


## **APPENDIX 2**

### **Crystal Structure Data for Chapter 5**



### Selected bond lengths [Å] and angles [°] for JPJ02 (CCDC 623282)

|             |                             |             |
|-------------|-----------------------------|-------------|
| Ru(1)-C(22) | 1.8266(16) C(22)-Ru(1)-C(1) | 101.68(7)   |
| Ru(1)-C(1)  | 1.9683(17) C(22)-Ru(1)-O(1) | 79.64(6)    |
| Ru(1)-O(1)  | 2.2601(12) C(1)-Ru(1)-O(1)  | 178.65(5)   |
| Ru(1)-Cl(2) | 2.3378(4) C(22)-Ru(1)-Cl(2) | 97.14(5)    |
| Ru(1)-Cl(1) | 2.3459(5) C(1)-Ru(1)-Cl(2)  | 96.62(5)    |
|             | O(1)-Ru(1)-Cl(2)            | 82.94(3)    |
|             | C(22)-Ru(1)-Cl(1)           | 101.01(5)   |
|             | C(1)-Ru(1)-Cl(1)            | 91.65(5)    |
|             | O(1)-Ru(1)-Cl(1)            | 88.32(3)    |
|             | Cl(2)-Ru(1)-Cl(1)           | 158.086(18) |

### Crystal Data and Structure Refinement for JPJ02 (CCDC 623282)

|                         |                                                                  |
|-------------------------|------------------------------------------------------------------|
| Empirical Formula       | $[C_{39}H_{62}N_4OCl_2Ru]^{+2} 2Cl^- \cdot 2(CH_4O) \cdot 0.14O$ |
| Formula Weight          | 908.06                                                           |
| Crystallization Solvent | Methanol/diethylether                                            |
| Crystal Habit           | Blade                                                            |
| Crystal Size            | 0.41 x 0.22 x 0.14 mm <sup>3</sup>                               |
| Crystal Color           | Green                                                            |

### Data Collection

|                                                             |                                                                                                                        |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Type of diffractometer                                      | Bruker SMART 1000                                                                                                      |
| Wavelength                                                  | 0.71073 Å MoKα                                                                                                         |
| Data Collection Temperature                                 | 100(2) K                                                                                                               |
| θ range for 25368 reflections used in lattice determination | 2.24 to 37.53°                                                                                                         |
| Unit cell dimensions                                        | $a = 27.8035(9) \text{ Å}$<br>$b = 12.0719(4) \text{ Å}$<br>$c = 14.2362(4) \text{ Å}$<br>$\beta = 104.1250(10)^\circ$ |
| Volume                                                      | 4633.8(3) Å <sup>3</sup>                                                                                               |
| Z                                                           | 4                                                                                                                      |
| Crystal system                                              | Monoclinic                                                                                                             |
| Space group                                                 | P2/c                                                                                                                   |
| Density (calculated)                                        | 1.302 Mg/m <sup>3</sup>                                                                                                |
| F(000)                                                      | 1908.4                                                                                                                 |
| θ range for data collection                                 | 1.69° to 38.47°                                                                                                        |
| Completeness to θ = 38.47°                                  | 87.9%                                                                                                                  |
| Index ranges                                                | -47 ≤ h ≤ 48, -17 ≤ k ≤ 19, -24 ≤ l ≤ 24                                                                               |
| Data collection scan type                                   | ω scans at 5 φ settings                                                                                                |
| Reflections collected                                       | 83777                                                                                                                  |
| Independent reflections                                     | 22903 [R <sub>int</sub> = 0.0907]                                                                                      |
| Absorption coefficient                                      | 0.608 mm <sup>-1</sup>                                                                                                 |
| Absorption correction                                       | None                                                                                                                   |
| Max. and min. transmission                                  | 0.9197 and 0.7885                                                                                                      |

## Structure Solution and Refinement

|                                                         |                                       |
|---------------------------------------------------------|---------------------------------------|
| Structure solution program                              | Bruker XS v6.12                       |
| Primary solution method                                 | Direct methods                        |
| Secondary solution method                               | Difference Fourier map                |
| Hydrogen placement                                      | Geometric positions                   |
| Structure refinement program                            | Bruker XL v6.12                       |
| Refinement method                                       | Full matrix least-squares on $F^2$    |
| Data/restraints/parameters                              | 22903/0/501                           |
| Treatment of hydrogen atoms                             | Riding                                |
| Goodness-of-fit on $F^2$                                | 1.219                                 |
| Final R indices [ $I > 2\sigma(I)$ , 14094 reflections] | $R = 0.0476, wR2 = 0.0816$            |
| R indices (all data)                                    | $R = 0.0914, wR2 = 0.0871$            |
| Type of weighting scheme used                           | Sigma                                 |
| Weighting scheme used                                   | $w = 1/\sigma^2(Fo^2)$                |
| Max shift/error                                         | 0.004                                 |
| Average shift/error                                     | 0.000                                 |
| Largest diff. peak and hole                             | 1.995 and -1.110 e. $\text{\AA}^{-3}$ |

## Special Refinement Details

The Ru complex co-crystallizes with two molecules of methanol. The difference electron density Fourier contains a large peak on the 2-fold axis with no other nearby peaks. This peak was incorporated in the model as a site partially occupied by the oxygen of a water molecule. Least-squares refinement suggests 0.14 H<sub>2</sub>O at this site forming a hydrogen bond to Cl4 at a distance of 3.1 Å.

Refinement of  $F^2$  against ALL reflections. The weighted R-factor ( $wR$ ) and goodness of fit (S) are based on  $F^2$ , conventional R-factors (R) are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.