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Abstract

The potential for identifying aircraft using one-dimensional radar range profiles in
conjunction with a bank of correlation filters is investigated. Filters which maximize
the expected value of the correlation with a target’s profiles are derived, and an
algorithm for computing them is presented. The algorithm is used on an extensive
set of real aircraft profiles, and target identification experiments are performed. It
is found that an averaging of identifications of several profiles is required to achieve
reliablevidentiﬁcation.

The use of multiple radar range profiles to form two-dimensional images through
the techniques of inverse synthetic aperture radar (ISAR) is explored. Particular
attention is given to the blurring which can arise when the target aspect does not vary
linearly with time. An iterative algorithm for estimating target motion is developed
which allows well-focused images to be formed in these cases. It is applied to simulated
data and to an acoustic imaging experiment.

A technique for forming two-dimensional radar images of a spherical planetary
surface using one-dimensional Doppler spectra is developed. Simulations are used to
explore the techxﬁque’s effecti’veness and robustness. It is then applied to real data

from Jupiter’s moons Ganymede and Callisto, and to Mars.
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Chapter 1

Introduction

This thesis is concerned with the use of radar systems to discern physical properties of
objects, either because these propertiés are of interest directly or because they can be
put to use for other purposes, e.g., for identification. Radar is an acronym for radio
detection and ranging. As the name implies, it was originally developed to detect the
presence of, and measure the range (distance) to, military targets using radio waves.
Its effectiveness was clearly demonstrated early in World War II during the Battle
of Britain wheré the early warning provided by their “Chain Home” radar system
was a crucial factor in the British victory. A great attraction of radar is that it can
operate under virtually all weather conditions, and it is equally effective night and
day. Moreover, its ranging capabilities complement the angular resolution of optical
detection and tra_cking systems.

Although military ‘systems have always been, and continue to be, the primary
focus of radar research and development, over the last five decades several spin-
offs have utilized radar technology for civilian purposes. Among the most visible

of these are the air traflic control systems present at every major airport; among



the most ubiquitous are the radar guns used by police officers to enforce highway
speed limits. Weather radars play an important role in the prediction and tracking
of storms [49]. Imaging radars placed aboard aircraft and spacecraft have provided
important geological information about the surface of the Earth (8], and huge Earth-
based radars have been built to study the other bodies in the solar system [34].

In this thesis we will apply some basic radar concepts to two very different situa-
tions. The first is to study methods for spatially resolving radar echoes from aircraft
for the purpose of aircraft identification. The motivation is to extend the detec-
tion and ranging capabilities of radar so that it is also possible to determine what
has been detected. The most straight-forward approach is to use one-dimensional,
range-resolved images called range profiles. The potential for performing identifica-
tion based on range profiles is explored in Chapter 2. The original contribution of
this chapter is a method for calculating optimal correlation filters from sets of range
profiles; and the investigation of its eﬁ‘ectiveness by applying it to an extensive set of
real data.

The limitations which arise in using one-dimensional range profiles as a basis for
identification motivate us to explore techniques for obtaining an extra dimension of
spatial resolution,'and this leads to the concept of inverse synthetic aperture radar
(ISAR) in Chapter 3. A major difﬁcultyb of ISAR processing is that it requires knowl-
edge of targéf motion, and this is generally unavailable to us a priori. The typical
response to this problem has been to assume the target moved in a particular manner,
but this results in é pqorly focused image if the assumption is incorrect. The original
contribution of Chapter 3 is the development of a technique for estimating target
motion iteratively, thereby allowing well-focused ISAR images to be formed for more
‘general types of ‘target motion.

The final chapters deal with radar astronomy. We give an overview of this field



in Chapter 4, and we describe the problem of overspreading of planetary targets
which precludes the use of delay-Doppler techniques for providing fully resolved im-
ages of many planetary surfaces. Overspread targets have generally been studied by
observing their Doppler spectra, which are one-dimensional projections of the tar-
get’s two-dimensional distribution of surface reflectivity. The original contribution
of Chapter § is the development of a technique for using a set of one-dimensional
Doppler spectra of a spherical planet, moon, or asteroid to form a two-dimensional
image of the distribution of radar reflectivity over its surface. Then in Chapter 6 we
apply the technique to Ganymede and Callisto (moons of Jupiter), and to Mars.

An excellent introduction to radar concepts and systems can be found in [49)].
For the remainder of this chapter we will briefly touch on those concepts that are of

importance to us in this thesis.

1.1 The Radar Equation

A radar observation consists of the transmission of ah radio signal, propagation of
that signal to a target as an electromagnetic field, scattering of that field by the
target, propagation of the scattered field back to the radar, and reception of this
backscattered field at the radar. The received field is always much less intense than
the transmitted field. Just how much less depends on the distance to, and nature
of, rthe target and the characteristics of the radar system. It is important to know
quantitatively how these factors affect the strength of the received signal for several
reasons. |

One is the fact that all observations are corrupted by noise, and if the received
signal is not of sufﬁcient strength it will be hopelessly obscured. Therefore, in design-

ing a radar system, or in planning a radar observation, the strength of the received



signal must be predicted beforehand to ensure that useful information can be ob-
tained. This is particularly true in the field of radar astronomy where observations
are planned months in advance and require large commitments of time and personnel.
The expfession that gives the received signal strength in terms of radar system and
target parameters is called the radar equation, and we will derive it now.

Assume a radar transmits with power P;. If this power is transmitted equally in
all directions, i.e., isotropically, then after a time ¢ it will be uniformly spread out over
a sphere of radius R = ct, with c the speed of light. The surface area of this sphere is

4w R?, so the intensity with which this field illuminates a target at the distance R is

1 |
Iy = P (1.1)

However, in practice, radars do not radiate isotropically. Instead they utilize antennas
to achieve antenna gain, or directivity, and thereby increase the intensity of the
radiated ﬁeld'in a particular direction. Therefore, the target is actually illuminated
with an intensity |

G

Ii=Ptm, (1.2)

where the dimensionless quantity G is the antenna gain. For a well-designed system
G> 1.

Infuitively we expect that if the target presents a projected area (along the radar
line of sight) bf o, it will intercept an amount of power I;o. If this power is scattered

isotropically, the intensity of the backscattered field at the radar is

Lo

T R (1.3)

If the radar intercepts some of this backscattered field with an antenna of area A then

the total received power is
Lo
P, == .
47 RR?

(1.4)



Using (1.2) we write this as

GAco

This is the radar equation. From basic antenna theory [49] we have that for an ideal

antenna of aperture A the gain is

G = %A, (1.6)

with A the radar wavelength, so we can also write the radar equation in either of the

forms:
Ao
b= P (17)
\Go

Equation (1.7) is instructive because it shows clearly the physical parameters
that determine received signal strength. The factors that are more or less under
our control are the transmitted power P, the antenna aperture area A, and the
radar wavelength A. Clearly we want as large a transmitter power as possible, but
there are practical limitations to the power a radar can transmit. It quickly becomes
prohibitively expensive to increase P; past a certain level. Received power goes as A?
so we would like to have large antenna apertures. Indeed, large apertures are probably
the single most important factor in the design of a highly sensitive radar. However,
here too there are practical limitations; it is difficult to build very large apertures
that maintain their structural integrity. Equation (1.7) implies that an easy way to
increase P, would be to decrease ), but this increases the cost of the antenna since
its surface must be accurate to within a fraction of the radar wavelength, and this
becomes increasingly difficult to achieve for small A. The factors that we cannot
control are R and o. The fact that P, falls off as R~* is one of the most serious

limitations of radar. Effective radar desien reauires that all these factors be taken



into account and resources devoted to the most cost-effective approach(s) of achieving
high sensitivity.

Although (1.7) may be useful for design purposes, real radar systems have losses
and other imperfections that limit the validity of the assumptions under which (1.7)
was derived. In practice, equation (1.8) is used and G is measured, for example,
by placing a known target at a known distance from the radar and measuring the
received power relative to the power fed into the transmitter. This empirical value of
G then takes into account losses in the transmitter and receiver, imperfections in the

shape of the antenna, and so on.

1.2 Radar Cross Section

The only parameter in the radar equation that depends on the properties of the target
is the radar cross section 0. This is the equivalent area suchb that if all the power
falling on it Qere scattered isotropically it would produce the observed backscattered
power at the radar. A target’s radar cross section need not be equal to its projected
area, however. It is for the important special case of a perfectly conducting sphere,
provided the sphere is much larger than the radar wavelength. Accordingly, the radar
cross section of a target can be defined as the projected area of a perfectly conducting
sphere which, if placed at the same distance as the target, would produce the same
backscattered intensity.

For more complex targets, radar cross section and projected area will generally not
be the same. Firsf of all, no real target is perfectly reflective but rather absorbs some
of thé incident power resulting in less backscattered power and a correspondingly

smaller radar cross section. For example, a sphere with projected area A,,,;, but



with a reflectivity of p < 1, will have a radar cross section of
g = PAproj, (19)

which is less than its projected area. Additional complexities arise for nonspherical
targets which, in general, do not scatter isotropically. For example, a flat plate will
backscatter very strongly when oriented normal to the incident field, but for modestly
oblique orientations it will barely backscatter at all since most of the reflected power
travels off in the direction that satisfies Snell’s Law. Yet the plate’s projected area
differs little for these two cases. To take this effect into account we would have to

write
o = p9(0,8) Apross (1.10)

where g(0,¢) is a “target gain” factor that depends on the angles (8, ) describing
the target’s orientation with respect to the radar. This gain factor describes how the
anisotrdpic scattering of the target affects its radar cross section.

We see that a measurement of radar cross section does not uniquely determine
the physical properties of a target but rather provides a mutual constraint on its
size, reflectivity, and shape or structure. In using radar backscatter measurements to
make unambiguous statements about the physical properties of a target, therefore,
we need to make bmany independent measurements and/or interpret them in terms
of some model of the target into which we have placed all our a priori knowledge
of the target and of radar scattering in general. We will make use of two models
in this thesis. In the chapters on radar astronomy we will discuss various scatlering
laws that have been developed on both theoretical and empirical grounds to account
for ‘the function g(f, ¢). These will be described in Chapter 4. In Chapters 2 and 3,
'where'v‘ve are concerned with scatter from aircraft, we will use the physical optics

approzimation [28] that has been found to give a reasonably accurate representation
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of backscatter from such objects [56]. We describe this model in more detail below.

1.3 Far-Field Backscatter from a 3D Object

Consider the geometry shown in Figure 1.1. The radar is located at the point R
while location on the target is denoted by r. The radar transmits a signal s(¢). This
travels out, strikes the various points on the target, is reflected from these points,
and these reflected fields travel back to the radar where their sum is received. The
physical optics approximation assumes the target can be characterized by a reflectivity
distribution f(r) such that the field backscattered from a small volume dV about the
point r has an amplitude at the radar of af(r) dV, where a contains the factors from
the radar equation and is (essentially) constant for all points on the target. The
round trip delay from the radar to the point r and back is At = 2|R —r|/c, so the

component of the received field due to this small volume is
dE(t) = af(r)s(t — 2|R —r|/c)dV. (1.11)
The total received field is just the sum of all such components:
E@) = a/f(r)s(t — 2[R = r|/c) dV, (1.12)

where the integration is over all parts of the target.

The distance [R — r| can be written

R-1| = Rt

= IR+ |2 - 2R r

R [cf? (Ir? —2R - r)’

If [R] is very large then we can ignore all but the first two terms of expression (1.13)
and write

IR—r|~R~—eg-r, (1.14)
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where R = |R| and eg = R/R is the unit vector in the radar’s direction. This approx-
imation is valid if the neglected terms are much smaller than the radar wavelength
A [17]. This will generally be so provided

Irf? Ir|®

—l—ﬁl<<)\ = R>>T (1.15)
for all points r on the target. This is the far-field condition, and (1.14) is the far-field

approzimation that we will assume is valid in all discussions henceforth. Using this

n (1.12) results in

)—-a/fr)s( 2R+2eR'r> v (1.16)

(o

as our expression for the total backscattered field.
In this thesis we will be concerned with situations in which the radar position
R is assumed to be restricted to a single plane. By appropriate orientation of our

coordinate system we can make this the z,y plane. Then we can write

erg = (cosb,sinb,0) - (1.17)

er'r = zcosl+ysinb, (1.18)
where 6 is the angle egr makes with the z axis, and (1.16) becomes

E(t) :»a//»/f(:c,y,z)s (t-—2—§-+-i—(:ccosﬁ+ysin0)> dz dy dz. (1.19)

The argument of s() does not depend on z. We can therefore define the target’s

equivalent two-dimensional reflectivity distribution as

fle,y) = / f(z,y,2) dz, (1.20)

and we can then write

—a//f (z,y)s ( ———+2(:ccos«9+ysin0)> dz dy (1.21)
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as the expression for the backscattered field. If we are not concerned with changes in
f then it is often convenient to orient the coordinate system so that the radar lies on

the z axis resulting in

E(t)=a/[/f(x,y)dy]s(t—gcﬁ—i—?—}) dz. (1.22)

In this case the z coordinate measures range on the target. The argument of s()
does not depend on y, so we can define an equivalent one-dimensional distribution of

reflectivity in range:
flz) = /f(w,y) dy, (1.23)
and we can write

B)=a [ f(z)s <t - Zg + 203) dz. (1.24)

We will use these expressions in the next two chapters, with an appropriate choice of

s(t), to describe techniques to resolve radar echoes from aircraft.



radar

target

Figure 1.1: Geometry of radar observations.



Chapter 2

Aircraft Identification Using
Radar Range Profiles

2.1 Introduction

Over the last half century radar has proven to be a very powerful tool for the detection,
ranging, and tracking of aircraft. However, these capabilities leave a key question
unanswered: What has been detected? This is the crucial piece of information in a
military scenario as it determines the degree of threat and the appropriate response.
The possible consequences of not knowning what a blip moving on a radar scope
represents were made horribly clear on July 2, 1988 when the U.S.S. Vincenes, finding
itself in a hostile _éituation in the Persian Gulf during the Iran/Iraq war, destroyed
a commercial aircraft, killing the crew and passengers because the jet was mistaken
for a fighter on a hostile approach. While it is sometimes possible to augment radar
detections with other sensors, e.g., visual sightings, one of the great attractions of

radar is its ability to operate under virtually all weather and lighting conditions.
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Situations Wﬂl arise where radar detections are possible but other sensors are useless,
for example, ‘cloud cover in the case of visual sightings. Ideally, radar systems should
have the ability to provide their own reliable identification for every detection they
make. The need for this additional capability has motivated considerable research into
techniques for automatic radar target identification over the past few decades [49].
Techniques for identifying targets from their radar echoes fall into the general field
of inverse scattering. If we had a complete electromagnetic description of a target,
i.e., its precise shape and composition, and we knew its orientation with respect to
the radar, then we could, in principle, solve Maxwell’s equations with the appropriate
boundary conditions to exactly predict the backscattered field for any incident field

we use to illuminate the target. We can represent this solution symbolically as
y = h[x; 8], (2.1)

with x the incident field, y the backscattered field, h the electromagnetic description
of the target, and 6 the (possibly time-varying) orientation or aspect of the target.
This is known as the forward scattering problem: Given the description of the target,
find the backscattered field for a given incident field. For target identification, on
rthe other hand, we measure the backscattered field, so we know both x and y. We
may, or may not, know the target’s oriehtation 6. It is the description of the target,
h, that we do not know and that we need to determine from the fields. This is the
inverse scattering problem. Solving this is a difficult task in general. In fact, there
may not even be‘a unique solution to the inverse problem, that is, there may be
many possible targets fhat produce the same backscatter from a given incident field.
Generaﬂy the target is better constrained when the diversity of the illumination is
greater, so we would like to be able to illuminate targets with many frequencies and

over a wide range of angles. Unfortunately, this diversity is usually accompanied
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by increased cost in system complexity, processing requirements, and/or observation
time. This motivates us to seek the least costly approach that still provides reliable
identification.

For target identification purposes it is usually not necessary to fully solve the
inverse scattering problem and to determine h completely. It is often the case that
we know a priori that the target cannot be an arbitrary object but rather must be
one of a set of possible targets. For example, we may know that only two types of
aircraft could be present in a particular situation. In such cases a limited amount of
observational data may suffice to place enough constraints on h that we can answer
questions such as: Is it target A or target B that is producing this backscatter? This
is the situation we will examine in this chapter using a data set of radar signatures
of several aircraft in flight. To place our work in context, however, we first give an
overview of another area of active radar target identification research that 1s, in a

sense, explained below, cbmplementary to the approach we take in this chapter.

Identification based on Scattering Resonances

If a target is made of materials with linear electromagnetic characteristics, such as
dielectrics and metals, then the electromagnetic scattering from the target is a linear
proceés. Moreover, if, as is usually the case, these properties do not change with time
then it is a time-invariant linear process. As such it can be fully characterized by
its impulse response, or equivalently, by its transfer function. If z(t) represents the
signal that the radar transmits, and y(t) represents the received backscattered signal,

then we can express the relation between them as

y(t) = ]:’ ho(t — 7)a(r) dr, (2.2)
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where hg(t) is the impulse response of the target at aspect . Using the convolution

theorem we have
Y(s) = Hp(s)X (s), (2.3)

with X (s), Y(s), and Hy(s) the Laplace transforms of (), y(t), and he(2).
Marin [30] has shown that for a perfectly conducting body H(s) is a meromorphic

function, that is, it is analytic in the entire complex plane except for isolated poles:

Ho(s) = @o(s) + 32 20 (24)

b
S — Sk

where ®y(s) is analytic in the entire s plane and satisfies the conditions required for

the Paley-Wiener theorem [46] to apply. Thus

ho(t) = o(t) + 3 ar(0)er (2.5)
k=1

where ¢4(t) is a time-limited function and {si} are the poles of Hy(s). These poles are
the complex résonant frequencies of the target, analogous to the resonant frequencies
of a cavity or an electric circuit. The period during which ¢4(t) is nonzero is termed
the “early-time” response; the period after that, when only the resonant terms are
present, is termed the “late-time” response. While the function ¢¢(t) and the ampli-
tudes a;(0) depend on the nature of the illuminating waveform and the orientation
of the target, the poles are determined only by the structure of the target. Hence, if
it should prové possible to determine the poles from a backscattered field they would
provide a set of aspect—.invariant features for target recognition purposes.

The practical difficultly with this approach is that Re(s;) < 0, i.e., the resonant
oscillations are radiation damped (if they were not radiating energy we would not be
~able to observe them), and so they very quickly fall off into the noise that is present
in all real measurementé. Yet if the poles are to be measured precisely the functions

- e**! must remain above the noise for a significant length of time. For certain simple
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bodies, such as the sphere, exact solutions to the electromagnetic scattering problem
are available. In this case it is found that the scattered field consists of a reflection
followed by a series of exponentially decaying “creeping waves.” These creeping waves
are just the superposition of the resonant “ringing” terms af) e***, In order to identify
the resonant frequencies it has been found that second and higher order creeping waves
must be above the noise [5]. Since each successive creeping wave is much attenuated
with respect to the previous one, this is a severe requirement, and this approach to
radar target identification has had limited success to date. Nonetheless, because of
the promise of aspect invariance, considerable research continues in this area.

An interesting variation on this theme is the k-pulse (kill-pulse) concept [27]. If we
choose the transmitted waveform so that its Laplace transform is zero at the complex

resonant frequencies of a particular target, i.e.,
X(sk)=0  for all k, (2.6)

then thé reflected field from that target will be free of late-time resonant “ringing.”
Such a waveform “kills” the resonances. Other targets that presumably have different
complex resonant frequencies will produce resonant scatter when illuminated with
‘this same waveform. Therefore, based on the presence or absence of ringing, such a
waveform has the potential to answer the question: Is this target A or another target?
However, the need to detect the presence of the exponentially decaying ringing leads

to the same problems with noise we discussed above.

2.2 High Range Resolution Techniques

In ﬁght of the difficulties with the resonant frequencies approach to radar target
identification, it is natural to ask if components of a target’s impulse response other

than late-time resonances can provide useful information for identification purposes.
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Speciﬁ'cally, we are interested in using the entire impulse response hg(t). While this
presents the disadvantage that it is aspect dependent, it has the advantage that the
early-time component of the impulse response is generally much stronger than the
ringing, ;'md so should prove more useful in the noisy environments that characterize
most real-world radar observations.

In principle, the impulse response of a target could be measured by transmitting

an impulse s(¢) = 6(¢) and observing the backscattered field. From (1.24) this would

be

B(t) = o [ 1(z)6t - 2—? + %’f) dz, (2.7)

with f(z) the equivalent one-dimensional reflectivity distribution of the target in
range. At a given time ¢ this field contains contributions only from those points on

the target for which

z=R- %t (2.8)
and we ’say that the target has been resolved in range.

In practice it is not possible to transmit a true impulse, for two reasons. First,
the bandwidth of 6(t) is infinite while all real systems operate with finite bandwidths.
Second, the instantaneous power of §(¢) is infinite at ¢ = 0, but real systems are always
limited in the level of instantaneous power they can produce. Therefore |s(¢)}> must
necessarily be limited and we will assume for simplicity that |s(¢)]* < 1. Within the
limitations of finite bandwidth and finite power there are waveforms that can provide

reasonable approximations to a target’s impulse response. We investigate some of

these below.



Puls-éd-CW Waveform

Conceptually, the simplest way to achieve range resolution is to pulse a continuous-

wave (cw) transmitter thereby producing a transmitted waveform

t ,
s(t) = rect (—) g—i2mt (2.9)
TP
where T, is the pulse duration, v, is the transmitter frequency, and

1 if 2] < 1/2
rect(z) = (2.10)
0 otherwise.

If this signal is scattered from a target consisting of two point scatterers at distances

r1 = R — z; and r3 = R — 25 then the received backscatter will be

E(t) = arect (t - 27‘1/6) mi2mo(t=2r1/e) 4 ¢ rect (t — 27‘2/0) e-i2mlt=2r1/9 (2.11)
TP Tp

or with the carrier e~*?™*0! mixed out,

t—2r/c

E(t) = arect ( T,

. t—2 ;
)6121ruo2r1/c+ arect (_:z'-»'r'g—/_c'> ez21ruo2r2/c‘ (212)
P

Here c is the speed of light, and 2r; /¢ and 2r,/c are the round-trip propagation times

from the radar to the point scatterers and back. As illustrated in Figure 2.1, these

returned pulses are resolved if |r; — ro| > ¢T,/2, hence we refer to

ér = -C—QT—E (2.13)

as the range resolution of the pulsed-cw waveform. Alternately we can write

C
br = 75, (2.14)

where B, = 1/T, is the (effective) bandwidth of the pulse.

In principle we can keep reducing the pulse duration, hence increasing the pulse

bandwidth, without limit, to achieve arbitrarily fine range resolution and get closer to
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the ideal impulse response. However, in practice we musf contend with the presence of
noise. Thermal noise at microwave frequencies is white with a spectral power density
in Watts per Hertz of S,, = kgT,,, where kg is Boltzmann’s constant, and T}, is the
system ﬁoise temperature [49]. In order to receive a pulse of bandwidth B, our radar

receiver must have a bandwidth at least this broad, so the noise power will be

P, = kT, B,. (2.15)
From the radar equation
GAc
P, = Ptm, (216)

so the signal-to-noise ratio (SNR) is

P,
SNR = = 2.17
& (217)
GAc
= P 2.1
*(47)2R4kpT, B, (2.18)
GAo
= Ptmér, (219)

where we have used (2.14). Since SNR is proportional to ér, we see that the fidelity
of the received signal decreases as range resolution is made finer. This significant
limitation of the pulsed-cw waveform can be overcome using the technique of pulse

compression that we now describe.

Pulse Compression

Assume a radar transmits a signal s(t), |s(¢)] < 1, which has a duration T, and
assume it is backscattered from a point téu‘get at range r. The result is a received

signal as(t — 2r/c) where a contains all the relevant factors from the radar equation:

GAco
2 — ——————
la|* = P, )T (2.20)
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If- we correlate the received signal with the transmitted signal we get (limits of inte-

gration are —oo to co unless otherwise shown)
u(r) = / as(t — 2r/c)s*(t — 7)dt (2.21)
= a / s(#)s*(t' — (7 — 2r/c))dt. (2.22)
Using the convolution theorem [17] we can write this as
u(r) = a / 1S (v) 22 r=2rle) gy, (2.23)

If we choose the spectrum of s(t) to be essentially flat over the range |v| < B,/2, and

essentially zero for |v| > B,/2, then

Bpf2
— S(0 2/ 127ru(‘r-2r/c)d
u(r) a|S(0)] 52" v
= a|S(0)]*B, sincB,(1 — 2r/c), (2.24)
where
) sinwz
sinc(z) = — (2.25)

We will assume that |s(¢)] = 1 over the pulse duration 7,. This is usually the case
in practice since it results in maximum possible transmitted power. Parseval’s theo-

rem {17] then requires that

Ji P SR dy = / RROLY. (2.26)
~Bp/2 ~Ty/2
and hence that
B,|S(0)* = T,. (2.27)
Therefore we have
u(r) = aT, sincB,(r — 2r/c). (2.28)

The effective width of the sinc function is é7 = 1/B,, and since §r = ¢é67/2 we have

C

P
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just as for the pulsed-cw waveform. Notice, however, we need not have B, = 1/T,,.
In fact thé range resolution is independent of the duration of the transmitted signal,
and, provided we keep the bandwidth constant, we are free to make T}, as large as we
like.

Now consider the presence of noise. Putting a received signal corrupted by additive

noise n(t) through the correlation process results in
u(2rfc) = / [as(t) + n(t)]s*(t) dt
= T, + / n(t)s* (1) dt (2.30)

as the value of the processed signal at the peak of the output of the uncorrupted
correlation, i.e., at 7 = 2r/c. The term aT, is the correlation signal and the integral -

is the correlation noise. The correlation signal “power” is
= |a|2T§ (2.31)

and the correlation noise “power” is

B = U/ n(t)s*(t) dt } (2.32)
= /I;P/; -/Tp; E[n(t)"*(t’)]s*(t)s(t’) dt dt', (2.33)

where E denotes the expected value. We can evaluate this expression (approximately)
by using the sampling theorem [17] to convert the integrals to discrete sums:
k K k K1
P, = E [n(——)n(—)} (=)s(= )=, (2.34)
;; B,” B, B,” "B,” BZ
where dt = 1/B, is the Nyquist sampling period for s(t) and n(t¢). If n(t) is white

noise with variance o2 = kgT,, B,, this becomes

kgT,B

P, = p}};ls

= kBTnTp. | (2.35)
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To evaluate the sum we have used the fact that |s(¢)|* = 1, and the number of terms

in the sum is 7,,/(1/B,) = T, B,. The signal-to-noise ratio is thus

|a]?T}?
kgT, T,
laPTp
kgT,

GAco
Pt87r2R4kBTnc

SNR

6rT,B,, (2.36)

where (2.20) has been used. This is the same as the result for the pulsed-cw waveform
except here there is an additional factor of T,B,, the time-bandwidth product of the
transmitted signal. SNR still decreases as the range resolution gets finer, but this can

be overcome by merely increasing the duration of the pulse in inverse proportion.

Waveforms for Pulse Compression

The most commonly used waveform for pulse compression is the chirp, which has the

form

s(t) = rect (%) =m0t (2.37)
and satisfies |s(t)] = 1 for |t| < T,/2 as we assumed above. Instead of showing that
the spectrum of the chirp is approximately flat over some bandwidth it is easier to
compute the autocorrelation directly as

u(r) = / 12 gminti gmimpte-r? gy
Tp/2

e—t'ﬂ'ﬁ‘r2 /Tp/2 e-—i27'r,8‘rt dt
Tp/2

= e T sinc(T, 7). (2.38)

Comparing this with (2.24) we see that the effective bandwidth of the chirp is

B, = T,8. This makes sense if we consider that the instantaneous frequency of the



chirp is the time derivative of its phase:

1d
Vinst = é}'g{wﬂt - ﬁt) (239)

and that this varies over [-f1,/2,8T,/2] for a total bandwidth of ST,. Because of
the lineaf dependence of instantaneous frequency on time, the chirp is also referred
to as a linear FM (frequency modulation) waveform.

Instead of continuously varying the frequency we can increase it in discrete steps

as in

N/2 _ .
s(t)= Y, rect (t 6?&) g=i2mnéft, (2.40)

n=-N/2
which has a time duration of T, = (N + 1)ét and a bandwidth of B, = N§f. This

is called a frequency stepped waveform. It has found applications in military and
astronomical radar systems. A nice feature of this waveform is that the time steps
6t and the frequency steps §f can be generated by a computer controlled frequency
synthesizer that affords complete programmability as opposed to the continuous chirp
which is usually generated by an@log hardware.

The chirp and stepped frequency waveforms both have the form
s(t) = e, (2.41)

and we can think of #(t) as a phase code. If we restrict ¢(t) to the values {0,7},
hence s(t) to {—1,+1}, then we have a binary phase coded waveform. Allowing the

phase to change with a period ét results in a waveform

() = S garect (t ‘5;“”) (2.42)

n=0
where ¢, € {+1,~1} and 6t is called the baud. Sequences {g,} can be found that
produce a waveform providing an impulse-like autocorrelation. The class of shift-

register sequences has found particular application in radar astronomy [43].
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2.3 Radar Range Profiles

The radar impulse response of a target is called its radar range profile. A radar
range profile is a one-dimensional “image” or projection of the target onto the radar’s
line-of-sight. This is illustrated in Figure 2.2. At a given time (e.g., t2) the pulse
illuminates only a single strip, or range bin, of the target consisting of all points at
a certain range (and within the radar’s range resolution) from the radar. Thus the
backscattered field received at the radar at a given time consists of the sum of scatter
from only the points of the target in the corresponding range bin. The resulting range
profile thus resolves the points of the target in range, to within the range resolution
61 of the radar.

If the aspect of the target (the angle at which the radar views the target) changes,
then the relative ranges of points may change with the result that two points that
were once in the same range bin are no longer. For example, consider the case shown
in Figure 2.3. If the wingtips are originally at the same range and are a distance
W apart, a small aspect change of Af will cause the wingtips to differ in range by

approximately WAG. If this is larger than the radar’s range resolution, i.e., if
WAG > ér, (2.43)

then the wingtips will no longer fall into the same range bin, and the range profile at

the new aspect will provide a different projection of the target. This places a limit

ér

on the change in aspect for which the radar profile can still be considered the same

. projection of the target. As an example, if ér = 0.5 m and W =~ 5 m then

Af < 0.1rad = 6°. (2.45)
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Inr this case if the target’s aspect changed by more than about 6° the radar would
effectively see a different projection of the target.

Even if the aspect does not change enough to cause the radar to see a different
projection of the target, changes in the relative ranges to different scatterers of a
fraction of the radar wavelength can cause the radar profile to fluctuate significantly

due to interference effects. For example, if in Figure 2.3

WAG =~

R P

, (2.46)

where A is the radar wavelength, then the scatter from the wingtips will change from
constructively interfering to destructively interfering, or vice versa, even though they
are still in the same range bin, and the range profile will fluctuate significantly. To

avoid this the aspect would have to stay constant to within

A
Al K o (2.47)

For some typical numbers, A = 3 cm, W = 10 m, we would require
A < 1.5 mrad = 0.04° (2.48)

which is a very small angle. The aspect of a flying aircraft will not stay constant
to within this limit for any significant length of time. Therefore we expect aircraft
profiles in real-world situations to fluctuate iﬁ time. (An example is given in Fig-
ure 2.5.) Moreover, it is not practical to measure a target’s aspect to within the
accuracy required by (2.48). For these reasons it is more appropriate to think of a
target’s aspect from observation to observation as a random variable rather than a
well-defined quantity. We will use this fact below to investigate the statistics of range
- profile fluctuations.

We now derive an explicit expression for a target’s finite-resolution range profile.



If we set ;
s(t) = rect (i) e i2mwot (2.49)
TP

in (1.21) and assume 6 < 1, so cos# ~ 1 and sin § =~ 0, we get

E@) = _a//f(x,y)rect (t—2R/c+:}?1:/c+2y9/c>

x e~ {20 (t=2R/c+22/e+240/) g gy (2.50)

If 2yf/c <« T, that is y8 < ¢T,,/2 = ér, we can neglect this term in the argument of

the rect function (this is just the requirement that the aspect not change enough to

—i2mvot 2

alter the target’s projection). If the radar carrier e is mixed out we then have

t—2R/c+2z/c
Ty

E(t) = e //f(x,y)rect(

) =73 Y dp dy. (2.51).
We will refer to E(t) as the “complex range profile.” The received power,

p(t) = [E@®)P, (2.52)

will be called simply the “range profile.” We use this below to examine the statistics

of profile fluctuations.

2.4 Range Profile Fluctuations

Because the field scattered from a range bin consists of the interference of scatter
from (possibly) several distinct scattering centers, we expect that the intensity of the
scattered field will change with target aspect. This is because the relative ranges
to the scattering centers change, resulting in different relative phases between them.
Here we will compute some first-order statistics of range bin intensity assuming a
simple N-point-scatterers model.

Assume a range bin, at z = 0 say, éonsists of N scattering centers with cross

range locations y,, 1 < n < N, and scattering amplitudes a,. Then the reflectivity



distribution is

N
z,9) = 3 ané(2)8(y — yn). (2.53)

Using this in (2.51) results in a range profile which has the value

2

N s
p(2R/c) = |3 ane™ Y (2.54)
n=1

for the backscatter from this range bin. Let’s call this I(#) = p(2R/c). Expand-
ing 2.54 gives
E la,|? +2 Z Z |, | cos (27r /\?’/’12’”9 + Adbnm) (2.55)
n=1 n=1m=nt+1
where Aypm = Yn — Ym and Adnn, is the phase difference between the scattering
amplitudes a, and a,,. For scatterers separated by about 1 m and illuminated by a
radar of wavelength 3 cm, the cosine term will flip sign if @ changes by as little as
0.5°. In practice it is very difficult to estimate @ even to within ten times this. In
fact the stated aspects for the profiles that we will use later have a resolution of 20°.
Therefore, as we mentioned above, 8 needs to be considered a random variable.
With 6 treated as a uniformly-distributed random variable, we can compute the

expected value
E[I(6) Z la,* = I,. (2.56)

The variance of I(8) is

o7 = E[(1(0) ~ Ib)"]

(2 i i |anp| cos (27 A)\y/ang . Aqﬁnm)) 2}

n=1m=n+1

= FE

N N

N N
= 42 Z E Ianaman:amrlx

n=1m=n+1n'=1 m'=n'+1

AYnm A AYnim:
E [cos (27:' 32 6 + Aqﬁnm) cos (271' 2 —_—04 Aqﬁn:m/ﬂ . (2.57)
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The expected value of each of these terms is zero unless Aynm, = AYnms. This can
happen in two ways. One is when n = n’ and m = m/. The other is when the same
distance separates one sef of scatterers as separates another set in the same range
bin. This would be the case when the range bin contains some periodic structure.
However, in this case thé phase differences A¢y,, and A¢,,, introduce a phase shift
between the cosines, and the product is as likely to be negative as to be positive, and

on average will be zero. This leaves only the n = n’, m = m’ cases. Since

1

EFw2@w%%;e+A¢m)}=2 (2.58)

we have

N N ‘
o2 =23 > lawanl’ (2.59)

n=1m=n+1

Now consider some special cases. If all the scatterers have equal scattering

strengths, |a,| = a, then

I, = Na® (2.60)
N N
o = 42a*) Y 1=d’VN?-N. (2.61)
n=1m=n+1
If N > 2 then
or~ Na* = I, ’ (2.62)

and the deviations of the range bin intensity are as large as its mean value. Another
case of interest is when one of the scatterers is much stronger than the rest, say
la;| = a, |a,] = ea for n # 1, and € < 1. In this case equations (2.56) and (2.59) can

be evaluated to give

I, = 31+ (N —-71)62) (2.63)

o7 =a¥¢%N—b+ﬂN—umha) (2.64)
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as the range bin mean and standard deviation. For very small ¢, € € 1/+/N, these

become

Q

I() a2 (265)
o1 =~ a®&/2(N —1). (2.66)

The factor ezm will be less than one, so the fluctuations are not as‘ large as
the mean a2, but, as in the previous case, they are still proportional to the mean.
This result, that the fluctuations within a range bin are proportional to the mean
value of the range bin, is bad news as far as target identification is concerned. To
identify aircraft from their range profiles we want those profiles to contain strong,
distinctive features. But the stronger the features, the more they will fluctuate,
thereby limiting their usefulness. Note that the fluctuations discussed above are
due strictly to aspect variations. For aircraft that have exposed moving parts, like
propellers, there may be additional profile fluctuations due to the motion of these

parts.

2.5 Optimal Correlation Filters

Despite the limitation imposed by ﬂuctuatiops on the usefulness of range profiles
for target identification, we expect that on average the profiles of one aircraft look
more like one another than they look like those of another aircraft. If this is true
then it should be possible to construct a filter for each target such that it correlates
more strongly, on average, with the profiles of that target than with the profiles
of other targets. This situation is depicted in Figure 2.4. A future profile from an
unknown target could then be correlated against a library of filters for different known

target types. The target type corresponding to the filter that produced the greatest
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correlation would then serve as the identification for the unknown target.

Referring to (2.51), we see that a change in R causes the profile p(t) to shift
along the time axis an amount 2R/c. For a moving aircraft R is usually continuously
changing,‘and it is never known with great precision (i.e., to withing ér) a priori.
This means that every radar profile contains some unknown shift along the time axis.
Any target identification system using range profiles must therefore be shift invariant.

A correlator satisfies this requirement since the correlation

(Fxp)(r) = [ St +7)dt | (2.67)

is shift invariant. That is, if p(t) is replaced by a shifted version of itself, say

P(t) = p(t — to), the correlation is merely shifted by the same amount:

(f = p)(r)

I

/ FOp(t+7)dt
- / FO)p(t = to + 1) dt

= (f*p)(r —to). (2.68)

The peak of the correlation, which is what we will be interested in, remains the same.
To simplify the notation, we will denote the functions f(t) and p(t) by the vectors f
and p.. This is particularly appropriate since range profiles are typically sampled and
manipulated as discrete vectors.

For a correlator to serve as an effective farget recognition system, we need to
produce filters that are as specific to a given target as possible. By specific we mean
highly correlated with the radar profiles of that target. We want to find a filter f
that maximizes EJmax(f « p)], the expected or average value of the correlation peak
between it and p, where p is any randomly chosen profile of the target. The goal, as

stated previously, is to create a bank of such filters

£ £ £©) (2.69)
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one for each target, against which profiles from unknown targets can be correlated to
produce numbers

o® = max(f® % p) (2.70)

(correlation peaks) with the hope that
o) > oF) for all k # 7, (2.71)

where the j** filter is the “correct” one, i.e., the one that was produced to be specific
to the unknown target.

In practice we have N profiles recorded for a given target sometime in the past,
and the task is to use these profiles to estimate the optimal filter that will maximize
the correlation peak with all future profiles from the same target. Towards this end

we form the estimate
E[max(f * p)] N Z max(f * pn) (2.72)

where {p1, P2, ..., P~} is the set of previously recorded radar profiles for one partic-
ular target. If we knew what f was then we could shift each profile p, into a new
profile p,, such that

max(f x pp) = £ - Pr, (2.73)

where
= / F(t)pa(t) dt (2.74)

is the inner product of f and p,. In other words, we could shift the profiles to be

“aligned” with the filter. Then we would have

1

E[max(f x p)] ~F f-

o>

1

(2.75)

"d>

2!HﬁM2
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We want to maximize this inner produc’b by choosing f properly. Note that we can
always increase this by simply increasing the absolute scale of f, but this will propor-
tionally increase f’s correlation with all other vectors. Therefore we constrain f to be

a unit vector. The unit vector f which maximizes (2.75) is simply

N
f— _Zn=1Pn_ (2.76)
=N, ball
with thev result that
1 P 0 P
Elmax(f xp)] = -
V= x5 Bl
1
= LIl @)
P

While we don’t known f a priori, the above analysis makes it clear that the largest
E[max(f x p)] can be is %|| hz; Px|| and that the filter that achieves this is given
by (2.76). Therefore we need only find the shifts that maximize || 0L, pall and
then evaluate (2.76) and we have computed the desired optimal correlation filter.

The practical difficulty is how to find the shifts that take {p1,p2,...,pn} into
the set {p1,Ps,...,Pn} which gives the optimal filter via (2.76). A global search
over all possible shifts is out of the question. For example, suppose N = 100 and
we need to consider 10 possible shifted versions of each profile. Then there are 10*%
different configurations {pi,Ps,-.., P~} possible and there is no hope of being able
to examine each of these. |

One possibility is an iterative procedure where a global search is performed over

only the possible shifts of one profile at a time. To see how this can be carried out

we write
N
13°DalP = 11p;+ bl
n=1 k#5
= DN+ 11 20 Pl +2D5 - D b (2.78)

k# k#j
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where P; is any one of the profiles. The only term that will change when we shift p;
is

2f)j . Z Pr (2.79)
k#j

and increasing this will increase the quantity we are trying to maximize. Therefore,
with respect to shifts of ;, we are doing the best we can do if we make
i Ps (2.80)
k#j
as big as possible. Having done this for one profile we can go on to do it for the
others and then start the process over. Each shift increases || S, Pxl|- Since there
are a finite number of configurations {P;,P2,--.,Pn} (assuming discrete profiles) we
cannot go on increasing indefinitely. Eventually we will reach a maximum. Note
that this is not guaranteed to be a global maximum. The technique is analogous to
iterative line maximization techniques used to find extrema of functions of several
variables [44], and it may potentially suffer the same problems of local maxima.
Howevef, in the applications described below, we investigated this problem by starting
with many different initial profile configurations, and we found that the algorithm
always converged té the same filter. |
Below, we use this algorithm to form correlation filters from observed aircraft
radar range profiles, and we then use these filters to attempt to identify the various

aircraft. We begin with a description of the data set employed.

2.6 The Data Set

The data set used in this chapter consists of 11,968 radar profiles obtained by an
experimental radar at the Air Force’s Rome Air Development Center (RADC). The

profiles consist of 200 range bins with a range resolution of approximately 0.5 meters.
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They are grouped in sets of about 100 profiles each called an encounter. Each en-
counter arose from a several-second series of observations of a single aircraft in flight.
There are 119 encounters in all. Within each encounter the profiles are grouped into
frames of leight profiles each. The profiles within a frame were collected 2.5 millisec-
onds apaft. An average of 12 frames were collected during each encounter. In between
frames a few seconds were devoted to tracking the target and to storing the previous
frame of data. The tracking data allowed the (nominally constant) aspect of the tar-
get to be estimated t'o within approximately 20°. The target type was known frofn
an identifying code that each target transmitted. The actual target identities are
classified, but for use in unclassified situations they are assigned arbitrary numbers,
e.g., 01, 15, 23. Thus each encounter consists of roughly 100 profiles of a given target |
type at a given (estimated) aspect. Twenty-four distinct targets are represented in
the data set. Not all are represented with equal frequency, for example, there was
only a single encounter with target 15 but ten with target 05.

We had little technical information available to us concerning the absolute calibra-
tion of the radar. Without precise calibration data the absolute scale of the profiles
is meaningless. Therefore we have removed all scale considerations from the profiles
by normalizing each of them to have unit amplitude. That is, if p(k), 1 < k& < 200, is

a radar profile with k indexing the different range bins, we scaled the profile so that

§p2(k) = 1. (2.81)
k=1

The result is that we will only be concerned with a profile’s shape and not with its
overall relative amplitude. As far as the targets are concerned, this means that we are
only concerned with the relative distribution of radar cross section over the different
- range bins and not with the absolute cross section.

While it is not practical to present all 11,968 profiles to the reader, the 119 plots in
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Figures 2.6 through 2.20 present mean profiles for each encounter (solid curves) and
its standard deviation (dotted curves). Note that the standard deviation generally
follows the mean as we would expect from the analysis of section 2.4. The means were
calculated‘by using the algorithm of section 2.5. Above each plot are five expressions
separated by commas. The first is the designation of the target for that encounter,
e.g., 01, 15. The second gives the estimated aspect in degrees, e.g., 0-20, 20-40, ...,
160-180.  The third is a numerical designation of the encounter used for cataloging,
e.g., 13.02 (this corresponds to the RADC tape file CONT13_ENC02.DAT). The
fourth is a measure of the degree of clustering of the profiles in the encounter. It is
the average value of the correlation between the profiles and their means in percent
and is described in more detail in section 2.8. If all the profiles in an encounter were
identical then this would have a value of 100; if they were completely unrelated this
would have a value of 0. The fifth is the rate of correct identification (in percent)
for the profiles of the encounter’s test set obtained in the correlation experiment

described below.

2.7 Correlation Experiments

The goal of this chapter is to investigate the degree to which a bank of correlation
filters can identify aircraft from their radar range profiles. We have seen how a series
of profiles can be used to estimate the filter that maximizes the expected value of the
correlation peak with future profiles from the same target. We now want to see how
well these filters perform in practice.

The 11,968 profiles in the data set were divided into a training set of 6,256 profiles
and a test set of 5712 profiles. This was done by assigning the 8 profiles of each

odd numbered frame of an encounter to that encounter’s training set and the even
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numbered frames to its test set. Proﬁlesy within a frame were not split between the
training and test sets as this would create an unrealistically optimistic scenario; in
practice it is very unlikely that we will see a target from exactly the same aspect as
we have il; the past. The relatively long time between frames allows the aspect to
change eﬁough to give us distinct aspects in the training and test sets.

With the profiles from each encounter suitably divided into training and test sets,
the training profiles (roughly 50) of each encounter were used with the algorithm of
section 2.5 to produce a correlation filter for that encounter. The result was a bank
of 119 filters. Although there were instances where a given target at a given aspect
was represented in more than one encounter, e.g., the first five average profiles of
Figure 2.6, these encounters were not grouped together to form a single filter due |
to the crude nature of the aspect estimates. From the previous discussion of the
geometric distortion of a profile due to range migration we known that we want to
limit our aspect window to ~ 5° or less; the 20° resolution of the aspect estimates is
much coarser than this.

Having produced a filter bank, we then attempted to use it to identify the profiles
of the test set. Each profile of the test set was correlated against each of the 119
filters. The profile was identified as belonging to the target whose filter produced
the greatest correlation peak. If this was the actual target that produced the test
profile then the identification was judged cox;rect, otherwise it was incorrect. The
percentage correct for each encounter is given by the last number above the mean
profiles plots of Figures 2.6 through 2.20. The cumulative result for the entire test
set was 3262 correctly identified out of 5712 profiles tested for a correct-identification
-rate of 57%. Note that random guessing would give a correct-identification rate of

1/24 = 4%, since there are 24 distinct targets represented in the data set.
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2.8 Factors Affecting Identification

While the overall correct-identification rate was 57%, examination of the rates for
individual encounters (Figures 2.6 through 2.20) shows rates from a low of 0% to a
high of 100%. What accounts for this wide variation? An obvious statement is that
profiles that are very distinctive can be easily identified while profiles that are not
distinctive cannot be. This is essentially analogous to saying that profiles that can be
easily identified can be easily identified, and those that cannot cannot. This does not
provide much insight into the problem. We would like to see if there are any simple
properties of profiles that give an indication of how well they can be identified. This
could be useful in practice as it could serve as a guide to how much faith to put into
the identification of any particular profile that might be observed.

The most obvious factor that would seem likely to affect the rate at which we
can correctly identify profiles is the degree to which they fluctuate. If the profile of a
target fluctuates significantly then it will be difficult for a filter to capture its essential
features. The amount of fluctuation is quantitatively described by the standard devi-
ation curves of Figures 2.6 through 2.20 (the dotted curves). To describe the overall
ﬁuctuétions of the profiles of an encounter we can measure the average correlation
of the profiles with their mean. This describes the degree to which the profiles are
clustered. If all the profiles were identical then the average correlation would be 100%;
the profiles would be highly clustered. If they were completely unrelated, the average
correlation would drop to 0%; the profiles would be poorly clustered. This average
correlation is given as the next-to-the-last number above each of the mean profile
plots of Figures 2.6 through 2.20. They vary from 79% to 93%. The most poorly
clustered encounter had a correct-identification rate of 0% while the encounter with

the highest degree of clustering had a rate of 100%, indicating that the degree of
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clustering is a factor in determining how Well a target may be identified. Figure 2.21
1s ‘é plot of the correct-identification rate versus the degree of clustering for all 119
encounters (the open squares). Also plotted is a linear regression to these data. The
data are so scattered that the regression is not very meaningful, however, it does
suggest a trend towards more reliable identification with increasing clustering.

Unfortunately, the data set was not collected under controlled conditions, i.e., with
precise knowledge of target aspects, nor do we know which, if any, of the targets had
exposed moving parts (because we don’t know what the target really were). Therefore,
we cannot be certain of the causes of the fluctuations and if they are indicative of
target structure. As we described in section 2.4, targets with range bins dominated
by single scatterers tend to have lower fluctuations than targets with several strong
scatterers per range bin. At the same time it is conceivable, although not likely, that
some of the aircraft maintained very stable aspects over the several seconds of their
encounter, and this would also result in small fluctuations.

Another important factor affecting the correct-identification rate comes to light
if we examine some of the cases in Figure 2.21 where a high degree of clustering
does not lead to reliable identification. The most notable of these are labeled with
their encouni;er‘ designation: 21.02, 16.03, 19.01. Examining the mean profiles of
these encounters in Figures 2.20, 2.18, and 2.19, respectively, we see that they are all
dominated by a single strong peak with little ;)ther significant structure. Effectively
these targets appear as little more than point scatterers. Since their profiles have
very little distinctive structure they are very difficult to correctly identify: they all
look pretty much the same. A relatively small fluctuation in any of these profiles
can destroy whatever distinctiveness it may have had. We can quantify the degree to
which the profiles of an encounter are dominated by a single peak by measuring the

peak of the encounter’s filter. Since the filter, f(n), 1 < n < 200, is normalized we



have

z Pn) =1, (2.62)

K= [1-3 f2(n). 2.83
f(k) E”) (2.83)

Assume f(k) is the peak value of the filter. If the filter has lots of structure, i.e.,

and so

significant amplitudes in several range bins, then 3, f*(n) will be large and f(k)
will be small. On the other hand, if the profile consists of a single range bin then
Ynzk f2(n) = 0 and f(k) will be as large as possible, namely f(k) = 1. Therefore, the
value of the strongest profile peak gives a measure of the “peakedness” of the profile.
In Figure 2.22 the correct-identification rate is plotted versus the filter peak for each
of the 119 encounters together with a linear regression to the data. Again the data
are quite scattered but the regression suggests a trend towards less reliable identifica-
tion with increasing filter peak, hence more reliable identification with greater filter
structure.

The mutual dependence of the correct-identification rate on both of these factors
is displayed in Figure 2.23. Here different correct-identification rates are shown as
different symbbls, each symbol corresponds to a single encounter, and the location
of the symbol in the plot gives both the filter peak and the degree of clustering of
the profiles of the encounter. This plot shows that, generally, encounters with a high
correct-identification rate are either well clustered (large within encounter correlation)
or have a small filter peak (hence lots of structure) or some combination of the two.

An interesting question is: Does the correct-identification rate depend on target
aspect? We might expect that it would since profiles from aircraft at broadside
incidence (aspect of 90°) are likely to be dominated by the point-like scatter from

their fuselage (since the entire fuselage will be at essentially the same range) and so
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we would have the problems associated with highly peaked profiles discussed above.
On the other hand, we would expect profiles from aircraft at nose-on or tail-on aspects
(aspects of 0° or 90°, respectively) to have more structure since the fuselage is now
stretched ;)ut along the line-of-sight. Figure 2.24 shows the dependence of the correct-
identification rate on tdrget aspect. There is considerable scatter as in the previous
plots but the quadratic regression to the data show the trend towards more reliable

identification near nose-on and tail-on aspects.

2.9 Identification Using Multiple Profiles

When the profiles of a target are impulse-like there is little that can be done to increase
their usefulness for identification since they simply do not contain enough information.
However, if the difficulty arises from profile fluctuations then the possibility exists to
use the identification of more than one profile to improve the probability of correctly
identifying the target. While the profiles of a particular target may be so poorly
clustered that several of them, even the majority of them, get incorrectly identified,
if the incorrect identifications are spread out over several targets it may well be that
more .proﬁlés are identified as belonging to the correct target than are identified as
belonging to any single incorrect target. For example, suppose profiles from target
A are so poorly clustered that of 10 only 3 ére correctly identified as belonging to
target A while 2 are identified as belonging to target B, 2 to target C, and one each
to targets D, E, and F. While only 30% of the profiles are correctly identified, more
are identified as belonging to target A than are identified as belonging to any other
single target, i.e., A has gotten more identification “votes” than any other target.
Alternately, we can think of this as a decision integration process where we base our

final identification on the average identification over many profiles.
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We applied this reasoning to the RADC profiles. A correlation was run in which
not only individual profiles were identified but frames and entire encounters were also
using decision integration. The 57% correct-identification rate for individual profiles
rose to 65‘% for frames and to 86% for encounters. In several cases encounters with
less than‘ 50% profile rates were correctly identified based on the entire encounter
test set. For examplé, encounter 16.08 (target 11) and encounter 02.06 (target 04)
both had 23% correct-identification rates for individual profiles but were correctly
identified using decision integration at the encounter level.

In order to record a series of profiles, a radar must dwell on the target for a period
of time. During this time the target will have moved, and the changes in range,
bearing, and altitude that the radar must make to track the target will provide
information about the target’s flight path and hence about its aspect. It will be
possible in practice, therefore, to utilize an estimate of target aspect when attempting
to perform identification based on a series of profiles. Accordingly, we performed
an identification experiment in which each profile was correlated against only those
filters that shared its estimated aspect. Again, we applied decision integration to
both frames and entire encounters.

The results are given in Table 2.1. We see that decision integration significantly
improves the rates of correct identification, especially when combined with aspect
information. Of particular interest is the 100% rate for nose-on aspects (near 0°)
using decision integration at the encounter level, especially since there are enough
encounters and targets at this aspect (33 and 13, respectively) to suggest that this
result is meaningful. This aspect is, for obvious reasons, the most critical for military

scenarios.
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2.10 Optical Correlator Implementation

The a,bility of a simple converging lens to compute a Fourier transform, and the
ability of a’spatial light modulator to perform many analog multiplications in parallel,
give optical correlators potential advantages in speed and power requirements over
digital systems. Digital systems, however, can be configured to have an arbitrarily
IArge dynamic range while the dynamic range of optical spatial light modulators is
necessarily limited by device characteristics. If a spatial light modulator’s dynamic
range is less than the dynamic range of the data put into it then information present
in the data is lost. The more information that is lost the less likely it is that the
optical correlation will accurately represent an ideal correlation. Advantages in speed
and power requirements are irrelevant if the obtainable accuracy is less than that
needed to provide discrimination.

A binary spatial light modulator (BSLM) imposes the most extreme limit on
dynamic range of all, and so would not seem to have a place in systems that process
analog signals. However, if the functions to be correlated are one-dimensional and
the BSLM is two-dimensional, we can use the extra degree of freedom in the BSLM
to encode amplitude and thereby gain the ability to perform analog correlations.
Figure 2.25 shows a simple system that uses two-dimensional BSLMs to perform one-
dimensional analog correlations. The correlations are performed in the z dimension;
the y dimension is used to encode amplitude information.

Suppose we wish to correlate a real-valued function p(z) against a real-valued
function f(z). We proceed as follows. We form a two-dimensional, binary function

g(z,y) such that
p(z) =/g(z,y)dy-

(For example, we could form g(z,y) by turning on (setting equal to 1) strips in the
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y direction of length p(z).) In the same manner we also form a function A(z,y) such
that

F*(z) =/h(~’c,y)dy,
where F' is the Fourier transform of f. Since F' will, in general, be complex, h will
also be cbmplex. Therefore we need to put & on the BSLM in holographic form. We

simply form a real, binary function fz(:c, y) such that

Re (F*(z)eiz”“°”) = /ﬂ(z,y)dy,

where u. is the highest spatial frequency in F(z), and put this on the BSLM . The
carrier ensures that the diffracted orders will be spatially separated at the detector
D. The system then behaves as if the complex function h(z,y) were present.

The system operates as follows. Lens L1 Fourier transforms g. Spatial filter SF
allows only the d.c. component in y to pass. Lenses L2 and L3 (essentially) inverse
Fourier transform this in y and image it in . The result is to produce a field in the
plane of h(z,y) which is

//g(.’c’,y')en"”'d:c'dy’.
Since . ’
/ 9(z',y')dy’ = p(z’)
this field is just

/p(x/)eiwaz'dm/ — P(:B)

The second BSLM multiplies this by h(z,y). Lens L4 (essentially) inverse Fourier

transforms this product producing a field

/ /P(:E’)h(:r', y/)eiZW((L‘z"-{-yy')dxldyl.
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Detector D samples the intensity of this field along the line y = 0. Hence the output
is :
. ! 2

[//P(w’)h(x', yl)edmrz d.’L',dy, .

But
/ h(z',y')dy' = F*('),
so the detected field is
lintP(:z:')F’"(:1r,")¢=:’-2’”””'d:c'I2 .

By the convolution theorem, this is just

lp(z) * f(z)]*.

Therefore we have performed an analog correlation using BSLMs.

Actual BSLMs are not continuous in z and y but rather composed of discrete
pixels. If N is the number of pixels in one dimension then the BSLM can hold N
samples of a function with N +1 gréy levels (from 0 to N in steps of 1 or from — /N
to N in steps of 2 for bipolar modulation). Hence, if the space bandwidth product
of the functions p(z) and f(z) are no more than N, and if their dynamic range (as
determined by the signal to noise level) is no more than N, then a correlator of
the type just described implemented with discrete N by N BSLMs can accurately
compute the correlation between p(z) and f(z). The RADC data require N = 256.

BSLMs with this resolution are commercially available.

2.11 Conclusion

"In this chapter we have examined the feasibility of identifying aircraft using their

radar range profiles. It was shown that very small aspect changes can result in large
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profile fluctuations. A technique was developed for using a set of radar range pro-
files to compute a correlation filter that is optimal in the sense that it produces the
maximum average correlation peak with those profiles. This technique was applied
to the RADC data set. Individual profiles were correctly identified at an overall rate
of 57%, although rates varied from 0% to 100% for specific targets. Some of the
factors affecting the éorrect-identiﬁcation rate were examined. A trend towards more
reliable identification near noise-on or tail-on aspects was found. By “averaging” the
identifications over the eight profiles of a frame a correct-identification rate of 65%
was achieved while averaging identifications over entire encounters (roughly 48 pro-
files) resulted in a correct-identification rate of 86%. If, in addition, aspect estimates
were employed, correct-identification rates of 100% were achieved in most cases. It
seems clear that a single radar profile does not contain enough information to reliably
identify aircraft due to the fluctuation problem discussed above. However, we have
shown that by averaging identifications and using aspect estimates, reliable identi-
fication may be possible. Finally, an optical correlator architecture was developed
that utilizes two-dimensional, binary spatial light modulators, and that can be used

to implement the identification process at high speeds.
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Figure 2.1: Resolution of two point scatterers using pulsed-cw waveform.



Figure 2.2: Relation of a radar range profile to a target. The radar (off to the left of
the illustration) illuminates the target with a short pulse (if pulse compression is used
the same effect is achieved after some signal processing). At different times (e.g., t,,
t3) the pulse illuminates different strips, or range bins, on the target. The result is
that the received range profile, i.e., the received backscattered power as a function of

time, is a one-dimensionally resolved image of the target.



Figure 2.3: A changein target aspect causes relative changes in the ranges to different
scattering centers within a given range bin. If this relative change is as little as a
quarter of the radar wavelength then the range profile may fluctuate considerably as

constructive interference becomes destructive interference and vice versa.



/\/\/\/\[\’M\

< % éi
z("
ng
f( 1)

f( 2)

Figure 2.4: Producing filters from a series of fange profiles. The profiles of a given
target, e.g., target 1 or 2 above, fluctuate in time and so no two look alike. However,
they may look fnore like one another than they look like those of another target. The
profiles xgl),xgl), ... of target 1 are all different, but hopefully they look more like
one another than they look like any of the profiles of targetv 2, ng),xgz), ... If so,
then filters (1) and f® can be produced to identify the profiles of target 1 and 2 via

correlation.
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Figure 2.6: Average profile of RADC encounters (solid curve) and RMS fluctuation
(dotted curve). Numbers at top are: target type, aspect (degrees), encounter desig-

nation, degree of clustering (percent), rate of correct identification (percent).
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Figure 2.7: Average profile of RADC encounters (solid curve) and RMS fluctuation
(dotted curve). Numbers at top are: target type, aspect (degrees), encounter desig-

nation, degree of clustering (percent), rate of correct identification (percent).
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Figure 2.8: Average profile of RADC encounters (solid curve) and RMS fluctuation
(dotted curve). Numbers at top are: target type, aspect (degrees), encounter desig-

nation, degree of clustering (percent), rate of correct identification (percent).
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Figure 2.9: Average profile of RADC encounters (solid curve) and RMS fluctuation
(dotted curve). Numbers at top are: target type, aspect (degrees), encounter desig-

nation, degree of clustering (percent), rate of correct identification (percent).
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Figure 2.10: Average profile of RADC encounters (solid curve) and RMS fluctua-
tion (dotted curve). Numbers at top are: target type, aspect (degrees), encounter

designation, degree of clustering (percent), rate of correct identification (percent).
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Figure 2.11: Average profile of RADC encounters (solid curve) and RMS fluctua-
" tion (dotted curve). Numbers at top are: target type, aspect (degrees), encounter

designation, degree of clustering (percent), rate of correct identification (percent).
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Figure 2.12: Average profile of RADC encounters (solid curve) and RMS fluctua-
tion (dotted curve). Numbers at top are: target type, aspect (degrees), encounter

designation, degree of clustering (percent), rate of correct identification (percent).



_11,120-140,17.01 , 89, 40 12,0-20,05.05,91,44

12, 0-20,05.06 , 90, 58 12,140-160,20.06 , 88, 25

12,160-180,20.07,90, 44 _ 14 ,0-20,07.02 , 85, 33

14,0-20,07.03, 83,45 14 ,0-20,07.06 , 86, 58

Figure 2.13: Average profile of RADC encounters (solid curve) and RMS fluctua-
“tion (dotted curve). Numbers at top are: target type, aspect (degrees), encounter

designation, degree of clustering (percent), rate of correct identification (percent).
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Figure 2.14: Average profile of RADC encounters (solid curve) and RMS fluctua-
“tion (dotted curve). Numbers at top are: target type, aspect (degrees), encounter

designation, degree of clustering (percent), rate of correct identification (percent).
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Figure 2.15: Average profile of RADC encounters (solid curve) and RMS fluctua-
~ tion (dotted curve). Numbers at top are: target type, aspect (degrees), encounter

designation, degree of clustering (percent), rate of correct identification (percent).
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- Figure 2.16: Average profile of RADC encounters (solid curve) and RMS fluctua-
tion (dotted curve). Numbers at top are: target type, aspect (degrees), encounter

designation, degree of clustering (percent), rate of correct identification (percent).
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Figure 2.17: Average profile of RADC encounters (solid curve) and RMS fluctua-
tion (dotted curve). Numbers at top are: target type, aspect (degrees), encounter

designation, degree of clustering (percent), rate of correct identification (percent).
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Figure 2.18: Average profile of RADC encounters (solid curve) and RMS fluctua-
tion (dotted curve). Numbers at top are: target type, aspect (degrees), encounter

designation, degree of clustering (percent), rate of correct identification (percent).
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Figm‘é 2.19: Average profile of RADC encounters (solid curve) and RMS fluctua-
" tion (dotted curve). Numbers at top are: target type, aspect (degrees), encounter

designation, degree of clustering (percent), rate of correct identification (percent).
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Figure 2.20: Average profile of RADC encounters (solid curve) and RMS fluctua-
tion (dotted curve). Numbers at top are: target type, aspect (degrees), encounter

designation, degree of clustering (percent), rate of correct identification (percent).
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CORRELATION RESULTS

correct identification rate versus degree of clustering
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Figuré 2.21: Correct identification rate versus degree of clustering. Uncertainty in

“regression slope ~ 25%.
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Figure 2.22: Correct identification rate versus filter peak. Uncertainty in regression
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Figure 2.23: Degree of clustering and filter peak versus correct-identification rate.
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CORRELATION RESULTS

correct identification rate versus target aspect
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Figure 2.24: Correct-identification rate versus target aspect.
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Figure 2.25: A system for performing one-dimensional, analog correlations using two-

dimensional, binary spatial light modulators.



identification rates
aspect random profile frame encounter
0°-20° | L= 8% (1B = 79% | 1L = 84% | £ =100%
200 -40° | 1=17%| 34 = 83% | 2= 94% | 2=100%
40°-60° | 1=50%| £ =100%| 4 =100%| %=100%
60° - 80° | 3+ =50% gg =100% | 2 =100%| %=100%
80°-100°| 1=33%| 8= 8% | £= 81%| §=100%
100°-120°| 1=25% | 32 = 44% | = 48% | 3= 80%
120°-140° | 1=13% | = 60% | £ = 63% | 12= 80%
140° - 160° | 1=25% | &= 76% | Z= 80% | £=100%
160°-180° | L= 6% |38 = 1% | = 19% | 5= 95%
all L= 4% | 382 = 57% |45 = 65% | 12 = 86%

Table 2.1: Summary of results of correlation identification experiments. Rows corre-
spond to different target aspects; columns correspond to different decision bases. The
row labeled “all” gives results of the correlation in which no aspect information was
used. Other rows give results, for particular aspects, of correlations in which aspect
information was used. The random identification rate is what would be achieved by
random guessing. It is equal to one over the number of targets in the corresponding
test set. It varies from row to row because some aspects occurred more often than
others. The rate of identification of single profiles is given in the “profile” column.
Ideﬁtiﬁgation rates using decision integration at frame and encounter levels are given

in following columns.



Chapter 3

Inverse Synthetic Aperture Radar

3.1 Introduction

In the previous chapter we saw that the radar range profile of a moving aircraft
fluctuates conéiderabiy as the aspect changes. We had to consider these fluctuations
as noise for the purpose of identifying aircraft from their range profiles. To combat
this noise we resorted to averaging schemes using multiple profiles. In this chapter we
will see that these fluctuations contain information about the target’s structure. We
will describe a technique, inverse synthetic aperture radar (ISAR), for using multiple
complex profiles to extract an extra dimension of target resolution. The resulting two-
dimensional images contain more information than a one-dimensional range profile,
and should be less sensitive to aspect changes. Consequently they should provide a
more reliable basis for aircraft identification. In this chapter we will concentrate on
the iséﬁés involved in producing such images. We will not, however, discuss their
'gse for identification purposes, which would involve an application of well-developed,

two-dimensional image correlation techniques.
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The main difficulty to be overcome is that range profile fluctuations depend not
only on the structure of the target but also on the target’s motion, since target
motion determines how the target’s aspect changes in time. Target motion is generally
unknowﬁ to the radar a priori, so it must be estimated somehow if well-focused
images are to be formed. Techniques for doing this are termed motion compensation.
Two types of motion compensation may be required: range compensation and aspect
compensation. Range compensation has received considerable attention as it is often a
necessary step in the formation of synthetic aperture radar (SAR) images [56]. Aspect
compensation has not received as much attention, and it is the topic with which this
chapter is primarily concerned. The original contribution made in this chapter is an
iterative technique for performing aspect compensation [25] which does not depend
on the presence of isolated point scatterers as in other techniques proposed [57].

A fundamental result in the theory of imaging is that an aperture of linear extent
D can provide at best an angular resolution A/D when operating at a wavelength
A [17]. Since radar wavelengths are typically 10° to 10° times as large as optical
wavelengths it follows that a radar system requires an aperture of 10° to 10° times
the size of an optical system to achieve the same resolution. While the construction
of a 10 cm optical aperture is entirely practical, the construction of a 10 or 100 km
radar aperture is not. The solution is to synthesize an aperture of this extent using
a much smaller physical aperture.

The principle behind SAR can be understood by returning to exp-ression (2.51)

for a target’s complex range profile:

t—2R[c+2z/c
T,

P

E(t)= aeizw'*%//f(:c,y)rect(

) e~ TTARY gy dy. (3.1)

R and 0 are the gross-range and aspect between target and radar, and the ampli-

tude factor a contains all the pertinent factors from the radar equation. We have
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already discussed the range-resolved nature of E(t). At a given time ¢, E(t) contains

contributions from only those points of the target for which

t—2R/[c+2z/c < 1
T, -2’
that is, for points within £éz/2 of
ct
: = R ——
z 5

(3.2)

(3.3)

where 6z = cT,/2. In practice, range profiles are recorded in sampled form, possibly

after some signal processing, e.g., range compression. Assuming samples are taken at

times
ty = kT,
the complex range profile samples

E. = E(kT))

give the total field scattered from the range bins centered on

I = R-—kc—gp
= R-—kéz.

If we define

kT, —2R/c+ 2z/c
T,

fily) = /f(x,y)rect(

—i21r—xk- 51‘/2 .

= [ fat by)e T b,
) bz /2

and use this in (3.1) then we can express Ej as

. R .
By = o™ [ fi(y)e™*"37 dy.

(3.4)

(3.5)

(3.6)

(3.8)

We refer to fi.(y) as the cross-range reflectivity distribution of the k** range bin. Let’s

- consider this in more detail. The phase factor e 2735 is a multiplicative constant
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which will not concern us as we will ultima