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Abstract

In this thesis, we introduce a new, fast, high-order method for scattering by inhomoge-
neous media in three dimensions. As in previously existing methods, the low (O(N log N))
complexity of our integral equation method is obtained through extensive use of the fast
Fourier transform (FFT) in evaluating the required convolutions. Unlike previous FFT-
based methods, however, this method yields high-order accuracy, even for scatterers con-
taining geometric singularities such as discontinuities, corners, and cusps.

We begin our discussion with a thorough theoretical analysis of an efficient, high-order
method recently introduced by Bruno and Sei (IEEE Trans. in Antenn. Propag., 2000),
which motivated the present work. This two-dimensional method is based on a Fourier ap-
proximation of the integral equation in polar coordinates and a related, generally low-order,
Fourier smoothing of the scatterer. The claim that use of this low-order approximation of
the scatterer leads to a high-order accurate numerical method generated considerable con-
troversy. Our proofs establish that this method indeed yields high-order accurate solutions.
We also introduce several substantial improvements to the numerical implementation of
this two-dimensional algorithm, which lead to increased numerical stability with decreased
computational cost.

We then present our new, fast, high-order method in three dimensions. An immediate
generalization of the polar coordinate approach in two dimensions to a spherical coordinate
approach in three dimensions appears less advantageous than our chosen approach: Fourier
approximation and integration in Cartesian coordinates. To obtain smooth and periodic
functions (which are approximated to high-order via Fourier series), we 1) decompose the
Green’s function into a smooth part with infinite support and a singular part with compact
support; and 2) replace, as in the two-dimensional approach, the (possibly discontinuous)
scatterer with its truncated Cartesian Fourier series.

The accuracy of our three-dimensional method is approximately equal to that of the
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two-dimensional method mentioned above and, interestingly, is actually much simpler than
the two-dimensional approach. In addition to our theoretical discussion of these high-order
methods, we present a parallel implementation of our three-dimensional Cartesian approach.
The efficiency, high-order accuracy, and overall performance of both the polar and Cartesian

methods are demonstrated through several computational examples.
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