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Abstract

In this thesis I utilize large-scale millimeter and mid- to far-infrared surveys to ad-
dress a number of outstanding questions regarding the formation of low mass stars
in molecular clouds. Continuum A = 1.1 mm maps completed with Bolocam at a
resolution of 31” cover the largest areas observed to date at millimeter or submil-
limeter wavelengths in three molecular clouds: 7.5 deg® in Perseus (140 pc? at the
adopted distance of d = 250 pc), 10.8 deg? (50 pc® at d = 125 pc) in Ophiuchus,
and 1.5 deg? (30 pc? at d = 125 pc) in Serpens. These surveys are sensitive to dense
substructures with mean density n > 2 — 3 x 10* ecm™3. A total of 122 cores are
detected in Perseus, 44 in Ophiuchus, and 35 in Serpens above mass detection limits
of 0.1 — 0.2 Mg. Combining with Spitzer mid- and far-infrared maps from the c2d
Legacy program provides wavelength coverage from A = 1.25 — 1100 pum, and enables
the assembly of an unbiased, complete sample of the youngest star forming objects
in three environments. This sample includes 108 prestellar cores, 43 Class 0 sources
and 94 Class I sources.

The approximately equal number of starless cores and embedded protostars in
each cloud implies a starless core lifetime of 2 — 4 x 10° yr, only a few free-fall
timescales. This timescale, considerably shorter than the timescale predicted by the
classic scenario of magnetic field support in which core evolution is moderated by
ambipolar diffusion, suggests that turbulence is the dominant process controlling the
formation and evolution of dense cores. However, dense cores in all three clouds are
found only at high cloud column densities, where Ay 2 7 mag, and the fraction of
cloud mass in these cores is less than 10%, indicating that magnetic fields must play

some role as well. Measured angular deconvolved sizes of the majority of starless
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cores are consistent with radial density profiles substantially flatter than p oc 772, or
with Bonnor-Ebert spheres. The prestellar core mass distribution (CMD) has a slope
of a = —2.5+0.2 for M > 0.8 M, remarkably similar to recent measurements of the
slope of the stellar initial mass function: a = —2.3 to —2.8. While this result does not
rule out the importance of feedback or competitive accretion, it provides support for
the hypothesis that stellar masses are determined during the core formation process.

The lifetime of the Class 0 phase is estimated to be 1 — 2 x 10° yr in Perseus and
Serpens, or approximately half that of the Class I phase, arguing against a very rapid
early accretion phase. In Ophiuchus the fraction of Class 0 sources is much smaller,
consistent with previous measurements of a short (~ 10* yr) Class 0 phase in that
cloud. A large population of low luminosity Class I sources that cannot be explained
by constant or monotonically decreasing accretion rates is observed in each cloud.
This result strongly suggest that accretion during the Class I phase is episodic, with
sources spending approximately 25% of the Class I lifetime in a quiescent state.

Finally, I investigate the environmental dependence of star formation by compar-
ing the dense core populations of the three clouds. Cores are found at considerably
higher cloud column densities in Ophiuchus than in Perseus or Serpens; more than
75% of cores occur at visual extinctions of Ay 2 8 mag in Perseus, Ay 2 15 mag in
Serpens, and Ay 2 20 — 23 mag in Ophiuchus. Cloud CMDs are well characterized
by power-law fits (dN/dM o M) above their empirically derived 50% completeness
limits, resulting in slopes of &« = —2.1 + 0.1 in Perseus, @ = —2.1 4+ 0.3 in Ophiuchus,
and o = —1.6 £ 0.2 in Serpens. Measured slopes for Perseus and Ophiuchus broadly
agree with turbulent fragmentation, but the relative shapes of the observed cloud
CMDs are inconsistent with detailed simulations of the dependence of CMD shape

on Mach number.
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