Appendix A

Technical Lemmas

Here we present the proofs of two technical lemmas, Lemmas 2.1 and 2.6, that play an
important role in the convergence rate results of Chapter 2. Neither of these results is very
difficult to obtain, but since the technical nature of the proofs obscures the essence of the

convergence rate results, we place them here in the appendix.

A.1 Bound on Fourier Coefficient of Green’s Function

To prove that solutions to the approximate integral equation (2.3) exist and to prove the
convergence rates, we need a bound on the decay rate of the Fourier coefficients of the
Green’s function, Jy(a,r) as defined in (2.1). This decay rate is given in Lemma 2.1.
However, although the proof of this lemma is not difficult, it is somewhat technical. Hence,

we first derive two simple bounds that aid in the proof.

Lemma A.1. Given a > 0 and a positive integer k, there exists a constant C' > 0 such

that
of C
S QL
'~ max{1, ¢k}

for all integers £ > 0.

Proof. If we let £ = 0, then we require that C' > 1 for the lemma to hold. Now consider

¢ > 1. Equivalently we require that

¢
lloga — Zlog€+klog€ <logC.
p=2

94
We bound the sum by the following integral

4 ’
ZlogEZ/ log zdx = flogl — £+ 1.
- 1

Thus, we require that

1
¢ [loga—l—l—i—k%q —{logl < log C + 1.

It is not difficult to see that the left-hand side of this equation is bounded from above for
£ > 1 since flog ¢ eventually dominates. Hence, we can choose a constant C' > 1 such that

the result holds. O

According to [2, p. 362], for all integers £ > 0 and for any real, non-negative z,

(=) < & (f)e. (A1)

The following lemma provides a similar bound for |Y;(z)|.

Lemma A.2. For all integers £ > 1 and for any real, non-negative z,

o < 2 () 2 () 2 ()0 aaa

For ¢ =0,
2.

Yi(e)| < 2 [tog (£)] + 2e(3).

[1IN

Proof. By [10, p. 51], Yy(z) for any non-negative integer ¢ is given by

Yz(Z)Z%Je(Z)bg(%)-% ;W()% f_%i 14;}!; mﬂ()%%7

r'\

i

where ¥(0) = —y ~ —0.5772 and ¢ (k) = —y + 2521 % for k > 1.

95
For /> 1,

/-1

]

Also note that for £ > 1, [¢(0)] <1 and

0 < (k)

IN
=

Hence, |¢(k)| < max{l, k}.

IA
5
l
|'M
_

Now observe that |¢(¢ 4 k) + (k)| < 2max{1,/+ k} and

(k)|
oSt

for k > 0. Therefore, for £ > 0

[Vl + k) + (k)| 2k
Z kl(k+0)! (5)

IA

a0 (3)"

2¢(3)".

Hence, by these individual bounds and (A.1) we obtain the desired result.

With these two results in hand, we turn to the proof of the main lemma.

Proof of Lemma 2.1. First note that

Ro

IN

a

R1 a Rl
/ |\Te(a,r)| rdr =]H}(Iia)|/ |Jo(kr)|rdr + |Jg(/<ca)|/ |H41(m“)|rdr
Ro a

Ry Ry
]Jg(na)/ | Jo(kr) |rdr +]Jg(fm)]/ |Ye(kr)|rdr
Ro a

+ Ye(ra)| [[Je(sr)|rdr

Ro
< Ij;+1;vy+ 1y,

96

where

Ry

Ly = |Ji(ka) / [Ty(r)
0
Ry

Ly = |Ji(ka) / 1Yy (i) [,

Ly = [Yi(ka) / [Jy(sr)
0

Note that |J_g(2)| = |(=1)*Je(2)| = |Je(2)| and similarly |Y_,(2)| = [Yy(z)|. Hence, it
suffices to bound these integrals for ¢ > 0.

We use (A.1) as well as Lemmas A.1 and A.2 to bound each of these integrals. For ¢ > 0

1 kR A
I;; < —R?(==
v (%)

Crg
max{1, (%}’

where the last inequality follows from Lemma A.1 and C; ; depends only on x and R;.
The bound for I;y consists of three parts from each of the three terms in (A.2). For

{>2

4 Ry of 2 2 l
K_aé/ 1 2 (é— 1)!7ﬂ_e+16(%)2d7‘ S Rl e %)2 i . i
2000/, it ml(f — 2) Ry Ry

For ¢ = 0 this term does not appear in (A.2) and for £ = 1,2, a similar argument yields the

same bound. Continuing with the next term in (A.2)

l Ry 2 V4 20 9 R1
[2 < ()2
2000), w24 2 2 w2 Jo

2

oy
max{1, (%}’

e

by Lemma A.1 and since fORl |log (%) ’ dr is bounded. Finally, by similar arguments one

can show that the third term is similarly bounded.

97
We also bound Iy, ; by considering the three terms in (A.2). For ¢ > 1,

20— 1)1y (say? [T 1 (),
A A <
e & /0 20" dr < 7r€(€+2)6)
1
Cy)
max{1, %}

Continuing with the second term,

il (O () [5 () v = g (552 s ()
A 18\) I\ f, w) T = T\ T) R
ey
max{1, (2}’
since a? ‘log (%)‘ is bounded for 0 < a < R;. The bound for the last term also takes this

form and can be obtained similarly. Hence,

C

1 1 Iy ; < ———
JJ Ty + 1y < max{1, 2}’

for some constant C' > 0 that depends only on x and Rj. O

A.2 Bound on Integral Operator

In this section, we prove the bound on K,u” as given in Lemma 2.6, which plays a primary
role in our derivation of the convergence rates. As mentioned previously, some care is
required to obtain tight bounds on the convergence rates. Hence, the proof of the lemma is

somewhat technical.

Proof of Lemma 2.6. Define the annular region A = {(a,¢) : Ro < a < R;}. Then (2.7),
Lemma 2.4 and Theorem 2.5 imply that if m € C*(A) N Chi>%(A), then u € CF2e(A)n

C’SJ 49 4) and there exists a constant C' > 0 such that

c 1 1

K| o <

H e HOO - max{l,ﬁ};\/[max{l,w—ﬂk"‘Q}maX{la|j|k+4}
j

3 C 3 1 Lo
= maX{LEQ} ks jk+4 (] _ f)k+2 (] + f)k+2

2C 1 1
max{1, (2}]>ZA/[FRHE (G — ek (A.3)

98
for ¢ = —M, ..., M. This expression also holds for m € L*(A4) N C;{?(A) with & = —1.

Clearly, we need only consider £ =0,..., M.

Z 1 1 - 1 1 N /OO 1 1
EsT G (G —0k+2 = (M 4 1)k (M + 1 — 0)k+2 M1 TFH (2 — £)F+2
1 1

(M + 1)k+4 (M 41 — £)F+2
1 1
F
* ok +5 (M +1)2k+5

4
k+ 2,2k ; 2k j———
< + 2,2k + 5; +67M—|—1>’

where F' is the hypergeometric function [2, p. 556]

F(a,bic;2) = oFi(a,b;c;2)

1
b—1¢71 _ p\e—b—1/71 _)@
_b)/ot (1—)50 (1 — t2) %t

) =T(a+n)T(b+n)z"
Z I'(c+n) n!

)

n=0

for |z| < 1.
We need a few simple bounds on F' in order to obtain the final result. It is easily verified

that for positive integers a, b,

F(a,b;b;2) = Z %z" =(1—-2""%
— In!

Using this result, if a > 1 and b > 0 are integers and a < b+ 1, then

[e.9]

b a+n—1(a+n—2)!

F(a,b;b+1;2) = a_lngo ESTa p— T 2"
b
< — —(a—l).
Toa— 1(1 ?)

Finally, for integers a =1 and b > 0, we have

=1
F(1,b;b+1;2) = bz
n:0b+n

< 1—blog(l—=z).

Z?’L

99
Hence, for K > 0 and £ =0,..., M, we obtain

1 1 1 1 1 1 1
<
j;/[jk+4 (G—Ok2 = (M+ 1)k (M +1—0)k+2 +l<:—|—1(M—|—1)k+4 (M + 1 — f)k+1
< 2 1
= MEHU(M 41— 0)F+T

(A.4)

Fork=-1and £=0,..., M,

Zl 1 1 U SR S M+1
S PPt T (MA 1P M1 3(M+1)P T (M +1)P B\ Mr1-v¢
1 1 1
S o TR I A.
SRR VRV VA (A.5)

where we have used the fact that logz < x. Combining (A.3) with (A.4) and (A.5) give the
desired results for m € L®(A) N Cid'(A) and m € CF(A) N CEF>*(A), respectively. O

Remark A.3. Finally, we note that the bounds for m € L®(A)NCpi (A) and m € CO*(A)N

Cg{uo‘ (A) can be obtained more simply as follows.

T 2C 1 1
lKafll < ey 2 7 G

2C 1 Z 1
2 VIS I
max{1,¢2} (M +1—|¢|) 7R

C 1 1
max{L, (2} (M + 1 — |¢)FT2 MFT3

for some constant C' > 0. However, this simple bound does not capture the interesting

convergence rate jumps in the results of Theorem 2.7 for m € C**(A) N C’;fJZO‘(A), k>1.

100

Appendix B

Accurate and Efficient
Computation of Scaled Bessel
Functions

As explained in Section 3.1.2, the rapid decay of the Jy(z) and the rapid growth of the Y (z)
as £ increases produces factors that underflow and overflow, respectively, but whose product
is machine-representable. We overcome these and other related issues by computing scaled
versions of the Bessel functions. The leading order asymptotic behavior of Jy(z) and Yy (z)

near the origin are given respectively by

and

for £ > 0. Thus, we scale the Bessel functions by their asymptotic representations, i.e., for

£>0

Jiz) = o (%)_é Ju(2), (B.1)

W = gt (2) vt (B.2)

We use these scaled Bessel functions to compute products and quotients of Jp, Y; and H, 41

in many combinations. For example, we can compute the product Jy(z1)Yy(z2) for £ > 0 as

Te(o1)Yi(z2) =~ Jel2)Va(za). (B3

101

Typically, the unscaled Bessel functions are computed by means of their recurrence

relations

Ta(2) = Za() - deale), (B.4)
Via(z) = Z(2) ~ Yia(2) (B.5)

Note that these recurrence relations are identical, signifying the fact that the underlying
difference equation has linearly independent solutions J;(z) and Yy(z) for each z. Hence, in
theory, given either Jy(z) and Ji(z) or Yy(z) and Yi(2), these recurrence relations allow us
to obtain Jy(z) or respectively Yy(z) for all £. In practice, this works well for Y;(z). However,
this procedure works for Jy(z) only if z > ¢. Unfortunately, when computing J;(z) for z < £
(in which we are primarily interested), since Yp(z) is an exponentially growing solution,
the recurrence relation is numerically unstable for increasing /, i.e., the round-off error in
Jo(z) and Ji(z) is rapidly amplified by the recurrence. On the other hand, this instability
for increasing ¢ also implies that the recurrence relation is stable when computing Jy(z)
for decreasing ¢, i.e., the round-off error in the starting values is quickly damped by the
recurrence. Thus, we can begin the downward recurrence with two arbitrary values and the
recurrence will rapidly converge to aJy(z) where « is an unknown normalization constant.

Finally, to obtain the correct values of Jy(z), we compute o by means of the relationship
1=Jo(2) +2) Jou(2). (B.6)
n=1

This sum is not difficult to approximate accurately since Jy(z) decays exponentially for
z < ¢ (for more details, see [45, pp. 173-175]).

Hence, when computing Yy(z) for arbitrary z and ¢ or when computing Jy(z) for z > ¢,
we first compute Yy(z) and Yi(z) or, respectively, Jo(z) and Ji1(z) (perhaps by means of an
asymptotic expansion). We then use the recurrence relation with increasing ¢ to compute
Yy(z) or Jy(z). For z < £, on the other hand, we iterate several times through the downward
recurrence with two arbitrary starting values to converge onto the correct sequence of aJy(z).
Then, in the process of the downward recurrence, we collect the sum (B.6) and normalize
the sequence by the result.

To compute the scaled Bessel functions, we derive a new set of recurrence relations

102
related to the recurrence relations (B.4) and (B.5). From the definitions (B.1) and (B.2),

and using (B.4) and (B.5), we obtain

Joa(z) = (e+1) <3>2{jf(z)—Jg1(z)}, (B.7)

z

Via(s) = mz)—m(gff@_l. (B.5)

In this case, as a result of the scaling, neither J;(z) or Y;(z) grows (or decays) exponentially.
It is not difficult to show by means of a few numerical experiments that the recurrence for J
is unstable and the recurrence for Yy is stable for increasing ¢. Hence, after computing Yo(2)
and Y7 (z) as done previously, we then scale these values and use the recurrence relation (B.8)
to compute Yy(z). To compute .Jy(z), we use a downward recurrence and the normalization
sum (B.6) as before.

The implementation of this algorithm involves only relatively simple modifications to
any existing algorithm for computing Bessel functions Jy(z) or Y;(z). In our application,
we modified the Fortran77 routines rjbesl and rybesl, which one can easily obtain from the

Netlib repository [1].

103

Appendix C

High-Order Evaluation of Fourier
Integrals

Given a smooth, compactly supported, real-valued function g(t) for ¢ € R, we seek to
compute the integral

b
I(w) :/ g(t)e™tdt

for various values of w € [Win, wmaz|. Clearly, since g(t) is real-valued, I(—w) = I(w

~—

and,
therefore, we may restrict our attention to wy,n > 0.

We present a modified version of the method suggested in [45, pp. 577-584]. Through
appropriate combinations of Lagrange interpolating polynomials of order g, we obtain a
high-order approximation of g(¢). In particular, there exist piecewise smooth interpolating
polynomials 9 (s) of order ¢ where —¢ < s < ¢ such that ¥(0) = 1 and ¥ (s) = 0 for integer
values s = —q,...,q. To further simplify the approach, we consider only even functions
¥(s). (We describe specific choices of 1(s) for ¢ = 2,4 in the following sections.) Thus, we

can construct a high-order approximation of g(t) as

N+(g—-1)

gy~ > g (t ;tk> ;

k=—(q¢-1)

where 0 = (b—a)/N, t = a + ké and g = g(tx). Note that this approximation requires
knowledge of g outside of the interval [a, b]. This presents no difficulties in our application
since the integrands p(p) and pp(p) are given by analytic expressions.

After some simplification, the integral becomes

(W) = deiw [W(@)S(@) +u(8) + e8]

104

where 6 = wé,

N
S(@) — ngezﬂk’
k=0

W) = /p Y(s) cos(fs)ds,

-p

[91(%(9) - g_m(H)} :

qg—1
v(0) = govo(0) +

k=1
-1

1(8) = gnyo(6) + [QN—k'Vk:(G) - gN-i—k'Vk(H)} :
1

K

b
Il

and

() = €% /kqd)(s)ewsds.

Thus, the computation involves a simple sum of N + 1 terms, S(6), the quantity W (#) and
a relatively small number of endpoint corrections, v(6) and p(#). Furthermore, since 1(s)
is known analytically, W (€) and ~(#) can be computed exactly for each choice of .

The only approximation in the method to this point is the high-order interpolation
of g(t). Thus, we require only enough points to accurately approximate g(t) instead of
the highly oscillatory function g(t)e®!. Furthermore, since we only approximate g(t), the
accuracy of the approximation is independent of w. Hence, given any € > 0, we can choose
N sufficiently large so that the error in I(w) is less than €, uniformly in w.

Note that to decrease the error one may either increase the number of interpolation
points N or increase ¢ (thereby increasing the order of the interpolation). As can be easily
demonstrated, the order of the method depends on ¢ in much the same way as with Newton-
Cotes integration methods. More precisely, for ¢ odd, the error decays like O(N _(q+1)) and
for q even, the error decays like O(N *(‘1*2)). Hence, we most generally choose ¢ = 2 (fourth-
order convergence) or ¢ = 4 (sixth-order convergence). The values of W (#) and ~(0) for
q = 2 and ¢ = 4 are found in Sections C.1 and C.2, respectively.

In general, we may need to evaluate I(w) for many different values of w. (In our ap-
plication, w = k £ 27|cg| with (¢p)q = €/ (By — Aq) and where |{,]| < Nq/2.) This is not
difficult to obtain for W (#), v(f) and u(f) since they involve only a few of the g;. How-
ever, straightforward evaluation of the sum S(6) has quadratic complexity. To reduce the

complexity, we use an FFT to compute S(0) at 6,, = 2nn/Np for n =0,..., Np — 1, where

105
Np > N. More precisely,

N Np—1
S(@) _ ngezenk _ Z gk€27”kn/NF,
k=0 k=0

where we set gy = 0 for £ > N. Since S(f) is periodic in 6 with period 27, we thereby
obtain the value of the S(0) at 6 = 0,, + 27r, r € Z.

Thus, given an arbitrary § = wd, we interpolate to find S(#), which together with W (6),
v(0) and p(0) give us I(w). The number of interpolation points N, determines the order
of the interpolation. While a large value of NN, yields high-order accuracy, it is well known
that choosing N, too large can lead to numerical instabilities. Hence, we generally choose
N, < 10. Furthermore, although increasing the value of Nr also increases the accuracy of
the interpolated value S(6), the actual value of N is less important than the ratio Np/N,
called the oversampling rate 5. This is the number of points per wavelength with which
the most oscillatory mode in S(0) is sampled. We have found that for a partition of unity
p(p) with tg =1/2 and t; =1 (see (4.5)) the values ¢ =4, N = 1024, § = 128, N, = 10 as
well as ¢ = 2, N = 8192, 3 = 128, N, = 10 give us nearly full double precision accuracy.
The choice between these two possibilities depends on the problem size. When g = 4, the
FFT is faster since Np = SN is smaller. When g = 2, the interpolation is faster since the
endpoint corrections, v and u, are simpler. Hence, in smaller problems, we prefer the ¢ = 4

values, and in larger problems, we prefer the ¢ = 2 values.

C.1 Second-Order Interpolating Polynomials

For the case of ¢ = 2, 9(s) is given by a sum of second-order Lagrange interpolating

polynomials. More precisely, define

EDEHD - jp o< 5<0
Ui(s) =

0, otherwise,

DED g 1 <5<
Ua(s) =

0, otherwise,

DE2D - rp<s<2
Y3(s) =

0, otherwise.

106

Notice that 1, and 3 form the usual piecewise second-order Lagrange interpolation scheme

when the point s = 0 lies on the boundary of two subintervals. On the other hand, 1 is

the usual Lagrange interpolating polynomial when the point s = 0 lies at the center of the

subinterval. Addition and normalization leads to

The functions W (6)

w(0)
Y0(0)

71(0)

It is important to note

9(s) = 3 1) + a(s) + is(s)].

and 7, (#) can now be obtained:

4sin® (0/2) [2cos (0/2) + Osin (6/2)]
63 ’
20+ (34 4i0)0 — 49 + i) + (0 + 20)e>?
463 ;
0 [_21' +0+(2+ it)eig]
463 :

that for § < 1 the numerical evaluation of these functions can

produce a significant amount of cancellation error. To avoid this problem, for sufficiently

small 0, we approximate W (f) and ~;(f) with a power series. Through experiment, we

determine the value of § at which to switch (for approximately double precision accuracy)

from one method to the other. For example, for the function W (6) above, we switch to the

power series method for

6 < 10~%; and for v (6), we switch for § < 8/10.

107
C.2 Fourth-Order Interpolating Polynomials

For ¢ = 4, we similarly construct ¢ (s) as a sum of fourth-order Lagrange interpolating

polynomials. Define

(s+4) (s+3) (s+2) (s+1) if—4<s5<0
wl(s) — 4 3 2 1 > — 7 =
0, otherwise,
(s+3) (s+2) (s+1) (s—1) f-3<s<1
wQ(S) — 3 2 1 -1 — 7 =
0, otherwise,
(s42) (s+1) (s—1) (s—2) if _2<5<?
wg(s) — 2 1 -1 -2 - =
0, otherwise,
(s+1) (s—1) (s—2) (s—3) if-1<s<3
¢4(8) _ 1 -1 -2 -3 - 7 =
0, otherwise,
(s—1) (s—2) (s—3) (s—4) ifo<s<4
¢5(s) — -1 -2 -3 —4 - 7 —
0, otherwise.
Then, as with ¢ = 2, 9(s) is given by the normalized sum of these piecewise smooth

polynomials

Jj=0

In this case for W (0) and 7% (6), we obtain

_ 4sin5(Q

W) = TQ) {26 [12 — 6% + 3(6 — 6°) cos 0] sin (g)

sy (2) 2 0y ().

Y0

il

V2

73

108

(123 + 300 — 35i6% + 250° — 48i6") + (48 — 1080 + 1046 + 436°)
+ (724 + 1446 — 114i6° — 366%) > + (—48i — 846 + 56i0° + 166°) >
+ (12i + 180 — 11367 — 36%) |

(=360 — 666 + 33i6% — 296°) ¢’ + (72i + 1446 — 114i6° — 366%) ¥

+ (—48i — 840 + 56i0% + 166°) € + (12i + 180 — 116 — 36%) 64i9] :
(361 + 420 + 36 + 76%) ¢2? 4 (—48i — 846 + 56i02 + 1667) 3

+ (12 + 180 - 11i6% — 36%) 1]

(—12i — 660 — i6% — 6%) 7 4 (12i + 180 — 11i¢? — 36%) 641‘9} ,

	A Technical Lemmas
	A.1 Bound on Fourier Coefficient of Green's Function
	A.2 Bound on Integral Operator

	B Accurate and Efficient Computation of Scaled Bessel Functions
	C High-Order Evaluation of Fourier Integrals
	C.1 Second-Order Interpolating Polynomials
	C.2 Fourth-Order Interpolating Polynomials

