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ABSTRACT 

 

Natural biomaterials are highly organized from the molecular to the macroscopic 

level in a hierarchical manner, requiring synthetic technologies to achieve this level of 

complexity. A biosynthetic approach to material design has emerged as an attractive 

option. In particular, proteins represent a promising class of molecules for creating new 

materials due to their determined sequence and structure. The research described in this 

thesis focuses on engineering protein-based materials using coiled-coil motifs. The coiled 

coil is a common protein architecture consisting of two or more α-helices wrapped 

around one another to form a supercoil. Despite its simple conformation, the coiled-coil 

motif plays diverse roles in biological systems functioning as sensors, recognition 

elements, scaffolds, levers, rotating arms and springs.  

      First, a designed parallel heterodimeric leucine zipper pair was used as the protein 

capture domain to construct an artificial polypeptide scaffold for surface functionalization. 

By using a mutant E. coli phenylalanyl-tRNA synthetase, the photoreactive amino acid 

para-azidophenylalanine was incorporated. This protein polymer was spin-coated and 

photocrosslinked to octyltrichlorosilane-treated surfaces. The resulting protein films were 

shown to immobilize recombinant proteins through association of coiled coil heterodimer. 

Furthermore, in conjunction with microfluidic chips that were specifically designed for 

on-chip mixing using laminar flow, gradients of leucine zipper tagged proteins were 

formed in the microchannels and immobilized on the engineered protein films. This 

provides a general technique for producing surface-bound multicomponent gradients. The 

adhesion of human umbilical vein endothelial cells cultured on a surface-bound gradient 
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of cell binding ligands generated by this technique was examined. In addition, to generate 

protein walkers that have different lateral mobility rates on a surface, several variants of 

the leucine zipper pair with tunable heterodimerization affinities were designed and 

synthesized to allow diversity in the association strength of proteins linked to a surface.  

     The coiled-coil motif was also used to construct protein hydrogels. Hydrogels 

formed from a triblock artificial protein bearing dissimilar helical coiled-coil end 

domains (P and A) erode more than one hundred fold slower than hydrogels formed from 

those bearing the same end domains (either P or A). The reduced erosion rate is a 

consequence of the fact that looped chains are suppressed because P and A tend not to 

associate with each other. Thus, by harnessing selective molecular recognition, discrete 

aggregation number and orientational discrimination of coiled-coil protein domains, the 

erosion rate of hydrogels can be tuned over several orders of magnitude. 

     Finally, a biosynthetic approach was developed to control and probe cooperativity 

in multiunit biomotor assemblies by linking molecular motors to artificial protein 

scaffolds using the heterodimeric leucine zipper pair. This approach provides precise 

control over spatial and elastic coupling between motors. Cooperative interactions 

between monomeric kinesin-1 motors attached to protein scaffolds enhance hydrolysis 

activity and microtubule gliding velocity. However, these interactions are not influenced 

by changes in the elastic properties of the scaffold, distinguishing multimotor transport 

from that powered by unorganized monomeric motors. These results highlight the role of 

supramolecular architecture in determining mechanisms of collective transport.  
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