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ABSTRACT

Natural biomaterials are highly organized from the molecular to the macroscopic
level in a hierarchical manner, requiring synthetic technologies to achieve this level of
complexity. A biosynthetic approach to material design has emerged as an attractive
option. In particular, proteins represent a promising class of molecules for creating new
materials due to their determined sequence and structure. The research described in this
thesis focuses on engineering protein-based materials using coiled-coil motifs. The coiled
coil is a common protein architecture consisting of two or more o-helices wrapped
around one another to form a supercoil. Despite its simple conformation, the coiled-coil
motif plays diverse roles in biological systems functioning as sensors, recognition
elements, scaffolds, levers, rotating arms and springs.

First, a designed parallel heterodimeric leucine zipper pair was used as the protein
capture domain to construct an artificial polypeptide scaffold for surface functionalization.
By using a mutant E. coli phenylalanyl-tRNA synthetase, the photoreactive amino acid
para-azidophenylalanine was incorporated. This protein polymer was spin-coated and
photocrosslinked to octyltrichlorosilane-treated surfaces. The resulting protein films were
shown to immobilize recombinant proteins through association of coiled coil heterodimer.
Furthermore, in conjunction with microfluidic chips that were specifically designed for
on-chip mixing using laminar flow, gradients of leucine zipper tagged proteins were
formed in the microchannels and immobilized on the engineered protein films. This
provides a general technique for producing surface-bound multicomponent gradients. The

adhesion of human umbilical vein endothelial cells cultured on a surface-bound gradient
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of cell binding ligands generated by this technique was examined. In addition, to generate

protein walkers that have different lateral mobility rates on a surface, several variants of
the leucine zipper pair with tunable heterodimerization affinities were designed and
synthesized to allow diversity in the association strength of proteins linked to a surface.

The coiled-coil motif was also used to construct protein hydrogels. Hydrogels
formed from a triblock artificial protein bearing dissimilar helical coiled-coil end
domains (P and A) erode more than one hundred fold slower than hydrogels formed from
those bearing the same end domains (either P or A). The reduced erosion rate is a
consequence of the fact that looped chains are suppressed because P and A tend not to
associate with each other. Thus, by harnessing selective molecular recognition, discrete
aggregation number and orientational discrimination of coiled-coil protein domains, the
erosion rate of hydrogels can be tuned over several orders of magnitude.

Finally, a biosynthetic approach was developed to control and probe cooperativity
in multiunit biomotor assemblies by linking molecular motors to artificial protein
scaffolds using the heterodimeric leucine zipper pair. This approach provides precise
control over spatial and elastic coupling between motors. Cooperative interactions
between monomeric kinesin-1 motors attached to protein scaffolds enhance hydrolysis
activity and microtubule gliding velocity. However, these interactions are not influenced
by changes in the elastic properties of the scaffold, distinguishing multimotor transport
from that powered by unorganized monomeric motors. These results highlight the role of

supramolecular architecture in determining mechanisms of collective transport.
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