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Chapter 9

Half- and Full-Integer Power Law for Distance Fluctuations:

Langevin Dynamics in One- and Two-Dimensional Systems

[This chapter appeared in Chemical Physics 331, 245 (2007).]
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Abstract

Langevin dynamics of one- and two-dimensional systems with the nearest neighbor couplings is examined to derive the autocorrela-
tion function (ACF) of the distance fluctuations. Understanding of the dynamics of pairwise distance correlation is essential in the studies
using single-molecule spectroscopy. For both 1-D cases of an open chain and a closed loop, a power law of #~/2, 3> and 1~/ for the

ACEF are obtained, and for 2-D systems of a sheet and a tube, a power law of ¢

~1 72 and 13 are found. The different exponent of the

power law is shown to depend on the location of the pairwise beads and their topography.

© 2006 Elsevier B.V. All rights reserved.

PACS: 33.15.Vb; 34.30.+h; 36.20.Ey

Keywords: Power laws; Langevin dynamics; Single molecule; Rouse model

1. Introduction

Decays in physical systems are usually characterized by
pure-exponential or by non-exponential decays. Power-law
decays have often been associated with self-similar pro-
cesses involving fractals [1-7]. For example, in a recent
work by Granek and Klafter [1] they showed that power-
law decays in distance autocorrelation function (ACF)
could arise due to vibrational excitation of fractals.
Recently power-law behavior in fluorescence intermittency
observed in single quantum dots [8-12] and other organic
molecules [13] have generated some interest. It has been
shown that diffusion-controlled electron transfer in a
Debye and non-Debye dielectric media could lead to the
power-law blinking statistics [14,15].
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The recent single-molecule experiments by Xie and
coworkers [16-18] on fluctuating fluorescence lifetimes
were attributed to fluctuations in the distance between a
donor and an acceptor attached to a protein chain. The
observed 1172 power law in the lifetime fluctuations and
its relationship to chain dynamics have been investigated
recently [19-21] using a Rouse model [22]. There are also
many other theoretical studies of reaction controlled by
barrier fluctuations and diffuse dynamics [1,23-27]. In elec-
tron transfer (ET) and fluorescence resonances energy
transfer (FRET), the transfer rate depends on the distance
R between donor and an acceptor (exponentially for ET
and 1/R® for FRET) [28]. If donor—acceptor distance is
subjected to fluctuations, the rate constant would also fluc-
tuate in time. In addition to single-molecule techniques,
many other experimental techniques have been employed
to study these conformational changes, such as NMR
[29], neutron scattering [30,31], optical absorption [32],
electrophoresis [33], optical tweezers [34] etc. Chain
dynamics has been used in these studies.

In this work, we extend previous studies of Rouse
model [22] to a long chain and a closed loop, shown in
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the schematic diagrams Fig. 1(a) and (b), respectively, as
well as a two-dimensional system of a sheet or a tube, and
examine the distance ACF between any pair of beads in
such a 1-D or 2-D system. We will show that Langevin
dynamics for 1-D chain/loop under some conditions could
lead to the less well-know 2 and %2 power law, in
addition to the more familiar # /2 behavior. In addition
to the half-integer power law for the 1-D system, we will
also show that for a 2-D system, the ACF decays with a
full-integer law (', 12 and 1~3), depending on the topo-
logical conditions of such a pairwise beads. A ladder sys-
tem, seen in Fig. 1(c), is also studied and has similar time
behaviors of ACF in chain a system. Besides the half-inte-
ger laws, the ACF in a ladder also has only exponential
(no power laws) decays at certain topological conditions.
The main purpose of this work is to show these half- and
full-integer power laws can arise and to explain their
causes.

2. Theory

We will derive in this section the analytic results for
ACF of the distance fluctuation for four different topolog-
ical categories, i.e. an open chain, a closed loop, a sheet, a
tube, and a ladder. Their corresponding long time behav-
iors are also summarized and illustrated.

2.1. An open chain

An ideal chain of N beads with equal couplings to their
nearest neighbors and other vibrations have been studied
widely [22]. The Langevin equation of over-damped oscilla-
tors in such a N-unit Rouse chain can be expressed by
[35,36]

£50() + 0?ROW = F1)/m. (m

Fig. 1. The schematic diagrams of a Rouse model with a open chain (a), a
closed loop (b), and a ladder (c) of beads. A bead interacts with others
through the connected springs. The dynamics between n;th and n;th beads
at various positions are studied in this work.
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where { is a constant friction coefficient. The Q(¢) is a col-
umn super vector (qi,4»,qs-..gn), Where g; denotes the
displacement vector of the ith bead from its equilibrium
position. R is the Rouse coupling matrix. F(¢) represents
white noise with zero mean and no correlation with Q(7).
Therefore, one has the following equations: (F¥ (1)) =0,
(FA(1) - g)(0)) = 0, and (FA(t) - F(x)) = 2mky TL6(t— 1)
0uv0;j, where p and v represent x, y, or z, whereas i and j
represent the bead index. The pairwise correlation of the
displacement vectors can be written as [20,21]

S @ a0+

a v

41 @0 G0+ F (~Gnr (1) G0)) + 2050(0) - 3(0))
— (o (1) - :(0))) = 0,
(G (0) - G(0)) + 2= (=(Gw-1(1) - §(0))

+ (Gv(1) - 4(0))) = 0

d

dr

7

2)
where n=2,3,---N—1;i=1,2,--- N; and (g;(¢) - 4:(0))
is the ensemble average of the inner product of ¢,(¢) and
G:(0). Using the method described in Appendix C of Ref.
[37] the pairwise correlation functions can be simplified
as

(@.(0)-3.(0)) = jN] 40)-3.0)
% oS <1tk(j %)) exp {74 ;t in? <;/\;>}}

nk(n—1)

N

_ (@) -
T{l +2; cos (

)
a )]}

D) (3
3)

2N
where (4;(0)g:(0)) = 5,-J<|Zj,-(0)|2> was used. By assuming
the distance fluctuation of each bead from its equilibrium
position is small, the ACF of the distance deviation,
Co(t), between the n;th and noth beads from their equilib-
rium position equals <[qn1 (t) - Zinz(t)] : [l_inl(o) - Zinz (0)]>/3
Using Eq. (3), one obtains [20,21]

=teltin? (5 _1 1

EE ) o )

4)

where C is defined as Cy(0). The power-law behaviors at

long times are depending on the location and separation

of the pairwise beads. In a long chain the long time behav-
iors of the above equation can be classified as

b)
w’t .,
—4——sin

{

N-1 2

)
k=1
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712 as|n —m| =N,
Col(?) 732 as |n; — ny| < N,and both n; & ny
S (5)
Co away from ends,
2 otherwise.

The numerical results are illustrated in Fig. 2(a). The
power-laws behaviors are derived in A.l using asymptotic
approximation. More detailed discussion about the causes
of different power laws will be discussed in Section 3.

2.2. A closed loop

The pairwise correlation function of displacement vec-
tors in a N-unit loop satisfies

S0 -G.0) + ({010 -G.0) + 206 (1) -G.0)
G- 30)) =0, ©

where n, i=1, ... N. One has the Nth bead connects with
the first bead to form a loop, ie. Gy = gy and §; = Gyy1.
Using the method described in Appendix A of Ref. [37],
the correlation functions are simplified as

@0 (0 = 1200 Z cos (25=2)
X exp [_4?)% sin (%kﬂ (7)

With the above equation, the ACF of the distance devia-
tion between the n;th and n,th beads from their equilib-
rium positions can be expressed as

—40’t ., (Tk
)[4 ()]

(8

Co(t)

Co

2 ul .2 (ﬁk(}’ll *nz)

—Z s N

N k=1

)

N=500 n, n,

1,500
250, 251

o
v
*

247

In a long chain the time power-law behaviors of Cy can be
grouped as

Colt) {

Co
These behaviors of Cy are also shown in Fig. 2(b). The
mathematical asymptotic approximation of the power-
law behaviors in Eq. (8) are given in A.1. More detailed dis-
cussion about the reasons of change from 2 to r¥? are
discussed in Section 3.

12
302

when |n —ny| = N/2,

©)

otherwise.

2.3. A sheet

Assuming a two-dimensional sheet with N x M beads
where each bead is coupled to the nearest beads, the pair-
wise correlation of the displacement vectors can be
obtained straight forward by introducing another indepen-
dent dimension to Eq. (2). Extending Eq. (3) to two inde-
pendent variables along N and M directions, the solution
of the correlation of the displacement is given by

(14, (O)) { <Tka (;*%))

NM
(i — 4 2t (ke
x cos | ——2 sin
N

_5)> X exXp {740)2' N
ft k, (m —1)
x<14+2) cos <¥>
e
mky (j—3)
xcos( o

) [4wﬁt )
exp | —=sin

One can derive the ACF of the distance deviation between
the beads at the (n,m;)- and (n,,my)-sites as

N-1

l+22 cos

k=1

(G (1) - G1,5(0)) =

I}

)

(10)

N=500 In-n]
r 17
250

20
a

o
o

tmlll;

tmz/(;

Fig. 2. The calculated Cy(1)/Cy for the various separations between the pairwise beads for a chain (a) and a loop (b) with N = 500. Here a dimensionless
t@?/¢ is used for the x-axis. n; and n, are the site indices of the pairwise beads. The exponent of the power law, —1/2, —3/2, and —5/2, depends on |y — na)
and its location. At much longer times, Co(#)/C, becomes a single exponential decay.
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At various locations of the pairwise beads, its long time
property in a large sheet gives the following asymptotic
behaviors.

t7! as|n —ny|~N and |m; —my| =~ M
2 as \nl—n2|<<N, \ml—mz\<<Mand (nl,ml)-
Col(?) .
o & (ny,my)-sites are parallel to or far away from
0 .
the boundaries,
13 otherwise.

(12)
The numerical results are illustrated in Fig. 3(a). More de-
tailed discussions of the behaviors and the analytical
asymptotic approximation to obtained the power laws will
be presented in Section 3 and A.2, respectively.

2.4. A tube

The differential equations of the pairwise correlation of
the displacement vector of a N x M hollow tube with N-
bead in length can be obtained by combining Eq. (2) with

W.-C. Chen, J. Tang | Chemical Physics 331 (2007) 245-253

N beads and Eq. (6) with M beads. Using the results in Egs.
(3) and (7), the correlation of the displacement
(4n.m(D)q:0)) and the ACF Cy(t) between the beats at
(ny,my)- and (nz,mz)-sites can be derived as

<qn,;n(t) . qu(0)> — <‘qnm( {1 " 22

k
k=1

sm Z_
ky(n —1 ki
X COS <%> cos (n

(=)

w3

—40ki sin? ,(,{‘

=1 M
(13)
Colt) _ 1 [R5 e () o2 (Tholm —m2)
& =% {Z;C sm %
N-1 M ky
+ Ze (u sin? +u> sin” (nv)]
el k=1
. {cosz <m>+cosz (M)
N N
Tk, ( *E) Tk, (n2 77)
—2cos (T) X COS (T)
2mtk, (my — ms)
X COS (T)} } (14)

The long time property of the AFC, shown in Fig. 3(b),
similar to the case in a sheet and the asymptotic behaviors
are classified as

t! as|n —ny| ~ N and [m; —my| =~ M/2

Colt) 172 as | —ny| KN, |my —my| < M /2 and(ny,m)-
C x & (na,m;)-sites are parallel to or far away from
the boundaries,
3 otherwise.

(15)

10° g a b
10°
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7, 1
*
SR K %
= N XM = 500 X500 M *
D@ 107° Cn, m)( n, m) o N XM =500 x500 ‘1
v (1, 1)(500,500) - E Cn, m)(n, m)
102 E#  (250,250) (251,251) ¢ Ex (1, 1)(500,250) o *
o ( 1,250)( 1,251) Fo (1, DH( 1, 2 o *
10"k (1, D 2 2 Q Eo (250, D@51, 1) o
JFe (1250 2,250 %v Ee (1, D( 2 D o
]0' wl ul. wl ul. 1} ul ul. wl ul. wl
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tmzlc lmz/q

Fig. 3. The calculated Co(1)/C, for the various separations in a sheet (a) and a hallow tube (b) with @ = w, = w, and N = M = 500. The decay follows an
full-integer power law, and becomes single exponential decays at much longer time.
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The analytical derivations of the asymptotic power-law
behaviors can be found in A.2.

2.5. A ladder

Although Cy of a ladder can be formed by modifying
Eq. (11) to an N x 2 sheet, it behaves more like a chain.
The numerical results and the analytical asymptotic
approximation of Eq. (11) as Nx2 in the long time
are shown in Fig. 4 and A.3, respectively. The ACF
formed the following behaviors at certain topological
conditions:
e*xt
12

CQ(t) {32

as two beads are at the same level (i.e. n; = ny),
as [ny —m| =N,
as |n; —ny| < N,and both n; & ny away
from ends,

t3/2 otherwise.

(16)

At the same level of a ladder, the exponential time behavior
implies that these two beads have very fast synchronized
motions due to the link between them. It may also contrib-

ute to the stability in molecules with a ladder structure,
such as DNA.

3. Origins for different exponents of the power law

In the one-dimensional cases, the physical origin of
the different asymptotic behaviors are given as following:
The ACF of distance deviation is proportional to (g, (¢)-
Gy (0) + G (1) - G5 (0) = Gy (1) - 1, (0) — G (1) - G, (0)). The
first two terms represent the ACF of distance deviation
at the nith and n,th sites, respectively. The last two terms
are the correlation function of the displacement vector

10°
10°
10"
- )
~6
,Q_\ 10 ®
& p
=1
10 NX2 = 500x2 ®
( mym)) ( nym) ®
10O ¢ 1, (00, D
#* (1, 1)(500,2) B ®
o (250, 1) (251, 2) N °
2EA (L D( 21 2
10 CLDC2D 3
o (L LY 8 H °e
o (250, 1) (250, 2) 5 ©
]O’“ L ul L ul L L |
10° 10° 10° 10' 10°
tmI/C

Fig. 4. The calculated Cy(1)/Cy for the various separations in a ladder
with @ = w, = w, and N = 500. The decay is a single exponential if the
pairwise beads are at the same level, and follows half-integer power law
otherwise. All become single exponential decays eventually.

between the njth and nyth beads. They also correspond
to the displacement in a diffusion-like process from one
bead to another since the interaction between beads are
described by the Langevin equation, Eq. (1). These terms
are much smaller than the first two because there is a
long separation between beads. Therefore, the Cp is
dominated by the change of the displacement amplitude
in itself by diffusion, which results in the usual ¢ '/
power-law behavior in the 1-D system. By rearranging
terms, the Cp is also proportional to ([g, (f) — G, ()]
Gy (0) + () = G (0] Gua(0))- The ([ (1) — G (1)
Gn, (0)) term represents the difference of the diffused dis-
placement vector (originated from the n;th bead) between
the n;th and n,th beads at a time z. If the separation
between them is comparable to or smaller than the diffu-
sion distance of the displacement vector, the magnitude
of (Gy,(t) - G, (0)) is similar to that of (g, () -4, (0)). A
difference of these two terms corresponds to a time
differential of the displacement vector, ie. d{(g,,(¢)-
Gn, (0))/dt, if the separation between the njth and n,th
beads is much smaller than the diffusion distance. Thus,
it results in the r~¥> asymptotic behavior for the ACF
for a small separation of beads. As the separation of
the beads increases, the asymptotic behavior is shown
in Fig. 2(b), having /"? initially and then becomes
2 at later time.

If two beads are close and near an end in a long chain,
the ACF vyields a > asymptotic behavior, shown in
Fig. 2(a), instead of r~¥2 as two close beads in a loop or
far from ends in a chain. It is due to boundary conditions
at the ends of a chain. Because of the reflection of distance
deviation at the end of a chain, the value of ([g,, (¢)—
Gn, ()] - G, (0)) is similar to taking a second time derivative
at (Gy, (£)g», (0)) if n; and n, are close and near the end in an
open chain.

Due to the same reason in one 1-D systems, the ACF
in 2-D systems has one power smaller in large separation
than in short one, shown in Fig. 3. It also means that the
interference between the pairwise beads that are close is
faster and stronger, which is similar to the 1-D cases.
The long-time behavior for close pairwise beads near a
corner in a large sheet is =3, instead of =2 for beads
near the center. It is due to the reflection at the bound-
aries. If the two beads are near the edge but far away
from the corner, the ACF of distance deviation can have
different long-time behavior, which depends on the orien-
tation of the beads with the edge. If the beads are paral-
lel to the edge and not close to a corner, the reflection of
diffusion at the boundary does not affect the ACF of dis-
placement. Therefore, the long-time behavior, shown in
Fig. 3, has the =2 character, similar to the case of two
beads that are close but both far away from boundaries.
If the pairwise beads are not parallel to an edge, the
reflection at the boundary does affect the C, values.
Therefore, the long-time behavior has 7> asymptotic
behavior, as seen in Fig. 3(a) and (b) for sheet and tube
cases, respectively.
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4. Discussion and conclusions

In this work, we have studied Langevin dynamics for an
ideal 1-D and 2-D systems. Several kinds of power-law
behavior are obtained and their exponent is found to be
dependent on the distance of the pairwise beads such as a
donor and an acceptor in electron or energy transfer. Stud-
ies of pairwise distance correlation using single-molecule
spectroscopy are important in elucidating molecular
dynamics. As shown in Figs. 2-4, the power-law behavior
lasts for about six decades. Using the typical van der Waals
couplings and the experimental values of the friction con-
stant [32,38], the time range to observe such power-law
behavior is estimated to cover picosecond to microsecond
range.

This work shows that the distance ACF of a distant
donor-acceptor pair follows a power law of 1> for a
simple Rouse model with a d-dimension coupling net-
work. This power-law behavior is very similar to d-dimen-
sion diffusion based on the scale invariance argument. The
similarity is due to mathematical analogy between the
Langevin equation of a Rouse model to a d-dimensional
random walk process. However, for a close pair, our
work predicts an interesting but different power law than
the usual %2 dependence. For example, for an adjacent
donor-acceptor pair of a 1-D Rouse chain, the power law
does not follows the ordinary "2 behavior but follow
132 or %2 behavior, depending on the location of the
donor—acceptor pair.

The half-integer power law (¢~ /<, /< and t~7'7) are
obtained for the 1-D systems; and the full-integer power
law (r !, r~2 and r7%) for the 2-D systems. In 1-D (or 2-
D) system, the /~"/? (or 1) power law is obtained if the
pairwise beads have a large separation and very weak inter-
ference. The 12 (or 1~?) power-law behavior is found if
the pairwise beads are near but far away from the bound-
aries. It is also found that if the pairwise beads in a 2-D sys-
tem are near and parallel the boundaries, the reflection of
the interference from the boundaries has no effects on the
dynamics. The 3 (or 3) power law is obtained if
the close pairwise beads are close to but not parallel to
the boundaries.

The Langevin dynamics in a ladder is more special, and
it yields both pure exponential and power-law (1~ /2, 2
and 1 2) behaviors. The conditions and reasons for differ-
ent power laws are similar to the cases of an open chain.
The pure exponential behavior happens if two beads are
at the same level of a ladder. It also implies that the dis-
tance fluctuation between two beads at the same level
decays very fast as compared to those at different ladder
levels.

In our treatment we focused on ACF of the distance
fluctuations between a donor-acceptor pair. It can be
directly applied in electron transfer reactions which have
simple exponential distance dependence for the electronic
coupling. The temporal behavior of the distance ACF is

1/2 3/2 5/2

sensitive to the specific dynamics of the donor—acceptor
pair and their interactions with surrounding atoms or
molecules. For other processes such as FRET which
has different distance dependence (~1/R®) and other
dynamics with orientational dependence as occurs in a
2-D rotor [28], a characteristically different temporal
behavior for the ACF could arise. In some special cases,
power laws may happen for the temporal behavior of the
ACF in FRET. With anomalous diffusion in the subdif-
fusion regime ((x%) o< %, 0 <o <1), the temporal behav-
ior of the lifetime fluctuation correlation at long time
could be written as a summation of six terms with differ-
ent powers in time [23].

For native proteins and other macromolecules with
heavy cross links the simple Rouse model treatment is
insufficient. The presence of heavy cross links in native
folded proteins could lead to deviation from the simple
power law [21]. However, in polypeptides one can treat
aperiodic chain by assigning a distribution of non-identical
force constants among those springs between beads, except
that for such a case with various spring constants a simple
analytic solution is no longer available and numerical
approaches need to be used. Based on our numerical simu-
lations for such a situation [20], we have found that the
power law still applies so long as the root-mean-square
deviation for the distribution for the force constant is not
too broad. Otherwise, these simple power-law behaviors
for a system with a more complicate coupling network
could break down.

Here we suggested some experiments to test the power
laws of various exponents. If an electron/energy donor
and an acceptor are attached to a 1-D system such as
polypeptides and polymers, or a 2-D system such as a
membrane, or a ladder structure such as DNA, studies
of the distance fluctuations between the donor—acceptor
pair could provide information about the conformational
dynamics of these low-dimensional structures as beauti-
fully illustrated by single-molecule experiments of proteins
by Xie’s group [16-18]. It would be interesting if the pre-
dicted power law of various exponent can be observed
with a donor—acceptor pair at different topological condi-
tions. By varying the location and the separation between
the donor and the acceptor, one could explore the power

law of 173/2, t’s/z, in addition to the more well-known
2 law.
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Appendix A. The Asymptotic solutions of the power-law
behavior

A.1. One-dimensional system

In the limit of a loop with a very large N and a long sep-
aration between the n;th and n,th beads (i.e. N — oo and
|n; — no| &~ N/2), Eq. (8) can be simplified by an integral
[39] as

exp (<2%) r 20’ sty (207
Cg(()t)zg;)/o dxexp< Ca) tcosx) :ezf'zlo(th)
(A1)

where Iyp(z) is the modified Bessel function of the first
kind. Because of I,(x) &~ exp(x)/(2nx)~"/? at large x [40],
Eq. (A.1) has an asymptotic power law, (4nw?t/0)~">,
as shown in Fig. 2(b). The Rouse equation, Eq. (2), is
mathematically equivalent to a 1-D diffusion equation.
The ~'? power behavior is expected since the solution
of a diffusion equation in 1-D system has a pre-exponen-
tial factor proportional to 2,

If N of a loop is very large but the separation between
the n;th and n,th beads is much smaller than N/2 (ie.
N — oo and |n; — ny| < N/2 or |n; — ny — N| < N/2), Eq.
(8) can be approximated by an integral that can be simpli-
fied as [39]

=20 op

Cgf)t) ~ 627 0 dx{1 — cos[x(n; —ny)|}e

202 2%t 2%t
=€ ¢ |:[0< P2 >_1\n17nz\< - >:|
S S

If |z| and |argz| < /2 — §, one has [40]

= {gmk) (;—1) +0<z|"‘)} ,

(42 = 1) (@? =3 (42 — (2k— 1))
2%k

202 rcosx
7

(A2)

L(z) =

where (v,k) = and

(v,0)=1.
(A.3)

Therefore, at a large ¢ the leading term of Eq. (A.2) is pro-
portional to 2 In the loop case, the asymptotic behavior
of the distance ACF for a small separation is ¢/, which is
different from the 7~ '/> behavior in a large separation, as
seen in Fig. 2(b).

If two beads in a long chain have a short separation
and are not close to the ends, the Cp exhibits 32
behavior, as shown in Fig. 2(a). The behavior can also
be expressed as Eq. (A.2) in a large loop. If two beads
have a long distance separation (ie. ny,ny < N;
n, = N —n)y; and N — o), the ACF of distance deviation
can be written as

Colt) e

G zT/O dx{cos {x<n1+%>}
N s
—cos {x(nz +§>}} e !
b () e ()
¢ 2 ¢ 2" {

(A4)

Using Eq. (A.3) the above equation at a large ¢ yields a
"2 behavior, which is similar to the behavior of two
beads having a large separation for a loop case. Eq. (4)
can be expressed by integral if N is very large and the beads
are close to one end of the open chain (i.e. N — oo and ny,
ny < N). It can be further simplified [39] as

Co(t) 0 20°t 20t 20t
Co ~e ¢ |[ 7 *In1+nz+1 ¢ 71\*11*"2\ ¢

1 20t 1 20°t
+512n|+1 (T) + 512”2“ (T)jl . (A~5)

At a large ¢ the leading term of Eq. (A.5) is proportional to
=2, which is the same as the asymptotic behavior shown
in Fig. 2(a).

A.2. Two-dimensional system

The Cy of a sheet, Eq. (11), between the pairwise beads
at (ny,m;) and (n,,my) sites with a very large separation in
the limit of a very large N X M (i.e. N — oo, M — oo, and
|my — my| = M) can be simplified as

Colt) _ auriar), (203 202\ 1 202t
~ tloyt+oy I I X iy i X
e ~F o)) e Ut
N 1[ 20
2 2ny—1 C .

Using Eq. (A.3), the leading term of the equation has ¢~
dependence. The asymptotic behavior at large ¢ is shown
in Fig. 3(a). It is similar to the long-time behavior for
two largely-separated beads in a very large and long tube,
shown in Fig. 3(b), since Eq. (14) can also be approximate
as Eq. (A.6). Therefore, the ACF of the distance deviation
between widely separated beads in two-dimensional cases
yields a r~! asymptotic behavior.

If the separation of beads on a sheet is close and near the
center, and N X M is very large, (i.e. ny, ny = N/2 and my,
my =~ M/2) Eq. (10) can be simplified by an integral [39] as

C 24002 207 202t
Q(t) ~ e[—%((ufﬁ»m).)} 10< fot> Io Y
Co ¢ ¢

202 20t

Ly <f>l\m1*mz\ — :

¢ ¢

The equation can be expended by using Eq. (A.3), and has
a leading term in 72, which is consistent with the asymp-

(A.6)

1

(A7)
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totic behavior shown in Fig. 3(a). This physical origin of
one power smaller than in large separation is due to the
interaction of the pairwise beads of the ACF through fewer
beads, which is similar to the one-dimensional cases. If two
beads are near a corner on a large sheet (i.e. ny, n, < N and
my, my < M). The ACF of distance deviation can be
rewritten as

Colt) o] | 1 20t 20t
(Qjo %e[ Hotto))] {2 |:]()< £ + 121 7@

[ Zwﬁt 2w§t
x Lo —— | +om-1 | ——

| { ¢

1 20t 20t
#3037

[ 2wt 203t
X _10 C’ + Loy N

[ 2wt 20t
- _[n1+n3—1 ( é/ >+1\n|—nz| (T):|

20t 2wt

X Ly ymy—1 7 + Ly | <)l (A8)

As expected, because of the reflection distance deviations at
the boundaries, the long-time behavior is 7>, instead of 12
for beads near the center.

If the pairwise beads on a very long and large tube are
close and far away from the edges, the ACF of distance
deviation in Eq. (14) can also be expressed as Eq. (A.7).
Thus, it also exhibits /=2 asymptotic behavior, as seen in
Fig. 3(b). If the close pairwise beads are parallel and near
an edge (ie. my=m=n<N, | m —my| < M/2, and
N,M — o0), Cg can be written as

Col(t o 2wt 2wt
Q( ) ~e 7%((J‘+l/)j2.)] |:10( x ) + 1, ( X >:|
Co { ¢

203t 20t
X IO C _[\rlu—mz\ T .

According to Eq. (A.3), it yields 1> behavior in Fig. 3(b),
which is similar to the results of the pairwise beads parallel
to the edge and far away from a corner of a sheet. If the
pairwise beads are close and unparallel the edges, the Eq.
(14) can be expressed as

CQ(I) ~ 74(mf+mf)] 260}21 2(/0%[ 1 2(’0%[
CO ~C IO C 10 C +212nl—1 C
1 203t 20t 20wt
+§12n2—l <T>:| 71\m1—mz\ (g) |:1n]+nz—] < é >

(A.10)

(A.9)

when |n; — ny] < N and |m; — my| < M/2 in a very large
and long tube. The time behavior in Fig. 3 becomes 7>
at long time. The power law changes if the pairwise beads

change the orientation with respect to the edges. The
change is due to the reflection at the boundary having dif-
ferent effects at the different orientation of the pairwise
beads. The effects are similar to the results on a sheet.

A.3. A ladder

The analytical expression at the limit of a very large N
can be derived by using the integral in Ref. [39]. If
n; = n, = n, it can be written as

Co(t) 2t 20t 20t
G Sev [‘f(“’i*“’i)] P"( ; )”2"”( ; ﬂ
(A.11)

Using Eq. (A.3), at a large ¢ the asymptotic behavior is
(4n?t/¢) " exp(—2w2t/¢), as shown in Fig. 4, which is
very different from the power-law results in the usual
one- or two-dimensional systems. If the pairwise beads
on a very long ladder are at a large separation (ie.
|ny — mp| = N, N — o0), the ACF becomes

Colt) 1 ( 2w2t> 2wt <2w2t>
~oexp | ——= l+exp| —— ||/ -~ 1,

Co 3 p 7 p 7 0 7
(A.12)

which exhibits /> in Fig. 4 at longer times. The result is
the same as that obtained in both chain and loop cases with
a large separation. When the pairwise beads have a short
separation and far away from the ends of the very long lad-
der, Cg can be simplified by

2021
Cot) e * 2 (20 s
~——< |1 |1 ) —|1+e T
Co 3 +e 0 7 €

20t
- (—) }(“Jr”ifml g 7 i )

¢
(A.13)

As curve with the open hexagon symbols in Fig. 4, it yields
32 power-law behavior at longer times. It is the same as
the 1-D case if the pairwise beads are close and far away
from the boundaries.

When the two beads are close and near the ends of the
very long ladder, (i.e. n; # ny and ny,n, < N), the ACF is

expressed as
20t 202t
l+exp| ——X [M( y1>
{ ¢

202
Colt) e {
1 202\ 1 2wt
+§12n|71 (_(A )-‘rilznzq ( QA )}

Cy 2
2wt 2 2
liexp (7 v"' >:| |:]'l\+rl1+1 <%> +I\”z*”l\ <2ivvt>:| }
¢ ¢

(A.14)

Its leading asymptotic term has a power law of 2, repre-

sented by the open-triangle-curve in Fig. 4, which is the

(“A+71f my = my; “ ="1f my #m,).
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same as obtained by the close pairwise beads near an end of
a very long open chain.
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