with the bound-
ary. The existence of an analogous solution for L(x,) is also assumed with L®*)(x,)

analogously defined. The foregoing argument suggests the revised approximation:

B~ / o(ct)ims (1) [+ vP) + HO()] + 3(xi)] dxy (46)

which we claim is valid to order one for all domains considered. The quantity
(1+,/p) is the boundary-independent contribution from the incident field, HO(x;)
results from the first reflection disturbance and J(x;) is the p = 0 approximation
for the remaining portion of the integrand in Equation (41) obtained according to
(A.4):
o0
= > L0 ) = Lixa) = [1+ L) (a7)
k=2

where L (x1) is the contribution from the incident field and is equal to unity and
LM (x,) is the first reflection disturbance. As shown previously (I, Appendix D),
the error induced by Equation (A.6) is largest for a semi-infinite domain. In this
case, it can be shown that the error introduced to B by substituting L(* (x1) for
H®)(x;) is O(c*/?Inc) for s < O(3¢) and O(y/c) for the substitution of all higher-
order reflections. Therefore, Eq. (A.6) determines B to order one for all bounded

or semi-infinite domains considered herein at long times (s < O(3¢)).
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Time-Dependent, Diffusion-Controlled

Reactions: The Influence of Boundaries

M. Loewenberg and G. R. Gavalas
Department of Chemical Engineering 206-41

California Institute of Technology
Pasadena, California 91125

Abstract

A configurational averaging procedure is presented for the analysis of diffusion-
controlled reactions in a medium containing a hard-sphere distribution of spher-
ical sinks. The hierarchy of equations produced from the averaging procedure
is truncated assuming low concentration of sinks. The method is shown to
reproduce previous results for the decay of an initially uniform distribution of
reactant in an unbounded medium and is subsequently applied to determine
the reactant flux on the boundary of a semi-infinite domain. In the latter prob-
lem, the boundary has a significant effect which cannot be accounted for by

the usual rate coeflicient.
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1 Introduction

The problem of interest involves a two-phase system consisting of a continu-
ous phase containing discrete particles acting as sources or sinks of some chemi-
cal species. The continuous phase permits diffusion of this species but is inert to
chemical reaction. Such a situation is frequently encountered in problems such as
the evaporation or condensation of sprays, growth of colloidal particles, suspen-
sion polymerization and fluorescence quenching. This problem was first studied by
Smoluchowski! who considered the two-step process of slow diffusive transport fol-
lowed by the rapid reaction of two chemical species. One of the species was assumed
to be much more massive and was treated as a stationary, spherical sink.

Much of the recent work has focused on the steady problem in which reactant
is supplied by a distant boundary. Felderhof and Deutch sought an effective rate
coefficient which accounted for interactions between competing sinks at dilute sink
volume fractions?. Muthukumar employed multiple scattering techniques to deter-
mine the rate coefficient® and diffusion coefficient* at arbitrary volume fractions of
mono pole sinks. More recently, Mattern and Felderhof®® used a cluster expansion
approach to re-derive and discuss discrepancies among previous results.

In the present work, we are concerned with the time-dependent problem. Felder-
hof determined a frequency-dependent rate coefficient and demonstrated the neces-
sity for including “retardation” effects in the treatment of multi-sink interactions.”
Bixon and Zwanzig® explored the transient problem employing a multiple scattering
approach to derive a configurationally averaged Green’s function to first order in
sink density. Felderhof, Deutch and Titulaer® modified the results of a multiple
scattering analysis to account for the instantaneous absorption of reactant created

within the sinks. Tokuyama and Cukier!® employed a scaling expansion approach to
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derive a local damping equation in space and time. They showed that the reaction-
diffusion process cannot be cast in conventional local form due to long-range spatial
correlations for long times.

The general approach followed in the above papers is the derivation of an av-
eraged rate of reactant consumption which could be a function of position if the
concentration field was initially non-uniform. In this paper, we have two objectives.
The first is to develop an alternative and, we believe, simpler analytical solution
of the unsteady problem. The second is to extend the analysis to domains with a
boundary. The analysis is based on configurational averaging initially formulated by
Hinch!! which we have previously applied to the steady problem.!? The boundary
introduces disturbances in the concentration field that cannot be properly described

as a simple boundary condition to a differential equation.

2 Problem Formulation

The dimensionless equations which describe the reactant concentration in a
domain, {2, containing a suspension of perfect spherical sinks imbedded in an inert
- matrix material are:
ViU (x,t) ~ fo(x,t) =0 (1)
at
for points in the matrix and,

U(x,t) =0 (2)
for points lying within the spheres. These equations have been cast in dimensionless
form using: x = x'/a, and ¢ = Dt' /a* where @ is the radius of the equisized spheres
and D is the constant matrix diffusivity. In general, (1) and (2) are solved subject
to an initial distribution of reactant, U(x,0) = U;(x), and a prescribed boundary

condition, U(x,t) = G(x,t) for x on the boundary, ). Transforming the equations
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yields:
Viu(x) —su(x) = —Ui(x) (3)
u(x) = 0 (4)
u(x) = g(x) x € N (5)

where u(x) and g(x) are the Laplace transforms of U(x,t) and G(x,t); s is (dimen-
sionless) frequency.

The spheres are distributed according to a hard-sphere potential with sphere

center density, n. The volume fraction of the spherical phase, ¢ = %cﬁn, is assumed

small. Equations (3) and (4) are configurationally averaged to yield the infinite

hierarchy of coupled equations:!!1?

Viug(x) — sug(x) = —(1 — c)Us(x) + 3¢By(x) (6)
Viuy(x) — suy(x) = —(1 —c)Ui(x) +3¢By(x) |x—xi|| > 1 (7)
Viua(x) — sua(x) = —(1—¢)Us(x) +3eBs(x) [Ix —x1l, [|x —x2]| > 1 (8)

where uy (x) is the configurationally averaged concentration field with sphere centers
fixed at x1,X2,X3,---Xy. The factor (1 — ¢) reflects the absence of reactant within
the sinks. The quantity, By (x) is defined by:

1 )
= — — d 9
N 47 J/{nx—x,\,|§:1}rmN_1 anuN(x) xN ( )

which is.essentially the average rate of reactant consumption by a sink at x given
sinks fixed at x;,X32,X3,- - Xn-1. The restricted domain Qy is the allowed portion
of the domain for sphere centers consisting of the domain (1 less the excluded hard-
sphere volume in the neighborhood of the boundary, 81, and N spheres fixed at

X1,X2,Xs, - -Xy. All averaged equations are subject to boundary condition (5) on
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00 and (4) on all fixed sphere surfaces. Short-range correlations between the spheres
which are induced by the hard-sphere potential'® have been neglected throughout
the foregoing averaging procedure which is valid for dilute volume fractions.!! An

effective rate coefficient can be defined,
kuo(x) = Bi(x) (10)

implying that the governing equation for the configurationally averaged concentra-
tion field may be cast in local form. This assumption is only valid far away from
the domain boundary as discussed below.

The hierarchy must be truncated to permit solution of the unconditionally aver-
aged field. The truncated hierarchy is solved in reverse order: the equation with the
most spheres fixed is solved first because it is decoupled from the others; its solution
provides the forcing term for the next equation. The procedure is continued until
the unconditionally averaged field, ug, is found.

The hierarchy is exploiting the assumption of diluteness (¢ << 1) and the physics
of screening: far from a fixed sphere, its influence is “screened” by the presence of

the intervening sinks in the material.* For large separation, ||x — x;|| >> L, :
ul(x) ~ ’U,Q(X) (11)

where L, is the “screening length” which is defined below. Using diluteness, ¢ << 1,

Equation (7) is approximated by:
Viu(x); — su(x); = —(1 — ¢)Us(x) (12)

which is solved subject to boundary condition, (4) and the screening relation, (11)

by elementary methods to obtain:

B1 = u(x) (13)
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which according to (10) is equivalent to the Smoluchowski result,! ks = 1. Boundary
condition (5) has béen neglected in favor of (11). The /s term which correlates with
the short time scale, a*/D, is omitted from (13) and will be throughout consistent
with the approach of Felderhof.” Inserting the result into (6) yields the “mean-field”
truncation:

V2uo(x) — puo(x) = —(1 — ¢)Ui(x) (14)
where p = s+3c¢ which is small for £ >> 1 and ¢ << 1. By analogy to the foregoing

procedure, higher-order truncations are obtained:

Viui(x) — pui(x) = —(1—c)Us(x) (15)

Viuy(x) — puz(x) = —(1—¢)Us(x) (16)

Truncation (14) retains the screening effect of the spheres but neglects all direct
sphere-sphere and sphere-boundary interactions. Truncation (15) retains sphere-
boundary interactions and (16) includes two-sphere interactions. Rescaling Egs.
(14)-(16) to balance the diffusive and dissipative terms defines a screening length,

L, = a| p 3|

3 Decay of a Uniform Distribution of Reactant

In this section, we consider the decay of an initially uniform distribution of
reactant in an infinite medium of reactive spheres. Accordingly, U;(x) = 1, and ug
and B are spatially invariant.

We will truncate the hierarchy with Eq. (16) and use the commonly employed,

approximation:’

1 J
B - L / L (x5 dx: 0 17
Z(X) 47 {ljx—xalj=1} on U2(X2) *2 x€ih ( )

- 0 x &
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We can then write:

By(r) = Bi[1—-Q(r)] r>2 (18)

= 0 r <2

where r = ||x —x;|| and Q(r) is the reduction in sink strength resulting from two-
sphere interactions. Solving (16) and (4) up to two reflection disturbances yields:'®
eVPT  eTVPT

Q(r) = - (19)

r r2

Eq. (7) becomes:
1d ( 2du1) e VP  eTVPT
—\r'—=] —su; = +

r2 dr r dr

; ) } r > 2 (20)

= —(1-¢) 1<r<2
which is solved for Bj:

1—c¢
s

Blz

[1+3c{%—m~ln(\/§+\/z—9) ~’7E—ln2}}_ (21)

where short-time /s behavior is neglected and yg = 0.57722- -+ is Euler’s constant.

Inserting this result into (6) yields:

1..._.
—supg=—(1—¢)+ 3¢ ‘

+1In(v's +/p) + &+ lnz}}—
(22)

1
{1 + 3C{g +

1
VRV

Then according to (10), we can express the solution in terms of an effective rate

constant, k:
1—c¢

= 23
o s+ 3ck . ( )

given by:

-1

k=1 ~3c{m+m(\/§+ V) Fap 2| 10 me  (24)
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which differs from Felderhof’s solution:’

-1

ke = 1—-3c{m+1n(\/§+\/5) +p 43y 1O (25)

only in the order ¢ term. The reason for the discrepancy is unclear. In the long-time

(s — 0) limit, these rate constants yield:

3

koo = 1+\/3c+§ln3c+3c(1+fm+ln2) (26)
3

kor = 1+\/3c+-éc—ln3c+3c(1+'yE+ln3) (27)

both of which differ slightly from the steady-state rate constant determined previ-
ously by Felderhof and Deutch:?

3
koorn = 1 +/3¢ + §1n3c+3c(1+"/}3+1116) (28)

where the dipole contribution has been omitted from their solution? for the sake
of comparison. The steady-state rate constant has been determined by others®*™©
and the different results discussed.® In the case of an initial uniform distribution of

reactant, Bixon and Zwanzig’s solution® reduces to:
kpz =1+ \/E (29)

which is obtained by neglecting two-sphere interactions (@ = 0) and retaining the
/s term in the solution of (20). At steady-state, koo,z = 1 which coincides with
Smoluchowski’s solution.

The decay of an initially uniform distribution of reactant in an unbéunded,
dilute suspension of reactive spherical sinks is given by inversion of (23). The above
solutions (with rate constants: k,kp, kpz and ks) all decay exponentially for short
times,

U~Up~Upz~U,=(1—-cle™ 3et << 1 (30)
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but differ substantially in their long-time behavior. The Smoluchowski solution is
given by (30) for all times which differs markedly from the long—timé (3¢t >> 1)
algebraic decay exhibited by the other solutions:

1—c¢ 1

6¢c  /7t8
1—c¢c 1-\/5;

U=Up ~ (32)

6c Vrtd
This result implies that, at long times, the relative offset, (Ur — Ugz) /Ur, attains
the value: [—\/i;)Z/ (1 - \/§Z)]

Figure 1. displays U(t) for a sphere volume fraction of 0.01. The transition

Uz

(31)

from exponential to algebraic decay is apparent. The remaining curves show the
difference between the above solutions and Up. The difference between Ugpz and
Ur results from neglecting two-sphere interactions thus demonstrating their sig-
nificance. Initially, two-sphere interactions reduce the rate at which reactant is
consumed thus, Up > Upgy for short times. Two-sphere interactions appear to
retard the transition from exponential to algebraic decay; during the transition,
the relative difference between these two solutions changes sign and, at long times,
Urp < Upg. Figure 1. predicts that the rélative offset of the Bixon-Zwanzig solution
is approximately —21% as quantitatively asserted by Egs. (31) and (32). The rela-
tive difference between Ug and Up diverges at 3¢t ~ 1 thus marking the transition
from exponential to algebraic decay in the solution derived herein as well as in the
solutions of Felderhof and Bixon-Zwanzig. Figure 1. shows that the deviation of
our solution (relative to Up) is uniformly small (< 3%) and tends to zero at both
short and long times in agreement with Egs. (30) and (32). Apparently, the present

approach closely reproduces the results obtained by Felderhof.”
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4 Reactant Flux into a Semi-infinite Domain

In this section, we determine the transient reactant flux on the boundary, z = 0,
of a semi-infinite domain. We shall consider the case in which reactant concentration
is initially absent from the domain (U;(x) = 0). The boundary condition, G(x, ), is
assumed to be a slowly-varying function of time and independent of position. Thus,
the average concentration field, ug, and sink strength, B;, depend only on z, the
distance normal to the boundary.

In the presence of boundaries, treating direct two-sphere interactions is very

tedious, hence we shall truncate the hierarchy at an earlier stage, employing Eqs.

(15) and (17):

Bi(z) = uo(z)[1+ Q(z)] z>1 (33)

where Q(z) is the sink strength enhancement induced by the boundary at z = 0.

Solving (15) by the method of reflections™ yields:

e—2\/;_7 z

Qlz) = —_— + J(z:p) (34)

where J(z;p) is the contribution from the second and all higher-order reflections

with the boundary. Eq. (6) becomes:

RN K
2z
ug(z) — suo(z) = 0 0<z<1

ug(z) — puo(z) = 3eug(z) [ + J(z;p)] z>1 (35)

which must satisfy (5) and is solved by the following perturbation scheme for |p| <<
1 which implies diluteness since ¢ < [p|. Introducing the scaled independent variable,
Z = z,/p, Eq. (35) becomes:

3c

u"(Z) —u(z) = —u(2) [e — + O(—‘N/-I—z)} | £>./p (36)

P
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u"(%) - Su(@) = 0 0<E<

where the subscript, 0, indicating conditional average has been dropped and is
heretofore implied. Deriving the first two terms in a regular perturbation yields the

uniformly valid approximation:

—\/pz 3c 2\/pz
u(z) =g e VP [1 + m{El(Z\/z‘)z) — e?VP*E; (44/pz) — In2} + O(c)} (37)

where E;(z) is the exponential integral. Then, assuming that G(t) attains a constant

steady-state value, G, the steady-state (s — 0) concentration field is:

Upo(z) = Goo eV *® [1 + \/4—_3—C{E1(2\/§E z) — o2V *E1(4V3¢ £) —In2} + O(c)}
(38)
which, far from the boundary, relaxes to:
r .
U (Z) = Goo eV 2 ll - \/4‘;1112] V3ez >> 1 (39)

The reactant flux on the boundary is obtained by differentiation of (37):

f=-s = o[VE+ mleyR) + Bilayh) ~ 02} +0()]  (10)

3 1
= g [\/}3’_ ~4£1np—3c <ln2+ 5’)/) +O(c)}
The result given by Eq. (40) is accurate to order ¢Inc¢ but can be refined to

O(c¢) by manipulating Eq. (35) to yield the implicit relation:
e—«2\/§ z

f=gyp+ 30/100 e VPR (z) [ + J(x;p)} dz (41)

When the first term of Eq. (37) is inserted into the integral of Eq. (41), the following

result is obtained:

f=glvpt %C—{El(z\/ﬁ) 1 By(4/p) — In2} + 3¢j + 0(03/21110)} (42)
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which reproduces the O(clne¢) solution and an additional term, ¢ (3cj), resulting
from the contribution of higher-order reflections with the boundary. J(z;p) is con-
tinuous and bounded uniformly by O(z™%) as £ — oo. Therefore, the improper
integral of J on [1,00) converges uniformly in p as p — 0 which permits the limit-

ing process:

= Ltim [T e VPu(z) I (23 p)do = /oo J(z;0)dz = 0.47472 - - - (43)
1

g r—0J1
The quantity J(z,0) is known exactly from the solution of Laplace’s equation in
bispherical coordinates'® and the integration is performed numerically. In the low-

frequency limit (s — 0), Eq. (42) reduces to:
3 1
Fo = Go [\/§E - Zc In3c— 3¢ (ln2 + 37 j) +0(c**In c)] (44)

which nearly reproduces the recently-obtained steady-state solution of Loewenberg

and Gavalas:1!

3 3 1
Fo1c = Goo [\/%—« —flnsc— 3¢ <Zln3 + 57 ~j) +0(c? lnc)} (45)

The discrepancy between expressions (44) and (45) is similar to that found
between k£ and kr and cannot be readily explained. In deriving the steady-state
result, Loewenberg and Gavalas demonstrated that two-sphere interactions affect
the solution at O(c*?In¢), a result assumed to hold in the present, time-dependent
situation for 3¢t >> 1. For short times, two-sphere interactions have a smaller,
order c? effect. Thus, in the context of this problem, the omitted two-sphere inter-
actions have a uniformly higher-order effect than the sphere-boundary interactions
which are treated above.

According to (10) and (33) we can identify a rate coefficient:
RN
2z
= 0 T <1

k(z) = 1+

+ J{z; p) z>1 (46)
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which is specific to the boundary considered in this problem indicating that the
bulk equations depend on the choice of boundary. Therefore, applicétion of an
effective rate coefficient which treats two-sphere interactions and is derived for the
boundary-free problem would be inconsistent.

To assess the significance of sphere-boundary interactions, the above results are
compared with the Smoluchowski solution which neglects all interactions except

screening. The quantities ug and fs are obtained by solving Eq. (14):
us =g e V7, fs = g\/p » (47)
which at steady-state, reduce to:

Uso,s = Goo €7V % Frs = GooV/3c (48)

Eqgs. (40) and (47) indicate the sphere-boundary interactions affect the reactant
flux at order clnec. A comparison of Egs. (39) and (48) indicate that the relative
far-field (\/3—(:::: >> 1) depletion at steady-state which results from sphere-boundary
interactions is O(+/c).

As an illustration, we shall consider the transient reactant flux resulting from a
unit step change in reactant concentration with sphere volume fraction, ¢ = 0.01.
Thus, G(t) is given by the Heaviside function which has the transform, g = 1/s,
and the steady-state value, G, = 1. For short times, the solution is dominated by

sink-independent algebraic decay:

1
Fro— 3et << 1 (49)

vt

and attains the steady value, F,, at 3¢t ~ O(1) as shown in Figure 2. The remain-
ing curve shows (F — Fs)/F and demonstrates that sphere-boundary interactions

enhance the reactant flux and become most significant at long times. According
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to (39) and (48), sphere-boundary interactions deplete the steady-state, far-field
concentration by about 3%, but enhance the steady-state reactant flux by approxi-
mately 10% as indicated in Figure 2. For the parameters used in this example, the

steady-state flux, F,,, deviates from the previous result, Fy, Lg, by about 2%.

5 Conclusions

A configurational averaging approach was developed to analyze diffusion-controlled
reactions. This approach reproduces previous results for the case of an unbounded
medium. The calculated reactant concentration exhibits exponential decay initially
and slow t~3/% decay for 3ct >> 1. Two-sphere interactions were included and their
effect shown to be order 1/c for long times. The configurational averaging technique
was then used to determine the time-dependent reactant flux in a medium with a
macroscopic boundary. The presence of the boundary affects the averaged equations
which govern the bulk concentration field. Thus, an effective rate coefficient cannot
be consistently applied. The analysis shows that the boundary induces an order
cln ¢ enhancement of the reactant flux and an order /c depletion to the steady-
state, far-field. An illustration shows that although the effect of sphere-boundary
interactions on the far field is small, the effect on the reactant flux on the boundary
is more significant. This flux algebraically approaches a steady-state value in close
agreement with a previous result. In general, it appears that the configurational
averaging approach is simpler than previous approaches and is well suited to treat

bounded domains.
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Figure Captions

. Decay of an initially uniform distribution of reactant, U, with sphere volume
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The relative effect of sphere-boundary interactions: (F — Fg)/F(------- )
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CHAPTER 8

Reaction and Diffusion

in a Random, Porous Material
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Abstract

A detailed analysis is presented for the theoretical treatment of the com-
bined diffusion and reaction process which occurs in reacti\}e, porous mate-
rials. A bimodal pore size distribution is assumed with a random, isotropic
distribution of equisized, cylindrical macropores. A configurational averag-
ing procedure is developed to address the finite size and detailed distribution
of macropores. A hierarchy of coupled equations is produced which is later
truncated assuming low macropore void volume. The microporous material is
described as a continuum with a local diffusion coefficient and homogeneous,
first-order rate constant. The present analysis is valid for diffusion-controlled
conditions In which reactant penetration is on the same order as the size of
the macropores. In the diffusion-controlled limit, the results reduce to those
obtained by a simpler, single pore model described within. The results are
qualitatively different than those obtained by a continuum description of the

material.



231

1 Introduction

The study of reaction and diffusion in porous materials is important because of its
obvious relevance to a variety of important technological problems including coal
combustion and heterogeneous catalysis. Significant progress has been made since
the pioneering work of Thiele (1939) who introduced the concept of an effectiveness
factor that relates the observed rate of chemical reaction to the maximal rate that
would occur in the absence of diffusional limitations. A single pore model was used
in which the radius of the cylindrical pore was taken as the hydraulic radius of
the pores in the catalyst. The object of predicting the rate of chemical reaction
under conditions in which mass transport effects are significant has continued to be
a central goal in studies involving heterogeneous reaction and diffusion.

Intraparticle mass transport has often been analyzed with pseudo-homogeneous
differential equations. Such an approach ignores all details of the particle structure
which, under some conditions, is adequate. However, in certain situations, details
of the material microstructure become important. These conditions typically arise
during the pulverized combustion of softening coals which tend to form cenospheres
during heatup. Figure la. shows a bimodal pore size distribution for a cenosphere
formed from PSOC-1451 bituminous coal char (Northrop 1988). Under the high-
temperature conditions pertinent to pulverized coal combustion, oxygen penetration
is on the order of a micron which, according to the figure, is the size of the larger
pores in the char (Loewenberg 1988). In this context, a continuum treatment is
inappropriate.

The pore size distribution of commercial catalysts are often bimodal, a conse-
quence of their construction, typically from the compression of fine powders, con-

sisting of small microporous particles, to form catalyst pellets (Satterfield p. 114,



232

1980). Figure 1b. depicts the bimodal pore size distribution of a commercial cat-
alyst used for the water-gas shift reaction (Bohlbro, 1966). The proper analysis of
heterogeneous reaction and diffusion in materials with a bimodal pore size ‘distri—
bution was addressed by Mingle and Smith (1961) through the introduction of a
microeffectiveness factor to account for the reaction and diffusion within the small
particles of the powder precursor. The microeffectiveness factor was obtained by
an analysis of the transport within the microporous particles and inserted into a
differential equation describing the bulk transport within the pellet. The overall
effectiveness factor is a product of the macro- and microeffectiveness factors. This
approach was subsequently employed by several other workers including Carberry
(1962), Tartarelli (1971), and Ors and Dogu (1979).

Random pore models have been developed to describe the pore structure of char
particles. A pore tree model was developed by Simons (1979) which describes the
pore structure by trees exﬁanating from the particle surface to its interior. Random
capillary models have been developed by Gavalas (1980) and Bhatia and Perlmutter
(1980). These models assume a random, isotropic distribution of cylindrical pores
and implicitly account for various important details of the microstructure such as
pore overlap.

In this paper, we analyze the rgaction—diﬁ“usion processes that are relevant un-
der diffusion-controlled conditions in which reactant concentration gradients have
a length scale comparable to the size of the largest voids in the material. Un-
der these conditions, the details of the macropore distribution become important.
The detailed microstructure of the material is addressed according to the approach
of Hinch (1977), using a configurational averaging procedure which is developed
within. A hierarchy of coupled equations is produced which is truncated assuming

a low macropore void volume. In the diffusion-controlled limit, the results reduce
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to those obtained by a simple, single pore model described within. The results
are qualitatively different than those obtained.by a continuum description of the
material that is valid under complimentary conditions in which there is a dispar-
ity between the length scales for the pore structure and the concentration profile

(kinetic control).

2 Formulation

We envisage diffusion and chemical reaction in a porous material with reactant sup-
plied at the boundary. A first-order surface reaction occurs at uniformly-distributed,
constant-activity sites. Thus, the reacting material is assumed isothermal. A bi-
modal distribution of pore sizes is assumed in which the micropores are in the
Knudsen size range (small compared with the mean free path). Diffusion in the
macropores may occur via Knudsen, bulk, or a combination of both mechanisms.
This situation is depicted by the pore size distributions shown in Figs. la and b.
The macropore network is described by a random, isotropic distribution of monodis-
perse, cylindrical voids with radius, a, and void volume, ¢;. The void volume of
the micropores is ¢; and the total voidage is given by: er = €1 + €. The micro-
porous structure is described by a continuum with a local diffusion coefficient and
homogeneous, first-order rate constant. |

The effective diffusivity within the microporous material is given by:
€1
7(1 — €)

where ¢; /(1 — €;) is the void fraction per volume of microporous material and 7

D1 = DK (1)
is the tortuosity of the micropore structure (Satterfield p.40, 1970). Dy is the

Knudsen diffusion coefficient which is proportional to the micropore radius (Knud-

sen 1909). The effective diffusivity of the microporous material may be an order
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of magnitude smaller than the diffusion coefficient within a micropore and easily
two orders of magnitude smaller than the diffusion coefficient .in the macropores,
D,. Under diffusion-controlled conditions, the macropores significantly enhance re-
actant transport into the material but the micropores supply the majority of the
pore surface area for reaction.

The (homogeneous) reaction rate constant characterizing the microporous ma-
terial is given by (Satterfield p.131, 1970):

Sks

:1—62

k1

(2)

where kg is a first-order surface rate coefficient which is constant by the assumption
that the material is isothermal. S/(1 — ;) is the local pore surface (per volume of
microporous material). Egs. (1) and (2) specify the continuum which will be used
to describe the micropore structure.

According to the continuum description of the microporous maptrix, the reactant

concentration in this phase of the material is described by:
D1V2C(X) - le(x) =0 (3)

However, in the macropores, which are inert to chemical reaction, the concentration

profile satisfies Laplace’s equation:
VZC(X) =0 (4)

The binary diffusivity within the macropores, D, may be given by a bulk diffusion
coeflicient for sufficiently large pores or by:

Dsz[{ Db

which was derived independently by Evans et al. (1961), Scott and Dullien (1962),

and Rothfield (1963) for pores in the transition regime where both Knudsen and
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bulk mechanisms are important. The quantities N4 and Np denote molar flows of
the gaseous species A and B and y4 specifies the composition of the binary mix-
ture. Dy is the bulk diffusion coefficient. Stefan flow important for non-equimolar
(Np # —N4) bulk diffusion at higher concentrations is neglected according to the
approach of Wakao and Smith (1964); (Hill p.434, 1977), which eliminates compo- |
sition dependence.

The governing equations are cast in dimensionless form using the macropore
radius, a, and boundary concentration value (assumed constant) as characteristic
values for length and concentration. We shall assume some domain, (1, with a

boundary, 90, and characteristic length, L. Eqgs. (3) and (4) become:

ViIC(x) - #*C(x) = 0O microporous matrix (6)
ViC(x) = 0 macropores (7)
Cx) =1 on boundary: x € 90 (8)

where ¢ is a microscale Thiele modulus based on the macropore radius:
¢ = a\/ - (9)

which is related to a macroscale Thiele modulus, based on the characteristic length

of the domain:

&= Lo (10)
and
s % (1)

where V and A are the normalized volume of the domain, 1, and area of the
boundary, 91 according to the approach of Aris (1957). Continuity of reactant

concentration and flux yield smoothness requirements for C'(x) on the macropore
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surface:

”glmo [C(x+68)-C(x)] = 0 (12)
“‘Sl”in%yr [VC(x+6)-n—aVC(x—46)-n] = 0 (13)
having defined:
_ D,

3 Configurational Averaging

In this section, the result of configurationally averaging the governing equations is

presented. The overall rate is given by:

RT = R,+R, (15)
where:
By = -2y 16
b on olX ( )
x€a0
R, = eza/E/ [VCi(x) - n]sin 6,d%, df, (17)
0 1<1
’ xea

where R, results from the consumption of reactant within the macropores and R,
describes the consumption of reactant at the boundary, Q1. The functions Cp(x)
and C;(x) are obtained by configurationally averaging Eqgs. (6)-(8) resulting in
an infinite hierarchy of coupled equations. The derivation assumes a >> 1 and
neglects intersections between the macropores which is valid for e; << 1. Closure
relations, valid under the latter assumption, are used to truncate the hierarchy. The

resulting (closed) set of configurationally averaged equations is:

ViC(x) — ¢°Co(x) = —¢*Col(x) (18)
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ViCi(x) — ¢’Ci(x) = —¢*Coo(x) pr>1 (19)
ViCi(x) = 0 p1<1 (20)
Co(x) =Ci(x) = 1 on boundary: x € 80 (21)

where Cy (%) is given by:

cam:qmm+%ﬁmm (22)

As shown below, C (x) describes the bulk concentration field except in the region

close to the boundary. A;(x) and B;(x) are defined by:

1 73 .~ .
M(x) = — /0 ’ /,, ., Calx)dfy sin 10y (23)
B()—‘ﬁr L7 90 dkisindyde (24)
1w = 0 GLI(%' 271 Jpi=1 On ! X180 5165
p1=1+6

where the normal derivative in the definition of Bj(x) is evaluated on the external
surface of the pore as indicated. These expressions indicate that Cy(x) is coupled to
the conditionally averaged concentration field, Cq(x). A;(x) is the average concen-
tration within the macropores; its presence on the right hand side of Egs. (18) and
(19) reflects the reduction in the bulk reactivity resulting from the inert volume
introduced by the macropores. Bi(x) is the source term which results from the

reactant supplied to the material through the macropores.

4 Approximations

In this section, approximations are developed that are used to obtain the solution
to (18)-(21). It is convenient to define cylindrical coordinates oriented with respect
to a specified pore axis: x = (p1,¢1,&1) as defined in the appendix, where ¢; is

the distance from the boundary along the specified pore axis. These coordinates
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are dipicted in Figures 2a-c. As discussed in the appendix, a reference plane (for
a randoﬁ, isotropic material) may be arbitrarily specified by a unit Veétor, e. A
unit vector, qi, in the & —direction specifies the orientation of a particular pore
axis with respect to e. The coordinate p; is the radial distance from the specified

pore axis and ¢, is an azimuthal angle. The following restrictions will be imposed:

(i) The void volume of the macropores is small; €a << 1.

(ii) The Thiele modulus, based on the macropore radius, is restricted by the in-
equality:
A*Ing >> 2¢,.

(iii) The ratio of the diffusion coefficient in the macropores, D,, to the effective

diffusivity of the micropores, Dy, is large; a > ;.

(iv) The number of macropores is large: L >> 1; thus, the macroscale Thiele

modulus is large; ¢ >> 1.

Under these conditions, as shown below, the intrapore concentration field is approx-

imately axial, and the external field is approximately radial to the pore axis:

Ci(x) = Ui(&;01) p1 <1 (25)

Ci(x) = Vi(p1;6) pr>1 (26)

and when valid, these assumptions reduce definitions (17), (23) and (24) to:

Al(X) — /02 U1(§1,01) sinﬂldﬁl (27)
T d )
Bi(x) = /0 oo 0 sindyddy (28)
' p1=1
3 d : .
Rp = 62(){/0 —a—&_‘UI(gl,Hl) [ql -e} 81n91dX1d01
1

£y=0
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cos 0y sin 0;d6, (29)

§1=0
where the latter result is obtained using the relation: ¢; - e = cos ;. Assumption

7 d
= 46206/0 —EU1(§1;91)

(iv) is a practical consideration which implies:
Co(x) ~ e d>>1 (30)

where z is distance normal to the boundary and C°(x) is the homogeneous solution

of (18) or, equivalently, the bulk concentration field in the limit ¢ — 0. Similarly:

Ry, = ¢ ®>>1 (31)
1
™= ®>>1 (32)

are the overall rate and effectiveness factor for ¢, — 0.

5 Solution Procedure

In this section, intermediate results are obtained which are used in the following
sections to obtain the bulk concentration field and overall rate. Using (26), Eq.

(19) becomes:

1d(dV1

;I'd;; P1d—p1) — ¢V, = —¢2Coo(x) p1>1 (33)

which must satisfy the boundary conditions:
Vi(p1;01) = Ui(é1;01) pr=1 (34)
Vi(p1;0:) = Coo(x) p1 —* 00 (35)

where the first follows from continuity on the pore surface, Eq. (12); the second is

obtained by a relation similar to (A.54). Eqs. (33)-(35) are readily solved to yield:

— &%:Vl(m; 01) = ¢Q(¢) [Ul(&; 51) - COO(X” (36)
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where:
_ Ki(¢)
Ko(¢)

and K, and K; are the zeroeth- and first-order modified Bessel functions of the

Q(¢) (37)

second kind. The function Q(¢) has the asymptotic behavior:

Q(e) ~ 1 é>>1

¢ <<1 (38)

Inserting (36) into (28) yields:

Bi(x) = ¢Q(¢) [4:1(x) — Coo(x)] (39)

which, when combined with (22), yields:

Bix) = $Q(¢)41()[1—T1 (10)

Coolx) = I1A;(x) (41)

with II given by:

Me e [w} (42)

¢+ 26Q(4)
According to the definition of 4;(x) and boundary condition (21), A;(x¢) = 1 for

all xo on the boundary of the domain and
Coo(x0) =11 Xp € 90 (43)

Eq. (41) indicates that IT may be interpreted as a partitioning parameter describing
the distribution of reactant between the reactive, microporous material and the inert
macropores (away from the boundary). It is the ratio of the bulk concentration to
the average intrapore value and lies in the range: 1 > Il > €, where the limiting

cases, IT = e, and II = 1, correspond to negligible and complete (local) penetration
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¥

of the micropores respectively. According to assumption (ii) and Eq. (38), I and
Cw(x) are order e, for the conditions considered herein.
A local effectiveness factor is defined:

2€2B1 (X)
#*1 — €2) A1 (%)

Moe =

. 2€2Q(¢) 1— H
N §b (1 - 62) (44)
~ 2—;3 $>>1 (45)

which is the ratio of the volumetric rate at which reactant is supplied by the macro-
pores to the microporous matrix to the maximum rate that corresponds to a locally
uniform reactant concentration profile (II = 1).

Integration of (20) over the cross section of a macropore in conjunction with
assumption (iii) and boundary condition (13) yields the differential equation de-
scribing the concentration profile within the macropore (Hill pp. 439-442, 1977):

d*U,

Wad—é_% -+ T(fl; 01) =0 (46)

where r(&;;61) is the consumption of reactant per unit length within the macropore:

d

r= —~27rd—p1V1(p1;l91) = 71af?¢*[U1(£1501) — Coo(X))]
. 1af’$*U1(1501) + O(e2) (47)
having defined:
B = 2—(2&—@ <<1 (48)

where the inequality follows from assumptions (ii) and (iii). Thus, (46) becomes:

d*U,
dét

~ (84)*U1 = O(e2) (49)



242

which is solved in conjunction with boundary conditions:

U(0) = 1 (50)
d
) =0 (51)

where the former boundary condition is implied by (21). The quantity, /,, in the lat-
ter boundary condition is the half-length of an individual macropore which depends

on the geometry of {1 and the orientation of the pore axis; e.g.,

b
I, = slab with half-thickness, b (52)
cos 04

= bcosb; sphere with radius, b

where the reference plane has implicitly been taken tangent to the boundary as

shown in Figures 3a and b. The solution of this boundary value problem is:

cosh 8¢ (I, — &)

Ui(61;0:) = cosh Bl + O(e2) (53)
P

~ e P Be® >>1 (54)

~ 1 pe << 1 (55)

Inserting the result into (29) yields:

R, = eafé /0 ® tanh 8ol cos 0y sin 0,d0; (56)
= &b /lootanh(ﬂ@t)?; (slab) (57)
— afd /0 "tanh(3801) tdt (sphere) (58)
~ —;—ezaﬂqﬁ P >>1 (59)

where (52) was used to obtain (57) and (58).
A macropore effectiveness factor is defined by:

Ry

- max
RP

Mp (60)
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where, RT"™ is the maximum rate of reactant consumption by the macropores in the
material for a fixed local effectiveness factor, 7)., which corresponds to: U;(&1;6;) =

A;(x) = 1. RT™ can be expressed:

NE

max __
Rp = Tmax

(61)

where 7. is the maximum rate of reactant consumption per unit length of macro-
pore, l;‘f is the total length of macropores in the domain, and A is the area of the

boundary defined by Eq. (11). Inserting U;(£;1;61) = 1 into (47) yields:
Fmax = OB H* (62)

Neglecting macropore intersections, the total macropore length per unit external
area is given by:

lp v _ el

A wA 7w (os)

where vy = €2V is the volume of macropores with dimensionless cross sectional area,

7. Employing (44) and combining the above results yields:

nlocRmax

Rg‘ax = 0P L = 1 (64)
where BR™** is the maximum overall rate:
max 2V

which is used to define the overall effectiveness factor in Eq. (74). Combining (60)

and (64) yields:

Rp nlocnp
= 66
Rm 111 (66)
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6 Bulk Concentration Field

In this section, the bulk concentration is obtained for the case: ® >> 1 in accor-
dance with assumption (iv). The homogeneous solution of (18) is given by (30). In

the regime $® >> 1, the intrapore concentration is given by (54) and:

Ai(z) = /E exp (—— boz ) sin 6:d0, = e % — B2, (Boz) (67)
0 cos 0,

Coolz) = I[P — BpzEr(Boz)| BE >> 1 (68)
where &; cos 8; = z, by taking the reference plane tangent to the boundary as shown
in Figure 3c, Ei(z) = [°e™!/t dt is the exponential integral, and Co,(0) = II by
(43). Inserting (68) into (18) yields, after some algebra:

Co(z) = e (1 —1) + Cu(2) (69)

) bz —pt
+118 [e“”z / sinh ¢ —"17 dt +sinhgzEr(1 + B)dz| & >>1
0
which has the asymptotic behavior:

Co(2) ~ e (1 —TI)+ 1+ O (eB1np) Boz << 1 (70)
Co(2) ~ Col2) + 0 (af?) $z >> 1 (71)
In the regime B® << 1, the intrapore concentration equals unity, according to (55).
Then, according to (27) and (41), A;(x) = 1 and Cs(x) = II. Inserting this result

into (18) and solving indicates that Cy(x) is given by (70). Egs. (68), (70) and (71)

may be combined to yield:
Co(2) = e #*(1 = ) + 1L [e % — Bp2Ey (Be2)] B <<1 (72)

which is uniformly valid in &, for § << 1 and ® >> 1. The result indicates that

the bulk concentration is described by the slowly varying function, C.(2), except
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near the boundary, where the reactant concentration decreases (exponentially) from
the boundary value Cp(0) = 1 to Ofez) on the (normalized) length scale, ¢~
Similarly, bulk concentration gradients are O(f8¢) except in the region near the
boundary (2 = O(¢™!)), where gradients are O(¢).

According to boundary condition (13), the bulk concentration gradients induce
an order S¢a ! intrapore gradient which, by assumption (iii), is small compared to
the axial intrapore gradients which are O(f8¢) according to (49). By assumptions
(ii) and (iii), 8 << 1; thus, bulk concentration gradients are small compared with
the radial gradient external to a macropore which, according to (33), is order ¢.
These results do not apply in the region z = O(¢™!) which, according to assumption
(iv), is a comparably small portion of the domain. These observations demonstrate
that the simplifications displayed in Eqs. (25) and (26) follow from assumptions

(i)-(iv) as claimed.

7 Effectiveness Factor

In this section, the overall reaction rate, given by the concentration flux on the

boundary, is determined. Inserting (70) into (16) and the result into (15) yields:
RT =¢(1—TI) + R, = Ro(1 —TI) + R, (73)

where Ry is the overall rate for ¢; = 0, given by (31). The form of the overall
rate indicates that reactant consumption at the boundary occurs in parallel with
consumption by the macropores. The factor, 1 — II, is a reduction in the rate of
reactant consumption at the boundary which results from the introduction of inert

void volume (€; # 0); the macropores allow greater reactant penetration and thus
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reduce the gradient at the boundary. An effectiveness factor is defined:

RT
(el — (74)
where R™ is given by (65). Combining (66) and (73), yields:
1 /1-11I R, 1-—-1I NMocp
= — = 75
nr @(1~€2>+Rmax n0(1—62>+1—n ( )

where the product, 9,np, is similar in form to the results of Mingle and Smith
(1961) from an analysis incorporating micro- and macroeffectiveness factors. The

above result has the asymptotic behavior:

nr -~ o (1—62 +- -6 ¢ ) ,B(D << 1 (76)
1 1-¢ €2 aﬁ
~ 6(1“62+1—62 7) e >>1 (77)

1( €9 a)
~ — |1+ e Bd>>1, d>>1 78
o\ 1-e\24) (78)

having taken 7, = 1 for 8® << 1 and R, given by (59), for #® >> 1. The
latter result indicates that the enhancement to the overall rate, resulting from the

1/2

macropores in the material, vanishes as ¢="/* for ¢ — oo.

8 Comparison with other Models

In this section, we compare the present results with those obtained by a continuum

description of the material and a single pore model.

8.1 continuum description

A continuum approach is suitable if changes in reactant concentration occur on a
length scale much larger than the diameter of a macropore. This situation is en-

countered for ¢ << 1, contrary to assumption (ii), used to obtain the results in
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the preceding section. Under these conditions, the partitioning parameter, I, and
local effectiveness, 1., are approximately unity. According to the continuum treat-
ment, Eqs.(6) and (7) are replaced by a single (dimensionless) differential equation

describing the bulk concentration field (Satterfield p.131, 1970):
VIC(x) - $2C(x) = 0 (79)

where ¢, is the Thiele modulus for the continuum based on the macropore radius:

— (80)

where k. and D, are pseudo-homogeneous transport coefficients that characterize

the continuum. An effective diffusivity is given by the parallel pore model developed

by Johnson and Stewart (1965):

| B -
AL7s —

Q=

€ 7ot
{ElDK -+ E2D2] = D1 {1 — €3 + *7—‘2—-04 (81)
The homogeneous rate constant is given by:
]Cc = Sks = kl(l - 62) (82)

where k; is defined by (2). Inserting these transport coefficients into (80) yields:

. = ch r(1T£1;) :2_)62a >> B¢ (83)

where the inequality holds under the conditions described by assumptions (i)-(iii).

Solving (79) subject to boundary condition (8) yields:

C(z) = e (84)

D
B = o=/l -a) tall - e (85)

L& @ (86)
nr 0] ]-‘E‘z’f
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where ® >> 1 has been assumed. The predicted concentration field exhibits sim-
ple, exponential decay, in contrast'to the more complex behavior depicted by Eq.
(72). Comparing (83) with (72) indicates that the continuum treatment predicts
shallower reactant penetration. The discrepancy arises from the fact that reactant
can penetrate the material rapidly through the macropores, a feature neglected by
treating the material as a homogeneous continuum. Inspection of the effectiveness
factor displayed in (86) reveals that it exceeds the the values predicted by (76) and
(77) for 7 = O(1). In particular, the above result indicates that the macropores
in the material enhance the effectiveness factor by a multiplicative constant in the

limit ¢ — oo, contrary to the result displayed in (78).

8.2 single pore model

A single pore model is relevant in the complimentary regime, where the reactant
concentration field is attenuated on a length scale much smaller than the spacing
between the macropores. This situation is realized for ¢ >> 2 as shown below,
which is consistent with assumptions used in the present work, although more re-
strictive. Egs. (25) and (26) are assumed to hold. In this case, the macropores
behave independently of each other. The boundary conditions (34) and (35) for the

concentration field external to a macropore become:

Vilp1;01) = Ui(&;61) p1 =1 (87)

Vl(pﬁal) = 0 P — O (88)

Solving Eq. (33) subject to these boundary conditions indicates that the previously-
obtained equations, (49)-(51), govern the intrapore concentration (p; < 1). The

concentration field in the microporous material is approximately given by C°(x).
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Taking a volume average yields the approximate bulk concentration field:
C(z) = e (1 — &) + €24,(2) (89)

where A;(z) is the average intrapore concentration defined by (27) and is given by
(67) for f® >> 1, and A;(z) = 1 for @ << 1. For # << 1, these solutions may

be combined to yield:
Co(2) =e (1 — &) + & [e—ﬂ¢z - ,BqﬁzEl(ﬁqu)] g <<1 (90)

which coincides with (72) for IT ~ ¢;. Egs. (38) and (42) indicate: implies:

2
MI=¢ [1+O <—$)} p>>1 (91)
Inserting (88) into (28) and the result into (44) yields:

_ 260(¢)
Moe = m (92)

thus (64) and (66) become:

BRI = 6afP$'L = o R™ (93)
R
Rmix Moctlp (94)

The overall rate is given by (15) with R, given by (56)-(59) and R} given by:
Ry, = Ry(1 — €) (95)

where (1 — €;) is the volume fraction of microporous material in the domain and

the area fraction on the boundary. Thus, the overall rate is given by:

RT = ¢(1— &) + R, (96)
and the effectiveness factor is:
. B — (97)
nr = & " pmex o T Moclp
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which has the asymptotic behavior:

1 €9 2Q(¢)
Ny~ 5(1+——-~—1_62———~qS ) Bo << 1 (98)
1 €2 0[,6
~ 5(1+1—62 —2—-> fe >>1 (99)
1 €9 o .
~ 5(1+1—62 '2-;;) e >>1, o>>1 (100)

where the results coincide with (76)-(78) for (1 —II)/(1 — €z) — 1 which, according
to (91), occurs for ¢ >> 2. Comparing Egs. (72) and (76)-(78) with Eqgs. (90) and
(98)-(100) indicates that, for ¢ in the interval defined by:

$*Ing >> 2¢; , ¢ < 0(1) (101)

the earlier, more detailed analysis offers an order €, correction to the single pore
model described above. For ¢ >> 2, the results of the two analyses are in agreement.
The difference between the two models is illustrated by the behavior of the quantity
(1 — ) /(1 — €;) which is shown in Figure 4. The results indicate that the more
detailed analysis offers a modest correction to the the single pore model in the

regime defined by (101).

9 C(Conclusions

A detailed analysis has been presented for reaction in a random, porous material
under diffusion-controlled conditions. The pore structure is assumed bimodal with
a random, isotropic network of monodisperse cylindrical voids. The macropores are
considered to be immersed in a mean-field which is collectively determined from
the reactant flux from the macropores in the material. In the diffusion-controlled

limit, described by ¢ >> 2, this interaction between the macropores vanishes and
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the results coincide with those of a simple, single pore model described within.
Under the (diffusion-controlled) conditions considered, the results are qualitatively
different from those obtained by a continuum description of the material which is

valid in the complimentary, kinetically-limited regime.
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11 Nomenclature

SYMBOL DESCRIPTION

Roman Symbols

a radius of macropores

A area of domain boundary

A average intrapore concentration defined by (23)
B source of reactant from macropore defined by (24)
Co configurationally averaged reactant concentration
C° average concentration field with e; =0

C1 conditionally averaged concentration field
Coo ambient concentration away from boundary defined by (22)
Dy diffusivity of microporous material

Dy diffusion coefficient in macropores
Dy Knudsen diffusion coefficient

e reference vector

ks intrinsic surface reaction rate constant

ky homogeneous rate constant describing microporous material
l length of a macropore

L characteristic length of domain, (V/A)

aQ orientation of i*" pore axis

Q(9) defined by (37)

RT overall rate, R = R, + R,

R, reactant consumption within macropores
Ry reactant consumption at boundary

Rq overall rate for ¢, =0
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Rmmax maximum overall rate
Ry™* maximum consumption within macropores
S local pore surface area (per unit volume)
Ui(é1;01) reactant concentration within a macropore
Vi(p1; 61) reactant concentration external to a macropore
\%4 volume of domain

Greek Symbols

o ratio: D, /D,

g defined by (48)

€1 void volume of micropores

€2 void volume of macropores

¢ local Thiele modulus based on macropore radius, a

macroscale Thiele modulus based on characteristic length, L

domain
a0 domain boundary
I partitioning parameter defined by (42)
0; orientation angle for q;, Fig. (2)
©i orientation éngle for qi, Fig. (2)
nr overall effectiveness factor
Moc local effectiveness factor
Mp macropore effectiveness factor
no overall effectiveness factor for ¢ = 0
pi radial distance from i*® pore axis

& distance from boundary along i*" pore axis
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13 List of Figures

1. Bimodal pore size distributions for: (a) PSOC-1451 coal derived char (Northrop
1988) and (b) Fe304—CrOj3 catalyst (Bohlbro 1966).

2. Coordinate system. (a) two-dimensions, (b) three-dimensions, and (c) cylin-
drical coordinates oriented with pore axis. x is an arbitrary field point, §; is
the angle between reference plane (defined by e) and orientation plane (de-
fined by q;). Pore axis intersects reference plane af. x; and orientation plane
(& =constant) at X;. & is an axial coordinate (distance from the boundary) in
the q;—direction. p; is a radial coordinate; p; = 1 defines macropore surface.

Azimuthal angle, ; is defined in the plane & =constant.

3. Orientation of reference vector, e for (a) slab, (b) spherical and (c) semi-

infinite geometries.

4. Behavior of (1 —II)/(1 — €3) where II is defined by (42).
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Appendix: Configurational Averaging

In this appendix, a derivation of the material properties and configurationally
averaged equations is presented. Although the approach has been used elsewhere
(e.g., Hinch 1977, Loewenberg and Gavalas 1988), a self-contained development
is useful. In the first subsection, fundamental relationships relevant for averaging
are developed and the void volume of the macropore network is related to the
statistics that describe its distribution. In the second subsection, useful expressions
are derived for the reactant flux, bulk rate and overall rate. In the last subsection,

the configurationally averaged equations are derived.

1 Void Volume

In this subsection, the void volume for a random, isotropic distribution of cylindrical
micropores is determined and the methods which are developed will prove useful in
the following derivations. A pore axis is specified by its intersection with a fixed
plane, the angle with respect to the normal direction and an azimuthal angle in the
plane (Kendall and Moran 1963). For a random, isotropic material, intersections
with the plane are independent of angular distribution. Furthermore, intersections
with the reference plane are distributed according to a Poisson process with mean

A independent of the reference orientation.
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1.1 General: ¢, = O(1)

The void volume may be interpreted as the configurational average of a function

E(x) defined by:

Ex|Cy) =1 X in macropore

=0 X in microporous matrix (A.1)

where Cy is a configuration of the pore axes in the material given by the set of
position vectors: {rjy,---,ry}. The position vectors are explicitly given by r; =
(xi,qi), where x; is the intersection of the i*® pore axis with an arbitrary reference
plane with normal vector e, and q; is a unit vector parallel to the i** axis. The
orientation vector, q, is described by two independent angles, (8,¢), where 0 is
defined by: q; -e = cos#;, and ¢ is an azimuthal angle. We shall also define
a coordinate, ¢, which is the distance along the i® pore axis measured from its
intersection with the boundary. The plane: (X —x) - q; = 0 (constant &) is normal
to the i*h pore axis and contains the point x which lies in the reference plane defined
by e. The point X; denotes the intersection with the i*® axis and is the point on
the i** axis closest to x. These coordinates are depicted in Figures 2a-c. In terms

of the foregoing notation, £(x) can be compactly expressed in terms of Heaviside

functions:
N
Ex|Cy)=1-]]H(p —1) (A.2)
i=1
where p; = [|%; — x|| is the (minimum) distance between the i*" pore axis and x.

The void volume of the macropores is given by:

e = (B(x))o =1— <ﬁﬂ(pi - 1)> (A.3)

0
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where the subscript 0 denotes an unconditionally averaged quantity. The pore axes

are identical and uncorrelated; thus, we can write:
N
e2=1—(H(p1— 1)),

or equivalently, e =1—[1— (H(1—p1)))"
(A.4)
The configurational average is given explicitly by an N—fold integration of each

pore axis specification weighted by a configurational probability, P(Cy), thus:

1

(=)o = 7

/TN H(1 - p1)P(Cn)dCn (A.5)

where T is the individual pore specification space given by T = ®? x [0, 7] x [0, 27},

where x; € %, 0; € [0,7] and ¢; € [0,27]. Angular integration is restricted to the

upper hemisphere to prevent double-counting; each (6, ) in the upper hemisphere
corresponds to an equivalent, diametrically opposed pair in the lower hemisphere.
The configurational probability distribution function is normalized by (Reed and

Gubbins 1973):
/ P(Cy)dCy = N! (A.6)
TN

A conditional probability distribution function can be defined:
P(CN|I'1)P(I'1) == P(CN)

/TN_] P(Cy|r1)dCn-1 = (N —1)! (A7)

and a doubly conditional probability distribution function can be defined
P(Cylry,re) P(re|r:) = P(Cyry)

/TN,Q P(Cnlr1,13)dCy-z = (N —2)! (A.8)
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Inserting the conditional probability into (A.5) and integrating over rz,---,ry
yields:

(H(1 = p)y = 5 [ H(L = p)P(er)des (4.9)
Since the distribution of pore axis intersections with the reference plane is indepen-
dent of the angular distribution, the pore axis probability distribution is separable:
P(r;) = P(x1)P(q1), where P(x;) is given by the normalized Poisson mean number
density: P(x1) = a*X. The isotropic angular distribution is obtained by requiring
that q; be uniformly distributed on a unit sphere and normalized to unity on the
upper hemisphere (Gavalas 1980), which implies: P(qi) = (a1 - €)/7 = cos b/,
indicating that the distribution is axisymmetric. Thus, the pore axis distribution
is given by:

2
P(r) = %)\ cos 0, (A.10)

Inserting the distribution into (A.9), yields:

ZA 27 pZ :
(H(1—p)), = ?V—W/o /02 /2 H(1 — p1) cos b, sin ;dx1db:1dp; (A.11)

The Jacobian for the change of variables: x; — Xy is:

1
e el"l —
=l = (A.12)

Bxl
9%,

which can be deduced from Fig. 1. Changing variables and integrating to eliminate

the Heaviside function yields:

2ma’ )
N

a’)\ [ or% . R
(H(1 = p1)), = ﬂ/o /02 /,, _, sindid%idbydpr = (4.13)

Inserting this result into (A.4) and taking the limit N — oo, produces the desired

result:

62:1— lim

27a? AN
1 {1- s } R (A.14)

N
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1.2 Approximation for ¢ << 1

Neglecting pore intersections allows the approximation:

f[H(Pi—l)%1~§N:H(l—pi) (A.15)

i=1
Inserting this approximation into (A.3) yields:

N

e2 =) (H(1 - p))g (4.16)

i=1

By the indistinguishability and independence of the pores, we can write:

Then, employing (A.13) yields
€2 ~ 2ma’ (A.18)

which by inspection of (A.14), is valid for e; << 1.

2 Reactant Flux and Reaction Rate

In this section we obtain expressions for the configurationally averaged concentra-

tion flux, overall rate, effective diffusivity and volumetric reaction rate.

2.1 Reactant Flux

Fick’s law is written in a generalized form describing the reactant flux for every

arbitrary x in the domain:
F = -D(x|Cy)VC(x|Cn) (A.19)

where Cy is a particular configuration of the pore axes as defined above. The

generalized diffusivity, D(x|Cy), is a scalar quantity based on the assumption that
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the macropore distribution is isotropic and is defined by:
D(x|Cy) =1 X in microporous matrix (A.20)

=« X in macropore

which can be expressed in terms of Heaviside functions:

Dx|Cy)=a+ (1 —a)[[H(p—1)

i=1

N
~1+4+ (a—1)> H(1 - p) (A4.21)

i=1
where the latter equality follows from approximation (A.15). Inserting this expres-

sion into (A.19) and configurationally averaging yields:

(F)o = V{C(x))o + (& = 1) 3 _(H(1 - p)VC(x|Cn))o (4.22)

i=1

where (C(x))o denotes the configurationally averaged concentration. The result
relies on the commutability of configurational averages with linear operators. The
term within the sum is explicitly given by an N —fold integration over the individual
- pore specification space, T, weighted by a configurational probability:

P(Cy) = P(Cy|r;) P(r;) which are defined by (A.5)-(A.7). Accordingly, we write:
N
SCH(L - p) VO (x|Crr)), Z/ (1) VC (x|Cx) P(Cn|r) P(r;) dridCr_,

= (4.23)

Then, performing all but the i*? integration for each term in the sum yields:

f: H(1 - p)VC(x|CnN))y Z/ H(1 = pi) V{C(x]|r;)) P (r;)dr; (A.24)

i=1

where (C(x|r;)) is the conditionally averaged concentration field with a pore speci-
fied by r;. The pore axes are identical and hence each term in the resulting sum is

the same, allowing its summation:

STH(1 = ) VC(X]|Cr))g / H(1 — p)V{C(x[r1))o P (r1)drs (4.25)
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Then, making the change of variables: x; — X; defined by (A.12) and integrating

to eliminate the heaviside function:
N

ST{H(1 — p)VC(x|Cn)), / / /hq ey £

i=1 cos 0,

sin Oldfcld(}ld(pl
(A.26)
Inserting the random, isotropic pore distribution, Eq. (A.10), and integrating yields:

N
ST(H(L - p)VC(x|Cx)), / / C(x|r)) sinfd%,d;  (A.27)
i=1 pisl
Inserting this result into (A.22) yields the configurationally averaged reactant flux:
(F)o = V(C(x))o + ez / / C(x|r1)) sin 0,d%,d6; (4.28)
<l

having made the approximation: a — 1 =~ a.

2.2 Overall Rate

The overall reaction rate is given by the normal component of the reactant flux
evaluated on the boundary, ). The component of flux in the direction of the

normal vector, n, is obtained from a scalar product with Eq. (A.28):
Fy=(F)o-n=Y(Cx)o-n+> / [ _[V{C(xlry)) - n]sin fydadirdio (4.29)
Pl<1

and the overall rate is given by evaluation of this expression on the boundary, 91,
as displayed by Eqs. (15)-(17), where the compact notation defined by (A.53) is

employed.

2.3 Bulk Reaction Rate

FoHowing the approach used to determine the average flux, we write a reaction term

valid everywhere in the domain in terms of a generalized rate coeflicient:

R(x,Cy) = K(x|Cx)C(x|Cy) (4.30)
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where

K(x|Cy) = ¢* X in microporous matrix (A.31)
=0 X in macropore

which can be exactly expressed as a continued product of Heaviside functions, or

by invoking (A.15), approximately expressed as:

N
K(x|Cy) = ¢* {1 ~> H(1- pi)] (A.32)
i=1
Inserting into (A.30) and configurationally averaging yields:
N
(R(x))o = ¢*(C(x))o — ¢ 3 _(H(L — p)C(x|Cn))o (4.33)

i=1
The summation can be simplified by the same procedure as used in the previous

subsection to obtain (A.28) from (A.22). The result is:

(RO = $1C ()0~ 972 | : [ (el sinoudadty (4.34)

3 Configurational Averaged Equations

The solution of the configurationally averaged equations developed in this section
is required to evaluate the above expressions for the overall rate and effective diffu-

sivity.

3.1 Configurationally Averaged Equation

In this subsection, we combine results from the previous section in order to obtain
the configurationally averaged equations. Equations (6) and (7) are replaced by a

generalized conservation equation:

V.F(x|Cy) — R(x|Cy)=0 (4.35)
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which is configurationally averaged to yield:
V(B — (RG))o=0 (4.36)

where the quantities: (F(x))o and (R(x))o are given by Egs. (A.28) and (A.34).
Performing the required divergence operation in conjunction with Egs. (7) and

(13), yields:

V- (Flo = VHC (x))o + € lim — [ /,, 1, [V(C(xlr) -n] sinbidiadd; (437

§—0+ T
where the normal derivative, V(C(x|r;)) - n, is evaluated on the exterior surface of
the macropore as indicated. Inserting this result and Eq. (A.34) into (A.35) yields

the configurationally averaged equation:
VH{C(x))o — *(C (X))o = (4.38)

e lim = / / s o (Cde)) sinudRidhy— e / /’)1S1<C’(x]r1)>sm91dx1d01

§—0+t T

The solution must satisfy the configurationally averaged boundary condition:
(C(x))o =1 on boundary: x € 90 ' (A.39)

which is obtained by configurationally averaging (8). The above boundary value
problem is evidently coupled to the conditionally averaged equation through inte-
grals on the RHS (right-hand side) which involve the conditionally averaged con-

centration, (C'(x|r).

3.2 Conditionally Averaged Equation

In this section, the conditionally averaged equation is determined by a conditional

average of the generalized conservation equation, (A.35):

Vo)) -~ (Rx))h =0 (4.40)
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where (F(x)); and (R(x)); are conditionally averaged quantities which are obtained

below.

3.2.1 Conditionally Averaged Flux

Inserting (A.21) into (A.19) and conditionally averaging yields:

(F)y = V(C(e) + () SUH( - p)VOKICK  m>1  (441)

i=2
= aV(C(x|r1)) p1 <1 (A.42)
In this case, the term within the sum is given by an (N — 1)—fold integration over

the pore specification space, T', weighted by the conditional probability:
P(Cy|r1) = P(Cy|ry, 1) P(ri|r1) given by (A.7) and (A.8). Thus:

N

S {H(1 - p)VC(X|Cx)); =

i=2 1 y

T ; /T _H(1~ p)VC(X|Cy_1) P(Cylr1,xi) P(xi|r1)dridCrr— (A.43)
which is analogous to (A.23). Performing all but the i*" integration for each term

in the sum yields:

N

> (H(1 = p)VC(x|Ch)), = —— Z/ H(1—p)V (C(x|r1,11)) P(ri|ry)dr;

i=2

(A.44)
where (C (x|ry,1;)) is the doubly conditional averaged concentration field with pores
specified by r; and r;. Using the indistinguishability of the unspecified pore axes

(i # 1), we can perform the sum yielding:
N
STUH(1 - p)VC(x[Cr)), / H(1— po)V (C(x|r1,r2) P(rsfr)dr,  (A.45)
1=2

Since the pores are uncorrelated, P(r;|r;) = P(r»), which is given by (A.10). Thus,
the method used to evaluate the RHS of (A.25) may be applied to the above RHS
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and the result inserted into (A.41) to yield:

(F); = V(C(x|r1)) + ez~ / / , V{C(xJr1,2)) sin Oadstsdo o> 1
P>
(A.46)
having approximated o — 1 =~ «. Incorporating Egs. (7) and (13), the divergence

of (F); is given by:

V - (F); = V¥C(x|r1)) + (A.47)
€ 61_1}5}F - /pz 1+6 C(x|ry,r2)) - n] sin f,dX.db, p>1
V - (F); = V¥{C(x|r1)) =0 p <1

3.2.2 Conditionally Averaged Reaction Rate

Similarly, inserting (A.32) into (A.30) and conditionally averaging yields:
N
(R(x))1 = ¢*(C(x|r1)) — ¢* > _(H(1 — pi)C(x|Cn))1 (A.48)
i=1

where the term involving the summation is evaluated by the procedure used above

to yield:
(R(x)) = ¢*(C(x|r1)) / C(x|r1, r2)) sin 0od%ydby (A.49)

3.2.3 Conditionally Averaged Equation

The desired conditionally averaged equation is now be obtained by inserting (A.47),

(A.49) into (A.40):

VHC (x[ry)) = ¢H(C(x[r1)) = (4.50)
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.13 9 : R
€2 51_1}@;; | //;221-1—6 %(C(x,]rl,rzn sin OdXo,dl, —
1 ki
€2¢2 “/2/ <C(X[r1,r2)> sin 02d§(2d02 p1 > 1
™JO Jpi<1
VZ<C(Xlr1)> =0 P < 1
(A.51)
where a conditional average of (8) yields:
(C(x|r)) =1 on boundary: x € 0Q (A.52)

The resulting boundary value problem is evidently coupled to the doubly conditional
averaged concentration field: (C(x|r;,rs)). As may now be clear, the foregoing
conditional averaging procedure can be repeated indefinitely to produce an infinite

hierarchy of coupled equations with an additional specified pore axis at each level.

3.3 Truncation of Hierarchy

It is convenient to introduce the compact notation:
Co(x) = (C(x)), C1(x) = (C(x[r1)), Ca(x) = (C(x]|r1,r3)) (A.53)

Far from a fixed pore axis, the doubly conditional averaged concentration field must

tend to the first conditionally averaged field:

lim CQ(X) = Cl(X) (A.54)

p2—00
The development contained in this appendix relies upon Eq. (A.15) which is valid

for ¢, << 1. Under this condition, the above expression becomes a reasonable

approximation everywhere in the material:

C,(x) = C1(x) € << 1 (A.55)
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which implies that the RHS of (A.51) is approximately equal to the RHS of (A.38).
Using this approximation, the foregoing hierarchy is truncated to yield the closed

set of equations (18)-(21).
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Figure 2: Coordinate system: (a) two-dimensions (b) three-dimensions (c) cylindri-

cal coordinates oriented with pore axis.
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X is an arbitrary field point, §; is the angle between reference plane (defined by
e) and orientation plane (defined by q;). Azimuthal angle, ¢; is defined in the
plane & =constant. Pore axis intersects reference plane at x; and orientation plane
(& =constant) at X;. & is an axial coordinate (distance from the boundary) in the

q;—direction. p; is a radial coordinate; p; = 1 defines macropore surface.
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Figure 3: Orientation of reference vector, e for (a) slab, (b) spherical, and (c) semi-

infinite geometries.
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CHAPTER 9

Summary
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Summary

A detailed conclusion is contained within each chapter, hence only the general
results from the thesis as a whole are put forth in this section. The thrust of the
present work has been an improved understanding of the influence of microstructure
in problems involving heterogeneous reaction and diffusion.

The first part of this thesis is concerned with char combustion. A simplified
single-particle char combustion model was developed for application in situations
which permit a continuum description of the porous char structure. The model
accounts for intraparticle pore diffusion and pore evolution coupled to gas-phase
heat and mass transport. An efficient algorithm, based on this combustion model,
was developed for the prediction of char oxidation rates from particle combustion
data. The combustion model and the algorithm for estimating kinetic parameters
were applied to, and to some extent verified by, combustion data gathered from
well-defined laboratory combustion experiments (Levendis and Flagan 1988).

The most significant contribution of this thesis is contained in the latter portion
which focuses on a theoretical approach for the study of diffusion reaction processes
in microstructured materials. A detailed analysis is presented for determining the
reactant flux into a medium containing a dilute suspension of reactive, spherical
particles under both steady and transient conditions. The governing equations were
configurationally averaged to produce an infinite hierarchy of coupled, conditionally
averaged equations which is truncated using the physical considerations of screening
and diluteness. The detailed influence of the macroscopic boundary was given
explicit consideration. An asymptotic solution was obtained valid for dilute volume
fractions of the reactive particles. The results are contrasted with those obtained

by a mean-field analysis (Quann and Sarofim 1982).
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The same methodology is subsequently applied to the well-known problem of
the decay of an initially uniform distribution of reactant in ém infinite medium of
spherical sinks. The results provide a useful comparison with other theoretical work
(Felderhof and Deutch 1976, Felderhof 1977, Bixon and Zwanzig 1981) indicating
that the present methodology faithfully reproduces recent results on this problem
by a seemingly simpler, more physical approach.

Typically, the porous structure of char is adequately described by a continuum
as assumed throughout most of the char combustion study contained herein. A
notable counterexample is cenosphere combustion discussed at the beginning of
this work. The microstructure of the char cannot be rationally considered as a
continuum under conditions realized in practice. In the last chapter of this thesis,
this problem is reconsidered.

The configurational averaging approach developed in the context of ash vapor-
ization is applied to reaction and diffusion in a random, porous material with a
bimodal pore size distribution. The detailed distribution of cylindrical macropores
is treated under diffusion-controlled conditions which are pertinent to cenosphere
combustion. An asymptotic solution, valid for low macropore void volume, was
analytically obtained. In the diffusion-controlled limit, the results reduce to those

obtained by a simpler, single pore model.
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Suggestions for Future Work:

Concentrated Systems

In this thesis, a methodology was developed for the analysis of reaction diffusion
processes in microstructured materials and several problems have been studied. The
details of the microstructure were addressed, however, the results were restricted to
sparse structures. An important area which warrants further study is heterogeneous
reaction problems in concentrated systems. A study of the ash vaporization problem
in the regime of high inclusion volume fraction would be interesting and may have
significant implications to the metabolic production rate of cells immobilized in
a polymer gel (Karel et al. 1985). Similarly, a detailed study of reaction and
diffusion in moderately porous solid has obvious relevance to char combustion and
heterogeneous catalysis.

Theoretical studies of concentrated suspensions have a shorter history than that
for dilute systems but a wealth of useful results are nevertheless available. The
Hashin and Shtrikman (1962) variational bounds for the effective magnetic perme-
ability (conductivity of a random composite material consisting of spherical inclu-
sions of one material embedded in another are a well-known result for concentrated
systems. By retaining more details of the microstructure, Torquato (1985) improved
upon their results and developed tighter rigorous bounds for the effective conductiv-
ity. The development of rigorous upper and lower bounds has also been applied to
diffusion-controlled reactions yielding approximate rate constants valid to arbitrary
volume fraction (Rubinstein and Torquato).

The recent development of the effective continuum treatment by Chang et al.

(1986) represents a complimentary (theoretical) approach for determining effective
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transport properties of concentrated microstructured materials. Their approach
requires a detailed distribution function but entirely avoids the necessity for the
solution of complicated two-particle problems. Although a rigorous justification for
this approach is not available, it appears to agree well with experiment.

Computer simulations provide a very useful tool which allows the analysis of
microstructured problems without the need for an ad hoc closure assumption. Fur-
thermore, simulations can be used to explore the implication of commonly employed
approximations most notably the superposition approximation. In a study on the
effective conductivity of concentrated suspensions, Bonnecaze (1987) employed the
simulation procedure of Durlofsky et al. (1987). The results supported the ear-
lier theoretical work of Sangani and Acrivos (1982) for regular arrays of spherical
particles.

In addition to the foregoing theoretical approaches, useful supporting exper-
iments may also be possible. An experiment pertinent to the ash vaporization
problem may be conceived through the impregnation of porous particlés with a
volatile material. The mass flux of the volatile material from the particle can be
directly and accurately measured using a thermogravimetric analyzer (TGA). An
appropriate, well-defined chemical reaction suitable for a TGA experiment would
obviously be a useful experiment in a study of heterogeneous reaction and diffusion

in a porous solid.
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Abstract

The reactivity of calcium-laden carbonaceous particles to oxygen has been
investigated. The chars particles used, were prepared from polyfurfuryl alcohol
(PFA) and were spherical and monodisperse. Some experiments were also
carried out with a HVA bituminous coal. Calcium was introduced by one
of three different methods: precipitation of calcium carbonate, impregnation
with calcium acetate, and calcium ion exchange. Electron microscopy indicated
that the distribution of calcium was remarkably uniform in particles containing
a bimodal distribution of micro- and transitional-pores, whereas for particles
with micropores only the Ca concentration was high at the surface and low at

the center. X-ray analysis indicated that the conversion of the carbonate to the
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with micropores only the Ca concentration was high at the surface and low at
the center. X-ray analysis indicated that the conversion of the carbonate to the
oxide at temperatures below 1400 K takes place only after all carbon has been
consumed. Calcium carbonate is the predominant species while carbon is still
present in the sample. Combustion studies showed that the calcium catalyst
promoted the overall as well as the intrinsic reaction rate at all temp'eratures
investigated (600-3000 K) by up to two orders of magnitude. The effectiveness
of the catalyst introduced by the different methods was comparable, with the

calcium ion exchanged chars being, in general, the most reactive.

1 Introduction

Calcium enrichment of coals has been a subject of technological interest because it
accelerates coal gasification[1-8] and has the potential of reducing sulfur emissions
by retaining the sulfur within the ash[9]. A number of techniques of calcium intro-
duction havé been developed, ranging from mixing ground limestone with coal and
subsequent injection of the mixed powder into the combustor[11], to incorporation
of calcium within the coal matrix such methods as ion exchange [6,7,9,10,12,14],
CaCOj; precipitation[15], or impregnation[8]. The methods that introduce calcium
inside the coal matrix, show considerable promise for capturing sulfur[12].

The introduction of minerals in the carbon matrix changes both the physical and
the chemical structure of the particles and greatly affects the reactivity. Previous
studies on the reactivity of coals and chars revealed that metals, metal salts and
metal oxides catalyze the reaction of carbon with O, HyO, H, and CO,. Active
metals include Au, Ni, Na, Ca, K, Ag, Cu, Co, Pb, Mn, and Fe[1-8,14, 16-20].
Calcium, in particular, has been the subject of numerous investigations, and its

catalytic effects on carbon gasification are well established. Kinetic studies at low
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to intermediate particle temperature (500-1600 K) have showed that the catalytic
activity of calcium depends on its concentration[6,7], inclusion size[18,21], unifor-
mity of dispersion[13] and chemical form[3,8]. Hence, char pre-treatment, pyrolysis
conditions and maceral composition may influence the catalytic activity through
their impact on the Ca-treatment process. It is of interest to note that, while for
some lignite chars the reactivity increased monotonicaly with calcium loading|6],
for others it saturated at a modest calcium loading (4 wt% Ca)[22].

The present investigation employs monodisperse, spherical glassy carbon chars,
formed by pyrolysis of uniformly sized droplets of polyfurfuryl alcohol (PFA), to
investigate the catalytic effects of calcium on the reactivity of carbon over a range of
particle temperatures, with emphasis to high temperatures. The relative effective-
ness of various Ca-treatment techniques was also examined. These char particles
are ideal for this study because of their precisely known size (50+1 ym in diame-
ter) and shape, their well characterized physical and chemical nature[23], and their
homogeneity and lack of residual mineral matter. Use of these synthetic chars for
fundamental studies of the Ca-enhanced carbon reactivity overcomes some of the
problems previously encountered with HCI-HF demineralized chars: (a) incomplete
demineralization[6], (b) substantial alteration of the pore structure and apparent
density (formation of cenospheres etc.)[3], and (¢) deactivation of the calcium cat-
alyst by residual chemisorbed clorine|[6].

The synthetic chars selected for the present study were a plain PFA char con-
taining only micropores and a high porosity (75% PFA - 25% carbon black) char
containing both micro- and transitional pores. A HVA bituminous coal was also
used to explore the influence of Ca on the combustion of natural fuels under sim-
ilar conditions. Both the synthetic char and the coal particles were treated with

calcium by: (i) precipitation of CaCOj3 within the pores of the chars, (ii) impregna-
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tion with calcium acetate solution and (iii) calcium addition by ion exchange. The
combustion of the calcium treated chars was studied by a number of techniques in

the particle temperature ranges of 670-870 K, 1200-1500 K, and 1800-3000 K.

2 Experimental

2.1  Production of Synthetic Chars.

The glassy carbon materials used in this study were produced from a carbon yield-
ing binder (polyfurfuryl alcohol) and a thinning and mixing agent (acetone). To
obtain a high porosity char, carbon black particles, about 20 nm in diameter, were
suspended in the polymer-acetone mixture to serve as pore forming agents. The
mixtures were conducted at constant rate into an aerosol generator using a syringe
pump and were subsequently sprayed into an externally heated thermal reactor.
The full description of the atomization and the thermal reactor system is given
elsewhere[23]. Following atomization, the uniform droplets were cured by heating
to a maximum temperature of 650 K in an inert atmosphere. The resulting particles
were collected by sedimentation at the bottom of the reactor. The total residence
time in the reactor was approximately 4 s. To eliminate sticking of the collected
particles, all materials underwent a second pyrolysis treatment for 1 hr at 800 K in
a horizontal muflle furnace in Ns.

To differentiate the chars produced for the present study the following nomen-
clature will be used: (a) the plain polymer char will be labeled low porosity char
since its porosity, €, is ~25%; (b) the char containing 25% carbon black filler will
be termed high porosity char, € = 48%; and (c) the coal will be referred to as
PSOC-680.
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Partial oxidation enlarges the fine pores and preferentially removes pore con-
strictions in the synthetic. chars, thus, making the particle interior accessible to
gases and liquids[23]. The calcium treatment processes were, therefore, facilitated
by partial oxidation in air for 5 min at 800 K resulting at about 15% conversion.
For this oxidation, the particles were spread in a thin layer inside porcelain boats,
thereby minimizing bed diffusion resistance. The boats were then introduced into

a hot muffle tube furnace for the 5 min. exposure.

2.2 Calcrum Treatment Techniques

Calcium was added to the synthetic char by CaCOj precipitation, acetate impreg-
nation, and calcium ion exchange. CaCOj precipitation involved the following ionic

reactions:
Ca(CchOO)2+H20+COQ = CaCO3+2CH;COOH AHgg8 = 3.6kcal/mole (1)

2CH;COOH+Ca(OH), = Ca(CH3C00),+2H,0  AHYs = —26.9kcal/mole (2)

A small amount of char or coal was evacuated in a 10 ml reactor vessel at 70°C for
1 day. Carbon dioxide was then introduced into the reactor at room temperature
and of 200 mbar pressure, and allowed to equlibrate with the char for 30 min. A
slurry of calcium acetate solution in water and a predetermined amount of calcium
hydroxide was introduced into the reactor which had been cooled in an ice bath
for 10 min. in order to prevent desorption of CO; upon heating by the exothermic
reaction (2). The char and the slurry mixture were stirred with a magnetic stirrer
for 3 hrs, during which time the pH of the mixture dropped from 12.0 to 6.8,
indicating that all of the Ca(OH), had reacted. The char was then filtered, rinsed

with distilled water, and dried at 80°C for 24 hrs.
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Chars were impregnated with calcium acetate by the incipient wetness method.
The char was ev.acua.ted at 70°C for 1 day. Calcium acetate solution (1 N) was then
slowly added to incipient wetness while the sample was stirred vigorously. Since
the synthetic char is not readily wetted, the chars were impregnated under vacuum.
The treated sample was dried at 80°C. The procedure was repeated 3 times. After
the third impregnation the sample was washed and dried.

Calcium ion exchange was performed in a 300 ml beaker placed in a water bath
maintained at 50°C. The char samples were first mixed with 10 ml of distilled water
for 10 min in the reactor to ensure that they were wetted thoroughly. Subsequently,
100 ml of 1 N calcium acetate solution, the pH of which was adjusted to 8.5 with
calcium hydroxide, were added to the reactor. The temperature was kept at 50°C.
The reactor was sealed quickly and the slurry was maintained at the initial pH value
with continuous addition of 0.01 N Ca(OH); solution. A stream of N; was used to
purge the reactor of air in order to prevent the absorption of atmospheric CO; in
the solution. At the end of the process the slurry was filtered and washed with
distilled water. The treated char was then dried at 80°C for 24 hrs.

2.3 Characterization of Chars
2.3.1  Physical Properties

The total (internal and external) initial surface area of the chars was measured by
N, adsorption at 77 K and CO; adsorption at room temperature. The results were
analyzed by the BET theory and the Polanyi-Dubinin potential theory, respectively.
It was found that the BET area of the low porosity char was 2 m?/g After the
partial oxidation, it increased to 300 m?/g. The surface area, as measured by

Medek’s approximation to the Polanyi-Dubinin isotherm came out to be 59 m?/g



292

before, and 560 m?/g after partial oxidation. These values indicate the presence of
a vast network of micropores iﬁ this char. The porosity of this char after partial
oxidation, as measured by CO; adsorption was 27%, corresponding to a void volume
of 0.22 cm?®/g. The porosity deduced from the helium and the apparent densities was
lower, 25%. The apparent density, as measured by low pressure mercury intrusion,
was 1.12 cm®/g. The true density was found to be circa 1.5 cm?®/g using helium
pycnometry. After calcium treatment the N; BET area came out to be 15, 16,
and 20 m?/g for the ion exchanged, the precipitated and the impregnated chars,
respectively.

The initial N; BET surface area of the high porosity char was 184 m?/g, its
apparent and true densities were 0.88 cm®/g and 1.45 cm®/g, and the porosity was
40%. After the partial oxidation to about 15% burnout its total surface area rose
to 230 m?/g and the porosity to 48%. Calcium treatment reduced the areas to 80

and 75 m?/g, for the ion exchanged and the precipitated chars, respectively.

2.3.2 Calcium Distribution

The effectiveness of the calcium treatment was assessed by measuring the calcium
concentration as a function of distance from the surface of the particle. Samples
of the various chars were cast in epoxy, polished in a Buehler Minimet automatic
polisher, and gold coated for examination with a CamScan scanning electron mi-
croscope (SEM). Particles that had been sectioned near the middle, i.e. those with
the largest diameters, were selected for analysis.

The calcium distribution was determined by energy dispersive spectroscopy
(EDS) or, in the case of lower concentrations, with a JEOL Superprobe 733 electron
microprobe by wavelength dispersive spectroscopy (WDS).

Figure 1 shows Ca distributions (presented as mass percentage of CaO equiva-
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lents) as a function of distance from the surface of the different chars. Each of the
profiles shown is an average from three particlés. The variability in calcium levels
from particle to particle was small (+ 5%), indicating that the treatment processes
are highly repeatable. Furthermore, the two analytical techniques (EDS and WDS)
were in very good agreement in the regions where they overlapped. The calcium
oxide is uniformly distributed in the high porosity chars that contain both both
transitional- and micropores, since the calcium compounds penetrate readily into
the interior of the particles. On the other hand, in the low porosity chars that
contain only micropores, the penetration is not very effective and the concentration
of calcium is high close to the surface and very low at the center. A comparison of
the three methods of calcium addition indicates that, for the low porosity chars, ion
exchange is the most effective; the calcium concentration is approximately constant
in a 5um thick outside layer. In the next 5um the calcium level drops rapidly by
two orders of magnitude. Thereafter, the level is again flat all the way to the center
of the particle. Calcium carbonate precipitation results in a lower concentration ev-
erywhere with a thinner region (1-2um) of constant concentration near the surface.
As before, the concentration drops rapidly reaching a plateau at about 10um from
the surface. Calcium acetate impregnation method resulted in a distribution similar
to that of CaCOg precipitation, except that in the latter method the calcium pen-
etrated more effectively the region near the surface of the particle but more poorly
the region close to the center.

The overall calcium loadings in the high and the low porosity chars treated by
ion exchange are comparable, but for the chars treated by CaCOj; precipitation
the high porosity char had considerably higher loading than the low porosity char.
In all cases, the partial oxidation pre-treatment increased the calcium loading of

the particles by enlarging the pores and removing the pore constrictions, and by
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enhancing the calcium exchange capability of the chars([24].

SEM-BSE (Back Scattered Electrons) was used as an additional technique to
visually observe the calcium distribution in the particles. This method utilizes the
dependence of the electron backscattering coefficient on the mean atomic number of
the material, Z, to distinguish elements with different Z. Micrographs of sections
through calcium treated glassy carbon particles shown in Fig. 2 reveal the spatial
variation of composition. Examination of Fig. 2 reveals, qualitatively, the same
features regarding the radial distribution of calcium as the analyses above. The
bright color in the periphery of the particles results from high concentrations of
calcium. The particle depicted in Fig. 2a is calcium ion exchanged, while that in
Fig. 2b contains precipitated CaCOs. The concentrated (bright) regions near the
particle surface graphically illustrate the concentration profile of Fig. 1. Figures 3a
and b depict high porosity particles that have been treated by ion exchange and
CaCOj precipitation respectively. These particles are uniformly bright, as expected
for the uniform distribution of calcium in these chars.

The distribution of calcium in the particles is also illustrated by the ash residue
after complete combustion. Ashing experiments were performed in air at 800 K. The
ash residue from the combustion of low porosity particles containing precipitated
CaCO3 consists of thin bubble-like shells while the residue of the ion exchanged low
porosity particles has the form of thick rough shells, shown in Fig. 4 a and b. The
high porosity synthetic chars produce compact ash residues reminiscent of coal ash.

Polished sections of these ash residues, shown in Fig. 5.

2.4  X-ray Diffraction

X-ray diffraction studies of low porosity chars treated with calcium by the ion ex-

change and precipitation methods were conducted in a Siemens D500/501 diffrac-
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tometer at 40kV, 30mA using Ni filtered CuKea radiation. No Ca diffraction peaks
were observed in the x-ray diffraction (XRD) patterns of the calcium loaded ch#rs,
presumably because of the small size of the crystallites and the high degree of dis-
persion[6]. Oxidation of the chars resulted in different XRD patterns depending
on the soaking temperature and atmosphere. Samples of chars that were partially
burned at 1400 K in 4% O; for 2 s exhibited both CaCO3 and CaQ peaks, as shown
in Fig. 6. The calcium ion exchanged sample showed particularly strong CaCO3
peaks. Ash produced after complete combustion at 1400 K in 4% 02 possessed
only CaO peaks. Samples pyrolyzed at 1400 K in N; exhibited weak CaO peaks
only. Finally, complete oxidation at low temperatures (773 K, air) resulted in both
CaO and CaCOj; peaks. Therefore, as previously observed in XRD of lignites|8|
crystals of CaO appear to form during pyrolysis of chars at elevated temperatures.
During oxidation, however, calcium carbonate is the predominant product in the
presence of CO,. After all carbon is consumed, the CaCO; transforms to CaO,
at a rate which increases with temperature. The conversion of CaCQOj3; to CaO at
temperatures above 1100 K is expected to proceed even in the presence of carbon
and thence, CO,. The fact that this was not seen for the ion exchanged chars at
1400 K presently, is probably due to carbonate regeneration at the cooler region of
the sampling probe of the furnace used for the oxidation[25].

The average crystallite size for CaCOj3 produced in combustion at 1400 K, es-
timated from the 3/4 peak width of the (104) diffraction line[28] was 22 nm in
fair agreement with results obtained elsewhere[9]. The large crystallite size sug-
gests that the calcium carbonate might have plugged some of the pores in the chars

during combustion.
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2.5 Combustion Experiments

The combustion of the chars was studied in a drop tube furnace and a thermogravi-

metric analyzer.

2.5.1 Pyromeltry

The chars were burned at moderate (1200-1500 K) and high particle temperatures
(1800-3000 K) in an externally heated, laminar flow (drop-tube) furnace[25]. Parti-
cle temperatures were measured by near-infrared two color pyrometry for particles
that burned at temperatures that were significantly higher than the wall tempera-
ture or inferred from heat balance calculations for particles that oxidized at temper-
atures close to the wall temperature. The combustion apparatus and the pyrometer
are described in[25]. The experiments were conducted at a constant furnace wall
temperature of 1470 K, either in air or pure oxygen. Using the pyrometer to view
the particles along the axis of the reactor, the entire temperature-time histories of
individual burning particle were observed. Typical profiles are shown in Figures 7-
11.

In Fig. 7a temperature-time traces of several high-porosity calcium-free particles
burning in O, are superimposed. The average maximum temperature was about
2600 K, and the mean burnout time was 14 ms. The combustion behavior of
similar size particles to which calcium was added by ion exchange is shown in Fig.
7b. The maximum temperatures were about 2900 K and mean burnout time was
of 11.5 ms. Figure 7c shows traces ﬁ‘om combustion of high porosity particles in
which CaCOs had been precipitated. Again the profiles are rather flat, the average
maximum temperatures are 2800 K and the average burnout time was 12 ms. Thus,

calcium addition has a modest effect on reducing the burnout time and increasing
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the combustion temperature of particles.

Figure 8 shows the temperature hiStory of high porosity particles burning in air.
Again particles treated by both ion exchange and precipitation behave similarly.
The particles burn for 25 to 30 ms in a luminous mode, and the average temperatures
are in the vicinity of 2000 K. This combustion behavior is strikingly different from
the behavior of plain PFA char calcium-free particles. Under identical conditions,
the latter particles burned slowly in a non-luminous mode at temperatures close to
that of the reactor wall, with about 2 sec being required for complete combustion.

Combustion of low-porosity particles reveals similar features to the combustion
of high porosity particles. The presence of calcium reduces burnout times and
increases particle combustion temperatures. Figure 9 depicts combustion of low
porosity particles in O,. The untreated particles burn at an average temperature
of 2200 K and a burnout time of approximately 22 ms (Fig. 9a). The calcium
treated particles burned faster, ~12.5 ms, and hotter, ~2500 K (Fig. 9b and c).
The combustion behavior of particlevs containing calcium seemed to be independent
of the method of calcium treatment. Combustion in air, however, revealed large
differences in the manner in which the particles burned. The untreated char particles
did not ignite and burned slowly at temperatures between those of the gas and the
wall, and the conversion at the end of the 2 sec residence time in the combustion
chamber was only 60%[25]. On the contrary, the particles that had been treated by
acetate impregnation ignited and burned in an average of 30 ms at a temperature
of 1900-2000 K (Fig. 10a). Some particles that were ion exchanged or precipitated
ignited and burned in about 25 ms and circa 1900 K (Fig. 10b), while others burned
slowly at a lower temperature. This behavior suggests that the particles so treated
were at the verge of ignition. Had the oxygen concentration been a little higher

they might too have ignited[25].
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A few combustion experiments were conducted in air using the PSOC-680 coal.
The combustion behavior of the untreated coal is contrasted to the behavior of
CaCOj3 precipitated coal in Fig. 11 a and b. The untreated coal particles readily
ignited in air unlike the synthetic Ca-free chars. The difference is due to the higher
reactivity possessed by coal char by virtue of its different poi’e structure as well
as its content of heteroatoms and minerals. The burnout times for the coal char
particles were about 35 ms with the average temperatures of 2000 K. The particle
temperatures were surprisingly uniform (except for one trace) although the burnout
times varied. Early in the combustion of these particles, a distinct temperature peak
lasting only 1-2 ms was observed, probably caused by the combustion of evolving
volatiles. Introduction of CaCOg3, by precipitation, accelerated the combustion. The
resulting burnout times were of order 15 ms (Fig. 11b). The particle temperatures
exhibited large scatter and on the average they were somewhat higher than those

of the untreated particles.

2.5.2 Moderate Temperatures

Combustion experiments at lower particle temperatures where ignition occurred
without a temperature jump were also conducted in the same drop tube furnace,
by lowering the oxygen partial pressure, Po,[25]. At Po, lower than ~7% and at
a combustor wall temperature range of 1200-1500 K the particles did not ignite,
but rather burned slowly at approximately the wall temperature in a non-luminous
mode. Combustion rates were deduced from particle size reduction and/or sample
mass and density change. The calcium laden chars were again significantly more
reactive than the untreated chars. For example, at Tw = 1250 K, T, = 1225 K,
P, = 0.04, and residence time ¢ = 2 s, the conversion of 50um PFA particles was

22% while the conversion of calcium ion exchanged PFA particles was 85%. Under
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the same conditions, the conversion of CaCO3 precipitated particles was 68%.

2.5.3 Low Temperatures (TGA)

Experiments were conducted in a DuPont model 951 thermogravimetric analyzer
(TGA) at temperatures ranging between 650-850 K. The samples were heated in
nitrogen at 30 K/min until the final temperature was reached. The gas flow rates
were kept at 100 cm®/min STP for all runs. Small sample quantities (1 mg) were
spread in a thin layer (1 or 2 monolayers) on the balance pan to minimize diffusional
resistance in the particle layer. To ensure that the measured rates are free of dif-
fusional limitations, film diffusion, layer diffusion, and particle pore diffusion were
examined separately as outlined elsewhere[27]. For combustion of the low porosity
ion exchanged particles at 800 K, which involves the strongest diffusion limitations
in this section of our investigation, the modified layer Thiele modulus|26] at 25%
conversion was of order 1072, indicative of uniform oxygen concentration in the
particle layer. The particle Thiele modulus, ®, was about 0.9, and the effectiveness
factor, n, was a little below unity suggesting complete intraparticle penetration.
Therefore, it may be concluded that the particles were burning approximately un-
der the kinetic regime I [27] of combustion. One should be cautious, however about
assessing the intraparticle penetration of the oxidizer gas in these calcium treated
microporous chars since, the pore structure is not well characterized and Ca crystal-
lites might be blocking some of the pores. Furthermore, the fact that the reaction
rate was found, in the preéent experiments, to be independent of particle size is
not sufficient to ascertain the absence of pore diffusion limitations for microporous

chars in general[13]. An apparent reaction rate per instantaneous mass of carbon,
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R,, can be defined by:

1 dm
e 3
E m — Mgsp dit (3)

where m is the instantaneous total mass. Figures 12-14 show the apparent reaction
rates for glassy carbons and coal chars at 673, 773 and 873 K as functions of

conversion (burnout). The conversion, X, at any given time, is given by,

Minitial — M

X =

(4)

Minitial — Mash
Figures 12a and b show the apparent rate of low porosity particles burning at
673 and 773 K, reépectively. The rates of the calcium treated chars appear to be
higher than those of the untreated PFA particles by up to two orders of magnitude.
The rate of the Ca-free PFA chars is roughly constant with conversion, the initial
transient being due to the changing gas composition over the bed, from N, to 21%
0,—79% N, upon admission of air. The rate of the Ca-treated PFA chars is initially
high up to a certain conversion, but subsequently falls to values roughly two times
the rate of the plain PFA char. The rate plots can be correlated with the calcium
concentration and distribution inside the char particles. The ion exchanged chars
that possessed the highest concentration and penetration of calcium exhibited the
highest reactivity. In those chars the calcium concentration falls sharply at 6-7
um below the surface; this Ca-rich outside layer, however, contains roughly 60%
of the carbon mass and corresponds to the high rate portion of the rate curve (up
to 60% conversion). The calcium precipitated and impregnated particles showed
similar behavior but since both the penetrvation and concentration of calcium is
lower the high rate region extends only to 30% conversion. This is somewhat lower
than the conversion of 40-50% calculated on the basis of the calcium concentration
distribution. This discrepancy may be due to the different form of the calcium

compound. The precipitated CaCO3 may cease to catalyze the carbon gasification
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when it loses contact with the adjacent carbon matrix even if there is still unburned
carbon in the vicinity. The difference in the dispersion and chemical form of the
calcium additive is also responsible for the large disparity in the rate of oxidation,
with the chemically bound calcium added by ion exchange being the most reactive.
However, in this case it is difficult to separate the effects of the concentration and
the chemical form of the catalyst.

The combustion behavior of high porosity particles is shown in Fig. 13a and b at
temperatures of 773 and 873 K, respectively. The rates are overall higher than those
of the low porosity chars (compare Figs 12b with 13a) due primarily to the existence
of transitional “feeder”[1] pores. The calcium laden particles again exhibit higher
rates with the calcium ion exchanged particles exhibiting the highest. In all but one
case, the rates are monotonicly increasing with conversion reflecting the constant
calcium distribution in the particles and the progressive opening and enlarging of
pores with burnout. The only case that exhibits an anomalous behavior inasmuch
as it undergoes a maximum in rate is the calcium ion exchanged char at 773 K. The
cause of this behavior is uncertain.

Coal oxidation at 773 K in air is depicted in Fig. 14. The rate of untreated
coal appears to be higher than the rate of the glassy carbons as was observed
at the high temperature experiments. This rate exhibits a maximum at about
20% conversion. This behavior may be explained on the grounds of preferential
combustion of thin walls between transitional pores. Both calcium laden chars
exhibit overall higher rates without undergoing an early maximum in rate. The
rate drop at high conversions (circa 80%) may be due to burnout of all carbon
in proximity to the catalyst, and/or existence of small regions where the catalyst
had not penetrated since, the coal had not been subjected to any pyrolysis or

preoxidation prior to calcium addition.
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3 Estimation of Rate Parameters

3.1 Medium and High Temperatures

Kinetic rate parameters were estimated using the approach of Loewenberg and
Levendis|29] for particle temperatures at or above 1200 K. Their approach applies
to the case in which particle combustion occurs at nearly constant temperature
and apparent density. These conditions were observed for combustion at particle
temperatures at or above 1200-1300 K. The apparent rate is assumed to be first-
order in oxygen concentration: F. = k4(7,)C,. The analysis involves the solution
of the pseudosteady film transport equations to obtain an apparent rate constant
and particle temperature, (k,,7,) in terms of the observed burnout time, conversion
and initial particle radius for each temperature-time trace. An Arrhenius plot of
these quantities yields estimates for the observed activation energy, F,, and pre-
exponential factor, 4,.

It has been suggested that under low-temperature conditions, calcium enrich-

ment promotes the reaction to C0,[30,31]
C + 0, = CO, (5)

However, this effect is expected to diminish at particle temperatures above 1300 K[30].
An approximate analysis of the possibility of CO, formation was conducted by as-
suming that Eq.(5) is the only heterogeneous reaction (equilibrium chemistry). The
resulting particle temperature calculated under these assumptions exceeded the ob-
served values by as much as 1000 K at the highest temperatures. Thus, it was
concluded that the most significant heterogeneous reaction at these temperatures

is the oxidation of carbon to carbon monoxide:

1
C+ 0, = CO (6)
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a conclusion which is in agreement with other investigators.[33] Assuming that CO
is the only heterogeneous reaction product, burning only in the free stream, yielded
particle temperatures within 100 K of the experimental values. An Arrhenious
plot of the estimated apparent rate coefficient is shown in Fig. 15 for the two
synthetic chars used. The estimated rates of the calcium laden particles are one
order of magnitude higher than those of the untreated chars at all but the highest
temperatures. At the highest temperature region, above approximately 2600 K,
the apparent rate‘of the calcium treated chars is lower than the rate at 2000 K.
This negative temperature dependence could be due to thermal rearrangement of
the carbon matrix and decline of the number of active sites [25,32] and/or due to a
decrease in the effectiveness of the catalyst.

Intrinsic rate parameters may be related to the estimated apparent rate param-

eters[29]:

E,, = 2E, v )

2
A = 2bJ ("TA“) (8)

0q,0

where the intrinsic rate is given by: R, = kin(T,)C and J is a physical factor

which depends only on the particle structure[35]:

7 €(q) — ¢
1= [ ©)
where ¢ and 6, are the porosity and effective diffusivity, respectively and ¢ is the
length by which the local surface has receded by oxidation. Calcium enriched chars
exhibited a substantial loss of BET surface area. For the high porosity char which

exhibited uniform calcium penetration, it was assumed that calcium treatment re-

sulted in:

1. a spatially uniform distribution of plugged pores
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2. unblocked pores the same size as in the untreated material
3. preferential plugging of smaller pores

Based on these three assumptions, the BET surface area of the calcium treated high
porosity chars may be related to their void volume distribution which allows eval-
uation of the physical factor, J. This procedure, in combination with Egs. (7) and
(8), allows estimation of the intrinsic rate. This procedure is only applicable to the
high porosity chars which acquired uniform calcium penetration from treatment. It
cannot be applied to the low porosity particles which exhibit spatially non-uniform
calcium enrichment. For the high porosity chars, using the measured BET area at
10-15% burnoff (1500 K) as the initial area we calculated an intrinsic rate constant,
ki, of 0.05 gm/cm? s atm at T, = 2000 K, twenty times higher than the rate of
the untreated char. The calculated intrinsic rate of the calcium treated chars is

comparable to the intrinsic rate of coal chars reported by Smith[34].

3.2 Low Temperatures

Apparent reaction rates per unit weight of material, R,,, plotted against burnout
were presented previously. ! Intrinsic rates were calculated as:

B,

r=———
NY0a Aot

(10)

where Ay, is the total surface area, here taken as the Ny BET area at 77 K, ~
is the characteristic dimension of the particle (ratio of particle volume to external
area), and o, i1s the apparent density of the particle. For comparison purposes,

the reactivities of the chars were contrasted at 20% burnout, where the apparent

!The apparent rate per unit mass, R,, is related to the apparent rate per unit external area, R,

by: R, = Rpv0a.
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rate of most chars had reached a plateau. The apparent and intrinsic reaction rate
constants k,, and k; respectively, can be calculated by dividing R,, and R; by the
surface oxygen concentration (for first order kinetics). For combustion in Regime I
[29], assumed at these low temperatures, the surface oxygen concentration is equal
to the ambient. The estimated rate parameters for these chars are shown in Fig.16.
The N, BET surface areas for these chars at 20% conversion were 320 m?/g for
the low porosity char and 35 to 55 m?/g for the calcium treated chars. The area
of the high porosity char at 20% burnout was about 380 m?/g, while that of the
calcium treatment chars was between 140 and 150 m?/g. The areas vary little with
combustion temperature in the range of 673-873 K.

The apparent rate constant, k,,, increases with addition of calcium by up to
two orders of magnitude for the low porosity and up to five times for the high
porosity char, Fig.16a. The latter is apparently more reactive than the former in
the pure form but less reactive when both are loaded with calcium. The enhanced
reactivity of the high porosiity char can be attributed to the network of transitional
“feeder” pores, however, this advantage is lost at the presence of calcium where the
overwhelming effect of catalysis renders the low porosity particles containing 2.5-3.5
wt% Ca more reactive than the high porosity chars containing 1.5 wt% Ca. This
reasoning is valid only if we assume the existence of some pore diffusion limitations
in the low porosity materials and hence, preferential burning in the outside Ca-rich
layer of the particles first. The intrinsic reaction rate constant, k;, follows similar
trends, Fig. 16b. Here the differences between the various chars become even more
pronounced by removal of the offsetting effect of reduced total surface areas. It can
be noted that both the apparent and intrinsic activation energies F, and F;, of the
chars appears to decrease with Ca-loading. Comparison with data elsewhere[35]

suggests that the calcium laden chars appear to be apparently more reactive by
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4-8 times and intrinsicaly more reactive by more than an order of magnitude than
p.orous brown coal char. The calcium laden chars were also found to be one to two
orders of magnitude more reactive than three HVA Bituminous coals tested under
identical conditions in the same apparatus|[27] even if the unladen glassy carbon

chars were less reactive.

4 Conclusions

Monodisperse synthetic char and coal particles have been treated with calcium using
the following methods: (i) precipitation of CaOjz; within the pores of the chars,
(ii) impregnation with calcium acetate solution and (iii) calcium addition by ion
exchange. The distribution of calcium inside low porosity synthetic chars was high
in the vicinity of the surface and low at the center. A steep fall in concentration
occurs at 2 to 6 pm depth below the surface depending on the method of calcium
treatment; the ion exchange method produces the deeper penetration. The calcium
concentration in the high porosity chars was very uniform throughout the char
particles. X-ray diffraction show that at combustion temperatures below 1400 K
calcite seems to be the predominant form of calcium at the presence of carbon and
CO..

Combustion experiments revealed that the presence of calcium enhances the
particle temperature and reduces the burnout time. The carbon reactivity was
enhanced at all temperatures examined in the range of 600-3000 K, however, the
difference in combustion rates was more pronounced in the low to intermediate
temperature region (650-2000 K) rather than at the very high temperatures where
the pure carbon kinetics exhibit a plateau. The biggest gains were recorded for the

intrinsic rate of the chars since, despite of the reduction of total surface area by Ca-
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induced plugging of pores the chemical kinetics were promoted. All forms of calcium

introduction, both physical and chemical attachment, enhanced the combustion rate

with the calcium ion exchanged chars (chemically bound) being general the most

effective in catalyzing the carbon gasification in the examined temperature region

(650 - 3000 K).
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6 Notation

SYMBOL

HNox PR

SR

DESCRIPTION

particle radius

apparent pre-exponential factor
intrinsic pre-exponential factor
specific total area
stoichiometric coeflicient
ambient oxygen concentration
oxygen concentration at particle surface
apparent activation energy
intrinsic activation energy

total mass flux; apparent rate
enthalpy of reaction

intrinsic rate coefficient

mass of carbon

ambient partial pressure of oxygen
local structural variable

radial distance

pore radius

apparent reaction rate
apparent reaction rate

intrinsic reaction rate

ambient temperature

particle temperature

conversion

UNITS

cm

g/cm? s (atm)”
g/cm? s (atm)™
m?/g

(=1/24)

g/cm?

g/cm?

keal/g

keal/g
g/cm?-sec
keal/mole
g/(cm?sec(atm)™)

g

cm

cm

cm
g/cm?’-sec
g/g-sec
g/cm?*-sec
K

K
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effective intraparticle diffusion coefficient

total porosity
effectiveness factor

Thiele modulus

cm?/s
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TABLE 1

Physical Properties of Partially Oxidized Chai‘s
before Calcium Treatment

CHAR

Low Porosity
plain polymer

High Porosity
polymer + 25% carbon black

Apparent Density 1.12 0.75
(g/cm®)

Helium Density 1.5 1.45
(g/cm®)

Porosity 25% 48%
Average Pore ~ 15A 150A and 15A
Diameter bimodal
BET area 300 184
(m?/g)

CO, area at 298 K 560 -

(m?/g)
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Figure 2: SEM-BSE micrographs of sections through calcium treated synthetic char

particles (a) low porosity ion exchanged (b) low porosity CaCOs precipitated
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Figure 3: (a) high porosity ion exchanged (b) high porosity CaCO, precipitated.
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Figure 4: SEM-SE micrographs of residual ash after complete combustion of Jow
porosity synthetic char particles in air at 800 K. The particles were treated with

ion exchanged calcium: (a) outside view (b) inside view.
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Figure 5: SEM micrographs of polished sections of ash particles resulting from

combustion of high porosity chars.
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Figure 15: Apparent reaction rate coefficient k, at intermediate to high tempera-

tures, both low porosity (LP) and high porosity chars (HP).
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Figure 16: Apparent reaction rate coefficient k,, at low temperatures, both low

porosity (LP) and high porosity chars (HP).
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Figure 17: Intrinsic reaction rate coefficient k; at low temperatures, both low poros-

ity (LP) and high porosity chars (HP).



