
Chapter 3

A Fast, High-Order Method in
Two Dimensions: Numerical
Implementation

In this chapter, we present several significant improvements to the original numerical imple-

mentation of the two-dimensional method introduced in [13], as described in the previous

chapter. The numerical solution of the associated approximate integral equation (2.3) con-

sists of two main parts: efficient, high-order numerical quadrature rules and an efficient

linear solver.

The numerical evaluation of the integrals in (2.6) requires both angular and radial

integration. In Section 2.3, we described a method for computing the required angular

integrals (2.9), exactly by means of Fourier smoothing of the scatterer. Furthermore, this

method requires only O(M logM) operations for each radial point. (For smooth scatterers,

however, the angular integrals can instead be computed efficiently and with high-order

accuracy by direct application of the trapezoidal rule without replacing m with m2M (see

Section 3.1.1).)

On the other hand, to compute the radial integrals (K`v
M)(a) (2.2), we present an

improved scheme based on Chebyshev polynomials approximation. More precisely, we ap-

proximate I`(r) in (2.9) with Chebyshev polynomials on each of several subintervals (see

Section 3.1.2). When the integration domain contains the origin, we resolve the logarithmic

singularity in the Hankel function by integrating by parts (see Section 3.1.2.1). Then by

means of appropriate pre-computed integral moments (see Section 3.1.2.2), we obtain a

high-order approximation of the required integrals. Computation of these integrals requires

only O(N) operations.

29

This high-order discretization of the required integrals in (2.6) results in a linear system

with unknowns v`(aj) for ` = −M, . . . ,M and j = 0, . . . , Nr, where an are the radial

points in the discretization. We use the Generalized Minimal Residual (GMRES) iterative

method to solve this linear system (see Section 3.2.1). The number of GMRES iterations

required to achieve a given residual tolerance increases rapidly with increasing problem size

as measured by interior wavelengths (proportional to κn(R1−R0) for a constant refractive

index). We describe a preconditioner (see Section 3.2.2) that reduces this required number

iterations for a variety of scattering configurations. We precondition the problem with

an integral equation corresponding to a piecewise constant, radially layered approximating

scatterer. By means of an equivalent partial differential equation, it can be shown that such

an approximate integral equation admits an inverse, which can be computed in closed form.

Application of this inverse requires only O(N) operations.

3.1 High-Order Numerical Integration

3.1.1 Angular Integration

We first consider the angular integration (2.9). As discussed in Section 2.3, I`(r) can be

computed exactly even for discontinuous scatterers by replacing m by m2M and choosing a

sufficient number of trapezoidal rule integration points. Direct application of the trapezoidal

rule in the case of a discontinuous inhomogeneity (without replacing m by m2M) would yield

only first-order convergence.

For smooth inhomogeneities m, however, we can obtain high-order convergence sim-

ply through direct application of the trapezoidal rule. This follows from the fact that,

for smooth scatterers, the integrand m(r, θ)vM (r, θ) is a high-order approximation to the

smooth and periodic function m(r, θ)u(r, θ) and the trapezoidal rule yields high-order accu-

racy for smooth and periodic integrands. Hence, although I`(r) may always be computed

exactly by replacing m by m2M , for sufficiently smooth inhomogeneities, the direct appli-

cation of the trapezoidal rule is somewhat simpler (since the Fourier coefficients m`(r) are

not required) and produces nearly the same accuracy.

In this case, given the values v`(r), we first compute vM (r, θj) for θj = 2πj/Nθ, where

30

Nθ is the number of trapezoidal rule integration points, i.e.,

vM (r, θj) =
M∑

`=−M
v`(r, θj)e2πij`/Nθ

for j = 0, . . . , Nθ − 1. This sum is computed in O(Nθ logNθ) operations for each radial

point r by means of an FFT, where Nθ must be chosen such that Nθ > 2M . Using the

periodicity in θ of m and vM , the trapezoidal rule gives

I`(r) ≈ INθ` (r) =
Nθ−1∑
j=0

m(r, θj)vM (r, θj)e−2πij`/Nθ , (3.1)

which we compute for ` = −M, . . . ,M by means of an FFT. Hence, given Nr radial points,

this algorithm computes the integrals I`(r) with high-order accuracy in a total ofO(N logN)

operations where N = O(NrM).

It is interesting to note the relationship between this direct trapezoidal rule approach

and the discrete convolution approach described in Section 2.3. When m is replaced by

m2M and Nθ is chosen such that Nθ > 4M , these two approaches yield identical results. In

other words, the trapezoidal rule approach described above is identical to the FFT-based

method for computing a discrete convolution (when m2M is used and Nθ > 4M) [45, pp.

531–537]. Hence, these algorithms require only a single implementation; the approach that

is actually used is determined by the choice of scatterer, either m or m2M , and the related

choice of Nθ.

3.1.2 Radial Integration

The radial integration requires the computation of two functions

F`(a) =
∫ a

R0

Y`(κa)J`(κr)I`(r)rdr

G`(a) =
∫ R1

a
J`(κa)Y`(κr)I`(r)rdr,

31

for R0 ≤ a ≤ R1. In terms of these functions, (K`v
M)(a) is given by

(K`v
M)(a) = −iκ

2

4

[∫ a

R0

H1
` (κa)J`(κr)I`(r)rdr +

∫ R1

a
J`(κa)H1

` (κr)I`(r)rdr
]

(3.2)

=
κ2

4

[
F`(a) +G`(a)− i J`(κa)

Y`(κR1)
F`(R1)

]
(3.3)

High-order accuracy in evaluating F`(a) and G`(a) requires that we treat discontinuities

and/or singularities in I`(r) appropriately. The singularities in I`(r) are due to the singu-

larities in the Fourier coefficients of the scatterer, m`(r). Thus, unless m(r, θ) is smooth

within the annulus R0 ≤ r ≤ R1, m`(r) will exhibit singularities.

Following the discussion in [13], we assume that m(r, θ) is piecewise smooth, i.e., we

assume that there are a finite number of disjoint sets Di with piecewise smooth boundaries

such that m(r, θ) is smooth on each Di. Singularities in I`(r) can occur at values of r that

correspond either to non-smooth points in the boundary of a set Di or to a point of tangency

between the circle Cr of radius r and a set Di. Non-smooth points in the boundary of a set

Di lead to corner-type singularities. Points of tangency lead to singularities of type (r−r0)α

for 0 ≤ α ≤ 1. For example, most of the examples of Section 5.1 have square-root type

singularities,
√
r − r0. Discontinuities in I`(r) may also arise, for example, when the circle

Cr intersects a set Di along a finite segment of its boundary.

Discontinuities and corner-type singularities are handled simply by subdividing the in-

tegration domain [R0, R1] at the singularity points into two or more intervals. Singularities

of the type (r − r0)α can be resolved by changing variables in the radial dimension. For

example, as suggested in [13], we resolve square-root singularities occurring at the endpoints

of the interval [a, b] with the following change of variable

cos(φ) =

√
r2 − a2

b2 − a2
. (3.4)

Of course, in order to resolve such singularities, one must first deduce the type of singularity.

However, this is not difficult to accomplish in many situations.

Thus, by breaking the integration domain [R0, R1] into multiple intervals and by ap-

propriately changing variables to resolve remaining (r − r0)α-type singularities, we are left

with a smooth I`(r) on each interval of integration. Since the extension to this fully general

setting is straightforward but also tedious, we describe only how the computation F`(a)

32

and G`(a) to high-order accuracy for a single interval on which no change of variables is

required. This special case illustrates all of the major aspects of the fully general method

without unduly complicating the exposition.

We divide the integration interval [R0, R1] into several subintervals of equal length. We

then approximate I`(r) by a high-order polynomial expansion on each subinterval

I`(r) ≈
Nc−1∑
n=0

cnkpn(r), (3.5)

where cnk ∈ C, k = 1, . . . , Ni and Ni is the number of subintervals. Also, pn(r) is a

polynomial of order n. Thus, we thereby obtain a polynomial expansion of order Nc − 1.

There are several possible choices for the pn(r). In [13], Lagrange interpolating polyno-

mials are used. However, for Lagrange interpolating polynomials, the computation of the

coefficients cnk is numerically unstable for large Nc. This instability can be mitigated some-

what by using a more stable algorithm, at the cost of computational complexity. In [13],

the chosen routine requires O(N3
c) operations.

Hence, we use Chebyshev polynomials instead. Chebyshev polynomials, Tn, provide

excellent approximation (nearly equal to the minimax polynomial [3, pp. 225–236]) while

also allowing stable evaluation of the cnk in O(N2
c) operations. For r in the kth subinterval,

we have

I`(r) ≈
Nc−1∑
n=0

cnk`Tn(xk(r)), (3.6)

where the functions xk(r) are simply linear maps of the kth subinterval to the interval

[−1, 1], which is the standard interval of definition for the Chebyshev polynomials. More

precisely, if the kth subinterval is given by [a, b], then, for r ∈ [a, b], we have

xk(r) =
r − a
b− a

− b− r
b− a

.

We will also make use of the inverse of this map, which, for y ∈ [−1, 1], is given by

x−1
k (y) =

1
2

[(b− a)y + (b+ a)] .

The evaluation of the Chebyshev coefficients for a function defined on the standard

33

interval [−1, 1] requires the function values at

yj = cos
(
π(j − 1/2)

Nc

)
, (3.7)

for j = 1, . . . , Nc. Hence, we require the value of I`(r) at the corresponding points in each

of the subintervals, i.e., at the points

ajk = x−1
k (yj) (3.8)

for j = 1, . . . , Nc and k = 1, . . . , Ni. Notice that the ajk do not include the endpoints of

each subinterval since the yj do not include the endpoints of [−1, 1]. Since we will need

these endpoints for parts of our calculation, we include the left and right endpoints of each

subinterval as a0k and aNpk, respectively, where Np = Nc + 1. (Note that by this definition

a0k = aNpk−1 for k > 1.)

Hence, these ajk are our radial discretization points giving a total of Nr = O(NpNi)

radial points. Our other discretization parameter is the number of modes M in the approxi-

mate solution vM . Hence, the total number of unknowns N = O(NrM) = O(NpNiM). The

number of points per subinterval Np determines the order Chebyshev approximation is held

fixed while the number of subintervals Ni and the number of modes M is increased to obtain

more accuracy. Given the values of I`(ajk), one can compute the Chebyshev coefficients cnk`

in O(N2
p) operations per subinterval and per mode giving a total of O(NiN

2
pM) = O(N)

operations for all subintervals. (One can reduce the N2
p complexity for each subinterval to

O(Np logNp) by use of FFTs. However, since Np remains fixed, this does not change the

overall complexity and since we typically use a relatively small value of Np, e.g., Np = 9, 17,

we have found that this approach provides little benefit.)

Thus, given these Chebyshev approximations on each subinterval, we must only compute

the following integral moments

Pnjk` =
∫ ajk

a0k

Y`(κajk)J`(κr)Tn(xk(r))rdr (3.9)

Qnjk` =
∫ aNpk

ajk

J`(κajk)Y`(κr)Tn(xk(r))rdr. (3.10)

Since all of the functions in the integrand are known analytically, these moments are only

34

computed once at the beginning of each run. The storage of these moments requires

O(NcNpNiM) = O(N) memory. These integrals are problematic because of the rapid

decay of J` for large ` near the origin as well as the logarithmic and polar singularities

in Y` at the origin. In Section 3.1.2.1, we present a method for resolving the logarithmic

singularity in Y`, which is necessary when the integration domain includes the origin, i.e.,

when R0 = 0. We then discuss our method for computing the moments in Section 3.1.2.2.

Another practical obstacle when computing these moments concerns the rapid decay

of J` and the rapid growth of Y` near the origin for large values of `. Hence, for large

values of `, J` may underflow and Y` may overflow while their product remains machine-

representable. We overcome this difficulty by computing scaled versions of J` and Y`, thus

allowing accurate computation of J`(a)Y`(b), Y`(a)/Y`(b), etc. We describe our method for

computing these scaled Bessel functions in Appendix B.

Once we have computed these moments, we can compute the values Fjk` = F`(ajk) and

Gjk` = G`(ajk). We first compute the quantities Ajk` and Bjk`, which involve integration

over a single subinterval.

Ajk` =
∫ ajk

a0k

Y`(κajk)J`(κr)I`(r)rdr

≈
Nc−1∑
n=0

cnk`Pnjk`

Bjk` =
∫ aNpk

ajk

J`(κajk)Y`(κr)I`(r)rdr

≈
Nc−1∑
n=0

cnk`Qnjk`.

Hence, given the Chebyshev coefficients, which require O(N) operations to compute, the

computation of Ajk` and Bjk` requires O(NcNpNiM) = O(N) operations. We then sum

and scale these values appropriately to compute Fjk` and Gjk`.

Fjk` =
∫ ajk

a01

Y`(κajk)J`(κr)I`(r)rdr

≈ Ajk` + αjk`FNpk−1`, for k = 2, . . . , Ni

Fj1` ≈ Aj1`,

35

where αjk` = Y`(κajk)
Y`(κaNpk−1) .

Gjk` =
∫ aNpNi

ajk

J`(κajk)Y`(κr)I`(r)rdr

≈ Bjk` + βjk`G0j+1`, for k = 1, . . . , Ni − 1

GjNi` ≈ BjNi`,

where βjk` = J`(κajk)
J`(κa0j+1) . Clearly, given Ajk` and Bjk`, the computation of Fjk` and Gjk`

requires O(NpNiM) = O(N) operations.

Therefore, the total complexity of the radial integration, given the integral moments

Pnjk` and Qnjk`, is O(N). Furthermore, assuming that the integral moments are computed

with sufficient accuracy, the accuracy of the Fjk` and Gjk` is determined by the accuracy

of the Chebyshev approximation on each subinterval. Since I`(r) is smooth (or can be

made smooth by changing variables and breaking up the integration domain), the Cheby-

shev approximation is high-order accurate with the order of convergence dependent on the

value of Np, the number of points per subinterval. Thus, we obtain an efficient and high-

order accurate method for computing the radial integrals. (See the numerical examples in

Section 5.1.2.)

3.1.2.1 Resolution of Logarithmic Singularity

Besides the singularities in I`(r), which we resolve as discussed previously, the Bessel func-

tion Y`(κr) exhibits logarithmic and polar singularities at r = 0. In this section, we show

that the logarithmic singularity can be removed through integration by parts.

This method results as a slight modification of the approaches discussed above: we

evaluate Fjk` as discussed previously, but we change the computation of Gjk`. Note that

Y`(z) can be written as

Y`(z) =
2
π

log
(z

2

)
J`(z) + Y polar

` (z),

where Y polar
` (z) = O(z−`) as z → 0. Assume that R0 = 0, since otherwise the logarithmic

36

singularity is not present. Integrating the logarithmic term by parts gives

∫ R1

a
log
(κr

2

)
J`(κr)I`(r)rdr = log

(κr
2

)∫ r

0
J`(κρ)I`(ρ)ρdρ

∣∣∣∣R1

a

−
∫ R1

a
dr

1
r

∫ r

0
J`(κρ)I`(ρ)ρdρ

= log
(
κR1

2

)
S`(R1)− log

(κa
2

)
S`(a)−

∫ R1

a
r−1S`(r)dr,

where S`(a) =
∫ a

0 J`(κr)I`(r)dr = F`(a)
Y`(κa) .

S`(r) vanishes to first order at r = 0 and thus, r−1S`(r) is smooth near the origin.

Furthermore, since we have computed Fjk`, i.e., the values of F`(a) at Chebyshev points

in each subinterval, the values S`(ajk) as well as the Chebyshev coefficients of r−1S`(r)

on each subinterval are easily computed. Therefore, in O(N) operations, we compute the

Chebyshev coefficients dnk` such that

r−1S`(r) ≈
Nc−1∑
n=0

dnk`Tn(xk(r)).

The Chebyshev coefficients dnk` of the integrand are easily mapped into the Chebyshev

coefficients Dnk` of its indefinite integral [45, pp. 189, 190] as

Dnk` =
dn−1k` − dn+1k`

2n

for n ≥ 1. The constant of integration D0k` is arbitrary. Clearly, this mapping requires only

O(N) operations. Furthermore, since the integral
∫ R1

a r−1S`(r)dr is smooth, the Chebyshev

approximation on each subinterval with coefficients Dnk` gives a high-order representation

of this integral.

To complete the computation of G`(ajk), we define

Glog
jk` =

∫ R1

ajk

J`(κajk)
2
π

log
(κr

2

)
J`(κr)I`(r)rdr

and

Gpolarjk` =
∫ R1

ajk

J`(κajk)Y
polar
` (κr)I`(r)rdr.

Therefore, Gjk` = Glog
jk` + Gpolarjk` . We compute Gpolarjk` exactly as we computed Gjk` in the

37

previous section with Qnjk` replaced by

Qpolarnjk` =
∫ aNpk

ajk

J`(κajk)Y
polar
` (κr)I`(r)rdr. (3.11)

We compute Glog
jk` by first defining, for k = 1, . . . , Ni − 1,

Rjk` =
∫ R1

ajk

r−1S`(r)dr

= R0k+1` +
∫ aNpk

ajk

r−1S`(r)rdr

≈ R0k+1` +
Nc−1∑
n=0

Dnk`

[
Tn(xk(aNpk))− Tn(xk(ajk))

]
,

and, for k = Ni, RjNi` =
∑Nc−1

n=0 Dnk`

[
Tn(xk(aNpNi))− Tn(xk(ajk))

]
. Given the coefficients

Dnk`, computation of Rjk` for j = 0, . . . , Np, k = 1, . . . , Ni and ` = −M, . . . ,M requires

O(NcNpNiM) = O(N) operations to compute. Thus, we have

Glog
jk` ≈

2
π
J`(κajk)

[
log
(
κR1

2

)
SNpNi` − log

(κajk
2

)
Sjk` −Rjk`

]
,

where Sjk` = Fjk`
Y`(ajk) . Clearly, the computation of Glog

jk` requires only O(N) operations.

Therefore, given accurate values of the integral moments Pnjk` and Qpolarnjk` , this approach

yields high-order accurate values of the required radial integrals in O(N) operations. We

wish to emphasize that, as stated above, we need only resolve the logarithmic singularity

in Y`(κr) when the integration domain includes the origin, i.e., when R0 = 0. It is straight-

forward to generalize this approach to the case in which we resolve singularities in I`(r) by

breaking up the integration domain and/or changing variables.

3.1.2.2 Evaluation of Integral Moments

To complete the method, we need only find an efficient and accurate method for computing

the integral moments Pnjk` and Qnjk`. As noted in the previous section, if the integration

domain contains the origin, we can resolve the logarithmic singularity in Y` independently of

the moment computation. In such a case, we compute Qpolarnjk` (see equation (3.11)) instead

of Qnjk`. However, even when the integration domain does not contain the origin, the

rapid growth of the Y` and the rapid decay of the J` makes the development of accurate

38

quadrature schemes for computing the moments challenging. In particular, the Y` grow like

r−` and the J` decay like r` as either ` → ∞ or as r → 0. Since quadrature rules, for

the most part, depend on accurate polynomial interpolation, accurate integration of these

functions would seem to require a large number of integration points.

In this particular case, however, accurate values for these moments are actually not too

difficult to obtain. The key insight is that a small absolute error, as opposed to a small

relative error, is required in the computation of the moments. Since we desire a small relative

accuracy in the field vM , we require only a small absolute error in the Fourier coefficients

of the field v`—small values of v`, regardless of their relative error, contribute very little to

the value of the field vM .

Our goal, therefore, is to show that, given a maximum absolute error ε > 0 and an

initial radial discretization, we can choose the number of Gaussian quadrature points Ng

such that the absolute error in the moment integrals is less that ε for all ` and for all

subsequent refinements of the radial discretization. Near the origin or for large `, the

asymptotic behavior of J` and Y` for ` ≥ 1 are given by [2, p. 360]

J`(z) ∼
1
`!

(z
2

)`
and

Y`(z) ∼ −
(`− 1)!
π

(z
2

)−`
.

Hence, for ` > 2, the moment integrals,

P`(a, b) = Y`(κb)
∫ b

a
J`(κr)Tn(xk(r))rdr (3.12)

and

Q`(a, b) = J`(κa)
∫ b

a
Y`(κr)Tn(xk(r))rdr (3.13)

have roughly the same properties as

− 1
π`b`

∫ b

a
r`+1dr = − a2

π`(`+ 2)

[(
b

a

)2

−
(a
b

)`]
(3.14)

and
a`

π`

∫ b

a
r−`+1dr = − b2

π`(`− 2)

[(a
b

)2
−
(a
b

)`]
, (3.15)

39

respectively. Thus, by considering the relatively simple quantities (3.14) and (3.15), we

gain insight into the behavior of integration rules for evaluating (3.12) and (3.13) . We will

concentrate on integration rules for (3.13) since it is the more difficult of the two moment

integrals because of the singularity in the integrand at r = 0. In addition, we restrict our

attention to the case a > 0, since for a = 0, Q`(a, b) = 0 for ` ≥ 1. (For ` = 0, the only

singularity in the integrand is the logarithmic singularity, which is resolved by integrating

by parts as described in Section 3.1.2.1.)

Gauss-Legendre integration of a function f defined on the interval [a, b] is given by [3,

pp. 276–279]

∫ b

a
f(t)dt =

(
b− a

2

)∫ 1

−1
f

(
b+ a

2
+
b− a

2
x

)
dx

≈
(
b− a

2

) Ng∑
j=1

wjf

(
b+ a

2
+
b− a

2
xj

)
, (3.16)

where the points −1 < xj < 1 are zeroes of the degree Ng Legendre polynomial on [−1, 1]

and wj > 0 are the corresponding weights. We first consider the decay of the sum (3.16)

itself for (3.15). We have

a`

`

∫ b

a
r−`+1dr ≈ b− a

2`

Ng∑
j=1

wjrj

(
a

rj

)`
≤ b(b− a)

`
, (3.17)

where rj = (b+a)
2 + (b−a)

2 xj . Here we have also used the fact that wj > 0 and that the∑Ng
j=1wj =

∫ 1
−1 dx = 2 since Gauss-Legendre quadrature integrates polynomials of degree

less than 2Ng exactly. The sum (3.17) decays with increasing ` independently of Ng. Note

that (3.15) itself also decays with ` as O(`−2). Thus, we conclude that, given an initial

discretization, there is a positive integer L such that both (3.15) and (3.17) are smaller

than ε/2 for all ` > L, independently of Ng. Therefore, the absolute error for ` > L is

smaller than ε. Crucially important in this result is the fact that the moments decay with

`. Thus, for sufficiently large `, although the computed moments may have over 100%

relative error, their absolute error remains smaller than ε.

We now consider the effect of discretization refinement. Refinement of the radial dis-

cretization is accomplished by increasing the number of subintervals Ni. (On each of these

subintervals, there is a fixed number of Chebyshev points Nc.) Hence, for two adjacent

40

discretization points a = R0 + α and b = R0 + β, increasing Ni by some factor γ decreases

both α and β by the factor γ. For example, doubling Ni halves both α and β. Similarly,

b−a also decreases by the factor γ when Ni increases by the factor γ. It follows from (3.17)

that the absolute error for ` > L decays as we refine the radial discretization. Therefore, our

choice of L is not only independent of Ng, but is also independent of subsequent refinements

of the discretization.

Now we must consider the absolute error for ` ≤ L. The absolute error in the integral

of a function f as computed with Gaussian quadrature is bounded by [3, pp. 276–279]

ENg(f) ≤ π

(2Ng)!

(
b− a

2

)(
b− a

4

)2Ng

max
a≤t≤b

∣∣∣f (2Ng)(t)
∣∣∣ ,

where the bound holds asymptotically as Ng → ∞. One can then show that the absolute

error EQNg in computing (3.15) is bounded by

EQNg =
a`

π`
ENg(r

−`+1)

≤ a(b− a)
2

(
b− a

4a

)2Ng (`− 2 + 2Ng)!
`(`− 2)!(2Ng)!

≤ a(b− a)
2

(
b− a

4a

)2Ng (L− 2 + 2Ng)!
L(L− 2)!(2Ng)!

,

where we have used the fact that ` ≤ L. Hence, if we require that (b − a)/4a < 1, then

[(b− a)/4a]2Ng exhibits exponential decay while (L− 2 + 2Ng)!/(2Ng)! exhibits polynomial

growth as Ng increases. Therefore, for Ng sufficiently large EQNg < ε for ` ≤ L. Clearly, EQNg
also decays with subsequent discretization refinements. Hence, our choice of Ng depends

only on the value of L and the initial discretization.

We conclude that given an initial discretization satisfying (b − a)/4a < 1 for all points

a, b, we can choose Ng sufficiently large such that the absolute error is smaller than ε for

all ` and for all subsequent refinements of the discretization. Similar arguments obtain the

same result for the absolute error in (3.14). Note that we have only proven this fact in

the asymptotic regime of large ` or, equivalently, small a and b. However, outside of this

asymptotic regime, the Bessel functions have much milder behavior, simply oscillating with

wavenumber κ. These oscillations must be resolved by the radial discretization anyway to

obtain even minimal accuracy in solving the integral equation. Hence, computing the inte-

41

gral moments in the oscillatory regime presents no significant difficulties. We do not present

any theoretical estimates of the required values of Ng for various initial discretizations and

error tolerances ε. However, the examples of Section 5.1 show that the value Ng = 8 suffices

to achieve machine precision accuracy in our solutions.

3.2 Solution of the Linear System

3.2.1 Linear Solver

The previous sections describe our efficient, high-order method for computing the integral

operator KMvM . The approximate solution vM is then obtained by solving the linear

system

v`(ajk)− (K`v
M)(ajk) = ui`(ajk), (3.18)

where ` = −M, . . . ,M , j = 0, . . . , Np and k = 1, . . . , Ni. If we denote the matrix associated

with the left-hand side by A, the unknown vector v`(ajk) by x and the right-hand side by

b, equation (3.18) becomes simply Ax = b.

In general, A is dense. Therefore, because of the large amount of memory that would

be required, we do not actually construct A in solving the linear system. Instead we use an

iterative method that requires only the value of the matrix-vector product y = Ax for any

given vector x. Thus, y is computed in O(N logN) operations by means of the integration

schemes described in this chapter.

We use the Generalized Minimal Residual (GMRES) method. This iterative method

builds a Krylov subspace associated with the matrix A and an initial guess x0. The Krylov

subspace at the kth iteration is defined as

Kk = span{r0, Ar0, A
2r0, . . . , A

kr0},

where r0 = b−Ax0. Typically, GMRES builds an orthonormal basis for this subspace using

a modified Gram-Schmidt procedure. The approximate solution to the linear system at the

kth iteration, xk = x0 + yk, is the vector that minimizes (in the least-squares sense) the

residual r = b−A(x0 + y) for y ∈ Kk [29, pp. 38–41].

We chose GMRES because of its generality (it applies to non-Hermitian matrices) and

because of its “optimal” convergence properties (optimal in the sense that it produces the

42

residual with the smallest 2-norm from the Krylov subspace [29, p. 49]). On the other hand,

GMRES stores the basis vectors for the Krylov subspace and, hence, requires O(kN) mem-

ory, where k is the number of iterations and N is the number of unknowns. Furthermore,

the construction of the orthonormal basis requires O(k2N) operations. To avoid the large

memory requirement, one can restart GMRES after a specified number of iterations, which

has the side-effect of slowing the convergence.

In this context, it is useful to consider how the number of required iterations depends

on the problem size. Unlike many classical methods for finite-difference equations, in this

integral equation method, the number of iterations required to obtain a given residual

tolerance does not depend on the mesh size. On the other hand, the number of iterations

does depend on the size of the scatterer (as measured in interior wavelengths). In other

words, for a given scatterer, as we increase the frequency of the incident wave (increase κ)

and/or increase the value of m, the number of iterations required increases significantly (see

Section 3.2.2).

Of course, other methods exist for non-Hermitian matrices that do not have the memory

and complexity issues of GMRES, such as the Quasi-Minimal Residual (QMR), Biconjugate-

Gradient (BiCG), stabilized Biconjugate-Gradient (BiCGSTAB) and Conjugate-Gradient

Squared (CGS) methods [29, pp. 92–94]. In general, these methods sacrifice convergence

rates for memory and complexity, but may be preferable in some cases. (See Section 4.5 for

more discussion on these solvers.)

3.2.2 Preconditioner

In the previous sections, we described the numerical implementation of the method as well

as the linear solver. However, when the scatterer is large (κR� 1), or when the contrast is

large (|m| � 1), the linear solver may converge so slowly that it becomes infeasible to obtain

the desired residual value. We try to remedy this problem by means of a preconditioning

matrix P for the linear system. The expectation is that pre- or post-multiplication of A (as

well as the right-hand side) with an appropriate P will yield a new matrix with an eigenvalue

spectrum that allows the linear solver to converge more rapidly. Of course, if P were the

exact inverse of A, we would have PA = AP = I and the linear solver would converge in

a single iteration. Hence, roughly speaking, an effective preconditioner P will approximate

the inverse of A as closely as possible while still allowing efficient pre- or post-multiplication.

43

Since our numerical method has a complexity of O(N logN) where N = NpNiM , we want

the multiplication by the preconditioner to be at least as efficient.

In this section, we introduce a preconditioner based on an approximate scatterer: we

approximate the true inhomogeneity m by a piecewise constant, radially layered inhomo-

geneity m̃. In a sense, this inhomogeneity forms a zeroth-order approximation to m in

both geometry and value. As we will show, because of the relatively simple character of

this scatterer, one can invert the associated integral equation in closed form. This inverse

operator, which we use as our preconditioner P , can be computed in O(N) operations using

radial integration methods identical to those described previously in Section 3.1.2.

As described above we define m̃ as

m̃(x) =
q∑
j=1

mjχAj (x),

where mj are constants. The sets Aj , j = 1, 2, . . . , q are the annular regions

Aj = {x : aj−1 ≤ |x| ≤ aj},

0 = a0 < a1 < · · · < aq = R1,

where χAj is the characteristic function of the set Aj . Here we have assumed that R0 = 0 to

simplify the discussion somewhat; the case forR0 > 0 proceeds similarly. The preconditioner

P is given by the inverse of the associated integral equation

v(x) + κ2
q∑
j=1

mj

∫
Aj

Φ(κ|x− y|)v(y)dy = w(x), (3.19)

where |x| ≤ R1 and Φ(z) = i/4H1
0 (z). Given the inverse P , we then left-precondition our

original equation as follows

P (I −KM)vM = Pui,M .

This linear system is solved using an iterative solver, as described previously. Since the

right-hand side of (3.19) is given by w = (I −KM)vM , w = wM .

To solve (3.19), we derive an equivalent differential equation. Define a new unknown

u = v − w, where v solves (3.19) and w is the given right-hand side. Although v is only a

44

solution for |x| ≤ R1, we can define u in all of R2 by

u = −κ2
q∑
j=1

mj

∫
Aj

Φ(κ|x− y|)v(y)dy.

For x ∈ Aj , we have

(∆ + κ2n2
j)u(x) = κ2mjw, j = 1, 2, . . . , q

where mj = 1− n2
j . For |x| > R1 (and |x| < R0 when R0 6= 0),

(∆ + κ2)u(x) = 0.

Furthermore, it is not difficult to show that u satisfies the Sommerfeld radiation condition as

|x| → ∞ [17, pp. 216–217]. This yields a differential equation in all of R2 that is equivalent

to the preconditioning integral equation (3.19).

This equivalent differential equation can be solved in closed form as follows. For x ∈

Aj , we write the solution as a sum of a particular solution and a homogeneous solution,

u(x) = up(x) + uh(x). Hence, for x ∈ Aj , a particular solution to the equation is

up(x) = −κ2mj

∫
Aj

Φ(κnj |x− y|)w(y)dy.

Since w = wM , up = uMp and in polar coordinates (a, φ)

(up)`(a) = −κ2mj

[
H1
` (κnja)

∫ a

aj−1

J`(κnjr)w`(r)rdr + J`(κnja)
∫ aj

a
H1
` (κnjr)w`(r)rdr

]
,

(3.20)

for aj−1 ≤ a ≤ aj . Clearly, these integrals can be computed with high-order accuracy

and in O(N) operations using the same methods for radial integration that we discussed in

Section 3.1.2. Furthermore, since the integration methods require the value of w`(r) at the

Chebyshev points, which are exactly the values we have, application of these methods to

the computation of (up)` requires no interpolation.

45

The homogeneous solution on the other hand is given by

uh(a, φ) =


∑∞

`=−∞ α
(1)
` J`(κnja)ei`φ, if j = 1,∑∞

`=−∞
[
α

(j)
` J`(κnja) + β

(j−1)
` Y`(κnja)

]
ei`φ, if j = 2, 3, . . . , q,

(3.21)

for aj−1 ≤ a ≤ aj . (If R0 6= 0, the homogeneous solution for j = 1 is given by a linear

combination of J` and Y` instead of J` alone. Furthermore, if R0 > 0, we must consider the

homogeneous solution in the additional region a < R0, which takes the same form as for

j = 1 in (3.21).) Finally, for a > R1, we have

u(a, φ) =
∞∑

`=−∞
β

(q)
` H1

` (κa)ei`φ.

Clearly, given the correct values of the coefficients α(j)
` and β

(j)
` , we can compute (uh)`(a)

for ` = −M, . . . ,M and all radial discretization points in O(N) operations. We thus obtain

a closed-form solution to the integral equation (3.19).

To compute the 2q coefficients α(j)
` and β

(j)
` , we require that u ∈ C1(R2) [28, pp. 53,

56]. Hence, by enforcing this condition at each aj , j = 1, 2, . . . , q, we obtain 2q equations,

for 2q unknowns. For j = 1,

α
(1)
` J`(κn1a1) + (up)`(a−1) = α

(2)
` J`(κn2a1) + β

(1)
` Y`(κn2a1) + (up)`(a+

1)

α
(1)
` n1J

′
`(κn1a1) +

1
κ

(up)′`(a
−
1) = α

(2)
` n2J

′
`(κn2a1) + β

(1)
` n2Y

′
` (κn2a1) +

1
κ

(up)′`(a
+
1)

For j = 2, 3, . . . , q − 1, we have

α
(j)
` J`(κnjaj) + β

(j−1)
` Y`(κnjaj) + (up)`(a−j) = α

(j+1)
` J`(κnj+1aj)

+ β
(j)
` Y`(κnj+1aj) + (up)`(a+

j)

α
(j)
` njJ

′
`(κnjaj) + β

(j−1)
` njY

′
` (κnjaj) +

1
κ

(up)′`(a
−
j) = α

(j+1)
` nj+1J

′
`(κnj+1aj)

+ β
(j)
` nj+1Y

′
` (κnj+1aj) +

1
κ

(up)′`(a
+
j)

Finally, for j = q, we have

α
(q)
` J`(κnqR1) + β

(q−1)
` Y`(κnqR1) + (up)`(R−1) = β

(q)
` H1

` (κR1) + (up)`(R+
1)

α
(q)
` nqJ

′
`(κnqR1) + β

(q−1)
` nqY

′
` (κnqR1) +

1
κ

(up)′`(R
−
1) = β

(q)
` (H1

`)′(κR1)

46

Here (up)`(a+
j) = lima→a+

j
(up)`(a) and (up)`(a−j) = lima→a−j

(up)`(a) with corresponding

definitions for the derivatives.

For each `, the matrix associated with this linear system is constant and banded with

five diagonals. Hence, we compute the LU -decomposition of all of these matrices in O(qM)

operations only once at the beginning of each run. In each iteration, after computing the

(up)`(a+
j) and (up)`(a−j) and their derivatives, we use the LU -decomposition to solve for

the values of α(j)
` and β

(j)
` for all j = 1, 2, . . . , q. This again requires a total of O(qM)

operations.

Finally, we compute (up)`(a+
j) and (up)`(a−j) and their derivatives. For aj−1 < a < aj ,

(up)`(a) = − iπ
2
κ2mj

[
H1
` (κnja)

∫ a

aj−1

J`(κnjr)w`(r)rdr+J`(κnja)
∫ aj

a
H1
` (κnjr)w`(r)rdr

]
.

(up)`(a+
j−1) = − iπ

2
κ2mjJ`(κnjaj−1)

∫ aj

aj−1

H1
` (κnjr)w`(r)rdr

and

(up)`(a−j) = − iπ
2
κ2mjH

1
` (κnjaj)

∫ aj

aj−1

J`(κnjr)w`(r)rdr

Similarly,

(up)′`(a
+
j−1) = − iπ

2
κ3njmjJ

′
`(κnjaj−1)

∫ aj

aj−1

H1
` (κnjr)w`(r)rdr

and

(up)′`(a
−
j) = − iπ

2
κ3njmj(H1

`)′(κnjaj)
∫ aj

aj−1

J`(κnjr)w`(r)rdr

These integrals are easily obtained from the values of (up)`(a) in O(qM) operations.

Thus, application of this preconditioner requires only O(N) operations per iteration.

We expect to observe the greatest benefits in using this preconditioner when the original

inhomogeneity can be approximated reasonable well by a piecewise constant radially layered

scatterer. Of course, the size of the annuli Aj as well as the approximating values mj

can be tuned to improve the convergence rate. We demonstrate the performance of the

47

preconditioner through the computational examples in Section 5.1.3.

	3 A Fast, High-Order Method in Two Dimensions: Numerical Implementation
	3.1 High-Order Numerical Integration
	3.1.1 Angular Integration
	3.1.2 Radial Integration
	3.1.2.1 Resolution of Logarithmic Singularity
	3.1.2.2 Evaluation of Integral Moments

	3.2 Solution of the Linear System
	3.2.1 Linear Solver
	3.2.2 Preconditioner

