Chapter 3

A Fast, High-Order Method in
Two Dimensions: Numerical
Implementation

In this chapter, we present several significant improvements to the original numerical imple-
mentation of the two-dimensional method introduced in [13], as described in the previous
chapter. The numerical solution of the associated approximate integral equation (2.3) con-
sists of two main parts: efficient, high-order numerical quadrature rules and an efficient
linear solver.

The numerical evaluation of the integrals in (2.6) requires both angular and radial
integration. In Section 2.3, we described a method for computing the required angular
integrals (2.9), ezactly by means of Fourier smoothing of the scatterer. Furthermore, this
method requires only O(M log M) operations for each radial point. (For smooth scatterers,
however, the angular integrals can instead be computed efficiently and with high-order

2M (see

accuracy by direct application of the trapezoidal rule without replacing m with m
Section 3.1.1).)

On the other hand, to compute the radial integrals (K,v™)(a) (2.2), we present an
improved scheme based on Chebyshev polynomials approximation. More precisely, we ap-
proximate Iy(r) in (2.9) with Chebyshev polynomials on each of several subintervals (see
Section 3.1.2). When the integration domain contains the origin, we resolve the logarithmic
singularity in the Hankel function by integrating by parts (see Section 3.1.2.1). Then by
means of appropriate pre-computed integral moments (see Section 3.1.2.2), we obtain a

high-order approximation of the required integrals. Computation of these integrals requires

only O(N) operations.
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This high-order discretization of the required integrals in (2.6) results in a linear system
with unknowns vy(a;) for £ = —M,...,M and j = 0,...,N,, where a, are the radial
points in the discretization. We use the Generalized Minimal Residual (GMRES) iterative
method to solve this linear system (see Section 3.2.1). The number of GMRES iterations
required to achieve a given residual tolerance increases rapidly with increasing problem size
as measured by interior wavelengths (proportional to kn(Ry — Ry) for a constant refractive
index). We describe a preconditioner (see Section 3.2.2) that reduces this required number
iterations for a variety of scattering configurations. We precondition the problem with
an integral equation corresponding to a piecewise constant, radially layered approximating
scatterer. By means of an equivalent partial differential equation, it can be shown that such
an approximate integral equation admits an inverse, which can be computed in closed form.

Application of this inverse requires only O(N) operations.

3.1 High-Order Numerical Integration

3.1.1 Angular Integration

We first consider the angular integration (2.9). As discussed in Section 2.3, Iy(r) can be
computed exactly even for discontinuous scatterers by replacing m by m?* and choosing a
sufficient number of trapezoidal rule integration points. Direct application of the trapezoidal

MY wwould yield

rule in the case of a discontinuous inhomogeneity (without replacing m by m
only first-order convergence.

For smooth inhomogeneities m, however, we can obtain high-order convergence sim-
ply through direct application of the trapezoidal rule. This follows from the fact that,
for smooth scatterers, the integrand m(r,8)v (r,0) is a high-order approximation to the
smooth and periodic function m(r, 8)u(r, 6) and the trapezoidal rule yields high-order accu-
racy for smooth and periodic integrands. Hence, although I,(r) may always be computed
exactly by replacing m by m?M for sufficiently smooth inhomogeneities, the direct appli-
cation of the trapezoidal rule is somewhat simpler (since the Fourier coefficients my(r) are

not required) and produces nearly the same accuracy.

In this case, given the values vy(r), we first compute v (r,6;) for 6; = 275 /Ny, where



30

Ny is the number of trapezoidal rule integration points, i.e.,

M
M) = S vlr ;)N
=—M

for j = 0,...,Np — 1. This sum is computed in O(Nglog Ny) operations for each radial
point r by means of an FFT, where Ny must be chosen such that Ny > 2M. Using the
periodicity in 6 of m and v™, the trapezoidal rule gives

Np—1

Iy(r) = Iéve(r) = Z m(r,0;)v™ (r,0;)e 2t/ No, (3.1)

§=0
which we compute for £ = —M, ..., M by means of an FFT. Hence, given N, radial points,
this algorithm computes the integrals I;(r) with high-order accuracy in a total of O(N log N)
operations where N = O(N, M).

It is interesting to note the relationship between this direct trapezoidal rule approach
and the discrete convolution approach described in Section 2.3. When m is replaced by
m?M and Np is chosen such that Ny > 4M, these two approaches yield identical results. In
other words, the trapezoidal rule approach described above is identical to the FFT-based
method for computing a discrete convolution (when m2™ is used and Ny > 4M) [45, pp.
531-537]. Hence, these algorithms require only a single implementation; the approach that
is actually used is determined by the choice of scatterer, either m or m?M, and the related

choice of Npy.

3.1.2 Radial Integration

The radial integration requires the computation of two functions

Fyla) = Ra Yo(ka)Jo(kr)Le(r)rdr

Ry
Gila) = / Jo(ka)Yy(sr)T(r)rdr,
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for Ry < a < Ry. In terms of these functions, (K,v™)(a) is given by

HQ a Ry
(KM (a) = —iz [ : H}(Iﬁa)Jg(H/F)Ig(T)TdT‘Jr/ Jo(ka)H} (k) Io(r)rdr| (3.2)
K2 Ka
= A+ G - i )| (33

High-order accuracy in evaluating Fy(a) and Gy(a) requires that we treat discontinuities
and/or singularities in Iy(r) appropriately. The singularities in I;(r) are due to the singu-
larities in the Fourier coefficients of the scatterer, my(r). Thus, unless m(r,0) is smooth
within the annulus Ry < r < Ry, my(r) will exhibit singularities.

Following the discussion in [13]|, we assume that m(r,#) is piecewise smooth, i.e., we
assume that there are a finite number of disjoint sets D; with piecewise smooth boundaries
such that m(r, 6) is smooth on each D;. Singularities in I;(r) can occur at values of r that
correspond either to non-smooth points in the boundary of a set D; or to a point of tangency
between the circle C, of radius r and a set D;. Non-smooth points in the boundary of a set
D; lead to corner-type singularities. Points of tangency lead to singularities of type (r—rg)®
for 0 < o < 1. For example, most of the examples of Section 5.1 have square-root type
singularities, /7 — 9. Discontinuities in I;(r) may also arise, for example, when the circle
C. intersects a set D; along a finite segment of its boundary.

Discontinuities and corner-type singularities are handled simply by subdividing the in-
tegration domain [Ry, R;] at the singularity points into two or more intervals. Singularities
of the type (r — rg)® can be resolved by changing variables in the radial dimension. For
example, as suggested in [13], we resolve square-root singularities occurring at the endpoints

of the interval [a, b] with the following change of variable

2 _ g2
B2 _ g2

cos(p) = (3.4)

Of course, in order to resolve such singularities, one must first deduce the type of singularity.
However, this is not difficult to accomplish in many situations.

Thus, by breaking the integration domain [Ry, R;] into multiple intervals and by ap-
propriately changing variables to resolve remaining (r — ro)®-type singularities, we are left
with a smooth I;(r) on each interval of integration. Since the extension to this fully general

setting is straightforward but also tedious, we describe only how the computation Fy(a)
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and Gy(a) to high-order accuracy for a single interval on which no change of variables is
required. This special case illustrates all of the major aspects of the fully general method
without unduly complicating the exposition.

We divide the integration interval [Ry, R1] into several subintervals of equal length. We
then approximate Iy(r) by a high-order polynomial expansion on each subinterval

Ne—1

I(r) =~ > curpn(r), (3.5)
n=0

where ¢, € C, £ = 1,...,N; and N; is the number of subintervals. Also, p,(r) is a
polynomial of order n. Thus, we thereby obtain a polynomial expansion of order N, — 1.

There are several possible choices for the p,(r). In [13], Lagrange interpolating polyno-
mials are used. However, for Lagrange interpolating polynomials, the computation of the
coeflicients ¢, is numerically unstable for large N.. This instability can be mitigated some-
what by using a more stable algorithm, at the cost of computational complexity. In [13],
the chosen routine requires O(N2) operations.

Hence, we use Chebyshev polynomials instead. Chebyshev polynomials, T;,, provide
excellent approximation (nearly equal to the minimax polynomial [3, pp. 225-236]) while
also allowing stable evaluation of the ¢, in O(N?2) operations. For r in the ith subinterval,

we have

Ne—1
Iy(r) = Z CnkeTn(zp(r)), (3.6)
n=0

where the functions zy(r) are simply linear maps of the kB subinterval to the interval

[—1,1], which is the standard interval of definition for the Chebyshev polynomials. More

k‘th

precisely, if the subinterval is given by [a, b], then, for r € [a, b], we have

r—a b-—r

b—a b—a’

zp(r) =
We will also make use of the inverse of this map, which, for y € [—1,1], is given by

2 () =S [(b—a)y+ (b+a)].

1
2

The evaluation of the Chebyshev coefficients for a function defined on the standard
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interval [—1, 1] requires the function values at

y; = cos (W) (3.7)

for j =1,..., N.. Hence, we require the value of Iy(r) at the corresponding points in each

of the subintervals, i.e., at the points
-1
ajk =z, (Y;) (3.8)

for j=1,...,N.and k = 1,...,N;. Notice that the aj; do not include the endpoints of
each subinterval since the y; do not include the endpoints of [—1,1]. Since we will need
these endpoints for parts of our calculation, we include the left and right endpoints of each
subinterval as agx and ay, i, respectively, where N, = N.+ 1. (Note that by this definition
aok = an,k—1 for k > 1.)

Hence, these aj;, are our radial discretization points giving a total of N, = O(N,N;)
radial points. Our other discretization parameter is the number of modes M in the approxi-
mate solution v . Hence, the total number of unknowns N = O(N, M) = O(N,N;M). The
number of points per subinterval N, determines the order Chebyshev approximation is held
fized while the number of subintervals N; and the number of modes M is increased to obtain
more accuracy. Given the values of I;(a;i), one can compute the Chebyshev coefficients ¢,
in O(N?) operations per subinterval and per mode giving a total of O(N;NZM) = O(N)
operations for all subintervals. (One can reduce the Ng complexity for each subinterval to
O(Nplog N,) by use of FFTs. However, since N, remains fixed, this does not change the
overall complexity and since we typically use a relatively small value of N, e.g., N, = 9,17,
we have found that this approach provides little benefit.)

Thus, given these Chebyshev approximations on each subinterval, we must only compute

the following integral moments

Pure = | Yelwa) Ju(sr)To(an(r)rdr (3.9)
Qnjke = /C‘LNpk Jo(kaji)Yo(kr) Ty (x(r))rdr. (3.10)

Since all of the functions in the integrand are known analytically, these moments are only
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computed once at the beginning of each run. The storage of these moments requires
O(N:NpN;M) = O(N) memory. These integrals are problematic because of the rapid
decay of .J; for large ¢ near the origin as well as the logarithmic and polar singularities
in Y, at the origin. In Section 3.1.2.1, we present a method for resolving the logarithmic
singularity in Y,, which is necessary when the integration domain includes the origin, i.e.,
when Ry = 0. We then discuss our method for computing the moments in Section 3.1.2.2.

Another practical obstacle when computing these moments concerns the rapid decay
of Jy and the rapid growth of Y, near the origin for large values of £. Hence, for large
values of £, J; may underflow and Y; may overflow while their product remains machine-
representable. We overcome this difficulty by computing scaled versions of J; and Yy, thus
allowing accurate computation of Jy(a)Yy(b), Yi(a)/Yy(b), etc. We describe our method for
computing these scaled Bessel functions in Appendix B.

Once we have computed these moments, we can compute the values Fjr, = Fy(aji) and
Gjre = Ge(ajr). We first compute the quantities Ajpe and Bje, which involve integration

over a single subinterval.

ajk
Age = / V() Jo(kr) Lo(r)rdr
aok
N.—1

Z cnképnjkf
n=0

aNpk
Bji = / Jo(kaji)Ye(kr)Lo(r)rdr
ajk.
Ne—1

XY CaktQnjie-
n=0

%

Hence, given the Chebyshev coefficients, which require O(N) operations to compute, the
computation of Ajiy and Bjye requires O(N.N,N;M) = O(N) operations. We then sum

and scale these values appropriately to compute Fjiy and G jiy.

Gjk
Fuo = [ Yitwap)dier) I yrds
ao1
~ Ajkg + ajngNpk_M, fork=2,...,N;

Fjip =~ Aju,
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where o = YI#%
aNPNi
G = /ak Jo(kaji)Ye(kr)Io(r)rdr
~ Bj]kg + BikeGojyre, for k=1,...,N; — 1
Ginge ~ Bjng,
where B = %‘% Clearly, given Ay and Bjje, the computation of Fji, and Gk

requires O(N,N;M) = O(N) operations.

Therefore, the total complexity of the radial integration, given the integral moments
Pjke and Qpjke, is O(N). Furthermore, assuming that the integral moments are computed
with sufficient accuracy, the accuracy of the Fji, and G is determined by the accuracy
of the Chebyshev approximation on each subinterval. Since Iy(r) is smooth (or can be
made smooth by changing variables and breaking up the integration domain), the Cheby-
shev approximation is high-order accurate with the order of convergence dependent on the
value of N, the number of points per subinterval. Thus, we obtain an efficient and high-
order accurate method for computing the radial integrals. (See the numerical examples in

Section 5.1.2.)

3.1.2.1 Resolution of Logarithmic Singularity

Besides the singularities in I;(r), which we resolve as discussed previously, the Bessel func-
tion Yy(kr) exhibits logarithmic and polar singularities at » = 0. In this section, we show
that the logarithmic singularity can be removed through integration by parts.

This method results as a slight modification of the approaches discussed above: we
evaluate Fj, as discussed previously, but we change the computation of Gji. Note that

Yy(z) can be written as
2 z polar
Yilz) = = log (3) Jul=) + Y2 (2),

where Y (z) = O(z7%) as z — 0. Assume that Ry = 0, since otherwise the logarithmic
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singularity is not present. Integrating the logarithmic term by parts gives

Ry

/aR1 1og<"i )Jg(fw).’e( yrdr = log (%)/ Jo(kp)Le(p )pdp

Ry
/ dr— /Jg kp)Ie(p)pdp

= 1og(“§)se<R1> log () Se(a) - / rLSu(r)r,

where Sy(a fo Jo(kr)Io(r)dr = YZ(E-cac?)

Sy(r) vanishes to first order at r = 0 and thus, r~1Sy(r) is smooth near the origin.
Furthermore, since we have computed Fji, i.e., the values of Fy(a) at Chebyshev points
in each subinterval, the values Sy(aj;) as well as the Chebyshev coefficients of r=1S,(r)
on each subinterval are easily computed. Therefore, in O(N) operations, we compute the
Chebyshev coefficients d,,i¢ such that

N.—1

1S, (r) Z gt T (21(7)).

The Chebyshev coefficients d,x¢ of the integrand are easily mapped into the Chebyshev
coefficients Dk, of its indefinite integral [45, pp. 189, 190] as

dp—1ke — dpt1ke

Dype = o

for n > 1. The constant of integration Dy, is arbitrary. Clearly, this mapping requires only
O(N) operations. Furthermore, since the integral faRl r~1Sy(r)dr is smooth, the Chebyshev
approximation on each subinterval with coefficients D,,;s gives a high-order representation
of this integral.

To complete the computation of Gy(a;i), we define
B 2 KT
Gﬁgg = /a Jg(/@ajk); log (7) Jo(kr)Lo(r)rdr
ik

and

Ry
G?Zl;r = / Jg(ﬁajk)npozar(fﬁ“)fg(’l“)TdT.

(ljk

Therefore, G = Gﬁgé szlzar We compute Gp olar oxactly as we computed G ke in the
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previous section with Qs replaced by

oLar aNpk oLar
Qi = [ Ha) v e v (3.11)

(ij

We compute Gﬁi by first defining, for k =1,...,N; — 1,

Ry
Rjpe = / T‘_ISg(’r‘)dT

No—1
~ Ropi1e + Z Do [Tn(zi(an, i) — Tn(zk(ajr))]

n=0
and, for k = N;, Rjn,e = Zg;al Dot [Tn(zi(an,n,)) — Tn(zk(aji))]. Given the coefficients
D, e, computation of Ry for j = 0,...,Ny, k=1,...,N; and £ = —M, ..., M requires
O(NNpN; M) = O(N) operations to compute. Thus, we have

2 KRy
Gt = 2ot os (552) S o

RajE

) Sike — Rjkéil ;

Fire
Ye(ajp)
polar

Therefore, given accurate values of the integral moments P, ;¢ and Q) ke this approach

where Sj, = Clearly, the computation of Gﬁi requires only O(N) operations.

yields high-order accurate values of the required radial integrals in O(N) operations. We
wish to emphasize that, as stated above, we need only resolve the logarithmic singularity
in Y;(kr) when the integration domain includes the origin, i.e., when Ry = 0. It is straight-
forward to generalize this approach to the case in which we resolve singularities in I;(r) by

breaking up the integration domain and/or changing variables.

3.1.2.2 Evaluation of Integral Moments

To complete the method, we need only find an efficient and accurate method for computing
the integral moments P, i, and Qyjxe. As noted in the previous section, if the integration
domain contains the origin, we can resolve the logarithmic singularity in Yy independently of
the moment computation. In such a case, we compute Qfglgg (see equation (3.11)) instead

of Qnjre- However, even when the integration domain does not contain the origin, the

rapid growth of the Y, and the rapid decay of the J; makes the development of accurate
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quadrature schemes for computing the moments challenging. In particular, the Y, grow like
r~¢ and the J; decay like r¢ as either £ — oo or as 7 — 0. Since quadrature rules, for
the most part, depend on accurate polynomial interpolation, accurate integration of these
functions would seem to require a large number of integration points.

In this particular case, however, accurate values for these moments are actually not too
difficult to obtain. The key insight is that a small absolute error, as opposed to a small
relative error, is required in the computation of the moments. Since we desire a small relative
accuracy in the field v™, we require only a small absolute error in the Fourier coefficients
of the field vy—small values of vy, regardless of their relative error, contribute very little to
the value of the field v™.

Our goal, therefore, is to show that, given a maximum absolute error ¢ > 0 and an
initial radial discretization, we can choose the number of Gaussian quadrature points IV,
such that the absolute error in the moment integrals is less that ¢ for all ¢ and for all
subsequent refinements of the radial discretization. Near the origin or for large ¢, the

asymptotic behavior of J; and Yy for £ > 1 are given by [2, p. 360]

and

Hence, for ¢ > 2, the moment integrals,

b
Py(a,b) = Yg(nb)/ Jo(kr) T (g (1)) rdr (3.12)

and ,
Qe(a,b) = Jg(na)/ Yo(kr) Ty (x(r))rdr (3.13)

have roughly the same properties as

L bruldr = —7a2
bt J, ml(l 4 2)

O] e

:_Z/abr_mdr _ _#2_2) [(%)2 _ (%ﬂ , (3.15)

and
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respectively. Thus, by considering the relatively simple quantities (3.14) and (3.15), we

gain insight into the behavior of integration rules for evaluating (3.12) and (3.13) . We will
concentrate on integration rules for (3.13) since it is the more difficult of the two moment
integrals because of the singularity in the integrand at r = 0. In addition, we restrict our
attention to the case a > 0, since for a = 0, Qy(a,b) = 0 for £ > 1. (For ¢ = 0, the only
singularity in the integrand is the logarithmic singularity, which is resolved by integrating
by parts as described in Section 3.1.2.1.)

Gauss-Legendre integration of a function f defined on the interval [a,d] is given by [3,

pp. 276-279]
b b—a 1 b+a b-—a
/a f(t)dt = < 5 >/_1f< 5 + 5 w> dzx

Ng

b—a b+a b—a
( 5 > wjf < 9 + TJIJ> , (316)
j=1

where the points —1 < z; < 1 are zeroes of the degree N, Legendre polynomial on [—1,1]

and w; > 0 are the corresponding weights. We first consider the decay of the sum (3.16)
itself for (3.15). We have

at [ b—a a\’ _ b(b—a)

— - ~ il — ] < 1

7 r dr 57 JE:l (e (7"]-) S =7 (3.17)
where 7; = (bLQa) + (I);Qa)xj. Here we have also used the fact that w; > 0 and that the

Z;V:gl wj = f_ll dr = 2 since Gauss-Legendre quadrature integrates polynomials of degree
less than 2NV, exactly. The sum (3.17) decays with increasing ¢ independently of Ng. Note
that (3.15) dtself also decays with £ as O(£~2). Thus, we conclude that, given an initial
discretization, there is a positive integer L such that both (3.15) and (3.17) are smaller
than €/2 for all £ > L, independently of Ny. Therefore, the absolute error for £ > L is
smaller than €. Crucially important in this result is the fact that the moments decay with
¢. Thus, for sufficiently large ¢, although the computed moments may have over 100%
relative error, their absolute error remains smaller than €.

We now consider the effect of discretization refinement. Refinement of the radial dis-

cretization is accomplished by increasing the number of subintervals N;. (On each of these

subintervals, there is a fixed number of Chebyshev points N..) Hence, for two adjacent
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discretization points a = Ry + o and b = Ry + 3, increasing N; by some factor v decreases
both o and ( by the factor v. For example, doubling IV; halves both « and 3. Similarly,
b— a also decreases by the factor v when NN; increases by the factor . It follows from (3.17)
that the absolute error for £ > L decays as we refine the radial discretization. Therefore, our
choice of L is not only independent of N4, but is also independent of subsequent refinements
of the discretization.

Now we must consider the absolute error for £ < L. The absolute error in the integral

of a function f as computed with Gaussian quadrature is bounded by [3, pp. 276-279]

En. (f) < T <b—a> (b_a)2N9 max ‘f@Ng)(t)}
NolJJ = (2Ny)! 2 4 a<t<b ’

where the bound holds asymptotically as N; — co. One can then show that the absolute

error E]%g in computing (3.15) is bounded by

4

a _
E](‘\?[g = ﬁENg(T €+1)
_ alb—a) (b-a 2No (£ — 24 2N,)!
- 2 4a (0 —2)!(2Ny)!
< ab—a) (b—a\*" (L —2+2N,)!
- 2 4a L(L —2)!(2N,)V

where we have used the fact that ¢ < L. Hence, if we require that (b — a)/4a < 1, then
[(b—a)/4a)?Ns exhibits exponential decay while (L — 2+ 2N,)!/(2N,)! exhibits polynomial
growth as N, increases. Therefore, for N, sufficiently large E]%g < g for ¢ < L. Clearly, E]%g
also decays with subsequent discretization refinements. Hence, our choice of N, depends
only on the value of L and the initial discretization.

We conclude that given an initial discretization satisfying (b — a)/4a < 1 for all points
a,b, we can choose NN, sufficiently large such that the absolute error is smaller than e for
all £ and for all subsequent refinements of the discretization. Similar arguments obtain the
same result for the absolute error in (3.14). Note that we have only proven this fact in
the asymptotic regime of large ¢ or, equivalently, small a and b. However, outside of this
asymptotic regime, the Bessel functions have much milder behavior, simply oscillating with
wavenumber x. These oscillations must be resolved by the radial discretization anyway to

obtain even minimal accuracy in solving the integral equation. Hence, computing the inte-
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gral moments in the oscillatory regime presents no significant difficulties. We do not present
any theoretical estimates of the required values of IV, for various initial discretizations and
error tolerances . However, the examples of Section 5.1 show that the value N, = 8 suffices

to achieve machine precision accuracy in our solutions.

3.2 Solution of the Linear System

3.2.1 Linear Solver

The previous sections describe our efficient, high-order method for computing the integral

M

operator KMyM . The approximate solution v™ is then obtained by solving the linear

system

veae) — (K™ ) (ajr) = up(ase), (3.18)

where { = -M,...,M,j=0,...,N,and k =1,...,N;. If we denote the matrix associated
with the left-hand side by A, the unknown vector v¢(a;x) by = and the right-hand side by
b, equation (3.18) becomes simply Ax = b.

In general, A is dense. Therefore, because of the large amount of memory that would
be required, we do not actually construct A in solving the linear system. Instead we use an
iterative method that requires only the value of the matrix-vector product y = Az for any
given vector x. Thus, y is computed in O(N log N) operations by means of the integration
schemes described in this chapter.

We use the Generalized Minimal Residual (GMRES) method. This iterative method
builds a Krylov subspace associated with the matrix A and an initial guess xg. The Krylov

subspace at the kD iteration is defined as
Ky = span{rg, Arg, Arq, ... ,Akro},

where rg = b— Axg. Typically, GMRES builds an orthonormal basis for this subspace using
a modified Gram-Schmidt procedure. The approximate solution to the linear system at the
ith iteration, z; = xo + yg, is the vector that minimizes (in the least-squares sense) the
residual r = b — A(xg +y) for y € Ky, [29, pp. 38-41].

We chose GMRES because of its generality (it applies to non-Hermitian matrices) and

because of its “optimal” convergence properties (optimal in the sense that it produces the
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residual with the smallest 2-norm from the Krylov subspace [29, p. 49]). On the other hand,

GMRES stores the basis vectors for the Krylov subspace and, hence, requires O(kN) mem-
ory, where k is the number of iterations and N is the number of unknowns. Furthermore,
the construction of the orthonormal basis requires O(k?N) operations. To avoid the large
memory requirement, one can restart GMRES after a specified number of iterations, which
has the side-effect of slowing the convergence.

In this context, it is useful to consider how the number of required iterations depends
on the problem size. Unlike many classical methods for finite-difference equations, in this
integral equation method, the number of iterations required to obtain a given residual
tolerance does not depend on the mesh size. On the other hand, the number of iterations
does depend on the size of the scatterer (as measured in interior wavelengths). In other
words, for a given scatterer, as we increase the frequency of the incident wave (increase k)
and/or increase the value of m, the number of iterations required increases significantly (see
Section 3.2.2).

Of course, other methods exist for non-Hermitian matrices that do not have the memory
and complexity issues of GMRES, such as the Quasi-Minimal Residual (QMR), Biconjugate-
Gradient (BiCG), stabilized Biconjugate-Gradient (BiICGSTAB) and Conjugate-Gradient
Squared (CGS) methods [29, pp. 92-94]. In general, these methods sacrifice convergence
rates for memory and complexity, but may be preferable in some cases. (See Section 4.5 for

more discussion on these solvers.)

3.2.2 Preconditioner

In the previous sections, we described the numerical implementation of the method as well
as the linear solver. However, when the scatterer is large (kR > 1), or when the contrast is
large (Jm| > 1), the linear solver may converge so slowly that it becomes infeasible to obtain
the desired residual value. We try to remedy this problem by means of a preconditioning
matrix P for the linear system. The expectation is that pre- or post-multiplication of A (as
well as the right-hand side) with an appropriate P will yield a new matrix with an eigenvalue
spectrum that allows the linear solver to converge more rapidly. Of course, if P were the
exact inverse of A, we would have PA = AP = I and the linear solver would converge in
a single iteration. Hence, roughly speaking, an effective preconditioner P will approximate

the inverse of A as closely as possible while still allowing efficient pre- or post-multiplication.
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Since our numerical method has a complexity of O(NN log N) where N = N,N; M, we want

the multiplication by the preconditioner to be at least as efficient.

In this section, we introduce a preconditioner based on an approximate scatterer: we
approximate the true inhomogeneity m by a piecewise constant, radially layered inhomo-
geneity m. In a sense, this inhomogeneity forms a zeroth-order approximation to m in
both geometry and value. As we will show, because of the relatively simple character of
this scatterer, one can invert the associated integral equation in closed form. This inverse
operator, which we use as our preconditioner P, can be computed in O(NN) operations using
radial integration methods identical to those described previously in Section 3.1.2.

As described above we define m as
q
m(z) = mjxa,(z),
j=1
where m; are constants. The sets A;,7 =1,2,...,q are the annular regions

Aj={z a1 < |z] < a5},

0:a0<a1<---<aq:R1,

where x 4, is the characteristic function of the set A;. Here we have assumed that Ry = 0 to
simplify the discussion somewhat; the case for Ry > 0 proceeds similarly. The preconditioner

P is given by the inverse of the associated integral equation
q
o) 2> my [ @l oty = wie), (319)
j=1 j

where |z| < Ry and ®(z) = i/4H}(2). Given the inverse P, we then left-precondition our

original equation as follows

P(I — KMyyM = pytM,

This linear system is solved using an iterative solver, as described previously. Since the
right-hand side of (3.19) is given by w = (I — KoM w = wM.
To solve (3.19), we derive an equivalent differential equation. Define a new unknown

u = v — w, where v solves (3.19) and w is the given right-hand side. Although v is only a
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solution for |z| < Ry, we can define u in all of R? by

q
u= Y my [ el yl)o)dy.
=1 A
For x € A;, we have
(A + m2n§)u(x) = /izmjw, i=1,2,...,q
where mj; =1 — n]2 For |z| > R; (and |z| < Ry when Ry # 0),
(A + w*)u(z) = 0.

Furthermore, it is not difficult to show that u satisfies the Sommerfeld radiation condition as
|z| — oo [17, pp. 216-217]. This yields a differential equation in all of R? that is equivalent
to the preconditioning integral equation (3.19).

This equivalent differential equation can be solved in closed form as follows. For z €
Aj, we write the solution as a sum of a particular solution and a homogeneous solution,

u(z) = up(x) + up(x). Hence, for x € Aj, a particular solution to the equation is

up(2) =~y [ @yl ~ yuwly)dy,

J

Since w = wM | u, = ué‘f and in polar coordinates (a, ¢)

(up)e(a) = —r*m; [Hel (knja) / '

j—1

Jo(knjr)we(r)rdr + Jy(kn;a) /aj H} (knjr)we(r)rdr| ,

’ (3.20)
for aj_1 < a < a;. Clearly, these integrals can be computed with high-order accuracy
and in O(N) operations using the same methods for radial integration that we discussed in
Section 3.1.2. Furthermore, since the integration methods require the value of wy(r) at the
Chebyshev points, which are exactly the values we have, application of these methods to

the computation of (uy), requires no interpolation.
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The homogeneous solution on the other hand is given by

Y e aél)Jg(ﬁnja)eM‘b, if j =1,
up(a, d) = . , A (3.21)
pa a(])Jg KM;a +,6(]71)ng kn;a)le®, if j=2.3,...,q,
l=—0c0 ¢ J 4 J

for aj_1 < a < aj. (If Ry # 0, the homogeneous solution for j = 1 is given by a linear
combination of Jy and Yy instead of Jy alone. Furthermore, if Ry > 0, we must consider the
homogeneous solution in the additional region a < Ry, which takes the same form as for

j =11in (3.21).) Finally, for a > Ry, we have

u(a,9) = Y BV HE(ka)el™.

f=—00

Clearly, given the correct values of the coefficients ay ) and ﬁéj ), we can compute (up)e(a)
for ¢ = —M, ..., M and all radial discretization points in O(N) operations. We thus obtain
a closed-form solution to the integral equation (3.19).

To compute the 2q coefficients agj ) and ﬁéj ), we require that u € C'(R?) [28, pp. 53,
56]. Hence, by enforcing this condition at each a;,j = 1,2,...,q, we obtain 2¢ equations,

for 2¢ unknowns. For j =1,

agl)Jg(/ﬁnlal) + (up)e(ay) = aé2)Jg(/@n2a1) + ﬂél)}/g(/ﬁ?Qal) + (up)e(ay)

)

1 1
oy i Jj(kmian) + - (up)y(ar) = afnadi(knaar) + 5 na¥{ (knaar) + — (up)ilay )

For j=2,3,...,q— 1, we have

o Jo(kmjag) + 87V Ye(knjaz) + (up)e(a7) = o TV Jp(knjsay)

+ 8 Y(knjs1a5) + (up)e(al)

. i1 ]_ _ i1
o n; Ty(knjaz) + B~ n;Y (emjag) + ~(wp)iay) = af g Jykngiaag)

; 1
+ 0 n1 Y] (kmjaa) + ~ (up)y(a))
Finally, for j = ¢, we have

o\ Jy(kngR1) + B VYi(kngRy) + (up)e(Ry) = BV HE(kRy) + (up)e(RY)

_ 1 _
oy Jj(kngBe) + B Ing¥i (sngRe) + — (wp)p(Ry ) = B” (H}) (5 Ry)

K
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+

Here (up)e(a;) = lim, +(up)e(a) and (up)e(a;) = lim, - (up)e(a) with corresponding
J J

definitions for the derivatives.

For each ¢, the matrix associated with this linear system is constant and banded with
five diagonals. Hence, we compute the LU-decomposition of all of these matrices in O(¢M)
operations only once at the beginning of each run. In each iteration, after computing the

(up)g(a;r) and (up)e(a;) and their derivatives, we use the LU-decomposition to solve for

the values of ozéj) and ﬁlgj) for all 7 = 1,2,...,q. This again requires a total of O(¢M)
operations.

Finally, we compute (up)g(aj) and (up)r(a; ) and their derivatives. For a;_1 < a < aj,

(up)e(a) = —%KQmj {H}(ﬁnja) /a Jo(knjr)we(r)rdr+Ji(knja) /%‘ Hel(lian)’u}g(T)’l“dT )

(up)e(a]_y) = —%K%J’Je(%nml)/% Hi (knjr)we(r)rdr
and
(uelay) = = wmyt Genga) [ g (v
Similarly,
(ilaf-y) =~ 5 wnmyinjas ) [ HE(ensrywlryrdr
and
(up)ita; ) = = 5 kg (Y (i) [ il

Jj—1

These integrals are easily obtained from the values of (u,)¢(a) in O(¢M) operations.
Thus, application of this preconditioner requires only O(NN) operations per iteration.
We expect to observe the greatest benefits in using this preconditioner when the original
inhomogeneity can be approximated reasonable well by a piecewise constant radially layered
scatterer. Of course, the size of the annuli A; as well as the approximating values m;

can be tuned to improve the convergence rate. We demonstrate the performance of the



47

preconditioner through the computational examples in Section 5.1.3.
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