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Foreword ~ 

Physics is the mathematical modeling of nature.* Simple, exactly 
solvable models are important because they provide orientation and 
intuition in more complicated (and more realistic) unsolvable 
models. I have examined and have tried to understand the behavior of 
certain idealized models of disordered systems. Also, I have tried to 
see-and elucidate-things in a fresh and novel way. During the 
course of my self-education, I have 

uncovered much; 
recovered (in my own way) things elsewhere known; and 
discovered things heretofore unknown. 

If, in my research, my primary motivation is learning, then. in my 
writing, my primary motivation is teaching. Consequently, I have 
been (and am) very concerned with the presentation of my research. 
The unusual graphic style of my thesis reflects the visual nature of 
my thinking. I don't yet know if this experiment is successful. 

I thank Professor Barry Simon for supporting me during the 3 years 
of my research, and also his students: Bart Huxtable, Kris 
Odencrantz, Clemens Glaffig, and Aske II Hardarsson. I also thank 
Professor F. Gesztesy for comments and advice. Teaching has been an 
important and rewarding part of my experience here at Caltech, and 
in that I have enjoyed the company of Michael Cross, Sam Finn, Steve 
Frautschi, Bart Huxtable, Randy Kamien, Michael Kovari, Mike Morris, 
David Politzer. Tom Prince, among others, and especially my many 
students. I thank my new friends, Steve and Liz. Special thanks is 
due my family: Florian, Mary, and Jim. 

And, of course, K & D. 

* It's also fun. 
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Abstract I 
As is well known. the allowed energies of periodic electronic 
systems and the allowed freQuencies of periodic elastic systems 
form banded sets (at least for certain idealized models). Recent 
work. by Werner Kirsch and others, demonstrates that this band-gap 
structure persists in disordered versions of these periodic systems. 
Here, I extend this result by showing that for specific ·point· 
interactions. the spectrum of a generic disordered system 
is the union of the spectra of all possible puce systems 
formed from it. This permits the explicit construction of these 
spectral sets. 

This result is the outgrowth of a perspective I call "growing 
disorder ... The idea is to evolve. or "grow," an ordered array (whose 
spectrum is known) into a disordered array (whose spectrum is 
sought). The trick is to evolve the spectrum along with it. The 
approach is very visual, lends itself readily to graphical 
presentation, and accounts in part for the unconventional but 
appropriate look of this thesis. 

The unconventional style also reflects an attempt to make the 
material easily accessible to a physics audience. It is inspired by 
the way in which physicists informally communicate ideas, namely, 
with words and pictures in front of a blackboard. Each page, or set of 
facing pa_ges, of text and graphics is a unit to be assimilated before 
proceeding onto the next unit. There is, thus, no unique path 
through the thesis. 

An intuitive and straightforward approach, constructive proofs, an 
informal style, and some ingenuity simply communicate the ideas 
herein. However. the condensation inherent in. the graphical 
presentation demands significant reader engagement! 
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AniaCocJue 

Q: Why ts 9GSS kAnSpGl'eni.7 ti's A£wa.ys puzz(atme. Af• Att, 
Q. wt.ncCow pane is just f.18 soUr£ f.18 Q. wooden. d:esi... 

A.: Tn.ae, &u.t ~ atoms awe ~ empt, spac:e, a.net IJ(ass a.net 
wood, awe &olb maae of Atoms, you, muj1.i &euer asft.: Wl'iy 
tsn.·t wooc£ tra.nspa.nn.i.7 

Q: °"• &u.t wfK:a.t 's tfle t:Uf fenr,m::e? Wl'iy CH"e some tfauuJs 
tra.nspa.nn.i. a.net odiers opaque? 

A: Quon.tum t&eory pnwides one Q.11SWff. Tfle aUowat electronic 
....-ljies of a. .-a:JIIUM' soU4 fo.-m &rmcfs sep;rm.ta£ &y cpps. At 
f'oom tempa'At1.We, ~. dw.-e is an ....-9' &GOW' wnidi. 
• [a,ds -- filla£ am£ above wflidl. AltCH"e empt,. 1.f this 
....-9' is t.n. a. &Gnc£, t&en tfle sotu£ is opaque. 1.f it's a.ta. &Gnc£ 
top am£ tl,e next IJIIP is l'anje, it's tra.nspa.nn.i.. 

Q: 1.aon·i follow. WfMJ? 
A.: Considet' a. vtsifie-a.,..t pnoton. Tab Us enenJ1J to fJe 1 eV. 

11,e pnoton con, 1.nta'aet wt.th die soUt£ ant, &y exc::tti.ncJ the 
top deanms. But i.f dw.-e's G IJIIP of seva-a£ ell, as is tl,e a:ase, 
Jo.- example, wt.th 1Uamonc£, tften. no excttaiton is possib(e. 

Q: 1, see-tfae ont, AUowed. exeUa£ states awe too 11'IAflY ell's 

a.wGY· 

A: yeah, so tfle pfloton doesn't 1.nta'At;t a.nc£Pf.18SeS f'UJh,t thl-01.KJb. 
Tfla.t's wfMJ c£iamonds CH"e t:ra.nspa.r"eni.. 

Q: Hmm. 1fmt. 's ~. fN.t IJ(ass isn't a.~ soU4 Wte 
d:iamonc£. ti's a. "1aonierat soU&, afu.n. to a. Uqu.u.£. 

A.: \jov,'re rUJht,. Ana so my simp(e aw~ wouW fKaa 
down fo.- lJ(ass, exa;ept. tnat ra::ent worft. i.ndu:a.ta that tfle 
~ 6Gnc£-cJA,p st:a-1.dUl'e of ra:JIIUM' 9°'tds is quite ro&ust 
am£ fflG1J persist in ,Uson£era£ soUds. 

Q: 1.'c£ Wte to hea.r more •••• 
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Long Contents /Overview I 

The starting point is a series of (computer) experiments involving 
idealized models (namely, harmonic chains and 6 arrays) of selected 
physical systems that allow parallel mathematical descriptions. The 
results are interesting, even surprising. The goal is to understand 
them as simply and as transparently as possible. [pages 1-5] 

This understanding has its foundation in history. The relevant 
previous work is highlighted . The 3 most important results (which 
concern the spectra of ordered and disordered operators) are first 
stated and then elucidated by heuristic arguments. [pages 6-10 J 

The~ is the best-known point interaction. Here, it is defined by, and 
analyzed in terms of, its effect on wave functions (which are 
arbitrary superpositions of eigenfunctions). The ordered array (or 
KP) spectrum is continuously evolved, or grown, from simple limit 
cases, and is parameterized in a natural way. [pages 11-24] 

A related, but less well-known, point interaction is the 6'. While the 
6 exhibits many canonical features (of more general interactions), 
the 6' exhibits some exceptions to those features. [pages 25-31 ] 

A method of obtaining the spectra of disordered arrays is described. 
The idea is to evolve (continuously or discretely) an ordered array 
into a disordered array and to evolve the spectrum along with it. 
Eigenvalue flow crystallizes into spectral trajectories . [pages 32-38] 

The above perspective leads to a connection between the spectra of 
ordered and disordered point interactions, which extends previous 
work: The spectrum of a "typical" random system is the union of the 
spectra of all "pure .. systems formed from it. This is the central 
result of the thesis. [pages 39-451 

Finally, these results easily explain the initial spectral experiments 
by constructing , explicitly and elegantly, the relevant spectra (for 
both 6 arrays and harmonic chains). [pages 46-55] 



Idealized Experiments: Elastic Systems 

Resonant frequencies of transverse (small) oscmations of a beaded, 
elastic, massive string. 

The experiment is to vary the mass of the beads and monitor the 
change in the aJlowed frequencies of transverse oscillation of the 
beaded string. This is depicted on the facing page ( 1-3). Notice that 
M=O corresponds to an ideal string, which can oscillate at any 
frequency ( 1 ). However, for M>O, gaps appear in the frequency 
spectrum (2-3). 

Resonant frequencies of (longitudinal) oscillations of a beaded, 
elastic, massless string. 

This thesis began right here, with the experiment depicted opposite 
(4-6). Begin with a "harmonic chain" (of beads connected by "Hooke's 
law" springs) (4). Being a lumped system, it exhibits a 
high-frequency cut-off. The density of states or d.o.s. is a smooth, 
continuous function. However, continuous I y increasing the masses of 
a selected subset of beads typically has a dramatic effect on the 
d.o.s.: sharp peaks and valleys appear (5-6). Abruptly, when the heavy 
beads are twice the mass of the light bead, zeros appear in the d .o .s. 
(6). (These "zeros" in the d.o.s. widen to gaps in the spectrum, if 
arbitrarily long runs of light beads are eliminated from the chain.) 
At stm higher mass ratios, many more zeros appear in a 
complicated and intriguing way. Where is the structure? What 
is the pattern governing the appearance of these ·vaHeys" 
in the d.o.s.? A formula was known (thanks to [Matsuda• 1964]), 
but it lacks the elegance of the understanding derived herein and 
visualized in the frontispiece and endpiece. 
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typlcal Mgment or a~ beaded spectrum. the •or allowed frequenciea 

M>O ------•------•-----••- (a.s.,-.----------
------•--•---•-- (a.s.-------------

typical segment o, a disordered 
binary 

© harmonic 

• • • • ◄• ► • • • 
1=M/m 

® 

• • • • • • • 1 <Mlm<2 

® 

• • • • • • • M/m=2 

• • m M 

• 1C. 
m M 

• 1C • 
m M 

(a.s.>: 

(a.s.)· 
0 

d.o.s. 

ispectrum 
land 
i d .. o.s. 

002-. 

(a .s. • aJmost ~urely 
= "typica11y") 



-3-

Idealized Experiments: Electrons in a Crystal 

Atomic array modeled as a "area" s > O 
concatenation of repulsive 6·s. "point interaction" 

2 atoms 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I J I I I I I I 
many atoms form an array 

The experiment (1-4, 4-7 & 8-10) depicted on the facing page is to 
vary the Lengths and Strengths of the array and to examine the 
consequent change in its spectrum. or set of allowed energies. 

Notice that strengthening (2) contracts the spectrum from 
"below" while lengthening (3) "depresses" it. 

Varying lengths (5 & 6) closes infinitely many gaps, but 
subsequent strengthening (7) opens others (that are not necessarily 
the same). 

Even more interesting, varying strengths (9) typically has no 
effect at all except, for example, when strengths are alternated 
strong-weak ( 10 ). thereby splitting each band! 

Atomic array modeled as a 
concatenation of attractive a·s. 

2 atoms 

"area" -S > O 
"pit potential .. 

3 atoms 

many atoms form an array 
1 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
The experiment ( 11-14) depicted on the facing page is (again) to 
vary the Lengths and Strengths of the array and examine the 
consequent change in its spectrum. 

Notice that strengthening ( 11) contracts the spectrum from 
"above." Varying lengths ( 13 & 14) closes gaps; a continuum of 
lengths ( 13) leaves finitely many gaps, while infinitely many gaps 
remain if the lengths are discretely scattered between. say, 1 of 2 
possibilities ( 14). 



.o/.P.1<?,1. ~r -~-~ ~-'~ .. ,,9m~~. ,~~~Y. .... ~P~~~r~m = ~~-~-~~ .'?!. ,1~~~-~~~!~ ..................................... . ·0.·········· ........................................................................................... •.,•········· ............................................................................. •.,•································· 
: : 1 =I=•= t f J =1 = t l f I= rt= I=•= 1= l l =t= t l J= =I=:= T = = = = = = = = = = = = = = =: = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =: =::: = = = = = = = = =: = = = = = = =: =: =: =: = = = = = = = = = = = = = = = = = = = "· " • " " " " " " " • • " " " • •" f I " " " ' 5 $ f t " " f I f i f 5 I 5 " f f " " I t 1 5 F " 3 f 7 I 5 I ! i i 5 t I t t t 1 1 1 :•. .. ,I.I . .. ,I.I . .. ),1;1 . . ,I.I;! •. ,!.I,, . . ,.!,!::• :,::::::::;,:,:,:,:::::,:•:•:•:•: 1 I I I . I I I t I I I I t I t I i.1.1.I.J .. ).l,l,i,i,l,i 
· : · · · · ·: ·. ·: · : ·: · . ·: · : ·: ·: · . ·: ·: ·: ·: · . ·. ·: ·: ·: ·. ·: · · · : · · · . · · · · · · · · 0 · · · · · · · · · · · · · · · · · · · · · · · · · ········allowed "oound" enernles e-~ · : ·: · : ·: · : ·: ·: ·: · : =·0.·•: . : : : : : •:: .. : : . : : : : : •:: ·: :=:. ::::::::::::::::::::::::::::::::: ................. 0 ••• :::!;::::::::::::::::::: 
: : 2 : : : : : : : ·: : : : : : : : ·: : : : : : : : : : : . : ~::::: : : : : : : i: i::::::::::::: i: i: i: i: i: i: i::::::::: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : i: i: i: i : i:: 
:: .. ··=·=·=·=·==:•:•:•:•:•:•:•:•:•:•:•:•:•:•:•:•:•:•:•:•:•:•:•:=::~::,:::::::::::!:::::::::::::::!:::!:::::!:::::::::!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:::::!:!::::::: =·0.=. ·:: ·:: ::: ::: ::· :: ::: :: :: ·:: ::: ::: ::·•:: ::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
:: 3 : :: ::: ::· :: :: :;: :: :: :: :=: ::· :: ;: :;: =;:~·~=;=~:;=;~./;=;:;:::::::::::::;:;::::=::::;p:::;:::::::::;:::::::::::::::::::::::::::::;::: 
: : . : ......................................................... : -~ ... :.:.:.: ..... :.:.:.:.:.:.:.:.:.:.:.:.:.:.:.: ... :.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:. ! . : . ! . : . ! . : . : · ·0 · i' · i 'i''i · ... 'i · i''i' i' 'i 'i''i · i" · i 'i''i · i' 'i · i' · i' i' · i · · · · · · · · · · · · · · · · .. · · · · · · · · · · · · .... · · · · .... · · · · · · · · · · · · · · .... · · · · · · .... · · · · · · · · · · · · · · · · · · · · · · · · .. · · .. · 
® 111 111 II I 111 I II I I II 11 O allowed "boun<I" energies E -+ (a.s.)-

©11111111 1111111111 
011111111 111011111 

t--------------(a.s.)-

i--------------------(a.s.)-
~ ~ ~ t l1 ~ l lilt ~I~ J; ft ~I~ l ~i ~ t ~11 l ~i ~ t ~I~ l ~i it ~I~; l ;~ ~: l; j ~ ~ ; ~ ~; ~: ~; l ~ l ~ ~ ~ = ~; ~; ~; ~; ~; ~; ~; ~; ~; ~ ~ ~ ~ l; ~; l; l; i = ~; ~; l: ~ = 1; 1; i = l; ~; ~ = ~; ~; ~ ~ ~ = ~ ~ ~ = i =~;ii : :v. ! · . · . · . : ! . ! · ..... : ! : ! : . : ... : ! : ! .. : . : . : ! . ! : . : . : . : ! : ! .. : . : : : ·o· : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1'1owed'. • • ::bou·. ndi. ,,: • • • ·1 • • e': : : ilii: . : . : . : . ! . : . : . : . : . : : : . . : : : : : : : : : : : : : : : : : : : : : : : : : : : : . : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :a energ es : : . . . : : : : : : : : : : : : : : : : : : . ·0· .. . . . . . . . . . . . . . . . . . . . . .. . . ······ ........... ······ ... ········ ............ ······ .. ,•.· .... ,• ······ ,•,• .. ······. ·=· .... · = ·. :: 9 : ·· · : : · · : : · · : : · · : : · · : : .. ·:=:Ei•i•i ; i :•i•i•i•i•i ?•i•i•i•i•i•i•i•i•i•i•i•:•i•i•i•i•i•i•i•i•i•i•i•i•i•i•i•i•i•..t. as. -iii-
:;==.=.:=:= 'i =: ='.' ,, 'i ,, : '.: =: 'j::::.: '' 'j =::'I:': 'i::' 'I::' 'j::;:::;:::::;::::::::: i:;::::: ! : i::: i::: ! : i: ! : ! : ! : : '!: ! ':: ! = ;, ; ':':'; =: =:' ! =; =;:;::::=:::,:I:!''/, i:: 
~ V1o'i =I= = i= JI= = fl= I= =i= JI= =f =I= =i= = =I= = ~ i ~~ =~=~;=;=;=;ii= i = l = i = ;=; ~ ;= l = i = l = l=; =; =; = l = l = ;= ~ = ;= l = l = l= l= i = l = ;= l = F ;= l =; = ;= l = l = l =; =; = l = l = l =; = i : :q ~::::::: ~: ~::::::: ~: ~::::::: ~: ~::::::: ~: i::::::: ~: ~::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
@ I I I I I I I I I I I I I I I I I I I I I I o allowed "scatterlng"energies e -. 

@1111111111111111111111 
@ I I 111 I II II 11 111 I 

i--------------------(a.s.)-

@ I I II Ill II I I II I 1111 
i-----------------------(a.s.)-

(•typically ... "almost surely" • a.s.) 

.l 
I 



-5-

These systems share the same "kinky" property, and hence, under­
standing one (say. the 6) is understanding all. 

(beaded string) 

y(x, t) • y(x)cos blt 

(harmonic chain) 
M 

•. 

'·· Y 0(l) • YnCOS bll \ / 

(AX)
0 

== Y(X n) -y(nL) == Yn 

(Dirac de1ta: &) 

y'(O +)-y(O-) = _ MT2 y(O) 

where bl = kc, c = ,lfip 

.. , Yn .. 
\ 

Y n+l - Yn 
L 

Yn-Yn-1 mnc.,/ 
L • - KL Yn 

And also, 

y(O + )-y(O-) == (1- ~)k tan (~)y(O) 

where bl== 2~sin(~) 
(L < ">../2 ====> kl < ,r). 

Ht(x) - Eljr(x), H - -o~ + V(X) 

V(x) - s«x), s < 0 ====> 

x I ,j((O +) - ,1((0 - ) • s,i,(0) I 
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Historical Highlights 

Two historical efforts (one originating in the mathematics 
community and one in the physics community) presage the work 
herein. 

Physicists have been concerned with the electric (and elastic) 
properties of solids: 

G)existence. persistence. and robustness of gaps 

• energy (frequency) band-gap structure of periodic solids 
• general theory [B1och• 1928] 
• specific. solved. model [Kronig/Penney • 1931 ] 

• a gap common to 2 e1ements is a gap for all their a11oys? 
[ Saxon/Hutner • 1949 l 

• computer experiments (see [Dean• 1972 l for a review) 
• model-specific sufficient conditions 

• KP alloy [LutUnger• 19511 
• KP liquid [Borland• 1961 ] 

• general sufficient condition [Hori/Matsuda• 1964] 
• general necessary condition [Halperin•1967] 

from which one may extract: a(random) ~ ua(periodic). where 
the spectrum a is the complement of the gaps. 

Mathematicians have been concerned with the (spectral) 
analysis of random (Schrodinger) operators: 

® spectrum of periodic and random operators 

• a(periodic ) is banded (see [ Floquet • 1883]) 
• a(random) ~ :t [Pastur• 1980 J 
• a(random) ~- Ua(periodic) [Kirsch/Martinelli • 1982 J. 

For KP alloys and liquids (and their analogues), 

• a(random) ~- Uo(pure) [herein 1. 
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The history of this subject is well documented in 2 monographs: 

[Horf+1968] summarize, the work of(D. although 
there is no mention of [Halperin• 1967]. It emphasizes 
the "phase theory" method (which features a transfer 
matrix in polar form) developed and exploited by Hori. 
Matsuda, and co11eagues. 

20 years 1ater, 

[Albeverio/6esztesy/H0egh-Krohn/Holden • 1988] is a 
comprehensive introduction, synthesis. and summary 
of point interactions. in the spirit of®· It is rigorous 
and up-to-date. although it doesn't subsume the 
previous monograph. 

As a contribution to this history. I'd like to spotlight and compare 
Hori's fundamental statement with Kirsch's; the 2 are clearly 
related. [Hori+1968] states, ·1f an interval of frequency or energy 
lies in the spectral gaps for a11 constituent regular systems, it 
gives a spectral gap of the mixed system [subject to a nontrivial 
technical hypothesis]." A constituent regular system is formed from 
a given system by infinitely repeating any finite segment of it. 
Equivalently (but, for comparison, omitting extra hypotheses). 

- The spectrum of a mixed array is contained in 
~ the union of the spectra of all arrays formed by 

infinitely repeating each finite section of the array. 

Contrast this with 

~ The spectrum of a l')!gk;a,J mixed array is [contained in] 
~ the union of the spectra of alt arrays formed by 
:5;2 infinitely repeating each finite section of a ty_picaJ array. 

Thus, Hori's statement cannot refer to ~ particular array but 
rather, 1ike Kirsch's, must refer to a tyoic.al array. (A particular 
array may. in fact, be quite exceptional-for example, pure.) 
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1 a (periodic) is banded: Why? f 
This is usually understood as the "co11ectivization" of atomic levels 
into bands. Model the atoms as rigid ( 1-dimensional) boxes and allow 
them to interact "at a point. .. The energy level splitting is propor­
tional to the tunneling time (as indicated). 

1 isolated 
atom 

2 

2 isolated 
atoms 

2 interacting 
atoms 

In a real crystal of 0( 1023 
) atoms, a single energy Jevel of an isolated 

atom broadens into 0( 1023 
) levels whose spacing is smaller than the 

typical inverse lifetime of the level and hence whose identity is lost. 
(Recall, AE At~ H ) 

1 isolated 
atom 

10 interacting 
atoms 

(It is characteristic of point interactions that the band tops coincide 
with the energy levels of the isolated atoms.) 
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a(random) ~ I Why? I 
If H'° == - A+ V '° is an "ergodic" Hamiltonian, then its spectrum a(Hw) 
is a fixed set I with probability one. This can be understood as a 
consequence of the "ergodic theorem" or. more simply. by the 
following argument. 

Consider a "random charge configuration": 

V '°(x) - Lqn(w)f(x - nl0 ) 
n 

fcx> • y 
Q)q 

Here's the key: "Almost all" realizations of Vw are the "same" in that 
an arbitrarily long segment of a "typical" V'° can be found (arbitrarily 
often) in any other "typical" Vw. 

(Similarly, "almost all" real numbers between 0 and 1 are "normal" 
in that the digits 0 to 9 appear with equal frequency in any 
sufficiently Jong sequence of their decimal expansions. This, too, 
can be proven using the notion and machinery of "ergodicity." For a 
brief introduction to ergodic theory and physics. examine 
[Reed/Simon• 1980 ].) 

Over 20 years ago, [Lifshitz• 1964] coined the term "self-averaging" 
for the idea that the properties of disordered solids should hold with 
probability one. 
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a(random) ~- Ua(periodic) Why? co=cut-off 
nbr=neigh bor 
per=per iodic 

This can be understood .by the following arguments. 

• show: a(random) :::> Ua(periodic) :::> a(periodic) [Halperin• 196 7] 
e e: a(periodic) =- e e: a(random) 

(hint: FIND arbitrarily long truncated periodic in random) 
(lypical random) 

H • - A+ V HYE • EyE 

•~
0 

• LYECE 
E 

l~H - e>.-~41 < ill•~41 => 

(Enbr - e )211•~412 • (Enbr - e) 21:jc El2 ~ l:CE - e/1c El2 • IKH - e>.-;4( < e211•;412 
E E 

(and so on) 

• show : a(random) c Ua(periodic) 
E e: a(random) .. E e: a(periodic ) 

(hint: truncate random and repeat to FORM periodic) 

(typical random) 

H • - A+ V HYE • EyE 
,.......... FORM 

.. ------

_Y__.~_o ___ ~A_1 ---­
: V· . . .......... , 

atom A atomB vv 

h • - A + v h. • ellJ •.......... e e 

.............. 

(and so on) 
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I The Dirac Delta: ~ J 
Take 

P
2 

0 Hllr(x)"" Ellr(x) H"" 2m + V(x) p • - i Max V(x) - s«x) ~ 
2 

- ~ t"(X) + Sl5(X)11J{X) • E11r(x) 

to mean 

where the "jump" of f(x) at x0 is 

2 

Or, by "renormalizing" the strength s, s - ;ms, take 

~(x~O). 
◄ ► >--2x1VE 

The spectral properties of H are then easily inferred. The 
eigenfunctions •· together with the eigenvalues E (which form 
the spectrum a), are indicated below (for fixed strength s). 



-12-

Ys<O 
E 

--.:·....:..· ...... •· ..... •_;..·..---. . 

For each O<E, it is easy to construct suitable (kinked-sinusoidal) 
eigenfunctions. For E<O, there is only a ·single (kinked-hyperbolic) 
eigenfunction with s-s8 < 0 , such that 

-Is 8 - - 2-v'=E I· i2k . 

s
8 

sets the strength scale of the model. It is the t, strength needed 
to bind a particle of energy E. It wi11 appear often in what follows. 
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Qualitative Node (or Phase) and Amplitude Shifts: Ns & As 

It will be important to understand the effect of a a on the wave 
function. Below, the sinusoid to the left of the a is fixed. As the 6 
moves one half-wavelength, left-to-right. the sinusoid to the right 
adapts so as to satisfy [1"1 - st. 

4
s-indep. ► ---~..._ ____ _ 
~:~: \JV 

4 s-dep. 
band 
edge 

s-dep. ► 
band 
edge 

/\ L\ 4 s-indep. ► ~ C\ 
\J :~~: ~-

The band edge wave functions are critical to what follows. Here, 
they are identified by zero amplitude shifts and distinguished by 
extreme (max or min) node shifts. Compare the s-dependent band 
edge wave functions. Note how the attractive (s<O) r,. attracts the 
nodes, while the repulsive (s>O) a repels them. 
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Here's a closer look for repulsive ~·s. Fix s > 0. Fix tfr(x ~x
6
)· 

z 
I 

>,, I ,z 
······· .. ···················~----~---~ 

...... l ............................. ··········· 

>,, >,, 
'························· ··················· ··················,-
~ x

6
= w2 ~ 
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Quantitative Node (or Phase) and Amplitude Shifts: N
5

& A
5 

Fix s>O. Fix tlr(X ~ x
3
), 

A' 
As 

A 

{

Asin kx x ~ x (~ )./2) 
lfr(x) • o 

- A' sin k(x - N) x ~ x 
0 

Thus. in particu1ar, to the right of the ~. 

11,(X ~ Xo). - A'sin k(x - N) 

Shifts: 
NS• N - )./2 

A5 • A'- A 

• A(1' - 1) 

• + A'sin k(x - N s) N
5

• N - )./2 

=A
1

sin kx cos kN
5

- A
1

cos kx sin kN
5 

But also, from above, 

11,(x ~ x0 ) = Asin kx + ~ ,t,(x 0)sin k(x - x
0

) ,v(x 0) • Asin kx 0 

where 

-A(l +~sin kx
0 

cos kx
0
)sin kx -A~ sin 2 kx

0 
cos kx 

- sin kx A(l + 2\ sin 2kx
0

) - cos kx Alk (1- cos 2kx 0). 

A'cos kN 5 • A(1 + f sin 2kx 
0
) 

A'sin kN s. A
2
5k (1- cos 2kx 0). 

X 
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Thus, 

1-cos 2kx 6 
tan kN s - 2k . 

s+ sm 2kx6 

Or, with s/21< - Isl = tan(§,r/2), 

1- cos 2kx 
tan kN 5 - 1 . 6 

~ +Sin 2kx 6 

(for s>O a.rui. s<O). 

The condition for the amplitude to decrease will be important later: 

0 ~ A5 .-.. 1 ~ 1' > 0 .-.. 

(A') 2 
2 2 2 1 ~ A - (1 + lzlsin 2kx6) + lzl (1- cos 2kx 6) 

O ~ sin kx i cos kx
6 

+ lslsin kx
6

) 

sinkx 
6

~ 0 =t, - cotkx6 ~Isl= tan(2a) 

- cot(kx"+ 2) • tan kx" where x" = x 6 - ~ 

=t, tan( kx ") ~ tan ( 2 §) , § > 0 

kx" ~ 2 § > 0 or 

And, in general, 

For the amplitude to decrease, the distance On Quarter wave lengths) 
to the nearest maximum must be at least the (normalized) strength !al. 
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Propagation of 1'r Through a & Array: Kinky Sinusoids 

Ht• Et 1 f(t] • 0, (t;'] • S 01'J, at Xn 

H • - 4. +~Sn&(• - x n)J means Lt=Asin( .JE x + ♦), else 

Thus. if O = s • ( ... ,s n• ••• ), 

1'ro (x) • to(O)cos kx + tl(o(O) sink kx 

t t 
magnitude & slope 

at origin specify sinusoid 

If s _, O. 

ts (x) • lf,0(x) + }: 
5k 1fr5 (X 0)sin k(x - x n)r 

Xn<X 

or 

1fr5 (X < Xn,.. 1) • t 5 (X < x 0 )·+ t1'J5 (X 0)sin k(x - x 0 ), 

which suggests the following construction . 
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ReguJar KP models (= pure 6 arrays) are characterized by the two 
parameters, Strength S and Length L: 

sl LI I I I I I I 
Ht • E ♦ H • - A + V V • s l: 6( • - nl ). 

n 

Changes in the parameters s and L change the KP-spectrum in 
cruciaJly different ways. 

k=VE 

L 

0 

Among random KP models, 

I I 
H♦ -E♦ H•-A+V V-l:sn3(•-Xn) 

n 

(where s n & Ln • xn•l - x n are randomly chosen), 

there are 
• KP "liquids," where the strength is fixed and the lengths vary 

(a la a "snapshot" of a liquid) and 
• KP "alloys," where the strengths vary and the length is fixed. 



-19-

I GROWING an ORDERed ~ Array J 

The next three pages construct the ~ array (=KP) spectrum in a novel 
way. The idea is to "grow" the spectrum a for arbitrary ~ strength s 
from the extreme cases s=-00 ,0,+00 , by continuously changing s and 
observing the consequent changes in the sinusoidal (or hyperbolic) 
wave functions. 

• The spectra of the limit cases are 

a(s = 0) = Bl+ (doubly degenerate) 
= a(- A) 
= energies of a free particle 

a(s = ± 00 ) = (11 r) 2 
= Bl+ (infinite 1 y degenerate) 

= energies of single particles trapped in 
rigid boxes of sizes !ML. 

• Crucial to the construction are the "bifurcation sinusoids." such as 

.◄ L ►: Is -o I 
A+= A-= L 2 
E + - E - = ( L) 

1 -oo > s > o 1 

A+> A­

E + < E _ 

I s,-001 
2L ==A+> A-= L 

(,r 2 (2,r)2 r) -E+<E-- T . 

•It is convenient to work with the dimensionless wave number 



E 
::, 
L ....., 
u 
(I) 
Cl. 

(/) 

u 
:::; 
~ 

E 
(I) 
.c. 
u 

(/) 

a, 
C: 
:::; -::, 
(J') 

~ 
""O 
C: 
~ 

(J') 
""O ·-0 
(J') 
::, 
C: 

<ii ....., 
.E 
·-...J 

E 
0 
L 

LL. 

C: 
3: 
0 
L 

~ 
(J') 

C: 
0 
:::; 
u 
C: 
::, 

LL. 
(I) 

~ 
3 

....J 

a, 
V 
0 
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........ . . . ~~ ..... . 

........... . . ··r .......... t···· 

0 _,. ...... ; .......... ) ... . 
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Exact Bands from Form of Band Edge Wave Functions 

s. + ~ ( 2k)tan (2 (k - 2)) 

A 

k 

Sample s-dependent band edge calculation: 

..y_· ·. : ·..y• X = 0 . . 

(n= 1 ;v-vv ► X ..,. ( ~ ..Y+-..Y-=Slltt 
-L X0 0X 0 +L 

L ;. k ff' kd xo+ +Xo=n2- Xo=n2-2 

'Vt= A sink(± X + Xo) 
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I Pure & spectrum I 

2 
>.12 = L E = ( ,r/L) 

Note the monotonicity: 

o(s00
) C o(S'o) for O < s O < s < 00 or - 00 < s < s O < 0 and E > 0 . 
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Natural Parameters Describing a Pure ~ Array 

• carameteri ze E by k 

For E >0. the [real part of the] KP wave functions are "kinky sinusoids" 
and hence define a local wavelength A• 2,r/k • 2,r/--v'f. Also. in a pure 
& array, there is only a single length scale, the separation L. These 
suggest defining the dimensionless wave number 

,. L~ L L k•- E--k--,r ,r Al2 (E > 0). 

Note that 

and so on. Geometrically, for E>O.k is the number of half-wavelengths 
(or "lobes") in a length L. For example, 

• Dacameterize s by S 

A natural strength scale is set by the strength needed to form a bound 
state of energy E < 0: 

s8 --2-v'=E <0 

Generalize this to E >0 and parameterize the dimensionless ratio s/ s 8 
by 

Note that 

Note also that ~ depends on E. 
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Natural coordinates (§.I<) simplify the display of the (O<E) spectrum. 

~:~O ... 
. ~~ E 

·~1-. .. 
~; ~. 

-:: s , . ., .. 
" . . 
• 
I 

In the (§.I<) representation. each "Bri11ouin zone" (n ~ k < n + 1, n E: lM) 
appears identical and .b.21h. band edges are straight lines. 



Take 

to mean 
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I The Delta-Prime: 5' J 

p2 
H - 2m + V(x) 

•1,t a p --1,i-ax V(x) -s~(x) 

[ tt,] = S'tt,' } (x=O) & 
[t'] = 0 

~(XPO). 
◄ ► >-= 2x1v"E 

where the "jump" of f(x) at x0 is 

The spectral properties of H are then easily inferred. The 
eigenfunctions ,;. together with the eigenvalues E (which form 
the spectrum a), are indicated on the next page (for fixed s'). 

REMARKS: 
• The ~, can D.21. be understood as the "derivative" of the ~ 

and hence can D.21. represent a "point dipole." (According to 
[ Gesztesy • 1988], the early intuition that motivated its name 
proved incorrect.) 

• An exhaustive and rigorous analysis of the ~, can be found 
in [ Gesztesy /Holden• 1987]. 
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------'~-5'_<_0 __ _ 
E 

____ O_< __ s__,'~-----

For each O<E, it is easy to construct suitable (broken-sinusoidal) 
eigenfunctions. For E <O, there is only a single (broken-hyperbolic) 
eigenfunction with s' - s' 

8 
< 0 , such that 

---s,J,------

[ 
.,_ . .,. 

X • 0 .,. 1fr + - 1fr - • S's 11( :t 

-{:J"=E A_. - ,✓-:EA. 
± 2A :t == + S' BA :t ,,r::t 

-I ~-B • - FE I- i; • 
s'8 sets the strength scale of the model. It is the a' strength 
needed to bind a particle of energy E. 
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Propagation of 1f, Through a ~'Array: Broken Sinusoids 

Thus. if O ... s' ... ( ... ,s~ •... ). 

to (x) = "1o (O)cos kx + +'o ( 0) sink kx 

t t 
magnitude & slope 

at origin specify sinusoid 

If s'~ 0, 

1J,5,(X) = lf,0(X) + l: S'n+'s,(Xn)COS k(X - Xn)• 

or 
><n< )( 

which faci1itates the construction of solutions like: 

REMARK: The above rf solution 1J,5, may be obtained by 
differentiating the corresponding ~ solution "1s (see above) 
and exchanging primes and unprimes: 
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j GROWING an ORDERed ~' Array I 

In the fol1owing pages the spectrum of a pure ~' array is constructed 
by "growing" it from obvious 1imit cases. The procedure is the same 
as that used for the pure ~ array (see above). but the construction 
reveals several unexpected features of the spectrum. In particular, 
note 

•the unusual behavior of the band "widths," and 
•how eigenfunction degeneracy closes the first gap. 

[Also, recall that k • ; • {: ~ 



.. 
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Exact Bands from Form of Band Edge Wavefunctions 

Sample s' -dependent band edge calculation: 

••~ "" -A cos k(x-h) 
'1';1: + +2 

1j, + - 1j, - ""S'lf( :t 

1"'.=lf(_ 

-{-2A cos ~ = -s'kAsi n k2L 

lf( :1: ... --kAsi n ki 
2 kl cot(~k) 

- s'"' kcot 2 "'L (:2k) 
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I Pure r, Spectrum I 
A"' L/3 

2 2 
E = 3 (2,r/L) 
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GROWING DISORDER t 
As a first step to understanding the spectra of disordered sytems, 
many authors have studied the effects of defects on otherwise 
ordered systems (see, for example, [Bacon/Dean/Martin+1962]). 
Qualitative descriptions of such spectra are easily obtained by the 
technique of "growing disorder." This heuristic perspective has 
guided my thinking throughout my research and made possible my 
major results. It is described below in detail but briefly, the idea is 
to transform an ordered array (whose spectrum is known) into a 
disordered array (whose spectrum is sought). The trick is to 
transform its spectrum along with it. 

There fo11ows: 

• an introduction to "spectral trajectories" (or "modal curves") 
(and a side-by-side comparison 
of the ~ array 
and 
the harmonic chain) 

• a set of rules constraining spectral trajectories 
(which account for their usefulness) 

• two i11ustrations 
(one each of 
continuous 
and 
discrete 
growth). 
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Spectral Trajectories for ~ arrays 

Consider a pure 5 array and its spectrum. 

L 

7;,777777777777 

•natural"' 
description IIIIE:::::::::..,5'~~P1 

(forE>O) 

single~ Brillouin R 
zone 

~ 

QC~ 

~ 
s ... 2-vE tan (2s) ~ 

~ 
with E>Oj 

singleBI,. 
Brillouin k 

zone 

~ 

The curves above are lines of constant integrated density of states. 
If the potential array is finite and consists of N ~·s, then there are N 
such spectra] trajectories . The nth one from the bottom is the nth 
energy level of the array as a function of t~e ~ strength s: 

H(s )l!r(S )=E(s) l!r(S). 

l!r(s) and E(s) exist for each s, and "1 and E at a first s now smoothly 
"1 and E at a second s. This can be construed to follow from the 
quantum adiabatic theorem, which says, to paraphrase: In the limit of 
"slow" change, once in an eigenstate, always in an eigenstate. 
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and Harmonic Chains I 
Consider a harmonic chain and its spectrum. 

······--·~~~;•• 
1- M/m <0 0 

(oo >M~m) 

M 1- - "" m 

K ··•·····•·····•·····•·····•·····•·····•·····•· ... ·•·····•·····•····•·····••.-.••· M m 

················~~2 

1- M/m 

•naturar~
1 

description~ 1< 

-1 M OO 

The curves above are lines of constant integrated density of states. 
If there are N masses in the chain, then there are N such spectral 
trajectories . Each trajectory is also a curve of constant action : 

action = ("area" of phase space orbit)= ~pdq ex I ... f energy . 
j oo requency 

The action is an adiabatic invariant : "Slowly" changing the mass ratio 
M/m changes the energy E and frequency oo such that their ratio E/ w 

remains constant. (Note the classical-quantum correspondence.) 



k 

~ or M 
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A spectral trajectory 
(or "modal curve") 
is constrained by 
four simple rules. 

limit {• S = 0 (free particle) } lit & A (,... k = -'=--vlf) 
cases • S = ± 1 (disjoint , rigid, boxes) are obvious x 

(s =±cc) 

t . ·t {nondecreasing S > O 
growth [• mono onicl Y nonincreasing ~ < 0 

lemmas • increasing [decreasing] ~ strength(s) 
either 
unperturbs a trajectory 
or 
raises [lowers] it, 
the change being bounded by 
the original next higher [lower] trajectory 

The growth lemmas are suggested by the following ideas. 

• perturbation theory 

.. :.LJ.J..J..J ► _J_J...:J.J_J 
H' = H + W 

E' - E + ("11Wl"1).,. E + AS l•(X 6)j 2 

where AS - s' - s 

- ........ 

• level repulsion E 
The eigensolutions 

of a (finite) 1-dimensional array 
are ·unique" (=nondegenerate) 

and hence there is 
·· ..... ···········~ 

' / 

no crossing 
of levels.-+---------. 

- _. 
s 
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Discrete Growth Illustration: Impurity Spectra -1 
,.-----'---...a....-----i 

M­• . . . . . . . . . . . . . 
L 

~777777777777 

• • • • • • • • • • • • • • 

M00(mM)
2
M00 

• • • • • • • • • • • • • • 

3 
M00(mM) M00 

• • • • • • • • • • • • • • 
777-7-7-77777 

(mM)
00 

• • • • • • • • • • • • • • 

L A 

A/2 =k 

1 
2 

1 
2 

M-

( ml)- .----=---,,, 
1 
2 

• • • 
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Continuous Growth Illustration I 

Consider a KP liquid and its spectrum (see facing page). Imagine 
slowly increasing the ~ strength s from O to 00 • The eigenenergies 
must increase (or remain unchanged), but they cannot cross (as they 
are nondegenerate). Hence, they now en masse to higher energies. 
The now is nonuniform. The eigenenergies bunch up in some places 
and thin out in others. Eventually. the now "chokes off" as zeros 
appear in the density of states. Then the opening of gaps tears the 
spectrum apart. 

(The integrated density of states for a finite array is 

_ rnumber of states ) ,..,.,, (number of ) L 
NL(E) • l with energy s; E /L zeros of •E 1 · 

For an infinite array, 

N(E) s Jim N (E). 
Ltoo L 

The limit is known to exist and to be a.s. a nonrandom continuous 
nondecreasing function (see [Pastur• 1980 ]). The density of states 
is simply dN/dE, where it exists.) 
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Consider a KP-alloy: 

The spectrum of a typical mixed-strength, fixed-length ~ array is the 
union of the spectra of all possible pure ~ arrays formed from it. 

a(mixed-strength) ~- Uo(fixed-strength) 

Why? 

Key: s-independent band edge ,; 

Know: a(random) ~- Uo(periodic) :2 Ua(pure) 

Need show: o(random) !:: Ua(pure) 

In fact: 

Idea: "Grow" the random array from the s;;:;1n array, and "grow" the 
spectrum a1ong with it. 
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This is illustrated below with repulsive ~·s. 

I I I I 
- J.,-··-.1_ ,l-····,1. ,l--···J ,k·-~ +- 1s ii I I I I I I 

~~~.~ -~~ .. - \~~.~ '~ .... 

The spectrum contracts under these continuous transformations as 
the growth of the repulsive a·s raises the energies of some of the 
wave functions but not through the energies of the s-independent 
band edge wave functions that don't "feel" them. 

The first illustration above can be understood as the 
aforementioned monotonicity of cr(s00

) with s. 

The second is the insight that clinches the result. 

~ 1 2 
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REMARKS: 

•The conclusion is actually 

a( {Sn})~- a(s;;1J. where s mln ... m~n { s n}. 

which can be found in [Kirsch/Martinelli• 1982]. (Although it is the 
above, new. formulation that generalizes; see below.) Thus, for 
example, altering a fraction of the ~ strengths in an array doesn't 
(typically) alter the spectrum! 

• The above argument hinges on the point nature of the interaction. 
In fact. the result is false for the next simplest interaction, namely, 
the "finite square wells" u and LJ . See [Kerner•1954]. 

• However, there are generalizations: 
• [Gesztesy/Holden/Kirsch• 1988] handles arrays of mixed 

attractive and repulsive ~·s, s , 0. 
• [Kirsch/Martinelli• 19821 considers generalized 

interactions, a- f. 

• The argument implies cr(mixed) c U cr(fixed) 

- Ee: a(mixed) - Ee: U a(fixed) 

- E tt U a(fixed) - E tt a(mixed) 

- E € np(fixed) - E € p(mixed) where p"" aC ... la- (J, 

Essentia11y. this is the seminal conjecture of [Saxon/Hutner • 1949]. 

• An atypical realization of "random" is s2. But a(s2) "1J a(s~) and 

s 
2 
> s 

1
. Hence, the "a .s." in a(random) ~ <1(pure). 
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Consider a KP-liguid : I I I Ln 15 I I 
(s > 0 QC s < 0 & E > 0) 

The spectrum of a typical mixed-length. fixed-strength a array is the 
union of the spectra of all possible pure 5 arrays formed from it 

a(mixed -length ) ~- U a(fixed -length) 

Why? 

Key: s-dependent band edge t 

Know: a(random) ~- Ua(periodic) :2 Ua(pure) 

Need show: Ua(periodic) ~ Ua(pure) 

~ a(periodic) ~ LJa(pure) (V periodic) 

~ Ee: a(periodic) - Ee: a(pure) (V E) (V periodic) (3: pure) 

Idea: For fixed E. state with highest s is an s-dependent band edge. 
The argument below demonstrates. by explicit construction, 
that a point in the spectrum of any periodic liquid is contai 
in the spectrum of a pure array. 
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For any spectral point (s, k) in the s-k plane of a given periodic liquid, 
here is constructed an s-dependent band edge wave function that 
passes at greater s, and hence below, (s, k), and thereby defines a 
spectral "wedge" containing (s, k). 

Fix E (hence ii.). Choose s>O. Pick a point in the spectrum of the liquid. 
The (real part of) corresponding wave function is a kinky sinusoid. (In 
the drawing. vertical lines ., o·s and horizontal lines ..,. amplitudes J 

• LOCATE a "local maximum" = interval characterized by "amplitude 
of (center) sinsuoid is at least that of adjacent sinuoids". (Why? 
Consider ,t, as s f 00 .) 

• FREE it and its adjacent sinusoids from the array. Only 2 o·s and 2 
kinks remain. At both o·s, the condition for negative amplitude shift 
is satisfied (see above). 

• SYMMETRIZE by translating the center sinusoid. Adjacent 
sinusoids adapt so that the adjacent amplitudes 

• equalize at an 
• amplitude D..Q1 greater than the center amplitude 

as the condition for negative amp1itude shift is sti11 satisfied. 

• EQUALIZE the adjacent amplitudes by increasing s (and hence 
deepening the kinks), whi1e holding the center sinusoid fixed. 

• REPLICATE the center cell. The result is an s-dependent band 
edge wave function 

• of a pure component of the liquid 
• that passes the chosen spectral point at greater s. 



-44-

I 

local max 



-45-

REMARKS: 

• This result is new. A similar argument should work for the ~,model. 

• Since the spectrum is a closed set. and an infinite union of closed 
sets need not be closed, it may be necessary to close the union of 
pure spectra when forming the generic random spectrum. That is why 
there is a closure in the statement. 

o(random) ~- Ua(pure). 

• For the binary harmonic chain (which is, of course, an "alter ego" of 
the attractive s<O KP liquid), the "pure components" are chains that I 
call "lightweights." They are of the form, 

(Mmn)
00 

where n e: {0, 1,2, ... }. 

Periodic with one heavy mass-per-unit ce11, this fami1y of chains 
systematically lightens to an a11-heavy chain and systematically 
"heavies" to an a11-1ight chain. The lightweights are fundamental 
constituent chains in that any mixed chain is a concatenation of 
lightweight chains. 

2 2( 3"' 2 ··· MMmMmMMMmmmMmMm ··· - ··· (MXMm) (M) Mm /\Mm) ··· 
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Spectral Construction 

On the fo 11 owing pages, the 
spectra of various 6 arrays 

and/or harmonic chains 
(including those of the 

initial experiments) are 
constructed simply from 
the spectra of their pure 

components. 

The construction 
utilizes the major 

result: 

Ua(fixed -length) ~- o(mixed-length ). 

Special attention 
is given to the 
complementary 
"resolvent" or 

"gap" sets. 



-47-

Construction Guideline I 
(D(i0 s>o) 

As a warm-up. and to introduce the style of presentation, here 
is a pure array, its spectrum (="bands"), and its complement 
(="gaps"). The complement is presented twice. once in (~.k) and 
once in (s.E ). Gaps open only at s=O. 

® ( L 1 = L O L 2 .. 2L O s > o ) 

Two simplest commensurate lengths. Gaps open at 2 values of s. 

® ( L 1 ... 2L O L 2 - 3L O s > o ) 

Two commensurate lengths. Gaps open at 4 values of s. 

0(L,=L 0 L 2 -,v'2L 0 s>O) 

Two incommensurate lengths. Gaps open at infinite values of s. 
Compare with (5). 

® ( L € [L 0 ,-v'2L 0] s > 0 ) 

A continuum of .lengths. Only 3 gaps! Compare with (4). 

© ( L 1 = L O L 2 = 2L O L 3 = 3L O s < 0 ) 

( M g no more than 3 consecutive ) or ~ m oc. m's anywhere in the chain 

Finite gaps. Compare with (7). The spectral complement is 
presented twice, once in (~.k) or (M,k) and once in(M/m, 00 2). 

0 ( L n = nl (n € II) s < 0 ) 

or ( M ~ m) 
Infinitesimal gaps. Compare with (6). 
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Lo s > 0 (:;'\ 

SI I I I I I I I I I I I I \V 
Lo 

k 

- --

E 

: Spectral gaps 
: open at: 

. : (~.k) == (O,j) 
: where 0 

j == o. 1,2. 090 : 
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L1 =Lo L 2 = 2L 0 S)O ® s1 I I I I 
L, Ll 

2 4/2 

,+ 3/2 --2/2 

1/2 

0 
0/2 

" • " ,. " ...... " " .. 0 " " ,, 

Spectral gaps 
open at: 

(~,k) = (O,j)& - - ( 1 . 1 ) - = 2,J + 7 
where 

j • 0, 1.2 •... 
0 ¢ C C " " <> <t <> " 0 0 S <> 

E 

s 
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S) 0 

k 

-- -

E 
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L1 = L 0 L 2 =~Lo s > 0 

sl I I I I I I 

k 

: Spectral gaps 
: open at: . 
: (~.k) ,.. (j-v2(mod 1),j)& : -- - : = (j ~(mod 1),j ~) : 

where 
j ... 0, 1,2, ... 

E 



-52-

L e: [Lo,-v'2Lo] s > 0 

I I I I I I I I I I 

-- -

E 

: Spectral gaps 
· open at: 

: (~.k) ... [(0,0)&] : 
: = ( -v'2 - 1, 1 )& : 
. ,.. (2-v'2 - 1.2) : 



0 
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M~m 

••·•··•·••··•··•·•••··••···••·••··• 
Mm © LI L2 L3 6 

I I I I I I I I I I I I I I 

1/2 

0/2 

+4/3 
3/3~....., 

2/3 

1/3 
on __ 

--

-1 s[orM) o 

•Where 

-- -

j = [OJ. 1,2, ... 
2 

Wmax 

2 
00 

j=O 
----------------'-----:'.00 +- 1-M/m -1 
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M~m 

•·· ·•··· •• ·•·· ·•·. ·•·····. ·•· •••••• t=i\ 
11 I I II I I ! I I 110 

L n "" nl (n € 00) s < 0 

+ 

., ., " .. " ., ., .... (I " .... " .. " " " " " .. 

:Spectral "gaps" 
'.open at: 

~ (~[or M] .k) = ( -1 + ~ • ~ + j f 
:where 

j = [O]. 1,2 •... 

:and f is irreducible. 
: q 

'> S, (I 9 " Q ~ C <l ,0 <> ti l> <> ., " <> $ (I <> $ 

+ 

- --

(Compare with [Hori• 1968].) 
4llf-- 1-M/m -1 

2 
00 

j=O 
00 
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----= -------IP 

r 
k 

► 

I: 
p 

,__ __________________________ __,O 

-1 f1 
This is the elegant structure underlying the intricate way in which 
density-of-states zeros (or spectral "gaps") appear as the bi 
harmonic chain mass ratio is varied. line represents a 
density-of-states zero. The intricacy, but not the el , was 
observed in one of the initial experiments. 

0 
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I Afterword I 
I began 3 years ago wondering if there was any simple structure 
underlying the complicated appearance of zeros in the density of 
states of the binary harmonic chain. I found it, but in so doing my 
research had to encompass the famous Saxon-Hutner conjecture 
concerning the robustness of spectral gaps in ordered and disordered 
systems (on the physics side) and Kirsch's elegant expression 
relating the spectra of ordered and disordered systems (on the 
mathematics side) and, indeed, to extend them. 

Although this success is satisfying, the thesis contains some loose 
ends. In particular, 

• It does not address the special case of hyperbolic wave 
functions (involving attractive ij's and negative energies); 

• It does not consider mixed attractive/repulsive l> arrays; 

• It does not consider generalizations to nonpoint interactions. 

With respect to the latter point: 

Using transfer matrix techniques it is easy to show that, 
for a fixed energy, an ·arbitrary ( 1-dimensional) potential 
well can be characterized by 3 parameters, "strength," 
"extent," "location," and hence can be represented by a 5. 
There follow several Saxon-Hutner-type results for 
arbitrary potential· wells. 

Also, the results herein should hold for sufficiently small 
energies (= sufficiently large wavelengths) if the point 
interactions are replaced by arbitrary potential wells of 
sufficiently small width. (Specifically, if the widths are 
much smal1er than the free particle wavelength, then the 
wells appear pointlike to the particle.) 

Finally, while there is hope that the results herein generalize 
more realistic models), the techniques do not (except in broad 
outline). 
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