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ABSTRACT 

 

The discovery of the integer quantum Hall effect (QHE) and the fractional quantum Hall 

effect (FQHE) revealed that unexpected physics could be found in a seemingly very simple 

system: free electrons constrained to move in only two dimensions.  Adding a degree of 

complexity to this system by bringing two of these layers of two-dimensional electrons into 

close proximity, multiplies the exciting physical phenomena available for study and 

discovery.  This thesis is a report on electrical transport studies of bilayer two-dimensional 

electron systems (2DES) found in GaAs/AlGaAs double quantum well semiconductor 

heterostructures.  Through studies at zero magnetic field using a fairly new transport 

measurement called “Coulomb drag” pure electron-electron scattering is measured with 

unprecedented accuracy and clarity.  In large magnetic fields applied perpendicular to the 

electron layers, at the right combination of magnetic field strength, electron density and 

layer separation, a new, uniquely bilayer, many-body quantum ground state exists that can 

be described alternately as an itinerant pseudospin ferromagnet or as a Bose-Einstein 

condensate (BEC) of interlayer excitons.  This bilayer quantum state was first predicted 

theoretically fifteen years ago, and its discovery and exploration is the basis of this thesis.  

In this thesis, transport measurements allow for the direct detection of the BEC of excitons 

by their ability to flow with vanishing resistance and vanishing influence from the large 

external magnetic field.  Excitonic BEC has been pursued experimentally for almost 40 

years, but this thesis likely represents the first detection of the elusive state.  Coulomb drag 

is found to be an excellent probe of the phase transition out of the bilayer quantum state 

and is used to extend the mapping of the phase diagram into the temperature and layer 

density imbalance planes. 
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I n t r o d u c t i o n  

 

 

Condensed matter physics is the study of a tremendously large number of particles crowded 

(condensed) together so that the effects they have on one another cannot be ignored.  It is 

an exciting field of physics because even though all the particles obey known physical 

laws, solving the physical equations for such a large number of particles is not always 

feasible.  So it is not always known what will happen in a condensed matter system and 

there are still some surprises to be found. 

The condensed matter system studied in this thesis is a system of electrons that have been 

confined so that they can only move in two dimensions – a two-dimensional electron 

system (2DES).  Roughly 1  electrons are crowded into one square centimeter, all 

repelling each other electrically.  Although an equation can be written describing all the 

electrons’ interactions with one another, with 1  electrons, it is too difficult to solve.   So 

it was a surprise when it was found that under certain conditions, involving the application 

of a perpendicular magnetic field, the electrons will specially arrange themselves in accord 

with the magnetic flux quanta passing through the layer in such a way as to lower the 

energy of the entire system.  This surprise was called the fractional quantum Hall effect 

(FQHE) and was discovered in 1982 [1]. 

100

100
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In this thesis, we study a system in which two layers of these two-dimensional electrons 

are brought very close together in parallel (a bilayer 2DES).  We show that when the layers 

are sufficiently close together and subjected to a specific value of perpendicular magnetic 

field, a new, uniquely bilayer, state is formed that is mathematically similar to the FQHE 

state.  In this state, the system achieves a lower energy when the electrons in one layer 

become highly correlated with the electrons in the other layer.   

This correlated state can be portrayed as one where the electrons lose track of which layer 

they are in (this view is discussed in Section 4.6), or as one where the electrons in one of 

the layers line up with the vacancies between the electrons in the other layer.  These 

vacancies are called “holes” and behave much like positively charged electrons.  The holes 

in one layer are electrically attracted to the electrons in the other layer, and the two bind 

together to form composite particles called excitons.  Excitons are a type of boson and can 

undergo a process called Bose-Einstein condensation (BEC); thus the excitons all condense 

into the same quantum state.  This view of the state as a BEC of excitons is covered in 

Section 4.7. 

The main goal of this thesis is to detect this excitonic BEC.  We aim to detect it by probing 

the bilayer 2DES using electrical transport measurements.  Wires are electrically contacted 

to the electron layers, and currents are sent through one or both of the layers.  The voltages 

measured in response to these currents yield a great deal of information on the state of the 

bilayer electron system. 
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The excitonic BEC can be detected through electrical transport if a flow of the BEC is set 

up through the layers.  Electrical transport due to such a flow will be vastly different from 

the usual currents carried by electrons.  BECs exhibit superfluid properties that we can 

detect as a vanishing of the current’s dissipation when the system enters the excitonic BEC 

state.  Additionally, transport due to the flow of excitons will be unaffected by the magnetic 

field since excitons are charge-neutral.  This will show itself as a vanishing of the Hall 

resistance when the system is in this state.   Both of these indicators were detected and are 

discussed in Chapter 7. 

This state was first detected more indirectly, using an electrical transport measurement 

called “Coulomb drag.”  In this measurement, interlayer electron scattering processes are 

directly detected when current is sent through one of the layers, and voltages are probed in 

the non-current-carrying layer.  The first-ever observation of “quantized Hall drag,” the 

remarkable spectacle in which a quantized Hall voltage appears in a layer that has no net 

current flow, is an indirect display of the likely excitonic superfluid, and is shown in 

Chapter_5. 

Coulomb drag, although only an indirect method for detecting the excitonic superfluidity, 

is an excellent probe of the phase transition out of the BEC state as the (effective) layer 

separation is increased.  Studies of this phase transition are covered in Chapter 6, 

including the interesting result that the BEC state becomes more robust when the electron 

densities in the two layers are not equal.   
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The theoretical framework for understanding this special state is covered in Chapter 4.  

Readers interested only in the theory and experiments on the correlated bilayer excitonic 

state should proceed directly to this chapter. 

Chapter 3 shows early Coulomb drag work done in zero magnetic field.  It precedes the 

other chapters mainly because the work was done chronologically earlier, although it also 

lays the foundation for understanding the Coulomb drag measurements performed in the 

exciton BEC state shown in later chapters.  Coulomb drag experiments in zero magnetic 

field are used to study electron-electron scattering processes – Coulomb drag is the first 

measurement technique to detect these processes directly.  Our experiments have led to a 

better understanding of the nature of these interactions. 

The Coulomb drag measurement itself is discussed extensively in Chapter 2, including the 

theory and history of electron-electron scattering and Coulomb drag in zero magnetic field.  

A detailed equation for zero field electron-electron Coulomb drag scattering derived by 

Jauho and Smith [2] is extended theoretically, and a Fortran program that numerically 

solves this equation for a variety of experimental conditions can be found in Appendix K. 

In Chapter 1, the double quantum wells that are used to confine the electrons to two 

dimensions are discussed, with special focus on the parameters that affect the ability to 

achieve and perform electrical measurements on the exciton BEC state.  Also included is a 

basic description of the crystal processing, which allows for experimental access to the 

electron layers.   
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For those who wish to perform these types of experiments, there are eleven Appendices 

that contain detailed information on the experimental procedures.  
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C h a p t e r  1 :   S a m p l e  &  P r o c e s s i n g  

 
 

1.1      DOUBLE QUANTUM WELLS 

The exciting physics presented in the thesis would not exist but for the skill of our 

collaborators at Bell Labs, Loren Pfeiffer and Ken West, who design and grow the ultra-

clean, ultra-high mobility GaAs/AlGaAs heterostructures needed to see the subtle quantum 

effects reported here. 

These crystals are grown by a technique called Molecular Beam Epitaxy, in which crystals 

are grown one atomic layer at a time, with control over the composition of each layer.  The 

semiconductors Gallium Arsenide (GaAs) and Aluminum Gallium Arsenide (AlGaAs) 

have very similar lattice constants and can be grown together in layers to create a very 

clean, high quality crystal with few defects.  But, since the two materials have different 

conduction band energies, layers of GaAs and AlGaAs will form wells in the conduction 

band profile in the dimension perpendicular to the layers (see Fig. 1.1).  Conduction band 

electrons can fall into these wells and become trapped. 

These bound state electrons have discrete energy levels – the wavefunctions for the first 

two levels are depicted in Fig. 1.1.  For a GaAs well 180 Å wide, the energy difference 

between the first two levels is ~37 meV, approximately 400 K in temperature units.  Even 

at room temperature (~ 300 K), many of the electrons will be in the lowest energy state; but 
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at the cryogenic temperatures that we work (d 1 K), all of the electrons will be confined to 

the lowest energy state.  This will preclude any electron motion in this dimension and the 

electrons will only be free to move in the remaining two dimensions, in the plane of the 

GaAs layer. Electrons constrained to only move in two dimensions are called “two-

dimensional electrons.” 

 

 

Figure 1.1: Quantum well formed in the conduction band profile from a layer of GaAs sandwiched 
between layers of AlGaAs.  Schematics of the first two wavefunction solutions for a conduction band 
electron trapped in this “box” are shown in grey. 

In these two dimensions, the electrons will behave as regular GaAs conduction band 

electrons, moving through the crystal as free electrons with an effective mass 

, where  is the conventional electron mass. 0.067 em∗ = m em

A single quantum well provides a single layer of two-dimensional electrons.  For the 

experiments shown in this thesis, two layers of two-dimensional electrons are needed, 

spaced very close together and in parallel – but well isolated electrically.  For this, double 
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quantum well structures are grown.  For double quantum wells, two layers of GaAs are 

grown into the crystal, separated by a thin AlGaAs barrier.   

1.1.1    CRYSTAL SPECIFICATIONS 

The crystal used for these experiments is a GaAs/AlGaAs modulation doped [1] double 

quantum well structure grown on the (100) surface.  The conduction band is populated by 

symmetrical silicon delta-doped layers setback approximately 2000 Å from the double 

quantum well structure.  The wells are 180 Å layers of GaAs, separated by a 100 Å wide 

Al0.9Ga0.1As barrier; there are Al0.3Ga0.7As cladding layers on the outer sides of the wells.  

Figure 1.2 shows a schematic of this double quantum well structure. 

 

 

Figure 1.2: Γ-minimum conduction band energy diagram of the double quantum well structure with 
the calculated electron density shown in grey. 
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The barrier and cladding heights in the figure reflect the energy difference between the 

conduction bands of the pure GaAs and the AlGaAs alloys.  The Al0.3Ga0.7As conduction 

band is 232 meV higher than the GaAs conduction band and Al0.9Ga0.1As is approximately 

928 meV higher (in this case even though the Χ-band minimum is lower in energy than the 

Γ-band, in-plane momentum conservation and energy considerations inhibit Γ−Χ−Γ 

transport, so it is the Γ-minimum that is relevant here [2]).  The especially high barrier 

between the wells is critical to our experiments.  This keeps the tunneling negligibly low, 

even though the wells are only 100_Å apart.   

To estimate the charge distribution in the wells, Schrödinger’s equation is solved 

numerically for this double quantum well configuration.  Since the electron distribution 

will bend the conduction bands (this is not shown in the figure), Schrödinger’s equation 

must be solved iteratively with Poisson’s equation in order to calculate the electron 

wavefunction for an accurate representation of the double quantum well potential [3].  The 

calculated electron density, ψ*ψ, for the lowest energy state is shown in grey in Figure 1.2 

1.1.1.a    LAYER SEPARATION 

A parameter of crucial importance in double layer transport experiments is the separation 

between the electrons in the two layers.  Since the breadth of the electron distribution is 

larger than the AlGaAs barrier, this is not really adequately described by a single number.  

Although in some of the numerical work in later chapters the finite extent of the 

wavefunction is included in the calculations, for the experimental work we usually just 
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m

refer to the distance between the peaks of the electron distributions, which we 

approximate as the distance between the centers of the two wells and refer to as “ .”  The 

Coulomb interactions between the two layers are strongly dependent on this interlayer 

distance.  Because of the inverse dependence on distance of the Coulomb force, the closer 

together the layers are, the stronger will be the interlayer Coulomb interactions.  Since our 

experiments are meant to probe the effects of interlayer Coulomb interactions, it behooves 

us to make  as small as possible.   

d

d

1.1.1.b    TUNNELING 

We are limited in how narrow we can make the barrier because the amount of tunneling 

between the two wells is exponentially dependent on the width of the barrier [4] and for our 

experiments extremely low tunneling is crucial.  For our 100 Å Al0.9Ga0.1As barrier, we can 

calculate the strength of this tunneling, which we assess in terms of the energy splitting 

∆SAS between the lowest energy symmetric and antisymmetric eigenstate solutions for the 

double quantum well system.  This splitting is calculated to be about ∆SAS ≈ 90µK for this 

system.  This is done by solving the Schrödinger equation iteratively with Poisson’s 

equation, taking into account Hartree and exchange effects, for the double quantum well 

parameters (using the Γ valley energy for the barrier), and finding the energy difference 

between the symmetric and antisymmetric solutions.  The electron effective mass was kept 

at the GaAs value m  throughout the structure, even though the mass is higher 0.067 e
∗ =
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in the AlAs barrier.  Using a higher effective mass in the barrier would reduce the 

calculated ∆SAS even further, so ∆SAS ≈ 90µK is an upper limit. 

Empirically, we evaluate this tunneling in terms of the amount of interlayer resistance it 

offers under resonance conditions.  The typical value of this resistance for the results 

shown in this thesis is ~ 100MtunnelingR Ω .  We find this to be a satisfactorily small value of 

tunneling for our experiments.  When the barrier width is reduced, even by the small 

amount that occurs in the same GaAs/AlGaAs wafer due to the difference in beam flux 

during the molecular beam epitaxy growth process between the center of the wafer and the 

edges, the tunneling becomes dramatically larger, so much so that we have been restricted 

to using only sample pieces, for this thesis, that come from or near the center of this wafer.   

The barrier height could be increased by about 10% (and the tunneling current reduced by 

roughly the same factor [4]) if the barrier were made of pure AlAs, however samples 

grown with pure AlAs barriers, prior to my time in the research group, could not be 

successfully contacted electrically.  This is believed to be due to the high reactivity of 

aluminum with oxygen; oxygen burrows into the AlAs layer from an exposed edge and the 

entire layer can become oxidized [5].  This prevents the diffused ohmic contact from 

penetrating the barrier to reach the bottom electron layer.  The small amount of gallium in 

the Al0.9Ga0.1As barrier, however, seems sufficient to arrest this process, and we are able to 

successfully contact both the electron layers in these samples.   
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1.1.1.c    WELL WIDTH AND INTERFACE ROUGHNESS 

Another way to reduce the mean electron separation, without reducing the barrier width, 

would be to reduce the widths of the quantum wells – this would move the peaks in the 

electron density distribution closer together.  But there is a strong dependence of the 

electron mobility on the well width, and since high electron mobility is also very important 

to our experiments, we are limited in how narrow we can make our wells.  This dependence 

arises from interface roughness scattering.  The “GaAs-on-AlGaAs” interface is the 

predominant source of this scattering, as it tends to be rougher than the “AlGaAs-on-GaAs” 

interface [6].  This roughness gives a spatial dependence to the well width, which creates a 

spatial dependence to the energies of the eigenstate solutions for the electron in the 

quantum well and these become strong scattering centers.  Empirically, and theoretically, 

the mobility is observed to depend on the sixth power of the well width [7].  The mobility 

of our electrons in the 180 Å wide wells is roughly µ = 5 x 105 cm2/V s in the regime of our 

νT=1 work, this appears to be near the limit of tolerable mobilities. 

Thus our double quantum well parameters are likely the current state-of-the-art for bilayer 

electron transport studies in the limit of zero interlayer tunneling.   

1.2      SAMPLE PROCESSING  

Our processing is done on a 5 mm x 5 mm square cleaved from the parent crystal wafer.  

We use standard photolithographic techniques, depicted in Fig. 1.3, to shape the region that  
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Figure 1.3: Sample processing steps.  1. Sample is coated with photoresist.  2.  A mask is put 
over the surface and ultraviolet light is shined on it.  3.  The exposed crystal surfaces are etched 
away in an acid bath.  4.  Only the unexposed surfaces still contain the electron layers, the 
picture on the right is the top view of the mesa pattern used for sample ‘K’.  5.  Photoresist, 
mask and ultraviolet exposure are repeated for gate pattern, and a thin layer of aluminum is 
evaporated onto the surface.  6.  These make “top gates”.  7.  The sample is thinned and 
“bottom gates” are lithographed onto the backside. 
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the two-dimensional electrons occupy, and to lay down metallic structures on the 

surfaces to control the electrons by electrostatic gating. 

The top side of the sample is processed first.  The top side of the crystal is coated with 

photoresist as shown in step 1, Fig.1.3.  Photoresist is an organic polymer which forms a 

tough acid-resistant barrier, but will break down when exposed to ultraviolet light.  A glass 

mask with the desired electron region geometry patterned on it in ultraviolet-opaque iron 

oxide is placed on top of the photoresist, and then the whole ensemble is exposed to 

ultraviolet light (step 2, Fig. 1.3).  This breaks down the photoresist everywhere except in 

the location of the mask pattern.  Then by etching the crystal in an acid solution (step 3), 

the two-dimensional electron layers (2DEGs), located approximately 0.5 µm below the 

surface, are removed everywhere except in the patterned area.  This creates a raised “mesa” 

on the crystal that contains the electron layers (step 4). 

To lay down metallic gates on the top side, photoresist is again applied and covered with a 

glass mask with the desired gate pattern – this time transparent in the iron oxide 

background.  Ultraviolet light exposure removes the photoresist where the gates will be.  

The sample is put in a thermal evaporator, and ~0.1 µm of aluminum are evaporated over 

the entire sample (step 5).  When the residual photoresist is removed, only the metal in the 

patterned regions will remain on the sample (step 6). 

The sample is then thinned.  Originally ~500 µm thick, it is thinned to ~50 µm using a 

bromine-methanol etch.  We thin the sample in order to bring the back gates, which will be 

processed onto the back surface, as close to the electron layers as possible.  We are limited 
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in how much we can reduce the distance between the electron layers and the bottom side 

of the crystal, as the sample becomes excessively brittle when it is thinned much below 

50µm, and can not be handled without breaking.   

The bottom side of the thinned sample is then lithographed with the pattern for the back 

gates and aluminum is evaporated into this pattern (step 7).   

 

 

Figure 1.4: Top side of crystal after processing is complete.  Small bright rectangles near center 
of photo are AuNiGe contacts.  The larger bright shapes at the perimeter are Indium solder 
connections where thin gold wires are connected to the aluminum gates.  The field of view is 
~4 mm in diameter.  Sample ‘Y’. 
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Electrical contact is made to the electron layers by applying either indium [8] (with a 

soldering iron) or gold-nickel-germanium [9] (by thermal evaporation) in appropriate 

locations on the electron mesa.  The metals are then diffused into the crystal by annealing 

and will come into contact with the electron layers.  The diffused metal will interact with 

the conduction band profiles of the wells in such a way as to allow electronic access to the 

electron layers [8, 9].  The contacts and metal gates are then wired up to a standard DIP 

header for easy handling of the sample.  Figure 1.4 shows the top surface of one of the 

crystals after it has been processed and wired up. 

Detailed information on the sample processing can be found in Appendix A.  
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C h a p t e r  2 :   C o u l o m b  D r a g   

 

 

2.1      DEFINITION 

In the Coulomb drag measurement a current xI  is driven into just one of the layers (called 

the “drive” layer) and the voltage, either longitudinal V  or Hall V  is measured in the 

other layer (the “drag” layer), which is kept electrically open (see Fig. 2.1).  Since under 

usual conditions the longitudinal voltage V  will be negative, the longitudinal drag 

resistivity 

,x D ,y D

,x D

,xx Dρ  is defined by convention as: 

                                                      ,
, /

x D
xx D

x

V
I L W

ρ
−

=
⋅

                                                       (2.1) 

so that the drag resistivity is usually a positive number.  /L W  is the length of sample L 

that the voltage is measured along divided by the width W of the sample, also referred to as 

a “square”.   

The convention for the Hall drag measurement ,xy Dρ  is to define the Hall drag voltage V  

as positive if it has the same sign as the Hall voltage in the drive layer.  Then the Hall drag 

resistivity will be: 

,y D
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 ,
, .y D

xy D
x

V
I

ρ =                                                          (2.2) 

                                                      

 

Figure 2.1: In the Coulomb drag measurement, current is sent through just one of the layers 
(the drive layer).   The other layer (the drag layer) is kept open, and voltages are measured in 
this layer in response to current in the drive layer. 

 

2.2      FREE ELECTRON MODEL OF COULOMB DRAG 

Coulomb drag is a unique transport measurement in that it directly measures electron-

electron scattering rates – independent of other electron scattering processes (such as 

phonon, impurity, and defect scattering) in the individual layers.  Measurements at zero 

magnetic field are especially useful because the electron systems are relatively simple 

to model theoretically.   

A simple Drude model [1] of the drag at zero magnetic field can give a nice elementary-

level understanding of the physical mechanism for the drag resistivity and so is worth 
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going through here.  In the Drude picture, current is modeled as free electrons moving 

under the influence of an electric field, but frustrated in their motions by scattering events 

with phonons, impurities and defects, and as a result move at a steady state velocity called 

the drift velocity driftυ .  The two-dimensional current density 2DJ  in the drive layer can 

then be given by: 

                                                      2 2D D drifJ n e tυ=                                                           (2.3) 

where 2Dn  is the two-dimensional electron density in the layer and  is the charge of the 

electron.   

e

Although the electrons remain in their respective layers, because of the long range 

Coulomb force they will affect one another’s motion by scattering off each other.  Some of 

the momentum of the current in the drive layer can be transferred to the drag layer by these 

scattering events.  The time it takes to transfer the full momentum of a drive layer electron 

driftm υ∗  (where  is the effective mass of the electron) to a drag layer electron defines the 

mean interlayer momentum relaxation time 

m∗

Dτ .  This momentum will push the drag layer 

electrons to one end, causing a voltage to build up in that layer (see Fig. 2.2).  Notice that 

this will be a longitudinal voltage.  The force from this electric field DE  in the drag layer 

will balance the momentum transfer rate due to the scattering: 

                                                        drift
D

D

m
eE

υ
τ

∗

= .                                                          (2.4) 
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Figure 2.2: In the free electron model of Coulomb drag, electrons in the drive layer transfer 
their momentum to electrons in the drag layer through long-distance scattering events that 
cause a voltage to build up along the drag layer. 

 

So, the electric field in the drag layer is a direct measure of the interlayer momentum 

relaxation time Dτ .  To express this in terms of the longitudinal drag resistivity ,xx Dρ , we 

define the longitudinal drag resistivity: 

                                                       ,
2

D
xx D

D

E
J

ρ = .                                                         (2.5) 

Combining equations (2.3), (2.4), and (2.5), an expression for the drag resistivity can be 

derived: 

                                                      , 2
2

xx D
D D

m
n e

ρ
τ

∗

=                                                       (2.6) 

Thus the longitudinal drag, for a known electron density and effective mass, directly 

measures the interlayer momentum relaxation time due to electron-electron scattering. 
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2.3     ELECTRON-ELECTRON SCATTERING IN METALS 

The theory of electron-electron scattering (in metals) was first addressed by Landau and 

Pomeranchuk in 1936 [2].  They found that the contribution of electron-electron 

scattering to the resistivity would go as  (for T  where T  is the Fermi 

temperature; true for all metals at room temperature), where  is constant for a given 

material and tends to be very small relative to the electron-phonon/impurity/defect 

scattering contributions. 

2
ee eeA Tρ = FT�

eeA

F

The  dependence arises from Pauli restrictions on the phase space available for 

scattering.  In order for a scattering event to take place, there must be a vacant state 

available for an electron to scatter into.  And any gain in energy in one layer must have a 

corresponding loss of energy in the other layer.  The largest loss of energy possible will be 

on the order of , where  is the Boltzmann constant, because there will be a 

“fuzziness” in the occupancy statistics at the edge of the Fermi disk of that order, as per the 

Fermi-Dirac distribution function: 

2T

Bk T Bk

( )
1

exp 1
B

E
k T

f
µ−

=
+

.                                                  (2.7) 

The vast majority of electrons, those occupying k-states in the bulk of the Fermi disk, won’t 

be able to scatter, as all the states up to k T  away are occupied.  Roughly speaking, only 

the electrons in the region of width  at the edge of the Fermi disk are able to 

B

Bk T~



 

 

23
participate in scattering events.  Since the number of electrons in each layer available for 

scattering increases linearly with T; the number of scattering events will go up as T2.  

eeA  is very small because normal electron-electron collisions conserve total electron 

momentum (in a translationally invariant system), and so do not effect the net charge flow; 

but umklapp processes [3], which involve the reciprocal lattice vector, do not conserve the 

total electron momentum and although these processes are rare, they are the main 

contributor to  [4].   eeA

There have been clever schemes over the years for detecting eeρ  amidst the much larger 

contributions to the total resistivity from the other scattering processes.  Since electron-

impurity scattering is temperature independent, it can be distinguished from the 

temperature dependent ( )ee Tρ  provided the temperature is sufficiently low to suppress the 

most dominant temperature dependent scattering process: electron-phonon scattering.  The 

first reported measurements of eeρ  were obtained in the metals Indium and Aluminum by 

this method [5, 6].  

Comparisons between the thermal and electrical conductivities in alkali metals were the 

next method used to infer the electron-electron scattering rate [7].  The normal scattering 

processes while not affecting charge flow, do impede heat flow, causing detectable 

deviations in the Wiedemann-Franz law at high temperatures [8]. 

Much later, electron-electron scattering was probed in two-dimensional systems via their 

dephasing effect [9, 10] – the destruction of quantum interference effects studied on length 
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scales shorter than the mean free path – and by their resistivity contributions in 

translationally non-invariant systems [11].  However Coulomb drag is the only technique 

that directly measures electron-electron scattering. 

2.4     BOLTZMANN MODEL OF DRAG SCATTERING 

Jauho and Smith (JS) [12] were the first to publish an explicit equation to predict the drag 

as a function of temperature, layer separation, well width and electron density.  (Allan 

MacDonald was the first to derive it, but only published the end result [24].)   Their 

equation is constructed primarily from linearized Boltzmann transport theory, but 

incorporates quantum mechanics for the formulation of the scattering term.   Purely 

quantum formulations of Coulomb drag reduce to Boltzmann theory in the long mean free 

path limit [13-15], and for near equilibrium situations (one where low drive currents are 

used), the linearized theory is sufficiently accurate.  Since we use very low drive currents 

(0.5 to 20 nA) and since our samples have very high mobility ( 6 2~ 10 /cm V sµ ⋅ ), their 

equation should suit our system very well.   

Their equation is based on the basic scattering event depicted in Fig. 2.3.  An electron in 

the drive layer is scattered from initial momentum state  to final momentum state  in 

an interaction with an electron in the drag layer scattered from initial state  to final state 

.  The momentum transferred in the interaction is 

2k

1'

2'k

1k

1'k 1= − kq k . 
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Figure 2.3: Scattering event between an electron in the drive layer (subscript 2) and an electron 
in the drag layer (subscript 1).  Initial momentum states are unprimed, final states are primed.  

 is the wavevector characterizing the momentum transferred in the scattering event. q

 

I start with their most basic derived equation (eqns. 13 and 16 in ref. 12): 

   

( ) ( ) ( )1 2 1' 2 '

2 0 0 0 01 1 2 2 1 2 1'
1 2 1' 2'2 2 2

, , ,

1 2 1' 2 '

(1, 2;1', 2 ') (1 )(1 )
4 2 2 2

( )
b

eE n e E d d d q f f f f
m k T σ σ σ σ

τ
π π π

δ ε ε ε ε

∗= − − −

× + − −

∑ ∫ ∫ ∫
k k k=

=
w

 

(2.8) 

The subscripts i = (1, 2) refer to the (drag, drive) layer;  , ,i iE n iτ  are to the electric field, 

electron density and momentum relaxation time in layer i;  m∗ is the effective mass of the 

electron; 0
if  is the equilibrium Fermi distribution function in layer i; , ,i i iε σk  are the 

wavevector, energy, and spin of a specific electron in layer i, (primed indices represent 

final states, unprimed are initial states); and w  is the probability that two 

electrons in states 

(1,2;1', 2 ')

1 1σk  and 2 2σk  will scatter to 1' 1'σk  and 2' 2'σk . 
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This equation simply integrates over all possible scattering events from every possible 

initial and final momentum state in each of the layers.  Momentum conservation fixes the 

final momentum state of the drive layer electron if the three other initial and final states are 

known, so there is no integration over k .  Energy conservation is ensured by the delta 

function in the integrand.  Phase space availability is monitored in the four Fermi 

distribution function terms.  The  term weights the scattering events – large  scattering 

is more efficient at transferring net momentum to the drag layer, and so large  events get 

more heavily weighted (see Section 3.3).  w  tells the likelihood of a given 

scattering event regardless of phase space availability – this is the term that incorporates the 

Coulomb interactions between the electrons that cause them to scatter in the first place. 

2'

2q q

q

(1,2;1', 2 ')

Combining eqn. 2.6 with the identity offered in (JS): 1

2

2

D

E
E

τ
τ

= , equation 2.8 can be written 

as: 

( ) ( ) ( )1 2 1' 2 '

2
21 2 1'

, 2 2 22
, , ,2 1

0 0 0 0
1 2 1' 2' 1 2 1' 2'

(1, 2;1', 2 ')
4 2 2 2

(1 )(1 ) ( ),

xx D
B

d d d q
n n e k T

f f f f

σ σ σ σ

ρ
π π π

δ ε ε ε ε

= −

× − − + − −

∑ ∫ ∫ ∫
k k k= w

    (2.9) 

where the integration in each dimension goes from -∞ to ∞.   

Some of these integrals have even symmetry, for those dx
∞

−∞
∫  will be replaced by 2

0

dx
∞

∫ .   

One of the integration variables can be dropped by taking advantage of the symmetry of the 

integral to rotation of the k  axes, and so I can rewrite that integral as: 1
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                                                    1
1 12

0

1
(2 ) 2 y y
d k dk
π π

∞ ∞

=∫ ∫
k

−∞

                                            (2.10) 

setting .   1 0xk =

By again invoking rotational symmetry and by integrating over the delta function, I can 

remove still another integration variable.  Unlike JS, I do not dispatch the delta function by 

bringing in the susceptibility function ( , )qχ ω .  These susceptibility functions are difficult 

to evaluate for  and JS simply use the T0T ≠ 0=  expression throughout their paper.  

Although using the susceptibility function removes two more integration variables than my 

method does, my method remains accurate for all temperatures. 

To illustrate my method, I will address just the parts of the equation which depend on  

(it is reasonable to assume that 

2k

(1,2;1', 2 ') ( , )q ω=w  and does not explicitly depend on 

 [12]): 

w

2k

      0 02
2 2 ' 2 2 ' 12 ( ) 1 ( ) ( )

(2 )
d f f 1'ε ε δ ε ε ε ε
π

 − − + ∫
k

− .                        (2.11) 

Because of the symmetry of the distribution function, I can rotate my axes of integration so 

that they run parallel and perpendicular to the q determined by ,  and .   And 

rather than integrate over  and , I instead integrate over  and k  (see Fig. 2.4).  

This greatly simplifies the integration. 

1yk

2&

1'xk

2

1' yk

2xk 2 yk k ⊥
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Figure 2.4: Novel integration axes for initial momentum states in drive layer.  By rotating the 
axes parallel  and perpendicular kk& ⊥  to  the integral can be simplified. q

 

Recalling the electronic energy dispersion relations: 

(
2

2 2
2 22

k k
m

ε )2⊥∗= +&
=                                                  (2.12) 

(
2

2 2
2' 2' 2 '2

k k
m

ε )⊥∗= +&
=                                                 (2.13) 

and using , I get the following relation: 2 2k k⊥ = '⊥

(
2

2 2
2 2' 2 2'2

k k
m

ε ε ∗− = −& &
= )

q

2

                                            (2.14) 

Then using the identity : 2' 2k k= −& &

2 2
2' 2 22k k qk q= − +& & & ,                                               (2.15) 

which leads to 

(
2

2
2 2' 22

2
qk q

m
ε ε ∗− = −&

= ) ,                                         (2.16)                         
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and so                                            
2

2 2' 2( ) qd
m

ε ε ∗− = &
= dk                                              (2.17) 

 

Making this substitution, the  part of the integral reduces to: 2dk

0 02
2 2' 2 2' 2 2' 1 1'2 ( ) ( ) 1 ( ) (

2 2
dkm d f f

q
)ε ε ε ε δ ε ε ε ε

π π

∗
⊥  − − − + ∫ ∫=

−  

2 2 ' 1 1'

0 0
2 2 2' 02 2 { ( ) 1 ( ) }

4 evaluated at
m dk f f

q ε ε ε εε ε
π

∗

⊥ =− + − = − ∫=
             (2.18) 

This conservation of energy requires that: 

2 2 2
2

2 2 22 4 4
qk

m q 2
ω ωε ⊥∗

 
= + + − 

 

=                                       (2.19) 

2 2 2
2

2' 2 22 4 4
qk

m q 2
ω ωε ⊥∗

 
= + + + 

 

=                                       (2.20) 

where 

2 2
1' 1' 1( ) ( )x yq k k k= + − 2

y                                              (2.21) 

and                                             ( )2 2 2
1 1' 1'y x yk k kω ≡ − −                                                 (2.22) 

 

 

The integral is now: 

1 2
1' 2 '

0 0 0 0
, 1 1' 1' 1 2 1 2 1' 2'5 2

, ,2 1 0 0 0
,

( , ) (1 )(1 ).
32xx D y x y y

B

m dk dk dk q k q dk f f f f
n n e k T σ σ

σ σ

ρ ω
π

∞ ∞ ∞ ∞∗

⊥
−∞

−
= −∑ ∫ ∫ ∫ ∫w −  

(2.23) 
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As is, this equation should be a very accurate model of our system.  But in order to 

evaluate this integral, an expression must be chosen for the collision probability ( , )q ωw .  

Here is where the equation becomes less exact.  Assumptions and simplifications must be 

made in order to evaluate this term.   

As a starting point, JS invoke Fermi’s golden rule: 

22( , ) ( )q V qπω =
=

w                                              (2.24) 

to evaluate the collision probability.  Here the assumption is that the scattering potential is 

weak: the Born approximation.  This approximation is good in the same long mean free 

path limit for which Boltzmann theory holds, however it is good to keep in mind that there 

are higher order terms that are being neglected and that this approximation does not 

account for interference effects such as weak localization.  There is also an implicit 

assumption in this method that the conductivity of a single layer is linearly dependent on 

the density [16], which is not what we observe.  However, at zero magnetic field, this 

should not be too important [16].  So I have followed JS’ lead and use the Born 

approximation in my version of their integral. 

The next set of assumptions comes in evaluating the potential V q .  JS use a screened 

Coulomb potential; the bare potential of a single electron is being screened by the electrons 

both within the same layer and those in the other layer.  The choice of screening theory 

affects the difficulty and the accuracy of the equation.   

( )
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The simplest theory (and the one JS use) is the static screening Thomas-Fermi (TF) 

approximation.  This approximation excludes dynamical screening effects such as coupled 

plasmon modes, which are a sort of anti-screening which enhances the drag.  This mode 

becomes important when 0.2 FT  [17].  Also excluded are electron correlation effects 

[18, 19] , multi-particle excitations [20], enhanced disorder effects[13, 18], and phonon-

mediated electron-electron scattering [21].  The latter is not an important process in our 

samples (see Section 3.2.1), but inclusion of the other effects would likely improve the 

quantitative agreement of the integral with the data.  However, for understanding 

qualitative effects, such as the peak in the drag at balanced densities below some critical 

temperature observed in Section 3.4, which is fundamentally a phase space effect, it is 

sufficient to use the simpler TF screening model for the potential V q , and so I do.  

Tt

( )

TF screening is identical to static Random Phase Approximation (RPA) screening (in the 

zero temperature limit) for 2 Fq k≤ , where  is the Fermi momentum and 

begins to deviate from static RPA for q .  RPA screening can be approximated for 

 by adding a simple function to the TF formulation that should mimic static RPA; 

this function can be found in reference 22.  For the Coulomb drag parameters explored in 

this thesis (primarily in Chapter 3), this additional function made very little difference in 

the results, so I have just kept to the TF approximation used in the paper. 

( )1/ 22Fk nπ=

Fk2>

2 Fq k>

In the TF approximation the collision term is given by (see eqns. 22 and 25 in JS): 
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1 2

2 '

22

1 2
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/2 2( , ) 4
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q qeq
q A B q q Aσ σ

σ σ

π πω
πε κ −=

+ −∑ =
w

1'

                (2.25) 

Where  is the dielectric constant (~12.8 for GaAs) and  is the TF screening 

wavevector: 

κ TFq

                             8 1
2

2
0

(for GaAs electrons)1.977 10 m
2

4TF
m eq

πε κ
−

∗

≈ ×=
=

,                   (2.26) 

while  and A B  contain information on the form factors associated with the shape of the 

wavefunction of the electrons confined in the wells.  It is sufficient to assume that the 

wavefunction takes on a half-cosine shape inside the well and is zero outside of the well, 

then (see eqns. A16 and A17 in JS): 

2

2 2 2

22

2

8
(4 )

sinhqd qL

qL q L
A e π

π
−

+

 =  
   


 ;                                (2.27) 

2

2 2 2

2
/ 2

2 2 2 2

8
(4 )

2 sinh
4

qL qL

qL q L
qLB e

qL q L
π

ππ
−

+

 
= + − +  

                     (2.28) 

where  is the center-to-center separation between the wells and  is the well width.  

Alternately, the form factors can be computed from a more realistic wavefunction that itself 

is computed from a program, such as one that Jim Eisenstein wrote [23], which calculates 

the wavefunction for a specified conduction band profile and electron density.  This 

exercise mainly shows that it is sufficient to use the cosine approximation.  To calculate the 

form factor coefficients from a more realistic wavefunction, use equation (A8) in JS. 

d L
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Now including the expression for the collision probability, and summing over spins, the 

integral I use for calculating Coulomb drag reaches its final form: 

( )

[ ]
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2 2

2 1 0
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(2.29) 

This integral assumes: low drive current, high mobility, the Born approximation and 

Thomas-Fermi screening.  There are Fortran programs in Appendix K that numerically 

solve this integral for a range of T n . 1 2, , , , , andn m d L∗

2.4.1    A LIMITING CASE 

A simplified version of this equation can be derived analytically, as was done first by 

Gramila et al. [24] and then by Jauho and Smith [12].  This requires certain assumptions to 

be made about the conditions in actual drag experiments.  In addition to the simplifications 

used above, Thomas-Fermi screening and the Born approximation, the assumptions that 

 and  reduce the drag integral to: / 1FT T � 1Fk d �

2

, 2 2

(3)
16 ( ) ( )

B
xx D

F TF F

m k T
e n T q d k d

πζρ
∗

=
= 2 .                                    (2.30) 
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1

At the time, T T  was a reasonable assumption, as the lowest electron density per 

well of the samples studied at the time was  [24], which has a Fermi 

temperature of T , much larger than the cryogenic temperatures probed at the time 

(as low as T ). 

/ 1F �

60F ≈

0.3K≈

11 -21.5 10 cmn ≈ ×

K

The assumption , was somewhat reasonable: 1Fk d � 810 mFk −≈

Fk −

d

q

 for the above density 

and  was the smallest layer separation used.  When  only small-

angle scattering makes an important contribution to the drag.  Large-angle scattering is 

suppressed when the layers are relatively far apart (relative to ), because the small 

wavelength (large ) components of the Fourier transform of the Coulomb potential of one 

layer, can not be resolved by the other layer a distance  away.  The Fourier transform of 

the bare Coulomb interaction contains a factor ; by Fermi’s Golden Rule (eqn. 2.24) 

this inhibits scattering events with large momentum transfer  by the same factor squared.  

Large-angle scattering means large momentum transfer scattering and corresponds to 

.   

10 m−

q

375 10d ≈ ×

2 Fq k

1Fk d �

1

qde−

→

Equation 2.30 predicts the temperature , density   and 

layer separation  dependence of the Coulomb drag under (at the time) likely 

experimental conditions.   

2
,xx D Tρ ∝ 3

,xx D nρ −∝ ( )2,F FT k n∝

4
,xx D dρ −∝
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2.5     HISTORY OF COULOMB DRAG 

Drag experiments were first performed in 1960 by Hubner and Shockley between two thin 

(but not two-dimensional) layers of electrons in a semiconductor-insulator-semiconductor 

structure fashioned from a boron-doped silicon wafer [25].  Because their layers were 

relatively far apart (~100 µm), they were for the most part measuring phonon-assisted 

electron-electron scattering.  In phonon-assisted scattering, an electron in one layer scatters 

with a phonon, which then travels to the other layer and scatters an electron there, and so 

their measurements do not give information on direct electron-electron interactions.   

Coulomb drag was first considered theoretically, again for two thin films of electrons in a 

semiconductor-insulator-semiconductor structure, in 1977 by the Russian theorist M. B. 

Pogrebinskii [26]; and later for two-dimensional electron layers in GaAs/AlGaAs 

heterostructures by Peter Price in 1983 at IBM [27].   

But Coulomb drag experiments would not be attempted again until technical advances in 

molecular beam epitaxy allowed for the precision construction of GaAs/AlGaAs 

heterostructures with layer thicknesses a thousand times smaller than Hubner and 

Shockley’s samples – engendering much stronger electron-electron interactions.  In 1989, 

IBM scientist Solomon et al. made the first drag measurements between a 2D layer and a 

100 nm thick 3D layer [28].  The first drag measurements between two 2D layers were 

made soon after by Gramila et al. at Bell Labs [24].  Then there were Coulomb drag 

measurements between a 2D layer of electrons and a 2D layer of holes, also at IBM [29].  
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Currently, 2D-2D Coulomb drag measurements continue to be performed in labs around 

the world [30].   
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C h a p t e r  3 :   C o u l o m b  D r a g  a t  B = 0  

 

 

Coulomb drag measurements in zero magnetic field give information on basic electron-

electron scattering processes with unprecedented clarity; and with a wide range of 

parameter space to explore.  Not only can we measure the temperature dependence of the 

scattering, but we can also vary the electron density, as well as create a density imbalance 

between the two layers by establishing different densities in each layer. 

3.1     SAMPLE:  ‘K’ 

The data shown in this chapter (and thesis) was obtained from a single wafer.  This wafer 

was used for the experiments because of its very low tunneling.  It is discussed in detail in 

Chapter 1.  To reiterate here: the wells are 180 Å wide GaAs, separated by a 100 Å wide 

Al0.9Ga0.1As barrier and embedded in thick Al0.3Ga0.7As cladding layers.  It has been 

symmetrically silicon δ-doped, setback approximately 2000 Å from the wells on each side. 

This data is from a 5 mm x 5 mm piece taken from the center of the wafer and is called 

sample ‘K’.  The central region of the mesa is a 40 µm x 400 µm bar with 5 arms extending 

out of it for electrical contact (see Fig. C.3 for sample map and Fig. 3.1 for a photo of this 
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Figure 3.1: Picture of top side of sample ‘K’ showing the mesa structure in faint outline with its 
central 40 µm x 400 µm bar.  The lighter regions are the top side aluminum gates.  Field is 
~2mm across. 

 

sample).  For this sample, contact was made by putting indium [2] at the ends of the arms, 

on the large “contact pads” located there, using a miniature soldering iron.  Then the 

sample was annealed at 440°C for 10 minutes in a 15% H2, 85% N2 environment and wired 

up as usual.  The nominal density in each well was 5.3 x 1010 cm-2, the mobility 1 x 106 

cm2/Vs [3] and the tunneling resistance at resonance 500R ≈  MΩ.  The density in the 

central mesa region was controlled by electrostatic gates above and below the central bar.  

We could achieve densities as low as 1.7 x 1010 cm-2 and as high as 8.8 x 1010 cm-2 per 

layer by applying voltages to these gates.  The densities in the two layers were matched by 

finding the gate voltages that maintained a positive drag signal in the high Landau levels 

[4]. 



 

 

41
3.2     LONGITUDINAL DRAG VERSUS TEMPERATURE 

Figure 3.2 shows the temperature dependence of the longitudinal Coulomb drag at nominal 

density with a 20 nA, 13 Hz drive current.  This data represents the largest nominal density 

electron-electron Coulomb drag signal measured at zero magnetic field, at this time.  This 

is because interlayer electron-electron scattering is strongly dependent on the inverse of the 

electron density and layer separation (see Section 2.4.1), and the as-grown densities of our 

quantum wells are less than half that of the quantum wells used in the previously published 

Coulomb drag experiments [5].  The center-to-center well separation of 280 Å is also 

smaller than the prior experiments (of those done in the low-tunneling regime, and 

consequently our nominal density drag signal is two orders of magnitude larger than any 

other electron-electron drag published at zero magnetic field. 

6

4

2

0

ρ x
x,

D
 (Ω

/
)

543210
Temperature (Kelvin)  

Figure 3.2: Longitudinal drag resistance vs. temperature taken at nominal density 
, dashed line shows a simple parabolic fit. 10 25.3 10n −= × cm
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k

The significance of this, beyond the convenience of the larger signal-to-noise ratio, is 

that our drag is likely dominated by direct electron-electron scattering events, rather than 

phonon-mediated electron-electron scattering, which dominates much of the previously 

published drag.  This means our data is directly probing the interlayer electron interactions. 

Notice the nearly T  dependence as originally predicted by Landau and Pomeranchuk for 

electron-electron scattering in metals [6].  The dashed line corresponds to the equation 

.  This quadratic dependence on the temperature is evidence 

that we are indeed predominately measuring direct electron-electron scattering. 

2

2
, [ / ] 0.372 [ ]xx D T Kρ Ω = ×,

Although the T  dependence was calculated for electrons free to move in three 

dimensions, it holds roughly true for two-dimensional electrons as well.  The two-

dimensional nature of our electrons does necessitate a change of the shape of the Fermi 

surface used in Landau and Pomeranchuk’s calculations from a sphere to a disk (or rather a 

cylinder), which creates T l  corrections in the temperature dependence [7].  This is due 

to divergences in the phase space at low T  for scattering processes with momentum 

changes , where  is the Fermi momentum – this is a uniquely two-

dimensional phenomenon [8].  But as this term is expected to be very small, and the 

coefficient is unknown, there is little point in including this term in our fit as there are 

easily many two-parameter functions that would fit our data nicely, but for the curious: 

2

2 F

2 nT

Fk0,q ∼

                          ,                       (3.1) 2 2
, [ / ] 0.165 [ ] 0.080 [ ]ln( / )xx D FT K T K T Tρ Ω = × − ×,
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Kwhere the Fermi temperature is T 22.1F = , would fit the data nearly perfectly.  This is 

a two-parameter fit to the data shown in Fig. 3.2 which includes the expected T l  term. 2 nT

Parenthetically, Zheng and MacDonald [9] also predict T l  corrections in the drag 

scattering but for entirely different reasons.  They say disorder in the sample will also 

create this correction term, but only at inaccessibly low temperatures; so we ignore this 

effect here. 

2 nT

3.2.1    SEARCH FOR PHONON-MEDIATED DRAG 

 We can look for subtle deviations from the T  behavior by dividing the drag resistivity by 

 and then plotting  (see Fig. 3.3).  In particular we can look for non-monotonic 

behavior in the temperature dependence, which is the hallmark of phonon-mediated 

Coulomb drag [10]. 

2

2T 2
, /xx D Tρ

Phonon-mediated Coulomb drag hinges on electron-phonon scattering processes, which 

have a different temperature dependence than electron-electron scattering, mainly because 

phonons are bosons.  Electron-phonon scattering is linear in T  at high T  because in this 

regime, large-angle scattering dominates the momentum transfer.  The population of these 

efficacious  phonons is given by the Bose-Einstein distribution function  2 Fq k=

( ))(2

1[ (2 )]
exp 1F

B

F k
k T

n k
ω

ω =
−=

                                              (3.2) 
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which reduces to [ (2 )] ~
(2 )
B

F
F

k Tn k
k

ω
ω=

 when (2 )F Bk k Tω= � .  The scattering rate 

merely reflects this linear temperature dependence of the number of phonons available for 

scattering. 
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Figure 3.3: Longitudinal drag resistance divided by the temperature squared vs. temperature at 
nominal density (5.3 x 1010 cm-2).  Phonon-mediated processes exhibit a bump near the Bloch-
Grüneisen temperature when the data is plotted in this manner; no bump is seen in our data. 

 

But at low T ,  phonons become scarce and for more complicated reasons the 

scattering dependence will have T  and/or T  terms [11]; the scattering will drop 

dramatically as the temperature drops (this is called the Bloch-Grüneisen regime).   The 

transition temperature between these two different behaviors is given by the Bloch-

Grüneisen temperature 

2 Fq k=

5 7

0
F

B

sk
k

=
=T , where  is the sound velocity.  In the data shown in s
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2K

Fig. 3.3 this crossover would occur at approximately 1 K.  With the data plotted as 

 this would be seen as a peak in the data near this transition temperature; but 

clearly there is no peak observed, indicating that phonon-mediated scattering is not a 

significant contributor to our drag resistivity. 

2
, /xx D Tρ

,xx Dρ

This is consistent with earlier drag measurements, in which the largely  independent 

phonon-mediated drag was measured to be very small, in the range of 

, and showed little density dependence [12].  If our data includes a 

phonon-mediated drag signal of that order (which it presumably must), then it will be of 

negligible importance. 

d

2/ ~ 1 /T mΩ ,

3.3     LONGITUDINAL DRAG VERSUS DENSITY 

Figure 3.4 shows the longitudinal drag resistivity versus temperature at six different 

matched densities (the same density in each layer).  The drag is observed to increase 

significantly with decreasing density – as was expected.  The physical reasons for this are 

threefold:  When the density in the drive layer is reduced, the drift velocity must increase to 

maintain the same current density ( 2 2D D driJ n e ftυ= ).  A larger drift velocity yields a larger 

net momentum transfer per scattering event.  But as the number of electrons available for 

scattering is independent of the density (the two-dimensional density of states is constant, 

and the number of electrons available for scattering is proportional to  times the 

density of states), the total net momentum transferred via scattering is increased.  There is a 

Bk T
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competing effect in that the smaller momentum at the edge of the Fermi disk means more 

time between scattering events, but this goes as the square root of the density 22F Dk nπ=  

and so it is a weaker effect.   

Likewise, a reduction of density in the drag layer increases the ratio of electrons 

participating in scattering events relative to the total number of electrons in the layer.  Since 

the drag voltage is determined by the momentum transferred per electron – regardless of 

whether it is at the edge of the Fermi disk participating in scattering or deep in the middle – 

this rate will go up, even if the total momentum transferred stays the same.  So this is 

another mechanism by which reducing the electron density will increase the drag 

resistivity. 
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Figure 3.4: Drag resistivity vs. temperature for six different densities n.  Densities are in units 
of 1010 cm-2.   
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And lastly, reducing the size of the Fermi disks means that a scattering event of 

momentum  will be a larger-angle scattering event than the same  in a larger Fermi 

disk.  Momentum is transferred more efficiently by large-angle scattering events and is 

maximized when ; pure backscattering.   To account for this effect, scattering 

events are weighted by a factor of 1 c

q q

2 Fq k=

osθ−  where θ  is the angle between the initial and 

final momentum states in one of the layers.  Simple geometry can show that this term is 

proportional to 
2

2
F

q
k

 [13], and so scattering events of momentum  will be weighted more 

strongly as k  is made smaller. 

q

F

What was not expected was the rate at which the longitudinal drag is observed to increase 

as the density is lowered.  Theoretical calculations of the drag resistivity based on 

Boltzmann transport theory predict an 3n−  dependence as discussed in Section 2.4.1.  But 

our data, the first to probe the density dependence of direct electron-electron drag 

scattering, indicates that the dependence on density is even stronger, going roughly as n 4− .  

Figure 3.5 shows the longitudinal drag resistivity versus density at three different 

temperatures = 1, 2 and 4K plotted in a log-log fashion.  The roughly straight line 

behavior over three decades of resistivity indicates that there is indeed a power-law 

dependence on density.  But rather than the expected 

T

3n−  slope, shown as a dashed line, the 

data is better matched to the 4n−  solid lines. 
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Figure 3.5: Drag resistivity vs. density at three temperatures: T = 4K, 2K and 1K.  Solid lines 
are proportional to n-4; dashed line proportional to n-3. 

 

The theoretical model predicting the n 3−  dependence includes many simplifying 

assumptions in order to derive such a nice analytical result.  Among them are that 

, which, especially for our lowest density  with its T K/ FT T �1 10 -21.7 10 cmn = × 7F = , 

does not hold for much of our data.  Also assumed is that the layer separation  is large 

compared to the inverse of the Fermi wavevector , thus .  This assumes that 

only small-angle scattering is important.  The greater the layer separation, the greater the 

scattering impact parameter and the less prevalent the large-angle scattering events.  Large-

angle scattering is suppressed by a factor e  because the Fourier transform of the bare 

Coulomb interaction contains such a factor, and the probability for a scattering event to 

occur, by Fermi’s golden rule, goes as the square of this.  The requirement  means 

d

1�

F 1Fk d �k

qd−

Fk d
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that large-angle scattering is neglected.  For our data  ranges from 0.9 to 2.1; clearly 

large-angle scattering cannot be neglected in our results.   

Fk d

2

( F

T
k d

Bk

8.8= ×

The model also uses Thomas-Fermi screening, which is likely an over-simplification of the 

actual interaction potential [16].  These simplifications lead to the following analytic form 

for the longitudinal drag resistivity: 

, 2 2

(3)
16 ( ) )

B
xx D

F TF

m k
e n T q d

πζρ
∗

=
= 2                                        (3.3) 

where  is the Thomas-Fermi screening wavevector,  is the Boltzmann constant and TFq

(3)ζ  is a Riemann zeta function.  All the data shown in Figure 3.5 exceed the model’s 

predictions.  Even the highest density data shown, n , exceeds the value of 

equation (3.3) by a factor of 2.  This discord between theory and experiment increases as n  

is lowered because of the anomalous experimental density dependence ; so it’s off by a 

factor of 10 by . 

10 -210 cm

4n−

10 -21.7 10 cmn = ×

Theoretical work done after these results were published sought to reconcile these 

discrepancies by including many-body effects in the interaction Hamiltonian.  Yurtsever, 

Moldoveanu and Tanatar [17] noted that random-phase approximation (RPA) breaks down 

for , where 1sr > /s Br a a=

=

e

 is a dimensionless coupling parameter relating the average 

inter-electron separation a  within one of the layers to the effective Bohr radius 

, where 

( ) 1/ 2nπ −

2
B m∗ 2/a ε= = ε  is the dielectric constant for GaAs.  Because of the low density 
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of our sample, especially when gated to our lowest density , we were 

the first group to work in the regime where ; with r

10 -21.7 10 cmn = ×

4.31sr > s =  at our lowest density. 

The Thomas-Fermi model used to derive eqn. 3.3, is similar to the RPA with static 

screening and so should not be expected to be valid in the regime that our sample surveys.  

And indeed they show that the formulation of Coulomb drag using RPA both with static 

and dynamical screening, greatly underestimate our Coulomb drag data (see the dotted and 

long-dashed lines in Fig. 3.6). 

 

Figure 3.6: Theoretical models from Yurtsever et al. are compared to our data at 
, as also shown in Fig. 3.4.  The dotted line corresponds to static screening 

RPA, much like the model we use in Sec. 3.4.1, and underestimates the actual data, shown as 
filled circles.  The long-dashed line is for RPA with dynamical screening, a slight improvement 
over the static screening case.  The short-dashed line is for a 1968 theory from Singwi et al. [18] 
which overestimates the correlation effects.  The solid line is the Yurtsever et al. original 
formulation, which matches our data nicely.  Taken from Ref. 17. 

10 22.3 10n −= × cm
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To account for the correlation effects expected to be important at these low densities, 

Yurtsever et al. first apply a 1968 theoretical model from Singwi et al. [18] which includes 

corrections due to exchange and correlation effects associated with charge fluctuations.  

They find that this model overestimates the correlation effects (see the short-dashed line in 

Fig. 3.6). 

Finally, they derive a new model, built from an approach from Kukkonen and Overhauser 

[19] which takes into account the background semiconductor lattice into the screening 

term, and then Yurtsever et al. build on this model to include exchange interactions for 

charge and spin fluctuations.  Not only does their new model agree nicely with the 

magnitude and temperature dependence of our published  data (our data 

is shown as filled circles in Fig. 3.6 and their model is the solid line), but it also reproduces 

the  dependence that we observed (Fig. 3.5).    

10 -22.3 10 cmn = ×

4n−

3.4     LONGITUDINAL DRAG VERSUS DENSITY IMBALANCE 

Aside from the dependence of the drag on matched densities, we can also look at the drag’s 

response to having different densities in the two layers.  The parameter we will use to 

denote this is  
T

n
n
∆ , where  ( n  is the density in the  layer), and 1 2n n n∆ ≡ − i

thi 1 2Tn n n≡ +  

is the total density in both the layers.  We can change n∆  while keeping  constant quite 

simply by applying a bias voltage between the two layers (see Appendix I). 

Tn
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The observed relationship 4

, ~xx D nρ − , carries within it a prediction for the behavior we 

expect to see when we imbalance the layer densities.  By symmetry this relationship 

implies , which can also be written as: 2 2
, 1~xx D n nρ − −

2

, 2 2 4 21 1
2 2

1~ ~
[ ( )] [ ( )] 16 (1 ) (1 )xx D

T T T T T
n n

n nn n n n n
ρ ∆ ∆+ ∆ − ∆ + − 2

1                 (3.4) 

Focusing just on the terms containing n∆ , as n  is constant, and applying the binomial 

expansion: 

T

( ) ( )
22

, ~ 1 ~ 1 2xx D T
n

nρ
−

∆ − +  

2

T
n

n
∆                                    (3.5) 

And so it can be seen that, aside from an offset, there will be a quadratic increase in the 

drag with layer imbalance 
T

n
n
∆ .  Note that any inverse dependence on density, , ~ x

xx D nρ −  

where x  is a positive number, will lead to a quadratic increase in the drag with layer 

imbalance, the exponent x  will only affect the coefficient of the 
2

T

n
n
∆ 


 

  term. 

Figure 3.7 shows the longitudinal drag resistivity as a function of density imbalance at two 

different densities and two different temperatures.  Panels a and b show this quadratic 

increase in the drag with increasing density imbalance for 10 23.7 10n cm−= ×  and 

 when taken at T .  Both data sets are well fit by the curve: 10 25.2 10n −= × cm K~ 4.4
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( ) ( )2

, , at 0 1 1.6xx D xx D T
n

nρ ρ ∆ = = × + T
n

n
∆ 



K

.  This is very close to the equation we just 

derived (eqn. 3.5).  But as the temperature is lowered to T 1.4=  for these same densities 

(panels c and d), we see quite different behavior; here the drag is seen to decrease with 

increasing density imbalance.  The data evolve smoothly from one regime to the other as 

the temperature is varied.  The temperature at which the curvature is roughly zero is 

defined to be the cross-over temperature T .  The inset in Fig. 3.7 shows that T  is linear in 

density, and thus linear in the Fermi temperature T , with the relation: T T . 

c c

.12F ~ 0c F×

=

 

Figure 3.7: Drag resistivity vs. density imbalance at (roughly) two temperatures: T  and 
, and two densities (at 

1.4= K
~ 4.4K 0n∆ = ):  n 3.7  and 5.2  per layer.  The central 
inset shows the density dependence of the cross-over temperature T . 

10 2( 10 )cm−×

c
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2

A peak in the drag at matched density is typically seen in phonon-mediated drag.  The 

importance of  scattering in phonon-mediated drag means that the drag will be 

maximized when both the layers have the same Fermi wavevector  (and thus the same 

density).  This peak was observed in prior work in the phonon-dominated drag regime [10, 

12].  But as discussed in Section 3.2.1, phonon-mediated drag makes a negligible 

contribution to our data.  So the origin of this peak was quite mysterious at the time. 

2 Fq k=

Fk

3.4.1    NUMERICAL MODELING 

Because prior theoretical work [14, 15] on direct electron-electron drag presumed that only 

small-angle scattering contributed significantly to the drag, it was very surprising to see this 

peak at matched densities in our data.  But we will show that because our sample 

parameters do not fall within the prescribed  used in all that prior theoretical work, 

what we are actually seeing are the first observations of significant  scattering in direct 

Coulomb drag. 

1Fk d �

2 Fk

To investigate the effects of our small  on our drag measurements, we performed the 

first theoretical investigation of Coulomb drag for differing densities in the layers.  

Following the approach of Jauho and Smith [15], we solve their drag scattering integral for 

the case where .  We take a slightly different approach in calculating the imaginary 

part of the susceptibility, as discussed in Section 2.4.  Our approach gives the full 

temperature dependence of the susceptibility, whereas Jauho and Smith use the zero-

Fk d

1n n≠



 

 

55
temperature susceptibility in their calculations.  The full calculation can be found in 

Section 2.4, and the Fortran programs used to solve the integral are in Appendix K. 

 

 

Figure 3.8: Computed drag resistivity vs. temperature for .  The insets show 
the dependence of the drag resistivity on density imbalance at two different temperatures. 

10 23.7 10n −= × cm

 

Figure 3.8 shows the result of this calculation done with our sample’s parameters: layer 

separation Å, well width 280d = 180L = Å and density n .  The main 

figure shows the temperature dependence at matched densities and the insets show the 

dependence on density imbalance at low temperature (inset b) and at high temperature 

(inset a).  Inset a, computed for T

10 23.7 10 −= × cm

9K= , shows a quadratic increase in the drag with 

increasing density imbalance, and inset b at T 1.4K=  shows the drag decreasing with 

imbalance.  So our theoretical calculations show the same qualitative behavior that we 

observe in the data in Figure 3.7.   
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Figure 3.9: Drag intensity h q , divided by T , vs. scattering wavevector  in units of .  
Calculated for 

( )
10

2 q 2 Fk
23.7 10n cm−= ×  at two different temperatures.  The drag resistivity is the area 

under the curves. 

 

Closer inspection of the theoretical model, specifically looking at the q  dependence of the 

computed drag resistivity (Figure 3.9), reveals the cause of this anomalous peak at matched 

density at low temperature.   The figure shows the drag intensity  

,( )
( ) xx Dd

h q
dq
ρ

≡ ,                                                       (3.6) 

divided by T  to facilitate comparison between the two different temperatures shown 

.  At the low temperature, there is a peak in the drag intensity near 

, indicating that 2  scattering processes are indeed important in samples with our 

2

nd 91.4 aT K=

2 Fq k=

K

Fk
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parameters.  When  processes are significant, the drag becomes sensitive to the 

matching of the Fermi wavevectors in each layer (by matching their densities).  When 

 ( k  is the Fermi momentum in layer i ),  processes are resonant between 

the layers and the drag will be maximized.  Imbalancing the layers means a favored 

 scattering event in layer 1 will not be the favored scattering wavevector in 

layer_2 and the drag will decrease relative to the matched density condition. 

2 Fk

2 Fk

,1 ,2F Fk k=

,12 Fq k=

9T =

,F i

K

cT

2 Fk

(2
T
n

n
∆

, ~ 1xx Dρ +

1.7cT = K

At higher temperatures, the edge of the Fermi disk, where all the scattering occurs, 

becomes thermally broadened and the  feature dissipates, then disappears, as shown in 

the  calculation in Figure 3.9.  The broader the edge of the Fermi disk, the less 

relative phase space is available for large angle scattering events.  At some critical 

temperature  the  scattering becomes relatively unimportant and the simple 

2 Fk

)2
 behavior wins out, leading to increasing drag with density imbalance. 

Although our calculation mirrors our data qualitatively and shows unambiguously that the 

peak in matched density at low temperature is due to the enhanced phase space available 

for scattering at , it does not correctly predict the critical temperature.  The cross-over 

occurs at a higher temperature, T

2 Fk

6.3c K=  in the calculated figure compared to the 

 observed in Figure 3.7.  This may be due to the inadequacy of the simple 

electron-electron interaction potential used in our theoretical model.  As previously 

discussed in Section 3.3, this simple potential underestimates the drag resistivity for all the 

data shown and predicts a  dependence on density rather than the  observed.  Both 3n− 4n−



 

 

58
of these discrepancies were resolved by including the more theoretically complicated 

many-body effects into the interaction potential [17], and inclusion of them in our 

calculation may be expected to do the same.  However, as the cross-over behavior that we 

observe in Figure 3.7 is purely a phase space phenomenon, the simpler interaction potential 

proves sufficient to ratify this fact. 

3.5     SPIN POLARIZATION (B^=0, B7∫0)   

This resonance at  in the longitudinal drag resistivity at low temperatures makes the 

drag measurement versus density imbalance a good probe of the relative sizes of the Fermi 

disks in each layer.  There are in reality two Fermi disks in each layer; one populated by 

spin-up electrons and another populated by spin-down electrons.  In zero magnetic field, 

the two populations are identical and thus so are the two Fermi disks.  But the application 

of a magnetic field parallel to the plane of the electron layers will change the relative 

populations of the spin states – due to the Zeeman interaction; and the two Fermi disks in 

each layer will then have different radii.  This change should be detectable in the 

longitudinal drag versus density imbalance. 

2 Fk

This change in relative population is characterized by the spin polarization ξ.  The 

difference between the spin-up population density n↑  and the spin-down population  is 

just the Zeeman energy times the density of states (which in two dimensions is merely a 

constant): 

n↓
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22 2B
e

m g m eBn n g B
hm

µ
π

∗ ∗ ∗

↑ ↓− = × =
=

                                        (3.7) 

where  is the effective g-factor (  for GaAs at Bg∗ 0.44g∗ = − 7=0), / 2B ee mµ = =

( ) m

 is the 

Bohr magneton and the two-dimensional electronic density of states is n E 2/ 2π∗= = .  

Then the spin polarization ξ is defined as: 

2 e

n n g m eB
n n hnm

ξ
∗ ∗

↑ ↓

↑ ↓

−
≡ =

+
                                                  (3.8) 

At low densities it is expected that Coulomb exchange effects will lead to an enhancement 

of this splitting beyond the Zeeman value [20].  This can be characterized as a variation of 

the product  with density.  This variation in g m∗ ∗ g m∗ ∗  has been studied in Silicon 

MOSFETs [19] and in GaAs heterostructures both with electrons [22, 23] and holes [24] 

under the application of an in-plane magnetic field.  Usually, though not always [23], g m∗ ∗  

is found to increase with decreasing density as expected.   

These other studies relied on features in the magnetoresistance to infer the spin 

polarization.  Coulomb drag offers a novel way to detect the spin polarization.  In the 

regime where  scattering is important, matching Fermi momenta in the two layers 

corresponds to a peak in the drag resistivity.  When an in-plane magnetic field is applied, 

there are two different Fermi momenta in each layer and four different combinations of 

Fermi momenta that are contributing to the drag: 

2 Fk

,1 ,2( ,F Fk k )↑ ↑ , ,  

and  where  is the Fermi momentum in the i  layer of the spin-up 

,1 ,2( ,F Fk k↑ ↓

th

) ,1 ,2( ,F Fk k↓ ↑ )

,1 ,2( ,Fk k↓ )F ↓ , ( )F ik ↑ ↓
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(spin-down) electron population.  It seems reasonable to assume that the resulting drag 

resistivity will be a linear combination of the contributions of the four Fermi disk pairs, 

with the behavior of which we are already empirically familiar. 

 

4.6

4.5

4.4

ρ xx
,D

  (
Ω

 / 
)

-0.4 -0.2 0.0 0.2 0.4
∆n/nT

n = 3.1 x 1010 cm-2

 

Figure 3.10: Longitudinal drag resistivity vs. density imbalance at zero magnetic field for 
10 23.1 10n cm−= ×  taken at T 1.3 cK T= <  shows that at sufficiently large density imbalance (at 

 in this case) the drag will eventually increase with increasing density 
imbalance.   

/ ~ 0.25Tn n∆ ±

 

At this point I should reveal that the peak at matched density for T  as observed in 

Figure 3.7 only occurs near 

cT<

/ 0Tn n∆ =

,2 )F ↓

.  At sufficiently large density imbalance the drag 

begins to rise with increasing density imbalance as shown in Figure 3.10.  Since the two 

opposite spin pairs  and  will have a combined density , which 

is equal to the single layer density, the drag contribution from these two terms, should look 

,1( ,Fk k↑ ,1 ,2( ,F Fk k↓ ↑ ) n
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just like the  drag, but offset by  0B =&

0

0.3±

2T e

g m eBn
n m hn

∗ ∗∆
= &

T

)

.                                                        (3.9) 

The two matching spin pairs ,1 ,2( ,F Fk k↑ ↑

0B

 and  will have combined densities 

that are less than (↑ ) and greater than (↓ ) the single layer density by some .  Their 

contributions should be similar to 

,1 ,2( ,F Fk k↓ ↓ )

n±∆

=&  drag taken at ( )n n± ∆ . 

Figure 3.11 shows the longitudinal drag resistivity versus density imbalance with four 

different values of in-plane magnetic field, ranging from 0B T=&  to 9B T=& .  The per 

layer density is 10 22.3 10n cm−= ×  and the temperature is 0.3T K= .  The 0B T

6

=&  curve 

shows the expected peak at matched densities as observed and discussed in the previous 

section.  The application of an in-plane magnetic field reduces the value of the drag at 

 and causes the peak to become squattier, until it disappears (at / Tn n∆ = B T=&  in Fig. 

3.11) and ultimately turns over to a roughly quadratic increase in drag with density 

imbalance typically seen at T .  cT>

The contributions of the ,1 ,2( ,F Fk k )↑ ↓  and  pairs alone would be expected to 

produce such a progression from a peak to a minimum at matched densities.  The minima 

on either side of the central peak shown in Fig. 3.10 can be seen to be developing at 

 from the central peak in the 

,1 ,2( ,F Fk k↓ ↑

0

)

/ ~Tn n∆ B T=&  data in Fig. 3.11.  If the minimum in 

the 9B T=&  data corresponds to these side minima being shifted over by ∆ ± , / ~ 0.3Tn n
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0then this would be consistent with a spin polarization of ~ 0.6ξ , corresponding to a 

more than four-fold enhancement in g m∗ ∗  over its zero field value.  

0.2

B=9T

m =

,1( ,Fk k↓

1.0

0.8

ρ x
x,

D
  (

Ω
 / 

)

-0.2 0.0
∆n/nT

B=0T

 

Figure 3.11: Drag resistivity vs. density imbalance for different in-plane magnetic field 
strengths.  The solid, dotted, short-dashed and long-dashed lines shows 0,3,6 and 9B T=&  

respectively for 10 22.3 10n c −= ×  and T K0.3 .   

 

The contribution of the matched pairs, ,1 ,2( ,F Fk k )↑ ↑  and  would be dominated 

by the lower density pair.  Drag is observed to be inversely proportional to the fourth power 

of the density.  In this case, it also must be taken into consideration that the current in the 

drive layer is being carried by two different Fermi disks.  Given the same drive voltage for 

both disks, the smaller Fermi disk will be carrying a smaller portion of the current, as given 

by the following equation 

,2F ↓ )

J neEµ=                                                          (3.10) 
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where µ  is the mobility.  Not only is the current directly dependent on  but it also 

depends on the mobility 

n

µ , which is observed to be roughly linearly dependent on .  So 

the drag contribution from the smaller Fermi disks will still dominate, but only as ~

n

2n−  not 

.  However, this contribution will also cause a progression from a peak to a minimum at 

matched density, because lowering the density of the one spin population lowers the Fermi 

temperature and thus the critical temperature: 

4n−

~ 0.12cT FT× .  Even though the temperature 

is not changing, T  can rise above T  just by reducing the density, and the drag will enter 

the regime where it displays a minimum at matched density. 

c

Much harder to reckon are the effects of the in-plane magnetic field on the electronic 

wavefunction in the confining potential and how this will impact the drag.  Even in the 

ideal case of zero-width electron layers, the in-plane field distorts the Fermi surface, which 

alters the effective mass of the electrons.  Smrčka and Jungwirth predict a greater than 20% 

increase in the electron mass at 9B T=&

Bk mπ

 [25].  This corresponds to a 20% decrease in the 

Fermi temperature ( 2 / 4FT h n ∗= ) and thus the critical temperature.  Again, this will 

push the system closer to the cross-over point, and could enhance the effects enumerated 

above.   

Even more complications arise when the finite thickness of the confined electron 

wavefunction is taken into account.  Again Smrčka and Jungwirth addressed this issue, this 

time specifically for double layers (though in a single wide quantum well) and found that in 

addition to the distortion of the Fermi surface, there was a -dependent displacement of k
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the centroids of the wavefunctions [26].   This creates a small, but noticeable, change in 

the charge distribution in the well, which they calculated for a heterojunction confining 

potential.  However, it’s likely that in a square potential, this charge redistribution will be 

less significant. 

Das Sarma and Hwang were the first to note that at high parallel magnetic field, the 

magnetic length  was smaller than the widths of most of the wavefunctions confined in 

these quasi-2D quantum wells used in published experiments, and that orbital motion 

would be significant in the confining direction [27].  This would lead to considerable 

intersubband scattering, which they were able to show was responsible for some 

anomalously high longitudinal resistivity observed in single layers with an applied in-plane 

magnetic field [28].  It is not known how this effect will manifest in the drag resistivity.  

We did observe the same phenomena in the conventional longitudinal resistivity however. 

A

In some experimental (plus numerical) work on this issue, Tutuc et al. found that both g∗  

and  increased with increasing in-plane magnetic field in a way that was dependent on 

the electron layer thickness [29].  Given all these factors and the uncertainty in how they 

will affect the drag resistivity, at this point it seems premature to make definitive claims on 

the interpretation of the data.  It is, however, interesting to note that there has been one 

published study of Coulomb drag with an in-plane magnetic field [30] and their 

observations were uniformly in opposition to ours.  They were lookinat hole-hole scattering 

in the same  regime as we were, but at T .  Also of interest to note is that their 

drive current ran parallel to the in-plane magnetic field, while ours ran perpendicular (and it 

m∗

~ 1Fk d cT>
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seems that future work ought to look at both cases in the same sample).  They found that 

the longitudinal drag resistivity increased at matched density with increasing in-plane 

magnetic field, and that the curvature of the density imbalance curves, which always 

exhibited a minimum at balanced density in their data, became squattier as the in-plane 

magnetic field increased.  
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C h a p t e r  4 :  2 D  E l e c t r o n s  i n  a  
P e r p e n d i c u l a r  M a g n e t i c  F i e l d  

 

 

The physics of two-dimensional electrons gets much more interesting when a perpendicular 

magnetic field is applied.  Classical cyclotron orbits become quantized in sufficiently clean 

systems, and with the high electron densities found in the solid state, the system organizes 

itself into a highly regular array, filling up discrete energy levels each with a strict 

occupancy limit.  The energy gaps between these levels are responsible for the phenomena 

observed in the quantum Hall effect (QHE).  However, the fractional quantum Hall effect 

and most of the QHE in bilayers are more complex many-body states that engender even 

more fascinating physics, giving us such things as the highly ordered (111) state with its 

fractionally charged ( ± ) excitations and its superfluid mode. / 2e

4.1     QUANTUM HALL EFFECT 

In nonrelativistic quantum mechanics, the Hamiltonian for a charged particle in a magnetic 

field, ignoring spin, has the form: 

( 21
2

H
m

= −p A)e                                                    (4.1) 
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A

A

where  is the generalized momentum of the particle, and  the vector 

potential, such that B .  Defining the plane of the electron motion as the x-y plane, 

the magnetic field will be perpendicular to that plane, 

i= − ∇p =

= ∇×

ˆB=B z .  Then using the Landau 

gauge, the vector potential can be written ˆyB= −A x .   

The time-independent Schrödinger equation for this Hamiltonian is 

2 2 2

2

1 ( ) ( )
2 2

i eyB E
m x m y

ψ ψ
 ∂ ∂ − + − =  ∂ ∂   

R== R ,                          (4.2) 

where ( )ψ R  is the wavefunction in the x-y plane only.  In the z direction the electrons are 

confined in the quantum well potential; this can be treated separately and will not affect the 

solution to the equation in the x-y plane.  

Since the Hamiltonian is independent of the coordinate x , then [  (, ] 0xp H = xp  is the 

momentum operator in the x-direction).  This suggests that ( ) ( ) ikxU y eψ =R , where  is 

a plane wave state with momentum .  Expanding out equation 4.2 and making this 

substitution yields: 

ikxe

k

2 2 2
2 2 2 2

2 2

1 2 ( )
2 2

ikx ikxi eyB e y B U y e EU y e
m x x m y

  ∂ ∂ ∂
− − + − =  ∂ ∂ ∂  

== = ( ) ;         (4.3)  

then operating on e , ikx

( )
2 2

2 2 2 2 2
2

1 2 (
2 2

ikx ikx ikx ikx ikxk e keyBe e y B e e U y EU y e
m m y

 ∂
+ + − = ∂ 

== = ) ( ) .       (4.4) 
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The  term cancels from both sides, and the equation simplifies to: ikxe

22 2
2

2

1 ( ) ( )
2 2 c

km y U y EU y
m y eB

ω
 ∂  − + + =  ∂    

= = ,                           (4.5) 

where /c eB mω =

c

 is the cyclotron frequency.  This is just the Schrödinger equation for a 

one-dimensional harmonic oscillator, oscillating about the point , with 

frequency 

/y k e= −= B

ω .  The eigenvalues for this equation are  

1
2nE n cω = + 

 
= ,                                                    (4.6) 

where , which are thus also the eigenvalues to equation 4.2.  These energy 

levels are called “Landau levels,” as it was Landau who first solved this problem [1].   

0,1,2,...n =

The eigenfunctions for eqn. 4.2 are plane waves in the x-direction, and one-dimensional 

harmonic oscillator eigenfunctions in the y-direction – for the lowest energy, these are just 

Gaussians, centered about  

/y k eB= −= .                                                        (4.7) 

As the energy  is independent of k , there is a degeneracy to the Landau levels.  The 

degeneracy is equivalent to the density of electrons that can fit in each Landau level. 

Considering the system as a rectangle with dimensions 

nE

xL Ly× , periodic boundary 

conditions on the plane wave portion of the wavefunction in the x-direction require that 
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j(2 / )xk Lπ= , where .  Then the spacing between adjacent -states in 

the y-direction will be (from eqn. 4.7) 

0, 1, 2,...j = ± ± k

1 /( )j j xy y h eBL−− = .  The number  of  -states 

that can fit along  0  will then be: 

N k

yy L< <

1

y y x

j j

L L L eB
y y h−

= =
−

N

/ y xn N L L

/eB h

=

D

ν

n nh
D eB

ν ≡ =

n

1
2ν =

cω

µ

,                                              (4.8) 

and the density  of electrons in each Landau level, which defines the 

degeneracy , is equal to . 

The number of Landau levels filled in a system is called the “filling factor”  and is given 

by  

,                                                        (4.9) 

where  is the 2D density of electrons in the system.  When 1ν = , exactly one Landau 

level is filled.  When , exactly one-half of a Landau level is filled.   

Ideally, this energy degeneracy leads to a density of states (DOS) composed of a ladder of 

delta functions spaced =  apart.  But in real systems, inhomogeneities in the sample 

spread out the energy of the Landau levels, and the DOS resembles more the curve shown 

in Figure 4.1.  Inclusion of the electron spin (not shown), splits each of these Landau levels 

into two levels, offset by a Zeeman energy gap z g BBµ∆ = , where B  is the Bohr 

magneton, and  is the g-factor (which does not equal the free electron value, but rather is g
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0.44g = −  for electrons in GaAs).   

 

 

Figure 4.1: Density of states diagram for the first three Landau levels in an inhomogeneous 
system.  Each Landau level can accommodate eB  electrons.  Shaded areas at edges of each 
Landau level represent localized states.  Electrons in these states cannot participate in current 
flow. 

/ h

 

The shaded regions at the edges of the Landau levels represent localized states: dips and 

peaks in the potential energy that trap (“localize”) electrons and prevent them from 

participating in current flow across the sample.  It is the combination of the gaps in energy 

between adjacent Landau levels and the existence of the localized states that leads to an 

effect in the transport properties called the “quantum Hall effect”.   

Discovered in 1980 by von Klitzing [2], the quantum Hall effect (QHE) consists of 

perfectly quantized plateaus in the Hall resistivity – so perfect that they are used as 

resistance standards at the National Institute of Standards ( 21 ( / )xy j h eρ =  where j  is an 

integer) – accompanied by zeros in the longitudinal resistivity, in the vicinity of integral 

filling factors (see Figure 4.2).  The observation of the QHE requires low temperatures 
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c( Bk T ω� = ), so that the Landau level energy gaps ( 1cω ≈= K at 1B = Tesla for GaAs) 

are not being breached thermally, and high electron mobility, so that the electrons can 

complete multiple orbits before being scattered, such that they can interfere with 

themselves and allow quantization to set in.  High electron mobility depends on low 

disorder in the system, however, disorder is necessary for the existence of localized states, 

which are imperative for the QHE. 

ν =

1) ( /j h=

The precision of the Hall resistance in the plateau regions is a direct consequence of the 

precision of the electron density in the conducting states in the plateau regions.  When the 

filling factor in the conducting areas of the sample is integral ( j , where j  is an 

integer), the electron density in that area is extremely precise, exactly n j .  

The Hall resistivity is inversely proportional to the electron density, 

/D jeB= =

/

h

xy B neρ = , and at 

integral filling factor:  

2( / ) ( / )xy h jeB B e eρ = × ,                                  (4.10) 

just the values observed in the QHE plateaus.  If there were no localized states, the 

conducting areas would be at a precise integral filling only at a very precise value of the 

magnetic field B , and the Hall resistivity would show no plateaus.  But because of the 

localized states, the conducting areas can remain at integral filling factor over broad ranges 

of the total filling factor of the sample as a whole.  This is because when the Fermi level 

moves through the localized states, the filling factor in the localized states will change, but 

the filling factor in the conducting regions won’t.  Samples in which a large fraction of the 
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states are localized states, will have very broad plateaus, like those shown in Figure 4.2.  

  

 

Figure 4.2: Plateaus in the Hall resistivity xyρ  and broad zeroes in the longitudinal resistivity 

xxρ , as a function of the magnetic field, characterize the quantum Hall effect.  Data from 
sample ‘N’. 

 

The longitudinal resistivity xxρ  goes to zero over the same range that the Hall resistivity 

plateaus.  This also reflects that an integral number of Landau levels are filled in the 

conducting areas.  When all the occupied Landau levels are filled, the only available states 

for an electron to be scattered into are in the next vacant Landau level up.  These will be 

too far away, energywise, so scattering will not occur and the longitudinal resistivity will 

drop to zero. 
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4.2     FRACTIONAL QUANTUM HALL EFFECT 

It is the energy gap in the single particle DOS that leads to the QHE, but the fractional 

quantum Hall effect (FQHE) discovered in 1982 by Tsui et al. [3] cannot be explained by 

single-particle physics.   

 

 

Figure 4.3: In addition to plateaus in the Hall resistance HR  and zeroes in the longitudinal 
resistance R  at integral values of filling factor, the fractional quantum Hall effect shows these 
also at filling factors /p qν = , where ,p q  are integers, q  usually odd.  Figure from Ref. 4. 

 

In the FQHE, the plateaus in xyρ  and the zeroes (or minima) in xxρ  appear at fractional 

values of the filling factor: /p qν = , where ,p q  are integers,  is generally odd (see Fig. 

4.3).  Like the original QHE, these also arise because of energy gaps in the DOS; but the 

q
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cause of these energy gaps was not understood until Laughlin [5] formulated a 

wavefunction that could correctly account for the fractional quantum Hall (FQH) state at  

1/ 3ν =  (the first FQHE observed), and predicted additional FQH states at 1/ qν = ,  

being an odd integer, which were later observed. 

q

1/ 3ν =

( , )i ix y

1/ν =

iz z→

The Laughlin wavefunction shows that it is many-body effects between the electrons that 

lead to new energy gaps in the system.  The Laughlin wavefunction for the FQH state at 

 is: 

23
3 ( ) exp( / 4)i j i

i j i

z z z
<

Ψ ≡ − −∏ ∏ ,                                   (4.11) 

where  is the location of the  electron in the 2D plane with coordinates i iz x iy= − i
thi

.   

At 3  there is a 3:1 ratio between the number of magnetic flux quanta piercing the 

2DEG ( Φ =  is the quantum of magnetic flux) and the number of electrons. The 

system can collect into a lower energy state when three magnetic flux quanta attach 

themselves to each electron.  Each flux quanta increases the order of the zeroes of the 

wavefunction  by one.  With three flux quanta attached to each electron,  vanishes as 

, and it does so to the third power.  This (  term keeps the electrons well 

separated and greatly reduces the Coulomb repulsive energy of the system.  This is the 

ground state that the system condenses into at this filling factor.  The excitations of this 

0

j

/h e

3Ψ 3Ψ

3
i jz z− )
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state are fractionally charged ( / 3e− ), with an energy gap to their creation, and thus there 

is a QHE at 1/ 3ν = . 

/ q

Laughlin explained the FQHE for filling factors 1/ qν = , where  is an odd integer.  A 

simple particle-hole transformation can be used to then account for FQH states observed at 

q

( 1)qν = − .  The remaining odd-denominator fractional states require analogous 

condensations of the fractionally charged quasiparticle excitations of the Laughlin states; 

this is called the “hierarchy model” [6].  But the even-denominator FQH states (and there 

have only been two of them observed; at 5 / 2ν =  [7] and 7 / 2ν =  [8]) are not well 

understood.  It had been thought that they were a result of the electrons in the topmost 

Landau level not being spin-polarized (in general it is thought that the Zeeman energy from 

the external magnetic field aligns all the spins), and that they were forming opposite spin 

pairs and behaving like bosons.  Bosons can condense into a symmetric version of 

Laughlin’s wavefunction, and create even-denominator FQH states [9], but later 

investigations of these even-denominator states indicated that they were spin-polarized 

after all [10], and so the nature of these states remains uncertain. 

Laughlin’s wavefunction, along with the hierarchy model, provided a basis for 

understanding all the observed odd-denominator FQH states, and a possible explanation for 

the two observed even-denominator FQH states; but it could not describe the state of the 

system in between the FQH states, and it could not describe the system at 1/ 2ν = , which 

does not display a FQHE. 
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4.3     COMPOSITE FERMIONS, 1

2ν =  

The description of the quantum state at filling factor one-half, 1/ 2ν = , had not been dealt 

with at the time.  The theory that would lay the foundation for a theoretical description of 

the 1/ 2ν =  state came about in 1989, when Jain [11] greatly simplified the difficult many-

body problem of strongly interacting electrons in a magnetic with the idea of “composite 

fermions.” 

Jain found that by attaching two fictitious flux quanta to each electron, the system could be 

reduced to a much more tractable problem, that of a weakly interacting gas of these 

“composite fermions.”  The motions of these fictitious flux greatly reduce the effective 

magnetic field that the composite fermions experience, such that 

(1 2 )effB B ν= − ,                                                   (4.12) 

 effB  being the effective field, and B  the real external field.   

Jain showed that this theory can offer an alternate explanation of the FQHE – and in fact is 

something of a unifying theory for the integer QHE and the FQHE.  In response to this 

effective magnetic field, the composite fermions form their own Landau levels, and each 

time an integral number of Landau levels are filled with composite fermions, the system 

will exhibit a QHE.  From equation 4.12, the relationship between the electron filling factor 

ν  and the composite fermion filling factor CFν  is: 
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2 1
CF

CF

νν
ν

=
±

.                                                        (4.13) 

So, an integer QHE of the composite fermions will correspond to a FQHE of the 

electrons (as well as the integral 1ν =  state).  This can account for FQH states that 

otherwise must be described in the hierarchical model, descending from the Laughlin 

wavefunction.  A problem with the hierarchical model is that it predicts many fractional 

states that are not observed; and great-granddaughter states like 4 / 9ν = , a fractional 

quantum Hall state made of the excitations of a fractional quantum Hall state made of the 

excitations of a fractional quantum Hall state of electrons, should not be very robust, and 

yet make a robust appearance in the spectrum shown in Fig. 4.3.  The composite fermion 

model predicts only the fractions that are observed, and predicts energy gaps for these 

FQH states that are much more in line with observations [12]. 

Halperin et al. [13] addressed filling factor 1/ 2ν =  in this composite fermion model in 

1993, developing a seminal theory which both explained existing anomalous observations 

at 1/ 2ν =  and initiated a great deal of theoretical and experimental work on this filling 

factor.  They noted that at filling factor 1/ 2ν = , the effective magnetic field is zero.  The 

composite fermions should then fill up a Fermi disk of momentum states, much like 

electrons do at zero magnetic field, even though the external magnetic field may be quite 

high.  As remarkable as this seems, this is the only theory that can account for anomalously 

high conductivities observed at 1/ 2ν =  via surface acoustic wave (SAW) measurements 

that were done in the late 1980s.  SAWs sent across the piezo-electric GaAs surface of a 

2DEG heterostructure will interact with the buried 2DEG layer in such a way that 
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properties of the 2DEG can be inferred.  At very high frequency (~1 GHz) and large 

wavevector , an unexpected enhancement in the 2DEG conductivity was seen [14].  

Halperin et al. [13] showed that composite fermions at the Fermi surface having 

momentum in the direction of the SAW propagation can short the SAW field if the 

composite fermion can conduct without scattering (thus when  where  is the 

composite fermion mean free path), leaving a signature in the SAW propagation indicative 

of enhanced 2DEG conductivity, as seen by Willett et al. [14].  This is considered direct 

evidence of the reality of the existence of a well-defined Fermi surface at this filling factor. 

q

1q l−� l

1
2ν =

4.4     BILAYER QUANTUM HALL PHASE DIAGRAM 

When a single layer is at 1
2ν = , it can be well described by composite fermion theory.  

However, when there are two layers in parallel, each at filling factor , things become 

more complicated.  In the ideal limit of infinite separation between the layers, they are just 

two independent layers, each at 1
2ν = , but when the layers are brought close together, the 

system can enter a new state, another QHE state, but this one uniquely bilayer in nature 

[15, 16, 17].  The coupling between the layers arises from interlayer tunneling and 

Coulomb interactions.  These two parameters are quantified by the symmetric-

antisymmetric tunneling gap energy SAS∆  and the effective layer separation .   /d A

SAS∆  is the energy gap between the lowest energy symmetric and antisymmetric 

eigenstates in the double quantum well system.  The bilayer QHE effect that occurs at 
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1 1
2 2 1Tν = + =  ( Tν  is the total filling factor: the sum of the two individual layer filling 

factors) for large  is a trivial consequence of this new bilayer energy gap forming in 

the density of states.  All the electrons will occupy the lower energy symmetric state, and 

there will be one filled Landau level of symmetric state electrons.  The conventional 

transport will show a minimum in 

SAS∆

xxR  and a quantized Hall plateau in xyR .  The 

temperature dependence will be activated, thus , with .  However, 

even with large , if the effective layer separation  is also large, many-body 

Coulomb effects will destroy this gap [15, 18]. 

/ 2
0

T
xxR R e−∆=

/d A

SAS∆ = ∆

SAS∆

 

 

Figure 4.4: The effective layer separation  gives the relative importance of the interlayer 
and intralayer Coulomb energies.  In these schematics, the electrons in each layer are 
represented by their semi-classical orbits and are spaced roughly a few ’s apart.  For large 

, shown on the left, intralayer Coulomb coupling will be more important than the 
interlayer coupling.  At small , shown on the right, interlayer coupling will be as 
significant as intralayer coupling. 

/d A

A
/d A

/d A
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d

 

The effective layer separation  characterizes the relative importance of interlayer and 

intralayer Coulomb energies.   represents the center-to-center well separation and 

determines the Coulomb energy between electrons in the different layers 

/d A

d

2 /e ε ; while the 

magnetic length / eB=A =  measures the mean separation between electrons within the 

same layer, and so characterizes the intralayer Coulomb energy e2 /εA .  The ratio of these 

two energies, just , parameterizes the interlayer Coulomb coupling (see Figure 4.4). /d A

At large , the system behaves roughly as two independent single layers each described 

by a Fermi liquid of composite fermions [19, 20, 21, 22].  In this case no quantum Hall 

state exists at 

/d A

1Tν =  since there are no 1
2ν =  quantum Hall states in the single layers.  By 

monitoring the system for the appearance of a quantum Hall state at different effective 

layer separations , and different tunneling strengths /d A SAS∆ , a phase diagram can be 

established. 

Figure 4.5 shows this phase diagram as pioneered experimentally by Murphy et al. [23] 

(although the first phase diagram appeared in a theory paper, and it correctly predicted the 

non-zero y-axis intercept [18]).  The main figure shows the conventional longitudinal 

resistivity xxρ  versus magnetic field measured with the current flowing parallel through 

both layers and with the voltage probes also connected to both layers.  The dotted curve 

shows a typical xxρ  trace for when the system is not exhibiting a QHE at 1Tν = , and the 

solid curve for when it is – as indicated by a deep minimum at that filling factor. 
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The inset shows the results of these measurements for T 0.3=  K done on a number of 

samples with a range of different d  and / A SAS∆  values.  The x-axis represents the 

tunneling gap energy  in units of the intralayer Coulomb energy SAS∆ 2 /e εA  (evaluated at 

1Tν =

1T

), and the y-axis the effective layer separation .  Samples that showed a QHE at /d A

ν =  are indicated by filled symbols, and those that did not by open symbols.  An 

estimated boundary between the two groups is sketched as a dashed line. 

 

 

Figure 4.5: Phase diagram for bilayer QHE at 1Tν = .  Main figure shows the longitudinal 
conventional resistivity xxρ  versus magnetic field for the cases with (solid curve) and without 
(dotted curve) a 1Tν =  QHE.  Samples that showed a QHE are plotted in the phase diagram 
in the inset as filled symbols, those that didn’t, as open symbols.  The dashed line is an 
estimate of the phase boundary.  Taken from Ref. 23. 

 

One of the most intriguing features of this phase diagram is that the phase boundary 
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appears to intercept the y-axis at a finite value, thus indicating that a bilayer QHE can 

exist even in the absence of a tunneling energy gap; that a new kind of energy gap arising 

entirely from many-body Coulomb interactions between the electrons must exist. 

This new phase was in fact predicted [24, 25], and it is the exploration of this novel phase 

that is the primary concern of the remaining chapters of this thesis. 

Our sample was designed to probe the region where this new phase might exist, and so the 

tunneling gap energy  was kept extremely low.  For this wafer ∆ /( eSAS∆ SAS
2 / εA ) 610−≈  

and so would fall effectively right on the y-axis in the phase diagram in Fig. 4.5.   The 

nominal effective layer separation of this wafer is d / 2.3≈A , which is above the phase 

boundary, but by electrostatic gating we can continuously reduce the electron densities in 

the layers, which has the effect of increasing , and thus probe a range of  values 

down the axis in the hopes of encountering the phase barrier, and discovering a new 

quantum ground state.   

A /d A

4.5     THE (111) STATE 

The ground state in the limit of small effective layer separation and zero tunneling was first 

studied theoretically.  Its true genesis was in the seminal work by Robert Laughlin [5] who 

found the wavefunction that correctly described the fractional quantum Hall effect 

discovered the previous year [3].  The energy gaps responsible for the QHE that occur at 

fractional filling factors 1/ mν = , where m  is an odd integer, arise entirely from many-



 

 

85
body Coulomb interactions between the electrons, and can be described by Laughlin’s  

wavefunction: 

2( ) exp( / 4)m
m i j i

i j i

z z z
<

Ψ ≡ − −∏ ∏                                     (4.14) 

where  is the location of the  electron in the 2D plane with coordinates i iz x iy= −

)i

i
thi

( ,ix y , and  is an odd integer.  Notice that m 0mΨ →  when , as would be 

expected for identical fermions.  For the strongest fractional quantum Hall state, which 

occurs at 

iz z= j

1/ 3ν = ,  and the electrons are repelled from each other as ( ) .   3m = 3
i jz z−

Shortly after Laughlin’s wavefunction appeared, Halperin generalized it to two-state 

systems, where initially the two states considered were the spin states of the electrons [26]: 

( )21
( ) 4( ) ( ) ( ) expl m n
lmn i j i j i j i iz z w w z w z w 2 Ψ = − − − − +

 ∑ ∑∏ ∏ ∏      (4.15) 

In this wavefunction, generally called the  state,  and  are the coordinates of the 

electrons in the first and second states respectively.  Even though the  and  particles are 

not identical, this wavefunction nonetheless vanishes when 

( )lmn z w

z w

z w

i j= . 

This equation would eventually be considered for bilayer electron systems at total filling 

factor one (and smaller), where the two states were not the electron spin states (which are 

expected to be aligned with the magnetic field in this case) but the electron layer index:  

“top layer” and “bottom layer.”  First considered by Yoshioka et al., they found that the 
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(111)Ψ  state was well matched to exact numerical solutions of the Hamiltonian of a 

bilayer electron system at 1Tν =  having 10 electrons – provided that the effective layer 

separation was below a certain critical value [27].  This (111)Ψ , or just (111), state would 

come to be the accepted description of the strongly-coupled bilayer 1Tν =  state: 

( )21
(111) 4( ) ( ) ( ) expi j i j i j i iz z w w z w z w 2 Ψ = − − − − +

 ∑ ∑∏ ∏ ∏ .     (4.16) 

In this state the electrons in each layer must avoid each other (the zeroes are only first-order 

in this case though), but most importantly, the electrons in the different layers must also 

avoid each other.  Then each orbital state in the first Landau level will be occupied, if not 

by an electron in one layer, then necessarily by an electron in the other layer.  The Landau 

level will be filled and there will be an energy gap for the addition of another electron to 

the system and a QHE will be observed. 

4.6     PSEUDOSPIN FERROMAGNET 

In 1994, Yang et al. showed that the (111) state can be likened to a single layer Laughlin 

wavefunction for  of spin-1m = 1
2  electrons all aligned in the XY plane [28]: 

21
1 2 4( , ,..., ) ( ) exp( ) ...

N

N i j mm
i j

z z z z z z
<

Ψ = − − →→→→→ →∑∏              (4.17) 

where      ( )1
2

ie ϕ→ = ↑ + ↓ .                                                 (4.18) 
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Thus the layer degree of freedom can be mapped to a spin- 1

2  particle.  In this language 

an electron in the top layer may be called “pseudospin up” ↑  and then an electron in the 

bottom layer will be “pseudospin down” ↓ .  In this view the electrons go into a 

superposition of the two layer eigenstates and completely fill one Landau level.  The 

pseudospins lie near the XY plane and their orientation in that plane is given by the phase 

ϕ .  In the absence of tunneling, the energy is degenerate for all angles 0 2ϕ π≤ < , so this 

is a broken symmetry state as the final state has less symmetry than the Hamiltonian. This 

system is equivalent to an easy-plane itinerant ferromagnet of spin- 1
2  particles.  The broken 

symmetry imparts a neutral gapless mode with a linear dispersion relation [18, 29, 30].  

Finite tunneling will introduce a gap to this mode, but if it is sufficiently small it should not 

completely destroy the character of the state [31]. 

In this model, the electrons have a fundamental quantum uncertainty as to which layer they 

are in.  Because of this, the number of electrons in each layer is not a conserved quantity, 

and small amounts of charge will fluctuate between the layers.  This has been detected as a 

large peak in the tunneling conductance at zero interlayer bias [32]. 

These pseudospins have also been detected by their interaction with an in-plane magnetic 

field.  Murphy et al. detected an unexpected change in the slope of the activation energy of 

the 1Tν =  state in a sample with tunneling gap energy 0.8SAS∆ =  K with applied in-plane 

magnetic field B&  [23].  B&  effects a spatially modulated phase change to the tunneling 

matrix element, which the pseudospins initially try to follow.  The greater B& , the more 
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rapid the spatial variation in the phase ( /h eB dλ = &  where λ  is the wavelength of the 

modulation).  However, there is an energy cost 2~ ϕ∇  associated with the twisting of the 

pseudospins that eventually wins out, and the pseudospins opt for a 0ϕ∇ =  state and 

relinquish the tunneling energy [28].  The phase transition can be detected as a 

discontinuity in the slope of the activation energy when plotted as a function of B& . 

ψ

ϕ∇

By applying the current density formula from basic quantum mechanics 

( J ψ ψ ψ ψ∗∝ ∇ − ∇ ∗ , where  is the current density, J  is the wavefunction and ψ ∗  is its 

conjugate) to just the pseudospin portion of the wavefunction (eqn. 4.18)  It can be seen 

that there exists a pseudospin current J ∝ , which is proportional to the gradient of the 

phase ϕ .  This current manifests as equal but oppositely directed regular currents moving 

through the two layers without dissipation [33].  The kinetic energy of this dissipationless 

current is where the 2ϕ∇  energy is stored.   

The easy-plane itinerant ferromagnet is mathematically equivalent to a two-dimensional 

superfluid or 2D dirty superconductor film or 2D Josephson junction array [34] where ϕ  

serves as the phase of the superconducting order parameter, and like those systems, our 

system can also support supercurrents.  Detecting this supercurrent is the main goal of this 

thesis. 
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Figure 4.6: Stable topological defects with charge / 2e± .  Merons have positive vorticity, 
antimerons have negative vorticity.  Merons and antimerons come in two “flavors” depending 
on whether the central pseudospin is pointing “up” or “down”.  The charge depends on a 
combination of the vorticity and the flavor. 

 

In this pseudospin ferromagnet picture, the charged excitations of the ground state are 

stable topological defects called merons and antimerons (see Figure 4.6).  They are charged 

excitations, carrying a charge of / 2e± .   

Far from the core of the meron, the pseudospins lie in the XY plane, with a phase winding 

of 2π±  corresponding to positive (meron) or negative (antimeron) vorticity, and there are 

corresponding superfluid vortex currents ( J ϕ∝ ∇ ).  The cores of the merons consist of a 

pseudospin pointing completely out of the XY plane – thus corresponding to an electron 

entirely localized in one or the other of the layers.  The pseudospins fall away from the 

vertical in a continuous manner as the distance from the core is increased. 

Single merons are highly disruptive to the long-range pseudospin order, however 

oppositely charged meron-antimeron pairs are electrically neutral and together have zero 

vorticity, and so only create a local disturbance in the order.  Below a critical temperature, 
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the Kosterlitz-Thouless temperature KTT , free energy considerations keep merons and 

antimerons bound in neutral, zero vorticity pairs.  Above KTT , the pairs unbind, and the 

order and thus the superfluidity is lost.  This is called a Kosterlitz-Thouless phase transition 

[35].  KTT  is predicted to be in the range of 0.1 K to 0.5 K for our sample parameters [31]. 

Below KTT  the conductivity should be infinite in linear response.  A current will pull on the 

meron-antimeron pairs imparting an energy gap to their dissociation – so this system has a 

critical current of zero.  Below KTT , the voltage-current relationship obeys [36] 

pV I∝ ,                                                             (4.19) 

where      1 2 KTTp
T

= + .                                                        (4.20) 

Above KTT  the voltage-current relationship will be ohmic V I∝ , so there should be a 

discontinuous jump in the value of p  at KTTT =  from 1p =  to 3p = .  This jump has been 

observed in 2D superconducting arrays [37].  Observation of this jump in our system would 

be an excellent confirmation of the Kosterlitz-Thouless phase transition. 

4.7     EXCITONIC CONDENSATE 

The (111) state can alternately be mapped to a Bose-Einstein condensate (BEC) of 

electron-hole pairs, electrons in one layer and holes in the other [29, 38, 39].  By a particle-

hole transformation on just one of the layers, our system becomes one layer of electrons 
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plus one layer of holes.  At  1Tν = , regardless of whether or not the layers are balanced, 

there will always be an equal number of electrons and holes.  In the (111) state each 

electron binds to a hole that is directly opposite to it in the other layer, this corresponds to 

electron-hole pairs with opposite k  states, where  labels the lowest Landau level orbital 

states (see Section 4.1), and so the combined state has 

k

0k = .  All of the excitons will then 

be in the same  state, which is permitted because excitons are bosons, and the system 

will then be a BEC of excitons.   

0k =

The BEC of electron-hole pairs (excitons) has been studied extensively since 40 years ago, 

when it was first considered [40, 41], and pursued experimentally almost as long [42].  But 

always the holes have been valence band holes, not the conduction band holes that exist in 

our system.  Despite much effort, the BEC of excitons has never been achieved in these 

systems.  The greatest obstacle has been the short lifetimes of the excitons and the fact that 

they are created by photo-excitation, which heats them above the local thermal equilibrium.  

Before they can cool and then Bose condense, they have usually already recombined. 

Our excitons make better candidates for undergoing BEC because they do not suffer from 

these problems: they are not optically generated, and so remain in thermodynamic 

equilibrium with the local environment, and even more significantly, they have infinite 

lifetimes.  In this picture of the (111) state, the superfluid pseudospin current of the 

ferromagnet view is equivalent to a superfluid flow of this exciton condensate.  Since the 

electrons and holes will be moving together in the same direction, but with the electrons in 

one layer, and the holes in the other, this will correspond to equal but oppositely directed 
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regular currents flowing through the two layers without dissipation. 

This view also makes readily apparent an additional attribute to the pseudospin current:  not 

only can two oppositely directed currents flow through the layers without dissipation, but 

they will also flow through the layers without producing a Hall voltage.  Individual 

electrons and holes flowing in the same direction in the presence of a perpendicular 

magnetic field will be compelled in opposite directions by the Lorentz force.  Since our 

electrons and holes are bound together, they will feel no net force due to the magnetic field, 

and so they will move through the layers without causing a Hall voltage to arise.   

Detection of this dissipationless, charge-neutral transport is how we intend to show that our 

bilayer electron system has transformed itself into an excitonic BEC. 
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C h a p t e r  5 :  C o u l o m b  D r a g  a t  1Tν =  

 

 

The (111) state at 1Tν =  arises from many-body interactions in which the interlayer 

Coulomb interactions play a key role.  As Coulomb drag is a direct measure of interlayer 

Coulomb interactions (Chapter 3), it should make for an excellent probe of this state, and 

this chapter shows that it does indeed. 

5.1     SAMPLES:  ‘N’ AND ‘R’ 

Sample piece ‘N’ was taken  away and sample piece ‘R’ ~ 5  from the center 

of the wafer.  Both were processed by Ian Spielman.  They both consist of a central square 

mesa 

~ 7 mm mm

250 mµ  on a side, with four arms extending out of each side (see Fig. 5.1).  AuNiGe 

was diffused into the end of each arm for electrical contact.  Electrostatic gates above and 

below each arm allow for in situ control over which layer(s) each arm makes contact with 

[1].  Similar gates above and below the main central mesa allow for individual control over 

the electron density in each layer.  Both samples’ as-grown density was 10 25.3 10 cmn −= ×  

per layer, and the mobility was .  For both samples the zero field tunneling 

resistance at resonance is . 

6 2cm / Vs10µ ≈

30M≈ ΩR
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Figure 5.1: Infrared photo of sample ‘N’.  Black shows mesa (central 250 m 250 mµ µ×  
square is hidden below central back gate), the back gates are medium gray, and the top gates 
are light gray.  The field of view is  across.  Photo courtesy of Ian Spielman. ~ 2 mm

 

5.2     HALL AND LONGITUDINAL DRAG VERSUS MAGNETIC 
FIELD 

Figure 5.2 shows the main result of this chapter.  In it are the conventional and the drag 

resistances at 10 22.6 10 cmn −= ×  per layer ( / 1.6d 0=A  at 1Tν = ) versus magnetic field.  

The current used was typically 2 nA at 5 Hz.  All the traces were taken at T 20=  mK 

except for the longitudinal drag (curve ‘C’) which was taken at T 50=  mK.   
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Figure 5.2: Conventional and drag resistances versus magnetic field for n 10 22.6 10 cm−= ×  
corresponding to  at / 1.6d =A 0 1Tν = .  Curve A shows the conventional longitudinal 
resistance xxR  for current injected in both the layers and voltage measured only in one.  
Curve B is the Hall drag ,xy DR , C is the longitudinal drag ,xx DR , and D is the conventional 

Hall resistance measured in just one layer *
xyR , offset by 5 kΩ for clarity.  The schematics in 

the top panel show the current (white dots) and voltage (black dots) contact points for the 
respective data curves, A-D.  Curves A, B and D were taken at T 20=  mK, while curve C 
was taken at T  mK.  Sample ‘N’.  50=

 

Curve ‘A’ shows the conventional longitudinal resistance xxR .  For this measurement, 

current is sent in through both layers – the current entry points are indicated by the two 

white dots shown in the measurement schematic ‘A’ in the top panel; the longitudinal 
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voltage is measured along the remaining two adjacent contacts, this time in just one of 

the layers (the two black dots).   

Throughout most of the magnetic field range, curve ‘A’ simply reflects the resistance of the 

single layer being measured, as the layers only become strongly coupled around 1Tν =  

which occurs at  for this density (in theory, they should also be strongly coupled 

at 

2.2TB ≈

1
3Tν =

1

 and other fractional filling factors with odd denominator [2, 3], but our samples 

go insulating long before we reach such a low filling factor).  When the strongly coupled 

Tν =  phase sets in, the resistance instead reflects the bilayer quantum Hall state and drops 

towards zero, displaying the quantum Hall minimum as had already been seen in other 

experiments [4, 5, 6].  At fields above 1Tν = , the resistance rises steeply because the 

sample is going insulating. 

Curve ‘D’ shows the conventional Hall resistance *
xyR , but with the current flowing in, and 

the voltage measured in, just one of the layers.  It is offset by 5 kΩ for clarity.  Up to 

 Tesla the quantum Hall plateaus are reflecting the single-layer filling factor.  The 

broad plateau centered about 

1.5B ≈

1.1B ≈  Tesla is quantized at h e  (25.8 kΩ), appropriate to 

the 

2/

1ν =  in the each layer.  When the layers become strongly coupled around 2.2B ≈  

Tesla, *
xyR  again plateaus at  – but this time it is in response to the total filling factor 2/h e

1Tν = . 



 

 

99
DCurve ‘B’ shows the Hall drag ,xyR .  Current flows in the drive layer, and the Hall 

voltage in the drag layer is measured.  Up to 1.6B ≈  Tesla, the Hall drag is essentially 

zero, some energy-dependent scattering processes can lead to a Hall drag signal [7, 8], but a 

very very small one, which was not detectable at these sensitivities.  This essentially null 

signal is consistent with the basic physical fact that a Hall voltage is a response to a current 

flowing in a magnetic field.  Since the drag layer is electrically open, no current can flow in 

this layer, and so there is no Hall voltage.  Despite the lack of current in the drag layer, 

when the system enters the strongly-coupled phase near 1Tν = , remarkably, a Hall voltage 

does appear in the layer.  And like curve ‘D’ at 1Tν = , the Hall drag also forms a 1Tν =  

quantized Hall plateau: quantized at  to within 5 parts in 10 .  2/h e 4

Curve ‘C’ is the longitudinal drag ,xx DR .  There are features in the drag at low magnetic 

field arising from interlayer scattering, much like at 0B =  (see Appendix G for pictures of 

,xx DR  at low field), they are just not visible on this scale.  As the system approaches 1Tν = , 

the drag becomes much larger than its lower field values, as large as 2 kΩ measured along 

just one side of the square mesa, this corresponds to approximately ln 2 / ~ 0.22π  squares, 

and a drag resistivity of , assuming van der Pauw formalism [9].  This 

is the same order of magnitude as the single layer resistance – extraordinarily large on the 

scale of typical Coulomb drag due to scattering, indicating that the drag in this region is 

caused by a whole new mechanism altogether.  At 

, ~ 9 kxx Dρ / squareΩ

1Tν = , ,xx DR  drops to zero. 
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TAlthough the absence of Hall drag below 1.6B ≈  is proof that there is indeed no 

current flowing in the drag layer under the usual circumstances, it was necessary to gather 

more evidence to show that the Hall drag seen at 1Tν =  wasn’t due to a sudden flooding of 

current into the layer by some unconventional means.  As the 1Tν =  state shows an 

enhancement of the tunneling conductance around zero bias voltage, this was the obvious 

suspect that needed to be ruled out [10].  Although the tunneling conductance peak around 

zero bias voltage is dramatic; it corresponds to very little tunneling current, as the peak is 

only  wide, and even at resonance, the tunneling resistance is still a rather 

formidable  [11].  Direct tunneling measurements on the sample used here have 

shown that the maximum tunnel current that can flow between the two layers is 

6µV≈

R 100k≈ Ω

10pA≈ .  

Compared to the  drive current used here, this amounts to at most a 0.5% current 

leakage. 

2nA≈

However, to be sure there were no unforeseen effects due to this onset of tunneling at 

1Tν = , the Hall drag was measured with the addition of an in-plane magnetic field, and 

(separately) an interlayer bias voltage, as both of these are known to dramatically suppress 

the tunneling conductance [12].   

Figure 5.3 shows these measurements.  On the left are five different Hall drag traces 

centered around the 1Tν =

.61

 feature, taken with five different in-plane magnetic fields,         

(-0.21, 0, 0.27, 0.53, 0.72) Tesla, with the same perpendicular field (which is plotted on the 

x-axis) for  .  The Hall drag is shown to be robust against the application of an / 1d =A
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1

in-plane magnetic field.  Ref. 12 shows that the tunneling conductance peak at 

 is diminished steadily with the application of an in-plane magnetic field, 

reduced by a factor of  by 

/ 1.6d =A

100≈ 0.59in planeB − =  Tesla. 

20
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R
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,D
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kΩ
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2.42.32.22.11.9
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Figure 5.3: The left panel shows five Hall drag traces taken with five different in-plane 
magnetic fields Tesla (the perpendicular field is plotted 
on the x-axis) at  and T

( 0.21, 0, 0.27, 0.53, 0.72)in planeB − = −
/ 1.61d =A 30=  mK.  Sample ‘N’.  The right panel shows five Hall 

drag traces taken with five different interlayer bias voltages ( 10, 0, 25, 75, 100)− µV  at 
 and T  mK.  Sample ‘R’.  / 1.5d =A 9 25=

 

On the right are five different Hall drag traces centered around the 1Tν =

d

 feature, taken 

with five different interlayer bias voltages (-10, 0, 25, 75, 100) µV  at .  An 

interlayer bias with a magnitude greater than 

/ 1.5=A 9

4µV≈  suppresses the tunneling conductance 

by almost two orders of magnitude [11], yet this suppression of tunneling has no noticeable 

effect on the Hall drag, indicating that the Hall drag itself is not a byproduct of the 

tunneling enhancement. 
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Quantized Hall drag was predicted [13 – 18], and is a consequence of the interlayer 

phase coherence.  In the pseudospin ferromagnet picture, when the system is in the 1Tν =  

state the electrons are in a superposition of the two layer eigenstates – the electrons are 

neither localized in one layer nor the other.  This makes it impossible to localize the drive 

current to just the drive layer, instead a symmetric current will flow through both the 

layers.   This current will produce a Hall voltage in each layer, and since these 

delocalized electrons fill up one Landau level between the two layers, this Hall voltage 

will be quantized, relative to the drive current, at . 2/h e

But the drag layer is still electrically open and cannot support a net current flow.  In order 

to meet the boundary requirements of this layer, there must be an equivalent 

antisymmetric current.  In the ferromagnet picture, a gradient of the order parameter 

produces a superfluid antisymmetric current, which can alternately be thought of as a 

dissipationless flow of a Bose-Einstein condensate of excitons [19].  Because this current 

is being carried by charge neutral excitons, it will not be affected by the magnetic field, 

and it will not produce a Hall voltage.  But it will oppose the current in the drag layer 

such that there will be no net transport of charge in that layer, and the drag layer 

boundary conditions will be met.  

The longitudinal drag resistance is consistent with this model.  ,xx DR  goes to zero across 

the same range of magnetic field ( 2.10 2.22B≤ ≤  Tesla) for which the Hall drag is 

quantized, suggesting that the momentum transferred to the drag layer by the symmetric 

current is being compensated by the superfluid flow of the excitons.  The peaks in the 
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longitudinal drag on either side of the minimum, as the sample is transitioning into the 

1Tν =  state, correspond (in this view) to isolated regions in the sample becoming 

interlayer coherent as the phase boundary is approached – thus setting up some 

symmetric current, but without yet enough phase coherence across the sample for the 

macroscopic phase gradient needed to induce the antisymmetric current.  So in these 

peaks, there is a tremendous amount of momentum being transferred to the drag layer by 

the delocalized electrons, but there is not yet sufficient superfluid antisymmetric current 

to counteract it, and so the longitudinal drag becomes extraordinarily large. 

5.3 TEMPERATURE DEPENDENCE 
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Figure 5.4: Hall drag versus magnetic field at / 1.6d 0=A  for T 20=  (topmost), 35  

(bottommost) mK.  Sample ‘N’. 
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Figure 5.4 shows the Hall drag ,xy DR  in the vicinity of 1Tν =  at a series of temperatures 

ranging from 20 to 500 mK, again at / 1.6d 0=A .  At 20 mK the Hall drag rises up around 

1Tν =  to form a broad plateau quantized at .  As the temperature is increased the 

plateau becomes less broad until it is just a peak in the drag locating 

2/h e

1Tν = .  Further 

heating and the peak becomes smaller and smaller; by 500 mK it is barely discernable over 

the background. 
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Figure 5.5: Longitudinal drag versus magnetic field at / 1.6d 0=A

300, 400, 500
 for T  (bottommost), 
 mK.  Sample ‘N’. 

35=
50, 65, 80, 95, 110, 125, 140, 155, 170, 185, 200,

 

And Figure 5.5 shows the longitudinal drag resistance ,xx DR  at  taken over a 

similar temperature range.  Unlike the Hall drag, the temperature dependence of the 

longitudinal drag at 

/ 1.6d =A 0

1Tν =  is non-monotonic.  On raising the temperature the broad zero 
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around 1Tν =  becomes narrower, and then just becomes a non-zero minimum.  ,D  at 

1Tν =  then increases steadily with increasing temperature, always maintaining a local 

minimum around 1Tν =  until the temperature reaches T 200≈  mK.  At this temperature 

,xx DR  reaches its maximum height and further heating reduces its value, but now 1Tν =  is 

marked by a peak in the drag, rather than a minimum.   
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Figure 5.6: 1=  values of the conventional and drag longitudinal resistances xxR  and D , 

and the deviation in Hall drag from its quantized value ≡  versus the 
inverse of the temperature.  The lines are merely guides to the eye.  .  Sample ‘N’. 

2( / xyh e R−
/ 1d =A

, )D

.60

 

Figure 5.6 shows the temperature dependence, at Tν =  only, for these different resistance 

measurements.  Shown are xxR , ,xx DR , and ,xy DR∆ ≡ , the difference between , )xy DR−( /h e
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the Hall drag and its quantized value.  Both the conventional and drag longitudinal 

resistances show activated behavior, thus , with the same energy gap 

 K.  Interestingly, the deviation in the Hall drag 

/ 2
(, ) 0

T
xx DR R e−∆=

xy0.8∆ ≈ ,DR∆ , although not as straight a 

line, does correspond to a similar gap energy. 

*
xyR

/ 1d =A
/ 1d =A /d A

5.4     DEPENDENCE OF HALL COEFFICIENTS ON EFFECTIVE 
LAYER SEPARATION 

 

 

Figure 5.7: Conventional and drag Hall resistances  and ,xy DR  versus 1
Tν −  for 

 taken at T.60, 1.66, 1.72, 1.76, 1.83 30=  mK.  The strongly coupled state at 
 weakens, and ultimately disappears altogether as  is increased.  Sample ‘N’. .60

 

Figure 5.7 shows the Hall resistance *
xyR , with the current being sent through just one of the 
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layers and the Hall voltage measured in that same layer; and the Hall drag resistance 

,xy DR , versus inverse total filling factor 1 /T eB hnTν − =

/

 (we held  constant and changed 

B), at five different effective layer separations d

Tn

, 11.60, 1.66 .72, 1.76, 1.83=A .  This 

shows the progression from the strongly coupled phase at low d , with the Hall drag 

showing a broad quantized plateau and the conventional Hall resistance 

/ A

*
xyR  showing the 

same plateau, to the weakly coupled phase at high , in which the Hall drag is near zero 

and the conventional Hall resistance shows no feature at 

/d A

1Tν = .  There appears to be a 

smooth progression between the two extreme cases, with the midway point between the 

two apparently located at / 1.7d 4≈A .  This phase transition will be explored in more detail 

in the next chapter. 
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C h a p t e r  6 :  P h a s e  B o u n d a r y  

 

 

So far, the system at 1Tν =  has been primarily studied in the case where the layers are 

sufficiently close together, and the interlayer Coulomb interactions sufficiently strong, such 

that the (111) state is evidenced.  In this chapter, the transition out of the (111) state is 

explored as the layer separation (or the “effective layer separation” actually) is increased.  

Increasing the effective layer separation reduces the effects of the interlayer interactions 

until the electrons in the different layers are no longer highly correlated with each other.  

Under this condition, the layers behave fairly independently, and the layers are said to be 

“weakly coupled.” 

Whether the system behaves as two weakly coupled individual layers, each at 1
2ν = , or as 

a strongly coupled entity better described by the total filling factor 1 1
2 2 1Tν = + =

SAS

, depends 

on the interlayer coupling strength.  The coupling strength in turn depends on two 

parameters: the symmetric-antisymmetric tunneling gap energy ∆  and the effective 

layer separation , these are discussed in Section 4.4.  As our samples have very small 

tunneling gap energies (

/d A

90 KSAS µ∆ ≈ ), the interlayer coupling strength will be largely 

determined by the interlayer Coulomb coupling.  In a single sample,  is of course fixed, 

but we can modify the effective layer separation by changing the electron density, which at 

d
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constant filling factor, changes . A

hn

This phase transition has been the subject of much speculation [1-8].  Unknown is the order 

of the phase transition or even the number of phases involved.  In addition to the weakly 

coupled phase and the (111) phase, there may be one or more additional phases 

intermediate to the two, such as a paired quantum Hall state [3, 4] or bilayer charge density 

striped phase [7].   

As Coulomb drag is a direct probe of interlayer Coulomb interactions – and interlayer 

Coulomb interactions are the primary mechanism for the interlayer coupling, Coulomb 

drag promises to be an important experimental probe of this phase transition. 

6.1     COULOMB DRAG ACROSS THE PHASE BOUNDARY 

These measurements were made on samples ‘N’ and ‘R’, discussed in Sec. 5.1.  For these 

data, currents of 1 nA and 5 Hz were typically used.  The Coulomb drag setup can be 

found in Appendix C. 

Figure 6.1 shows both the longitudinal and the Hall drag resistance in the vicinity of 

1Tν =  for some representative values of the effective layer separation  at /d A 30T =  

mK.  Plotted against 1 /T eBν − =  (the density  is held constant and the magnetic field 

B is changed), the top panels shows the drag at 

Tn

/ 1.6d 0=A  when the system is in the 

strongly coupled interlayer coherent phase.  On the left side is the Hall drag resistance.  

As shown in Sec. 5.2, when the system is in the strongly coupled phase, the drag layer 

T
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exhibits a quantized Hall resistance relative to the current in the drive layer.   

 

 

Figure 6.1: Coulomb drag versus 1
Tν −  for four values of effective layer separation .  Hall 

drag is on the left; longitudinal drag on the right. T
/d A

30=  mK.  Sample ‘N’. 

 

On the right is the longitudinal drag, which goes to zero across the same 1
Tν −∆  for which 
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the Hall drag is quantized.  On either side of the minimum in Fig. 6.1e there are large 

peaks almost 2 kΩ high.  This is a tremendously large value for the longitudinal drag – it 

is roughly half as large as the single layer resistance of this sample.   

In the subsequent panels of Fig. 6.1 the behavior of both the longitudinal and Hall drag 

resistance is shown as the interlayer coupling strength is decreased (  is increased) 

while the temperature remains at T

/d A

30=  mK.  The second row shows the drag at 

=1.72.  In Fig. 6.1b, there is still a large feature in the Hall drag but it is no longer 

quantized.  In Fig. 6.1f, the broad minimum characteristic of the interlayer coherent phase 

has narrowed; it no longer goes all the way to zero and the large flanking peaks have 

moved in toward 

/d A

1Tν = .  By =1.76 (Figs. 6.1c and 6.1g), the Hall drag reaches just 

about one-fifth of its quantized value and the flanking peaks in the longitudinal drag have 

merged to form a local maximum at 

/d A

1Tν = .  In the bottom panel, at =1.83 and the 

Hall drag has nearly disappeared, while the local maximum in the longitudinal drag has 

shrunk considerably.  These data were taken on sample ‘N’.   

/d A

In Figure 6.2 the same phase transition is plotted in a different manner.  This time just the 

data points at 1Tν =  are plotted as a function of .  This data was taken with sample 

‘R’ at T  mK.  The open circles show the Hall drag: at low  the system is in the 

interlayer coherent state and the Hall drag is quantized.  At high , the system is in the 

weakly coupled phase and the Hall Drag is nearly zero.  The transition between these two 

regimes is seen to be simple and monotonic.   

/d A

50= /d A

/d A
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Figure 6.2: Coulomb drag at 1Tν =  versus .  In a) open circles show Hall drag /d A ,xy DR  
and closed circles show longitudinal drag ,xx DR  at T 50=  mK.  Panel b) shows the location, 
and panel c) the half-width, of the peak in longitudinal drag versus temperature.  Lines are 
guides to the eye.  Sample ‘R’. 

 

This cannot be said for the longitudinal drag, represented by the solid circles.  In the 

interlayer coherent phase the longitudinal drag at 1Tν =  is near zero.  In the weakly 

coupled phase, the longitudinal drag is also extremely small (see Sec. 6.3 for discussion 

on longitudinal drag in the weakly coupled regime); so one might expect that the 

longitudinal drag would remain small in the transition region between the two phases.  

Instead, the drag becomes progressively larger as the midway point of the phase 

transition is approached, reaching an impressive maximum height of 1.8 kΩ at  = 

1.73.  This behavior was entirely unexpected. 

/d A
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Figure 6.3: Longitudinal drag at 1Tν =  versus d  for 4 temperatures: 25 (dotted line), 50 
(short-dash line), 100 (long-dash line) and 300 (solid line) mK.  Sample ‘R’. 

/ A

 

The width and location of this peak in the longitudinal drag depend on the temperature.  

Figure 6.3 shows just the longitudinal drag, now at four temperatures: 25, 50, 100 and 300 

mK.  The peaks move to lower d  as the temperature is increased.  Figure 6.2b shows 

the peak location (  versus temperature.  Simple extrapolation puts the zero 

temperature peak at  indicating the location of the quantum critical 

point.  The temperature-independence of the drag resistivity at  is another 

indicator the location of the quantum critical point [9].   

/ A

, 0
1≈

)/
peak

d A

( )/
peak

d A .758
T =

/ 1.785d ≈A

The peak also becomes broader as the temperature is raised.  Figure 6.2c shows the full 
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)width at half maximum  versus temperature.  Notice, though, that the height 

of the peak remains relatively constant over the temperature range spanned. 

( /d∆ A

 

 

Figure 6.4: Longitudinal drag at 1Tν =  versus / ( / ) peakd d−A A  for four different 
temperatures: 300, 100, 50 and 25 mK from top to bottom.  For clarity, the data from the 
low  side of the peak is shown in panel a, and the high side in panel b.  Lines are fits to /d A

, / ( / )
y

xx peakd
−

∝ −A ADR d .  Sample ‘R’. 

 

At all four temperatures the longitudinal drag is notably symmetric about the peaks – 

beyond a  of the peak location for (25, 50, 100, 300) mK 

the longitudinal drag is well fit by a power law.  Fig. 6.4a shows the low d  side of the 

data at the four different temperatures and Fig. 6.4b the high  side, plotted in a log-

log style.  The lines through the data show the least squares best fit for each temperature.  

The slope of the line yields the value of the exponent  in the relation 

( / ) (0.02, 0.02, 0.06, 0.1)d∆ ≈A

/ A

/d A

y

,xx DR d / ( / )
y

peakd
−

∝ −A A .  For T = (25, 50, 100, 300) mK,  is observed to be (2.18, y
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1.72, 1.78, 1.85) for panel a, and (2.18, 1.72, 1.78, 1.05) for panel b.  For the 300 mK 

data in panel (a) we must go to extremely low densities (as low as n 10 21.6 10 cm−= × ) to 

obtain the low  data because the 300 mK peak is located at an already low 

.  The anomalous value (

/d A

( / ) 1.52peakd =A 1.05y = ) for the low  side 300 mK data, 

may be related to working at these anomalously low densities. 

/d A

/ A

/d A

/d A

1Tν =

 

 

Figure 6.5: Temperature dependence of longitudinal drag measured at 1Tν =  for three 
different d .  Sample ‘R’. 

 

Figure 6.5 shows the temperature dependence of the longitudinal drag at three different 

 values, representing the three main regimes of the phase transition.  Below T 50≈  

mK, =1.58 is well into the bilayer quantum Hall phase – the longitudinal drag at 

 is near zero.  When the temperature is increased we observe the thermal activation 

of the energy gap.  The activation energy is observed to be 0.7∆ ≈ _K, defined such that 
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/ 2

,
T

xx DR e−∆∝ .  Notice that this agrees well with the activation energy observed in the 

drag resistance in sample ‘R’ shown in Fig. 5.6.  At =1.93 the system is in the weakly 

coupled regime; the drag is very small and increases with temperature.  This is the typical 

temperature dependence of longitudinal drag, which until recently had only been 

observed in the weakly coupled regime [10].  This is because increasing the temperature 

increases the phase space available for momentum transfer (via interlayer composite 

fermion scattering) and leads to a larger drag resistance [11, 12, 13], as is seen at 

/d A

0B = .   

/d AAt =1.74, again at low temperature, the longitudinal drag is midway through the 

transition region and exhibits a large local maximum.  The striking temperature 

dependence of this data – it is nearly constant up to about 60 mK and then drops 

precipitously with temperature from 60 mK to 100 mK – is uncharacteristic behavior.  

This is the opposite dependence that is observed in either the interlayer coherent phase or 

the weakly coupled phase and is unique to the transition region between them.  Such an 

inverted temperature dependence is, however, predicted to occur in the vicinity of a phase 

boundary as a result of fluctuations [2, 5, 14, 15].  The d =1.58 curve also shows the 

same inverted dependence, though less dramatically, at temperatures above its phase 

boundary at T 0.2 K. 

/ A

≈

Stern and Halperin [5] modeled the effects of density fluctuations in the transition region 

between the weakly coupled and the interlayer coherent phases and correctly accounted 

for the temperature dependence of the longitudinal drag in this region, as well as a 

number of other features of our data.  They begin with the supposition that the behavior 



 

 

118
of the drag in the transition region is due to the inevitable density inhomogeneities 

found in any real bilayer electron system.   In their model, puddles of the interlayer 

coherent phase form in the predominantly weakly coupled system as the phase boundary 

is approached from the high  side.  The mixture of the two states produces an 

increasingly large longitudinal drag dissipation as  is lowered and a greater fraction 

/d A

/d A

f  of the sample is occupied by the interlayer coherent puddles.  Once 1
2f ≈

f ≈

 the phase 

will percolate and the system will behave as interlayer coherent and the longitudinal drag 

will be zero (unless thermally activated).  Shortly before this happens, at  for 

our sample [16], the longitudinal drag is predicted to reach its maximum value, a value 

calculated to be close to 

0.475

2 )1
2 ( /h e .  This is consistent with our observation of a maximum 

longitudinal drag resistance of ~2kΩ measured across roughly (4  of a square [17].    1.5)−

This model can account for the inverted temperature dependence observed in Fig. 6.5 

when the authors make the not-unreasonable assumption that f  decreases with 

increasing temperature.  So, by this rationale, when =1.74 and d0.06 K, the 

fraction of the sample occupied by the interlayer coherent puddles must be , as 

the drag is at its maximal value.  Increasing the temperature further will then reduce 

/d A T

0.475f ≈

f , 

and reduce the drag.  For =1.58, /d A f t 1
2  when T d0.2 K, and we see the thermally 

activated gap behavior.  The maximum at T 0.2≈  K locates 0.475f ≈  and temperature 

increases beyond that reduce f , and so reduce the drag.  Their model also accounts for 

the large flanking peaks seen on either side of the 1Tν =  minimum in Fig. 6.1e and 6.1f, 

by making a similar assumption that f  decreases as the filling factor deviates from 
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1Tν = .  Although their model can account for many of the features in our data, it does 

not account for all of them.  For instance, it cannot explain the remarkable symmetry 

observed in the longitudinal drag at 1Tν =  as a function of . /d A

/d

/ A

Stern and Halperin are only two of the many theorists to have contemplated this phase 

transition.  Schliemann et al. [1] start with the assumption that there are only two phases: 

the interlayer coherent phase and the weakly coupled phase.  Through numerical 

modeling they find that the phase transition in  will be first order.  The broad 

transition regions observed in Fig. 6.3, however, make it seem unlikely that this is a first 

order phase transition.  

/d A

Simon et al. [8] theorize that the transition region is composed of interpenetrating 

composite fermion and composite boson fluids.  This model makes similar predictions to 

the Stern and Halperin model. 

Bonesteel et al. [3] make no a priori assumptions on the number of phases, and find that 

under ideal conditions the system should transition from the incompressible interlayer 

coherent state directly into another incompressible state (a “paired quantum Hall state”) 

as  is increased.  At zero temperature, in an ideal system with no disorder, no 

tunneling, and no density imbalance, there exists an instability to pairings between the 

composite fermions in the different layers, no matter how far apart the layers are.  In real 

systems, eventually, at some , less than ideal conditions will presumably 

predominate, and the system will transition to the weakly coupled state.   

A

d
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Zhou and Kim [2] studied the transition from the weakly coupled state to the paired 

quantum Hall state specifically in regard to its signature in Coulomb drag and predicted 

the inverted temperature dependence of the drag when near the phase boundary. Also 

predicting more than one phase transition are Kim et al. [4].  They anticipate a 

progression through three, possibly four, different phases as the system goes from the 

(111) state at low , to the (33-1) state at intermediate d  and finally to the weakly 

coupled compressible phase at high .   A fourth state is postulated to exist between 

the (111) and (33-1) states, which would either be a strong pairing state or a descendent 

of the (33-1) state. 

/d A / A

/d A

6.2     EFFECT OF DENSITY IMBALANCE ON PHASE BOUNDARY 

In this section layer density imbalance, 0drag drive

T drag drive

n nn
n n n

−∆
≡ ≠

+

1T

, where  is the 

electron density in the drag (drive) layer, is studied for its effect on the location of the 

phase boundary.  Thus, we are effectively mapping the location of the phase boundary in 

the ;  –  plane.  As Hall drag is the only probe of the interlayer 

coherent phase that achieves a universal value in the 

(drag driven )

0SAS∆ → /d A / Tn n∆

ν =  state, and with the phase 

boundary defined as half of this universal value (in Fig. 6.2,  determined by this 

method agrees with that determined by the location of the peak in the longitudinal drag to 

within 0.25%), it is the only probe that has a universal value at the phase boundary. This 

makes it an especially robust measurement of the location of the phase boundary, and this 

(d / )cA
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is why we use it here. 

Figure 6.6 shows the Hall drag at 1Tν =  versus  at T/d A 50=  mK.  The closed squares 

show the balanced case .  This curve is very similar to the Hall drag shown in 

Fig. 6.2, even though these two data were taken in different samples (although from the 

same wafer) with different mesa geometries.  The phase boundary, as defined above, falls 

at  (we use linear interpolation to find 

/ Tn n∆ 0=

/ 1.714d =A 21
2 /,DxyR h e= ). 

 

 

Figure 6.6: Hall drag at 1Tν =  versus  at T/d A 50=  mK.  Phase boundary is defined as the 
 where /d A 2( / )1

, 2xy DR h e=  and is marked with ‘X’s.  Closed squares represent , 
open and closed circles represent 

/ 0Tn n∆ =

/ 0.1Tn n∆ = + , 0.1−  respectively.  Sample ‘Y’. 

 

When the layers are imbalanced, shown as open (closed) circles for ∆ = , 

there is a clear shift of the phase boundary to higher .  The amount of shift appears to 

/ 0.1( 0.1)Tn n + −

/d A
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be independent of the sign of the density imbalance.  From similar data at additional 

values of  we can construct the phase boundary in the   –  plane as 

shown in Fig. 6.7. 

/ Tn n∆ /d A / Tn n∆

(d
/{

) c

/ Tn n∆

/ Tn n∆ =

1.78

1.76

1.74

1.72

-0.1 0.0 0.1
∆n/nT  

NO QHE

QHE QHE

Figure 6.7: Location of  phase boundary ( / , as determined by Hall drag, versus density 
imbalance .  Line is least squares parabolic fit.  Sample ‘Y’. 

)cd A

 

The phase boundary appears symmetric with / Tn n∆ , and is well fit to a parabola, at least 

out to .  This parabolic phase boundary has also been seen in tunneling 

measurements done in a sample from the same wafer [18]. 

0.15±

This dependence of the phase boundary on the density imbalance is somewhat surprising.  

A density imbalance tips the pseudospins out of the XY plane, which naively, would 

reduce the pseudospin stiffness which is related to the XY component of the pseudospins 

[19, 20].  Then to compensate for this, the phase boundary would be expected to move to 
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smaller values of , as the pseudospin stiffness is inversely dependent on . /d A /d A

However, Joglekar and MacDonald predicted this counterintuitive result based on 

Hartree-Fock calculations specifically for the case of interlayer bias voltage [21].  They 

found that the magneto-roton minimum in the collective mode spectrum plays an 

important role in the transition out of the interlayer coherent phase as d  is increased.  

When the magneto-roton minimum goes to zero, a new gapless mode exists, and this 

destroys the superfluid phase.  Imbalancing the layers raises this minimum, and the phase 

boundary instead increases.  They also predicted that the increase to be quadratic in 

, as observed.  

/ A

/ Tn n∆

6.3     LONGITUDINAL COULOMB DRAG AT LARGE  /d A

Longitudinal Coulomb drag at 1Tν =  was originally studied only at high  due to 

practical constraints: low  requires low  as well as low density .  Although 

the barrier widths were already made small enough, the as-grown density in the first 

study of drag at 

/d A

2/d A d 1/n−∝A

1Tν =  [10] was more than twice the density in our sample, and 8 times 

larger than our lowest gated density. 

At large effective layer separation the system can be modeled as two weakly coupled 

composite fermion liquids [11, 12, 13], better described as two individual layers at 1
2ν =  

rather than as a composite system at 1Tν = .  The slow decay of density fluctuations in the 
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3 40individual layers explains the dramatic 10  to 1  -fold increase observed in the 

magnitude of the drag over its zero field value [11], but there is nothing special predicted to 

occur at filling factor 1 1
2 2 1Tν = + =  in this model, and indeed there was nothing special 

seen in the early observations of longitudinal drag at / 3.9d 5=A  [10]. 

/ 2.7d ≈A

1Tν =

) 1.0≈

1Tν =

)/ 1
peak

d ≈A

With the low density samples available for this work, along with in situ density tuning with 

our metallic Schottky gates above and below the 2DES, we are able to probe a large range 

of effective layer separations both above and below the phase boundary, from / 1.d 3≈A  

deep in the excitonic quantum Hall state, to  far into the weakly coupled 

composite fermion regime, in as fine of steps as we wish – an unprecedented exploration of 

the phase boundary. 

One of the surprising discoveries in this exploration at the high  end of the range was 

that a feature appears at 

/d A

 when the system is well into the weakly coupled state, 

approximately  away from the phase boundary.  A local maximum in the 

longitudinal drag in the weakly coupled phase appears at values of  as large as 2.59.  

Figure 6.8 shows the longitudinal drag resistivity versus magnetic field at the highest 

 at which a local maximum can be observed at 

( /d∆ A

/d A

/d A  for data taken at T 0.3=  K.  

Here we used sample ‘K’, which has a 10-square long mesa, in order to boost the signal-

to-noise ratio, though we have confirmed these results with sample ‘R’.   

From Sec. 6.1, the phase boundary is located at (  at T  K.  Yet at 

=2.59, which is shown in the figure, a local maximum can be seen at 

0.3=

/d A 1Tν = .  The 

.52
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region around 1Tν =

T

 is magnified in the inset to better display the residual feature.  

Longitudinal drag observed above this  value has just a simple shallow minimum in 

the region around 

/d A

1ν =  [10].   

2−

 

 

Figure 6.8: Longitudinal drag at relatively high effective layer separation d / 2.56=A  
( ) at T  mK.  Inset shows that there is already a small bump at 106.9 10 cmn = ×

1T

300=
ν = .  Sample ‘K’. 

 

Whether this feature is related to residual fluctuations of the main phase transition, or if it 

is revealing the existence of one of the additional hypothetical phases is unknown.  

Because this bump occurs in a compressible phase, perhaps this is indicating that there is 

more than one compressible phase.  Interestingly, neither the Hall drag, nor the tunneling 

conductance, show anomalies at 1Tν =  at this . /d A

As the effective layer separation is reduced, this small local maximum, or bump, in the 
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longitudinal drag at 1Tν =  becomes more and more prominent.  Figure 6.9 shows this 

progression, starting with the same data shown in Fig. 6.8, which is the bottommost 

curve.  The curves above it have lower and lower effective layer separations.   

 

1.5

1.0

0.5

0.0

ρ x
x,

D
  (

kΩ
 / 

)

1.61.20.80.40.0
νT

-1

 d/{ = 1.79
 1.85
 1.93
 2.03
 2.16
 2.29
 2.56

 

Figure 6.9: Longitudinal drag versus inverse total layer filling factor 1
Tν −

1.85
 at T  K for 

seven effective layer separations: d
0.3=

.79/ 2.56, 2.29, 2.16, 2.03, 1.93, , 1=A
1T

 going from 
bottom to top.  Notice that the bump at ν =  gets more pronounced as  is decreased.  
Sample ‘K’. 

/d A

 

Reducing  tends to increase the overall drag, mainly at high magnetic fields.  In 

addition to this overall increase in the drag as  is lowered, there is also an increase in 

the local enhancement of the drag at 

/d A

/d A

1Tν = .  This local enhancement continues to increase 

as the phase boundary is approached, as shown in the 300 mK curve in Fig. 6.3.  In fact, 

even though this data is from a different sample with a different mesa geometry, it can be 
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2

mapped very well to the 300 mK data points shown in Fig 6.3.  This would make it 

seem that this small bump seen at high  is just a remnant of the main phase transition 

that peaks at . 

/d A

/ 1.5d =A

4

2

0

0.0
νT

-1

0.7, 0.9

ρ x
x,

D
 (k

Ω
/

)

1.51.00.5

 

d/{ = 1.79

3.3 K

0.3 K

Figure 6.10: Longitudinal drag versus inverse total layer filling factor 1
Tν −  for d / 1.79=A  at 

eight temperatures: T  K from bottom to top.  The 
bump at 

0.3, 0.4, 0.6, , 1.3, 2.3, 3.3=
1Tν =  gets less pronounced as the temperature is raised.  Sample ‘K’.  

 

Figure 6.10 shows the temperature dependence of one of these bumps on the high d  

side of the phase boundary.  Shown is the longitudinal drag resistivity versus the magnetic 

field, in units of the single layer inverse filling factor, for d

/ A

/ 1.79=A , which has the lowest 

 and the largest bump of the series shown in Figure 6.9.  At T  K, the bump at /d A

T

0.3=

1ν =  is marked.  As the temperature is increased, the drag resistivity increases overall, 

due to an increase in the phase space available for scattering [11, 12, 13].  But notice that 
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0.4the size of the bump is decreasing with increasing temperature.  By T  K it is 

already notably smaller, and by T

=

1.3=  K it can no longer be distinguished from the 

background. 

0.4

/d A
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0.0
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D
  (

kΩ
 / 
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1.21.00.80.6

 

0.20.0
Temperature (Kelvin)

d/{ = 2.48

d/{ = 2.00

d/{ = 1.79

Figure 6.11: Longitudinal drag at 1Tν =  versus temperature for three effective layer 
separations:  from top to bottom. Sample ‘K’ ( ) 
and ‘H’ ( ). 

/ 1.79, 2.00, 2.48d =A
/ 2.48=A

1.79, 2.00=
d

 

Figure 6.11 shows the drag resistivity at 1Tν =  versus temperature for 3 different values 

of effective layer separation.  The / 1.79d =A

/

 curve corresponds to the data in Fig. 6.8.  

Also shown are the curves for 2.00d =A  and .  Notice that all of them have a 

sublinear temperature dependence.   

2.48

The  curve, which has a minimal bump contribution, and so may be thought to 

represent the more general ‘background’ drag temperature dependence, is extremely well 

/ 2.48d =A
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fit (so well that there’s no point in showing it in the graph, as it lies completely on the 

data, and can’t be distinguished from it) to a power law curve that intersects the origin.  

The exponent of the fit,  is contrary to theoretical predictions based on 

the composite fermion model, which predicts a  dependence [11, 12, 13]. 

0.867
, 0.415xx D Tρ = ×

/d A

4/3T

6.4     DENSITY IMBALANCE AT HIGH d  /A

This shifting of the phase boundary to higher  with density imbalance is also 

observed in longitudinal drag at high .  At high , a small bump is observed at 

/d A

d / A

1Tν =  in the longitudinal drag (see Sec. 6.3).  At such high d  we are probing the 

phase transition well into the ‘NO QHE’ side of the phase boundary.  The small bump we 

observe is thought to be the tail of the quantum critical fluctuations of the interlayer 

coherent state.  As  is reduced this bump grows larger.  In this section we show that 

as we imbalance the layer densities by applying a bias voltage between the layers while 

staying at constant , we also observe this bump becoming larger, indicating that the 

sample is being pushed closer to the phase boundary (or rather, the phase boundary is 

moving closer to the sample’s effective layer separation). 

/ A

/d A

/d A
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Figure 6.12: Longitudinal drag resistivity versus magnetic field for .  Solid line 
shows balanced layer density case, and the remaining curves are for imbalanced layer 
densities.  ‘Bump’ at 

/ 2.0d =A 0

1Tν =  appears to grow larger with increasing density imbalance.  
Sample ‘K’. 

 

Figure 6.12 shows this for constant / 2.0d 0=A .  The solid line shows the longitudinal 

drag resistivity when each layer has the same density .  There is a 

small bump visible at 

10 24.06 10 cmn −= ×

1Tν = .  As the layers become increasingly unbalanced (dotted, 

short-dashed, medium-dashed, long-dashed, and dot-dashed lines), this bump is observed 

to get larger and larger.  For clarity, only the positive imbalance case is shown, but 

negative imbalance produces similar results. 

Contrasting this behavior is the feature at 2 / 3Tν =  in the balanced drag.  The deep 

minimum observed around 5¼ Tesla is due to the fractional quantum Hall state that exists 
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at 1/ 3ν =  in each layer.  The many-body energy gap that forms at this filling fraction 

inhibits drag scattering and the drag resistivity is observed to go towards zero.  As the 

layers are unbalanced, it is revealed that this is a single-layer effect.  The 1/ 3ν =

T

 minima 

in each layer are translated, one to higher magnetic field, the other to lower, in concert 

with the density changes in each layer.  This is observed as the splitting of the 2 / 3ν =  

minimum as the density imbalance is increased.  However the feature at 1Tν =  does not 

split with layer density imbalance – this is truly a bilayer effect.  It is not the 1/ 2ν =  in 

each layer that is responsible for this feature, but rather the total filling factor in both 

layers adding up to unity. 

This intensification of the 1Tν =  feature with density imbalance so far above the phase 

boundary in d  indicates that this feature is likely a remnant of the same phase 

transition discussed in Section 6.1.  This bump at 

/ A

1Tν =  is likely due to quantum critical 

fluctuations and does not represent a new phase. 
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C h a p t e r  7 :  C o u n t e r f l o w  S u p e r f l u i d i t y  

 

 

There are two different fundamental ways current can be sent through a bilayer system: 

equal currents can be sent through the two layers flowing in the same direction, or equal 

currents can be sent through the two layers but flowing in opposite directions.  We call the 

first mode the parallel channel, and the second the counterflow channel.  Any other current 

configuration is just a linear combination of these two channels. 

The transport in each of these channels can be understood in terms of the two different 

models of the (111) state.   For the parallel channel, the pseudospin ferromagnet model 

discussed in Section 4.6 offers an intuitive understanding of the transport mechanism 

responsible for current flow in this mode.  In this model, the electrons are not localized in 

one layer or the other; they are in a superposition of the two layer eigenstates.  This makes 

it impossible to localize the current to just one of the layers.  A voltage applied across one 

layer will push on delocalized electrons and induce a current flow in both the layers, 

producing equal currents flowing in the two layers in the same direction: the parallel 

current mode. 

Current flow in the counterflow channel can best be thought of using the excitonic 

condensate model discussed in Section 4.7.  In this model, holes in one layer are bound to 

electrons in the other layer; these interlayer excitons are in the same quantum state and 
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constitute a Bose-Einstein condensate.  Current in the counterflow channel is then due 

to a superfluid flow of these excitons – as the excitons move in one direction, currents of 

opposite direction will be produced in the individual layers.  According to this model, this 

counterflow current should be dissipationless and as excitons are charge-neutral, it should 

be unaffected by the magnetic field. 

 

 

Figure 7.1: The Coulomb drag measurement is a linear combination of equal measures of the 
parallel and counterflow current channels. 

 

The Coulomb drag measurement studied in the previous chapters is a straightforward linear 

combination of these two fundamental current configuration modes (see Fig. 7.1).  An 

equal measure of each of these currents meets the boundary requirements for Coulomb 

drag: no net current in the drag layer and all the current flowing in the drive layer.  Though 

Coulomb drag is an excellent probe of the phase boundary – the longitudinal drag signal is 

the only one sensitive enough to show the incipient phase transition as far away from the 

phase boundary as  (Sec. 6.3) – it is only an indirect measure of the 

anticipated superfluid mode that exists in the counterflow channel [1, 2, 3, 4]. 

( )/ /
c

d d− ≈A A 1.1
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In this chapter a purely counterflow current is set up in order to directly detect the 

superfluid mode, which should manifest as oppositely directed dissipationless currents 

having infinite conductivity. 

7.1      SAMPLE:  ‘Y’ 

The data shown in this chapter was obtained from sample piece ‘Y’, taken from the same 

wafer used for all the experiments shown in this thesis and discussed in detail in Chapter 1.  

Sample ‘Y’ is a 5 mm x 5 mm piece from the center of the wafer.  Standard 

photolithographic techniques with AuNiGe contacts were employed [5].  The sample was 

thinned to 49 µm with a Bromine-methanol etch.  The central region of the mesa is 160 µm 

x 320 µm with 7 arms extending out of it for electrical contact (see Fig. 7.2 for photo of 

sample).   

The four arms configured as two ‘Y’-shaped projections coming out at the top and 

bottom of the mesa in Fig. 7.2 are used for injecting current symmetrically into the 

layers (detailed considerations that went into this sample design can be found in 

Appendix B).  The remaining three arms extending out of the sides of the mesa are used 

for measuring the longitudinal and Hall voltages.  These arms have both top and bottom 

gates so that we can measure the voltage in either the top or bottom layer (or both).  

The longitudinal voltage probes are spaced one square apart.  The nominal density in 

each well is 5.4 x 1010 cm-2, the mobility 1 x 106 cm2/Vs and the tunneling resistance at 

resonance  MΩ.  The density in the central mesa region was controlled by 100R ≈



 

 

137
electrostatic gates above and below the central bar.  We could achieve densities as 

low as 1.7 x 1010 cm-2 per layer by applying voltages to these gates.  The densities in 

the two layers were balanced by matching the plateaus in, and slopes of, the Hall 

resistivity in each layer while the sample was in the counterflow current configuration.  

 

 

Figure 7.2: Infrared photo of sample ‘Y’.  Back gates appear lightest; top gates are medium 
gray.  The mesa arms can be seen in outline, the main mesa region is obscured by the large 
central back gate.  Field is ~1.5 mm across. 

 

7.2      COUNTERFLOW AND PARALLEL DEFINITIONS 

For the counterflow measurement a current is sent into one of the layers, extracted from 
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that layer, and the sent into the second layer going in the opposite direction (see Fig. 

7.3).  The current can be measured before it is redirected into the second layer by sending it 

through a resistor (shown at the right side of the schematic in the figure), and measuring the 

voltage across that resistor.  The Hall V  or the longitudinal V  voltage is then measured in 

one of the layers. V  (V ) divided by the injected current 

y x

y x xI , yields the Hall 

(longitudinal) counterflow resistance CF
xyR  ( CF

xxR ).  See Appendix D for a detailed 

counterflow setup. 

 

 

Figure 7.3: Schematic of counterflow measurement setup.  Current is sent into the bottom 
layer, removed from the bottom layer, sent through an external resistor (sometimes) to 
measure it, and redirected into the top layer going in the opposite direction.  This sets up equal 
but oppositely directed currents in the two layers.  Voltages are then measured in just one of 
the layers. 

 

For the parallel mode configuration, the current is redirected into the second layer going 

in the same direction as the current in the first layer (see Fig. 7.4).  Now V  (V ) divided 

by the injected current 

y x

xI , yields the Hall (longitudinal) parallel resistance xyR&  ( xxR& ). 
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Figure 7.4: Schematic of parallel configuration.  Current is sent into the bottom layer, removed 
from the bottom layer, and redirected into the top layer going in the same direction.  Voltages 
are then measured in just one of the layers. 

 

It is important to be able to monitor the current before it is redirected into the second 

layer, as the 1Tν =  state exhibits enhanced tunneling [6] between the layers and this will 

cause some current leakage between the layers when the system is in the (111) state.  This 

leakage is detected by measuring the current before it enters the first layer and then again 

after it has left the first layer but before entering the second layer, the difference between 

the two indicates the tunneling current.  We measure a 5≈  pA difference between the two 

currents when the system is at 1Tν = .  In the parallel configuration this will create a ~1% 

mismatch in the magnitudes of the currents that are in each layer for our typical 0.5_nA 

drive currents.  However, in the much more important counterflow configuration, this will 

not affect the relative magnitudes of the currents. 
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7.3      HALL AND LONGITUDINAL RESISTANCE VERSUS 

MAGNETIC FIELD 

Figure 7.5 shows the primary result of this thesis.  The main figure shows the Hall 

resistance for constant density 10 22.46 10 cmn −= ×

30

 per layer, as the magnetic field is 

ramped from zero to 2.4 Tesla, at T =  mK for both the parallel (dotted line) and 

counterflow (solid line) configurations.  This density corresponds to , when 

calculated at 

/ 1.5d =A 5

1Tν = , where / eBA ==

CF

 is the magnetic length.  Up to about 1.8 Tesla the 

layers behave independently and we see the usual quantum Hall effect as though the 

second layer were non-existent.  The direction of the current in the second layer is 

irrelevant and so xy xyR R=&

T

.  But as the system enters the highly correlated bilayer 

quantum Hall state at 1ν = , centered around 2 Tesla, the direction of the current in the 

second layer splits the data:  xyR&  goes up to form a quantized plateau at  while  22 /h e

CF
xyR  drops to zero.   

The vanishing Hall resistance in the counterflow configuration CF
xyR  is a remarkable 

observation.  Current is confirmed to be flowing in the layer – it is measured prior to 

being redirected into, and after exiting, the layer in which the Hall voltage is measured – 

and yet it produces no Hall voltage.  This is not an effect of the two layers being shorted 

together at the voltage contacts causing the opposing Hall voltages in each layer to cancel 

each other out.  The voltage probes are only connected to one of the layers, if they were 

contacting both layers then the current would shunt through the voltage contacts, and this 
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loss would be detected in the external resistor, which measures the current prior to 

redirection.   

This vanishing Hall resistance is a startling indicator that the counterflow current is being 

carried not by individual electrons in each of the layers, but by charge-neutral interlayer 

excitons capable of flowing in the presence of a 2 Tesla magnetic field without being 

affected by it. 

 

Figure 7.5: Main figure shows the Hall resistivity versus magnetic field in the parallel (dotted 
line) and counterflow (solid line) configuration for 10 22.46 10 cmn −= ×  and T  mK.  The 
inset shows the longitudinal voltages.  Voltages are measured in one layer only. 

30=

 

Notice that the plateau in the parallel configuration is at twice the expected value for total 

filling factor one.  This is because we define the resistance as the voltage divided by the 
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current in a single layer, not the net current flowing through the bilayer.   

The second test for excitonic superfluitiy in the counterflow channel is to see if the 

exciton current observed in the counterflow Hall resistance is flowing without 

dissipation.  The dissipation is measured by measuring the longitudinal resistance.   

The inset of Fig. 7.5 shows the longitudinal resistances xxR&  and CF
xxR  under the same 

conditions, focusing on the region near 1Tν = .  Although not shown, the two are again 

identical at low fields.  And unlike the Hall resistance, they are also nearly identical in the 

interlayer coherent state at 1Tν = .  CF
xxR  (solid line) is a little larger than xxR&

1

 (dotted line) 

around 1.8 Tesla, which is where the sample is transitioning into the Tν =  state.  This is 

because of the strong interlayer Coulomb drag that occurs in the transition region [7].  

When the sample is in the counterflow configuration, the two oppositely directed currents 

will exert a strong dragging force on one another that does not exist in the parallel 

configuration, and so CF
xxR  will be increased over the parallel value xxR& .  As both xxR&  and 

CF
xxR  go to zero at 1Tν = , this indicates that the 1Tν =  state is dissipationless in both the 

parallel and counterflow configurations.  Thus the exciton current is flowing with 

vanishing dissipation. 

7.4      TEMPERATURE DEPENDENCE AT 1Tν =  

Focusing on the resistances at 1Tν =  only, Figure 7.6 shows the temperature dependence 
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of the Hall and longitudinal resistances in both the parallel and counterflow 

configurations when the system is in the interlayer coherent state.  Panel a shows xxR&  

(open circles) and xyR&  (closed squares) for d / 1.48=A  for temperatures ranging from 

35_mK to 400_mK.  The Hall resistance never strays far from its quantized value 2 / , 

while the longitudinal resistance drops almost three orders of magnitude over this 

temperature range, exhibiting straight line activated behavior  with energy 

gap  K. 

2eh

/ 2
0

T
xxR R e−∆=&

0.5∆ ≈

48d =A

CF
xx

 

 

Figure 7.6: Temperature dependence of the resistances (panels a and b) and conductivity 
(panel c) at 1Tν =  for both parallel and counterflow configurations at .  In a) 
open circles represent 

/ 1.

xxR& , closed squares xyR& ; in b) open circles represent CF
xxR , closed 

squares CF
xyR .  c) shows the counterflow and parallel longitudinal conductivities, σ  and 

xxσ & , respectively. 
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Panel b shows the same for the counterflow resistances, CF

xxR  (open circles) and  

(closed squares).   CF
xxR  is very similar to xxR&

CF
xy

; showing the same activated behavior with 

the same energy gap of 0.5 K.  But here R  also drops precipitously as the temperature 

is lowered, and at a very similar rate to both the xxR  data, though it does not form a 

straight line as the others do. 

CF
xyR

More illuminating is the same data plotted as longitudinal conductivity:  

2 2( )
xx

xx
xx xy

ρσ
ρ ρ

=
+

,                                                    (7.1) 

where we take Rρ ≈ , as our longitudinal voltage probes are spaced one square apart.  This 

is shown in panel c.  Here the transport properties of the two different current 

configurations clearly and radically diverge as the temperature is lowered.  The upward 

pointing triangles in the top half of panel c indicate the longitudinal conductivity in the 

counterflow configuration CF
xxσ ; and the downward triangles in the bottom half represent 

xxσ & .   xxσ &

CF
xx

 goes to zero as the temperature goes to zero, again, in an activated fashion.  

This is precisely the behavior expected for any ordinary quantum Hall state.  On the other 

hand, σ  becomes dramatically larger as the temperature is lowered.  By 35 mK there is 

more than six orders of magnitude difference in the conductivities of the two current 

configurations.  The behavior of CF
xxσ  has never been seen before in quantum Hall 

systems.  Current is just slipping through this system with barely any forces on it.  It is 

quite remarkable. 
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7.5      DEPENDENCE ON EFFECTIVE LAYER SEPARATION 

The dependence on the effective layer separation  is shown in Fig. 7.7; using just /d A

CF
xyR  as the indicator of the onset of the bilayer quantum Hall state.  The quantum phase 

transition as the effective layer separation is reduced has been observed to occur around 

 in the Coulomb drag [7] measured in a sample from the same wafer. / 1.7= 3d A

 

 

Figure 7.7: Sample enters excitonic superfluid state as evidenced by CF
xyR  dropping to zero as 

the effective layer separation  is reduced.  Figure shows /d A CF
xyR  versus inverse filling factor 

1
Tν −  for d , all at T/ 2.29, 1.75, 1 , 1.59, 1.48=A .71, 1.66 50=  mK. 

 

Figure 7.7 shows CF
xyR  versus the inverse of the total filling factor 1 /T TeB hnν − =  (for 

easier comparison of data with different ) taken at T/d A 50=  mK.  The topmost curve, 
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9with , shows the sample to be well out of the interlayer coherent state.  

The behavior seen is typical of the Hall resistance in a single layer 2DES, with no 

distortion or feature at 

/ 2.2d =A

1Tν = , indicating a lack of correlation with the second layer.  As 

 is reduced, a dip begins to form at /d A 1Tν = , becoming deeper and more fully 

developed as the layers are brought (effectively) closer together.  By  there is 

a broad minimum that goes nearly to zero, signaling that the sample is now well within 

the bilayer quantum Hall state.  By interpolation, the minimum reaches half its 

uncorrelated value at , which may be thought of roughly as the location of the 

transition point, fairly consistent with the Coulomb drag observations in Section 6.1. 

/ 1.4d =A 8

0/ 1=A .7d

7.6     DISCUSSION 

These data support the model of this state as a Bose-Einstein condensate of interlayer 

excitons discussed in Section 4.7.  In this view one of the half-filled Landau levels in the 

individual layers can be viewed as a full Landau level that is half-filled with holes [8].  

Then the bilayer system can be regarded as one layer of electrons and one layer of holes.  

Because they are oppositely charged, the electrons and holes bind together to form 

composite particles called excitons.  As the electrons and holes directly across from one 

another in the layers have opposite  quantum numbers (see Section 4.1), when they 

combine together as excitons, all the excitons will be in the k

k

0=  state, and so this will 

constitute a Bose-Einstein condensation of excitons.  Figure 7.8 shows a schematic of 

these interlayer excitons.   
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Figure 7.8: Schematic showing how interlayer excitons can create counterflowing currents in 
the two layers.  Electrons e- in one layer bind to conduction band holes h in the other layer, 
and the resulting excitons condense into a superfluid.  Dissipationless flow in one direction 
produces equal but oppositely directed dissipationless currents J in the layers. 

 

If this excitonic condensate were to flow in one direction, equal but oppositely directed 

currents would be set up in the two layers.  This is precisely the current configuration that 

is set up in the counterflow measurement.  As excitons are charge neutral, they can flow 

in the presence of a magnetic field without producing a Hall voltage.  Our vanishing Hall 

resistance CF
xyR  in the counterflow configuration at 1Tν =  shown in Fig. 7.5 supports this 

model of current flow via charge-neutral excitons. 

The vanishing longitudinal resistance CF
xxR  in the counterflow configuration at 1Tν = , 

shown in the same figure, indicates that these excitons are flowing with very little 

dissipation.  Figure 7.6 suggests that the dissipation goes to zero as the temperature goes to 

zero, and that in the zero temperature limit, this excitonic condensate is a superfluid, as 

predicted by Wen and Zee [1] and others [2, 3, 4]. 

However, as Fig. 7.6 also shows, both the dissipation CF
xxR  and Hall resistivity CF

xyR  in the 

counterflow configuration remain finite at finite temperatures.  In the ideal case, both of 
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these quantities should drop to zero for KTT T<  where KTT  is the Kosterlitz-Thouless 

temperature [9].  Instead we are seeing activated behavior.  One reason for seeing this 

activated behavior is because the critical current for this superfluid is zero [3, 10], so the 

act of making a resistance measurement at all is expected to impart an energy gap to the 

system.  However, this energy gap should be dependent on the magnitude of the current.  

Our observed energy gap of 0.5∆ ≈  K persists even when we use different drive currents 

(from 20 pA to 1 nA – currents above 1 nA caused sample heating). 

0ϕ =

The presence of interlayer tunneling in the sample, even though extremely small, also 

disturbs the state.  The binding of neutral vortex-antivortex excitations is a crucial 

element of the Kosterlitz-Thouless phase transition discussed in Section 4.6, but 

tunneling alters this binding mechanism.   

Tunneling destroys the symmetry of the (111) state.   With a finite tunneling gap energy, 

the order parameter ϕ  is no longer degenerate for all angles 0 2ϕ π≤ < ; instead the 

energy will have a minimum at .  In the pseudospin representation this corresponds to 

pseudospins pointing in the x-direction.  Since the pseudospins will prefer to lie in the x-

direction the meron-antimeron pairs will bind along the y-direction, held together by the so-

called “domain strings” as shown in Fig. 7.9.  These domain lines have a fixed energy per 

unit length, and thus bind the merons as fixed tension strings of arbitrary length.  At some 

length this tension will exceed the electrostatic repulsion of like-charged merons and they 

will be able to bind together.  An energy gap will be created for these new charged 

excitations [11].  However, domain string binding is only expected to occur for tunneling 
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gap energies /(SAS∆ 2 /e εA ) 45 10−> ×  [11], our tunneling gap energy is roughly 

/( eSAS∆ 2 /εA ) ≈ . 610−

 

 

Figure 7.9: Bound pair of opposite vorticity merons that have the same charge.  The like-
charges are held together by the domain string between them shown in this pseudospin 
representation of a bilayer system with significant interlayer tunneling.  In the presence of 
tunneling the pseudospins will want to lie in the x-direction (towards the top in this 
depiction).  Taken from Ref. 11. 

 

It is most likely that this energy gap is due to disorder in the system.  The sample is going 

insulating at magnetic fields just above 1Tν =  (see inset of Fig. 7.5).  Thus we are 

working in a regime where disorder effects are strong.  Disorder creates, and pins, single 

merons even in the absence of current.  The energy gap observed may be due to an array 

of disorder sites, and the hopping energy as merons jump from site to site [10].  
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Additionally, Fertig and Straley [12] show that the combination of finite tunneling 

and a strong enough disorder potential can create strings of overturned spins with free 

vortices at either end, with possible low energy excitations of the vortices and new ‘string 

glass’ states. 

Although the mechanism responsible for the observed energy gap is not certain, the data 

remains consistent with the proposed excitonic condensate ground state.  These results 

were confirmed by another group after our data was disseminated.  Tutuc et al. measured 

vanishing Hall and longitudinal resistances in counterflow current configuration in a 

hole-hole bilayer system [13].   

We believe that our data supports the achievement of the Bose-Einstein condensation of 

excitons, as evidenced by superfluid-like counterflowing currents in a bilayer two-

dimensional electron system at 1Tν = . 
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A p p e n d i x  A  

DETAILED SAMPLE PROCESSING STEPS 

 

Sample processing is something of a matter of faith – when you find a series of steps that 

works, you don’t question why.  The following steps gave me a 100% success rate (all the 

contacts had a low contact resistance to both layers, and the metal structures and mesa 

geometry had clean smooth edges): 

1. Cleave off a 5 mm x 5 mm piece of the sample from the parent wafer. 

2. Clean sample, on the spinner, first with acetone, then with methanol.  Blow dry 

with dry N2 while spinning. 

3. Spin on Shipley S1813 photoresist for 30 seconds at 5krpm. 

4. Bake for 25 minutes at 90°C. 

5. Align mesa pattern in mask aligner (we use a Karl Suss mask aligner, model MJB3 

with a 200W Hg lamp), being sure that the mesa pattern avoids any defects in the 

crystal.  Expose for 5 seconds (at ~14 mW/cm2). 

6. Develop in a 50:50 mixture of Shipley 351 developer and deionized water (I used 

20mL of each) for about 1 minute.  Then rinse in a stream of deionized water for 

about 2 minutes. 

7. Carefully take the edge of a folded up lint-free clean room towelette in which the 

edge has been soaked in acetone, and remove any photoresist that has remained at 

the edges of the sample.  Then quickly dunk the sample in the developer solution 

again and rinse again under the deionized water stream.  Blow dry well with dry N2. 

8. Bake the sample for 30 minutes at 90°C. 



 

 

153
9. About 6 minutes before the baking is done, mix together the etch solution: 

o 100 mL deionized water (t 11 MΩ-cm) 

o 10 mL phosphoric acid 

o 2 mL 30% hydrogen peroxide 

10. Stir (with magnetic stirrer) for approximately 4 minutes (put watch glass on top of 

beaker to prevent evaporation). 

11. Fill a small Kimex dish with the acid etch solution, and then put the sample into the 

dish and leave it there for 8 minutes.  (The acid etches at a rate of ~ 1000 Å/min.) 

12. Have two Kimex dishes nearby, filled with deionized water.  To stop the etch, 

remove the sample from the acid solution and plunge it into one of the dishes of 

deionized water, and then into the other.  Then let it sit in a dish of acetone to 

remove the remaining photoresist. 

13. Clean well on the spinner, first with acetone, then methanol, and then with 

deionized water.  Then dry with N2 while still spinning. 

14. Spin on AZ5214 photoresist for 30 seconds at 5krpm. 

15. Bake on top of a hotplate set to 100°C for 45 seconds. 

16. Align the mask with the contact pattern in the mask aligner, expose for 15 seconds. 

17. Develop in a 4:1 solution of deionized water and AZ400K developer (I used 24mL 

of water and 6mL of developer).  It takes approximately 20-30 seconds to develop. 

18. Clean on spinner with a stream of deionized water for 2 minutes.  Then blow dry 

with N2 for another 2 minutes while still spinning. 

19. Put the sample in the evaporator along with two boats.  In a tungsten boat (R. D. 

Mathis # S3-.015W) put 3 slugs of Nickel (99.995% pure), and in a tungsten boat 

that has an aluminum oxide barrier (R. D. Mathis # S35-A0-W), which we mounted 

on copper stilts (~ 3 inches tall) to bring the boat closer to the sample so we would 

not waste as much Gold, put in two nuggets of a eutectic mixture (88:12) of Gold 

and Germanium (99.85% pure). 

20. First evaporate 300 Å of Nickel (at a rate of ~ 8 Å /sec), and then evaporate 1350 Å 

of Gold-Germanium (at ~ 20 Å /sec). 
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21. Set sample in acetone for 5 to 10 minutes until metal lifts off; squirting the 

sample with an acetone stream will hasten this process. 

22. Clean and dry sample on spinner, first with acetone, then methanol and finally dry 

N2 gas. 

23. Anneal contacts on a heater strip in a sealed box that has had forming gas (15% H2, 

85% N2) flowing through it for at least 5 minutes (to displace all the air).  Anneal at 

440°C for 10 minutes. 

24. Clean and dry sample on spinner again (as in step 13). 

25. Spin on AZ5214 for 30 seconds at 5krpm. 

26. Bake on top of a hotplate set to 100°C for 45 seconds. 

27. Align mask with pattern of top gates and contact leads in mask aligner, expose for 

15 seconds. 

28. Develop in a 4:1 solution of deionized water and AZ400K developer (I use 24mL 

of water and 6mL of developer).  It takes approximately 20-30 seconds to develop. 

29. Rinse in stream of deionized water for about 1 minute, and blow dry with N2. 

30. Then clean on the spinner, two minutes with a deionized water stream, and two 

minutes blowing dry with N2. 

31. Evaporate on a 1600 Å layer of Aluminum (99.999% pure). 

32. Put sample in acetone to soak for about 30 minutes; then remove Aluminum by 

squirting sample with a stream of acetone.  Clean and dry sample with acetone, 

methanol and dry N2. 

33. Cleave off three 5 mm x 5 mm chips from a piece of scrap GaAs.  Clean and dry 

them well. 

34. Clean a quartz disk (1.50” diameter, 0.130” thick) with an acetone soaked clean 

room towelette.  Then place the disk on the spinner and clean with acetone, then 

methanol, and then dry with N2. 

35. Put the disk on a hotplate set to 170°C and let it get hot. 

36. Chip off small pieces (about the sizes of large grains of salt) of clear mounting wax 

(South Bay Technology, Inc., www.southbaytech.com, product #MWH135 – aka 
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“Quickstick 135”) with a razor blade.  Set three of these pieces in a large 

triangle pattern so that the wax pieces are about 5 mm from the edge, spaced 120° 

apart. 

37. Once the wax melts, put the scrap pieces of GaAs on top of the wax droplets, and 

push them into the wax using the end of a wooden stick.  Push them straight down, 

try not to let them move laterally.  Push down very hard.  The aim is to thin out the 

wax layer beneath the GaAs chip. 

38. Remove the disk from the hotplate, and let cool a bit.  Then spray the disk with 

acetone to remove any wax residue around the chips.  Rinse with methanol, dry 

with N2 and return disk to heater. 

39. Put a small piece of wax on the center of the disk.  Once it melts, put your sample 

piece, top side down, on the wax droplet.  Push down hard with the wooden stick.  

Remove the disk from the heater, cool, and again rinse away any residue with a 

stream of acetone, and then methanol.  Dry disk with N2.  Set aside. 

40. Clean a glass plate (about 6” x 6” x ¼”) with acetone soaked towelettes, then rinse 

well with methanol and dry.  Wrap the plate in a large sheet of dextalose paper (or a 

large filter paper) as though wrapping a gift, and secure it with masking tape.  One 

side of the plate should be tape-free and covered with just one smooth layer of 

paper, set this side up in a plastic tray (slightly bigger than the plate, with a lip at 

least ½” high). 

41. Put the quartz disk with the sample on it in a cylindrical Teflon chuck that has the 

following dimensions:  height = 2”, OD = 2.00”, ID = 0.275”.  At each end there 

will be a socket that will hold the quartz disk, with dimensions at one end:  socket 

depth = 0.150”, socket diameter = 1.50”; and at the other end:  socket depth = 

0.130”, socket diameter = 1.50”.  Put the disk in the deeper socket, with the sample 

side facing out of the socket.  Use a drop of water for adhesion. 

42. Mix bromine-methanol etch. Bromine is highly corrosive, and highly reactive with 

acetone (with which it produces a tear gas).  So wear a face shield, gloves and lab 

coat when handling bromine, and work under a fume hood.  Do not have any 

acetone near the workspace.  Put 25mL of methanol in a graduated cylinder.  Add 
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4mL of bromine.  Pour this mixture into a 30mL beaker.  Rinse out the cylinder 

with water and put away. 

43. Soak top side of dextalose paper covered glass plate with methanol.  Pour a small 

amount of the bromine-methanol solution on the center of the plate.  Grab hold of 

the Teflon chuck, holding the sample side down.   

44. Because the bromine-methanol can etch roughly if it is allowed to stagnate on the 

sample surface, the sample must always be kept moving.  Gingerly set the chuck on 

the glass plate so that the sample contacts the bromine-methanol solution.  

Immediately begin making ‘figure-8’ motions along the plate with the chuck – this 

will keep the solution moving across the sample and the etching will proceed 

smoothly.  Make 100 ‘figure-8’s and then just as gingerly slide the chuck off of the 

plate laterally (rather than pulling it up off the paper).  Rinse the sample and chuck 

with methanol and dry with N2.  

45. After every 100 ‘figure-8’s the thickness should be measured.  We use an Ono 

Sokki gauge (stand model: ST-022, gauge model: EG-225) to measure the sample 

height.   

46. Pour some more bromine-methanol in the center of the plate and repeat the process 

– making another 100 ‘figure-8’s.  Clean off the sample and chuck, and measure the 

sample height. 

47. Continue this until the sample thickness reaches about 170 µm.  The sample can 

only be thinned to about 170 µm in the deep socket, so once it reaches this 

thickness, the disk must be removed from the deep socket and put into the shallow 

socket at the other end of the chuck. 

48. Continue this process with the disk now in the shallow socket, but start making 

fewer ‘figure-8’s between measurements, as the etch process will proceed more 

quickly with the disk at this end.  As the target thickness of 50 µm is approached, 

make only a few ‘figure-8’s between measurements, so that the sample does not 

become accidentally over-thinned. 

49. Once the sample is thinned to 50 µm, remove the disk from the chuck.  Clean disk 

in methanol, and dry with N2.  Pour any remaining bromine-methanol into a 
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container filled with sodium thiosulfate powder, this will neutralize the bromine.  

Rinse out the paper with water, and throw away.  Clean the glass plate with 

methanol and dry with towelettes.  Rinse off the plastic tray. 

50. Remove the scrap GaAs chips at the edges of the disk by scraping them with a 

clean razor blade. 

51. With the sample still firmly attached to the disk, clean the ensemble on the spinner, 

sample side up, first with acetone, then methanol, then deionized water.  Blow dry 

for 2 minutes with N2 stream while still spinning. 

52. Spin on AZ5214 for 30 seconds at 5krpm.  Put on enough AZ5214 before spinning 

so that the whole disk is covered after it is spun. 

53. Set disk in kimax dish cover, and put in oven to bake for 30 minutes at 80°C. 

54. Set disk/sample in mask aligner, dial it all the way down, in contact mode, so that it 

will fit, and align the back gates.  This step requires an infrared camera, so that the 

structures on the top side will be visible for the alignment process (GaAs is 

transparent in the infrared). 

55. Expose for 15 seconds. 

56. Develop in a 4:1 solution of deionized water and AZ400K developer (I use 60mL 

of water and 15mL of developer).  It takes approximately 30-40 seconds to develop.  

Rinse under a stream of deionized water for about 1 minute, and blow dry with N2. 

57. Put disk/sample on spinner, and clean with a stream of deionized water for 2 

minutes, while spinning.  Then blow dry with N2 for another 2 minutes, while 

spinning. 

58. Evaporate on 1500 Å of Aluminum (99.999% pure). 

59. Soak disk/sample in a dish of acetone for a few minutes for the Aluminum liftoff. 

60. Clean the sample with a stream of acetone, and set the disk/sample in a kimax dish 

with a round filter paper (Whatman #1001055) on the bottom, and filled with clean 

acetone.  Set it sample side down, supported at one edge by a small magnet stirrer.  

It will take a few to several hours for the acetone to dissolve the wax that is holding 

the sample to the disk so that the sample will fall off and settle on the filter paper. 



 

 

158
61. Remove the disk and magnet stirrer.  Cover the sample with a second filter 

paper, and carefully remove the filter paper/sample sandwich from the acetone bath 

with a pair of tweezers.  It will be easier to handle this if a fold is put near the edge 

of the papers. 

62. Keeping the sample always between two filter papers (they can be replaced by 

clean ones as desired), squirt methanol on the papers/sample to remove acetone 

residue.  Allow to dry naturally. 

63. Bring the sample, like this, over to the wire-up station.  A custom chuck must be 

made out of Teflon, with very small holes drilled in the center, so that the vacuum 

that will hold the sample to the surface will be very gentle.  Slide the sample off of 

the filter paper, top side up, onto the center of this Teflon chuck.  If necessary, use a 

sharpened wooden stick to push the sample to where it needs to go.  Turn the 

vacuum on. 

64. Solder 1 mil gold wire to the contact pads around the perimeter of the design using 

Indium (99.999% pure) as the solder.  We use an Oryx model 54204-T-20VA 

miniature soldering iron with Oryx isotip # 7258. 

65. To secure the sample for the wire up of the back gates, remove the sample from the 

chuck, and flip it over onto a glass microscope slide.  The sample will be suspended 

above the slide, supported by the gold wires.  Solder a few of these gold wires to 

the glass slide to secure the sample.  Set this ensemble onto a standard vacuum 

chuck. 

66. Use conducting epoxy (epo-tek H20E from Epoxy Technology, Inc.) to attach 1 mil 

gold wires to the backside contact pads.  Mix the epoxy extremely well (stir with a 

wooden stick for about 10 minutes).  First put blobs of this epoxy onto the contact 

pads (with a sharpened wooden stick), and then poke the ends of the gold wires into 

the blob.  Put the slide and sample in to bake at 125°C for 1 hour to harden the 

epoxy.  Unsolder the wires from the glass plate, and the sample is now ready to be 

wired up to the pins of a DIP header or custom sample mount. 
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A p p e n d i x  B  

MASK DESIGN 

 

We design the masks used in the photolithography that defines the mesa geometry, contact 

location and the gating/contact lead structure.  For my early data, I used masks already in 

existence that had been designed by other members of the group.  But for my counterflow 

work, there were no preexisting mask designs that would allow for a counterflow current 

configuration, so this mask I designed myself.   

The foremost issue in my design for the counterflow mask was to include enough contact 

leads so that separate currents could be sent to the different layers.  This requires a 

minimum of four current leads (if the interlayer current is to also be monitored).  In single 

layer systems this number of contacts would not be a problem, but for double layers each 

contact needs a set of arm gates for separate layer contacting [1], this requires up to three 

wires for each contact.  Our sample mounts can accommodate at most 18 wires, so for 

compatibility with all the existing cryostats, I was limited to this number of contacts and 

gates.  Even so the fewest number of contacts and gates I could manage was 19 (see 

Fig._B.1); and two of the arm gates had to be wired to the same sample mount pin (the two 

back arm gates of the longitudinal voltage probes), which however never limited the 

measurement configurations I could set up. 
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Figure B.1: Mesa and gating design for sample ‘Y’ used for counterflow experiments.  The 
entire structure is 3mm x 3mm.  Figures 1.4 and 7.2 show a crystal processed with this mask. 

 

I also wanted the current distribution to be uniform through the central electron region.  For 

the counterflow experiment, the current density should be equal but opposite in the two 

layers.  To ensure this I settled on the ‘Y’-shaped design for my current contacts; the 

narrow constriction before the current enters the central region means that the current 

distribution will only have a small dependence on which contact it originates from.  To test 

the current uniformity I modeled the current flow in the mesa geometry using the partial 

differential equation solver toolbox in MATLAB [2].  By solving the Laplace equation 
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( , where Φ  is the electrostatic potential) with the following boundary 

conditions:  along the end of the lower left arm of the ‘Y’ contact, 

2 0∇ Φ =

constantΦ = 0Φ =  at 

the end of the right contact and 0n
∂Φ
∂ =  (where n

∂
∂  is the normal derivative) along the 

remaining edges of the mesa; and then plotting −∇Φ , I can produce a vector representation 

of the current distribution in my mesa geometry (see Fig B.2). 

 

Figure B.2: Numerical calculation of classical current distribution in counterflow mesa. 

 

Also at issue in the mesa design is the number of total squares that the current will flow 

through, as well as the number of squares that we are measuring along.  A square is the 

two-dimensional analogue to the length of the sample that the current flows through.  It is 

defined as the length L divided by the width W of the sample: L/W.   

At the low densities at which we work, the layer resistivity can become very large even at 

moderate magnetic field strengths and the total resistance of the sample can become so 

large that it changes the entire measurement circuit dynamics.  Usually this shows up as a 
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phase shift of the drive current in the sample.  So I made an effort to keep the total 

number of squares the current would pass through less than about 10 squares per layer.   

Additionally, it has been empirically noted that the number of squares measured across has 

an effect on the quality of the data taken at very low temperature and density (thus in the 

bilayer quantum Hall regime).  Some of our nicest data has come from square central 

regions (samples ‘N’ and ‘R’) where we were measuring approximately ln2/π squares 

(assuming van der Pauw current distribution [3]), and some of the least-nice data has come 

from a rectangle ten squares long (sample ‘K’).  So for this design I went in between the 

two and chose a one square long measurement region.  This way, the resistance that we 

measure, will be approximating the resistivity (the resistance per square). 

Also to be considered is that the mesa region needs to be small enough so that the 

inevitable Gallium “bullet” defects [4] in the crystal can be avoided when aligning the 

pattern onto the sample.  And the front and back gates should not lie above or below each 

other, because of the concern of shorts developing between the two.  All these requirements 

were met in the design shown in Fig. B.1. 
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______________________________________________________________________ 

1 J.P. Eisenstein, L.N. Pfeiffer and K.W. West, Appl. Phys. Lett. 57, 2324 (1990). 

2 See Appendix E for detailed information on how to use the PDEtool in MATLAB for 

this kind of calculation. 

3 L.J. van der Pauw, Philips Res. Rep. 13, 1 (1958). 

4 Inevitably, small blobs of gallium will get sputtered onto the crystal during the 

molecular beam epitaxy process.  These “bullets” of gallium can short together the two 

electron layers, and so they must be avoided during the photolithography alignment 

process.  They are easily visible under the mask aligner microscope. 
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A p p e n d i x  C  

COULOMB DRAG SETUP 

 

Measurements such as Coulomb drag, counterflow and tunneling can only be done because 

we are able to make electrical contact to the layers individually.  We do this by a technique 

called “selective depletion” which was invented by Eisenstein et al. [1].  By applying 

negative voltages to the gates that lie above and below the contact arms, we deplete the 

electrons in a region that cuts across the arm in the layer closest to the gate.  This makes 

one layer in the arm highly resistive to the flow of current and virtually all of the current 

will flow in the other layer.  We test and calibrate these arm gates by running “gate 

characteristic” measurements [2].  The gate characteristic information is used to set up the 

measurements requiring individual layer contact, such as Coulomb drag. 

In the Coulomb drag measurement, current is driven through just one of the layers, and the 

voltage is measured along the other, open-circuited layer.  It is very important that the layer 

in which the current flows is at or near ac ground, as alternating common mode voltages on 

this layer will cause a current to flow between the layers (either by tunneling or by 

capacitive coupling) and this can result in a spurious drag signal.  The simplest way to 

prevent this is to connect the two layers together at one of the contact points and then to 

ground this contact.  Then both the layers will be at both ac and dc ground.  Coulomb drag 
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measurements that require a dc bias voltage between the layers (for the suppression of 

tunneling or for layer density imbalance measurements), will call for a more complicated 

circuit. 

C.1     SETUP WITHOUT INTERLAYER BIAS 

For the simpler Coulomb drag measurement, I will give as an example an actual setup I 

used for sample ‘Y’.  This is a standard Coulomb drag setup. 

Put a 10k/100 Ω voltage divider on the EG&G/Princeton Applied Research model 124A 

lock-in amplifier’s output, set the output to 2 V RMS and the frequency to 23 Hz.  Put a 10 

MΩ resistor in series with the voltage divider, followed by a precision 10 kΩ resistor, 

which will be used to sense the current being sent into the sample.  The voltage across this 

resistor will be measured by a second lock-in that has been synchronized to the first lock-

in.  Send the current into arm 18 (see sample map in Fig. C.1).  Cut off arm 11 by putting -

2 V on gate 10, ground contact 11.  Put -0.45V on gate 16 to force the current to only go 

through the bottom layer in arm 18.  Keep contacts 8 and 17 open and put -43 V on gates 5, 

6 and 15.  This will nullify contacts 8 and 17, and allow arms 1 and 2 to be used to probe 

the voltage in the top layer.  Attach a pair of twisted coaxial cables from contacts 1 and 2 

directly to the first lock-in’s differential amplifier (model 116) set to direct mode.  Ground 

contact 7, and ground all gates not in use.  The layers will be connected through contact 7. 
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Figure C.1: The map for sample ‘Y’.  Black rectangles are the contacts.  The dashed lines 
indicate back gates. 

 

C.2     SETUP WITH INTERLAYER BIAS 

If the layers cannot be at the same dc voltage, in the case of interlayer bias dependent 

measurements for example, then the Coulomb drag circuit must be setup the following way 

(Fig C.2).  
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Figure C.2: The Coulomb drag circuit with interlayer bias. 

 

Again, I will use as an example an actual setup used with sample ‘K’.  Put a 10k/100 Ω 

voltage divider on the lock-in amplifier’s output, set the output to 0.2 V RMS and the 

frequency to 13 Hz.   Connect this to the top right input of a 1:1 Gertsch model ST-200 

transformer.  Connect “T”-connectors to the two transformer outputs.  Connect one arm of 

one “T” to the input of a Gertsch AC model 1011 Ratio Standard.  Connect one arm of the 

other “T” to the ratio standard’s common.  Put 500 kΩ resistors in series with the 

remaining arms of the “T”s with a 10 kΩ resistor in series with one of these – use this as 

the current sense resistor – the voltage across this resistor is measured by a second, 

synchronized lock-in detector.  Connect one of these leads to arm 12 and the other to arm 

14 (see sample map, Fig. C.3).  Put -0.6 V on gates 13, this will force the current to flow 

only in the bottom 2DEG layer.  Cut off arm 9 with -2 V on gate 10, ground contact 9. 
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Figure C.3:  The map for sample ‘K’.  The dashed lines indicate back gates. 

 

Connect arms 4 and 6 to the lock-in’s differential preamplifier (model 116), in direct mode, 

and connect the two leads together with two high-accuracy 1 MΩ resistors in series with a 

connection to ground in between them (see Fig C.2).  Put -39 V on gates 3 and 5, this will 

connect the voltage probes to the top 2DEG layer only. 

The ground between the two 1 MΩ resistors sets a virtual ground in the center of the drag 

layer, so long as the two 1 MΩ resistors plus the resistances in arms 4 and 6 are precisely 

matched. 
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C.3     CALIBRATING THE RATIO STANDARD 

The output of the ratio standard can either be grounded or connected to a dc voltage source, 

either way this will set a virtual ac ground in the drive layer.  The ratio standard allows for 

this ac ground to be moved around the circuit, so that it can be tuned to lie in the 2DEG 

itself.  This can best be done by looking at the 90° phase common mode voltage signal on 

the drag layer during the drag measurement while varying the ratio standard setting.  

Switch the preamplifier mode from ‘A-B’ (measuring the differential voltage) to ‘A’ or ‘B’ 

(measuring the absolute voltage on input ‘A’ or ‘B’) and change the lock-in’s phase setting 

to 90°.  When the ac ground is not centered in the 2DEG, the oscillating drive current will 

induce an oscillating common mode voltage on the layer.  The further away ac ground is  

 

 

Figure C.4: The 90° phase common mode voltage on the drag 2DEG as a function of the ratio 
standard setting.  In this measurement, the Coulomb drag circuit shown in Fig. C.2 is reduced 
to the voltage divider shown in the inset. 
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from the 2DEG, the larger this signal will be.  The 2DEG layers will act as a parallel plate 

capacitor and this signal will induce a 90° phase current to flow through the layers and into 

the ground between the two 1 MΩ resistors (now effectively 500 kΩ, as they are in 

parallel).  The Coulomb drag circuit is reduced to the voltage divider shown as the inset to 

Figure C.4, where the effective applied ac common mode signal is easily shown to be 

linearly proportional to the ratio standard setting.  The capacitance, C, of the two 2DEG 

layers is of order 100 pF for my mesa geometries. 

Figure C.4 shows the results of this measurement on sample ‘K’ at 300mK with a 13 Hz, 

100 nA drive current.  The ratio standard setting is ranged from 0.435 to 0.575 at 0.01 

increments.  The linear response observed over most of this range indicates how fittingly 

the circuit reduces to a simple voltage divider, as well as the linearity of the applied ac 

common mode voltage with the ratio standard setting.  This linear behavior stops below 

0.455 and above 0.565, when the amplitude of the common mode voltage becomes too 

large to maintain the integrity of the selective depletion scheme for maintaining separate 

layer contact, thus current starts flowing into both layers, and the voltage divider circuit is 

no longer valid. 

When the ac ground is centered in the 2DEG, the common mode voltage is zero and no 

current flows between the layers: V  will read zero – this yields the proper ratio standard 

setting.  For the data shown in Figure C.4, the proper setting is 0.505. 

out



 

 

171
C.4     SETTING THE PHASE 

Also to be considered in setting up the Coulomb drag measurement is the proper 

adjustment to the lock-in’s phase setting.  The phase of the signal coming out of the lock-in 

detector’s output will get shifted slightly as it goes through the circuit before it reaches the 

2DEG.  Working at these low frequencies, including the transformers in the circuit tends to 

shift the phase, as do the large resistances that we use in a circuit along with the inevitable 

capacitances to ground through the wires in the cryostat (a few nF).  The proper phase 

setting will be the one in which the current actually flowing in the bottom layer of the 

2DEG is defined as being purely real. 

The best way to set the phase, is to actually probe the current at a point in the circuit that is 

very close to the 2DEG.  In the above setup, the 10 kΩ resistor in series with one of the 

500_kΩ in the drive layer side of the circuit should be placed nearest to the 2DEG and this 

can be used to set the phase.  In the simpler Coulomb drag setup discussed earlier (in 

Section C.1), it is best to temporarily insert a sense resistor between the 2DEG and ground 

(in between contact 7 and ground in the example used) and set the phase by this current, 

then remove the resistor.  The phase is set correctly when the 0° signal is frequency 

independent and any 90° signal is strongly frequency dependent; and I have found that this 

method ensures that.  
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______________________________________________________________________ 

1 J.P. Eisenstein, L.N. Pfeiffer and K.W. West, Appl. Phys. Lett. 57, 2324 (1990). 

2 See Appendix F for detailed information on how to take and interpret gate 

characteristics. 
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A p p e n d i x  D  

COUNTERFLOW MEASUREMENT SETUP 

 

As an example of the counterflow setup, I will describe the setup used for the counterflow 

Hall data shown in Figure 7.5.  This is a standard counterflow setup. 

Put a 10k/100 Ω voltage divider on the EG&G/Princeton Applied Research model 124A 

lock-in amplifier’s output, set the output to 5 V RMS and the frequency to 5.1 Hz.  Put a 10 

MΩ resistor in series with the voltage divider.  Cut off arm 1 by putting -2 V on gate 3; 

ground contact 1 (see sample map in Fig. D.1).  Put -43V on gates 6 and 15 to force the 

current to only go through the bottom layers in arms 8 and 17.  Send the current into arm 8, 

extract current from arm 17, and then send through a precision 10 kΩ resistor for sensing 

the current.  Measure the voltage across this resistor using a second lock-in that has been 

synchronized to the first lock-in.  The phase can be set by this current.  Put -0.45V on gates 

9 and 16 to force the current to only go through the top layers in arms 7 and 18.  Redirect 

the current into arm 18 and then ground arm 7.  Attach a pair of twisted coaxial cables to 

arms 2 and 11 for measuring the Hall voltage and connect these to the first lock-in’s 

differential amplifier (model 116) set to direct mode.  Put -43V on gates 5 and 6 so that 

these arms only probe the top layer.  For parallel configuration, the setup would be the 

same except that the roles of arms 8 and 17 would be reversed:  the current would first be 
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sent into arm 17 and then be extracted from arm 8.   

 

Figure D.1: The map for sample ‘Y’.  The dashed lines indicate back gates. 
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A p p e n d i x  E  

MODELING CURRENT FLOW WITH PDETOOL IN MATLAB 

 

The Partial Differential Equation Toolbox in MATLAB can be used to solve the LaPlace 

equation (∇2 Φ = 0) for an arbitrary two-dimensional shape.  The following instructions are 

a modified version of instructions given to me by Ken Cooper. 

1. Start up MATLAB. 

2. To open the Partial Differential Equation Toolbox, type 

>>pdetool 

at the prompt, and then hit return. 

3. This will open up the PDE Toolbox window.  Press the moon shape button to draw 

a shape in the blank space below the menu bar.  Click the mouse to define the 

vertices.  When you return to your starting point, the shape will close itself 

automatically. 

4. Press the dΩ button to set up the boundary conditions for your shape.  Select one or 

more sides of your shape by clicking them with the mouse (Shift-click for multiple 

selections).  Then under the Boundary menu, select Specify Boundary 

Conditions.  Choose Dirichlet conditions to set a constant voltage (set h=1, r to the 

voltage, e.g. r=0 or r=1).  Choose von Neumann for the condition that no current 

flows across the boundary (set g=0 and q=0).  Do this for all sides of your shape. 
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5. Press the PDE button.  This will bring up a box with generic differential 

equations to choose from.  For the LaPlace equation, choose elliptical and set c=1, 

a=0, and f=0. 

6. This program will solve for the potential using the finite element method.  This 

method breaks up the shape into a mesh, to initiate this mesh, press the triangle 

button. 

7. You can then refine this mesh by pressing the triangle-within-a-triangle button.  

Pressing this twice is usually sufficient. 

8. Press the “=” button to solve the equation for your shape.  This will display the 

solution as a color gradient in your shape, where each color represents an 

equipotential. 

9. For other display options, press the plot button.  Choose arrow and “- grad u” and 

proportional to display the current as a vector field (Fig. E.1). 

                            

Figure E.1: Numerical calculation of current distribution in counterflow mesa. 

 

10. To further manipulate the data, you must export it out of PDE Tool into the main 

MATLAB program.  To do this select Boundary:Export Boundary, PDE:Export 

PDE Coefficients, Mesh:Export Mesh, and Solve:Export Solution.  PDE Tool 
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will automatically assign variable names to these data arrays. ‘u’ is the 

calculated potential, ‘p’ and ‘t’ are the mesh coordinates, etc. 

11. Back in the main MATLAB window, here are some commands you can use to 

display and manipulate the PDE Tool data: 

 

>>pdesurf(p,t,u)     {displays a 3D view of the solution, click the mouse in the                              

                                  figure window to change the display angle} 

>>help pdesurf       {use the help command for more information on a command} 

>>[jxt,jyt]=pdecgrad(p,t,c,u)       {this takes the gradient of u in the x and y  

                                  directions and names the output ‘jxt’ and ‘jyt’} 

>>jxn=pdeprtni(p,t,jxt)        {this converts the triangle mesh data into node data} 

>>jyn=pdeprtni(p,t,jyt)        {this does the same for the y-component data} 

>>x=-1.5:0.01:1.5 

>>y=-1.0:0.01:1.0    {these create an x-y grid for plotting the node data} 

>>jxgrid=tri2grid(p,t,jxn,x,y)     {this maps the x-component current node data  

                                                       to the grid} 

>>jygrid=tri2grid(p,t,jyn,x,y)     {and the y-component node data} 

>>contour(jxgrid)    {makes a contour plot of the x-component of the current} 

>>jxcs=jxgrid(:,200)    {takes line x=200 from ‘jxgrid’ and saves it as a 1D array 

                                    called ‘jxcs’} 

>>plot(jxcs)                 {plots the 1D array} 
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A p p e n d i x  F  

HOW TO TAKE GATE CHARACTERISTICS 

 

This measurement tests the diffusive contact resistance to each layer, as well as calibrates 

the arm gate voltages needed to establish separate layer contact.   

Put a 511/1 Ω voltage divider on the EG&G/Princeton Applied Research model 124A lock-

in amplifier’s output; along with the 600 Ω output impedance of the lock-in, this will serve 

as a 1000:1 voltage divider.  Set the output voltage knob to 1 V RMS, thus applying an 

approximately 1 mV signal to the 2D electron gas.  Send this signal across a resistor (we 

usually use one of our variable resistor boxes) and then into the contact arm you wish to 

check; ground all the other contacts.   

Measure the voltage across the resistor using the lock-in’s differential preamplifier (model 

116) while applying a steadily decreasing voltage to the arm gate you wish to test (all other 

gates should be grounded).  The value you choose for the resistor should be one that is 

comparable to the contact’s resistance (1 kΩ is good, unless there are other resistances in 

series with the contact arm, and then include those).  The voltage across the resistor 

approximates the conductance of the contacts.  Figure F.1 shows typical gate characteristic 

measurements. 
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Figure F.1: Typical gate characteristics for the top (a) and back (b) gates of one of the contact 
arms.  Taken at 4 K with a 1 mV excitation signal. 

 

As the gate voltage decreases from zero on the top arm gate (Fig F.1a), the electrons begin 

being depleted underneath the arm gate in the top layer.  At first this has little effect on the 

conductance of the arm; but as the electrons near total depletion, the conductance in the 

depleted layer falls dramatically until the layer no longer supports current flow – this 

creates the step observed around -0.4 V.  Once the top layer is depleted, the region 

underneath the gate in the bottom layer starts losing electrons.  Again, this has little effect 

on the conductivity until the gate voltage reaches around -0.8V, and then the conductivity 

drops quickly to zero as the last electrons are depleted at just below -1 V.  

For the back arm gate characteristics, we only deplete the bottom layer since the large 

voltages that would be required to deplete both layers (around -80 V) may cause electrical 

breakdown in the sample.  The depletion of the bottom layer is completed around the 

inflection point seen around -42 V in Fig F.1b. 
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The contact resistance can be backed out of these measurements by solving the voltage 

divider equation (F.1) 

                                           
1 (( )

( )
out

contacts
out

V mVR k
V mV

)−
Ω =                                        (F.1) 

for the measurement setup (Fig F.2). 
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Figure F.2: On the left is the gate characteristic measurement circuit – a simple voltage divider.  
And on the right, the resistances inferred from the gate characteristic measurements in Fig F.1. 

 

Applying this equation to the data in Fig F.1 gives the resistance of each layer alone as well 

as the two combined (Fig F.2).                                       
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A p p e n d i x  G  

LAYER DENSITY BALANCING BY COULOMB DRAG 

 

There are two methods in general use for balancing the densities of the two layers.  If 

there is a reasonable tunneling signal, tunneling is an excellent method for matching the 

densities in the two layers.  For this work, samples were chosen for their exceedingly 

low tunneling, and consequently I did not have sufficient tunneling signal to use this 

method to balance the layers.   

The second method for balancing the layers is to take conventional transport 

measurements of the layers individually – the location of the QHE minima with respect 

to the magnetic field depends on the layer’s density.  This technique is just a matter of 

getting the minima in the magneto-transport data traces in each layer to line up. 

Since the transport measurement I used most regularly was Coulomb drag, I found what 

was for me a simpler method for balancing the layers – balancing by Coulomb drag.  This 

proved to be equally precise as the other methods, and gave similar balancing gate voltages 

to within this precision.  This also had the added advantage that I was balancing in the 

configuration that I would be taking the data in, incase the configuration has subtle 

influences on the density, the homogeneity, or more directly – the regions probed in the 

density balancing measurements.  However, slight mismatches in density have very little 



 

 

182
impact on the drag (a ±5 mV change in the top gate voltage, results in a ~ 1.5% change 

in the value of the drag), so balancing by Coulomb drag was favored mainly for its 

convenience. 

It is possible to balance the two layers by Coulomb drag because the drag in the high 

Landau levels goes negative when the layers are out of balance [1].  So I would simply take 

Coulomb drag measurements up to the fifth Landau level or so at different gating voltages,  
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Figure G.1: Coulomb drag measurements from sample ‘K’ taken September 21, 2000 is used 
to find the top gate voltage that balances the ungated bottom layer.  0V/-10mV was chosen as 
the balanced gating configuration. 

 

and select the one that showed the drag to be positive over the largest range (see Figure 

G.1).  This method was confirmed by checking how well the locations of the QHE minima 

in magnetic field were linearly fit to the inverse filling factors of these minima (by the 
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relation nhB
eν

= , where ν  is the Landau level filling factor); a smaller standard 

deviation to the fit should indicate that the minima are well defined by a single density n 

(the same density that is in each layer).  The drag I chose as balanced by eye, always had 

the smallest standard deviation in the fit, confirming my choice. 
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A p p e n d i x  H  

HOW TO DETERMINE DENSITY AND MOBILITY 

 

We measure the density by comparing the locations (in magnetic field) of the minima in the 

Shubnikov-de Haas oscillations with their Landau level filling factor ν .  The two are 

related by 

min
hnB
eν

= .                                                          (H.1) 

Plotting minB  versus 1ν −  should yield a straight line, the slope of which is directly 

proportional to the density .  This will work with the Shubnikov-de Haas oscillations in 

Coulomb drag, tunneling and other measurements, but here I will go through an example 

where the density is calculated using conventional transport through both layers (this is the 

standard method used in our lab). 

n

Conventional transport through both layers has a very simple setup:  Put a 10k/100 Ω 

voltage divider on the EG&G/Princeton Applied Research model 124A lock-in amplifier’s 

output, set the output to ~ 5 VRMS (for an ~ 5 nA current, though I go as high as 20 nA for 

these measurements).  Put a 10 MΩ resistor in series with the voltage divider, followed by 

a precision 10 kΩ resistor, which will be used to sense the current being sent into the 
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K

sample; the voltage across this resistor will be measured by a second lock-in that has 

been synchronized to the first lock-in.  Send the current into one the contacts and ground 

another; the current will flow between these two contacts.  Attach a pair of twisted coaxial 

cables to two of the remaining contacts to measure the longitudinal resistivity.  Open all the 

remaining contacts; ground all of the gates.  

Figure H.1 shows the typical result of such a measurement done at T  for sample 

‘Y’ at nominal density, versus magnetic field.  Shubnikov-de Haas oscillations can be 

identified up to 

0.05=

30ν =  in this sample at this temperature – I have labeled a few of them in 

the figure. 
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Figure H.1: Conventional transport measurement on sample ‘Y’ at nominal density.  The 
locations of the minima can be used to determine the density of the sample.  Some of the 
filling factors are identified.  The odd filling factors correspond to spin-split Landau levels and 
have a smaller energy gap than the even filling factors, this is why they disappear above 

11ν = , where the thermal energy is comparable to the energy gap, but the even ones remain.  
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When the minima in magnetic field from Fig. H.1 are plotted against the inverse of the 

filling factor, a straight line results (see Figure H.2).  If a straight line is not obtained, then 

the filling factors have been counted wrong.   
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Figure H.2: The location of the minima in magnetic field taken from Figure H.1 are plotted 
versus the inverse of the filling factor.  The slope of this line is directly proportional to the 
electron density. 

 

The line shown in Fig. H.2 is fit by the function 1( ) 0.0056 2.255B T T ν= − + .  The offset 

comes from the fact that in our transport measurements we are ramping the current in the 

magnet, creating a small dI
dt  voltage which diverts some of the current through the shunt, 

and leads to an offset between the measured current and the actual magnetic field that’s 

generated.   

Comparing the slope of this line to the more useful version of equation (H.1): 

10 2
min

1( ) 0.414 (10 cm )B T n
ν

−= × × ,                                       (H.2) 
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and the density is found to be 10 25.45 10 cmn −= × .  Note that this is slightly higher than 

the nominal density for sample ‘Y’ quoted in this thesis, because this is the unbalanced 

nominal density, and we quoted the balanced nominal density. 

The mobility is defined as e
m
τµ ∗=  and is thus a direct measure of the momentum 

relaxation time τ .  The mobility can be obtained by combining the electron density and the 

sample resistivity at zero magnetic field, which is 64 /xxρ = Ω ,  from Figure H.1, using the 

relation: 

( )
2

2

cm 1
/ ( ) (cmxxV s e C n

µ
ρ −

 
= ⋅ Ω  , )

                                      (H.3) 

For this example the mobility is 
2cm896,000

V s
µ =

⋅
. 
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A p p e n d i x  I  

HOW TO DETERMINE DENSITY IMBALANCE 

 

Applying a bias voltage between the layers shifts charge from one layer to the other.  

The amount of charge that is transferred can be estimated by treating the two layers as a 

parallel plate capacitor with capacitance 0A
d

C ε κ
= , where 0ε  is the permittivity of free 

space,  is the dielectric constant (κ ~ 12.8κ  in GaAs) and  is the layer area.   Then A

 1 2
2Q Qn n n

eA eA eA
Q−

∆ ≡ − = − =                                          (I.1) 

where  is the excess charge in the layer; this can be solved for using the basic 

capacitor formula :    

Q

Q CV=

0 02 22 2 A VQ CVn V
eA eA deA de

ε κ ε κ ∆ = = = =  
 

                                  (I.2) 

which gives a relationship between the bias voltage applied V  and the resulting change in 

absolute density .  However, rather than relying on this equation, we can also measure 

this relation directly.  This is how I determined 

n∆

T

n
n
∆  for the data shown in this thesis. 
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2

Again we use the fact that the drag goes negative in the high Landau levels when the 

layers are imbalanced [1].  Specifically, it goes negative when the Landua level filling 

factor difference between the layers 1ν ν ν∆ = −  is odd. 

If a bias voltage is applied along with a small perpendicular magnetic field such that the 

drag is in a regime where the high Landau level Shubnikov-de Haas oscillations are strong, 

then ν∆  can be determined by observing the oscillations as it changes from odd to even 

and back again, and then  can be inferred by the relation: n∆

1 2T

n
n

ν
ν ν

∆ ∆
=

+
.                                                          (I.3) 

 

As an example, Figure I.1 shows data taken on sample ‘K’ at nominal (balanced) density in 

a perpendicular magnetic field 0.129B T= .  When the bias voltage is zero, the Coulomb 

drag is in a Shubnikov-de Haas minimum with 16ν =  in each layer.  As an interlayer bias 

is applied, this minimum will go negative as ν∆  approaches an odd number and will rise 

back up as ν∆  becomes even.  The peaks in Figure I.1 correspond to these even ν∆ .  By 

noting the bias voltage separating the peaks and utilizing equation I.3, it can be found that 

0.050 bias( )
T

n mV
n
∆

= ×  for this density.  This corresponds to a value of Å in 

equation I.2, very close to our center-to-center well separation of  Å. 

277d =

280d =
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Figure I.1: Longitudinal drag resistivity versus interlayer bias at 10 25.1 10 cmn −= ×  with 
0.129B T=  taken at 0.3 K.  The peaks occur when the filling factor in each layer differ by an 

even integer, the number pairs indicate the filling factor in each layer. 

 

The same measurement can be done for the other densities, allowing us to convert from 

bias voltage to density imbalance at any density. 
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A p p e n d i x  K  

FORTRAN CODE 

 

There are 4 Fortran programs in this appendix*: 

 

CoulombDragforCosineWells is the most basic program, it calculates the drag for GaAs 

electrons (m* = 0.067), assuming their wavefunctions take on a cosine shape in the wells 

(this is a pretty good assumption).  This program numerically integrates equation 2.29 for 

layer separation , well width , density in layer 1 , density in layer 2 , and 

temperature T  as input by the user. 

d w 1n 2n

CoulombDragusingFormFactors is the same as “CoulombDragforCosineWells,” except 

that instead of assuming a cosine wavefunction, this program uses the form factors (see 

Jauho & Smith [1] for discussion of form factors) specific to the DQW system.  Before 

running this program, the program "dqwbiasandform" must be run first. 

dqwbiasandform is a program written by Jim Eisenstein which calculates the electronic 

wavefunction for user-specified DQW parameters.  I have modified this program so that it 

also computes the form factors and outputs them into two files named 'g11' and 'g12'.  

"CoulombDragusingFormFactors" will need to read these files in order to run.  The form 

factors are dependent upon the *average* density of the system.  So, it is important to run 

"dqwbiasandform" for each new *average* density calculated. 

                                                 
* These programs can be obtained at my website: http://www.its.caltech.edu/~mk/Coulomb_Drag.html.  

http://www.its.caltech.edu/~mk/Coulomb_Drag.html
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HoleDragforCosineWells this program is the same as “CoulombDragforCosineWells,” 

except that it allows the user to choose the effective mass of the electron (or hole).  This 

greater freedom makes for a slightly less user-friendly program though. 

 

KNOWN PROBLEMS AND ISSUES: 

1.  Sometimes the integration algorithm will produce a 'bad' data point or two.  This will be 

obvious when the data is plotted, as these bad points are off by a large amount!  You will 

notice that these bad points are often calculated much faster than the neighboring data 

points.  The only way to correct for this problem is to run the program again, just for that 

one point, at a much higher precision (this option is given to you when you run the 

program).  You must then replace the bad data point with the new one. 

2.  These programs need to be linked to "smaths.lib" and "smathd.lib" in order to run.  You 

must add these links to the workspace that you run the program from.  Add these links 

under Project:Settings:Link. 
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Program #1:         CoulombDragforCosineWells 
 
* 
*  PROGRAM CoulombDragforCosineWells.f 
* 
*  Integrates 4D boltzmann formulation for the drag, as given in  
*  a paper by Jauho & Smith PRB 47,4420, assuming the electron 
*  wavefunction is a cosine (as is used in the paper).   
*  This program will output either CD vs. T, or CD vs. delta(n)/<n> 
*  for a given <n> (density per layer), d (center-to-center layer 
*  separation), w (well width), and in T (temperature). 
* 
*  This program only calculates the drag for electrons with  
*  m* = 0.067m_0  - the effective mass of electrons in GaAs. 
*  And kappa is set to 12.8. 
* 
 INTEGER MAXFCN,N,I,J,dragtype,loop 
 real time1,time2 
 character filename*25,fdt1*56,fdt2*23,temp*3,header*80,stime*8 
 character precisionvariable*12, dragtypename*21 
 double precision 

A(4),B(4),RESULT,F,ERREST1,ERRABS,ERRREL,RESULT1 
 double precision L,ERREST2,deltat,tend,n1r,n2r,kf1,kf2,kfmax 
 double precision nave,deltanend,errnumber,deltan,dr,wr,pi 
 double precision tf1,tf2,tfmax 
 double precision n1,n2,w,d,t 
 EXTERNAL F,DQAND 
 common n1,n2,w,d,t 
 
 pi=3.1415927 
 N = 4 
 MAXFCN = 2100000000 
 ERRABS=0.0 
 
*  choose 'CD vs. T' or 'CD vs. delta n' option 
 PRINT *,'' 
10 PRINT *,'Enter the number "0" if you wish to calculate Drag vs. T;' 
 PRINT *,'or "1" if you wish to calculate Drag vs. delta(n)/<n>:' 
 PRINT *, '' 
 READ *,dragtype 
 
  IF (dragtype == 0) THEN 
  dragtypename = 'Drag vs. T' 
  ELSE IF (dragtype == 1) THEN 
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  dragtypename = 'Drag vs. delta(n)/<n>' 
  ELSE 
  PRINT *, '' 
  PRINT *, 'You must choose either 0 or 1, please try again.' 
  PRINT *, '' 
  GOTO 10 
  END IF 
 
 PRINT *, '' 
 PRINT *, 'You have chosen:' 
 PRINT 44, dragtypename 
44 FORMAT (A40) 
 PRINT *,"" 
*  get n,d,w,T etc. as needed, and automatically set errrel from these - allow  
*  the option of autochoose errrel or choose it manually.  Then it's up to the user to 
*  understand how to choose them. 
 
  IF (dragtype == 0) THEN 
   PRINT *,'' 
   PRINT *,'Start temperature in K:' 
   PRINT *, '' 
   READ *,t 
   PRINT *,'' 
   PRINT *,'Temperature steps in delta K:' 
   PRINT *, '' 
   READ *,deltat 
   PRINT *,'' 
   PRINT *,'End temperature in K:' 
   PRINT *, '' 
   READ *,tend 
   PRINT *,'' 
   PRINT *,'Density in layer 1 (in units of 10^10 cm^-2):' 
   PRINT *, '' 
   READ *,n1r 
   PRINT *,'' 
   PRINT *,'Density in layer 2 (in units of 10^10 cm^-2):' 
   PRINT *, '' 
   READ *,n2r 
  ELSE  
   PRINT *,'' 
   PRINT *,'Average density per layer <n> (x10^10 cm^-2):' 
   PRINT *, '' 
   READ *,nave 
   PRINT *,'' 

 
   PRINT *,'delta(n) per layer steps (in units of 10^10 cm^-2):' 
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   PRINT *, '' 
   READ *,deltan 
   PRINT *,'' 
   PRINT *,'delta(n)/<n> max (e.g., 0.6):' 
   PRINT *, '' 
   READ *,deltanend 
   PRINT *,'' 
   PRINT *,'Temperature in K:' 
   PRINT *, '' 
   READ *,t 
  END IF 
 
 PRINT *,'' 
 PRINT *,'center-to-center layer separation, d, (in Angstroms):' 
 PRINT *, '' 
 READ *,dr 
 PRINT *,'' 
 PRINT *,'well width, w, (in Angstroms):' 
 PRINT *, '' 
 READ *,wr 
 
 IF (dragtype == 0) THEN 
   ERRREL = 0.02 
 ELSE 
   ERRREL = 0.01 
 ENDIF 
 
* set parameters to their MKS units 
 d = dr*1D-10 
 w = wr*1D-10 
 IF (dragtype == 0) THEN 
  n1 = n1r*1D14 
  n2 = n2r*1D14 
 ELSE 
  n1 = nave*1D14 
  n2 = nave*1D14 
 ENDIF 
 
* and determine k_fermi and T_fermi for setting L: 
 kf1 = sqrt(2*pi*n1) 
 kf2 = sqrt(2*pi*n2) 
 kfmax = max(kf1,kf2) 
 tf1 = 4.15D-14*n1 
 tf2 = 4.15D-14*n2 
 tfmax = max(tf1,tf2) 
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*  Now choose to have 'ERRREL' set automatically or by hand: 
 PRINT *,'' 
 PRINT *,'If you wish to set the precision of the calcualtion' 
 PRINT *,'yourself, type in "man".  Type in anything else and' 
 PRINT *,'the precision will be assigned automatically.' 
 PRINT *, '' 
 READ *,precisionvariable 
  IF (precisionvariable == 'man') THEN 
   PRINT *,'' 
   PRINT *,'For ', dragtypename, ' the error variable "ERRREL" ' 
   PRINT 46,'is set to', ERRREL,'.  For higher precision (but' 
46   FORMAT (A10,F6.2,A28) 
   PRINT *,'longer computation time) type in a SMALLER number.' 
   PRINT *, 'For less precision, but faster computation time' 
   PRINT *,'type in a LARGER number (but keep it < 1).' 
   PRINT *,'(to learn more about "ERRREL", see "DQAND" ' 
   PRINT *,'in IMSL library).  Enter error precision now:' 
   PRINT *, '' 
   READ *,ERRREL 
  ELSE 
  ENDIF 
 
 PRINT *,'' 
45 FORMAT (A19,F8.3) 
 PRINT 45,'ERRREL is set to: ', ERRREL 
 PRINT *,'' 
 
  
*  get filename 
 PRINT *,'' 
 PRINT *,'This program will put the results of the calculations' 
 PRINT *,'in a subdirectory of your current folder.  The' 
 PRINT *,'subdirectory will be called "output" (you may need to' 
 PRINT *,'create this yourself).  You must choose a file name' 
 PRINT *,'for each run of this program.' 
 PRINT *,'' 
 PRINT *,'What filename do you wish to use?' 
 PRINT *,'' 
 READ *,filename 
 fdt2 = 'output\'//filename 
 open(2,FILE=fdt2) 
 
*  write header information to file 
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 WRITE (2,33),dragtypename 
33 FORMAT ('',A36) 
 WRITE (2,'(A20)') ('') 
 WRITE (2,'(A42)') 'For GaAs electrons (m*=0.067, kappa=12.8),' 
 WRITE (2,34) 'd =',dr,'A, w =',wr,'A.  Cosine wavefunction.' 
34 FORMAT (A3,F6.1,A8,F6.1,A25) 
 IF (dragtype == 0) THEN 
 WRITE (2,36) 'n1 =',n1r,', n2 =',n2r,' x 10^10 cm^(-2)' 
36 FORMAT (A4,F5.2,A6,F5.2,A16) 
 ELSE 
 WRITE (2,37) 'T =',t,'K.  n1, n2 are in MKS units (m^-2).' 
37 FORMAT (A3,F6.2,A35) 
 ENDIF 
 
  
*  this calculates the number of times to run the do loop 
 IF (dragtype == 0) THEN 
  loop = nint((tend -t)/deltat)+1 
 ELSE  
  loop = nint((deltanend*nave)/(2*deltan))+1 
 ENDIF 
 
 
 PRINT *,'' 
 CALL TIME(stime) 
 PRINT *,'start time: ',stime 
 PRINT *,'' 
 PRINT 47, 'd =',dr,' Angstroms' 
47 FORMAT (A4,F6.1,A10) 
 PRINT 47, 'w =',wr,' Angstroms' 
 IF (dragtype == 0) THEN 
  PRINT 48, 'n1 =',n1r,' x 10^10 cm^-2' 
  PRINT 48, 'n2 =',n2r,' x 10^10 cm^-2' 
48  FORMAT (A5,F6.2,A14) 
  PRINT *,'  K','       Ohms   ','error   ','elapsed seconds' 
  WRITE (2,'(A20)') ('') 
  WRITE (2,'(A42)'),' K       Ohms           error        sec' 
 ELSE 
  PRINT 49, 'T =',t,'K' 
49  FORMAT (A4,F6.2,A2) 
  PRINT 445,'n1       n2','Ohms','error','seconds' 
445  FORMAT ('',A14,A14,A11,A15) 
  WRITE (2,'(A20)') ('') 
450  FORMAT ('',A7,A10,A12,A16,A12,A7) 

 
  WRITE (2,450),'n1','n2','ohms','error','sec','deltan' 
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 ENDIF 
 
  
 DO 7, I=1,loop 
 
*  This sets the integration limits, and calls the integration 
*  program (DQAND) from the IMSL library, and solves the integral 
* 
* SET APPROPRIATE LIMITS (L) FOR THE TEMPERATURE 
 IF (t .LE. tfmax/10) THEN 
 L = 2*kfmax 
 ELSE IF (tfmax/10 .LT. t .LE. tfmax/6.5) THEN 
 L = 3*kfmax 
 ELSE IF (tfmax/6.5 .LT. t .LE. tfmax/4.5) THEN 
 L = 4*kfmax 
 ELSE 
 L = 5*kfmax 
 END IF 
 
 A = (/0.0D8,0.0D8,-L,0.0D8/) 
 B = (/L,L,0.0D8,L/) 
  
 CALL CPU_TIME(time1) 
 CALL DQAND(F,N,A,B,ERRABS,ERRREL,MAXFCN,RESULT,ERREST1) 
 RESULT1 = RESULT 
 
 A = (/0.0,0.0,0.0,0.0/) 
 B = (/L,L,L,L/) 
  
 CALL DQAND(F,N,A,B,ERRABS,ERRREL,MAXFCN,RESULT,ERREST2) 
 CALL CPU_TIME(time2) 
 
  IF (dragtype == 0) THEN 
 PRINT 

100,t,RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2),time2-time1 
100 FORMAT ('',F5.1,F11.4,E14.4,F8.1) 
 WRITE (2, 20),t,RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2), 
     &time2-time1 
20 FORMAT (F5.1,E15.4,E14.4,F9.1) 
  ELSE 
 PRINT 101,n1,n2,RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2), 
     &time2-time1 
101 FORMAT ('',2E9.2,F11.4,E14.4,F9.1) 

 

 WRITE (2, 
21),n1,n2,RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2), 
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     &time2-time1,(2*(n1-n2)/(n1+n2)) 
21 FORMAT (E10.3,E10.3,E13.6,E14.4,F10.1,F8.5) 
  ENDIF 
 
* increment the temperature or the delta n 
 IF (dragtype == 0) THEN 
 t = t + deltat 
 ELSE 
 n1 = n1 + deltan*1D14 
 n2 = n2 - deltan*1D14 
 ENDIF 
 
    7 CONTINUE 
 
 END 
 
 
 double precision FUNCTION F(N,X) 
 integer N 
 double precision X(N),qtf,kb,tf1,tf2,k 
 double precision a,kappa,Const,pi,m,Const2 
 double precision n1,n2,w,d,t 
 common n1,n2,w,d,t 
 
  
 tf1 = 4.15D-14*n1 
 tf2 = 4.15D-14*n2 
 kappa = 12.8 
 qtf = 1.977D8 
 pi = 3.1415927 
 m = (1/(4*pi*pi)-1/3.0+1/(pi*pi)) 
 kb = 1.381D-23 
*  a is m* e^2/pi^2 kb h_bar qtf^4 (4 pi epsilon)^2 
 a = 5.76361D-27 
*  k is (h_bar)^2/2 m* 
 k = 9.1187D-38 
 
 
 Const = a / (kappa*kappa*n1*n2*t) 
 Const2 = qtf*qtf*Const 
 
*  Here is the integrand (X{} = k1y,k1'x,k1'y,k2perp): 
 IF (sqrt(X(2)**2+(X(3)-X(1))**2) .GE. 0.0) THEN 
 

 
 F= Const*X(1)*(sqrt(X(2)**2+(X(3)-X(1))**2))**3*(EXP((k*(X(1)**2) 
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     &-kb*tf1)/(kb*t))+1)**(-1)*(1-(EXP((k*(X(2)**2+X(3)**2)-kb*tf1) 
     &/(kb*t))+1)**(-1))*(EXP((k*(X(4)**2+(X(2)**2+(X(3)-X(1))**2) 
     &/4+((X(1)**2-X(2)**2-X(3)**2)**2/(4*(X(2)**2+(X(3)-X(1))**2)) 
     &-(X(1)**2-X(2)**2-X(3)**2)/2))-kb*tf2)/(kb*t))+1)** 
     &(-1)*(1-(EXP((k*(X(4)**2+(X(2)**2+(X(3)-X(1))**2)/4+(X(1)**2 
     &-X(2)**2-X(3)**2)/2+(X(1)**2-X(2)**2-X(3)**2)**2/(4*(X(2)**2 
     &+(X(3)-X(1))**2)))-kb*tf2)/(kb*t))+1)**(-1))*(EXP 
     &(sqrt(X(2)**2+(X(3)-X(1))**2)*d)*(sinh(sqrt(X(2) 
     &**2+(X(3)-X(1))**2)*w/2))**(-2)*(8*pi*pi/(sqrt(X(2)**2+(X(3)-X(1)) 
     &**2)*w*(4*pi*pi+(X(2)**2+(X(3)-X(1))**2)*w*w)))**(-2) 
     &*((2/(sqrt(X(2)**2+(X(3)- 
     &X(1))**2)*w)-EXP(-sqrt(X(2)**2+(X(3)-X(1))**2)*w/2)* 
     &sinh(sqrt(X(2)**2+(X(3)-X(1))**2)*w/2)*(8*pi*pi/ 
     &(sqrt(X(2)**2+(X(3)-X(1))**2)*w*(4*pi*pi+(X(2)**2+(X(3)-X(1))**2) 
     &*w*w)))**2+sqrt(X(2)**2+(X(3)-X(1))**2)*w/(4*pi*pi+ 
     &(X(2)**2+(X(3)-X(1))**2)*w*w))+sqrt(X(2)**2+(X(3)-X(1))**2) 
     &/qtf)**2-EXP(-d*sqrt(X(2)**2+(X(3)-X(1))**2))*(sinh(sqrt(X(2) 
     &**2+(X(3)-X(1))**2)*w/2))**2*(8*pi*pi/(sqrt(X(2)**2+(X(3)-X(1)) 
     &**2)*w*(4*pi*pi+(X(2)**2+(X(3)-X(1))**2)*w*w)))**2)**(-2) 
 
 ELSE 
 
 F= Const2*X(1)*(sqrt(X(2)**2+(X(3)-X(1))**2))*(EXP((k*(X(1)**2) 
     &-kb*tf1)/(kb*t))+1)**(-1)*(1-(EXP((k*(X(2)**2+X(3)**2)-kb*tf1) 
     &/(kb*t))+1)**(-1))*(EXP((k*(X(4)**2+(X(2)**2+(X(3)-X(1))**2) 
     &/4+((X(1)**2-X(2)**2-X(3)**2)**2/(4*(X(2)**2+(X(3)-X(1))**2)) 
     &-(X(1)**2-X(2)**2-X(3)**2)/2))-kb*tf2)/(kb*t))+1)** 
     &(-1)*(1-(EXP((k*(X(4)**2+(X(2)**2+(X(3)-X(1))**2)/4+(X(1)**2 
     &-X(2)**2-X(3)**2)/2+(X(1)**2-X(2)**2-X(3)**2)**2/(4*(X(2)**2 
     &+(X(3)-X(1))**2)))-kb*tf2)/(kb*t))+1)**(-1))*(2*d*qtf+2*w*qtf*m 
     &*(1+sqrt(X(2)**2+(X(3)-X(1))**2)*d+sqrt(X(2)**2+(X(3)-X(1))**2) 
     &/qtf)+2+2*sqrt(X(2)**2+(X(3)-X(1))**2)*d+sqrt(X(2)**2+(X(3)-X(1) 
     &)**2)/qtf+sqrt(X(2)**2+(X(3)-X(1))**2)*qtf*w*w*m*m)**(-2) 
 ENDIF 
 
 RETURN 
 END
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Program #2:         CoulombDragusingFormFactors 
 
* 
*  PROGRAM CoulombDragusingFormFactors.f 
* 
*  Integrates 4D boltzmann formulation for the drag, as given in  
*  a paper by Jauho & Smith PRB 47,4420, using form factors calculated 
*  for our wells (this is discussed in the paper).  You must run the 
*  program 'dqwbiasandform' to generate the form factor files.   
*  This program will output either CD vs. T, or CD vs. delta(n)/<n>. 
* 
*  This program only calculates the drag for electrons with  
*  m* = 0.067m_0  - the effective mass of electrons in GaAs. 
*  And kappa is set to 12.8. 
* 
 INTEGER MAXFCN,N,I,J,dragtype,loop,k 
 real time1,time2 
 character filename*25,fdt1*56,fdt2*23,temp*3,header*80(7),stime*8 
 character precisionvariable*12, dragtypename*21 
 double precision A(4),B(4),RESULT,F,ERREST1,ERRABS,ERRREL,RESULT1 
 double precision L,ERREST2,deltat,tend,n1r,n2r,kf1,kf2,kfmax 
 double precision nave,deltanend,errnumber,deltan,pi 
 double precision tf1,tf2,tfmax 
 double precision n1,n2,t, g11(2000),g12(2000) 
 EXTERNAL F,DQAND 
 common n1,n2,t,g11,g12 
 
 pi=3.1415927 
 N = 4 
 MAXFCN = 2100000000 
 ERRABS=0.0 
 
*  inform user that they must run 'dqwbiasandform' first 
 PRINT *,'Please note:' 
 PRINT *,'You must run the program "dqwbiasandform" before' 
 PRINT *,'running this program.  "dqwbiasandform" is a program' 
 PRINT *,'Jim wrote which calculates the electron wavefunction' 
 PRINT *,'for a specified DQW system.  Mindy has modified this' 
 PRINT *,'program so that it will create files that contain' 
 PRINT *,'the form factors g11 and g12 (see Jauho & Smith, PRB' 
 PRINT *,'47, 4420 for more information on form factors).  This' 
 PRINT *,'program will need to read those files.  The form factors' 
 PRINT *,'are dependent on the average electron density, so new' 
 PRINT *,'files must be generated when you wish to run the program' 
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 PRINT *,'for a new density.' 
 PRINT *,'' 
 
*  choose 'CD vs. T' or 'CD vs. delta n' option 
 PRINT *,'' 
10 PRINT *,'Enter the number "0" if you wish to calculate Drag vs. T;' 
 PRINT *,'or "1" if you wish to calculate Drag vs. delta(n)/<n>:' 
 PRINT *, '' 
 READ *,dragtype 
 
  IF (dragtype == 0) THEN 
  dragtypename = 'Drag vs. T' 
  ELSE IF (dragtype == 1) THEN 
  dragtypename = 'Drag vs. delta(n)/<n>' 
  ELSE 
  PRINT *, '' 
  PRINT *, 'You must choose either 0 or 1, please try again.' 
  PRINT *, '' 
  GOTO 10 
  END IF 
 
 PRINT *, '' 
 PRINT *, 'You have chosen:' 
 PRINT 44, dragtypename 
44 FORMAT (A40) 
 PRINT *,"" 
 
*  get n,d,w,T etc. as needed, and automatically set errrel from these - allow  
*  the option of autochoose errrel or choose it manually.  Then it's up to the user to 
*  understand how to choose them. 
 
  IF (dragtype == 0) THEN 
   PRINT *,'' 
   PRINT *,'Start temperature in K:' 
   PRINT *, '' 
   READ *,t 
   PRINT *,'' 
   PRINT *,'Temperature steps in delta K:' 
   PRINT *, '' 
   READ *,deltat 
   PRINT *,'' 
   PRINT *,'End temperature in K:' 
   PRINT *, '' 
   READ *,tend 
   PRINT *,'' 
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   PRINT *,'Density in layer 1 (in units of 10^10 cm^-2):' 
   PRINT *, '' 
   READ *,n1r 
   PRINT *,'' 
   PRINT *,'Density in layer 2 (in units of 10^10 cm^-2):' 
   PRINT *, '' 
   READ *,n2r 
  ELSE  
   PRINT *,'' 
   PRINT *,'Average density per layer <n> (x10^10 cm^-2):' 
   PRINT *, '' 
   READ *,nave 
   PRINT *,'' 
   PRINT *,'delta(n) per layer steps (in units of 10^10 cm^-2):' 
   PRINT *, '' 
   READ *,deltan 
   PRINT *,'' 
   PRINT *,'delta(n)/<n> max (e.g., 0.6):' 
   PRINT *, '' 
   READ *,deltanend 
   PRINT *,'' 
   PRINT *,'Temperature in K:' 
   PRINT *, '' 
   READ *,t 
  END IF 
 
 
 IF (dragtype == 0) THEN 
   ERRREL = 0.02 
 ELSE 
   ERRREL = 0.01 
 ENDIF 
 
* set parameters to their MKS units 
 IF (dragtype == 0) THEN 
  n1 = n1r*1D14 
  n2 = n2r*1D14 
 ELSE 
  n1 = nave*1D14 
  n2 = nave*1D14 
 ENDIF 
 
* and determine k_fermi and T_fermi for setting L: 
 kf1 = sqrt(2*pi*n1) 
 kf2 = sqrt(2*pi*n2) 
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 kfmax = max(kf1,kf2) 
 tf1 = 4.15D-14*n1 
 tf2 = 4.15D-14*n2 
 tfmax = max(tf1,tf2) 
 
 
*  Now choose to have 'ERRREL' set automatically or by hand: 
 PRINT *,'' 
 PRINT *,'If you wish to set the precision of the calcualtion' 
 PRINT *,'yourself, type in "man".  Type in anything else and' 
 PRINT *,'the precision will be assigned automatically.' 
 PRINT *, '' 
 READ *,precisionvariable 
  IF (precisionvariable == 'man') THEN 
   PRINT *,'' 
   PRINT *,'For ', dragtypename, ' the error variable "ERRREL" ' 
   PRINT 46,'is set to', ERRREL,'.  For higher precision (but' 
46   FORMAT (A10,F6.2,A28) 
   PRINT *,'longer computation time) type in a SMALLER number.' 
   PRINT *, 'For less precision, but faster computation time' 
   PRINT *,'type in a LARGER number (but keep it < 1).' 
   PRINT *,'(to learn more about "ERRREL", see "DQAND" ' 
   PRINT *,'in IMSL library).  Enter error precision now:' 
   PRINT *, '' 
   READ *,ERRREL 
  ELSE 
  ENDIF 
 
 PRINT *,'' 
45 FORMAT (A19,F8.3) 
 PRINT 45,'ERRREL is set to: ', ERRREL 
 PRINT *,'' 
 
  
*  get filename 
 PRINT *,'' 
 PRINT *,'This program will put the results of the calculations' 
 PRINT *,'in a subdirectory of your current folder.  The' 
 PRINT *,'subdirectory will be called "output" (you may need to' 
 PRINT *,'create this yourself).  You must choose a file name' 
 PRINT *,'for each run of this program.' 
 PRINT *,'' 
 PRINT *,'What filename do you wish to use?' 
 PRINT *,'' 
 READ *,filename 
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 fdt2 = 'output\'//filename 
 open(2,FILE=fdt2) 
 
*  write header information to file 
 WRITE (2,33),dragtypename 
33 FORMAT ('',A36) 
 WRITE (2,'(A20)') ('') 
 WRITE (2,'(A42)') 'For GaAs electrons (m*=0.067, kappa=12.8),' 
 WRITE (2,'(A46)') 'Form factors calculated from "dqwbiasandform":' 
  open(96,FILE='header',FORM='formatted',STATUS='old') 
  READ (96,'(A80)'), (header(i),i=1,7) 
  close (96) 
 DO 606  k=1,7 
  WRITE (2,'(A80)') header(k) 
606 CONTINUE 
 WRITE (2,'(A20)') ('') 
 IF (dragtype == 0) THEN 
 WRITE (2,36) 'n1 =',n1r,', n2 =',n2r,' x 10^10 cm^(-2)' 
36 FORMAT (A4,F5.2,A6,F5.2,A16) 
 ELSE 
 WRITE (2,37) 'T =',t,'K.  n1, n2 are in MKS units (m^-2).' 
37 FORMAT (A3,F6.2,A35) 
 ENDIF 
 
  
*  this calculates the number of times to run the do loop 
 IF (dragtype == 0) THEN 
  loop = nint((tend -t)/deltat)+1 
 ELSE  
  loop = nint((deltanend*nave)/(2*deltan))+1 
 ENDIF 
 
 
*  get the form factors loaded into arrays 
 open(99,FILE='g12',FORM='formatted',STATUS='old') 
 READ (99,140) (g12(i),i=1,2000) 
 close (99) 
 open(98,FILE='g11',FORM='formatted',STATUS='old') 
 READ (98,140) (g11(i),i=1,2000) 
 close (98) 
140   FORMAT (2000(E12.6)) 
 
 PRINT *,'' 
 CALL TIME(stime) 
 PRINT *,'start time: ',stime 
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 PRINT *,'' 
 
 IF (dragtype == 0) THEN 
  PRINT 48, 'n1 =',n1r,' x 10^10 cm^-2' 
  PRINT 48, 'n2 =',n2r,' x 10^10 cm^-2' 
48  FORMAT (A5,F6.2,A14) 
  PRINT *,'  K','       Ohms   ','error   ','elapsed seconds' 
  WRITE (2,'(A20)') ('') 
  WRITE (2,'(A42)'),' K       Ohms           error        sec' 
 ELSE 
  PRINT 49, 'T =',t,'K' 
49  FORMAT (A4,F6.2,A2) 
  PRINT 445,'n1       n2','Ohms','error','seconds' 
445  FORMAT ('',A14,A14,A11,A15) 
  WRITE (2,'(A20)') ('') 
450  FORMAT ('',A7,A10,A12,A16,A12,A7) 
  WRITE (2,450),'n1','n2','ohms','error','sec','deltan' 
 ENDIF 
 
  
 DO 7, I=1,loop 
 
*  This sets the integration limits, and calls the integration 
*  program (DQAND) from the IMSL library, and solves the integral 
* 
* SET APPROPRIATE LIMITS (L) FOR THE TEMPERATURE 
 IF (t .LE. tfmax/10) THEN 
 L = 2*kfmax 
 ELSE IF (tfmax/10 .LT. t .LE. tfmax/6.5) THEN 
 L = 3*kfmax 
 ELSE IF (tfmax/6.5 .LT. t .LE. tfmax/4.5) THEN 
 L = 4*kfmax 
 ELSE 
 L = 5*kfmax 
 END IF 
 
 A = (/0.0D8,0.0D8,-L,0.0D8/) 
 B = (/L,L,0.0D8,L/) 
  
 CALL CPU_TIME(time1) 
 CALL DQAND(F,N,A,B,ERRABS,ERRREL,MAXFCN,RESULT,ERREST1) 
 RESULT1 = RESULT 
 
 A = (/0.0,0.0,0.0,0.0/) 
 B = (/L,L,L,L/) 
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 CALL DQAND(F,N,A,B,ERRABS,ERRREL,MAXFCN,RESULT,ERREST2) 
 CALL CPU_TIME(time2) 
 
  IF (dragtype == 0) THEN 
 PRINT 100,t,RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2),time2-time1 
100 FORMAT ('',F5.1,F11.4,E14.4,F8.1) 
 WRITE (2, 20),t,RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2), 
     &time2-time1 
20 FORMAT (F5.1,E15.4,E14.4,F9.1) 
  ELSE 
 PRINT 101,n1,n2,RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2), 
     &time2-time1 
101 FORMAT ('',2E9.2,F11.4,E14.4,F9.1) 
 WRITE (2, 21),n1,n2,RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2), 
     &time2-time1,(2*(n1-n2)/(n1+n2)) 
21 FORMAT (E10.3,E10.3,E13.6,E14.4,F10.1,F8.5) 
  ENDIF 
 
* increment the temperature or the delta n 
 IF (dragtype == 0) THEN 
 t = t + deltat 
 ELSE 
 n1 = n1 + deltan*1D14 
 n2 = n2 - deltan*1D14 
 ENDIF 
 
    7 CONTINUE 
 
 END 
 
 
 double precision FUNCTION F(N,X) 
 integer N 
 double precision X(N),qtf,kb,tf1,tf2,k 
 double precision a,kappa,Const,pi,m,Const2 
 double precision n1,n2,t,g11(2000),g12(2000) 
 common n1,n2,t,g11,g12 
 
 tf1 = 4.15D-14*n1 
 tf2 = 4.15D-14*n2 
 kappa = 12.8 
 qtf = 1.977D8 
 pi = 3.1415927 
 kb = 1.381D-23 
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*  a is m* e^2/pi^2 kb h_bar qtf^4 (4 pi epsilon)^2 
 a = 5.76361D-27 
*  k is (h_bar)^2/2 m* 
 k = 9.1187D-38 
 
 Const = a / (kappa*kappa*n1*n2*t) 
 
 
*  Here is the integrand (X{} = k1y,k1'x,k1'y,k2perp): 
 F= Const*X(1)*(sqrt(X(2)**2+(X(3)-X(1))**2))**3*(EXP((k*(X(1)**2) 
     &-kb*tf1)/(kb*t))+1)**(-1)*(1-(EXP((k*(X(2)**2+X(3)**2)-kb*tf1) 
     &/(kb*t))+1)**(-1))*(EXP((k*(X(4)**2+(X(2)**2+(X(3)-X(1))**2) 
     &/4+((X(1)**2-X(2)**2-X(3)**2)**2/(4*(X(2)**2+(X(3)-X(1))**2)) 
     &-(X(1)**2-X(2)**2-X(3)**2)/2))-kb*tf2)/(kb*t))+1)** 
     &(-1)*(1-(EXP((k*(X(4)**2+(X(2)**2+(X(3)-X(1))**2)/4+(X(1)**2 
     &-X(2)**2-X(3)**2)/2+(X(1)**2-X(2)**2-X(3)**2)**2/(4*(X(2)**2 
     &+(X(3)-X(1))**2)))-kb*tf2)/(kb*t))+1)**(-1))*((g12(nint(2*sqrt 
     &(X(2)**2+(X(3)-X(1))**2)/1D6)+1))**(-1)*(g11(nint(2*sqrt(X(2)**2 
     &+(X(3)-X(1))**2)/1D6)+1)+sqrt(X(2)**2+(X(3)-X(1))**2) 
     &/qtf)**2-g12(nint(2*sqrt(X(2)**2+(X(3)-X(1))**2)/1D6)+1))**(-2) 
 
 RETURN 
 END 
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Program #3:         dqwbiasandform 
 
c.. 
c..  *****************  PROGRAM DQWBIASANDFORM  ************* 
c.. 
c.. This program does the same as DQWBIAS, but it also calculates 
c.. the form factors g_11(q) and g_12(q).  q will range from 0 to 
c.. 1x10^9 in 5x10^5 steps (units are 1/m^2). 
c.. 
c.. Selfconsistent DQW solver allowing a finite bias voltage 
c.. between the layers. 
c.. 
c.. This program solves the Poisson and Schroedinger equations for 
c.. DQW using the local density approximation for the 
c.. exchange/correlation energy.   
c.. 
      EXTERNAL FUNC 
      real ynt(2),y(2,1000),x(1000),psi(1000),psisq(1000),psisql(1000) 
 real psisqr(1000),g11(2000),g12(2000) 
      real v(1000),vf(1000),vs(1000),vxc(1000) 
      real zpsisq(1000),zzpsisq(1000) 
      real ns,nd,nsr,nsl,ndl,ndr,nmean,mufr,mufl 
 real zavl,zavr,zrmsl,zrmsr, dw 
 double precision sum11,sum12,element11 
 double precision element12 
      real xx(100),slp(100),dd(100) 
 integer i,j,q 
 character filename*18,fdt*60,fg11*60,fg12*60 
      common /blk2/a,b,h,v 
      common /blk3/c1,c2 
      common /blk4/npt 
      pi=3.14159 
c.. 
c.. For GaAs:     m=0.067, k=12.6 
c..    
c..   All energies in meV, all distances in angstroms, all 
c..   sheet densities in units of 1e10 per cm^2. 
c.. 
c..     c1 = 2*m/hbar^2 = 1.757e-5 
c..     c2 = e^2/epsilon0/kappa = 0.01436 
c.. 
c..     Bohr radius a0 = 99.63 angstroms 
c..     Rydberg energy = ryd = 5.734 meV 
c.. 
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c.. 
      c1=1.757e-5 
      c2=.01436 
      a0=99.63 
      c3=1e-6*(4*pi/3)*a0**3 
      c5=a0*c2/4. 
      ryd=5.734 
      beta=1.2218 
c.. 
c.. 
* PRINT *,'Filename to store extraneous program output:' 
* READ *,filename 
 fdt = 'header' 
 open (unit=9,file=fdt) 
      print *,'well width (A) =' 
      read *,w 
 write (9,151) w 
151   format ('* well width (A)= ',f5.1) 
      print *,'barrier width (A) =' 
      read *,wb 
  write (9,152) wb 
152   format ('* barrier width (A)= ',f5.1) 
      print *,'barrier height (meV) =' 
      read *,vdisc1 
      write (9,153) vdisc1 
153   format ('* barrier height (meV)= ',f5.1) 
      print *,'cladding barrier height (meV)=' 
      read *,vdisc2 
      write (9,154) vdisc2 
154   format ('* cladding barrier height (meV)= ',f5.1) 
      print *,'Inclusion of LDA exchange/correlation (0 or 1) =' 
      read *,xc 
      write (9,155) xc 
155   format ('* LDA exchange/correlation [1=on, 0=off] ',f2.0) 
      print *,'right side donor density ndr =' 
      read *,ndr 
      write (9,156) ndr 
156   format ('* right side donor density (10^10) = ',f5.2) 
      print *,'left side donor density ndl=' 
      read *,ndl 
      print *,'Interlayer bias voltage (mV) =' 
      read *,vlr 
      write (9,157) vlr 
157   format('* interlayer bias voltage (mV)=',f6.3) 
      print *,'Convergence diagnostics? (0 or 1)' 
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      endif 

      read *,ndiag 
*      write (9,160) 
*      write (9,160) 
*160   format ('*') 
*      write (9,161) 
*161   format ('*',1x,'ndl',6x,'nsl',6x,'nsr') 
      nerr=0 
      nsr=ndr 
      nsl=ndl 
c.. 
c.. 
      nmean=0.5*(ndr+ndl) 
      delns=(ndr-ndl)/2 
      dd(1)=delns 
      ndelns=1 
c.. 
c.. nw is the quantum well index, nw=1 is the left well, nw=2 the 
c.. right. 
9     do 466 nw=1,2 
      psiprime0=1. 
c.. 
c.. Donor and 2D areal charge concentrations, units of 10^10cm-2 
c.. 
      nsl=nmean-delns 
      nsr=nmean+delns 
c.. 
c.. The effective donor density seen by either well includes both 
c..  the actual donor density on that side plus the density of the 
c..  donors on the other side compensated by the other layer of 
c..  electrons.  This second component is due to the penetration 
c..  effect itself. 
c.. 
      nd=ndl-(ndr-nsr) 
      ns=nsl 
      if (nw .eq. 2) then 
       nd=ndr-(ndl-nsl) 
       ns=nsr 

c.. 
c.. Square well appx. for ground state: 
c.. 
      esqw=pi*pi/c1/w/w 
c.. 
c.. Triangular Well Appx. for ground state: 
c.. 
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      etrw=5.1*(0.5*ns)**.6666 
      e00=esqw 
      if (etrw .lt. esqw) then 
         e00=etrw 
      endif 
      es=e00 
      de=0.2*es 
c.. 
      tol=1e-6 
      idm=2 
      zmax=w+wb 
      a=0. 
      b=zmax 
      h=1. 
      nb=INT((b-a)/h)+1 
c.. 
c.. make nb odd 
c.. 
      if (2*int(nb/2) .lt. nb) go to 3    
      nb=nb+1 
c.. 
c.. Initialize distance, self-consistent potential and fixed charge 
c..  potential. 
c.. 
3     do 5 j=1,nb 
      vbs=0 
      x(j)=a+(j-1)*h 
      xmx=x(j) 
      if (x(j) .gt. w) then 
         vbs=vdisc1 
         xmx=w 
         if (x(j-1) .le. w) then 
             jw=j-1 
         endif 
      endif 
      vf(j)=c2*nd*x(j)/2+vbs 
      vs(j)=c2*ns*(1.-x(j)/w)*xmx/2 
5     v(j)=vf(j)+vs(j) 
      nct=0 
      nsub=0 
7     nnode=0     
8     e=es 
      iter=1 
c.. 
c.. Decay const. in outer barrier 
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c.. 
10    alpha=sqrt(c1*(vdisc2-e)) 
c.. 
      psi0=psiprime0/alpha 
      ynt(1)=psi0 
      ynt(2)=psiprime0 
      call KUTTA(FUNC,a,h,b,nb,ynt,y,e) 
      nchs=0 
      do 15 j=2,nb-1 
      if (SIGN(1.,y(1,j)) .ne. SIGN(1.,y(1,j+1))) then 
        nchs=nchs+1 
        jnode=j 
        xnode=x(j) 
      endif 
15    continue 
      if (nchs .eq. nnode+1 .and. de .gt. 0.0) then 
        de=-de/3. 
      endif 
      if (nchs .eq. nnode .and. de .lt. 0.) then 
        de=-de/3. 
      endif 
      if (abs(de) .lt. e*tol .and. nchs .eq. nnode+1) goto 20 
      e=e+de 
      iter=iter+1 
      if (iter .ge. 100 .and. nsub .eq. 0) then 
         print *,'ground state non-convergent' 
         nerr=1 
         goto 1010 
      endif 
      if (iter .ge. 100 .and. nsub .eq. 1) then 
         print *,'second subband non-convergent' 
         nerr=1 
         goto 1010 
      endif 
      go to 10 
20    do 22 j=1,nb 
      psi(j)=y(1,j) 
      if (j .ge. jnode) then 
        psi(j)=0. 
      endif 
22    psisq(j)=psi(j)*psi(j) 
c.. 
c..       
c.. Calculate norm of wavefunction, including barrier contrib. 
c.. 
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570   call inteq(nb,h,psisq,qint) 
      delnorm=psi0*psi0/2/alpha 
      psinorm=sqrt(qint+delnorm) 
      delpct=delnorm/psinorm/psinorm 
c.. 
c.. Normalize psi and psisq arrays 
c.. 
      do 101 j=1,nb 
      psi(j)=psi(j)/psinorm 
      psisq(j)=psi(j)*psi(j) 
101   zpsisq(j)=x(j)*psisq(j) 
c.. 
c.. Get <z> for wavefunction, incl. barrier contrib. 
c.. 
       zavb=-(psi0/2/alpha/psinorm)**2 
       call inteq(nb,h,zpsisq,zav) 
       zav=zav+zavb 
c.. 
c.. Calculate self-consistent potential 
c.. 
c..    evaluate at odd-numbered point 5 thru npt, then interpolate  
c..    even-numbered point. 
c.. 
108    do 110 j=5,nb,2 
       call inteq(j,h,zpsisq,qa) 
       qa=qa+zavb 
       call inteq(j,h,psisq,qb) 
       qb=qb+delpct 
110    vs(j)=ns*c2*((qa-x(j)*qb)+x(j)/2.) 
       vs(1)=0. 
       vs(3)=0.5*vs(5) 
       do 120 j=2,nb-1,2 
120    vs(j)=(vs(j-1)+vs(j+1))/2. 
c.. 
c.. 
c.. Calculate exchange-correlation energy 
c.. 
      do 122 j=1,nb 
      vxc(j)=0. 
      if (psisq(j) .eq. 0.) goto 122 
      rs=c3*ns*psisq(j) 
      rs=rs**.333333 
      rs=1/rs 
      rsx=rs/21 
c.. ax turns on or off correlation energy 
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      ax=1. 
      vxc(j)=-ryd*beta*(1+.7734*ax*rsx*log(1+1/rsx))/rs 
122   continue 
c.. 
c.. 
1001  nct=nct+1 
      if (nct .gt. 30) then 
         nerr=1 
         goto 1010 
      endif 
      etol=abs(e-es)/e 
      if (etol .gt. .0001 .or. nct .lt. 8) go to 500 
c.. 
c.. Done with ground state 
c.. 
      e0=e-v(jw) 
      zav0=zav 
c.. 
c.. Get second moment, including barrier term 
c.. 
      do 1080 j=1,nb 
1080  zzpsisq(j)=x(j)*zpsisq(j) 
      call inteq(nb,h,zzpsisq,zzav) 
      zzavb=(psi0/2/alpha/psinorm)**2/alpha 
      zzav=zzav+zzavb 
      zrms=sqrt(zzav-zav0*zav0) 
c.. 
c.. Find potential at middle of barrier, interpolate if necessary. 
c.. 
63    xmidpt=a+w+wb/2. 
      j=1 
986   if (x(j) .eq. xmidpt) then 
          vmid=v(j) 
          goto 987 
      endif 
      if (x(j) .gt. xmidpt) then 
          vmid=(v(j)+v(j-1))/2. 
          goto 987 
      endif 
      j=j+1 
      goto 986        
c..  
c.. evb is the energy of the conduction band 
c.. edge at the center of the barrier relative to the band edge 
c.. at the far interface of the well. 
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c..               
c.. efl and efr are the left and right fermi levels relative to the 
c.. band edge at the center of the barrier. 
c.. 
c.. e0l and e0r are the subband energies relative to this same 
c.. point. 
c.. 
c.. 
987   evb=vmid+vdisc1-v(jw) 
      efermi=ns*c5 
      if (nw .eq. 1) then 
         mufl=evb-e0-efermi 
         e0l=evb-e0 
      endif 
      if (nw .eq. 2) then 
         mufr=evb-e0-efermi 
         e0r=evb-e0 
      endif 
 if (nw .eq. 1) then 
  psisql=psisq 
  zavl=zav 
  zrmsl=zrms 
 endif 
 if (nw .eq. 2) then 
  psisqr=psisq 
  zavr=zav 
  zrmsr=zrms 
 endif 
c.. 
c.. 
      goto 466 
c.. 
c.. Make new potential 
c.. 
500   ff=0.3 
      do 1005 j=1,nb 
      vold=v(j) 
      vnew=vf(j)+vs(j)+vxc(j)*xc 
1005  v(j)=vold+ff*(vnew-vold) 
c.. 
c.. 
      de=0.5*(es-e) 
      es=e 
      goto 7 
466   continue 
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c.. 
c.. Now I want to calculate the form factors g11(q) and g12(q) from the 
c.. psisq for each well.  I am doing the double integration by creating a 
c.. matrix representing the integrand and then summing all the elements. 
c.. 
 dw=w+wb+w 
 print *,'dw =',dw 
 print *,'nb =',nb 
 do 600 q=0,1999 
  sum11=0 
  sum12=0 
  do 630 i=1,nb 
   do 660 j=1,nb 
  element12 = psisql(j)*psisqr(i)*exp(-q*0.00005*abs(i+j-dw-2)) 
   sum12 = sum12 + element12 
  element11 = psisql(j)*psisql(i)*exp(-q*0.00005*abs(i-j)) 
   sum11 = sum11 + element11 
 
660 continue 
630 continue 
   g11(q+1)=sum11 
   g12(q+1)=sum12 
600 continue 
 
 
c.. 
c.. Once here both wells have been calculated for a specific pair 
c.. of densities nsl and nsr 
c.. 
      efermir=c5*nsr 
      efermil=c5*nsl 
      xxtol=.001*(efermil+efermir)/2 
      deltamu=mufl-mufr 
      deltae0=e0l-e0r 
      densdif=nsl-nsr 
      xx(ndelns)=deltamu-vlr 
      if (ndiag .ne. 1) goto 469 
      print *,'Iteration ',ndelns 
      print *,' nsl',nsl,' nsr=',nsr 
      print *,' Delta mu=',deltamu 
      print *,' Delta E0 =',deltae0 
      print *,' Delta N=',densdif 
      print *,'efermi-l=',efermil,' efermi-r=',efermir 
      print *,' ' 
469   if (abs(xx(ndelns)) .lt. xxtol) goto 1010 
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      if (ndelns .eq. 1) goto 489 
      slp(ndelns)=(xx(ndelns)-xx(ndelns-1))/(dd(ndelns)-dd(ndelns-1)) 
477   dd(ndelns+1)=dd(ndelns)-xx(ndelns)/slp(ndelns) 
      delns=dd(ndelns+1) 
      ndelns=ndelns+1 
      goto 9 
489   slp(1)=-c2*w 
      goto 477 
1010  if (nerr .eq. 1) goto 1020 
      print *,'Interlayer bias (mV)=',vlr 
      print *,'ndl=',ndl,' ndr=',ndr 
      print *,'nsl=',nsl,' nsr=',nsr 
      print *,'Subband mismatch=',deltae0 
      print *,'Density difference=',densdif 
 print *, 'zavl =', zavl, 'zavr =',zavr 
 print *, 'zrmsl =',zrmsl,'zrmsr =', zrmsr 
*      write(9,1015) ndl,nsl,nsr 
*1015  format(f7.4,2x,f7.4,2x,f7.4) 
* write(9,901) zavl 
*901 format ('zavl =',f10.4) 
* write(9,902) zavr 
*902 format ('zavr =',f10.4) 
* write(9,903) zrmsl 
*903 format ('zrmsl =',f10.4) 
* write(9,904) zrmsr 
*904 format ('zrmsr =',f10.4) 
 
c.. This prints the data to file.  Since the psisq data is (usually) longer 
c.. than the g11 and g12 data (with it's standard 201 points, for a delta 
c.. q of 10^6 1/m^2 between points), I need to first print all five arrays; 
c.. then later print just three. 
c.. 
* do 800 j=1,2000 
*  write(9,810) j-1,psisql(j),psisqr(j),g11(j),g12(j) 
*810  format(I6,2E13.4,2E13.4) 
*800 continue 
c.. this makes special files of the form factors that can be read into 
c.. one of the dqand_4Dsplitgg programs.  There is a single default name 
c.. so if you want to save these, you need to change the filenames after 
c.. running this program. 
c.. 
 fg11 = 'g11' 
 fg12 = 'g12' 
 open (unit=11,file=fg11) 
 open (unit=12,file=fg12) 
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 write (11,830) (g11(i),i=1,2000) 
 write (12,830) (g12(i),i=1,2000) 
830 format (2000(E12.6)) 
 
1020  end 
c.. 
c.. 
c.. 
c.. 
      subroutine KUTTA(FUNC,a,h,b,nb,ynt,y,e)  
      EXTERNAL FUNC 
      real ysv(2),f(2),w(4,2),ynt(2),y(2,500) 
      idm=2 
      eps=1.e-6 
      x=a 
      hh=h/2 
      n=1 
      do 30 i=1,idm 
      ysv(i)=ynt(i) 
30    y(i,1)=ynt(i) 
40    xsv=x 
      do 90 l=1,4 
      call FUNC(ysv,x,f,e) 
      do 50 i=1,idm 
50    w(l,i)=h*f(i) 
      go to (60,60,80,90), l 
60    x=xsv+hh     
      do 65 i=1,idm 
65    ysv(i)=y(i,n)+w(l,i)*0.5 
      go to 90 
80    x=xsv+h 
      do 85 i=1,idm 
85    ysv(i)=y(i,n)+w(l,i) 
90    continue 
      np=n+1 
      do 95 i=1,idm 
      y(i,np)=y(i,n)+(w(1,i)+2.*(w(2,i)+w(3,i))+w(4,i))/6. 
      if (abs(y(i,np)) .gt. 1.e6) then 
        y(i,np)=y(i,n) 
      endif 
95    continue 
      n=np 
      if (n .ge. nb .or. x .gt. b-eps) go to 100 
      do 98 i=1,idm 
98    ysv(i)=y(i,np) 
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      go to 40 
100   return 
      end 
c.. 
c.. 
      subroutine FUNC(ysv,x,f,e) 
c.. 
c..   distances in angstroms 
c..   energies in meV 
c.. 
      real e,ysv(2),f(2),n,v(1000) 
      common /blk2/a,b,h,v 
      common /blk3/c1,c2 
      n=(x-a)/h+1 
      j=int(n) 
      vpot=v(j) 
      if (abs(n-j) .lt. 0.1) go to 50 
      vpot=(v(j)+v(j+1))/2. 
50    f(1)=ysv(2) 
      f(2)=c1*(vpot-e)*ysv(1) 
      return 
      end 
c.. 
c..  
      subroutine inteq(n,h,y,qint) 
      common /blk4/npt 
      real y(npt) 
      nint=n-1 
      nn=nint/2 
      qint=0. 
      suma=0. 
      sumb=0. 
      do 20 j=1,nn 
      jj=2*j 
20    suma=suma+y(jj) 
      do 25 j=1,nn-1 
      jj=2*j-1 
25    sumb=sumb+y(jj) 
      qint=h*(y(1)+y(n)+4*suma+2*sumb)/3 
      return 
      end 
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Program #4:         HoleDragforCosineWells 
 
* 
*  PROGRAM HoleDragforCosineWells.f 
* 
*  Integrates 4D boltzmann formulation for the drag, as given in  
*  a paper by Jauho & Smith PRB 47,4420, assuming the electron/hole 
*  wavefunction is a cosine (as is used in the paper).   
*  This program will output either CD vs. T, or CD vs. delta(n)/<n> 
*  for a given <n> (density per layer), d (center-to-center layer 
*  separation), w (well width), and in T (temperature). 
* 
*  This program calculates the drag for any effective mass.  
*  And kappa is set to 12.8. 
* 
 INTEGER MAXFCN,N,I,J,dragtype,loop 
 real time1,time2 
 character filename*25,fdt1*56,fdt2*23,temp*3,header*80,stime*8 
 character precisionvariable*12, dragtypename*21 
 double precision A(4),B(4),RESULT,F,ERREST1,ERRABS,ERRREL,RESULT1 
 double precision L,ERREST2,deltat,tend,n1r,n2r,kf1,kf2,kfmax 
 double precision nave,deltanend,errnumber,deltan,dr,wr,pi 
 double precision tf1,tf2,tfmax,mas,Lraw 
 double precision n1,n2,w,d,t,mass 
 EXTERNAL F,DQAND 
 common n1,n2,w,d,t,mass 
 
 pi=3.1415927 
 N = 4 
 MAXFCN = 2100000000 
 ERRABS=0.0 
 
*  choose 'CD vs. T' or 'CD vs. delta n' option 
 PRINT *,'' 
10 PRINT *,'Enter the number "0" if you wish to calculate Drag vs. T;' 
 PRINT *,'or "1" if you wish to calculate Drag vs. delta(n)/<n>:' 
 PRINT *, '' 
 READ *,dragtype 
 
  IF (dragtype == 0) THEN 
  dragtypename = 'Drag vs. T' 
  ELSE IF (dragtype == 1) THEN 
  dragtypename = 'Drag vs. delta(n)/<n>' 
  ELSE 
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  PRINT *, '' 
  PRINT *, 'You must choose either 0 or 1, please try again.' 
  PRINT *, '' 
  GOTO 10 
  END IF 
 
 PRINT *, '' 
 PRINT *, 'You have chosen:' 
 PRINT 44, dragtypename 
44 FORMAT (A40) 
 PRINT *,"" 
*  get n,d,w,T etc. as needed, and automatically set errrel from these - allow  
*  the option of autochoose errrel or choose it manually.  Then it's up to the user to 
*  understand how to choose them. 
 
  IF (dragtype == 0) THEN 
   PRINT *,'' 
   PRINT *,'Start temperature in K:' 
   PRINT *, '' 
   READ *,t 
   PRINT *,'' 
   PRINT *,'Temperature steps in delta K:' 
   PRINT *, '' 
   READ *,deltat 
   PRINT *,'' 
   PRINT *,'End temperature in K:' 
   PRINT *, '' 
   READ *,tend 
   PRINT *,'' 
   PRINT *,'Density in layer 1 (in units of 10^10 cm^-2):' 
   PRINT *, '' 
   READ *,n1r 
   PRINT *,'' 
   PRINT *,'Density in layer 2 (in units of 10^10 cm^-2):' 
   PRINT *, '' 
   READ *,n2r 
  ELSE  
   PRINT *,'' 
   PRINT *,'Average density per layer <n> (x10^10 cm^-2):' 
   PRINT *, '' 
   READ *,nave 
   PRINT *,'' 
   PRINT *,'delta(n) per layer steps (in units of 10^10 cm^-2):' 
   PRINT *, '' 
   READ *,deltan 
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   PRINT *,'' 
   PRINT *,'delta(n)/<n> max (e.g., 0.6):' 
   PRINT *, '' 
   READ *,deltanend 
   PRINT *,'' 
   PRINT *,'Temperature in K:' 
   PRINT *, '' 
   READ *,t 
  END IF 
 
 PRINT *,'' 
 PRINT *,'center-to-center layer separation, d, (in Angstroms):' 
 PRINT *, '' 
 READ *,dr 
 PRINT *,'' 
 PRINT *,'well width, w, (in Angstroms):' 
 PRINT *, '' 
 READ *,wr 
 PRINT *,'' 
 PRINT *,'effective mass (in units of m_e):' 
 PRINT *, '' 
 READ *,mas 
 
 IF (dragtype == 0) THEN 
   ERRREL = 0.02 
 ELSE 
   ERRREL = 0.01 
 ENDIF 
 
* set parameters to their MKS units 
 d = dr*1D-10 
 w = wr*1D-10 
 mass = mas/0.067 
 
 IF (dragtype == 0) THEN 
  n1 = n1r*1D14 
  n2 = n2r*1D14 
 ELSE 
  n1 = nave*1D14 
  n2 = nave*1D14 
 ENDIF 
 
* and determine k_fermi and T_fermi for setting L: 
 kf1 = sqrt(2*pi*n1) 
 kf2 = sqrt(2*pi*n2) 
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 kfmax = max(kf1,kf2) 
 tf1 = 4.15D-14*n1/mass 
 tf2 = 4.15D-14*n2/mass 
 tfmax = max(tf1,tf2) 
 
 
*  Now choose to have 'ERRREL' set automatically or by hand: 
 PRINT *,'' 
 PRINT *,'If you wish to set the precision of the calcualtion' 
 PRINT *,'yourself, type in "man".  Type in anything else and' 
 PRINT *,'the precision will be assigned automatically.' 
 PRINT *, '' 
 READ *,precisionvariable 
  IF (precisionvariable == 'man') THEN 
   PRINT *,'' 
   PRINT *,'For ', dragtypename, ' the error variable "ERRREL" ' 
   PRINT 46,'is set to', ERRREL,'.  For higher precision (but' 
46   FORMAT (A10,F6.2,A28) 
   PRINT *,'longer computation time) type in a SMALLER number.' 
   PRINT *, 'For less precision, but faster computation time' 
   PRINT *,'type in a LARGER number (but keep it < 1).' 
   PRINT *,'(to learn more about "ERRREL", see "DQAND" ' 
   PRINT *,'in IMSL library).  Enter error precision now:' 
   PRINT *, '' 
   READ *,ERRREL 
  ELSE 
  ENDIF 
 
 PRINT *,'' 
45 FORMAT (A19,F8.3) 
 PRINT 45,'ERRREL is set to: ', ERRREL 
 PRINT *,'' 
 
*  this calculates the number of times to run the do loop 
 IF (dragtype == 0) THEN 
  loop = nint((tend -t)/deltat)+1 
 ELSE  
  loop = nint((deltanend*nave)/(2*deltan))+1 
 ENDIF 
 
* SET APPROPRIATE LIMITS (L) FOR THE TEMPERATURE 
 PRINT *,'' 
 PRINT *,'You must set the integration limit for this' 
 PRINT *,'program.  Ideally one integrates over the k' 
 PRINT *,'momentum from 0 to infinity.  As the computer' 
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 PRINT *,'cannot integrate to infinity, you must pick' 
 PRINT *,'a sufficiently large number so that all relevant' 
 PRINT *,'processes are included in the integration.  You' 
 PRINT *,'will know when your number is large enough, when' 
 PRINT *,'increasing it no longer affects the outcome of' 
 PRINT *,'the integration.  Typical range: 0.5 to 5 (x 10^8 m^-2).' 
 PRINT *,'' 
 PRINT *,'Choose an integration limit (in units of 10^8 m^-2):' 
 PRINT *, '' 
 READ *,Lraw 
  
 L = Lraw * 1D8 
  
*  get filename 
 PRINT *,'' 
 PRINT *,'This program will put the results of the calculations' 
 PRINT *,'in a subdirectory of your current folder.  The' 
 PRINT *,'subdirectory will be called "output" (you may need to' 
 PRINT *,'create this yourself).  You must choose a file name' 
 PRINT *,'for each run of this program.' 
 PRINT *,'' 
 PRINT *,'What filename do you wish to use?' 
 PRINT *,'' 
 READ *,filename 
 fdt2 = 'output\'//filename 
 open(2,FILE=fdt2) 
 
*  write header information to file 
 WRITE (2,33),dragtypename 
33 FORMAT ('',A36) 
 WRITE (2,'(A20)') ('') 
 WRITE (2,38) 'm* =',mas,'; kappa = 12.8; limit =',Lraw,'x10^8 m^-2.' 
38 FORMAT (A4,F7.3,A23,F6.2,A11) 
 WRITE (2,34) 'd =',dr,'A, w =',wr,'A.  Cosine wavefunction.' 
34 FORMAT (A3,F6.1,A8,F6.1,A25) 
 IF (dragtype == 0) THEN 
 WRITE (2,36) 'n1 =',n1r,', n2 =',n2r,' x 10^10 cm^(-2)' 
36 FORMAT (A4,F5.2,A6,F5.2,A16) 
 ELSE 
 WRITE (2,37) 'T =',t,'K.  n1, n2 are in MKS units (m^-2).' 
37 FORMAT (A3,F6.2,A35) 
 ENDIF 
 
 
 PRINT *,'' 
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 CALL TIME(stime) 
 PRINT *,'start time: ',stime 
 PRINT *,'' 
 PRINT 47, 'd =',dr,' Angstroms' 
47 FORMAT (A4,F6.1,A10) 
 PRINT 47, 'w =',wr,' Angstroms' 
 IF (dragtype == 0) THEN 
  PRINT 48, 'n1 =',n1r,' x 10^10 cm^-2' 
  PRINT 48, 'n2 =',n2r,' x 10^10 cm^-2' 
48  FORMAT (A5,F6.2,A14) 
  PRINT *,'  K','       Ohms   ','error   ','elapsed seconds' 
  WRITE (2,'(A20)') ('') 
  WRITE (2,'(A42)'),' K       Ohms           error        sec' 
 ELSE 
  PRINT 49, 'T =',t,'K' 
49  FORMAT (A4,F6.2,A2) 
  PRINT 445,'n1       n2','Ohms','error','seconds' 
445  FORMAT ('',A14,A14,A11,A15) 
  WRITE (2,'(A20)') ('') 
450  FORMAT ('',A7,A10,A12,A16,A12,A7) 
  WRITE (2,450),'n1','n2','ohms','error','sec','deltan' 
 ENDIF 
 
  
 DO 7, I=1,loop 
 
*  This sets the integration limits, and calls the integration 
*  program (DQAND) from the IMSL library, and solves the integral 
 
 
 A = (/0.0D8,0.0D8,-L,0.0D8/) 
 B = (/L,L,0.0D8,L/) 
  
 CALL CPU_TIME(time1) 
 CALL DQAND(F,N,A,B,ERRABS,ERRREL,MAXFCN,RESULT,ERREST1) 
 RESULT1 = RESULT 
 
 A = (/0.0,0.0,0.0,0.0/) 
 B = (/L,L,L,L/) 
  
 CALL DQAND(F,N,A,B,ERRABS,ERRREL,MAXFCN,RESULT,ERREST2) 
 CALL CPU_TIME(time2) 
 
  IF (dragtype == 0) THEN 
 PRINT 100,t,RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2),time2-time1 
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100 FORMAT ('',F5.1,F11.4,E14.4,F8.1) 
 WRITE (2, 20),t,RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2), 
     &time2-time1 
20 FORMAT (F5.1,E15.4,E14.4,F9.1) 
  ELSE 
 PRINT 101,n1,n2,RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2), 
     &time2-time1 
101 FORMAT ('',2E9.2,F11.4,E14.4,F9.1) 
 WRITE (2, 21),n1,n2,RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2), 
     &time2-time1,(2*(n1-n2)/(n1+n2)) 
21 FORMAT (E10.3,E10.3,E13.6,E14.4,F10.1,F8.5) 
  ENDIF 
 
* increment the temperature or the delta n 
 IF (dragtype == 0) THEN 
 t = t + deltat 
 ELSE 
 n1 = n1 + deltan*1D14 
 n2 = n2 - deltan*1D14 
 ENDIF 
 
    7 CONTINUE 
 
 END 
 
 
 double precision FUNCTION F(N,X) 
 integer N 
 double precision X(N),qtf,kb,tf1,tf2,k 
 double precision a,kappa,Const,pi,m,Const2 
 double precision n1,n2,w,d,t,mass 
 common n1,n2,w,d,t,mass 
 
 tf1 = 4.15D-14*n1/mass 
 tf2 = 4.15D-14*n2/mass 
 kappa = 12.8 
 qtf = 1.977D8*mass 
 pi = 3.1415927 
 m = (1/(4*pi*pi)-1/3.0+1/(pi*pi)) 
 kb = 1.381D-23 
*  a is m* e^2/pi^2 kb h_bar qtf^4 (4 pi epsilon)^2 
 a = 5.76361D-27/(mass)**3 
*  k is (h_bar)^2/2 m* 
 k = 9.1187D-38/mass 
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 Const = a / (kappa*kappa*n1*n2*t) 
 Const2 = qtf*qtf*Const 
 
*  Here is the integrand (X{} = k1y,k1'x,k1'y,k2perp): 
 IF (sqrt(X(2)**2+(X(3)-X(1))**2) .GE. 0.0) THEN 
 
 F= Const*X(1)*(sqrt(X(2)**2+(X(3)-X(1))**2))**3*(EXP((k*(X(1)**2) 
     &-kb*tf1)/(kb*t))+1)**(-1)*(1-(EXP((k*(X(2)**2+X(3)**2)-kb*tf1) 
     &/(kb*t))+1)**(-1))*(EXP((k*(X(4)**2+(X(2)**2+(X(3)-X(1))**2) 
     &/4+((X(1)**2-X(2)**2-X(3)**2)**2/(4*(X(2)**2+(X(3)-X(1))**2)) 
     &-(X(1)**2-X(2)**2-X(3)**2)/2))-kb*tf2)/(kb*t))+1)** 
     &(-1)*(1-(EXP((k*(X(4)**2+(X(2)**2+(X(3)-X(1))**2)/4+(X(1)**2 
     &-X(2)**2-X(3)**2)/2+(X(1)**2-X(2)**2-X(3)**2)**2/(4*(X(2)**2 
     &+(X(3)-X(1))**2)))-kb*tf2)/(kb*t))+1)**(-1))*(EXP 
     &(sqrt(X(2)**2+(X(3)-X(1))**2)*d)*(sinh(sqrt(X(2) 
     &**2+(X(3)-X(1))**2)*w/2))**(-2)*(8*pi*pi/(sqrt(X(2)**2+(X(3)-X(1)) 
     &**2)*w*(4*pi*pi+(X(2)**2+(X(3)-X(1))**2)*w*w)))**(-2) 
     &*((2/(sqrt(X(2)**2+(X(3)- 
     &X(1))**2)*w)-EXP(-sqrt(X(2)**2+(X(3)-X(1))**2)*w/2)* 
     &sinh(sqrt(X(2)**2+(X(3)-X(1))**2)*w/2)*(8*pi*pi/ 
     &(sqrt(X(2)**2+(X(3)-X(1))**2)*w*(4*pi*pi+(X(2)**2+(X(3)-X(1))**2) 
     &*w*w)))**2+sqrt(X(2)**2+(X(3)-X(1))**2)*w/(4*pi*pi+ 
     &(X(2)**2+(X(3)-X(1))**2)*w*w))+sqrt(X(2)**2+(X(3)-X(1))**2) 
     &/qtf)**2-EXP(-d*sqrt(X(2)**2+(X(3)-X(1))**2))*(sinh(sqrt(X(2) 
     &**2+(X(3)-X(1))**2)*w/2))**2*(8*pi*pi/(sqrt(X(2)**2+(X(3)-X(1)) 
     &**2)*w*(4*pi*pi+(X(2)**2+(X(3)-X(1))**2)*w*w)))**2)**(-2) 
 
 ELSE 
 
 F= Const2*X(1)*(sqrt(X(2)**2+(X(3)-X(1))**2))*(EXP((k*(X(1)**2) 
     &-kb*tf1)/(kb*t))+1)**(-1)*(1-(EXP((k*(X(2)**2+X(3)**2)-kb*tf1) 
     &/(kb*t))+1)**(-1))*(EXP((k*(X(4)**2+(X(2)**2+(X(3)-X(1))**2) 
     &/4+((X(1)**2-X(2)**2-X(3)**2)**2/(4*(X(2)**2+(X(3)-X(1))**2)) 
     &-(X(1)**2-X(2)**2-X(3)**2)/2))-kb*tf2)/(kb*t))+1)** 
     &(-1)*(1-(EXP((k*(X(4)**2+(X(2)**2+(X(3)-X(1))**2)/4+(X(1)**2 
     &-X(2)**2-X(3)**2)/2+(X(1)**2-X(2)**2-X(3)**2)**2/(4*(X(2)**2 
     &+(X(3)-X(1))**2)))-kb*tf2)/(kb*t))+1)**(-1))*(2*d*qtf+2*w*qtf*m 
     &*(1+sqrt(X(2)**2+(X(3)-X(1))**2)*d+sqrt(X(2)**2+(X(3)-X(1))**2) 
     &/qtf)+2+2*sqrt(X(2)**2+(X(3)-X(1))**2)*d+sqrt(X(2)**2+(X(3)-X(1) 
     &)**2)/qtf+sqrt(X(2)**2+(X(3)-X(1))**2)*qtf*w*w*m*m)**(-2) 
 ENDIF 
 
 RETURN 
 END 


