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ABSTRACT

The discovery of the integer quantum Hall effect (QHE) and the fractional quantum Hall
effect (FQHE) revealed that unexpected physics could be found in a seemingly very simple
system: free electrons constrained to move in only two dimensions. Adding a degree of
complexity to this system by bringing two of these layers of two-dimensional electrons into
close proximity, multiplies the exciting physical phenomena available for study and
discovery. This thesis is a report on electrical transport studies of bilayer two-dimensional
electron systems (2DES) found in GaAs/AlGaAs double quantum well semiconductor
heterostructures. Through studies at zero magnetic field using a fairly new transport
measurement called “Coulomb drag” pure electron-electron scattering is measured with
unprecedented accuracy and clarity. In large magnetic fields applied perpendicular to the
electron layers, at the right combination of magnetic field strength, electron density and
layer separation, a new, uniquely bilayer, many-body quantum ground state exists that can
be described alternately as an itinerant pseudospin ferromagnet or as a Bose-Einstein
condensate (BEC) of interlayer excitons. This bilayer quantum state was first predicted
theoretically fifteen years ago, and its discovery and exploration is the basis of this thesis.
In this thesis, transport measurements allow for the direct detection of the BEC of excitons
by their ability to flow with vanishing resistance and vanishing influence from the large
external magnetic field. Excitonic BEC has been pursued experimentally for almost 40
years, but this thesis likely represents the first detection of the elusive state. Coulomb drag
is found to be an excellent probe of the phase transition out of the bilayer quantum state
and is used to extend the mapping of the phase diagram into the temperature and layer

density imbalance planes.
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Introduction

Condensed matter physics is the study of a tremendously large number of particles crowded
(condensed) together so that the effects they have on one another cannot be ignored. It is
an exciting field of physics because even though all the particles obey known physical
laws, solving the physical equations for such a large number of particles is not always
feasible. So it is not always known what will happen in a condensed matter system and

there are still some surprises to be found.

The condensed matter system studied in this thesis is a system of electrons that have been

confined so that they can only move in two dimensions — a two-dimensional electron

system (2DES). Roughly 10" electrons are crowded into one square centimeter, all

repelling each other electrically. Although an equation can be written describing all the

electrons’ interactions with one another, with 10" electrons, it is too difficult to solve. So
it was a surprise when it was found that under certain conditions, involving the application
of a perpendicular magnetic field, the electrons will specially arrange themselves in accord
with the magnetic flux quanta passing through the layer in such a way as to lower the
energy of the entire system. This surprise was called the fractional quantum Hall effect

(FQHE) and was discovered in 1982 [1].
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In this thesis, we study a system in which two layers of these two-dimensional electrons

are brought very close together in parallel (a bilayer 2DES). We show that when the layers
are sufficiently close together and subjected to a specific value of perpendicular magnetic
field, a new, uniquely bilayer, state is formed that is mathematically similar to the FQHE
state. In this state, the system achieves a lower energy when the electrons in one layer

become highly correlated with the electrons in the other layer.

This correlated state can be portrayed as one where the electrons lose track of which layer
they are in (this view is discussed in Section 4.6), or as one where the electrons in one of
the layers line up with the vacancies between the electrons in the other layer. These
vacancies are called “holes” and behave much like positively charged electrons. The holes
in one layer are electrically attracted to the electrons in the other layer, and the two bind
together to form composite particles called excitons. Excitons are a type of boson and can
undergo a process called Bose-Einstein condensation (BEC); thus the excitons all condense
into the same quantum state. This view of the state as a BEC of excitons is covered in

Section 4.7.

The main goal of this thesis is to detect this excitonic BEC. We aim to detect it by probing
the bilayer 2DES using electrical transport measurements. Wires are electrically contacted
to the electron layers, and currents are sent through one or both of the layers. The voltages
measured in response to these currents yield a great deal of information on the state of the

bilayer electron system.
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The excitonic BEC can be detected through electrical transport if a flow of the BEC is set

up through the layers. Electrical transport due to such a flow will be vastly different from
the usual currents carried by electrons. BECs exhibit superfluid properties that we can
detect as a vanishing of the current’s dissipation when the system enters the excitonic BEC
state. Additionally, transport due to the flow of excitons will be unaffected by the magnetic
field since excitons are charge-neutral. This will show itself as a vanishing of the Hall
resistance when the system is in this state. Both of these indicators were detected and are

discussed in Chapter 7.

This state was first detected more indirectly, using an electrical transport measurement
called “Coulomb drag.” In this measurement, interlayer electron scattering processes are
directly detected when current is sent through one of the layers, and voltages are probed in
the non-current-carrying layer. The first-ever observation of “quantized Hall drag,” the
remarkable spectacle in which a quantized Hall voltage appears in a layer that has no net
current flow, is an indirect display of the likely excitonic superfluid, and is shown in

Chapter 5.

Coulomb drag, although only an indirect method for detecting the excitonic superfluidity,
is an excellent probe of the phase transition out of the BEC state as the (effective) layer
separation is increased. Studies of this phase transition are covered in Chapter 6,
including the interesting result that the BEC state becomes more robust when the electron

densities in the two layers are not equal.
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The theoretical framework for understanding this special state is covered in Chapter 4.

Readers interested only in the theory and experiments on the correlated bilayer excitonic

state should proceed directly to this chapter.

Chapter 3 shows early Coulomb drag work done in zero magnetic field. It precedes the
other chapters mainly because the work was done chronologically earlier, although it also
lays the foundation for understanding the Coulomb drag measurements performed in the
exciton BEC state shown in later chapters. Coulomb drag experiments in zero magnetic
field are used to study electron-electron scattering processes — Coulomb drag is the first
measurement technique to detect these processes directly. Our experiments have led to a

better understanding of the nature of these interactions.

The Coulomb drag measurement itself is discussed extensively in Chapter 2, including the
theory and history of electron-electron scattering and Coulomb drag in zero magnetic field.
A detailed equation for zero field electron-electron Coulomb drag scattering derived by
Jauho and Smith [2] is extended theoretically, and a Fortran program that numerically

solves this equation for a variety of experimental conditions can be found in Appendix K.

In Chapter 1, the double quantum wells that are used to confine the electrons to two
dimensions are discussed, with special focus on the parameters that affect the ability to
achieve and perform electrical measurements on the exciton BEC state. Also included is a
basic description of the crystal processing, which allows for experimental access to the

electron layers.
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For those who wish to perform these types of experiments, there are eleven Appendices

that contain detailed information on the experimental procedures.

Ooe0e H KPIR2

1 D.C. Tsui, H.L. Stérmer and A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
2 A.P.Jauho and H. Smith, Phys. Rev. B 47, 4420 (1993).



Chapter 1: Sample & Processing

1.1  DOUBLE QUANTUM WELLS

The exciting physics presented in the thesis would not exist but for the skill of our
collaborators at Bell Labs, Loren Pfeiffer and Ken West, who design and grow the ultra-
clean, ultra-high mobility GaAs/AlGaAs heterostructures needed to see the subtle quantum

effects reported here.

These crystals are grown by a technique called Molecular Beam Epitaxy, in which crystals
are grown one atomic layer at a time, with control over the composition of each layer. The
semiconductors Gallium Arsenide (GaAs) and Aluminum Gallium Arsenide (AlGaAs)
have very similar lattice constants and can be grown together in layers to create a very
clean, high quality crystal with few defects. But, since the two materials have different
conduction band energies, layers of GaAs and AlGaAs will form wells in the conduction
band profile in the dimension perpendicular to the layers (see Fig. 1.1). Conduction band

electrons can fall into these wells and become trapped.

These bound state electrons have discrete energy levels — the wavefunctions for the first
two levels are depicted in Fig. 1.1. For a GaAs well 180 A wide, the energy difference
between the first two levels is ~37 meV, approximately 400 K in temperature units. Even

at room temperature (~ 300 K), many of the electrons will be in the lowest energy state; but
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at the cryogenic temperatures that we work (d 1 K), a// of the electrons will be confined to

the lowest energy state. This will preclude any electron motion in this dimension and the
electrons will only be free to move in the remaining two dimensions, in the plane of the
GaAs layer. Electrons constrained to only move in two dimensions are called “two-

dimensional electrons.”

AlGaAs AlGaAs

Energy

GaAs

Figure 1.1: Quantum well formed in the conduction band profile from a layer of GaAs sandwiched
between layers of AlGaAs. Schematics of the first two wavefunction solutions for a conduction band
electron trapped in this “box” are shown in grey.

In these two dimensions, the electrons will behave as regular GaAs conduction band

electrons, moving through the crystal as free electrons with an effective mass

m" =0.067m,, where m, is the conventional electron mass.

A single quantum well provides a single layer of two-dimensional electrons. For the
experiments shown in this thesis, two layers of two-dimensional electrons are needed,

spaced very close together and in parallel — but well isolated electrically. For this, double
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quantum well structures are grown. For double quantum wells, two layers of GaAs are

grown into the crystal, separated by a thin AlGaAs barrier.

1.1.1 CRYSTAL SPECIFICATIONS

The crystal used for these experiments is a GaAs/AlGaAs modulation doped [1] double
quantum well structure grown on the (100) surface. The conduction band is populated by
symmetrical silicon delta-doped layers setback approximately 2000 A from the double
quantum well structure. The wells are 180 A layers of GaAs, separated by a 100 A wide
AlpoGay 1 As barrier; there are Aly3Gag7As cladding layers on the outer sides of the wells.

Figure 1.2 shows a schematic of this double quantum well structure.

Aly G, As

Al,.Ga,,As Al, G0y, As

P NG

GaoAs GaoAs

Figure 1.2: I'-minimum conduction band energy diagram of the double quantum well structure with
the calculated electron density shown in grey.
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The barrier and cladding heights in the figure reflect the energy difference between the

conduction bands of the pure GaAs and the AlGaAs alloys. The Aly3Gag;As conduction
band is 232 meV higher than the GaAs conduction band and Aly9Gag ;As is approximately
928 meV higher (in this case even though the X-band minimum is lower in energy than the
I-band, in-plane momentum conservation and energy considerations inhibit I'-X-T"
transport, so it is the ['-minimum that is relevant here [2]). The especially high barrier
between the wells is critical to our experiments. This keeps the tunneling negligibly low,

even though the wells are only 100 A apart.

To estimate the charge distribution in the wells, Schrédinger’s equation is solved
numerically for this double quantum well configuration. Since the electron distribution
will bend the conduction bands (this is not shown in the figure), Schrédinger’s equation
must be solved iteratively with Poisson’s equation in order to calculate the electron
wavefunction for an accurate representation of the double quantum well potential [3]. The

calculated electron density, y*y, for the lowest energy state is shown in grey in Figure 1.2

1.1.1.a  LAYER SEPARATION

A parameter of crucial importance in double layer transport experiments is the separation
between the electrons in the two layers. Since the breadth of the electron distribution is
larger than the AlGaAs barrier, this is not really adequately described by a single number.
Although in some of the numerical work in later chapters the finite extent of the

wavefunction is included in the calculations, for the experimental work we usually just



10
refer to the distance between the peaks of the electron distributions, which we

approximate as the distance between the centers of the two wells and refer to as “d .” The
Coulomb interactions between the two layers are strongly dependent on this interlayer
distance. Because of the inverse dependence on distance of the Coulomb force, the closer
together the layers are, the stronger will be the interlayer Coulomb interactions. Since our
experiments are meant to probe the effects of interlayer Coulomb interactions, it behooves

us to make d as small as possible.

1.1.1.b  TUNNELING

We are limited in how narrow we can make the barrier because the amount of tunneling
between the two wells is exponentially dependent on the width of the barrier [4] and for our
experiments extremely low tunneling is crucial. For our 100 A AlyoGagAs barrier, we can
calculate the strength of this tunneling, which we assess in terms of the energy splitting
Asas between the lowest energy symmetric and antisymmetric eigenstate solutions for the
double quantum well system. This splitting is calculated to be about Agas = 90uK for this
system. This is done by solving the Schrédinger equation iteratively with Poisson’s
equation, taking into account Hartree and exchange effects, for the double quantum well
parameters (using the I valley energy for the barrier), and finding the energy difference

between the symmetric and antisymmetric solutions. The electron effective mass was kept

at the GaAs value m" =0.067m, throughout the structure, even though the mass is higher
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in the AlAs barrier. Using a higher effective mass in the barrier would reduce the

calculated Agas even further, so Agas~ 90uK is an upper limit.

Empirically, we evaluate this tunneling in terms of the amount of interlayer resistance it
offers under resonance conditions. The typical value of this resistance for the results

shown in this thesis is R ~100MQ. We find this to be a satisfactorily small value of

tunneling
tunneling for our experiments. When the barrier width is reduced, even by the small
amount that occurs in the same GaAs/AlGaAs wafer due to the difference in beam flux
during the molecular beam epitaxy growth process between the center of the wafer and the
edges, the tunneling becomes dramatically larger, so much so that we have been restricted

to using only sample pieces, for this thesis, that come from or near the center of this wafer.

The barrier height could be increased by about 10% (and the tunneling current reduced by
roughly the same factor [4]) if the barrier were made of pure AlAs, however samples
grown with pure AlAs barriers, prior to my time in the research group, could not be
successfully contacted electrically. This is believed to be due to the high reactivity of
aluminum with oxygen; oxygen burrows into the AlAs layer from an exposed edge and the
entire layer can become oxidized [5]. This prevents the diffused ohmic contact from
penetrating the barrier to reach the bottom electron layer. The small amount of gallium in
the AlpoGay As barrier, however, seems sufficient to arrest this process, and we are able to

successfully contact both the electron layers in these samples.



1.1.1.c  WELL WIDTH AND INTERFACE ROUGHNESS -
Another way to reduce the mean electron separation, without reducing the barrier width,
would be to reduce the widths of the quantum wells — this would move the peaks in the
electron density distribution closer together. But there is a strong dependence of the
electron mobility on the well width, and since high electron mobility is also very important
to our experiments, we are limited in how narrow we can make our wells. This dependence
arises from interface roughness scattering. The “GaAs-on-AlGaAs” interface is the
predominant source of this scattering, as it tends to be rougher than the “AlGaAs-on-GaAs”
interface [6]. This roughness gives a spatial dependence to the well width, which creates a
spatial dependence to the energies of the eigenstate solutions for the electron in the
quantum well and these become strong scattering centers. Empirically, and theoretically,
the mobility is observed to depend on the sixth power of the well width [7]. The mobility
of our electrons in the 180 A wide wells is roughly w =5 x 10° cm*/V s in the regime of our

vr=1 work, this appears to be near the limit of tolerable mobilities.

Thus our double quantum well parameters are likely the current state-of-the-art for bilayer

electron transport studies in the limit of zero interlayer tunneling.

1.2 SAMPLE PROCESSING

Our processing is done on a 5 mm x 5 mm square cleaved from the parent crystal wafer.

We use standard photolithographic techniques, depicted in Fig. 1.3, to shape the region that



13

1. Coat surface with photoresist 2. Selectively expose photoresist to uv light
I <— phototesist < uv light
< 2DEGs % é
44— mask
<4 2DEGs

3. Etch away exposed surface

b & B 4
= 44— acid bath 4. Electron layers in ‘mesa’ region only
—-»>
5. Repeat photoresist and uv exposure 1 —-

steps; apply Aluminum layer using evaporator

44— aluminum

6. Top gates laid over mesa

op >
<4— aluminum gate
40 um¥
400 pm

7. Bottom of sample is thinned, and aluminum gates are put on backside
iy Eﬂ
aluminum gate —

Figure 1.3: Sample processing steps. 1. Sample is coated with photoresist. 2. A mask is put
over the surface and ultraviolet light is shined on it. 3. The exposed crystal surfaces are etched
away in an acid bath. 4. Only the unexposed surfaces still contain the electron layers, the
picture on the right is the top view of the mesa pattern used for sample ‘K’. 5. Photoresist,
mask and ultraviolet exposure are repeated for gate pattern, and a thin layer of aluminum is
evaporated onto the surface. 6. These make “top gates”. 7. The sample is thinned and
“bottom gates” are lithographed onto the backside.
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the two-dimensional electrons occupy, and to lay down metallic structures on the

surfaces to control the electrons by electrostatic gating.

The top side of the sample is processed first. The top side of the crystal is coated with
photoresist as shown in step 1, Fig.1.3. Photoresist is an organic polymer which forms a
tough acid-resistant barrier, but will break down when exposed to ultraviolet light. A glass
mask with the desired electron region geometry patterned on it in ultraviolet-opaque iron
oxide is placed on top of the photoresist, and then the whole ensemble is exposed to
ultraviolet light (step 2, Fig. 1.3). This breaks down the photoresist everywhere except in
the location of the mask pattern. Then by etching the crystal in an acid solution (step 3),
the two-dimensional electron layers (2DEGs), located approximately 0.5 pum below the
surface, are removed everywhere except in the patterned area. This creates a raised “mesa”

on the crystal that contains the electron layers (step 4).

To lay down metallic gates on the top side, photoresist is again applied and covered with a
glass mask with the desired gate pattern — this time transparent in the iron oxide
background. Ultraviolet light exposure removes the photoresist where the gates will be.
The sample is put in a thermal evaporator, and ~0.1 pm of aluminum are evaporated over
the entire sample (step 5). When the residual photoresist is removed, only the metal in the

patterned regions will remain on the sample (step 6).

The sample is then thinned. Originally ~500 pum thick, it is thinned to ~50 pum using a
bromine-methanol etch. We thin the sample in order to bring the back gates, which will be

processed onto the back surface, as close to the electron layers as possible. We are limited
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in how much we can reduce the distance between the electron layers and the bottom side

of the crystal, as the sample becomes excessively brittle when it is thinned much below

50um, and can not be handled without breaking.

The bottom side of the thinned sample is then lithographed with the pattern for the back

gates and aluminum is evaporated into this pattern (step 7).

Figure 1.4: Top side of crystal after processing is complete. Small bright rectangles near center
of photo are AuNiGe contacts. The larger bright shapes at the perimeter are Indium solder
connections where thin gold wires are connected to the aluminum gates. The field of view is
~4 mm in diameter. Sample Y.
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Electrical contact is made to the electron layers by applying either indium [8] (with a

soldering iron) or gold-nickel-germanium [9] (by thermal evaporation) in appropriate
locations on the electron mesa. The metals are then diffused into the crystal by annealing
and will come into contact with the electron layers. The diffused metal will interact with
the conduction band profiles of the wells in such a way as to allow electronic access to the
electron layers [8, 9]. The contacts and metal gates are then wired up to a standard DIP
header for easy handling of the sample. Figure 1.4 shows the top surface of one of the

crystals after it has been processed and wired up.

Detailed information on the sample processing can be found in Appendix A.

oo H VeV
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Chapter 2: Coulomb Drag

2.1 DEFINITION

In the Coulomb drag measurement a current /_ is driven into just one of the layers (called
the “drive” layer) and the voltage, either longitudinal V, , or Hall V| , is measured in the

other layer (the “drag” layer), which is kept electrically open (see Fig. 2.1). Since under

usual conditions the longitudinal voltage V., will be negative, the longitudinal drag

resistivity p_, is defined by convention as:

_V_
2D 2.1

P =1 1w

so that the drag resistivity is usually a positive number. L/W is the length of sample L
that the voltage is measured along divided by the width W of the sample, also referred to as

a “square”.

The convention for the Hall drag measurement p,, ,, is to define the Hall drag voltage V ,,

as positive if it has the same sign as the Hall voltage in the drive layer. Then the Hall drag

resistivity will be:
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V
P = ;—D (2.2)

Ix’
I

Figure 2.1: In the Coulomb drag measurement, current is sent through just one of the layers
(the drive layer). The other layer (the drag layer) is kept open, and voltages are measured in
this layer in response to current in the drive layer.

2.2 FREE ELECTRON MODEL OF COULOMB DRAG

Coulomb drag is a unique transport measurement in that it directly measures electron-
electron scattering rates — independent of other electron scattering processes (such as
phonon, impurity, and defect scattering) in the individual layers. Measurements at zero
magnetic field are especially useful because the electron systems are relatively simple

to model theoretically.

A simple Drude model [1] of the drag at zero magnetic field can give a nice elementary-

level understanding of the physical mechanism for the drag resistivity and so is worth
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going through here. In the Drude picture, current is modeled as free electrons moving

under the influence of an electric field, but frustrated in their motions by scattering events
with phonons, impurities and defects, and as a result move at a steady state velocity called

the drift velocity v,,,,. The two-dimensional current density J,, in the drive layer can

then be given by:

Jop =Mype U4y (2.3)

where n,,, is the two-dimensional electron density in the layer and e is the charge of the

electron.

Although the electrons remain in their respective layers, because of the long range
Coulomb force they will affect one another’s motion by scattering off each other. Some of
the momentum of the current in the drive layer can be transferred to the drag layer by these

scattering events. The time it takes to transfer the full momentum of a drive layer electron

m'v,,, (where m" is the effective mass of the electron) to a drag layer electron defines the

mean interlayer momentum relaxation time 7, . This momentum will push the drag layer

electrons to one end, causing a voltage to build up in that layer (see Fig. 2.2). Notice that

this will be a longitudinal voltage. The force from this electric field £, in the drag layer

will balance the momentum transfer rate due to the scattering:

m'v, .
eE, = — (2.4)

Tp
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: drag layer
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I drive layer

Figure 2.2: In the free electron model of Coulomb drag, electrons in the drive layer transfer
their momentum to electrons in the drag layer through long-distance scattering events that
cause a voltage to build up along the drag layer.

So, the electric field in the drag layer is a direct measure of the interlayer momentum

relaxation time 7, . To express this in terms of the longitudinal drag resistivity p,, ,, we

define the longitudinal drag resistivity:

£y

= (2.5)

pxx,D =

Combining equations (2.3), (2.4), and (2.5), an expression for the drag resistivity can be

derived:

*

m

pxx,D = (26)

2
n,p€ 7p

Thus the longitudinal drag, for a known electron density and effective mass, directly

measures the interlayer momentum relaxation time due to electron-electron scattering.
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2.3 ELECTRON-ELECTRON SCATTERING IN METALS

The theory of electron-electron scattering (in metals) was first addressed by Landau and

Pomeranchuk in 1936 [2]. They found that the contribution of electron-electron

scattering to the resistivity would go as p, = 4, T? (for T < T, where T, is the Fermi
temperature; true for all metals at room temperature), where A4, is constant for a given

material and tends to be very small relative to the electron-phonon/impurity/defect

scattering contributions.

The T° dependence arises from Pauli restrictions on the phase space available for
scattering. In order for a scattering event to take place, there must be a vacant state
available for an electron to scatter into. And any gain in energy in one layer must have a
corresponding loss of energy in the other layer. The largest loss of energy possible will be

on the order of k,T, where k, is the Boltzmann constant, because there will be a

“fuzziness” in the occupancy statistics at the edge of the Fermi disk of that order, as per the

Fermi-Dirac distribution function:

B 1
N @7

The vast majority of electrons, those occupying k-states in the bulk of the Fermi disk, won’t

be able to scatter, as all the states up to k,7" away are occupied. Roughly speaking, only

the electrons in the region of width ~k,T" at the edge of the Fermi disk are able to
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participate in scattering events. Since the number of electrons in each layer available for

scattering increases linearly with T; the number of scattering events will go up as T

A, is very small because normal electron-electron collisions conserve total electron

momentum (in a translationally invariant system), and so do not effect the net charge flow;
but umklapp processes [3], which involve the reciprocal lattice vector, do not conserve the
total electron momentum and although these processes are rare, they are the main

contributor to 4,, [4].

There have been clever schemes over the years for detecting p,, amidst the much larger
contributions to the total resistivity from the other scattering processes. Since electron-
impurity scattering is temperature independent, it can be distinguished from the

temperature dependent p, (7) provided the temperature is sufficiently low to suppress the

most dominant temperature dependent scattering process: electron-phonon scattering. The

first reported measurements of p,, were obtained in the metals Indium and Aluminum by

this method [5, 6].

Comparisons between the thermal and electrical conductivities in alkali metals were the
next method used to infer the electron-electron scattering rate [7]. The normal scattering
processes while not affecting charge flow, do impede heat flow, causing detectable

deviations in the Wiedemann-Franz law at high temperatures [8].

Much later, electron-electron scattering was probed in two-dimensional systems via their

dephasing effect [9, 10] — the destruction of quantum interference effects studied on length
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scales shorter than the mean free path — and by their resistivity contributions in

translationally non-invariant systems [11]. However Coulomb drag is the only technique

that directly measures electron-electron scattering.

2.4 BOLTZMANN MODEL OF DRAG SCATTERING

Jauho and Smith (JS) [12] were the first to publish an explicit equation to predict the drag
as a function of temperature, layer separation, well width and electron density. (Allan
MacDonald was the first to derive it, but only published the end result [24].) Their
equation is constructed primarily from linearized Boltzmann transport theory, but
incorporates quantum mechanics for the formulation of the scattering term.  Purely
quantum formulations of Coulomb drag reduce to Boltzmann theory in the long mean free
path limit [13-15], and for near equilibrium situations (one where low drive currents are
used), the linearized theory is sufficiently accurate. Since we use very low drive currents

(0.5 to 20 nA) and since our samples have very high mobility (z~10°cm?/V -s), their

equation should suit our system very well.

Their equation is based on the basic scattering event depicted in Fig. 2.3. An electron in

the drive layer is scattered from initial momentum state k, to final momentum state k,, in
an interaction with an electron in the drag layer scattered from initial state k, to final state

k, . The momentum transferred in the interaction is q =k, —k,.
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k ! —
2 kl'

Y

Figure 2.3: Scattering event between an electron in the drive layer (subscript 2) and an electron
in the drag layer (subscript 1). Initial momentum states are unprimed, final states are primed.
q 1s the wavevector characterizing the momentum transferred in the scattering event.

I start with their most basic derived equation (eqns. 13 and 16 in ref. 12):

eEn ehE,t dk dk dk
1 2%2 1 2 1, 1,2;1V’2| 2 10 20 1_ 19 1_ 2(?
T T akT J(zﬁ)zj(zﬂ)zj( ﬂ)zu Vg’ £ 1A= £ £3)

01,0,,01,0,

xo(g+&,—& —&,)
(2.8)
The subscripts i = (1, 2) refer to the (drag, drive) layer; E,, n,, 7, are to the electric field,
electron density and momentum relaxation time in layer i; m"is the effective mass of the
electron; £ is the equilibrium Fermi distribution function in layer i; k,,¢,, o, are the

wavevector, energy, and spin of a specific electron in layer i, (primed indices represent

final states, unprimed are initial states); and w(1,2;1',2") is the probability that two

electrons in states k, o, and k, o, will scatter to k. o, and k, o,..
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This equation simply integrates over all possible scattering events from every possible

initial and final momentum state in each of the layers. Momentum conservation fixes the
final momentum state of the drive layer electron if the three other initial and final states are
known, so there is no integration over k, . Energy conservation is ensured by the delta
function in the integrand. Phase space availability is monitored in the four Fermi
distribution function terms. The ¢’ term weights the scattering events — large ¢ scattering
is more efficient at transferring net momentum to the drag layer, and so large ¢ events get
more heavily weighted (see Section 3.3). w(1,2;1',2") tells the likelihood of a given

scattering event regardless of phase space availability — this is the term that incorporates the

Coulomb interactions between the electrons that cause them to scatter in the first place.

Combining eqn. 2.6 with the identity offered in (JS): % = T—z, equation 2.8 can be written

2 Tp
as:
h? dk, dk, dk,
w(1, 21,2
P = 4112111 Ann ek, T 51 o azzg‘f o‘ZI I ) J.(27z) A & (2.9)

><f1 fz (1= fiDA= [2)3(s +&,— &, - &,),

where the integration in each dimension goes from -oo to co.

Some of these integrals have even symmetry, for those j dx will be replaced by 2I dx .

—00

One of the integration variables can be dropped by taking advantage of the symmetry of the

integral to rotation of the k, axes, and so I can rewrite that integral as:
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[ G glklydkly (2.10)

—00

setting k,, =0.

By again invoking rotational symmetry and by integrating over the delta function, I can
remove still another integration variable. Unlike JS, I do not dispatch the delta function by

bringing in the susceptibility function y(q,®). These susceptibility functions are difficult

to evaluate for 7#0 and JS simply use the 7 =0 expression throughout their paper.
Although using the susceptibility function removes two more integration variables than my

method does, my method remains accurate for all temperatures.

To illustrate my method, I will address just the parts of the equation which depend on k,
(it is reasonable to assume that w(1,2;1',2") = w(g,®) and does not explicitly depend on

k, [12]):

dkz 0 0
J.(Zﬂ_)z f (82)[1—f (%)]5(62 —&,+8&—6.). 2.11)

Because of the symmetry of the distribution function, I can rotate my axes of integration so

k

that they run parallel and perpendicular to the q determined by & e and k. . And

ly>

rather than integrate over k,, and k,, , I instead integrate over k, and k, (see Fig. 2.4).

This greatly simplifies the integration.
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Figure 2.4: Novel integration axes for initial momentum states in drive layer. By rotating the
axes parallel k and perpendicular k, to g the integral can be simplified.

Recalling the electronic energy dispersion relations:

hZ

& =—(k5+h3,) (2.12)
hZ

£, = ﬁ(kj” +h3,) (2.13)

and using k, =k

,.. » | get the following relation:

h2 2 2
£ -8 = ﬁ(kzu ~ ko) (2.14)

Then using the identity k,, =k, —¢:

kyy =k —2qky +q° (2.15)

which leads to

2

h
£, —&, =W(2qk2” -q’), (2.16)
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2

and so d(e,—&,) = h—f]dkzu (2.17)
m

Making this substitution, the dk, part of the integral reduces to:

m*
27h’q

I%Id(gz _52')f0(32)|:1—f0(52v)] 5(82 — &)+ & —gl,)
= Idkzj_{f (52 I:l f (52 ]}evaluatedatgz —&y+&—&=0 (218)

4 2h2

This conservation of energy requires that:

P, ¢ & o
2 2m* i 21 4 4q2 2 | ( )
2 [ 2 2 7
PR DY S L (2.20)
2m | 4  4q° 2 |
where
2 2 2
q = (kl'x) + (kl'y _kly) (2‘21)
and w=(k, -k, — k) (2.22)
The integral is now:

ng: _!dklyl.dklxj‘dkl}w(q9a))kl1q...dk2i.fl.fz(l SOA= 1.

01,0y

p)oc,D

(2.23)
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As is, this equation should be a very accurate model of our system. But in order to

evaluate this integral, an expression must be chosen for the collision probability w(q,®).

Here is where the equation becomes less exact. Assumptions and simplifications must be

made in order to evaluate this term.

As a starting point, JS invoke Fermi’s golden rule:

w(g, @) = 27”|V<q>|2 (2.24)

to evaluate the collision probability. Here the assumption is that the scattering potential is
weak: the Born approximation. This approximation is good in the same long mean free
path limit for which Boltzmann theory holds, however it is good to keep in mind that there
are higher order terms that are being neglected and that this approximation does not
account for interference effects such as weak localization. There is also an implicit
assumption in this method that the conductivity of a single layer is linearly dependent on
the density [16], which is not what we observe. However, at zero magnetic field, this
should not be too important [16]. So I have followed JS’ lead and use the Born

approximation in my version of their integral.

The next set of assumptions comes in evaluating the potential V' (g). JS use a screened
Coulomb potential; the bare potential of a single electron is being screened by the electrons
both within the same layer and those in the other layer. The choice of screening theory

affects the difficulty and the accuracy of the equation.
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The simplest theory (and the one JS use) is the static screening Thomas-Fermi (TF)

approximation. This approximation excludes dynamical screening effects such as coupled
plasmon modes, which are a sort of anti-screening which enhances the drag. This mode

becomes important when 7 €0.27,. [17]. Also excluded are electron correlation effects

[18, 19] , multi-particle excitations [20], enhanced disorder effects[13, 18], and phonon-
mediated electron-electron scattering [21]. The latter is not an important process in our
samples (see Section 3.2.1), but inclusion of the other effects would likely improve the
quantitative agreement of the integral with the data. However, for understanding
qualitative effects, such as the peak in the drag at balanced densities below some critical
temperature observed in Section 3.4, which is fundamentally a phase space effect, it is

sufficient to use the simpler TF screening model for the potential /' (¢q), and so I do.

TF screening is identical to static Random Phase Approximation (RPA) screening (in the
zero temperature limit) for g <2k,., where k, =(27m)1/2 is the Fermi momentum and
begins to deviate from static RPA for g > 2k,.. RPA screening can be approximated for
q > 2k, by adding a simple function to the TF formulation that should mimic static RPA;

this function can be found in reference 22. For the Coulomb drag parameters explored in
this thesis (primarily in Chapter 3), this additional function made very little difference in

the results, so I have just kept to the TF approximation used in the paper.

In the TF approximation the collision term is given by (see eqns. 22 and 25 in JS):
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| 27e’ q/qr |2
‘47[80KqTF Ail(B + q/qTF)2 - A‘

> w(q, o) =%ﬂ4 (2.25)

01,05,
011,05

Where «x is the dielectric constant (~12.8 for GaAs) and ¢,. is the TF screening

wavevector:

2m'e’
Grr me o 1.977x10°m™ (for GaAs electrons) , (2.26)

e’
while 4 and B contain information on the form factors associated with the shape of the
wavefunction of the electrons confined in the wells. It is sufficient to assume that the
wavefunction takes on a half-cosine shape inside the well and is zero outside of the well,

then (see eqns. A16 and A17 in JS):

LY 87’ ’
A= €7qd (sinh q—j VN ) (227)
2 qL(4n" +q°L")
, 2
IR (RN . — (2.28)
qL 4r"+q’L 2\ qL(47" +q°L")

where d is the center-to-center separation between the wells and L is the well width.
Alternately, the form factors can be computed from a more realistic wavefunction that itself
is computed from a program, such as one that Jim Eisenstein wrote [23], which calculates
the wavefunction for a specified conduction band profile and electron density. This
exercise mainly shows that it is sufficient to use the cosine approximation. To calculate the

form factor coefficients from a more realistic wavefunction, use equation (AS8) in JS.
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Now including the expression for the collision probability, and summing over spins, the

integral I use for calculating Coulomb drag reaches its final form:

0

Prep = e J-dkly T dkl'dek]’z {
o0 0

ﬁszThlczq;Fnznl (472'80 )2 ]

klquf(El)[l_f(Elv)] %
| N jdkuf (Ez)[lf(Ez)]}

[A71(3+%) —A} 0
(2.29)

This integral assumes: low drive current, high mobility, the Born approximation and

Thomas-Fermi screening. There are Fortran programs in Appendix K that numerically

solve this integral for a range of T,n,,n,,m",d,and L .

2.4.1 A LIMITING CASE

A simplified version of this equation can be derived analytically, as was done first by
Gramila et al. [24] and then by Jauho and Smith [12]. This requires certain assumptions to
be made about the conditions in actual drag experiments. In addition to the simplifications
used above, Thomas-Fermi screening and the Born approximation, the assumptions that

T/T, <1 and k.d > 1 reduce the drag integral to:

m' g 3k, T*
16 &nhT,(q,pd) (k,d)’

pxx,D = (230)
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At the time, 7/7, <1 was a reasonable assumption, as the lowest electron density per

well of the samples studied at the time was n~1.5x10""cm™ [24], which has a Fermi
temperature of 7,. ~ 60K , much larger than the cryogenic temperatures probed at the time

(aslowas T~0.3K).

The assumption k,.d > 1, was somewhat reasonable: &, ~10°m™' for the above density

and d ~375x10"'m was the smallest layer separation used. When k,d > 1 only small-
angle scattering makes an important contribution to the drag. Large-angle scattering is
suppressed when the layers are relatively far apart (relative to k'), because the small
wavelength (large ¢ ) components of the Fourier transform of the Coulomb potential of one
layer, can not be resolved by the other layer a distance d away. The Fourier transform of

the bare Coulomb interaction contains a factor e % ; by Fermi’s Golden Rule (eqn. 2.24)

this inhibits scattering events with large momentum transfer ¢ by the same factor squared.

Large-angle scattering means large momentum transfer scattering and corresponds to

q— 2k,

Equation 2.30 predicts the temperature p, , o T?, density p, , «<n” (T ok o n) and

layer separation p, , ocd ~* dependence of the Coulomb drag under (at the time) likely

experimental conditions.
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2.5 HISTORY OF COULOMB DRAG

Drag experiments were first performed in 1960 by Hubner and Shockley between two thin
(but not two-dimensional) layers of electrons in a semiconductor-insulator-semiconductor
structure fashioned from a boron-doped silicon wafer [25]. Because their layers were
relatively far apart (~100 pum), they were for the most part measuring phonon-assisted
electron-electron scattering. In phonon-assisted scattering, an electron in one layer scatters
with a phonon, which then travels to the other layer and scatters an electron there, and so

their measurements do not give information on direct electron-electron interactions.

Coulomb drag was first considered theoretically, again for two thin films of electrons in a
semiconductor-insulator-semiconductor structure, in 1977 by the Russian theorist M. B.
Pogrebinskii [26]; and later for two-dimensional electron layers in GaAs/AlGaAs

heterostructures by Peter Price in 1983 at IBM [27].

But Coulomb drag experiments would not be attempted again until technical advances in
molecular beam epitaxy allowed for the precision construction of GaAs/AlGaAs
heterostructures with layer thicknesses a thousand times smaller than Hubner and
Shockley’s samples — engendering much stronger electron-electron interactions. In 1989,
IBM scientist Solomon ef al. made the first drag measurements between a 2D layer and a
100 nm thick 3D layer [28]. The first drag measurements between two 2D layers were
made soon after by Gramila ef al. at Bell Labs [24]. Then there were Coulomb drag

measurements between a 2D layer of electrons and a 2D layer of holes, also at IBM [29].
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Currently, 2D-2D Coulomb drag measurements continue to be performed in labs around

the world [30].
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Chapter 3: Coulomb Drag at B=0

Coulomb drag measurements in zero magnetic field give information on basic electron-
electron scattering processes with unprecedented clarity; and with a wide range of
parameter space to explore. Not only can we measure the temperature dependence of the
scattering, but we can also vary the electron density, as well as create a density imbalance

between the two layers by establishing different densities in each layer.

3.1 SAMPLE: ‘K’

The data shown in this chapter (and thesis) was obtained from a single wafer. This wafer
was used for the experiments because of its very low tunneling. It is discussed in detail in
Chapter 1. To reiterate here: the wells are 180 A wide GaAs, separated by a 100 A wide
AlpoGay As barrier and embedded in thick Aly3Gag;As cladding layers. It has been

symmetrically silicon 8-doped, setback approximately 2000 A from the wells on each side.

This data is from a 5 mm x 5 mm piece taken from the center of the wafer and is called
sample ‘K’. The central region of the mesa is a 40 um x 400 um bar with 5 arms extending

out of it for electrical contact (see Fig. C.3 for sample map and Fig. 3.1 for a photo of this
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Figure 3.1: Picture of top side of sample ‘K’ showing the mesa structure in faint outline with its

central 40 um x 400 pm bar. The lighter regions are the top side aluminum gates. Field is
~2mm across.

sample). For this sample, contact was made by putting indium [2] at the ends of the arms,
on the large “contact pads” located there, using a miniature soldering iron. Then the
sample was annealed at 440°C for 10 minutes in a 15% H,, 85% N, environment and wired
up as usual. The nominal density in each well was 5.3 x 10" cm™, the mobility 1 x 10°
cm?’/Vs [3] and the tunneling resistance at resonance R =500 MQ. The density in the
central mesa region was controlled by electrostatic gates above and below the central bar.
We could achieve densities as low as 1.7 x 10" cm™ and as high as 8.8 x 10" cm™ per
layer by applying voltages to these gates. The densities in the two layers were matched by

finding the gate voltages that maintained a positive drag signal in the high Landau levels

[4].
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3.2 LONGITUDINAL DRAG VERSUS TEMPERATURE

Figure 3.2 shows the temperature dependence of the longitudinal Coulomb drag at nominal
density with a 20 nA, 13 Hz drive current. This data represents the largest nominal density
electron-electron Coulomb drag signal measured at zero magnetic field, at this time. This
is because interlayer electron-electron scattering is strongly dependent on the inverse of the
electron density and layer separation (see Section 2.4.1), and the as-grown densities of our
quantum wells are less than half that of the quantum wells used in the previously published
Coulomb drag experiments [5]. The center-to-center well separation of 280 A is also
smaller than the prior experiments (of those done in the low-tunneling regime, and
consequently our nominal density drag signal is two orders of magnitude larger than any

other electron-electron drag published at zero magnetic field.

pxx,D (Q/D)

Temperature (Kelvin)

Figure 3.2: Longitudinal drag resistance vs. temperature taken at nominal density
n=53%x10"cm ™, dashed line shows a simple parabolic fit.
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The significance of this, beyond the convenience of the larger signal-to-noise ratio, is

that our drag is likely dominated by direct electron-electron scattering events, rather than
phonon-mediated electron-electron scattering, which dominates much of the previously

published drag. This means our data is directly probing the interlayer electron interactions.

Notice the nearly T* dependence as originally predicted by Landau and Pomeranchuk for

electron-electron scattering in metals [6]. The dashed line corresponds to the equation

P plQ/0]=0.372xT ’[K]. This quadratic dependence on the temperature is evidence

that we are indeed predominately measuring direct electron-electron scattering.

Although the T dependence was calculated for electrons free to move in three
dimensions, it holds roughly true for two-dimensional electrons as well. The two-
dimensional nature of our electrons does necessitate a change of the shape of the Fermi
surface used in Landau and Pomeranchuk’s calculations from a sphere to a disk (or rather a
cylinder), which creates T°InT corrections in the temperature dependence [7]. This is due
to divergences in the phase space at low 7 for scattering processes with momentum

changes ¢ ~0,2k,, where k. 1s the Fermi momentum — this is a uniquely two-

dimensional phenomenon [8]. But as this term is expected to be very small, and the
coefficient is unknown, there is little point in including this term in our fit as there are

easily many two-parameter functions that would fit our data nicely, but for the curious:

pxxﬂD[Q/D]:0.165><Tz[K]—0.080><T2[K]1n(T/TF), (3.1)
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where the Fermi temperature is 7, = 22.1K , would fit the data nearly perfectly. This is

a two-parameter fit to the data shown in Fig. 3.2 which includes the expected T°InT term.

Parenthetically, Zheng and MacDonald [9] also predict T?nT corrections in the drag
scattering but for entirely different reasons. They say disorder in the sample will also
create this correction term, but only at inaccessibly low temperatures; so we ignore this

effect here.

3.2.1 SEARCH FOR PHONON-MEDIATED DRAG

We can look for subtle deviations from the 7° behavior by dividing the drag resistivity by

T’ and then plotting Pun!T ? (see Fig. 3.3). In particular we can look for non-monotonic

behavior in the temperature dependence, which is the hallmark of phonon-mediated

Coulomb drag [10].

Phonon-mediated Coulomb drag hinges on electron-phonon scattering processes, which
have a different temperature dependence than electron-electron scattering, mainly because
phonons are bosons. Electron-phonon scattering is linear in 7 at high 7 because in this
regime, large-angle scattering dominates the momentum transfer. The population of these

efficacious g =2k, phonons is given by the Bose-Einstein distribution function

1

n[w(2k;)] =
g eXP( hwk(j;(m ) -1

(3.2)
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hich reduces to nfw(2k.)]~——
w u [0k~ 72t

when 7hw(2k,) < k,T. The scattering rate

merely reflects this linear temperature dependence of the number of phonons available for

scattering.
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Figure 3.3: Longitudinal drag resistance divided by the temperature squared vs. temperature at
nominal density (5.3 x 10" cm™). Phonon-mediated processes exhibit a bump near the Bloch-
Grineisen temperature when the data is plotted in this manner; no bump is seen in our data.

But at low 7', g =2k, phonons become scarce and for more complicated reasons the

scattering dependence will have 7° and/or T’ terms [11]; the scattering will drop
dramatically as the temperature drops (this is called the Bloch-Griineisen regime). The

transition temperature between these two different behaviors is given by the Bloch-

. hisk . . :
Griineisen temperature 7, =—=, where s is the sound velocity. In the data shown in
B
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Fig. 3.3 this crossover would occur at approximately 1 K. With the data plotted as

Pup!T * this would be seen as a peak in the data near this transition temperature; but

clearly there is no peak observed, indicating that phonon-mediated scattering is not a

significant contributor to our drag resistivity.

This is consistent with earlier drag measurements, in which the largely d independent

phonon-mediated drag was measured to be very small, in the range of
Pup!/T?~1 mQ/oK?, and showed little density dependence [12]. If our data includes a

phonon-mediated drag signal of that order (which it presumably must), then it will be of

negligible importance.

3.3 LONGITUDINAL DRAG VERSUS DENSITY

Figure 3.4 shows the longitudinal drag resistivity versus temperature at six different
matched densities (the same density in each layer). The drag is observed to increase
significantly with decreasing density — as was expected. The physical reasons for this are
threefold: When the density in the drive layer is reduced, the drift velocity must increase to

maintain the same current density (J,, =n,,e v, ). A larger drift velocity yields a larger

net momentum transfer per scattering event. But as the number of electrons available for
scattering is independent of the density (the two-dimensional density of states is constant,

and the number of electrons available for scattering is proportional to k,7 times the

density of states), the total net momentum transferred via scattering is increased. There is a
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competing effect in that the smaller momentum at the edge of the Fermi disk means more

time between scattering events, but this goes as the square root of the density k. =/27n,,

and so it is a weaker effect.

Likewise, a reduction of density in the drag layer increases the ratio of electrons
participating in scattering events relative to the total number of electrons in the layer. Since
the drag voltage is determined by the momentum transferred per electron — regardless of
whether it is at the edge of the Fermi disk participating in scattering or deep in the middle —
this rate will go up, even if the total momentum transferred stays the same. So this is
another mechanism by which reducing the electron density will increase the drag

resistivity.

pxx,D (Q / D)

0 1 2 3 4
Temperature (Kelvin)

Figure 3.4: Drag resistivity vs. temperature for six different densities #. Densities are in units
of 10" em™
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And lastly, reducing the size of the Fermi disks means that a scattering event of

momentum g will be a larger-angle scattering event than the same ¢ in a larger Fermi
disk. Momentum is transferred more efficiently by large-angle scattering events and is

maximized when g =2k, ; pure backscattering. To account for this effect, scattering

events are weighted by a factor of 1—cos@ where @ is the angle between the initial and

final momentum states in one of the layers. Simple geometry can show that this term is

2
proportional to q—2 [13], and so scattering events of momentum g will be weighted more
F

strongly as &, is made smaller.

What was not expected was the rate at which the longitudinal drag is observed to increase

as the density is lowered. Theoretical calculations of the drag resistivity based on

Boltzmann transport theory predict an n~> dependence as discussed in Section 2.4.1. But

our data, the first to probe the density dependence of direct electron-electron drag

scattering, indicates that the dependence on density is even stronger, going roughly as n™*.
Figure 3.5 shows the longitudinal drag resistivity versus density at three different
temperatures 7= 1, 2 and 4K plotted in a log-log fashion. The roughly straight line

behavior over three decades of resistivity indicates that there is indeed a power-law

dependence on density. But rather than the expected 7~ slope, shown as a dashed line, the

4

data is better matched to the »n™ solid lines.
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Figure 3.5: Drag resistivity vs. density at three temperatures: T = 4K, 2K and 1K. Solid lines
are proportional to 7", dashed line proportional to 0.

The theoretical model predicting the n~ dependence includes many simplifying

assumptions in order to derive such a nice analytical result. Among them are that
T /T, <1, which, especially for our lowest density n=1.7x10""cm?® with its T, =7K,
does not hold for much of our data. Also assumed is that the layer separation d is large
compared to the inverse of the Fermi wavevector k., thus k,d >1. This assumes that
only small-angle scattering is important. The greater the layer separation, the greater the
scattering impact parameter and the less prevalent the large-angle scattering events. Large-

angle scattering is suppressed by a factor e %’ because the Fourier transform of the bare
Coulomb interaction contains such a factor, and the probability for a scattering event to

occur, by Fermi’s golden rule, goes as the square of this. The requirement k,.d >1 means



49
that large-angle scattering is neglected. For our data k.d ranges from 0.9 to 2.1; clearly

large-angle scattering cannot be neglected in our results.

The model also uses Thomas-Fermi screening, which is likely an over-simplification of the
actual interaction potential [16]. These simplifications lead to the following analytic form

for the longitudinal drag resistivity:

3 m' g (3)k, T’
16 eznhTF(QTFd)z(de)z

P (3.3)

where ¢, is the Thomas-Fermi screening wavevector, k, is the Boltzmann constant and
¢ (3) i1s a Riemann zeta function. All the data shown in Figure 3.5 exceed the model’s
predictions. Even the highest density data shown, n=8.8x10""cm?, exceeds the value of
equation (3.3) by a factor of 2. This discord between theory and experiment increases as n

is lowered because of the anomalous experimental density dependence n™*; so it’s off by a

factor of 10 by n=1.7x10""cm™.

Theoretical work done after these results were published sought to reconcile these
discrepancies by including many-body effects in the interaction Hamiltonian. Yurtsever,
Moldoveanu and Tanatar [17] noted that random-phase approximation (RPA) breaks down

for . >1, where r,=a/a, is a dimensionless coupling parameter relating the average
inter-electron separation a = (7[11)71/2 within one of the layers to the effective Bohr radius

a, =¢ch’/m"e’, where ¢ is the dielectric constant for GaAs. Because of the low density
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of our sample, especially when gated to our lowest density n=1.7x10"cm™, we were

the first group to work in the regime where 7, >1; with r, = 4.3 at our lowest density.

The Thomas-Fermi model used to derive eqn. 3.3, is similar to the RPA with static
screening and so should not be expected to be valid in the regime that our sample surveys.
And indeed they show that the formulation of Coulomb drag using RPA both with static
and dynamical screening, greatly underestimate our Coulomb drag data (see the dotted and

long-dashed lines in Fig. 3.6).
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Figure 3.6: Theoretical models from Yurtsever e a/ are compared to our data at
n=2.3x10"cm™, as also shown in Fig. 3.4. The dotted line corresponds to static screening
RPA, much like the model we use in Sec. 3.4.1, and underestimates the actual data, shown as
filled circles. The long-dashed line is for RPA with dynamical screening, a slight improvement
over the static screening case. The short-dashed line is for a 1968 theory from Singwi ez a/. [18]
which overestimates the correlation effects. The solid line is the Yurtsever e a/ original
formulation, which matches our data nicely. Taken from Ref. 17.
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To account for the correlation effects expected to be important at these low densities,

Yurtsever et al. first apply a 1968 theoretical model from Singwi et al. [18] which includes
corrections due to exchange and correlation effects associated with charge fluctuations.
They find that this model overestimates the correlation effects (see the short-dashed line in

Fig. 3.6).

Finally, they derive a new model, built from an approach from Kukkonen and Overhauser
[19] which takes into account the background semiconductor lattice into the screening
term, and then Yurtsever et al. build on this model to include exchange interactions for

charge and spin fluctuations. Not only does their new model agree nicely with the

magnitude and temperature dependence of our published 7 =2.3x10"cm™ data (our data

is shown as filled circles in Fig. 3.6 and their model is the solid line), but it also reproduces

the n* dependence that we observed (Fig. 3.5).

3.4 LONGITUDINAL DRAG VERSUS DENSITY IMBALANCE

Aside from the dependence of the drag on matched densities, we can also look at the drag’s

response to having different densities in the two layers. The parameter we will use to

.. An . o .
denote this is —, where An=n,—n, (n, is the density in the i" layer), and n, =n, +n,
nr

is the total density in both the layers. We can change An while keeping n, constant quite

simply by applying a bias voltage between the two layers (see Appendix I).
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The observed relationship p,. , ~ n™*, carries within it a prediction for the behavior we

expect to see when we imbalance the layer densities. By symmetry this relationship

implies p,, , ~n °n,”, which can also be written as:

1 1
[ (n, + AMPLE (AT 16m7(1+42)° (1 - B2y2

P 3.4

Focusing just on the terms containing An, as n, is constant, and applying the binomial

expansion:
2772 2
Pop ~ [1—(%;) } ~ 1+2(42) (3.5)

And so it can be seen that, aside from an offset, there will be a quadratic increase in the

—-X

. . An . .
drag with layer imbalance — . Note that any inverse dependence on density, p_, ~n
n; '

where x is a positive number, will lead to a quadratic increase in the drag with layer

2
imbalance, the exponent x will only affect the coefficient of the (ﬂj term.
nT

Figure 3.7 shows the longitudinal drag resistivity as a function of density imbalance at two

different densities and two different temperatures. Panels a and b show this quadratic
increase in the drag with increasing density imbalance for n=3.7x10"cm™ and

n=52x10"cm™ when taken at T ~4.4K. Both data sets are well fit by the curve:
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Pun = Pun (at ﬁ—;’:O)x[1+l.6(ﬁ—f)2] This is very close to the equation we just
derived (eqn. 3.5). But as the temperature is lowered to 7 =1.4K for these same densities
(panels ¢ and d), we see quite different behavior; here the drag is seen to decrease with
increasing density imbalance. The data evolve smoothly from one regime to the other as
the temperature is varied. The temperature at which the curvature is roughly zero is

defined to be the cross-over temperature 7,. The inset in Fig. 3.7 shows that 7, is linear in

density, and thus linear in the Fermi temperature 7)., with the relation: 7, ~ 0.12xT7,..
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Figure 3.7: Drag resistivity vs. density imbalance at (roughly) two temperatures: 7 =1.4K and
~4.4K , and two densities (at An=0): n=3.7 and 5.2 (x10"cm™) per layer. The central

inset shows the density dependence of the cross-over temperature 7, .
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A peak in the drag at matched density is typically seen in phonon-mediated drag. The

importance of g =2k, scattering in phonon-mediated drag means that the drag will be
maximized when both the layers have the same Fermi wavevector k,. (and thus the same

density). This peak was observed in prior work in the phonon-dominated drag regime [10,
12]. But as discussed in Section 3.2.1, phonon-mediated drag makes a negligible

contribution to our data. So the origin of this peak was quite mysterious at the time.

3.4.1 NUMERICAL MODELING

Because prior theoretical work [14, 15] on direct electron-electron drag presumed that only
small-angle scattering contributed significantly to the drag, it was very surprising to see this
peak at matched densities in our data. But we will show that because our sample
parameters do not fall within the prescribed k.d >1 used in all that prior theoretical work,

what we are actually seeing are the first observations of significant 2k, scattering in direct

Coulomb drag.

To investigate the effects of our small k.d on our drag measurements, we performed the
first theoretical investigation of Coulomb drag for differing densities in the layers.
Following the approach of Jauho and Smith [15], we solve their drag scattering integral for
the case where n, # n,. We take a slightly different approach in calculating the imaginary

part of the susceptibility, as discussed in Section 2.4. Our approach gives the full

temperature dependence of the susceptibility, whereas Jauho and Smith use the zero-
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temperature susceptibility in their calculations. The full calculation can be found in

Section 2.4, and the Fortran programs used to solve the integral are in Appendix K.
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Figure 3.8: Computed drag resistivity vs. temperature for n=3.7x10"cm™. The insets show
the dependence of the drag resistivity on density imbalance at two different temperatures.

Figure 3.8 shows the result of this calculation done with our sample’s parameters: layer
separation d =280 A, well width L =180 A and density n=3.7x10""cm™. The main
figure shows the temperature dependence at matched densities and the insets show the
dependence on density imbalance at low temperature (inset b) and at high temperature
(inset a). Inset a, computed for 7=9K , shows a quadratic increase in the drag with
increasing density imbalance, and inset b at 7 =1.4K shows the drag decreasing with
imbalance. So our theoretical calculations show the same qualitative behavior that we

observe in the data in Figure 3.7.
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Figure 3.9: Drag intensity /(q), divided by T7, vs. scattering wavevector ¢ in units of 2k, .

Calculated for n=3.7x10"cm™ at two different temperatures. The drag resistivity is the area
under the curves.

Closer inspection of the theoretical model, specifically looking at the ¢ dependence of the

computed drag resistivity (Figure 3.9), reveals the cause of this anomalous peak at matched

density at low temperature. The figure shows the drag intensity

_4(pup)

h(q) 2

(3.6)

divided by T to facilitate comparison between the two different temperatures shown

T=14K and 9K . At the low temperature, there is a peak in the drag intensity near

q =2k, indicating that 2k, scattering processes are indeed important in samples with our
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parameters. When 2k, processes are significant, the drag becomes sensitive to the

matching of the Fermi wavevectors in each layer (by matching their densities). When

ky, =k, (k. is the Fermi momentum in layer i), 2k, processes are resonant between

the layers and the drag will be maximized. Imbalancing the layers means a favored

q =2k, scattering event in layer 1 will not be the favored scattering wavevector in

layer 2 and the drag will decrease relative to the matched density condition.

At higher temperatures, the edge of the Fermi disk, where all the scattering occurs,
becomes thermally broadened and the 2k, feature dissipates, then disappears, as shown in
the 7=9K calculation in Figure 3.9. The broader the edge of the Fermi disk, the less
relative phase space is available for large angle scattering events. At some critical

temperature 7, the 2k, scattering becomes relatively unimportant and the simple

2
Pop~ 1+2 (ﬁ—;‘) behavior wins out, leading to increasing drag with density imbalance.

Although our calculation mirrors our data qualitatively and shows unambiguously that the
peak in matched density at low temperature is due to the enhanced phase space available

for scattering at 2k, , it does not correctly predict the critical temperature. The cross-over
occurs at a higher temperature, 7, =6.3K in the calculated figure compared to the
T, =1.7K observed in Figure 3.7. This may be due to the inadequacy of the simple

electron-electron interaction potential used in our theoretical model. As previously

discussed in Section 3.3, this simple potential underestimates the drag resistivity for all the

data shown and predicts a n~ dependence on density rather than the n™* observed. Both
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of these discrepancies were resolved by including the more theoretically complicated

many-body effects into the interaction potential [17], and inclusion of them in our
calculation may be expected to do the same. However, as the cross-over behavior that we
observe in Figure 3.7 is purely a phase space phenomenon, the simpler interaction potential

proves sufficient to ratify this fact.

3.5 SPIN POLARIZATION (B,=0, B;#0)

This resonance at 2k, in the longitudinal drag resistivity at low temperatures makes the

drag measurement versus density imbalance a good probe of the relative sizes of the Fermi
disks in each layer. There are in reality two Fermi disks in each layer; one populated by
spin-up electrons and another populated by spin-down electrons. In zero magnetic field,
the two populations are identical and thus so are the two Fermi disks. But the application
of a magnetic field parallel to the plane of the electron layers will change the relative
populations of the spin states — due to the Zeeman interaction; and the two Fermi disks in
each layer will then have different radii. This change should be detectable in the

longitudinal drag versus density imbalance.

This change in relative population is characterized by the spin polarization &  The

difference between the spin-up population density 7, and the spin-down population 7, is

just the Zeeman energy times the density of states (which in two dimensions is merely a

constant):
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m g'meB
22’ 2hm,

n,—n, =g u,Bx 3.7

where g* is the effective g-factor (g" =—-0.44 for GaAs at B=0), u, =eh/2m, is the

Bohr magneton and the two-dimensional electronic density of states is n(E)=m"/2xh’.

Then the spin polarization & is defined as:

_m-n, _gmeB

= 3.8
n,+n;,  2hnm, G.8)

At low densities it is expected that Coulomb exchange effects will lead to an enhancement

of this splitting beyond the Zeeman value [20]. This can be characterized as a variation of
the product g*'m" with density. This variation in g'm” has been studied in Silicon
MOSFETs [19] and in GaAs heterostructures both with electrons [22, 23] and holes [24]
under the application of an in-plane magnetic field. Usually, though not always [23], g'm"

is found to increase with decreasing density as expected.

These other studies relied on features in the magnetoresistance to infer the spin
polarization. Coulomb drag offers a novel way to detect the spin polarization. In the
regime where 2k, scattering is important, matching Fermi momenta in the two layers
corresponds to a peak in the drag resistivity. When an in-plane magnetic field is applied,
there are two different Fermi momenta in each layer and four different combinations of

Fermi momenta that are contributing to the drag: (k, .k, ,,), (k. 1.k, ,), (k. .k, )

and (k

ribokp,y) where ki is the Fermi momentum in the i™ layer of the spin-up
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(spin-down) electron population. It seems reasonable to assume that the resulting drag

resistivity will be a linear combination of the contributions of the four Fermi disk pairs,

with the behavior of which we are already empirically familiar.

n=31x10"cm?

pxx,D (Q/D)

-0.4 -0.2 0.0 0.2 0.4
An/n;

Figure 3.10: Longitudinal drag resistivity vs. density imbalance at zero magnetic field for
n=3.1x10"cm™ taken at T =1.3K < T, shows that at sufficiently large density imbalance (at

An/n, ~+0.25 in this case) the drag will eventually increase with increasing density
imbalance.

At this point I should reveal that the peak at matched density for 7' <7, as observed in

Figure 3.7 only occurs near An/n, = 0. At sufficiently large density imbalance the drag
begins to rise with increasing density imbalance as shown in Figure 3.10. Since the two

opposite spin pairs (k,, .k, , ) and (k; .k, ;) will have a combined density 7, which

is equal to the single layer density, the drag contribution from these two terms, should look
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just like the B, =0 drag, but offset by

ﬂ — g*m*eBII (3 9)

n,  2mhn,

The two matching spin pairs (k, 3.k, ;) and (k. .k, , ) will have combined densities

that are less than (T) and greater than (4 ) the single layer density by some +An. Their

contributions should be similar to B, =0 drag taken at (n+An).

Figure 3.11 shows the longitudinal drag resistivity versus density imbalance with four
different values of in-plane magnetic field, ranging from B =07 to B =97 . The per
layer density is n=2.3x10"cm™ and the temperature is 7 =0.3K . The B, =0T curve

shows the expected peak at matched densities as observed and discussed in the previous
section. The application of an in-plane magnetic field reduces the value of the drag at

An/n; =0 and causes the peak to become squattier, until it disappears (at B, =67 in Fig.

3.11) and ultimately turns over to a roughly quadratic increase in drag with density

imbalance typically seenat 7 > T .

The contributions of the (k, .k, ,,) and (k, .k, ) pairs alone would be expected to

produce such a progression from a peak to a minimum at matched densities. The minima
on either side of the central peak shown in Fig. 3.10 can be seen to be developing at

An/n; ~£0.3 from the central peak in the B, =07 data in Fig. 3.11. If the minimum in

the B, =9T data corresponds to these side minima being shifted over by An/n, ~+0.3,
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then this would be consistent with a spin polarization of £~ 0.60, corresponding to a

more than four-fold enhancement in g"m” over its zero field value.

pxx’D (Q/D)

-0.2 0.0 0.2
An/n

Figure 3.11: Drag resistivity vs. density imbalance for different in-plane magnetic field
strengths. The solid, dotted, short-dashed and long-dashed lines shows B, =0,3,6 and 9T

respectively for n=2.3x10""cm™ and T =0.3K .

The contribution of the matched pairs, (k .k, ,;) and (k. .k, , ) would be dominated

by the lower density pair. Drag is observed to be inversely proportional to the fourth power
of the density. In this case, it also must be taken into consideration that the current in the
drive layer is being carried by two different Fermi disks. Given the same drive voltage for
both disks, the smaller Fermi disk will be carrying a smaller portion of the current, as given

by the following equation

J =neEu (3.10)
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where u is the mobility. Not only is the current directly dependent on » but it also

depends on the mobility x, which is observed to be roughly linearly dependent on n. So

the drag contribution from the smaller Fermi disks will still dominate, but only as ~ n~> not
n~*. However, this contribution will also cause a progression from a peak to a minimum at
matched density, because lowering the density of the one spin population lowers the Fermi

temperature and thus the critical temperature: 7, ~ 0.12x7,.. Even though the temperature
is not changing, T can rise above T, just by reducing the density, and the drag will enter

the regime where it displays a minimum at matched density.

Much harder to reckon are the effects of the in-plane magnetic field on the electronic
wavefunction in the confining potential and how this will impact the drag. Even in the
ideal case of zero-width electron layers, the in-plane field distorts the Fermi surface, which
alters the effective mass of the electrons. Smrcka and Jungwirth predict a greater than 20%

increase in the electron mass at B, =97 [25]. This corresponds to a 20% decrease in the

Fermi temperature (7, = h’n/4xk,m") and thus the critical temperature. Again, this will

push the system closer to the cross-over point, and could enhance the effects enumerated

above.

Even more complications arise when the finite thickness of the confined electron
wavefunction is taken into account. Again Smrcka and Jungwirth addressed this issue, this
time specifically for double layers (though in a single wide quantum well) and found that in

addition to the distortion of the Fermi surface, there was a k -dependent displacement of
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the centroids of the wavefunctions [26]. This creates a small, but noticeable, change in

the charge distribution in the well, which they calculated for a heterojunction confining
potential. However, it’s likely that in a square potential, this charge redistribution will be

less significant.

Das Sarma and Hwang were the first to note that at high parallel magnetic field, the
magnetic length ¢ was smaller than the widths of most of the wavefunctions confined in
these quasi-2D quantum wells used in published experiments, and that orbital motion
would be significant in the confining direction [27]. This would lead to considerable
intersubband scattering, which they were able to show was responsible for some
anomalously high longitudinal resistivity observed in single layers with an applied in-plane
magnetic field [28]. It is not known how this effect will manifest in the drag resistivity.

We did observe the same phenomena in the conventional longitudinal resistivity however.

In some experimental (plus numerical) work on this issue, Tutuc et al. found that both g”

and m" increased with increasing in-plane magnetic field in a way that was dependent on
the electron layer thickness [29]. Given all these factors and the uncertainty in how they
will affect the drag resistivity, at this point it seems premature to make definitive claims on
the interpretation of the data. It is, however, interesting to note that there has been one
published study of Coulomb drag with an in-plane magnetic field [30] and their
observations were uniformly in opposition to ours. They were lookinat hole-hole scattering

in the same k.d ~1 regime as we were, but at 7> 7, . Also of interest to note is that their

drive current ran parallel to the in-plane magnetic field, while ours ran perpendicular (and it
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seems that future work ought to look at both cases in the same sample). They found that

the longitudinal drag resistivity increased at matched density with increasing in-plane
magnetic field, and that the curvature of the density imbalance curves, which always
exhibited a minimum at balanced density in their data, became squattier as the in-plane

magnetic field increased.

OoDetde 3 KPP
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See Appendix A for detailed processing steps, however note that for this sample Indium
contacts were used, not the AuNiGe contacts described in the Appendix.
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Chapter 4: 2D Electrons in a
Perpendicular Magnetic Field

The physics of two-dimensional electrons gets much more interesting when a perpendicular
magnetic field is applied. Classical cyclotron orbits become quantized in sufficiently clean
systems, and with the high electron densities found in the solid state, the system organizes
itself into a highly regular array, filling up discrete energy levels each with a strict
occupancy limit. The energy gaps between these levels are responsible for the phenomena
observed in the quantum Hall effect (QHE). However, the fractional quantum Hall effect
and most of the QHE in bilayers are more complex many-body states that engender even
more fascinating physics, giving us such things as the highly ordered (111) state with its

fractionally charged (£e/2) excitations and its superfluid mode.

4.1 QUANTUM HALL EFFECT

In nonrelativistic quantum mechanics, the Hamiltonian for a charged particle in a magnetic

field, ignoring spin, has the form:

H=——(p-eA) (4.1

2m
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where p=-iiV is the generalized momentum of the particle, and A the vector

potential, such that B=V x A . Defining the plane of the electron motion as the x-y plane,
the magnetic field will be perpendicular to that plane, B=Bz. Then using the Landau

gauge, the vector potential can be written A =—yBX .

The time-independent Schrédinger equation for this Hamiltonian is

1 d S SR
— | —ihZtepB | —— 2 |w(R)= Ew(R), 42
{M[z — eyj 2may2}//( )=Ey(R) (4.2)

where w(R) is the wavefunction in the x-y plane only. In the z direction the electrons are

confined in the quantum well potential; this can be treated separately and will not affect the

solution to the equation in the x-y plane.

Since the Hamiltonian is independent of the coordinate x, then [p ,H]=0 (p, is the

momentum operator in the x-direction). This suggests that w(R)=U(y)e"™, where €™ is

a plane wave state with momentum k. Expanding out equation 4.2 and making this

substitution yields:
1 —hza—z—i2he Bi+e2 °’B* _h_Za_Z U(y)e™ = EU(y)e™; (4.3)
2m o’ 4 ox 4 2m oy’ 4 e '

then operating on e,

2 2
i(hzk%"k" +2hkeyBe™ + &’y Ble™) _I g — U =EU()e™.  (4.4)
2m 2m Oy
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The ™ term cancels from both sides, and the equation simplifies to:

n o 1,
2moy> 2

2
—5 o toma; (erh_kj }U(y)=EU(y), (4.5)
eB
where @, =eB/m is the cyclotron frequency. This is just the Schrodinger equation for a
one-dimensional harmonic oscillator, oscillating about the point y=-#hk/eB, with

frequency @, . The eigenvalues for this equation are

E, :(n+ljha)c, (4.6)

where n=0,1,2,..., which are thus also the eigenvalues to equation 4.2. These energy

levels are called “Landau levels,” as it was Landau who first solved this problem [1].

The eigenfunctions for eqn. 4.2 are plane waves in the x-direction, and one-dimensional
harmonic oscillator eigenfunctions in the y-direction — for the lowest energy, these are just

Gaussians, centered about

y=-hk/eB. 4.7)

As the energy E, is independent of &, there is a degeneracy to the Landau levels. The

degeneracy is equivalent to the density of electrons that can fit in each Landau level.

Considering the system as a rectangle with dimensions L xL , periodic boundary

conditions on the plane wave portion of the wavefunction in the x-direction require that
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k=Q2r/L)j, where j=0,£1,22,.... Then the spacing between adjacent k -states in

the y-direction will be (from eqn. 4.7) y, =y, =h/(eBL,). The number N of k -states

that can fitalong 0 <y <L, will then be:

L, L,LeB
N = - = -
Yi—=Via h

, (4.8)

and the density n=N/LL_ of electrons in each Landau level, which defines the

degeneracy D, isequalto eB/h.

The number of Landau levels filled in a system is called the “filling factor” v and is given

by

y=t="0 (4.9)

where n is the 2D density of electrons in the system. When v =1, exactly one Landau

level is filled. When v =1, exactly one-half of a Landau level is filled.

Ideally, this energy degeneracy leads to a density of states (DOS) composed of a ladder of

delta functions spaced 7w, apart. But in real systems, inhomogeneities in the sample

spread out the energy of the Landau levels, and the DOS resembles more the curve shown
in Figure 4.1. Inclusion of the electron spin (not shown), splits each of these Landau levels

into two levels, offset by a Zeeman energy gap A =gu,B, where u, is the Bohr

magneton, and g is the g-factor (which does not equal the free electron value, but rather is
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g =-0.44 for electrons in GaAs).
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Figure 4.1: Density of states diagram for the first three Landau levels in an inhomogeneous
system. Each Landau level can accommodate eB/h electrons. Shaded areas at edges of each
Landau level represent localized states. Electrons in these states cannot participate in current
flow.

The shaded regions at the edges of the Landau levels represent localized states: dips and
peaks in the potential energy that trap (“localize”) electrons and prevent them from
participating in current flow across the sample. It is the combination of the gaps in energy
between adjacent Landau levels and the existence of the localized states that leads to an

effect in the transport properties called the “quantum Hall effect”.

Discovered in 1980 by von Klitzing [2], the quantum Hall effect (QHE) consists of

perfectly quantized plateaus in the Hall resistivity — so perfect that they are used as

resistance standards at the National Institute of Standards (p,, = %(h/ e’) where j is an

integer) — accompanied by zeros in the longitudinal resistivity, in the vicinity of integral

filling factors (see Figure 4.2). The observation of the QHE requires low temperatures
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(k,T < hw,), so that the Landau level energy gaps (7w, = 1K at B =1Tesla for GaAs)

are not being breached thermally, and high electron mobility, so that the electrons can
complete multiple orbits before being scattered, such that they can interfere with
themselves and allow quantization to set in. High electron mobility depends on low
disorder in the system, however, disorder is necessary for the existence of localized states,

which are imperative for the QHE.

The precision of the Hall resistance in the plateau regions is a direct consequence of the
precision of the electron density in the conducting states in the plateau regions. When the

filling factor in the conducting areas of the sample is integral (v = j, where j is an
integer), the electron density in that area is extremely precise, exactly n= jD = jeB/h.

The Hall resistivity is inversely proportional to the electron density, p, = B/ne, and at

integral filling factor:
pxy:(h/jeB)x(B/e)zﬁ(h/ez), (4.10)

just the values observed in the QHE plateaus. If there were no localized states, the
conducting areas would be at a precise integral filling only at a very precise value of the
magnetic field B, and the Hall resistivity would show no plateaus. But because of the
localized states, the conducting areas can remain at integral filling factor over broad ranges
of the total filling factor of the sample as a whole. This is because when the Fermi level
moves through the localized states, the filling factor in the localized states will change, but

the filling factor in the conducting regions won’t. Samples in which a large fraction of the
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states are localized states, will have very broad plateaus, like those shown in Figure 4.2.
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Figure 4.2: Plateaus in the Hall resistivity p,, and broad zeroes in the longitudinal resistivity

P, as a function of the magnetic field, characterize the quantum Hall effect. Data from

sample ‘N’.

The longitudinal resistivity p_ goes to zero over the same range that the Hall resistivity

plateaus. This also reflects that an integral number of Landau levels are filled in the
conducting areas. When all the occupied Landau levels are filled, the only available states
for an electron to be scattered into are in the next vacant Landau level up. These will be
too far away, energywise, so scattering will not occur and the longitudinal resistivity will

drop to zero.
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4.2 FRACTIONAL QUANTUM HALL EFFECT

It is the energy gap in the single particle DOS that leads to the QHE, but the fractional
quantum Hall effect (FQHE) discovered in 1982 by Tsui et al. [3] cannot be explained by

single-particle physics.

-
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Figure 4.3: In addition to plateaus in the Hall resistance R,, and zeroes in the longitudinal

resistance R at integral values of filling factor, the fractional quantum Hall effect shows these
also at filling factors v = p/q, whete p, g are integers, g usually odd. Figure from Ref. 4.

In the FQHE, the plateaus in p_ and the zeroes (or minima) in p, appear at fractional

values of the filling factor: v = p/q, where p, g are integers, ¢ is generally odd (see Fig.

4.3). Like the original QHE, these also arise because of energy gaps in the DOS; but the
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cause of these energy gaps was not understood until Laughlin [5] formulated a

wavefunction that could correctly account for the fractional quantum Hall (FQH) state at

v =1/3 (the first FQHE observed), and predicted additional FQH states at v=1/¢q, ¢

being an odd integer, which were later observed.

The Laughlin wavefunction shows that it is many-body effects between the electrons that
lead to new energy gaps in the system. The Laughlin wavefunction for the FQH state at

v=1/31s:

¥, =[G -z)[[exp-|z] /4. 4.11)

i<j i

h

where z, =x,— iy, is the location of the i" electron in the 2D plane with coordinates

(xi’ y,)

At v =1/3 there is a 3:1 ratio between the number of magnetic flux quanta piercing the
2DEG (®,=h/e is the quantum of magnetic flux) and the number of electrons. The
system can collect into a lower energy state when three magnetic flux quanta attach
themselves to each electron. Each flux quanta increases the order of the zeroes of the

wavefunction ¥, by one. With three flux quanta attached to each electron, '¥'; vanishes as

z, > z;, and it does so to the third power. This (z, -z, )’ term keeps the electrons well

separated and greatly reduces the Coulomb repulsive energy of the system. This is the

ground state that the system condenses into at this filling factor. The excitations of this
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state are fractionally charged (—e/3), with an energy gap to their creation, and thus there

isaQHE at v=1/3.

Laughlin explained the FQHE for filling factors v =1/¢, where ¢ is an odd integer. A

simple particle-hole transformation can be used to then account for FQH states observed at

v=(q—1)/q. The remaining odd-denominator fractional states require analogous

condensations of the fractionally charged quasiparticle excitations of the Laughlin states;
this is called the “hierarchy model” [6]. But the even-denominator FQH states (and there
have only been two of them observed; at v=5/2 [7] and v=7/2 [8]) are not well
understood. It had been thought that they were a result of the electrons in the topmost
Landau level not being spin-polarized (in general it is thought that the Zeeman energy from
the external magnetic field aligns all the spins), and that they were forming opposite spin
pairs and behaving like bosons. Bosons can condense into a symmetric version of
Laughlin’s wavefunction, and create even-denominator FQH states [9], but later
investigations of these even-denominator states indicated that they were spin-polarized

after all [10], and so the nature of these states remains uncertain.

Laughlin’s wavefunction, along with the hierarchy model, provided a basis for
understanding all the observed odd-denominator FQH states, and a possible explanation for
the two observed even-denominator FQH states; but it could not describe the state of the
system in between the FQH states, and it could not describe the system at v =1/2, which

does not display a FQHE.
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4.3 COMPOSITE FERMIONS, v z%

The description of the quantum state at filling factor one-half, v =1/2, had not been dealt
with at the time. The theory that would lay the foundation for a theoretical description of
the v =1/2 state came about in 1989, when Jain [11] greatly simplified the difficult many-
body problem of strongly interacting electrons in a magnetic with the idea of “composite

fermions.”

Jain found that by attaching two fictitious flux quanta to each electron, the system could be
reduced to a much more tractable problem, that of a weakly interacting gas of these
“composite fermions.” The motions of these fictitious flux greatly reduce the effective

magnetic field that the composite fermions experience, such that

B, =B(1-2v), (4.12)
B, being the effective field, and B the real external field.

Jain showed that this theory can offer an alternate explanation of the FQHE — and in fact is
something of a unifying theory for the integer QHE and the FQHE. In response to this
effective magnetic field, the composite fermions form their own Landau levels, and each
time an infegral number of Landau levels are filled with composite fermions, the system
will exhibit a QHE. From equation 4.12, the relationship between the electron filling factor

v and the composite fermion filling factor v, is:
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y = Ve (4.13)

e £l

So, an integer QHE of the composite fermions will correspond to a FQHE of the
electrons (as well as the integral v =1 state). This can account for FQH states that
otherwise must be described in the hierarchical model, descending from the Laughlin
wavefunction. A problem with the hierarchical model is that it predicts many fractional
states that are not observed; and great-granddaughter states like v =4/9, a fractional
quantum Hall state made of the excitations of a fractional quantum Hall state made of the
excitations of a fractional quantum Hall state of electrons, should not be very robust, and
yet make a robust appearance in the spectrum shown in Fig. 4.3. The composite fermion
model predicts only the fractions that are observed, and predicts energy gaps for these

FQH states that are much more in line with observations [12].

Halperin et al. [13] addressed filling factor v =1/2 in this composite fermion model in
1993, developing a seminal theory which both explained existing anomalous observations
at v=1/2 and initiated a great deal of theoretical and experimental work on this filling
factor. They noted that at filling factor v =1/2, the effective magnetic field is zero. The
composite fermions should then fill up a Fermi disk of momentum states, much like
electrons do at zero magnetic field, even though the external magnetic field may be quite
high. As remarkable as this seems, this is the only theory that can account for anomalously
high conductivities observed at v =1/2 via surface acoustic wave (SAW) measurements
that were done in the late 1980s. SAWs sent across the piezo-electric GaAs surface of a

2DEG heterostructure will interact with the buried 2DEG layer in such a way that
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properties of the 2DEG can be inferred. At very high frequency (~1 GHz) and large

wavevector ¢, an unexpected enhancement in the 2DEG conductivity was seen [14].

Halperin et al. [13] showed that composite fermions at the Fermi surface having

momentum in the direction of the SAW propagation can short the SAW field if the
composite fermion can conduct without scattering (thus when ¢ > /"' where [ is the

composite fermion mean free path), leaving a signature in the SAW propagation indicative
of enhanced 2DEG conductivity, as seen by Willett et al. [14]. This is considered direct

evidence of the reality of the existence of a well-defined Fermi surface at this filling factor.

4.4 BILAYER QUANTUM HALL PHASE DIAGRAM

When a single layer is at v =4, it can be well described by composite fermion theory.
However, when there are two layers in parallel, each at filling factor v =1, things become

more complicated. In the ideal limit of infinite separation between the layers, they are just
two independent layers, each at v =1, but when the layers are brought close together, the
system can enter a new state, another QHE state, but this one uniquely bilayer in nature
[15, 16, 17]. The coupling between the layers arises from interlayer tunneling and
Coulomb interactions.  These two parameters are quantified by the symmetric-

antisymmetric tunneling gap energy A.,. and the effective layer separation d/ /.

Ay, 1s the energy gap between the lowest energy symmetric and antisymmetric

eigenstates in the double quantum well system. The bilayer QHE effect that occurs at
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v, =++1=1 (v, is the total filling factor: the sum of the two individual layer filling

factors) for large A, is a trivial consequence of this new bilayer energy gap forming in
the density of states. All the electrons will occupy the lower energy symmetric state, and

there will be one filled Landau level of symmetric state electrons. The conventional

transport will show a minimum in R and a quantized Hall plateau in R . The

temperature dependence will be activated, thus R_=Re**", with A=A ;. However,

even with large A if the effective layer separation d//¢ is also large, many-body

SA4S

Coulomb effects will destroy this gap [15, 18].

A few times £
o DO 1
= S
d~/
S = intralayer Coulomb energy ~
dss ¢ interlayer Coulomb energy

intralayer Coulomb energy >>
interlayer Coulomb energy

Figure 4.4: The effective layer separation d/{ gives the relative importance of the intetlayer
and intralayer Coulomb energies. In these schematics, the electrons in each layer are
represented by their semi-classical orbits and are spaced roughly a few ¢’s apart. For large
d/l, shown on the left, intralayer Coulomb coupling will be more important than the
interlayer coupling. At small d//, shown on the right, intetlayer coupling will be as
significant as intralayer coupling.
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The effective layer separation d /¢ characterizes the relative importance of interlayer and

intralayer Coulomb energies. d represents the center-to-center well separation and
determines the Coulomb energy between electrons in the different layers e’/ &d ; while the
magnetic length ¢ =+/7i/eB measures the mean separation between electrons within the

same layer, and so characterizes the intralayer Coulomb energy e’ /¢ . The ratio of these

two energies, just d / /, parameterizes the interlayer Coulomb coupling (see Figure 4.4).

At large d//, the system behaves roughly as two independent single layers each described
by a Fermi liquid of composite fermions [19, 20, 21, 22]. In this case no quantum Hall
state exists at v, =1 since there are no v =+ quantum Hall states in the single layers. By
monitoring the system for the appearance of a quantum Hall state at different effective
layer separations d//, and different tunneling strengths A, a phase diagram can be

established.

Figure 4.5 shows this phase diagram as pioneered experimentally by Murphy et al. [23]
(although the first phase diagram appeared in a theory paper, and it correctly predicted the
non-zero y-axis intercept [18]). The main figure shows the conventional longitudinal

resistivity p_ versus magnetic field measured with the current flowing parallel through

both layers and with the voltage probes also connected to both layers. The dotted curve

shows a typical p_ trace for when the system is not exhibiting a QHE at v, =1, and the

solid curve for when it is — as indicated by a deep minimum at that filling factor.



83
The inset shows the results of these measurements for 7 = 0.3 K done on a number of

samples with a range of different d// and A, values. The x-axis represents the
tunneling gap energy A, in units of the intralayer Coulomb energy e’ /& (evaluated at
v, =1), and the y-axis the effective layer separation d//¢. Samples that showed a QHE at
v, =1 are indicated by filled symbols, and those that did not by open symbols. An

estimated boundary between the two groups is sketched as a dashed line.

px (arb.)

0.25 0.50 0.75 1.00 1.26 1.50
B/B(v=1)

Figure 4.5: Phase diagram for bilayer QHE at v, =1. Main figure shows the longitudinal
conventional resistivity p = versus magnetic field for the cases with (solid curve) and without

(dotted curve) a v, =1 QHE. Samples that showed a QHE are plotted in the phase diagram

in the inset as filled symbols, those that didn’t, as open symbols. The dashed line is an
estimate of the phase boundary. Taken from Ref. 23.

One of the most intriguing features of this phase diagram is that the phase boundary
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appears to intercept the y-axis at a finite value, thus indicating that a bilayer QHE can

exist even in the absence of a tunneling energy gap; that a new kind of energy gap arising

entirely from many-body Coulomb interactions between the electrons must exist.

This new phase was in fact predicted [24, 25], and it is the exploration of this novel phase

that is the primary concern of the remaining chapters of this thesis.

Our sample was designed to probe the region where this new phase might exist, and so the

tunneling gap energy A, was kept extremely low. For this wafer A, /(e’/&l)~107°

and so would fall effectively right on the y-axis in the phase diagram in Fig. 4.5. The
nominal effective layer separation of this wafer is d/¢~2.3, which is above the phase
boundary, but by electrostatic gating we can continuously reduce the electron densities in
the layers, which has the effect of increasing ¢, and thus probe a range of d// values
down the axis in the hopes of encountering the phase barrier, and discovering a new

quantum ground state.

4.5 THE (111) STATE

The ground state in the limit of small effective layer separation and zero tunneling was first
studied theoretically. Its true genesis was in the seminal work by Robert Laughlin [5] who
found the wavefunction that correctly described the fractional quantum Hall effect
discovered the previous year [3]. The energy gaps responsible for the QHE that occur at

fractional filling factors v =1/m, where m is an odd integer, arise entirely from many-
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body Coulomb interactions between the electrons, and can be described by Laughlin’s

wavefunction:

¥, =[G -z)"[]exp(-|z| /4 (4.14)

i<j i

h

where z, =x,— iy, is the location of the i" electron in the 2D plane with coordinates

(x;,3,), and m is an odd integer. Notice that ¥, —0 when z =z, as would be

expected for identical fermions. For the strongest fractional quantum Hall state, which

occurs at v =1/3, m =3 and the electrons are repelled from each other as (z; -z, ).

Shortly after Laughlin’s wavefunction appeared, Halperin generalized it to two-state

systems, where initially the two states considered were the spin states of the electrons [26]:

Y = H(z[ _Zj)lH(Wi —wj)mH(zi -w,)" exp[—%(2|zi|2 + Z|Wi|2 )J (4.15)

In this wavefunction, generally called the (/mn) state, z and w are the coordinates of the
electrons in the first and second states respectively. Even though the z and w particles are

not identical, this wavefunction nonetheless vanishes when z, = w, .

This equation would eventually be considered for bilayer electron systems at total filling
factor one (and smaller), where the two states were not the electron spin states (which are
expected to be aligned with the magnetic field in this case) but the electron layer index:

“top layer” and “bottom layer.” First considered by Yoshioka et al., they found that the
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‘P(m) state was well matched to exact numerical solutions of the Hamiltonian of a

bilayer electron system at v, =1 having 10 electrons — provided that the effective layer

separation was below a certain critical value [27]. This ¥ or just (111), state would

(111) >

come to be the accepted description of the strongly-coupled bilayer v, =1 state:

Yo =H(Z,» _Zj)H(Wi —wj)H(z,. —wj)exp[—%(znz[r +Z:|wi|2 )J (4.16)

In this state the electrons in each layer must avoid each other (the zeroes are only first-order
in this case though), but most importantly, the electrons in the different layers must also
avoid each other. Then each orbital state in the first Landau level will be occupied, if not
by an electron in one layer, then necessarily by an electron in the other layer. The Landau
level will be filled and there will be an energy gap for the addition of another electron to

the system and a QHE will be observed.

4.6 PSEUDOSPIN FERROMAGNET

In 1994, Yang et al. showed that the (111) state can be likened to a single layer Laughlin

wavefunction for m =1 of spin-1 electrons all aligned in the XY plane [28]:

z,)| oo ) (4.17)

N
Y(z,zy,002y) = H(Zl. —Zj)exp(—%zm

i<j

where |- =L2(\T>+e'¢\¢>). (4.18)
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Thus the layer degree of freedom can be mapped to a spin-4 particle. In this language

an electron in the top layer may be called “pseudospin up”

T> and then an electron in the

bottom layer will be “pseudospin down”

~L>. In this view the electrons go into a

superposition of the two layer eigenstates and completely fill one Landau level. The
pseudospins lie near the XY plane and their orientation in that plane is given by the phase
@ . In the absence of tunneling, the energy is degenerate for all angles 0 <@ <27, so this
is a broken symmetry state as the final state has less symmetry than the Hamiltonian. This
system is equivalent to an easy-plane itinerant ferromagnet of spin-1 particles. The broken
symmetry imparts a neutral gapless mode with a linear dispersion relation [18, 29, 30].

Finite tunneling will introduce a gap to this mode, but if it is sufficiently small it should not

completely destroy the character of the state [31].

In this model, the electrons have a fundamental quantum uncertainty as to which layer they
are in. Because of this, the number of electrons in each layer is not a conserved quantity,
and small amounts of charge will fluctuate between the layers. This has been detected as a

large peak in the tunneling conductance at zero interlayer bias [32].

These pseudospins have also been detected by their interaction with an in-plane magnetic
field. Murphy et al. detected an unexpected change in the slope of the activation energy of

the v, =1 state in a sample with tunneling gap energy A, = 0.8 K with applied in-plane
magnetic field B, [23]. B, effects a spatially modulated phase change to the tunneling

matrix element, which the pseudospins initially try to follow. The greater B, the more
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rapid the spatial variation in the phase (4 =/h/eBd where 1 is the wavelength of the

modulation). However, there is an energy cost ~ |V ¢|2 associated with the twisting of the

pseudospins that eventually wins out, and the pseudospins opt for a Vo =0 state and

relinquish the tunneling energy [28]. The phase transition can be detected as a

discontinuity in the slope of the activation energy when plotted as a function of B, .

By applying the current density formula from basic quantum mechanics
(Joc w'Vy—w V', where J is the current density, y is the wavefunction and v is its

conjugate) to just the pseudospin portion of the wavefunction (eqn. 4.18) It can be seen

that there exists a pseudospin current J oc V¢, which is proportional to the gradient of the
phase ¢. This current manifests as equal but oppositely directed regular currents moving

through the two layers without dissipation [33]. The kinetic energy of this dissipationless

current is where the |V (p|2 energy is stored.

The easy-plane itinerant ferromagnet is mathematically equivalent to a two-dimensional
superfluid or 2D dirty superconductor film or 2D Josephson junction array [34] where ¢
serves as the phase of the superconducting order parameter, and like those systems, our

system can also support supercurrents. Detecting this supercurrent is the main goal of this

thesis.
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MERON ANTIMERON T
;\J - I

7N N

Figute 4.6: Stable topological defects with chatge te/2. Merons have positive vorticity,

antimerons have negative vorticity. Merons and antimerons come in two “flavors” depending
on whether the central pseudospin is pointing “up” or “down”. The charge depends on a
combination of the vorticity and the flavor.

In this pseudospin ferromagnet picture, the charged excitations of the ground state are
stable topological defects called merons and antimerons (see Figure 4.6). They are charged

excitations, carrying a charge of *e/2.

Far from the core of the meron, the pseudospins lie in the XY plane, with a phase winding

of +27 corresponding to positive (meron) or negative (antimeron) vorticity, and there are
corresponding superfluid vortex currents (J o« V). The cores of the merons consist of a
pseudospin pointing completely out of the XY plane — thus corresponding to an electron

entirely localized in one or the other of the layers. The pseudospins fall away from the

vertical in a continuous manner as the distance from the core is increased.

Single merons are highly disruptive to the long-range pseudospin order, however
oppositely charged meron-antimeron pairs are electrically neutral and together have zero

vorticity, and so only create a local disturbance in the order. Below a critical temperature,
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the Kosterlitz-Thouless temperature 7, , free energy considerations keep merons and

antimerons bound in neutral, zero vorticity pairs. Above T, , the pairs unbind, and the

order and thus the superfluidity is lost. This is called a Kosterlitz-Thouless phase transition

[35]. T, is predicted to be in the range of 0.1 K to 0.5 K for our sample parameters [31].

Below T, the conductivity should be infinite in linear response. A current will pull on the

meron-antimeron pairs imparting an energy gap to their dissociation — so this system has a

critical current of zero. Below T}, , the voltage-current relationship obeys [36]

Vocl?, (4.19)
TKT
where p=1+ 27 . (4.20)

Above T, the voltage-current relationship will be ohmic V oc I, so there should be a
discontinuous jump in the value of p at 7 =T, from p=1to p=3. This jump has been

observed in 2D superconducting arrays [37]. Observation of this jump in our system would

be an excellent confirmation of the Kosterlitz-Thouless phase transition.

4.7 EXCITONIC CONDENSATE

The (111) state can alternately be mapped to a Bose-Einstein condensate (BEC) of
electron-hole pairs, electrons in one layer and holes in the other [29, 38, 39]. By a particle-

hole transformation on just one of the layers, our system becomes one layer of electrons
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plus one layer of holes. At v, =1, regardless of whether or not the layers are balanced,

there will always be an equal number of electrons and holes. In the (111) state each
electron binds to a hole that is directly opposite to it in the other layer, this corresponds to
electron-hole pairs with opposite & states, where k£ labels the lowest Landau level orbital
states (see Section 4.1), and so the combined state has £ =0. All of the excitons will then
be in the same k =0 state, which is permitted because excitons are bosons, and the system

will then be a BEC of excitons.

The BEC of electron-hole pairs (excitons) has been studied extensively since 40 years ago,
when it was first considered [40, 41], and pursued experimentally almost as long [42]. But
always the holes have been valence band holes, not the conduction band holes that exist in
our system. Despite much effort, the BEC of excitons has never been achieved in these
systems. The greatest obstacle has been the short lifetimes of the excitons and the fact that
they are created by photo-excitation, which heats them above the local thermal equilibrium.

Before they can cool and then Bose condense, they have usually already recombined.

Our excitons make better candidates for undergoing BEC because they do not suffer from
these problems: they are not optically generated, and so remain in thermodynamic
equilibrium with the local environment, and even more significantly, they have infinite
lifetimes. In this picture of the (111) state, the superfluid pseudospin current of the
ferromagnet view is equivalent to a superfluid flow of this exciton condensate. Since the
electrons and holes will be moving together in the same direction, but with the electrons in

one layer, and the holes in the other, this will correspond to equal but oppositely directed



regular currents flowing through the two layers without dissipation. "
This view also makes readily apparent an additional attribute to the pseudospin current: not
only can two oppositely directed currents flow through the layers without dissipation, but
they will also flow through the layers without producing a Hall voltage. Individual
electrons and holes flowing in the same direction in the presence of a perpendicular
magnetic field will be compelled in opposite directions by the Lorentz force. Since our
electrons and holes are bound together, they will feel no net force due to the magnetic field,

and so they will move through the layers without causing a Hall voltage to arise.

Detection of this dissipationless, charge-neutral transport is how we intend to show that our

bilayer electron system has transformed itself into an excitonic BEC.

[CHC AT I I



93

—

~N N B~ W

10

11
12

13
14

15

16

17

18

19
20

L. Landau, Z. Phys. 64, 629 (1930).

K. von Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

D.C. Tsui, H.L. Stormer and A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).

H.L. Stérmer, Physica B 177, 401 (1992).

R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

J.P. Eisenstein and H.L. Stérmer, Science 248, 1510 (1990).

R. Willett, J.P. Eisenstein, H.L. Stormer, D.C. Tsui, A.C. Gossard and J.H. English,
Phys. Rev. Lett. 59, 1776 (1987).

J.P. Eisenstein, K.B. Cooper, L.N. Pfeiffer and K.W. West, Phys. Rev. Lett. 88, 076801
(2002).

F.D.M. Haldane and E.H. Rezayi, Phys. Rev. Lett. 60, 956 (1988).

W. Pan, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, K.W. Baldwin and K.W. West, Solid
State Commun. 119, 641 (2001).

J.K. Jain, Phys. Rev. Lett. 63, 199 (1989).

R.R. Du, H.L. Stérmer, D.C. Tsui, L.N. Pfeiffer and K.W. West, Phys. Rev. Lett. 70,
2944 (1993).

B.I. Halperin, P.A. Lee and N. Read, Phys. Rev. B 47, 7312 (1993).

R.L. Willett, M.A. Paalanen, R.R. Ruel, K.W. West, L.N. Pfeiffer and D.J. Bishop,
Phys. Rev. Lett. 65, 112 (1990).

G.S. Boebinger, H.W. Jiang, L.N. Pfeiffer and K.W. West, Phys. Rev. Lett. 64, 1793
(1990).

J.P. Eisenstein, G.S. Boebinger, L.N. Pfeiffer, K.W. West and S. He, Phys. Rev. Lett.
68, 1383 (1992).

Y.W. Suen, L.W. Engel, M.B. Santos, M. Shayegan and D.C. Tsui, Phys. Rev. Lett. 68,
1379 (1992).

A.H. MacDonald, P.M. Platzman and G.S. Boebinger, Phys. Rev. Lett. 65, 775 (1990).
I. Ussishkin and A. Stern, Phys. Rev. B 56, 4013 (1997).

S. Sakhi, Phys. Rev. B 56, 4098 (1997).



21
22
23

24
25
26
27
28
29
30
31

32

33
34

35
36

37

38
39

40
41
42

94
Y .B. Kim and A.J. Millis, Physica E 4, 171 (1999).

B.N Narozhny, I.L. Aleiner and A. Stern, Phys. Rev. Lett. 86, 3610 (2001).

S.Q. Murphy, J.P. Eisenstein, G.S. Boebinger, L.N. Pfeiffer and K.W. West, Phys. Rev.
Lett. 72, 728 (1994).

T. Chakraborty and P. Pietildinen, Phys. Rev. Lett. 59, 2784 (1987).

D. Yoshioka, A.H. MacDonald and S.M. Girvin, Phys. Rev. B 39, 1932 (1989).

B.I. Halperin, Helv. Phys. Acta 56, 75 (1983).

D. Yoshioka, A.H. MacDonald and S.M. Girvin, Phys. Rev. B 39, 1932 (1989).

K. Yang, et al., Phys. Rev. Lett. 72, 732 (1994).

H.A. Fertig, Phys. Rev. B 40, 1087 (1989).

X.G. Wen and A. Zee, Phys. Rev. Lett. 69, 1811 (1992).

S. Das Sarma and A. Pinczuk, Perspectives in Quantum Hall Effects (John Wiley &
Sons, Inc., New York 1997). See chapter by S.M. Girvin and A.H. MacDonald.

I.B. Spielman, J.P. Eisenstein, L.N. Pfeiffer and K.W. West, Phys. Rev. Lett. 84, 5808
(2000) and Phys. Rev. Lett. 87, 036803 (2001).

K. Moon, et al., Phys. Rev. B 51, 5138 (1995).

A.M. Goldman and S.A. Wolf, Percolation, Localization, and Superconductivity
(Plenum Press, New York 1984). See chapter by J.E. Mooi;.

J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).

S.M. Girvin, July 2000 Boulder School on Superconductivity, Lecture 1I: The
Kosterlitz-Thouless Phase Transition, http://research.yale.edu/boulder/index.html.
D.W. Abraham, C.J. Lobb, M. Tinkham and T.M. Klapwijk, Phys. Rev. B 26, 5268
(1982).

A.H. MacDonald, Physica B 298, 129 (2001).

A.H. MacDonald, A.A. Burkov, Y.N. Joglekar and E. Rossi, Phys. Of Semicond. 2002,
IOP Conf. Series 171, 29 (2003). (cond-mat/0310740)

S.A. Moskalenko, Fiz. Tverd. Tela 4, 276 (1962).

J.M. Blatt, K.W. Boer and W. Brandt, Phys. Rev. 126, 1691 (1962).

For a review see: S.A. Moskalenko and D.W. Snoke, Bose-Einstein Condensation of

Excitons and Biexcitons (Cambridge University Press, Cambridge 2000).


http://research.yale.edu/boulder/index.html

95

Chapter 5: Coulomb Drag at v, =1

The (111) state at v, =1 arises from many-body interactions in which the interlayer

Coulomb interactions play a key role. As Coulomb drag is a direct measure of interlayer
Coulomb interactions (Chapter 3), it should make for an excellent probe of this state, and

this chapter shows that it does indeed.

5.1 SAMPLES: ‘N’ AND ‘R’

Sample piece ‘N’ was taken ~ 7mm away and sample piece ‘R’ ~5mm from the center

of the wafer. Both were processed by Ian Spielman. They both consist of a central square

mesa 250 um on a side, with four arms extending out of each side (see Fig. 5.1). AuNiGe

was diffused into the end of each arm for electrical contact. Electrostatic gates above and
below each arm allow for in situ control over which layer(s) each arm makes contact with

[1]. Similar gates above and below the main central mesa allow for individual control over
the electron density in each layer. Both samples’ as-grown density was 7 =5.3x10" cm™
per layer, and the mobility was z ~10°cm?®/Vs. For both samples the zero field tunneling

resistance at resonance is R =~ 30 MQ).
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Figure 5.1: Infrared photo of sample N’. Black shows mesa (central 250 gmx250 um
square is hidden below central back gate), the back gates are medium gray, and the top gates
are light gray. The field of view is ~ 2 mm across. Photo courtesy of Ian Spielman.

5.2  HALL AND LONGITUDINAL DRAG VERSUS MAGNETIC
FIELD

Figure 5.2 shows the main result of this chapter. In it are the conventional and the drag
resistances at n=2.6x10""cm™ per layer (d/¢=1.60 at v, =1) versus magnetic field.

The current used was typically 2 nA at 5 Hz. All the traces were taken at 7 =20 mK

except for the longitudinal drag (curve ‘C’) which was taken at 7 =50 mK.
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Figure 5.2: Conventional and drag resistances versus magnetic field for n=2.6x10"" cm™
corresponding to d/¢=1.60 at v, =1. Curve A shows the conventional longitudinal
resistance R for current injected in both the layers and voltage measured only in one.

Curve B is the Hall drag R, C is the longitudinal drag R ,,, and D is the conventional
Hall resistance measured in just one layer R:y , offset by 5 k€ for clarity. The schematics in
the top panel show the current (white dots) and voltage (black dots) contact points for the
respective data curves, A-D. Curves A, B and D were taken at 7' =20 mK, while curve C
was taken at 7 =50 mK. Sample ‘N’.

Curve ‘A’ shows the conventional longitudinal resistance R_. For this measurement,

current is sent in through both layers — the current entry points are indicated by the two

white dots shown in the measurement schematic ‘A’ in the top panel; the longitudinal
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voltage is measured along the remaining two adjacent contacts, this time in just one of

the layers (the two black dots).

Throughout most of the magnetic field range, curve ‘A’ simply reflects the resistance of the

single layer being measured, as the layers only become strongly coupled around v, =1
which occurs at B~2.2T for this density (in theory, they should also be strongly coupled
at v, =+ and other fractional filling factors with odd denominator [2, 3], but our samples

go insulating long before we reach such a low filling factor). When the strongly coupled
v, =1 phase sets in, the resistance instead reflects the bilayer quantum Hall state and drops
towards zero, displaying the quantum Hall minimum as had already been seen in other

experiments [4, 5, 6]. At fields above v, =1, the resistance rises steeply because the

sample is going insulating.

Curve ‘D’ shows the conventional Hall resistance R:y , but with the current flowing in, and
the voltage measured in, just one of the layers. It is offset by 5 kQ for clarity. Up to
B ~1.5 Tesla the quantum Hall plateaus are reflecting the single-layer filling factor. The

broad plateau centered about B ~1.1 Tesla is quantized at 4/’ (25.8 kQ), appropriate to

the v =1 in the each layer. When the layers become strongly coupled around B~ 2.2

Tesla, R , again plateaus at &1/ e’ — but this time it is in response to the fotal filling factor

v, =1.
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Curve ‘B’ shows the Hall drag R ,. Current flows in the drive layer, and the Hall

voltage in the drag layer is measured. Up to B=~1.6 Tesla, the Hall drag is essentially
zero, some energy-dependent scattering processes can lead to a Hall drag signal [7, 8], but a
very very small one, which was not detectable at these sensitivities. This essentially null
signal is consistent with the basic physical fact that a Hall voltage is a response to a current
flowing in a magnetic field. Since the drag layer is electrically open, no current can flow in
this layer, and so there is no Hall voltage. Despite the lack of current in the drag layer,

when the system enters the strongly-coupled phase near v, =1, remarkably, a Hall voltage
does appear in the layer. And like curve ‘D’ at v, =1, the Hall drag also forms a v, =1

quantized Hall plateau: quantized at 4 /e’ to within 5 parts in 10" .

Curve ‘C’ is the longitudinal drag R, ,. There are features in the drag at low magnetic

field arising from interlayer scattering, much like at B =0 (see Appendix G for pictures of

R

«p atlow field), they are just not visible on this scale. As the system approaches v, =1,
the drag becomes much larger than its lower field values, as large as 2 kQ measured along

just one side of the square mesa, this corresponds to approximately In2/7z ~0.22 squares,
and a drag resistivity of p, ,, ~9k€Q/square , assuming van der Pauw formalism [9]. This
is the same order of magnitude as the single layer resistance — extraordinarily large on the
scale of typical Coulomb drag due to scattering, indicating that the drag in this region is

caused by a whole new mechanism altogether. At v, =1, R

«.p drops to zero.
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Although the absence of Hall drag below B~1.6T is proof that there is indeed no

current flowing in the drag layer under the usual circumstances, it was necessary to gather
more evidence to show that the Hall drag seen at v, =1 wasn’t due to a sudden flooding of
current into the layer by some unconventional means. As the v, =1 state shows an

enhancement of the tunneling conductance around zero bias voltage, this was the obvious
suspect that needed to be ruled out [10]. Although the tunneling conductance peak around
zero bias voltage is dramatic; it corresponds to very little tunneling current, as the peak is

only ~6uV wide, and even at resonance, the tunneling resistance is still a rather
formidable R ~100kQ [11]. Direct tunneling measurements on the sample used here have
shown that the maximum tunnel current that can flow between the two layers is = 10pA..
Compared to the ~2nA drive current used here, this amounts to at most a 0.5% current

leakage.

However, to be sure there were no unforeseen effects due to this onset of tunneling at
v, =1, the Hall drag was measured with the addition of an in-plane magnetic field, and

(separately) an interlayer bias voltage, as both of these are known to dramatically suppress

the tunneling conductance [12].

Figure 5.3 shows these measurements. On the left are five different Hall drag traces
centered around the v, =1 feature, taken with five different in-plane magnetic fields,

(-0.21, 0, 0.27, 0.53, 0.72) Tesla, with the same perpendicular field (which is plotted on the

x-axis) for d/¢=1.61. The Hall drag is shown to be robust against the application of an
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in-plane magnetic field. Ref. 12 shows that the tunneling conductance peak at

d/?=1.61 is diminished steadily with the application of an in-plane magnetic field,

reduced by a factor of ~100 by B, =0.59 Tesla.

n—plane

Ryy.p (kQ)
Ryy.p (KQ)

19 20 21 22 23 24 18 19 20 21 22 23
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Figure 5.3: The left panel shows five Hall drag traces taken with five different in-plane
magnetic fields B, =(-0.21, 0, 0.27, 0.53, 0.72) Tesla (the perpendicular field is plotted

in—plane

on the x-axis) at d /¢ =1.61 and T =30 mK. Sample N’. The right panel shows five Hall
drag traces taken with five different interlayer bias voltages (-10, 0, 25, 75,100) pV at

d/l=1.59 and T =25 mK. Sample R’.

On the right are five different Hall drag traces centered around the v, =1 feature, taken
with five different interlayer bias voltages (-10, 0, 25, 75, 100) uV at d/¢=1.59. An
interlayer bias with a magnitude greater than = 4uV suppresses the tunneling conductance

by almost two orders of magnitude [11], yet this suppression of tunneling has no noticeable
effect on the Hall drag, indicating that the Hall drag itself is not a byproduct of the

tunneling enhancement.
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Quantized Hall drag was predicted [13 — 18], and is a consequence of the interlayer

phase coherence. In the pseudospin ferromagnet picture, when the system is in the v, =1

state the electrons are in a superposition of the two layer eigenstates — the electrons are
neither localized in one layer nor the other. This makes it impossible to localize the drive
current to just the drive layer, instead a symmetric current will flow through both the
layers.  This current will produce a Hall voltage in each layer, and since these

delocalized electrons fill up one Landau level between the two layers, this Hall voltage

will be quantized, relative to the drive current, at /e’ .

But the drag layer is still electrically open and cannot support a net current flow. In order
to meet the boundary requirements of this layer, there must be an equivalent
antisymmetric current. In the ferromagnet picture, a gradient of the order parameter
produces a superfluid antisymmetric current, which can alternately be thought of as a
dissipationless flow of a Bose-Einstein condensate of excitons [19]. Because this current
is being carried by charge neutral excitons, it will not be affected by the magnetic field,
and it will not produce a Hall voltage. But it will oppose the current in the drag layer
such that there will be no net transport of charge in that layer, and the drag layer

boundary conditions will be met.

The longitudinal drag resistance is consistent with this model. R, goes to zero across

the same range of magnetic field (2.10< B <2.22 Tesla) for which the Hall drag is
quantized, suggesting that the momentum transferred to the drag layer by the symmetric

current is being compensated by the superfluid flow of the excitons. The peaks in the
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longitudinal drag on either side of the minimum, as the sample is transitioning into the

v, =1 state, correspond (in this view) to isolated regions in the sample becoming

interlayer coherent as the phase boundary is approached — thus setting up some
symmetric current, but without yet enough phase coherence across the sample for the
macroscopic phase gradient needed to induce the antisymmetric current. So in these
peaks, there is a tremendous amount of momentum being transferred to the drag layer by
the delocalized electrons, but there is not yet sufficient superfluid antisymmetric current

to counteract it, and so the longitudinal drag becomes extraordinarily large.

5.3 TEMPERATURE DEPENDENCE

20 —

Ryy.0 (K

10—

500mK | |

1.8 2.0 22 2.4
Magnetic Field (Tesla)

Figure 5.4: Hall drag versus magnetic field at d /¢ =1.60 for T =20 (topmost), 35, 50, 65,
80, 95,110, 125, 140, 155, 170, 185, 200, 215, 230, 245, 260, 275, 290, 305, 320, 335, 350, 395,
500 (bottommost) mK. Sample ‘N’.



104

Figure 5.4 shows the Hall drag R, in the vicinity of v, =1 at a series of temperatures
ranging from 20 to 500 mK, again at d//=1.60. At 20 mK the Hall drag rises up around
v, =1 to form a broad plateau quantized at 4/e’. As the temperature is increased the
plateau becomes less broad until it is just a peak in the drag locating v, =1. Further

heating and the peak becomes smaller and smaller; by 500 mK it is barely discernable over

the background.

Ryp (KQ)

Magnetic Field (Tesla)

Figure 5.5: Longitudinal drag versus magnetic field at d /¢ =1.60 for T'=35 (bottommost),
50, 65, 80, 95,110, 125, 140, 155, 170, 185, 200, 300, 400, 500 mK. Sample ‘N’.

And Figure 5.5 shows the longitudinal drag resistance R, , at d/(=1.60 taken over a

similar temperature range. Unlike the Hall drag, the temperature dependence of the

longitudinal drag at v, =1 is non-monotonic. On raising the temperature the broad zero
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around v, =1 becomes narrower, and then just becomes a non-zero minimum. R_, at

xx,D
v, =1 then increases steadily with increasing temperature, always maintaining a local
minimum around v, =1 until the temperature reaches 7'~ 200 mK. At this temperature

R, , reaches its maximum height and further heating reduces its value, but now v, =1 is

marked by a peak in the drag, rather than a minimum.
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Figure 5.6: v, =1 values of the conventional and drag longitudinal resistances R, and R, ,,

and the deviation in Hall drag from its quantized value AR ,=(h/ e’ —R,, ) versus the

inverse of the temperature. The lines are merely guides to the eye. d//¢=1.60. Sample N’.

Figure 5.6 shows the temperature dependence, at v, =1 only, for these different resistance

measurements. Shown are R, R, ,,and AR ,=(h/ e’ — R, ), the difference between
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the Hall drag and its quantized value. Both the conventional and drag longitudinal

resistances show activated behavior, thus R = R,e®?", with the same energy gap

A~0.8 K. Interestingly, the deviation in the Hall drag AR, ,,, although not as straight a

line, does correspond to a similar gap energy.

5.4 DEPENDENCE OF HALL COEFFICIENTS ON EFFECTIVE
LAYER SEPARATION

[ | [
50 — d/f =183
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=
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Figure 5.7: Conventional and drag Hall resistances R;; and R, versus v,' for

d/0=1.60,1.66,1.72,1.76,1.83 taken at 7T =30 mK. The strongly coupled state at
d /1l =1.60 weakens, and ultimately disappears altogether as d /¢ is increased. Sample ‘N’.

Figure 5.7 shows the Hall resistance R:y , with the current being sent through just one of the
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layers and the Hall voltage measured in that same layer; and the Hall drag resistance

R

.0 » Versus inverse total filling factor v, "=eB/hn, (we held n, constant and changed

B), at five different effective layer separations d//¢=1.60,1.66,1.72,1.76,1.83. This
shows the progression from the strongly coupled phase at low d//, with the Hall drag
showing a broad quantized plateau and the conventional Hall resistance Rx*y showing the
same plateau, to the weakly coupled phase at high d /7, in which the Hall drag is near zero
and the conventional Hall resistance shows no feature at v, =1. There appears to be a

smooth progression between the two extreme cases, with the midway point between the
two apparently located at d /¢ ~1.74. This phase transition will be explored in more detail

in the next chapter.

Ooe0e KPP
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Chapter 6: Phase Boundary

So far, the system at v, =1 has been primarily studied in the case where the layers are

sufficiently close together, and the interlayer Coulomb interactions sufficiently strong, such
that the (111) state is evidenced. In this chapter, the transition out of the (111) state is
explored as the layer separation (or the “effective layer separation™ actually) is increased.
Increasing the effective layer separation reduces the effects of the interlayer interactions
until the electrons in the different layers are no longer highly correlated with each other.
Under this condition, the layers behave fairly independently, and the layers are said to be

“weakly coupled.”

Whether the system behaves as two weakly coupled individual layers, each at v =1, or as

a strongly coupled entity better described by the total filling factor v, =1+1 =1, depends
on the interlayer coupling strength. The coupling strength in turn depends on two

parameters: the symmetric-antisymmetric tunneling gap energy A, and the effective
layer separation d//, these are discussed in Section 4.4. As our samples have very small
tunneling gap energies (A, = 90uK), the interlayer coupling strength will be largely

determined by the interlayer Coulomb coupling. In a single sample, d is of course fixed,

but we can modify the effective layer separation by changing the electron density, which at
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constant filling factor, changes /.
This phase transition has been the subject of much speculation [1-8]. Unknown is the order
of the phase transition or even the number of phases involved. In addition to the weakly
coupled phase and the (111) phase, there may be one or more additional phases
intermediate to the two, such as a paired quantum Hall state [3, 4] or bilayer charge density

striped phase [7].

As Coulomb drag is a direct probe of interlayer Coulomb interactions — and interlayer
Coulomb interactions are the primary mechanism for the interlayer coupling, Coulomb

drag promises to be an important experimental probe of this phase transition.

6.1 COULOMB DRAG ACROSS THE PHASE BOUNDARY

These measurements were made on samples ‘N’ and ‘R’, discussed in Sec. 5.1. For these
data, currents of 1 nA and 5 Hz were typically used. The Coulomb drag setup can be

found in Appendix C.

Figure 6.1 shows both the longitudinal and the Hall drag resistance in the vicinity of

v, =1 for some representative values of the effective layer separation d/¢ at T =30
mK. Plotted against v,' =eB/hn, (the density n. is held constant and the magnetic field

B is changed), the top panels shows the drag at d//=1.60 when the system is in the
strongly coupled interlayer coherent phase. On the left side is the Hall drag resistance.

As shown in Sec. 5.2, when the system is in the strongly coupled phase, the drag layer
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exhibits a quantized Hall resistance relative to the current in the drive layer.
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Figure 6.1: Coulomb drag versus v, for four values of effective layer separation d /£. Hall

drag is on the left; longitudinal drag on the right. 7'=30 mK. Sample ‘N’.

On the right is the longitudinal drag, which goes to zero across the same Av;' for which
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the Hall drag is quantized. On either side of the minimum in Fig. 6.1e there are large

peaks almost 2 k€ high. This is a tremendously large value for the longitudinal drag — it

is roughly half as large as the single layer resistance of this sample.

In the subsequent panels of Fig. 6.1 the behavior of both the longitudinal and Hall drag
resistance is shown as the interlayer coupling strength is decreased (d /¢ is increased)
while the temperature remains at 7=30 mK. The second row shows the drag at
d/?=1.72. In Fig. 6.1b, there is still a large feature in the Hall drag but it is no longer
quantized. In Fig. 6.1f, the broad minimum characteristic of the interlayer coherent phase
has narrowed; it no longer goes all the way to zero and the large flanking peaks have

moved in toward v, =1. By d//=1.76 (Figs. 6.1c and 6.1g), the Hall drag reaches just

about one-fifth of its quantized value and the flanking peaks in the longitudinal drag have

merged to form a local maximum at v, =1. In the bottom panel, at d//=1.83 and the

Hall drag has nearly disappeared, while the local maximum in the longitudinal drag has

shrunk considerably. These data were taken on sample ‘N’.

In Figure 6.2 the same phase transition is plotted in a different manner. This time just the

data points at v, =1 are plotted as a function of d//¢. This data was taken with sample

‘R” at T=50 mK. The open circles show the Hall drag: at low d// the system is in the
interlayer coherent state and the Hall drag is quantized. At high d//, the system is in the
weakly coupled phase and the Hall Drag is nearly zero. The transition between these two

regimes is seen to be simple and monotonic.
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and closed circles show longitudinal drag R, , at 7 =50 mK. Panel b) shows the location,

and panel c) the half-width, of the peak in longitudinal drag versus temperature. Lines are
guides to the eye. Sample R’.

This cannot be said for the longitudinal drag, represented by the solid circles. In the

interlayer coherent phase the longitudinal drag at v, =1 is near zero. In the weakly

coupled phase, the longitudinal drag is also extremely small (see Sec. 6.3 for discussion

on longitudinal drag in the weakly coupled regime); so one might expect that the

longitudinal drag would remain small in the transition region between the two phases.

Instead, the drag becomes progressively larger as the midway point of the phase

transition is approached, reaching an impressive maximum height of 1.8 kQ at d//¢ =

1.73. This behavior was entirely unexpected.
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Figure 6.3: Longitudinal drag at v, =1 versus d// for 4 temperatures: 25 (dotted line), 50
(short-dash line), 100 (long-dash line) and 300 (solid line) mK. Sample ‘R’.

The width and location of this peak in the longitudinal drag depend on the temperature.
Figure 6.3 shows just the longitudinal drag, now at four temperatures: 25, 50, 100 and 300

mK. The peaks move to lower d// as the temperature is increased. Figure 6.2b shows

the peak location (d /E)pmk versus temperature. Simple extrapolation puts the zero

temperature peak at (d /1l )pmk o ®1.758 indicating the location of the quantum critical

point. The temperature-independence of the drag resistivity at d /¢ ~1.785 is another

indicator the location of the quantum critical point [9].

The peak also becomes broader as the temperature is raised. Figure 6.2c shows the full
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width at half maximum A(d / 6) versus temperature. Notice, though, that the height

of the peak remains relatively constant over the temperature range spanned.

0.1

‘d/f— (d/ﬁ)peak‘

for four different

Figute 6.4: Longitudinal drag at v, =1 versus ‘d [t—(d/ 1)

peak
temperatures: 300, 100, 50 and 25 mK from top to bottom. For clarity, the data from the
low d /¢ side of the peak is shown in panel a, and the high side in panel b. Lines are fits to

Ry poc|d/t=(d/0),| " Sample R,

peak

At all four temperatures the longitudinal drag is notably symmetric about the peaks —

beyond a A(d /()= (0.02, 0.02, 0.06, 0.1) of the peak location for (25, 50, 100, 300) mK

the longitudinal drag is well fit by a power law. Fig. 6.4a shows the low d// side of the
data at the four different temperatures and Fig. 6.4b the high d// side, plotted in a log-
log style. The lines through the data show the least squares best fit for each temperature.

The slope of the line yields the value of the exponent y in the relation

R_,ocld/l—(d/l) " ForT= (25, 50, 100, 300) mK, y is observed to be (2.18,
xx,D

peak
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1.72, 1.78, 1.85) for panel a, and (2.18, 1.72, 1.78, 1.05) for panel b. For the 300 mK

data in panel (a) we must go to extremely low densities (as low as n=1.6x10""cm™) to
obtain the low d// data because the 300 mK peak is located at an already low

(d/?), . =152. The anomalous value (y =1.05) for the low d// side 300 mK data,

peak

may be related to working at these anomalously low densities.

d/it =1.58

dit =1.74

~.
-~
~————
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Figure 6.5: Temperature dependence of longitudinal drag measured at v, =1 for three
different d/¢. Sample R’.

Figure 6.5 shows the temperature dependence of the longitudinal drag at three different
d /! values, representing the three main regimes of the phase transition. Below 7 = 50
mK, d//=1.58 is well into the bilayer quantum Hall phase — the longitudinal drag at

v, =1 is near zero. When the temperature is increased we observe the thermal activation

of the energy gap. The activation energy is observed to be A=0.7 K, defined such that
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R, o e " Notice that this agrees well with the activation energy observed in the

drag resistance in sample ‘R’ shown in Fig. 5.6. At d//=1.93 the system is in the weakly
coupled regime; the drag is very small and increases with temperature. This is the typical
temperature dependence of longitudinal drag, which until recently had only been
observed in the weakly coupled regime [10]. This is because increasing the temperature
increases the phase space available for momentum transfer (via interlayer composite

fermion scattering) and leads to a larger drag resistance [11, 12, 13], asis seenat B=0.

At d/(=1.74, again at low temperature, the longitudinal drag is midway through the
transition region and exhibits a large local maximum. The striking temperature
dependence of this data — it is nearly constant up to about 60 mK and then drops
precipitously with temperature from 60 mK to 100 mK — is uncharacteristic behavior.
This is the opposite dependence that is observed in either the interlayer coherent phase or
the weakly coupled phase and is unique to the transition region between them. Such an
inverted temperature dependence is, however, predicted to occur in the vicinity of a phase
boundary as a result of fluctuations [2, 5, 14, 15]. The d//¢=1.58 curve also shows the
same inverted dependence, though less dramatically, at temperatures above its phase

boundary at 7 = 0.2 K.

Stern and Halperin [5] modeled the effects of density fluctuations in the transition region
between the weakly coupled and the interlayer coherent phases and correctly accounted
for the temperature dependence of the longitudinal drag in this region, as well as a

number of other features of our data. They begin with the supposition that the behavior
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of the drag in the transition region is due to the inevitable density inhomogeneities

found in any real bilayer electron system. In their model, puddles of the interlayer
coherent phase form in the predominantly weakly coupled system as the phase boundary
is approached from the high d// side. The mixture of the two states produces an
increasingly large longitudinal drag dissipation as d// is lowered and a greater fraction

J of the sample is occupied by the interlayer coherent puddles. Once f =< the phase

will percolate and the system will behave as interlayer coherent and the longitudinal drag

will be zero (unless thermally activated). Shortly before this happens, at f = 0.475 for
our sample [16], the longitudinal drag is predicted to reach its maximum value, a value

calculated to be close to 1 (4/e*). This is consistent with our observation of a maximum

longitudinal drag resistance of ~2kQ measured across roughly (4.5)"" of a square [17].

This model can account for the inverted temperature dependence observed in Fig. 6.5

when the authors make the not-unreasonable assumption that f decreases with

increasing temperature. So, by this rationale, when d//¢=1.74 and 7 d0.06 K, the

fraction of the sample occupied by the interlayer coherent puddles must be f ~0.475, as
the drag is at its maximal value. Increasing the temperature further will then reduce f,
and reduce the drag. For d//¢=1.58, ft4 when 7d0.2 K, and we see the thermally
activated gap behavior. The maximum at 7 = 0.2 K locates f =0.475 and temperature
increases beyond that reduce f', and so reduce the drag. Their model also accounts for
the large flanking peaks seen on either side of the v, =1 minimum in Fig. 6.1e and 6.1f,

by making a similar assumption that f decreases as the filling factor deviates from
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v, =1. Although their model can account for many of the features in our data, it does

not account for all of them. For instance, it cannot explain the remarkable symmetry

observed in the longitudinal drag at v, =1 as a function of d//.

Stern and Halperin are only two of the many theorists to have contemplated this phase
transition. Schliemann et al. [1] start with the assumption that there are only two phases:
the interlayer coherent phase and the weakly coupled phase. Through numerical
modeling they find that the phase transition in d/¢ will be first order. The broad
transition regions observed in Fig. 6.3, however, make it seem unlikely that this is a first

order phase transition.

Simon et al. [8] theorize that the transition region is composed of interpenetrating
composite fermion and composite boson fluids. This model makes similar predictions to

the Stern and Halperin model.

Bonesteel et al. [3] make no a priori assumptions on the number of phases, and find that
under ideal conditions the system should transition from the incompressible interlayer
coherent state directly into another incompressible state (a “paired quantum Hall state”)
as d//¢ is increased. At zero temperature, in an ideal system with no disorder, no
tunneling, and no density imbalance, there exists an instability to pairings between the
composite fermions in the different layers, no matter how far apart the layers are. In real
systems, eventually, at some d//, less than ideal conditions will presumably

predominate, and the system will transition to the weakly coupled state.
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Zhou and Kim [2] studied the transition from the weakly coupled state to the paired

quantum Hall state specifically in regard to its signature in Coulomb drag and predicted
the inverted temperature dependence of the drag when near the phase boundary. Also
predicting more than one phase transition are Kim et al. [4]. They anticipate a
progression through three, possibly four, different phases as the system goes from the
(111) state at low d /7, to the (33-1) state at intermediate d// and finally to the weakly
coupled compressible phase at high d/¢. A fourth state is postulated to exist between
the (111) and (33-1) states, which would either be a strong pairing state or a descendent

of the (33-1) state.

6.2 EFFECT OF DENSITY IMBALANCE ON PHASE BOUNDARY

. . . . An l’ld > I’ld i
In this section layer density imbalance, — =—"5—"°%0, where n
nT ndrag + ndrive

1s the

drag (drive)

electron density in the drag (drive) layer, is studied for its effect on the location of the
phase boundary. Thus, we are effectively mapping the location of the phase boundary in

the Ag, >0; d/¢ — An/n, plane. As Hall drag is the only probe of the interlayer
coherent phase that achieves a universal value in the v, =1 state, and with the phase
boundary defined as half of this universal value (in Fig. 6.2, (d/¢), determined by this

method agrees with that determined by the location of the peak in the longitudinal drag to
within 0.25%), it is the only probe that has a universal value at the phase boundary. This

makes it an especially robust measurement of the location of the phase boundary, and this



121
is why we use it here.

Figure 6.6 shows the Hall drag at v, =1 versus d /¢ at T =50 mK. The closed squares
show the balanced case An/n, =0. This curve is very similar to the Hall drag shown in

Fig. 6.2, even though these two data were taken in different samples (although from the

same wafer) with different mesa geometries. The phase boundary, as defined above, falls

at d/(=1.714 (we use linear interpolation to find R , = Lhie).
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Figure 6.6: Hall drag at v, =1 versus d/{ at T =50 mK. Phase boundary is defined as the
d/l whete R, , = L(h/e*) and is marked with X’s. Closed squares represent An/n, =0,

open and closed citcles represent An/n, =+0.1, —0.1 respectively. Sample Y".

When the layers are imbalanced, shown as open (closed) circles for An/n, =+0.1(-0.1),

there is a clear shift of the phase boundary to higher d//¢. The amount of shift appears to
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be independent of the sign of the density imbalance. From similar data at additional

values of An/n, we can construct the phase boundary in the d/¢ — An/n, plane as

shown in Fig. 6.7.
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Figure 6.7: Location of phase boundary (d/ /), as determined by Hall drag, versus density

imbalance An/n, . Line is least squares parabolic fit. Sample Y’.

The phase boundary appears symmetric with An/n,, and is well fit to a parabola, at least
out to An/n, =+0.15. This parabolic phase boundary has also been seen in tunneling

measurements done in a sample from the same wafer [18].

This dependence of the phase boundary on the density imbalance is somewhat surprising.
A density imbalance tips the pseudospins out of the XY plane, which naively, would
reduce the pseudospin stiffness which is related to the XY component of the pseudospins

[19, 20]. Then to compensate for this, the phase boundary would be expected to move to



123
smaller values of d//, as the pseudospin stiffness is inversely dependent on d /7.
However, Joglekar and MacDonald predicted this counterintuitive result based on
Hartree-Fock calculations specifically for the case of interlayer bias voltage [21]. They
found that the magneto-roton minimum in the collective mode spectrum plays an
important role in the transition out of the interlayer coherent phase as d// is increased.
When the magneto-roton minimum goes to zero, a new gapless mode exists, and this
destroys the superfluid phase. Imbalancing the layers raises this minimum, and the phase
boundary instead increases. They also predicted that the increase to be quadratic in

An/n, , as observed.

6.3 LONGITUDINAL COULOMB DRAG AT LARGE d//

Longitudinal Coulomb drag at v, =1 was originally studied only at high d//¢ due to

practical constraints: low d /¢ requires low d as well as low density ¢ oc n”"'*. Although
the barrier widths were already made small enough, the as-grown density in the first

study of drag at v, =1 [10] was more than twice the density in our sample, and 8 times

larger than our lowest gated density.

At large effective layer separation the system can be modeled as two weakly coupled

composite fermion liquids [11, 12, 13], better described as two individual layers at v =3

rather than as a composite system at v, =1. The slow decay of density fluctuations in the
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individual layers explains the dramatic 10° to 10* -fold increase observed in the

magnitude of the drag over its zero field value [11], but there is nothing special predicted to
+

occur at filling factor v, = =1 in this model, and indeed there was nothing special

141
2 2

seen in the early observations of longitudinal drag at /¢ =3.95 [10].

With the low density samples available for this work, along with in sifu density tuning with
our metallic Schottky gates above and below the 2DES, we are able to probe a large range
of effective layer separations both above and below the phase boundary, from d//~1.3

deep in the excitonic quantum Hall state, to d/¢=2.7 far into the weakly coupled
composite fermion regime, in as fine of steps as we wish — an unprecedented exploration of

the phase boundary.

One of the surprising discoveries in this exploration at the high d// end of the range was
that a feature appears at v, =1 when the system is well into the weakly coupled state,
approximately A(d//)~=1.0 away from the phase boundary. A local maximum in the
longitudinal drag in the weakly coupled phase appears at values of d// as large as 2.59.
Figure 6.8 shows the longitudinal drag resistivity versus magnetic field at the highest
d /¢ at which a local maximum can be observed at v, =1 for data taken at 77=0.3 K.

Here we used sample ‘K’, which has a 10-square long mesa, in order to boost the signal-

to-noise ratio, though we have confirmed these results with sample ‘R’.

From Sec. 6.1, the phase boundary is located at (d/¢) ~1.52 at T=0.3 K. Yet at

peak

d/0=2.59, which is shown in the figure, a local maximum can be seen at v, =1. The
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region around v, =1 is magnified in the inset to better display the residual feature.

Longitudinal drag observed above this d /¢ value has just a simple shallow minimum in

the region around v, =1 [10].

Figure 6.8: Longitudinal drag at relatively high effective layer separation d//f=2.56
(n=6.9x10" cm™) at T=300 mK. Inset shows that there is already a small bump at
v, =1. Sample K.

Whether this feature is related to residual fluctuations of the main phase transition, or if it
is revealing the existence of one of the additional hypothetical phases is unknown.
Because this bump occurs in a compressible phase, perhaps this is indicating that there is
more than one compressible phase. Interestingly, neither the Hall drag, nor the tunneling

conductance, show anomalies at v, =1 at this d /7.

As the effective layer separation is reduced, this small local maximum, or bump, in the
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longitudinal drag at v, =1 becomes more and more prominent. Figure 6.9 shows this

progression, starting with the same data shown in Fig. 6.8, which is the bottommost

curve. The curves above it have lower and lower effective layer separations.

Pxx,D (kQ/D)

Figure 6.9: Longitudinal drag versus inverse total layer filling factor v, at T=0.3 K for
seven effective layer separations: d /¢ =2.56,2.29, 2.16, 2.03,1.93,1.85,1.79 going from

bottom to top. Notice that the bump at v, =1 gets more pronounced as d// is decreased.
Sample ‘K.

Reducing d//¢ tends to increase the overall drag, mainly at high magnetic fields. In
addition to this overall increase in the drag as d /¢ is lowered, there is also an increase in
the local enhancement of the drag at v, =1. This local enhancement continues to increase

as the phase boundary is approached, as shown in the 300 mK curve in Fig. 6.3. In fact,

even though this data is from a different sample with a different mesa geometry, it can be



mapped very well to the 300 mK data points shown in Fig 6.3. This would make it
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seem that this small bump seen at high d// is just a remnant of the main phase transition

that peaks at d /¢ =1.52.
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Figure 6.10: Longitudinal drag versus inverse total layer filling factor V{l for d/0¢=1.79 at
eight temperatures: 7'=0.3, 0.4, 0.6, 0.7, 0.9,1.3, 2.3, 3.3 K from bottom to top. The

bump at v, =1 gets less pronounced as the temperature is raised. Sample K.

Figure 6.10 shows the temperature dependence of one of these bumps on the high d//

side of the phase boundary. Shown is the longitudinal drag resistivity versus the magnetic

field, in units of the single layer inverse filling factor, for d /¢ =1.79, which has the lowest

d /¢ and the largest bump of the series shown in Figure 6.9. At 7' =0.3 K, the bump at

v, =1 1s marked. As the temperature is increased, the drag resistivity increases overall,

due to an increase in the phase space available for scattering [11, 12, 13]. But notice that
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the size of the bump is decreasing with increasing temperature. By 7 =0.4 K it is

already notably smaller, and by 7 =1.3 K it can no longer be distinguished from the

background.
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Figure 6.11: Longitudinal drag at v, =1 versus temperature for three effective layer

separations: d /¢ =1.79, 2.00, 2.48 from top to bottom. Sample ‘K’ (d/f=1.79, 2.00)
and ‘H’ (d /¢ =2.48).

Figure 6.11 shows the drag resistivity at v, =1 versus temperature for 3 different values

of effective layer separation. The d//=1.79 curve corresponds to the data in Fig. 6.8.
Also shown are the curves for d//=2.00 and 2.48. Notice that all of them have a

sublinear temperature dependence.

The d /¢ =2.48 curve, which has a minimal bump contribution, and so may be thought to

represent the more general ‘background’ drag temperature dependence, is extremely well
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fit (so well that there’s no point in showing it in the graph, as it lies completely on the

data, and can’t be distinguished from it) to a power law curve that intersects the origin.

The exponent of the fit, p_ , =0.415xT"*" is contrary to theoretical predictions based on

the composite fermion model, which predicts a 7** dependence [11, 12, 13].

6.4 DENSITY IMBALANCE AT HIGH d//

This shifting of the phase boundary to higher d//¢ with density imbalance is also
observed in longitudinal drag at high d//¢. At high d//, a small bump is observed at

v, =1 in the longitudinal drag (see Sec. 6.3). At such high d//¢ we are probing the

phase transition well into the ‘NO QHE’ side of the phase boundary. The small bump we
observe is thought to be the tail of the quantum critical fluctuations of the interlayer
coherent state. As d// is reduced this bump grows larger. In this section we show that
as we imbalance the layer densities by applying a bias voltage between the layers while
staying at constant d /¢, we also observe this bump becoming larger, indicating that the
sample is being pushed closer to the phase boundary (or rather, the phase boundary is

moving closer to the sample’s effective layer separation).
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Figure 60.12: Longitudinal drag resistivity versus magnetic field for d//¢=2.00. Solid line
shows balanced layer density case, and the remaining curves are for imbalanced layer

densities. ‘Bump’ at v, =1 appears to grow larger with increasing density imbalance.
Sample ‘K.

Figure 6.12 shows this for constant d/¢=2.00. The solid line shows the longitudinal
drag resistivity when each layer has the same density 7n=4.06x10""cm™. There is a
small bump visible at v, =1. As the layers become increasingly unbalanced (dotted,

short-dashed, medium-dashed, long-dashed, and dot-dashed lines), this bump is observed
to get larger and larger. For clarity, only the positive imbalance case is shown, but

negative imbalance produces similar results.

Contrasting this behavior is the feature at v, =2/3 in the balanced drag. The deep

minimum observed around 5% Tesla is due to the fractional quantum Hall state that exists
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at v=1/3 in each layer. The many-body energy gap that forms at this filling fraction

inhibits drag scattering and the drag resistivity is observed to go towards zero. As the
layers are unbalanced, it is revealed that this is a single-layer effect. The v =1/3 minima
in each layer are translated, one to higher magnetic field, the other to lower, in concert
with the density changes in each layer. This is observed as the splitting of the v, =2/3

minimum as the density imbalance is increased. However the feature at v, =1 does not

split with layer density imbalance — this is truly a bilayer effect. It is not the v=1/2 in
each layer that is responsible for this feature, but rather the total filling factor in both

layers adding up to unity.

This intensification of the v, =1 feature with density imbalance so far above the phase

boundary in d// indicates that this feature is likely a remnant of the same phase

transition discussed in Section 6.1. This bump at v, =1 is likely due to quantum critical

fluctuations and does not represent a new phase.

oo H DV



132

—

10

11

12

13

14
15

16

17

18

19

20

J. Schliemann, S.M. Girvin and A.H. MacDonald, Phys. Rev. Lett. 86, 1849 (2001).
F. Zhou and Y.B. Kim, Phys. Rev. B 59, 7825 (1999).

N.E. Bonesteel, I.A. McDonald and C. Nayak, Phys. Rev. Lett. 77, 3009 (1996).

Y.B. Kim, C. Nayak, E. Demler, N. Read and S. Das Sarma, Phys. Rev. B 63, 205315
(2001).

A. Stern and B.I. Halperin, Phys. Rev. Lett. 88, 106801 (2002).

S. He, S. Das Sarma and X.C. Xie, Phys. Rev. B 47,4394 (1993).

E. Papa, J. Schliemann, A.H. MacDonald and M.P.A. Fisher, Phys. Rev. B 61, 115330
(2003).

S.H. Simon, E.H. Rezayi and M.V. Milovanovic, Phys. Rev. Lett. 91, 046803 (2003).
S.L. Sondhi, S.M. Girvin, J.P. Carini and D. Shahar, Rev. Mod. Phys. 69, 315 (1997).
M.P. Lilly, J.P. Eisenstein, L.N. Pfeiffer and K.W. West, Phys. Rev. Lett. 80, 1714
(1998).

I. Ussishkin and A. Stern, Phys. Rev. B 56, 4013 (1997).

S. Sakhi, Phys. Rev. B 56, 4098 (1997).

Y.B. Kim and A.J. Millis, Physica E 4, 171 (1999).

B.N Narozhny, I.L. Aleiner and A. Stern, Phys. Rev. Lett. 86, 3610 (2001).

I. Ussishkin and A. Stern, Phys. Rev. Lett. 81, 3932 (1998).

At d/l=~1.74, e=(k,1,)" ~0.1 for our sample. k, is the Fermi wavevector and /,

is the transport mean free path.

Assuming we can apply van der Pauw formalism to Coulomb drag, the resistance along
one side of the square sample measures ~In2/ 7 of a square.

I.B. Spielman, M. Kellogg, J.P. Eisenstein, L.N. Pfeiffer and K.W. West, cond-
mat/0406067.

K. Yang, K. Moon, L. Zheng, A.H. MacDonald, S.M. Girvin, D. Yoshioka and S.C.
Zhang, Phys. Rev. Lett. 72, 732 (1994).

K. Moon, H. Mori, K. Yang, S.M. Girvin, A.H. MacDonald, L. Zheng, D. Yoshioka
and S.C. Zhang, Phys. Rev. B 51, 5138 (1995).



133
21 Y.N. Joglekar and A.H. MacDonald, Phys. Rev. B 65, 235319 (2002).



134

Chapter 7: Counterflow Superfluidity

There are two different fundamental ways current can be sent through a bilayer system:
equal currents can be sent through the two layers flowing in the same direction, or equal
currents can be sent through the two layers but flowing in opposite directions. We call the
first mode the parallel channel, and the second the counterflow channel. Any other current

configuration is just a linear combination of these two channels.

The transport in each of these channels can be understood in terms of the two different
models of the (111) state. For the parallel channel, the pseudospin ferromagnet model
discussed in Section 4.6 offers an intuitive understanding of the transport mechanism
responsible for current flow in this mode. In this model, the electrons are not localized in
one layer or the other; they are in a superposition of the two layer eigenstates. This makes
it impossible to localize the current to just one of the layers. A voltage applied across one
layer will push on delocalized electrons and induce a current flow in both the layers,
producing equal currents flowing in the two layers in the same direction: the parallel

current mode.

Current flow in the counterflow channel can best be thought of using the excitonic
condensate model discussed in Section 4.7. In this model, holes in one layer are bound to

electrons in the other layer; these interlayer excitons are in the same quantum state and
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constitute a Bose-Einstein condensate. Current in the counterflow channel is then due

to a superfluid flow of these excitons — as the excitons move in one direction, currents of
opposite direction will be produced in the individual layers. According to this model, this
counterflow current should be dissipationless and as excitons are charge-neutral, it should

be unaffected by the magnetic field.

no current
parallel mode counterflow mode in the ‘drag’ layer
J»
J-» J > <+ J
J P> <+ J J >
J»

all the current flows
in one layer

Figure 7.1: The Coulomb drag measurement is a linear combination of equal measures of the
parallel and counterflow current channels.

The Coulomb drag measurement studied in the previous chapters is a straightforward linear
combination of these two fundamental current configuration modes (see Fig. 7.1). An
equal measure of each of these currents meets the boundary requirements for Coulomb
drag: no net current in the drag layer and all the current flowing in the drive layer. Though
Coulomb drag is an excellent probe of the phase boundary — the longitudinal drag signal is

the only one sensitive enough to show the incipient phase transition as far away from the

phase boundary as d// —(d / K)c ~1.1 (Sec. 6.3) — it is only an indirect measure of the

anticipated superfluid mode that exists in the counterflow channel [1, 2, 3, 4].
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In this chapter a purely counterflow current is set up in order to directly detect the

superfluid mode, which should manifest as oppositely directed dissipationless currents

having infinite conductivity.

7.1  SAMPLE: ‘Y’

The data shown in this chapter was obtained from sample piece ‘Y’, taken from the same
wafer used for all the experiments shown in this thesis and discussed in detail in Chapter 1.
Sample Y’ is a 5 mm x 5 mm piece from the center of the wafer. Standard
photolithographic techniques with AuNiGe contacts were employed [5]. The sample was
thinned to 49 um with a Bromine-methanol etch. The central region of the mesa is 160 um
x 320 um with 7 arms extending out of it for electrical contact (see Fig. 7.2 for photo of

sample).

The four arms configured as two “Y’-shaped projections coming out at the top and
bottom of the mesa in Fig. 7.2 are used for injecting current symmetrically into the
layers (detailed considerations that went into this sample design can be found in
Appendix B). The remaining three arms extending out of the sides of the mesa are used
for measuring the longitudinal and Hall voltages. These arms have both top and bottom
gates so that we can measure the voltage in either the top or bottom layer (or both).
The longitudinal voltage probes are spaced one square apart. The nominal density in
each well is 5.4 x 10'° cm™, the mobility 1 x 10® cm?*/Vs and the tunneling resistance at

resonance R~100 MQ. The density in the central mesa region was controlled by
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electrostatic gates above and below the central bar. We could achieve densities as

low as 1.7 x 10'° cm™ per layer by applying voltages to these gates. The densities in
the two layers were balanced by matching the plateaus in, and slopes of, the Hall

resistivity in each layer while the sample was in the counterflow current configuration.

Figure 7.2: Infrared photo of sample °Y’. Back gates appear lightest; top gates are medium
gray. The mesa arms can be seen in outline, the main mesa region is obscured by the large
central back gate. Field is ~1.5 mm across.

7.2 COUNTERFLOW AND PARALLEL DEFINITIONS

For the counterflow measurement a current is sent into one of the layers, extracted from
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that layer, and the sent into the second layer going in the opposite direction (see Fig.

7.3). The current can be measured before it is redirected into the second layer by sending it
through a resistor (shown at the right side of the schematic in the figure), and measuring the

voltage across that resistor. The Hall V| or the longitudinal V', voltage is then measured in

one of the layers. V, (V) divided by the injected current 7 , yields the Hall

X

(longitudinal) counterflow resistance RxcyF (RS™).  See Appendix D for a detailed

counterflow setup.

Figure 7.3: Schematic of counterflow measurement setup. Current is sent into the bottom
layer, removed from the bottom layer, sent through an external resistor (sometimes) to
measure it, and redirected into the top layer going in the opposite direction. This sets up equal
but oppositely directed currents in the two layers. Voltages are then measured in just one of
the layers.

For the parallel mode configuration, the current is redirected into the second layer going

in the same direction as the current in the first layer (see Fig. 7.4). Now V (V) divided

by the injected current /_, yields the Hall (longitudinal) parallel resistance R (R.,).
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Figure 7.4: Schematic of parallel configuration. Current is sent into the bottom layer, removed
from the bottom layer, and redirected into the top layer going in the same direction. Voltages
are then measured in just one of the layers.

It is important to be able to monitor the current before it is redirected into the second

layer, as the v, =1 state exhibits enhanced tunneling [6] between the layers and this will

cause some current leakage between the layers when the system is in the (111) state. This
leakage is detected by measuring the current before it enters the first layer and then again
after it has left the first layer but before entering the second layer, the difference between
the two indicates the tunneling current. We measure a 5 pA difference between the two
currents when the system is at v, =1. In the parallel configuration this will create a ~1%
mismatch in the magnitudes of the currents that are in each layer for our typical 0.5 nA

drive currents. However, in the much more important counterflow configuration, this will

not affect the relative magnitudes of the currents.
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7.3 HALL AND LONGITUDINAL RESISTANCE VERSUS b
MAGNETIC FIELD
Figure 7.5 shows the primary result of this thesis. The main figure shows the Hall
resistance for constant density n=2.46x10""cm™ per layer, as the magnetic field is
ramped from zero to 2.4 Tesla, at 7 =30 mK for both the parallel (dotted line) and
counterflow (solid line) configurations. This density corresponds to d//¢=1.55, when
calculated at v, =1, where /= Jh/eB is the magnetic length. Up to about 1.8 Tesla the
layers behave independently and we see the usual quantum Hall effect as though the

second layer were non-existent. The direction of the current in the second layer is

irrelevant and so R)‘c‘y =RnyF . But as the system enters the highly correlated bilayer

quantum Hall state at v, =1, centered around 2 Tesla, the direction of the current in the
. . ” . 2 .

second layer splits the data: R, goes up to form a quantized plateau at 2A4/e” while

CF
R drops to zero.

The vanishing Hall resistance in the counterflow configuration RfyF is a remarkable

observation. Current is confirmed to be flowing in the layer — it is measured prior to
being redirected into, and after exiting, the layer in which the Hall voltage is measured —
and yet it produces no Hall voltage. This is not an effect of the two layers being shorted
together at the voltage contacts causing the opposing Hall voltages in each layer to cancel
each other out. The voltage probes are only connected to one of the layers, if they were

contacting both layers then the current would shunt through the voltage contacts, and this
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loss would be detected in the external resistor, which measures the current prior to

redirection.

This vanishing Hall resistance is a startling indicator that the counterflow current is being
carried not by individual electrons in each of the layers, but by charge-neutral interlayer

excitons capable of flowing in the presence of a 2 Tesla magnetic field without being

affected by it.
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Figure 7.5: Main figure shows the Hall resistivity versus magnetic field in the parallel (dotted
line) and counterflow (solid line) configuration for n=2.46x10""cm™ and T =30 mK. The
inset shows the longitudinal voltages. Voltages are measured in one layer only.

Notice that the plateau in the parallel configuration is at twice the expected value for total

filling factor one. This is because we define the resistance as the voltage divided by the
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current in a single layer, not the net current flowing through the bilayer.

The second test for excitonic superfluitiy in the counterflow channel is to see if the
exciton current observed in the counterflow Hall resistance is flowing without

dissipation. The dissipation is measured by measuring the longitudinal resistance.

The inset of Fig. 7.5 shows the longitudinal resistances R! and RS" under the same
conditions, focusing on the region near v, =1. Although not shown, the two are again
identical at low fields. And unlike the Hall resistance, they are also nearly identical in the
interlayer coherent state at v, =1. RS (solid line) is a little larger than R (dotted line)
around 1.8 Tesla, which is where the sample is transitioning into the v, =1 state. This is

because of the strong interlayer Coulomb drag that occurs in the transition region [7].
When the sample is in the counterflow configuration, the two oppositely directed currents

will exert a strong dragging force on one another that does not exist in the parallel

configuration, and so R will be increased over the parallel value R! . Asboth R! and

RE" go to zero at v, =1, this indicates that the v, =1 state is dissipationless in both the

parallel and counterflow configurations. Thus the exciton current is flowing with

vanishing dissipation.

7.4 TEMPERATURE DEPENDENCE AT v, =1

Focusing on the resistances at v, =1 only, Figure 7.6 shows the temperature dependence
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of the Hall and longitudinal resistances in both the parallel and counterflow

configurations when the system is in the interlayer coherent state. Panel a shows R!
(open circles) and R)'C'y (closed squares) for d /¢ =1.48 for temperatures ranging from

35 mK to 400 mK. The Hall resistance never strays far from its quantized value 24 /¢’,

while the longitudinal resistance drops almost three orders of magnitude over this

temperature range, exhibiting straight line activated behavior R! = Re™*"*" with energy

gap A=0.5 K.
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Figure 7.6: Temperature dependence of the resistances (panels a and b) and conductivity
(panel ¢) at v, =1 for both parallel and counterflow configurations at d/f=1.48. In a)
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open circles represent R! | closed squares Rﬂy; in b) open circles represent RS’ | closed

squares RnyF. ¢) shows the counterflow and parallel longitudinal conductivities, & and

ol , respectively.
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Panel b shows the same for the counterflow resistances, RS (open circles) and RnyF

(closed squares). RS is very similar to R! ; showing the same activated behavior with

XX X

the same energy gap of 0.5 K. But here R;F also drops precipitously as the temperature

is lowered, and at a very similar rate to both the R data, though it does not form a

straight line as the others do.

More illuminating is the same data plotted as longitudinal conductivity:

P
o, =—F"", (7.1)
(Pr +Py)
where we take p = R, as our longitudinal voltage probes are spaced one square apart. This

is shown in panel c. Here the transport properties of the two different current
configurations clearly and radically diverge as the temperature is lowered. The upward

pointing triangles in the top half of panel ¢ indicate the longitudinal conductivity in the
counterflow configuration ¢ ; and the downward triangles in the bottom half represent

ol . ol goes to zero as the temperature goes to zero, again, in an activated fashion.

This is precisely the behavior expected for any ordinary quantum Hall state. On the other
hand, o becomes dramatically larger as the temperature is lowered. By 35 mK there is
more than six orders of magnitude difference in the conductivities of the two current

configurations. The behavior of o  has never been seen before in quantum Hall

systems. Current is just slipping through this system with barely any forces on it. It is

quite remarkable.
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7.5 DEPENDENCE ON EFFECTIVE LAYER SEPARATION

The dependence on the effective layer separation d// is shown in Fig. 7.7; using just

RfVF as the indicator of the onset of the bilayer quantum Hall state. The quantum phase

transition as the effective layer separation is reduced has been observed to occur around

d/?=1.73 in the Coulomb drag [7] measured in a sample from the same wafer.

R, (he)

Figure 7.7: Sample enters excitonic superfluid state as evidenced by R;F dropping to zero as

the effective layer separation d /¢ is reduced. Figure shows RSF versus inverse filling factor

v, for d/=229,1.75,1.71,1.66,1.59,1.48 all at T =50 mK.

Figure 7.7 shows R versus the inverse of the total filling factor v;' =eB/hn, (for

easier comparison of data with different d//¢) taken at 7 =50 mK. The topmost curve,
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with d /0 =2.29, shows the sample to be well out of the interlayer coherent state.

The behavior seen is typical of the Hall resistance in a single layer 2DES, with no

distortion or feature at v, =1, indicating a lack of correlation with the second layer. As
d/l is reduced, a dip begins to form at v, =1, becoming deeper and more fully

developed as the layers are brought (effectively) closer together. By d /¢ =1.48 there is
a broad minimum that goes nearly to zero, signaling that the sample is now well within
the bilayer quantum Hall state. By interpolation, the minimum reaches half its
uncorrelated value at d//=1.70, which may be thought of roughly as the location of the

transition point, fairly consistent with the Coulomb drag observations in Section 6.1.

7.6  DISCUSSION

These data support the model of this state as a Bose-Einstein condensate of interlayer
excitons discussed in Section 4.7. In this view one of the half-filled Landau levels in the
individual layers can be viewed as a full Landau level that is half-filled with holes [8].
Then the bilayer system can be regarded as one layer of electrons and one layer of holes.
Because they are oppositely charged, the electrons and holes bind together to form
composite particles called excitons. As the electrons and holes directly across from one
another in the layers have opposite k& quantum numbers (see Section 4.1), when they
combine together as excitons, all the excitons will be in the £ =0 state, and so this will
constitute a Bose-Einstein condensation of excitons. Figure 7.8 shows a schematic of

these interlayer excitons.
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e

Figure 7.8: Schematic showing how interlayer excitons can create counterflowing currents in
the two layers. Electrons e in one layer bind to conduction band holes h in the other layer,

and the resulting excitons condense into a superfluid. Dissipationless flow in one direction

produces equal but oppositely directed dissipationless currents J in the layers.

If this excitonic condensate were to flow in one direction, equal but oppositely directed
currents would be set up in the two layers. This is precisely the current configuration that
is set up in the counterflow measurement. As excitons are charge neutral, they can flow

in the presence of a magnetic field without producing a Hall voltage. Our vanishing Hall

resistance R;F in the counterflow configuration at v, =1 shown in Fig. 7.5 supports this

model of current flow via charge-neutral excitons.

The vanishing longitudinal resistance RS  in the counterflow configuration at v, =1,

shown in the same figure, indicates that these excitons are flowing with very little
dissipation. Figure 7.6 suggests that the dissipation goes to zero as the temperature goes to
zero, and that in the zero temperature limit, this excitonic condensate is a superfluid, as

predicted by Wen and Zee [1] and others [2, 3, 4].

However, as Fig. 7.6 also shows, both the dissipation RS and Hall resistivity RfyF in the

counterflow configuration remain finite at finite temperatures. In the ideal case, both of
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these quantities should drop to zero for 7' <7,, where T, is the Kosterlitz-Thouless

temperature [9]. Instead we are seeing activated behavior. One reason for seeing this
activated behavior is because the critical current for this superfluid is zero [3, 10], so the
act of making a resistance measurement at all is expected to impart an energy gap to the
system. However, this energy gap should be dependent on the magnitude of the current.
Our observed energy gap of A= 0.5 K persists even when we use different drive currents

(from 20 pA to 1 nA — currents above 1 nA caused sample heating).

The presence of interlayer tunneling in the sample, even though extremely small, also
disturbs the state. The binding of neutral vortex-antivortex excitations is a crucial
element of the Kosterlitz-Thouless phase transition discussed in Section 4.6, but

tunneling alters this binding mechanism.

Tunneling destroys the symmetry of the (111) state. With a finite tunneling gap energy,

the order parameter ¢ is no longer degenerate for all angles 0<¢ <2x; instead the
energy will have a minimum at ¢ =0. In the pseudospin representation this corresponds to

pseudospins pointing in the x-direction. Since the pseudospins will prefer to lie in the x-
direction the meron-antimeron pairs will bind along the y-direction, held together by the so-
called “domain strings” as shown in Fig. 7.9. These domain lines have a fixed energy per
unit length, and thus bind the merons as fixed tension strings of arbitrary length. At some
length this tension will exceed the electrostatic repulsion of like-charged merons and they
will be able to bind together. An energy gap will be created for these new charged

excitations [11]. However, domain string binding is only expected to occur for tunneling
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gap energies Ay /(e’/&l)>5x10" [11], our tunneling gap energy is roughly

Ay /(& 1el)~107
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Figure 7.9: Bound pair of opposite vorticity merons that have the same charge. The like-
charges are held together by the domain string between them shown in this pseudospin
representation of a bilayer system with significant interlayer tunneling. In the presence of
tunneling the pseudospins will want to lie in the x-direction (towards the top in this
depiction). Taken from Ref. 11.

It is most likely that this energy gap is due to disorder in the system. The sample is going
insulating at magnetic fields just above v, =1 (see inset of Fig. 7.5). Thus we are
working in a regime where disorder effects are strong. Disorder creates, and pins, single
merons even in the absence of current. The energy gap observed may be due to an array

of disorder sites, and the hopping energy as merons jump from site to site [10].
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Additionally, Fertig and Straley [12] show that the combination of finite tunneling

and a strong enough disorder potential can create strings of overturned spins with free
vortices at either end, with possible low energy excitations of the vortices and new ‘string

glass’ states.

Although the mechanism responsible for the observed energy gap is not certain, the data
remains consistent with the proposed excitonic condensate ground state. These results
were confirmed by another group after our data was disseminated. Tutuc et al. measured
vanishing Hall and longitudinal resistances in counterflow current configuration in a

hole-hole bilayer system [13].

We believe that our data supports the achievement of the Bose-Einstein condensation of
excitons, as evidenced by superfluid-like counterflowing currents in a bilayer two-

dimensional electron system at v, =1.
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Appendix A

DETAILED SAMPLE PROCESSING STEPS

Sample processing is something of a matter of faith — when you find a series of steps that
works, you don’t question why. The following steps gave me a 100% success rate (all the
contacts had a low contact resistance to both layers, and the metal structures and mesa

geometry had clean smooth edges):

1. Cleave off a 5 mm x 5 mm piece of the sample from the parent wafer.

2. Clean sample, on the spinner, first with acetone, then with methanol. Blow dry
with dry N, while spinning.

3. Spin on Shipley S1813 photoresist for 30 seconds at Skrpm.

4. Bake for 25 minutes at 90 C.

5. Align mesa pattern in mask aligner (we use a Karl Suss mask aligner, model MJB3
with a 200W Hg lamp), being sure that the mesa pattern avoids any defects in the
crystal. Expose for 5 seconds (at ~14 mW/cm?).

6. Develop in a 50:50 mixture of Shipley 351 developer and deionized water (I used
20mL of each) for about 1 minute. Then rinse in a stream of deionized water for
about 2 minutes.

7. Carefully take the edge of a folded up lint-free clean room towelette in which the
edge has been soaked in acetone, and remove any photoresist that has remained at
the edges of the sample. Then quickly dunk the sample in the developer solution
again and rinse again under the deionized water stream. Blow dry well with dry N.

8. Bake the sample for 30 minutes at 90°C.
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About 6 minutes before the baking is done, mix together the etch solution:

o 100 mL deionized water (= 11 MQ-cm)

o 10 mL phosphoric acid

o 2 mL 30% hydrogen peroxide
Stir (with magnetic stirrer) for approximately 4 minutes (put watch glass on top of
beaker to prevent evaporation).
Fill a small Kimex dish with the acid etch solution, and then put the sample into the
dish and leave it there for 8 minutes. (The acid etches at a rate of ~ 1000 A/min.)
Have two Kimex dishes nearby, filled with deionized water. To stop the etch,
remove the sample from the acid solution and plunge it into one of the dishes of
deionized water, and then into the other. Then let it sit in a dish of acetone to
remove the remaining photoresist.
Clean well on the spinner, first with acetone, then methanol, and then with
deionized water. Then dry with N, while still spinning.
Spin on AZ5214 photoresist for 30 seconds at Skrpm.
Bake on top of a hotplate set to 100°C for 45 seconds.
Align the mask with the contact pattern in the mask aligner, expose for 15 seconds.
Develop in a 4:1 solution of deionized water and AZ400K developer (I used 24mL
of water and 6mL of developer). It takes approximately 20-30 seconds to develop.
Clean on spinner with a stream of deionized water for 2 minutes. Then blow dry
with N, for another 2 minutes while still spinning.
Put the sample in the evaporator along with two boats. In a tungsten boat (R. D.
Mathis # S3-.015W) put 3 slugs of Nickel (99.995% pure), and in a tungsten boat
that has an aluminum oxide barrier (R. D. Mathis # S35-A0-W), which we mounted
on copper stilts (~ 3 inches tall) to bring the boat closer to the sample so we would
not waste as much Gold, put in two nuggets of a eutectic mixture (88:12) of Gold
and Germanium (99.85% pure).
First evaporate 300 A of Nickel (at a rate of ~ 8 A /sec), and then evaporate 1350 A
of Gold-Germanium (at ~ 20 A /sec).
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Set sample in acetone for 5 to 10 minutes until metal lifts off; squirting the

sample with an acetone stream will hasten this process.

Clean and dry sample on spinner, first with acetone, then methanol and finally dry
N, gas.

Anneal contacts on a heater strip in a sealed box that has had forming gas (15% Ho,
85% N») flowing through it for at least 5 minutes (to displace all the air). Anneal at
440°C for 10 minutes.

Clean and dry sample on spinner again (as in step 13).

Spin on AZ5214 for 30 seconds at Skrpm.

Bake on top of a hotplate set to 100°C for 45 seconds.

Align mask with pattern of top gates and contact leads in mask aligner, expose for
15 seconds.

Develop in a 4:1 solution of deionized water and AZ400K developer (I use 24mL
of water and 6mL of developer). It takes approximately 20-30 seconds to develop.
Rinse in stream of deionized water for about 1 minute, and blow dry with N».

Then clean on the spinner, two minutes with a deionized water stream, and two
minutes blowing dry with N,.

Evaporate on a 1600 A layer of Aluminum (99.999% pure).

Put sample in acetone to soak for about 30 minutes; then remove Aluminum by
squirting sample with a stream of acetone. Clean and dry sample with acetone,
methanol and dry N,.

Cleave off three 5 mm x 5 mm chips from a piece of scrap GaAs. Clean and dry
them well.

Clean a quartz disk (1.50” diameter, 0.130” thick) with an acetone soaked clean
room towelette. Then place the disk on the spinner and clean with acetone, then
methanol, and then dry with Nj.

Put the disk on a hotplate set to 170°C and let it get hot.

Chip off small pieces (about the sizes of large grains of salt) of clear mounting wax

(South Bay Technology, Inc., www.southbaytech.com, product #MWH135 — aka
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“Quickstick 135”) with a razor blade. Set three of these pieces in a large

triangle pattern so that the wax pieces are about 5 mm from the edge, spaced 120°
apart.

Once the wax melts, put the scrap pieces of GaAs on top of the wax droplets, and
push them into the wax using the end of a wooden stick. Push them straight down,
try not to let them move laterally. Push down very hard. The aim is to thin out the
wax layer beneath the GaAs chip.

Remove the disk from the hotplate, and let cool a bit. Then spray the disk with
acetone to remove any wax residue around the chips. Rinse with methanol, dry
with N, and return disk to heater.

Put a small piece of wax on the center of the disk. Once it melts, put your sample
piece, top side down, on the wax droplet. Push down hard with the wooden stick.
Remove the disk from the heater, cool, and again rinse away any residue with a
stream of acetone, and then methanol. Dry disk with N,. Set aside.

Clean a glass plate (about 6” x 6” x '4”) with acetone soaked towelettes, then rinse
well with methanol and dry. Wrap the plate in a large sheet of dextalose paper (or a
large filter paper) as though wrapping a gift, and secure it with masking tape. One
side of the plate should be tape-free and covered with just one smooth layer of
paper, set this side up in a plastic tray (slightly bigger than the plate, with a lip at
least 2" high).

. Put the quartz disk with the sample on it in a cylindrical Teflon chuck that has the

following dimensions: height = 2”, OD = 2.00”, ID = 0.275”. At each end there
will be a socket that will hold the quartz disk, with dimensions at one end: socket
depth = 0.150”, socket diameter = 1.50”; and at the other end: socket depth =
0.130”, socket diameter = 1.50”. Put the disk in the deeper socket, with the sample
side facing out of the socket. Use a drop of water for adhesion.

Mix bromine-methanol etch. Bromine is highly corrosive, and highly reactive with
acetone (with which it produces a tear gas). So wear a face shield, gloves and lab
coat when handling bromine, and work under a fume hood. Do not have any

acetone near the workspace. Put 25mL of methanol in a graduated cylinder. Add
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4mL of bromine. Pour this mixture into a 30mL beaker. Rinse out the cylinder

with water and put away.

Soak top side of dextalose paper covered glass plate with methanol. Pour a small
amount of the bromine-methanol solution on the center of the plate. Grab hold of
the Teflon chuck, holding the sample side down.

Because the bromine-methanol can etch roughly if it is allowed to stagnate on the
sample surface, the sample must always be kept moving. Gingerly set the chuck on
the glass plate so that the sample contacts the bromine-methanol solution.
Immediately begin making ‘figure-8’ motions along the plate with the chuck — this
will keep the solution moving across the sample and the etching will proceed
smoothly. Make 100 ‘figure-8’s and then just as gingerly slide the chuck off of the
plate laterally (rather than pulling it up off the paper). Rinse the sample and chuck
with methanol and dry with N,.

After every 100 ‘figure-8’s the thickness should be measured. We use an Ono
Sokki gauge (stand model: ST-022, gauge model: EG-225) to measure the sample
height.

Pour some more bromine-methanol in the center of the plate and repeat the process
— making another 100 ‘figure-8’s. Clean off the sample and chuck, and measure the
sample height.

Continue this until the sample thickness reaches about 170 um. The sample can
only be thinned to about 170 um in the deep socket, so once it reaches this
thickness, the disk must be removed from the deep socket and put into the shallow
socket at the other end of the chuck.

Continue this process with the disk now in the shallow socket, but start making
fewer ‘figure-8’s between measurements, as the etch process will proceed more
quickly with the disk at this end. As the target thickness of 50 um is approached,
make only a few ‘figure-8’s between measurements, so that the sample does not
become accidentally over-thinned.

Once the sample is thinned to 50 um, remove the disk from the chuck. Clean disk

in methanol, and dry with N,. Pour any remaining bromine-methanol into a
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container filled with sodium thiosulfate powder, this will neutralize the bromine.

Rinse out the paper with water, and throw away. Clean the glass plate with
methanol and dry with towelettes. Rinse off the plastic tray.

Remove the scrap GaAs chips at the edges of the disk by scraping them with a
clean razor blade.

With the sample still firmly attached to the disk, clean the ensemble on the spinner,
sample side up, first with acetone, then methanol, then deionized water. Blow dry
for 2 minutes with N, stream while still spinning.

Spin on AZ5214 for 30 seconds at Skrpm. Put on enough AZ5214 before spinning
so that the whole disk is covered after it is spun.

Set disk in kimax dish cover, and put in oven to bake for 30 minutes at 80°C.

Set disk/sample in mask aligner, dial it all the way down, in contact mode, so that it
will fit, and align the back gates. This step requires an infrared camera, so that the
structures on the top side will be visible for the alignment process (GaAs is
transparent in the infrared).

Expose for 15 seconds.

Develop in a 4:1 solution of deionized water and AZ400K developer (I use 60mL
of water and 15mL of developer). It takes approximately 30-40 seconds to develop.
Rinse under a stream of deionized water for about 1 minute, and blow dry with N,.
Put disk/sample on spinner, and clean with a stream of deionized water for 2
minutes, while spinning. Then blow dry with N, for another 2 minutes, while
spinning.

Evaporate on 1500 A of Aluminum (99.999% pure).

Soak disk/sample in a dish of acetone for a few minutes for the Aluminum liftoff.
Clean the sample with a stream of acetone, and set the disk/sample in a kimax dish
with a round filter paper (Whatman #1001055) on the bottom, and filled with clean
acetone. Set it sample side down, supported at one edge by a small magnet stirrer.
It will take a few to several hours for the acetone to dissolve the wax that is holding

the sample to the disk so that the sample will fall off and settle on the filter paper.
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Remove the disk and magnet stirrer. Cover the sample with a second filter

paper, and carefully remove the filter paper/sample sandwich from the acetone bath
with a pair of tweezers. It will be easier to handle this if a fold is put near the edge
of the papers.

Keeping the sample always between two filter papers (they can be replaced by
clean ones as desired), squirt methanol on the papers/sample to remove acetone
residue. Allow to dry naturally.

Bring the sample, like this, over to the wire-up station. A custom chuck must be
made out of Teflon, with very small holes drilled in the center, so that the vacuum
that will hold the sample to the surface will be very gentle. Slide the sample off of
the filter paper, top side up, onto the center of this Teflon chuck. If necessary, use a
sharpened wooden stick to push the sample to where it needs to go. Turn the
vacuum on.

Solder 1 mil gold wire to the contact pads around the perimeter of the design using
Indium (99.999% pure) as the solder. We use an Oryx model 54204-T-20VA
miniature soldering iron with Oryx isotip # 7258.

To secure the sample for the wire up of the back gates, remove the sample from the
chuck, and flip it over onto a glass microscope slide. The sample will be suspended
above the slide, supported by the gold wires. Solder a few of these gold wires to
the glass slide to secure the sample. Set this ensemble onto a standard vacuum
chuck.

Use conducting epoxy (epo-tek H20E from Epoxy Technology, Inc.) to attach 1 mil
gold wires to the backside contact pads. Mix the epoxy extremely well (stir with a
wooden stick for about 10 minutes). First put blobs of this epoxy onto the contact
pads (with a sharpened wooden stick), and then poke the ends of the gold wires into
the blob. Put the slide and sample in to bake at 125°C for 1 hour to harden the
epoxy. Unsolder the wires from the glass plate, and the sample is now ready to be

wired up to the pins of a DIP header or custom sample mount.

oo H Ve
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Appendix B

MASK DESIGN

We design the masks used in the photolithography that defines the mesa geometry, contact
location and the gating/contact lead structure. For my early data, I used masks already in
existence that had been designed by other members of the group. But for my counterflow
work, there were no preexisting mask designs that would allow for a counterflow current

configuration, so this mask I designed myself.

The foremost issue in my design for the counterflow mask was to include enough contact
leads so that separate currents could be sent to the different layers. This requires a
minimum of four current leads (if the interlayer current is to also be monitored). In single
layer systems this number of contacts would not be a problem, but for double layers each
contact needs a set of arm gates for separate layer contacting [1], this requires up to three
wires for each contact. Our sample mounts can accommodate at most 18 wires, so for
compatibility with all the existing cryostats, I was limited to this number of contacts and
gates. Even so the fewest number of contacts and gates I could manage was 19 (see
Fig. B.1); and two of the arm gates had to be wired to the same sample mount pin (the two
back arm gates of the longitudinal voltage probes), which however never limited the

measurement configurations I could set up.
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Figure B.1: Mesa and gating design for sample Y’ used for counterflow experiments. The
entire structure is 3mm x 3mm. Figures 1.4 and 7.2 show a crystal processed with this mask.

I also wanted the current distribution to be uniform through the central electron region. For
the counterflow experiment, the current density should be equal but opposite in the two

3

layers. To ensure this I settled on the “Y’-shaped design for my current contacts; the
narrow constriction before the current enters the central region means that the current
distribution will only have a small dependence on which contact it originates from. To test

the current uniformity I modeled the current flow in the mesa geometry using the partial

differential equation solver toolbox in MATLAB [2]. By solving the Laplace equation
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(V'O =0, where ® is the electrostatic potential) with the following boundary

conditions: @ = constant along the end of the lower left arm of the ‘Y’ contact, ® =0 at

the end of the right contact and %—f: 0 (where % is the normal derivative) along the

remaining edges of the mesa; and then plotting —V®, I can produce a vector representation

of the current distribution in my mesa geometry (see Fig B.2).

Figure B.2: Numerical calculation of classical current distribution in counterflow mesa.

Also at issue in the mesa design is the number of total squares that the current will flow
through, as well as the number of squares that we are measuring along. A square is the
two-dimensional analogue to the length of the sample that the current flows through. It is

defined as the length L divided by the width W of the sample: L/W.

At the low densities at which we work, the layer resistivity can become very large even at
moderate magnetic field strengths and the total resistance of the sample can become so

large that it changes the entire measurement circuit dynamics. Usually this shows up as a
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phase shift of the drive current in the sample. So I made an effort to keep the total

number of squares the current would pass through less than about 10 squares per layer.

Additionally, it has been empirically noted that the number of squares measured across has
an effect on the quality of the data taken at very low temperature and density (thus in the
bilayer quantum Hall regime). Some of our nicest data has come from square central
regions (samples ‘N’ and ‘R’) where we were measuring approximately /n2/m squares
(assuming van der Pauw current distribution [3]), and some of the least-nice data has come
from a rectangle ten squares long (sample ‘K’). So for this design I went in between the
two and chose a one square long measurement region. This way, the resistance that we

measure, will be approximating the resistivity (the resistance per square).

Also to be considered is that the mesa region needs to be small enough so that the
inevitable Gallium “bullet” defects [4] in the crystal can be avoided when aligning the
pattern onto the sample. And the front and back gates should not lie above or below each
other, because of the concern of shorts developing between the two. All these requirements

were met in the design shown in Fig. B.1.
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J.P. Eisenstein, L.N. Pfeiffer and K.W. West, Appl. Phys. Lett. 57, 2324 (1990).

See Appendix E for detailed information on how to use the PDEtool in MATLAB for
this kind of calculation.

L.J. van der Pauw, Philips Res. Rep. 13, 1 (1958).

Inevitably, small blobs of gallium will get sputtered onto the crystal during the
molecular beam epitaxy process. These “bullets” of gallium can short together the two
electron layers, and so they must be avoided during the photolithography alignment

process. They are easily visible under the mask aligner microscope.
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Appendix C

COULOMB DRAG SETUP

Measurements such as Coulomb drag, counterflow and tunneling can only be done because
we are able to make electrical contact to the layers individually. We do this by a technique
called “selective depletion” which was invented by Eisenstein et al. [1]. By applying
negative voltages to the gates that lie above and below the contact arms, we deplete the
electrons in a region that cuts across the arm in the layer closest to the gate. This makes
one layer in the arm highly resistive to the flow of current and virtually all of the current
will flow in the other layer. We test and calibrate these arm gates by running “gate
characteristic” measurements [2]. The gate characteristic information is used to set up the

measurements requiring individual layer contact, such as Coulomb drag.

In the Coulomb drag measurement, current is driven through just one of the layers, and the
voltage is measured along the other, open-circuited layer. It is very important that the layer
in which the current flows is at or near ac ground, as alternating common mode voltages on
this layer will cause a current to flow between the layers (either by tunneling or by
capacitive coupling) and this can result in a spurious drag signal. The simplest way to
prevent this is to connect the two layers together at one of the contact points and then to

ground this contact. Then both the layers will be at both ac and dc ground. Coulomb drag
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measurements that require a dc bias voltage between the layers (for the suppression of

tunneling or for layer density imbalance measurements), will call for a more complicated

circuit.

C.1 SETUP WITHOUT INTERLAYER BIAS

For the simpler Coulomb drag measurement, I will give as an example an actual setup I

used for sample “Y’. This is a standard Coulomb drag setup.

Put a 10k/100 Q voltage divider on the EG&G/Princeton Applied Research model 124A
lock-in amplifier’s output, set the output to 2 V RMS and the frequency to 23 Hz. Puta 10
MQ resistor in series with the voltage divider, followed by a precision 10 kQ resistor,
which will be used to sense the current being sent into the sample. The voltage across this
resistor will be measured by a second lock-in that has been synchronized to the first lock-
in. Send the current into arm 18 (see sample map in Fig. C.1). Cut off arm 11 by putting -
2 V on gate 10, ground contact 11. Put -0.45V on gate 16 to force the current to only go
through the bottom layer in arm 18. Keep contacts 8 and 17 open and put -43 V on gates 5,
6 and 15. This will nullify contacts 8 and 17, and allow arms 1 and 2 to be used to probe
the voltage in the top layer. Attach a pair of twisted coaxial cables from contacts 1 and 2
directly to the first lock-in’s differential amplifier (model 116) set to direct mode. Ground

contact 7, and ground all gates not in use. The layers will be connected through contact 7.
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Figure C.1: The map for sample Y. Black rectangles are the contacts. The dashed lines
indicate back gates.

C.2  SETUP WITH INTERLAYER BIAS

If the layers cannot be at the same dc voltage, in the case of interlayer bias dependent
measurements for example, then the Coulomb drag circuit must be setup the following way

(Fig C.2).
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Figure C.2: The Coulomb drag circuit with interlayer bias.

Again, I will use as an example an actual setup used with sample ‘K’. Put a 10k/100 Q
voltage divider on the lock-in amplifier’s output, set the output to 0.2 V RMS and the
frequency to 13 Hz. Connect this to the top right input of a 1:1 Gertsch model ST-200
transformer. Connect “T”-connectors to the two transformer outputs. Connect one arm of
one “T” to the input of a Gertsch AC model 1011 Ratio Standard. Connect one arm of the
other “T” to the ratio standard’s common. Put 500 kQ resistors in series with the
remaining arms of the “T”s with a 10 kQ resistor in series with one of these — use this as
the current sense resistor — the voltage across this resistor is measured by a second,
synchronized lock-in detector. Connect one of these leads to arm 12 and the other to arm
14 (see sample map, Fig. C.3). Put -0.6 V on gates 13, this will force the current to flow

only in the bottom 2DEG layer. Cut off arm 9 with -2 V on gate 10, ground contact 9.



168

Figure C.3: The map for sample ‘K’. The dashed lines indicate back gates.

Connect arms 4 and 6 to the lock-in’s differential preamplifier (model 116), in direct mode,
and connect the two leads together with two high-accuracy 1 MQ resistors in series with a
connection to ground in between them (see Fig C.2). Put -39 V on gates 3 and 5, this will

connect the voltage probes to the top 2DEG layer only.

The ground between the two 1 MQ resistors sets a virtual ground in the center of the drag
layer, so long as the two 1 MQ resistors plus the resistances in arms 4 and 6 are precisely

matched.
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C.3 CALIBRATING THE RATIO STANDARD

The output of the ratio standard can either be grounded or connected to a dc voltage source,
either way this will set a virtual ac ground in the drive layer. The ratio standard allows for
this ac ground to be moved around the circuit, so that it can be tuned to lie in the 2DEG
itself. This can best be done by looking at the 90° phase common mode voltage signal on
the drag layer during the drag measurement while varying the ratio standard setting.
Switch the preamplifier mode from ‘A-B’ (measuring the differential voltage) to ‘A’ or ‘B’
(measuring the absolute voltage on input ‘A’ or ‘B’) and change the lock-in’s phase setting
to 90°. When the ac ground is not centered in the 2DEG, the oscillating drive current will

induce an oscillating common mode voltage on the layer. The further away ac ground is

l T B i I T I T |
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Figure C.4: The 90° phase common mode voltage on the drag 2DEG as a function of the ratio
standard setting. In this measurement, the Coulomb drag circuit shown in Fig. C.2 is reduced
to the voltage divider shown in the inset.
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from the 2DEG, the larger this signal will be. The 2DEG layers will act as a parallel plate
capacitor and this signal will induce a 90° phase current to flow through the layers and into
the ground between the two 1 MQ resistors (now effectively 500 kQ, as they are in
parallel). The Coulomb drag circuit is reduced to the voltage divider shown as the inset to
Figure C.4, where the effective applied ac common mode signal is easily shown to be
linearly proportional to the ratio standard setting. The capacitance, C, of the two 2DEG

layers is of order 100 pF for my mesa geometries.

Figure C.4 shows the results of this measurement on sample ‘K’ at 300mK with a 13 Hz,
100 nA drive current. The ratio standard setting is ranged from 0.435 to 0.575 at 0.01
increments. The linear response observed over most of this range indicates how fittingly
the circuit reduces to a simple voltage divider, as well as the linearity of the applied ac
common mode voltage with the ratio standard setting. This linear behavior stops below
0.455 and above 0.565, when the amplitude of the common mode voltage becomes too
large to maintain the integrity of the selective depletion scheme for maintaining separate
layer contact, thus current starts flowing into both layers, and the voltage divider circuit is

no longer valid.

When the ac ground is centered in the 2DEG, the common mode voltage is zero and no

current flows between the layers: V, =~ will read zero — this yields the proper ratio standard

out

setting. For the data shown in Figure C.4, the proper setting is 0.505.
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C.4 SETTING THE PHASE

Also to be considered in setting up the Coulomb drag measurement is the proper
adjustment to the lock-in’s phase setting. The phase of the signal coming out of the lock-in
detector’s output will get shifted slightly as it goes through the circuit before it reaches the
2DEG. Working at these low frequencies, including the transformers in the circuit tends to
shift the phase, as do the large resistances that we use in a circuit along with the inevitable
capacitances to ground through the wires in the cryostat (a few nF). The proper phase
setting will be the one in which the current actually flowing in the bottom layer of the

2DEG is defined as being purely real.

The best way to set the phase, is to actually probe the current at a point in the circuit that is
very close to the 2DEG. In the above setup, the 10 kQ resistor in series with one of the
500 kQ in the drive layer side of the circuit should be placed nearest to the 2DEG and this
can be used to set the phase. In the simpler Coulomb drag setup discussed earlier (in
Section C.1), it is best to temporarily insert a sense resistor between the 2DEG and ground
(in between contact 7 and ground in the example used) and set the phase by this current,
then remove the resistor. The phase is set correctly when the 0° signal is frequency
independent and any 90° signal is strongly frequency dependent; and I have found that this

method ensures that.

OoDetde 3 KPP
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1 J.P. Eisenstein, L.N. Pfeiffer and K.W. West, Appl. Phys. Lett. 57, 2324 (1990).
2 See Appendix F for detailed information on how to take and interpret gate

characteristics.
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Appendix D

COUNTERFLOW MEASUREMENT SETUP

As an example of the counterflow setup, I will describe the setup used for the counterflow

Hall data shown in Figure 7.5. This is a standard counterflow setup.

Put a 10k/100 Q voltage divider on the EG&G/Princeton Applied Research model 124A
lock-in amplifier’s output, set the output to S V RMS and the frequency to 5.1 Hz. Puta 10
MQ resistor in series with the voltage divider. Cut off arm 1 by putting -2 V on gate 3;
ground contact 1 (see sample map in Fig. D.1). Put -43V on gates 6 and 15 to force the
current to only go through the bottom layers in arms 8 and 17. Send the current into arm 8,
extract current from arm 17, and then send through a precision 10 kQ resistor for sensing
the current. Measure the voltage across this resistor using a second lock-in that has been
synchronized to the first lock-in. The phase can be set by this current. Put -0.45V on gates
9 and 16 to force the current to only go through the top layers in arms 7 and 18. Redirect
the current into arm 18 and then ground arm 7. Attach a pair of twisted coaxial cables to
arms 2 and 11 for measuring the Hall voltage and connect these to the first lock-in’s
differential amplifier (model 116) set to direct mode. Put -43V on gates 5 and 6 so that
these arms only probe the top layer. For parallel configuration, the setup would be the

same except that the roles of arms 8 and 17 would be reversed: the current would first be
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sent into arm 17 and then be extracted from arm §.

Figure D.1: The map for sample °Y’. The dashed lines indicate back gates.

fCHC At I I



175

Appendix E

MODELING CURRENT FLOW WITH PDETOOL IN MATLAB

The Partial Differential Equation Toolbox in MATLAB can be used to solve the LaPlace
equation (V> ® = 0) for an arbitrary two-dimensional shape. The following instructions are

a modified version of instructions given to me by Ken Cooper.

1. Start up MATLAB.

2. To open the Partial Differential Equation Toolbox, type
>>pdetool

at the prompt, and then hit return.

3. This will open up the PDE Toolbox window. Press the moon shape button to draw
a shape in the blank space below the menu bar. Click the mouse to define the
vertices. When you return to your starting point, the shape will close itself

automatically.

4. Press the dQ button to set up the boundary conditions for your shape. Select one or
more sides of your shape by clicking them with the mouse (Shift-click for multiple
selections). Then under the Boundary menu, select Specify Boundary
Conditions. Choose Dirichlet conditions to set a constant voltage (set h=1, r to the
voltage, e.g. r=0 or r=1). Choose von Neumann for the condition that no current

flows across the boundary (set g=0 and q=0). Do this for all sides of your shape.
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5. Press the PDE button. This will bring up a box with generic differential

equations to choose from. For the LaPlace equation, choose elliptical and set c=1,

a=0, and =0.

6. This program will solve for the potential using the finite element method. This
method breaks up the shape into a mesh, to initiate this mesh, press the triangle

button.

7. You can then refine this mesh by pressing the triangle-within-a-triangle button.

Pressing this twice is usually sufficient.

8. Press the “=" button to solve the equation for your shape. This will display the
solution as a color gradient in your shape, where each color represents an

equipotential.

9. For other display options, press the plot button. Choose arrow and “- grad u” and

proportional to display the current as a vector field (Fig. E.1).

Figure E.1: Numerical calculation of current distribution in counterflow mesa.

10. To further manipulate the data, you must export it out of PDE Tool into the main
MATLAB program. To do this select Boundary:Export Boundary, PDE:Export
PDE Coefficients, Mesh:Export Mesh, and Solve:Export Solution. PDE Tool
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will automatically assign variable names to these data arrays. ‘u’ is the

calculated potential, ‘p’ and ‘t’ are the mesh coordinates, etc.

Back in the main MATLAB window, here are some commands you can use to

display and manipulate the PDE Tool data:

>>pdesurf(p,t,u) {displays a 3D view of the solution, click the mouse in the

figure window to change the display angle}
>>help pdesurf  {use the help command for more information on a command}

>>[jxt,jyt]=pdecgrad(p.,t,c,u)  {this takes the gradient of u in the x and y

directions and names the output ‘jxt” and ‘jyt’}
>>jxn=pdeprtni(p,t,jxt) {this converts the triangle mesh data into node data}
>>jyn=pdeprtni(p,t,jyt) {this does the same for the y-component data}
>>x=-1.5:0.01:1.5
>>y=-1.0:0.01:1.0  {these create an x-y grid for plotting the node data}

>>jxgrid=tri2grid(p,t,jxn,x,y)  {this maps the x-component current node data

to the grid}
>>jygrid=tri2grid(p,t,jyn,x,y) {and the y-component node data}
>>contour(jxgrid) {makes a contour plot of the x-component of the current}

>>jxes=jxgrid(:,200)  {takes line x=200 from ‘jxgrid’ and saves it as a 1D array

called ‘jxcs’}
>>plot(jxcs) {plots the 1D array}

oo H VeV
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Appendix F

HOW TO TAKE GATE CHARACTERISTICS

This measurement tests the diffusive contact resistance to each layer, as well as calibrates

the arm gate voltages needed to establish separate layer contact.

Puta 511/1 Q voltage divider on the EG&G/Princeton Applied Research model 124A lock-
in amplifier’s output; along with the 600 Q output impedance of the lock-in, this will serve
as a 1000:1 voltage divider. Set the output voltage knob to 1 V RMS, thus applying an
approximately 1 mV signal to the 2D electron gas. Send this signal across a resistor (we
usually use one of our variable resistor boxes) and then into the contact arm you wish to

check; ground all the other contacts.

Measure the voltage across the resistor using the lock-in’s differential preamplifier (model
116) while applying a steadily decreasing voltage to the arm gate you wish to test (all other
gates should be grounded). The value you choose for the resistor should be one that is
comparable to the contact’s resistance (1 kC2 is good, unless there are other resistances in
series with the contact arm, and then include those). The voltage across the resistor
approximates the conductance of the contacts. Figure F.1 shows typical gate characteristic

measurements.
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Figure F.1: Typical gate characteristics for the top (a) and back (b) gates of one of the contact
arms. Taken at 4 K with a 1 mV excitation signal.

As the gate voltage decreases from zero on the top arm gate (Fig F.1a), the electrons begin
being depleted underneath the arm gate in the top layer. At first this has little effect on the
conductance of the arm; but as the electrons near total depletion, the conductance in the
depleted layer falls dramatically until the layer no longer supports current flow — this
creates the step observed around -0.4 V. Once the top layer is depleted, the region
underneath the gate in the bottom layer starts losing electrons. Again, this has little effect
on the conductivity until the gate voltage reaches around -0.8V, and then the conductivity

drops quickly to zero as the last electrons are depleted at just below -1 V.

For the back arm gate characteristics, we only deplete the bottom layer since the large
voltages that would be required to deplete both layers (around -80 V) may cause electrical
breakdown in the sample. The depletion of the bottom layer is completed around the

inflection point seen around -42 V in Fig F.1b.
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The contact resistance can be backed out of these measurements by solving the voltage

divider equation (F.1)

1-V,, (mV
Rcontacts( ) = M
V. (mV)

out

(F.1)

for the measurement setup (Fig F.2).
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Figure F.2: On the left is the gate characteristic measurement circuit — a simple voltage divider.
And on the right, the resistances inferred from the gate characteristic measurements in Fig F.1.

Applying this equation to the data in Fig F.1 gives the resistance of each layer alone as well

as the two combined (Fig F.2).

OoDetde 3 KPP
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Appendix G

LAYER DENSITY BALANCING BY COULOMB DRAG

There are two methods in general use for balancing the densities of the two layers. If
there is a reasonable tunneling signal, tunneling is an excellent method for matching the
densities in the two layers. For this work, samples were chosen for their exceedingly
low tunneling, and consequently I did not have sufficient tunneling signal to use this

method to balance the layers.

The second method for balancing the layers is to take conventional transport
measurements of the layers individually — the location of the QHE minima with respect
to the magnetic field depends on the layer’s density. This technique is just a matter of

getting the minima in the magneto-transport data traces in each layer to line up.

Since the transport measurement I used most regularly was Coulomb drag, I found what
was for me a simpler method for balancing the layers — balancing by Coulomb drag. This
proved to be equally precise as the other methods, and gave similar balancing gate voltages
to within this precision. This also had the added advantage that I was balancing in the
configuration that I would be taking the data in, incase the configuration has subtle
influences on the density, the homogeneity, or more directly — the regions probed in the

density balancing measurements. However, slight mismatches in density have very little
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impact on the drag (a £5 mV change in the top gate voltage, results in a ~ 1.5% change

in the value of the drag), so balancing by Coulomb drag was favored mainly for its

convenience.

It is possible to balance the two layers by Coulomb drag because the drag in the high
Landau levels goes negative when the layers are out of balance [1]. So I would simply take

Coulomb drag measurements up to the fifth Landau level or so at different gating voltages,
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Figure G.1: Coulomb drag measurements from sample ‘K’ taken September 21, 2000 is used
to find the top gate voltage that balances the ungated bottom layer. 0V/-10mV was chosen as
the balanced gating configuration.

and select the one that showed the drag to be positive over the largest range (see Figure
G.1). This method was confirmed by checking how well the locations of the QHE minima

in magnetic field were linearly fit to the inverse filling factors of these minima (by the
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relation B :ﬁ, where v is the Landau level filling factor); a smaller standard
ve

deviation to the fit should indicate that the minima are well defined by a single density »
(the same density that is in each layer). The drag I chose as balanced by eye, always had

the smallest standard deviation in the fit, confirming my choice.

fCHC At I I

1 J.G.S. Lok, S. Kraus, M. Pohlt, K. Giiven, W. Dietsche, K. von Klitzing, W.
Wegscheider and M. Bichler, Physica B 298, 135 (2001).
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Appendix H

HOW TO DETERMINE DENSITY AND MOBILITY

We measure the density by comparing the locations (in magnetic field) of the minima in the
Shubnikov-de Haas oscillations with their Landau level filling factor v. The two are

related by

B = (H.1)

Plotting B, versus v_' should yield a straight line, the slope of which is directly

proportional to the density n. This will work with the Shubnikov-de Haas oscillations in
Coulomb drag, tunneling and other measurements, but here I will go through an example
where the density is calculated using conventional transport through both layers (this is the

standard method used in our lab).

Conventional transport through both layers has a very simple setup: Put a 10k/100 Q
voltage divider on the EG&G/Princeton Applied Research model 124A lock-in amplifier’s
output, set the output to ~ 5 Vrus (for an ~ 5 nA4 current, though I go as high as 20 n4 for

these measurements). Put a 10 MQ resistor in series with the voltage divider, followed by

a precision 10 kQ resistor, which will be used to sense the current being sent into the
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sample; the voltage across this resistor will be measured by a second lock-in that has

been synchronized to the first lock-in. Send the current into one the contacts and ground
another; the current will flow between these two contacts. Attach a pair of twisted coaxial
cables to two of the remaining contacts to measure the longitudinal resistivity. Open all the

remaining contacts; ground all of the gates.

Figure H.1 shows the typical result of such a measurement done at 7 =0.05K for sample
‘Y’ at nominal density, versus magnetic field. Shubnikov-de Haas oscillations can be
identified up to v =30 in this sample at this temperature — I have labeled a few of them in

the figure.

Pyx.D (kQ /)

0.0 041 02 03 04 05
Magnetic Field (Tesla)

Figure H.1: Conventional transport measurement on sample Y’ at nominal density. The
locations of the minima can be used to determine the density of the sample. Some of the
filling factors are identified. The odd filling factors correspond to spin-split Landau levels and
have a smaller energy gap than the even filling factors, this is why they disappear above
v =11, where the thermal energy is comparable to the energy gap, but the even ones remain.
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When the minima in magnetic field from Fig. H.1 are plotted against the inverse of the

filling factor, a straight line results (see Figure H.2). If a straight line is not obtained, then

the filling factors have been counted wrong.
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Figure H.2: The location of the minima in magnetic field taken from Figure H.1 are plotted
versus the inverse of the filling factor. The slope of this line is directly proportional to the
electron density.

The line shown in Fig. H.2 is fit by the function B(7") =-0.0056T + 2.255%. The offset
comes from the fact that in our transport measurements we are ramping the current in the

magnet, creating a small % voltage which diverts some of the current through the shunt,

and leads to an offset between the measured current and the actual magnetic field that’s

generated.
Comparing the slope of this line to the more useful version of equation (H.1):

B,.(T)=0.414xn(10"cm™) XL, (H2)
14
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and the density is found to be n=5.45x10""cm™. Note that this is slightly higher than

the nominal density for sample ‘Y’ quoted in this thesis, because this is the unbalanced

nominal density, and we quoted the balanced nominal density.

e er . .
The mobility is defined as g =— and is thus a direct measure of the momentum
m

relaxation time 7 . The mobility can be obtained by combining the electron density and the

sample resistivity at zero magnetic field, whichis p_ =64 Q/o from Figure H.1, using the

relation:

cm’ 1
ﬂ{ V'SJ - o (Q/D)e(C)n(cm*Z) (H.3)

cm?

For this example the mobility is x =896,000 e
.S

oo H VeI
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Appendix I

HOW TO DETERMINE DENSITY IMBALANCE

Applying a bias voltage between the layers shifts charge from one layer to the other.

The amount of charge that is transferred can be estimated by treating the two layers as a

. : . &K
parallel plate capacitor with capacitance C =—2

, where ¢, is the permittivity of free

space, x is the dielectric constant (x ~12.8 in GaAs) and A is the layer area. Then

0 2
Anznl—%:e%—e—f:e—f (L1)

where Q is the excess charge in the layer; this can be solved for using the basic

capacitor formula O =CV":

An

(1.2)

_20 20V _24skV (26K %
eA eA deA de

which gives a relationship between the bias voltage applied V' and the resulting change in

absolute density An. However, rather than relying on this equation, we can also measure

this relation directly. This is how I determined 2 for the data shown in this thesis.
nT
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Again we use the fact that the drag goes negative in the high Landau levels when the

layers are imbalanced [1]. Specifically, it goes negative when the Landua level filling

factor difference between the layers Av =v, —v, is odd.

If a bias voltage is applied along with a small perpendicular magnetic field such that the
drag is in a regime where the high Landau level Shubnikov-de Haas oscillations are strong,
then Av can be determined by observing the oscillations as it changes from odd to even

and back again, and then An can be inferred by the relation:

an__Av (13)

ny vV, tVv,

As an example, Figure 1.1 shows data taken on sample ‘K’ at nominal (balanced) density in
a perpendicular magnetic field B=0.1297. When the bias voltage is zero, the Coulomb
drag is in a Shubnikov-de Haas minimum with v =16 in each layer. As an interlayer bias
is applied, this minimum will go negative as Av approaches an odd number and will rise
back up as Av becomes even. The peaks in Figure 1.1 correspond to these even Av. By
noting the bias voltage separating the peaks and utilizing equation 1.3, it can be found that

g:0.0SO x bias(mV’) for this density. This corresponds to a value of d =277 A in
nT

equation 1.2, very close to our center-to-center well separation of d =280 A.
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Figure L.1: Longitudinal drag resistivity versus interlayer bias at n=>5.1x10"cm™ with
B=0.129 T taken at 0.3 K. The peaks occur when the filling factor in each layer differ by an
even integer, the number pairs indicate the filling factor in each layer.

The same measurement can be done for the other densities, allowing us to convert from

bias voltage to density imbalance at any density.
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Appendix K

FORTRAN CODE

There are 4 Fortran programs in this appendix :

CoulombDragforCosineWells is the most basic program, it calculates the drag for GaAs

electrons (m* = 0.067), assuming their wavefunctions take on a cosine shape in the wells
(this is a pretty good assumption). This program numerically integrates equation 2.29 for

layer separation d, well width w, density in layer 1 n,, density in layer 2 n,, and

temperature 7' as input by the user.

CoulombDragusingFormFactors is the same as “CoulombDragforCosineWells,” except

that instead of assuming a cosine wavefunction, this program uses the form factors (see
Jauho & Smith [1] for discussion of form factors) specific to the DQW system. Before

running this program, the program "dqwbiasandform" must be run first.

dgwbiasandform is a program written by Jim Eisenstein which calculates the electronic

wavefunction for user-specified DQW parameters. I have modified this program so that it
also computes the form factors and outputs them into two files named 'gl1' and 'gl2'".
"CoulombDragusingFormFactors" will need to read these files in order to run. The form
factors are dependent upon the *average® density of the system. So, it is important to run

"dqwbiasandform" for each new *average* density calculated.

*These programs can be obtained at my website: http://www.its.caltech.edu/~mk/Coulomb Drag.html.


http://www.its.caltech.edu/~mk/Coulomb_Drag.html
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HoleDragforCosineWells this program is the same as “CoulombDragforCosineWells,”

except that it allows the user to choose the effective mass of the electron (or hole). This

greater freedom makes for a slightly less user-friendly program though.

KNOWN PROBLEMS AND ISSUES:

1. Sometimes the integration algorithm will produce a 'bad' data point or two. This will be
obvious when the data is plotted, as these bad points are off by a large amount! You will
notice that these bad points are often calculated much faster than the neighboring data
points. The only way to correct for this problem is to run the program again, just for that
one point, at a much higher precision (this option is given to you when you run the

program). You must then replace the bad data point with the new one.

2. These programs need to be linked to "smaths.lib" and "smathd.lib" in order to run. You
must add these links to the workspace that you run the program from. Add these links

under Project:Settings:Link.

Ooe0e KPP

1 A.P.Jauho and H. Smith, Phys. Rev. B 47, 4420 (1993).



Program #1: CoulombDragforCosineWells

¥ ¥k K X K K K X KX X X ¥ X ¥

*

10 PRINT *,'Enter the number "0" if you wish to calculate Drag vs. T;'

PROGRAM CoulombDragforCosineWells.f

Integrates 4D boltzmann formulation for the drag, as given in

a paper by Jauho & Smith PRB 47,4420, assuming the electron
wavefunction is a cosine (as is used in the paper).

This program will output either CD vs. T, or CD vs. delta(n)/<n>
for a given <n> (density per layer), d (center-to-center layer
separation), w (well width), and in T (temperature).

This program only calculates the drag for electrons with
m*=0.067m_0 - the effective mass of electrons in GaAs.
And kappa is set to 12.8.

INTEGER MAXFCN,N,LJ,dragtype,loop

real timel ,time2

character filename*25,fdt1*56,fdt2*23,temp*3,header*80,stime*8
character precisionvariable*12, dragtypename*21

double precision
A(4),B(4),RESULT,F.ERREST1,ERRABS,ERRREL,RESULT1
double precision L,ERREST2,deltat,tend,n1r,n2r,kf1,kf2 kfmax
double precision nave,deltanend,errnumber,deltan,dr,wr,pi
double precision tf1,tf2,tfmax

double precision nl,n2,w,d,t

EXTERNAL F,DQAND

common nl,n2,w,d,t

pi=3.1415927

N=4
MAXFCN = 2100000000
ERRABS=0.0

choose 'CD vs. T' or 'CD vs. delta n' option
PRINT *,"

PRINT *,'or "1" if you wish to calculate Drag vs. delta(n)/<n>"'
PRINT *,"
READ *,dragtype

IF (dragtype == 0) THEN
dragtypename = 'Drag vs. T'
ELSE IF (dragtype == 1) THEN
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dragtypename = 'Drag vs. delta(n)/<n>'

ELSE

PRINT *,"

PRINT *, '"You must choose either 0 or 1, please try again.'
PRINT *,"

GOTO 10

END IF

PRINT *,"
PRINT *, "You have chosen:'
PRINT 44, dragtypename
44 FORMAT (A40)
PRINT *,""

* getn,d,w,T etc. as needed, and automatically set errrel from these - allow
* the option of autochoose errrel or choose it manually. Then it's up to the user to

* understand how to choose them.

IF (dragtype == 0) THEN

ELSE

PRINT *,"

PRINT *,'Start temperature in K:'

PRINT *,"

READ *t

PRINT *,"

PRINT *,'Temperature steps in delta K:'

PRINT *,"

READ *,deltat

PRINT *,"

PRINT *,'End temperature in K:'

PRINT *,"

READ * tend

PRINT *,"

PRINT *,'Density in layer 1 (in units of 10°10 cm”-2):'
PRINT *,"

READ *nlr

PRINT *,"

PRINT *,'Density in layer 2 (in units of 10*10 cm”-2):'
PRINT *,"

READ * n2r

PRINT *,"

PRINT *,'Average density per layer <n> (x10"10 cm”-2):'
PRINT *,"

READ * nave

PRINT *,"

PRINT *,'delta(n) per layer steps (in units of 1010 cm”-2):'
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PRINT *,"
READ *,deltan
PRINT *)"
PRINT *,'delta(n)/<n> max (e.g., 0.6):'
PRINT *,"
READ *,deltanend
PRINT *,"
PRINT *,'Temperature in K:'
PRINT *,"
READ *t
END IF

PRINT *,"

PRINT *'center-to-center layer separation, d, (in Angstroms):'
PRINT *,"

READ *.,dr

PRINT *,"

PRINT *,'well width, w, (in Angstroms):'

PRINT *,"

READ *,wr

IF (dragtype == 0) THEN
ERRREL =0.02
ELSE
ERRREL = 0.01
ENDIF

* set parameters to their MKS units

d=dr*1D-10
w=wr*1D-10

IF (dragtype == 0) THEN

nl =nlr*1D14

n2 =n2r¥*1D14
ELSE

nl =nave*1D14

n2 =nave*1D14
ENDIF

* and determine k_fermi and T fermi for setting L:
kfl = sqrt(2*pi*nl)
kf2 = sqrt(2*pi*n2)
kfmax = max(kf1,kf2)
tfl =4.15D-14*n1
tf2 =4.15D-14*n2
tfmax = max(tf1,tf2)



* Now choose to have 'ERRREL' set automatically or by hand:

46

45

PRINT *,"

PRINT *,'If you wish to set the precision of the calcualtion'

PRINT *,'yourself, type in "man". Type in anything else and'

PRINT *,'the precision will be assigned automatically.'

PRINT *,"

READ *,precisionvariable

IF (precisionvariable == 'man') THEN
PRINT *,"
PRINT *,'For ', dragtypename, ' the error variable "ERRREL"'
PRINT 46,'is set to', ERRREL,". For higher precision (but'

FORMAT (A10,F6.2,A28)
PRINT *,'longer computation time) type in a SMALLER number.'
PRINT *, 'For less precision, but faster computation time'
PRINT *,'type in a LARGER number (but keep it < 1).'
PRINT *,'(to learn more about "ERRREL", see "DQAND" '
PRINT *,'in IMSL library). Enter error precision now:'
PRINT *,"
READ *,ERRREL

ELSE

ENDIF

PRINT *,"

FORMAT (A19,F8.3)

PRINT 45,'ERRREL is set to: ', ERRREL
PRINT *,"

* get filename

PRINT *,"

PRINT *,'This program will put the results of the calculations'
PRINT *,'in a subdirectory of your current folder. The'
PRINT *,'subdirectory will be called "output" (you may need to'
PRINT *,'create this yourself). You must choose a file name'
PRINT *,'for each run of this program.'

PRINT *,"

PRINT *,'What filename do you wish to use?'

PRINT *,"

READ *,filename

fdt2 = 'output\'/filename

open(2,FILE=fdt2)

* write header information to file
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WRITE (2,33),dragtypename
33 FORMAT (",A36)
WRITE (2,'(A20)") (")
WRITE (2,'(A42)") 'For GaAs electrons (m*=0.067, kappa=12.8),'
WRITE (2,34) 'd =',dr,'A, w =',wr,'A. Cosine wavefunction.'
34 FORMAT (A3,F6.1,A8,F6.1,A25)
IF (dragtype == 0) THEN
WRITE (2,36) 'nl =',nlr,', n2 =",n2r,' x 10*10 cm”(-2)'
36 FORMAT (A4,F5.2,A6,F5.2,A16)
ELSE
WRITE (2,37) 'T ='t,'K. nl, n2 are in MKS units (m"-2)."
37 FORMAT (A3,F6.2,A35)
ENDIF

* this calculates the number of times to run the do loop
IF (dragtype == 0) THEN
loop = nint((tend -t)/deltat)+1
ELSE
loop = nint((deltanend*nave)/(2*deltan))+1
ENDIF

PRINT *,"

CALL TIME(stime)

PRINT */'start time: ',stime

PRINT *,"

PRINT 47, 'd =',dr,' Angstroms'
47 FORMAT (A4,F6.1,A10)

PRINT 47, 'w =",wr," Angstroms'

IF (dragtype == 0) THEN

PRINT 48, 'nl =',nlr,' x 10*10 cm”-2'

PRINT 48, 'n2 =',n2r,' x 10"10 cm”-2'
48 FORMAT (A5,F6.2,A14)

PRINT *,' K", Ohms ''error ''elapsed seconds'

WRITE (2,'(A20)") (")

WRITE (2,'(A42)"), K =~ Ohms error sec'

ELSE

PRINT 49, 'T ='t,'K'
49 FORMAT (A4,F6.2,A2)

PRINT 445,'n1 n2','Ohms','error','seconds'
445 FORMAT (",A14,A14,A11,A15)

WRITE (2,'(A20)") (")
450 FORMAT (",A7,A10,A12,A16,A12,A7)

WRITE (2,450),'n1",'n2','ohms','error','sec','deltan’



201
ENDIF

DO 7, I=1,loop

* This sets the integration limits, and calls the integration
* program (DQAND) from the IMSL library, and solves the integral
%

* SET APPROPRIATE LIMITS (L) FOR THE TEMPERATURE
IF (t .LE. tfmax/10) THEN
L = 2*kfmax
ELSE IF (tfmax/10 .LT. t .LE. tfmax/6.5) THEN
L = 3*kfmax
ELSE IF (tfmax/6.5 .LT. t .LE. tfmax/4.5) THEN
L = 4*kfmax
ELSE
L = 5*kfmax
END IF

A = (/0.0D8,0.0D8,-L,0.0D8/)
B =(/L,L,0.0D8,L/)

CALL CPU _TIME(timel)
CALL DQAND(F,N,A,B,ERRABS,ERRREL, MAXFCN,RESULT,ERREST1)
RESULT! = RESULT

A = (/0.0,0.0,0.0,0.0/)
B=(L\LLL/

CALL DQAND(F,N,A,B,ERRABS,ERRREL,MAXFCN,RESULT,ERREST?)
CALL CPU_TIME(time2)

IF (dragtype == 0) THEN
PRINT
100,t, RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2),time2-time1
100FORMAT  ("F5.1,F11.4,E14.4,F8.1)
WRITE (2, 20),t, RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2),
&time2-timel
20 FORMAT (F5.1,E15.4,E14.4,F9.1)
ELSE
PRINT 101,n1,n2, RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2),
&time2-timel
101FORMAT  (",2E9.2,F11.4,E14.4,F9.1)
WRITE (2,
21),n1,n2, RESULT+RESULT1,SQRT(ERREST1*#*2+ERREST2**2),
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&time2-timel,(2*(n1-n2)/(n1+n2))
21 FORMAT (E10.3,E10.3,E13.6,E14.4,F10.1,F8.5)
ENDIF

* increment the temperature or the delta n
IF (dragtype == 0) THEN
t=t+ deltat
ELSE
nl =nl + deltan*1D14
n2 =n2 - deltan*1D14
ENDIF

7CONTINUE

END

double precision FUNCTION F(N,X)
integer N

double precision X(N),qtf,kb,tf1,tf2.k
double precision a,kappa,Const,pi,m,Const2
double precision nl,n2,w,d,t

common nl,n2,w,d,t

tfl =4.15D-14*n1
tf2 = 4.15D-14*n2
kappa =12.8
qtf = 1.977D8
pi=3.1415927
m = (1/(4*pi*pi)-1/3.0+1/(pi*pi))
kb =1.381D-23

* ais m* e"2/pi"2 kb h_bar qtf"*4 (4 pi epsilon)"2
a=>5.76361D-27

* kis (h_bar)*2/2 m*
k=9.1187D-38

Const = a / (kappa*kappa*nl*n2*t)
Const2 = qtf*qtf*Const

* Here is the integrand (X{} = kly,k1'x,k1'y,k2perp):
IF (sqrt(X(2)**2+(X(3)-X(1))**2) .GE. 0.0) THEN

F= Const*X(1)*(sqrt(X(2)**2-+(X(3)-X(1))**2))**3*(EXP((k*(X(1)**2)



&-kb*tf1)/(kb*t))+1)**(-1)*(1-(EXP((k*(X(2)**2+X(3)**2)-kb*tfl)
&/(Kb*))+1)#*(-1)*(EXP((k*(X(4)**2+(X(2)**2+(X(3)-X(1))**2)
&/AH((X(1)F*2-X(2)**2-X(3)**2)**2/(4*(X(2)**2+(X(3)-X(1))**2))
&-(X(1)#*%2-X(2)**2-X(3)**2)/2))-kb*t£2)/(kb*t))+1)**
&(-1)*(1-(EXP((k*(X(4)**2-+H(X(2)**2-+H(X(3)-X (1)) **2)/4-+(X(1)**2
&-X(2)**2-X(3)**2)/2-+H(X(1)**2-X (2)**2-X(3)**2)**2/(4*(X(2)**2
&H(X(3)-X(1))**2)))-kb*tf2)/(kb*t))+1)**(-1))y*(EXP
&(sqrt(X(2)**2+(X(3)-X(1))**2)*d)*(sinh(sqrt(X(2)
&F*2H(X(3)-X(1))##2)*w/2))**(-2)*(8*pi*pi/(sqrt(X(2)**2+X(3)-X(1))
&*F2)*WH(A*pr*pit(X(2)**2+(X(3)-X(1))**2)*w*w)))**(-2)
&*((2/(sqrt(X(2)**2-+(X(3)-
&X(1))**2)*w)-EXP(-sqrt(X(2)**2-+(X(3)-X(1))**2)*w/2)*
&sinh(sqrt(X(2)**2-+(X(3)-X(1))**2)*w/2)*(8*pi*pi/

&(sqri(X(2)**2H(X(3)-X(1))**2)*w*(4*pi*piH(X(2)**2+(X(3)-X(1))**2)

&FwWHEwW)))F*2-+sqrt(X(2)**2+(X(3)-X(1))**2)*w/(4*pi*pi+
&(X(2)**2HX3)-X(1)**2)*w*w))+sqrt(X(2)**2+(X(3)-X(1))**2)
&/qt)**2-EXP(-d*sqrt(X(2)**2-+X(3)-X(1))**2))*(sinh(sqrt(X(2)
&**2+(X(3)-X(1))**2)*w/2))**2*(8*pi*pi/(sqrt(X(2)**2+(X(3)-X(1))
EHPFwWH(4*pi*pit(X(2)**2H(X(3)-X(1))*#2)*w*w))) **2)**(-2)

ELSE

F= Const2*X(1)*(sqrt(X(2)**2+(X(3)-X(1))**2))*(EXP((k*(X(1)**2)
&-Kb*tf1)/(kb*t))+1)**(-1)*(1-(EXP((k*(X(2)**2+X(3)**2)-kb*tfl)
&/(Kb*))+1)**(- 1) (EXP((k*(X(4)**2+HX(2)**2+(X(3)-X(1))**2)
&/AH((X(1)¥*2-X(2)**2-X(3)**2)**2/(4*(X(2)**2+(X(3)-X(1))**2))
&-(X(1)*¥*2-X(2)**2-X(3)**2)/2))-kb*tf2)/(kb*t))+ 1 )**
&(-1)*(1-(EXP((k*(X(4)**2+(X(2)**2-+H(X(3)-X(1))/**2)/4+(X(1)**2
&-X(2)**2-X(3)¥*2)/2-H(X(1)*¥*2-X(2)**2-X(3)**2)**2/(4*(X(2)**2
&H(X(3)-X(1))*¥*2)))-kb*tf2)/(kb*t))+1)**(-1))*(2*d*qtf+2*w*qtf*m
&*(1+sqri(X(2)**2+(X(3)-X(1)**2)*dsqrt(X(2) **2+(X(3)-X(1))**2)
&/qth)+2-+2*sqrt(X(2)**2+(X(3)-X(1))**2)*d+sqrt(X(2)**2-+(X(3)-X(1)
&)**2)/qtErsqrt(X(2)**2+(X(3)-X(1))**2)*qtfw*w*m*m)**(-2)
ENDIF

RETURN
END
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Program #2: CoulombDragusingFormFactors

¥ OXk K X K K X X X ¥ ¥ * *

*

PROGRAM CoulombDragusingFormFactors.f

Integrates 4D boltzmann formulation for the drag, as given in

a paper by Jauho & Smith PRB 47,4420, using form factors calculated
for our wells (this is discussed in the paper). You must run the
program 'dqwbiasandform' to generate the form factor files.

This program will output either CD vs. T, or CD vs. delta(n)/<n>.

This program only calculates the drag for electrons with
m* =0.067m_0 - the effective mass of electrons in GaAs.
And kappa is set to 12.8.

INTEGER MAXFCN,N,LJ.dragtype,loop,k

real timel,time2

character filename*25,fdt1*56,fdt2*23 temp*3,header*80(7),stime*8
character precisionvariable*12, dragtypename*21

double precision A(4),B(4),RESULT,F,ERREST1,ERRABS,ERRREL,RESULTI1
double precision L,ERREST2,deltat,tend,n1r,n2r kf1,kf2 kfmax
double precision nave,deltanend,errnumber,deltan,pi

double precision tf1,tf2, tfmax

double precision nl,n2.t, g11(2000),g12(2000)

EXTERNAL F,DQAND

common nl,n2,t,gl1,g12

pi=3.1415927

N=4
MAXFCN = 2100000000
ERRABS=0.0

inform user that they must run 'dqwbiasandform' first
PRINT *,'Please note:'
PRINT *,'You must run the program "dqwbiasandform" before'
PRINT *,'running this program. "dqwbiasandform" is a program'
PRINT *,'Jim wrote which calculates the electron wavefunction'
PRINT *,'for a specified DQW system. Mindy has modified this'
PRINT *,'program so that it will create files that contain'
PRINT *,'the form factors gl 1 and g12 (see Jauho & Smith, PRB'
PRINT *,'47, 4420 for more information on form factors). This'
PRINT *,'program will need to read those files. The form factors'
PRINT *,'are dependent on the average electron density, so new'
PRINT *,'files must be generated when you wish to run the program'
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PRINT *,'for a new density.'
PRINT *,"

* choose 'CD vs. T' or 'CD vs. delta n' option

10

44

PRINT *,"

PRINT *,'Enter the number "0" if you wish to calculate Drag vs. T;'
PRINT *,'or "1" if you wish to calculate Drag vs. delta(n)/<n>:'
PRINT *,"

READ *,dragtype

IF (dragtype == 0) THEN

dragtypename = 'Drag vs. T'

ELSE IF (dragtype == 1) THEN

dragtypename = 'Drag vs. delta(n)/<n>'

ELSE

PRINT *,"

PRINT *, '"You must choose either 0 or 1, please try again.'
PRINT *,"

GOTO 10

END IF

PRINT *,"

PRINT *, "You have chosen:'
PRINT 44, dragtypename
FORMAT (A40)

PRINT *,""

* getn,d,w,T etc. as needed, and automatically set errrel from these - allow
* the option of autochoose errrel or choose it manually. Then it's up to the user to
* understand how to choose them.

IF (dragtype == 0) THEN
PRINT *,"
PRINT *,'Start temperature in K:'
PRINT *,"
READ *t
PRINT *,"
PRINT *,'Temperature steps in delta K:'
PRINT *,"
READ * deltat
PRINT *,"
PRINT *,'End temperature in K:'
PRINT *,"
READ * tend
PRINT *,"
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PRINT *,'Density in layer 1 (in units of 1010 cm”-2):'
PRINT *,"
READ *nlr
PRINT *,"
PRINT *,'Density in layer 2 (in units of 1010 cm”-2):'
PRINT *,"
READ * n2r
ELSE
PRINT *,"
PRINT *,'Average density per layer <n> (x10"*10 cm”"-2):'
PRINT *,"
READ * nave
PRINT *,"
PRINT *,'delta(n) per layer steps (in units of 1010 cm”-2):'
PRINT *,"
READ *,deltan
PRINT *,"
PRINT *,'delta(n)/<n> max (e.g., 0.6):'
PRINT *,"
READ *,deltanend
PRINT *,"
PRINT *,'Temperature in K:'
PRINT *,"
READ *t
END IF

IF (dragtype == 0) THEN
ERRREL =0.02
ELSE
ERRREL =0.01
ENDIF

* set parameters to their MKS units

IF (dragtype == 0) THEN

nl =nlr*1D14

n2 =n2r¥*1D14
ELSE

nl =nave*1D14

n2 =nave*1D14
ENDIF

* and determine k_fermi and T fermi for setting L:
kfl = sqrt(2*pi*nl)
kf2 = sqrt(2*pi*n2)
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kfmax = max(kf1,kf2)
tfl =4.15D-14*n1
tf2 = 4.15D-14*n2
tfmax = max(tf1,tf2)

* Now choose to have 'ERRREL' set automatically or by hand:

46

45

PRINT *,"

PRINT *,'If you wish to set the precision of the calcualtion'

PRINT *,'yourself, type in "man". Type in anything else and'

PRINT *,'the precision will be assigned automatically.'

PRINT *,"

READ *,precisionvariable

IF (precisionvariable == 'man') THEN
PRINT *,"
PRINT *,'For ', dragtypename, ' the error variable "ERRREL"'
PRINT 46,'is set to', ERRREL,". For higher precision (but'

FORMAT (A10,F6.2,A28)
PRINT *,'longer computation time) type in a SMALLER number.'
PRINT *, 'For less precision, but faster computation time'
PRINT *,'type in a LARGER number (but keep it < 1).'
PRINT *,'(to learn more about "ERRREL", see "DQAND"'
PRINT *,'in IMSL library). Enter error precision now:'
PRINT *,"
READ *,ERRREL

ELSE

ENDIF

PRINT *,"

FORMAT (A19,F8.3)

PRINT 45,'ERRREL is set to: ', ERRREL

PRINT *,"

* get filename

PRINT *,"

PRINT *,'This program will put the results of the calculations'
PRINT *,'in a subdirectory of your current folder. The'

PRINT *,'subdirectory will be called "output" (you may need to'
PRINT *,'create this yourself). You must choose a file name'
PRINT *,'for each run of this program.'

PRINT *,"

PRINT *,'What filename do you wish to use?'

PRINT *,"

READ *,filename
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fdt2 = 'output\'/filename
open(2,FILE=fdt2)

* write header information to file
WRITE (2,33),dragtypename
33 FORMAT (",A36)
WRITE (2,'(A20)") (")
WRITE (2,'(A42)") 'For GaAs electrons (m*=0.067, kappa=12.8),'
WRITE (2,'(A46)') 'Form factors calculated from "dqwbiasandform":'
open(96,FILE="header', FORM="formatted',.STATUS='"o0ld")
READ (96,'(A80)"), (header(i),i=1,7)
close (96)
DO 606 k=1,7
WRITE (2,'(A80)") header(k)
606 CONTINUE
WRITE (2,'(A20)") (")
IF (dragtype == 0) THEN
WRITE (2,36) 'nl =',nlr,', n2 =',n2r,' x 10*10 cm”(-2)'
36 FORMAT (A4,F5.2,A6,F5.2,A16)
ELSE
WRITE (2,37) 'T ='t,K. nl, n2 are in MKS units (m”-2).'
37 FORMAT (A3,F6.2,A35)
ENDIF

* this calculates the number of times to run the do loop
IF (dragtype == 0) THEN
loop = nint((tend -t)/deltat)+1
ELSE
loop = nint((deltanend*nave)/(2*deltan))+1
ENDIF

* get the form factors loaded into arrays
open(99,FILE="g12' FORM="formatted ,STATUS="old")
READ (99,140) (g12(1),i=1,2000)
close (99)
open(98,FILE='g]1 I''FORM="formatted',STATUS='0ld")
READ (98,140) (g11(1),i=1,2000)
close (98)

140 FORMAT (2000(E12.6))

PRINT *)"
CALL TIME(stime)
PRINT *,'start time: ',stime



PRINT *"

IF (dragtype == 0) THEN
PRINT 48, 'n1 =',nlr,' x 1010 cm”™-2'
PRINT 48, 'n2 =',n2r,' x 10"10 cm”-2'
48 FORMAT (A5,F6.2,A14)
PRINT *) K", Ohms ''error ''elapsed seconds'
WRITE (2,'(A20)") (")
WRITE (2,'(A42)"),’K  Ohms error sec'
ELSE
PRINT 49, 'T ='t,'K'
49 FORMAT (A4,F6.2,A2)
PRINT 445,n1 n2','Ohms','error','seconds'
445 FORMAT (",A14,A14,A11,A15)
WRITE (2,'(A20)") (")
450 FORMAT (",A7,A10,A12,A16,A12,A7)
WRITE (2,450),'n1",'n2','ohms",'error','sec','deltan’
ENDIF

DO 7, I=1,loop

* This sets the integration limits, and calls the integration
* program (DQAND) from the IMSL library, and solves the integral
*

* SET APPROPRIATE LIMITS (L) FOR THE TEMPERATURE
IF (t .LE. tfmax/10) THEN
L = 2*kfmax
ELSE IF (tfmax/10 .LT. t .LE. tfmax/6.5) THEN
L = 3*kfmax
ELSE IF (tfmax/6.5 .LT. t .LE. tfmax/4.5) THEN
L = 4*kfmax
ELSE
L = 5*kfmax
END IF

A = (/0.0D8,0.0D8,-L,0.0D8/)
B = (/L,L,0.0D8,L/)

CALL CPU_TIME(timel)
CALL DQAND(F,N,A,B,ERRABS,ERRREL,MAXFCN,RESULT,ERREST1)
RESULT! = RESULT

A =(/0.0,0.0,0.0,0.0/)
B=(LLLL/)
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CALL DQAND(F,N,A,B,ERRABS,ERRREL, MAXFCN,RESULT,ERREST?)
CALL CPU_TIME(time2)

IF (dragtype == 0) THEN
PRINT 100,t, RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2),time2-time
100FORMAT  ("F5.1,F11.4,E14.4,F8.1)
WRITE (2, 20),t, RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2),
&time2-timel
20 FORMAT (F5.1,E15.4,E14.4,F9.1)
ELSE
PRINT 101,n1,n2,RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2),
&time2-timel
101FORMAT  (",2E9.2,F11.4,E14.4,F9.1)
WRITE (2, 21),n1,n2, RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2),
&time2-timel,(2*(n1-n2)/(n1+n2))
21 FORMAT (E10.3,E10.3,E13.6,E14.4,F10.1,F8.5)
ENDIF

* increment the temperature or the delta n
IF (dragtype == 0) THEN
t =t + deltat
ELSE
nl =nl + deltan*1D14
n2 =n2 - deltan*1D14
ENDIF

7CONTINUE

END

double precision FUNCTION F(N,X)

integer N

double precision X(N),qtf,kb,tf1,tf2.k

double precision a,kappa,Const,pi,m,Const2
double precision nl,n2,t,g11(2000),g12(2000)
common nl,n2,t,gl1,g12

tfl =4.15D-14*n1
tf2 =4.15D-14*n2
kappa =12.8

qtf = 1.977D8
pi=3.1415927
kb=1.381D-23
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* ais m* e"2/pi*2 kb h_bar qtf*4 (4 pi epsilon)"2
a=>5.76361D-27
* kis (h_bar)*2/2 m*
k=9.1187D-38

Const = a / (kappa*kappa*nl*n2*t)

* Here is the integrand (X{} = kly,k1'x,k1'y,k2perp):

F= Const*X(1)*(sqrt(X(2)**2-+(X(3)-X(1))**2))**3*(EXP((k*(X(1)**2)
&-kb*tf1)/(kb*t))+1)**(-1)*(1-(EXP((k*(X(2)**2+X(3)**2)-kb*tf1)
&/(kb*t))+1)**(-1))*(EXP((k*(X(4)**2+(X(2)**2+(X(3)-X(1))**2)
&/AH((X(1)**2-X(2)**2-X(3)**2)**2/(4* (X (2)**2-+H(X(3)-X(1))**2))
&-(X(1)**2-X(2)**2-X(3)**2)/2))-kb*tf2)/(kb*t))+1)**
&(-1)*(1-(EXP((k*(X(4)**2+H(X(2)**2+(X(3)-X(1))**2)/4-+(X(1)**2
&-X(2)**2-X(3)**2)/2+H(X(1)**2-X(2)**2-X(3)**2)**2/(4*(X(2)**2
&+(X(3)-X(1))**2)))-kb*tf2)/(kb*t))+1)**(-1))*((g1 2(nint(2*sqrt
&(X(2)**2+(X(3)-X(1))**2)/1D6)+1))**(-1)*(g1 1 (nint(2*sqrt(X(2)**2
&H(X(3)-X(1))**2)/1D6)+1)+sqrt(X(2)**2+(X(3)-X(1))**2)
&/qtf)**2-g12(nint(2*sqrt(X(2)**2-+HX(3)-X(1))**2)/1D6)+1))**(-2)

RETURN
END
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Program #3: dgwbiasandform

O 0000000006000

000000000000

. This program does the same as DQWBIAS, but it also calculates
. the form factors g 11(q) and g 12(q). q will range from 0 to
. 1x10"9 in 5x10"5 steps (units are 1/m"2).

. Selfconsistent DQW solver allowing a finite bias voltage
. between the layers.

. This program solves the Poisson and Schroedinger equations for
. DQW using the local density approximation for the
. exchange/correlation energy.

EXTERNAL FUNC

real ynt(2),y(2,1000),x(1000),psi(1000),psisq(1000),psisql(1000)
real psisqr(1000),g11(2000),g12(2000)

real v(1000),v{(1000),vs(1000),vxc(1000)

real zpsisq(1000),zzpsisq(1000)

real ns,nd,nsr,nsl,ndl,ndr,nmean,mufr,mufl

real zavl,zavr,zrmsl,zrmsr, dw

double precision suml11,sum12,element] 1
double precision element12

real xx(100),slp(100),dd(100)

integer i,j,q

character filename*18,fdt*60,fg11*60,fg12*60
common /blk2/a,b,h,v

common /blk3/c1,c2

common /blk4/npt

pi=3.14159

For GaAs: m=0.067, k=12.6

. All energies in meV, all distances in angstroms, all
. sheet densities in units of 1e10 per cm”"2.

cl =2*m/hbar"2 = 1.757e-5
c2 = e"2/epsilon0/kappa = 0.01436

Bohr radius a0 = 99.63 angstroms
Rydberg energy = ryd = 5.734 meV



cl=1.757e-5

c2=.01436

a0=99.63
c3=1e-6*(4*pi/3)*a0**3
c5=a0*c2/4.

ryd=5.734

beta=1.2218

¥ 0 O

PRINT *,'Filename to store extraneous program output:'
READ *,filename
fdt = 'header’
open (unit=9,file=fdt)
print *,'well width (A) ='
read *,w
write (9,151) w
151 format ("* well width (A)=",15.1)

print *,'barrier width (A) ='

read *,wb

write (9,152) wb

152 format ("* barrier width (A)=",£5.1)

print * 'barrier height (meV) ='

read *,vdiscl

write (9,153) vdiscl
153 format ("* barrier height (meV)=",15.1)

print *'cladding barrier height (meV)='

read *,vdisc2

write (9,154) vdisc2
154 format ("* cladding barrier height (meV)=",5.1)
print *,'Inclusion of LDA exchange/correlation (0 or 1) ='
read *,xc
write (9,155) xc

155 format ("* LDA exchange/correlation [ 1=on, 0=off] ',{2.0)

print *,'right side donor density ndr ='
read *,ndr
write (9,156) ndr
156 format ("* right side donor density (10"10) =",£5.2)
print *'left side donor density ndl='
read *,ndl
print *'Interlayer bias voltage (mV) ='
read *,vIr
write (9,157) vir
157 format('* interlayer bias voltage (mV)=',16.3)
print *,'Convergence diagnostics? (0 or 1)'
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*
*

read * ndiag
write (9,160)
write (9,160)

*160 format ("*')

*

write (9,161)

*161 format ("*',1x,'ndl',6x,'nsl',6X,nsr")

o 00

o o

©o oo

o000 00

nerr=0
nsr=ndr
nsl=ndl

nmean=0.5*(ndr+ndl)
delns=(ndr-ndl)/2
dd(1)=delns

ndelns=1

. nw is the quantum well index, nw=1 is the left well, nw=2 the
. right.

do 466 nw=1,2
psiprime0=1.

. Donor and 2D areal charge concentrations, units of 10"10cm-2

nsl=nmean-delns
nsr=nmean+delns

. The effective donor density seen by either well includes both
. the actual donor density on that side plus the density of the

. donors on the other side compensated by the other layer of

. electrons. This second component is due to the penetration
. effect itself.

nd=ndl-(ndr-nsr)
ns=nsl

if (nw .eq. 2) then
nd=ndr-(ndl-nsl)
ns=nsr

endif

Square well appx. for ground state:

esqw=pi*pi/cl/w/w

o

Triangular Well Appx. for ground state:
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o o0

o

wo o oo

etrw=5.1%(0.5*ns)**.6666

e00=esqw

if (etrw .It. esqw) then
e00=etrw

endif

es=e00

de=0.2*es

tol=1e-6

1dm=2
zmax=w+wb

a=0.

b=zmax

h=1.
nb=INT((b-a)/h)+1

.. make nb odd

if (2*int(nb/2) .1t. nb) go to 3
nb=nb+1

.. potential.

do 5 j=1,nb
vbs=0
x(j)=a+(-1)*h
xmx=x(j)
if (x(j) .gt. w) then
vbs=vdisc1
XMX=W
if (x(j-1) .le. w) then
jw=j-1
endif
endif
vi(j)=c2*nd*x(j)/2+vbs

vs(j)=c2*ns*(1.-x(j)/w)*xmx/2

v()=vi()+vs(j)
nct=0
nsub=0
nnode=0

e=es

iter=1

.. Decay const. in outer barrier

.. Initialize distance, self-consistent potential and fixed charge
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C

10 alpha=sqrt(c1*(vdisc2-¢))

C..

15

20

22

o000

psiO=psiprime0/alpha
ynt(1)=psi0
ynt(2)=psiprime0
call KUTTA(FUNC,a,h,b,nb,ynt,y,e)
nchs=0
do 15 j=2,nb-1
if (SIGN(1.,y(1,))) .ne. SIGN(1.,y(1,j+1))) then
nchs=nchs+1
jnode=j
xnode=x(j)
endif
continue
if (nchs .eq. nnode+1 .and. de .gt. 0.0) then
de=-de/3.
endif
if (nchs .eq. nnode .and. de .It. 0.) then
de=-de/3.
endif
if (abs(de) .It. e*tol .and. nchs .eq. nnode+1) goto 20
e=e+de
iter=iter+1
if (iter .ge. 100 .and. nsub .eq. 0) then
print *,'ground state non-convergent'
nerr=1
goto 1010
endif
if (iter .ge. 100 .and. nsub .eq. 1) then
print *,'second subband non-convergent'
nerr=1
goto 1010
endif
goto 10
do 22 j=1,nb
psi)=y(14)
if (j .ge. jnode) then
psi(j)=0.
endif
psisq(j)=psi(j)*psi(j)

.. Calculate norm of wavefunction, including barrier contrib.
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570 call inteq(nb,h,psisq,qint)
delnorm=psi0*psi0/2/alpha
psinorm=sqrt(qint+delnorm)
delpct=delnorm/psinorm/psinorm

C..

c.. Normalize psi and psisq arrays

C..
do 101 j=I,nb
psi(j)=psi(j)/psinorm
psisq(j)=psi(j)*psi(j)

101 zpsisq(j)=x()*psisq(j)

C..

c.. Get <z> for wavefunction, incl. barrier contrib.

C..
zavb=-(psi0/2/alpha/psinorm)**2
call inteq(nb,h,zpsisq,zav)
zav=zav+zavb

.. Calculate self-consistent potential

evaluate at odd-numbered point 5 thru npt, then interpolate
even-numbered point.

— 0 0 0 06 06 0

08 do 110 j=5,nb,2
call inteq(j,h,zpsisq,qa)
ga=ga+tzavb
call inteq(j,h,psisq,qb)
gb=gb+delpct
110  vs(j)=ns*c2*((qa-x(j)*qb)+x(j)/2.)
vs(1)=0.
vs(3)=0.5*vs(5)
do 120 j=2,nb-1,2
120 vs(j)=(vs(-1)tvs(j+1))/2.

C.
C..
c.. Calculate exchange-correlation energy
C..

do 122 j=1,nb

vxc(j)=0.

if (psisq(j) .eq. 0.) goto 122
rs=c3*ns*psisq(j)
rs=rs**.333333
rs=1/rs
rsx=rs/21
c.. ax turns on or off correlation energy
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ax=1.
vxc(j)=-ryd*beta*(1+.7734*ax*rsx*log(1+1/rsx))/rs

122 continue
C..

C

1001 nct=nct+1

o

o

if (nct .gt. 30) then
nerr=1
goto 1010
endif
etol=abs(e-es)/e
if (etol .gt. .0001 .or. nct .It. 8) go to 500

. Done with ground state

e0=e-v(jw)
zav0=zav

. Get second moment, including barrier term

do 1080 j=1,nb

1080 zzpsisq(j)=x(j)*zpsisq(j)

call inteq(nb,h,zzpsisq,zzav)
zzavb=(psi0/2/alpha/psinorm)**2/alpha
zzav=zzav+zzavb
zrms=sqrt(zzav-zav0*zavO0)

C..

c.. Find potential at middle of barrier, interpolate if necessary.

C

63 xmidpt=a+w+wb/2.

=1

986 if (x(j) .eq. xmidpt) then

oo 00

vmid=v(j)
goto 987

endif

if (x(j) .gt. xmidpt) then
vmid=(v(j)+v(j-1))/2.
goto 987

endif

=t

goto 986

. evb is the energy of the conduction band

. edge at the center of the barrier relative to the band edge
. at the far interface of the well.
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. efl and efr are the left and right fermi levels relative to the
. band edge at the center of the barrier.

. €0l and eOr are the subband energies relative to this same
. point.

00 0000000

87 evb=vmid+vdiscl-v(jw)

efermi=ns*c5

if (nw .eq. 1) then
mufl=evb-e0-efermi
eOl=evb-e0

endif

if (nw .eq. 2) then
mufr=evb-e0-efermi
eOr=evb-e0

endif

if (nw .eq. 1) then

psisql=psisq

zavl=zav
zrmsl=zrms
endif
if (nw .eq. 2) then
psisqr=psisq
zavr=zav
Zrmsr=zrms
endif
C..
C..
goto 466
C..
c.. Make new potential
C..
500 ff=0.3
do 1005 j=1,nb
vold=v(j)

vnew=vi(j)+vs(j)+vxc(j)*xc
1005 v(j)=vold+ff*(vnew-vold)

C..
C..
de=0.5*(es-¢)
es=e
goto 7

466 continue
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.. Now [ want to calculate the form factors gl 1(q) and g12(q) from the
.. psisq for each well. I am doing the double integration by creating a
.. matrix representing the integrand and then summing all the elements.

o o0 6 o060

dw=w+wb+w
print *,'dw =',dw
print *,'nb =',nb
do 600 q=0,1999
suml 1=0
sum12=0
do 630 i=1,nb
do 660 j=1,nb
element12 = psisql(j)*psisqr(i)*exp(-q*0.00005*abs(i+j-dw-2))
sum12 = sum12 + element12
element11 = psisql(j)*psisql(i)*exp(-q*0.00005*abs(i-)))
suml1l =sumll + elementl1

660continue

630continue
gll(gtl)=sumll
g12(q+1)=suml2

600continue

.. Once here both wells have been calculated for a specific pair
.. of densities nsl and nsr

o o o0

efermir=c5*nsr
efermil=c5*nsl
xxtol=.001*(efermil+efermir)/2
deltamu=mufl-mufr
deltac0=e0l-eOr
densdif=nsl-nsr
xx(ndelns)=deltamu-vlr
if (ndiag .ne. 1) goto 469
print *,'Iteration ',ndelns
print *," nsl',nsl,' nsr=',nsr
print *,' Delta mu=',deltamu
print *,' Delta EO =',deltae0
print *,' Delta N=',densdif
print * 'efermi-1=',efermil,’ efermi-r=',efermir
print *,'"
469 if (abs(xx(ndelns)) .It. xxtol) goto 1010



if (ndelns .eq. 1) goto 489
slp(ndelns)=(xx(ndelns)-xx(ndelns-1))/(dd(ndelns)-dd(ndelns-1))
477 dd(ndelns+1)=dd(ndelns)-xx(ndelns)/slp(ndelns)
delns=dd(ndelns+1)
ndelns=ndelns+1
goto 9
489 slp(1)=-c2*w
goto 477
1010 if (nerr .eq. 1) goto 1020
print *,'Interlayer bias (mV)=",vIr
print *,'ndl=",ndl,' ndr='",ndr
print *,'nsl=",nsl,' nsr='",nsr
print *,'Subband mismatch=",deltae0
print *,'Density difference=',densdif
print *, 'zavl =, zavl, 'zavr =',zavr
print *, 'zrmsl =',zrmsl,'zrmsr =', zrmsr
* write(9,1015) ndl,nsl,nsr
*1015 format(f7.4,2x,f7.4,2x,17.4)
* write(9,901) zavl

*901 format ('zavl =',£10.4)

* write(9,902) zavr

*902 format ('zavr =',f10.4)
* write(9,903) zrmsl

*903 format ('zrmsl =',£10.4)
* write(9,904) zrmsr

*904 format ('zrmsr =',f10.4)

c.. This prints the data to file. Since the psisq data is (usually) longer

c.. than the g11 and g2 data (with it's standard 201 points, for a delta

c.. q of 1076 1/m”"2 between points), I need to first print all five arrays;
c.. then later print just three.
C
*
*

do 800 j=1,2000
write(9,810) j-1,psisql(j),psisqr(j),g11(),g12(j)
*810 format(16,2E13.4,2E13.4)
*800 continue
c.. this makes special files of the form factors that can be read into
. one of the dqand_4Dsplitgg programs. There is a single default name
. so if you want to save these, you need to change the filenames after
. running this program.

oo 00

fgll ="gll'
fg12="gl2'
open (unit=11,file=fgl1)
open (unit=12,file=fg12)
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write (11,830) (g11(i),i=1,2000)
write (12,830) (g12(i),i=1,2000)
830format (2000(E12.6))

1020 end

©C 000

subroutine KUTTA(FUNC,a,h,b,nb,ynt,y,e)
EXTERNAL FUNC
real ysv(2),1(2),w(4,2),ynt(2),y(2,500)
1idm=2
eps=1.e-6
x=a
hh=h/2
n=1
do 30 i=1,idm
ysv(i)=ynt(i)
30 y(i,1)=ynt(1)
40 xsv=x
do 90 1=1,4
call FUNC(ysv,x,f,e)
do 50 i=1,idm
50  w(Li)=h*{(i)
go to (60,60,80,90), 1
60 x=xsv+hh
do 65 i=1,idm
65 ysv(i)=y(i,n)+w(l,1)*0.5
go to 90
80 x=xsv+h
do 85 i=1,idm
85 ysv(i)=y(i,n)+w(L1)
90 continue
np=n+1
do 95 i=1,idm

y(i,np)=y(i,n)+H(w(1,1)+2.*(wW(2,1)+w(3,1))+w(4,1))/6.

if (abs(y(i,np)) .gt. 1.e6) then
y(i,np)=y(i,n)
endif
95 continue
n=np
if (n .ge. nb .or. x .gt. b-eps) go to 100
do 98 i=1,idm
98  ysv(i)=y(i,np)
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go to 40

100 return

e o0

0000

end

subroutine FUNC(ysv.x,f,e)

. distances in angstroms
. energies in meV

real e,ysv(2),f(2),n,v(1000)
common /blk2/a,b,h,v
common /blk3/c1,c2
n=(x-a)/h+1

Jj=int(n)

vpot=v(j)

if (abs(n-j) .1t. 0.1) go to 50
vpot=(v(j)+v(j+1))/2.

50 f(1)=ysv(2)

20

25

f(2)=c1*(vpot-e)*ysv(1)
return
end

subroutine inteq(n,h,y,qint)
common /blk4/npt
real y(npt)
nint=n-1
nn=nint/2
qint=0.
suma=0.
sumb=0.
do 20 j=1,nn
15=2%j
suma=suma-+y(jj)
do 25 j=1,nn-1
Ji=2%j-1
sumb=sumb+y(jj)
qint=h*(y(1)+y(n)+4*suma+2*sumb)/3
return
end
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Program #4: HoleDragforCosineWells

¥ OXk K X K K X X X ¥ ¥ * *

*

PROGRAM HoleDragforCosineWells.f

Integrates 4D boltzmann formulation for the drag, as given in

a paper by Jauho & Smith PRB 47,4420, assuming the electron/hole
wavefunction is a cosine (as is used in the paper).

This program will output either CD vs. T, or CD vs. delta(n)/<n>
for a given <n> (density per layer), d (center-to-center layer
separation), w (well width), and in T (temperature).

This program calculates the drag for any effective mass.
And kappa is set to 12.8.

INTEGER MAXFCN,N,LJ.dragtype,loop

real timel,time2

character filename*25,fdt1*56,fdt2*23,temp*3,header*80,stime*8
character precisionvariable*12, dragtypename*21

double precision A(4),B(4),RESULT,F,ERREST1,ERRABS,ERRREL,RESULTI1
double precision L,ERREST2,deltat,tend,n1r,n2r kf1,kf2 kfmax
double precision nave,deltanend,errnumber,deltan,dr,wr,pi

double precision tfl,tf2,tfmax,mas,L.raw

double precision nl,n2,w,d,t,mass

EXTERNAL F,DQAND

common nl,n2,w,d,t,mass

pi=3.1415927

N=4
MAXFCN = 2100000000
ERRABS=0.0

choose 'CD vs. T' or 'CD vs. delta n' option
PRINT *,"

10 PRINT *,'Enter the number "0" if you wish to calculate Drag vs. T;'

PRINT *,'or "1" if you wish to calculate Drag vs. delta(n)/<n>"'
PRINT *,"
READ *,dragtype

IF (dragtype == 0) THEN
dragtypename = 'Drag vs. T'

ELSE IF (dragtype == 1) THEN
dragtypename = 'Drag vs. delta(n)/<n>'
ELSE



PRINT *,"

PRINT *, '"You must choose either 0 or 1, please try again.'
PRINT *,"

GOTO 10

END IF

PRINT *,"
PRINT *, '"You have chosen:'
PRINT 44, dragtypename
44 FORMAT (A40)
PRINT *’mv

* getn,d,w,T etc. as needed, and automatically set errrel from these - allow
* the option of autochoose errrel or choose it manually. Then it's up to the user to

* understand how to choose them.

IF (dragtype == 0) THEN

ELSE

PRINT *,"

PRINT *,'Start temperature in K:'

PRINT *,"

READ *t

PRINT *,"

PRINT *,'Temperature steps in delta K:'

PRINT *,"

READ *,deltat

PRINT *,"

PRINT *,'End temperature in K:'

PRINT *,"

READ * tend

PRINT *,"

PRINT *,'Density in layer 1 (in units of 10*10 cm”-2):'
PRINT *,"

READ *nlr

PRINT *,"

PRINT *,'Density in layer 2 (in units of 10*10 cm”"-2):'
PRINT *,"

READ * n2r

PRINT *,"

PRINT *,'Average density per layer <n> (x10"°10 cm”"-2):'
PRINT *,"

READ * nave

PRINT *,"

PRINT *,'delta(n) per layer steps (in units of 1010 cm”-2):'
PRINT *,"

READ *,deltan
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PRINT *,"
PRINT *,'delta(n)/<n> max (e.g., 0.6):'
PRINT *,"
READ *,deltanend
PRINT *,"
PRINT *,'Temperature in K:'
PRINT *,"
READ *t
END IF

PRINT *,"

PRINT *,'center-to-center layer separation, d, (in Angstroms):
PRINT *,"

READ *,dr

PRINT *,"

PRINT *,'well width, w, (in Angstroms):'
PRINT *,"

READ *,wr

PRINT *,"

PRINT *'effective mass (in units of m_e):'
PRINT *,"

READ * mas

IF (dragtype == 0) THEN
ERRREL =0.02
ELSE
ERRREL = 0.01
ENDIF

* set parameters to their MKS units
d=dr*1D-10
w=wr*1D-10
mass = mas/0.067

IF (dragtype == 0) THEN
nl =nlr*1D14

n2 =n2r*1D14
ELSE

nl =nave*1D14

n2 =nave*1D14
ENDIF

* and determine k_fermi and T fermi for setting L:
kfl = sqrt(2*pi*nl)
kf2 = sqrt(2*pi*n2)
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kfmax = max(kf1,kf2)
tfl =4.15D-14*n1/mass
tf2 = 4.15D-14*n2/mass
tfmax = max(tf1,tf2)

* Now choose to have 'ERRREL' set automatically or by hand:

46

45

PRINT *,"

PRINT *,'If you wish to set the precision of the calcualtion'

PRINT *,'yourself, type in "man". Type in anything else and'

PRINT *,'the precision will be assigned automatically.'

PRINT *,"

READ *,precisionvariable

IF (precisionvariable == 'man') THEN
PRINT *,"
PRINT *,'For ', dragtypename, ' the error variable "ERRREL"'
PRINT 46,'is set to', ERRREL,". For higher precision (but'

FORMAT (A10,F6.2,A28)
PRINT *,'longer computation time) type in a SMALLER number.'
PRINT *, 'For less precision, but faster computation time'
PRINT *,'type in a LARGER number (but keep it < 1).'
PRINT *,'(to learn more about "ERRREL", see "DQAND"'
PRINT *,'in IMSL library). Enter error precision now:'
PRINT *,"
READ *,ERRREL

ELSE

ENDIF

PRINT *,"

FORMAT (A19,F8.3)

PRINT 45,'ERRREL is set to: ', ERRREL

PRINT *,"

* this calculates the number of times to run the do loop

IF (dragtype == 0) THEN

loop = nint((tend -t)/deltat)+1
ELSE

loop = nint((deltanend*nave)/(2*deltan))+1
ENDIF

* SET APPROPRIATE LIMITS (L) FOR THE TEMPERATURE

PRINT *,"

PRINT *,"Y ou must set the integration limit for this'
PRINT *,'program. Ideally one integrates over the k'
PRINT *,'momentum from 0 to infinity. As the computer'



PRINT *,'cannot integrate to infinity, you must pick'

PRINT *'a sufficiently large number so that all relevant'

PRINT *,'processes are included in the integration. You'

PRINT *,'will know when your number is large enough, when'
PRINT *,'increasing it no longer affects the outcome of'

PRINT *'the integration. Typical range: 0.5 to 5 (x 10”8 m”"-2).'
PRINT *,"

PRINT *,'Choose an integration limit (in units of 10"8 m”-2):'
PRINT *,"

READ *,Lraw

L =Lraw * 1DS

* get filename

PRINT *,"

PRINT *,'This program will put the results of the calculations'
PRINT *'in a subdirectory of your current folder. The'
PRINT *,'subdirectory will be called "output" (you may need to'
PRINT *,'create this yourself). You must choose a file name'
PRINT *,'"for each run of this program.'

PRINT *,"

PRINT *,'What filename do you wish to use?'

PRINT *,"

READ *,filename

fdt2 = 'output\'/filename

open(2,FILE=fdt2)

* write header information to file

33

38

34

36

37

WRITE (2,33),dragtypename

FORMAT (",A36)

WRITE (2,'(A20)") (")

WRITE (2,38) 'm* =')mas,"; kappa = 12.8; limit =',Lraw,'x 108 m"-2.'
FORMAT (A4,F7.3,A23,F6.2,A11)

WRITE (2,34) 'd =',dr,'A, w =",wr,'A. Cosine wavefunction.'
FORMAT (A3,F6.1,A8,F6.1,A25)

IF (dragtype == 0) THEN

WRITE (2,36) 'nl =',nlr,', n2 =",n2r,' x 10*10 cm”(-2)'
FORMAT (A4,F5.2,A6,F5.2,A16)

ELSE

WRITE (2,37) 'T =\t,'K. nl, n2 are in MKS units (m"-2).'
FORMAT (A3,F6.2,A35)

ENDIF

PRINT *,"
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CALL TIME(stime)
PRINT * 'start time: ',stime
PRINT *"
PRINT 47, 'd =',dr," Angstroms'
47 FORMAT (A4,F6.1,A10)
PRINT 47, 'w =',wr," Angstroms'
IF (dragtype == 0) THEN
PRINT 48, 'n1 =',nlr,' x 1010 cm”™-2'
PRINT 48, 'n2 =',n2r,' x 1010 cm”-2"
48 FORMAT (A5,F6.2,A14)
PRINT *; K", Ohms ''error ''elapsed seconds'
WRITE (2,'(A20)") (")
WRITE (2,'(A42)"),’K ~ Ohms error sec'
ELSE
PRINT 49, 'T ='t,'K'
49 FORMAT (A4,F6.2,A2)
PRINT 445,n1 n2','Ohms','error','seconds'
445 FORMAT (",A14,A14,A11,A15)
WRITE (2,'(A20)") (")
450 FORMAT (",A7,A10,A12,A16,A12,A7)
WRITE (2,450),'n1",'n2','ohms",'error','sec','deltan’
ENDIF

DO 7, I=1,loop
* This sets the integration limits, and calls the integration
* program (DQAND) from the IMSL library, and solves the integral
A =(/0.0D8,0.0D8,-L,0.0D8/)
B =(/L,L,0.0D8,L/)
CALL CPU_TIME(timel)
CALL DQAND(F,N,A,B,ERRABS,ERRREL,MAXFCN,RESULT,ERREST1)
RESULT1 =RESULT

A =(/0.0,0.0,0.0,0.0/)
B=(LLLL/)

CALL DQAND(F,N,A,B,ERRABS,ERRREL,MAXFCN,RESULT,ERREST?)
CALL CPU_TIME(time2)

IF (dragtype == 0) THEN
PRINT 100,t, RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2),time2-time1



100FORMAT (", F5.1,F11.4,E14.4F8.1)
WRITE (2, 20),t, RESULT+RESULT1,SQRT(ERREST1**2+ERREST2*%*2),
&time2-timel
20 FORMAT (F5.1,E15.4,E14.4,F9.1)
ELSE
PRINT 101,n1,n2,RESULT+RESULT1,SQRT(ERREST1**2+ERREST2**2),
&time2-timel
101FORMAT  (",2E9.2,F11.4,E14.4,F9.1)
WRITE (2, 21),n1,n2, RESULT+RESULT1,SQRT(ERREST1**2+ERREST2*%*2),
&time2-timel,(2*(nl1-n2)/(n1+n2))
21 FORMAT (E10.3,E10.3,E13.6,E14.4,F10.1,F8.5)
ENDIF

* increment the temperature or the delta n
IF (dragtype == 0) THEN
t =t + deltat
ELSE
nl =nl + deltan*1D14
n2 =n2 - deltan*1D14
ENDIF

7CONTINUE

END

double precision FUNCTION F(N,X)
integer N

double precision X(N),qtf,kb,tf1,tf2.k
double precision a,kappa,Const,pi,m,Const2
double precision nl,n2,w,d,t,mass

common nl,n2,w,d,t,mass

tfl =4.15D-14*n1/mass
tf2 = 4.15D-14*n2/mass
kappa =12.8
qtf = 1.977D8*mass
pi=3.1415927
m = (1/(4*pi*pi)-1/3.0+1/(pi*pi))
kb=1.381D-23

* ais m* e"2/pi"2 kb h_bar qtf*4 (4 pi epsilon)"2
a=>5.76361D-27/(mass)**3

* kis (h_bar)"2/2 m*
k =9.1187D-38/mass
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Const = a / (kappa*kappa*nl*n2*t)
Const2 = qtf*qtf*Const

* Here is the integrand (X{} = kly,k1'x,k1'y,k2perp):
IF (sqrt(X(2)**2+(X(3)-X(1))**2) .GE. 0.0) THEN

F= Const*X(1)*(sqrt(X(2)**2-+(X(3)-X(1))**2))**3*(EXP((k*(X(1)**2)
&-kb*tf1)/(kb*t))+1)**(-1)*(1-(EXP((k*(X(2)**2+X(3)**2)-kb*tfl)
&/(kb*))+1)**(- 1) *(EXP((k*(X(4)**2HX(2)**2+(X(3)-X(1))**2)
S/AH((X(1)**2-X(2)**2-X(3)**2)**2/(4*(X(2)**2HX(3)-X(1))**2))
&-(X(1)**2-X(2)**2-X(3)**2)/2))-kb*tf2)/(kb*t))+1)**
&(-1)*(1-(EXP((k*(X(4)**2HX(2)**2-+H(X(3)-X(1))**2)/4+X(1)**2
&-X(2)**2-X(3)**2)/2-+H(X(1)**2-X(2)**2-X(3)**2)**2/(4*(X (2)**2
&H(X(3)-X(1))**2)))-kb*tf2)/(kb*t))+1)**(-1))*(EXP
&(sqrt(X(2)**2+(X(3)-X(1))**2)*d)*(sinh(sqrt(X(2)
&**2H(X(3)-X(1))**2)*w/2))**(-2)*(8*pi*pi/(sqrt(X(2)**2-+(X(3)-X(1))
&FF2EWH(A*pi*piH(X(2)**2+H(X(3)-X(1))**2)*W*W)))**(-2)
&*((2/(sqri(X(2)**2-+X(3)-
&X(1))**2)*w)-EXP(-sqrt(X(2)**2+(X(3)-X(1))**2)*w/2)*
&sinh(sqrt(X(2)**2+(X(3)-X(1))**2)*w/2)*(8*pi*pi/
&(sqrt(X(2)**2-+HX(3)-X(1))**2)*w*(4*pi*pi-H(X(2)**2+(X(3)-X(1))**2)
&FWHW))VFF2-+sqrt(X(2)**2-+H(X(3)-X(1))**2)*w/(4*pi*pi+
&(X(2)**2HX3)-X(1)**2)*w*w))+sqrt(X(2)**2+(X(3)-X(1))**2)
&/qt)**2-EXP(-d*sqrt(X(2)**2-+X(3)-X(1))**2))*(sinh(sqrt(X(2)
&**2+(X(3)-X(1))**2)*w/2))**2*(8*pi*pi/(sqrt(X(2)**2+(X(3)-X(1))
EH2FwWH(4*pi*pit(X(2)**2H(X(3)-X(1))**2)*w*w)))**2)**(-2)

ELSE

F= Const2*X(1)*(sqrt(X(2)**2+(X(3)-X(1))**2))*(EXP((k*(X(1)**2)
&-kb*tf1)/(kb*t))+1)**(-1)*(1-(EXP((k*(X(2)**2+X(3)**2)-kb*tfl)
&/(Kb*))+1)**(-1)*(EXP((k*(X(4)**2+(X(2)**2+(X(3)-X(1))**2)
&/AH((X(1)¥*2-X(2)**2-X(3)**2)**2/(4*(X(2)**2+(X(3)-X(1))**2))
&-(X(1)**2-X(2)**2-X(3)**2)/2))-kb*tf2)/(kb*t))+1)**
&(-1)*(1-(EXP((k*(X(4)**2+(X(2)**2-+H(X(3)-X(1))**2)/4+(X(1)**2
&-X(2)**2-X(3)¥*2)/2-H(X(1)*¥*2-X(2)**2-X(3)**2)**2/(4*(X(2)**2
&H(X(3)-X(1))*¥*2)))-kb*t£2)/(kb*t))+1)**(-1))*(2*d*qtf+2*w*qtf*m
&*(1+sqrt(X(2)**2-+H(X(3)-X(1))**2)*d+sqrt(X(2)**2+(X(3)-X(1))**2)
&/qth)+2-+2*sqrt(X(2)**2+(X(3)-X(1))**2)*d+sqrt(X(2)**2-+(X(3)-X(1)
&)**2)/qtfrsqrt(X(2)**2+(X(3)-X(1))**2)*qtfw*w*m*m)**(-2)

ENDIF

RETURN
END



