
Chapter 2

A Fast, High-Order Method in
Two Dimensions: Theoretical
Analysis

In this chapter, we present a theoretical analysis of the efficient, high-order method intro-

duced in [13]. The high-order accuracy of this method derives from the concepts introduced

in Section 1.5. However, this theoretical analysis is not simply an academic exercise, but

rather puts to rest the considerable controversy generated by the claim of high-order ac-

curacy. Additionally, as we will describe, this analysis reveals interesting and unexpected

bounds on the convergence rates.

2.1 Approximate Integral Equation

As described in the introduction, the field scattered by an bounded inhomogeneity is given

by the solution of the Lippmann-Schwinger integral equation (1.6). Although several exis-

tence and uniqueness results are known for this problem, the existing results do not address

the full generality of the problem that we consider. Specifically, we assume that, given

m ∈ L∞, (1.6) admits a unique solution u ∈ L∞. Certainly, this is the case for m ∈ C1

as proven in [17, §8.1, 8.3]. Furthermore, it is well known that (1.6) admits a unique

solution for constant inhomogeneities by consideration of the appropriate surface integral

equation [16, pp. 100–101]; [39].

To obtain the numerical method, we construct an approximate integral equation. As

mentioned in the introduction, we approximate the Green’s function by a truncated Fourier

series. We now prove that this approximate integral equation also admits a unique solution.
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The related fact that the inverse operator for the approximate problem is uniformly bounded

provides an essential part of our proof of high-order convergence.

After changing to polar coordinates, x = aeiφ and y = reiθ, we obtain the Fourier

representation of the Green’s function by means of the addition theorem for the Hankel

function [17, p. 67]

H1
0 (κ|aeiφ − reiθ|) =

∞∑
`=−∞

J`(a, r)ei`(φ−θ),

where

J`(a, r) = H1
` (κmax(a, r))J`(κmin(a, r)). (2.1)

This allows us to expand the integral operator, Ku, (see (1.6)) in a Fourier series

(Ku)(a, φ) = − iκ
2

4

∫
H1

0 (κ|x− y|)m(y)u(y)dy =
∞∑

`=−∞
(K`u)(a)ei`φ,

where

(K`u)(a) = −iκ
2

4

∫ R1

R0

J`(a, r)
[∫ 2π

0
m(r, θ)u(r, θ)e−i`θdθ

]
rdr. (2.2)

Here R0 ≤ a ≤ R1 defines an annular region that contains the support of m.

To obtain the approximate integral equation, we truncate this Fourier series. Fur-

thermore, we also replace the incident field by its truncated Fourier series. Although not

necessary for our results, this simplifies the presentation somewhat. We thereby obtain

v(a, φ) = ui,M (a, φ) + (KMv)(a, φ), (2.3)

where

ui,M (a, φ) =
M∑

`=−M
ui`(a)ei`φ (2.4)

(KMv)(a, φ) =
M∑

`=−M
(K`v)(a)ei`φ. (2.5)

(Note: we will use superscript M throughout this text to denote the truncated Fourier series

of order M of a given function, e.g., (2.4) and (2.5).)
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Decomposing (2.3) into Fourier modes, we observe that

v`(a) =

 ui`(a) + (K`v)(a), for |`| ≤M

0, for |`| > M.

Hence,

v(a, φ) = vM (a, φ)

and solving (2.3) is equivalent to solving the following system of one-dimensional integral

equations

v`(a)− (K`v
M )(a) = ui`(a), ` = −M, . . . ,M. (2.6)

To prove existence and uniqueness for this approximate integral equation, we make use

of the following technical lemma.

Lemma 2.1. There exists a constant C > 0 depending only on R0, R1 and κ such that

∥∥∥∥∫ R1

R0

|J`(a, r)| rdr
∥∥∥∥
∞
≤ C

max{1, `2}
,

where J`(a, r) is defined in (2.1).

This lemma is proved in Appendix A.1 and allows us to prove the following lemma.

Lemma 2.2. For any m ∈ L∞,

∥∥K −KM
∥∥
∞ → 0, as M →∞,

where the operator norm is the one induced by the L∞-norm.

Proof. Let u ∈ L∞. Then,

∫ 2π

0

∣∣∣m(r, θ)u(r, θ)e−i`θ
∣∣∣ dθ ≤ 2π‖m‖∞‖u‖∞.



17

Hence, for M ≥ 0,

∥∥(K −KM )u
∥∥
∞ ≤ πκ2

2
‖m‖∞‖u‖∞

∑
|`|>M

∥∥∥∥∫ R1

R0

|J`(a, r)|rdr
∥∥∥∥
∞

= O

 ∑
|`|>M

1
`2

 ‖u‖∞
= O

(
M−1

)
‖u‖∞.

Therefore,

‖K −KM‖∞ = O
(
M−1

)
→ 0,

as M →∞.

This leads to the desired uniqueness and existence result.

Theorem 2.3. Given m ∈ L∞, for M sufficiently large (2.3) admits a unique solution

v ∈ L∞ for incident field ui satisfying (1.1). Furthermore, for sufficiently large M , the

operators (I −KM )−1 exist and are uniformly bounded.

Proof. Since we have assumed that (1.6) admits a unique solution, I − K has a bounded

inverse. Since L∞ is a Banach space, Lemma 2.2 and [38, Theorem 10.1, p. 142] imply

that for all sufficiently large M the inverse operators (I −KM )−1 exist and are uniformly

bounded. Therefore, (2.3) admits a unique solution v ∈ L∞, for M sufficiently large.

2.2 Error Bounds

In summary, the approximate integral equation (2.3) is obtained by truncating the Fourier

series of both the incident field ui and the integral operator K at each radius to obtain an

approximate solution v to (1.6), which itself is a truncated Fourier series. Roughly speaking,

high-order accuracy is obtained because the integral operator Ku and the incident field ui

are smooth and periodic functions as a function of the angular variable. Therefore, their

truncated Fourier series exhibit high-order convergence. In this section we derive bounds

on the error in this approximation. Of course the full numerical implementation of the

method introduces additional errors (e.g., quadrature errors), but here we consider only the

accuracy of v, the solution of the approximate integral equation (2.3). All other errors are

considered in our discussion of the numerical implementation of this method in Chapter 3.
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2.2.1 Error in Approximated Fourier Modes

The error in the solution of the approximate integral equation (2.3) is given by

|u(x)− vM (x)| ≤ |uM (x)− vM (x)|+ |uT (x)|,

where uT is the “tail” of the Fourier series of u,

uT (a, φ) = u(a, φ)− uM (a, φ) =
∑
|`|>M

u`(a)ei`φ.

In this section, we derive a bound on the first of these two terms. Note that

uM = ui,M +KMu,

vM = ui,M +KMvM .

Hence, taking the difference of these equations we obtain

uM − vM = KM (u− vM )

= KM (uM − vM ) +KMuT .

Theorem 2.3 ensures that I−KM is invertible for M sufficiently large and that the operators

(I − KM )−1 are uniformly bounded by some B > 0, i.e.,
∥∥(I −KM )−1

∥∥
∞ ≤ B for all

sufficiently large M . Then

εM =
∥∥uM − vM∥∥∞ ≤ B ∥∥KMuT

∥∥
∞ .

Hence, we seek a bound on KMuT .

We first note that ∥∥KMuT
∥∥
∞ ≤

M∑
`=−M

∥∥K`u
T
∥∥
∞ .

Furthermore, note that

∫ 2π

0
m(r, θ)uT (r, θ)e−i`θdθ =

∑
|j|>M

m`−j(r)uj(r).
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Then we have ∥∥K`u
T
∥∥
∞ ≤

C

max{1, `2}
∑
|j|>M

‖m`−j‖∞‖uj‖∞. (2.7)

To bound this expression we use bounds on the Fourier coefficients of m and u. Let the

space Ck,αpw denote the space of functions whose kth derivative is piecewise Hölder continuous.

(Note: throughout this text we assume that 0 < α < 1.) We say that a function f is

piecewise continuous on Ω if and only if there is a finite number of open, disjoint subsets of

Ω, denoted by Ω1, . . . ,Ωn, such that
⋃n
i=1 Ωi = Ω where f |Ωi can be extended as a continuous

function to Ωi for each i = 1, . . . , n. Given these definitions, the following lemma follows

by repeated integration by parts.

Lemma 2.4. If g ∈ Ck([0, 2π] ∩ Ck+2
pw ([0, 2π]), then the Fourier coefficients of g,

|c`| =
∣∣∣∣ 1
2π

∫ 2π

0
g(θ)e−i`θdθ

∣∣∣∣
≤ C

max{1, |`|k+2}
,

for some constant C.

If g ∈ L∞([0, 2π]) ∩ C1
pw([0, 2π]), then

|c`| ≤
C

max{1, |`|}
.

To bound the discrete convolution in (2.7) we need a relationship between the regularity

of m and the regularity of u. Variations on results in [8, p. 223], [24, pp. 97, 102] and [28,

pp. 53, 56] give us the following.

Theorem 2.5. Let D be a bounded, open set. If m ∈ L∞(D), then u ∈ C1(D). Further-

more, if m ∈ Ck,α(D), k ≥ 0, then u ∈ Ck+2,α(D).

We emphasize that D is an arbitrary bounded, open set. Hence, the theorem relates the

local regularity of u to the local regularity of m.

Using these results, we obtain the necessary bounds on (2.7) by means of the following

technical lemma, whose proof is contained in Appendix A.2.
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Lemma 2.6. Define the region A = {(a, φ) : R0 ≤ a ≤ R1}. If m ∈ Ck,α(A) ∩ Ck+2,α
pw (A),

k ≥ 0, then there exists a constant C > 0 independent of ` and M such that for ` = 0, . . . ,M

∥∥K`u
T
∥∥
∞ ≤

1
Mk+4

4C
max{1, `2}

1
(M + 1− `)k+1

,

Similarly, if m ∈ L∞(A) ∩ C1,α
pw (A), then

∥∥K`u
T
∥∥
∞ ≤

2C
max{1, `2}

{
1

3M3
+

1
M2

1
(M + 1− `)

}
.

This leads us to a bound on the approximated Fourier modes.

Theorem 2.7. If m ∈ L∞(A) ∩ C1,α
pw (A), then

εM =
∥∥uM − vM∥∥ ≤ B ∥∥KMuT

∥∥ = O
(

1
M3

)
.

If m ∈ C0,α(A) ∩ C2,α
pw (A), then

εM = O
(

1
M5

)
.

If m ∈ Ck,α(A) ∩ Ck+2,α
pw (A) for k ≥ 1, then

εM = O
(

1
Mk+6

)
.

Proof. We use Lemma 2.6 to bound
∥∥KMuT

∥∥ ≤ ∑M
`=−M

∥∥K`u
T
∥∥
∞. For ` = 0 and m ∈

Ck,α(A) ∩ Ck+2,α
pw (A), we obtain

∥∥K0u
T
∥∥
∞ = O

(
1

M2k+5

)
.

For m ∈ L∞(A) ∩ C1,α
pw (A), in turn, we have

∥∥K0u
T
∥∥
∞ = O

(
1
M3

)
.

For the remaining part of the sum, it is sufficient to bound sums of the following form

M∑
`=1

1
`2

1
(M + 1− `)p

,
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for p = 1, 2, . . .. First consider p ≥ 2.

M∑
`=1

1
`2

1
(M + 1− `)p

≤
M∑
`=1

1
`2

1
(M + 1− `)2

≤ 2
dM2 e∑
`=1

1
`2

1
(M + 1− `)2

= O
(

1
M2

)
.

For p = 1, we write the summed quantity as partial fractions.

M∑
`=1

1
`2

1
(M + 1− `)

=
1

(M + 1)2

M∑
`=1

1
`

+
1

M + 1

M∑
`=1

1
`2

+
1

(M + 1)2

M∑
`=1

1
(M + 1− `)

= O
(

1
M

)
.

Combining these results, we arrive at the claims of the theorem.

Remark 2.8. Of course, there are many other conditions on m that could be proposed for

which the corresponding convergence rates could be determined. For instance, one might

remove the requirement of Hölder continuity. In every case, the convergence rates are

directly determined by the rate of decay of the Fourier coefficients of m and u. We do not

attempt to provide a comprehensive listing of all possible regularity conditions and their

corresponding convergence rates.

Remark 2.9. We have taken great care in the proof to obtain tight bounds; the resulting

convergence rates depend on k in a particularly interesting way. Proceeding with less care,

one might have expected a simpler dependence on k as follows.

εM ≤ B
∥∥KM

∥∥
∞
∥∥uT∥∥∞

= O

( ∑
`>M

1
`k+4

)
= O

(
1

Mk+3

)
.

This bound predicts second-order convergence for m ∈ L∞(A)∩C1,α
pw (A), third-order conver-

gence for m ∈ C0,α(A)∩C2,α
pw (A), and fourth-order convergence for m ∈ C1,α(A)∩C3,α

pw (A).

However, as we have proven, these simple bounds are not tight. In fact, the method

exhibits third-order convergence for m ∈ L∞(A) ∩ C1,α
pw (A), fifth-order convergence for
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m ∈ C0,α(A) ∩ C2,α
pw (A) and seventh-order convergence for m ∈ C1,α(A) ∩ C3,α

pw (A). This

rather interesting and unexpected convergence behavior can be observed in the far field

convergence rates of the computational examples in Section 5.1.1.

2.2.2 Total Error in the Interior and Exterior Fields

To this point, we have only computed the convergence rate in the approximated modes,

i.e., the first M modes. Given these convergence rates, we can now easily estimate the total

error. We make a distinction here between two types of error: the interior field error (the

error on the domain of integration A = {(a, φ) : R0 ≤ a ≤ R1}) and the exterior field error

(the error outside of A). The interior field error is simply the difference between the true

solution u(x) and the solution vM (x) of (2.3) on A. Therefore, for x ∈ A

∣∣u(x)− vM (x)
∣∣ ≤ ∣∣uM (x)− vM (x)

∣∣+
∣∣uT (x)

∣∣
≤ εM + τM (|x|),

where τM (|x|) is a bound on
∣∣uT (x)

∣∣.
The important observation here is that τM depends on the decay rate of the Fourier

modes of u at the radius |x|. Hence, even if m is discontinuous on A, if m is smooth as

a function of angle on the circle with radius |x| centered at the origin, then the Fourier

modes of u at radius |x| decay very rapidly. This result implies that, at a given point x,

the method converges at a rate that depends on a combination of the regularity of m at

the radius |x| and the regularity of m in all of A. We state this result more precisely in the

following corollary to Theorem 2.7.

Corollary 2.10 (Interior field error). Let x ∈ A. Let S denote the circle with radius

|x| centered at the origin. Let N(S) be a neighborhood of S in R2. If m ∈ Cp,α(N(S)) ∩

Cp+2,α
pw (N(S)), then the interior field error is given by

∣∣u(x)− vM (x)
∣∣ ≤ εM + τM (|x|),

where bounds on εM are given in Theorem 2.7 and

∣∣uT (x)
∣∣ ≤ τM (|x|) = O

(
1

Mp+3

)
.
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This result holds with p = −1 for m ∈ L∞(N(S)) ∩ C1,α
pw (N(S)).

Proof. We need only prove the bound on uT (x). By Theorem 2.5, u ∈ Cp+2,α(N(S)) ∩

Cp+4,α(N(S)). Hence, by Lemma 2.4,

∣∣uT (x)
∣∣ ≤ τM (|x|) =

∑
`>M

C

`p+4

= O
(

1
Mp+3

)
.

The proof for m ∈ L∞(N(S)) ∩ C1,α
pw (N(S)) is similar.

Remark 2.11. Although the approximate Fourier modes vM converge rapidly to uM , the

decay of uT dominate the maximum interior field error. For example, in the case of m ∈

L∞(A)∩C1,α
pw (A), third-order convergence of vM to uM will be dominated by second-order

decay of uT in the maximum error. At the same time, if the interior field error is evaluated

at a radius for which m is smooth, we will observe the more rapid convergence rate predicted

by Theorem 2.7.

Before we can discuss convergence rates in the exterior field, we must describe how we

extend our approximate solution vM , which we have computed only on the interior of A,

to the exterior field. Since the integration in (1.6) is performed only over the support of

m, one can easily see that given the exact solution u on the boundary of A, the solution in

the rest of R2 can be computed simply by an appropriate scaling of the Fourier modes of

u. More precisely, define A = {(r, θ) : R0 ≤ r ≤ R1}. Then,

us`(r) =


J`(κr)
J`(κR0)u

s
`(R0), if 0 ≤ r < R0

H1
` (κr)

H1
` (κR1)

us`(R1), if r > R1.

(2.8)

(Note that this result can also be obtained directly from the differential equation by means

of separation of variables.) Similarly, to extend our approximate solution vM to the exterior

of A, we simply scale its Fourier modes in the same way.

Corollary 2.12 (Exterior field error). Given x /∈ A, extend the approximate solution
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vM to the exterior of A as prescribed above. Then, the exterior field error is given by

∣∣u(x)− vM (x)
∣∣ = O (εM ) ,

where εM =
∥∥uM − vM∥∥∞ has bounds given by Theorem 2.7.

Proof. Denote the scaling factors for the given radius r = |x| by β`(r). Assume that r > R1.

The proof for 0 ≤ r < R0 is similar. We have

∣∣u(x)− vM (x)
∣∣ ≤ M∑

`=−M
|β`(r)|

∣∣∣us,M` (r)− vs,M` (r)
∣∣∣+
∣∣uT (x)

∣∣
≤ εM

M∑
`=−M

|β`(r)|+
∣∣uT (x)

∣∣ .
As before, let S denote the circle of radius r about the origin. Since r = |x| > R1, there

exists a neighborhood N(S) of S such that m|N(S) = 0. Therefore, u ∈ C∞(N(S)) and∣∣uT (x)
∣∣ ≤ C

Mp for any integer p > 0. This implies that
∣∣uT (x)

∣∣ is always dominated by εM .

To complete the proof, we use the asymptotic expressions for J` and Y` as found in [2,

p. 365], i.e., for fixed z and as `→∞ through positive real values,

J`(z) ∼
1√
2π`

(ez
2`

)`
Y`(z) ∼ −

√
2
π`

(ez
2`

)−`
.

Therefore,

|β`(r)|2 =
∣∣∣∣ Y`(κr)Y`(κR1)

∣∣∣∣2 1 +
∣∣∣J`(κr)Y`(κr)

∣∣∣2
1 +

∣∣∣J`(κR1)
Y`(κR1)

∣∣∣2
∼

(
R1

r

)2`

.

This implies that |β`(r)| is summable. Hence,
∑M

`=−M |β`(r)| is bounded for all integers

M > 0. We conclude that ∣∣u(x)− vM (x)
∣∣ = O (εM ) .
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Remark 2.13. Note that u ∈ C∞ on the exterior of A and u may be much less regular on

the interior of A (in general, u ∈ C1 for a discontinuous scatterer). Hence, the decay of uT

on the exterior of A is superalgebraic, whereas uT may decay as slowly as O(M−2) on the

interior of A. This fact is responsible for the interesting result that the method converges

more rapidly on the exterior of A than on the interior (where uT may dominate εM ).

This is particularly relevant in the evaluation of radar cross sections, an important mea-

sure in many applications. The evaluation of radar cross sections requires the computation

of the far field. Although Corollary 2.12 does not directly address the error in the far

field, we obtain an approximate far field by a scaling of the Fourier modes of vM just as in

the computation of the exterior field. As in [10, p. 6], we define the far field, u∞, by the

asymptotic representation of the scattered field as r →∞, i.e.,

us(r, φ) = ei(κr−
π
4 )
√

2
πκr

[
u∞(φ) +O(r−1)

]
.

From (2.8) and the asymptotic expression for H1
` (z) for fixed ` as z → ∞ [2, p. 364], we

obtain the Fourier modes of u∞ by a simple scaling of the Fourier modes of us.

(u∞)` =
us`(R1)

i`H1
` (κR1)

.

If we define the approximate far field v∞ by scaling the Fourier modes of vs,M in the same

way, we can prove that

‖u∞ − v∞‖ = O (εM ) .

The proof of this fact is nearly identical to the proof of Corollary 2.12.

The predicted convergence rates in both the interior field and the far field are verified

through several computational examples in Section 5.1.1.

2.3 Computation of the Angular Integral

Thus we have shown that the method achieves high-order convergence even in the case of

discontinuous scatterers. However, to this point, we have not discussed any methods for

computing the required angular and radial integrals for each mode of the solution (2.6).

Since this chapter primarily addresses the theoretical aspects of the method, we leave a
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discussion of a particular efficient, high-order radial integrator to the next chapter. On the

other hand, the required Fourier coefficients of m(r, θ)vM (r, θ) can be computed efficiently

and exactly (except for round-off error). Furthermore, the approach taken in computing the

angular integrals was the primary source of controversy surrounding the method. Therefore,

we briefly discuss the angular integration here before moving on to a discussion of the

numerical implementation in the next chapter.

The required angular integrals are given by

I`(r) =
∫ 2π

0
m(r, θ)vM (r, θ)e−i`θdθ, (2.9)

where vM solves the approximate integral equation (2.3). We can express this integral in

terms of the Fourier coefficients of m and v, i.e.,

I`(r) =
∫ 2π

0

 ∞∑
j=−∞

mj(r)eijθ

( M∑
k=−M

vk(r)eikθ
)
e−i`θ

= 2π
M∑

k=−M
m`−k(r)vk(r), (2.10)

where ` = −M, . . . ,M .

Hence, we obtain a finite discrete convolution of Fourier coefficients of m and v at each

radius. Since |`| ≤ M and |k| ≤ M , we have |` − k| ≤ 2M . Thus, given the Fourier

coefficients m`(r) for |`| ≤ 2M , we can compute the required angular integrals exactly.

Furthermore, as is well known, such discrete convolutions may be evaluated (with no ap-

proximation) with the help of FFTs [45, pp. 531–537] yielding a complexity of O(M logM)

at each radial point. (As we will demonstrate in our numerical examples, Chapter 5, these

Fourier coefficients can be computed quite easily for a wide range of scatterers.)

This method of computing the angular integrals has an interesting implication. Since

the computation involves only modes m`, |`| ≤ 2M , replacing m with m2M in the integral

equation yields no additional error, i.e.,

I`(r) =
∫ 2π

0
m2M (r, θ)vM (r, θ)e−i`θdθ (2.11)

Hence, in a sense, the truncation of the Fourier series of the integral operator implies

an associated truncation of the Fourier series of the scatterer—as a result of the band-
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limited nature of the solution vM . Thus, surprisingly, the low-order approximation of a

discontinuous scatterer at each radius by its truncated Fourier series yields no more error

than our original, high-order truncation of the Fourier series of K. This illustrates the

interesting cancellation of errors that underlies the power of this approach.

Note that this discrete convolution method of computing I`(r) for ` = −M, . . . ,M

is equivalent to trapezoidal rule integration of (2.11) with a sufficiently large number of

integration points Nθ. More precisely, it is not difficult to see that the trapezoidal rule

with Nθ points integrates Fourier modes eikθ for |k| < Nθ exactly. Since the largest mode

in the integrand of (2.11) is 2M + M + M = 4M , if we choose Nθ > 4M , the trapezoidal

rule computes (2.11) exactly (assuming exact arithmetic) and the use of FFTs yields a

complexity of O(M logM). Algorithmically, this is entirely equivalent to computing the

discrete convolution (2.10) using FFTs.
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