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Abstract

Plasmas interacting with external and self-generated magnetic fields often develop a

long tubular structure of nearly uniform cross section. Such long collimated plasma

tubes have been observed in a variety of contexts ranging from astrophysical plasma

jets (1015–1022 m) to solar coronal loops (107–108 m). Remarkably, much smaller-sized

plasmas (0.1–1 m) produced by the Caltech planar spheromak gun develop collimated

structures bearing a striking resemblance to these natural plasma tubes. This the-

sis presents experimental observations of gun-produced plasma tubes that support a

recently-proposed magnetohydrodynamic (MHD) pumping model as a universal colli-

mation mechanism. For any flared flux tube carrying a finite axial current, the model

predicts (i) magnetic pumping of plasma particles from a constricted region into a

bulged region and (ii) tube collimation if the flow slows down at the bulged region,

leading to accumulation of mass and thus concentrating the azimuthal magnetic flux

frozen in the mass flow (i.e., increasing the pinch force). Time- and space-resolved

spectroscopic measurements of gun-produced plasmas show (i) suprathermal Alfvénic

flow (30–50 km/s), (ii) large density amplification from ∼1017 to ∼1022 m−3 in an

Alfvénic time scale (5–10 µs), and (iii) flow slowing down and mass accumulation

at the flow front, the place where the tube collimation occurs according to high-

speed camera imaging. These observations are consistent with the predictions of the

MHD pumping model, and thus the model offers valuable insight into the formation

mechanism of laboratory, solar, and astrophysical plasma structures.
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Chapter 1

Background

This chapter provides background information on the spheromak formation experi-

ment and the laboratory simulation of astrophysical jets at the Caltech Bellan plasma

group. In section 1, the concept of magnetic confinement of plasmas for thermonuclear

fusion is introduced and the concept of spheromaks is reviewed as a natural magnetic

confinement scheme. In section 2, a novel planar plasma gun used in the sphero-

mak formation experiment is introduced. In section 3, the observation of collimated

plasma structures produced by the plasma gun, which has led to the laboratory sim-

ulation of astrophysical jets, is described. In the following section, a universal MHD

pumping model which explains the collimation process of plasma-filled magnetic flux

tubes is summarized. In the last section, an overview of the following chapters is

given.

1.1 Spheromaks

1.1.1 Magnetic confinement fusion

Nuclear fusion is the merging of two atomic nuclei to form a heavier nucleus. Sustained

nuclear fusion can release a huge amount of energy as in the Sun. The fusion reaction

rate f per volume is

f = n1n2〈σv〉, (1.1)
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where n1, n2 are the number densities of the reactant nuclei, σ is the fusion cross

section, and v is the thermal velocity of the reactants. The term 〈σv〉 becomes

significant only at very high temperatures of 10–100 keV. Sustainable fusion reaction

requires confinement of the reactant particles at these high temperatures and thus

necessarily occurs in a plasma state. Furthermore, a net power production can be

achieved only if the total fusion power Pfusion exceeds the total power loss Ploss, yielding

the Lawson criterion:

Pfusion = fEfV ∼ n2
e〈σv〉EfV, ≥ Ploss ∼ Esystem/τE = V nekT/τE (1.2)

=⇒ neτE &
kT

〈σv〉Ef
, (1.3)

where τE is the confinement time of the high temperature plasma, Esystem is the total

energy content of the system of volume V , Ef is the energy released by a single

fusion reaction, ne is the electron density, and kT is the average thermal energy of

the particles. The critical neτE is ∼1.5 × 1020 sec·m−3 for the deuterium–tritium

reaction.

In the Sun, the gravitational force provides enough confinement time τE to satisfy

the Lawson criterion. However, in terrestrial environment, gravitational confinement

is impossible and other confinement mechanisms are required. Since plasmas are a

good electrical conductor, plasmas can be confined in a magnetic field. A variety of

magnetic confinement devices such as tokamaks, stellarators, and magnetic mirrors

have been constructed since 1950s and much effort has been devoted to solve many

engineering challenges such as construction of large magnetic coils. Relatively sim-

ple designs which require less engineering have been developed later as alternatives.

Examples are reverse field pinches, field reversed configurations, and spheromaks [1].

These are collectively called compact toroids [2] because of their compact dimensions

compared to tokamaks.

Spheromaks [1] are a naturally occurring plasma confinement structure such as

solar prominences [3]. Spheromaks are defined as a plasma structure confined in a

magnetic field configuration characterized by toroidal magnetic flux surfaces bounded
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by a spherical separatix surface as illustrated in figure 1.1. The bounding surface is

simply connected and has no toroidal magnetic field. In contrast to tokamaks and

other magnetic confinement configurations that require large external coils, sphero-

maks are sustained entirely by the magnetic field produced by the internal currents.

In particular, the toroidal magnetic field of spheromaks necessary for particle confine-

ment is produced by the large axial current flowing through the axis of symmetry.

1.1.2 Relaxed state of magnetized plasma

Magnetic helicity [1, chap. 3] is a most important quantity in the theory of magnetic

confinement because the plasma decays into a self-organized relaxed state after under-

going complex instabilities while approximately preserving the total helicity content.

The total magnetic helicity K is defined as

K =

∫
V

A ·Bd3r, (1.4)

where B is the magnetic field strength, A is the magnetic vector potential, and the

integration is over the system volume V .

For an open system linked to the environment by two bounding surfaces, the

helicity can be injected into the system by applying an electrical potential ∆ϕ across

the surfaces:
dK

dt
= 2ψ∆ϕ− 2

∫
V

ηJ ·Bd3r, (1.5)

where ψ is the magnetic flux intercepting the surfaces, η is the electrical resistivity

of the plasma, and J is the current density. The term 2ψ∆ϕ describes the rate of

helicity injection and the volume integral describes the resistive decay of helicity.

The resistive helicity decay rate is small compared to the magnetic energy decay

rate [1, chap. 4]. Thus, the system will evolve into a minimum energy state while

preserving the injected helicity. Using the method of Lagrange multipliers, the min-

imum energy state is obtained by minimizing W − λK, where W =
∫
d3rB2/2µ0 is
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the magnetic energy and λ is the Lagrange multiplier [1, chap. 4]:

0 = δW − λδK =

∫
d3rB · δB − λ

∫
d3r(A · δB +B · δA)

=

∫
d3rB · ∇ × δA− λ

∫
d3r(A · ∇ × δA+B · δA). (1.6)

Using the vector identities

B · ∇ × δA = ∇ · (δA×B) + δA · ∇ ×B,

A · ∇ × δA = ∇ · (δA×A) + δA · ∇ ×A = ∇ · (δA×A) + δA ·B,

and then integrating by parts yields

0 =

∫
dr3δA · (∇×B − 2λB), (1.7)

where the surface integral terms (
∮

(δA×B) · ds and
∮

(δA×A) · ds) vanish due to

the boundary condition. Thus, after redefining λ, the problem reduces to

∇×B = λB. (1.8)

The minimum energy states satisfying this condition are called Taylor states. Since

the current density J = ∇×B/µ0 ‖ B, the J ×B force vanishes and so the Taylor

states are force-free.

For axis-symmetric systems, the solution of equation (1.8) can be expressed in

terms of the poloidal flux ψ as [1, chap. 4]

B =
1

2π
(∇ψ ×∇φ+ λψ∇φ), (1.9)

where φ indicates the azimuthal (toroidal) angle. If the system is confined in a

conducting spherical volume of radius a, the poloidal flux function is

ψ(r, θ) = 2πaB0 rj1(λr) sin2 θ, (1.10)
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Figure 1.1: Flux surfaces of an ideal spheromak. Thick solid circle represents the
boundary of the conducting spherical wall which corresponds to the bounding sepa-
ratix surface ψ = 0. Vertical dashed line is the axis of symmetry. Length scales are
normalized by the radius a of the sphere.

where r is the distance from the origin, θ is the angle from the axis of symmetry, and

j1 is the first-order spherical Bessel function (j1(x) = x−2 sinx− x−1 cosx).

Spheromaks are represented by equations (1.9) and (1.10) in its most idealized

form (i.e., spherical shape) and are one of the force-free Taylor states. The flux

surfaces of an idealized spheromak are illustrated in figure 1.1.

1.1.3 Formation schemes and role of flux conserver

Helicity must be injected into the plasma before it can become a spheromak. A

variety of injection schemes have been successful in producing spheromak plasmas

such as magnetized coaxial gun, z-θ pinch, conical θ pinch, and flux core [4]. The

success of these many injection methods implies that spheromaks are one of the most

natural plasma structures. All the injection methods share a common feature and
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can be summarized in figure 1.2. In the figure, each electrode intercepts vacuum

magnetic field lines and thus has a finite magnetic flux ψ. The vacuum magnetic

field is generated by external coils. When an electric potential ∆ϕ is applied across

the electrodes, helicity will be injected according to equation (1.5), dK/dt = 2ψ∆ϕ.

Since the plasma is conducting, the helicity injection induces a current flowing along

the field lines. After the helicity injection, the plasma dissipates its magnetic energy

via various instabilities and relaxes into the force-free spheromak state.

In practice, most spheromak formation schemes also include a conducting surface

called flux conserver to stabilize spheromaks against instabilities such as tilt and shift

modes [5] [1, chap. 10]. The wall image currents of the flux conserver interact with

the spheromak and confine it within the flux conserver volume.

The eigenvalue λ in the force-free equation (1.8) is determined by the geometrical

shape of the wall confining the spheromak, typically the flux conserver. For example,

λ = y11/a, for a spherical volume of radius a, (1.11)

λ =
√

(x11/a)2 + (π/h)2, for a cylinder of radius a and height h, (1.12)

where y11 is the first zero of the spherical Bessel function j1, x11 is the first zero of

the Bessel function J1, and the aspect ratio of the cylinder h/a < 1.7.

1.2 Coplanar coaxial plasma gun – spheromak for-

mation without flux conserver

The most common and least complex method to generate spheromaks is to use the

magnetized coaxial gun [6]. The device is composed of a pair of concentric cylindrical

electrodes (inner and outer) linked by a vacuum magnetic field produced by an ex-

ternal coil as shown schematically in figure 1.3a. The eigenvalue λ of the spheromak

produced by the coaxial gun is related to the total gun current Igun and the total
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magnetic 

field lines

cathode (-) anode (+)

plasma

current

Figure 1.2: Generic spheromak formation scheme (adapted from [1, chap. 7]). The
externally generated vacuum magnetic field lines are indicated by dashed lines. An
electric potential applied along the field injects helicity according to equation (1.5).
Since the plasma is conducting, a field-aligned current is also generated.

magnetic flux intercepting the inner electrode as

λ =
‖∇ ×B‖

B
=
µ0J

B
=
µ0JSgun

BSgun

∼ µ0Igun

ψgun

, (1.13)

where Sgun is the surface area of the gun. Thus, it is convenient to define this gun

source property as

λgun ≡
µ0Igun

ψgun

. (1.14)

For clarification, the spheromak λ will be denoted as λsph.

A modified coaxial gun design composed of planar electrodes instead of cylindrical

electrodes has been proposed by Bellan and constructed by Hsu and Bellan [7] [8] [9]

(see figure 2.2). The planar configuration has three main advantages.

(1) The planar gun has larger area and thus requires smaller magnetic field to

provide the same ψgun.

(2) Improved λ-matching [1, chap. 8 and 12]: The eigenvalue λ is an intensive prop-

erty of the plasma like the temperature in thermodynamics. The eigenvalue λ

comes about by minimizing the magnetic energy under a constant helicity and

the temperature by maximizing the entropy under a constant internal energy.

Helicity flows along λ gradients to minimize the magnetic energy much like
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heat (energy) flows along temperature gradients to maximize the entropy. Con-

ventional coaxial guns are much smaller in volume than the spheromaks they

produce, and so λgun poorly matches λsph since λ is a geometrical property of a

volume. The larger planar gun has a better matching λgun, resulting in less λ

gradient and thus less plasma instability.

(3) Absence of a flux conserver and the planar geometry of the electrodes provide

better diagnostic access to the entire plasma evolution including the source

gun region. In particular, direct imaging of the gun-produced plasmas became

possible and has revealed the unique dynamics of the plasma structures (see

figure 4.1 for example).

Spheromaks have been successfully produced by the planar gun and the spheromak

formation mechanism has been studied in detail [9]. The kink instability [10, chap. 10]

of the gun-produced plasma jets has been identified as a poloidal flux amplification

mechanism, which is necessary for spheromak formation. Onset of the kink instability

observed experimentally was shown to agree with the Kruskal-Shafranov limit, i.e.,

the plasma becomes kink-unstable when its axial length becomes greater than 1/λgun.

1.3 Collimated plasma structures

In addition to spheromak applications of the planar gun, images of the gun-produced

plasmas showed remarkable similarities with naturally occurring plasmas such as so-

lar prominences and astrophysical jets [8]. In particular, the collimated tube-like

structure (i.e., long tube with a constant area cross-section) is the most conspicuous

common feature. The laboratory plasmas produced by the planar gun are compared

with the naturally occurring plasmas in figures 1.4a and 1.4b.

Solar prominences are arch-shaped magnetized plasma structures protruding from

the surface of the Sun [11]. Typical prominences extend over many thousands of kilo-

meters and are stable in general lasting for days or even months. The sub-category

called coronal loops are especially known for the highly collimated and elongated
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(b) Planar coaxial gun

Figure 1.3: Schematic drawings of (a) conventional cylindrical coaxial magnetized
gun and (b) the planar coaxial magnetized gun.
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magnetic flux tubes. Plasma particles are localized inside the collimated solar promi-

nences, and so there exists a large density gradient across their boundaries. The

stability of the solar prominences despite the large density gradient has not been

understood yet.

Astrophysical jets are also highly collimated and emanate from massive astronom-

ical objects such as active galactic nuclei, young stellar objects, and high-mass X-ray

binaries. The axial extent of the jets (1015–1022 m) are many orders of magnitude

greater than the source objects and the jet velocities can be relativistic. Magnetic

fields observed in some astrophysical jets suggest that magnetohydrodynamics (MHD)

plays an important role governing jet formation and collimation [12].

1.4 MHD pumping mechanism

Motivated by the observations of collimated plasma structures both in nature and

laboratory, Bellan proposed a universal MHD pumping process [13] which explains

why the collimated plasma-filled magnetic flux tubes are ubiquitous. The model is

based on the concept of frozen-in magnetic flux and is summarized below.

1.4.1 Frozen-in flux – magnetic Reynolds number

Dynamics of magnetized plasmas is described by the Maxwell’s equations and the

Ohm’s law,

∇×B = µ0J , (1.15)

∇ ·B = 0, (1.16)

∇×E = −∂B
∂t

, (1.17)

J = σ(E +U ×B), (1.18)

where σ is the electrical conductivity and U is the plasma flow velocity. The displace-

ment current term is ignored in the ∇×B equation provided that the characteristic
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Sun
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(L ~ 100,000 km)
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(L ~ 20 cm)

(a) Solar coronal loops

Centaurus A 
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(L ~ 30,000 ly)
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(L ~ 50 cm)

(b) Astrophysical jet

Figure 1.4: (a) Solar coronal loops (image from the Transition Region and Coronal
Explorer) compared with the laboratory plasma arches. (b) Astrophysical jet (Cen-
taurus A galaxy; Chandra X-ray/Radio image) compared with the laboratory plasma
jet. The laboratory plasmas are produced by the planar coaxial magnetized gun.
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speed is much less than the speed of light. From these equations, the rate of growth

of magnetic field strength can be derived:

∂B

∂t
= −∇× (J/σ)−U ×B =

−1

µ0σ
∇×∇×B +∇× (U × B)

=
1

µ0σ
∇2B +∇× (U × B). (1.19)

The first term (diffusion term) on the right-hand side represents the rate of diffusion

of magnetic fields through plasma due to the finite electrical resistivity η = 1/σ. The

second term (convection term) represents the rate of change of the magnetic field

strength due to the plasma flow. In ideal MHD (E+U×B = 0), the diffusion term

vanishes and the magnetic flux is completely frozen into the plasma flow. In order

to see this, consider the magnetic flux Φ(t) enclosed by a closed surface S(t) in the

plasma at time t,

Φ(t) =

∫
S(t)

B · ds. (1.20)

Taking the convective derivative of the flux Φ(t) using the Leibniz integral rule yields,

DΦ(t)

Dt
=

∮
∂S(t)

B ·U × dl +

∫
S(t)

∂B

∂t
· ds

=

∮
∂S(t)

B ×U · dl +

∫
S(t)

∂B

∂t
· ds

=

∫
S(t)

∇× (B ×U) · ds+

∫
S(t)

∂B

∂t
· ds

=

∫
S(t)

[
∇× (B ×U) +

∂B

∂t

]
· ds

=

∫
S(t)

[∇× (B ×U)−∇×E] · ds

=

∫
S(t)

−∇× (E +U ×B) · ds = 0.

Thus, the flux Φ(t) is invariant in the frame of the moving plasma, i.e., the magnetic

flux is frozen into the plasma.

The magnitude of the convection term relative to the diffusion term determines

whether the magnetic field at a point in the fluid may build up fast enough before it
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diffuses into the surroundings. The condition for magnetic field building up by fluid

motion is that the frozen-in flux term is much greater than the diffusion term:

‖∇ × (U ×B)‖ ∼ UB

L
�
∥∥∥∥ 1

µ0σ
∇2B

∥∥∥∥ ∼ B

µ0σL2

µ0σUL� 1, (1.21)

where L is the characteristic length over which magnetic field varies.

Hence, the quantity µ0σUL, called the magnetic Reynolds number (Rm) or Lund-

quist number, is of fundamental importance in magnetized plasma. For plasmas with

a small magnetic Reynolds number, there is no large gradient of magnetic fields in

the plasma and the action of magnetic fields can be considered like a viscous drag on

the fluid due to induced eddy currents. For plasmas with a large magnetic Reynolds

number, the magnetic flux is carried by the fluid. The action of magnetic fields can

now be thought as if a lateral pressure B2/2µ0 is applied normal to the lines of force

and a longitudinal tension B2/2µ0 is applied along the lines of force. The magnetic

Reynolds number is often obtained from the ratio of two characteristic time scales:

Rm = τr/τA, (1.22)

where the resistive diffusion time scale τr = µ0σL
2 and the Alfvén time scale τA =

L/U . The diffusion time scale is obtained by considering

(
∂B

∂t

)
diffusion

=
1

µ0σ
∇2B,

B/τr ∼
B

µ0σL2
=⇒ τr ∼ µ0σL

2. (1.23)

Rm � 1 for our plasmas and so the magnetic flux is frozen into the plasma motion.

1.4.2 MHD pumping and collimation model

Consider a cylindrical magnetic flux tube as illustrated in figure 1.5. Initially, the

flux tube is flared in the middle and has no current, and the plasma particles are
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Figure 1.5: Collimation of initially flared flux tube (adapted from [13]). Solid lines
are initial magnetic flux surfaces and dashed lines are the same flux surfaces at a later
time.

concentrated near the foot points. An electric potential is applied along the field

lines and subsequently an axial current starts to ramp up. Note that this situation

coincides with the generic configuration for helicity injection discussed in section 1.2.

The J×B force has a net axial component due to the flared geometry and creates

axial flows.

ρ
dUz
dt

= (J ×B)z −
∂P

∂z
= JrBφ − JφBr −

∂P

∂z

= − ∂

∂z

(
B2
φ

2µ0

)
− ∂P

∂z
− JφBr = − ∂

∂z

(
B2
φ

2µ0

+ P

)
− JφBr (1.24)

(∵ µ0Jr = −∂Bφ

∂z
due to the cylindrical symmetry),

where Uz is the z-directed flow velocity, ρ is the mass density, and B, J , and P are

the magnetic field strength, current density, and pressure, respectively.

The radial component of the J × B describes the pinch force. The pinch force

is greater near the foot points since both the current density J and the magnetic

field strength are greater there than in the middle. Thus, without a radial force

balance, the plasma will become more constricted at the foot points and eventually

disrupt (sausage instability [10, chap. 10]). To exclude this unstable situation from
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consideration, assume that the pressure buildup due to the pinching quickly balances

the pinch force:
∂P

∂r
= −JzBφ. (1.25)

Also, assume that the current density Jz is uniform inside a cross section of the flux

tube, i.e., Jz(z, r) = Jz(z) = I0/πa(z)2, where I0 is the total current flowing in the

flux tube and the local tube radius a(z) describes the flaring of the flux tube. Then,

Bφ =
µ0(Jzπr

2)

2πr
=
µ0Jzr

2
, (1.26)

∂P

∂r
= −JzBφ = −µ0J

2
z r

2
, (1.27)

P = −µ0J
2
z

4
(r2 − a2) =

B2
φ

µ0

(
a2

r2
− 1

)
. (1.28)

Thus, equation (1.24) becomes

ρ
dUz
dt

= − ∂

∂z

[
B2
φ

µ0

(
a2

r2
− 1

2

)]
− JφBr

= − ∂

∂z

[
B2
φ,a

µ0

(
1− r2

2a2

)]
− JφBr, (1.29)

where Bφ,a = µ0I0/2πa is the azimuthal magnetic field at the flux tube radius a. Near

the axis, JφBr and r2/a2 are very small, yielding an approximate expression

ρ
dUz
dt
≈ − ∂

∂z

[
B2
φ,a

µ0

]
. (1.30)

Thus, the magnetic energy density term B2
φ,a/µ0 acts like an effective potential and

so the plasma particles will move axially falling down this potential. Equation (1.30)

can also be expressed in terms of the flux tube flaring (∂a/∂z):

ρ
dUz
dt
≈ − ∂

∂z

[
µ0I

2
0

4π2a2

]
=

µ0I
2

2π2a3

∂a

∂z
. (1.31)

The potential B2
φ,a/µ0 has the minimum at the middle of the flux tube due to

the flared geometry of the flux tube. Therefore, counter-streaming axial flows will
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be generated from both foot points toward the middle. The counter-streaming flows

collide with each other and so stagnate in the middle, resulting in accumulation of

plasma particles there. By the frozen-in flux condition, the azimuthal magnetic flux

carried by the flows also accumulates in the middle, which increases the azimuthal

magnetic field strength Bφ. As a result, the pinch force JzBφ increases and squeezes

the magnetic flux tube in the middle. Thus, the magnetic flux radius becomes uniform

axially, i.e., the magnetic flux tube becomes collimated.

1.5 Overview of the following chapters

The present thesis work addresses the experimental verification of the MHD pumping

model as a universal collimation mechanism. The experimental setup to produce col-

limated plasma tubes is described in chapter 2 and the diagnostic devices to measure

the plasma properties are described in chapter 3. In particular, construction of a

high-resolution spectroscopic system for the plasma density and flow velocity mea-

surements is described in detail. In chapter 4, experimental results are presented and

discussed in detail, showing that the observations are consistent with the MHD pump-

ing model. A theoretical background for the plasma density diagnostics is provided

in chapter 5 and a simple method for obtaining the plasma density from spectral line

profiles is explained in chapter 6. A summary of this thesis work is given in the final

chapter.
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Chapter 2

Experimental setup – boundary
conditions

The experimental setup used in this work provides the physical boundary conditions

on the evolution of plasma structures. The experimental setup has been developed

and improved over a decade and will be summarized in this chapter. Knowledge of the

experimental setup and hence the boundary conditions of the experiment is necessary

to comprehend the motivations behind the experiment as well as to properly interpret

experimental observations.

The experimental setup comprises five major components: vacuum chamber,

spheromak plasma gun, gas injection system, timing system, and diagnostics. The

vacuum chamber provides a free space into which plasma can evolve. The spheromak

plasma gun produces magnetized plasma structures. The plasma gun is mounted on

the north end dome of the chamber as shown in figure 2.1. The plasma gun comprises

cathode and anode electrodes, gun capacitor bank, stuffing flux system, and gas feed

lines. The gas injection system delivers high pressure gas into the vacuum on a msec

time scale. The timing system consists of two independent sub-timing modules: main

timing and diagnostic timing. The main timing module triggers various power sup-

plies for the plasma gun and the gas injection. The diagnostic timing module triggers

diagnostic devices in sync with plasma breakdown. The diagnostic devices will be

discussed in the next chapter.
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2.1 Vacuum chamber

The vacuum chamber is shown schematically in figure 2.1. The vacuum chamber

provides a free boundary condition for plasmas produced in the present experiment;

the plasma structures evolve without much interaction with the chamber wall be-

cause the plasma dimensions (1–10 cm in diameter and 10–50 cm in length) are much

smaller than the chamber dimensions. This is in contrast to other spheromak experi-

ments where the plasma geometry and the magnetic field configuration are essentially

constrained by the chamber wall.

The vacuum is maintained at a background pressure Pbkg = 1–2×10−7 torr (corre-

sponding to a particle density ∼5× 1015 m−3 at room temperature) by the cryopump

(APD-12S; ∼1000 liters/sec pumping speed for air). The pressure is monitored by a

Bayart-Alpert-type ionization gauge. Maintaining a good vacuum is important since

it is observed that the plasma evolution is hampered in a poor vacuum condition

Pbkg & 10−5 torr. The vacuum quality is compromised primarily by two factors; (1)

desorption of gas molecules (especially water) absorbed by the chamber wall when

exposed to atmosphere and (2) leaks through O-rings and gaskets. These two factors

are indistinguishable in practice and observed as a single effective leak. The effective

leak of the chamber can be estimated by a simple procedure described in appendix A.

In case of a large leak, this procedure can be applied to quantify the leak and thus

facilitate the location of the leak.

2.2 Spheromak plasma gun

2.2.1 Coplanar coaxial electrodes

The electrodes of the plasma gun are planar (figure 2.2a) in contrast to cylindrical

electrodes used in other spheromak experiments. The planar configuration permits

direct observation of the entire plasma formation process. The inner electrode (cath-

ode) is a disc copper plate and has eight gas orifices evenly spaced in a circle. The

outer electrode (anode) is an annular copper plate and is coaxial and coplanar with
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8" viewport
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1.6 m

plasma jet

electrodes

Figure 2.1: Vacuum chamber. Total volume is ∼2.4 m3 and the base pressure is
1–2× 10−7 torr. The chamber dimensions are much greater than plasma. An image
of a kinked plasma jet is inset for size comparison. The plasma expands freely without
interaction with the chamber wall.

the cathode. The anode also has eight orifices at locations corresponding to the cath-

ode orifices. The gas orifices are channeled to the gas injection system explained in

the section 2.3. The small annular gap between the two electrodes is 6 mm wide.

The condition for gas breakdown by the electrodes can be qualitatively understood

by the empirical law known as Paschen’s law [14]; the breakdown voltage Vs is a

function of pd, gas pressure(p) times discharge path length(d). The breakdown voltage

Vs has a minimum at some pd = (pd)min called Paschen minimum, increases slowly

for pd > (pd)min, and increases rapidly for pd < (pd)min. The Paschen minimum

(pd)min for common gases such as N2, H2, and Ar used in this work is ∼1 cm·torr. A

path connecting an inner gas orifice and an outer gas orifice gives pd ∼ (pd)min since

p ∼ 0.5 torr near the orifices (cf. section 2.3) and the path length d is a few cm.

Hence, a sufficiently high voltage applied to the electrodes will break down the gas

along such paths. However, pd � (pd)min in the small gap between the electrodes

because of low p ∼ 10−7 torr and small d = 0.6 cm, and so there will be no gas

breakdown across the gap. No breakdown will occur in the tight space (figure 2.2b)
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between the re-entrant port (at high voltage) and the chamber wall (at ground) for

the same reason.

High voltage (3–8 kV) is applied across the electrodes using a 120 µF capacitor

bank (high voltage (HV) gun bank) switched by an ignitron. The gun bank supplies

a current of the order of 60–150 kA flowing through the plasma.

2.2.2 Stuffing flux system

The bias coil is mounted at the end-plate of the re-entrant port flush against the inner

electrode. It produces an axisymmetric bias poloidal field as illustrated in figure 2.2b.

The coil current is supplied by a 14.4 mF power supply and peaks at ∼6.5 msec after

the power supply is triggered as traced by a current monitor. The time scale of

the coil current is much greater than the ∼20 µsec plasma lifetime so that the bias

poloidal field is constant over the duration of the plasma.

The poloidal flux is attenuated by the skin effect (eddy current) of both the copper

electrode (3.2 mm thick) and the stainless steel end-plate (9.5 mm thick). The skin

depth is the distance δ through which the amplitude of a plane wave decreases by a

factor e−1 and is given by

δ =
√
τ/πσµ ≈

 9.3 mm for copper

62 mm for stainless steel,
(2.1)

where τ ≈ 20 msec is the pulse length of the coil current, σ is the electrical con-

ductivity, and µ is the permeability (≈ µ0 for non-magnetic materials). Hence, the

magnetic field strength is attenuated by a factor of e−3.2/9.3 × e−9.5/62 ≈ 0.6 and so

is the poloidal flux. The peak timing of the poloidal flux is also delayed by the skin

effect and is different from the peak timing of the coil current. The measured poloidal

flux peaks at ∼10 msec with the peak flux of 1.4 mWb per 100 V, linear with the

power supply voltage.

The nominal LCR parameters of the stuffing flux system are 2.8 mH coil induc-

tance, 14.4 mF power supply capacitance, and 0.4 Ω DC resistance. However, the
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Figure 2.2: Spheromak plasma gun (designed by S. C. Hsu [7]). Inner electrode is an
oxygen-free high-conductivity (OFHC) copper disc plate of 19.1 cm (7.5′′) diameter.
Outer electrode is an OFHC copper annulus plate of 50.8 cm (20′′) outer diameter
and 20.3 cm (8′′) inner diameter. The electrodes are 3.2 mm (1/8′′) thick. The inner
electrode is mounted on the re-entrant port, which is insulated from the chamber by
a ceramic break. The outer electrode is mounted on four hollow copper tubes (two at
the bottom and the other two at the top of the electrode), each of which is anchored
to the chamber wall by a stainless steel threaded rod. Axisymmetric poloidal field is
produced by the bias coil of 110 turns located behind the inner electrode.
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Figure 2.3: Gas line plumbing (designed by Setthivoine You). There are two in-
dependent gas lines labeled by gas line A and B. Each gas line has a six-way valve
connected to six high-purity gas cylinders. The six-way valve selects a gas to feed the
gas line. Each of the four fast gas valves can be connected to either the gas line A or
B by a two-way valve.

effective inductance (∼1.6 mH) as estimated from current traces is smaller than the

nominal inductance due to the eddy currents induced on the inner electrode [15]. The

eddy currents exert a large repulsive force on the bias coil. The measured effective

capacitance (∼19 mF) is somewhat larger than the nominal capacitance.
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2.3 Gas injection system

2.3.1 Flexible plumbing

A flexible plumbing system shown schematically in figure 2.3 has been developed by

S. You to make possible a variety of gas injection scenarios. The plumbing system

was later reconfigured to the current setup by S. You and G. S. Yun and extended

to the solar prominence simulation experiment [11] by S. K. P. Tripathi and E. V.

Stenson. In each experiment, a single gas species can be injected into the chamber or

two gas species can be injected in eight different ways.

The plumbing system is divided into two independent gas lines (labeled as A and

B in the figure). A single gas species is selected among six gas species and fed into

each gas line. The gas is injected into the vacuum chamber by four fast gas valves.

Each fast gas valve is connected to a manifold, which splits the gas flow into four

gas feed lines. The fast valves are labeled as inner left (IL), inner right (IR), outer

left (OL), and outer right (OR) according to their locations. The IL valve injects gas

through the four orifices on the left half plane of the inner electrode and the IR valve

injects gas through the other four orifices on the right. The OL and OR valves inject

gas through orifices on the outer electrode in the same manner.

2.3.2 Fast gas valve

A pressurized gas (60–100 psi) fills the 2.7 cm3 plenum of the fast gas valve (figure 2.4).

The diaphragm loaded by a spring presses an O-ring against the gas line, sealing off

the plenum from vacuum. A coil is wound underneath the diaphragm. When a pulsed

current flows in the coil, a current of the opposite sense (i.e., eddy current) is induced

on the diaphragm and the diaphragm is pushed up against the spring and the back

pressure. This action temporarily relieves the O-ring seal, allowing the gas to flow

from the plenum into the vacuum by a large pressure gradient.

The total throughput of the fast gas valve depends on the back pressure and the

coil current. The throughput can be measured by the average pressure rise per puff.
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diaphragm
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gas inlet
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Figure 2.4: Fast gas valve (designed by P. M. Bellan). A high pressure gas fills
the valve body including the small plenum (2.3 cm3) underneath the diaphragm.
When a current pulse flows through the coil, an eddy current is induced on the
diaphragm. The repulsive force between the coil current and the eddy current opens
the diaphragm for a few msecs against the spring force (spring constant = 1600 N/m)
and the back pressure force (1–10 N). About 20% of the gas in the plenum is injected
into the chamber during the opening. The total gas throughput is controlled by the
coil current and the back pressure.
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For a typical operation of 70 psi nitrogen in the gas line, a single fast valve gives a

pressure rise ∆P ∼ 0.8 mtorr ≈ 0.1 Pa per puff in the vacuum chamber. Since the

chamber volume V is 2.4 m3, the total number of puffed particles is

NT = ∆P · V/kT = 5× 1019, (2.2)

which is about 20% of the total number of particles available in the plenum. It will

be shown later that about 20% of the puffed particles are used in making a plasma

jet (see section 4.4). Most of the gas particles are pumped into the chamber within

∼5 msec (cf. appendix B), giving the average particle flux rate

dNT/dt ≈ 1019 msec−1. (2.3)

Since there are four gas lines connected to each fast gas valve, the flux rate for a

single gas line is
dN1

dt
=

1

4

dNT

dt
≈ 2× 1018 msec−1. (2.4)

It is interesting to note that this flux rate is comparable to the theoretical flux rate

for steady-state flow of rarefied gases through tubes [16],

K = W · S · n1u1

4
= (8a/3L) · πa2 · n1

4

√
8kT

πm
, (2.5)

where W is transmission probability (also known as Clausing factor), S, a, and L

are the cross-sectional area, radius, and length of the tube, respectively, n1 is the

upstream particle density, u1 is the upstream average particle speed, and m is the

particle mass. Upstream properties are denoted by the subscript 1 and downstream

properties by the subscript 2. It is assumed that n1 � n2 and the gas temperature

T is constant. Using a ≈ 2 mm and L ≈ 1 m for our gas lines, the flux rate for

P1 = 70 psi nitrogen gas puffing (n1 = 1.2 × 1026 m−3 and u1 = 470 m/sec at

T = 300 K) is

K ≈ 1018 msec−1. (2.6)
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The downstream density n2 at the orifice may be estimated by assuming u1 = u2

and using the continuity of the flux rate K:

K = (8a/3L) · πa2 · n1u1

4
= πa2 · n2u2

=⇒ n2 = (2a/3L)n1 ∼ 1023 m−3 (2.7)

(P2 ≈ (2a/3L)P1 ∼ 0.1 torr).

The gas expands freely after leaving the orifice so the density n will decrease as

n ∼ 1/z2, where z is the axial distance from the orifice:

n(z) ∼ n2 × (a/z)2 ∼ 1019 m−3 at z = 100 mm. (2.8)

The plasma density measured at the same location 5–10 µsec after breakdown is

∼1022–23 m−3, showing that the measured density is not a result of ionization of

the neutral gas cloud but due to an active pumping of plasma particles from the

source region. The MHD pumping mechanism described in section 1.4 drives plasma

particles out of the orifice.

2.4 Main timing – gas breakdown sequence

The main timing system triggers various power supplies for the stuffing flux coil, the

fast gas valves, and the HV gun bank. The timing system is optically isolated from

the power supplies to break ground loops [17] as well as to protect it from accidental

electrical shocks. All the power supplies are designed to be optically triggered. The

timings are configured such that the HV gun bank is switched at the maximum of

the bias poloidal flux and the optimal density (i.e., Paschen minimum) of the gas

cloud. Referenced to the HV gun bank trigger timing (0 µsec), the stuffing flux coil is

energized at −10 msec and then the fast gas valves are triggered at between −6 and

−1 msec depending on the injected gas species. An example configuration of timings

is illustrated in figure 2.5.
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Figure 2.5: An example of timing configuration. The main timing system controls
trigger pulses indicated by dashed lines (left to the main HV bank, except the VME
data acquisition) in msec time scale. The breakdown jitter is 0–10 µsec. The diag-
nostic timing system controls trigger pulses indicated by solid lines (right to the main
HV bank) in µsec time scale. The trigger lag is about 0.45 µsec (see section 3.5). The
legends are self-explanatory except PI ICCD – triggers Princeton Instruments ICCD
camera, PI Stop Clean – stops the continuous flushing of the PI ICCD pixels, OMA
Ext. – triggers the timing module of the Andor ICCD detector of the spectroscopic
system, and OMA Gate – gates the Andor ICCD.

The timings are uploaded into an 8-channel delay generator (Berkeley Nucleonics,

Model 565) using a LabView program. The delay generator initiates generation of

output pulses upon an external trigger. The output pulses are fed into a home-built

8-channel electro-optical pulse doubler (built by D. Felt). The pulse doubler generates

two optical trigger signals, one at the rising edge and the other at the falling edge of

each delay generator pulse, making total of 16 optical trigger signals.

The gas breaks down within 10 µsec but at random after a high voltage is applied

across the electrodes. This randomness or jitter of the breakdown timing is greater

than the time scale of plasma evolution (∼1 µsec), so the HV gun bank timing cannot

be used to synchronize diagnostics. A separate timing scheme for diagnostics has been

developed to trigger diagnostics at the actual gas breakdown. The diagnostic timing

system is described in section 3.5.
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2.5 Plasma formation

A distinctive plasma structure forms as the gas breaks down by triggering the stuffing

flux system, the gas injection system, and the HV gun bank in sequence as described

in the previous section. Figure 2.6 illustrates a typical profile of gas cloud and bias

field at the instant of the breakdown. The initial plasma structure is defined by eight

flux tubes indicated by red solid field lines in the figure. Each flux tube spans a gas

orifice on the cathode and the corresponding orifice on the anode. The breakdown

condition is optimal along the flux tubes where gas density is highest. The ionized

gas particles are pumped into the flux tubes from the source gas orifices by MHD

force, forming a distinctive structure reminiscent of spider legs as shown in figure 2.7.

The eight plasma-filled current-carrying flux tubes will be referred to as spider legs.

Subsequent evolution of the spider legs is characterized by MHD force and will be

discussed in chapter 4.
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Figure 2.6: Neutral gas density profile and bias field lines (dashed lines) at the gas
breakdown. Each field line is labeled by the amount of the poloidal flux (in mWb)
enclosed by the circle whose radius is from the axis of symmetry to the field line.
Colors represent the normalized density in a logarithmic scale as shown in the scale
bar. Red solid lines define the flux tubes where inside the gas will break down. The
density profile in the flux tubes are highlighted.

Figure 2.7: Eight plasma-filled current-carrying flux tubes (shot# 6529: N2 inner +
Ne outer). This distinctive plasma structure reminiscent of spider legs is formed by
breaking down the gas cloud shown in figure 2.6.
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Chapter 3

Diagnostics

The spheromak experiment has a set of diagnostics to measure plasma properties such

as current, magnetic field, density, flow velocity, and geometry of plasma structures.

Each diagnostic corresponds to an observable quantity of the plasma. An observable

quantity may be a result of complex underlying physics and can give a valuable

information about the plasma once the underlying physics is known. For example,

electron density can be obtained if the Stark broadening of spectral lines due to

charged particles is understood (ref. chapter 5).

Plasma properties are time-varying on the scale of µsec, and so every diagnostic

must be recorded and synchronized to each other within an uncertainty much less

than this plasma time scale.

3.1 VME digitizer system

Many diagnostic signals are recorded by a multichannel fast digitizer system and such

signals are automatically synchronized with each other. The digitizer system com-

prises twelve data acquisition (DAQ) boards (SiS GmbH SIS3300; 8-channel 100 MHz

12-bit, 50 Ω input impedance, 256K samples/channel memory) and one counter board

(SIS3820; 32-channel 50 MHz) installed on a VME crate. Initiated by an IDL com-

puter code, each DAQ board continuously samples until it receives a stop signal from

the counter board. The counter board is triggered by the main timing system (ref.

section 2.4), typically somewhere between 0.5 and 2 msec after the HV gun bank
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discharge. The IDL computer code retrieves the sampled data from the DAQ boards

later on.

The VME digitizer system records the voltage and current traces of the plasma

gun, magnetic probe signals, etc. There are diagnostic data not recorded by the VME

system such as camera images and spectroscopic signals. Those diagnostics are syn-

chronized with the VME-recorded data by a timing scheme described in section 3.5.

3.2 High-voltage probe

The plasma gun voltage (Vgun) is measured by a 1000:1 high-voltage probe (Tektronix

P6015; 20 kV Max, 75 MHz). The Vgun signal goes through a line driver to match

the VME system’s 50 Ω input impedance. A typical Vgun trace is characterized by

four distinctive stages (figure 3.1a): (1) constant Vgun held at the applied voltage for

less than 1 µsec up to 10 µsec before gas breakdown. (2) sudden voltage drop at

the moment of gas breakdown. (3) a plateau at about half the applied gun voltage.

The plateau is sustained as long as the plasma carries the gun current. (4) sinusoidal

decay phase as the plasma is detached from the electrodes and the gun current flows

through dump resistors.

The duration of the first stage is purely random and so the delay of gas breakdown

cannot be controlled precisely, making it difficult to synchronize diagnostic signals (see

also discussions in section 2.4 and section 3.5). The breakdown delay is longer for

heavier gases in general.

3.3 High current transducer – Rogowski coil

The gun current is of the order of 100 kA and approximately sinusoidal (figure 3.1b).

A home-made Rogowski coil is wrapped around the 7.5′′ diameter re-entrant port

of the plasma gun (figure 2.2b) to measure the time-varying gun current (dIgun/dt).

The Rogowski coil signal is integrated by a passive integrator circuit (figure 3.2). The

current Igun measured by the Rogowski coil is calibrated using a current monitor as
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(b) Current trace

Figure 3.1: Typical voltage and current traces of the plasma gun (shot# 7220: N2

70 psi, Vgun = 5 kV).

explained in figure 3.3.

3.4 Multichannel magnetic probe

A 20-unit magnetic probe array constructed by Romero-Talamás [18] has been used

to investigate the magnetic field structure of the plasma. Each unit is a cluster of

three mutually orthogonal miniature commercial chip inductors. The probe array

measures three-dimensional magnetic field at twenty locations, 20 mm apart. It is

mounted on a right-angle arm so that both its axial and radial locations can be

adjusted as shown in figure 2.2a. A measured magnetic field structure is shown in

figure 3.4a. A method known as Single Shot Propagation Inference method [19] can be

used to obtain a qualitative picture of the spatial configuration (B(r, z)) of magnetic

field from a single magnetic probe measurement (B(r, t)). The method assumes that

the magnetic field structure embedded in the plasma merely translates along the axial

(z) direction:

B(r, z, t) = B(r, zprobe, t− (z − zprobe)/v), (3.1)

where zprobe is the location of the probe and v is the translation velocity. A plasma im-

age is overlaid with the corresponding magnetic field structure drawn by this method

in figure 3.4b.
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Figure 3.2: Passive integrator circuit for Rogowski coil (designed by P. M. Bellan).
The effective resistance of the circuit is Reff = 150‖(150 + 50) ≈ 86 Ω, giving the
RC time constant of 86 · 2 × 10−6 sec = 170 µsec. The Rogowski coil is made of 72
turns of a semi-rigid coax cable (Micro-coax UT 85) with break in shield. The major
diameter of the coil is 11.5′′, the minor diameter is 0.375′′, and the space between
turns is 0.5′′. The coil is isolated from the VME digitizer by a transformer. A triaxial
cable connects the Rogowski coil to the integrator circuit. The outermost shield of
the triaxial cable and the metal enclosure as a whole acts like a Faraday cage blocking
electrical noises produced by the plasma gun.

0 20 40 60 80

-5

-4

-3

-2

-1

0

1

Time [Μs]

C
u

r
r
e
n

t
[k

A
]

Figure 3.3: Rogowski coil calibration. The Rogowski coil was wrapped around a
wire carrying a current pulse produced by discharging a capacitor. The wire was also
passed through a current monitor (Ion Physics CM-01-L; 1 V/kA, saturation

∫
Idt

= 2 A·sec). Dashed line is the reference current measured by the current monitor.
Solid gray line is the calibrated Rogowski coil signal. The calibrated signal correctly
reproduces the reference signal for the first 40 µsec, but it drifts a little bit from the
reference afterward.
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(a) Magnetic field structure (b) Plasma overlaid with its magnetic field
structure

Figure 3.4: Magnetic field structure measured by the magnetic probe array (shot#
7353; H2 plasma). Contours of magnetic field energy density (B2/2µ0) are shown.

3.5 Timing of diagnostics

A separate timing system similar to the main timing system (ref. section 2.4) has

been developed in order to synchronize or trigger diagnostics with respect to the

gas breakdown. The diagnostic timing system comprises an external trigger source,

an 8-channel delay generator, and a pulse doubler. The external trigger source for

generating a pulse at the instant of breakdown is necessary since the main timing

system cannot provide such a pulse due to the breakdown jitter (ref. section 3.2).

The delay generator is triggered by the external trigger and subsequently produces

eight independent pulses with adjustable delay and pulse length. To prevent electrical

shocks and ground loops, each delay generator pulse (except the OMA gate pulse;

see figure 2.5) is fed into the pulse doubler instead of going directly to a diagnostic

device through an electrical cable. Each optical pulse from the pulse doubler goes to a

designated diagnostic device via an optical cable. The optical pulse is converted back

to an electrical pulse by a small home-built battery-operated optoelectric transducer

(OET; built by D. Felt) before entering the diagnostic device.

Two types of external trigger method have been developed and are described here.

(1) The abrupt change in Vgun trace as indicated in figure 3.1a corresponds to the

instant of breakdown. A voltage comparator circuit was built to detect the

abrupt voltage change and generate a subsequent trigger signal. The trigger
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lags behind the breakdown by ∼0.1 µsec due to the finite rise time of the

voltage. However, a better method to detect breakdown had been sought since

the voltage threshold of the comparator had to be re-adjusted for different

settings of the gun voltage and the noise in the voltage signal near breakdown

made false triggers occasionally.

(2) An optical method to detect the breakdown was motivated by the fact that

the breakdown is always accompanied by substantial optical radiation from the

resultant plasma, especially from inside the gas orifices. The emission light

from one of the eight inner gas orifices is collected by a collimator lens focused

on that orifice and fed into an optical fiber. The optical signal is converted

to an electrical signal by an OET to trigger the delay generator. This optical

scheme provides a reliable detection of breakdown free from the problems in the

previous method with about the same trigger lag of ∼0.15 µsec.

Although both of the methods are able to detect the breakdown within 0.15 µsec,

the actual trigger pulses arriving at diagnostic devices are further lagged as much as

0.3 µsec due to the internal delays of the delay generator, the pulse doubler, OETs,

and optical/electrical cables. The total trigger lag is 0.45± 0.05 µsec.

This trigger lag is taken into account when comparing the diagnostic data triggered

by the diagnostic timing system (fast digital cameras, spectrometer, etc) with the

VME-digitized signals (Vgun, Igun, magnetic data, etc) which are not triggered by the

diagnostic timing system. An example configuration of diagnostic timings (together

with main timings) is illustrated in figure 2.5.

3.6 Fast digital cameras

The gun-produced plasma is rapidly evolving and highly radiative. Images of the

plasma are taken by a multiframe high-speed intensified-CCD camera (DRS Hadland,

Imacon 200; 10 bpp dynamic range, 1200 × 980 pixels, 6.7 µm square pixel). The

Imacon camera can take up to 16 frames per shot. The exposure and delay of each
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frame can be configured in 5 nsec precision, a sufficient time resolution for capturing

the µsec-scale plasma evolution. In a normal configuration, 16 frames are taken at

an equally spaced time interval. Each frame can also be multiply exposed to capture

multiple plasma images in the frame, for example to see the evolution of the plasma

in finer time scale without reducing the total time span.

A system of dual single-frame CCD cameras (Princeton Instruments, ICCD-576-

G/RB-E; 16 bpp dynamic range, 576×384 pixels, 22.5 µm square pixel) is sometimes

used for sharper images (because of the better dynamic range). The exposure and

delay of the Princeton ICCD cameras can be configured to a 10 nsec precision.

Optical filters can be put on the camera lenses to measure the plasma radiation

within a specific optical bandpass. Filtered plasma images are used to identify particle

species in plasmas made of multiple gas species.

3.7 Spectroscopic system

Shifts and broadenings of spectral lines emitted by plasma reflect the physical condi-

tion of the plasma such as density, temperature, and flow velocity. A low-resolution

spectroscopic system (consisted of an optical fiber, a 0.22 m spectrometer, and an

ICCD detector) was used to infer plasma conditions from spectral line profiles in a

previous attempt by C. Yang [20]. Broadenings of Hα and Hβ lines as large as 1.3 nm

were observed and attributed to the Stark effect and the thermal Doppler effect. The

Stark broadening is a density effect caused by local electric fields due to ions and

electrons in the plasma and is summarized in chapter 5. The Hα line width was used

to estimate the temperature assuming it is strictly Doppler broadened and the Hβ

line width subtracted by the Hα line width was used to estimate the density. This

procedure would give a reasonable density in case of a large broadening much greater

than the 0.2 nm instrumental broadening of the spectrometer since the Stark effect is

about 5 times stronger for the Hβ line than the Hα line. A peak density of the order

1022 m−3 was reported in the study.

The large broadening of the Hβ line was routinely observed in later experiments
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by the present author using the same spectroscopic system. However, the spectral

resolution of the spectrometer was not sufficient enough to estimate density less than

1021 m−3 nor to see any Doppler shift for flow velocity measurement. It was also

difficult to estimate densities of non-hydrogen plasmas since Stark broadenings of

non-hydrogenic lines are at least an order of magnitude smaller than hydrogen lines.

A multichannel high-resolution spectroscopic system has been constructed in or-

der to improve the spectral resolution. The ability to measure spectra at multiple

locations of the plasma with definite lines of sight has also been implemented into the

new spectroscopic system since the plasma is inhomogeneous and its detail structure

is not reproducible. The spectroscopic system, illustrated in figure 3.5, comprises a

camera lens, a 12-channel fiber array, entrance optics, a high resolution spectrometer,

and an intensified CCD detector. The camera lens forms an image of plasma on the

plane of the fiber array input. The plasma emission is intercepted by the fiber array

at 12 different locations and fed into the spectrometer. The emission spectra analyzed

by the spectrometer are then recorded by the ICCD detector. The ICCD detector

is triggered and gated by the diagnostic timing system as indicated by “OMA Ext.”

and “OMA Gate” respectively in figure 2.5.

The specifications of the spectroscopic system are summarized below:

(1) The wavelength range is 200–500 nm, where the lower end is limited by the

camera lens and the upper end by the spectrometer.

(2) The spectral resolution is calculated from the spectrometer and ICCD param-

eters according to

R(λ) =
∆x

2L

√(2d cosα0

m

)2

− λ2 + λ tanα0

 , (3.2)

where R(λ) is the pixel resolution (wavelength per pixel), ∆x is the ICCD pixel

size, L is the focal length of the spectrometer, α0 is half the angle between

the incident and the diffracted light on the grating, d is the groove spacing

of the grating, m is the diffraction order, and λ is the selected wavelength.
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Figure 3.5: Schematic drawing of the spectroscopic system. The system consists of
(a) Czerny-Turner spectrometer (JY Horiba 1000M: 1 meter focal length, f/8 aper-
ture, 3600 grooves/mm grating), (b) F/# matching entrance optics (c) 12-channel
linear fiber assembly (RoMack custom design; UV/VIS grade, 0.22 NA, 100 µm core
size, 10 meters long) (d) camera lens (e) collimator (Fiberguide MACRO collimator;
22.2 mm aperture, 0.22 NA), (f) optoelectric transducer (OET), (g) diagnostic tim-
ing system, and (h) intensified CCD detector (Andor ICCD DH520-25F-03; 16 bpp
dynamic range, 800× 256 active pixels, 26 µm square pixel).
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The derivation of equation (3.2) is given in appendix C. The accuracy of this

calculation has been verified over a wide range of reference wavelengths using

spectrum tubes (Hg, D2, O2, and Ar).

(3) The temporal resolution, i.e., minimum gate width of the ICCD detector with

reasonable signal-to-noise ratio, is about 0.3 µsec. The temporal resolution

is mainly limited by optical throughput, which is maximized by matching f-

numbers between optical components.

(4) The spatial resolution is determined by the fiber diameter and the magnification

of the imaging optics. Each fiber in the fiber array intercepts a line of sight

volume of diameter ∼3–5 mm. The interspace between the lines of sight is

approximately 10 times the line of sight diameter, which is ∼30–50 mm, when

the focal length of the camera lens (d) in figure 3.5 is 50 mm. The spatial

resolution is also affected by the temporal resolution because the plasma jets

move very fast. For example, if the ICCD gate width is 1 µsec and the jet

velocity is 30 km/sec, the detector signal is integrated over the jet travel distance

of 30 mm.

(5) Twelve spectra corresponding to twelve different locations of the plasma are

simultaneously recorded per shot. The 256 rows of the ICCD are divided into

12 tracks. The plasma emission light delivered by each fiber is spread onto the

corresponding track of the ICCD by the spectrometer.

The knowledge of spectral resolution is required to measure spectral line widths

and shifts. The spectral resolution, bandpass (pixel resolution × number of pixels),

and the Doppler shift corresponding to one pixel shift are calculated for the entire

wavelength range using equation 3.2 and are shown in figures 3.6.
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(b) Doppler shift per pixel

Figure 3.6: (a) Pixel resolution and bandpass of the spectroscopic system and (b)
Doppler shift corresponding to one pixel shift, as a function of the selected wave-
length λ.

3.7.1 Entrance optics

The cone angle over which an optical component can accept or emit light is specified

by either f-number (F/#) or numerical aperture (NA) defined as

F/# = f/D, (3.3)

NA = n sin(θ), (3.4)

where f is the focal length, D is the aperture diameter, n is the index of refraction,

and θ is half the cone angle. The optical throughput, i.e., the fraction of light which

will pass through, from an optical component with a half-cone angle θ1 (F/#1) to

another optical component with a smaller half-cone angle θ2 (a larger F/#2) is given

by

throughput =

(
sin(θ2/2)

sin(θ1/2)

)2

≈
(

F/#1

F/#2

)2

, (3.5)

since the solid angle of a cone is 4π sin2(θ/2). The approximation of the throughput

by the square of the f-number ratio is accurate for small cone angles and is preferred

for its convenience.

A typical multimode fiber has NA = 0.22 or F/# = F/2.3, corresponding to

sin−1(0.22) ≈ 13 degrees of half-cone angle. The spectrometer’s f-number is F/8,

corresponding to tan−1(1/8/2) ≈ 3.6 degrees of half-cone angle. Because of this

discrepancy in f-numbers, the spectrometer can accept only a tiny fraction ((2.3/8)2 ≈
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8%) of the input light from the fiber array unless an appropriate f-number matching

optics is employed. This is like trying to connect pipes with different diameters

without a coupler.

A commercial f-number matcher (Oriel 77529) was used initially to increase the

f-number of the fiber (or decrease the cone angle of the fiber) by a factor of 2 so that

the optical throughput will increase by a factor of 4 (from 8% to 30%). However, it

was abandoned immediately since the small mirror inside the f-number matcher was

found to block a significant fraction of light. Instead, an elaborate entrance optics to

the spectrometer has been constructed in order to maximize the optical throughput.

The entrance optics consists of a spherical mirror (diameter = 3′′, focal length

= 3′′, protective aluminum coating), a y-z precision translation stage, and a linear

(z) stage (y refers to the direction from the fiber to the mirror and z refers to the

vertical direction). The fiber array mounted on the y-z stage and the mirror are raised

up together to the level of the spectrometer’s entrance slit by the linear stage. The

position of the fiber array is further adjusted on a µm precision by the y-z stage so that

the fiber output is focused onto the spectrometer’s entrance slit by the mirror. This

arrangement increases the fiber’s f-number by a factor of 3, achieving a high optical

throughput = (3× 2.3/8)2 ≈ 75%. A mirror was favored over a lens configuration for

better UV transmission. A UV-grade fused silica lens has a good UV transmittance

but its index of refraction changes as a function of wavelength, making it difficult to

focus the fiber output over a wide wavelength range. Mirrors do not suffer from this

problem.

3.7.2 Fiber array

The 12-channel linear fiber array has been constructed to observe plasma emissions

at 12 different spatial locations simultaneously. The individual fibers are 100 µm core

diameter, UV/VIS grade fused silica fibers. The fibers are aligned in a single evenly

spaced row, the interspace being 1 mm at the input end of the array and 150 µm at

the output end.
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Figure 3.7: (a) Fiber array and (b) fiber bundle

The interspace between fibers at the input end was decided by the distance the

plasma jet would travel on the image plane of the camera lens during a typical expo-

sure time (∼1 µsec). The optimal interspace was found to be 1 mm by considering

the following typical case: for 50 mm focal length and 1000 mm object distance (dis-

tance from the lens to the plasma), 1 mm on the image plane corresponds to ∼20 mm

on the object plane, a distance that a plasma jet of 20 km/s velocity would traverse

during 1 µsec. The interspace between fibers at the output end was decided for the

best coupling to the spectrometer. Since the image of the fiber array is magnified by

a factor of 3 due to the entrance optics, the 12 fiber images span a vertical distance

3 × (11 × 150) µm = 4.95 mm at the spectrometer’s exit plane. This vertical span

fits all the 12 fiber images in the 6.7 mm height of the ICCD’s active area.

In some experiments, a multitrack fiber bundle has been used instead of the linear

fiber array. The multitrack fiber bundle consists of 9 independent fibers (200 µm

core). The fibers are aligned only at the output end and are freely moving at the

input end as shown in figure 3.7b. Several fibers are connected to collimators at the

input end and are used to observe the plasma with multiple view angles as illustrated

in figure 3.8b.
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(a) Fiber array

~5 cm

(b) Fiber bundle

Figure 3.8: (a) Lines of sight of the fiber array. The twelve lines of sight are ap-
proximately equally spaced. (b) Lines of sight of the multitrack fiber bundle. In this
example, the dashed line is perpendicular to the axis of the plasma and the solid line
is off-axis toward the electrode. The circle represents the size of the lines of sight
(∼10 mm in diameter).

3.7.3 Visualizing lines of sight

The lines of sight of the spectroscopic system can be visualized by sending a HeNe

laser beam backward through the fibers and observing the red spots this laser beam

makes on the electrodes. A holographic light shaping diffuser is used to vertically

elongate and distribute the single laser beam into all the fibers. Lines of sight are

illustrated in figure 3.8a for the fiber array and figure 3.8b for the fiber bundle.
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Chapter 4

Observations

4.1 Evolution of plasma structures

Following the gas breakdown sequence described in section 2.4, the plasma expands

into vacuum undergoing several structural changes as shown in the Imacon camera

image (figure 4.1). The evolution of the plasma has four distinctive stages: (I) forma-

tion and collimation of spider legs, (II) coalescing of spider legs into a central plasma

jet, (III) expansion and collimation of plasma jet, and (IV) instability of plasma jet

and spheromak formation. It is interesting to note that, in contrast with the sub-

stantial structural changes of the plasma, the current and voltage traces are almost

featureless as shown in figure 4.2.

The first two frames of the camera image show the plasma-filled arch-shaped flux

tubes formed in a structure reminiscent of spider legs. The spider legs are initially

flared but become collimated within a very fast time scale less than 0.5 µsec. The

spider legs stretch out by the hoop force due to the gun current flowing through

them. The flux tube collimation process has been studied in detail by You, Yun, and

Bellan [21].

In the second stage (frames 3–6 in the camera image), the collimated spider legs

become diffusive and start moving toward the center as the gun current ramps up.

The spider legs attract each other since each carries an electric current in the same

direction. They eventually coalesce into a single axially expanding plasma jet.

In the third stage (frames 7–10), the central plasma jet becomes collimated and
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expands into the vacuum. The jet velocity is Alfvénic (∼30 km/sec). The plasma jet

is very bright compared to the spider legs suggesting a jet density much greater than

the spider leg density. Large density amplification has been observed in the plasma

jet and will be discussed in section 4.3.

In the last stage (frames 11–16), the lengthened plasma jet may keep expanding

or undergo MHD instability depending on the ratio λgun = µ0Igun/ψgun, where Igun is

the gun current and ψgun is the initial bias poloidal magnetic flux. Hsu and Bellan [9]

showed that low λgun values result in a straight plasma jet, intermediate values lead

to kinking of the jet axis (kink instability), and high values lead to a detachment of

the plasma from the electrodes. The kinking has been identified as a precursor to

spheromak formation.

The present thesis work is focused on the study of the plasma evolution at the

first and the third stages.

4.2 Magnetic flux tube collimation – spider legs

4.2.1 Main observations

The spider leg magnetic flux tubes are initially very faint and flared, i.e., the tube

diameter increases toward the outer electrode. However, the spider legs become col-

limated and brighter as more particles are ingested from the gas orifices as shown in

figure 4.3.

S. You [21] visualized the plasma flow in the spider legs using the high-speed

high-resolution Princeton camera. Since hydrogen spider legs are less collimated than

spider legs of heavier gas species, N2 and Ne were used in the study. He observed that

the plasma particles are ingested mainly from the inner gas orifice and the direction

of the flow is from the inner orifice toward the outer orifice. The flow velocity is of

the order of ∼100 km/sec, measured by tracing a bright front propagating along the

flux tube axis in the camera images.
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Figure 4.1: Evolving plasma structure (shot# 7217, hydrogen plasma). The frame
sequence is from left to right and top to bottom. The delay of the first frame is
0.05 µsec with respect to breakdown and the inter-frame delay is 0.625 µsec. In the
last few frames, notice the presence of ghosting from previous frames.
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Figure 4.2: Gun current trace (solid curve) and voltage trace (dashed curve). Data
correspond to the same plasma discharge (shot# 7217) as in figure 4.1. Times are
with respect to breakdown. Roman numerals indicate the evolution stages.

(a) 2.5 μs (b) 2.75 μs (c) 3.0 μs

Figure 4.3: Collimation of spider legs (image courtesy of S. You). Images are taken
from identical plasma discharges (shot# (a) 4345, (b) 4346, and (c) 4343). Nitrogen
is injected from the inner (cathode) orifices and neon from the outer (anode) orifices.
Times correspond to the delay of the 10 nsec camera exposure with respect to the
main bank discharge.
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Figure 4.4: (a) NII spectra showing blue Doppler shifts (nitrogen discharge; shot
range 6811–6830; spectrometer ICCD exposure = 1 µsec). Dashed line indicates the
rest frame wavelength 399.5 nm. Solid lines are Lorentzian curve fits. The exposure
delays of the spectra, starting from the bottom to the top spectrum, are 1.7, 2.2, 2.6,
3.1, and 3.8 µsec, respectively, with respect to breakdown. The peaks of the spectra
are connected to show the trend of increasing blue shifts. The line of sight intercepted
one of the spider legs near its inner foot point perpendicular to the electrode. (b)
Line of sight velocities estimated from the Doppler shift measurements.

4.2.2 Doppler shift measurements

To verify that the propagation of the bright front is indeed a plasma flow and not

an ionization front, the Doppler shifts of emission spectra from a single spider leg

were measured by the present author [21] using the spectroscopic system with the

multitrack fiber bundle (section 3.7.2). The measured spectra showed blue shifts

corresponding to ∼20 km/sec line of sight velocities as shown in figures 4.4a and

4.4b. The blue Doppler shifts confirm that the propagation of the bright front is

indeed the flow of plasma ions.

4.2.3 Flow velocity profile along the spider leg

Flow velocities U(z) along the spider leg axis can be expressed in terms of the plasma

density n(z) assuming that the length of the spider leg (L) remains constant dur-

ing measurement and the flow stagnates at the outer orifice (U(L) = 0). These

assumptions seem reasonable based on the camera images (figure 4.3). Integrating
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the continuity equation yields

∫ L

z

[
∂

∂z
(n(z′)U(z′)) +

∂n(z′)

∂t

]
dz′ = 0,

n(L)U(L)− n(z)U(z) +
∂

∂t

∫ L

z

n(z′)dz′ = 0,

U(z) =
1

n(z)

∂

∂t

∫ L

z

n(z′)dz′ (∵ U(L) = 0 by assumption), (4.1)

where z is the axial distance from the inner orifice.

Since line radiation in plasma results primarily from collisional excitations due to

electron impact, the radiation intensity I will be proportional to the electron density

(ne) times the emitter density (nemitter). Assuming that the emitter density is some

constant fraction of the ion density (ni) and invoking charge neutrality (ni = ne)

yield

I ∝ nenemitter ∝ neni ∝ n2
e. (4.2)

Thus, the flow velocity U(z) can be estimated using the image brightness I(z) as

U(z) =
1√
I(z)

∂

∂t

∫ L

z

√
I(z′)dz′. (4.3)

The estimated velocities are shown in figure 4.5b and are consistent with the propa-

gation velocity of the bright front.

4.2.4 Discussion

The direction of the flow is counter-intuitive since one would normally think that ions

would move toward the cathode (inner electrode) not away from it. However, this

intuitive notion is incorrect because the the static electric field vanishes inside the

plasma. According to the MHD pumping model (section 1.4), the plasma (ion) flow

in a magnetic flux tube is driven by the MHD force (equation (1.31)),

mn
dU

dt
=

µ0I
2

2π2a3

∂a

∂z
, (4.4)
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Figure 4.5: (a) Brightness along the spider leg that is shown in figures 4.3a–c (data
courtesy of S. You). Triangle, square, and circle correspond to the timings 2.5, 2.75,
and 3.0 µsec, respectively. Data points at z < 2 cm are excluded due to a rela-
tively large measurement error. (b) Flow velocity profile at 2.75 µsec obtained from
equation (4.3).

where m is the ion mass, a is the local flux tube radius, and ∂a/∂z is the flaring of the

flux tube. For the spider legs, ∂a/∂z > 0 and so an axial flow from the inner cathode

orifice to the outer anode orifice will be driven by this MHD force. The spider legs

become collimated due to the flow stagnation at the anode orifice as explained by the

MHD pumping model in section 1.4.

S. You estimated a spider leg density n ∼ 2× 1021 m−3 using a ∼ 4 mm, ∂a/∂z ∼

0.02, and dU/dt ∼ 1011 m/sec2 measured from the camera images and assuming

that a single leg carries one-eighth of the total gun current 120 kA (that is, I =

120/8 = 15 kA). Since the formation and collimation of the spider legs take place

within 0.5 µsec, the pumping speed of the MHD force through a single gas orifice is

(
dN1

dt

)
MHD

∼ ∆n · V
∆t

∼ 2× 1021 × 10−5

0.5
= 4× 1016 particles/µsec, (4.5)

where V ∼ 10−5 m3 is the volume of a single spider leg. This MHD pumping speed is

much faster than the measured particle flux rate for a single gas line by gas puffing,

dN1/dt ∼ 2×1015 µsec−1 (equation (2.4)). Thus, the ionized particles are dominantly

ingested by the MHD force.

The Alfvén velocity UA associated with the azimuthal magnetic field due to the
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spider leg current I is

UA =

√
B2
φ

µ0nm
∼ 100 km/sec, (4.6)

where Bφ ∼ µ0I/2πa ∼ 1 Tesla and m is the mass of the nitrogen atom. Thus, the

measured jet velocity (∼100 km/sec) is Alfvénic as expected by the model and is

driven by the MHD pumping force. In the hydrogen spider legs, the flow velocity

(& 100 km/sec) is faster due to the smaller ion mass and the density (. 1021 m−3) is

lower due to less collimation.

4.3 Large density amplification in the plasma jets

4.3.1 Large Stark broadening of hydrogen spectral lines

After the spider legs coalesce into a central plasma jet, the jet expands axially with

its foot point attached to the inner electrode (cathode) until the jet undergoes insta-

bilities at a later time. Jet velocities of ∼20–50 km/sec were measured by following

the forefront of the jet in the camera images. To rule out the possibility that these

camera images would result from propagation of either a plasma wave or an ioniza-

tion front rather than an actual flow, Doppler shifts of spectral lines emitted from

the plasma jet were measured [22] using the spectroscopic system with the multitrack

fiber bundle. The observed Doppler shifts (figure 4.6) confirmed the flow velocity

deduced from the camera images.

However, some spectral lines showed unexpectedly large broadening which greatly

exceeds the instrumental broadening and the thermal Doppler effect for a credible ion

temperature [22] (see the discussion of section 6.1.2). For instance, some measured

Hβ line profiles showed a full width at half maximum (FWHM) & 1 nm, which

would correspond to a Doppler ion temperature & 1000 eV. Such large broadenings

suggest a strong Stark effect as discussed in section 6.1.2. The characteristic central

dip observed in some Hβ line profiles as shown in figure 4.7 is also an indisputable

evidence for a strong Stark effect (ref. chapter 5 and [23]).
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Figure 4.6: Doppler shifts of Hβ lines (spectrometer ICCD exposure = 1 µsec). Line
of sight was arranged such that the plasma jet moved toward the optical probe in one
case (solid blue curve; shot# oma11.12) and away from it in the other case (dashed
red curve; shot# oma11.43). The peak of the line profile is determined by Lorentzian
curve fitting. As expected, a blue shift is observed in the first case and a red shift in
the latter case. The shifts are ∼0.017 nm corresponding to ∼11 km/sec line of sight
velocity. Rest-frame Hβ (486.133 nm) and Dβ (486.0029 nm) lines from a deuterium
lamp are shown at the bottom.
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Figure 4.7: Hβ profile showing the characteristic central dip (shot# oma11.28; spec-
trometer ICCD exposure = 1 µsec). The square points are the theoretical Stark
profile for ne = 1.3 × 1022 m−3 and T = 2 eV according to Stehlé [24]. A Doppler
profile (dashed line) for Ti = 5 eV at the Hβ rest-frame wavelength (486.133 nm) is
also shown for comparison with the much broader Stark profile. The estimated Stark
FWHM according to equation (6.2) is ∼1.1 nm, corresponding to ne ∼ 1.2×1022 m−3.
Note that the data points near the profile tail ends are flat since they are outside the
bandpass of the spectroscopic system.

4.3.2 Density measurements

Electron densities were measured from the Stark broadened spectral lines by the

method described in section 6.2. The time dependence of the electron density of a

hydrogen plasma jet is plotted in figure 4.8. Peak density of the order 1022 m−3 is

observed when the spider legs merge completely. The density is ∼1020 m−3 when

the plasma starts to form the central jet and increases by a factor of 100 when the

jet fully forms. Merging of the spider legs does not decrease the total volume of the

plasma and thus cannot account for this large density amplification. On the other

hand, the observed density amplification is consistent with the magnetic flux tube

becoming filled with plasma by the ingestion/collimation process described in the

MHD pumping model.

Similar density amplification is observed in non-hydrogen plasmas. For nitrogen

plasma jets, Stark broadened NII spectral lines are used for density estimation and

a typical emission spectrum is shown in figure 4.9. Nitrogen plasma jets show even

greater peak density of ∼1× 1023 m−3 (see figure 4.10).
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Figure 4.8: Electron density of a hydrogen plasma jet vs. time (shot range:
oma11.16–69). Density is estimated from the Hβ line profiles. Squares correspond to
the solid (oblique) line of sight and triangles to the dashed (perpendicular) line of
sight in figure 3.8b. For the perpendicular line of sight, the density is zero initially and
appears suddenly at t = 9 µsec as expected because the jet takes time to reach the
line of sight volume. This is consistent with the measured jet velocity (∼30 km/sec).
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Figure 4.9: Stark broadened NII spectral lines from a nitrogen plasma jet (shot#
7245; spectrometer ICCD exposure = 0.1 µsec). The rest-frame wavelengths of the
two spectral lines are 423.705 nm and 424.178 nm, respectively. Instrumental function
(dashed line) is shown at the two rest-frame wavelengths for width comparison. Solid
line is a Lorentzian curve fit to the spectrum. Estimated density is ∼8× 1022 m−3.
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Figure 4.10: Electron density of a straight column nitrogen plasma jet vs. time (shot
range: 6736.01–30). Density is estimated from the NII 424.178 nm line profiles as
illustrated in figure 4.9. Solid curve is a polynomial fit to the data.

4.3.3 Density and velocity profile along the jet axis

Density profiles along the axis of a straight nitrogen plasma jet were measured at

several different timings using the spectroscopic system with the fiber array. The

axial density profile has a sharp peak initially but becomes uniform as the jet expands

axially as can be seen in figure 4.11a.

Velocity profiles were measured from the Doppler shifts of the same spectra used in

the density measurement and are shown in figure 4.11b. The velocity peak is always

ahead of the density peak by 3–5 cm in space and by ∼1 µsec in time. Negative

velocity gradient (i.e., slowing down of the flow) is clearly seen near the jet front.

A detailed comparison with the camera images (figure 4.13) shows that the bright

blob in the jet coincides with the region between the density peak and the velocity

peak. The blob propagates along the jet axis with an Alfvénic velocity of ∼40 km/sec.

The blob is faster than the expanding outskirts of the jet and catches up with it later

as seen in the last frame of figure 4.13. This observation is consistent with the negative

velocity gradient near the jet front.

For the detailed analysis in the next section, three density profiles are selected

from figure 4.11a and shown overlaid in figure 4.12a. The corresponding velocity

profiles are shown overlaid in figure 4.12b.
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Figure 4.11: (a) Density and (b) velocity along the axis of a straight column nitrogen
plasma jet (shot range: 8209–8227). Densities were estimated from Stark broadened
NII 404.131 nm lines. Velocities were estimated from the Doppler shifts of the same
NII lines. The line of sight angle (∼60◦) and the blue Stark shifts [25] (∼0.8 pm
per 1022 m−3) are taken into account in the velocity measurement. Solid curves are
polynomial fits to the data and dashed horizontal lines indicate zero lines. Each data
point is an average of three measurements. Measurement errors are the larger of
±1×1022 m−3 or ±15% for the density and ±5 km/sec for the velocity. Spectrometer
ICCD exposure was 0.5 µsec.
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Figure 4.12: Detailed view of the density and velocity profiles. The density increases
near the jet front and becomes uniform in the main body of the jet as indicated by
arrows.
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Figure 4.13: Nitrogen plasma jet (shot# 8209). The bright blob propagates with an
Alfvénic velocity of ∼40 km/sec catching up the expanding outskirts of the jet.
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4.4 Discussion

4.4.1 MHD pumping

The Stark broadening density measurements show that the plasma jets become very

dense on a microsecond time scale. This result is supported by an independent density

measurement from a laser interferometer [26]. The density of the pre-breakdown

neutral gas, as measured by a fast ion gauge, is only 1017 m−3 [21]. The measured

peak density of the nitrogen plasma jet is of the order 1023 m−3 at the same location

6 µsec later, so the particle density has increased by a factor of 106. This steep density

rise cannot be explained by a pinch effect associated with the gun current flowing in

the jet flux tube. The merging of the spider legs cannot account for the peak density

of the jet, either, since the spider leg density (∼1021 m−3) is 100 times less than the

jet density and the total volume of the spider legs is smaller than the volume of the

central jet. Plasma particles must be pumped into the flux tubes from the source gas

orifices.

According to the MHD pumping model (ref. section 1.4), the driving force of the

plasma jet dynamics is the axial gradient of the azimuthal magnetic energy associated

with the axial current (see equation (1.30)),

ρ
dUz
dt
≈ − ∂

∂z

[
B2
φ,a

µ0

]
, (4.7)

where Bφ,a = µ0I0/2πa is the azimuthal magnetic field at the flux tube radius a.

The effective potential B2
φ,a/µ0 has negative slope everywhere because Bφ,a decreases

along the axis due to the flared geometry of the jet flux tube. Thus, the plasma will

fall down the slope and gain kinetic energy as it moves. The order of magnitude of

the kinetic energy gain will be

ρU2
z ∼ −∆

(
B2
φ,a

µ0

)
≈
(
B2
φ,a

µ0

)
z=0

. (4.8)

Using ρ = mine yields ne ∼
(
B2
φ,a/µ0

)
z=0

/miU
2
z , where mi is the ion mass. For
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nitrogen plasma jets, the observed Uz ∼ 40 km/sec and Bφ,a ∼ 1.0 T give an electron

density ne of the order 1022 m−3, which is consistent with the Stark broadening density

measurement.

4.4.2 MHD collimation

However, the collimation of the axially expanding jet cannot be explained by this

consistency check alone. Since the collimation is associated with slowing down of flow

and accumulation of particles according to the MHD pumping model, the observed

features of the density and velocity profiles in figure 4.12 are now examined using the

continuity equation:

∂ρ

∂t
= −∇ · (ρU) = −Uz

∂ρ

∂z
− ρ∂Uz

∂z
−∇⊥ · (ρU⊥), (4.9)

where Uz∂ρ/∂z represents the density change due to the axial convection, negative

ρ∂Uz/∂z corresponds to an axial compression, and negative ∇⊥ · (ρU⊥) corresponds

to a radial pinching. Since the diameter of the jet remains approximately constant

during the axial expansion, the radial pinching effect can be ignored for the moment,

yielding
∂ρ

∂t
≈ −Uz

∂ρ

∂z
− ρ∂Uz

∂z
. (4.10)

Suppose there is no flow gradient, i.e., ∂Uz/∂z = 0. Then, ∂ρ/∂t ≈ −Uz∂ρ/∂z,

which can be integrated to give ρ(z, t) = ρ(z − Uzt). Thus, the axial density profile

would just translate without any deformation if there is no flow gradient. Our plasma

jets show a large negative flow gradient (∂Uz/∂z � 0) at the jet front and so the

density increases in that region because

∂ρ

∂t
≈ −ρ∂Uz

∂z
� 0 (at the jet front). (4.11)

The observed density increase at the jet front is indicated by an arrow in figure 4.12a.

The observation that the density peak always appears ∼1 µsec after the velocity peak

also conforms with the continuity equation because (1) at the location of the velocity
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peak, ∂Uz/∂z = 0 and ∂ρ/∂z < 0 (see figure 4.12), giving

∂ρ

∂t
≈ −Uz

∂ρ

∂z
> 0 (near the velocity peak), (4.12)

and (2) on the other hand, at the density peak, ∂ρ/∂z = 0 and ∂Uz/∂z > 0, giving

∂ρ

∂t
≈ −ρ∂Uz

∂z
< 0 (near the density peak). (4.13)

The collimation of the axially expanding jet can be summarized as follows accord-

ing to the MHD pumping model. The axial component of the J×B force accelerates

the jet into the flared magnetic flux tube produced by the bias coil. The flow velocity

slows down near the jet front where the flux tube radius is large. The slowing down

of the flow results in accumulation of mass (∂ρ/∂t > 0) as well as the azimuthal

magnetic flux carried by the mass flow. As the magnetic flux accumulates, the mag-

netic field intensity increases and so does the pinch force. The amplified pinch force

subsequently squeezes the flared jet front (∇⊥ ·U⊥ < 0). This squeezing action at the

jet front continues while the jet expands axially into the flared flux tube, resulting in

an elongated collimated jet. The density becomes uniform in the main body of the

jet as it becomes collimated. This collimation scenario is sketched in figure 4.14. Es-

sentially the same scenario accounts for the collimation of the spider legs [21], except

that the collimation will be more efficient in the spider leg flux tubes because of the

flow stagnation at the anode gas orifices (figure 4.15).

The cause of the flow deceleration has not yet been investigated but could be the

tension of the curved bias magnetic field lines or buildup of neutral particles swept

by the jet at the flow front.

4.4.3 Total particle flux by the MHD pumping

The total particle flux ingested into the jet is approximately

(
dNT

dt

)
MHD

= πa2neUz ∼ 1018 particles/µsec, (4.14)
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Figure 4.14: Collimation of the axially expanding jet. The initial flux surface is
indicated by solid curves (#1) and the later flux surfaces by dashed curves (#2,3).
Elliptic discs represent the jet front at different timings. The flared flux surface be-
comes collimated as the jet expands axially. Block arrows indicate the flow direction.

flow stagnation
( outer orifice)

Figure 4.15: Collimation of the spider leg. Plasma flow stagnates at the outer anode
orifice. Since the foot points of the spider leg are fixed, its axial length remains
approximately constant during collimation. The initial flux surface is indicated by
solid curves and the later flux surface by dashed curves.
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using a ∼ 3 cm, ne ∼ 1022 m−3, and Uz ∼ 30 km/sec. Again, this MHD pumping

speed is much faster than the gas puffing, dNT/dt ≈ 1016 µsec−1 (cf. equation (2.3)).

Integrating over the plasma duration of ∼10 µsec (which is limited by the capacitance

of the main gun bank), the total number of particles ingested by the MHD pumping

is NT, MHD ∼ 1019. This amounts to about 20% of the total number of puffed particles

(cf. equation (2.2)).

4.4.4 Application – tokamak fueling

Recent work by Voronin et al. [27] suggests that our coplanar plasma gun produc-

ing high density plasma jets by the MHD pumping mechanism might be capable

of fuelling a magnetized plasma of fusion interest. In the Voronin et al. exper-

iment, high kinetic energy plasma jets were produced by a double-stage Marshall

gun, which first ionizes a hydrogen gas released from titanium grains and then ac-

celerates the resulting hydrogen plasma. These plasma jets were successfully in-

jected into the Globus-M spherical tokamak and had parameters comparable to

our experiment (Globus-M: ne ∼ 1022 m−3, total number of accelerated particles

Ntot ∼ 1–5 × 1019, Uz ∼ 50–100 km/sec, and our experiment: ne ∼ 1022–23 m−3,

Ntot ∼ 1019, Uz ∼ 30 km/sec). This suggests that our plasma jets may be suitable for

tokamak fuelling. Higher velocity for deep penetration [1, chap. 16] can be achieved

by increasing the gun current and the minimal contact with electrodes in our plasma

gun ensures purity of the plasma jets.
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Chapter 5

Stark broadening

The Stark effect is the splitting and shifting of a spectral line in the presence of an

electric field. The Stark effect differs significantly among spectral lines and can be

divided into two categories according to its dependence on the applied electric field,

namely, the linear Stark effect and the quadratic Stark effect. The Stark effect is

linear for hydrogenic lines and quadratic for non-hydrogenic lines in general. The

linear Stark effect is usually much stronger than the quadratic Stark effect.

In a plasma environment, a radiating atom or ion (emitter) is under the influence

of the local electric fields produced by the surrounding ions and electrons within the

Debye sphere of the emitter. The collective Stark effect due to these local electric fields

results in broadening of spectral lines, i.e., Stark broadening. The emitter experiences

two very different electric fields, the quasi-static electric field due to slow moving ions

and the transient electric field due to fast moving electrons. The quasi-static electric

field splits a degenerate atomic level of the emitter into distinct individual components

called Stark components. The Stark components are then broadened by the transient

electric field due to electron impacts. If the atomic level is not degenerate, the level

undergoes only the electron impact broadening. The resulting line profile will be

the sum of all possible transitions from the Stark components of an upper level to

the Stark components of a lower level. The profile width serves as the first-order

description for the Stark broadened line profile although the profile can have other

features such as shifts and asymmetries. The profile width has a strong dependence

on charged particle density and so the Stark broadening provides a convenient and
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inexpensive method for determining plasma density [23].

Stark broadening has been studied most extensively for hydrogen lines both in

theory and experiment because the linear Stark effect is much stronger than the

quadratic Stark effect and the hydrogen atom is the simplest quantum-mechanical

system. Hydrogen Balmer lines have been the most popular choice for plasma den-

sity diagnosis because of well-established theoretical and experimental studies on the

Stark broadening of Balmer lines. In particular, the Hβ line is the best density in-

dicator because its Stark width is nearly independent of plasma temperature. When

Hβ Stark broadening is small compared to other broadening effects such as Doppler

broadening and Zeeman splitting, higher-n Balmer lines can be used since the Stark

broadening is generally larger for higher principal quantum number n. For example,

merging of high-n Balmer lines (i.e., Inglis-Teller limit) has been utilized to deter-

mine the density in edge regions (ne ∼ 1020–21 m−3, B ∼ several Teslas) of tokamak

devices [28] [29] [24]. The present experiment lies in the opposite situation, namely

where Hβ Stark broadening is large compared to Zeeman and Doppler effects.

The following sections summarize Stark broadening from basic principles. More

thorough theoretical account of Stark broadening can be found in reviews by Marge-

nau and Lewis [30], Lisitsa [31], and Luque, Calzada, and Sáez [32].

5.1 Quadratic Stark effect

Consider an atom having a single electron or a single valence electron in its outermost

shell subject to a uniform electric field F in the positive z-direction. The Hamiltonian

of the system is the sum of the unperturbed Hamiltonian H0 = p2/2me + V (r) and

the perturbing Hamiltonian H1 = eFZ:

H = H0 +H1 =
p2

2me

+ V (r) + eFZ, (5.1)

where p,me, and e are the momentum, mass, and charge of the electron, and V (r) is

a central potential.



66

The effect of the perturbing electric field on the energy levels can be evaluated

using the perturbation theory. According to the perturbation theory [33, chap. 16],

the change in the energy level Ek is given by (up to the second order in H1)

∆Ek ' 〈k|H1|k〉+
∑
k′ 6=k

|〈k|H1|k′〉|2

Ek − Ek′
, (5.2)

where |k〉’s and Ek’s are the eigenstates and the corresponding energy levels of the

unperturbed Hamiltonian H0. The eigenstate |k〉 and the energy level Ek are com-

monly represented as |n, l,m〉 and Enlm by the triple quantum number (n, l,m), i.e.,

principal quantum number n, azimuthal quantum number l, and magnetic quantum

number m. It is assumed that the unperturbed energy levels are completely known

and non-degenerate (i.e., Ek 6= Ek′ unless k = k′) so that the perturbation theory can

be applied without difficulty.

Equation (5.2) is rewritten by replacing |k〉 with |n, l,m〉,

∆Enlm ' eF 〈n, l,m|Z|n, l,m〉+ e2F 2
∑

(n′,l′,m′)6=(n,l,m)

|〈n, l,m|Z|n′, l′,m′〉|2

Enlm − En′l′m′
. (5.3)

This expression can be simplified by applying two selection rules derived in ap-

pendix E, i.e., 〈n, l,m|Z|n′, l′,m′〉 6= 0 only if (1) m′ = m and (2) l = l′ = 0 or

l′ = l ± 1. The first order term eF 〈n, l,m|Z|n, l,m〉 vanishes unless l = 0 by the

second selection rule. However, 〈n, 0, 0|Z|n, 0, 0〉 = 0 since |n, 0, 0〉 is spherically sym-

metric. Thus, the first order term always vanishes leaving only the second order terms

and hence ∆Enlm is quadratic in the applied electric field F .

∆Enlm ' e2F 2
∑
n′

∑
l′=l±1

|〈n, l,m|Z|n′, l′,m〉|2

Enlm − En′l′m
≡ −1

2
αnlmF

2, (5.4)

where αnlm is the polarizability of the eigenstate |nlm〉. For example, the polarizabil-

ity of the ground state (n = 1) of the hydrogen atom (this is the only hydrogen state

that the perturbation theory can handle for now since the n > 1 hydrogen states are
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degenerate) is

α100 = −2e2
∑
n′>1

|〈1, 0, 0|Z|n′, 1, 0〉|2

E100 − En′00

= 18πε0a
3
0, (5.5)

where a0 is the Bohr radius.

In general, non-hydrogenic energy levels are non-degenerate and so they experience

the quadratic Stark effect. Strictly speaking, most energy levels of the Hamiltonian

H0 are degenerate with respect to m (eigenstates of the same n, l but different m have

the same energy) due to the spherical symmetry of the potential V (r). However, this

degeneracy becomes inconsequential in the application of the perturbation theory

because the states with the same l will be excluded by the second selection rule. In

contrast, the n > 1 energy levels of the hydrogen atom are intrinsically degenerate,

i.e., degenerate with respect to l (eigenstates of the same n but different l,m have the

same energy) due to the pure Coulomb potential V (r) ∝ 1/r. The n > 1 hydrogen

energy levels experience a different Stark effect due to this special degeneracy, which is

considered separately in the following section. Non-hydrogenic atoms have an effective

potential differing from the pure Coulomb potential (∝ 1/r) due to the presence of

the inner electrons shielding the nucleus.

5.2 Linear Stark effect

Consider an Nn-fold degenerate energy level En

H0|n, g〉 = En|n, g〉 (g = 1, . . . , Nn),

where the eigenstates |n, g〉 are specified by a pair of quantum numbers (n, g) instead

of the triple (n, l,m) for notational simplicity. The perturbation equation (5.3) cannot

be applied to the degenerate eigenstate |n, g〉 because the second order terms involving

the eigenstates |n, g′〉 (g′ 6= g) are ill-defined as the denominator Eng−Eng′ = En−En =

0. This difficulty can be avoided by choosing a new orthonormal linear combination

of the original degenerate eigenstates (i.e., a new basis spanning the degenerate space

of the energy level En) to be simultaneous eigenstates of the perturbation H1, which
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is always possible:

|n, g〉 =
Nn∑
g′
0=1

〈n, g′0|n, g〉 |n, g0〉 and (5.6)

H1|n, g〉 = (eFZ)|n, g〉 = eFλng|n, g〉, (5.7)

where |n, g〉’s are the new basis vectors, |n, g0〉’s are the original basis vectors, and

λng’s are eigenvalues of the operator Z. Then, all the singular terms in equation (5.3)

vanish since 〈n, g′|H1|n, g〉 = eFλng〈n, g′|n, g〉 = 0 (g′ 6= g), yielding

∆Eng ' 〈n, g|H1|n, g〉+
∑

(n′,g′)6=(n,g)

|〈n, g|H1|n′, g′〉|2

Eng − En′g′

= eFλng +
∑

n′ 6=n,g′

|〈n, g|H1|n′, g′〉|2

En − En′g′

≈ eλngF. (5.8)

Thus, for a degenerate state, ∆Eng is linear in the applied electric field F .

As an example, consider the n = 2 hydrogen states, i.e., the 2s state |2, 0, 0〉 and

the three 2p states |2, 1, 0〉, |2, 1, 1〉, and |2, 1,−1〉. The operator Z can represented

in a matrix form using these eigenstate vectors in order to find the eigenvalues λ2g’s:

Z =


0 〈2, 0, 0|Z|2, 1, 0〉 0 0

〈2, 0, 0|Z|2, 1, 0〉 0 0 0

0 0 0 0

0 0 0 0

 =


0 3a0 0 0

3a0 0 0 0

0 0 0 0

0 0 0 0

 , (5.9)

where the selection rules (ref. appendix E) are utilized to evaluate the matrix el-

ement Zij = 〈2, gi|Z|2, gj〉. The four eigenvalues corresponding to this matrix are

3a0,−3a0, 0, and 0. Thus, the four-fold degenerate energy level E2 splits into three

levels by the applied electric field F .

∆E2 = 0,±3a0eF. (5.10)
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The linear Stark effect is much stronger than the quadratic Stark effect in general.

For instance, compare the linear Stark effect of the hydrogen n = 2 state (∆E2)

calculated above to the quadratic Stark effect of the hydrogen n = 1 state (∆E1)

discussed in the previous section.∣∣∣∣∆E2

∆E1

∣∣∣∣ =
3a0eF

α100F 2/2
=

3a0eF

9πε0a3
0F

2
=
e/(3πε0a

2
0)

F
� 1,

because e/(3πε0a
2
0) ≈ (electric field strength at the Bohr radius from a charge e)

≈ 5× 1011 V/m would be much larger than the applied electric field F in most cases.

The hydrogen spectral lines show a very large Stark effect compared to any other

non-hydrogenic spectral lines because of the strong linear Stark effect.

5.3 Line broadening by charged particles

Imagine a charged particle with charge q moves past a radiating atom (emitter).

The charged particle exerts a time-varying Coulombic electric field F (r(t)) ∼ q/r2(t)

on the emitter, where r(t), the distance from the charged particle to the emitter,

depends on the initial location and velocity of the charged particle. Such an electric

field is commonly called as a microfield in the Stark theory literature. The microfield

perturbs the energy states of the emitter via the Stark effect:

∆ω(t) = CaF
k(r(t)), (5.11)

where the Stark effect is represented by the frequency shift ∆ω instead of the energy

level shift ∆E = ~∆ω, Ca is the Stark effect constant of an energy state a, and k = 1

for the linear Stark effect and k = 2 for the quadratic Stark effect.

The critical impact parameter for this Coulombic collision to induce a total loss of

coherence of the energy state is called the Weisskopf radius, ρW . The Weisskopf radius

is roughly proportional to the Stark effect constant Ca and inversely proportional to
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the velocity v of the charged particle.

ρW ∼
Ca
v
. (5.12)

A collision with the impact parameter much smaller than ρW will not cause a signifi-

cant Stark effect. The Weisskopf radius defines the effective cross section of the Stark

effect, also known as the optical cross section,

σW = πρ2
W ∼ π

C2
a

v2
. (5.13)

The Weisskopf radius also determines the effective duration of the critical collision

called as Weisskopf collision time

τW =
ρw
v
∼ Ca
v2
. (5.14)

For tW much longer than the mean lifetime of an excited state, the microfield is

effectively static during the collision. On the other hand, for tW much shorter than the

mean lifetime of the excited state, the microfield can be considered as an instantaneous

perturbation. The former assumption (quasi-static approximation) is usually valid for

ion collisions and the latter (impact approximation) for electron collisions since the

electron thermal velocity is much faster than the ion thermal velocity.

The Weisskopf radius ρW defines another important parameter, the effective num-

ber of particles interacting simultaneously with the emitter.

g ≡ nρ3
W , (5.15)

where n is the particle density. For example, if g � 1, only the nearest particle

interacts with the emitter, but, on the other hand, if g � 1, a large number of

particles simultaneously affect the emitter.

The ensemble average of the Coulombic collisions of the emitter with charged

particles results in broadening of the energy levels, a collective Stark effect called as
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emitter

r
dr

ion

Figure 5.1: Nearest neighbor approximation of the ionic electric field.

Stark broadening. The average microfield F (r(t)) depends on the velocity and density

distributions of the charged particles and so does the Stark broadening.

5.3.1 Quasi-static approximation – ion microfield

The microfield produced by an ion can be assumed to be static since the collision of the

ion with the emitter is a slow process (due to the slow ion thermal velocity) compared

to the atomic line transitions (lifetime τ0 ∼ 10 nsec for strong lines), i.e., τW � τ0. It

is also assumed that the collisions are binary meaning that the emitter is under the

influence of only one ion at a time. This assumption will be valid if g = niρ
3
W . 1,

where ni is the ion number density. It follows from these two assumptions that the

profile of the frequency shift ∆ω will depend on the distribution of the individual

static ion microfield F (r(t)) = F (r) ∼ Ze/r2, where Z is the charge number of the

ion.

Consider only the nearest ion to get an approximate microfield distribution. Let

p(r)dr be the probability that the nearest neighbor is in the shell (r, r + dr), fi(r)dr

be the probability to find an ion in the shell, and P ∗(r) be the probability that no

ion is inside the radius r. Note that fi(r) = ni4πr
2dr. Then,

p(r)dr = P ∗(r)× fi(r)dr

P ∗(r) = 1−
∫ r

0
p(r)dr

 =⇒ p(r)

fi(r)
=

(
1−

∫ r

0

p(r)dr

)
. (5.16)
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Differentiate and then integrate the above equation to solve for p(r)

d

dr

(
p(r)

fi(r)

)
= −p(r) = − p(r)

fi(r)
× fi(r) =⇒ log

p(r)

fi(r)
= −

∫
fi(r)dr

=⇒ p(r) = fi(r) exp(−
∫
fi(r)dr) = ni4πr

2 exp(−ni4πr3/3). (5.17)

The ions in the shell (r, r+dr) will induce Stark shifts in the range (∆ω,∆ω+dω)

according to equation (5.11), ∆ω = CaF
k(r). It is convenient to normalize the

radius by the inter-particle distance r0 = (3/4πni)
1/3 and the Stark frequency shift

by ∆ω0 = CaF
k(r = r0):

β ≡ ∆ω

∆ω0

=

(
F (r)

F (r0)

)k
= (r/r0)−2k (∵ F ∼ 1

r2
), (5.18)

dβ = −2k

(
r

r0

)−2k−1
dr

r0

= −2kβ
dr

r
. (5.19)

Equations (5.17)–(5.19) yield the profile I(β) of the Stark frequency shift,

I(β) = p(r)

∣∣∣∣ drdβ
∣∣∣∣ =

ni4πr
3

2kβ
exp(−ni4πr3/3) = 3

(r/r0)3

2kβ
exp(−(r/r0)3)

=
3

2k
β−(1+3/2k) exp(−β−3/2k). (5.20)

A more involved treatment taking into account all ions, not just the nearest one,

leads to a profile known as Holtsmark function [34].

I(β) =
2

π
β

∫ ∞
0

x sin(βx) exp(−x3/2k) dx (5.21)

The real profile of the Stark frequency shift by ions will be in-between the Holtsmark

function and the nearest neighbor profile (see figure 5.2) because of the Debye screen-

ing. The separation of the two peaks occurring at β ∼ ±1.5 may serve as the width
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Figure 5.2: The Holtsmark profile (solid line) and the nearest neighbor profile (dashed
line) for the linear Stark effect (k = 1).

of the profile. Thus, the width of the un-scaled profile I(∆ω) is

width of I(∆ω) ∼ 3∆ω0 ∼ 3CaF
k(r0) ∝ Car

−2k
0 = Ca(3/4πni)

−2k/3

∝ Can
2k/3
i ∝ Can

2k/3
e , (5.22)

where ne = Zni is the electron density of the plasma.

5.3.2 Impact approximation – electron microfield

In contrast to ions, fast moving electrons perturb the emitter only momentarily, i.e.,

the duration of electron impact is much shorter than the lifetime of the excited states

of the emitter. In this limit, the Stark effect depends only on the frequency of the

electron impact, whose inverse, the average interval between impacts, shall not be

confused with the impact duration. The impact frequency νc is related to the Stark

effect cross section σW (equation (5.13)) as

νc = neσWve, (5.23)

where ne and ve are the electron number density and velocity, respectively.

An excited state of the emitter can be viewed as a quantum oscillator with its

frequency ω0 related to its energy E as E = ~ω0. The excited state makes a transition

into a lower energy state with a natural lifetime τ0. The ensemble average of the
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excited state can be represented by a wavefunction ψ(t) as

ψ(t) ∼ eiω0te−t/τ0 , (5.24)

where the exponential decay term appears because the transition is a random process

(Poisson process) with the characteristic frequency ν0 = 1/τ0. As a result of this

natural decay, a band of frequencies will be observed instead of a single frequency ω0

in the frequency space of ψ(t):

ψ̃(ω) ∼
∫ ∞

0

eiω0te−t/τ0e−iωt dt =
1

i(ω0 − ω)− ν0

, (5.25)

where ψ̃(ω) is the Fourier transform of ψ(t). Hence, the amplitude of the frequency

component ω is

I(ω) =
∣∣∣ψ̃(ω)

∣∣∣2 ∼ 1

(ω − ω0)2 + ν2
0

. (5.26)

This frequency dispersion is called as natural broadening and its shape is known as

Lorentzian profile. The full width at half maximum (FWHM) of the profile is 2ν0.

The natural broadening (2ν0 ∼ 108 Hz for strong atomic lines) is negligible compared

to the optical frequency ∼ 1015 Hz.

The electron impact perturbs the excited state and causes the state to decay into

a lower energy state, effectively shortening the lifetime of the excited state. Thus, the

frequency spectrum of the state will further spread beyond the natural broadening,

since the electron impact is essentially the same statistical event (Poisson process)

as the natural decay. The impact frequency νc is typically greater than the natural

decay frequency ν0. Thus, the intensity profile of the frequency shift ∆ω = ω − ω0

will be primarily broadened by the electron impact:

I(∆ω) ∼ 1

∆ω2 + ν2
c

. (5.27)
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The profile width of I(∆ω) scales as

width of I(∆ω) = 2νc ∼ 2neσWve ∼ ne(Ca/ve)
2ve = C2

ane/ve. (5.28)

5.4 Density diagnosis using the Stark broadened

profiles

The ultimate profile of the frequency shift of an energy level, I(∆ω), is the convo-

lution of the quasi-static and the electron impact broadenings. The transition from

a broadened upper level to a broadened lower level results in a broadened spectral

line. In a real plasma, the line profile is further modified by secondary effects such as

Debye screening [35] and ion motion [36] [37] [24]. Theories that take into account

these secondary effects have predicted Stark broadening of hydrogen Balmer lines in

good agreement (within 1%–10%) with experiments.

For hydrogen lines, the quasi-static microfield splits degenerate energy levels via

the strong linear Stark effect. The line profile is dominantly broadened as a result of

this splitting, and so the profile width scales with n
2/3
e according to equation (5.22)

with k = 1. It is customary to express the profile width by a parameter α1/2, the so

called reduced half-width that scales the line shape [23]:

wS = 2.5× 10−14 α1/2 n
2/3
e , (5.29)

where wS is the Stark FWHM in nm and ne is the electron density in m−3. The

half-width α1/2 has been tabulated for many hydrogen lines based on both theoretical

calculations and experimental data for the temperature range 0.5–4 eV and density

range 1020–1024 m−3 [35] [36] [24].

For lines of non-hydrogenic atoms, the electron impact broadening via the quad-

ratic Stark effect is the dominant broadening mechanism [23]. Thus, to a first ap-

proximation, the line profile is Lorentzian and linearly proportional to the electron
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density according to equations (5.27) and (5.28):

wS ≈ wmne, (5.30)

where wm is the proportionality parameter. For an extensive collection of N II lines,

this property has been substantiated by the experimental work of Mar et al. [38].

Measurements of Stark broadening of non-hydrogenic spectral lines have been tabu-

lated for well-defined and independently measured plasma conditions [25].
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Chapter 6

Analysis of spectral line profiles

6.1 Density estimation from spectral line profiles

The profile of a Stark broadened line is a complicated function of plasma density and

temperature as described in chapter 5. However, for electron density measurement,

the detail of the Stark broadened profile is not necessarily required. Instead, the full

width at half maximum (FWHM) of the profile is used because the electron density

is a simple function of the Stark FWHM for many spectral lines. Even though this

simple approximation is applicable for most spectral lines, extraction of the pure

Stark effect from a line profile is generally not straightforward. To clarify difficulties

in reliable density estimation from Stark broadened line profiles, issues pertinent to

our plasma source are discussed [23].

6.1.1 Uncertainty in Stark parameter

The reduced half-width α1/2 for hydrogen lines (equation (5.29)) has a weak de-

pendence on density and on temperature. In addition, it differs slightly between

calculations. The half-width α1/2 of the Hβ line (approximately 0.085) is plotted as a

function of temperature (density) for several representative densities (temperatures)

in figure 6.1a(b) according to the Gigosos-Cardeñoso (GC) theory [36] and according

to the Kepple-Griem (KG) theory [35], showing a slight discrepancy between the two

theories. The uncertainty in α1/2 introduces an error < 20% in density estimation for
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Figure 6.1: Reduced half-width α1/2 of theoretical Hβ Stark profiles according to
the GC theory (solid lines) and according to the KG theory (dashed lines). (a) α1/2

versus temperature for densities 5 × 1020, 5 × 1021, 5 × 1022 m−3. Lines are drawn
thicker for increasing density. (b) α1/2 versus density for temperatures 1, 2, and 3 eV.
Lines are drawn thicker for increasing temperature.

the hydrogen plasma jets.

Non-hydrogenic spectral lines are used to measure the density of non-hydrogen

(nitrogen, argon, etc) plasma jets. The uncertainties are about 15%–30% for the

Stark width parameters wm (see equation (5.30)) of the spectral lines used in the

present study. For instance, the Stark width parameter for N II 424.178 nm is wm =

152.6 pm/1023 m−3 within 23% error [25].

6.1.2 Competing broadening effects

Besides Stark broadening, a spectral line can be broadened by other effects such as

Doppler effect, instrumental broadening, and Zeeman splitting.

The Doppler broadening is due to the thermal motion of emitters and the profile

is a Gaussian function with FWHM wD,

wD = 7.7× 10−5λ
√
Ti/M, (6.1)

where λ is the wavelength of the spectral line, Ti is the emitter temperature (' the

ion temperature) in eV, and M is the emitter mass in amu. The ion temperature Ti

appears to be less than 10 eV in the plasma jets. Therefore, 20 pm ≤ wD ≤ 100 pm



79

for hydrogen lines and 6 pm ≤ wD ≤ 30 pm for nitrogen lines in the wavelength range

300–500 nm.

The presumption of low Ti < 10 eV is supported by an impurity line measurement

(C III 229.687 nm) showing broadening ≤ 10 pm corresponding to Ti ≤ 4 eV (see

the inset profile in figure 6.3). It had been assumed that Ti ∼ Te in the previous

work [9, 21], where Te was either measured by a triple Langmuir probe (5–15 eV) or

inferred from spectral line ratios (1–5 eV). For nitrogen plasma jets, the assumption is

supported by a good agreement between the measured line ratios and the calculated

line ratios using the Saha-Boltzmann equation, suggesting that the plasma jets are

at local thermodynamic equilibrium and so Ti ∼ Te . 10 eV. Significant ion heating

(Ti � Te) via magnetic reconnection has been observed in some other gun-produced

spheromak plasmas [1, chap. 13]. However, magnetic reconnection is not a dominant

mechanism in the plasma jets under consideration here as the magnetic topology is not

undergoing changes. There is mainly a stretching of field lines, but not reconnection

(except for the minimal reconnection associated with merging of spider legs).

The instrumental function describes the spreading of a monochromatic light source

recorded by an spectroscopic system. The instrumental function is mainly determined

by the fiber core size, the slit width, and the entrance optics in the present spectro-

scopic system (section 3.7). The instrumental function is measured by recording

a known spectral line emitted from a spectrum tube within or close to the spec-

tral range of interest. The measured instrumental broadening is ∼7 ICCD pixels

at FWHM, which corresponds to ∼30 pm according to the pixel resolution equa-

tion (3.2). The Zeeman splitting of the energy levels [33, chap. 17] is ∆E ∼ µBB,

where µB = e~/2me is the Bohr magneton. In terms of wavelength, the Zeeman effect

is given by ∆λ[pm] ∼ 10−4λ2
[nm]B[Tesla] < 8 pm for B = 0.3 Tesla, and so the Zeeman

effect is negligible. Spectral lines can also split via the Doppler effect if there exist

relative bulk flow motions within the line of sight volume. However, such a splitting

will be minimal because it is less than 50 pm even for unlikely 30 km/sec relative flow

motions.

If a line width is measured greater than 200 pm, it can simply be taken as the
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Stark width because the other effects cannot account for a line width > 100 pm, and

so the Stark effect must be the dominant broadening effect in such a case. For Hβ

line, the Stark broadening becomes dominant for ne & 1021 m−3 according to equa-

tion (5.29). If the measured line width is comparable to the instrumental broadening

or the expected Doppler broadening, the Stark width can be estimated using one of

the deconvolution procedures described in the next sections 6.2, 6.3, and 6.4.

6.1.3 Plasma inhomogeneity

The plasma jets in our experiments have internal structures (see figure. 3.8b) and so

may have a density gradient along the line of sight. A significant distortion may occur

at the center of a line profile as illustrated in figure 6.2a because the lower density

region concentrates its emission energy in a narrow band while the higher density

region spreads the emission energy over a broad band.

In particular, special care must be applied to the interpretation of the character-

istic central dip of the Hβ line. The density gradient effect becomes more appreciable

in the central dip region as the narrow Hβ emission from a low density region can

stand out in that region. The Hβ central dip can appear in high density plasma,

where the ion field discussed in chapter 5 is strong enough to make the line splitting

(via the linear Stark effect) larger than the electron impact broadening. The other

even-numbered hydrogen Balmer lines can also have a central dip [29].

A narrow peak overlaid over a broad envelope similar to figure 6.2a was indeed

observed in some measured Hβ line profiles as shown figure 6.2b. Note that the

theoretical fit according to Stehlé and Hutcheon [24] lacks such a narrow peak because

the theory assumes a homogeneous plasma density. The electron density may be

underestimated if the peak value is used to measure the profile FWHM. For non-

hydrogenic lines and hydrogen lines with no central dip, the FWHM is obtained by

fitting the profile to a Lorentzian shape, since this fitting process puts more weight

on the side bands than on the center and so avoids errors associated with a density

gradient along the line of sight. For hydrogen lines showing the central dip, the
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Figure 6.2: (a) Sum of a wide and a narrow Lorentzian profile. Dashed line is the
wide profile with total intensity = 1000 and FWHM = 10, dotted line is the narrow
profile with total intensity = 20 and FWHM = 0.5, and solid line is the sum of
the two profiles. (b) Measured Hβ line profile showing the characteristic central dip
distorted by a peak from a low density contribution (data# oma11.61, perpendicular
line of sight). Measured data points are represented by dots with a fitting curve (thin
solid line). Bold solid line connecting the square points is a theoretical fit according
to Stehlé [24] with ne = 1.05 × 1022 m−3 and Ti = Te = 2 eV. Vertical dashed line
indicates the Hβ rest-frame wavelength 486.133 nm.

FWHM is not well-defined but the same Lorentizan fitting process may be used to

define the FWHM. The electron density obtained via equation (5.29) using such

FWHM is about the same with the electron density estimated by manually finding

the best theoretical fit to the line profile (see sections 6.2 and 6.4).

6.1.4 Self-absorption, continuum background, and blending

with nearby spectral lines

Self-absorption in an optically thick plasma can lead to an overestimation of electron

density. Overlaps between the internal structure of the plasma jet and the objects in

the background are observed in camera images when the camera is operated within

its dynamic range, i.e., not saturated (see figure 3.8b). This suggests that our plasma

is optically thin and so self-absorption will be insignificant.

Blackbody radiation, the background noise of the ICCD detector, Balmer contin-

uum, etc. contribute to the background level of spectral data. Spectral profiles are

corrected by subtracting the measured background level taken from spectral regions
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Figure 6.3: Observed line profiles (NII, 424.178 nm) from a nitrogen plasma jet at t =
2, 4, 6, and 8 µs after breakdown (shot#: 6736–3, 7, 11, and 15, respectively). Solid
lines are Lorentzian fits. The estimated densities are 0.1, 1.7, 7.8, and 4.0×1022 m−3,
respectively. A measured impurity line profile (CIII, 229.687 nm) is inset at the top for
width comparison. Its Doppler width (wD =

√
w2
T − w2

I ) is ∼0.007 nm, corresponding
to Ti = 2 eV. Vertical dashed line indicates rest-frame wavelength.

close to the spectral line of interest but separated by several times its width. Addi-

tionally, every spectral line used in the experiment is isolated from other lines by at

least its line width to avoid mixing.

6.2 Deconvolution of Stark broadening

– simple formula

The Stark broadening and hence the electron density can be extracted from measured

line profiles using a simple and computationally inexpensive procedure. The total

FWHM (wT ) of a spectral line profile is measured by fitting the data to a Lorentzian

profile. The Stark FWHM (wS) is then obtained by subtracting the Doppler effect

(wD) and the instrumental function (wI) from the total width wT according to the

conventional method [39]

wS =
√
w2
T − w2

D − w2
I if wT/

√
w2
D + w2

I > 1.04. (6.2)
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This formula assumes that the instrumental function is Gaussian, the Stark broaden-

ing is Lorentzian, and so the total broadening is a Voigt profile [40], i.e., the convolu-

tion of a Gaussian profile and a Lorentzian profile. The electron density is then calcu-

lated using equation (5.29) for hydrogen lines and equation (5.30) for non-hydrogenic

lines. The reliability of this simple method is substantiated by comparing the density

obtained by this method with the density obtained by the theoretical fitting according

to Stehlé [24] (see figure 4.7). The error in the density estimation using Hβ profiles

is less than 15% for ne ≥ 1022 m−3 taking into account the issues discussed in the

previous section. The error gets larger for lower density (25% for ne ∼ 1021 m−3 and

50% for ne ∼ 1020 m−3).

6.3 Maximum entropy deconvolution

The simple formula (6.2) becomes inaccurate as the ratio wT/
√
w2
D + w2

I approaches

unity. However, if the instrumental effect can be removed, the ratio wT/wD will

become significantly greater than unity since wD . wI in our experiment, and so

the simple formula will become applicable once again. The instrumental function wI

of the spectroscopic system can be removed computationally since the instrumental

function is invariant and can be measured before taking spectrum. A deconvolution

method based on the maximum entropy principle [41] has been implemented to remove

the instrumental function and thereby achieve an effective resolution higher than the

nominal spectroscopic resolution. The deconvolution method has been applied to

some spectral lines for the Stark density measurement in case of wT ≈
√
w2
D + w2

I .

The deconvolution method has also been used to separate overlapping Doppler shift

components of a same spectral line and thereby resolve velocity components of plasma

jets in the solar prominence simulation experiment [42, Fig. 5].
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6.3.1 Undoing the instrumental broadening

– an inverse problem

Removing the instrumental effect corresponds to the following ill-posed inverse prob-

lem.

gi =
N∑
k=1

Hikfk (i = 1, . . . ,M), (6.3)

where gi is the measured signal at the ith pixel, fk is the true signal to be recovered,

and Hik is the instrumental function which blurs the true signal f = (f1, . . . , fN)t.

Since the instrumental function preserves the total intensity, the matrix H is normal-

ized as
M∑
i=1

Hik = 1.

Hence,
M∑
i=1

gi =
M∑
i=1

N∑
k=1

Hikfk =
N∑
k=1

(
M∑
i=1

Hik

)
fk =

N∑
k=1

fk.

It is also convenient to normalize f so that

N∑
k=1

fk =
M∑
i=1

gi = 1. (6.4)

The inverse problem (6.3) is ill-posed since the matrix H is not invertible or, even if

it is, the inverting process is numerically unstable. This comes at no surprise because

the instrumental function smooths out fluctuations of the original signal f and so the

inverse process (deconvolution) will amplify the noise in the measured signal g. To

examine the noise-amplifying property of the inverse process, suppose the matrix H

is a square matrix (M = N) whose maximum and minimum eigenvalues are λM and

λ1, respectively, and consider a true signal f in the direction of the eigenvector of

λM . Then, the measured signal will be

g = Hf = λMf .
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Now imagine that the measurement introduced a small error ∆g in the direction of

the eigenvector of λ1. The corresponding error ∆f will appear in the true signal

recovered by the inverse process as

∆g = H∆f = λ1∆f .

Thus, the relative error
‖∆f‖
‖f‖

=

∣∣∣∣λMλ1

∣∣∣∣ ‖∆g‖‖g‖ ,
which implies that a small error in the measured signal can appear amplified by the

factor of |λM/λ1| in the recovered signal f . This factor is called the condition number

of the matrix H and is a measure of the instability of the inverse process [43, sec. 5.3].

6.3.2 Constrained inverse problem

In earlier work [44], a deconvolution algorithm to solve the inverse problem (6.3)

has been implemented based on the maximum entropy principle [41] and a steepest

descent method devised by Bellan [45] for finding the minimum of a function. The

maximum entropy principle modifies the original problem by imposing the condition

that the entropy S(f) defined as

S(f) = −
N∑
k=1

fk log(fk) (6.5)

be maximized. Suppose that fk corresponds to the number of photons hit on the

pixel k. Then, the entropy S(f) is a measure for the total number of ways that the

photons redistribute themselves among the n pixels but preserving the configuration

{fk}. Thus, the configuration {fk} which maximizes the entropy S(f) under the

M+1 constraints (6.3) and (6.4) is the least committal solution among all the possible

solutions satisfying the constraints.

The maximum entropy solution f can be found using the method of Lagrange
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multipliers. Consider the Lagrangian

L(f ;λ) = −
N∑
k=1

fk log(fk)− λ0

(
N∑
k=1

fk − 1

)
−

M∑
i=1

(
λi

N∑
k=1

Hikfk − gi

)
. (6.6)

Maximization of the Lagrangian L(f ;λ) with respect to each fk gives the solution f

as a function of the Lagrange multipliers λ’s:

fk(λ) = exp

(
−

M∑
i=1

λiHik

)
/Q(λ), (6.7)

Q(λ) =
N∑
k=1

exp

(
−

M∑
i=1

λiHik

)
, (6.8)

where the partition function Q(λ) comes about from the normalization condition of

f (equation (6.4)). The final step is to find the set of the Lagrange multipliers λ’s

which satisfy the system of equations (6.3):

gi −
N∑
k=1

Hikfk(λ) = 0 (i = 1, . . . ,M). (6.9)

Finding the roots of the above equations is equivalent to minimizing the potential

function defined as

Z(λ) = logQ(λ) +
M∑
i=1

λigi (6.10)

because ∂Z/∂λi = gi −
∑N

k=1Hikfk(λ).

In case of M = N (i.e., the matrix Hik is a square matrix), it can be shown that

the potential function Z(λ) is strictly concave [46] (see appendix F for the proof), and

thus, the minimization process will always lead to the single global minimum. The

gradient of Z(λ) becomes progressively weaker as one approaches the global minimum

since Z(λ) is a smooth function of λ. A steepest descent algorithm utilizing this strict

concavity was devised by Bellan [45] to find the minimum. The strategy is to take

iterative steps in variable size along the direction of the gradient. A large step ε∇Z

is taken initially from a starting point λ0 and then the potential at the new point
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λ′ = λ0 − ε∇Z is compared with the starting value Z0 = Z(λ0). The parameter ε is

a small positive number which determines the step size. If Z(λ′) > Z0, the step size

ε is decreased and Z is re-evaluated until it becomes smaller than Z0. If Z(λ′) < Z0,

another search starts from the new point in the new direction ∇Z(λ′). To avoid

taking too small steps, a step size ε slightly greater than the last step size is taken at

the start of each search. This steepest descent algorithm is illustrated in figure 6.4.

The variance Ω at each step is defined as

Ω =
1

N

∑
i

(
gi −

∑
k

Hikfk

)2

=
1

N

∑
i

∣∣∣∣ ∂Z∂λi
∣∣∣∣2 =

1

N
‖∇Z‖2 (6.11)

and is a measure of goodness of the signal recovery. The iteration stops if Ω becomes

smaller than an expected variance Ω0 or the total number of steps taken exceeds a

given maximum number of steps. The parameter Ω has a practical importance [47].

Ω � Ω0 indicates the recovered signal (f) is a poor fit to the measurement (g). On

the other hand, Ω � Ω0 indicates the recovered signal is an over fit and contains

structures arising from the measurement error. The variance of a measured back-

ground spectrum g0i = c + ei, where c is the constant background level and ei is the

noise, may be taken as the expected variance Ω0.

Ω0 =
1

N

N∑
i=1

e2
i . (6.12)

6.3.3 Numerical test

The maximum entropy deconvolution scheme was applied to a set of synthetic spectra

with noise broadened by a given instrumental function to test its reliability. It was

seen that the deconvolution scheme is robust against measurement noise. Figure 6.5a

shows that the deconvolution completely recovers the double peaks in the original

spectrum from the noisy data broadened by the instrumental function. In practice,

the instrumental function is measured by taking a reference spectrum and so contains

measurement errors. The deconvolution scheme was also tested against uncertainty
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Figure 6.4: Example of the steepest decent iterations. Green dot indicates a success-
ful step toward the minimum and red dot indicates too large a step size. The given
example is a somewhat worst-case scenario where the initial step size is too large.

in the instrumental function. No noticeable change in the recovered spectrum was ob-

served until the signal-to-noise ratio of the instrumental function was degraded below

∼20 (figure 6.5b). The signal-to-noise ratio of the measured instrument function for

our spectroscopic system is very high (& 100) and so the corresponding deconvolution

error would be small.

The two-dimensional version of the maximum entropy deconvolution scheme has

also been implemented to enhance the Imacon camera images (figure 6.6). In the

thesis work of Romero-Talamás [48], a similar deconvolution scheme based on the

work of Wilczek and Drapatz [49] was used to enhance the resolution of the blurred

SSPX plasma images.

6.4 Theoretical fitting of Stark profile

The profiles of hydrogen lines emitted from hydrogen plasma of large density (ne &

1022 m−3) are significantly different from the Lorentzian function. The Hβ line profile

characterized by the central dip as shown in figure 4.7 is a good example. For such

line profiles, it is not straightforward to define the profile width. The width may be

defined as the FWHM of the Lorentzian function best fitting the profile or the FWHM
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(a) Maximum entropy deconvolution of a synthetic spectrum
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Figure 6.5: (a) Maximum entropy deconvolution of a synthetic spectrum. The orig-
inal synthetic spectrum (red line) contains two peaks that are merged together in
the measured spectrum (connected dots) by the instrumental broadening. Random
noise has been added to the measured spectrum so that the signal-to-noise ratio is
20 at the peak. Thick solid line represents the recovered spectrum by the maximum
entropy deconvolution. (b) Maximum entropy deconvolution with degraded instru-
mental function (red solid line). The original instrument function (dashed line) is
overlaid with the degraded one. The signal-to-noise ratio of the degraded instrumen-
tal function is 20 at the peak. No noticeable change except small details in the peaks
is seen in the recovered spectrum.
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(a) Original Imacon image

(b) Reconstructed image

Figure 6.6: Example of the image reconstruction by the maximum entropy deconvo-
lution method.

of the raw profile. However, the validity of applying such definitions of profile width

to equation (5.29) for density estimation needs to be checked.

Instead of introducing an arbitrary definition of profile width, the density of hy-

drogen plasma can be estimated by finding the best theoretical fit to observed line

profiles. Stehlé and Hutcheon [24] calculated Stark broadened hydrogen line pro-

files for a pure hydrogen plasma and tabulated the result according to line species,

density, and temperature. The Stark broadening tabulation spans a density range

between 1016 and 1025 m−3 (20 densities) and a temperature range between 2500 and

1.3× 106 K (10 temperatures). Local thermodynamic equilibrium is assumed in the

calculation and so Ti = Te.

The best theoretical fit to an observed line profile can be found as follows. A rough

density estimate is made using the FWHM of the raw profile in equation (5.29). The

plasma temperature is chosen between 1 and 10 eV (section 6.1.2). The choice of

temperature is not critical for Hβ line profiles because the Stark broadening of the

Hβ line is nearly independent of temperature (chapter 5). The computed line profile

corresponding to the trial density and temperature is retrieved by a computer code
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supplied in the distribution of the Stark broadening tabulation. The computer code

returns interpolated data if necessary. The retrieved profile is then convolved with

the instrumental function to simulate the same intrumental broadening present in the

observed line profile. The trial density is varied until the computed profile fits well to

the observed profile. The temperature may be further adjusted to obtained a better

fit.

The resulting best-fit density is compared to the density estimated by the simple

method described in section 6.2, where the total width is taken from a Lorentzian fit

to the observed profile. The difference between the two estimates of density is less

than 10%, ensuring the validity of the simple density estimation method.
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Chapter 7

Summary and conclusion

The Caltech spheromak plasma gun generates highly collimated rapidly evolving

plasma structures. The planar configuration of the gun electrodes has permitted

direct observation of the entire plasma dynamics and four distinct evolution stages

have been identified in previous work by others. The four evolution stages are (1)

eight well-collimated arched flux tubes reminiscent of spider legs form across the gun

electrodes, (2) the spider leg flux tubes coalesce into a single central plasma jet, (3)

the plasma jet expands axially and becomes collimated, and (4) the elongated plasma

jet may undergo MHD instabilities. The present work has reported new experimental

observations of the first and the third stages showing that the observed collimation

is a result of the MHD pumping of plasma particles into flux tubes.

In chapter 3, the construction of a high-resolution spectroscopic system is de-

scribed. The spectroscopic system has 12 channels with flexible lines of sight and can

measure emission spectra radiated from multiple locations of the plasma simultane-

ously. Jet velocities are measured from Doppler shifts of spectral lines and electron

densities are measured from Stark broadened spectral lines. The Stark broadening

mechanism is summarized in chapter 5. A simple method to extract densities from

Stark broadened lines is described in chapter 6. The method provides reliable plasma

density diagnostics for densities & 1021 m−3.

In chapter 4, the experimental results are presented, showing in detail that the

observed densities and velocities are consistent with the MHD pumping model. The

measured jet velocities (∼40 km/sec) are the Alfvénic velocity corresponding to the
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measured density (∼1022 m−3) and azimuthal magnetic field strength (∼1 T) as pre-

dicted by the MHD pumping model. It is demonstrated that the flow slowing down

observed at the forefront of the jet leads to the observed mass accumulation and

subsequent jet collimation according to the MHD pumping model. In addition, it is

clearly shown that the measured density amplification (from ∼1017 up to ∼1022 m−3)

is entirely due to the MHD pumping and cannot be accounted by the gas puffing.

We conclude that the MHD pumping and collimation model has provided a con-

sistent explanation for the observed collimation and density amplification of the gun-

produced plasmas. Thus, the MHD pumping model provides valuable insight into the

ubiquitous collimation of laboratory, solar, and astrophysical plasmas.
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Appendix A

Leak analysis

A.1 Equilibrium pressure; pumping, leak, and wall

desorption

The change in number of particles in the vacuum chamber with volume V is

∆N = V∆n = −nRp∆t+ nARl∆t, (A.1)

where n is the number density of air inside the chamber, nA is the number density of

the air outside the chamber, Rp is the pumping rate (volume per unit time), and Rl

is the effective leak (including wall desorption) rate.

V
dn

dt
= −nRp + nARl (A.2)

V
dp

dt
= −pRp + pARl (expressed in terms of pressures) (A.3)

=⇒ p = (p0 − pARl/Rp) exp(−tRp/V ) + pARl/Rp. (A.4)

Thus, the pressure (p) inside the chamber exponentially approaches the equilibrium

pressure pe given by

pe = pARl/Rp. (A.5)
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If there is no pumping,

(
dp

dt

)
no pump

= pARl/V ; linear pressure rise (A.6)

=⇒ Rl =

(
dp

dt

)
no pump

V/PA (A.7)

Rp = RlpA/pe =

(
dp

dt

)
no pump

V/Pe. (A.8)

Hence, both the effective leak Rl and the pumping speed Rp can be estimated from

the linear pressure rise
(
dp
dt

)
no pump

by shutting off pumping for a moment.

A.2 Example

When the gate valve of the cryopump was closed, the chamber pressure increased

from 1.4× 10−7 torr to 9.3× 10−6 torr in two minutes.

(
dp

dt

)
no pump

= (9.3× 10−6 − 1.4× 10−7)/120 = 7.6× 10−8 torr/sec.

Since pA = 760 torr, pe = 1.4× 10−7 torr, and V = 2.4 m3,

Rl =

(
dp

dt

)
no pump

V/PA = 2.4× 10−10 m3/sec = 2.4× 10−4 cc/sec,

Rp =

(
dp

dt

)
no pump

V/Pe = 1.3 m3/sec = 1300 liters/sec.

The cryopump is working more or less with the specified pumping speed ∼1000

liters/sec. The effective leak (∼10−4 cc/sec) is reasonable considering tens of O-

rings (∼10−6 cc/sec per O-ring) installed on the chamber and desorption from the

wall.

In the event of a leak much greater than the normal effective leak (∼10−4 cc/sec),

determining the size of leak aperature may help locate the leak.

Rl ≈ vth ×D2
leak, (A.9)
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where vth = 340 m/sec is the sound speed of air and Dleak is the leak aperature

diameter. For example, consider the case when the equilibrium chamber pressure is

as high as 1.0× 10−5 due to an unknown leak. The leak rate is

Rl = Rppe/pA = 1300 ·
(
1.0× 10−5/760

)
liters/sec ≈ 0.017 cc/sec,

and the corresponding leak aperature size is

Dleak =
√

1.7× 10−8/340 m ≈ 7 µm.
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Appendix B

Measurement of gas cloud profile

B.1 Fast ionization gauge (FIG)

A home-built fast ionization gauge (FIG) has been constructed by P. M. Bellan to

measure the output of the fast gas valves [21]. The FIG measurement detail is repro-

duced here for completeness by the kind courtesy of S. You and a modified gas cloud

model based on his original model is presented.

The FIG is mounted on a right-angle arm as shown in figure 2.2 so that both

its axial and radial locations can be adjusted. The FIG is operated in the same

way as standard hot-cathode ionization gauges. Thermionic electrons emitted from

a heated filament (cathode; negatively biased) are accelerated toward a positively

biased electrode (anode). The electrons collide with gas molecules in the background

and ionize them. The distance between the cathode and the anode is designed to

be smaller than the electron’s ionization mean free path to prevent multiple ionizing

collisions. The ionized atoms are attracted to a grounded electrode called collector.

The total number of ionizing collisions per unit time is

Ṅi = nσi,glṄe = (P/kT )σi,glṄe, (B.1)

where n is the gas number density, σi,g is the ionization cross-section for gas “g”, l is

the distance between the cathode and anode, Ṅe is the number of emitted electrons

per unit time. In terms of the collector current Ic = Ṅie and the emission current
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Ie = Ṅee,

Ic = PSgIe =⇒ P = Ic/(SgIe) = Ic/(RgSN2Ie), (B.2)

where Sg = σi,gl/kT is called as gauge sensitivity factor [torr−1]. Relative gauge

sensitivity factors (Rg) commonly calibrated for nitrogen are available from the public

vacuum literature [50]. The FIG’s sensitivity factors are obtained by comparing

with a standard Bayard-Alpert type gauge. However, the pressure calculated by

equation (B.2) has only a relative meaning since the pressure near the gas orifices is

presumably of the order of mtorr and Sg becomes nonlinear for pressure > 1 mtorr.

FIG measurements are shown in figure B.1. Figure B.1b shows that the particle

flux from the fast gas valve lasts for ∼5 msec, much longer than our plasma lifetime

of ∼20 µsec.

B.2 Gas profile modeling

Consider the gas density profile fi(r, z) produced by the orifice i (i = 1, 2, . . . , 16

is the index number of each orifice). The radial velocity distribution is presumably

Gaussian at the orifice since gas particles will be thermalized in radial direction as

they flow along the long gas line. The particle source at the orifice can be considered

point-like at distance (
√
r2 + z2) much greater than the orifice diameter. In this limit,

the Gaussian radial velocity distribution produces a Gaussian radial density profile

because

fi∆r ∝
∫ (r+∆r)/t

r/t

exp(−v2/v2
T )dv

∝ exp(−v2/v2
T )∆r/t

∝ exp(−r2/(tvT )2)∆r/t (∗v = r/t), (B.3)

where fi∆r is the number of particles in the ring (r, r + ∆r) at time t and vT is the

radial thermal velocity of the gas.

The density drops quadratically in the axial direction assuming the axial expansion
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velocity is constant (an exponential drop was assumed in the original model of S. You).

Hence, the gas blooms out radially at the speed of sound (vT ) and expands axially at

some Mach number, forming a cylindrical cone of gas cloud. The width of the radial

profile gives the Mach number since the Mach number (M) is essentially the ratio of

the axial velocity (vz) to the sonic radial velocity (vT ):

rHM = tvT
√

log 2 = tvz(vT/vz)
√

log 2 =
z

M

√
log 2, (B.4)

M =
z

rHM

√
log 2 = tanα

√
log 2, (B.5)

where rHM is the radius of half maximum density at a given axial position z and α

is half the cone angle measured at half maximum density. The density profile can be

written in terms of Mach number M

fi(r, z) = f0i
1

z2
exp

(
− r2

(tvz/M)2

)
= f0i

1

z2
exp

(
− r2

(z/M)2

)
. (B.6)

The total particle density fT at a point (r, φ, z) is the sum of the 16 gas clouds

fT (r, φ, z) =
16∑
i=1

fi(ri, z), (B.7)

where ri is the radial distance from the orifice i.

The FIG measurements fit well with the gas cloud model calculated by equa-

tion (B.7) as shown in figure B.1.
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(a) Radial pressure profile
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(b) Pressure trace

Figure B.1: Fast ion gauge (FIG) pressure measurement (data courtesy of S. You).
Nitrogen was injected by the four fast gas valves. The FIG’s axial location was z = 18
cm. (a) Radial pressure profile. The data points are taken at 7 msec (after the fast
gas valves triggered) and the error bars indicate signal variations in ±0.5 msec. The
solid curve is the calculated profile according to equation (B.7). The shape of the
radial profile becomes stationary after about 5 msec and starts to fit with calculated
profiles. (b) Pressure trace at r = 0 cm. The pressure peaks at about 4 msec. The
gas flow speed is (L + 0.18m)/4msec = 300 m/sec ≈ the sound speed of nitrogen,
where L ≈ 1 m is the length of gas lines (distance from fast gas valves to orifices).
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Appendix C

Linear dispersion of Czerny-Turner
spectrometer

A Czerny-Turner spectrometer is shown schematically in figure C.1. Knowledge of the

linear dispersion of the spectrometer at the exit plane is desired to calibrate a spectral

window for which no reference spectral lamps are available and also to circumvent

repetitive use of spectral lamps for each spectral window. The grating equation is

d (sinα + sin β) = mλ, (C.1)

where α is the angle of incidence, β is the angle of diffraction, d is the groove spacing,

m is the diffraction order, and λ is the wavelength of light. The sign of an angle

is positive (negative) if drawn counterclockwise (clockwise) in figure C.1. Consider

the angular dispersion, i.e., variation of λ as a function of β for a fixed α. The

angular dispersion at the focusing mirror (M2) can be obtained by differentiating

equation (C.1) with respect to β:

d cos β = m
∂λ

∂β
=⇒ ∂λ

∂β
=
d cos β

m
. (C.2)

Thus, the linear dispersion at the exit focal plane is

∂λ

∂x
=

1

L

∂λ

∂β
=
d cos β

Lm
, (C.3)

where L is the focal length of the focusing mirror.
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A rotation of the grating by an angle θ determines the incidence/diffraction angles

and selects a wavelength λ, which will be focused at the center of the exit focal plane.

The selected wavelength λ is related to θ according to the grating equation (C.1):

α = α0 + θ, (C.4)

β = −α0 + θ, (C.5)

d (sin(α0 + θ) + sin(−α0 + θ)) = 2d sin θ cosα0 = mλ

=⇒ sin θ =
mλ

2d cosα0

. (C.6)

The linear dispersion at the selected wavelength λ can be expressed as a function

of λ by inserting equations (C.4)–(C.6) into equation (C.3):

∂λ

∂x
=

d

Lm
cos β =

d

Lm
cos(−α0 + θ) =

d

Lm
(cosα0 cos θ + sinα0 sin θ)

=
d

Lm

(
cosα0

√
(2d cosα0)2 − (mλ)2

2d cosα0

+ sinα0
mλ

2d cosα0

)

=
1

2L

√(2d cosα0

m

)2

− λ2 + λ tanα0)

 (C.7)

The pixel resolution R(λ) of a CCD detector placed at the exit focal plane is R(λ) =

∆x ∂λ/∂x, where ∆x is the detector pixel size.

The linear dispersion will be nearly constant across the detector plane (i.e., the exit

focal plane) if the detector size is small compared to the focal length of the spectrome-

ter since the bandpass of the detector∼ (detector size)×(∂λ/∂x) ∝ (detector size)/L.

Consider a wavelength λ′ = λ + ∆λ close to the selected wavelength λ. The wave-

length λ′ will have a different diffraction angle β′ = β + δ than β and subsequently

be focused at a point off the center of the exit focal plane. Because ∂λ/∂x ∝ cos β

(equation (C.3)), the relative error ∆R/R of approximating (∂λ/∂x)λ=λ′ by expres-

sion (C.7) is
∆R

R
=

cos β′ − cos β

cos β
≈ −δ sin β

cos β
= −δ tan β. (C.8)
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M1M2

exit entrance

G

L

Figure C.1: Czerny-Turner configuration. G is the grating with groove spacing d.
M1 is the collimating mirror and M2 is the focusing mirror with focal length L. α is
the angle of incidence, β is the angle of diffraction, α0 is half the angle between the
incident and the diffracted light, and θ is the rotation angle of the grating.

The ∆λ is related to δ as

sin β′ =
mλ′

d
− sinα = sin(β + δ) ≈ sin β + δ cos β

=⇒ δ ≈
(
mλ′

d
− sinα− sin β

)
/ cos β =

(
mλ′

d
− mλ

d

)
/ cos β =

m∆λ

d cos β
.

Thus, the relative error is

∆R

R
=
m∆λ

d
tan β/ cos β . O

(
∆λ

d

)
. (C.9)

For the spectroscopic system used in the present thesis work, ∆λ across the detector

plane is ∼2 nm and d = 1/3600 mm ≈ 280 nm. Thus, the relative variation of the

linear dispersion across the detector plane is less than 1%.
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Appendix D

Large vacuum viewport

Two large custom-made viewports (8′′ diameter window welded on a 10” flange) and a

commercial viewport (6′′ view) installed on the east side of the vacuum chamber have

been utilized for taking plasma pictures and spectra. More vacuum viewports with

8′′ or greater view were desired for the cameras and the spectroscopic system to gain

a better access to the plasma. An economic viewport design has been devised since

commercial vacuum viewports are available only up to ∼6” view and a custom-made

viewport with larger view size would be expensive prohibiting multiple installations

of such viewports. The viewport design (figure D.1 consists of a modified 10′′ Conflat

flange, a viewport glass (BorofloatTM, 8.5′′ diameter, 11 mm thick), an O-ring to

form a vacuum seal (Viton, AS568A no. 172), and several clamps to hold the glass in

place. The clamps are to give only an initial vacuum seal. Once the chamber starts

being pumped out, the pressure difference will build up across the glass window, press

the O-ring against the flange, and form a vacuum seal. Several viewports have been

constructed according to the design and successfully installed on the chamber.

The window material and thickness of the home-built viewport were chosen to

meet the optical transmission and mechanical strength required for the experiment

as well as the budget. Borosilicate (BorofloatTM) was chosen as the window material

for its excellent optical transmission (50% at 300 nm and 90% at 350–2000 nm) and

resistance to thermal shock (due to a very low thermal expansion about one third of

ordinary glass). For better UV transmission, the window can be replaced with more

expensive fused silica or quartz window (80% at 180 nm and 90% at 300–2000 nm).
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glass

modified 
10″ Conflat

clamp

O-ring

Figure D.1: Coss-sectional view of the large viewport (8′′ view diameter). An 8.5′′

diameter 11 mm thick borosilicate glass is installed on a modified 10′′ Conflat flange.
The O-ring forms a vacuum seal as the glass is pressed against the flange by the
atmosphere.

The window needs to be thick enough to support the stress created by a large pressure

difference across the window. A circular window under a uniform loading (pressure)

W experiences the maximum stress σ at the center given by [51, p.175]:

σ =
3(3 + ν)

8
Wr2

0/t
2 ≈ Wr2

0/t
2, (D.1)

where r0 and t are the radius and thickness of the window, respectively, and ν ∼ 0.2

is the Poisson’s ratio of borosilicate (ν ∼ 0.2–0.4 for most materials). The maximum

tensile strength (critical stress) of borosilicate is ∼25 MPa, so the minimum thickness

of the window should be

σ ≈ Wr2
0/t

2 < 25 MPa

=⇒ t > r0

√
0.1/25 ≈ 6 mm, (D.2)

where the atmospheric pressure W ∼ 100 kPa = 0.1 MPa and r0 = 4′′ ≈ 100 mm.

This minimum thickness is consistent with an empirical practice for determining load

resistance of glass in buildings (ASTM Standard E 1300-04) [52]. The standard

lists the critical load under which the glass of a given size and thickness will fail.

For example, the critical loads are 7.2 and 2.2 kPa for annealed monolithic glasses

of dimensions 30′′ × 40′′ × 8 mm and 60′′ × 96′′ × 10 mm, respectively. Since the
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critical thickness t ∝
√
W × (window area) for a given maximum tensile strength,

the minimum thickness for the 8′′ borofloat window can be extrapolated as

t > t∗

√
W × πr2

0

W∗ × (window area)∗
(D.3)

≈

 8×
√

100×π42

7.2·(30×40)

10×
√

100×π42

2.2·(60×96)

≈ 6 mm,

where the subscript ∗ denotes the values listed in the ASTM standard. The thickness

of the borofloat window is chosen to be 11 mm for a good margin of safety.
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Appendix E

Selection rules and commutation
relations

E.1 Particle in a perturbed central potential

Consider a particle in a central potential V (r). The Hamiltonian of the system is H0 =

p2/2m+V (r), where p,m are the momentum and mass of the particle. The eigenstate

of the system is characterized by the principal quantum number n, azimuthal quantum

number l, and magnetic quantum number m, and is commonly denoted as |n, l,m〉.

The quantum number l and m are related to the angular momentum operators as

Lz|n, l,m〉 = m~|n, l,m〉, (E.1)

L2|n, l,m〉 = (L2
x + L2

y + L2
z)|n, l,m〉 = l(l + 1)~2|n, l,m〉. (E.2)

The angular momentum operator Li (i = x, y, z) is defined as

Li = εijkRjPk or

L = R×P, (E.3)

where Rj(Rx,y,z ≡ X, Y, Z) is the position operator and Pj is the momentum operator.

Suppose a perturbing potential H1 = Fz (F : constant) is introduced to the

original system H0. The eigenstates |n, l,m〉’s mutually orthogonal in the original

system may become coupled with each other by the perturbation, i.e., 〈n, l,m|(H0 +
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H1)|n′, l′,m′〉 = 〈n, l,m|FZ|n′, l′,m′〉 may become non-zero for (n, l,m) 6= (n′, l′,m′).

The existence of a coupling between a pair of eigenstates can be determined by sim-

ply comparing the quantum numbers (n, l,m) and (n′, l′,m′) instead of evaluating

〈n, l,m|Z|n′, l′,m′〉. Such rules called as selection rules can be found by considering

commutation relations between the position operators and the angular momentum

operators. The basic commutation relations among R, P, and L operators are

[Pi, Rj] = −i~δij, (E.4)

[Li, Rj] = [εiklRkPl, Rj] = εiklRk[Pl, Rj] = −i~εiklRkδlj

= i~εijkRk, (E.5)

[Li, Lj] = i~εijkLk, (E.6)

[L2, Li] = 0, (E.7)

L ·R = LiRi = εijkRjPkRi = εijkRj([Pk, Ri] +RiPk)

= εijkRj(−i~δki +RiPk) = εijkRjRiPk = 0. (E.8)

The following selection rules are derived using these commutation relations in the

following sections.

〈n, l,m|Z|n′, l′,m′〉 6= 0 only if (1) m = m′ and (2) l = l′ = 0 or l = l′ ± 1.

E.2 Selection rule for the quantum number m

The selection rule for the magnetic quantum number m is easily derived from the

commutation relation (equation (E.5)), [Lz, Z] = 0.

〈n, l,m|[Lz, Z]|n′, l′,m′〉 = (m−m′)~〈n, l,m|Z|n′, l′,m′〉 = 0. (E.9)

Thus, 〈n, l,m|Z|n′, l′,m′〉 = 0 unless m′ = m.
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E.3 Selection rule for the quantum number l

The selection rule for the angular quantum number l can be found by considering the

commutation relation between R and L2 operators.

[L2, Ri] = [LjLj, Ri] = Lj[Lj, Ri] + [Lj, Ri]Lj = i~εjik(LjRk +RkLj) (E.10)

[L2,R] = −i~(L×R−R× L) (in vector form). (E.11)

Applying L2 on the commutation relation above leads to

[L2, [L2,R]] = −i~[L2,L×R−R× L] = −i~(L× [L2,R]− [L2,R]× L)

= −~2 {L× (L×R−R× L)− (L×R−R× L)× L}

= −~2 {L× (L×R) + (R× L)× L− L× (R× L)− (L×R)× L}

= −~2 {L(L ·R)− (L · L)R + (R · L)L−R(L · L)}

+ ~2 {L× (R× L) + (L×R)× L}

= ~2
{
L2R + RL2 + L× (R× L) + (L×R)× L

}
(using (E.8)).

The last two terms can be combined to give

L× (R× L) + (L×R)× L = L2R + RL2 (E.12)

=⇒ [L2, [L2,R]] = 2~2(L2R + RL2). (E.13)

Equation (E.12) is derived as follows:

L× (R× L) = LiRLi + (L ·R)L = LiRLi

(L×R)× L = LiRLi + L(R · L) = LiRLi

LiRjLi = Li([Rj, Li] + LiRj]) = Li(i~εjikRk + LiRj) = L2Rj + i~εjikLiRk

LiRjLi = ([Li, Rj] +RjLi])Li = (i~εijkRk +RjLi)Li = RjL
2 + i~εijkRkLi

=⇒ 2LiRjLi = L2Rj +RjL
2 + i~(εjikLiRk + εijkRkLi) = L2Rj +RjL

2, (E.14)
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where the term (εjikLiRk + εijkRkLi) vanishes because

εjikLiRk + εijkRkLi = (L×R)j + (R× L)j

= (L×R + R× L)j = ((R×P)×R + R× (R×P))j

= (RkPRk −R(P ·R) + R(R ·P)− (R ·R)P)j

= RkPjRk −RjPkRk +RjRkPk −RkRkPj

= Rk(PjRk −RkPj)−Rj(PkRk −RkPk) = Rk[Pj, Rk]−Rj[Pk, Rk]

= −Rki~δjk +Rji~ = −Rji~ +Rji~ = 0.

The selection rule for l is obtained by applying [L2, [L2, Z]] on the eigenstates:

〈n, l,m|[L2, [L2, Z]]|n′, l′,m′〉 = (l(l + 1)− l′(l′ + 1))~2〈n, l,m|[L2, Z]|n′, l′,m′〉

= (l(l + 1)− l′(l′ + 1))2~4〈n, l,m|Z|n′, l′,m′〉. (E.15)

On the other hand, equation (E.13) yields an equivalent expression

〈n, l,m|[L2, [L2, Z]]|n′, l′,m′〉 = 2~2〈n, l,m|L2Z + ZL2|n′, l′,m′〉

= 2~4(l(l + 1) + l′(l′ + 1))〈n, l,m|Z|n′, l′,m′〉. (E.16)

Subtracting these two equivalent expressions leads to the selection rule for l:

{
(l(l + 1)− l′(l′ + 1))2 − 2(l(l + 1) + l′(l′ + 1))

}
〈n, l,m|Z|n′, l′,m′〉 = 0

(l + l′ + 2)(l + l′)(l − l′ + 1)(l − l′ − 1)〈n, l,m|Z|n′, l′,m′〉 = 0. (E.17)

Therefore, 〈n, l,m|Z|n′, l′,m′〉 = 0 unless l = l′ = 0 or l = l′ ± 1.
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Appendix F

Concavity of the maximum
entropy potential function Z

The potential function Z defined in section 6.3 is strictly concave. The original proof

is given by Alhassid et al. [46] and a succinct version of the proof consistent with the

notations in the present manuscript is given here for completeness. Equations (6.7),

(6.8), and (6.10) are rewritten in a form convenient for the proof,

fk = wk/Q, (F.1)

Q =
∑
k

wk, (F.2)

Z = logQ+
∑
k

λkgk, (F.3)

where wk = exp
(
−
∑N

i=1 λiHik

)
and H is a square matrix (i.e., M = N).

The potential Z is strictly concave if and only if the Hessian matrix ∂2Z/∂λi∂λj

is positive definite. Consider the following equations to find an expression for the

Hessian matrix:
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∂wk
∂λi

= −Hikwk (F.4)

∂Q

∂λi
= −

∑
k

Hikwk (F.5)

∂Z

∂λi
=

1

Q

∂Q

∂λi
+ gi = −

∑
k

Hikfk + gi (F.6)

∂fk
∂λj

=
−Hjkwk

Q
+ wk

∑
mHjmwm
Q2

= −Hjkfk + fk
∑
m

Hjmfm

= −fk

(
Hjk −

∑
m

Hjmfm

)
(F.7)

The Hessian matrix is obtained from the last two equations:

∂2Z

∂λi∂λj
= −

∑
k

Hik
∂fk
∂λj

=
∑
k

Hikfk

(
Hjk −

∑
m

Hjmfm

)
. (F.8)

The expression above can be simplified by defining ĝj ≡
∑

mHjmfm and Ĥjk ≡

Hjk − ĝj:

∂2Z

∂λi∂λj
=
∑
k

Hikfk(Hjk − ĝj)

=
∑
k

(Hik − ĝi)fk(Hjk − ĝj) +
∑
k

ĝifk(Hjk − ĝj)

=
∑
k

ĤikfkĤjk, (F.9)

where
∑

k ĝifk(Hjk− ĝj) = ĝi (ĝj −
∑

k fkĝj) = ĝi(ĝj− ĝj) = 0 is used at the last step.

Now, the positive definiteness of the Hessian matrix is easily seen as

∑
i,j

xi
∂2Z

∂λi∂λj
xj =

∑
i,j,k

(xiĤik)fk(xjĤjk) =
∑
k

fk

[
(xTĤ)k

]2

> 0 (F.10)

for any vector x 6= 0.
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