
Appendix A

Technical Lemmas

Here we present the proofs of two technical lemmas, Lemmas 2.1 and 2.6, that play an

important role in the convergence rate results of Chapter 2. Neither of these results is very

difficult to obtain, but since the technical nature of the proofs obscures the essence of the

convergence rate results, we place them here in the appendix.

A.1 Bound on Fourier Coefficient of Green’s Function

To prove that solutions to the approximate integral equation (2.3) exist and to prove the

convergence rates, we need a bound on the decay rate of the Fourier coefficients of the

Green’s function, J`(a, r) as defined in (2.1). This decay rate is given in Lemma 2.1.

However, although the proof of this lemma is not difficult, it is somewhat technical. Hence,

we first derive two simple bounds that aid in the proof.

Lemma A.1. Given α > 0 and a positive integer k, there exists a constant C > 0 such

that
α`

`!
≤ C

max{1, `k}
,

for all integers ` ≥ 0.

Proof. If we let ` = 0, then we require that C ≥ 1 for the lemma to hold. Now consider

` ≥ 1. Equivalently we require that

` logα−
∑̀
p=2

log `+ k log ` ≤ logC.

94

We bound the sum by the following integral

∑̀
p=2

log ` ≥
∫ `

1
log xdx = ` log `− `+ 1.

Thus, we require that

`

[
logα+ 1 + k

log `
`

]
− ` log ` ≤ logC + 1.

It is not difficult to see that the left-hand side of this equation is bounded from above for

` ≥ 1 since ` log ` eventually dominates. Hence, we can choose a constant C ≥ 1 such that

the result holds.

According to [2, p. 362], for all integers ` ≥ 0 and for any real, non-negative z,

|J`(z)| ≤
1
`!

(z
2

)`
. (A.1)

The following lemma provides a similar bound for |Y`(z)|.

Lemma A.2. For all integers ` ≥ 1 and for any real, non-negative z,

|Y`(z)| ≤
(`− 1)!
π

(z
2

)−`
e(

z
2)2

+
2
π`!

∣∣∣log
(z

2

)∣∣∣ (z
2

)`
+

2
π

(z
2

)`
e(

z
2)2

. (A.2)

For ` = 0,

|Y`(z)| ≤
2
π

∣∣∣log
(z

2

)∣∣∣+
2
π
e(

z
2)2

.

Proof. By [10, p. 51], Y`(z) for any non-negative integer ` is given by

Y`(z) =
2
π
J`(z) log

(z
2

)
− 1
π

`−1∑
k=0

(`− k − 1)!
k!

(z
2

)2k−`
− 1
π

∞∑
k=0

ψ(`+ k) + ψ(k)
(−1)kk!(k + `)!

(z
2

)2k+`
,

where ψ(0) = −γ ≈ −0.5772 and ψ(k) = −γ +
∑k

j=1
1
j for k ≥ 1.

95

For ` ≥ 1,

`−1∑
k=0

(`− k − 1)!
k!

(z
2

)2k
≤ (`− 1)!

∞∑
k=0

1
k!

[(z
2

)2
]k

≤ (`− 1)!e(
z
2)2

.

Also note that for k ≥ 1, |ψ(0)| ≤ 1 and

0 ≤ ψ(k) ≤ −γ +
k∑
j=1

1

= −γ + k

≤ k.

Hence, |ψ(k)| ≤ max{1, k}.

Now observe that |ψ(`+ k) + ψ(k)| ≤ 2 max{1, `+ k} and

|ψ(k)|
k!

≤ 1,

for k ≥ 0. Therefore, for ` ≥ 0

∞∑
k=0

|ψ(`+ k) + ψ(k)|
k!(k + `)!

(z
2

)2k
≤ 2

∞∑
k=0

1
k!

(z
2

)2k

≤ 2e(
z
2)2

.

Hence, by these individual bounds and (A.1) we obtain the desired result.

With these two results in hand, we turn to the proof of the main lemma.

Proof of Lemma 2.1. First note that

∫ R1

R0

|J`(a, r)| rdr = |H1
` (κa)|

∫ a

R0

|J`(κr)|rdr + |J`(κa)|
∫ R1

a
|H1

` (κr)|rdr

≤ |J`(κa)|
∫ R1

R0

|J`(κr)|rdr + |J`(κa)|
∫ R1

a
|Y`(κr)|rdr

+ |Y`(κa)|
∫ a

R0

|J`(κr)|rdr

≤ IJ,J + IJ,Y + IY,J ,

96

where

IJ,J = |J`(κa)|
∫ R1

0
|J`(κr)|rdr,

IJ,Y = |J`(κa)|
∫ R1

a
|Y`(κr)|rdr,

IY,J = |Y`(κa)|
∫ a

0
|J`(κr)|rdr.

Note that |J−`(z)| = |(−1)`J`(z)| = |J`(z)| and similarly |Y−`(z)| = |Y`(z)|. Hence, it

suffices to bound these integrals for ` ≥ 0.

We use (A.1) as well as Lemmas A.1 and A.2 to bound each of these integrals. For ` ≥ 0

IJ,J ≤ 1
(`!)2

R2
1

(
κR1

2

)2l

≤
CJ,J

max{1, `2}
,

where the last inequality follows from Lemma A.1 and CJ,J depends only on κ and R1.

The bound for IJ,Y consists of three parts from each of the three terms in (A.2). For

` > 2,

κ`

2``!
a`
∫ R1

a

2`(`− 1)!
πκ`

r−`+1e(κr
2

)2
dr ≤ R1

2

π`(`− 2)
e(
κR1

2
)2

((
a

R1

)2

−
(
a

R1

)`)

≤
C

(1)
J,Y

max{1, `2}
.

For ` = 0 this term does not appear in (A.2) and for ` = 1, 2, a similar argument yields the

same bound. Continuing with the next term in (A.2)

(κa)`

2``!

∫ R1

a

2κ`

π2``!

∣∣∣log
(κr

2

)∣∣∣ r`+1dr ≤
(
κR1

2

)2` 2R1

π(`!)2

∫ R1

0

∣∣∣log
(κr

2

)∣∣∣ dr
≤

C
(2)
J,Y

max{1, `2}
,

by Lemma A.1 and since
∫ R1

0

∣∣log
(
κr
2

)∣∣ dr is bounded. Finally, by similar arguments one

can show that the third term is similarly bounded.

97

We also bound IY,J by considering the three terms in (A.2). For ` ≥ 1,

2`(`− 1)!
πκ`

a−`e(
κa
2)2

∫ a

0

κ`

2``!
r`+1dr ≤ 1

π`(`+ 2)
e(

κa
2)2

R1
2

≤
C

(1)
Y,J

max{1, `2}
.

Continuing with the second term,

2
π`!

∣∣∣log
(κa

2

)∣∣∣ (κa
2

)` ∫ a

0

1
`!

(κr
2

)`
rdr ≤ 1

π(`!)2

(
κR1

2

)2`

a2
∣∣∣log

(κa
2

)∣∣∣
≤

C
(2)
Y,J

max{1, `2}
,

since a2
∣∣log

(
κa
2

)∣∣ is bounded for 0 ≤ a ≤ R1. The bound for the last term also takes this

form and can be obtained similarly. Hence,

IJ,J + IJ,Y + IY,J ≤
C

max{1, `2}
,

for some constant C > 0 that depends only on κ and R1.

A.2 Bound on Integral Operator

In this section, we prove the bound on K`u
T as given in Lemma 2.6, which plays a primary

role in our derivation of the convergence rates. As mentioned previously, some care is

required to obtain tight bounds on the convergence rates. Hence, the proof of the lemma is

somewhat technical.

Proof of Lemma 2.6. Define the annular region A = {(a, φ) : R0 ≤ a ≤ R1}. Then (2.7),

Lemma 2.4 and Theorem 2.5 imply that if m ∈ Ck,α(A)∩Ck+2,α
pw (A), then u ∈ Ck+2,α(A)∩

Ck+4,α
pw (A) and there exists a constant C > 0 such that

∥∥K`u
T
∥∥
∞ ≤ C

max{1, `2}
∑
|j|>M

1
max{1, |`− j|k+2}

1
max{1, |j|k+4}

=
C

max{1, `2}
∑
j>M

1
jk+4

(
1

(j − `)k+2
+

1
(j + `)k+2

)
≤ 2C

max{1, `2}
∑
j>M

1
jk+4

1
(j − |`|)k+2

, (A.3)

98

for ` = −M, . . . ,M . This expression also holds for m ∈ L∞(A) ∩ C1,α
pw (A) with k = −1.

Clearly, we need only consider ` = 0, . . . ,M .

∑
j>M

1
jk+4

1
(j − `)k+2

≤ 1
(M + 1)k+4

1
(M + 1− `)k+2

+
∫ ∞
M+1

1
xk+4

1
(x− `)k+2

=
1

(M + 1)k+4

1
(M + 1− `)k+2

+
1

2k + 5
1

(M + 1)2k+5
F

(
k + 2, 2k + 5; 2k + 6;

`

M + 1

)
,

where F is the hypergeometric function [2, p. 556]

F (a, b; c; z) ≡ 2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−adt

=
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)
Γ(c+ n)

zn

n!
,

for |z| < 1.

We need a few simple bounds on F in order to obtain the final result. It is easily verified

that for positive integers a, b,

F (a, b; b; z) =
∞∑
n=0

(a+ n− 1)!
(a− 1)!n!

zn = (1− z)−a.

Using this result, if a > 1 and b > 0 are integers and a ≤ b+ 1, then

F (a, b; b+ 1; z) =
b

a− 1

∞∑
n=0

a+ n− 1
b+ n

(a+ n− 2)!
(a− 2)!n!

zn

≤ b

a− 1
(1− z)−(a−1).

Finally, for integers a = 1 and b > 0, we have

F (1, b; b+ 1; z) = b
∞∑
n=0

1
b+ n

zn

≤ 1− b log(1− z).

99

Hence, for k ≥ 0 and ` = 0, . . . ,M , we obtain

∑
j>M

1
jk+4

1
(j − `)k+2

≤ 1
(M + 1)k+4

1
(M + 1− `)k+2

+
1

k + 1
1

(M + 1)k+4

1
(M + 1− `)k+1

≤ 2
Mk+4

1
(M + 1− `)k+1

. (A.4)

For k = −1 and ` = 0, . . . ,M ,

∑
j>M

1
j3

1
j − `

≤ 1
(M + 1)3

1
M + 1− `

+
1

3(M + 1)3
+

1
(M + 1)3

log
(

M + 1
M + 1− `

)
≤ 1

3M3
+

1
M2

1
M + 1− `

, (A.5)

where we have used the fact that log x ≤ x. Combining (A.3) with (A.4) and (A.5) give the

desired results for m ∈ L∞(A) ∩ C1,α
pw (A) and m ∈ Ck,α(A) ∩ Ck+2,α

pw (A), respectively.

Remark A.3. Finally, we note that the bounds for m ∈ L∞(A)∩C1,α
pw (A) and m ∈ C0,α(A)∩

C2,α
pw (A) can be obtained more simply as follows.

∥∥K`u
T
∥∥ ≤ 2C

max{1, `2}
∑
j>M

1
jk+4

1
(j − |`|)k+2

≤ 2C
max{1, `2}

1
(M + 1− |`|)k+2

∑
j>M

1
jk+4

≤ Ĉ

max{1, `2}
1

(M + 1− |`|)k+2

1
Mk+3

,

for some constant Ĉ > 0. However, this simple bound does not capture the interesting

convergence rate jumps in the results of Theorem 2.7 for m ∈ Ck,α(A) ∩ Ck+2,α
pw (A), k ≥ 1.

100

Appendix B

Accurate and Efficient
Computation of Scaled Bessel
Functions

As explained in Section 3.1.2, the rapid decay of the J`(z) and the rapid growth of the Y`(z)

as ` increases produces factors that underflow and overflow, respectively, but whose product

is machine-representable. We overcome these and other related issues by computing scaled

versions of the Bessel functions. The leading order asymptotic behavior of J`(z) and Y`(z)

near the origin are given respectively by

J`(z) ∼
1
`!

(z
2

)`
and

Y`(z) ∼ −
(`− 1)!
π

(z
2

)−`
for ` > 0. Thus, we scale the Bessel functions by their asymptotic representations, i.e., for

` > 0

J̃`(z) = `!
(z

2

)−`
J`(z), (B.1)

Ỹ`(z) = − π

(`− 1)!

(z
2

)`
Y`(z). (B.2)

We use these scaled Bessel functions to compute products and quotients of J`, Y` and H1
`

in many combinations. For example, we can compute the product J`(z1)Y`(z2) for ` > 0 as

J`(z1)Y`(z2) = − 1
π`
J̃`(z1)Ỹ`(z2). (B.3)

101

Typically, the unscaled Bessel functions are computed by means of their recurrence

relations

J`+1(z) =
2`
z
J`(z)− J`−1(z), (B.4)

Y`+1(z) =
2`
z
Y`(z)− Y`−1(z). (B.5)

Note that these recurrence relations are identical, signifying the fact that the underlying

difference equation has linearly independent solutions J`(z) and Y`(z) for each z. Hence, in

theory, given either J0(z) and J1(z) or Y0(z) and Y1(z), these recurrence relations allow us

to obtain J`(z) or respectively Y`(z) for all `. In practice, this works well for Y`(z). However,

this procedure works for J`(z) only if z > `. Unfortunately, when computing J`(z) for z < `

(in which we are primarily interested), since Y`(z) is an exponentially growing solution,

the recurrence relation is numerically unstable for increasing `, i.e., the round-off error in

J0(z) and J1(z) is rapidly amplified by the recurrence. On the other hand, this instability

for increasing ` also implies that the recurrence relation is stable when computing J`(z)

for decreasing `, i.e., the round-off error in the starting values is quickly damped by the

recurrence. Thus, we can begin the downward recurrence with two arbitrary values and the

recurrence will rapidly converge to αJ`(z) where α is an unknown normalization constant.

Finally, to obtain the correct values of J`(z), we compute α by means of the relationship

1 = J0(z) + 2
∞∑
n=1

J2n(z). (B.6)

This sum is not difficult to approximate accurately since J`(z) decays exponentially for

z < ` (for more details, see [45, pp. 173–175]).

Hence, when computing Y`(z) for arbitrary z and ` or when computing J`(z) for z > `,

we first compute Y0(z) and Y1(z) or, respectively, J0(z) and J1(z) (perhaps by means of an

asymptotic expansion). We then use the recurrence relation with increasing ` to compute

Y`(z) or J`(z). For z < `, on the other hand, we iterate several times through the downward

recurrence with two arbitrary starting values to converge onto the correct sequence of αJ`(z).

Then, in the process of the downward recurrence, we collect the sum (B.6) and normalize

the sequence by the result.

To compute the scaled Bessel functions, we derive a new set of recurrence relations

102

related to the recurrence relations (B.4) and (B.5). From the definitions (B.1) and (B.2),

and using (B.4) and (B.5), we obtain

J̃`+1(z) = `(`+ 1)
(

2
z

)2 [
J̃`(z)− J̃`−1(z)

]
, (B.7)

Ỹ`+1(z) = Ỹ`(z)−
1

`(`+ 1)

(z
2

)2
Ỹ`−1. (B.8)

In this case, as a result of the scaling, neither J̃`(z) or Ỹ`(z) grows (or decays) exponentially.

It is not difficult to show by means of a few numerical experiments that the recurrence for J̃`

is unstable and the recurrence for Ỹ` is stable for increasing `. Hence, after computing Y0(z)

and Y1(z) as done previously, we then scale these values and use the recurrence relation (B.8)

to compute Ỹ`(z). To compute J̃`(z), we use a downward recurrence and the normalization

sum (B.6) as before.

The implementation of this algorithm involves only relatively simple modifications to

any existing algorithm for computing Bessel functions J`(z) or Y`(z). In our application,

we modified the Fortran77 routines rjbesl and rybesl, which one can easily obtain from the

Netlib repository [1].

103

Appendix C

High-Order Evaluation of Fourier
Integrals

Given a smooth, compactly supported, real-valued function g(t) for t ∈ R, we seek to

compute the integral

I(ω) =
∫ b

a
g(t)eiωtdt

for various values of ω ∈ [ωmin, ωmax]. Clearly, since g(t) is real-valued, I(−ω) = I(ω) and,

therefore, we may restrict our attention to ωmin ≥ 0.

We present a modified version of the method suggested in [45, pp. 577–584]. Through

appropriate combinations of Lagrange interpolating polynomials of order q, we obtain a

high-order approximation of g(t). In particular, there exist piecewise smooth interpolating

polynomials ψ(s) of order q where −q ≤ s ≤ q such that ψ(0) = 1 and ψ(s) = 0 for integer

values s = −q, . . . , q. To further simplify the approach, we consider only even functions

ψ(s). (We describe specific choices of ψ(s) for q = 2, 4 in the following sections.) Thus, we

can construct a high-order approximation of g(t) as

g(t) ≈
N+(q−1)∑
k=−(q−1)

gkψ

(
t− tk
δ

)
,

where δ = (b − a)/N , tk = a + kδ and gk = g(tk). Note that this approximation requires

knowledge of g outside of the interval [a, b]. This presents no difficulties in our application

since the integrands p(ρ) and ρ p(ρ) are given by analytic expressions.

After some simplification, the integral becomes

I(ω) ≈ δeiωa
[
W (θ)S(θ) + ν(θ) + eiω(b−a)µ(θ)

]
,

104

where θ = ωδ,

S(θ) =
N∑
k=0

gke
iθk,

W (θ) =
∫ p

−p
ψ(s) cos(θs)ds,

ν(θ) = g0γ0(θ) +
q−1∑
k=1

[
gkγk(θ)− g−kγk(θ)

]
,

µ(θ) = gNγ0(θ) +
q−1∑
k=1

[
gN−kγk(θ)− gN+kγk(θ)

]
,

and

γk(θ) = eiθk
∫ q

k
ψ(s)eiθsds.

Thus, the computation involves a simple sum of N + 1 terms, S(θ), the quantity W (θ) and

a relatively small number of endpoint corrections, ν(θ) and µ(θ). Furthermore, since ψ(s)

is known analytically, W (θ) and γk(θ) can be computed exactly for each choice of ψ.

The only approximation in the method to this point is the high-order interpolation

of g(t). Thus, we require only enough points to accurately approximate g(t) instead of

the highly oscillatory function g(t)eiωt. Furthermore, since we only approximate g(t), the

accuracy of the approximation is independent of ω. Hence, given any ε > 0, we can choose

N sufficiently large so that the error in I(ω) is less than ε, uniformly in ω.

Note that to decrease the error one may either increase the number of interpolation

points N or increase q (thereby increasing the order of the interpolation). As can be easily

demonstrated, the order of the method depends on q in much the same way as with Newton-

Cotes integration methods. More precisely, for q odd, the error decays like O(N−(q+1)) and

for q even, the error decays like O(N−(q+2)). Hence, we most generally choose q = 2 (fourth-

order convergence) or q = 4 (sixth-order convergence). The values of W (θ) and γk(θ) for

q = 2 and q = 4 are found in Sections C.1 and C.2, respectively.

In general, we may need to evaluate I(ω) for many different values of ω. (In our ap-

plication, ω = κ ± 2π|c`| with (c`)q = `q/(Bq − Aq) and where |`q| ≤ Ñq/2.) This is not

difficult to obtain for W (θ), ν(θ) and µ(θ) since they involve only a few of the gk. How-

ever, straightforward evaluation of the sum S(θ) has quadratic complexity. To reduce the

complexity, we use an FFT to compute S(θ) at θn = 2πn/NF for n = 0, . . . , NF − 1, where

105

NF > N . More precisely,

S(θ) =
N∑
k=0

gke
iθnk =

NF−1∑
k=0

gke
2πikn/NF ,

where we set gk = 0 for k > N . Since S(θ) is periodic in θ with period 2π, we thereby

obtain the value of the S(θ) at θ = θn + 2πr, r ∈ Z.

Thus, given an arbitrary θ = ωδ, we interpolate to find S(θ), which together with W (θ),

ν(θ) and µ(θ) give us I(ω). The number of interpolation points Np determines the order

of the interpolation. While a large value of Np yields high-order accuracy, it is well known

that choosing Np too large can lead to numerical instabilities. Hence, we generally choose

Np ≤ 10. Furthermore, although increasing the value of NF also increases the accuracy of

the interpolated value S(θ), the actual value of NF is less important than the ratio NF /N ,

called the oversampling rate β. This is the number of points per wavelength with which

the most oscillatory mode in S(θ) is sampled. We have found that for a partition of unity

p(ρ) with t0 = 1/2 and t1 = 1 (see (4.5)) the values q = 4, N = 1024, β = 128, Np = 10 as

well as q = 2, N = 8192, β = 128, Np = 10 give us nearly full double precision accuracy.

The choice between these two possibilities depends on the problem size. When q = 4, the

FFT is faster since NF = βN is smaller. When q = 2, the interpolation is faster since the

endpoint corrections, ν and µ, are simpler. Hence, in smaller problems, we prefer the q = 4

values, and in larger problems, we prefer the q = 2 values.

C.1 Second-Order Interpolating Polynomials

For the case of q = 2, ψ(s) is given by a sum of second-order Lagrange interpolating

polynomials. More precisely, define

ψ1(s) =


(s+2)

2
(s+1)

1 , if −2 ≤ s ≤ 0

0, otherwise,

ψ2(s) =


(s+1)

1
(s−1)
−1 , if −1 ≤ s ≤ 1

0, otherwise,

ψ3(s) =


(s−1)
−1

(s−2)
−2 , if 0 ≤ s ≤ 2

0, otherwise.

106

Notice that ψ1 and ψ3 form the usual piecewise second-order Lagrange interpolation scheme

when the point s = 0 lies on the boundary of two subintervals. On the other hand, ψ2 is

the usual Lagrange interpolating polynomial when the point s = 0 lies at the center of the

subinterval. Addition and normalization leads to

ψ(s) =
1
2

[ψ1(s) + ψ2(s) + ψ3(s)] .

The functions W (θ) and γk(θ) can now be obtained:

W (θ) =
4 sin3 (θ/2) [2 cos (θ/2) + θ sin (θ/2)]

θ3
,

γ0(θ) = −2i+ (3 + 4iθ)θ − 4(θ + i)eiθ + (θ + 2i)e2iθ

4θ3
,

γ1(θ) = −
eiθ
[
−2i+ θ + (2 + it)eiθ

]
4θ3

.

It is important to note that for θ � 1 the numerical evaluation of these functions can

produce a significant amount of cancellation error. To avoid this problem, for sufficiently

small θ, we approximate W (θ) and γk(θ) with a power series. Through experiment, we

determine the value of θ at which to switch (for approximately double precision accuracy)

from one method to the other. For example, for the function W (θ) above, we switch to the

power series method for θ < 10−4; and for γ1(θ), we switch for θ < 8/10.

107

C.2 Fourth-Order Interpolating Polynomials

For q = 4, we similarly construct ψ(s) as a sum of fourth-order Lagrange interpolating

polynomials. Define

ψ1(s) =


(s+4)

4
(s+3)

3
(s+2)

2
(s+1)

1 , if −4 ≤ s ≤ 0

0, otherwise,

ψ2(s) =


(s+3)

3
(s+2)

2
(s+1)

1
(s−1)
−1 , if −3 ≤ s ≤ 1

0, otherwise,

ψ3(s) =


(s+2)

2
(s+1)

1
(s−1)
−1

(s−2)
−2 , if −2 ≤ s ≤ 2

0, otherwise,

ψ4(s) =


(s+1)

1
(s−1)
−1

(s−2)
−2

(s−3)
−3 , if −1 ≤ s ≤ 3

0, otherwise,

ψ5(s) =


(s−1)
−1

(s−2)
−2

(s−3)
−3

(s−4)
−4 , if 0 ≤ s ≤ 4

0, otherwise.

Then, as with q = 2, ψ(s) is given by the normalized sum of these piecewise smooth

polynomials

ψ(s) =
1
4

5∑
j=0

ψj(s).

In this case for W (θ) and γk(θ), we obtain

W (θ) =
4 sin5(θ2)

3θ5

{
2θ
[
12− θ2 + 3(6− θ2) cos θ

]
sin
(
θ

2

)
+ (12 + θ2) cos

(
θ

2

)
+ (12− 11θ2) cos

(
3θ
2

)}
,

108

γ0 = 1
48θ5

[(
12i+ 30θ − 35iθ2 + 25θ3 − 48iθ4

)
+
(
−48i− 108θ + 104iθ2 + 48θ3

)
eiθ

+
(
72i+ 144θ − 114iθ2 − 36θ3

)
e2iθ +

(
−48i− 84θ + 56iθ2 + 16θ3

)
e3iθ

+
(
12i+ 18θ − 11iθ2 − 3θ3

)
e4iθ
]
,

γ1 = 1
48θ5

[(
−36i− 66θ + 33iθ2 − 29θ3

)
eiθ +

(
72i+ 144θ − 114iθ2 − 36θ3

)
e2iθ

+
(
−48i− 84θ + 56iθ2 + 16θ3

)
e3iθ +

(
12i+ 18θ − 11iθ2 − 3θ3

)
e4iθ
]
,

γ2 = 1
48θ5

[(
36i+ 42θ + 3iθ2 + 7θ3

)
e2iθ +

(
−48i− 84θ + 56iθ2 + 16θ3

)
e3iθ

+
(
12i+ 18θ − 11iθ2 − 3θ3

)
e4iθ
]
,

γ3 = 1
48θ5

[(
−12i− 6θ − iθ2 − θ3

)
e3iθ +

(
12i+ 18θ − 11iθ2 − 3θ3

)
e4iθ
]
.

	A Technical Lemmas
	A.1 Bound on Fourier Coefficient of Green's Function
	A.2 Bound on Integral Operator

	B Accurate and Efficient Computation of Scaled Bessel Functions
	C High-Order Evaluation of Fourier Integrals
	C.1 Second-Order Interpolating Polynomials
	C.2 Fourth-Order Interpolating Polynomials

