Chapter 2

A Fast, High-Order Method in
Two Dimensions: Theoretical
Analysis

In this chapter, we present a theoretical analysis of the efficient, high-order method intro-
duced in [13]. The high-order accuracy of this method derives from the concepts introduced
in Section 1.5. However, this theoretical analysis is not simply an academic exercise, but
rather puts to rest the considerable controversy generated by the claim of high-order ac-
curacy. Additionally, as we will describe, this analysis reveals interesting and unexpected

bounds on the convergence rates.

2.1 Approximate Integral Equation

As described in the introduction, the field scattered by an bounded inhomogeneity is given
by the solution of the Lippmann-Schwinger integral equation (1.6). Although several exis-
tence and uniqueness results are known for this problem, the existing results do not address
the full generality of the problem that we consider. Specifically, we assume that, given
m € L*, (1.6) admits a unique solution u € L*. Certainly, this is the case for m € C!
as proven in [17, §8.1, 8.3]. Furthermore, it is well known that (1.6) admits a unique
solution for constant inhomogeneities by consideration of the appropriate surface integral
equation [16, pp. 100-101]; [39].

To obtain the numerical method, we construct an approximate integral equation. As
mentioned in the introduction, we approximate the Green’s function by a truncated Fourier

series. We now prove that this approximate integral equation also admits a unique solution.
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The related fact that the inverse operator for the approximate problem is uniformly bounded
provides an essential part of our proof of high-order convergence.

? we obtain the Fourier

After changing to polar coordinates, z = ae’® and y = re
representation of the Green’s function by means of the addition theorem for the Hankel
function [17, p. 67]

Hi(Rlaci® —re?)) = 3" Fy(a,r)e@=0),

f=—o00
where

Te(a,r) = Hel(limax(a, r))Je(k min(a, r)). (2.1)

This allows us to expand the integral operator, Ku, (see (1.6)) in a Fourier series

iK? > »
(Ku)(a.0) = - [ H(ele — yhm(pu)dy = Y (K@),
f=—0o0
where - ,
2 1 ™ .
(Kpu)(a) = —iz : Je(a,r) [/0 m(r, @)u(r, H)e’wdﬁ} rdr. (2.2)

Here Ry < a < R; defines an annular region that contains the support of m.
To obtain the approximate integral equation, we truncate this Fourier series. Fur-
thermore, we also replace the incident field by its truncated Fourier series. Although not

necessary for our results, this simplifies the presentation somewhat. We thereby obtain

v(a, ¢) = u'"M(a,¢) + (KMv)(a, ), (2.3)
where
uMa,0) = > uja)e™? (2.4)
l=—M
M .
(KMv)(a,0) = > (Kw)(a)e'™. (2.5)
{=—M

(Note: we will use superscript M throughout this text to denote the truncated Fourier series

of order M of a given function, e.g., (2.4) and (2.5).)
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Decomposing (2.3) into Fourier modes, we observe that

ui(a) + (Kp)(a), for |¢] < M
0, for |¢| > M.

Hence,

v(a,¢) =v"(a,¢)

and solving (2.3) is equivalent to solving the following system of one-dimensional integral
equations

ve(a) — (KM (a) = ui(a), £ = —M,..., M. (2.6)

To prove existence and uniqueness for this approximate integral equation, we make use

of the following technical lemma.
Lemma 2.1. There exists a constant C' > 0 depending only on Ry, Ry and k such that

C

Ry
< -
[, 1| < e

Ro

where Jy(a,r) is defined in (2.1).
This lemma is proved in Appendix A.1 and allows us to prove the following lemma.

Lemma 2.2. For any m € L*°,
HK—KMHOO—>0,asM—>oo,

where the operator norm is the one induced by the L>-norm.

Proof. Let u € L*. Then,

/27r
0

m(r, Q)U(T,G)e_im df < 2m||m|| oo ||t co-
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Hence, for M > 0,

2 Ry
o = 5l < Tyl X | [ o

|¢|>M o0
1
= oY 5l
[¢|>M

= O (M_l) 12| co-
Therefore,

|K — KMo =0 (M) -0,
as M — oo. O

This leads to the desired uniqueness and existence result.

Theorem 2.3. Given m € L*°, for M sufficiently large (2.3) admits a unique solution
v € L™ for incident field u® satisfying (1.1). Furthermore, for sufficiently large M, the

operators (I — K™M)~1 exist and are uniformly bounded.

Proof. Since we have assumed that (1.6) admits a unique solution, I — K has a bounded
inverse. Since L™ is a Banach space, Lemma 2.2 and [38, Theorem 10.1, p. 142] imply
that for all sufficiently large M the inverse operators (I — K™)~! exist and are uniformly

bounded. Therefore, (2.3) admits a unique solution v € L>°, for M sufficiently large. [

2.2 Error Bounds

In summary, the approximate integral equation (2.3) is obtained by truncating the Fourier
series of both the incident field u’ and the integral operator K at each radius to obtain an
approximate solution v to (1.6), which itself is a truncated Fourier series. Roughly speaking,
high-order accuracy is obtained because the integral operator Ku and the incident field u’
are smooth and periodic functions as a function of the angular variable. Therefore, their
truncated Fourier series exhibit high-order convergence. In this section we derive bounds
on the error in this approximation. Of course the full numerical implementation of the
method introduces additional errors (e.g., quadrature errors), but here we consider only the
accuracy of v, the solution of the approximate integral equation (2.3). All other errors are

considered in our discussion of the numerical implementation of this method in Chapter 3.
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2.2.1 Error in Approximated Fourier Modes

The error in the solution of the approximate integral equation (2.3) is given by
u(z) — oM (2)] < [ (@) = oM (2)] + [u" (2)],
where u” is the “tail” of the Fourier series of u,

u(0,0) = u(a,6) — uM(0,0) = 3 wl(@e™.

[e|>M

In this section, we derive a bound on the first of these two terms. Note that

WM = uZ’M—FKMu,

oM = M KMM,
Hence, taking the difference of these equations we obtain

uM — oM = KMy — M)
= KM@M — M) 4 kMyT,
Theorem 2.3 ensures that I — K™ is invertible for M sufficiently large and that the operators

(I — KM)~! are uniformly bounded by some B > 0, i.e., ||(I - KM)*1HOO < B for all

sufficiently large M. Then
e = [ — M|, < BT

Hence, we seek a bound on KMyT.

We first note that

M
[l N D T N
{=—M

Furthermore, note that

2w
/0 m(r,0)u’ (r,0)e 0 df = Z my—j(r)u;(r).

71>M
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Then we have

5 < iy 2 Imecsllolu e 1)

lj|>M
To bound this expression we use bounds on the Fourier coefficients of m and u. Let the
space C]],f&,o‘ denote the space of functions whose k" derivative is piecewise Holder continuous.
(Note: throughout this text we assume that 0 < o < 1.) We say that a function f is
piecewise continuous on {2 if and only if there is a finite number of open, disjoint subsets of
Q, denoted by Q, ..., Qy,, such that |J;-_, Q; = Q where f |, can be extended as a continuous

function to Q; for each i = 1,...,n. Given these definitions, the following lemma follows

by repeated integration by parts.
Lemma 2.4. If g € C*([0,27] N Cﬁ'Q([O, 27]), then the Fourier coefficients of g,

1 2m o
o /0 g(0)e d@’
C

max{1, [¢[F+2}"

lce| =

for some constant C'.

If g € L>([0,2]) N C},,([0,27]), then

To bound the discrete convolution in (2.7) we need a relationship between the regularity
of m and the regularity of u. Variations on results in [8, p. 223], [24, pp. 97, 102] and [28,
pp. 53, 56] give us the following.

Theorem 2.5. Let D be a bounded, open set. If m € L>(D), then u € C1(D). Further-
more, if m € CH*(D), k >0, then u € C**22(D).

We emphasize that D is an arbitrary bounded, open set. Hence, the theorem relates the
local regularity of u to the local regularity of m.
Using these results, we obtain the necessary bounds on (2.7) by means of the following

technical lemma, whose proof is contained in Appendix A.2.
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Lemma 2.6. Define the region A = {(a,®) : Ry < a < Ry}. If m € CH*(A) N C’;fJZ’O‘(A),

k > 0, then there exists a constant C' > 0 independent of £ and M such that for £ =0,..., M

< 1 4C 1
= MF max{L, 2} (M + 1 — O)F1

el

Similarly, if m € L®(A)N C;{?(A), then

T 2C 11 1
K)o < oy {5 * S G )

This leads us to a bound on the approximated Fourier modes.

Theorem 2.7. If m € L®(A) N Cpit (A), then

e = = o) < B KM = 0 ().

M3
1
ey =0 <_M5> .
If m € CH*(A) N CES*(A) for k > 1, then

1

Proof. We use Lemma 2.6 to bound HKM’LLTH < Zé\ifM HKguTHOO. For ¢ = 0 and m €

Cke(A) N C§$2’Q(A), we obtain

If m € CO*(A) N CuS(A), then

1
0. =0 (57357 )

For m € L®(A) N Cp'(A), in turn, we have

1
5o =0 (372)-

For the remaining part of the sum, it is sufficient to bound sums of the following form

fi;
2 _ )
=2 (M+1-0p
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for p=1,2,.... First consider p > 2.

M M M M
Zl 1 _ 1 ZLF 1 ZlJf 1 Z 1
— P (M+1-10) (M +1)2 0 MA414=02  (M+1)? (M+1-19)

Combining these results, we arrive at the claims of the theorem. O

Remark 2.8. Of course, there are many other conditions on m that could be proposed for
which the corresponding convergence rates could be determined. For instance, one might
remove the requirement of Holder continuity. In every case, the convergence rates are
directly determined by the rate of decay of the Fourier coefficients of m and u. We do not
attempt to provide a comprehensive listing of all possible regularity conditions and their

corresponding convergence rates.

Remark 2.9. We have taken great care in the proof to obtain tight bounds; the resulting
convergence rates depend on k in a particularly interesting way. Proceeding with less care,

one might have expected a simpler dependence on k as follows.

IN

BIEY o llu" [l

- o(Zﬂ%):O(ﬁ).

>M

EM

This bound predicts second-order convergence for m € L (A)NCpis*(A), third-order conver-
gence for m € CO*(A) N Ca&(A), and fourth-order convergence for m € CH(A) N Ca (A).
However, as we have proven, these simple bounds are not tight. In fact, the method

exhibits third-order convergence for m € L®(A) N C;{ff‘ (A), fifth-order convergence for
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m € C%(A) N Chs(A) and seventh-order convergence for m € CL(A) N Cid'(A). This

rather interesting and unexpected convergence behavior can be observed in the far field

convergence rates of the computational examples in Section 5.1.1.

2.2.2 Total Error in the Interior and Exterior Fields

To this point, we have only computed the convergence rate in the approximated modes,
i.e., the first M modes. Given these convergence rates, we can now easily estimate the total
error. We make a distinction here between two types of error: the interior field error (the
error on the domain of integration A = {(a,®) : Ry < a < R1}) and the ezterior field error
(the error outside of A). The interior field error is simply the difference between the true

solution u(z) and the solution v™ (x) of (2.3) on A. Therefore, for x € A

[u(z) — v (2)]

IN

‘uM(x) - vM(:c)‘ + !uT(x)‘

IN

em + u(lz]),

where 73/(]z|) is a bound on |u”(z)].

The important observation here is that 7p; depends on the decay rate of the Fourier
modes of u at the radius |x|. Hence, even if m is discontinuous on A, if m is smooth as
a function of angle on the circle with radius |z| centered at the origin, then the Fourier
modes of u at radius |z| decay very rapidly. This result implies that, at a given point z,
the method converges at a rate that depends on a combination of the regularity of m at
the radius |z| and the regularity of m in all of A. We state this result more precisely in the

following corollary to Theorem 2.7.

Corollary 2.10 (Interior field error). Let x € A. Let S denote the circle with radius
|z| centered at the origin. Let N(S) be a neighborhood of S in R%. If m € CP*(N(S)) N
CEE2Y(N(S)), then the interior field error is given by

|u(z) — o™ ()| < enr +Tar(l2)),
where bounds on €y are given in Theorem 2.7 and

@) < e = O (375 ) -
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This result holds with p = —1 for m € L(N(S)) N Cpd (N(S)).

Proof. We need only prove the bound on u’(z). By Theorem 2.5, v € CP*2%(N(S)) N

CP+4a(N(S)). Hence, by Lemma 2.4,

C
ju ()] < 7ar(l2]) = Z 7o
>M
1
=9 (W) -
The proof for m € L®(N(S)) N Cpid(N(S)) is similar. O

Remark 2.11. Although the approximate Fourier modes v converge rapidly to uM, the
decay of uT dominate the maximum interior field error. For example, in the case of m €
L>®(A) N Cpi(A), third-order convergence of v to u™ will be dominated by second-order
decay of u” in the maximum error. At the same time, if the interior field error is evaluated
at a radius for which m is smooth, we will observe the more rapid convergence rate predicted

by Theorem 2.7.

Before we can discuss convergence rates in the exterior field, we must describe how we
extend our approximate solution v, which we have computed only on the interior of A,
to the exterior field. Since the integration in (1.6) is performed only over the support of
m, one can easily see that given the exact solution uw on the boundary of A, the solution in
the rest of R? can be computed simply by an appropriate scaling of the Fourier modes of

u. More precisely, define A = {(r,60) : Ry <r < R;}. Then,

Jf‘igg)u}?’(Ro), if 0 <r < Ry

ug(r) = (2.8)

H}(kr) .
H}‘(f{Rl))ug(Rl), ifr> Ry.

(Note that this result can also be obtained directly from the differential equation by means
of separation of variables.) Similarly, to extend our approximate solution v to the exterior

of A, we simply scale its Fourier modes in the same way.

Corollary 2.12 (Exterior field error). Given x ¢ A, extend the approximate solution
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oM to the exterior of A as prescribed above. Then, the exterior field error is given by

where )y = HuM — ’UMH

«, has bounds given by Theorem 2.7.

Proof. Denote the scaling factors for the given radius r = |z| by £¢(r). Assume that r > R;.

The proof for 0 < r < Ry is similar. We have

lu(z) =M (@) < D [Bulr)]
{=—M

uZ’M(r) — ’UZ’M(T)‘ + ‘uT(x)‘

IN

M
e > 1Be(r)] + [uT ()]
l=—M

As before, let S denote the circle of radius r about the origin. Since r = || > Ry, there
exists a neighborhood N(S) of S such that m|y ) = 0. Therefore, u € C*(N(S)) and
|uT(x)| < % for any integer p > 0. This implies that ‘uT(m)‘ is always dominated by ej;.

To complete the proof, we use the asymptotic expressions for J; and Y; as found in [2,

p. 365], i.e., for fixed z and as ¢ — oo through positive real values,

Jo(2) ~ \/21—7%@;)6

e~ 5 ()"

Therefore,
Jo(kr) 2
PRSI B G N Bl
YZ(HRI) 1+ Je(kR1) 2
Ye(l{R1)

R\ 2
- ()
This implies that |G(r)| is summable. Hence, S0 ,,|8¢(r)| is bounded for all integers

M > 0. We conclude that
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Remark 2.13. Note that u € C* on the exterior of A and u may be much less regular on
the interior of A (in general, u € O for a discontinuous scatterer). Hence, the decay of u”

T

on the exterior of A is superalgebraic, whereas u” may decay as slowly as O(M~2) on the

interior of A. This fact is responsible for the interesting result that the method converges

more rapidly on the exterior of A than on the interior (where u”

may dominate eys).

This is particularly relevant in the evaluation of radar cross sections, an important mea-
sure in many applications. The evaluation of radar cross sections requires the computation
of the far field. Although Corollary 2.12 does not directly address the error in the far
field, we obtain an approximate far field by a scaling of the Fourier modes of v™ just as in

the computation of the exterior field. As in [10, p. 6], we define the far field, u, by the

asymptotic representation of the scattered field as r — oo, i.e.,

w(r,6) = 073 fus(9) + 06

From (2.8) and the asymptotic expression for H}(z) for fixed £ as z — oo [2, p. 364], we
obtain the Fourier modes of us, by a simple scaling of the Fourier modes of u*.
up(R1)
U ) = .
(too) i'H} (kR1)
If we define the approximate far field vs by scaling the Fourier modes of v>™ in the same

way, we can prove that

[ttoe = Vool = O (enr) -
The proof of this fact is nearly identical to the proof of Corollary 2.12.

The predicted convergence rates in both the interior field and the far field are verified

through several computational examples in Section 5.1.1.

2.3 Computation of the Angular Integral

Thus we have shown that the method achieves high-order convergence even in the case of
discontinuous scatterers. However, to this point, we have not discussed any methods for
computing the required angular and radial integrals for each mode of the solution (2.6).

Since this chapter primarily addresses the theoretical aspects of the method, we leave a
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discussion of a particular efficient, high-order radial integrator to the next chapter. On the
other hand, the required Fourier coefficients of m(r, #)v™ (r,6) can be computed efficiently
and ezactly (except for round-off error). Furthermore, the approach taken in computing the
angular integrals was the primary source of controversy surrounding the method. Therefore,
we briefly discuss the angular integration here before moving on to a discussion of the
numerical implementation in the next chapter.

The required angular integrals are given by
27 )
Iy(r) :/ m(r, 0)v™ (r,0)e=dp, (2.9)
0

where vM solves the approximate integral equation (2.3). We can express this integral in

terms of the Fourier coefficients of m and v, i.e.,

27 0 » M . .
) = [ 3wy (Z w(r)e“f‘)) e

j:—oo k=—M

M
= 21 Y myg(r)ve(r), (2.10)
k=—M

where ¢ = —M,... M.

Hence, we obtain a finite discrete convolution of Fourier coefficients of m and v at each
radius. Since |[¢| < M and |k| < M, we have | — k| < 2M. Thus, given the Fourier
coefficients my(r) for [¢| < 2M, we can compute the required angular integrals ezactly.
Furthermore, as is well known, such discrete convolutions may be evaluated (with no ap-
proximation) with the help of FFTs [45, pp. 531-537] yielding a complexity of O(M log M)
at each radial point. (As we will demonstrate in our numerical examples, Chapter 5, these
Fourier coefficients can be computed quite easily for a wide range of scatterers.)

This method of computing the angular integrals has an interesting implication. Since

M

the computation involves only modes my, |¢| < 2M, replacing m with m?>™ in the integral

equation yields no additional error, i.e.,

2m
I(r) = m?M (r,0)v™ (r,0)e~ "0 dp (2.11)
0

Hence, in a sense, the truncation of the Fourier series of the integral operator implies

an associated truncation of the Fourier series of the scatterer—as a result of the band-
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limited nature of the solution v™. Thus, surprisingly, the low-order approximation of a
discontinuous scatterer at each radius by its truncated Fourier series yields no more error
than our original, high-order truncation of the Fourier series of K. This illustrates the
interesting cancellation of errors that underlies the power of this approach.

Note that this discrete convolution method of computing Iy(r) for £ = —M,..., M
is equivalent to trapezoidal rule integration of (2.11) with a sufficiently large number of
integration points Ny. More precisely, it is not difficult to see that the trapezoidal rule
with N, points integrates Fourier modes ¢™*? for |k| < Ny exactly. Since the largest mode
in the integrand of (2.11) is 2M + M + M = 4M, if we choose Ny > 4M, the trapezoidal
rule computes (2.11) exactly (assuming exact arithmetic) and the use of FFTs yields a
complexity of O(M log M). Algorithmically, this is entirely equivalent to computing the

discrete convolution (2.10) using FFTs.
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