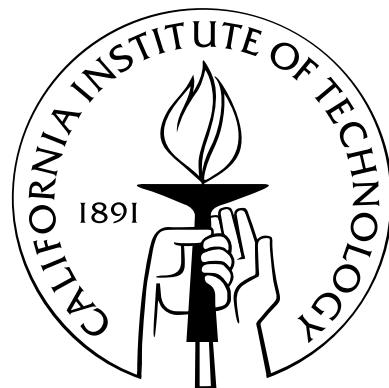


Fast, High-Order Methods for Scattering by Inhomogeneous Media

Thesis by
E. McKay Hyde

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy



California Institute of Technology
Pasadena, California

2003
(Defended August 14, 2002)

© 2003
E. McKay Hyde
All Rights Reserved

For

Marie, Cooper and Miriam

Acknowledgements

The deeply enriching experience that I have enjoyed during my years at Caltech is largely due to the individuals that have assisted and influenced me and my work. I would be ungrateful if I did not acknowledge their invaluable contributions. First, I thank my advisor, Professor Oscar P. Bruno, for the countless hours spent advising my research and discussing my future career. He has always made me feel like a valued colleague. I also thank the remaining Applied and Computational Mathematics faculty and staff for their instruction, advice, and assistance as well as the members of my defense committee, Professors Oscar P. Bruno, Brent T. Fultz, Daniel I. Meiron, and Niles A. Pierce for their time and effort.

I extend my gratitude to the funding agencies that have supported my research. During my first year of research, I was supported through a grant from the Air Force Office of Scientific Research (AFOSR). I continue to attend the AFOSR's excellent annual workshop on electromagnetics. In the remaining years, I have been supported through a Computational Science Graduate Fellowship from the Department of Energy (DOE). This fellowship program has not only provided necessary funds, but has also greatly broadened my education and my associations by introducing me to DOE programs, laboratories, and scientists. In particular, as part of the fellowship program, I spent a summer in the Center for Applied Scientific Computing (CASC) at Lawrence Livermore National Laboratory. My experience at CASC was thoroughly rewarding due in large part to my supervisors, Dr. Milo R. Dorr and Dr. F. Xabier Garaizar. Finally, I am deeply grateful to the ARCS Foundation, whose fellowship has made supporting a family during graduate studies financially bearable. I will not forget their kindness and generosity.

My friends at Caltech have helped make life enjoyable even in those times when research was not. There are simply far too many people to mention here, but I am particularly grateful to Dave Amundsen, Rhett Brewer, Julian Chaubell, Christophe Geuzaine, Leonid Kunyansky, Randy Paffenroth, Matthew Pohlman, Chad Schmutz, and Mayya Tokman

for many enjoyable hours of discussion on topics ranging from mathematics and computer science to religion and politics.

Most of all, I am grateful to my family. I am deeply grateful to my parents, Gerald and Carma Hyde. They gave me a love of learning and a belief in myself as well as faith in something greater. Their love and support have been a great strength to me. Finally, I express my deepest gratitude to my dear wife, Marie, and my wonderful children, Cooper and Miriam, who have sacrificed greatly to follow me as I pursue my dream. They are my motivation and my happiness. I dedicate this work to them.

Abstract

In this thesis, we introduce a new, fast, high-order method for scattering by inhomogeneous media in three dimensions. As in previously existing methods, the low ($\mathcal{O}(N \log N)$) complexity of our integral equation method is obtained through extensive use of the fast Fourier transform (FFT) in evaluating the required convolutions. Unlike previous FFT-based methods, however, this method yields high-order accuracy, even for scatterers containing geometric singularities such as discontinuities, corners, and cusps.

We begin our discussion with a thorough theoretical analysis of an efficient, high-order method recently introduced by Bruno and Sei (IEEE Trans. in Antenn. Propag., 2000), which motivated the present work. This two-dimensional method is based on a Fourier approximation of the integral equation in polar coordinates and a related, generally low-order, Fourier smoothing of the scatterer. The claim that use of this low-order approximation of the scatterer leads to a high-order accurate numerical method generated considerable controversy. Our proofs establish that this method indeed yields high-order accurate solutions. We also introduce several substantial improvements to the numerical implementation of this two-dimensional algorithm, which lead to increased numerical stability with decreased computational cost.

We then present our new, fast, high-order method in three dimensions. An immediate generalization of the polar coordinate approach in two dimensions to a spherical coordinate approach in three dimensions appears less advantageous than our chosen approach: Fourier approximation and integration in *Cartesian coordinates*. To obtain smooth and periodic functions (which are approximated to high-order via Fourier series), we 1) decompose the Green's function into a smooth part with infinite support and a singular part with compact support; and 2) replace, as in the two-dimensional approach, the (possibly discontinuous) scatterer with its truncated *Cartesian* Fourier series.

The accuracy of our three-dimensional method is approximately equal to that of the

two-dimensional method mentioned above and, interestingly, is actually much simpler than the two-dimensional approach. In addition to our theoretical discussion of these high-order methods, we present a parallel implementation of our three-dimensional Cartesian approach. The efficiency, high-order accuracy, and overall performance of both the polar and Cartesian methods are demonstrated through several computational examples.

Contents

Acknowledgements	iv
Abstract	vi
1 Introduction	1
1.1 Applications	1
1.2 Scattering Equations	3
1.3 Integral Equation Formulation	4
1.4 Previous Work	6
1.5 High-Order Convergence in FFT-Based Methods	8
1.6 Overview of Chapters	12
2 A Fast, High-Order Method in Two Dimensions: Theoretical Analysis	14
2.1 Approximate Integral Equation	14
2.2 Error Bounds	17
2.2.1 Error in Approximated Fourier Modes	18
2.2.2 Total Error in the Interior and Exterior Fields	22
2.3 Computation of the Angular Integral	25
3 A Fast, High-Order Method in Two Dimensions: Numerical Implementation	28
3.1 High-Order Numerical Integration	29
3.1.1 Angular Integration	29
3.1.2 Radial Integration	30
3.1.2.1 Resolution of Logarithmic Singularity	35
3.1.2.2 Evaluation of Integral Moments	37

3.2	Solution of the Linear System	41
3.2.1	Linear Solver	41
3.2.2	Preconditioner	42
4	A Fast, High-Order Method in Three Dimensions	48
4.1	High-Order Convolution with Smooth Part	51
4.2	High-Order Convolution with Singular Part	52
4.3	Fourier-Smoothed Scatterers	54
4.4	Computation of the Fourier Coefficients of the Green's Function	55
4.5	Implementation	57
5	Computational Examples	61
5.1	Two-Dimensional Computational Examples	62
5.1.1	Verification of Predicted Convergence Rates	63
5.1.2	Convergence in Radial Integration	67
5.1.3	Complex Scatterers and Preconditioning	73
5.2	Three-Dimensional Computational Examples	79
6	Conclusions	90
A	Technical Lemmas	93
A.1	Bound on Fourier Coefficient of Green's Function	93
A.2	Bound on Integral Operator	97
B	Accurate and Efficient Computation of Scaled Bessel Functions	100
C	High-Order Evaluation of Fourier Integrals	103
C.1	Second-Order Interpolating Polynomials	105
C.2	Fourth-Order Interpolating Polynomials	107
	Bibliography	109

List of Figures

1.1	Smooth and Periodic Function – $f(x) = e^{\cos^2 x}$	9
1.2	Example of Fourier Smoothing	11
5.1	Visualizations for Radially Layered Scatterer – Diameter = 4λ	65
5.2	Visualizations for Off-Center Disc – Centered at $(1\lambda, 0)$, Diameter = 1λ	66
5.3	Visualizations for Discontinuous Scatterer – Diameter = 10λ	68
5.4	Visualizations for $C^{0,\alpha}$ Scatterer – Diameter = 10λ	69
5.5	Visualizations for $C^{1,\alpha}$ Scatterer – Diameter = 10λ	70
5.6	Visualizations for Square Scatterer – Diagonal Length = 5λ	76
5.7	Visualizations for Star Scatterer – Diameter = 1λ	78
5.8	Visualizations for Bumpy Scatterer – Diameter = 5λ	80
5.9	Visualizations for Layered Sphere – $\kappa a = 4$	82
5.10	Far Field Intensity ($ u_\infty ^2$) for Layered Sphere – $\kappa a = 4$	83
5.11	Visualizations for Array of Smooth Scatterers – $5\lambda \times 5\lambda \times 5\lambda$	85
5.12	Far Field Intensity ($ u_\infty ^2$) for Array of Smooth Scatterers – $5\lambda \times 5\lambda \times 5\lambda$. .	86
5.13	Complex Scatterer – Close-Up Image of Scatterer	87
5.14	Visualizations for Complex Scatterer – Size $\approx 2.5\lambda \times 5\lambda \times 2.5\lambda$	88
5.15	Far Field Intensity ($ u_\infty ^2$) for Complex Scatterer – Size $\approx 2.5\lambda \times 5\lambda \times 2.5\lambda$.	89

List of Tables

1.1	Trapezoidal Rule Convergence for $f(x) = e^{\cos^2 x}$	9
1.2	High-Order Trapezoidal Rule Integration via Fourier Smoothing	10
5.1	Convergence Rate for Radially Layered Scatterer – Diameter = 4λ	64
5.2	Convergence for Off-Center Disc – Centered at $(1\lambda, 0)$, Diameter = 1λ	64
5.3	Convergence Rate for Discontinuous Scatterer – Diameter = 10λ	67
5.4	Convergence Rate for $C^{0,\alpha}$ Scatterer – Diameter = 10λ	71
5.5	Convergence Rate for $C^{1,\alpha}$ Scatterer – Diameter = 10λ	71
5.6	Convergence of Radial Integration for Disc Centered at Origin – 2λ Diameter	72
5.7	Convergence of Radial Integration for Disc Centered at $(1\lambda, 0)$ – 1λ Diameter	74
5.8	Convergence for Square Scatterer – Diagonal Length = 5λ	77
5.9	Convergence for Star Scatterer – Diameter = 1λ	77
5.10	Convergence for Bumpy Scatterer – Diameter = 5λ	79
5.11	Convergence for Layered Sphere – $\kappa a = 4$	83
5.12	Convergence for Array of Smooth Scatterers – $5\lambda \times 5\lambda \times 5\lambda$	84
5.13	Convergence for Complex Scatterer – Size $\approx 2.5\lambda \times 5\lambda \times 2.5\lambda$	89