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{ Foreword l

Physics is the mathematical modeling of nature.* Simple, exactly
solvable models are important because they provide orientation and
intuition in more complicated (and more realistic) unsolvable
models. | have examined and have tried to understand the behavior of
certain idealized models of disordered systems. Also, | have tried to
see—and elucidate—things in a fresh and novel way. During the
course of my self-education, | have

uncovered much;
recovered (in my own way) things elsewhere known; and
discovered things heretofore unknown.

If, in my research, my primary motivation is learning, then, in my
writing, my primary motivation is teaching. Consequently, | have
been (and am) very concerned with the presentation of my research.
The unusual graphic style of my thesis reflects the visual nature of
my thinking. | dont yet know if this experiment is successful.

| thank Professor Barry Simon for supporting me during the 3 years
of my research, and also his students: Bart Huxtable, Kris
Odencrantz, Clemens Glaffig, and Askell Hardarsson. | also thank
Professor F. Gesztesy for comments and advice. Teaching has been an
important and rewarding part of my experience here at Caltech, and
in that | have enjoyed the company of Michael Cross, Sam Finn, Steve
Frautschi, Bart Huxtable, Randy Kamien, Michael Kovari, Mike Morris,
David Politzer, Tom Prince, among others, and especially my many
students. | thank my new friends, Steve and Liz. Special thanks is
due my family: Florian, Mary, and Jim.

And, of course, K& D.

* |t's also fun.
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{ Abstract l

As is well known, the allowed energies of periodic electronic
systems and the allowed frequencies of periodic elastic systems
form banded sets (at least for certain idealized models). Recent
work, by Werner Kirsch and others, demonstrates that this band-gap
structure persists in disordered versions of these periodic systems.
Here, | extend this result by showing that for specific “point~
interactions, the spectrum of a generic disordered system
is the union of the spectra of all possible pure systems
formed from it. This permits the explicit construction of these
spectral sets.

This result is the outgrowth of a perspective | call "growing
disorder .” The idea is to evolve, or "grow,” an ordered array (whose
spectrum is known) into a disordered array (whose spectrum is
sought). The trick is to evolve the spectrum along with it. The
approach is very visual, lends itself readily to graphical
presentation, and accounts in part for the unconventional but
appropriate /oot of this thesis.

The unconventional style also reflects an attempt to make the
material easily accessible to a physics audience. It is inspired by
the way in which physicists informally communicate ideas, namely,
with words and pictures in front of a blackboard. Each page, or set of
facing pages, of text and graphics is a unit to be assimilated before
proceeding onto the next unit. There is, thus, no unique path
through the thesis.

An intuitive and straightforward approach, constructive proofs, an
informal style, and some ingenuity simply communicate the ideas
herein. However, the condensation inherent in.the graphical
presentation demands significant reader engagement!



A Dialogue

Q: Why is glass transparent? 1t's always puzzied me. After all,
a window pane is just as solid as a wooden desk.

A: True, but since atoms are mostly empty space, and glass and
wood are both made of atoms, you might better ask: Why
isn't wood transparent?

Q: 0K, but what's the difference? Why are some things
transparent and others opaque?

A: Quantum theory provides one answer. The allowed electronic
energies of a regular solid form bands separated by gaps. At
room temperature, roughly, there is an energy below which
all levels are filled and above which all are empty. 1f this
energy is in a band, then the solid is opaque. 1f it's at a band
top and the next gap is [arge, it's trunsparent.

Q: 1 don't follow. Why?

A: Consider a visible-light photon. Take its energy to be 1 eb.
top electrons. But if there's a gap of several eV, as is the case,
for example, with diamomnd, then no excitation is possible.

Q: 1 see—the only allowed excited states are too many eV's
away. :

A: Yeah, so the photon doesn't interact and passes right through.
That's why diamoruds are transparent.

Q: Hmm. That's interesting, but glass isn't a regular solid [ike
diamond. 1t's a disordered solid, akin to a liquid.

A: You're right. And so my simple argument would break
down for glass, except that recent work indicates that the
electronic barud—gap structure of regular solids is quite robust
and may persist in disordered solids.

Q: v'd like to hear more....
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[ Long Contents /Overview I

The starting point is a series of (computer) experiments involving
idealized models (namely, harmonic chains and 8 arrays) of selected
physical systems that allow parallel mathematical descriptions. The
results are interesting, even surprising. The goal is to understand
them as simply and as transparently as possible. [pages 1-5]

This understanding has its foundation in history. The relevant
previous work is highlighted . The 3 most important results (which
concern the spectra of ordered and disordered operators) are first
stated and then elucidated by heuristic arguments. [pages 6-10]

The 8 is the best-known point interaction. Here, it is defined by, and
analyzed in terms of, its effect on wave functions (which are
arbitrary superpositions of eigenfunctions). The ordered array (or
KP) spectrum is continuously evolved, or grown, from simple limit
cases, and is parameterized in a natural way. [pages 11-24]

A related, but less well-known, point interaction is the §. While the
8 exhibits many canonical features (of more general interactions),
the 8 exhibits some exceptions to those features. [pages 25-31]

A method of obtaining the spectra of disordered arrays is described.
The idea is to evolve (continuously or discretely) an ordered array
into a disordered array and to evolve the spectrum along with it.
Eigenvalue flow crystallizes into spectral trajectories . [pages 32-38]

The above perspective leads to a connection between the spectra of
ordered and disordered point interactions, which extends previous
work: The spectrum of a "typical” random system is the union of the
spectra of all "pure” systems formed from it. This is the central
result of the thesis. [pages 39-45]

Finally, these results easily explain the initial spectral experiments
by constructing , explicitly and elegantly, the relevant spectra (for
both 8 arrays and harmonic chains). [pages 46-55]



ldealized Experiments: Elastic Systems

Resonant frequencies of transverse (small) oscillations of a beaded,
elastic, massive string.

The experiment is to vary the mass of the beads and monitor the
change in the allowed frequencies of transverse oscillation of the
beaded string. This is depicted on the facing page (1-3). Notice that
M=0 corresponds to an ideal string, which can oscillate at any
frequency (1). However, for M>0, gaps appear in the frequency
spectrum (2-3).

Resonant frequencies of (longitudinal) oscillations of a beaded,
elastic, massless string.

This thesis began right here, with the experiment depicted opposite
(4-6). Begin with a "harmonic chain” (of beads connected by "Hooke's
law” springs) (4). Being a lumped system, it exhibits a
high-frequency cut-off. The density of states or d.0.s. is a smooth,
continuous function. However, continuously increasing the masses of
a selecied subset of beads typically has a dramatic effect on the
d.o.s.. sharp peaks and valleys appear (5-6). Abruptly, when the heavy
beads are twice the mass of the light bead, zeros appear in the d.0.s.
(6). (These "zeros” in the d.o.s. widen to gaps in the spectrum, if
arbitrarily long runs of light beads are eliminated from the chain.)
At still higher mass ratios, many more zeros appear in a

complicated and intriguing way. Where is the structure? What
is the pattern governing the appearance of these ~valleys~
in the d.o.s.? A formula was known (thanks to [Matsudae 1964]),
but it lacks the elegance of the understanding derived herein and
visualized in the frontispiece and endpiece.



typical segment of a selected DE AR SPECTIUMNis the set of atiowed frequencies
__;;_._.__ﬂfnq._ ;" ”———w—-—wl_—
® M>0
. AT A—— a— (a 5, )h—-—“—
W (a .S 'mm
typical segment of a diSOrdered : . spectrum
binary ‘and
@ harmonic | :d.o.s.
: \d.os./ i
e ; ot —»
1=M/m m M ’ :
R S— oo . M
1<M/m<2 m M
—&--4—-'—-——0—-—-0-—-—-.——-—.—-——0—5-'- :
M/m=2 m M e =2V /M

(a.s. = almost surely
= "typically”)
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ldealized Experiments: Electrons in a Crystal

Atomic array modeled as a "area"S >0
concatenation of repulsive ¥s. “point interaction”

t1, LY Lpud

1 atom 2 atoms 3 atoms
HNEENA IR

many atoms form an array

The experiment (1-4, 4-7 & 8-10) depicted on the facing page is to
vary the Lengths and Strengths of the array and to examine the
consequent change in its spectrum, or set of allowed energies.
Notice that strengthening (2) contracts the spectrum from
"below” while lengthening (3) "depresses” it.
Varying lengths (5 & 6) closes infinitely many gaps, but
subsequent strengthening (7) opens others (that are not necessarily

the same).
Even more interesting, varying strengths (9) typically has no

effect at all except, for example, when strengths are alternated
strong-weak (10), thereby splitting each band!

“area” =S >0
“pit potential”

Atomic array modeled as a
concatenation of attractive ¥8s.

1 atom ~ 2 atoms 3 atoms
| | S |

many atoms form an array

IEERERERNEER NN EE R R R R RN R EE R RN NEERRRN

The experiment (11-14) depicted on the facing page is (again) to
vary the Lengths and Strengths of the array and examine the
consequent change in its spectrum. ‘

Notice that strengthening (11) contracts the spectrum from
“above.” Varying lengths (13 & 14) closes gaps; a continyum of
lengths (13) leaves finitely many gaps, while infinitely many gaps
remain if the lengths are discretely scattered between, say, 1 of 2
possibilities (14).
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These systems share the same “kinky” property, and hence, under-
standing one (say, the 3) is understanding all.

Ty(0+) - Ty(0-) = F = My = - Mw®y

(beaded string) M
y(x) 2
V\ | V(0 +) - y(0-) = -Te-y(0)

%,E’E wheremskc,c=\/m
y(x.t) = y(x)cos wt

‘((y""?1 ;y") - K(Y,, - yn-l) = Fn =M.Yn=- mnw2Yn

(harmonic chain) y Sy, VoY, Yo-Y.. M.’
g N+ n _'n n-1 _ _ n
1B [ [ "
p A ANR
And also,

v () = y.CoS ut y(0+) - y10-) = (1- M) tan (5.2‘:-) v(0)

(Ax) = Y% ,) =y(hL) =y,
where =2 /% sin (—%)
(L ¢<A/2=>kL ¢ ).

2 JE
-

——-I— Hy(x) = Eg(x), H=-8%+ V()
: V() V(x)=sxx), s<O0 =

X 1 y(0+) - y(0-) = sy(0)




Historical Highlights

Two historical efforts (one originating in the mathematics
community and one in the physics community) presage the work
herein. '

Physicists have been concerned with the electric (and elastic)
properties of solids:

@Wm&www

e energy (frequency) band-gap structure of periodic solids

e general theory [Bloche1928]
e specific, solved, model [Krénig/Penneye1931]
® a gap common to 2 elements is a gap for all their alloys ¢

[Saxon/Hutner ¢1949]
e computer experiments (see [Deane1972] for a review)
& model-specific sufficient conditions
e KP alloy [Luttinger 19511
o KP liquid [Borland¢1961]
e general sufficient condition [Hori/Matsudae1964]
® general necessary condition [Halperine1967]

- from which one may extract: o(r‘andom)z Ua(periodic), where
the spectrum ¢ is the complement of the gaps.

Mathematicians have been concerned with the (spectral)
analysis of random (Schrédinger) operators:

@ spectrum of periodic and random operators

® g(periodic) is banded (see [Floquete1883])
e o(random) & T [Pastur+1980]
e o(random) = Ug(periodic) [Kirsch/Martinelli #1982].

--------------------------------------------------

For KP alloys and liquids (and their analogues),

¢ o(random) = Uo(pure) [herein].




The history of this subject is well documented in 2 monographs:

[Horie1968] summarizes the work of @ , although
there is no mention of [Halperine®1967]. It emphasizes
the "phase theory” method (which features a transfer
matrix in polar form) developed and exploited by Hori,
Matsuda, and colleagues.

20 years later,

[Albeverio/Gesztesy/Heegh-Krohn/Holden o 1988]is a
comprehensive introduction, synthesis, and summary
of point interactions, in the spirit of @ It is rigorous
and up-to-date, although it doesn't subsume the
previous monograph.

As a contribution to this history, I'd like to spotlight and compare
Hori's fundamental statement with Kirsch's; the 2 are clearly
related. [Horie1968] states, "If an interval of frequency or energy
lies in the spectral gaps for all constiivent regulsr systems, it
gives a spectral gap of the mixed system [subject to a nontrivial
technical hypothesisl." A constitvent regulsr system is formed from
a given system by infinitely repeating any finite segment of it.
Equivalently (but, for comparison, omitting extra hypotheses),

- The spectrum of a mixed array is contained in
© the union of the spectra of all arrays formed by
infinitely repeating each finite section of the array.

HOR

Contrast this with

The spectrum of a Lypical mixed array is [contained in]
the union of the spectra of all arrays formed by
% infinitely repeating each finite section of a Lypical array.

IRSCH

Thus, Hori's statement cannot refer to any particular array but
rather, like Kirsch's, must refer to a typical array. (A particular
array may, in fact, be quite exceptional~for example, pure.)
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i o (periodic) is banded: Why? .

This is usually understood as the "collectivization™ of atomic levels
into bands. Model the atoms as rigid (1-dimensional) boxes and allow
them to interact "at a point.” The energy level splitting is propor-
tional to the tunneling time (as indicated).

1 isolated 2 isolated 2 interacting
atom atoms atoms

In a real crystal of 0(1023 ) atoms, a single energy level of an tsolated
atom broadens into O(10%° ) levels whose spacing is smaller than the

typical inverse lifetime of the level and hence whose identity is lost.
(Recall, AEAL 2K )

"§

1 isolated
atom

(It is characteristic of point interactions that the band tops coincide
with the energy levels of the isolated atoms.)
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' o(random)agz Why? I

If Hy=-A+V,, isan "ergodic” Hamiltonian, then its spectrum o(H,)
is a fixed set ¥ with probability one. This can be understood as a
consequence of the "ergodic theorem” or, more simply, by the
following argument.

Consider a "random charge configuration™:
V(%) = Ya,(w)f(x -nLy)
n

f(x) = _U—

prob(a,=0Q)=F  prob(a,=a)=F  Q>g
va(x) U U U U U

Here's the key: "Almost all” realizations of V_, are the "same” in that
an arbitrarily long segment of a "typical” V, can be found (arbitrarily
often) in any other "typical” V,,.

(Similarly, "almost all” real numbers between O and 1 are "normal”
in that the digits O to 9 appear with equal frequency in any
sufficiently long sequence of their decimal expansions. This, too,
can be proven using the notion and machinery of “ergodicity.” For a
brief introduction to ergodic theory and physics, examine
[Reed/Simon #1980].)

Over 20 years ago, [Lifshitze1964] coined the term "self-averaging”
for the idea that the properties of disordered solids should hold with
probability one. :
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S.

o(random) = Uo(periodic) Why? co=cut-off

nbr=neighbor
per=per iodic

This can be understood by the following arguments.
® show : g(random) o a(periodic) o g(periodic) [Halperine® 19671
e e o(periodic) = e e g(random)
(hint : FIND arbitrarily long truncated periodic in random)

{typical random)
h=-A+v hy, =e¢ H=-A+V Hy =ty '
A FIND o
NVV\W Y 2V V2 NI
e ¢g°=§q(EcE

| - oot =
(€ =) ot~ - ) T s B - - o

= |E™ -e|<e  (and so on)

¢ show: g¢(random) c Ua(periodic)
E € o(random) = E € o(periodic)
(hint : truncate random and repeat to FORM periodic)

(typical random)

. »
---------- *’

ooty = -] cefo]

v o
E /\/ W‘;er = §$ece

atom A atomB E

U = [e™"-E|<e (and so on)

21 pery? er|| 2 per 2
(e -E) o] <fn - o < ]
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} The Dirac Delta: 3 I

Take

2

Hp(x) = Eg(x) Ha-%ﬁW(x) p=-ihd V() =s8x) =
2

- A1) + SHXW(K) = Ev(x)

to mean

“2
“oml¥l+ st - O] (x=0),
[¥]=0

where the "jump” of f(x) at x,is

[F(x0)] = (%o *) = F(Xo ) =1im (f(x o + £) - (X, - €))

{0

2

Or, by "renormalizing” the strength s, s - -2’-%5, take

m:g“’}(x -0) & N\ N\ \x=0).

<4—>
A= 2:/1/E

The spectral properties of H are then easily inferred. The

eigenfunctions v, together with the eigenvalues E (which form
the spectrum o), are indicated below (for fixed strength s).
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15<0

»m

=0

0<s;:

For each O«<E, it is easy to construct suitable (kinked-sinusoidal)
eigenfunctions. For E<O, there is only a single (kinked-hyperbolic)
eigenfunction with s=s5,<0 , such that

V y_=v,
X=0 = {W,‘Woastt

{ A_=A,

-2vEA, =5.A,

=[5y =-2V-E |-i2k.

s_ sets the strength scale of the model. It is the 3 strength needed
to bind a particle of energy E. It will appear often in what follows.
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’ Qualitative Node (or Phase) and Amplitude Shifts: N &A '

It will be important to understand the effect of a 3 on the wave
function. Below, the sinusoid to the left of the & is fixed. As the 3
moves one half-wavelength, left-to-right, the sinusoid to the right
adapts so as to satisfy [y] = s¢.

The band edge wave functions are critical to what follows. Here,
they are identified by zero amplitude shifts and distinguished by
extreme (max or min) node shifts. Compare the s-dependent band
edge wave functions. Note how the attractive (s<0) 8 attracts the

nodes, while the repulsive (s>0) 8 repels them.
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Here's a closer look for repulsive 8s. Fix s> 0. Fix Y(x <x,).
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Quantitative Node (or Phase) and Amplitude Shifts: N &A,

Fix s>0. Fix ¢(x <x,).

A Shifts:
va —H e Ng=N-2/2
Agm A= A
Al
- (‘A"“)
\/O) >x
Asin kx  x<x (xa/2)
w09 =1 . ° VE -k=2Z
- A’sin k(x - N) Xy SX A

Thus, in particular, to the right of the 3,
WX <Xy) =~ A’sin k(x - N)
-+ Asin k(x =N ) N, =N-2/2
= A’sin kx cos kN~ A'cos kx sin kN
But also, from above,
W(x $%,) = Asin kx + %w(xc)sin k(x-%,)  w(x,) = Asin kx,

S . : - .§... i 2
wAﬁ + g sin kxbcos kxa)sm k% Ak sin kxbcos kx

- 5in kx A(1+ Wsm 2kx ) cos kx A (1 cos 2x,),

where
A'cos kN = A(T+ %sin 2x ) A’

A'sin KN = A~——(1 cos 2kx ) N

)

A1+ %sin 2kx,)

(xnz 500 -1 )%y



e ] G
Thus,

A A’ 2

—A-§+1=—A—=\/(1+-§<-sin 2kxa)

1-cos 2kxa

2k .
S +sin 210({5

+ (—2§k—)2(1 -cos 2k><6)2

tan kNS =

Or, with s/2 = |¢| = tan(x/2),

A . 2 2 2

-Ks- =-1+ J(l +|g|sin 2kx, )"+ |#]"(1- cos 2x,)
1-cos 2kx6

tankNg = —— (for 5>0 and s<0).
El— +5sin 2kxb

The condition for the amplitude to decrease will be important later:

02A, & 135>0 =

"2

12(%)

02 sin kxa(cos kx, + I#lsin kxb)

= (1+glsin 2k><a)2 + 12‘42(1" cos 2""5)2

sinkx ,20 = -cotkx 2 8| = tan(lz'—é)
-cot(kx,\+—2’£) =tan kx, where xAsxb-%
= tan(kx,) z’tan(-’Q‘— ). §>0

= kxAz—2’53>O or {7’-‘4—2§>0.

And, in general,

| A
Ag<0 = |Zalalsl.

For the amplitude to decrease, the distance (in quarter wave lengths)
to the nearest maximum must be at least the (normalized) strength |§].



[ Propagation of ¢ Through a 8 Array: Kinky Sinusoids I

Hip = Ey means [¥] =0, [W] =Sa¥. at X, |
Hu-a+ }n:Snb("Xn) v=Asin(vVEx +4), else

Thus, if 0=5=(...S, ),

o (x) = 9, (O)cos kx + qro(O)ﬁi%m’-‘u’»‘- k =+E

¢ $

magnitude & slope
at origin specify sinusoid

If s#0,

S, .
WS(X) - \bo(X) + Zx__k_-‘kg(x n)SIN k(X - xn)f
or
W (X <) = U (X <Xo) * 2 (Xo)Sin k(X =~ x,),

/A VA / N\
N
SO AVAV,

V .




Regular KP models (= pure 8 arrays) are characterized by the two
parameters, Strength S and Length L:

Tl L]

Hy=Ey H=-A+V V=sys(.-nlL)

Changes in the parameters s and L change the KP-spectrum in
crucially different ways.

k=VE k=VE
A
t—-’S —an

! Eug

Among random KP models,

101
! ‘l

Hgp=E¢ H=-A+V V=Ys5:3(--x%,)

(where s &L =x_,, -%, are randomly chosen ),

there are

e KP "liquids,” where the strength is fixed and the lengths vary
(4 /2 a "snapshot” of a liquid) and

e KP "alloys,” where the strengths vary and the length is fixed.
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{ GROWING an ORDERed 8 Array I

The next three pages construct the 8 array (=KP) spectrum in a novel
way. The idea is to "grow"” the spectrum ¢ for arbitrary 8 strength s
from the extreme cases s=-<=,0,+e0, by continuously changing s and
observing the consequent changes in the sinusoidal (or hyperbolic)
wave functions.

¢ 'he spectra of the limit cases are

o(s =0)=R" (doubly degenerate)
=0(- A)
= energies of a free particle

0(s =1 %)= (M{i)z =R" (infinitely degenerate)

=energies of single particles trapped in
rigid boxes of sizes ML.

¢ Crucial to the construction are the "bifurcation sinusoids,” such as

: 0

\ ,/7KT\\ /7xf\\ /<7< 2 L
X/ \\><L/ \Q>i/¢ e

\ ’ ~ 7 X —%>5>0
Ay D A-
s M E+
, L<EC
+ 52-°

2d=a,>r-=L

T 2 2132
(B) =E.<E-=(FF)
e|t is convenient to work with the dimensionless wave number

(- l__ +4/+E E>O
T - +/-E E<O.
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! Exact Bands from Form of Band Edge Wave Functions I

o
§‘-g3 5 Hi

& 31
B e B

s -~ (300t (59

4/rnp nl
Saor(—f )coth(é-)
2 e
e
_O>T—k=
-24/-E =
Sample s-dependent band edge calculation: » S
oo, x=0
f (2) f » X Vv.-¥_=5¢,
-+ %o L ¥, =Asinkx,
Xo+L+x,=n 2 =kx,=nZ - %q " |2&Acoskx,=sAsinkx,
¥, =Asin ket x+x _ 4 rpy(tamy xe
t ( 0) as_%cotho_tf(—z—k)( J(:?-k)



Pure 8 spectrum
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} Natural Parameters Describing a Pure 8 Array l

»~

® parameterize £ K

For E>0, the [real part of the] KP wave functions are "kinky sinusoids”
and hence define a local wavelength A =2n/k = 2x/vE. Also, in a pure
8 array, there is only a single length scale, the separation L. These
suggest defining the dimensionless wave number

o _ L L L
ks*i-ﬁ’—fk-m E€>0).
Note that

O=k-1 & o--»E-»(T_’S)Z

and so on. Geometrically, for E>0,k is the number of half-wavelengths
(or "lobes”) in a length L. For example

A

® parameteri

A natural strength scale is set by the strength needed to form a bound
state of energy E<O:

Sg=-2V-E <0

Generalize this to E>0 and parameterize the dimensionless ratio s/ Sg
by

Tay o S 5 .
tan(-fs) gl 2\/"8_2? where sg=i2vE .

Note that

-128 2 +1 & -0 35 2400,

Note also that § depends on E.
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In the (&,k) representation, each "Brillouin zone” (n<k<n+ 1 n eM)

appears identical and both band edges are straight lines.



lThe Delta-Prime: & '

Take

2
Hyp(x) = Ep(x) H= "%ﬁ' +VE)  pe-ih V(%) =SBX)

to mean

[b] =sV
(x=0) & #0),
[w] -0 }" AVAYALLS
r=2x/VE

where the "jump” of f(x) at x, is

[F(xo)] = (X0 +) = F(Xo =) =Tim (f(x;+ ) - f(xo-€)) .

€l0

The spectral properties of H are then easily inferred. The
eigenfunctions v, together with the eigenvalues E (which form
the spectrum o), are indicated on the next page (for fixed s’).

REMARKS:

e The & can not be understood as the “derivative” of the &
and hence can not represent a “point dipole.” (According to
[Gesztesy 19881, the early intuition that motivated its name
proved incorrect.)

e An exhaustive and rigorous analysis of the & can be found
in [Gesztesy/Holdene1987].




& m

0<s':k
\

For each O<E, it is easy to construct suitable (broken-sinusoidal)
eigenfunctions. For E<OQ, there is only a single (broken-hyperbolic)
eigenfunction with s’=s’, <0, such that

¥ )= AeVE
‘V-"‘Ve
"’0"’{m~w--sw,
V-EA =-+/"EA,
- 12At=+s'BA21/-E
e o2 |2
B /_E k

s’y sets the strength scale of the model. It is the & strength
needed to bind a particle of energy E. ’
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] Propagation of ¢ Through a & Array: Broken Sinusoids '

Hy = Ey ):, eans {[‘”] =5,y [¥] =0, at x,

H”“A*;s'nb'('”xﬂ ¥ =Asin(vE x +4), else

Thus, if 0=5"=(...,5,,...)
W, (%) = ¥, (0)cos kx +y,(0) Sink kX o E

¢ s

magnitude & slope
at origin specify sinusoid

If 5= 0,

W, (%) = 4, (x) + ¥ 50w, (%,)C08 K(X - X,),
K< X
or

Uy (X <X ) = W, (X <o) + S0, (%o)COS k(X =%,),

which facilitates the construction of solutions like:

S EAWA
VARV IV,

L
0<¢sl \

REMARK: The above 8 solution ¥, may be obtained by
differentiating the corresponding 8 solution ¥s (see above)
and exchanging primes and unprimes:

yrofd=yofd




’ GROWING an ORDERed & Array I

In the following pages the spectrum of a pure & array is constructed
by "growing” it from obvious limit cases. The procedure is the same
as that used for the pure 8 array (see above), but the construction
reveals several unexpected features of the spectrum. In particular,

note
ethe unusual behavior of the band "widths,” and

ehow eigenfunction degeneracy closes the first gap.

Also, recall that ﬁs_l;r-

g} ++/+E E>O
-+/-E E<O.



Band Edge Wave Functions "Grown” From Limit Sinusoids and Resulting Schematic Spectrum -




Exact Bands from Form of Band Edge Wavefunctions
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I GROWING DISORDER '

As a first step to understanding the spectra of disordered sytems,
many authors have studied the effects of defects on otherwise
ordered systems (see, for example, [Bacon/Dean/Martine19621).
Qualitative descriptions of such spectra are easily obtained by the
technique of "growing disorder.” This heuristic perspective has
guided my thinking throughout my research and made possible my
major results. It is described below in detail but briefly, the idea is
to transform an ordered array (whose spectrum is known) into a
disordered array (whose spectrum is sought). The trick is to
transform its spectrum along with it.

There follows:

® an introduction to "spectral trajectories” (or "modal curves”)
(and a side-by-side comparison
of the 8 array
and
the harmonic chain)

® a set of rules constraining spectral trajectories
(which account for their usefulness)

® two illustrations
(one each of
continuous
and
discrete
growth).



Spectral Trajectories for §arrays

Consider a pure & array and its spectrum. (E,s) - (K, Q)Z
o B S N - 1%L %/
s 1P rhrr e k*‘-——-—-,;\/?g

= Y Gr/D)? s x é
5 =tan( é) 7
desé;i%rd ‘ B' 2 {/’/;
*natural® OVE -2k Ay %
/ deSCﬂptlon |S ! = = = T %
E 5 (for E>0) R7 %
(2x/1)
(v0)? % Bitlouin g
zone
»0 S -1 &
i
I ’//
s = 2+/F tan [-g;s ,?;
e
with E>07%
single .
Briliouin k
zone
5 5

The curves above are lines of constant integrated density of states.

If the potential array is finite and consists of N 8's, then there are N

such spectral trajectories . The nth one from the bottom is the nth

energy level of the array as a function of the 8 strength s
H(sw(s)=E(s) y(s).

P(s) and E(s) exist for each s, and ¢ and E at a first s flow smoothly to

¥ and E at a second s. This can be construed to follow from the

quantum adigbatic theorem, which says, to paraphrase: In the limit of
"slow” change, once in an eigenstate, always in an eigenstate.



and Harmonic Chains I

Consider a harmonic chain and its spectrum. (mmm-) - (kM)
gt‘.‘e".‘,.ﬁ’."‘.ﬁ‘m& W = mmaxsin %k)

- - (=)
where wq .= 2‘/%—

N
=
QR
5»
A

“natural” 1
description k
- M/m <0 0° /o
(e >M2m)
-
M m t TR %
M an (7‘ ) %
i e B ——— %
GRTEnY
4/’
where M/m> 1 /,g

Vo)

1-M/m M
The curves above are lines of constant integrated density of states.

If there are N masses in the chain, then there are N such spectral
trajectories . Each trajectory is also a curve of constant action :

. . " : E energy
= t = O e B e &
action =("area”of phase space orbit) §pdq & = frequency
The action is an adiabatic invariant : "Slowly” changing the mass ratio
M/m changes the energy E and frequency w such that their ratio E/w

remains constant. (Note the classical-quantum correspondence.)
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A spectral trajectory

(or "modal curve”)
is constrained by

four simple rules.

r

sor M
limit (® =0  (free particle) y&a(=K= %1/'5)
cases »’( §=1l ) (disjoint , rigid, boxes) | are obvious
S =4 o
. nondecreasing S >0
growth f' monotonicity {nom‘ncreasing §<0
lemmas _® increasing [decreasing] & strength(s)
either
unperturbs a trajectory
or

raises [lowers] it,
the change being bounded by
the original next higher [lower] trajectory

The growth lemmas are suggested by the following ideas.

e perturbation theory

Sl
N A1 11— IISIII

%s

H=H+W
E'~E + (¥W/W|¥)=E + As (% )| g
where AS=S'-5

® level repulsion 4

The eigensolutions

of a (finite) 1-dimensional array
are “unique” (=nondegenerate)
and hence there is

no crossing //,’: T

of levels. >

E




o
® o

Gif— Wi
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! Continuous Growth lllustration l

Consider a KP liquid and its spectrum (see facing page). Imagine
slowly increasing the 8strength s from O to . The eigenenergies
must increase (or remain unchanged), but they cannot cross (as they
are nondegenerate). Hence, they flow en masse to higher energies.
The flow is nonuniform. The eigenenergies bunch up in some places
and thin out in others. Eventually, the flow "chokes off" as zeros
appear in the density of states. Then the opening of gaps tears the
spectrum apart.

(The integrated density of states for a finite array is

umber of states number of
NE)=| with energy <E ]/L ~ (zeros of wg]/"’

For an infinite array,

N(E) =lim N (E).
Ltes C
The limit is known to exist and to be a.s. a nonrandom continuous

nondecreasing function (see [Pasture19801). The density of states
is simply dN/dE, where it exists.)



s> 0

sl




Consider a KP-alloy: _| | 1 ILS”I I ’ ] !
(5,20 or s <0 &E>0)

The spectrum of a typical mixed-strength, fixed-length 8 array is the
union of the spectra of all possible pure 8 arrays formed from it.

~o(mixed -strength ) & Jo(fixed -strength)

Key: s-independent band edge ¥ [“"“J . l”"‘l LW\{. l"’“"J :

Know: o(random) 2 Uo(periodic) 2 Uoa(pure)
Need show: o(random) & (Jo(pure)

In fact:  o(random) € o(s7,) = Uo(pure)  where s, =min{s }

ldea: "Grow" the random array from the s  array, and "grow" the
spectrum along with it.



This is illustrated below with repulsive 8's.

S, | O I O O O

innaann = el fed el bl B L]
0(52) <9 (57)

e

ST L= ol ool feed e #— 18 L ]|
o(random) ¢ o(sT’) ) R ) 32>sj=smm=min{s‘,s2}

The spectrum contracts under these continuous transformations as
the growth of the repulsive &s raises the energies of some of the
wave functions but not through the energies of the s-independent
band edge wave functions that don't "feel” them.

The first illustration above can be understood as the
aforementioned monotonicity of o(s=) with s.

The second is the insight that clinches the result.



REMARKS:

®The conclusion is actually
as. o .
o({Sn}) = 0(Sqy). where s = min{s.},

which can be found in [Kirsch/Martinelli®1982]. (Although it is the
above, new, formulation that generalizes; see below.) Thus, for
example, altering a fraction of the 8 strengths in an array doesnt
(typically) alter the spectrum!

e The above argument hinges on the point nature of the interaction.
In fact, the result is false for the next simplest interaction, namely,
the “finite square wells” and . See [Kerner¢1954],

=)

e However, there are generalizations:
® [Gesztesy/Holden/Kirsche 19881 handles arrays of mixed

attractive and repulsive 8's,s §0.
® [Kirsch/Martinelli ¢1982] considers generalized

interactions, 8-—f,

® The argument implies a(mixed) < Uo(fixed)
= E ¢ o(mixed) = E € Ua(fixed)
= E ¢ Uo(fixed) = E ¢ o(mixed)
= E e Np(fixed) = E € p(mixed) where p=o=R-o0.
Essentially, this is the seminal conjecture of [Saxon/Hutnere1949].

® An atypical realization of “random” is s%. But a(s;)p c(sT) and
s,>s,. Hence, the "a.s.” in o(random) % o(purey.
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Consider a KP-liquid : l ! ! l Ln ]S ' I
(s>0 or s<0&E>0)

The spectrum of a typical mixed-length, fixed-strength 3 array is the
union of the spectra of all possible pure 8 arrays formed from it.

o(mixed -length ) & |Jo(fixed -length )

Key: s-dependent band edge ¢ 1 | 1 | | |

Know: a(random) = Uo(periodic ) 2 Ua(pure)

Need show: Ua(periodic) < {Ja(pure)
«= o(periodic) S |Jo(pure) (v periodic)
<= [ € o(periodic) = E € o(pure) (v E) (Vv periodic) (g pure)
ldea: For fixed E, state with highest s is an s-dependent band edge.
The argument below demonstrates, by explicit construction,

that a point in the spectrum of any periodic liquid is contained
in the spectrum of a pure array.
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For any spectral point (s, k) in the s-k plane of a given periodic liquid,
here is constructed an s-dependent band edge wave function that
passes at greater s, and hence below, (s, k), and thereby defines a
spectral"wedge” containing (s, k).

Fix E (hence A). Choose 5>0. Pick a point in the spectrum of the liquid.
The (real part of) corresponding wave function is a kinky sinusoid. (in

the drawing, vertical lines = 8s and horizontal lines = amplitudes.)

® LOCATE a "local maximum® = interval characterized by "amplitude
of (center) sinsuoid is at least that of adjacent sinuocids”. (why?

Consider ¢ as stee.)

® FREE it and its adjacent sinusoids from the array. Only 2 &s and 2

kinks remain. At both &'s, the condition for negative amplitude shift
is satisfied (see above).

¢ SYMMETRIZE by translating the center sinusoid. Adjacent
sinusoids adapt so that the adjacent amplitudes
® equalize at an
@ amplitude not greater than the center amplitude
as the condition for negative amplitude shift is still satisfied.

® EQUALIZE the adjacent amplitudes by increasing s (and hence
deepening the kinks), while holding the center sinusoid fixed.

® REPLICATE the center cell. The result is an s-dependent band
edge wave function
@ of a pure component of the liquid
® that passes the chosen spectral point at greater s.






REMARKS:
® This result is new. A similar argument should work for the & model.

® Since the spectrum is a closed set, and an infinite union of closed
sets need not be closed, it may be necessary to close the union of

pure spectra when forming the generic random spectrum. That is why
there is a closure in the statement,

a(random) = Ye(pure) .

® For the binary harmonic chain (which is, of course, an "alter ego” of
the attractive s<O KP liquid), the “pure components” are chains that |
call “lightweights.” They are of the form,

(Mm™)~ where n € {0,1,2,..}.

Periodic with one heavy mass-per-unit cell, this family of chains
systematically lightens to an all-heavy chain and systematically
"heavies” to an all-light chain. The lightweights are fundamental

constituent chains in that any mixed chain is a concatenation of

lightweight chains.

- MMMMMMMMEmMMMMm -~ = - (MMM ) (MmIXMm)° -



ectral nstruction

On the following pages, the
spectra of various 3 arrays
and/or harmonic chains
(including those of the
initial experiments) are
constructed simply from
the spectra of their pure
components.

The construction
utilizes the major
result:

Uo(fixed -length) 2 a(mixed -length ).

Special attention
is given to the
complementary
“resolvent” or

“gap” sets.
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l Construction Guideline I

O _s>0)

As a warm-up, and to introduce the style of presentation, here

is a pure array, its spectrum (="bands”), and its complement
(="gaps”). The complement is presented twice, once in (5,k)and
once in (s,E). Gaps open only at 5=0.

(2) (L=, L,=2L, s>0)

Two simplest commensurate lengths. Gaps open at 2 values of s.

@(L,-?_LO L,=3L, s>o)

Two commensurate lengths. Gaps open at 4 values of s.

(@ (L-t, L,-v2L, 5>0)

Two incommensurate lengths. Gaps open at infinite values of s.

Compare with (5).

@(Le Lo vV/2L,] s>o]

A continuum of lengths. Only 3 gaps! Compare with (4).

[L.,=L0 L,=2L, L,=3L, s<o)

no more than 3 consecutive
Of(” 2m & m's anywhers in the chain

Finite gaps. Compare with (?). The*sgectrai complement is
presented twice, once in (8,k) or (M,k) and once in(M/m, w2).

@(Ln=nL (n el s<0)
or (Fizm )

Infinitesimal gaps. Compare with (6).
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M2m
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‘Spectral “gaps™
.open at:

(elor FLER) = (414 LB+ )

see
‘where next
j = [01’1329--- page
‘and % is irreducible.
2

I ——————) (2

(Compare with [Horie19681)  j=0
<4— 1-M/m -1 0




Fag

-1 M 0
This is the elegant structure underlying the intricate way in which
density-of-states zeros (or spectral "gaps”) appear as the binary
harmonic chain mass ratio is varied. Each line represents a
density-of-states zero. The intricacy, but not the elegance, was
observed in one of the initial experiments.
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f Afterword l

| began 3 years ago wondering if there was any simple structure
underlying the complicated appearance of zeros in the density of
states of the binary harmonic chain. | found it, but in so doing my
research had to encompass the famous Saxon-Hutner conjecture
concerning the robustness of spectral gaps in ordered and disordered
systems (on the physics side) and Kirsch's elegant expression
relating the spectra of ordered and disordered systems (on the
mathematics side) and, indeed, to extend them.

Although this success is satisfying, the thesis contains some loose
ends. In particular,

® |t does not address the special case of hyperbolic wave
functions (involving attractive 8s and negative energies);

® |t does not consider mixed attractive/repuisive & arrays;

® |t does not consider generalizations to nonpoint interactions.
With respect to the latter point:

Using transfer matrix techniques it is easy to show that,
for a fixed energy, an arbitrary (1-dimensional) potential
well can be characterized by 3 parameters, "strength,”
“extent,” "location,” and hence can be represented by a 8.
There follow several Saxon-Hutner-type results for
arbitrary potential- wells.

Also, the results herein should hold for sufficiently small
energies (= sufficiently large wavelengths) if the point
interactions are replaced by arbitrary potential wells of
sufficiently small width. (Specifically, if the widths are
much smaller than the free particle wavelength, then the
wells appear pointlike to the particle.)

Finally, while there is hope that the results herein generalize (to
more realistic models), the techniques do not (except in broad
outline).
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