HARDWARE SUPPORT FOR ADVANCED
DATA MANAGEMENT SYSTEMS

Thesis by
Philip M. Neches

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

~Pasadena, California

1983

(Submitted 4 May 1983)

- ii -

Copyright 1983
Philip M. Neches

All Rights Reserved

- iii -

ACKNOWLEDGEMENTS

This work owes its existence to the advice and support of
many people. David W. Morrisroe encouraged me to begin the work
at a propitious time. Professor Ivan E. Sutherland created the
department which provided the stimulating intellectual

environment in which the work was done.

The Computer Science Department provided financial support
through a variety of teaching assignments. My parents, Bernard
and Vivian Neches, also provided timely financial support which

permitted the work to be finished.

This work resulted from the 1intellectual and personal
guidance of two great thinkers and teachers: Professor Carver A.
Mead and Professor Frederick B. Thompson. In particular, I must
acknowledge my debt to Professor Thompson who in his years as my
advisor instilled in me the courage to encounter and overcome the

challenge of research and discovery.

Finally, I must acknowledge the encouragement, support, and-
devotion of my wife, Teresa T. Young, without which this wor

would not have been started, much less completed.

- iv =

ABSTRACT

This thesis considers the problem of the optimal hardware
architecture for advanced data management systems, of which the
REL system can be considered a prototype. Exploration of the
space of architectures requires a new technique which applies
widely varying work loads, performance constraints, and heuristic
configuration rules with an analytic queueing network model to
develop <cost functions which cover a representative range of
organizational requirements. The model computes cost functions,
which are the ultimate basis for comparison of architectures,
from a technology forecast. The discussion shows the application
of the modeling technique to thirty trial architectures which
reflect the major classifications of data base machine
architectures and memory technologies. The results suggest
practical design considerations for advanced data management

systems.

CONTENTS

Chapter Page
CHAPTER 1 STATEMENT OF THE PROBLEM 1
1.1 BACKGROUND 1
1.2 THIS INVESTIGATION 11
CHAPTER 2 THE MODEL 16
2.1 INTRODUCTION 16
2.1.1 Overview 16
2.1.2 Modeling Technique 18
2.1.3 Implementation 23
2.2 THE CONFIGURATION MODEL 26
2.2.1 The Hardware View 28
2.2.2 System Analyst View 37
2.2.3 User Organization View 39
2.2.4 Detail Output 40
2.3 ARCHITECTURE STUDIES 43
2.3.1 Parameters 43
2.3.2 The Driver Routine 45
2.3.3 Growing a Configuration 47
CHAPTER 3 THE COST MODEL 51
3.1 OVERVIEW 51
3.2 INTEGRATED CIRCUIT COST MODEL 53
3.2.1 Chip Cost 53
3.2.2 Packaging Cost 60
3.2.3 Power : 62
3.3 NON-ELECTRONIC COMPONENTS 63
3.4 SUBSYSTEMS 66
CHAPTER 4 TRIAL ARCHITECTURES 74
4.1 INTRODUCTION 74
4.1.1 Architectures Considered 74
4.1.2 Assumed Load 82
4.1.3 Default Parameters 88
4.2 PAGING ARCHITECTURES 90
4.2.1 Disk 90
4.2.2 Magnetic Bubble Memory 97
4.2.3 CCD Memory 100

- vi -

4.2.4 Electron Beam Accessed Memory 102
4.3 SERIAL ASSOCIATIVE ARCHITECTURES 105
4.3.1 Logic-Per-Head Disk 105
4.3.2 Bubble and CCD Logic-Per-Track 112
4.4 DISTRIBUTIVE FUNCTION ARCHITECTURES 117
4.5 ONE-LEVEL STORE ARCHITECTURES 128
4.5.1 RAM 128
4.5.2 EBAM 131
CHAPTER 5 DISCUSSION OF THE RESULTS 133
5.1 INTRODUCTION 133
5.2 PARSING IS NOT THE PROBLEM 134
5.3 USER SHARING ALTERNATIVES 139
5.4 MEMORY TECHNOLOGY 143
5.5 ARCHIECTURES WITH DISK 149
5.6 IMPLICATIONS OF DISTRIBUTED FUNCTION 155
5.7 DIRECTIONS FOR FUTURE RESEARCH 159
CHAPTER 6 REFERENCES AND BIBLIOGRAPHY 162
APPENDIXES
Appendix Page
APPENDIX A EXAMPLE OF THE MODEL 173
APPENDIX B DETAIL OUTPUT SAMPLE 208

APPENDIX C COST SUMMARIES OF THE CASES 214

- vii -

ILLUSTRATIONS

Figure Page
1-1 Moore's Law : 3
1-2 Trends in Data Management Systems 5
1-3 High- vs. Low- Level Languages 10
2-1 The Configuration Model 27
2-2 Hierarchy of Levels of Abstraction 29
2-3 Basic Node Structure 31
2-4 Dispatching Disciplines 34
2-5 Architect's View , 45
3-1 Mature Chip Cost Extrapolation 55
3-2 Maturity Learning Curve Factor 57
3-3 Volume Learning Curve Factor 58
3-4 Overhead Factors for Support Chips ' 59
3-5 Disk Drive Capacity 65
3-6 Subsystem Cost Calculations 70
4-1 User Sharing Alternatives 81
4-2 Paging Architecture 90
4-3 Logic Per Track Architecture 108
4-4 Distributed Function Architecture 120
5-1 Relative Cost of Sharing Alternatives 141
5-2 Network Bandwidth Requirements 142
5-3 Memory Technology Cost Forecast 143
5-4 Page Transfer Time 145
5-5 Time to Transfer a Megabyte 146
5-6 Effect of Memory Technology 147
5-7 Logic Per Head vs. Distributed Function 153
5-8 Optimal Disk Architectures 155

CHAPTER 1 STATEMENT OF THE PROBLEM

1.1 BACKGROUND

The development of the computer in the twentieth century has
brought about a second "industrial revolution'" in the way mankind
conducts its everyday affairs. Just as the steam engine freed
man from back-breaking physical labor, the second industrial
revolution of the computer age promises to free man from mind-
dulling routine, freeing more human potential for «creative

thinking to advance both intellectual and economic activity.

The short history of the computer industry can be viewed as a
struggle to fulfill the promise of the second industrial
revolution by making the power of the computer accessible to an
ever-larger fraction of the population. In order for this to
happen, computer hardware has dramatically declined in cost while
increasing in speed. ' Supporting software has grown more complex
and more capable. At the same time, the languages by which

humans make their intentions known to the machine have improved.

Each of these developments can be classified into
"generations." The first generation of commercial computers is
usually thought of as the years 1955 to 1958, <characterized by

vacuum tube computers. Transistorized computers launched the

second generation, usually ascribed to the years 1959 to about
1966. With the third generation, integrated circuits became the

dominant means for implementing computers.

As shown by Figure 1-1, the complexity of state-of-the-art
integrated circuits has grown exponentially. (*#) This growth in
functionality on silicon drives the computer industry into a

contemplated fourth generation of computer hardware.

(*) The first industrial revolution provided perhaps two or three
orders of magnitude growth in the mechanical energy available to
human beings over a period of one hundred years. It is sobering
to contemplate the prospect of seven orders of magnitude growth
in just thirty years from the silicon revolution.

256M -
64M 4
164§
aM ¢
Mt
256K 1
64K 1
16K 1
4K 1
1K 1
256

64
16 1

Components
Per
Integrated
Circuit
Chip

Year

- e o e e G G wm B e B G O —
e oo omc aw er an GE e e P o ow Wn T oo gEm = G e o e

b om on oo on oe ao om

The hardware revolution provides not

existing computers

1970 1980 1990 2000

Figure 1-1. Moore's Law

Progress in Silicon Technology
(after [Noyce77])

only faster versions of

and memories, but also the prospect of new

kinds of devices and new fundamental problems in system design.
Sutherland and Mead eloquently argue this point [Sutherland77],
pointing out the rising relative cost of interconnection and
sheer magnitude of the design task as the critical challenges
facing hardware designers in the 1980's. At the same time,
however, the opportunity to depart from conventional computer

architecture lies inherent in the burgeoning technology.

As computer hardware has become more capable and 1less
expensive, the software supporting operation of the computer has
also grown apace. Figure 1-2 summarizes some of the historical
trends in operating software as they affect the problem of
management of data, which historically emerged early as the

primary use of computers.

Figure 1-2.

First Generation

Rudimentary i/o software,
"hand crafted" for each job.

Batch processing of sequential
files on cards or magnetic
tape.

Users given lengthy
print-outs.

Data only as recent as last
run (day, week, month) are
available.

Managers requesting a new
report often told they cannot
have it.

Once established, data base
structures almost impossible
to change; application

program depends on nature of
the physical storage device.

First introduced in mid-1950's;"

example: any COBOL job shop.

Trends in Data Management Systems

Second Generation

File storage software
with "access methods."

Mostly batch processing
with some on-line (disk)
files.

Users given "exception
reports."

Data valid as of when
the disk was loaded,
usually start-of-day.

Managers requesting a new
report must wait for a
program development cycle
of weeks to months.

Operating system requests

convert application program

requests to hardware

operations; some reformatting

is possible.

First introduced in late-1950's;
example; airline reservation

systems.

Figure 1-2 (continued).

Trends in Data Management Systems

Third Generation

Data Base Management Systems
(DBMS) software packages.

Transaction-oriented on-line

systems; both batch and realtime

applications; simple on-line
functions only.

Users given terminal inquiry
for only certain pre-programmed
functions.

Data maintained in real time;
periodic batch reorganization
needed to maintain integrity.

Request for a new report takes
days to months, depending on
how well request fits existing
data base structures.

Data base structures can be
changed without recompiling
applications programs; but
structure change takes weeks
to months to implement.

Date from mid-1960's; examples
include IMS, CODASYL, etc.

Fourth Generation

Advanced information
systems.

System is totally
interactive; almost all
requests are made on-line.

Users can search the data
base and generate unanticipated,
tailored reports.

Data maintained in real time.

Requests for new reports on
existing information answered
on the terminal with system
response time of seconds.

Data structures manipulated
interactively.

Evolution towards these systems
culminating in the late 1980's.

The decreasing price of hardware and increasing capability of

software combine to make

systems available to an

which provide increasingly facile ways

planning, managing,

computerized

increasing spectrum

and accounting

information management

of the population
to assist human beings in

for their activities. The

state of the art has progressed greatly since the first
generation of commercial computers. At present, systems can
usually respond interactively to pre-programmed functions.
Programs can be written under data base management systems
without impacting the file requirements of other programs in the
installation. Some capability exists for posing discretionary,
unanticipated queries on-line, provided however that the data
base 1is already properly organized to efficiently handle the

request.

However, while systems have become extremely capable of
managing rapid change in the contents of data bases, it is still
difficult to modify the structure of a data base because control
of data base structures resides in a central authority called the
""data base administrator," who has only fairly awkward tools with
which to manipulate the structure of the data base. In existing
data base management systems, structural changes often require
complete reorganization of the data base, thus retarding the
ability of the organization which owns the system to make

progress in its applications.

Structural change in a data base, however, cannot be avoided
in a dynamically growing and changing organization [Thompson68].
The inability of present systems to adequately cope with this

kind of change underlies the widely recognized problem of the

high cost of application software maintenance which plagues the

industry today [Share76].

Further, the lack of truly high-level languages hampers the
ability of the non-programmer to interact in more than just a
mechanistic way with a data base. While some systems bffer
'"query languages' which can 1in many cases express a complex
request in a few 1lines, the user of the system is forced to
program a majority of functions in a conventional algorithmic
language such as COBOL either for efficiency of use of resources
or because the full capabilities of the system are not available

through the query language.

The fourth generation of '"advanced data management'" systems
takes shape against the background of rapidly changing hardware
capability. What will characterize these advanced data
management systems? Such systems .will have a natural user
interface, the ability to define problem-domain specific
languages, and distribute the control of the data base to end-

users.

The term ''natural user interface'" means a very high level
language, which could approach natural language in
expressiveness, but only for a 1limited domain of discourse

[Thompson63]:

The typical professional works in a narrow, highly technical
context, a context in which many interlaced meanings have
developed in the course of his own work. The clues that can
be found in ordinary discourse are not sufficient to
distinguish that highly specific context from all possible
contexts. The idea that a single natural 1language
processing system that will ingest all of the world's
technical literature and then produce on demand the answer
to a specific request may be an appealing one. But, at this
time there are no useful insights [into] how context-
delimiting algorithms would operate to meet the requirements
of such a system. [Thompson75]
Within a limited domain, however, it will be possible to define
problem-oriented, non-procedural, very high level languages which
users can extend as required. A system of this sort will better
fit the known tendency of human beings to express new knowledge
and insight by moving from one recursive 1language to another

[Randal170].

Problem-oriented languages employ constructs which fit the
problem domain, as opposed to constructs which map onto the
primitive operations of either the hardware or the operating
system software. Under this definition, most contemporary
computer languages are not problem oriented. To illustrate this
distinction, consider a 1language for an inventory control
application. In a problem-oriented language, stock items would
be primitives of the 1language, whereas in a contemporary
programming language, '"stock item'" would be expressed as a field

in a record, for example.

- 10 -

Figure 1-3 amplifies on the notion of '"high level'" language
as used in this context. By this standard, most existing
programming languages are not high level, although some are quite

far removed from the binary bits which comprise the machine

program.

Figure 1-3. High- vs. Low- Level Languages
Attribute to Compare High Level Low Level
Length of the compiled code short long
in terms of semantic
primitives
Length of the execution path long - short -
to interpret one rule of (routine) (machine
grammar instr.)
Length of the statement the short long
user must make to accomplish (sentence) (program)

one unit of the user's work

The user must be able to extend the language. He should be
able to introduce new.vocabulary, and update both the intentional
and extentional structure of the language. Extentional structure
refers to data stored in the 1language version: the data
themselves and any explicit reiations among them. Intentional
structure refers to concepts defined in terms of other vocabulary
‘of the language (including intentional definitions) which in

effect define new algorithms.

- 11 -

With these systems, the end-user can interact directly with
the computer to satisfy most of his information needs. The role
of the professional programmer will change from that of a
necessary intervenor between the end-user and the computer system
to that of an implementor of problem-specific languages which can
solve the requirements of many end wusers. This role does not
require the programmer to intervene in the end-user's job, which
is currently a source of frustration not only to the end-user,
but also to the programmer and the installation as well.
[Share76] predicts that the evolution of the programmer into the
"mid-user" of advanced systems will finally provide a
satisfactory and professional environment to end-users,

programmers, and installation managers.

1.2 THIS INVESTIGATION

Advanced data management systems will take shape in an era of
great change in wunderlying hardware technology. The silicon
revolution will provide the raw power to make these systems not
only technologically possible, but also economically justifiable

to ever-broader classes of users.

- 12 -

Advancing hardware technology introduces many new choices for
the designers of these advanced data management systems. While
existing types of memories and processors continue to improve in
performance and decrease in cost, the silicon revolution brings
new trade-offs in the forms of changed cost of interconnect and
new types of devices. Many workers have proposed forming these

elements into novel architectures for '"data base machines."

What will the impact of these hardware developments be on the
design of computer systems to support advanced data management?
How will the new types of memory fit in, if at all? Do the
parallel and associative processing schemes widely discussed in
the 1literature offer an economic advantage as well as a
performance advantage? If the intelligence of such a machine is
to be distributed among many processing elements, how much

intelligence should each unit possess?

None of the design trade-off decisions which affect these
systems can be made in a vacuum: they strongly depend not only on
the cost and performance of the hardware subsystems, but also on
the pattern of use applied to them by the organization of people
which will own the system. This work explores the interaction of
the demands of a wuser organization and the architecture of an
advanced data management hardware solution to elucidate some of

these very high level design trade-offs.

- 13 -

The 1investigation considers the capabilities of the REL
prototype system, as developed by Professors Frederick and Bozena
Thompson and their students, as a fixed starting point which
defines the capabilities of the class of advanced data management
systems to be studied. The REL prototype exhibits many of the
characteristics of fourth-generation data management systems
discussed in the previous section: a natural user interface, (*)
the ability to support many problem-domain-specific 1languages,

(*#*) and distribution of control over data bases. (*#*x)

The task of studying interactions of user organization demand
on a variety of hardware architectures required a unique modeling
system. The model described in Chapter Two builds upon the
established technique of analytic queueing network modeling by
applying both performance goal constraints and heuristic
configuration grow procedures. The resulting model permits
facile description of an architecture as a collection of hardware
subsystems where the exact number and speed of each subsystem is

parameterized. The hardware architecture is modeled in terms of

(*) REL ENGLISH. See [Thompson78] for wuser's guide
documentation.

(**) For example, the REL Animated Film Language [Thompson 74c].

Extensions to the capability for defining new languages are
discussed by [Solovits73] and [Hess80].

(%#%%x) See [Yu80].

- 14 -

the highest level of system description, adapted from Bell and

Newell's PMS language.

The described architecture can be subjected to a range of
load conditions, simulating different sizes and kinds of user
organizations. The model will find configurations or instances
of the architecture which meet the performance constraints at
minimum cost by applying the heuristic grow procedures, and

report the cost of the resulting configuration.

Because the model deals in exact numbers and speeds of
hardware subsystems, the cost functions are calculated with
relatively good precision not only in the orders-of-magnitude,
but also in the coefficients. In previous work on advanced data
management architectures, costs have been treated only in terms
of orders-of-magnitude, with a few numeric examples for specific
operations. This work permits comparison of expected dollar
costs for these architectures in the context of organizations

which will be expected to buy these systems.

In order to develop the cost coefficients used by the model,
it was necessary to make a forecast of the costs of the various
hardware subsystems. This forecast drew heavily on the
technology forecasting literature for the semiconductor industry,

and is discussed in Chapter Three.

- 15 -

To explore some of the range of possibilities posed by the
hardware arena, thirty trial architectures incorporating a range
of new and existing types of hardware elements were modeled using
the tools described above. Chapter Four describes the
architectures and how each was modeled. In all of these cases,
an identical set of loads was imposed, representing ofganizations
ranging from 1 to 500 users with processing demands ranging from
trivial to tremendous. Chapter Five discusses the trade-offs

illuminated by this set of architecture case studies.

- 16 -

CHAPTER 2 THE MODEL

2.1 INTRODUCTION
2.1.1 Overview

How well can a given architecture satisfy the requirements of
a community of wusers? The answer to this question requires
information which spans several views of the requirements and
capabilities of a configuration of logic and memory elements.
The PMS-Level Queueing Network Model ('"the model" for short)
integrates these viewpoints in a coherent structure which
provides results which in turn permit comparison of architectures

in a meaningful way.

What are the relevant views of this problem arena?

At one extreme, consider the organization's view of the

system. In this realm, the system is thought of as supporting
various classes of users, each with a set of functions to
perform. These functions are called '"transactions'" in this work.’
The manager or operations researcher must quantify sqch things as
the respomnse time objectives of the system, the number of users

of each user type, rates of requests, etc., to characterize this

- 17 -

view to the model. The organization view gives the load of work

imposed on the system by its users.

At the other extreme, the hardware view of the system

considers the subsystems (memories, microprocessors, disks,
busses, etc.) which make up the physical <configuration of the
system. The hardware view 1is expressed in terms of the
performance of the subsystems: the instruction rate of a

processor or the access time of a disk, for example.

These views are reconciled by the system analyst's view. The

system analyst view decomposes the transactions into a set of
flows of activity. The flows are further decomposed until they
can be represented by steps. A step is the use of the resources
of oné of the hardware subsystems (nodes) in order to accomplish

part of the processing of a flow.

Finally, the model accounts for the architect's view of the

configuration. Here, the term architecture refers to a

configuration of hardware subsystems (microprocessors, disks,
bubble memories, busses,.etc.) together with the specification of
»the flows through the configuration. However, an architecture
does not include the number or size of these various subsystems
(e.g., the number of disks, the speed of the microprocessor, or

the size of a certain type of memory). The terms case and

- 18 -

configuration refer to a particular instance of an architecture

‘where the numbers and sizes of all of the subsystems are
specified. Thus an architecture can be considered to be a family

of cases.

The architect is concerned with describing the family; how
one specific configuration can grow to become another; what are
the 1limitations on such growth; what is the cost of a
configuration; and how does the architecture fit a particular

user organization, or a range of such organizations?

2.1.2 Modeling Technique

The model views the configuration as a queueing network. The
nodes of the network correspond to the hardware subsystems of the
configuration. Transactions are modeled as flows of activity
through the queueing network, stopping at specified nodes for
service. Each node is modeled by simple analytic formulae; times

for the flow at each node are accumulated by linear combination.

The theoretical validity of the analytic queueing network
technique follows from Jackson's Theorem [Jackson57], which holds
that in a queueing network of nodes with exponentially

distributed service times, even with feedback from one node to

- 19 -

another, the system behaves as if arrivals at each node were
Poisson distributed (although they are not, in general). If
p(k[1], k[2], e« , k[n]) denotes the probability of k[i]
customers (*) waiting at node i, then Jackson showed that
p(k[1], k[2], ... , k[n]) =

pl11(k[1]) * pl[2](k[2]) =* ... * pln](k[n]) where
pli](k[i]) 1is the solution for node i to the ordinary M/M/m
queueing problem (*) (the probability of k[i] customers waiting,
where there are m[i] servers, 1lambdali] arrival rate, and mulil
service rate (*%*)). Thus, Jackson's Theorem means that queues
at each node can be <calculated independently and combined

linearly.

(*) In queueing theory, the term "customer'" means any request

waiting for service at a node.

(*) Queueinﬁ theory wuses a short-hand notation of the form
1A

"a/b/cl/dl/e] form for describing the type of queueing
situation. The first items, "a" and "b" refer to the
distributions of request arrival times and service times
respectively. "M" stands for 'Markovian" or exponentially

distributed when used for these parameters.

"c" refers to the number of servers, and is either a number
(such as "1") or a variable (such as "m").

The last two fields of the notation are optional. "d," if
present, is the maximum number of requests which can be in the
queue. If absent, this field defaults to infinity.

"e," the final field, 1is the queueing discipline, which can
take on values such as FIFO (First In First Out), LCFS (Last Come
First Served), SJF (Shortest Job First), etc. If absent, FIFO
discipline without priorities is assumed.

(**) These terms are used with standard meanings in queueing
theory. See [Kleinrock75] or any general text on queueing theory
for precise definitions.

- 20 -

C. G. Moore introduced analytic queueing network models to
the computer systems analysis domain in his work on large-scale
timesharing systems [Moore71]. This author has successfully
applied queueing network models to analysis of a major
computer/communications network consisting of over 60 computers;
4,000 communications lines; and 14,000 terminals [Neches76].
Both studies reported agreement between model predictions and

measurements of actual performance of better than 10%.

Analytic queueing network models have several advantages over
discrete event simulation models for predicting the behavior of a
large and complex system. The analytic model is easier to write
and debug, and is also much more efficient of computer run time.
This permits its use in studies where many architectures must be

described, and a large number of cases run on each.

In addition, the analytic model lends itself to extrapolating
the behavior of a lérge number of similar resources from the
behavior of a single resource. Such extrapolation saves both
computer time and effort to describe the system to be modeled.
In discrete event models, it is usually necessary to represent
each resource to be modeled individually (at 1least at model

execution time).

- 21 -

The compactness of description, aggregation of similar
resources, and run-time efficiency of the analytic model made it
possible to deal with the range of configurations and number of
cases run against each configuration in this thesis. Discrete
event simulation was abandoned early in this reseach [Neches78]
primarily because each configuration would have required writing
a new simulation program and secondarily because of the amount of
computer time which would have been required to run a meaningful

set of cases.

The analytic queueing network technique is based on the
assumption that the nodes are independent, so that their response
times can be combined linearly. An equivalent statement is that
there exists infinite storage capacity in each node for incoming

requests.

Experience with analytic queueing network models shows that
the assumption of independence 1is wusually not a significant
source of error as long as no node in tﬁe network is close to
overload. In a network which 1includes one or more overloaded
nodes, the analytic model fails to account for the fact that
congestion spreads from the finite queue of the overloaded node
to its neighbors in the network. This spreading congestion adds
to the workload of the neighboring nodes, perhaps causing them in

turn to become overloaded. It is just this kind of dependent

- 22 -

behavior that accounts for the extremely long response time
delays encountered, for example, in a timesharing system
undergoing '"trashing" due to 1lack of a resource such as main
memory. The analytic model will, however, pinpoint the node

responsible for the situation [Gordon67].

Fortunately, the model as used in this research is guaranteed
to keep all nodes in a given configuration from becoming
overloaded, thus avoiding the problem of the accuracy of the
simulation technique just discussed. The architectural view
portion of the model does this by growing the capacity of any

hardware subsystems (nodes) which become response-time critical.

More sophisticated analytic queueing network models have been
devised which can handle non-exponential servers (*) [Muntz72al,
provided that the output of each node in the configuration can be
shown to be Poisson distributed [Muntz72b]. These models
unfortunately lead t§ very complex solutions; 1in practice the
computation time can be quite high, even with well optimized
algorithms [Muntz74]. Thus given the desire to run large numbers
of cases, the restriction to only exponential servers and the

resulting loss of generality did not seem too severe.

(*) Servers with constant, hyper-exponentially distributed, or
queue-length dependent service times are examples of non-
exponential servers.

2.1.3 Implementation

The model is implemented as a PL/I program running under the
MVS operating system on the IBM 3032 processor at Caltech.
Appendix A gives a full source listing of the model, as used to

run one of the architectures discussed in Chapter 4.

Each run of the model is accomplished by concatenation five
source files and then compiling, linking and executing the
-resultant PL/I program. 'The code for the model is contained in
three of the files: these three files were used to make every ‘run

discussed in this thesis.

The first file, PLIMOD4A, contains data structure
declarations and initialization code for this model. It appears
on pages A-2 through A-4 and is comprised of statements with line

numbers of the form 1XXXX.

The second file, PLIMOD4B, contains bridge <code and
declarations for the CONFIG routine. The CONFIG routine runs one
specific case, with all parameters instantiated, thus modeling
one instance of an architecture. The code from this file
appears on pages A-10 and A-11, comprising line numbers of the

form 3XXXX.

- 24 -

The third file, PLIMOD4C, contains the majority of the code
for the model. The routines in this file use the data structures
declared in the first file and the calls from the configuration
file to build an internal representation of the «case to be
modeled. Then the analytic queueing network model is applied by
the routines in procedure PERFORM_CALCULATIONS. The results are
then available to be queried from the architecture view file. A
report writer routine is included to provide a detailed output of
the results of a particular case. Code for this file appears on

pages A-16 through A-35, with line numbers of the form 5XXXX.

The fourth file is called a '"configuration'" file and defines
the architecture to be modeled. This file consists of three
sections: the hardware view (node declarations), system analyst
view (flow declarations) and user organization view (transaction
declarations). In general, a new configuration file was written
for each architecture studied. Howéver, some of the
architectures were 56 closely related that they used the same
_configuration file, relying on parameters to differentiate
between CCD and bubble memory characteristics, for example. Code
for this file appears on pages A-11 through A-15, with 1line

numbers of the form 4XXXX.

The fifth file 1is called a '"driver" file, and contains the

code which implements the architect's view. It describes which

- 25 -

nodes of the configuration are allowed to grow and how this
growth is to take place. A new driver file was written for each
architecture modeled. The driver file appears £from page A-5
through A-9 in the example, and 1is comprised of statements with

line number of the form 2XXXX.

The architecture view files and configuration files in effect
provide a programming language for describing the simulations to
be run. This language can be thought of as the capabilities of
the model augmented by the expressive power of PL/I. Embedding
specialized functions 1in a general purpose programming language
can result in specialized language without the effort of writing
a compiler. The construction of LAP on SIMULAG67 provides another

example of the use of this technique [Locanthi78].

An organization's view specified a load on an architecture.
In running a case, if the average Tresponse time to users in the
organization was above the specified minimum, the configuration
grew and a new case was run. On the IBM 3032 at Caltech, a
typical run of the model required 7 to 8 seconds of CPU time for
compilation and linking. The model then required between 15 and
50 milliseconds of CPU time per case. A typical run of a given

architecture required between 1,000 and 5,000 cases.

- 26 -

2.2 THE CONFIGURATION MODEL

The configuration model, or CONFIG procedure, is the heart
of the simulation program. The CONFIG procedure consists of the
configuration file supplied by the modeler and standard
declarations and routines included in the overall program
structure. Each time it is invoked, the CONFIG procedure defines
one specific instance of the architecture to be modeled by
instantiation of all hardware and user view parameters. The
analytic queueing network model 1is executed against this
configuration. Thus, the CONFIG procedure is the "inner loop" to

the architecture view.

The configuration file «consists of three sections,
corresponding to three of the abstract views of the system (see
Figure 2-1): Node definitions correspond to the hardware view;
Flow definitions correspond to the system analyst view; and

Transaction definitions correspond to the user organization view.

- 27 -

GANIZATI V1] HaRDWARE V1EW

FOR EACH TYPE OF USER: For EACH PMS (PrRoCESSORA

- NUMBER OF USERS OF THIS TYPE MEMORY=SWITCH) LEVEL

- TYPES OF REAUESTS COMPONENT :

- RELATIVE RATE OF EACH TYPE - NUMBER OF INTERNAL

OF REQUEST SERVING UNITS
- ABSOLUTE RATE OF REQUESTS - HOW THE UNITS ARE
SHARED BY USERS

- SERVICE RATE % TIME
 FOR EACH UNIT

TRANSACTION NODE
DESCRIPTIONS \ DESCRIPTIONS
SYSTEM ANALYST VIEwW
SEQUENCE OF EVENTS NEEDED s FLOW |
TO PROCESS PARTICULAR KINDS DESCRIPTIONS
OF ACTIVITIES
COMFIA
MODEL

Figure 2-1. The Configuration Model

- 28 -

Each section makes calls on model routines to transmit these
definitions to the data structures of the model. Because the
file is a part of a PL/I program, the full capabilities of that
language are available to the modeler to define parameters and do
calculations on them which make the parameters more meaningful.
It is also possible -- and quite wuseful -- to include modeler-
written PL/I procedures to further simplify and compact the

definition of an architecture.

2.2.1 The Hardware View

"Computer systems are one example of man's more complex
artificial systems'" [Bell71]. Figure 2-2, reproduced from Bell
and Newell's classic text, 1illustrates how people have been able
to cope with the complexity of computer systems by breaking the
process of designing and wunderstanding them down into several

"levels of abstraction."

Structures: Network/#, cemputer/C
Components: Processors//P, memories/ M,

swtches /S, controls /X, tronsducers /7,

data operators /0, links /L

Structure: Progroms, subprogroms

PMS level

-

€

gs C ents: Stote (y cells),
o= instructions, operators, controls,

& interpreter

Circuits: Arithmetic unit

Components: Registers, tronsfers,
controls, data operators (+, -, efc.)

sublevel

State
system
level

Circuits: Counters, controls, sequentiol
tronsducer, function generator,
register orroys

Components: Flip~flops—, reset-sat/
RS, JK, deloy/ O, toggie/ 7, Iatch,
delay, one shot

Circuits: Encoders, decoders, transfer 4 ‘:

arrays, data ops, selectors, '

distributors, iterative networks 1 Components:
1

H ' 1 | states, inputs,
Components: AND, OR, NOT, NAND,NOR | + | 1 | outputs

Circuits: Amplifiers, deloys, attenuators,
multivibrators, clocks, gates, differentiator

Active ponents: Relays, ym tubes,

transistors

Possive components: Resistor/ 2, capacitor/
C, inducter/L, diode, delay lines

Sequential

Logic design level

Switching circuits sublevel [Register-transfer,

Combinatorial

Circuit level

Figure 2-2. Hierarchy of Levels of Abstraction
in Computer Structures [Bell71].

A system can be modeled at any of these 1levels of

abstraction, depending on what information the designer seeks

from the model. Here, we are concerned with comparing the

behavior of entire classes of computer systems at a level which

would be visible to the end-user. (*) Only the highest level of

abstraction available for quantitative description will be useful

in this endeavor. Otherwise the model would be so expansive in

detail as to make the task of completing one configuration case

(*#) That is to say, in terms of response time and dollar cost to
meet a given load requirement.

- 30 -

study -- 1let alone an architecture study -- prohibitively time

consuming.

Bell and Newell propose a descriptive language for this top
level of abstraction called the "PMS" (Processor, Memory, Switch)
level, and apply their 1language to discussing many of the
significant computer architectures then extant. In this thesis,
the PMS 1level is the natural 1level to employ in description of

the architectures to be studied.

PMS, as presented by Bell and Newell, is not directly
suitable for wuse as a simulation input language. The two-
dimensional structure of PMS diagrams 1is hard to interpret
algorithmically. PMS descriptions can contain both quantitative
and qualitative terms. For modeling, the system description
language must be consistent, linear, and quantitative. These are

the goals of the node description mechanism of the model.

In the model, each PMS-level component is a node. ' Nodes do
not distinguish the function of the component: the same kind of
node is used to model processors, memories, busses, etc. The
node concept abstracts out of the PMS component only those

attributes which influence the service rate.

= 3] -

It proved useful to have a basic node for modeling with a
somewhat more complex structure than just a single queue and
serving element. Figure 2-3 shows the node structure, which is
similar to [Jackson57]. Each node consists of a number of
identical basic serving elements (''basic servers'), a queue, and
a dispatching rule for sending requests from the head of the

queue to basic servers.

pode

input output

n jdentical servers

dispatching rule

queue

Figure 2-3. Basic Node Structure
after [Kleinrock76], p. 215.
Two variables characterize the basic server. PAGESIZE gives
the size, typically in bytes, of the smallest distinguishable and

uninterruptable unit of work for the basic server. PAGESIZE can

- 32 -

be picked to reflect the nature of the hardware unit being
modeled. The other variable, PAGERATE, gives the throughput of

the basic server in PAGESIZE units per second.

For example, in modeling a disk drive, the seek element can
be modeled with a PAGESIZE of 1 (seek) and a PAGERATE of 33
(seeks per second). This is done because the seek operation is
normally uninterruptable. A processor is modeled with a PAGESIZE
of 1 (instruction) and a PAGERATE of so many million
(instructions per second).’ Another case might be a system bus,
such as the DEC UNIBUS, which would be modeled with a PAGESIZE of
2 (*) and a PAGERATE of 2.5 million. (**%)

A node in the model consists of one or more basic servers.
The raw capacity of the node is thus SERVERS times the capacity
of a basic server. With this capability, aggregates of similar
resources can be described easily. For example, a string of disk
drives can be modeled by a single node where the basic server has
the throughput characteristics of a single drive, and SERVERS

gives the number of drives in the string.

(*) because of the 16-bit wide data paths

(#*) the reciprocal of the bus's nominal 400 nanosecond cycle
time.

- 33 -

Nodes have a single entry point for requests and a single
exit point for responses. A request can be thought of as a token
(in the Petri net sense) which advances through the internal
queue until it is dispatched to a basic server. After spending
an appropriate amount of time in the server, the pebble exits the

node and enters the queue of the next node in its flow.

The dispatching rules describe how requests can move from the
queue to servers. Each dispatching rule corresponds to one of
the queueing systems describable by queueing theory: the model
can accommodate any type of queueing system for which a closed
form analytic solution exists for the mean and variance of

expected service time. (*)

For the cases presented in this thesis, only three simple
dispatching rules sufficed to describe all of the modeled
situations. Admittedly, more general queueing models could have
been used, but it is felt that the added sophistication was not
justified in- light of the wuncertainties in the assumptions for
node service times in many of the cases. Figure 2-4 shows the
three dispatching rules implemented by the CALCULATE_QUEUEING

procedure (listed on page A-25).

(*) Section 2.1.2 discusses other restrictions

- 34 -

%7
T E—0
\E_‘)
_

(a) QUEUETYPE=1: Parallel serves, M/M/1 queue.

’ll]———"o

| 1—0O
M —o

11 —Q

(b) QUEUETYPE=2: M/M/1 queue per server.

RENEENY

~

O
O
@)

(c) QUEUETYPE=3: M/M/n queueing system.

Figure 2-4. Dispatching Disciplines

- 35 -

QUEUETYPE=1 nodes have a single M/M/1 queue, but the request

is dispatched to all servers simultaneously. Each server handles

1/Nth of the request (rounded up to the nearest PAGESIZE unit).
This rule easily models interleaved memory organizations and
proved extremely useful 1in compactly describing a variety of

parallel processing structures for data base processors.

QUEUETYPE = 2 nodes have an array of individual M/M/1 queues,
one per basic server. Requests enter one of the queues and
proceed all of the way through the queue to its server, analogous
to the checkout lines at a supermarket. Requests enter the queue
for each server with -equal probability. This dispatching
discipline would be used, for example, to model a string of disk
drives, where a request to access a particular record can be
served only by the disk drive which holds that record and thus
must service the request to completion. - Other drives in the
string may be used concurrently to handle requests for other

users, however.

QUEUETYPE=3 nodes have a single M/M/n queue feeding all n

servers. As with the preceding node type, once a Trequest is

dispatched to a basic server, that server processes it to
completion. In this case, since a request can be handled by any
server, so it goes to the first free server. This queueing

discipline prevails in most banking institutions today. This

mode models systems such as shared memory multiprocessors.

- 36 -

A node can be shared by a number of wusers with similar
characteristics. The model multiplies the imposed load by USERS
to arrive at the actual load of a node. Each node.in a model can
be given a different number of users to indicate the degree to
which it is shared. For example, the terminal microprocessor in
a desktop system would have USERS=1, because it is dedicated to
one user. A cluster controller might have USERS=6, where an
archival memory in the same configuration might have USERS=100.
All of these nodes can coexist in the same run, and the correct

queueing effects will be calculated for each.

In this manner, the analytic nature of the model makes it
easier to describe a very 1large configuration which serves
perhaps hundreds of users. Resources which are replicated, such
as terminals, can be modeled by description of a single
representative such resource. By manipulating the USERS
parameter, the modeler can easily account for the aggregation of

load from many such similar resources.

An example of a small set of node definitions occurs on page
A-11. In this example, it is worth noting that calculations are
performed on some of the parameters to obtain such items as
PAGERATE. This permits the modeler to deal with parameters which
are more meaningful: for example, SHIFTRATE 1is a natural

description of bubble and CCD memories. The modeler specifies

- 37 -

the transformations on the parameters wusing the programming

concepts of PL/I.

2.2.2 System Analyst View

The system analyst view connects the hardware nodes as just
discussed with the wuser (transaction) view (next section).
Presumably, the analyst would perform the analysis from user
requirements towards the hardware description in a top-down
manner by progressive refinement of transactions into flows, and
flows into either constituent £flows or steps. However, for
convenience of execution, the description occurs in bottom-up
order. Bottom-up order of execution permits the program to check

for steps that use non-existent nodes and transactions that rely

on non-existent flows.

The system analyst £first can define PL/I procedures for
producing fragments of flow routines. These PL/I procedures can
be much more general and perform more interesting calculations
than the transaction-flow-step formalism of the model, and thus
reduce the effort of description. These procedures, when
executed, produce calls to procedure NEWSTEP; other calculations

can also be performed as side effects.

- 38 -

The analyst then defines the flows. A flow 1is a set of
steps, where each step represents the use of one of the hardware
resources of the system (NODE) to process a certain unit of work
(SIZE) repeated a certain number of TIMES. (*) Flows are used to
represent basic system tasks which are common to one or more
transactions, such as parsing an input sentence or computing a

projection operator.

Flows differ from general PL/I procedures in that the model
automatically aggregates Tesponse times for flows. Flow times
can provide the modeler with some insight as to where resources
are consumed and delays generated. Extrapolations of system

response times can often be made by careful study of flow time

reports. -

The set of flow routines usually constitutes the largest
portion of the configuration file. Fortunately, given a set
hardware view and user organization view, the flow routines are
usually straightforward to write. For an example of a set of
flow routines which includes PL/I sub-routines for producing flow

fragments, see pages A-12 to A-14.

(*) Having both SIZE and TIMES as inputs to specify gives the
modeler control over how standard deviations are aggregated: an
activity with a small SIZE repeated many TIMES will result in a
very small standard deviation, where an activity done one TIME
with a large enough SIZE to result 1in the same total amount of
work will have a larger standard deviation.

- 30 -

2.2.3 User Organization View

The wuser organization view, as translated into a set of
transaction definitions, constitutes the final part of the
configuration file. The user organization 1is thought of as one
or more classes of wusers with a set of transactions for each
class of user. Within each user class, each transaction is given~
a WEIGHT; the weights for a class should sum to 1. The weight of
a transaction is the relative number of user-originated requests

for the activity represented by that transaction.

A user group 1is also characterized by a number of users and
an average Tequest rate per user. Weights are given to

transactions as though there were only one user in the group.

A transaction is then further characterized by the sequence
of flows which compose it (just as a flow is composed of steps).
Each flow can be repeated a number of times, which need not be an
integer, since it represents the average number of repetitions.

Obviously, repetition factors can be parameterized. (*)

(*) This technique was used for runs in Chapter 4 to account for
various degrees of interversion communication.

- 40 -

The model accumulates response times for each transaction.
When a wide range of repetition factors is expected, the notion
of '"average TrTepetition factor" will lose the sense of the
distribution of response times (and most likely significantly
underestimate the variance). In this situation, it is best to
define a set of transactions which are identical in all respects
except weight and repetition factor, and manually reconstruct the

distribution of response time. (*)

In the cases discussed in Chapter Four, the set of
transactions and weights remained constant for every
architecture, thus subjecting each to identical user

requirements.

2.2.4 Detail Output

The model <contains a report writer routine (pages A-32 to
A-35) which outputs in detail the results of the analytic
queueing network calculations. The REPORT routine produces

several output Teports on each case; because of the volume of

(*) This can be done wusing a PL/I subroutine to generate the
transaction by issuing a series of calls to USEFLOW. It never
proved necessary to use this technique in any of the «cases
reported on here.

- 41 -

output generated, the report writer acts only when explicitly
called from the driver (architecture view) file. Generally, the
detailed reporf can be useful for understanding the interaction
of the load with the configuration, but provides too much detail
for architectural comparison. The driver files written for this
thesis produce a detailed report only for a representative case
out of each architecture study. Appendix B contains a sample of

the detailed output, illustrating each of the reports.

The first report shows properties and calculated Tresults by
node (see page B-2). The columns headed "PAGE SIZE," '"PAGE
RATE,'" "USERS," and '"SERVERS" echo the input to the queueing

model. The remaining columns display calculated results.

"CAPACITY" is the total capacity of the node in PAGESIZE

units per second.

"UTIL" is the utilization of the node across all basic server
elements for the entire user 1load. (Utilization is usually

represented by the Greek letter '"rho" in queueing theory.)

- 42 -

"MEAN/SO" gives the ratio of <calculated mean service time of
the mode (including time waiting in queue) to the unloaded
service time. (%) Similarly, '"SIGMA/SO'" is the ratio of the
standard deviation of service time, including waiting time, to
the wunloaded service time. These normalized results give a
clearer picture of congestion developing at a node than

unnormalized values.

"WGTD TIME" 1is the amount of time, in seconds, the node
contributes to the average transaction (weighted by the volume of
requests of each type). The node with the highest weighted time

is most 1likely to be the critical node, although this 1is not

always the case.

The second report (page B-3) breaks down utilization by user
transaction for each node. Utilization greater than 1 indicates
an overloaded node: - the response times calculated by the model

will be meaningless.

The third report (page B-4) gives details on the flows. Each
step of the flow is summarized on one 1line, giving the node

visited, resources demanded, and the resulting mean and standard

(*) Unloaded service time is the time the request would take if
it were the only request in the system - that is, 1if there were

no other 1load.

- 43 -

deviation of response time. At the end of each flow, the mean
and standard deviation of service time for the entire flow are
printéd. The flow report is useful for comparing designs because
the flows represent common system functions, and it 1is often

straightforward to extrapolate from them.

The final report (page B-6) gives a similar breakdown for
transactions. Flow details for each transaction are printed, one
flow per line. Mean and standard deviation of response time for

the entire transaction appear after the flow details.

2.3 ARCHITECTURE STUDIES

2.3.1 Parameters
By defining a configuration in terms of parameters, an

architecture can be modeled as the set of configurations possible
with a range of values for each parameter. The architectural
view, then, concerns itself with utilizing this parameterized
configuration model by manipulating some of the parameters and
observing the consequences on system cost and performance. There

are four kinds of parameters:

- 44 -

(1) Some of the wuser organization parameters are forced
across a range of values to represent a range of user requirement
situations. Thus the architecture can be evaluated for

suitability to a range of user organizations.

(2) Other user organization parameters are held fixed for

the duration of the run.

(3) Some of the hardware view parameters respond to growth
in the user load, driven by algorithms which permit them to

change and grow in order to meet response time objectives.

(4) The remaining hardware parameters remain fixed by the

choice of the architect.

The DEFAULT procedure sets all parameters to starting values.
It can be invoked at any time to restore baseline conditions
during a run of a series of cases. In general, the default case
should be the smallest configuration which is a meaningful case

of the architecture in question. An example of a DEFAULT routine

appears on page A-7.

2.3.2 The Driver Routine

Figure 2-5 shows the overall structure of the architectural
view in relation to the other views of the model. In a run, one
or more of the user organization parameters will be forced
through a set of values. For each distinct set. of user
organization parameters, the CONFIG (analytic queueing network)
model will be run iteratively wuntil the configuration either

meets the response time criteria or cannot be expanded any

further.

GENERATE FORCING N | | ‘
PARAMETERS o TXNs | ‘NODES | 5
— CHECK
FLOWS RESPONSE
TIME: MAY
DETAIL _|GROW SLOW-
EST NODE
COMFIG mMoDEL :RESULTS
i
\%

SUMMARY RESULTS

Figure 2-5. Architect's View

- 46 -

After each iteration of the queueing network model, the
architecture view checks for convergence to the response time
criterion programmed by the modeler. (*) The model then searches
for the node which contributes the 1largest amount to weighted
mean response time, and calls a modeler-written heuristic routine
to grow the capacity of that node. If a maximum iteration count
is not exceeded and the grow routine succeeded, the model

iterates again through the queueing network calculation.

When the process converges, a modeler-specified line of
output can be generated. This line usually contains values of
hardware parameters which «can be algorithmically grown in order
to validate the reasonableness of the heuristics. This also
gives the modeler a feeling for how the architecture responds to

different load situations.

For configurations which converge, the model also computes a
cost function written by the modeler. The costs are printed in a
matrix at the end of each set of cases. For cases in which even

the smallest configuration of the architecture exceeds the

(*) In this thesis, the response time criterion used is weighted
average response time -- that is, weight (relative frequency) of
each transaction in the mix times response time of that
transaction. The time must be 1less than a constant arbitrarily
set at 15 seconds, intended to represent the '"frustration limit"
of a human interactive user.

- 47 -

minimum required response time, the model assumes that the
architecture is '"TOO BIG" for the case, and probably far too
expensive. Conversely, when the model cannot converge on a
configuration which meets the maximum response time permitted,

the model assumes that the architecture is "TOO SMALL."

The "driver" file expresses the architect's view and includes
the GROW and COST routines. For an example of a driver file, see

pages A-5 to A-9.

The driver file can also be used to drive some of the
hardware parameters, while 1letting other hardware parameters
respond via the GROW routine. This technique provides a
particularly valuable. way to study design trade-offs within an
architecture, because the '"bottom line" conditions of performance

and cost, as seen by the end user, are the outputs.

2.3.3 Growing a Configuration

The GROW routine written by the modeler provides the
mechanism for studying a range of configurations of increasing
load demand. The GROW routine accepts an integer as input which
gives the number of the worst-case node. The routine returns a

boolean which indicates whether or not it was possible to grow

- 48 -

the configuration to -enhance the capacity of the node in

question: if not, then the architecture has reached a fundamental

limitation. A typical GROW routine appears on page A-8.

The GROW procedure begins with a dispatch (PL/I computed GO
TO) on the node to be expanded. Several different nodes can use

the same algorithm for expansion in this way.

The modeler specifies how to add capacity to a particular
node by writing algorithms which increase one or more of the
hardware view parameters. The expansion algorithms can thus be
defined in terms natural to the architecture in question. For
example, a string of disk drives grows by adding one drive at a
time to the string, where solid-state memories can best be

increased in throughput by increasing the degree of interleaving.

Adding capacity 'to a particular node may involve changing
parameters which also affect other nodes. For example, adding a
disk drive to a string may result in exceeding the number of
drives which can be handled by a controller. Adding processing
elements in a bus-coupled architecfure may increase the bus's
electrical 1length, thus increasing the bus's cycle time and
reducing 1its capacity. Effects 1like these can easily be

reflected by grow routines.

- 49 -

The desirability _of coding grow Troutines as architecture-
dependent heuristics was not immediately obvious. A first
attempt at the problem used a single EXPAND algorithm (*) which
could be applied to any node in a general fashion. The EXPAND
routine quickly proved to be too limited in that it would not
account for the fact that some resources (such as disk drives)
grow by discontinuous jumps (whole units in this case). The
general routine could also not apply constraints of the form

where growth of one resource required additional resources to be

added (such as when adding a disk also forces adding a

controller).

A final deficiency of the general algorithm lies in its
inability to make ''reasonableness" tests to see if further
expansion of the node 1is either futile or would violate some
other constraint. With the architecture-specific heuristic
algorithms, however, .such tests can be very straightforward. An
example of such a test would be to see if no further outboard
peripherals can be added because their aggregate transfer rates

would exceed the bandwidth of the main memory.

(*#) which survives in the program as a utility available to the
heuristics (page A-10).

- 50 -

Some of the reasonable tests can be even more subtle. In
some cases, intermediate results of the queueing model were
queried by grow routines to determine if any amount of expansion
of the affected node would be sufficient to meet the response

time objective, independent of queueing delays.

Use of heuristic grow routines thus captures the constraints
of the architecture very realistically. They have the added
benefit of causing individual configuration cases to converge in
very few iterations, thus saving considerable computation time

over a more general algorithm.

- §1 =

-CHAPTER 3 THE COST MODEL

3.1 OVERVIEW

The architecture view produces configurations which, although
vastly different in underlying architecture, have roughly similar
performance for a given set of user requirements. This with
performance fixed by wuser specification, the obvious way to

compare architectures is to compare costs.

The cost models wused here aspire to show that cost in terms
roughly similar to the unit manufacturing cost (UMC), in dollars,
which a fully vertically integrated computer manufacturer might
expect. Unit manufacturing cost means the factory cost of
production: materials, labor, testing, and factory overhead. It
does not include other costs which a company must cover in the
selling price of fhe product such as cost of marketing,
administrative expense, or profit. UMC gives a fairer comparison
of different technologies than selling price because it is not as
biased by marketing strategy (OEM vs. end user, for example), nor
does it reflect prices which result from having an exclusive

market position. UMC also begs the question of development

costs.

- 52 =

Obviously, this kind of comparison has its pitfalls, as
compénies guard their actual UMC data jealously, if they have
that data at all. Fortunately, 1in the case of integrated
circuits, a wide 1literature exists projecting trends in the
technology. (*) The cost information in that literature forms

the historical basis for the model of integrated «circuit chip

costs used here.

Other cost estimates can be made by extrapolation of
historical trends, as was necessary for disk drives. For
proposed new technologies, such as EBAM or optical video disk,
there was no recourse but to accept published cost estimates at

face value.

In all of the cases presented in this thesis, the cost
procedures as programmed are quite simple, wusually written in
terms of cost coefficients for major hardware nodes. An example
of a COST procedure appears on page A-9. The following sections
explain the ratiénale used to develop many of the «cost

coefficients common to many of the architectures found throughout

this work.

(*) A good summary of this literature is [Early78], which gives
fairly detailed cost forecasts for memory products through 1986.
[Mohsen79] covers the 1985 to 1990 time period, but with less
quantitative forecasting.

- 53 -

3.2 INTEGRATED CIRCUIT COST MODEL

The cost of a subsystem or assembly consisting primarily of
integrated circuits can be thought of as the sum of three costs:
the cost of the chips (made proportional to the number of chips
in the system), the cost of packaging (made proportional to the
number of pins), and the cost of power and cooling (made

proportional to the power consumption in watts).

5.2.1 Chip Cost

The cost of a particular integrated circuit depends on many
factors: die size, yield, process complexity, and "learning

curve'" (*) phenomena. A simple model to account for these

factors might be:
COST(chips) =
NCHIPS * MATURE_COST * MLCF * VLCF * OVERHEAD(chips)
where
NCHIPS is the number of primary type chips in the system.

For example, in a memory, this would be only the number of memory

chips.

(*) the ability to produce the same functionality chip at lower
cost in succeeding years through design and process improvements

and economies of scale.

- 54 -

MATURE_COST 1is the «cost of manufacturing and testing a
primary type chip after all learning curve phenomena have taken

place: that is, the ultimate cost of the chip.

MLCF is a "maturity'" learning curve factor which accounts for
improvements in technique for making a given kind of chip over

time.

VLCF is a '"volume" learning curve factor which accounts for

economies of scale in manufacturing.

OVERHEAD is a factor which accounts for the cost of non-

primary type or support chips.

With all of the learning curve phenomena removed, the mature
cost of producing chips of equal complexity but different
functionality should ‘be the same. Thus, this model assumes that
if produced in large enough volume and for a long enough time,
RAM, CCD, micfoprocessor, custom, and gate array chips with
similar feature sizes should cost the same to produce because

they are made by comparable processes.

The best quantatative data on cost trends for LSI and VLSI
circuits can be found for dynamic RAMs. Figure 3-1 presents a

view of mature cost trends extrapolated from the famous memory

- 55 -

cost graph of [Noyce77]. It is interesting to note that while
RAM densities increase by a factor of four, chip costs increase

by a factor of two. (*)

Figure 3-1. Mature Chip Cost Extrapolation

RAM Year Year Mature Mature
Density Intro- Mature cost cost
(bits) duced cents/bit $/chip
256 1969 1975 .300 (est) $ 0.77
1K 1973 1979 .150 [Noyce77] 1.54
4K 1975 1981 .048 [Noyce77] 1.97
16K 1976 1982 .025 [Noyce77] 4.10
64K 1979 1985 .013 [Noyce77] 8.52
256K 1981 1987 .008 (est) 20.00
M 1983 1989 .004 (est) 40.00

The tendency for chips to become more expensive reflects
several major trends in VLSI technology. While advances in
lithography reduce the size of features on the chip, active
devices are shrinking faster than wires [Early78]. At the same

time, the increased level of integration on a chip suggests the

(*) Memory system costs actually decrease by more than a factor
of 2 with each quadrupling of RAM density because the decreasing
number of pins and lower power consumption 1leads to 1lower

packaging costs.

- 56 -

need for more interconnect both on- and off- chip [Keyes78].
Both of these factors suggest that an increasing percentage of
the area of a chip will be devoted to interconnect, cutting in to

the density improvements available from lithography.

The interconnect problem is recognized as the crucial design
issue for VLSI [Mead79], and several strategies have emerged for
coping with it. Increasing the regularity of the design, trading
internal state for external interconnect, and increasing the
number of 1levels of design hierarchy on the chip have all been
suggested. The latter two techniques, however, have some cost in

real estate on the chip.

Thus, despite advances in lithographic technique, average
chip die sizes can be expected to increase [Pashley78]. As
lithography pushes to finer resolutions, processing equipment
tends to become more .sophisticated and expensive, and sometimes
lower in throughput (as 1is the case with direct electron beam
exposgre). The processes are also becoming more complex, as more
masking steps are added. Finally, with 1larger scales of
integration, the cost of testing becomes increasingly important,
perhaps to the point that the circuits proposed for the middle
and late 1980's will not be testable unless designed with more

levels of design hierarchy on chip, which has a cost in area.

- 57 -

The chip cost equation includes two learning curve factors,
one for volume and one for‘ the maturity of the design. The
maturity learning curve used here was derived from [Noyce77] and
represents the average of his predictions. Figure 3-2
illustrates the maturity 1learning curve, which accounts for
phenomena such as process refinements and scaled parts of the
same design but smaller die size, and tighter control, all of

which reduce cost by increasing yield.

0 1 2 3 4 5 6
Years since introduction

Figure 3-2. Maturity Learning Curve Factor

The volume 1learning curve shown in Figure 3-3 accounts for
economies of scale in manufacturing, based on a yield of 10% to
20%. The knee in the curve reflects that below about 100 units a
year, a complete mask and wafer run would still be needed to

produce the parts. The volume learning curve reflects the

- 58 -

reduced cost of design, testing, and handling on a per-chip basis
as production increases. It also accounts for shifts in

production techniques which occur with volume: while direct

electron beam exposure 1is a cost-effective way to produce 1,000
units per year, it would be unlikely to compete with some form of

projection 1lithography for chips produced in the millions of

units per year.

VLCF

1,0004

100+

10 -+

L

3 » 3 a
1 v v v v T L 3

102 108 10* 10° 108
Parts per year

10

Figure 3-3. Volume Learning Curve Factor

- 59 -

The final factor in the chip cost equation provides a measure
of the cost of chips which support the primary type of <chip in
the system. These chips will usually ‘be more numerous but less
expensive than the primary type of chip. These values represent
estimates based on inspection of many board types, supported by
some industry experience. Figure 3-4 summarizes the overhead
factors used to account for support chips. These factors are
multiplied by the cost calculated for the primary chip type to

obtain the cost for chips in the subsystem.

Figure 3-4. Overhead Factors for Support Chips

Primary Chip Type Chip $ Pins Power
Random Access Memory 1.1 1.5 2.0
CCD Memory * 1.1 1.5 2.0
Magnetic Bubble Memory 2.0 5.0 20.0
Content Addressable Memory * 1.1 1.5 2.0
Gate Array 1.0 1.1 1.1
Microprocessor 4.0 20.0 10.0

* Assumed to be same as RAM

- 60 -

3.2.2 Packaging Cost

The cost of packaging can be expressed as:
COST(pkg) = NCHIPS * AVGPINS * OVERHEAD (pins)
* (ICPIN$ * BOARDPIN$ + SYSTEMPINS$)

where
AVGPINS is the average number of pins per chip;
ICPIN$ is the cost per pin of the integrated circuit package;

BOARDPIN$ is the cost of the circuit board, on a per-pin

basis;

SYSTEMPIN$ is the «cost of backplanes and cabinets, also

expressed on a per-pin basis; and

OVERHEAD (pins) accounts for the pins of the supporting

chips. The pin overhead factors are given by the second column

of Figure 3-4.

The most inexpensive IC packages cost about $0.25 for a
16-pin plastic package which can dissipate up to 400mW, for about
$0.015 per pin. Ceramic packages of the same size cost about

$0.80 and can dissipate up to 1 watt, thus costing about $0.05

- 61 -

per pin. QIP packages of 64 pins cost about $10, or $0.16 per
pin, for larger pinout requirements. IBM and Amdahl have
developed packaging technologies for considerably more pins, but
they consider cost data on these packages proprietary. In this

study, pinout requirements of greater than 64 pins were estimated

to cost $0.30 per pin.

The circuit board which holds chips accounts for the largest
part of the packaging cost. A typical printed circuit board might
cost $200 for board materials and processing, to which assembly
and test labor (*) of $400 must be added. If our hypothetical
board sported 150 chips with an average of 20 pins each, this
would imply a per-pin cost of $0.20. Boards made by more
expensive techniques such as wire-wrap or multilayer techniques

were assumed to cost $0.50 per pin.

If a backplane .assembly costing $1000 supported 20 such
boards and fit into a cabinet also costing $1000, this would add

about $0.03 per pin for system packaging.

(*) 16 hours at $25 per hour, fully burdened labor cost.

- 62 -

3.2.3 Power

Power and cooling represent the final element of cost of

these kinds of subsystems. Power cost can be expressed as:
COST (power) = NCHIPS * AVGWATTS
* OVERHEAD (power) * WATTCOST

where WATTCOST is assumed to be §$5 per watt for passive cooling,
$10 per watt for forced air cooling, and $20 per watt for liquid
cooling. OVERHEAD accounts for the power consumed by support
chips. The third column of‘Figure 3-4 gives the power overhead
factors used. In the case of bubble memories, the support chips
consume considerable power because they must drive the field

coils of the bubble memory package.

- 63 -

3.3 NON-ELECTRONIC COMPONENTS

The 1largest capacity disk drives have remained remarkably
steady in price over the last 15 to 20 years, while doubling in
density about every three years. If this trend continues, large-
capacity disk drives in 1985 will be priced at about $25,000 to
$35,000 per spindle to end users and $12,000 OEM, but have
storage capacity of 2 billion bytes. With these prices and
pricing mark-ups typical for industry, these drives will thus

have a likely UMC of $8,000. (*) Figure 3-5 shows trends in disk

density.

Rack mountable 14-inch diameter drives 1lagged far behind the
largest disks in density until the relatively recent introduction
of the sealed-environment "Winchester'" technology originally
developed for the large drives. Starting in 1978, the density of
these drives has increased dramatically [Elec78], to the point
where the recording density (**) of the most advanced of these
drives lags the largest disks by about a factor of two. With
fewer platters, less mechanical loading on the positioning

mechanisms, and electronics further down the learning curve,

(*) Average mark-ups on end-user products in the computer
industry are about 3 to 1 over UMC; for OEM products the mark-up

is about 50%.

(**) bits/square inch recorded on the media

- 64 -

these drives can be produced at a UMC of about $3,000 to sell for

$5,000 to OEMs.

A similar movement is afoot in even smaller capacity drives
[Durniak79], as manufacturers apply the sealed-environment
technology to 8-inch drives. These drives are about another
factor of two 1lower in bit density on the media, and wuse even
simpler positioning mechanics than their 14-inch cousins. They
are expected to supplant 8-inch soft disks. With OEM prices in

the range of $1,300 to $2,000, these drives probably have a UMC

of $1,000.

It 1is only 1logical to assume that this process could be
carried out again with 5-inch disks, with recording density
another factor of two lower still. These units are expected to

be produced with a UMC of $300 to sell for under $1,000.

1010

Disk

Drive
Capacity
(bytes)

- 65 -

~~ Largest Capacity
P

14-inch rack-mount

8-inch
5.25-inch
Year
105 { ——t 4 & {
1965 1970 1975 © 1930 1985 1990

Figure 3-5. Disk Drive Capacity

3.4 SUBSYSTEMS

With the -electronics «cost model developed 1in previous

sections, the cost of several interesting subsystems can be
obtained. These subsystems will be wused repeatedly in the
following chapters. 1985 was selected as the target date for

comparisons because it is far enough into the future to make for
interesting and useful results, but close enough to the present
to give some feeling for the reasonableness of the results. (*)
Figure 3-6 summarizes the assumptions and results of the
electronics cost model as applied to these subsystems. Several

comments on that table are in order:

RAM. Although 1 megabit RAM chips should be available in
1985 according to the technology prognosticators, the maturity
learning curve of Figure 3-6 suggests that they will still be too
expensive, and that the more mature 256 Kbit chips will be enough
cheaper to offset the saving in packaging and power. Thus, - the

technology of choice used the 256 Kbit parts 4 years into the

(*) Since this technology forecast was first written in late
1979, it appears that actual progress in silicon technology has
fallen two to three years behind the pace predicted in the middle
and late 1970's. Thus, although the text discusses 1985 as the
target year for subsystems, 1987 to 1988 would be more realistic
dates for the target costs shown. The text still refers to 1985,
however, to remain consistent with the sources referenced as the

basis of the estimates.

- 67 -

learning curve. The 1lowest power and packaging costs were
assumed. Some of the subsystems were costed as though they

contained some RAM; in these cases a price of $1,500 per megabyte

prevailed.

CCD. With the same underlying process, CCD memory can obtain
about four times the number of bits per chip of comparable die
size [Guidry78], due to both smaller basic cell size and less
overhead circuitry on-chip. However, CCD's lag about two years
behind RAMs on the learning curve. With other assumptions the
same as for RAM, 'CCD results 1in one-third of the per-megabyte

cost about for RAM. This result agrees with the forecasts of

[Guidry78].

Bubble. Projections for bubble memories are not as boldly
published as for their silicon competitors. Bubble memories can
be packed to a bit spacing of about 4 bubble diameters [Hu78],
which is roughly comparable to CCD's. However, with the major-
loop/minor-loop organization commonly used, external control
circuitry, and larger die sizes made possible by only a single
critical mask alignment during processing, (*) bubble chips could
have about 4 times the density of CCD memory. However, bubble

memoTry chips will have very high support costs in terms of number

(*) versus 4 to 8 such steps for silicon chips

- 68 -

of support chips, their packaging requirements, and power

consumption.

Microprocessors would contain over 100,000 transistors, and

could be the equivalent of today's small mainframe in
functionality and instruction processing power (about 0.5 million

instructions per second (MIPS)).

Disk Controller. The mainframe version is assumed to contain

25,000 gates implemented with a gate array technology of about
6,400 gates per master-slice chip and 256 KBytes of memory. It
would be delivered in quantities of 1,000 to 10,000 per year,
utilize the most expensive IC and board packaging options, and be
forced-air cooled. Its minicomputer-oriented cousin is assumed
to have 10,000 gates and 128 KBytes of memory, wutilize less
expensive board level packaging, and be delivered in quantities

of over 10,000 per year.

Mainframes. The projected 1-MIPS mainframe is assumed to

have 150,000 gates and 1 MByte of RAM for control store, with
expensive packaging and forced air cooling. The high-performance
(16-MIPS) version contains 500,000 gates and would be 1liquid
cooled. The high-performance version also would contain a 1
Mbyte CAM acting as a cache. It is interesting to note that both
the 1-MIPS and 16-MIPS mainframes exhibit approximately the same

cost per MIPS.

- 69 -

For comparison, the same model was - applied to older
technology mainframes. The '"1975 Mainframe" represents the
Amdahl 470V/6 as described in [Wu78]. In the 1975 mainframe,
packaging and power represent 53% of the cost of the system, up
from 43% for the 1965 model. However, with increasing levels of
integration and rising chip cost, the 1985 mainframe puts only

23% of its cost into packaging and power, reversing the trend of

prior years.

The same effect shows up even more dramatically in memory
systems. A 1975 memory based on 1K RAM chips would put 77% of
the system cost into packaging and power. A 1979 memory system
based on 16K parts would still put 72% of the cost into boards,
backplanes, and the like. However, with 64K chips, the balance
swings the other way, with packaging and power accounting for

only 28% of system costs; this declines to 22% with 256K RAM

chips.

- 70 -

Figure 3-6. Subsystem Cost Calculations
Subsystem 1 MB 1 MB 1 MB Micro-
Cost Component RAM CCD Bubble processor
Number of Chips 32 8 2 1
Pins per Chip 20 20 20 40
Watts per Chip 0.2 0.2 0.2 0.5
Chip Overhead Factor 1.1 1.1 2 4
Power Overhead Factor 2 2 20 10
Mature Chip Cost 20 20 20 20
Maturity LCF 1.6 2.5 1.6 1.6
Volume LCF 1 1 1 5
Package Cost - IC 0.05 0.05 0.05 0.05
Board 0.20 0.20 0.20 0.20
System 0.03 0.03 0.03 0.03
Power Cost
per Watt 5 5 5 5
Subsystem Cost $1500 $525 $300 $900

- 71 -

Figure 3-6 (continued)

Subsystem Cost Calculations

Subsystem
Cost Component

Number of Chips

Pins per Chip
Watts per Chip

Chip Overhead Factor
Pin Overhead Factor
Power Overhead Factor

Mature Chip Cost
Maturity LCF

Volume LCF

Package Cost - IC
Board
System

Power Cost per Watt

Extra RAM

Subsystem Cost

Mainfr Mini
Disk Disk
Ctlr Ctlr

4 2

150 150

2 1
1 1
1.1 1.1
1.1 1.1
20 20
1.6 1.6
20 10
0.30 0.30
0.50 0.20
0.03 0.03
10 5
256KB 128KB
$3600 $950

1 MIPS

Mainfr

25

150
2

=
L] e

=

20
1.6
10
0.30
0.50
0.03
10

IMB
13.5K

16 MIPS
Mainfr
80

200
5

el]
e e

=

(3] [3]
(=N N}

0.30
0.50
0'03

- 72 -

Figure 3-6 (continued)

Subsystem Cost Calculation

Cache: 1975 1965

Subsystem 1 MB 4 MIPS 1 MIPS
Cost Component CAM CPU CPU
Number of Chips 128 2K 4K
Pins per Chip 40 80 40
Watts per Chip 1 3.5 3.5
Chip Overhead Factor 1.1 1 1
Pin Overhead Factor 1.5 1.1 1.1
Power Overhead Factor 2 1.1 1.1
Mature Chip Cost 20 1 1
Maturity LCF .3 5 5
Volume LCF 5 20 20
Package Cost - IC 0.30 0.30 0.30

Board 0.50 0.50 0.50

System 0.03 0.03 0.03
Power Cost per Watt 10 10 10

Subsystem Cost $48K §$423K §$700K

- 73 =

Figure 3-6 (continued)

Subsystem Cost Calculation

Subsystem
Cost Component

Number of Chips

Pins per Chip
Watts per Chip

Chip Overhead Factor
Pin Overhead Factor
Power Overhead Factor

Mature Chip Cost
Maturity LCF

Volume LCF

Package Cost - IC
Board
System

Cost per Watt

Subsystem Cost

1980 1978 1975
IMB IMB IMB

RAM RAM RAM

128 2K 8K

40 16 16
0.2 0.2 0.2
1.1 1.1 1.1
1.1 1.1 1.1
2 2 2
8.50 2.00 1.50
1 1.6 1.6
1 1 1
0.05 0.05 0.05
0.20 0.20 0.20
0.03 0.03 0.03
5 5 5

$4.9K $21.2K $93.1K

- 74 -

CHAPTER 4 TRIAL ARCHITECTURES

4.1 INTRODUCTION

4.1.1 Architectures Considered

Since E. F. Codd first put forward the relational model for
data base organization [Codd70], it has been widely recognized
that the simple, tabular nature of the relational model makes it
amenable to alternatives to the standard, von Neumann
architecture. Many workers have proposed alternatives for the
organization of a data processing system for data Dbase

processing, especially for relational data bases. (%)

Will these machine organizations be effective as vehicles for
implementation of an advanced functionality data management
system, as exemplified by the REL system prototype? Will a more
conventional architecture be as effective, or will some

architecture not envisioned in existing 1literature be the best

solution?

(*) [Smith79] provides an excellent overview of work to date,
including an extensive bibliography.

- 75 =

In an attempt to answer that question, a number of candidate
architectures were selected and modeled wusing the program
described in the previous chapter. These architectures fall into

about four major classes:

(1). In a conventional, von-Neumann architecture, the data
base is stored in pages on a secondary storage device. Pages of
information are moved into the main memory, to be operated on by
either a single processor or a shared-memory multiprocessor of
conventional design. Architectures with both ordinary disk
technology and some of the emerging 'gap filler" technologies

were considered.

The von-Neumann architecture remains an interesting candidate
for a future "REL machine" for several reasons. Much of the time
spent in processing a sentence in the REL prototype system today
goes into transmission of pages between primary and secondary
memory. The '"gap filler" technologies could considerably reduce
this time. Transmission of pages is already well optimized in
the REL prototype [Greenfeld72], and further improvement 1is
possible. Finally, a data base management system has many
functions besides computing relational data base operators, and
the merits or demerits of using a general purpose device for all

of these functions should not be dismissed without analysis.

- 76 =

(2). A variety of proposals have been made for using some
sort of associative logic with every "loop" of secondary memory.
These architectures contemplate a serial secondary memory, either
inertial (*) (as with disk or CCD) or non-inertial (bubble can be
operated this ‘way). The most advanced of these proposals
contemplate using a small, fast content-addressable memory as a
part of the 1logic per 1loop, and thus can be deemed 'doubly
associative" [Shaw79]. Several variants on this architecture
were explored utilizing logic-per-head disk or an all-electronic
analog with bubble or CCD memory serving as the secondary

associative memory level.

(3). The parallel processing architectures proposed in the
literature generally distribute work of fairly small 'grain
size," where each processing element works on either a character
or even a bit at a time. It could be that an architecture could
be extremely effective with a larger grain size for distribution
of work. Consequently, one of the series of architectures locks

at distributing work with the grain size of a record or block of

records.

(4). A final set of cases considers implementations based on

very large main memories.

(#) that is, the rotation or shifting cannot be easily stopped.

- 77 -

Each architecture represents a way to arrange logic and

memory elements into a data base processing subsystem.

Another design issue lies in how many users each of these
subsystems should serve: one, a few, or all of the users in the
organization which owns the "REL machine"? This choice leads to
three major sub-architectures for -each architecture studied:

""smart terminal," clustered, and central.

In a central architecture, there is one data base processing
subsystem which is multiplexed among all of the users. Users are
assumed to have '"dumb'" (*) terminals, which connect through a
general-purpose computer used as a '"front-end" to the '"back-end"
data base processing subsystem. All interversion communications

(**) occur strictly within the confines of the single back-end

resource.
(*) Here, we mean "'dumb'" in the sense of having none of the
applications processing software. It must be expected, however,

that future terminals will devote a considerable number of cycles
to providing a '"friendly" interface to the human user, ‘through
powerful screen formatting, graphics, and local editing. While
such functions as editing -account for a large fraction of the
processing power consumed in the central mainframe 1in many
contemporary systems, here we assume that such functions will be
distributed to the terminal in all of the architectures studied,
and are thus not a variable in this research.

(**) That is, communication between the data bases kept by one
user and those of another user. The concepts of "interversion
communications,'" "lateral," and "based" as wused in this thesis
are those of [Yu80]. In that work, '"lateral" communications is
also called the '"channeling operator."

- 78 -

In clustered architectures, a small number of users share a
data base processing engine. As in the central architectures, a
general-purpose computer serves as a front end, managing a number
of "dumb" terminals. It is presumed that terminals belonging to
users in the same working group (or other organizational entity)
will be on the same cluster processor; therefore based (*)

communication can occur within the confines of the cluster.

(*) Basing refers to the situation where all of the concepts of
one data base (the '"based-upon'" version) are made available to
the other or "working" version. The working version can extend
the based-upon version with new vocabulary or modify data in the
based-upon version. These changes, however, are stored in the
working version and are visible only within either the working
version or other versions based in turn on that working version.
The based-upon version itself is not altered.

By contrast, changes made in the based-upon version are seen
both by the based-upon version and the working version. Thus,
the communication is '"closely coupled" 1in the sense that changes
to the based-upon version are instantly reflected in the working
version, and one way in the sense that <changing the based-upon
version also changes the working version, but changes to the
working version do not change the based-upon version.

Refer to [Yu80] for more information about basing.

- 79 -

Lateral (*) communications, however, will travel between
clusters. Thus each clustered architecture contains an
intercluster network modeled on ETHERNET [Metcalfe75]. The

cluster general purpose processor generally provides the network

interface.

(*#) In "lateral communication'" between two versions, the users of
the two versions agree beforehand that the owner of the
"responding" version will provide <certain information £from his
data base to the owner of the "originating" version. They also
agree on the vocabulary by which the required information will be
known to both of themn.

The owner of the originating version then puts a definition
in his version for that vocabulary which refers to the responding
version. The owner of the responding version similarly puts a
definition of the vocabulary into his version, which translates
the requester's terminology into terms which already exist in the
responder's version. By appropriate choice of terms, the owner
of the responding version can restrict the requestor's ability to
interrogate the responding data base to only the agreed-upon
information.

When the requestor's version parses a sentence which contains
the vocabulary item which refers to the responding version, the
system sends a request packet to the responding version. The
responding version parses the packet wusing the definition placed
in it just for that purpose, does the required processing, and
returns the resulting information to the requesting version.

The reader should consult [Yu80] for more information
interversion communication.

- 80 -

The '"smart terminal'" architectures presume that the data base
processing engine is incorporated into the wuser's terminal,
serving only that |user. The data base engine must have
sufficient storage capacity (possibly in several hierarchical
levels) to contain an entire version. (*) Depending on the cost
of the memory involved, the smart terminal may hold both the
"active" version currently being processed and any inactive
versions the user may have. If the memory is fairly expensive,
it is assumed that only the active version resides in the smart
terminal; an archival memory stores the inactive versions, which
are loaded into the terminal over the network on demand. Because
the smart terminal processes only a single version, any

interversion communication uses the network.

(*) 1In the REL system, the user organization's data are thought
of as a number of data base/language pairs, each called a
version. It is expected that each wuser would have several
versions, representing perhaps different projects or areas of
responsibility. This concept is similar in some respects to the
conventicnal view of distributed data bases, but provides a
different twist to the problem. [Thompson75] and [Yu80] discuss
the REL view of versions at length and show how that view led to
elegant solutions to the problems of distribution of control of
an organization's data among many departments.

all

syntax, users

semantics
engines

active and
inactive
versions

(a) Centralized

network
syntax, X

L I} semantics user
engines group N

TFoo

user
group N+1

active and
fnactive
versions

(b) Clustered

network

user (optional)
M+3 inactive
versions

user
42

user M
syntax, sem-
antics, ac-
tive vsn

(c) Smart Terminal

Figure 4-1. User Sharing Alternatives

- 82 -

Cost functions representative of mainframe computers are used
for the central architectures, whereas minicomputer or
ﬁicrocomputer cost functions are used for the cluster and smart
terminal architectures. Thus, it makes for an interesting
analysis to see if the lower cost of manufacturing due to volume
economies of scale compensate for the generally higher overhead

involved in the smart terminal and clustered architectures.

4.1.2 Assumed Load

The same load profile drove every architecture studied. The
profile represents a mix of functions which does not necessarily
correspond to that of any particular actual user organization.
Instead, it was selected to exercise several kinds of functions
which any data base processor would be expected to perform,

ranging from fairly trivial requests to fairly complex

operations.

- 83 -

In all cases, the model attempted to find configurations
which would produce highly interactive response times. The
criterion "highly interactive'" must be expressed quantitively,
however, for the model to work. Thus the algorithm used required
the weighted mean response time (*) to be between 1 and 15
seconds. Response times of under 1 second were taken to indicate
"overkill": a configuration much too 1large for the user's
purposes. Response times over 15 seconds seemed too long for an

average response time of an interactive system.

The transaction mix used for all of the cases discussed in
this chapter includes five transactions: logon, change version,
simple query, simple sentence, and complex query. Code defining

them can be found on page A-15.

The 1logon transaction represents a user beginning an
interaction with the system. Processing this request requires
examination of a small amount of data from a central system data
base on all wusers to determine if the user is valid (proper
password, authorized to use that terminal, etc.). In central and
clustered architectures, this data resides in one of the versions

on the configuration the user's terminal attaches to, and usually

(*) The sum of the relative frequency of occurrence times the
mean response time across all transaction types.

- 84 -

can be retrieved quickly. In smart terminal architectures, the
"authorized users'" data base is presumed to reside on an archival
store and must be accessed via the network. 1% of all

transactions are logon requests.

The change version transaction moves a user from one version

to another and constitutes 3% of the mix. In cases where the
data base processing engine can store both active and inactive
versions, this function can be handled by loading a few pages of
control information. However, when the data base processing
engine cannot hold both active and inactive versions, then the
current version must be unloaded to the archive and the new

version loaded. This obviously will put a significant load on

the network.

The simple query transaction represents the parsing of an

input sentence into a request which can be satisfied by 6 record
retrieval operations. Assuming that the architecture in question
has a way of mapping records onto storage in a deterministic
manner (such as hashing), this usually translates into six I/0
events to the data base. This transaction type is taken to be
typical of trivial but frequent processing requests which ask for
a few items of data at a time. This transaction type could
represent a bank teller cashing a check or an inventory clerk

recording picking of an item. It constitutes 32% of the mix.

- 85 -

For this transaction type, interversion communication is
equivalent to obtaining the requested record from a remote file
in the cluster and smart terminal architectures. This activity
is modeled as the transmission of a request across the network,
retrieval of the record at the remote configuration, and return
of the contenfs of the record over the network to the
configuration which originated the request. In central
architectures, interversion communication has the cost of

requiring changing versions (loading version control information

pages).

The simple sentence transaction represents parsing an input

sentence into a request to do one projection operation (*) and
thus could be indicative of a user in a problem-solving
situation. An example of this kind of user could be a bank
officer examining a customer's account for a stopped check or an
order clerk trying to find that lost purchase order number. The

transaction constitutes 32% of the mix.

(#*) Because of its reliance on only l-ary and 2-ary relations
(called "classes" and "relations" respectively), the REL system
avoids most of the complexities of the relational algebra
[Thompson75]. It can easily be shown that with the addition of
dummy or placeholder entities ('"current entities"), l-ary and
Z2-ary relations can simulate any data structure possible with n-
ary relations. A consequence of this conceptual simplification
in REL is that the projection operator operating against a list
or a computed condition 1is the basic data base manipulation

operator of the system.

- 86 -

Interversion communication has different meaning for this
type of transaction. Based operations represent activities
against additional versions which must occur to satisfy the
request. However, since information about the based version is
stored in the requesting version's dictionary, no additional
parsing is required. The request must be transmitted to the
based-upon version. For central and cluster architectures, this
transmission requires only 1loading the version control pages of
the based-upon version. For the smart terminal architectures,
however, the request must be transmitted over the net to another
smart terminal configuration which stores and processes the
based-upon version. That configuration then performs the
indicated projection and sends the results back to the
originating smart terminal to be merged with the results of doing
the same projection on data stored in the requesting version.
Modeling of based interversion communication in this fashion
provides the same results even if the active version is based on

several different versions.

Lateral interversion communication means that information
stored in the receiving version's dictionary is used to interpret
the request. The interpretation process 1is modeled by assuming
that the receiving version must parse an input sentence contained
by the request packet. The receiving version then does a

projection and returns the results. In central architectures,

- 87 -

this result is available on the same media as both the requesting
and receiving versions. In the cluster énd smart terminal
architectures, the receiving version executes on a different
configuration, so the request packet and the resulting class must

be transmitted on the network.

The complex query transaction represents use of the full

facilities of an advanced data management system. Each
transaction requires parsing an input sentence and performance of
several 'projection'" like operations. Such an operation can
either be a projection of extensional data (*) or expansion of
the intentional data represented by a definition. A definition
can expand into several projection operations and/or further
definitions. Also, some of the definitions can involve lateral
interversion communication. Further, since a lateral
interversion communication involves parsing what is in effect a

new sentence, even more work can result.

In the runs reported on in this chapter, a complex query does
four projection operations in the absence of interversion
communications. For each architecture, the 1level of based and

lateral interversion communications was varied across a range of

(*) Data stored explicitly in the version. This data may also be
augmented by data explicitly stored in a based version

- 88 -

values to test the sensitivity of the architecture to this added

function.

The complex query transaction accounted for 32% of the mix.

4.1.3 Default Parameters

Each architecture model has many parameters. In order to
insure that runs would be directly comparable, many of the
parameters were éitﬁer not varied or forced in the same way.
Thus, the set of cases reported on here in no way exhausts the

multi-dimensional space of possible cases.

Instead, a few parameters were 1investigated for each
architecture in an attempt to gain some insight into the
sensitivities of that architecture. The remaining parametefs
were given values which represent reasonable expected average

values for '"'management information'" applications.

The size of sets operated on by the relational data base
operators of any architecture are given by several variables.
CLASS_SIZE gives the number of items per class and was fixed at
500 for every run. #CLASSES gives the average number of classes
per version, which was fixed at 50. The size of the l-tuples in a

class was fixed at 10 bytes.

- 89 -

To study the effect of data base size on the architectures,
the parameter RELATION_SIZE, giving the average number of
2-tuples per relation attribute, was varied across a range of 500
to 500,000. The number of relations per version, #RELATIONS, was

fixed at 100. All runs assume 20 bytes per 2-tuple.

The number of users was also forced across a range from 1 to
500 to study how different architectures behave in the face of
widely varying size of user organizations. The degree of
interversion communication was also forced across a range of
values from none to a maximum of 50% of projections requiring
access to an additional based version and 25% of the terms in an
input sentence resulting in generating lateral queries to other

versions.

For cluster and smart terminal architectures, an ethernet of
at least 1 megabit/second bandwidth with 1length of 1 km
transports packets of wup to 4000 Dbits. In the cluster

architectures, it was assumed that up to 6 terminals would share

the cluster processor.

- 90 -

4.2 PAGING ARCHITECTURES
secondary
store for ! CPU
version
pages
working set
of active
version
pages

Figure 4-2. Paging Architecture

4.2.1 Disk

The paged architectures, particularly those employing disk,
correspond most closely to the implementation of the REL
prototype system. fn these architectures, the secondary storage
media holds the pages of versions which are actively being
processed as well as the pages of inactive versions. A
conventional von-Neumann computer does all of the work of parsing
and applying semantic routines. The system can be thought of
much as a timesharing system, which <can only operate on
information in the main memory of the computer, but whose
performance critically depends on moving information between the

main and secondary memory.

- 91 -

" The design of the REL prototype system took optimization of
'page tran;mission as one of its primary goals. Norton
Greenfeld's thesis [Greenfeld72] showed that appropriate choice
of algorithms could achieve improvements of one or even two
orders of magnitude above the behavior of the paging algorithms
of conventional timesharing systems by wusing knowledge about how
the data was physically stored on pages. These algorithms depend
on maintaining data in lexical order on the pages, and sorting to
lexical order when needed, in order to make most operations
proceed in a time which 1is either linear with the size of the

sets to be manipulated, or is at worst n*log(n). (%)

It seemed natural to start with the REL prototype
architecture of a central computer serving '"dumb" terminals with
disk the secondary store for several reasons. The architecture
proved to be one of the simplest to model and provided a way to

validate the modeling technique against measurements of an actual

(*) Any relational data base operation can be performed in linear
time if the system maintains the data base '"fully inverted," with
the concomitant penalty in storage. "Inversion'" refers to
storing a duplicate copy of all of the tuples of the relation,
where the duplicate copy is ordered for efficient rTetrieval by
one of the secondary domain types. Thus, the relation can be
accessed efficiently (which usually means in sorted order) by
either the key or a non-key field without resorting it on the

fly. Note, however, that if a tuple is updated, all of the
duplicate copies of the relation (and there might be several)
must also be updated, otherwise the data base will become

inconsistent.

- 92 -

system. Also, since disk can be expected to remain the lowest
cost per bit secondary store for the foreseeable future,
configurations involving disk have good potential as trial

architectures.

To validate the model, a set of 62 sentences was run against
the NAVY data base, which gives some 80 attributes about some 500
naval and commercial ships, under the REL prototype system as a
batch job at 3:00 a.m. With no other users on Caltech's IBM
3032, the system responded to each sentence in an averaée of 4.1
seconds. A Tun of the model with the same circumstances as input
(no other users, 2.5 MIPS computer, 500 tuples/relation) gave a

predicted response time of 3.84 seconds: within 7% of the

measured value.

While disks have increased in density, as discussed in the
last chapter, their access rates, as 1limited by the times to
physically move electromechanical assemblies, have remained
fairly constant. A1l of the disk configurations in this thesis
use present-day parameters for access rates: average seek time
of 30 milliseconds, rotational speed of 3600 RPM, and track size
of 10,000 characters. It was also assumed that, as today, a disk
controller could have not more than 8 drives attached. Disks
were operated with a 2,000 byte page size - the same as in the
REL prototype system and a recommendation Teported in

[Greenfeld72].

- 93 -

Three nodes sufficed to describe the centralized paging disk
architecture: the CPU, disk controller(s), and disk drive(s).

Each of the nodes serves all of the users.

Retrieval of a page represents the basic operation of this
type of system; all activities are modeled in terms of page
retrievals and additional CPU activity. Retrieval of a page
involves execution of 2,000 CPU instructions in access method
routines. The time taken by the peripheral was divided between
the disk drive node and the disk controller node. The disk drive
node provides only the seek time, modeling each drive as an

independent server with its own queue.

The disk controller node provides the rotational latency,
transfer time, and queueing delays associated with freeing up the
controller to main memory channel. This arrangement may seem a
little unnatural because rotational delay and transfer time are
properties of the drive, and data streams through the controller
with a delay of perhaps only microseconds. However, it permits
the model to account for the fact that a disk controller

transfers data for only one drive at a time, no matter how many

are connected, because it is not buffered and has a bandwidth
comparable to that of the drive itself. Where in the model the
delay appears 1is really arbitrary, as long as it 1is properly

accounted for somewhere.

- 94 -

For parsing the input sentence, the model assumes that the
entire dictionary must be loaded into main memory: all of its
pages are transmitted. The internal parsing time is given by a
constant term for initializing the parser, a term proportional to
the log of the number of rules in the dictionary which accounts
for the binary search on rule strings done by the REL parser, and
a term proportional to the number of words in the sentence. For
the typical sentences modeled, the internal parsing algorithm

executes about 36,500 machine instructions. (%)

The modeled parsing time compares closely with the figure of
0.1 second parsing time on an IBM 370/135 reported by
[Thompson75]. The 370/135 has approximately 0.2 MIPS, so the
parsing time implied by the reference is about 20,000
instructions. The small amount of time spent in parsing by the
REL prototype system thus suggests that the attention of the
designer of a REL machine would be better spent on the problem of

relational data base semantic routine execution.

The model of the projection operation assumes that the data

for both sets in the operation is stored on disk in the same

(*#) Parsing is modeled in exactly this way for every architecture
discussed in this thesis: 1loading of the entire dictionary into
the general-purpose computing element of the configuration and
execution of the same parsing algorithm.

- 95 -

lexical order. The projection operator thus brings in all of the
pages of the relation and all of the pages of the class,
producing an output set of pages with as many tuples as were in
the smaller of the two input sets. " This method of modeling the
projection operator was used for all of the paging architectures,

no matter what secondary storage medium was employed.

The cluster and smart terminal versions of the paging disk
architecture view each configuration as a miniature version of
the central architecture. The local configuration is modeled as
the same three nodes: CPU, disk controller(s) and disk
drives(s), with either one user (for the smart terminal case) or
up to GROUP_SIZE wusers (for the cluster case). The remote
configurations were modeled by aggregating all of the remote
units into one set of three nodes, with more servers and more

users. Thus these seemingly complex cases were modeled with only

seven nodes.

Pages C-2, C-3, and C-4 show the computed cost functions for
the central, cluster, and smart terminal variants of the paging
disk architecture. None of the variants of the disk paging
architecture could meet the 15-second response time objectiVe for

relations greater than 10,000 tuples.

- 96 -

As expected, the disk is the bottleneck. Since each disk
drive is an independent server, any number of simultaneous users
can be accommodated by adding drives.b Contention for the disk
proved not to be the problem, since the average queues for the
disk drives and controllers were quite modest. Since any
particular request can be served by only one drive, a series of
requesfs will not be served any faster (except for reduced queue
wait time) by more disks. Consequently, the problem lies in the

low effective transfer rate of the disk drive itself. (*)

In order to meet the response time criterion with larger data
bases, the effective transfer rate between the secondary store
and the processor must somehow be increased. The remainder of
this section considers other secondary store technologies which
can be architected for faster transfer rates than can be achieved
with disks. Other sections of this chapter consider
architectures which ‘attempt to increase the effective transfer
rate between the storage system and the CPU by inserting some

logic between the raw storage and the processor.

(*#*) The effective transfer rate of a disk drive is 33 pages, or
around 66,000 bytes, per second. Only about 7% of the
instantaneous transfer rate of a disk drive 1is thus actually
utilizable because of the time taken to position the desired
record under the read head. One might argue that the effective
utilization of the bandwidth between the drive and the CPU is
even lower, because most of the bytes on the page are irrelevant

to the query.

- 97 -

The costs for the disk paging architectures are surprisingly.
low. For one or two users, the smart terminal variant proves
least expensive. The cluster variant is best for between 5 and
20 users. The central architecture exhibits a striking economy
of scale, however. This results from the relative
underutilization of the CPU for few users. With few users,
configurations require only one or two disks, so the CPU
dominates system cost. As the number of users increases, more
disks must be added to accommodate both their data storage and
access requirements. The secondary store rTises from 23% of the

system cost for up to 20 users to 72% of the system cost for 500

users.

4.2.2 Magnetic Bubble Memory

Magnetic bubble ‘domain technology has been promoted as an
alternative to disk. Like disk, bubble memory retains data when
powered off, making it attractive for use as a secondary storage
medium. As the most prominently mentioned '"gap filler'" memory

technology, bubbles seemed 1like the next candidate for

investigation.

Compared to disks, bubble memories have virtually zero "seek"

time, as the selection of the chip (or set of chips) to examine

- 98 -

utilizes simple multiplexers. Bubble memories have the
equivalent of rotational 1latency, however. With major-
loop/minor-loop organization, the expected time to get the first
data bit out of a chip would be one-half the minor 1loop time,
plus one-half the major 1loop time. The bubble memory then

transfers out data bits, but at a much slower rate than a disk.

Bubble memories have an additional advantage over disks by
being "non-inertial": the effect of Trotating through the memory
can be started and stopped with no 1loss of time. Because of
this, it is possible to clock a number of bubble chips in
synchronism. This makes it possible to interleave the bits of a
record among several bubble chips, resulting in an effective

bandwidth which can be arbitrarily large.

The paged bubble memory architectures differ from the disk-
based architectures .discussed in the preceeding section in the
characteristics of the secondary memory and how its GROW routine
behaves. The GROW routine for bubble memories works by
increasing the degree of interleaving needed to provide a data
rate adequate to meet the response time objective. The degree of
interleaving of the bubble memory doubled on‘every call to the
grow routine, stopping only when the burst bit rate of the bybble
memory exceeded that of an 8-way interleaved RAM memory 32 bits
wide with 200 ns Dbasic cycle time. (That 1limit was never

reached.)

- 99 -

The bubble memory thus requires at least one chip for every
degree of interleaving. After converging to the required degree
of interleaving, the cost function routine would check to see if
enough chips were provided to hold the requisite number of active
and/or inactive versions. If not (as was invariably the case),

the cost funtion calculates the proper number of chips.

Because of the expected higher cost of bubble memories, the
smart terminal architecture includes an optical video disk memory
on the network for archival storage of inactive versions. The
OVD is assumed to have the same characteristics as a magnetic
disk in terms of access time, but can store up to two orders of
magnitude more bits per dollar. Each OVD has a communications
microprocessor interfacing it to the network. This architecture

thus has three levels of memory hierarchy.

Pages C-5, C-6, and C-7 show the cost function results for
the central, cluster, and smart terminal variants on the paged
bubble memory architecture. The results are most unsatisfactory,
for several reasons. First, the bubble memory is more expensive
per bit than disk. Second, and perhaps more disappointing, the
overlapping scheme does not reduce rotational latency, which
accounts for a major portion of the retrieval time. Thus, no
degree of 1interleaving can increase the overall performance of

the bubble memory by more than about a factor of two.

- 100 -

Consequently, the bubble memory becomes an inseparable

bottleneck.

The tertiary memory scheme for the smart terminal case proved
most unsatisfactory, as the time for downloading a version
stretches into minutes even for small data bases. As a result,
it proved impossible to keep the average time per transaction
low. The times of the bubble memory on the terminal, the
archival memory, and the network connecting them are roughly the
same, and it would seem at first glance that overlapping them
should be possible. Since the terminal's bubble memory serves
only one wuser, there is nothing to overlap its operation.
Because the network and the archival memory are shared, it is
likely that successive requests to them will come from different
terminals; thus they would not behave in an overlapped fashion

from the point of view of one terminal.

4.2.3 CCD Memory

Charge-coupled devices (CCDs) make a very fast serial memory.
Like bubble memory, CCD memory has no "seek" time. By comparison
to bubble memory, however, CCD memory has a much faster
"rotational" delay and transfer rate. CCD must probably be

regarded as inertial, because stopping the clock for even a few

- 101 -

milliseconds will result in loss of data. However, since CCD's
are clocked electrically, it 1is possible to wuse the same

interleaving scheme discussed for bubbles.

CCD memory has the disadvantage of volatility: any CCD
configuration must also include some non-volatile store at least
for inactive versions. For the smart terminal architecture, this
non-volatile memory was provided by an optical video disk
archive, as with the bubble memory cases. The cluster and

central cases presented here simply ignore the issue.

Except for the characteristics of the CCD chips themselves,
the CCD paging cases were modeled in exactly the same manner as
the bubble memory cases. The CCD memory is assumed to have a bit
rate of 10 MBz, and a smaller page size than the bubble memory,

as this turns out to maximize the throughput of a CCD

configuration.

Pages C-8, C-9, and C-10 show the cost function results for
the CCD paged central, cluster, and smart terminal architectures.
With their vastly higher bit rates, CCD memories could handle
most of the cases, although at a higher price than the disk
configurations. Only the most demanding cases (over 100 users

and relation size over 50,000) required a degree of interleaving

greater than 1.

- 102 -

Because of the smaller optimum block size, the CCD cases
reached CPU power limitations sooner, and thus could not handle
the 200,000 and 500,000 tuple relation size cases. The smaller
block size means more CPU overhead in I/O. Increasing the block
size might permit the CCD architectures to handle these larger
relation sizes within the prescribed response time, but would not
significantly reduce the cost of these configuratibns, because

the CCD memory dominates system cost.

' Whiie the CCD memory constitutes an overwhelming proportion
of the <cost, the CPU actually contributes the lion's share to
response time, accounting for about 80% to delays. The CCD memory
based architectures could not meet the response time objectives

for the 1largest relation sizes because of CPU time rather than

because of the paging memory.

4.2.4 Electron Beam Accessed Memory

Electron Beam Accessed Memory (EBAM) wutilizes stored charge
to represent information. A beam of electrons, deflected by
either magnetic or electrostatic means, reads out the charge.
Early pre-commercial computers used a form of EBAM memory, with a
density of 16 to 64 bits per tube. History records that magnetic
core memory quickly outstripped EBAM, and became the basis for

all first generation commercial computers.

- 103 -

Interest in EBAM has revived in the last few years due to two
major breakthroughs: silicon targets and two-level deflection
systems [Smith78]. Proposed EBAMS use a target which acts like a
FAMOS EPROM, where the beam addresses the bit needed, but with
only one sense amplifier circuit for the entire target. The beam
goes through a coarse-resolution deflector, which addresses

perhaps a 128-by-128 array of fine deflectors.

Compared with other forms of memory, EBAM offers several
intriguing advantages. Bit densities are limited by beam
resolution, but the storage capacitors in the silicon target can
apparently be as small as minimum geometry transistors (0.25
micron diameter). The EBAM target requires no patterning, and
thus could be very inexpensive to fabricate. Information in an
EBAM is relatively non-volatile: as with FAMOS EPROM, data could

be stored reliably for 100 years before charge 1leakage became a

serious problem.

EBAM has the disadvantage of requiring high voltage support
circuitry. Progress 1in commercializing the new generation of
EBAM has reportedly been slowed by difficulty in manufacturing
the deflection mechanisms. Assuming that both of these

objections could be overcome by reasonable cost, how would EBAM

fare in the REL machine?

- 104 -

EBAM as a disk replacement has the interesting property of
having neither seek time nor rotational latency. In this sense,
EBAM acts more 1like slow RAM, providing a bit per tube
approximately every 10 microseconds, with storage -of 512 megabits
per tube. (*) With this density and non-volatility, the three-
level stores discussed for bubble and CCD are probably not
necessary. Also, since EBAM timing is electronic, it should be
possible to make interleaved EBAM systems with higher effective

bit rates.

With the exception of the characteristics of the EBAM
secondary store, the EBAM paging architectures were modeled
exactly like their disk-based cousins. EBAMs were assumed to
cost $1,000 per tube, based solely on the forecast in [Smith78].
Each configuration includes an EBAM controller, which was assumed
to cost exactly as much as a disk controller (for lack of any

better way to estimate it).

Pages C-11, C-12, and C-13 present the cost results for the
EBAM paged central, cluster, and smart terminal architectures.
EBAM could be a very effective architecture, providing costs only
slightly larger than disk for the smaller data base sizes, and
throughput enough to provide real-time response to all but the
very largest data bases through interleaving.

(*) based on the 1985 projection of [Smith78]

- 105 -

The principal of '"equal frustration'" gives one insight into
why the EBAM architectures are effective. About 38% of the

response time is due to the EBAM, with the rest contributed by

the processor: a pretty fair balance.

[Smith78] suggests that EBAM could be used as a main memory
with relatively slow cycle time but very large capacity. A later
section in this chapter investigates the implications of an EBAM-

main-memory architecture.

4.3 SERIAL ASSOCIATIVE ARCHITECTURES

4.3.1 Logic-Per-Head Disk

Many data base machine architectures have been proposed based
on associating some logic with every 'track" or '"loop" of a
serial secondary storage device. [Slotnick70] first explored the
possibility of adding some comparison logic to the read/write
logic of conventional disks and drums. This proposal 1led to a
wide and growing literature of architectural proposals (and some

experimental implementations).

- 106 -

The CASSM (Content Addressed Segment Sequential Memory) work
of Lipoviski and Su represents one of the earliest proposals for
harnessing logic-per-track systems to data base management. (%)
CASSM could operate on the individual rows of a relation, marking
all rows which matched a given pattern or had a given condition.
These matches could then be output to a general-purpose computer
for further processing. CASSM could be adapted to hierarchical
data bases as well as relational data bases, but primarily served

as a "filter" for selecting records which would then be processed

further.

The RAP (Relational Array Processor) work of Ozkarahan et al.
(%) took the next significant step in logic-per-track
architectures, particularly those oriented to both disk and the
relational model. RAP employs K comparators per track, and can
compute K ©boolean conditions on the stored tuples in one
revolution. Like CASSM, RAP is primarily concerned with marking
rows of a relation that meet specified conditions, and outputting
those rows to a general-purpose computer for further processing.
Both RAP and CASSM deal with unordered data.

(*) CASSM first appears in the literature in [Healy72]. The
literature includes several papers on the architecture of CASSM
([Copeland74a], [Lipoviski78] and [Su75]). The data manipulation
language for CASSM is discussed in [Copeland74b], [Su77], and
[Su78]. A performance analysis of CASSM appeared in [Chen76].

(*%*) See [Ozkarahan75] for an overview of RAP. [0zkarahan76]
more fully documents the concepts of the RAP project.
[Schuster76] and [Ozkarahan77] discuss refinements of RAP.

- 107 -

The RARES (Rotating Associative RElational Store) system
[Lin76] 1is another disk oriented design. In CASSM and RAP,
tuples are arranged serially along the tracks of the disk. By
contrast, RARES arranges tuples by placing the successive bytes
of the tuple on adjacent tracks, so that the logic element scans
a different tuple every character time. RARES uses a RAM called

the response store to mark tuples which either meet the boolean

condition to be computed or else are ready for output.

The CASSM, RAP, and RARES architectures are very effective at
selecting the rows of a relation which meet a condition or set of
conditions. Their effectiveness at computing the project and join
operations, however, is limited by the number of conditions which
can be evaluated at one time. CASSM searches for one condition
at a time, and thus could be very slow at computing a projection
of a large class against a relation. RAP computes projections
and joins by using one of the K comparators per track for a tuple

of the class, thus M/K passes through the relation must be made.

Noting the potentially high cost of projections and joins in
RAP, [Shaw79] proposed using a content-addressable memory (CAM)
as part of the logic per track. The CAMs are loaded with as many
members of the smaller set as will fit. The CAM associated with
each track is loaded with identical data. The serial memory then

scans the larger relation, and any matches are recorded in the

- 108 -

CAM. It may take several cycles of loading the CAM and passing
through the 1larger set on serial store to complete the

computation.

CcPU

bus

CAM and l
- R/W 'w
logic Electronics
ia i

Head

CAM and R/W |
- logic — Electronics

l media j

CAM and R/
[| Jlogic Electronics

ﬁ media é

Figure 4-3. Logic Per Track Architecture

The serially associative architectures discussed in this
thesis all have the form proposed by Shaw, employing a content-
addressable semiconductor memory of high speed but 1limited
capacity per track. [Locanthi77] gives a specification for such a

CAM.

- 109 -

The disk modeled for the logic-per-head configuration assumed
20 recording surfaces (heads),‘the number typically configured'on
large-capacity disk drives today. The LPH disk drive is assumed
to have a capacity of 1 billion characters, about one half of the
density expected in the largest capacity drives, to account for
the 1likelihood that LPH drives will develop further down the

magnetic technology learning curve.

The HPT disk is modeled as three nodes: a ''channel element,"
a "seek element,'" and a "rotating element.'" The rotating element
models both the disk and the CAM. The time taken by this node
represents the passage of data from the larger set passing under
the heads and going to the CAM. The CAM is assumed to be fast
enough to keep up with the data rate of the disk. The service

rate of the rotating element node 1is expressed in terms of the

burst data rate of the disk - about 1 million bytes/second per
track.
The seek element accounts for head motion. It has a service

rate commensurate with ordinary disks. The PAGE_SIZE variable is
set at the number of bytes on a cylinder, which forces the model

to calculate the appropriate number of seeks from the size of the

relations.

- 110 -

The channel element accounts for reading matched tuples out
of the CAMS and 1into the host computer. The channel element
corresponds to the logic in the HPT disk drive which resolves
contention between CAMS for use of the bus to the HPT controller,

and then on to the host.

The HPT disk can be wused as an ordinary disk with no
reduction of throughput. The modeled cases assume that accesses
to individuél records and/or pages would be performed by access
methods identical to those used for ordinary disks. It could be,
however, that efficient organization of physical space on the
disk for the projection operation might be sufficiently different
from that appropriate for efficient single-record retrieval that
any particular file would have to be organized one way or the
other. If such a disparity in file organizations became extreme,
it could greatly decrease the effectiveness of the HPT
architectures if retrieval of single records required scanning

entire files.

Projections are modeled by a fairly complex interaction of
the seek, rotating, and channel elements. First, the number of
passes through the relation required is computed by finding the
cardinality of the smaller of the two sets and dividing it by the
size of the CAM in tuples (any fraction is rounded up to the next

integer). The CAMS must be loaded anew for each pass. The CAM

- 111 -

for each track of the disk will be loaded with an identical
subset of the tuples of the smaller set. The CAM 1loading
operation requires a seek, a rotational latency, a page transfer

time, and an interrupt to the host CPU.

Next, the larger set is passed through the logic elements.
The model computes the number of cylinders occupied by the larger
set, and multiplies by the number of passes Trequired to obtain
the total number of cylinders of data which must pass under the
logic elements. For each cylinder passed by the logic elements;
a seek, rotational latency, and full track revolution time ate
required. At the end of the <cylinder operation, the LPT drive

generates an interrupt to the host CPU.

Matches are output to the central processor. If the
projection in progress produces a partial result to a query, that
partial result must be written back to the disk. This write-back

operation occurs as ordinary page-by-page writes to the disk.

If either the seek element or the rotating element proves to
be the worst delay node, the model first tries to decrease the
number of passes required by increasing the capacity of the CAM.
Because the CAM is a high cost per bit semiconductor logic/memory
system, increasing the size of the CAM can increase the cost of

the LPT drive fairly rapidly. The model will not try to expard

- 112 -

the CAM, however, if it is already larger than the smaller set,
because this would not reduce the number of passes through the
larger set (which is identically 1 for this size CAM). Instead,

the number of LPT drives in the configuration will be increased.

If the channel element becomes the limiting node, the model
will add another <channel element, up to a total of 16 LPT
controllers. If the CPU 1is the 1limiting node, it will be

increased in processing power.

Pages C-17, C-18, and C-19 give results for the disk logic-
per-head device applied to central, cluster, and smart terminal
architectures. The smart terminal variant is least <costly for
one user, the cluster variant for 2 to 10 users, and the central
variant for 20 or more users for all of the tested range of data
base size. The LPH disk architectures appear able to cover the

range of requirements with very low costs.

4.3.2 Bubble and CCD Logic-Per-Track

The concept of logic-per-track architecture applies to any
serial storage medium, and most of the literature discusses these
architectures without binding the implementation of the serial

store to disk, bubble, or CCD memory. However, the actual choice

- 113 -

of the sequential medium has significant implications for the

cost and performance of the resulting configuration.

Bubble and CCD memories offer several architectural
alternatives which cannot be recognized in disk for logic-per-
track systems. The design of the disk drive fixes the number of
tracks. Further, because each drive in a string has 1its own
motor and electromechanical access mechanism, it is generally not
possible to synchronize disks closely enough to allow interleaved
transfer of a block from several disks at once. However, with

bubble and CCD memories, these architectural alternatives must be

considered.

The ©bubble- and CCD-based 1logic-per-track architectures
modeled here use the same fundamental organization as the disk
logic-per-head model previously discussed. A relatively small
but fast CAM stores the tup1e§ of the smaller of the two sets
which participate in a project operation, and the tuples of the

larger set are passed by the CAM from the larger serial store.

However, the serial memory organization can be tailored by
the architect to a much greater degree than is possible for disk.
First, the degree of interleaving can be increased to provide a
faster effective transfer rate. Secondly, the number of '"tracks"

can be set to any value, as opposed to the fixed number of

- 114 -

recording surfaces of the disk. Finally, the capacity CAM can be

set, as discussed for the LPT disk architectures.

The bubble and CCD memories are thought of as being organized
into a number of tracks, each with an associated logic element
which includes a CAM. Much of the literature on bubble and CCD
logic-per-track architectures assumes that the serial loop is
large enough to contain 1/#TRACKS of the data base, which leads
to unreasonably long loop times 1in practice. The cases modeled
here assume that each '"track" is stored in a '"major loop/minor
loop"” form, where major loops are addressed by conventional
semiconductor logic multiplexers, and minor loops are implemented

by the serial technology.

This organization permits the multiplexers to perform the
same function as the access mechanism of the disk, effectively
defining a '"cylinder" as the same minor loop address in each
"track." As with disk, single records within a track can be
accessed in rotational latency plus transfer time. Similarly,
the time to access the first record of a set for the projection
operation is on the average one half the minor loop time, Trather
than one half the time to shift through 1/#TRACKS of the entire
data base. Unlike disk, the effective seek time is a matter of
nanoseconds rather than milliseconds; therefore the bubble and
CCD cases were modeled without the 'seek element" used for the

disk cases.

- 115 -

Both projections and single record retrievals are modeled for
bubble and CCD-logic-per-track architectures in much the same
manner as for disk. For siqgle record retrievals, the
appropriate cylinder will be addressed electronically in
negligible time, then rotational delay and transfer time are
accumulated. For projection operations, the model computes the
number of passes required through the smaller set based on the
capacity of the CAM. The CAM is loaded by accessing the smaller
relation, then the larger relation is passed under the CAM. The
CAM of each track operates on the identical subset of the tuples

of the smaller relation, but on disjoint subsets of the tupies'of

the larger relation.

The rules for growing ©bubble and CCD logic-per-track
configurations differ from those for disk. First, the degree of
interleaving is set so that the data rates of the serial memory
and the CAM match. For CCD memories this means no interleaving
because of the extremely fast data rate of the CCD chips. The
number of tracks starts at one the capacity of the CAM at 16
tuples. If the 1logic-per-track memory becomes the worst delay
node, the model will first attempt to decrease the number of
passes through the data base by increasing the size of the CAM.
When the CAM becomes large enough to hold the smaller set in its
entirety, then further expansion of the CAM will do no good, so

the model then increases the number of tracks.

- 116 -

Increasing either.the number of tracks or the size of the CAM
has the effect of increasing the number of comparisons done in
parallel, which is proportional to the product of the size of the
CAM times the number of tracks. Increasing either parameter will
have the same impact on the cost of the configuration, as it
increases the amount of CAM in the configuration but does not

increase the amount of serial memory.

In many of the runs, a seemingly strange condition developed
where the logic-per-track memory seemed to contribute 1little to
response time while the CPU ran to saturation. This seemingly
odd effect results from the generation of an interrupt at the end
of each "cylinder" in the projection operation. To resolve this
problem, the grow routines for these <configurations must
sometimes expand the number of tracks or the CAM capacity in
order to reduce CPU utilization. Recognition of this problem and
developing proper heuristics for the grow routines proved to be

the major difficulty in modeling these configurations.

The heuristic which proved successful works as follows: when
the model reports that the CPU is the worst delay node, the grow
routine for the CPU node first computes what fraction of the CPU
time 1is spent responding to interrupts for the projection
process. If this fraction exceeds 40%, then the CPU node grow
code simply branches to the 1logic-per-track grow code and does

not expand the CPU at all.

- 117 -

Pages C-20, C-21, and C-22 show the cost function results for
bubble-based logic-per-track memories for central, cluster, and
smart terminal architectures respectively. Pages C-23, C-24, and
C-25 show the cost function results for CCD based logic-per-track
central, cluster, and smart terminal architectures respectively.
The smart-terminal architectures for both bubble and CCD assume
no archive. None of the CCD architectures address the need for

the volatile contents of the CCD memory to be backed up by a non-

volatile device.

In general, the bubble cases are all more expensive than
their disk counterparts, and the CCD cases more expensive than
the bubble counterparts. The increased expense reflects the fact

that the cost of the serial memory dominates the cost of these

architectures.

4.4 DISTRIBUTIVE FUNCTION ARCHITECTURES

Every database machine architecture can be characterized by a
""grain size," or ratio of the size of the basic memory and logic
element to the size of the entire system. The paging
architectures exhibit a very large grain size, where the entire’
secondary memory and entire processing element are connected by a

relatively small number of channels. The serial associative

- 118 -

architectures of the previous section exhibit a fairly small
grain size, with relatively limited processing function (although

a great deal of power in terms of bit rate) 1is matched by one

track of serial store.

Other grain sizes «can be envisioned. At the other extreme
from the paging architectures, an architecture based on keeping
the entire active version in a content-addressable semiconductor
memory could be devised, with extremely high throughput and also

extremely high cost for even modestly large data bases.

By contrast, this section contemplates architectures with
fairly large grain size, that is, with a relatively large amount
of logic, in the form of a microprocessor, associated with a
fairly large amount of memory, in the form of a disk drive. A
bus of some sort interconnects the microprocessors into a
distributed function architecture which acts as a MIMD (*)

multiprocessing environment.

Many systems of this character exist today, with widely
varying degrees of cooperation between processors. The ETHERNET
system represents a case where the processors cooperate only to

the extent provided by applications-level programming

(*) Multiple Instruction Streams, Multiple Data streams.

- 119 -

[Metcalfe75]. More intimate cooperation, to the point of
providing a distributed operating system which appears as a

single entity to the user, can be found in the Tandem Guardian

operating system and supporting hardware [Tandem76].

How would a multi-microprocessor system be architected as a
REL machine? Obviously, computing relational database semantic
operators should be the focus of the discussion, for we have

already seen that parsing input sentences is not the problem.

Just as with the serial-associative architectures, assume
that the distributed function architecture will be designed for
relational data base semantic operators, and act as a "back end"
to a general purpose computer which will handle parsing and I/0
with the user. As with the architectures of the last section, a
CHANNEL node connects the special-purpose relational data base

""engine'" with the general-purpose HOST computer.

internal bus

- 120 -

interface vos interface access von access comm.
processor processor processor processor processor
\‘ s6o0 @ // £“ 14
host disk disk 1
(other
clusters)
Figure 4-4. Distributed Function Architecture
The special purpose engine consists of two kinds of
INTERFACE PROCESSORS which correct the host

processors:

computer,

and ACCESS PROCESSORS

which provide the

logic to

- 121 -

associate with one secondary memory (disk) unit. A BUS connects
the processors in the configuration. To model the disk drive, a
DISK CONTROLLER node accounts for rotational latency and transfer

time, while a DISK ARM node accounts for seek time. (*)

To realize the parallelism inherent in this architecture,
each access processor should store a portion of the data base,
arranged such that a roughly equal portion of each relation
resides on each access processor. This distribution of data has
the same motivation as for the serial-associative architectures,

where all of the CAMS should be kept busy for maximum throughput.

The required distribution of data to access processors could
be achieved in a variety of ways. A hashing algorithm where the
hash buckets correspond to access processors would be one of the
simplest such algorithms. An algorithm based on key value ranges
with a table of assignments of key ranges to processors would be
equally suitable. 1In practice, any algorithm for mapping records
onto processors which evenly distributes the tuples of a relation
among access processors and is deterministic and easy to compute

will suffice.

(#) This technique for modeling disk drives was discussed fully
in Section 3.2.1.

- 122 -

Models of the distributed function architectures employ
several nodes. The host is modeled as a wuniprocessor, with
mainframe cost functions for the central variant and minicomputer
cost functions for the cluster and smart terminal variants. The
host processor handles all I/0 to the user's CRT and parses input

sentences. Each retrieval or projection operation starts with a

request generated by the host.

Requests from the host and responses from the back end flow
over the channel. Each interface processor is assumed to have

its own channel, with a bandwidth of one megabyte per second.

Interface and access processors are modeled as
microcomputers. (*) The access processor is assumed to execute
the same number of instructions for each kind of activity as were
assumed for the disk paging architectures. . (Remember that each
access processor has only 1/Nth of the data for any relation,

however). The models assume one disk drive per access processor.

(*) [DeWitt83] discusses a somewhat similar architecture known as
the DIRECT system. DIRECT utilized minicomputers as the
processing elements: a single VAX 11/750 for the interface
processor and up to eight PDP 11/23's as access module
processors. There are other differences in the allocation of
function and the interprocessor interconnect schemes between

DIRECT and the case discussed here.

- 123 -

The cluster and smart terminal variants on the architecture
include a set of nodes for the local bus, access processors, and
disks. In addition, the remote busses, access processors, and
disks - have a set of nodes to represent them in aggregate.
Because of the functionality available in a microprocessor, the
models assumed that both the local and remote back end engines
would have a microprocessor on their respective busses dedicated
to interfacing with the ETHERNET. Offloading the network
interface task from the host processor was not possible in any of

the other architectures because of the limited intelligence of

the components.

The operation of the distributed architecture back end can
best be illustrated by describing. the flows for retrieving a
record and performing a projection. A request for retrieval of a
single record originates in the host processor and is
communicated to the back end over the channel where it is fielded
by an interface processor. The interface processor interprets
the request and communicates it over the internal bus to the
appropriate access processor. (*) The access processor then

retrieves the record from disk in ordinary fashion, by reading in

(*) The record mapping algorithm must be deterministic because it
would otherwise be necessary to communicate every single record
request to every access processor, causing the system to do N
times the amount of work actually required. ‘

- 124 -

the entire block which contains the record. Software extracts
the relevant bytes of the logical record requested, which is
forwarded back to the interface processor via the bus and thence

to the host via the channel.

Because the access processor extracts only the relevant bytes
from the 1larger physical block on secondary store, the
architecture utilizes considerably less bandwidth on the internal
bus than is required between the processor and secondary store.
By contrast, some other architectures result in passing
considerable data, much of which 1is not relevant, to the

processing elements.

The projection operation takes advantage of this property to
an even greater degree. A projection operation similarly
originates in the host and is communicated over the channel to an
interface processor. The interface processor broadcasts the

projection request over the bus to all of the access processors

simultaneously.

Each access processor does the projection opefation on 1/Nth
of the data. As with the paging architectures, assume that
relations (in this case, portions of relations) are stored on
disk in key sequence. If the projection is on the primary domain

(key field) of the relation, then the data mapping algorithm

- 125 -

guarantees that tuples of the class and of the relation which
could have matches will already be mapped onto the same

Processorse.

If the projection operation 1is on a non-key domain, then
tuples of the class will in general be 1in different access
processors from the tuples of the relation which they will match.
The relation must be resorted on the requested domain and
redistributed via the bus under the mapping algorithm before the
projection operation can be performed as for the previous case.
Alterﬂately, the tuples of the relation could have been stored in
inverted form. Note inversion would make it possible to compute
any desired projection without sorting; however, it also implies
that a tuple and its inverted copy will generally map onto

different access processors.

To complete a projection operation, the access processors
could output their partial results via the bus to the interface
processor, which would merge them and forward them to the host.
Alternately, the access processors could store their partial
results back on their disks for use in a subsequent step of
processing a multi-projection sentence. The latter possibility

could greatly reduce the requirements for bus bandwidth.

- 126 -

The models of distributed architectures start out with a
single 0.5 MIPS host computer, which grows by 0.5 MIPS increments
as needed. Each configuration starts with a single channel and
interface processor. If either the channel or the interface

processor must be expanded, the model adds another interface

processor - channel pair.

Configurations start with two access processors and disks.
If the access processor node (*) becomes the worst delay node,
the model increases the number of access processors and
associated disks by 10% rounded up to the nearest integer. The
model permits the number of access processors to grow without
limit; however, increasing the number of processors also
increases the modeled time for a processor to acquire the bus and

begin to transmit a packet.

When a configuration has converged to the response time
criterion, the cost function for the distributed architecture
picks the appropriate capacity disk. The program first tries to
see if the entire data base will fit on 5-inch disks of 20
megabyte capacity at one drive per access processor. Next, the

program checks to see if 8-inch drives of 100 megabyte capacity

(*) Remember that this QUEUETYPE=1 node models all of the access
processors.

- 127 -

will be adequate; next come 1l4-inch drives of 500 megabytes;
finally 2 gigabyte large-capacity drives are assumed. If the
largest drives cannot accommodate the data base at one drive per
access processor, then the program increases the number of access
processors and 2 gigabyte drives wuntil the configuration can
accommodate the data base. After thus adjusting the cost of the
disk and also perhaps the number of access processors, the

program computes the cost of the configuration.

Configurations start out with a bus one byte wide with a
cycle time of 150 nanoseconds. If the bus becomes the worst
delay node, the bandwidth of the bus grows by increasing the
number of data wires, up to a limit of 16 bytes wide. Increasing
the bus width also increases the cost of each processor because

it requires more bus drivers.

Pages C-14, C-15, and C-16 give cost function results for the
disk distributed architectures in central, cluster, and smart
terminal variants. Just as the paging architectures could be
operated with other forms of secondary memory, the distributed
architecture could also be defined with bubble, CCD, or EBAM as
the secondary store. However, the results from the paging
architectures suggested that with the lowest cost per hit, the
disk-based cases would be the most interesting candidates for

study.

- 128 -

In general, the smart terminal variant on the architecture
proved better than the cluster or central variants only for one
user. The cluster approach seems better for only two to five
users; above that point the central architecture proves most cost
effective. This 1is to say that one central configuration is

always superior where communication with the terminals is well

optimized.
4.5 ONE-LEVEL STORE ARCHITECTURES
4.5.1 - RAM

The architectures considered to this point employ either two
or three hierarchical 1levels of memory and 1logic for processing
active versions. The design complexity of all of those
architectures resulted from the need to manage the flow of

information between levels of the memory/logic hierarchy.

Some of the experimental natural 1language systems treat
memory as if only a single hierarchy existed. The addressing
mechanisms of the hardware and paging mechanisms of timesharing
operating systems encourage this view. Unfortunately, the

mapping of data onto the secondary store may not be favorable,

- 129 -

which partially accounts for the slow performance of many of

these systems for even modest sized data bases.

The MULTICS operating system represented one of the first
attempts to provide the appearance of a one-level store. A
MULTICS program issues address references to segments which may
be resident either in main memory or on the paging device (which
is typically disk), and the operating system resolves references
to segments which are not in main memory by suspending the
requestor until the segment is brought in from the disk. MULTICS

treats a disk file as a special case of a segment.

The IBM System/38 [IBM78] represents the next step in one-
level store architectures. System/38 programs issue 48-bit

addresses, and do not know whether the requested byte was brought

up from cache, main store, or disk.

From a performance standpoint, there would be no difference
between the model of a disk/RAM one-level store and the disk
paging architectures discussed early in this chapter, but only if
both adopted the same paging algorithms. As discussed by
[Greenfeld72], however, paging algorithms typically employed in
such systems do not employ a strategy for locking crucial pages
in real memory, and thus result in more paging than the optimized

algorithms assumed for the paging architecture cases. Thus, the

- 130 -

reader is Teferred to Section 4.2 for a discussion of the best
case for architectures where a one-level store is simulated with

a fast main memory and a slower secondary store.

The simplest true one-level store is a RAM large enough to
contain an entire active version. The primary advantage of such
an architecture would be to simplify the programming of an
advanced data management system by eliminating the need to choose
data structures for efficient use of the secondary store. The
simple 1list or ring structures which characterize some of the
early and/or experimental natural language systems could be used

in this kind of system with impunity from thrashing.

The model wused here of an all-RAM one level store assumes
that the RAM must store only active versions. Inactive versions
are brought in from disk on demand. All of the flows were
modeled as for the disk paging architecture, with two exceptions.
The "change version'" request means that the entire current active
version must be copied out to disk and the new version read in.
In all other requests, the software overhead involved in dealing

with peripherals has been eliminated.

Pages C-29, <C-30, and C-31 present the results for all RAM
single-level store systems for central, cluster, and smart-

terminal architectures. As the cost functions show, as nice an

- 131 -

idea as the all-RAM single level store may be for the software
implementer, the cost will be prohibitive compared to the more

complicated approaches discussed previously.

4.5.2 EBAM

EBAM was the original main memory of the earliest computers.
[Smith78] has proposed that EBAM could make a comeback as a main
memory because it 1is random-access in nature. Many EBAM tubes
can be interleaved to create a memory with respectably high
throughput, and if combined with a semiconductor cache memory,
EBAM could make a very high capacity main memory. What, though,

are the consequences of such a memory?

For one thing, the high degree of interleaving and long
latency time compared to the speed of the processor (10 to 100
instruction times or more) mean that the EBAM would be best used
with a wide cache wordsize and heavily favor algorithms which
access data linearly. Fortunately, the projection operation has

these characteristics.

With projection viewed as a linear scan through ordered sets,
the flow of information between the EBAM and the cache would be

just the same as in the EBAM paging case of flow betwen the EBAM

- 132 -

and main memory. The major difference would be that the cache
hardware would manage transfer of pages between the EBAM and
semiconductor memory without generating interrupts for the CPU or
requiring a complex access method. Consequently, the performance
of the EBAM single-level store architecture will closely resemble

that of the paging architecture, but with lower CPU utilization.

Pages C-26, C-27, and C-28 show the cost function
results of the EBAM single-level store architectures for central,
cluster, and smart términal variants. These runs were made by
simple modification of the programs for EBAM paging
architectures, where the CPU overhead per page was reduced from
the 2,000 instructions appropriate to an access method execution
to 100 instructions which would be more characteristic of setting

internal memory mapping registers.

In all cases, the EBAM single-level memory cases are equal to

or less expensive than their paging counterparts due to lower CPU

costs. EBAM costs are identical.

- 133 -

CHAPTER 5 DISCUSSION OF THE RESULTS

5.1 INTRODUCTION

Before turning to the results of the study, it is worth
considering what the "best architecture' means. Ideally,- one
architecture would be superior to all others for every
combination of forcing parameters (*) conceivable. In the terms

of this study, '"superior" means lowest <cost for the fixed level

. of response time.

Unfortunately, the data generated by this inquiry do not 1lead
to such a clear-cut result. Instead, we find, not unexpectedly,
that different architectures are optimal for different regions in
the multi-dimensional space of organizational requirements.
However, several general conclusions can be drawn: these are

discussed in the ensuing sections.

Since there is no single optimal architecture for all cases,
the definition of '"best architecture'" becomes perforce more
difficult. The ©best architecture, wunder a weaker definition,
would be optimum or reasonably close to optimum for more of the

space of user requirements than any other architecture. It is

(*) see Figure 2-5.

- 134 -

this weaker criteria that will be used in arguing the conclusions

of this chapter.

5.2 PARSING IS NOT THE PROBLEM

- Almost all of the literature on the problem of advanced data
management systems anticipates that the implementation of
semantic operators will be more important than implementation of
syntactic analysis (parsing). (*) The results of all thirty
cases presented herein generally confirm this notion for all of
the architectures studied. However, there are some important

caveats to over-generalizing this conclusion.

Most of the literature which concludes that parsing is not
the main problem considers the richer lingusitic aspects of
advanced data management systems. Another way of saying this is

that it is typically assumed that the simple sentence or complex

query transactions dominate the workload. Indeed, this is the
case in the present study. As the sample result on Page B-6

shows, parsing accounted for 12% or less of the response time for

the simple sentence transaction and 4% or less of the response

time for the complex query transaction. Further, this relative

contribution drops dramatically with increased typical relation

size. (%x%*)

E*) See, for example, [Smith79] or [Thompson75].
*%) The output shown in Appendix B assumes 5,000 tuples per
relation: a relatively modest value.

- 135 -

However, the simple query transaction is a glaring exception,

in which parsing typically accounted for 75% (or more) of the
overall response time. This result must be expected to follow
from the premise that just because the 'semantic operators
involved are simpler, the task of analyzing the input sentence to
determine which semantic operators to apply to which parts of the

data base is no easier.

The foregoing observation has several implications for
advanced data management systems. First, the promoters of such
systems must recognize that they are not 1likely to perform as
well as third generation (%) systems on simple, single row
inquiry and update operations because of the overhead of parsing.
Advanced systems offer a high degree of personnel productivity
for such operations, however, because each input sentence is
equivalent to a simple, but nonetheless exacting, program of

perhaps 10 to 100 lines in an algorithmic language such as COBOL.

(*) See Figure 1-1.

- 136 -

A more severe problem 1lies in that data must initially be
entered into any system, including a fourth generation system,
typically through a 1large series of simple individual update
transactions. This initial data load (*) thus may have a time

penalty of about a factor of four when compared to present-day

systems.

The solution to both problems lies in providing mechanisms by
which the parsing effort can be amortized over a large number of
simple cases. The results of the parsing operation must be saved
in some fashion and executed repeatedly with different values

instantiated for the variables.

Historically, this problem has been solved in one of two
ways: by compilation or by an special facility. Compilation has
the advantage that the same language which is customarily used in
an interactive mode can be used to specify the operations, but

the disadvantage of greater overhead associated with each parsing

operation. (*%*)

(*) which may be part of a periodic (daily, weekly, or monthly)
operationing routine

(#*) See [Astrahan76] for a discussion of this approach in IBM's
System/R prototype.

- 137 -

The REL Bulk Data Entry facility [reference??] exemplifies
the second approach. The approach achieves similar efficiencies
in that the data descriptors need be barsed only once, and the
resulting semantic graph can be executed for each input record.
In this approach, a sentence 1is permitted to contain variable
words, and a list of constants can be input from a separate file.
The sentence is parsed with the variable words only once, and the
values in the constant list instantiated each time the resulting
semantic graph was executed, until the constant 1list is

exhausted.

Another alternative to either compilation or to a special
facility would be to provide a cacheing mechanism for semantic
graphs. The cache would record input sentences and resulting
semantic graphs, and use the cached semantic graph whenever the
same user input the same sentence. This approach would be
particularly effective in combination with the variable 1list

instantiation technique discussed above.

A sentence cache would be effective assuming that the same
user often input the same sentence, as would be the case with
variable list instantiation in an initial data entry situation.
If the user were inputting a series of different sentences, the
personnel productivity argument advanced above would tend to

indicate that the users should not be concerned about the larger

- 138 -

parsing time of an advanced data management system compared to a
less functionally rich system. The sentence cache has the
problem that any change in database structures could invalidate
some, none, or all of the semantics graphs which are cached. (*)
The question of the proper policies for "spoiling'" the cache is

an interesting trade-off, which will not be considered here.

Most of the foregoing considerations for simple transactions
apply generically to all of the architectures discussed, in that
all were modeled with very similar assumptions for the
mechanization of the parsing process. One opportunity for
difference lies in the opportunity to process a number of simple
transactions in parallel. As the execution of simple
transactions 1is likely to be compute bound, this will favor
architectures which can make maximum wutilization of secondary
storage access rates. The paging and serial-associative
architectures (**) suffer in this regard because it is relatively
expensive to configure few (one or two) secondary storage units
per. controller. The distributed function architecture (**%)

seems particularly well suited to this requirement, however.

(*) [Astrahan76] discusses similar problems for compiled
transactions.

(**) see Sections 4.2 and 4.3 respectively.

(**%) see Section 4.4.

- 139 -

5.3 USER SHARING ALTERNATIVES

Chapter 4 raised the question of how many users should a
configuration serve: one, a few, or all -- corresponding to the
smart terminal, clustered, and centralized variants on each major
architecture. Figure 5-1 shows typical results for this
comparison. A major finding of this study is that the
relationship between the three variants remains much the same,

despite major differences in the underlying basic architecture.

For a relatively large number of active users, a centralized
approach is least costly. The <clustered approach proved better
than the smart terminal approach even for very small wuser
populations. In general, more demanding organizational
requirements (*) 1lead to the centralized approach becoming less

costly than the others for a smaller number of users.

The major cost disadvantage of the smart terminal approach
stems from the relatively low wutilization of computational and
storage resources. Since the cases were defined to have at worst
an average response time of 15 seconds, and an arrival rate of
one request per user every 60 seconds was assumed, the highest

utilization possible for these cases is 25%. This utilization

(*) typical relation size, rTate of lateral and based operations,
etc.

- 140 -

disadvantage, even when weighed against manufacturing economies
of scale, still results in the conclusion that the heavy resource
demands of advanced data management systems will be most

economically met by shared configurations for the foreseeable

future.

- 141 -

25T Relative
Cost Per
User
Sentra]
204 f
\ smart terminal -
\
\
15+ \
\
\ —— 20,000 rows per
\ relation
_ . = 500 rows per
10+ relation
\
\
N\
_____ ' _ smart terminal _ _ _ _ _ _ _ _
ST~ o — cluster
~
“~
S == == =m . — — — — = central-
cluster 7 : e
T t t +- }) t t
1 2 5 10 20 50 109 200 500

Number of Users

Figure 5-1. Relative Cost of Sharing Alternatives

Another problem with the smart términal and clustered
variants is the network bandwidth required when a large number of
users share the network, and based and lateral operations on
large classes or relations are common. Figure 5-2 shows the

bandwith requirements for a communities of 100 and 500 wusers

under both the smart terminal and clustered regemes as a function

of the relation size.

10

107 A

- 142 -

Network bandwith
required (bits/sec) 500 users,

smart terminal
¢ clustered

100 users,
smart terminal

Y clustered

0.125
0.250

lateral
7 based

class size (tuples)

Figure 5-2.

104 10°

Network Bandwidth Requirements

- 143 -

5.4 MEMORY TECHNOLOGY

As [Greenfield72] observes, the time to transmit pages
between levels of storage hierarchy represents a major
contributor to response time. In the paged architectures, it is
usually the dominant factor in response time. One of the
objectives of this study was to quantify the impact of

alternative memory technologies on the performance and cost of

advanced data management systems.

Based on the cost model of Chapter 3, Figure 5-3 summarizes

the per bit cost of the memory technologies considered.

Figure 5-3. Memory Technology Cost Forecast

Capacity Subsystem Cost (milli-

Technology (bits) Cost (UMC) cents/bit)
Largest disks 8.0 E9 $8,000 0.10
14" OEM disks 1.6 E9 $3,000 0.19

8" OEM disks 6.4 E8 $1,000 0.16

5.25" OEM disks 1.6 E8 $ 300 0.19
EBAM 5.2 E8 $1,000 0.20
Bubble 8.0 E6 § 300 3.75
CCD 8.0 E6 $ 525 6.56

RAM 8.0 E6 $1,500 18.75

- 144 -

Figures 5-4 and 5-5 illustrate the impact of the various
memory technologies on performance. In Figure 5-4, the y-
intercept represents the latency of the device, including the CPU
time to service the page request; the slope represents the
transfer rate. Disk has a high 1latency and high transfer rate.
Bubble has a more modest latency, but a relatively low transfer
rate: thus bubble memory would seem to be optimized by a smaller
page size. EBAM has essentially no latency other than software
overhead, but a modest transfer rate. CCD is so fast that the
latency is minimal and the transfer rate more than comparable to
disk. The transfer rates of bubble, CCD, and EBAM can be

improved by interleaving.

- 145 -

501'Time to Access
1 Page, milliseconds
40+
3071
20 4
10+
0+ t t t $
0K 1K 2K 3K 4K

Page Size (Bytes)

Figure 5-4. Page Transfer Time

Bubble

Disk

EBAM

ccb

Figure 5-5 presents a different interpretation which is more

useful in making page size trade-offs. The tendency of bubble

and CCD memory to be optimized at smaller page size is offset by

Given a

the increased CPU time taken by transmitting more pages.

- 146 -

fairly large page size (2 Kbytes to 4 Kbytes), disk, EBAM, and
bubble memories result in comparable pefformance. However, as
can be seen from Figure 5-3, the cost of bubBle memory is
unacceptably high. Similarly, although CCD offers a 1large
performance advantage over disk, it does not compensate for the

cost disadvantage.

~Bubble Disk
Time OT |
to
Access
1 MB
(seconds)

401

307

204
Bubble
cco Disk
107 EBAM
cco
0 ¢ + + +
0K 1K 2K 3K aK

Page Size (Bytes)

Figure 5-5. Time to Transfer a Megabyte

- 147 -

Figure 5-6 shows the cost functions for the various paging
architectures as a function of the number of users and the memory

technology.

Relative
Cost

Users

N

1 2 5 10 20 50 100 200 500

Figure 5-6. Effect of Memory Technology

- 148 -

The cost disadvantage of bubble and CCD technologies
increases with larger relation sizes. Indeed, this was the case

in all of the architectures with secondary memory which were

studied.

Particularly at 1low page sizes, bubble and CCD offer
considerably more accesses per megabyte of store per second.
However, it simply appears that the advanced data management
system problem better fits the accesses per megabyte per second

of disk or EBAM.

Further, it should be noted that this investigation probably
has two systematic biases which would make disk 1look 1less
favorable. First, a page size of 2,000 bytes was used
throughout, where examination of Figure 5-5 shows that 4,000
bytes should have been used for disk. Secondly, the capacity

projections in Chapter 3 and Figure 5-3 are probably pessimistic.

Will the picture change farther in the future? One can argue
not, since disk, bubble, and CCD technologies are driven by the
state of the art in photolithographic technique: bubble and CCD
for device fabrication, and disk for head fabrication. Thus,
with a similar scaling future, it. is unlikely that the relative
costs of these technologies will change by a factor of two, much

less an order of magnitude.

- 149 -

Do three 1level storage hierarchies make sense for advanced
information systems, perhaps wusing CCD or bubble as the middle
level? (*) As the analysis for the smart terminal paging bubble
architecture (*%) suggests, this case degenerates into paging
between the bottom (slowest) levels of the hierarchy. As
[Greenfield72] argues, although the pattern of reference to the
pages of a given relation can be well optimized, the pattern of
reference to relations, and hence to pages on the lowest level of

the storage hierarchy, cannot be well predicted.

Finally, since EBAM development has attracted relatively
little funding, the conclusion that disk is and and will remain
the memory technology of choice for advanced data management

systems cannot be escaped.

5.5 ARCHIECTURES WITH DISK

Given the conclusions discussed in the prior sections, the
analysis can-be narrowed from the thirty original candidate
architectures to just three: paging disk, logic per head disk,
and distributed function disk; all in their centralized variants.

A cursory comparison of their cost results shows that it will be

a close race.

Y e AT wm D e e W e W e e as oas e o e

(%) Since bubble has no performance advantage over disk and a
cost disadvantage, the discussion focuses solely on CCD.

(**) See Section 4.2.2.

- 150 -

The paging architecture in fact produces the 1lowest costs.
However, it cannot deliver adequate response time when the
relation sizes exceed about 5,000 tuples. The disk itself is the
first bottleneck. The CCD and EBAM paging architectures showed
that without changing the processor architecture, it is possible
to get reasonable response time for up to 100,000 tuples from a

paging architecture.

Another way of stating this «conclusion is that the effective
transfer rate of the disk, accounting for latency and systenm
software, 1is quite low. The actual rate at which pages can be
transferred from a disk 1is not greater than 50,000 to 100,000
bytes per second, (*) utilizing only a tiny fraction of the

bandwidth suggested by the instantaneous transfer rate of the

device.

Increasing the instantaneous transfer rate of the disk,
either by increasing the bit packing density or by transferring
in parallel from several heads, will not significantly improve
the matter. To see why, refer to Figure 5-4: even if the slope

were zero (infinite transfer rate), latency effects dominate.

(*) Refer to Figure 5-5.

- 151 -

Both the logic per head and distributed function
architectures 1increase the rate at which information can be
transferred from a disk storage facility to a processing
facility. Thus they can be thought of as ways to implement

effective interleaving schemes for disk.

The logic per head architecture does this by moving some of
the processing logic into the drive electronics and thus achieves
an intimate coupling of processing and storage. The effective
transfer rate between the processing elements and the storage

elements can be extremely high since each head is transferring at

full instantaneous rate.

By contrast, the distributed function architecture maintains
the same relationship between the processing element and the
storage element as in the paging architecture. It thus also
maintains the relatively low effective transfer rate. However,

it obtains parallelism in a very simple way.

Both architectures can be readily expanded, which accounts
for their success in-providing good response times to even very

severe demands. However, they differ fundamentally in their

costs for very large problems.

- 152 -

The logic per head architecture is o(n*#*2/m) in space-time
product. To see why, consider how it processes the projection of
one very large relation, R1, against an even larger relation, R2.
If the cardinality (*) of R1 exceeds the size of the CAM, then
only the first m tuples of R1 can be loaded into the CAMs, and

the entire R2Z passed wunder the heads. This process must be

iterated ceil(c(R1) / m) times.

By contrast, the distributed function architecture operates
best when projections are accomplished by merge techniques. As
with the paging architectures, if the relations are not already
sorted, it is best to presort them. (**) The distributed function
architecture thus is fundamentally (n/m)*log(n/m) in space-time

product, where m is the number of processors.

(*) (ngmber of tuples. The cardinality of a relation is denoted
as c(R).

(#*) See [Greenfield72] or [Blasgen76].

- 153 -
164

Cost LPT Disk LPT Disk
Per c(R2)=100,000 c(R2)=10,000
User)

144 Distributed
Function Disk
c(R2)=100,000

12--

10 <o

8 s

6+

4 +

Distributed
Function Disk
2 ¢ /C(R2)=10,000
1 4 } + 3 - —
.01 .02 .05 .1 .2 .5 1
C(Rl)/C(Rz)

Figure 5-7. Logic Per Head vs. Distributed Function

- 154 -

To explore these phenomena, an additional set of cases was
run. With the number of users held fixed at 100, the logic per
head and distributed function architectures were subjected to
loads in which the cardinality of the larger relation was varied
from 500 tuples to 500,000 tuples, while the ratio c(R1)/c(R2)
was varied from 1% to 100%. These results are presented on page
C-32 for the logic per head architecture and C-33 for the
distributed function architecture. Figure 5-7 also presents a

summary of the results.

The Logic Per Head architecture does best when the
cardinality of the smaller relation is very small compared to the
cardinality of the larger relation. Such architectures are
effective at matching a small number of patterns against a large
number of candidates. (*) However, when the number of patterns to

be matched 1is 1large, the distributed function architecture

produces lower cost results.

Figure 5-8 shows the problem domains in which the distributed
function, logic per head, and paging architectures produce lowest
cost results. It is worth noting that the cost advantages of

logic per track or paging architectures over distributed function

(%) Producing "a concordance on selected keywords ("Find all
occurrences of the words 'begat', ‘'beget' or 'begotten' in the
Bible'") is an example of this problem.

- 155 -

are not great. Thus, by the définition set forth in Section 5.1,

the distributed function architecture appears to be the '"best."

500,0004] +
c(Rz)
Distributed Function
50,000 + 4
Logic
Per Head
5,000 <4
Paging
500, t + 4 o
0.0 0.2 0.4 0.6 0.8 1.0
c(Ry) /7 c(Ry)
Figure 5-8. Optimal Disk Architectures
5.6 IMPLICATIONS OF DISTRIBUTED FUNCTION

The interconnection bus structure is crucial to the
realization of the distributed function architecture, because it

is the ultimate bottleneck. The manner in which the distributed

function architecture was modeled suggests several requirements

for the interconnect structure.

- 156 -

The interconnect needs a broadcast mode of operation. The
model assumes ‘that a message requesting that some semantic
operator be invoked reaches all processors essentially
simultaneously. While an ohmic wire system, such as Ethernet,
can do this, it cannot handle the problem of acknowledgement:

that is, knowing that the message has been correctly received by

all processors.

The 1interconnect will need to physically connect a large
number of processors. This implies that the distance covered by
the interconnect will be large: certainly larger than several

cabinets.

Besides filling a large volume of space, the interconnect
structure must be fast, as it is the bottleneck. A related
problem 1is that of distributing the <clock throughout the

interconnection network if it is synchronous, or self-timing it.

The merging of results, particularly sorted results, from the
processors presents an interesting problem. A simple strategy
would be to have each of the m processors sort its subset of
tuples, and then transmit blocks of k tuples to one of the
processors, which would then do an ordinary merge sort. This

processor would need main storage for k*m tuples, and this could

be problematical if m were large.

- 157 -

This 1last Tequirement suggests that the interconnect
structure could be a tournament sort binary tree, with sorting
elements in the leaf-to-apex direction, and broadcast elements
(*) in the apex-to-leaf direction. This structure could
accomplish the merge and broadcast operations. With the 150
nanosecond cycle period assumed in the model, nodes of the
tournament sort tree could readily be separated by up to ten
meters of wire. Thus it would be possible to configure a

physically large system, albeit within one large room.

The implementation of such an interconnect represents an

interesting challenge. Would such a structure be interesting to

other computing problems besides data management?

The distributed function architecture assumes that the data
management problem can be divided into subproblems with fairly
high locality of reference, but with 1little or no 1locality of
reference between subproblems. (This 1is the <case when a
projection or join requires that tuples be sorted and
redistributed: it is equally likely that any given tuple, when

redistributed, will go to any processor.)

(#) i.e., ones which copy the input from the apex direction to
both ports in the leaf direction.

- 158 -

Simulation of physical systems with n bodies by integrating
the equations of state also have the <characteristic of no
locality of reference between subproblems. Although the forces
found in nature often obey inverse square 1laws, so that they
weaken with distance, the simulation must still consider the
interaction of every body with every other body. Even 1if the
numerical value of the force between two bodies is very small,

the computational and communications effort is the same as if it

were a large value.

Such problems ‘- could be treated by assigning bodies or grid
points to processors, and having each processor compute an
aggregate effective state for the n/m bodies. (This is the
subproblem with high 1locality of reference). Then, each
processor would broadcast its aggregate state to the other m-1
processors, each of which would compute the forces between its
n/m bodies and the input aggregate state to determine the next
state of each body. This operation has no loéality of reference:

like the data management problem, it 1is characterized by every-

to-every communication.

Matrix operations similarly have an every-to-every nature.
In the course of matrix inversion, every element will interact
with every other element. The distributed function architecture

could handle matrix problems by assigning one or more block

- 159 -

submatricies to each processor. The submatrix problem then has
very high 1locality of reference. However, the submatrix

operations to yield the full matrix result will require every-to-

every communication.

Compléx pattern recognition pfoblems could be solved on the
distributed function architecture by assigning each processor one
or more candidate patterns to match for. The input pattern to be
classified 1is broadcast to all m proéessors, each of which
computes a degree of fit to the pattern(s) assigned to it. The
degree of fit values could then be merged to ascertain not only
the most probable match, but the next k most 1likely matches.

These could be put through a context-recognition algorithm.

Thus, the distributed function architecture 1is likely to be

interesting to problem domains besides advanced data management.

5.7 DIRECTIONS FOR FUTURE RESEARCH

The selection of trial architectures and the technology
forecast used to develop cost functions represents nothing more
than attempt to do a set of self-consistent comparisons as far
out in time as possible without becoming completely speculative.

It would thus be of considerable interest to repeat the same

- 160 -

basic threat of investigation at some time in the future, taking
into account actual and anticipated developments in technology
and in architecture. It might be quite timely to instigate such
an investigation in 1986, as the technology forecast discussed
herein expires, and to use 1992 as a target year. Even if the
results turned out to be identical, such an investigation would

not be without merit.

As is inevitably the case, there was not time in this study
to fairly investigate all of the possible parameters. For
example, all of the clustered cases used a cluster size of 5: it
would be interesting to see how sensitive some of the conclusions

are to varying the cluster size.

The study could also be extended to take more account of the
man-machine interface. All of the éases presented in this work
ignored the issue by.assﬁming an essentially zero cost, zero time
interface between the wuser's terminal and the computing system.

While this is neither reasonable nor realisitic, it did reduce

the scope of the problem, since a data communications environment

is at 1least as complex a problem as a data base environment.

However, as discussed in [Neches78] and numerous other
references, the modeling” techniques which formed the basis for
the present study can be readily applied to a broader range of

systems.

- 161 -

A final direction of investigation 1lies in applying the
modeling techniques described to the prdblem of the best hardware
architecture for implementation of other kinds of systems,
particularly those whose functionality is fairly newly conceived,
so that an intuitive approach to understanding their performance
may not even be possible. A problem of this sort which promises
to have considerable importance in the application of computer
technology to the problems of everyday human experience lies in
the so-called "expert" systems: systems which incorporate rules
of inference and interaction based on the experience of human
experts, but in limited domains of discourse. Expert system
technology, coupled with vastly improved language processing and
data base accessability, could become an important factor in the
computer systems which support all manner of private and public

enterprise.

- 162 -

CHAPTER 6 REFERENCES AND BIBLIOGRAPHY

[Astrahan76]
"System R: A Relational Approach to
1,

Astrahan, M. M., et al.,
Database Management' in ACM Transactions on Database Systems,

97 - 137, 1976.

2’ pp’

[Bel171]
Bell, C. Gordon and Alan Newell, Computer Structures: Readings
and Examples, McGraw-Hill, New York, IS?I.

[Bhandenkar78]
Bhandenkar, D. P., '"Dynamic MOS Memories: Serial or Random
Access," Compcon78 Digest of Papers, IEEE, New York, 1978, pp.
162 - 164
[Bigelow73]

An Application

Bigelow, R. H., et al., '"Specialized Languages:
Proceedings of the 1973 National Computer

Methodology,"
Conference, IFIPS Press, New York, 1973.

[Blasgen76]
Blasgen, M. W. and K. P. Eswaran, On the Evaluation of Queries in
a Relational Data Base System, IBM Research Report RJ 1745, 1976

Master's

A Performance Study of the CASSM System,
Electrical Engineering, University of

[Chen76]

Chen, W. F., A
Thesis, Department ot

Florida, 1976.

- 163 -

[Codd70]

Codd, E. F., "A Relational Model for Large Shared Data Banks,"
ACM, 13, 6, pp. 377 - 387, June 1970.

[Copeland74a]

Copeland, G. P., A Cellular System for Non-Numeric Processing,
Technical Report No. T CASSM Project, University of Florida,

Gainsville, 1974.

[Date79]

Date, C. J., Introduction to Data Base Management Systems, Second
Edition, Addlson -Wesley, = Reading, 1975; and Third Edition,
Addison-Wesley, Reading, 1982; and Volume II, Addison-Wesley,

Reading, 1983.

[Dewitt83]
Dewitt, D. J., "Database Machines" in Proceedings of the Tenth
International Symposium on Computer - Architecture, IEEE,

Stockholm, June 1983 (in press).

[Durniak79]

Durniak, A., "8-inch Hard Disks Set to Go," Electronics, 52, 13,
(June 21, 1979), pp. 82 - 84.

[Early78]

Early, J.. M., Limitations and Alternatives in Future Silicon
Technology, IEEE, New York, 1978.

[Elec78]
Electronics, July 6, 1978, p. 90.

- 164 -

[Gomberg73]

Gomberg, S., The REL Command Language, REL Project Report #8,
California Institute of Technology, Pasadena, 1973.

[Gordon67]

Gordon, W. J. and G. F. Newell, "Closed Queueing Systems with
Exponintial Servers,'" Operations Research, 15, pp. 254 - 265
(1967). -

[Greenfeld72]

Greenfeld, N., Computer Systems Support for Data Analysis, PhD
Thesis, California Institute of Technology, Pasadena, 1972.

[Guidry78]

Guidry, M. "CCD" in Early, J. M. (ed.), Limitations and
Alternatives in Future Silicon LSI Technology, IEEE, New York,
1978.

[Healy72]

Healy, L. D., K. L. Doty, and G. J. Lipovski, "The Architecture
of a Context-Addressed Segment Sequential Storage," Proceedings
of the 1972 Fall Joint Computer Conference, 41, Vol. R

Press, Montvale NJ, pp. 691 - 70T.

[Hess80]

Hess, G. D., A Software Development System, PhD Thesis,
California Institute of Technology, Pasadena, 1980.

[Hoeneisen72]

Hoeneisen, B. and C. A. Mead, "Fundamental Limitations in
Microelectronics, Part I - MOS Technology," Solid State

- 165 -

Electronics, 15, pp. 819 - 829; and "Fundamental Limitations in
MicroeTlectronics, Part II - Bipolar Technology," Solid State
Electronics, 15, pp. 891 - 897 (1972).

[Hu78]

Hu, H. L., '"Bubbles - A New Magnetic Solid State Technology,"
Compcon78 Digest of Papers IEEE, New York, 1978, pp. 165 - 166.

[1BM72]

IBM Corporation, 0S PL/I Checkout and Optimizing Compilers:

Language Reference Manual, SC33-0009-2, Third Edition, Hursley,
’ o

[1BM78]

IBM Corporation, IBM System/38 Technical Developments, IBM Form
No. G580-0237, 1978.

[Jackson57]

Jackson, J. R., "Networks of Waiting Lines," Operations Research,
5, pp. 518 - 521 (1957).

[Keyes75]

Keyes, R. W., '"Physical Limitations in Digital Electronics,"
Proceedings of the IEEE, 63, pp. 740 - 767 (May 1975).

[Keyes78]

Keyes, R. W., "Physical Limitations on Computer Devices,"
Compcon78 Digest of Papers, IEEE, New York, 1978, pp. 294 - 296.

- 166 -

[Kleinrock76]

Kleinrock, L. R., Queueing Systems Volume 1II: Computer
Applications, J. Wiley, New York, 1976.

[Lin76]
Lin, C. S., D. C. P. Smith and J. M. Smith, "The Design of a
Rotating Associative Memory for Relational Database

Applications,”" ACM Transactions on Database Systems, 1, 1, March
1976, pp. 53 - 65. __

[Lipovski78]

Lipovski, G. J., "Architectural Features of CASSM: A Context
Addressed Segment Sequential Memory," Proceedings of the Fifth
Annual Symposium on Computer Architecture, Palo Alto, April 1978,

ppo 31 - 38-

[Locanthi77]

Locanthi, B. N., An Associative Main Memory, Display File No.
592, Department of Computer Science, Ca11¥ornia Institute of
Technology, Pasadena, March, 1977; and An Associative Memory
Chip, Display File No. 1066, Department of ~Computer Science,
California Institute of Technology, Pasadena, October, 1977; and
Associative Memories: An Apprasial, Display File No. 1863,
Department of Computer Scilence, California Institute of

Technology, Pasadena, July, 1978.

[Locanthi78]

Locanthi, B. N., LAP: A SIMULA-Based Graphics Package for VLSI
Design, SSP Report #1862, Department of Computer Science,
California Institute of Technology, Pasadena, 1978.

[Martin76]

Martin, J. M., Principles of Data Base Management, Prentice-Hall,
New York, 1976. -

- 167 -

[Mead79]

Mead, C. A. and L. A. Conway, Introduction to VLSI Systems,
Addison-Wesley, Reading, Massachusetts, 1980.

[Metcalfe75]

Metcalfe, R. M. and D.

Boggs, Ethernet, Xerox Palo Alto Research
Center, 1975.

[Mohsen79]

Mohsen, A., '"Devices and Circuits for VLSI," Proceedings of the
Industrial Associates Conference on Very Large Scale Integration,

California Institute of Technology, Pasadena, 2Z - 24 January
1979. .

[Moore71]

Moore, C. G., Network Models for Large-Scale Timesharing Systems,

Technical Report No. 7I-1, Department of Industrial Engineering,
University of Michigan, Ann Arbor, April 1971.

[Muntz72a]

Muntz, R. R. and F. Basket, Open, Closed, and Mixed Networks of
Queues with Different Classes of Customers, Technical Report No

55, Stanford Electronics Laboratories, Stanford, August 1972.

[Muntz72b]

Muntz, R. R., Poisson Departure Processes and Queueing Networks,
IBM Research Report RC4145, December 1972.

[Muntz74]

Muntz, R. R. and J. Wang, "Efficient Computational Procedures for
Closed Queueing Network Models," Proceedings of the Seventh

- 168 -

Hawaii International Conference on System Science, Honolulu, pp.
33 - 36, January 1974.

[Neches76]

Neches, P. M., Processor Load Projection, TTI-76-0061-00,
Transaction Technology Inc., Los Angeles, May 1976.

[Neches78]

Neches, P. M., Architectures for the Requirements and
Technologies of the 1980's, (Thesis proposal), Display File
#1646, Department of Computer Science, California Institute cof
Technology, Pasadena, May 1978.

[Noyce77]

Noyce, R. N., '"Microelectronics,'" Scientific American, September

1977.

[0zkarahan75]

Ozkarahan, E. A., S. A. Schuster, and K. C. Smith, "RAP - An
Associative Processor for Data Base Management,'" Proceedings of
the 1975 National Computer Conference, 45 AFIPS Press, MontvaTle

NJT, pp. 379 - 387.

[0zkarahan76]

Ozkarahan, E. A., An Associative Processor for Relational Data
Bases - RAP, PhD Thesis, University of Toronto, 1976.

[0zkarahan77]

Ozkarahan, E. A. and K. C. Sevick, "Analysis of Architectural
Features for Enhancing the Performance of a Database Machine,"
ACM Transactions on Database Systems, 2, 4, December 1977, pp.

zg; = 3160

- 169 -

[Pashley78]

Pashley, R., '"N-Channel" in Early, J. M. (ed.), Limitations and
Alternatives in Future Silicon LSI Technology, IEEE, New York,
1978.

[Rem78]

Rem, M. and C. A. Mead, The Cost and Performance of VLSI
Computing Structures, Display File No. 1584, Department™ of
Computer Science, California Institute of Technology, Pasadena,

1978.

[Schuster76]

Schuster, S. A., E. A. Ozkarahan, and K. C. Smith, "A Virtual
Memory System for a Relational Associative Processor,"
Proceedings of the 1976 National Computer Conference, 45, AFIPS

Press, Montvale NJ, pp. 855 - 862.

[Shaw79]

Shaw, D. E., A Hierarchical Architecture for the Parallel
Evaluation of Relational Algebraic Database Primitives, Technical
Report STAN-CS-79-778, PhD Thesis, Stanford Un1ver51ty, 1979.

[Share76]

Share Incorporated, Data Processing in 1980-1985: A Study of the
Potential Limitations to Progress, Wiley-Interscience, New York,
1976.

[Slotnick70]

Slotnick, D. L., "Logic Per Track Devices," Advances in
Computers, 10, Academic Press, New York, 1970, pp. 29T - 296.

- 170 -

[Smith78]

Smith, D. 0., "Electron Beam Accessed Memory," Compéon78 Digest
of Papers, IEEE, New York, pp. 167 - 169, 1978.

[Smith79]

Smith, D. C. P. and J. M. Smith, "Relational Data Base Machines,"
Computer, 12, 3, pp. 28 - 39, March 1979.

[Solovits73]

Solovits, P., A Specialized Language Implementation Facility, PhD
Thesis, California Institute of Technology, Pasadena, 1973.

[Su75]

Su, S. Y. W. and G. J. Lipovski, "CASSM: A Cellular System for
Very Large Data Bases,'" Proceedings of the First International
Conference on Very Large Data Bases, September 1975, pp. 456 -

472.

[Su77]

Su, S. Y. W., "Associative Programming in CASSM and 1Its
Applications,'" Proceedings of the Third International Conference
on Very Large Data Bases, Tokyo, Japan, 6-8 October 1977, pp. 213
- 228.

[Su78]

Su, S. Y. W. and A. Emam, "CASDAL: CASSM's Data Language," ACM
Transactions on Data Base Systems, 3, 1, March 1978, pp. 57 - JI.

[Sutherland78]

Sutherland, I. E. and C. A. Mead, "Microelectronics and Compucer
Science," Scientific American, September 1977.

- 171 -

[Tandem76]

Tandem Computers Incorporated, Tandem 16 Programming Manual,
Product No. T16/6001, Cupertino, May 1976.

[Thompson68]

Thompson, F. B., "The Organization Is the Information,'" Journal
of American Documentation, 19, 3, July 1968, pp. 305 - 308.

[Thompson74al

Thompson, F. B., The REL Paging Services, REL Project Report No.
18, California Institute of Technology, Pasadena, 1974.

[Thompson74b]

Thompson, F. B., The REL I/0 Services REL Project Report No. 19,
California Institute of Technology, Pasadena, 1974..

[Thompson74c)

Thompson, F. B., et al., The REL Antimated Film Language, REL
Project Report No. 12, Calitornia Institute of Technology,

Pasadena, 1974.

[Thompson75]

Thompson, B. H. and F. B. Thompson, "Practical Natural Language
Processing," Advances in Computers, 13, pp. 109 - 168, 1975.

[Turn74]

Turn, R., Computers in the 1980's, Columbia University Press, New
York, 1974. -

- 172 -

[Ullman80]

Ullman, Jeffery D., Principles of Database Systenms, Computer
Science Press, Potomoc, Maryland, 19807. .

[Wu78]

Wu, I. C., "VLSI and Mainframe Computers," Compcon78 Digest of
Papers, IEEE, New York, 1978, pp. 25 - 30.

[Yu8o0]

Yu, K. I., Communicative Databases, PhD Thesis, California
Institute of Technology, 1980.

A-25
A-27
A-28
A-29
A-31

A-32
A-33
A-34
A-35

- 173 -
A-1

APPENDIX A EXAMPLE OF THE MODEL

Routine

Declarations: Queueing Model Data Structures
Declarations: Global Variables

Driver Routine

Default Procedure

Heuristic Node Grow Routine
Cost Function

Expand Utility

Config Procedure: Node Definitions
Config Procedure: Common Flow Subroutines
Config Procedure: Flow Definitions
Config Procedure: Transaction Definitions

Queueing Model: Add a new Node

Queueing Model: Add a new Flow

Queueing Model: Add a Step to a Flow
Queueing Model: Copy a Flow

Queueing Model: Add a new Transaction
Queueing Model: Add a Flow to a Transaction

Queueing Model: Driver

Queueing Model: Calculate the Load per Node for each step
Queueing Model: Aggregate Node Load by Transaction Type
Queueing Model: Calculate Node Utilization and Waiting

Queueing Model: Calculate Time per Step
Queueing Model: Aggregate Time per Flow

Queueing Model: Aggregate Time per Transaction

Queueing Model: Aggregate Time per Node

Report Writer: Driver

Report Writer: Node Reports

Report Writer: Flow Detail Report

Report Writer: Transaction Detail Report

- 174 -
A-2

/% REL CCNFIGURATICN MCDEL - PL/I IPPLEPENTATICN VERSION 4.0 */ 000100CO

STMT LEVEL NEST

/¢ REL CCAFICURATION MCODEL - FL/1 IPFLEMENTATION VERSICAN 4.0 */
FRED: PROCEDURE CPTICNS (MAINMN)
/% DATA STRUCTURE FGR TRANSACTICAM */

DECLARE

1 TRANSACTICN (5010,
NAME CHARACTER (32), /% INPUT 3/
WEIGHT BINARY FLOAT, 7% INFLT %/
FIRSTFLOW BINARY FIXEC (31),
LASTFLOW BINARY FIXELD (31)y
TIME BINARY FLCAT,
SIGMA BINARY FLOAT,

NNNNNN

1 THISTXN LIKE TRANSACTION BASED (FIXN),

/% DATA STRUCTURE FOR TRANSACTICHM FLCHS 9/

1 TXNFLOW (250),
2 FLCh POINTER,
2 REPETITIONS BINARY FLCAT,
2 TIME BINARY FLOAT,
2 SIGMA BINARY FLUAT,

1 THISTXNFLOW LIKE TXNFLOW BASEC (FIXNFLOW),

Q0010000

00010010

00010020

00010030
00010040
00010050
00010060
Q0010070
gool0080
00010090
Qoolol00

00010110

00010120

00010130
00010140
00010150
00010160
00010170

ocolo180

- 175 -
A-3

/% REL CCNFIGURATICA MCDEL - PL/1 ([MPLEMENTATICN VERSION 4.0 %/

STMT LEVEL NEST
/® CATA STRUCTURE FUR FLOWS 3/

1 FLOW (10C),
2 NAME CHARACTER(32) /9INPLT#/ ,
2 FIRSTSTEP BINARY FIXEC (21), .
2 LASTSTEP BINARY FIXEL (21),
2 TIME BINARY FLOAT,
2 SIGMA BINARY FLOAT,

1 THISFLOW LIKE FLOW BASEC (PFLCW),
/% DATA STRUCTURE FOR STEPS ¢/

L STEP (4000,

NODE POINTER,

DATASIZE BINARY FLOAT o /% [NPLT &/
MULTIPLIER BINARY FLOAT, /* [AFUT %/
"PAGES BINARY FLOAT,

TIME BINARY FLGAT,

SIGMA BINARY FLCAT,

LCAD BINARY FLOAT,

NNNNNNN

1 THISSTEP LIKE STEP BASED (FSIEP),
/* DATA STRUCTURE FOR NGDES ¢/

1 NODE (100),

NAME CHARACTER (32), /% INPLT »/
PAGESIZE BINARY FLOAT, /% INPUT o/
PAGERATE BINARY FLUAT, /% INPUT &/
USERS BINARY FLOAT, /% INFUT &/
SERVERS BINARY FLOAT, /% INFUT 3/
QUELETYPE BINARY FLGAT, /% INPUT &/
LOAC (50) BINARY FLOAT,

CAPACITY BINARY FLOAT,

UTILIZATICN BINARY FLCAT,

TIME EBINARY FLOAT,

MEANFACTUR BINARY FLC(AT,

SIGMAFACTOR BINARY FL(AT,

NNNNNMNNNNNNNN

1 THISNGOE LIKE NUUE BASEC (FNCDE),

00010000

00010190

00010200
oooiozio
00010220
00010230
00010240
00010250

00010260

00010270

00010280
00010290
00010300
00010310
00010320
00010330
00010340
00010350

00010360

00010370

00010380
00010390
00010400
00010410
00010420
90010430
00010 +40
00010450
00010460
00010470
00010480
000104v0
00010500

00010510

STMT LEVEL NEST

[N RV R

/% REL CCNFIGURATICN MCDEL - PL/I

NN N e

NN

[l

- 176 -
A-4

/% GLCBAL VARJABLES 3/

IPPLEMENTATICN VERSION 4.0 %/

(MAX_TIME, MIN_TIME, WEIGHTEC_MEAN_TIME) REAL,
(WNODES, #FLOWS, #TXNS, #PAGE, #STEP, WTXNFLOW)

BINARY FIXED (31) INITIZL (0),
(REREAD, ECF) BIT(1) INITIEL (°0°E),
ARRIVAL_RATE BINARY FLCAT INITIAL (C.01),
OATE BUILTIN,
DATE6 CHARACTER (61),
YEAR CHARACTER (2) OEFINEC CATEG FCSITION(

l)e

MCNTH PICTLRE °99° DEFINEC CATE6 PCSITIONUI),

DAY CHARACTER (2) DEFINED LATE6 PCSETION(S

by

MONTEFTABLE (12) CHARACTER (9) VARYINC INITIAL
9y "MAY', °JUNE’,

(*JANUARY®, *FEBRUARY®, °MAFCH®; 'APRIL

*JULY®, 'AUGUST®, °SEPTEMEER®y, °CCTORER®, *NOVEMBER®,

OATESTRING CHARACTER (20),
BUFFER CHARACTER (80),

TRUE BIT (1) INITIAL (°1°8),
FALSE BiTii) INITIAL (°0°B);

/* END OF DECLARATICNS ®/
/¢ INITIALIZATIGN COOE FCR PAGCE FEADINGS =/

ON ENOPAGE (SYSPRINT) BEGINS

SPAGE = SPAGE ¢ 13

IF #PAGE > 1 THEN PUT PAGE:

PUT EDIT (°REL CONFIGURATICN PODEL - PL/I
*VERSION 4.0 OF 22-AUG-157S - RLMN DATE:
¢ ~ PAGE °o#PAGE) (AsA2,AFL&));

PUT SKEP (203

ENDS

/% INITUALIZE ODATESTRING =/

DATE6 = /% SYSTEM s/ CATES

DATESTRING = DAYJ|®) |MUNTHTABLE(MCANTHINL®
CPEN FILE(SYSPRINT) LINESIZE(122);

IMPLEMENTAT ICN
® oDATESTRING

L9° | IYEARS

00010000

00010520
00010530
00010540
00010550
00010560
00010570
00010580
00010590
00010600
00010610
00010620
00010630
000106+0

SCECEMBER®),00010650

00010660
00010670
00010680
00010690

00010700

00010710

Q0010720
00010730
00010740
00010750
00010760
00010770
00010780
00010790

00010800
ooolostio
00010820
00010825

- 177 -
A-5

/% REL CCNFIGURATICAN MCOEL - PL/L IPPLEMENTATICA VFRSION 4.0 s/

STMT LEVEL NEST

14

15

16

19

20
22

23
24
25
26
28
29
30
34
35
38
39
40
€2
43
@
45
©7
44
50
51
52
53
54
55
56
57
59
60
62
63
64
65

/¢ CRIVER: MAIN PRUGRAM hhiCk CRIVES OLTPUT CASES =/

1 DECLARE
(CLASS_SIZE, RELATICN_SIZE, #CLASSESs WRELATICNS,

PAGESIZE, RULESIZE, RULES, DEFINITICAS, PROBDEF, SEATLEN,
#TRACKS, TRACKSIZE, HCGST_MIPS, UP_PIPS, RPMys SSRATE, SCRATE,

00010000

BUS_WIDTH, BUS_CYCLE, GROUF_SIZE, 8GROUPS, PACKET_SIZE, BASED,

LATERALs LCGRATE, CVRATE, EANCWIDTF, PROP_DELAY,

SYSUSERS¢ #HCSTS, #DRIVES, #CHANNELS, PAGEFRAMES) BIN FLOATS

1 DCL (1, Jo IIRIES, IN, INN, PAXTRIES) EIN FIXED (31),
' (Co Xo Yo WORST) REAL, GRCH_FLAG EIT(1),
PICC PICTURE ®——=,y-~=y=—S°%,
CUTMATRIX (0310, 0:10) ChAR (12) INIT ((121)°

1 MAX_TIME = 153 MIN_TIME = 13 MAXTRIES= 503
1 DQ Y = 0.0 TC 0.25 BY 0.C5:

[= 0: SIGNAL ENDPAGE (SYSFRIMNIIS

PUT EDIT (° USERS REL SIZE IBASED ZLATERAL',
¢ HOST MIPS #HOSTS #CRIVES ITERATIONS®) (A,A);

PUT SKIP (213

-
b pus

CALL CEFAULTS

BASED = Y LATERAL = Yv/23

GROW_FLAG = TRUE;

RELATIUN_SIZE = X3

I =1 ¢ 13 J=0; PICC = X; CUTMATRIX (IoJ) = PICC;
OC SYSUSERS = 1, 2o 5o 1Cy 20, %0, 100y 200, 500;

DC TTRIES = 1 TO MAXIRIESS
CALL CONF1G;

OUTMATRIX (1,Jd) = °10C BIG®;
GO TO NEXT_CASES
END3

C = CGST;
PICC = C: CUTMATRIXIL yy) = PICC:
IF SYSUSERS = 100 & RELATION_SIZE = 1E3J

ELSE 3
GO TO NEXT_CASE;
END3

GRCW_FLAG = FALSE:
IN = 1§ WURST = ANCCE(R).VIMES *
DO INN = 2 TG AMNCOES:

IF NCDE(INN)TIME > WCRST THEN DG:

TSR R e 0 B e e g e pee (o B o B P (e Dt (e (o e Ot Poo a0 fmo P Do pme
owwwov\nu&mwmu\uv«m«ru\aubbwIUNNNNruru--

IN = INN3
WCRST = MCCECINMITINES
END;

END

0O X = 500 lE3, 2E3, SE3. 1E4, 2E4, 5E%4s LES5. 2ES5, SES;

Jd = J ¢ 13 PICC = SYSUSERSS CUTMATRIX(O0,J4) = PICCS

ELSE IF WEIGHTED_MEAN_TIME <= MAX_TIME THEN CC;

THEN CALL REPCRT /% FCR THE GORY DETAILS #/3

ELSE DO: /¢ FIND #NC EXPANC THE WORST-CASE NCCE */

)

IF WEIGHTED_MEAN_TIME < PIN_TIME & GROW_FLAG THEN 00;

00010830
00020000
00020010
00020020

MISRATE, 00020030

00020040
00020045
00020050
00020060
00020070
00020080
00020090

00020130

00020135

00020140
00020145
00020146
00020147
00020150
00020160
00020165
00020170
00020179
00020190
00020200
00020210
00020220
00020230
000202+0
00020250
00020260
00020270
00020280
00020290
00020300
00020301
00020302
00020303
Q0020320
00020330
00020340
00020350
00020360
00020370
00020380
0002039V
00020400
QU204+l
0C020420

- 178 -

A-6
/% REL CCNFIGURATICN MODEL — PL/I IMPLEPMEATATICA VERSION 4,0 */ 00010000

STMT LEVEL NEST
66 1 5 IF GROW(IN) THEN CC: 00020430
68 1 [OUTMATRIX(T) = *TCC SMALL®; 00020440
69 1 6 GO TC NEXI_FCh3 00020450
170 1 6 END: 00020460
71 1 S END3 00020470
72 1 4 ENDS : 00020480
73 1 3 NEXT_CASE: PUT SKIP ECIT (SYSULSERS, RELATION_SIZE, BASED, LATERAL, 60020490
HOST_MIPS, #HOSTS, #CRIVES, ITRIES) ((9)(F(10,20)); 00020492
T4 1 3 END: 00020500
75 1 2 NEXT_RCW:: . 00020510
76 1 2 END 00020520
/7% QUTPUT THE COST MATRIX @/ . 00020530
17 1 1 SIGNAL ENDPAGE (SYSPRINT): 00020540
78 1 1 PUT EDIT (°CONFIGURATIGN CCST FCR MUBMBER OF USERS {COLUMN) °* 0002052
o *VERSUS RELATICN SIZE IN TUPLES (ROWI®) (SKIP(2),4,A); 00020544
79 1 1 PUT ENIT (((OUTMATRIX(IeJ) OC 4 = 0 T0 10) DO I = 0 TQ 10)) 00020550
(SKIP(2D, (1 10CACLI2)DD 00020560
80 1 1 END 00020565

STMT LEVEL NEST

a8l

82
83
84
85
86
87
88
a9
90
91
92
93
9%
95
%
97
98
99
100
101
102
103
104
105
106
107
108
110

112

- 179 -
A-7

/7t REL CCNFIGURATICN MUDEL - PL/I IPPLEMENTATICMN VERSION 4.0 */

1

RNANNNNONNNNNNRNRONNNNNNNNNNNNNNNRNON

DEFAULT: PROCECURE;

CLASS_SIZE=500;

RELATICN_SIZE = 30003

#CLASSES = 500;

#RELATICNS = 100;

SYSUSERS = 13

#HOSTS = 13

#DRIVES = 13

#CHANNELS = 13

PAGESIZE = 20003

RULESIZE = 203

RULES = 1000:

CEFINITICNS = 1503

PROBDEF = 03

SENTLEN = 83

#TRACKS = 203

TRACKSIZE = 100003

HOST_MIFS, UP_MIPS = 13

RPM = 3600

BUS_WIDTH = 23

BUS_CYCLE = 100E-93

SSRATE, SQRATE o MISRATE = 0,323
PAGEFRAMES = 40:

GROUP_SIZE = 63

#GRCUPS = 153

PACKET_SIZE = 5003

BASECy LATERAL = 0;

LCGRATE = 0.013 CVRATE = 0.03:
BANDWIOTH = 1E63 PROP_DELAY = .25 /¢ CHARACTER TIMES 3/

END DEFAULT;

00010000

00020570

00020580
00020590
00020600
00020610
00020620
00020630
00020640
00020650
00020660
00020670
00020680
00020690
00020700
00020710
00020720
00020730
00020740
00020750
00020760
00020770
00020780
00020790
00020791
00020792
00020193
00020794
00020795
00020796

00020800

- 180 -

A-8
/% REL CCNFIGURATICN MODEL - PL/I IMPLEPENTATICN VERSION 4.0 s/ 00010000

STMT LEVEL NEST
113 1 DCL GRCW ENTRY (PRIN FIXED(313) RETUFANS (BIT(1))3 00020810
1le 1 GRCW: PROCEDLRE (IN) RETURNS (BIT(1)); 00020820
115 2 DCL (IMy NEWMODULES) BIN FIXEL (21D, 00020830
OK BIT(1) INIT(*0°B)s CANTCO EIT(1) INIT (°1°B), 00020840
GCGRCWNOCE (7) LABEL; 00020850
116 2 IF IN < 1 | IN > 7 THEN SICNAL ERFCRS 00020860
118 2 GC TO GCGROWNODE (IN): . 00020870
119 2 GCUGROWNODEGL)3 /® TERMINAL PFCCESSQR 3/ 00020880
GOGROWNODE(S): /* REMCTE PROCESSCR o/ 00020890
WHOSTS = MROSTS ¢ 1% 00020901
120 2 IF #HOSTS > 3 THEN CCi 00020602
122 2 1 HOST_MIPS = 48HOST_MIPS3 00020903
123 2 1 #HOSTS = 13 00020904
124 2 1 END; 00020905
125 2 IF HCST_MIPS > 16 THEN RETLAN (CAMICC): ELSE RETURN (CK)3 00020906
128 2 GOGROWNODE(2): /® LOCAL DISK #/ 00020920
GCGROWNODE(6): /% REMCTE OISk 8/ ‘ 00020930
#ORIVES = HDRIVES + 13 00020940
129 2 IF #ORIVES > 8 THEN RETURN (CANTCC): ELSE RETURN (OK); 00020950
132 2 GCGROWNODE§3): /o LOCAL CTLR ®/ 00020960
GCGROWNODE (702 /% REMCTE CTLF #/ 00020970
RETURN (CAATDO); 00020980
133 2 GCGRCWNODE(4): /% ETHERNET #/ 00020990
GANOWIDTH = BANDWIDTH ¢ LE€; 00021000
134 2 PROP_VELAY = 1.25E-6 * BANCWIDTH; 00021010
135 2 IF BANDWIDTH > 10E6 THEN RETLRN (CANTDO); ELSE RETURN (OK); 00021020
138 2 END GROW: 00021080

- 181 -

/% REL CONFIGURATICAN MCDEL ~ PL/1 IPPLEMENTATICA VERSION 4.0 */

STMT LEVEL NEST

139 1 CCL CCST EMNTRY RETURAS (REAL);

140 1 COSTs PROCEDURE;

1+1 2 OCL (CBSIZE, #CHIPS) REALS

142 2 DBSIZE = 10 * CLASS_SIZE * #CLASSES
¢ 20 * RELATICN_SIZE * ARELATICNS
¢ RULESIZE #» (RLLES ¢ DEFIMITIONS)

143 2 DOBSIZE = DBSIZE * SYSUSERS;

le4s 2 SCHIPS = 8 » DBSIZE / 256E3;

145 2 #OISKS = CEIL (DBSIZE 7 1ESH;

146 2 RETURN (!

3600 + 13500*HOST_MIPS#*AHOSTS

¢ 1500 ® #CHIPS / 32

¢ BE3 * W#DISKS)/SYSLSERS ¢ 1E3)3
147 2 END €COST:

00010000

00021090

00021100
00021110
00021120
00021130
00021140
00021145
00021150
00021160
00021170
00021180
00021190
00021200
Q0021210

STMT LEVEL NEST

148

199

150

151

152
153

15+
156

157
158
159
160
161
162

- 182 -
A-10

/% REL CCNFIGURATICN MODEL - PL/I IMPLEMENTATILN VERSION 4.0 ®/ 00010000

1

NN

NAMNNNN NN

=

b ps o pms

CCL EXPAND ENTRY (BIN FIXED(21)) RETLRAS (REAL);
EXPAND: PRCGCEDURE (IN);

OCL IN BIN FIXED (31)y RHC_TARGET REAL

PNODE = ADCR(NODE(IN));

/¢ IS UTILIZATION > 1002 THE PRCBLEM ? %/
IF THISNODEL.UTILIZATICN > 0.95 THEN
RETURN (THISNODE.UTILIZZTICA®*1.CS)3

/% COULD IT BE QUEUEING DELAYS? #/
ELSE IF THISNODE.T IME/THISNODE .MEANFACTOR < MAX_TIME THEN DO
RHO_TARGET = 1 — (THISNCOE.TIME / THI SNODE.MEANFACTCR)
7 MAX_TIME;
IF RHC_TARGET > O & RHO_TARCET < THISNODE.UTILIZATICN
THEN RETURN (THISNODE.UTILIZATION / RHO_TARGET);
ELSE RETURN (2 ® THISNCOE.TINE/MAX_TIME);
END:
ELSE RETURN (2 ® THISNCDE.TIFE / PAX_TIME);
END EXPAND;

00030000

00030010

00030020

00030030

00030040
00030050
00030060

00030070
00030080
00030090
00030100
00020110
00030120
00030130
00030140
00030150
00030160

- 183 -

A-11
/% REL CCNFIGURATICN MCDEL - PL/1 JPPLEPENTATICA VERSION 4.0 =/ 00010000

STMT LEVEL NEST
163 1 CCNFIGs PRCCEDURE; 00030170
164 2 CECLARE 00030180
MNEWNCOE ENTRY (CHAR(22), EIN FLCAT, BIN FLOAT, 00030190
BIN FLGAT, BIN FLCAT, BIN FIXED (31)), 00030200
NEWFLCW ENTRY (CHAR(32)), 00030210
NEWSTEP ENTRY (CHAR(32), EIN FLCAT, BIN FLOAT), 00030220
NEwTXN ENTRY (CHAR(3Z)y BIN FLCAT), 00030230
USEFLCwW ENTRY (CHAR(32), BIN FLCAT), 00030240
COPYFLOKk ENTRY (CHAR(2Z))3 00020250
165 2 #NODES, #FLOWS, MTXNSe #STEP, ATXAFLCW = 03 00030260
166 2 DECLARE (PGSs GRSIZE, PRCJ) EIN FLCATS 00040000
l67 2 GRSIZE = RULESEIZE * (RULES ¢ DEFINITIONS): 00040010
168 2 #GRCUPS = CEIL (SYSUSERS / GROUP_SIZE)} 00040015
/% ESTAALISH NODES FOR INCIVICUAL CENTRAL CONFIGURATICN 3/ 00040020
169 2 CALL NEWNODE (°CENTRAL PRCCESSCR®y 1o LE6*HOST_MIPS, 00040030
SYSUSERS, #HOSTS, 3)3 00040031
170 -2 CALL NEWNODE (°LOCAL DISK #RM®y, 1, 22, 1, #DRIVES, 2); 00040040
171 2 CALL NEWNODE (°*LOCAL OISK CTLR®, FAGESIZE, 000450050
1/0(0.5 + PAGESIZE/TRACKSIZE) ¢ (1/(RPM/60))Ds 1,y 1o 203 00040060
172 2 CALL NEWNODE (*ETHERNET®, (.12%, EANDWIDTH, SYSUSFRS, 00040070
le 203 00040080
1713 2 CALL NEWNOCE (°*REMOTE PROCESSCR®, 1, LE6*UP_MIPS, SYSLSERS, 00040090
#GROUPS, 203 00040100
174 2 CALL NEWMNODE (°REMCTE DISK'y 1, 32, GROUP_SIZE, GROUP_SIZE * WCRIVES,00040110
20 00040120
175 2 CALL NEWNODE (°*REMOTE CTLR®, PAGESIZE, 00040130
1/(40.5 ¢ PAGESILE/TRACKSIZE) * (1/(RPM/60))), 00040140

GROUP_SIZE, GROUP_SIZE, 2)3 00040150

- 184 -
A-12

/¢ REL CCNFIGURATECN MCUEL — PL/L IPPLEPENTATICA VERSIUN 4.0 ®/

STMT LEVEL NEST

176 2 DCL LCCALBLUCK ENTRY {(BIN FLCAT)S

177 2 LOCALBLOCK: FROCEDURE (BYTES):

178 3 CCL (PGSe BYTES) BIN FLOAT:

179 3 PGS = CEIL (BYTES/PAGESIZE):

180 3 CALL NEWSTEP ('CENTRAL PRCCESSCR®, 2000, 1);

181 3 END LOCALBLOCK:

182 2 DCL REMGTEBLCCK ENTRY (BIN FLCAT):

183 2 REMOTEBLGCK: PROCEDURE (BYTES);

184 3 DCL (BYTES, PGS) BIN FLOAT;

185 3 PGS = CEIL (BYTES / PAGESIIE):3

186 3 CALL NELSTEP (°REMOVE PRGCESSTR®y 2000, 133

187 3 END REMCTEBLOCK;

188 2 DCL INTERPROCESSOR ENTRY (BIN FLCAT):

189 2 INTERPROUCESSCR: PROCEDURE (BYTES):

190 3 OCL (BYTES, PACKETS, FULLPACKETS, CCCPACKET) BIN FLOATS
191 3 PACKETS = CEIL (BYVES / FACKET_SIZ2E)3

192 3 FULLPACKETS = FLOOR (BYTES /7 PACKET_SIZE);

193 3 ODDPACKETY = BYTES -~ FULLPACKETS#*PACKET_SIZE;

194 3 CALL NEWSTEP (°CENTRAL PROCESSCR®, 2000 * (PACKETS#ld, 1i3
195 3 IF FULLPACKETS > O THEN

196 3 CALL NEWSTEP (*ETHERNET®, FACKET_SI2E ¢ 20 ¢ PROP_DELAY,

FULLPACKETS)
197 3 IF PACKETYS > FULLPACKETS TFEN CALL NEWSTEP (°ETHERNET',
ODDPACKET ¢ 20 ¢ PRGP_DELAY, 1)

199 3 CALL NEWSTEP (°REMOTE PRCCESSCR®, Z0CO®(PACKETS¢l)y 1)3
200 3 END INTERPROCESSOR:

000100C0

- 00040160

© 00040170

000401860
00040190
00040200
00040230

00040240
00040250
00040260
00040270
00040290
00040310

00040320
00040330
00040340
00040350
00040360
00040365
00040370
00040375
000403480
00040390
00040400
00040410
00040420
00040430

STMT LEVEL NEST

201
202

203
204
205

2006
207
208

209
210
211
212

" 213
214

215
216
217
218

219
220
221
222
223
224
225
226
2217

228
229

230

- 185 -
A-13

/% REL CCNFIGURATICN MGDEL - PL/I IFPLEMENTATICN VERSION 4.0 =/ 00012060

NN NNNN VNN NN

NN

NN

~N NN NN

NN

/% THE FLCWS */

CALL NEWFLOW (*LUAD LOCAL FBGE®);
CALL LOCALBLUCK (PAGESIZE)3

CALL NEWFLCW (°*LOAC REMOTE PACE®)3
CALL REMUTEBLOCK (PAGESIZE):
CALL ENTERPROCESSOR (PACESIZE):

CALL NEWFLCW (*PARSE LCCAL'): .
CALL LOCALBLCCK (GRSIZE); .
CALL MERSTEP (*CENTRAL FRCCESS(R®, 20000 +
(100*LOGIGRSIZE) + 1C00) * SENTLEN/(1-PRCBDEF), 1)

CALL NEWFLCW (°PARSE REMCTE®):
CALL INTFRPROCESSOR (10013
CALL REMOTEBLOCK (GRS12E);
CALL NEWSTEP (°REMOTE PRCCESSCR®, 20000 ¢
§100#LOGI(GRSIZE) + 1000) * SEMTLEN/(1-PROBDEF), 1)

CALL NEWFLOW (°LOCAL RECCRC*);
CALL LOCALBLOCK (100)3

CALL NEWFLCW (°REMCTE RECCFD®);
CALL INTERPROCESSOR (10C)3
CALL REFOTEBLOCK (1CO)3
CALL INTERPROCESSOR (10C);

CALL NEWFLCW (°LOCAL PRCJECTICA®)
PGS = CEIL (20 * RELATUIN_SIZE / PAGESIZE)
¢ CEIL {10 * CLASS_SI2E 7 FACESIZE)
¢ CEIL (20 * CLASS_SIZE / FAGESIZE):
CALL NEWSTEP (*CENTRAL FFUCESSCR®*, 20000 ¢+ 100 * (CLASS_SIZE
¢ RELATION_SILE), 13
CALL LOCALBLOCK (PGS * FAGESIZE):

CALL NEWFLOW (*REMCTE FRCJECTICA®)
CALL INTERPROCESSOR (10C)3
CALL NEWSTEP (*CENTRAL FRCCESSCR', 20000, 1):
CALL NEWSTEP (*REMOTE PRCCESSOR®, 20000 + 100 * (CLASS_SILIE
+ KELATICN_SIZE), 113 :
CALL RENOTEBLOCK (PCS * PACESIZE):

CALL NEWFLCW (°LUCAL OLTPLI®*)
PGS = CEIL (20 * CLASS_SILE / PACESIZE);
CALL LUCALBLOCK (PGS * FACESIZE):

00040440

00040450
00040460

00040+70
00040480
00040490

00040500
00040510
00040520
00040530

00040540
00040550
00040560
00040570
00040580

00040590
00040600

00040610
00040620
00040¢é30
00040640

00040650
00040660
00040¢170
00040680
00040690
00040691
00040700

00040710
00040720
00040730
00040700
00040741
J0040750

0004017690
u00401770
000 e 780

- 186 -

A-14

/% REL CCNFIGURATICN MODEL — PL/1 IPPLEPENTATICN VERSION 4.0 */ 00010000
STMT LEVEL NEST
231 2 CALL NEWSTEP (°CENTRAL FRCCESSCR®, 2E% © 100%CLASS_SIZE, 1)3
232 2 CALL NEWFLOW (°REMOTE CUTPLT®);
233 2 CALL NEWSTEP (°*CENTRAL FRCCESSCR®, 2E4 ¢+ 100%CLASS_SIZE, 113
234 S 2 CALL MNEWSTEP (°*REMOTE PFOCESSCR®, 2E4 ¢+ 100%CLASS_SIZE, L)3
235 2 CALL REMOTEBLOCK (PGS ®* PAGESI2E);
236 .2 CALL INTERPROCESSOR (20 * CLASS_SIZE):
237 2 CALL LOCALBLOCK (PGS * FAGESIZE):

000401790

00040800
00040810
00040820
00040830
00040840
00040850

- 187 -

A-15
/¢ REL CCNFIGURATIC(N MODEL - PL/1 IFPLEPENTIATIEICN VERSION 4.0 &/ 00010000

STMT LEVEL NEST

/% THE TRANSACTICNS */ 00040860
238 2 CALL NEWTXNM (°LOGCN®, LCGRZTE): 00040870
239 2 CALL USEFLOW (°LOAD LCC#L FAGE®, S): 00040880
240 2 CALL NEWTXMA (*CHANGE VERSICA®, CVRATE); 00040890
241 2 CALL USEFLOW (°LOAD LCC2L PAGE®y 2)3 00040900
242 2 CALL NEWTIXA (°SIMPLE QUERY®, SCRATE): 00040510
243 2 CALL USEFLOW (°PARSE LCCAL®, 1) 00040920
244 2 CALL USEFLOW (°LCCAL RECCRD®y 613 00040930
245 2 CALL NEWTXN (*SIMPLE SENTEMCE®, SSRATE): 00040950
246 2 CALL USEFLOW (°PARSE LCCAL®y L¢LATERAL): 00040560
247 2 CALL USEFLOW (°LCCAL PRUJECTIOMN®, L¢LATERALBASED): 00040870
248 2 CALL USEFLOW (°LOCAL OUTFUT®, 1)3 00040980
249 2 CALL NEWTXN (°COMPLEX CUERY®, PISRATEN; 00041020
250 2 PROJ = Q.5 ® SENTLEN / (1-PFCBCEF); 00041030
251 2 CALL USEFLOW (°*PARSE LOCAL®s 1 ¢ PROJSLATERAL)S 00041040
252 2 CALL USEFLONW (°*LGCAL PRCJECTION®, PROJ * (L1+4PROJSLATERAL*BASED) 1300041050
253 2 CALL ULSEFLOW (°LCCAL OQLTPLT®, 1) 00041060

- 188 -

A-16
/¢ REL CCNFIGURATICN MCDEL ~ PL/I IPPLEMPENTATICN VERSION 4.0 =/ 00010000
STMT LEVEL NEST
254 2 NEWNODE: PROCEDURE (ANAME, PCGSI2ZE, R21E, USERS, SERVERS, CTYPE): 00050000
255 3 DECLARE 00050010
NNAME CHARACTER (32), 00050020
QTYPE BIN FIXED (31), 00050030
(PGS1ZEs RATE, USERS, SERVERS) BIMNARY FLOAT; 00050040
256 3 #NODES = #NODES + 13 00050050
2517 3 PNODE = ADCR (NOOE (#NGCDES)) 00050060
258 3 THISNODE .NAME = NNAME; 00050070
259 3 THISNODE .PAGESIZE = PGSIZE; 00050080
260 3 THISNODE.PAGERATE = RATE; 00050090
261 3 THI SNODE.USERS = USERS: 00050100
262 3 THISNODE.SERVERS = SERVERS; Qo050110
263 3 THISNODE.QUEUETYPE = CTYPE; 00050120

264 3 ENC NEWNOOE; ' 00050130

- 189 -
A-17

/% REL CCNFIGURATICN MUDEL - PL/L IPPLEMENTATICA VERSION 4.0 #/

STMT LEVEL NEST

265 2 NEWFLCW: PROCEDURE (FNAME):

266 3 DECLARE FMNAME CHAR(32);

267 3 AFLONS = #FLOWS ¢+ 13

268 3 PFLOW = ADOR (FLOW(WNFLCWS))3
269 3 THISFLCN .NAME = FNAME;

270 3 THISFLOW.FIRSTSTEP = #STEP¢1;

271 3 END NEBFLCSH:

00010000

00050140

00050150

00050160
00050170
00050180
00050190

00050200

STMT LEVEL NEST

272

273

274
215

276
217
2719
280
281
282
283
284

285

286
287

288

- 190 -
A-18

/% REL CCNFIGURATICN MCDEL - PL/1 IPPLEMENTATICA VERSICN 4.0 */ 00010000

2

wWw w WWWwWwwww ww

RN NN AN

-

NEWSTEP: PROCEDURE (NMMNCDE, SIZE, TIMES)S

DECLARE
I BINARY FIXED (31),
NNODE CHAR (32),
(SIZE. TIMES) BINARY FLCAT:

#STEP = #STEP ¢ 13
PSTEP = ADLR (STEP(#STEP)):
/% LINEAR SEARCH FCR NCDE MANE ¢/
00 I = 1 TG #NODES3S
IF NCDE.NAHE(I} = NNODE THEMN DC;
THISSTEP .NODE = AGCR(NCDE(L]):
FLCW.LASTSTEP(WFLONS) = ASTEF;
THISSTEP LCATASIZE = SIZE;
THISSTEP.MULTIPLIER = TIMES;
RETURN;
ENC;
/% ELSE FALL THROUGH LCCP ARC TRY NEXT NODE ¢/
ENDS
/% NG NCDE FOUND #=/
OSTEP = 4STEP - 13
PUT SKIP EDIT (°INVALIC NOCE NAME °, NNODE, °* - STEP CMITTED®')
(AsA,A)3

ENG NEBSTEP;

00050210

00059220
00050230
00050240
00050250

00050260
00050270
00050280
00050290
00050300
00050310
00050320
00050330
00050340
00050350
00050360
00050370
00050380
00050390
00050400
00050410
00050420

00050430

STMT LEVEL NEST

289

290

291
292
294
295
296
2917
298
299
300

301

302

- 191 -
A-19

/% REL CONFIGURATICN MCDEL — PL/I UPFLEPENTATICN VERSION 4.0 #/ 00010000

2

WWWWWWwW W

w

NN W WA

COPYFLCW: FRCCEDURE (AFLCW);
DECLARE NFLOW CHAR (32}, (1,4} BIN FIXED (31}

00 I = 1 TO #FLOWS3
IF FLCW.NAME(1) = NFLOW THEM OC3
CC J = FLOW(I).FIRSTESTEP TO FLCWIID.LASTSTEPS
@STEP = #STEP + 13
STEP(SSTEP) = STEF(JI
ENDS
RETURN;S
END:
END

PUT. SKIP EDIT (°FLOW °,NFLCWo® NOT FCUND3 NOT COPIED® J{A,AcA);

END COPYFLOWS

00050440

00050450

00050460
00050470
00050480
00050490
00050500
00050510
00050520
00050530
00050540

00050550

00050560

- 192 -
A-20

/% REL CCNFIGURATICMN MCDEL — PL/I IMPLEMENTATICAN VERSION 4.0 =/

STMT LEVEL NEST

303 2 NEWIXN: PROCEDURE (INAME, WEIGhT)S
304 3 DECLARE
TNAME ChHARACTER (32),
WEIGHT BINARY FLCAT;
305 3 STXNS = MTXNS ¢+ 13
306 3 PTIXN = ACDR (TRANSACTICNENTXNS));
307 3 THISTXN.NAME = TNAME?
308 3 THESTXN.WE IGHT = WEIGHT;
309 3 THISTXN.FIRSTFLOW = STXANFLCR ¢ 13

310 3 END NEWTXNG

00010000

00050570

00050580
00050590
00050600

00050610
00050620
00050630
00050640
00050650

00050660

- 193 -
A-21

/% REL CCNFIGURATICN MCDEL — PL/IL IPPLEMEATATICN VERSION 4,0 &/

STMT LEVEL NEST
311 2 USEFLCW: PROCEDURE (WHICHFLCH, REP) S

312 3 DECLARE
WHICHFLCh CHARACTER(32),
LFL BINARY FIXED (31),
REP BINARY FLOAT;

313 3 ATXNFLOW = #TXNFLOW ¢ 13
3l% 3 PIXNFLOW = ADOR (TXNFLCWI{#TXNFLCW))S
315 3 0O I[FL = 1 TO #FLOWS:
316 3 1 IF WHICHFLOW = FLCW.NAMEGIFL) THEN 003
318 3 2 THISTXNFLOW.FLOW = ACCR(FLOWMOIFL)D:
319 3 2 THISTXNFLOW.REPETITIC(AS = REP:
320 3 2 TRANSACTION. LASTFLCH(STXAS) = STXNFLOWS
321 3 2 RETUEN:
322 3 2 (1 H
323 3 1 END
/¢ NO FLCW FOUND */
324 3 #TXNFLOW = STXNFLOW -1
/% GIVE UP ON THIS CNE AND TRY ANCTFHER &/
325 3 PUT SKIP EDIT (*UNKNOWN FLCW NAME °y, WHICHFLOW, ° OMITTED®)
(AgAsA) 3
326 3 END USEFLOW:

/% FINAL CCDE FOR PROCEDURE ®"CCNFIG®™ TC GENERATE REPORTS #/

327 2 CALL PERFORM_CALCULATICNS:

00010000

00050670

00050680
00050690
00050700
00050710

00050720
00050730
00050740
00050750

© 00050760

00050770
000501780
00050790
00050800
00050810
00050820
00050830
00050840
00050850
00050860

00050870

00050880

00050890

STMNT

328

329
330
331
332
333
334
335
336

- 194 -
A-22

/% REL CONFIGLRATICAN MCDEL - PL/L [FPLEPENTATICN VERSION 4.0 =/

LEVEL NEST

2

Wwwwwwww

PERFORM_CALCLLATICNS: PRCCECLRE:

CALL
CALL
CALL
CALL
CALL
CALL
CALL
caLtL

CALCULATE_STEP_LOAC:
CALCULATE_TXN_LOAD;
CALCULATE_NODE_RHC;
CALCULATE_STEP_TIPMES:
CALCULATE_FLOW_TIMES:
CALCULATE_TXNFLOW_TIMESS
CALCULATE_TXN_TIMES;
CALCULATE_NODE_TIMESS

0oolovao

00050900

00050910
00050920
00050930
000509 +0
00050950
00050560
00050970
00050980

STAT LEVEL NEST

331
‘338

339
340
341
342

343
344

345

- 195 -
A-23

/% REL CCAFIGURATIIN MCDEL - PL/1 IMPLEMENTATICN VERSIUN 4.0 */ 00010000

3

cr s >

» >

Ll K

-

CALCULATE_STEP_LOAD: PROCEDLFE;
DECLARE IS BINARY FIXED (31)3

DO IS = 1 10 #STEP;
PSTEP = ADOR(STEP(IS)):
FNODE = THISSTEP.NODE;
THISSTEP.PAGES = CEIL{THISSTEP.LATASIZE/THISNODE .PAGESIZE)
& THISSTEP.MULTIPLIER;
THISSTEP.LOAD = THISSTEF.PACES # THISNODE.USERS:
END:

END CALCULATE_STEP_LCAD;

00050990

00051000

00051010
00051020
00051030
00051040
00051050
00051060
00051070

00051080

- 196 -

A-24
/% REL CCNFIGURATICA MCDEL - PL/1 1FPLEMENTATICAN VFRSION 4.0 ¢/ 0volL0000
STMT LEVEL NEST
346 3 CALCULATE_TXN_LOAD: PROCECURE;
3417 4 DECLARE (iV, ITF, 1S) BINARY FIXEC (21)3
348 4 NODE.LOAD (%,%) = 0:
349 4 00 IT = 1 70 #TXNS;
350 4 1 PTXN = ADDR(TRANSACTION(IT))
351 4 1 00 ITF = THISTXN.FIRSTFICW TC THISTXN.LASTFLONW;)
352 4 2 PTXNFLOW = ACCRITXNFLCWCITFI);
353 4 2 PFLOW = THISTXNFLCW.FLONWS ’
354 4 2 DO IS = THISFLOW FIRSTSTEP TC THISFLOWL.LASTSTEP;
355 4 3 PSTEP = ADCRISTEPLIS)):
356 4 3 PAODE = THISSTEP.ACCES
357 4 3 ThISNODE.LOAD(IT) = THISNCODELLOADCIT)
¢ ARRIVAL_RATE

* THISTXN.WEIGHT

¢ THISTXNFLCW.REPETITIONS

* THISSTEP.LCAD:
358 4 3 END:
359 4 2 END3
360 % 1 END3

361 4 © ENC CALCULATE_TXN_LOAOD:

00051090

00051100

00051110

00051120
00051130
00051140
00051150
00051160
00051170
00051180
00051190
00051200
00051210
00051220
00051230
00051240
00051250
00051260
00051270

00051280

- 197 -

A-25
/% REL CCNFIGURATICA MCDEL - PL/I LIMPLERENTATICA VERSION 4.0 */ 00010000

STMT LEVEL NEST
362 3 CALCULATE_NOCE_RHG: PROCEDURE; 00051290
363 4 DECLARE 00051300
(INy IT) BINARY FIXED (31), 00051310
METLCAD BINARY FLOAT; 00051320
36% 4 00 IN = 1 10 #NODES; 00051330
365 4 1 PNODE = ADOR(NODE(IN)) 00051340
366 4 1 THISNCOE.CAPACITY = THISNCDE.PACERATE ® THISNODE.SERVERS; 00051350
367 4 1 NETLOAD = 03 00051360
368 4 1 CC 1T = L TO BTXNS; :) 00051370
369 4 2 NETLCAD = NETLOAD ¢+ THISNODE.LCAD(IT)S . 00051380
are 4 2 END3 00051390
o 3n 4 1 THISNODE.UTILIZATICN = NETLCAD /2 THISNODE.CAPACITY; 00051400
372 4 1 §F THISNQDE.UTILIZATICN >= 1 THEN 003 00051410
374 4 2 THISNODE .MEANFACTGR = 1€63 00051420
375 4 2 THISNODE .SIGMAFACTOR = 03 00051430
376 4 2 END3 00051440
3 4 1 ELSE IF THISNODE.USERS s 1 00051450
378 4 1 THEN DO: THISNODE.MEANFACTOR=1; THISNUDE.SIGMAFACTOR=0; END;: 00051460
382 4 1 ELSE CALL CALCULATE_CUEUEING? 00051470
/% ENOLF »/ 00051480
383 4 1 END3 00051490
384 4 CALCULATE_GQUEUEING: /*LOCAL INTERNAL ®/ PROCEDURE; 00051500
385 5 DECLARE (NoP,8) BINARY FLCAT, ALLBUSY RETURNS (BINARY FLCAT); 00051510
. 386 5 M = THISNODE.SERVERS; 00051520
387 5 P = THISNOCE.UTILIZATICN; 00051530
388 5 IF M = 1 | THISNODE.QUEUETYPE = 1 | THISNUDE.QUEUETYPE = 2 000515+0
349 5 THEN DO 00051550
390 5 1 THISNODE .MEANFACTOR = 1/(1-F)3 00051560
391 5 1 THISNODE.SIGMAFACTGR = 1/(1-P)3 00051570
392 5 1 END: 00051580
.393 5 ELSE DU: 00051590
394 5 1 B = ALLBUSY(M, P); 00051600
395 5 1 THISNODE .MEANFACTGR = 1 ¢ B/(ro(1-P)); 00051610
396 5 1 THISNODE .SIGMAFACTQOR = SCRTUE2(2-B)e(Me(1-P))ssZ)/(Ms(1-P)); 00051620
3s7 5 1 END3 00051630

/% ENDIF oy 00051640

- 198 -
A-26

/¢ REL CCAFIGURATICN MGDEL — PL/1 IMPLEMENTATICN VERSION 4.0 s/

STMT LEVEL NEST
398 5 ALLBUSY: FROCEDURE (M, P) RETURMNS (BIMN FLOAT);

399 6 DECLARE :
{py Py Xo Yy SUM, TERM) BIPARY FLCE2T,

N BINARY FIXED (3103

400 6 TERMy SUK = 13

401 6 DO N = } TQ M-13

%02 6 1 TERM = TERM & M 2 P / N

403 6 1 SUM = SUM ¢ TERM;

404 6 1 EAD;

405 6 X = SUM3

406 [} Y = SUM ¢ TERMOP/N

407 6 RETURN (E-X/Y)/(1-Pei{X/Y)}))3
408 [} END ALLBUSY:

409 - ENO CALCULATE_QUEUEING:

<10 4 END CALCULATE_NODE_RHO3

000100C0

00051650

00051660
00051670
00051680

00051690
00051700
00051710
00051720
00051730
00051740
00051750

00051760

00051770

00051780

00051790

- 199 -
A-27

/% REL CCNFIGURATICN MODEL - PL/I IMPLEMENTATICN VERSION 4.0 */

STMT LEVEL NEST
411 3 CALCULATE_STEP_TIMES: PRCCEDLRE:
412 4 DECLARE

XT BINARY FLOAT,
IS BINSRY FIXED (31);

413 4 DC 1S = 1 10 #STEP;

414 4 1 PSTEP = ADDR{STEP{IS)):

415 4 1 PNODE = THISSTEP.NODE;

416 4 1 IF THISNODE .QUEUETYPE = 1

417 4 1 THEN XT = CEIL (THISSTEP.PAGES / THISNODE.SERVERS)
7/ THISNODE.PAGERATE; .

418 4 1 ELSE XT = THISSTEP.P2CGES / THISNCDE.PAGERATES

. 419 4 i THISSTEP.TIME = THISNCCE.MEANFACTCR * XT3

420 4 1 THISSTEP.SIGMA = THISNCLE.SIGMAFACTCR #* XT3

421 4 1 END3

422 % END CALCULATE_STEP_TIMES:

00010000

00051800

00051810
00051820
00051830

00051840
00051850
00051860
000518170
00051880
00051890
00051900
00051910
00051920
00051930

00051940

STMT LEVEL NEST

423

424

425
426
427
428
429
430
431
432
433
434

435

/¢ REL

3

*

LR R N N X X

s N NN N e g g

- 200 -
A-28

CONFIGURATICN MCDEL - PL/1 IMPLEMENTATICN VERSION 4.0 =/

CALCULATE_FLCOW_TIMES: PRCCEDLRE:
DECLARE (IFL, IS) BINARY FIXED (21)3

DO IFL = 1 TO #FLORSS

PFLOW = ACDR(FLOWL(IFL)I)

THISFLOW.TIME, THISFLOW.SIGNMA = O3

DO 1S = THISFLUWCFIRSTSIEP TC THISFLOWLLASTSTEP;
PSTEP = ADDR(STEP(LIS));
THISFLOWSTIME = THISFLChTIME ¢ THISSTEP.TIME:
THISFLOWSSIGMA = THISFLOW.SIEMA ¢ THISSTEP.SIGMA®S2;
END3

THISFLOW.SIGMA = SQRT{TFISFLCW.SIGMA)}

END3

END CALCULATE_FLOW_TIMESS

0V0lL0000

00051950

00051960

00051970
00051980
00051990
00052000
00052010
00052020
00052010
00052040
00052050
00052060

00052070

- 201 -

A-29
/% REL CCNFIGURATICAN MCDEL - PL/I IPPLEMEMTATICA VERSION 4.0 &/ 00010000

STMT LEVEL NEST
436 3 CALCULATE_TXNFLOW_TIMES: PRCCECLRE;
437 4 DECLARE ITF BINARY FIXED (31103
438 4 0O ITF = | TO #TXNFLOWS
439 4 1 PIXNFLOW = ADDR{TXNFLOW(ITF));
440 4 1 PFLOR = THISTXNFLOW.FLCHS
441 4 1 THISTXNFLOW.TIME = THISIXNFLCW.REPETITIONS & THISFLCW.TIME:
442 4 1 THESTXNFLOWL.SIGMA = SQRTI(THISTXNFLOW.REPETITIONS)

¢ THISFLCW.SIGMA;
443 4 1 END:

444 4 END CALCULATE_TXNFLOW_TIMES:

0005208¢C

00052090

00052100
00052110
00052120
00052130
00052140
00052150
00052160

00052170

- 202 -

A-30
/% REL CCAFIGURATICM MCODEL - PL/I IPPLEMENTATICA VERSICN 4.0 8/ 00010000
STMT LEVEL NEST
445 3 CALCULATE_TXN_TIMES: PROCEDLRE;
446 % DECLARE (17, ITF) BINARY FIXED (21):
447 4 G0 IT = 1 10 #T1XNS3
448 4 1 PTXN = ADDR (TRANSACTIONIIT))S
449 “ 1 THISTXN.TIME, THISTXN.SICMA = O3
450 4 1 CO ITF = THISTXNLFIRSTFICy T1C THISTXN.LASTFLOW;
451 4 2 PIXNFLOW = ACDRUTXNFLCW(ITF))S
452 4 2 THISTXN.TIME = THISTIN.TIME ¢ THISTXNFLOW.TIMES
453 4 2 THISTXN.SIGMA = THEISTXN.SIGMA ¢ THISTXNFLOW.SIGMA®#23
454 .4 2 ENDS)
455 4 i THISTXN.SIGMA = SQRTITFISTXN.SICMA)S
456 4 1 END3
457 4 ENO CALCULATE_TXN_TIMESS

00052130

000521490

00052200
00052210
00052220
00052230
00052240
00052250
00052260
00052270
00052280
00052290

00052300

STMT LEVEL NEST

+38

459

460
%61

462
463
464
465
466
467
468
469
470

471
472
4713
474
415
476

4r7

478

- 203 -
A-31

/% REL CCNFIGURATICAN MCDEL - PL/L IMPLEMENTATICA VERSION 4.0 */

3

> &

S IPPELPP P ESPEEP s

w

=RWWW WWWNNN e

CALCULATE_NOCE_TIMES: PRCCEDLRE:

DECLARE (1T, 1TF, IS) BIN FIXEC (231)s X REAL;

NODE(*) .TIME = 03
WEIGHTED_MEAN_TIME = 03

DO IT = 1 TO #TXNS;
PIXN = ACDRUTRANSACTIGNIITI)S
00 ITF = THISTXN.FIRSTFLCh 10 THISTXN.LASTFLOM:
PTXNFLOW = ADCR (TXNFLCWILITF)); .
PFLOW = THESTXNFLOW.FLCWS
00 IS = THISFLOWL.FIRSTSTEP TC THISFLOW.LASTSTEP; -
PSTEP = ACCRUSTEPIIS)):
PNODE = THISSTEP.MCOE:
X = THISSTEP.TIME ¢ THISTXNFLOW.REPETITIONS
* THISTXN.WEIGHT;
THISNOCE.TIME = THISNC(DE.TIME ¢ X3
WEIGHTED_MEAN_TIME = BEICHTED_MEAN_TIME + X;
END:
END3
END3
END CALCULATE_NODE_TIMES;

END PERFORM_CALCULATICNS;

END CCNFIG3

Q0010000

00052310

00052320

00052330
00052340

00052350
00052360
00052370
000521380
00052290
00052400
00052410
00052420
00052430
00052440
00052450
00052460
00052470
00052480
00052490
00052500

00052510

00052520

STMT
479

480

481

482

/* REL CCNFIGURATICA MCDEL - PL/1 IPPLEMENTIATICN VERSION 4.0 */

LEVEL NEST
1

- 204 -
A-32

REPCORT: PRCCEDURE:
CALL OUTPUT_NODES;
CALL OQUTPUT_FLONSS

CALL OUTPUT_TXNS:

00010000

00052530

00052540

00052550

00052560

- 205 -

A-33
/% REL CCNFIGURATICN MCDEL - PL/I IMPLEMENTATICA VERSION 4.0 /7 00010000

STMT LEVEL NEST
483 2 OUTPUT_NOCES: PROCEDURE; 00052570
484 3 DECLARE (IN, 1T} BINARY FIXEC (31); 00052580
©85 3 SIGNAL ENDPAGE (SYSPRINT); 00052590
%86 3 PUT EDIT (°NODE®, °® PAGE SIZE FAGE RATE USERS SERVERS®, 00052600
© CAPACITY UTIL MEAM/SO SIGMA/SO WGTD TIME®) (R(FORM1)); 00052610
487 3 PUT SKIP ECIT §f=—==0, § mooe e o oo mm—me memeee- ' 00052620
B —— - —-=-") (R(FORM1));00052630
488 3 PUT SKIPL2); 00052640
489 3 FCRML: FORPAT (A(32),A040),4(500)3 00052650
490 3 PUT EDIT ((NODE.NAME(IN), MODE.PAGESIZE(IN), NODE.PAGERATE(INI, 00052660
‘ NODE.USERS(IN), NQDE.SEFVERS(IND, . 00052670
NCDE.CAPACITY(IN), NODE.LTILIZATICNEIND, 00052680
NGDE .MEANFACTOR (IN) s NGCE.SIGMAFACTOR(IND , NODE.TIME(IN) 00052690
£ IN = 1 TO #NGDES)) 00052700
(SKIP(2),A032) o USIIFIL0D), (4D (F(10,4))); 00052710
491 3 SIGNAL ENDPAGE(SYSPRINT); 00052720
492 3 PUT EDIT (*NODE®,* TRANSACTICA®,*PEFCENT OF CAPACITY®) (R(FORM2))3 00052730
493 3 PUT SKIP ECIT (° o0 -y -- *) 00052740
(R(FORM2))3 00052750
496 3 FCRM2: FORPAT ((3D(A(32),X(11))3 00052760
495 3 PUT SKIP; 00052770
496 3 DO IN = 1 TO #NODES; 00052780
%97 301 DG IT = 1 TO #TXNS; 00052790
498 3 2 PUT SKIP EDIT (NCDE.MAME(IN), TRANSACTIGN.NAME(IT), 000521300
100#NODE (IN) LLOAC(IT)/NCCE(IM) .CAPACITY) 00052810
(€20 1AI32) o X (11D oF(Liea) s 00052820
%99 32 ENC: 00052830
500 3 1 PUT SKIP; 00052840
501 3 1 END; 00052850
502 3 END OUTPUT_NGDES; 00052860

- 206 -

A-34
/% REL CCNFIGURATICN MCOEL - PL/I LIMPLEMENTATICLAN VERSION 4.0 %/ 0v01in000
STMT LEVEL NEST
503 2 OUTPUT_FLChS: PROCEDURE:

504 3 DECLARE
(IFL, IS) BINARY FIXED (31),
CHAR3Z2 CHARACTER (32) BASEC (PCHAR22)3

505 3 SIGNAL ENDPAGE (SYSPRINT)S
506 3 PUT EDIT {°FLOMW®, °NODE®,° CATA SIZE PAGES TIME SIGHA®)
(RUFORM3D I3
507 3 PUT SKIP EBIT {(P==——?,0—eu=0,
¢ ———- —====0) (RIFCRP3II)I;
508 3 FORM3: FORMAT ({230A8320,X11050A8401i55 .
509 3 DO IFL = 1 TO #FLOWS:
510 3 1 PUT EDIT (FLOW.NAME(IFLD) (SKIPE3D,AL32))3
511 3 1 D0 1S = FLOW(EFL).FIRSTSTEP TO FLOW(EIFL).LASTSTEPS
512 3 2 PCHAR32 = STEP.NODECES)3 /% FL/Y~F RESTRECTICN */
513 3 2 PLT EDIT (CHAR32,
STEP.DATASIZE(IS)e STEP.FAGESIIS),
STEP.TIME(IS), STEP.SIGMACLISD)
(SKIP(OD o XU330:A032) X820 20(FRR0DD-(20(FUL20,3)003
5le 3 2 PUT SKIP (2)3
515 2 2 ENC3
516 3 1 PUT EDIT (°TOTAL FOR FLCW® FLObTIME(IFL)y FLOW.SIGRA(IFL))
(SKIPLODoXU33)oA(32) oX421Do02)(FLL10s3)))3
517 3 1 END 3

518 3 END OUTPUT_FLOWS:

00052870

000528480
00052890
00052900

00052910
00052920
00052930
00052940
00052950
00052960

00052970
00052980
00052990
00053000
00053010
00053020
00053030
00053040
00053050
00053060
00053070
00053080
00053090

00053100

207

A-35
/% REL CCNFIGURATICN MCODEL - PL/I IMPLEMENTATICA VERSION 4.0 */ 00010000

STHNT LEVEL NEST
519 2 OUTPUT_TXNS: PROCEDURE; 00053110
520 3 DECLARE 00053120
(1T, ITF) EBINARY FIXED (31), 00053130
CHAR32 CHARACTER (32) BASEC (PCHAR32); 00053140
521 3 SIGNAL ENCPAGE (SYSPRINTI): 00053150
522 3 PUT EDET (°TRANSACTICN®y °WEIGHT? o *FLOW® 00053160
¢ REPS TIME SIcMac)IR(FORNQ)'. 00053170
523 3 PUT SKIP EDIT (O~——————=m=?y fo—meee ety 00053180
. ——— ———= m===-) !R(‘GRn%)). 00053190
524 3 FORNQ: FCRMAT (A(32)oX(5)-,8¢8€D,X(1)oA(32),X{L)sA(30))3 00053200
525 3 CoO IT = 1 10 #TXNS: 00053210
526 3 1 PUT EDIT (TRANSACTICN.NAME(IT)s TRANSACTION.WEIGHT(IT)) 00053220
ESKIPI3DoAl32)oX (L) oFIL0o60D3 00053230
527 3 1 DO ITF = TRANSACTICN.FIFSTFLOR{IT) TO TRANSACTION.LASTFLCW(IT) 00053240
528 3 2 PCHAR32 = TXRFLOW(ETFI.FLCWS /% PL/I-F RESTRICTIUN #/ 00053250
529 3 2 PUT EDIT (CHAR32, 00053260
TXNFLCWCETF) cREPETITICAS, TIXNFLOWUITF) . TIME, 00053270
TXNFLOW{ITF) o SIGM2) 00053280
{SKIP(O) o XU4%)oA032) 020D, (2)IFEL0,3DD)3 00053290
530 3 2 PUT SKIP (213 00053300
531 3 2 ENC; 00053310
532 3 1 PUT EDIT (°TOTAL FOR TRANSACTICA®, TRANSACTION.TIME(IT), 00053320
TRANSACTION. SIGMAULTII(SKIP(QDoX(44)oAU32)oX(R0),(2)4F(10,30)0300053330
533 3 1 END S 00053340
534 3 END OLTPUT_TXNSS 00053350
535 2 END REPORT; 00053360
536 1 END_OF_JOB:: 00053370
00053389

537 1 END FRED;

- 208 -
B-1

APPENDIX B DETAIL OUTPUT SAMPLE

Page Report

B-2 Node Summary
B-3 Node Utilization by Transaction
B-4 Flow Detail

B-6 Transaction Detail

- 209 -

B-2

0000°0 0000° ¢
0000°0 0000°1
0000°0 0000°¢
0000°0 0000° Y
0000°0 0000°0
0000°0 0000°0

98%2°1 9RH2Z°2

3WIL 0199 0S/VWOlS

0000°71
0000° 1
0000°1
0000° 1
0000°1
0000° 1

?8%2°2

OS/NVIH

0000°0
0000°0
0000°0
0000°0
0000°0
0000°0

€566°0

i

0R6T AYvNEE3I3 G1I

%1s
861
000000L 1
0000001
98
131

00003371

ALIDVdV)

$31Va NNy

L]

SY3IAY3S

6161-9NV-2Z 43 0°¢ NII3¥3IA NOILVAINIWIIdKW]

oot
00§

00t

S¥3s

93 0002
113 1
000000¢% ¥
0030021 0
93 0002
€€ 1
3330001 1

31vd 39vd 371S 3I9vd

¥ILI I10WIY

¥SI0 I10W3Y
¥0SS3II0Yd ILONIY
13N¥3NLY

¥ ¥S10 W
WYY N¥SIQ W30V

¥0SS330¥d TIVHINID

300N

1/3d - 7300w NIILVYNOIINDT 3y

- 210 -

0002°0
0002°0
0000°0
0000°0
0000°0

000%°0
0002°0
0000°0
0000°0
2000°0

0000°0
0000°0
0000°0
0000°0
0000°0

0000°0
3000°0
0000°0
0000°0
0000°0

0000°0
0000°0
0%00°0
0200°0
0000°0

B-3

0000°0
0000°0
0000°0
J2000°0
0000°0

STy
(AL TARE|
1109°1
0810°0
2010°0

ARTIVdV) 4D IN3D¥3d

A¥3INS X3ITHWOD
IINIINIS IVAWIS
A¥3IND 3VdHIS
NIISYIA IONVH)I
NG90

Ad3INd X3 TdWII
IINILINIS ITVGHIS
AY3IND 37dWIS
NOISY¥3A 3INVHD
NO907

A¥3IND X31dWID
IINILINIS ITdHWIS
AY3IND 3 TAWIS
NIISY3IA 39NVHI
NO907

A¥3ND X3 VAWDD
3JINIIN3S 3ITdWIS
AY¥3ND 3TdWIS
NIIS¥IA 3ONVHI
ND907

A¥3NIY X3ITVIHIID
3INIINIS I VWIS
AY3ING 3TdWIS
NTIISHIA IONVHI
ND901

AY3N3 X3TdWII
3IN3INIS 3TdWIS
AY3IND 3ITdWIS
NIISHIA 3IONVHI
ND9D7

AY¥3IND X3T4WOD
3INIINIS ITVIHIS
AY3IND IVINIS
NIISY¥3IA 3IONVH)I
N0O9D1

NJTLIVSNVYEL

¥0SS3
¥0SS3
¥0ss3
¥0SS3
¥oss3

¥
¥l
¥i1d
¥yl1)
¥l

Hyv
WYV
LR}
WYY
WYY

¥0SS3)
¥0SS3)
¥0SS3D
¥0SS3)
¥J3SS3D

¥
LR T &)
¥
LRE)
¥i1d

%sia
AS10
¥sia
%sio
»sio

J0¥d
J0ud
J04d
J0ud
J0ud

13
13
13
13
13

%S10
%S1a
usio
NSI0
nsia

uS1o
usio
%slo
Nsio
nSia

Oud 7V
OoYd 1
0O¥d 7
0oyd 7
0dd

310+ 3y
310M3y
EJULEL)
310K3Y
31003y

310W3IY
310W3Y
310w3Y
J10W3 Y
310838

J10M3 ¥
J10W3Y
310+ 3y
310KW3 Y
EFULER]

N¥3HL 3
NY3IHL3
NY¥Y3IHL 3
N¥3IHLI
NY¥3IHE3

wawy
w0l
WY
WO
W

307
W30
W3
Wl
wIN

VYIR3D
vHinN3d
VYINID
VyiNID
VdiINI D

JCIN

0861 AYVNYE3d ST $30va NN¥ - 6461-9NV-22 49 0°% NIISH3A NIIAVIN3WITAAT 1/7d - T30IW NITIVHNOLIINDD T3I¥

- 211 -

B-4

100°0
600°0
200°0
+00°0
100°0

600°0

%00°0

%00°0

4€0°0
9€0°0
200°0
900°0
100°0

600°0

180°0
180°0
%00°0

0€0°0
010°0
110°0
220°0

200°0

%00°0

%00°0

VWOIS

0861 A¥vI¥E33 G1

100°0
600°0
200°0
%00°0
100°0

600°0

%00°0

%00°0

2s0°0
9€¢0°0
200°0
%00°0
100°0
600°0

980°0
180°0
$00°0

1s0°0
010°0
410°0
z20°0

200°0

%00°0

¥00°0

ELANY

000+
0002
000
0L6

000

0002

SE€09¢
0002
000%
016
000%

S€09€
0002

00001
089971
00001

0002

0002

S$39vd

23LV0 NNy - 6161-9NV-2Z 33 0°% NIISY3IA NITLVINIWIVIAT 1774 -

1z
000¢
0302
000%
12t
000¢

0002

SE09¢E
0002
000y
1zt
000%

SE09¢
0902

00001
12s
00001

0002

0002

371S viva

13NY3HL)
40SS3II0Yd TVHINII
¥0SS3204d 3I10W3Y
405532084 IL0OWIY
13INY3HLI

335S3208d IvyiNI)

%374 ¥04 IWViO0L

40SS3J0Yd TvHiIN3)D

KDY4 ¥0O3 TIViOL
¥0SS3I0¥d 310W3Y
B0SS3II0¥d 3L0N3IY
HO0SS3II0Hd IL10H3Y

13NY3IHLI
435SS3308d TvYiIN3)D

H374 ¥039 TViOL
40SS3308d IVYINID
40SS330¥d IVYINID

9373 404 IVAOL
H0SS3I0¥d 3IL0W3IY
L3INY3HL3
¥0SS3I0¥d Tw¥iN3)

80SS3204d 3IL0W3Y

HOT4 ¥03 WVIOL

43SS320¥d4 VYW iN3)

3a0v

0¥0J3¥ 3I10W3IY

GYdl3Y WIIT

31043Y 3Suvd

WI0T ISwvd

39vd 310W3¥ OV

39vd W20 OvIl

KROT3

T300% NIFLVHNOLANDD M3y

- 212 -

B-5

812°0
%00°0
Z%0°0
€80°0
%60°0
200°0
020°0
L51°0

LS1°0
151°0

¢00°0

9L1°0
200°0
0L1°0
$%0°0
$00°0
100°0

600°0

28€°0
%00°0

29€°0

%10°0

%00°0

0861 A¥VNIYAI4 G1

%6%°0
$00°0
2%0°0
€80°0
%60°0
200°0
040°0
Ls1°0

291°0
£s1°0

$00°0

1€2°0
200°0
0L11°0
€%0°0
$00°0
100°0

600°0

L8€°0
%00°0

ZBE°D

0€0°0 .

%00°0

0002 0002
000Z% 0002%
00%¢8 12¢
0002% 0002y
0007 0002
0000¢ 00002
0000L 00002
0000¢ 00002
0002 0002
0002 000¢
000021 00004 1
00002 00002
000% 000%
0L6 1zt
000% 000%
0002 0002
oooort 000041
000% 000%
23Lv0 NNy

M374 ¥O3 TVIO0R
435537044 WWHANI)D
¥0SS3IJ08d 3IL0WIY
43N¥3413
435532744 TWYINID
Y0SS3I0¥d 310W3IN
¥DSS3I08d 3IL0WIY

40SS320ud WUINIID

K374 ¥I4 TviOoL
335S3308d WYLINID

¥43SS3J0¥d TVYINID

M374 ¥0OJ IViOL
¥0SS3II08d4 3IL0W3IY
¥0SS3I0¥d 3L0W3IN

40SS3II0US TVYANID
Y0SS3I08d 310KW3IY

L3NY3HLI
40SS3J0¥d IVYINI)D

374 ¥o4 WwiO0L
435SS3224d WU INI)

33SS3908d WYINID

K314 W04 TViOL

¥435532J4d 310W3Y

INdIND 319W3Y

1N4L10 WD

NOI1J370ud 31083y

NOE 1231 J¥d VI

= 6461-0NV-22 42 0°% NNISHIA NITLVINIWIVdW] 1/7d = 73006 NIILVUNOIINDT Iy

- 213 -

B-6

LS1°0
110°1

660°0

€8%°0
161°0
8%%°0

980°0

280°0
110°0
180°0

800°0
800°0

010°0
010°0

——e—-

VHOIS

291°0
Loree
821°0

06L4°0
é91°0
Z€6°0
960°0

€i1°0
420°0
980°0

€10°0
€10°0

220°0

220°0

ELD DY

0861 A¥VNYEOI4 6T

000°1
000°2

005°1

000°1
SLlE°T
eZ1°1

000°9

000°1

000°€

000°s

Sd3¥

e TWm @V IV WA UUD
INER Y]
NJILI3r] g

WIN

NOJLDVSNVYL 4D4
in4dind
NJBLI3rDdd

wIN

NOTLDVSNVYL d¥D4
0¥)I3y

I

NOTLIVSNvYL ¥)JI

39¢d 1vI01

NOJLIVSNVEL d)4

VVEIE T

VI
W

3SYvd

Iviol
IvII1
a0

3syvd

Vi
woin

3Syvd

Wil
avol

Vi

39vd I¢IJV QvII

LSAE

0000Ze°0

00002¢°0

00002¢°0

0000€0°0

0000710°0

1HO 134

$34V0 NNY - 626F-9NV-22 2) 2°% NI HIA NILVINAWI TdA]

A¥3N) X34kDI

3INILAN3S I VWIWIS

AYIND I Wb 1S

NOISY3A 3IONYHD

NI

NOT 1JVShvYL

1/77d - 730)4 NITLVNNOI4RDD 3N

- 214 -
C-1

APPENDIX C COST SUMMARIES OF THE CASES

Case

Paging
Paging
Paging

Paging
Paging
Paging

Paging
Paging
Paging

Paging
Paging
Paging

Disk Centralized
Disk Clustered
Disk Smart Terminal

Bubble Centralized
Bubble Clustered
Bubble Smart Terminal

CCD Centralized
CCD Clustered
CCD Smart Terminal

EBAM Centralized
EBAM Clustered
EBAM Smart Terminal

Distributive Function Disk Centralized
Distributive Function Disk Clustered
Distributive Function Disk Smart Terminal

Logic
Logic
Logic

Logic
Logic
Logic

Logic
Logic
Logic

Single
Single
Single

Per Head Disk Centralized
Per Head Disk Clustered
Per Head Disk Smart Terminal

Per Track Bubble Centralized
Per Track Bubble Clustered
Per Track Bubble Smart Terminal

Per Track CCD Centralized
Per Track CCD Clustered
Per Track CCD Smart Terminal

Level Store EBAM Centralized
Level Store EBAM Clustered
Level Store EBAM Smart Terminal

Single Level Store RAM Centralized

Single

Level Store RAM Clustered

Single Level Store RAM Smart Terminal

Logic Per Head Disk: c(R1)/c(R2) Analysis
Distributed Function: c(R1)/c(R2) Analysis

- 215 -

C-2

1
i
i
|

i

Centralized Architecture

!

—_—r
(7]
o=
5 -
S)]
=
o=
[
_a
o
o=
CH T WHSTOOLOVEETT T I8 T T T gy S ggpeg- -
S ezzev T zeecy 0 gesey 19201 L18°g SEs‘Y
w
T SATUT T zezer oo pyeen 1zt L2 SE3 Y
] L e O e 11 N T T NI} sIvey
(&)
006 0oz 001 05 0z ot

TIVHS
T1IVAS
TIWHS
IIVAS
TIVKS

TIVRS

oLo‘s

0€E6°L

0EB°L

S

00l
oot
oot
001
001
031

SLY*BY
sZe‘el
szeeot
GZE*BT
Z

059°S¢E

069°s¢
059°G¢e
0S9°SE

1

000°00S
000°002
000°001
000°0S
000°0Z
000°01
Q00°¢
000°2
000°1

00s

(KOY¥) S$IT4NL NI 3218 NOTLYI3d SISHIA (NWNTIIDD SHIST 43 ¥IGNNN ¥I4 157D NITivHNO 148D

0861 AWVNYBIZ 90 :ILVA ¥NY¥ - 6L6T1-0NV-22 43 0°Y NOI3H3A NILAVINIWITIWE 1/73d - 1303W NITLVHNTDI4NND 3w

- 216 -

C-3

tecture

- -
X -
(8]
|
<
o
W
— g —-
Q
R
w
3
—
(&)
Y4
(%]
e o e
o
o
[=
——m .
o
[
- a -
=
o
e f—— e e e
4+ BoOE°e 80€° ez
L Q A
| = ° cep
S 30€e°e 80¢ ¢2
U T .
Tof2 1592
_
(4] ° g 02
o §68 %2 160 °2
(&)
J0s 002

80€°Z
80€ *2
1612
161°2
oot

351 ayvny83d 0

I AS

1vA4s caL

ULZHER RN

TITAS 2L

. TIvAS J3L

’ o LALZEREETY
30€°2 T 8022 7 39gc2z 7 @ogez 30e¢2 CISLE
80€E *2 BCTILY 80€ 2 876 2 3nie2 37892
612 T 1s1e2 1612 1512 lo1°2 1517
16tz 1s1ez 18142 qsyez 1514 151°2

0s 02 o1 s 2 1

331)))3°39s

000002
009°071
oeeeos
00002
033°)1
0co*s
00d e
00)°1

005

_

1
(90340 5370 NI 3215 NJIILIVIZa 5154924 (NWN13)) S¥ISN 49 4334 rI3 1SI) N2TL74ND1ND0

23LVU NNY - 6151-INV-22 40 I°% NOISH3A AP FUSEERE R FRE RS NI B

N

RN

.

VINCTIN DL

ARRY

1 ‘Architecture

[1+]

=

o

1

a
—_—

- - t -

[

_ o _

o -

(%]

x o T T T T 1IW4S DIL 002°0)6
[- B ’ ’ 1945 331 32)*032
T m. o o - CoTTT - ’ TIAS 0I1 COO°COY

o -7 T oo T N 11va5 GOL 000°03
. [2 _

o . 11745 IIL ID3°)2
..... Mw;-.mnu.o,; Tosze9 T os2'9 o0sz‘9 T34) T 0329 0523 0527 : 1WKWS 031 000°01

b 0szy 032 062°9 Teszey 0sz*® T Tosz'9 T esz'’ T 0s2*)y 032%2 2035

- QO N, - .
S o0ssls (111X 086°S 0s5°S 035°S J56°¢ 055°3 055°3 056%s ocoee
— N R
065 ¢ 055°S 056 °s 055°¢ 0ss' ¢ 066°S 966°3 033°: 065°3 000°1
£ =) S ——— . _ . el R,
8 ossts 055°s 055°S 0S5°s s HEH 055°S 036°3 055°% 0663 303
- C _— L. P
008 ooz 001 0s 02 ol H 2 1 !

T (R0d) S374NL NI IZIS NIIAv13Y STASAIA (441D 543571 49 929439 ¥ld 153D NILLVBHIII4ND

0961 AdyN¥B34 90 :31VU NMY - 6I61-IN¥-22 33 0°% NII15d3A NOTLVINZKIICA] T/ - 13074 NJFLVSNSL4NT) 3N

- 218 -

C-5

Paging Bubble Centralized Architecture

Cost Function

ARIZH
IS
1IVAS
T9AS
1 AS
TIVWS
ARAA N
A7 AS
T1IVAS
11748
1

031 003°23s3
JJ1 ooo*oce
001 000°021
321)2)°)s
331 ococo2
£31 J9)°01
JJ4L)C0°5
3)1 0032
00L 00)°1

JlL 003

(M0¥) SIVWdNL VB 371S VIIL913d SIS43A (NATTID) Sd337 4D 5,448 3)5 133D NOILIVEIIT4NDD

0861 AdVNYB3Id 92 23ILVA NNd - 6L6T1-9NVv-22 4D 0°% NOIS oA NGILVNSW ™ YdN: 1700 = 33004 N L7 2NIIMID A3

- 219 -

C-6

Bubble Clustered Architecture

ing

Pag

Cost Function

AREEES
AR LH
AZR
RAREATS
1IVAS
RRIZES
T1IVAS
RZH
TS
1Ws

1

JJ1
Go1
231
031
0oL
Ji1
001
J01
001

eJe] }

C00°00S
00)°032
OTo.ou_
000°05
003 °32
coo° 01
003°s
J0)°2
00p°1

0035

1HId) S3T4NL ¥ 3215 VIIAVIIy 515830 (VWI1ID) SYAST 3D ¥IAAIN ¥I4 LSID NI JTuNIf4vID

0861 A3UNYAIS 97 231VQA NNY - 5L51-91v-22 40 0°% NOISYA NOLLVANSWINANT 1/ - 13009 NDLLZYNOT4NTY 13}

- 220 -

C-7

Cost Function: Paging Bubble Smart Terminal Architecture

AW WS
TIWAS
AR N
TVWAS
T1IVAS
11748
TIVWS
TIVAS
TIWAS
AR

0J1
00l
21
31
031
)
oc1
34
031

Dol

000°09S
000°0)2
Jco* o)1
000°05
033°)?
000°01
000°s
)0)°2
oco‘1l

3205

09041 537471 NI 3715 NOILVI3Y $IS43A (NANTID) SuIST 4D wida WY 334 153D NIIL74ND14vI2

IFI6T AdVIudId e

FILVA NNY - 5150-9NY-22 40 0°% NOISYIA NIILvAINIAITAAL [/704 - 13304 vIIL7YIOI4NDD 13

- 221 -

C-8

'
'
i

1
!

on: Paging CCD Centralized Architecture

o
—— g
O

1IVKS 001 §25°2
TIVKS 001 ¥9€°2
089°9 619°9
02s°¢ 115
2oe°z ssve2
vt szev
005 002

1WKS 301
"TIIRS 031 2086°96

2 $8G4EZ S8z €2

1 vizezt s2Le21

T egete sy9L
v95 °¢ 218 ¢
805°2 918°2

. 0861 8822
o0t 0s

(M04) S37d71

0861 A4¥NY83I4 22 :34VQ NNY - 6L51-9NV-22 340 0°% NOISY3IA NIILVINSw3ITdY]

SYECETY
$95°09

‘g18°42

- 662°%1

296°L
y6L°y
JELE
olzte
0e

NI 3218

696° 611
(12 R X
S9€° g2
08L°%1
00S5°6
2EE’9
9L2Z’s
8%L°Y

ol

8sT1tEel
SY€°08
SI%eZe
sse°Li
stseel
L0%°S
15€°3
€28t

S

8sLteLt
$95°611
sBLLy
oot°ze
[24 R
259°81
956 L1
82011

e

10AS

TI7AS
8sLaee
866°S31
gle‘et
80s*2y
geeLe
090°%¢e
$00°E¢e
ILyt2Ze

J01 002°03§

001 000°00¢
000°001
000°0s
00002
00J°01
000*s
0ngee
oco‘t

0o0s

NI T1vI13¥ SAISU3A (NWNT0D D $¥3S0 50 ¥IGNIN wI4 15D N2 LvaNd 4N 2

/14

= 13304 NILL9M¥NOI3NDD 152

- 222 -

C-9

Cost Function: Paging CCD Clustered Architecture

196912
0EEBOY
019°%%
00%°€e
058°21
%05°9
26€°%
9¢E’E

006

196%e32
0EE°BOT
01944y
o0o%‘ee
098421
%0649
Z6€°Y
9EE’E

002

0961 AYvNHBI3 22

1968012
0€EE’801
0L9°%y
00+°¢Z
0%8°21
%05°9
26€°%
9€E’:

001V

196612
0EE° 801
0L 9%y
00%%¢e?
05821
+06°%9
26€ey
9€e’e
0s

(MDY¥) 537401 NI 321S NDILVIIY SISHIA (NWNI3ID) SYISY 4D

SIVO NI - 6261-9NV-22 37 0°% N5 HIA NITAVINIWIdwW] 1/14 -

1ygee 12
0E€E80T
0L9°%y
00%°¢€2
(L4 Aa |
+*05°9
Z6€°y
9ec’e

(114

18 2341 €4
0Ee 81
0L9°yy
00% g2
ov3°2Z1
59503
e5c Yy
Yece

ol

196412
0E€°80Y
0L9°yy
00% g2
oygeel
%059
26€°y
9Ee’E

1

[LX B2 4
0€EE*8I1
026 e
00%¢€e
oygezi
£0G°9
26€°y
9ee’e

4

TIVWS 001 000006

TIVWS 001 000°002

196912 coo‘ont
oce* 801 000°0g
026%o¢% coo°oe
00%° €2 0oo0°CY
0%8°21 000°s
+0G°9 000°*?
Z6EtYy 000° 1
e € 00s

43dWNN ¥4 1S0D NI TRvynNai4mI)

T3GIA NITAVHCO T IMND 3y

- 223 -

C-10

I

-CCD Smart Terminal Architecture

ing

|
Pag

|

Cost Function

|

‘
{
H

]

|

TIVWS 0O0L 000°00S
IIVA4S 004 000°002
TIWAS 331 0cCC°001
TIWWKWS GUL 000°05
TWAS 001 0C0°0?2
TIYWS 231 00001
11745 031 000°S
T1VHS JJL 002°2
T1IWAS 001 000°1
TINS 0JL 199°L 9693 103°t1 521 003
0z o1 S 4 1

§MOY) S3TdNL NI 3ZES NIILVI3Y ST543A (NANTIDD Sud3) 4 9s5dAWN 834 153D NIILv¥NII4HO°

0861 AdVNYE@3d 22 234V0 NNY - 6261-9Nv-2Z 30 0°% NOISu3A NULLVIN WINdAl 1/14 - 700 NILAS INOTIND D T3y

- 224 -

C-11

d Architecture

1Ze

EBAM Centrali

ing

Pag

°
°

Cost Function

TIVKS 0ONL 912°01

TIVHS 001 BEOQ‘Y

€%6°2
666°1
2261
61%°Y
1621
00¢

86%°€
€81°2
8zL
€eyel
66€°1
002

TIVWS 001 2ev°02Z

91ty
99€°E
96507
864°1
et
Testt
001

0861 A¥WVNYAId 22

266°01
ZEL’s
r4 [14
€L
[4 2 A4
148°1
198°1
0s

086°52
081 °%s1
o08z*s
0€E’s
%S98 °E
L1t
L16°2
21 34
0z

091°Be
035402
oye‘zi
093°s
086°s
Se3‘y
Sed’y
S5ed'y

ot

022°¢€s
0Z6°0%
0ze 81
0z1°61
oL%»*e
oL9°e
02249
otzes
s

008°zel
ooR‘sp
00€¢9¢
00€‘ze
w~—wN~
[IRRN-Y1
SL1'6Y
sL9°s8l

Z

1IVKWS D01 000°00¢

TIYWS 004 000°002

009°002
009°891
009° 12
009° €9
0sEehHE
0se’le
0s€°9¢
0s€¢9¢

1

000°001
000°0s
000°02
000°07V
000°s
0oo0°2
0001y

006

(MOY¥) S3TdNL NI 3IZIS NDILV 34 SISYIA (VRNTIID) SY3ISY 43 ¥3IAWNV 434 1509 NOLLVHNDT 40D

23LVI NNY - 6261-9NV=-22 33 0°% NIESHIA NITLVINIWNITIN]

[WAF]

= 3COW NMITLVHPLOI4MND 1IN

- 225 -

c-12

Cost Function: Paging EBAM Clustered Architecture

868°gy
626°¢€e
866°21
808°¢%
Siy°€
806¢¢
sLvce
614°2
80¢e¢e
00¢

868°¢y 858°Gy
S26°€C §Z6°€2
8s6°21 - 8s6°21
808°% 808°y

616°€ [7X 2 4

808°2 808°2

§2%°2 cLpe2

61902 cLyc2

e0€¢2 80€°2Z

002 0ot

0861 A¥VNYE3II 22

858°cy
626°€2
8e6e2zt
808y
61%°€
8o08ez
sLvee
€492
B80€°?
0s

868°gy
eZ6°€2
8s6°21
808y
[7R 24 1
8082
siLyee
s19°2
80E‘e
0z

853°69
§25%¢2
Bg5¢ 21
3)3°y
SLY°E

-838°2

slypee
styee
30ec°2
ot

86806y
s26°¢€e
856421
808 %y
Si%°E
808
sLyog
sz
80E*?
S

6§26y
sZe‘ezZ
856°21
828°y

Slyee

80R*2

[13484

sLeee

:11] 24

4

.aaq:m 001
1 T4 3 ¥4
8g62eel
86521
808°y
Sivte
808°2
[Y3 284
si1vc2z
] R4

000°00¢s
000°00?
000°001
000°0S
000°02
000°01
000°s
000°2
000°1
00s

(MOY) $374NL NI 27IS NDILVYIY SNSHIA (VWNTII) SHISTY 42 wagwny Y34 1S0D NIIAVENDT $#79

tILVO NNY - 6261-9NV-22 37)°y NOISY3IA NIILVINIWIVANT 1/0d

= 13036 NOTIVHND] 4NIID Iy

- 226 -

C-13

ng EBAM Smart Terminal Architecture

]
i

0S1°592
08S°LET

—_—m -

'

Cost Eunét

osLeiL

Pag

0sa°22
05891

053°01

jonf

0¢8°9
[A]

oselr
005

0861 AwvNye3dsy 22

061°592 051°692
0SS*LET o0sstiel

B T L TR YT T TR
0s0°22" 0s8‘zz
0s8°sl o0gecel

© 0sa%01 osscol

~ 0s8‘s opse‘s
0sd°e " os8‘s

s Toeser

ooz 001

061 ‘692
0scLEl

05212
058°22
058°y1
058 °01
0s8°g
0$8°8
0s8°y
0g

0514692
055°L€1T
osLe1L
058°22
058°%1

‘0s8°01
058°8
0s8’s
Dse°y
0z

0s1°692
0SS eLET
osLeue
osgeee
058 ° 41
0s8°0t
0s8°g
0s8‘s
0s8°L
01

051°532
035°LET
0sL°1L
05822
0S8yl
0s8°01
0s8°3
0s8°3
0se*

S

0s1°532
0ssLel
osteie
0sa‘e2e
0sBH1
0s3°01
0se‘e
0s58°@
0s8°L

2

TWAS JIJ1 000°00S

051592
0sS°LET
osLtie
0s3°2e
0s8°y1
05301
0s8°8
0s8°‘3
053°¢

000°032
000001
00)°0s
000°D2
000°01
000°s
000°2
000°%

0os

(MO¥) S37dNL NI 371S NIILVI3H SNSYIA (VWNTII)D S¥ISN 43 43347V 833 153D NIOILVuN914NID

:31va NNy -

6L61-IN¥-22 40 0°% NITSH3A NOTLViN3WITdN] 1714

= Z00W NJTLVBNOT4NID 3t

- 227 -
C-14

d

@

N

or—

-

©

<

ey

=

@

o
———

w

—

(=
S

o
ar——

+ .

13
B e .

L. geseez 683°92 09%°LZ. — E6L0E— ... ZED%Ey 52503 355927 328°yy1 0521z 002°003
lwwllllﬁnrpa-x|||lxu«¢b¢.:r||||opﬁu~.enllluaom.n.|;|||i~cm.a. S -6GHQT .. . 0L2°32 . 515°)2 05%°2s 003°))2
or—
A5 8€60P 330°% _289°3 . _ I1E'L_. _ . Ls2%s .. SLIEL 0s51°L1 HEY 052°LS 003°901
0

ﬁu!.!iunumn.,.-as;ounmn‘; — 098°EBL*Y® _ _ 1gl°3 §IE°9 LYRERY HEQ T 053°vE 000°03
- = 50642 —pR3eZ 12222 L6tz 205°c - g2ty . . 030°L L1yl 0;2°32 993°¢32
op=
O €90 — . GER®D ...___ _BELY .. 100°2 [AELY 5e3°€ Isne; o zezern 05022 000° 01
e —— L®ELE sl -008°% —_._ .. G9LCl_. . . Zzze'z gvaee I5he; §23°11 030¢7? 213°3
o
“5——30244 0628y g2Ett— B30T .221°2. ave'e oiz*s T 03022 003°2
Q

- —-Lo80T . B2 .. _G2E°T . . B26°Y . . z21e2 174X o1ze; 52311 030077 vl
3
A e2Bel WeEeE . e920L. . . pevel . z2i°z 501°¢ 0123 s25°11 030°22 003
- 203 032 201 S S Y 0l 3 2 1

o

o

210-3556661°C =310uSid

€40¥) $3737% VI 3715 VIIL7738 5315438 (NAN13D) 54351 43 433409 44 L1332 NDLI7wdLINDT

351 A49NYBIJ 21 :3AV3 NNY - SL5T-3v=22 43 0°% NII544A NIDLOANIVIWINT B/ - 12700 NILLeale14N)) 19

- 228 -

C-15

: I
i

'
¥

sk Clustered Architecture

s -
o
| =
o
g
Fe)
o) s B
o QI®°ES. . O0%0°%S . 0%0°%s . 091°L§ 00%°€9 00%°E? 00%°€? 000°251 001°662 000°00%
IW 129022 618°22 6L8°2Z _ . 991'%2Z .. __.QvL°9Z __ oOvL'9z_... OvL'9Z 0S€°S9 002801 000° 00?7
!..M.‘-..-.!netﬁli, 9E6%21_ __ 9E6°ZT. _. . 9E9°El . 0%0°St .. 0O¥desl 0%0°s1 001°9¢ 00L°09 000°001
.2 1020 £62°8 €62° . . 220'8 ___ 0BS°6 _ __ 035°'b _ 085°6 054422 00§ 8¢ 000°0¢
S
...u MGG 199°€ 1994S _wiB*S. 0999 _ D3NS _09%'9 .. . 0§9°%l 006*6¢ 06002
S . _ewzy. ____ Si€'y.__ . GIE'y 01’y . 006°% 026°%y 006°Y 061°91 001%61 000°01
-mwnxllwpwuwlvea:;;mdm., . ._STe’y _ 016 006°Y 035°y 006°% 050° 91 0oTt6l 000°¢
‘meluflsnnnwalnllrlhhenwlltilllhpewwtls:z.;umij‘ Q29°y. _023% 029° 060°01 vottol 000°?
Fuy
M| . 0%0°%__ ___ 100°% . 1l0°vy __ _ @se°y _ 0Z9°% 0Z3°y 0z9°w 050°)1 00t*6 1 n09° 1
3
M 0%0°%_ .. __La0°y g0’y 862°Y . 029°%y 0z3°y 029y 050°01 00161 005
o0s oz o0b. 0% Qz._. . 0t_. . s e 1
o
C . _—
"~ 7210-3666661°€ =34VYSIW (MO¥) $37dnL NI 321S NOTAVYIIN SISHIA (NWNTID) SHIST 4 w3IFRNV aDd 15D NITLENIOTINID

0861 AHVAWEI4 2T £ILVO NNY — 6261-90v=22 43 0°% NIISUIA NIILVINTRITIRD 1/14 - 130d% *D11VaNII4t D 13

- 229 -

1

<
=
o=
E
.
@
T -
N
| S .
o
£
—g) - - -
4 . ‘
w
o=
Y e YR —
[=
-5 —
i ad
8
m ,,,,,,, 009°452 . 00%°2S2. . 00%°y52 00%°L52 . _ 00%°262 00%°¢e32 005162 00%°1 G2 00E*E 12 003005
[T .
'&-inbaﬁhr-rllksnt.Eliiaoﬁtr.lennpt,ﬂilbont__ ——DDIARY_____000°2L11 _ _000°L1l 001°86 0004007
I,W 00929 _ __ 00%°29. __ _00%°z9 ... 00%°29__ _ 009429 00%°z3 004¢29 00%°29 00z4¢es 000°001
e
© l.w - .D00°E __ ____000°€_. _ 000*6E. 000°6E. .. 000°6E _ _ 000°6: 000°6€ 000° € 001°y¢ 000°06
S Htlone.nm 00%262 - . 00v°g2 D09°E2 009€2 _ JI%'E2___ 00%°cz ___ opeses 00E° 12 00007
A _o0sel ____ . 00gcel 006°61 00G°61 005°61 03361 005°61 006461 001°61 000°01
o : .
— 00s°61_____00S°61 __ _ 005°51 ——-.. 00861 00G%61 _ 093°5% 005451 001°31 0ci*81 co0°g
600181 _____goret 001°81 .001°g1 001°891 OOU'8L ____ o01°8Y __ o001°ay 001°81 0007
o~
:ﬂ,,f‘ocﬂ..o.!i[00T°eT . __ 001°8BT _ o001°8Y .. oot'gy oot*sl oot‘si oot‘gi oot 000°1
| =4
;...u..s,--,oe_,.b_lli. 0018y . 001’81 __ _ 00181 _oot’s1 oot‘el 001¢81 001°31 001°g1 00g
= 00% 002 ——__001 __.0s_ ez o0t ¢ 4 1
w
O . e
o

 210-3666661°¢ =3 VHSIN

$MOY¥) 337401

0861 AdvNUYlI4 2%

NI 371S NOILVIIY 3T543A

$3LVI N - 6461-9NV-22) I°y NIISEIA NITLVINIWI TdW] 1/d

(NRNT3D) SH4ST 47 y3aray HI4 ASTOD NDILLGNROT40Y)

= V1I0IW NILLVHEOL MDD 17

- 230 -

—— = -

]

9

L
—_—tn.

o=

o

o)

H& YT 855°12 8L9¢12 w61z trezz
l,.m: Cever | eeeir 19602 S t08'r T T p9me
:rnn.lle;mm~.m,n;;e.|MWwﬁm,;=ae:--m.w €S2ty T arzeg

£ - e .

~ 66992 v252 969°2 9€6°2 996¢¢

o

— - - ——— . - -
S 2 629°1 60207 €98°7 6ET4Z 8L2'¢

= zzven TN Te99sy 6€6°T T ggaeg

Vo) - ——— el e L e

mw 99¢° 60907 §v0°¢1 9€6° 1 8L2°¢
2 CM0etT zogey 0vL°T egeti T guzee
—_ Aoy TN T e e —— . B

w 10907 20gey 0%y 9€6°1 812

b7 10807 206°1 0%t o€t grzee

o /-

(=] v.oowr;;;3.f[oauNr|gt;- 001 o0s 0z

0961 A¥VNUEIS G

0€94%2

s0%°01

626%9
295°g
954 9g
95peg
T9gueg
95505

" 95490g

95505

o1

$04°22
0v0°€l
»9€°01

T stivot
2566
126%6
“1E6%6
€66
1€6%6
1E6%6
s

23LVa NNY - 6l61-9nV-2Z 49 3°% NOIS¥3IA NOBLV INIWI VW]

" oto‘se

2E9ts?

€0%°y2

TeBLrgz

Z8y*ge
8Ze‘eeZ
BZEtEZ
82¢°ge2
82¢ege
BZge2
4

$81°6g
L08% 4%
815°9y
845 9%
596°G¢Yy
1696y
459°Gy
LS9°gy
L69°Ge
Ls9°Gy
1

(HOY) S3V4NL NI 371 NOILVI3¥ SNSH3A (YWNTII) S¥3IST 43 yigwny 414 1S0

000°00¢
000°002
000°0071
000°0s
000°02
000°01
000°s
000°¢
000°1

00s

I NJILVHND 14NID

1774 - 71300MW NITLVYNOTINGD 13y

- 231 -

C-18

!
i

e

isk Clustered Architecture

i

¢ Per Head D

i

Cost Function: Log

sviege

891°s
699y

LEOY

9€5 ‘€
288 °€
2es’eg
280°¢
288°€¢
283 ‘g
005

L6E 2
ys2ce
60L°%
€L0°y
B896°¢
FU5°E
916° €
PIs5%¢e
915°€
916°€
002

z LeEe2?
¥s52°9
60L°y
ELO*y
896°¢€
916°¢

1 1YY
916 ‘€
ise

916 €
oot

IIST AyvNue3y (2

§69°¢€7
[]:F 2]
126y
L4 TAd]
ES¥1®y
880 °y
680 °%
980°%
880°y
680°%

0%

90¥) S3WL VI 3713 NOILlVvI3y $71543A INWNTI)) s¥3sn 59 4334

231va NNy -

ZL1%92
€3 °6
€9¢e° g
S99y
256%y
TES Y
tev‘y
1€%% 4
1Ev s
1eydy

0z

6L61-9NY-27 40 oy NOLSH

L1 92
Y€S %6
€9¢¢g
S19°%
Z5%°%y
1e9°y
1Ev ¢y
TE®ey
TES Sy
fcyty

o1

spe2tee
O%E ‘g
¥I3¢y
G19°%4

ELEA b] SEFTEYER PR 1774 -

092°%y2
28yl
t3d‘ol

6€0° 0}

§33°12
G9Lce2e
L0 02
8L0°s1
YIvegal
Lsi°an
Ls1 g
Lsi°3n
Ls1¢3y

AR Y]]

009°00¢
000°00¢2
003031
133405
nootpr
000°g1
000¢g
0032
00d¢q

00s

N 434 182) R RE AR E] FIRE

17004 NITLVaNOI9n09 13

- 232 -
C-19

Cost Function: Logic Per Head Disk Smart Terminal Architecture

(output not available)

- 233 -

C-20

rack Bubble Centralized Architecture

(o]
— »i0°12

& Bs0eTY

0
opm
080°%9

2 szoe¢

>
W 2egez
v YLLel
o

© oo0¢

699504
828202
833°201
166°1g
$00°yy
999y
88y
z3eee
6iL6°y

1Bseq

002

969414y
i86°202
Y%9¢%01
U6°2¢g
92291
9912
809¢g
[£4-384
yiteez
T12°7
ooy

0861 HIWVW b2

968 %04
96202
SEvZ0t
620°s
L1297
9162
Lep°yL
o61‘¢E
t4 'L A4
800°2

0s

(M0¥) $31d11 i 371¢ NOTLVI3I¥ STSH3A (NHN1Y))

2ILVU NNY - bLo1-

0%9°90¢g
€9s°g21
065°G9
EY0°HE
06291
%1%°01
SL%°9
90s5°y
22s°¢
520°¢

0z

8L1°g05
007 ¢0E 1
28019
186°ge
828°61
166° 11
€10°8
%50°9
650°g
195°%y

[]

252 11sg
TZe9c
SEL°TL
Zyeisg
952%¢¢2
€zeest
9811y
611¢s

YE1°g

%694t

5

INV-22 30 0°% NOISHIA NIT LV INIAN I V441

2€035¢
6EB8°LL1
LI145

1%L°9¢

99%°% 32
ozse1?
1681
9€3°21
a0l

4

LI%*0Le
810°102
19911
280°Y¢
91625
€FES2Yy
1%0°%¢¢
SSE'YE
210°ce
4L A% 44

0Cc0°0)ds
000°022
000091
000°0%
000402
00040y
003°g
00n¢e
002y

0%

SYICN 47 43440 w4 1S33 NI1178N9T 4y0)

123d - 13004 NITIvHNC T INTYD 7132

- 234 -

c-21
Cost Function: Logic Per Track Bubble Clustered Architecture

200°9¢%
ylaceie
268101

65061
2LL°e

19€°¢

9@9°¢
8€8°2
SEVeR
00S

‘226095

s31°1ey S81¢19y 6L0°19% 598°016 $98°8is $98°813 %94 h1¢ 626°6€ 0004535
9920912 99Z°912 806°822 T€2°962 1€2°952 1s€¢iel 812°EL1 156°161 000°007
$21°601 $21°601 S8%8cT Y $02¢921 s0z°821 $91°97 %1983 82556 000°091
" €96°gg £96°56 €24 °8S Z61°59 261469 FIILY z82°9% ¥910¢; 000°c5
12L0s1 . Lze st €65°91 9ze 81 9ze el 9ZEIN . 9T1°352 z€0°2¢ 209°02
s98°s 5988 L2€ %% £62°01 €sze 0 €52°01 £E6° 51 99491 00001
YES°G L {1 1X4 %69°¢¢ 912°%9 9129 912¢> 1%2°%s €ER9e 2y 0nn¢g
BTLCE B1L‘e 848 ¢ 861y 861°4 861y $56°9 162°% 000°2z
098°2 098°2 0L6°z 681 °¢ 681°¢ 681 21zt GvEsR 000°1
T 2svez Zsve2 8EG 2 60L°2 602°2 601°2 2y svLt 093
002 001 0s 0z o1 3 z 1

(4240 S374N1 NI 3I71S NNTLVIIY SNSYIA (NWNTID) SHIST 40 HIFWIN ¥I4 £S3D NILIvuNIT4NQD

0861 HOYVW 62 :31va NOW - SL6T-9NY-2¢ 40 0°% NOISWIA MNITLV INIWT YWD 1714 - TJ004 NITLVINTTINTD I

- 235 -

C-22

Cost Function: Logﬁ'c Per Track Bubble Smart Terminal Architecture

Y12°9LE
156°061
82%°86
%91°2¢
Z€0°62
99y°41
€89°11
TeL'®
SYESL
S9L°9
00s

Y10°9L€E
1656°061
82%°8s

T e91e2s

2:0°62
99641
€89°11
15L°8
SyeEsL
SwvL°9
032

$10°92€
456°061
8Z%°86
y91°2$
2€0°62
99%°21
€89°11
i6L°8
SYE°L
§%L°9
001

0861 HIYVW 52

»10°9L¢€
156061
82y 86
y91°2¢
2€0°62
99% L1
€89°11
162°9
SHeE‘L
S%L°9

0s

%10°912¢€
1S6°061
: X4 2d:1
¥91°2s
2£0°62
99421
€89t
1628
sve°l
svlt9
0z

$10°9L€
156°061
82Zv 86
¥91°¢¢
2e062
99421
EB9 1T
TolL'e

[114
$%L°%9

(]

$10°9LE
256°251
82%°85
93123
2e0®s?
29%°L1
€39°11
162°8
SYE ¢
S%L°9

S

Y10°9L€
155°951
82%°35
$91°2;
990°2
€8%°91
€33°11
s%6°B
SHEL
syLe?

e

y10°9L0¢
L56°061
8Zh°3s
%91°26
990°t12
€3%°91
161°td
6%6*3
SyeEL
SHLed

1

000¢02%
000°022
000¢0)1
000°06
000°02
oooot
c00°s
002°2
000°1

(]

(R0Y¥) S3TANL NT 3Z1S NIFAVITY SISUIA (NWNTID) SHIST 40 HIAAIN W04 1S3 NILIVYHNYE4NDD

$31V0 NNY - 6L61-9NV-2Z 40 C°% NOISHIA NNTLVINIWINIAL 1/0d - 17004 NILLVNAOT 4NTI AER,]

- 236 -

C-23

Cost Function

d Architecture

1ze

°

Per Track CCD Central

Logic

§969626

989212

€66°907

6€1 °%S
s5¢peee
S¥8 11
§96°9

LeE’E

1%€°2

eigel

00s

$98¢62¢
[43:Ar4 ¥4
L6001
€92°%s
06522
066° 11
oLy
r44 34 3
98% 2
B55°1
002

0¥6l Advnue3y L1

021°0¢s

€86 212

91201
9154 9g
89L°22
802421
184 °9
[A3
025°2
26641
00t

956 *0€ES
18%°¢12
€sLL01
€£66° 96
8L6¢22
ALARA1
%90°L
968 €
2282
Y62 *2

0s

1 MO3) S3VdNL NI 371S NIIivI3d SNSY3A

3174 NNy

€00°2€S
$98° $12
$92°501
82L°Gs
8%0° %2
Y0E°ET
Y208
018y
96LE
922 €

02

6L61-9NV-22 5C 0°% NULS b=A NCTLVIM_WZgW] 1 /T -

981 °%eS
96€¢ L2
Te‘ont
116%25
€94 ¢ce
€E06°%1
0ts‘e
29¢€ ‘9
90¢ ‘g
8LL Yy

ot

L225€S
Levezee
BLB'ETY
8L0*13
099%y2
96 L1
9¢9°21
89%%6
A LA]
Y88° L

S

INANTID) S¥3IST al wataIN

OLE *Y5g
15140¢2
L85G %2
55653
YL2°8E
€32*Le
els5°l?2
sC8° 81
69 Ll
12z 11

C

809°%61L¢S
€30'6%2
€9% 2%l
L6458
952°h5
S13'2y
SEStle
LYE HE
Tle‘ee

€322

ooeecos
000°00¢
000°001
ouLtes
00002
coceon
000 s
0uG*2
ocet

00s

cld .50 NCLiveny 147

AW NLE LT IN9T 3NID s

- 237 -

C-24

Per Track CCD Clustered Architecture

1c

Logh

Cost Function

128°612
196011

€€y 2ze
0sZ°2i1

T819°1s
vaLse2
690°g1
1%2°%
9€6°s
L99°¢
zeacz
00s

26€° 96
1092
9€2°61
€v8°6
L3e’s
869°¢

eseeg

ooz

€Eve 222

062 *211

zsetes
810°92
ez st
cv8°6

Lo s

869°¢

(712
oot

0861 A¥VNYB34 61

859 °GEZ 606° 192
v6LB11 £88°1€1
9219 ELv89
06y°L2 £€9° OF
%2091 YYRI]
99€ 01 9204° 11
999 ‘G 2919
Ls0°¢ sL1°e
£96°2 1e1°¢
0s 02

606 ‘192
€088° 1€1

TELy 83

(1224114
6%L Ll
J0%° 11
e91‘9
SL1%y
11:2 A 1
o1

dnzei2

%18°L5
591492
L66°61
e
001°s
v26°E
9€0'E
S

(M08} S3740L ¥T 321S NIILVIIY SIS¥3A INWNTID)D SH¥ISO 40

€zLeont

609622
012911

BT TR

9%0°2¢
669 12
031 °31
$3€°S

826°9

oot‘s

4

TIVHS 00L 003°0)3S

§S1°9%2
689321
€Y9°€EL
0%3°Ly
612°1¢€
806°32
s2sesl
69801
Irs5°3

1

000002
000 °001
000°0¢
000°02
D001
000°S
ooo0°z
coo°l

00s

¥3AWAN Y04 1SII NI AVHNITINDD

$31V0 NNd - 6L51-9NV-2Z 40 0°% NOISW¥3A NOI LV INIWI VoW1 17713 - 13004 ¥IL.vHN914NID I3r

- 238 -

C-25

1 Architecture

Per Track CCD Smart Termina

ic

Log

Cost Funct{on

496°6%6
182°1€2
689621

€¥9°2L
0y8°0%
612°0¢
806°%2
§25°91
6986
19642
00s

%96°6%G
18L°1€2
689°621
€49¢2)
0%8°0%
612°0€
806°%2
526°%1
690°8
1962
0o0e

Y96°59¢
18L01€2
689°621
€v9tzL
0y8°0¢%
612°0¢
806° %2
sz 91
690°8
196°¢L
001

ORG1T AYVNEEIS 61

+9G66h 3
18L°1€2
689°621
€v9ceL
058°0%
612°0¢
806° %2
626°%1
690°8
iy6e
0%

$96°6%S
ez
689°62Z1
€¥9°2e
0y8°0Yy
612°0¢
806°92
(T4 34 A1
690°8
199¢9
0z

$3586%¢
1z
6890621
EvrezL
0v3°0y
51208
80552
$23001
6933
iv2¢9
o1

$96%6%G
18L%1€2
689°621
€vy9eeL
[12:Rd0 14
612°0¢€
806°%2
[T4 344
690°9
1¥3°9

S

495°69¢
182°1¢82
639°521
€y9°2L
6LL°0%
612°0€
806°%2
$26°01
690°g
1v9¢9

b4

©36°6+S

18Lt1€2

689°621

€99t22
611°0Y%
8810¢
B806° %2
§26°01
690°s8
1999

1

000*CO0S
000°002
000°001
000°0S
000°02
000°01
000°¢
000°¢
000°1

00s

(M08} S3ITINL NI 371S NOILVYIIW 3ISHIA (NWNIIDD S¥3ST 47 uw3IaWNv ¥I4 1503 NIIAVHNOTINID

$3ILVO NNY - 6261-9NV-2Z 4D 0°% NII3YIA NDILIVINIWI VK] 1/74 - T30IW NILLVHNDT NN

- 239 -

C-26

Single Level Store EBAM Centralized Architecture

Cost Function

TIVHS 001 zZi2°8l

IIVHS 008 9€9°6

TIVHS 001 86%°€E

LzeLee
666°1
€291
162°1
L€y

00%

8s6te
8%0*2
€65°1
66€° 1
S9e’Y

00z

916°Y
960°E
96542
1Lt
st
€06°1
oot

0861 A¥YVNYE3Id 9

266°01
2€LtS
216%E

165°2

Lo0te
1+8°1
L8l

0s

08652
ogi‘el
082°s
Z66°%
131 B4
L1ite
1162
L16°2

(174

J3148¢E
095°02
033°¢5
otL*9

GEZ'S

ol

02L1°¢€S
026°0%
oze*el
oeveel
0L%*s
oL9‘e
oLz°s
oLzes

S

oog°zel
098°%8
00€°9¢
sL1t9¢
sL1°02
SLi1°st
sL1tel
sL9°81

4

11VWS 0J1 000°00S

TIvWS 001 000°007

009°002
009891
009° 12
0GE* 1S
0SE°bE
0seclc
0$€E°9¢
0G6E°IE

0000071
000°0S
000°02
coo*ol
000°S
000°2¢
000°1

00s

(MD¥) $37dNE NI 371S NOTLYI3IY SI583IA (NANTIDD SuISY 43 w3IBKNN ¥4 1ST) [RENEATaLE E Lin i)

£I1V0 NNY = 6161-9NV=-22 37 0°% NIISUIA NITLVINIKITIA]

1/

- 130014 NDTLVHNO 4R N 7Y

- 240 -

c-27

Cost Function

Single Level Store EBAM Clustered Archite;ture

sivle

sLy L

8 sL%°Le Siv°18 sLy‘Le SL% 1B StytL3 SLy*1 Sth'eLs 000‘00g
SL%°¢€2 GLY‘Ee sly e SLyeee Sty*gez Sty Sty*e2 Sly*ee sly*ee 002032
808°z1 80821 808217 808421 808°21 808°21 808°21 808zl 80821 o000t
sL%°ye stv°L SLy°y SLYtL SLH°L sLYL stHet Sty R A 00)°0s
8oe’y 808y 808°y 808 ¢y 308°y 808°y 808y Bce‘y 808y co0¢02
SLY°E SLy°E [7524 1 Silye SLY*E sive Sty sty‘e SLY‘e oeco‘ot
806°2 803¢2 303°2 808z 808°2 8082 808°? 4d8°? 808°2 2035
siv e 178 Ak 4 G192 SLy02 siLyee styee SLY*2 SLye2 LY A 84 000tz
sLvee alye2 sLyce SLyee sLyee m~¢.~, SLyt? Sthte 5ty 0001
80€°2 80E °2 8oe‘2 802 ape‘e 80€ 2 80€*2 8Je‘e 30E*? 005
00¢g 002 oot 0s 02 ot S 4 [

(MO¥) S314ny vi 371S NJILVI3w 575434 (NWNID)) S¥3ISA 5) 333A0Y 433 157D LIS FUALEY IVl

351 AuvNye3Iy 3z 231Va NNy - SIST-INV-22 340 Gy NOISa3A NIILV INSGWSIsat I/ - 3004 ARRUR 2 MES IV I E BN

- 241 -

C-28

1 Architecture

na

Single Level Store EBAM Smart Term

°
°

Cost Function

068°81¢
0S8°%¢
0se oL
0S8°8¢E
0s8*ez
068°¢}
05801
0se e
0s8‘e
0s8

00s

0s8°gig
0s88%€1
058°0L
0s8°8E
0sg*ze
0S8 °%»1
06801
0s8°g
0s8°g
0s8°y
002z

0861 AdvNYAId 92

0s8°81g
0s8°9¢1
058402
[]9:24:]4
0spe2ez
058°y 1
0s8°01
0se®s
0sg°e
0S8t
001

[11:24:] I
0s8°%gl
0s8°0L
058°0€E
o0seeezz
0S8°%1
0s8°01
ose’se
ose‘g
0s8°¢L

0s

€MOY) 537dNL NI 371IS NOILVY)Y ST543A (NRNIIT) SHIST 40 wiaw

$31va NNy

0s8’sl1g
0s8¢e gl
058¢0¢4
0s8°8¢
0s8°2e
0s8°%1
0s8°01
0s8°p
0s8®e
058 °¢

0¢

= 6161-0NV-22 43 J°v NI 43IA NITLVINIW I Idn]T 17174

053¢pls
053°egy

033°)¢L

0s3°%22
053yt
053°01
353°3
0s3°g
053¢

ot

058°8R15
0SB°%E Y
058°0¢
0s8¢ee
0s8¢ez
058°%1
0s8°01
0s58°8
0s8°g
058°L

S

0s8°B1S
058 vel
05R8°D2
058°8¢€
0s58°22
058y
0suy*01
058°89
068°8

[AN

4

053816
0s3°%¢1
0GsB0L
063¢8¢
0s842e
0satyl
0oseul
osa‘e
os3te
0634y

000°0¢
000°0n;
000° 0N
000°0¢
00002
000°Cv
000°¢¢g
coo0°¢
0001

00%

N ¥4 159) NI)TLvynoy g)9

= 1309 NILLVINOT 4 0D AR

- 242 -
C-29

Cost Function: Single Level Store RAM Centralized Architecture

(output not available)

- 243 -

C-30

l

tered Archi tecture

v
— u
—
(&)
=
,I:Rr...
. @
| &
(@]
o
wvy
e e e - . . TIVWS 001
(]
. W . . . 1Ivds 331 TIVHS 001 2924209 Z8L°909
. BEYSOE _ - €90%60¢ _€90°50¢ Y8T1%122¢ L12%%¢9¢ LZygrg %50°¢0€ 6E6°EOE %12°01¢€
[}
.Iﬂ.!-!-n%mnn..mm.—l!:w.»grll:yo:.pu—ili €68°991 _ _ 92¢%81 9ZESIV_. . 062°gst sseest 0€E6° 191
-|hm‘.,)i £66°s9 _ 29¢€°99 _29€°%99 L0Z°0L L68°1; L1532 6EH'Go 29983 6€E0° %)
wv
iy - . €90°9E 64y °9¢ —6Ly°9E 295°8€ _ 1upezy ivLezy [42 L1 19€°S¢g 2900 %y
=
Q. 962°%12 — 1 P4 _BES%1Z 94p022 €91¢62 €91¢62 . %6e012 612°y2 $60°0¢
or—
.I.Mw 018 004 918 DO4 918 031 . 918 J04 918 001 213 231 318 001 318 001 919 o001
=
«.hm =919 Q04 . 919._0048__ 918 004 918 pog 219 00y 918 031 919 001 919 001 918 0ot
bt JCSpe——) § - I o [+ U --218.200 ___ 9ia@ 0DL . 218 D04 . 91w Qo1 218 JJ1 918 001 18 001 918 001
14 .
MW 00¢g 002 001 0s 02 ot S 4 1

000°00s
000°002
003°001
000°0¢
000°02
000°0Y
000°¢
000°2
000°1

005

(MOY¥) S3WdNL NI 371§ NDILYIIY SNSYIA (vwnNT1DI) S¥3SN 4) w3awny ¥4 1S02 NITLv¥N914NID

0861 AdvNHBIJ G1 :31va Vny - 6161-9Nv-22 30 0°y NIIS¥IA NOTLVINIWIVGN] 177 - 1300k NOTEVYNOTI4NDD T3y

- 244 -

1

]
c
E
7]
—
)
[S
©
E
(Vs)]
=
<C
—af ..
[
- @ . -
o
+ . . B
wn
S — T ———— — 1IVKHS 001 000°¢00g
[J]
W - 9TL'E92__ Qzi‘g9z 92L%€92 921%€9¢2 92L°€92 9ZLE2 92L%e9e 92L°E92 2L%e92 €00°002
.3 ITI°SEN____ 921%Ger 921°5€1 TISEY. __ 9z1¢sey 92T%s5E1 9ZTGeT 9Z1°GEY 921%GEY 0004001
7]
-m..tléowui.o[wﬂﬁi;i,wmn..bh-i - 9280 _ __ 9zgt0r 9Z3°0L . _ _9z8'm 928°90¢ 92804 000°0¢
1
(5 m VCECEE _ 9zglee 92€°ce 92€%¢ce 92€’¢e I2e‘ce 9ZE‘EE 9Z€‘Ee 9zZfsge 0002
wv .
9¢8°02_____ 97p‘oz . 928°)2 92802 928402 923402 92802 928°02 92802 000°07
c
lb.:L»ma.b,—[.fh»m..i E——7X11 3 LS’y . 9155y 915 ¢yy Loy LGy 9264 €00°s
o
N ..u 928°01___ 9zploy _ 9149 001 918 001 918 001 318 33y 913 001 318 00L o189 001 ©o00°*?
= .
- ..w ~ I8 0DL__ _ oj3g 00L _ 939 o004 9189 001 918 001 _ 919 0314 919 001 919 o001 919 001 000° 1
— f,zlnhgr,u;,oup-lsxb;.cah - -39 0081 _ . 918 0oy ~ 918 DIy 319 021 919 001 919 001 00¢
w
Aw 005 .. _ 002 001 0s 1}4 ot [F4 1

R o ‘ (40Y) S3Vdny Ny 371S NDILvYIA SNSHIA (vwNTII) S¥3ISI 43 ¥3gwny 434 1S3) NI11vY¥N9 14899

0861 AdvNug3y ST :31va NNy - 6L161-9nv-22 3 0°% NJI3y3A NITLVINIWI VdW] 173 - 3000 NITLvanor4nny yyy

- 245 -

C-32

sis

—_— y -
—
©
c
<<
—
N
ey
g L
%) L
- . - 1IvKS NNt
— IIVHS 001 sZEtoL
— 1 e e e ———— e e—— ——— e - e t— - -
& ks oot 9€59652 195°%
-0
] szz'se 90046 e
S .
v 62028 62%°31 €852 vZ11
e o ee - .
o g1 122 119°6 95285 01942 00641
- 862°%1 £81°€ %06°1 Zen 1 . B9%°1
@ e o i
x »ZR°y %0641 26401 89y | ITTXR!
Mm £81°¢ zoney 8951 KX T TY R
o 005 00z oo T e 02
e
o

061 AN¥NNAIY wi

(MO0¥) $37471 NI

371S NOtLvYy

,

1Ivds 231 0a3°6yy

8%c*5¢cl

VLA AN
Iny oy

ot

515434 {¥4NT13D)

ZLst1z
%E9°G
620°€
99p¢ Y
BGG*T
16441
9uney
9h 50y
9ee iy

S

3715 <Sv

PITRIR
026°€1
Eheiy
s16° 2
(VRN
03¢
1800
DITYN|
9h 40|
el

4

TIUVI NOH = SLBT-CNV-07 40 I NSHIA NIEVIN e a0y -

Ale Ty

Yeltes
LLnti
poQty
| R K4
AW AN
B |
1440
yusel
auyye g

IR AR

a

c0n°oos
cooe(ne
(udeuni
cod°cc
oo ?
cooect
1co*c
(U e Rird
0001

006

LSO rylL7eroy v

PIOW P ALV O 41 oY 1y

- 246 -

C-33

c(Rl) / c(Rz) Analysis

Distributed Function Architecture

e 11¥4S .00L EBD*92
TIVWHS 001 060°22 060° 91
TIv4S 004 se1°2t 393°9

- DEE°IY ___ 204°% ... 262
98e°¢ %90 ‘¢ $%e 2
¥90°€ Li10°2 2Lt

2 () WY Y1 X | 4134 |
2961 141841 252\
(41241 t4 Tl | [4 T4

- 006 002 ________ Qo1 . _

210-3566661 % =3 VySiA

0861 A¥VNIY3II vyl

TWAS JI1 €yl

€90¢21
908°8
YLLty
€Ly°2
stel
€6y 1
2521
2sz 1
zsz*1

0s

23170 NN~

YIE‘TL
8¢0°¢9
[1:1 4 1
€302

L09* 1

6L61-90v-22 40

Ot €C
2E€ ‘6
Tg6ty
680 €
5%5°1
Lost g
6LE"L
2321
2621
[AFAN

0l

(SR IVE SNPTY

YEL*D2

10%*8
TLsty
198¢ 2
6%6°1
2091
oLE 1
2s¢
2621
21zt
S

(408} SININL NI 3715 NILILVISi4 SNSHIA ENWNI3D) 3715 S350710 IATivey,

Noluviu

seLe3

6%9° L

Vi lda]

AN

ey
6%0°¢
L R-2d 4
1232
GEyl
103
YR |

Y |

003°024
0232
000001
002 °0¢
0Coe e
nn0¢01
R R
[AX) SR 'Y
nna ey

05

Ja4 LSID NTTLv AN 4007

Tootw

[

BUA RE L DL B DAYS

