

**Molecular Clouds and Star Formation: A
Multiwavelength Study of Perseus, Serpens, and
Ophiuchus**


Thesis by

Melissa L. Enoch

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2008

(Defended June 8, 2007)

© 2008

Melissa L. Enoch

All Rights Reserved

Acknowledgements

Having at last reached the end of this long and often daunting expedition, I find myself at somewhat of a loss as to how to adequately express my appreciation for all of the help, support, and guidance that has gotten me here. But if graduate school has taught me anything, it is to just put pen to paper (or fingers to keyboard) and hope for the best.

This thesis could not have been completed without the help and collaboration of many people. Over the years that I have worked with her, my advisor, Anneila Sargent, has always forced me to focus on the larger picture, for which I am eternally grateful. I know that the lessons she has taught me will continue to improve my work, my papers, and my presentations for many years.

Working on the earliest phases of star formation at Caltech can be a lonely venture at times, but I have been lucky enough to have a number of collaborators at other institutions who have taken interest in my work, particularly Neal Evans at the University of Texas and Jason Glenn at the University of Colorado. I can safely say that this thesis would not exist without our many useful discussions, telecons, emails, and sometimes even battles. Being involved with the “Cores to Disks” *Spitzer* Legacy project has been an invaluable resource, not only for the wealth of data but for the collaborations it has generated. The c2d group meetings have sparked some of my most productive work, and the discussions, questions, and suggestions of many c2d members helped to keep me excited about my research.

I am indebted to the many members of the Bolocam instrument team, in particular Sunil Golwala, Jack Sayers, and Glenn Laurent, who patiently answered questions and helped me to develop the iterative mapping routine used for reduction of the Bolocam

data presented here. The analysis of the Ophiuchus Bolocam data would not have been possible without the help of Kaisa Young, who completed the data reduction and initial analysis. I am grateful to John Carpenter, who never kicked me out of his office when I insisted on pestering him with stupid questions. Thank you to my committee members, Nick Scoville, Re'em Sari, John Carpenter, and Sunil Golwala, for useful comments and questions that helped to focus my research, and for not giving me too much grief about the length of this thesis.

On a more personal note, my fellow classmates, Laura, Cathy, Stuart, Milan, Margaret, and Elina, have been my lifeline here at Caltech, keeping me afloat through our first year and sharing the many ups and downs of the following five. To everyone else who helped to make grad school bearable in the tough times and fun in the not so tough; thanks to Dave for the pizza and movies, Dan for the gossip, the girls for the cosmos, and the boys for the forties.

My family is a consistent and unwavering source of support, always providing a much needed sanctuary for escape and regeneration. Knowing that they would have supported me even if I had run away to cooking school somehow made it easier to carry on. Although she probably doesn't realize it, my sister Paige is a constant inspiration. My love and appreciation to all of you. Finally, thanks to Monica, who will always be my oldest friend, for stubbornly believing that I could do anything, even graduate. And to Tom, for keeping me (mostly) sane.

Abstract

In this thesis I utilize large-scale millimeter and mid- to far-infrared surveys to address a number of outstanding questions regarding the formation of low mass stars in molecular clouds. Continuum $\lambda = 1.1$ mm maps completed with Bolocam at a resolution of $31''$ cover the largest areas observed to date at millimeter or submillimeter wavelengths in three molecular clouds: 7.5 deg^2 in Perseus (140 pc^2 at the adopted distance of $d = 250 \text{ pc}$), 10.8 deg^2 (50 pc^2 at $d = 125 \text{ pc}$) in Ophiuchus, and 1.5 deg^2 (30 pc^2 at $d = 125 \text{ pc}$) in Serpens. These surveys are sensitive to dense substructures with mean density $n \gtrsim 2 - 3 \times 10^4 \text{ cm}^{-3}$. A total of 122 cores are detected in Perseus, 44 in Ophiuchus, and 35 in Serpens above mass detection limits of $0.1 - 0.2 M_\odot$. Combining with *Spitzer* mid- and far-infrared maps from the c2d Legacy program provides wavelength coverage from $\lambda = 1.25 - 1100 \mu\text{m}$, and enables the assembly of an unbiased, complete sample of the youngest star forming objects in three environments. This sample includes 108 prestellar cores, 43 Class 0 sources and 94 Class I sources.

The approximately equal number of starless cores and embedded protostars in each cloud implies a starless core lifetime of $2 - 4 \times 10^5 \text{ yr}$, only a few free-fall timescales. This timescale, considerably shorter than the timescale predicted by the classic scenario of magnetic field support in which core evolution is moderated by ambipolar diffusion, suggests that turbulence is the dominant process controlling the formation and evolution of dense cores. However, dense cores in all three clouds are found only at high cloud column densities, where $A_V \gtrsim 7 \text{ mag}$, and the fraction of cloud mass in these cores is less than 10%, indicating that magnetic fields must play some role as well. Measured angular deconvolved sizes of the majority of starless

cores are consistent with radial density profiles substantially flatter than $\rho \propto r^{-2}$, or with Bonnor-Ebert spheres. The prestellar core mass distribution (CMD) has a slope of $\alpha = -2.5 \pm 0.2$ for $M > 0.8 M_{\odot}$, remarkably similar to recent measurements of the slope of the stellar initial mass function: $\alpha = -2.3$ to -2.8 . While this result does not rule out the importance of feedback or competitive accretion, it provides support for the hypothesis that stellar masses are determined during the core formation process.

The lifetime of the Class 0 phase is estimated to be $1 - 2 \times 10^5$ yr in Perseus and Serpens, or approximately half that of the Class I phase, arguing against a very rapid early accretion phase. In Ophiuchus the fraction of Class 0 sources is much smaller, consistent with previous measurements of a short ($\sim 10^4$ yr) Class 0 phase in that cloud. A large population of low luminosity Class I sources that cannot be explained by constant or monotonically decreasing accretion rates is observed in each cloud. This result strongly suggest that accretion during the Class I phase is episodic, with sources spending approximately 25% of the Class I lifetime in a quiescent state.

Finally, I investigate the environmental dependence of star formation by comparing the dense core populations of the three clouds. Cores are found at considerably higher cloud column densities in Ophiuchus than in Perseus or Serpens; more than 75% of cores occur at visual extinctions of $A_V \gtrsim 8$ mag in Perseus, $A_V \gtrsim 15$ mag in Serpens, and $A_V \gtrsim 20 - 23$ mag in Ophiuchus. Cloud CMDs are well characterized by power-law fits ($dN/dM \propto M^{\alpha}$) above their empirically derived 50% completeness limits, resulting in slopes of $\alpha = -2.1 \pm 0.1$ in Perseus, $\alpha = -2.1 \pm 0.3$ in Ophiuchus, and $\alpha = -1.6 \pm 0.2$ in Serpens. Measured slopes for Perseus and Ophiuchus broadly agree with turbulent fragmentation, but the relative shapes of the observed cloud CMDs are inconsistent with detailed simulations of the dependence of CMD shape on Mach number.

Contents

1	Introduction	1
1.1	A Star is Born	1
1.1.1	Working Model for Isolated Star Formation	2
1.1.2	Outstanding Questions	5
1.1.3	Global Processes: Magnetic Fields versus Turbulence	6
1.1.4	Core Initial Conditions	10
1.1.5	Early Protostellar Evolution	16
1.1.6	Effects of Environment	19
1.2	Observations	22
1.2.1	Millimeter Surveys	22
1.2.1.1	Prestellar Cores	23
1.2.1.2	Masses	24
1.2.2	Infrared Surveys	26
1.2.2.1	“Cores to Disks” Legacy Program	27
1.3	Thesis Goals and Outline	28
	Bibliography	31
2	Bolocam Survey for 1.1 mm Dust Continuum Emission in the Perseus Molecular Cloud	37
	Abstract	37
2.1	Introduction	38
2.2	Observations	42
2.3	Data Reduction	45

2.3.1	Pointing	45
2.3.2	Removal of Sky Noise	46
2.3.3	Mapping and Calibration	48
2.3.4	Iterative Mapping	50
2.3.4.1	Method	50
2.3.4.2	Performance	51
2.4	Results	56
2.4.1	Source Identification	56
2.4.2	Comparison to Molecular and A_V Maps	61
2.4.3	Source Statistics	67
2.5	Discussion	83
2.5.1	Completeness and the Mass versus Size Distribution	83
2.5.2	The 1.1 mm Mass Function	87
2.5.3	Clustering	92
2.5.4	An Extinction Threshold for 1.1 mm Cores	95
2.5.5	Comparison to c2d Observations: B1 Ridge	97
2.6	Summary	99
	Acknowledgments	100
	Bibliography	102
3	Bolocam Survey for 1.1 mm Dust Continuum Emission in the Ophiuchus Molecular Cloud	107
	Abstract	107
3.1	Introduction	108
3.2	Observations	109
3.3	Data Reduction	111
3.3.1	Pointing and Flux Calibration	111
3.3.2	Iterative Mapping	112
3.3.3	Source Identification	112
3.4	Results	113

3.4.1	General Cloud Morphology	113
3.4.2	Source Properties	119
3.4.2.1	Positions and Photometry	119
3.4.2.2	Sizes and Shapes	126
3.4.2.3	Masses, Densities, and Extinctions	128
3.5	Discussion	130
3.5.1	Completeness	130
3.5.2	The Core Mass Distribution	132
3.5.3	Clustering	135
3.5.4	Extinction threshold	138
3.6	Summary	142
	Acknowledgments	143
	Bibliography	144
4	Bolocam Survey for 1.1 mm Dust Continuum Emission in the Serpens Molecular Cloud	147
	Abstract	147
4.1	Introduction	147
4.2	Observations and Data Reduction	149
4.2.1	Observations	149
4.2.2	Pointing and Flux Calibration	151
4.2.3	Cleaning and Mapping	151
4.2.4	Source Identification	152
4.3	Results	155
4.3.1	Comparison to Visual Extinction	157
4.3.2	Source Properties	159
4.3.2.1	Positions and Photometry	159
4.3.2.2	Sizes and Shapes	164
4.3.2.3	Masses, Densities, and Extinctions	165
4.4	Summary	167

Acknowledgments	168
Bibliography	169
5 Comparing Star Formation on Large Scales in the c2d Legacy Clouds: Bolocam Surveys of Serpens, Perseus, and Ophiuchus 171	
Abstract	171
5.1 Introduction	172
5.2 Three-Cloud Sample	174
5.3 What is a Core?	174
5.4 Distance Effects	178
5.5 Discussion	181
5.5.1 Physical Implications of Source Sizes and Shapes	181
5.5.2 Densities and the Mass versus Size Distribution	185
5.5.3 Fragmentation and the Core Mass Distribution	188
5.5.4 Clustering	192
5.5.5 Relationship to Cloud Column Density	196
5.5.6 Efficiency of Forming Cores	198
5.6 Summary	201
Acknowledgments	204
Bibliography	205
6 Prestellar Cores and Deeply Embedded Protostars with Spitzer and Bolocam: Properties of the Youngest Objects in Perseus, Serpens, and Ophiuchus 207	
Abstract	207
6.1 Introduction	208
6.2 Combining Bolocam and Spitzer c2d Data	212
6.3 Identifying Cold Protostars	219
6.3.1 Association with a 1.1 mm Core	222
6.3.2 Separating Starless and Protostellar Cores	224
6.4 Comparing the Starless and Protostellar 1.1 mm Core Populations . .	226

6.4.1	Sizes and Shapes	227
6.4.2	Core Densities	230
6.4.3	The Mass versus Size Distribution	234
6.4.4	Core Mass Distributions	237
6.4.5	Relationship to Cloud Column Density	239
6.4.6	Clustering	241
6.5	The Prestellar Core Mass Distribution	243
6.6	Properties of Cold Protostars	249
6.6.1	Bolometric Luminosity and Temperature	249
6.6.2	Envelope Mass	250
6.6.3	Completeness	250
6.6.4	Individual Sources	255
6.6.4.1	IRAS 03292+3039	255
6.6.4.2	Pers-Bolo 102	257
6.6.4.3	Serp-Bolo 33 and Other Class II Objects	259
6.7	Comparison of Classification Methods	262
6.7.1	Alternative Classifications	269
6.8	Protostellar Evolution	271
6.9	Lifetimes	280
6.9.1	Timescale of the Class 0 Phase	280
6.9.2	Timescale of the Prestellar Phase	283
6.10	Conclusions	285
	Acknowledgments	287
6.11	Appendix: Calculating the bolometric luminosity and temperature . .	289
	Bibliography	294
7	Summary and Future work	299
7.1	Summary	299
7.2	The Future	305
7.2.1	Main Accretion Phase Lifetime	306

7.2.2	Tracing Structure Near the Protostar	306
7.2.3	Timescale for Disk Formation and the Disk Mass Fraction . .	308
	Bibliography	311

List of Figures

1.1	Standard schematic picture of how an isolated low mass star forms	3
1.2	Correlation between measured core lifetime and mean density	9
1.3	Core mass distribution for extinction-identified cores in the Pipe Nebula	13
1.4	Correlation between source angular size and density profile index	15
1.5	Simple protostellar evolution models for an exponentially decreasing accretion rate	18
1.6	Core mass distributions resulting from turbulent fragmentation simulations	21
2.1	Observational coverage of Bolocam and IRAC maps in Perseus, overlaid on an integrated intensity ^{13}CO map	44
2.2	Iterative mapping performance: NGC 1333	52
2.3	Iterative mapping performance: Fractional lost peak flux density	54
2.4	Iterative mapping performance: Fractional lost integrated flux density	55
2.5	Bolocam 1.1 mm map of the Perseus molecular cloud	57
2.6	Bolocam map of Perseus, with high source density regions magnified and sources identified	59
2.7	Examples of new millimeter detections in Perseus	60
2.8	Comparison of 1.1 mm emission and visual extinction in Perseus	63
2.9	Comparison of 1.1 mm emission and ^{13}CO integrated intensity in Perseus	64
2.10	A_V calculated from the 1.1 mm emission in Perseus	65
2.11	Distribution of source peak and total flux densities in Perseus	80
2.12	Distribution of source minor and major axis FWHM sizes in Perseus . .	81
2.13	Distribution of source axis ratios in Perseus	82

2.14	Total mass versus FWHM size for sources in Perseus, with empirically derived completeness curves	84
2.15	Total mass versus size at the 3σ contour for sources in Perseus	86
2.16	Differential mass distribution for sources in Perseus	88
2.17	Characterization of the dependence on dust temperature of the core mass distribution	90
2.18	Two-point correlation function for sources in Perseus	94
2.19	Probability of finding a 1.1 mm core as a function of A_V for sources in Perseus	96
2.20	Comparison of Bolocam and Spitzer maps in the B1 Ridge	98
3.1	Observational coverage of Bolocam and IRAC maps in Ophiuchus, overlaid on a visual extinction map	110
3.2	Bolocam 1.1 mm map of the Ophiuchus molecular cloud	114
3.3	Map of the 1σ rms noise in Ophiuchus	115
3.4	Bolocam map of Ophiuchus, with high source density regions magnified and sources identified	116
3.5	MIPS three-color image of the eastern streamer in Ophiuchus, with 1.1 mm contours	118
3.6	Comparison of 1.1 mm emission and visual extinction in Ophiuchus . .	120
3.7	Distribution of source peak and total flux densities in Ophiuchus . . .	127
3.8	Distribution of source minor and major axis FWHM sizes in Ophiuchus	128
3.9	Total mass versus FWHM size for sources in Ophiuchus, with empirically derived completeness curves	131
3.10	Differential mass distribution for sources in Ophiuchus	133
3.11	Two-point correlation function for sources in Ophiuchus	137
3.12	Probability of finding a 1.1 mm core as a function of A_V for sources in Ophiuchus	139
3.13	Flux density, size, and mass versus A_V for sources in Ophiuchus	140

4.1	Observational coverage of Bolocam, IRAC, and MIPS maps in Serpens, overlaid on a visual extinction map	150
4.2	Bolocam 1.1 mm map of the Serpens molecular cloud	153
4.3	Map of the 1σ rms noise in Serpens	154
4.4	Bolocam map of Serpens, with high source density regions magnified and sources identified	156
4.5	Comparison of 1.1 mm emission and visual extinction in Serpens . . .	158
4.6	Distribution of source peak and total flux densities in Serpens	163
4.7	Distribution of source minor and major axis FWHM sizes in Serpens .	164
4.8	Differential mass distribution for sources in Serpens	166
5.1	Completeness as a function of linear deconvolved source size in Serpens, Perseus, and Ophiuchus	176
5.2	Comparison of source properties for the original and degraded-resolution Ophiuchus samples: sizes, shapes, masses, and densities	179
5.3	Ratio of angular deconvolved size to beam size for the original and degraded-resolution Ophiuchus samples	180
5.4	Comparison of linear and angular deconvolved source sizes in Serpens, Perseus, and Ophiuchus	182
5.5	Comparison of source axis ratios in Serpens, Perseus, and Ophiuchus .	184
5.6	Comparison of core mean densities measured at the half-maximum and 4σ contours in Serpens, Perseus, and Ophiuchus	186
5.7	Total mass versus angular deconvolved size for sources in Serpens, Perseus, and Ophiuchus	187
5.8	Comparison of the core mass distributions for Serpens, Perseus, and Ophiuchus	189
5.9	Comparison of the two-point correlation function for Serpens, Perseus, and Ophiuchus	194
5.10	Cumulative fraction of 1.1 mm cores as a function of cloud A_V for Serpens, Perseus, and Ophiuchus	197

6.1	three-color Spitzer images (8.0, 24, 160 μ m) of selected starless cores in Perseus, Serpens, and Ophiuchus	214
6.2	three-color Spitzer images (8.0, 24, 70 μ m) and SEDs of selected protostellar cores in Perseus	216
6.3	three-color Spitzer images and SEDs of selected protostellar cores in Serpens	217
6.4	three-color Spitzer images and SEDs of selected protostellar cores in Ophiuchus	218
6.5	Selection criteria for the cold protostar samples	220
6.6	Protostellar selection criteria applied to galaxy candidates	221
6.7	Distribution of the distance from cold protostar candidates in Perseus to the nearest core position, compared to a random distribution	223
6.8	Angular deconvolved sizes of starless and protostellar cores in Perseus, Serpens, and Ophiuchus	228
6.9	Axis ratios of starless and protostellar cores	229
6.10	Peak column densities of protostellar and starless cores	232
6.11	Mean densities of protostellar and starless cores	233
6.12	Mass versus size for starless and protostellar cores in Perseus	235
6.13	Mass versus size for protostellar and starless cores in Serpens and Ophiuchus	236
6.14	Mass distributions of protostellar and starless cores in Perseus, Serpens, and Ophiuchus	238
6.15	Cumulative fraction of starless and protostellar cores as a function of cloud A_V	240
6.16	Two-point correlation function for protostellar and starless cores	242
6.17	Combined prestellar core mass distribution	245
6.18	Combined protostellar core mass distribution	247
6.19	three-color <i>Spitzer</i> image (3.6, 24, 70 μ m) of IRAS 03292+3039 (Pers-Cold 2)	257
6.20	three-color <i>Spitzer</i> image (8, 24, 70 μ m) of Pers-Bolo 102	258

6.21	three-color <i>Spitzer</i> image of Serp-Cold 33	260
6.22	Bolometric temperature versus spectral index α_{IR} for cold protostar candidates in Perseus, Serpens, and Ophiuchus	263
6.23	Distribution of T_{bol} as a function of distance to the nearest 1.1 mm core for cold protostar candidates in Perseus, Serpens, and Ophiuchus . . .	264
6.24	Distribution of α_{IR} as a function of distance to the nearest 1.1 mm core	265
6.25	Average spectra for Class 0, Class I, and Class II	266
6.26	Results of fitting Ophiuchus source SEDs to average Class 0 and Class I spectra	268
6.27	Average spectra for designated T_{bol} bins: “early Class 0,” “late Class 0,” etc.	270
6.28	Results of fitting cold protostar candidate SEDs to template average spectra	272
6.29	L_{bol} versus T_{bol} for cold protostars, compared to evolutionary models .	274
6.30	Average spectra for “non-envelope Class I,” and low- L_{bol} sources	277
6.31	M_{env} versus T_{bol} for cold protostars, compared to evolutionary models .	279
6.32	Comparison of methods for calculating T_{bol}	290
6.33	Characterization of sampling errors for T_{bol} and L_{bol}	291
6.34	Characterization of errors in T_{bol} for missing 160 μm fluxes	292
7.1	Example of using IRS spectra to probe small-scale envelope structure .	307
7.2	Example of separating disk and envelope contributions in an embedded protostar	309

List of Tables

1.1	Millimeter and submillimeter bolometer arrays	23
2.1	Identified sources in Perseus	69
2.2	Photometry, masses, sizes, and morphology for sources in Perseus . . .	73
3.1	Identified sources in Ophiuchus	121
3.2	Photometry, masses, sizes, and morphology for sources in Ophiuchus .	123
3.3	Cumulative mass as a function of extinction for sources in Ophiuchus	141
4.1	Identified sources in Serpens	160
4.2	Photometry, masses, sizes, and morphology for sources in Serpens . .	161
5.1	Cumulative mass as a function of extinction for sources in Serpens, Perseus, and Ophiuchus	199
6.1	Statistics of 1.1 mm cores in the three clouds	226
6.2	Bolometric temperatures, luminosities, and envelope masses of cold protostars in Perseus	251
6.3	Bolometric temperatures, luminosities, and envelope masses of cold protostars in Serpens	253
6.4	Bolometric temperatures, luminosities, and envelope masses of cold protostars in Ophiuchus	255
6.5	Class II sources detected at 1.1 mm in Perseus, Serpens, and Ophiuchus	260
6.6	Relative numbers of starless, Class 0, and Class I sources	280