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Chapter 5

A Large-Area Search for New
Brown Dwarfs and Low Mass Stars
in Upper Scorpius!

I present a wide-field photometric survey covering ~150 deg? toward the Upper Scor-
pius OB association. Data in the BRI bands (converted to gri) taken with the
Quest-2 camera on the Palomar 48-inch telescope were combined with the 2MASS
JH K¢ survey and used to select candidate pre-main sequence stars. Follow-up spec-
troscopy with the Palomar 200-inch telescope and the CTIO 4-m telescope of 243
candidate late-type members identified 145 stars that have surface gravity signatures
consistent with association membership. Twelve of the 145 PMS stars identified ex-
hibit Ha emission sufficient for accretion. From the optical /near-infrared photometry
and derived spectral types, I construct an HR diagram for the new members and find
56 likely brown dwarfs, more than doubling the known substellar population of the
Upper Scorpius OB association. From analysis of all observed PMS candidates com-
pared to those determined to be association members, I conclude that the northern
part of USco’s low mass population shares a common spatial distribution with the

high mass members, and find no evidence for spatial segregation.

LA modified version of this chapter has been published previously as Slesnick, Carpenter, &
Hillenbrand 2006, AJ, 131, 3016. The current work has been updated to reflect new spectral obser-
vations taken after the time of original publication.
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5.1 Motivation

The Upper Scorpius OB Association (USco) is the closest (145 pc; de Zeeuw et al.
1999) young OB association to the Sun with 120 known high mass Hipparcos stars.
At an age of ~5 Myr (Preibisch et al., 2002), this cluster is at an intermediate age
between very young star forming regions and older open clusters where samples are
sparser and studies of processes such as circumstellar disk dissipation are critical.
Recent mid-infrared work by Mamajek et al. (2004) and Silverstone et al. (2006)
indicates that by ~10 Myr dust is removed from the inner few AU of circumstellar
disks for >85% of stars, whereas ~80% of young 1 Myr stars in Taurus still retain their
disks at these radii (Kenyon & Hartmann 1995; Skrutskie et al. 1990). This evolution
in circumstellar material corresponds to the stage when planets are thought to be
forming. Meteoritic evidence suggests the timescale for dissipation of our own solar
system’s nebula was on order of ~107 yr (Podosek & Cassen, 1994). Further, discovery
of ®Fe in meteorites argues that short-lived radionuclides were injected into the solar
system’s early protoplanetary disk from the explosion of a nearby supernovae (Desch
& Ouellette 2005; Tachibana & Huss 2003). This evidence strongly suggests that our
solar system was formed in an OB association similar to USco. Therefore, if we are
to understand our own earth’s origins, we must study the evolution of OB association
members during planet-building stages.

A major difficulty faced by studies of the USco region is that the Hipparcos mem-
bers alone span >200 deg? on the sky. Obtaining a complete census of the association’s
low mass population is thus a formidable task as one must identify faint objects over a
very large spatial region. While there exist several techniques to identify young stars
not associated with molecular gas, many of them are also accretion diagnostics. For
example, a common method is to search for strong Ha emission (Ardila et al., 2000)
produced in outflow or accretion flows (see §5.3.3), or near-infrared excess emission
associated with warm inner accretion disks. While accretion can terminate over a
wide range in age (1-10 Myr), the median lifetime of optically thick accretion disks is
closer to 2-3 Myr (Haisch et al. 2001; Hillenbrand 2005). Therefore, surveys to look



87
for accretion signatures alone will not garner a full census of a 5 Myr association.

Enhanced chromospheric and coronal activity can last well beyond accretion timescales.
This activity is linked with X-ray emission (Ku & Chanan 1979; Feigelson & Decam-
pli 1981) though the exact cause of this phenomenon is still not fully understood
(Preibisch et al., 2005). Many previous large-scale efforts in USco have successfully
utilized Einstein data (Walter et al., 1994) or the ROSAT All Sky Survey (RASS;
Preibisch et al. 1998; Preibisch & Zinnecker 1999) to identify hundreds of low and
intermediate mass association members. However, neither the Einstein observations
nor the RASS were sensitive enough to detect faint X-ray emission from the lowest
mass stars and brown dwarfs.

Recently, deep, multicolor imaging surveys combined with spectroscopic follow-up
have proved successful in identifying both the youngest classical T Tauri-type objects
and more evolved very low mass stars and brown dwarfs in a variety of young re-
gions. Young PMS objects still undergoing contraction towards the main sequence
are redder and more luminous than their main sequence counterparts. Spectroscopic
follow-up observations allow assessment of surface gravity diagnostics which can be
used to distinguish young PMS stars from reddened field dwarfs and background gi-
ants. Previous imaging and spectroscopic surveys in USco include work by Preibisch
et al. (2001) and Preibisch et al. (2002) who selected candidate association mem-
bers based on optical magnitudes and colors obtained from photographic plates in
the United Kingdon Schmidt Telescope survey fields. Their spectroscopic survey of
700 candidates over 9 deg? using the 2dF multifiber spectrograph yielded 166 new
PMS stars based on the presence of lithium in their spectra. Martin et al. (2004)
selected candidate young objects from the DENIS I, .J survey and obtained spectra
of 36 targets. Of these 28 were confirmed to be new low mass association members
based on surface gravity diagnostics. Ardila et al. (2000) used R, I, Z photographic
photometry to identify candidate members within an 80’x80” area of the association.
Spectroscopic data were obtained for 22 candidates, 20 of which were determined to
exhibit Ha emission indicating possible membership. Thus far, over 300 low mass

(M <0.6 M) members have been identified in USco through X-rays, Ha emission,
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photometry and/or spectroscopy. However most searches have been limited to small
subregions or bright objects. Given the USco upper IMF, and assuming the high and
low mass objects share the same spatial distribution, Preibisch et al. (2002) estimate
the entire USco region should contain >1500 young, low mass objects with M <0.6

Mg, most of which are yet to be discovered.

5.2 Observations

Building on previous work in this region, I have completed a large-area optical gr:
photometric survey of ~150 deg? in and near USco. Details of the photometric survey
were given in chapter 2. My primary goal in USco is to significantly expand the
number of known intermediate-age, ~5—10 Myr-old low mass stars and brown dwarfs.
Identifying large samples of objects at this age is critical for our understanding of
early stellar evolution and planet formation. Usco is the ideal region to conduct such a
survey because it contains the largest (>1500 objects) nearby (<300 pc) population of
low mass intermediate-age PMS stars, most of which have not yet been uncovered. In
chapter 3, I combined the Quest-2 photometric data with 2MASS JH Kg photometry
to select candidate PMS stars, and presented newly obtained spectral data for 243
candidates discussed here. These candidates represent all stars observed at either
Palomar or CTIO which meet all of the selection criteria outlined in §3.1.

All spectral analysis was carried out as outlined in chapter 3. Figure 5.1 shows
spectral indices for 167 PMS spectral candidates in the USco region observed at
Palomar. In the left panel I find fourteen outliers to sit below the main locus of data
points. In all cases, the star is confirmed to exhibit low gravity signatures (§3.2.2) and
I attribute the position in figure 5.1 to a small amount of veiling or reddening present
in its spectra (§3.2.3). As shown in the right panel of figure 5.1, a large fraction
(~65%) of the candidate objects have measured Na-8190 indices consistent with their
having surface gravity less than that of field dwarfs at similar spectral types. Note
that because both program stars and most standard stars were observed at similar

high airmasses in this region, there does not exist a systematic shift in the Na-8190
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Figure 5.1 The left panel shows temperature-sensitive TiO-7140 vs. TiO-8465 indices;
the right panel shows the TiO-8465 index vs. the gravity sensitive Na-8190 index. In
both panels, blue X’s represent measured indices for field dwarfs and members of the
Hyades (~650 Myr), Pleiades (~115 Myr) and AB Dor (~75-150 Myr) associations.
Green X’s show measured indices for intermediate-age spectral standards from Beta
Pic (~11 Myr), TW Hya (~8 Myr), and Upper Sco (~5 Myr). Red X’s show measured
indices for young Taurus members (~1-2 Myr). Cyan X’s in the right panel represent
measured indices for giant standard stars. In both panels, black symbols are measured
indices for USco PMS candidates observed at Palomar. The effects of extinction and
veiling are shown as vectors (see §3.2.3).

index between the two populations as was the case in Taurus (chapter 4).

Of the 243 objects with spectra presented here, 76 were observed with the hydra
multifiber spectrograph on the 4-m telescope at CTIO. These spectra have not been
flux calibrated due to the intrinsic difficulties with this process for spectra taken
through fibers. Thus, I cannot use quantitative index measurements for spectral
classification, and all spectra were classified visually in relation to each other and to
spectral standards taken during the observing run.

Table 5.1 lists optical and near-infrared 2MASS photometry, measured spectral

indices (for Palomar spectra), spectral types and Ha equivalent widths for all USco



90
members discovered in my work. Seventeen of the 145 PMS stars identified here have
been previously discussed in the literature, including 12 with previous spectral type

determinations. When present, an alternative ID and spectral type is also given.
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5.3 Discussion

5.3.1 HR Diagram for New USco Members

I combine each new member’s spectral type and photometry to derive values for its
luminosity and effective temperature and place it on a theoretical HR diagram. As
described in chapter 2, the final Quest-2 photometry is not on a standard magnitude
system. Thus, because of the reliability and uniformity of the 2MASS survey, I chose
to use J-band magnitudes and (J — H) colors to derive luminosities. An empirical fit
to BC; as a function of spectral type was determined from the observational data of
Leggett et al. (1996) and Leggett et al. (2002) (spectral types M1-M6.5 and M6-L3,
respectively). T adopted intrinsic colors, extinction, and effective temperatures using
the methods described in Slesnick et al. (2004).

In figure 5.2 1 present an HR diagram for the 145 identified low mass members
of USco, shown with PMS model tracks and isochrones. The most commonly used
PMS models for low mass stars and brown dwarfs are those derived by D’Antona
& Mazzitelli (1997) (shown) and Baraffe et al. (1998) which differ primarily in their
atmospheric approximations and treatment of convection. Both models suggest sim-
ilar mass ranges for my data of 0.02M, < M < 0.2Mg, though predicted masses
for individual objects can vary by up to 0.07My. As illustrated in figure 5.2, I have
identified a low mass stellar population of age roughly consistent with the 5 Myr age
inferred in previous work on the intermediate mass (6Mg> M >0.1Mg) members
of USco (Preibisch et al., 2002). The mass and age distributions of this population
will be discussed further in chapter 6. Among the PMS stars identified in my work,
56 have spectral types M6 or later, and are considered to be brown dwarfs based on
theoretical models. Prior to this work, 34 spectroscopically confirmed USco members
had been identified at these spectral types (Ardila et al. 2000, Preibisch et al. 2002,
Martin et al. 2004), 10 of which are also presented here (see table 5.1). Thus, with

this study I have more than doubled the number of known substellar objects in USco.
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Figure 5.2 HR diagram for new PMS objects found in the USco region, shown with
model tracks and isochrones of D’Antona & Mazzitelli (1997). The sample is consis-
tent with an age of ~5 Myr and contains masses spanning the brown dwarf to stellar
regimes. The arrow plus dotted symbol indicates where that star would sit in the HR
diagram as a single star if it is an unresolved binary (see §5.3.2).
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5.3.2 A Possible Binary

The most luminous M8 brown dwarf (SCH16224384-19510575) is an obvious outlier
to the main locus of stars in figure 5.2 appearing overluminous compared to the other
sources. This object also has strong Ha emission (see §5.3.3) with a slightly asym-
metric profile. It is unlikely that this object is a single, extremely young (<100,000 yr
based on HR diagram placement) association member. The object could be a young,
PMS-gravity foreground object that happens to fall within my line of sight. The
simplest explanation is that SCH16224384-19510575 is an unresolved binary. Assum-
ing typical seeing at Palomar under photometric conditions of ~1.2”, any pair with
separations <175 AU would not be resolved in my data. If I assume SCH16224384-
19510575 consists of 2 equal-luminosity objects, its placement in the HR diagram
becomes more consistent with the main locus of association members. This effect is

illustrated as an arrow plus dotted symbol in figure 5.2.

5.3.3 Emission Line Objects

The only prominent emission line observed in any of the spectra is Ha which, seen
in the spectra of young stars and brown dwarfs, is predominantly created via one
of two mechanisms. Weak, narrow Ha lines are presumed to originate from active
chromospheres whereas strong, broad and/or asymmetric lines can be produced from
high-velocity, infalling accretion or strong winds. Barrado y Navascués & Martin
(2003) have proposed an empirical, spectral-type-Ha equivalent width (W (H,)) re-
lation to describe the upper limit of non-accreting stars and brown dwarfs based on
the chromospheric saturation limit observed in young open clusters. Figure 5.3 plots
measured Ha equivalent widths for all spectra as a function of spectral type, shown
with the Barrado y Navascués & Martin (2003) empirical accretor /nonaccretor divi-
sion. Many stars and brown dwarfs (see table 5.1) exhibit very strong Ha emission
at levels substantially above the accretor/nonaccretor division and thus are possibly
still undergoing active accretion.

Because errors on the accretor/nonaccretor division are not well defined (Barrado
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y Navascués & Martin, 2003), I determined my own empirical criterion for identifying
objects with Ha excess emission. I measured the median values of Ha emission as a
function of spectral type (binned by 1 spectral type) using 1-sigma clipping. These
values are shown as large magenta X’s on figure 5.3. For most bins, I define a star
to have an Ha excess if it exhibits emission at a level greater than 3-sigma above the
median value for its spectral type (where sigma is defined as the dispersion about the
median for all stars used to compute the median value at a given spectral type; shown
as magenta —’s on figure 5.3). These sources are boxed in green on figure 5.3. The
first and last bins only have 4 and 3 sources respectively. Thus, for these bins I do not
have enough measurements to derive a statistically representative value for median
Ha emission. Therefore I do not consider any stars in these bins in my sample of Ho
excess sources, but note that two M8 stars (including the possible binary discussed
in §5.3.2) sit above the Barrado y Navascués & Martin (2003) accretor /nonaccretor
dividing line. In general, my empirical criterion for classifying a star as accreting is
slightly more conservative (i.e., requires a higher W(Ha)) than the criterion defined
by Barrado y Navascués & Martin (2003).

Based on the above criterion, I find 12 objects to exhibit very strong Ha emission.
The blue half of the observed spectra for each accreting source is shown in either
figure 5.4 or figure 5.5. Two accreting sources lie very close (within ~1 deg) to the
young pOph molecular cloud. However, because pOph and USco lie at approximately
the same distance, if they were escaped, <1 Myr pOph members we would expect
to see them exhibit systematically higher luminosities than USco members of similar
spectral type. Based on figure 5.2, this phenomenon is not observed and I include
these two stars in my sample of accretors in USco. Thus, I find at an age of ~5 Myr
(see chapter 6), 12/145 (or ~873%) of low mass association members (spectral type
>M4) are observed to be accreting based on the strength of Ha emission present in
their spectra. In comparison, Guieu et al. (2006) find ~4072:% of 1 Myr-old low
mass objects in the known subclusters of Taurus to be actively accreting based on
the strength of Ha emission observed in their spectra. Thus, a significant fraction of

very low mass stars and brown dwarfs must actively stop accreting between 1 and 5
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Figure 5.3 Measured Ha equivalent widths for all new USco members as a function
of spectral type. The dotted line is the empirical accretor/nonaccretor upper limit
derived by Barrado y Navascués & Martin (2003). Magenta X’s represent the median
W(Ha) for each spectral type. Magenta -’s are 3 sigma upper limits above the
median. Objects boxed in green are considered to be actively accreting.
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Figure 5.4 Spectra of the 10 stars determined to be accreting (as defined in §5.3.3)

that were observed at Palomar, shown in order of spectral type.
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Figure 5.5 Spectra of the 2 stars determined to be accreting (as defined in §5.3.3)
that were observed at CTIO, shown in order of spectral type.

Myr. This conclusion is consistent with a median accretion lifetime of ~2-3 Myr for

higher mass stars (Haisch et al. 2001, Hillenbrand 2005).

5.3.4 Spatial Distribution of Low Mass Stars

Figure 5.6 shows the 2D spatial distribution for the 120 known high mass members
of USco dentified in the Hipparcos survey. This sample represents the complete pop-
ulation of known members more massive than ~1 M. Thus, I define the boundaries
of the Hipparcos stars to represent the boundaries of the USco high mass population.
The density of high mass stars is roughly constant from 237< a <249 deg and peaks
at 0 ~ -24 deg. Contours show the percentage of the 243 spectroscopically observed
candidates determined to be bona fide USco members. As can be seen, despite the
large area of my Quest-2 survey (shown as a black box), it still only covered a mi-

nority of the total association. New members were identified only within the central

~11° in RA and the Northern ~11° in DEC.
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Figure 5.6 Spatial distribution of the 120 known Hipparcos members of USco (red X’s)
together with a contour plot showing the percentage of Quest-2 candidates observed
spectroscopically that were determined to be new low USco members. Contours are
shown at 90% (blue), 50% (cyan), and 10% (green) of the peak value. The Quest-2
survey area is shown in black.
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Figure 5.7 Spatial distribution of the USco survey area outlined in blue, overlaid on
IRAS 100pum emission. The thicker blue line denotes the outline of the monitoring
scan region which was repeated 24 times. New USco members identified from this
work (145; green circles) are shown with previously known, spectroscopically con-
firmed low mass members (196; Sp Type >K7 corresponding to M <0.6 Mg at 5
Myr; small magenta circles) from the literature (see text), high mass Hipparcos mem-
bers (120; cyan pluses) and spectroscopic targets determined to be field dwarfs (98;
red circles). The 12 new members which exhibit Ha excess emission are boxed.
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Figure 5.7 shows the spatial distribution of observed spectral candidates overlaid
on an IRAS 100um emission map. New USco members identified from this work are
shown with previously known, spectroscopically confirmed low mass members from
the literature, high mass Hipparcos members and spectroscopic targets determined to
be field dwarfs. The 12 new members that exhibit Ha excess emission are boxed. In
general, the low mass PMS stars presented here share a common spatial distribution
with the high mass Hipparcos members. Efforts to observe northwest of the Hipparcos
stars largely yielded reddened field dwarfs rather than young association members.
Figure 5.8 shows 1D spatial distributions for the 145 low mass association members
discussed here (green line), together with those for the 56 Hipparcos stars that fall
within my survey area (black line). The densities of both populations fall off sharply
from -24° at the association center to its northern edge. Figures 5.9 and 5.10 show
histograms as a function of RA (figure 5.9) and DEC (figure 5.10) of the total number
of candidates observed spectroscopically compared to the number determined to be
bona fide USco members. Bottom panels show the percentage of observed candidates
determined to be USco members as a function of RA and DEC. From figure 5.8,
I conclude that the density of low mass association members found in the Quest-2
survey peaks at a ~242° and § ~ -25° with stellar densities falling off beyond these
values. Based on figures 5.6 and 5.10, my survey extended past the association’s edge

only at its northern boundary, which occurs at ~-15° (see figure 5.10).

5.4 Summary

I have completed a large-area gr: photometric survey in and near the Upper Scorpius
region of recent star formation. From these data I selected candidate new PMS
association members based on their optical and near-infrared colors and magnitudes.
I present in this chapter results from my spectroscopic follow-up campaign. I observed
a total of 243 candidates at either Palomar or CTIO, and determined 145 (~60%) to
be bona fide new Upper Scorpius members. I derive an HR diagram for new members

and identify a possible unresolved binary. I measure Ha emission for all new members
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Figure 5.8 Top panel shows the percentage of the 145 low mass stars discussed in
this work that lie at a given RA (green) together with same information for the 56

high mass Hipparcos stars found in the Quest-2 survey area (black). Bottom panel
illustrates the same information as a function of DEC.
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Figure 5.9 Top panel contains a histogram of RA values for all candidates in USco
observed spectroscopically (open histogram) and for those observed candidates de-
termined to be bona fide members (hatched histogram). Bottom panel shows the

percentge of observed candidates determined to be USco members as a function of
RA.
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Figure 5.10 Top panel contains a histogram of DEC values for all candidates in USco
observed spectroscopically (open histogram) and for those observed candidates de-
termined to be bona fide members (hatched histogram). Bottom panel shows the
percentage of observed candidates determined to be USco members as a function of
DEC. The right-most point at DEC=-14 is drawn as an arrow because 0 out of 1 ob-
served stars were determined to be PMS stars. Thus, due to small number statistics,
the errorbar is larger than the plot.
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and determine 12 of the 145 low mass stars and brown dwarfs in the 5 Myr USco
association are still accreting. Based on comparison of the spatial distributions of
low and high mass association members, I find no evidence for spatial segregation in

USco within the northern portion of the association.
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