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ABSTRACT 
 

The problem of combustion instabilities has existed since the early 1940s, when they 

were observed during the development of solid and liquid rocket engines.  While various 

engineering solutions have served well in these fields, the problem is revisited in modern 

gas-turbine engines.  The purpose of this work is to provide experimental measurements 

of laboratory devices that exhibit thermo-acoustic coupling, similar to the interaction 

observed during combustion instabilities, which will aid in the design and development 

of stable systems. 

Possibly the simplest device which exhibits these characteristics is a Rijke tube.  An 

electrical, horizontally mounted, 1 m long version of the original Rijke tube is presented, 

with measurements taken during unstable and stable operation.  An accurate stability 

boundary with uncertainty is determined for a heater position of x/L = ¼, as a function of 

mass flow rate and heater power.  Hysteresis, not previously reported, is observed at flow 

rates above 3 g/s.  A one-dimensional model of the stability boundary with linear 

acoustics is shown to have qualitative agreement with experimental data. 

A novel technique has also been devised which can provide insight into the local dynamic 

response of a flame to an acoustic field.  In the experiments, a test chamber is 

acoustically excited by a pair of low-frequency drivers.  The response of the flame is 

visualized by two techniques; chemiluminescence and planar laser-induced fluorescence 

(PLIF) of the hydroxyl (OH) radical, both of which are well-known indicators for heat 

release in flames.  The resulting images are phase-resolved and averaged to yield a 

qualitative picture of the fluctuation of the heat release.  The images are correlated with a 
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pressure transducer near the flame, which allows stability to be evaluated using 

Rayleigh’s criterion and a combustion response function.  This is the first known 

measurement of the combustion dynamics of a flame over a range of frequencies.  

Results indicate that the drive frequency and burner configuration have a pronounced 

effect on the response of the flame.  Drive frequencies ranging from 22 Hz to 55 Hz are 

applied to the jet mixed burner, supplied with a premixed 50/50 mixture of methane and 

carbon dioxide at a Reynolds number of 20,000.  The burner is operated in two 

configurations; with an aerodynamically stabilized flame and with a flame stabilized by 

two protruding bluff-bodies.  Results indicate that in general the bluff-body stabilized 

flame is less sensitive to chamber acoustic excitation. 
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Chapter 1  
  Introduction 
 

1.1 Motivation  

Of the six principle air pollutants tracked by the EPA (carbon monoxide, lead, nitrogen 

oxides, particulate matter, sulfur dioxide, and volatile organic compounds), all have made 

significant reductions in emissions since the passage of the Clean Air Act in 1970, except 

for nitrogen oxides1.  NOx, consisting of NO and NO2 are contributors to stratospheric 

ozone depletion, acid rain, and smog.  Stricter government regulations regarding pollutant 

emissions and in particular oxides of nitrogen have come into effect.  As a result, the gas-

turbine industry is seeking ways to reduce NOx emissions. 

 

 

                                                           
1 From document EPA-456/F-98-006 (September 1998) 
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Several techniques have been explored to lower pollutant production, including catalytic 

combustion, rich-burn/quick-quench schemes, fuel staging, water or steam injection, and 

lean premixed combustion.  Of these, the most promising technique is believed to be the 

operation of combustors in the regime of lean, premixed flames (Correa 1992).  The 

general strategy is to reduce flame temperatures, and thereby minimize NOx production 

due to the thermal (or Zeldovich) mechanism.  The other pathways for production of 

nitrogen oxides, the prompt or Fenimore mechanism, and the nitrous oxide mechanism 

are typically not significant contributors to NOx formation under gas-turbine combustion 

conditions.  Another important consideration in lean combustion is the uniformity of the 

fuel-air mixture ratio, since both spatial and temporal fluctuations in mixture ratio will 

result in higher NOx production (Swenson et al. 1996; Fric 1993). 

 

Figure 1-1: Effect of equivalence ratio on NOx production (from Rosfjord 1995). 

Operation near the lean blowout limit is desirable to minimize high flame temperatures.  

This circumstance gives rise to conditions under which combustion instabilities are more 

likely to occur in lean premixed systems, and have in fact been observed in new 
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combustors operating under these conditions, as shown in Figure 1-1.  The term 

combustion instability refers to the presence of a large amplitude pressure oscillation 

inside the combustion chamber and does not indicate unstable burning of the flame.  The 

pressure excursions associated with these instabilities can cause unacceptable levels of 

vibration and increased rates of heat transfer.  Vibration levels may induce mechanical 

failure, and enhanced heat transfer can cause components already operating near high 

temperature limits, such as the liner or turbine blades, to fail catastrophically. 

 

Lean premixed combustion systems are especially susceptible to combustion instabilities, 

since small pressure oscillations in the chamber can also affect air feed lines, causing 

variations in the fuel-oxidizer ratio, which in turn will produce fluctuations in the heat 

release rate, which can further drive the pressure oscillations.  Incomplete premixing of 

the fuel and oxidizer can have a similar effect, creating pockets of burning mixtures at 

different equivalence ratios, which can drive acoustic modes in the chamber.  This 

interaction suggests a coupling or feedback loop that exists between combustor dynamics 

and combustion dynamics, as shown in Figure 1-2. 

 

q′, Energy 
Addition 

External 
Inputs ∑ 

Combustion 
Dynamics 

Combustor 
Dynamics p′  

 

 

 

 

Figure 1-2: Combustor system. 
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1.2 Objectives 

The mechanisms causing combustion instabilities in gas turbine combustors are not well 

understood.  Although similar in principle (Raun et al. 1983) to a Rijke tube (a heat-

driven acoustic oscillation), the added geometric complexities and injector configurations 

of a practical combustor make their dynamical behavior unpredictable.  Current industry 

design techniques are largely empirical and not clearly defined with respect to 

combustion instabilities.  Ultimately, industrial combustor designs are finalized without a 

clear measure of the stability margins of the system.  A method for predicting and 

evaluating the stability characteristics of a given combustor configuration is needed for 

more robust designs.  The central objectives of this work are 

 

• To provide accurate measurements of nonlinear instability phenomena of 

laboratory devices for use in model validation. 

• To develop tools for evaluation of the combustion response of a burner in a 

variety of combustor configurations. 

• To evaluate the use of chemiluminescence and OH PLIF as indicators for the 

response of a combustion system in a forced acoustic environment. 

 

It is anticipated that this work and future work derived from it will lead to design rules of 

thumb that will improve current design techniques and the understanding of acoustic-

flame interactions.  
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1.3 Rayleigh’s Criterion 

When considering the phenomena of heat-driven pressure oscillations, Rayleigh stated 

his now well-known criterion in 1878: 

“If heat be given to the air at the moment of greatest rarefaction, or be 

taken from it at the moment of greatest rarefaction, the vibration is 

encouraged.  On the other hand, if heat be given at the moment of greatest 

rarefaction, or abstracted at the moment of greatest condensation, the 

vibration is discouraged.” 

The mathematical development of Rayleigh’s criterion follows from the conservation 

equations.  Following the framework of Culick (1976), the mass, momentum, and energy 

equations with sources can be written as 

(1-1)     W=∇⋅+
∂
∂

ρ
ρ u
t

 

(1-2)        F
r

+∇−=∇⋅
∂

p
t

uuu
ρ+

∂
ρ  

(1-3)        P+∇⋅−=⋅∇
∂

pp
t
p uu+

∂
γ  

where 

(1-4)     W  u⋅∇−= ρsw

(1-5)        F −=F  swus

r

(1-6)      







+⋅−

2

2uwQ
C ss

V
sFu=

RP  

where , and u, are the density, pressure, and velocity in the gas phase, wp,ρ s, Fs, and Qs 

are sources of mass, momentum, and energy.  The analysis can be carried out in one-
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dimension for convenience, following the development of Sterling (1987) and Culick 

(1987).  Expanding the momentum and energy equations (1-2) and (1-3) in terms of mean 

and fluctuating quantities, multiplying them by  and u′
op

p
γ

′
respectively, and adding them 

together without mass sources, we arrive at 

p
R

oγ

u′ρ

=




∫ ∫
t

tdV

(1-7)  ( )
x
p

p
pupu

x
pQ

Cp
pu

x
u

t
o

oVo

o
o ∂

∂′′
−′′

∂
∂

−′′=






 ′
+

′








∂
∂

+
∂
∂

γγ
ρ

22

22

 

x
u

p
puu o

o
oo ∂

∂







 ′
+′+′−

2
2ρ , 

where  are mean quantities and ( )  represent fluctuating quantities.  Assuming small 

changes in a correspondingly low mean flow, orthogonality between  and , and 

integrating over the combustor volume we are left with 

( )o
′

u′ p′

(1-8)    pQ
pC

R
p

pu
t oVo

o ′′


 ′
+

′
∂
∂

γγ
ρ

22

22

. 

Integrating equation (1-8) over the volume of the combustor, V, and a cycle of the 

oscillation, τ , we arrive at 

(1-9)         ( ) + ′′−
=∆ τ

γ
γ

o

dtQp
p

E 1 , 

where  is the energy added to the system during a cycle.  Equation (1-9) is an explicit 

expression of Rayleigh’s criterion. 

E∆
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1.4 Previous Work 

1.4.1 The Electrical Rijke Tube 

A Rijke tube is comprised of a tube with a mean airflow and a heat source, often a heated 

wire gauze.  At a particular heater position, temperature, and airflow, the tube can be 

made to “sing” as acoustic modes within the tube are excited.  Through consideration of 

Rayleigh's criterion, Collyer and Ayres (1972) were able to excite the 1st through 3rd 

modes of a Rijke tube consisting of 3.66 cm diameter Pyrex glass tubes, of length 0.79 m 

and 1.54 m.  The fundamental mode can be produced by placing the heater at L/4, the 2nd 

mode by a heater at L/8 or 5L/8, and the 3rd mode with a heater at L/12, 5L/12, or 3L/4.  

It was noted that the frequency of the modes increased slightly due to higher air 

temperatures, so a compensating heater to increase the air temperature at lower power 

levels was introduced just below L/2.  Though not ideal, the addition of the second heater 

had the general desired effect. 

 

Katto and Sajiki (1977) performed a wide range of experiments in an electrically driven 

Rijke tube.  Their experimental arrangement consisted of a compressor supplying airflow 

rates up to 50 L/min through a large surge tank and into a steel tube with an inner 

diameter of 30 mm, with lengths of 310 mm to 2810 mm.  The kanthar wire heaters were 

in a spiral or coil configuration.  Stability boundaries are given, but without temperature 

profiles, a clear criterion for the onset of instability, or limit cycle amplitudes.  Work by 

Madarame (1981a, 1981b), involved a similar apparatus, but added measurements of the 

linear growth rate and excited frequencies.  A summary of work done on Rijke tubes and 

similar devices is contained in the review paper of Raun et al. (1993).  Chapter 2 contains 
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the results and development of a model used to predict the stability boundary of a Rijke 

tube. 

 

1.4.2 Flares 

A device similar to a Rijke tube is the biogas flare, which is used to dispose of gases 

produced in a landfill site.  Typically landfill flares use an enclosed design, with all 

combustion taking place inside a refractory-lined chamber, such that no flame is visible.  

This configuration allows control of product gas residence time and temperatures in order 

to minimize pollutant emissions (John Zink 1988).  A consequence of this configuration 

is that the flare burner may interact with the feed system and chamber acoustics to 

produce an unstable system.  While other types of unstable systems may be corrected by 

trial and error, unstable flares are often left to run below full capacity due to government 

restrictions on noise levels near residential areas.  For testing purposes, landfill gas 

composition is taken to contain 50% methane and 50% carbon dioxide (Christo et al. 

1998).  At these compositions, the flame has substantially different properties than typical 

methane-air flames.  Work by Qin et al. (2001) has shown that the presence of high CO2 

quantities decreases laminar flame speeds and extinction strain rates, while increasing 

NOx production.  Further work regarding unstable flares has been notably absent in the 

literature.  Data taken from an unstable flare site, and sub-scale modeling attempts are 

presented in chapter 3. 
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1.4.3 Combustion Dynamics of Unsteady Flames 

In order to study the unsteady dynamics of a combustion chamber, a reliable technique to 

visualize the combustion process and its response to an oscillating pressure field is 

required.  Two techniques that can be used to perform these measurements are 

chemiluminescence and planar laser-induced fluorescence (PLIF).  McManus et al. 

(1995) give a review of these techniques as they are applied in modern combustion 

research. 

 

Chemiluminescence of various radicals of combustion, in particular CH, is an excellent 

marker of the reaction zone, and has been used by a number of researchers to study heat 

release in unsteady flames.  One major drawback of chemiluminescence is the inability of 

the measurements to provide high spatial resolution, since line-of-sight integration occurs 

at the detector.  These experiments can be categorized into two groups; measurements 

using a photo-multiplier tube (PMT) with a slit obscuring a portion of the flame to obtain 

some spatial (typically axial) resolution (Poinsot et al. 1987; Sterling 1991; Chen et al. 

1993; and Kappei et al. 2000), and full two-dimensional imaging using a charge-coupled 

device (CCD) based camera (Broda et al. 1990; Kendrick et al. 1999; and Venkataraman 

et al. 1999).  Of these works, only Chen et al. (1993) involved an acoustically forced 

flame, but used a PMT with a slit configuration that obtained only integrated one-

dimensional information.  Poinsot et al. (1987) had the capability of injecting acoustic 

waves into their system, but did not do so.  They later made use of this capability to 

perform combustion instability active suppression control experiments (Poinsot et al., 

1989).  Venkataraman et al. (1999) used phase-resolved CH chemiluminescence to study 
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the instability characteristics of a dump combustor.  They determined that swirl tends to 

induce combustion instabilities near the lean blowout limit. 

 

Dyer and Crosley (1982) performed the first demonstration of 2D (or planar) laser-

induced fluorescence (LIF) of the hydroxyl radical in a flame.  Spatial resolution is 

defined by the resolution of the detector, and the laser sheet, typically several hundred 

microns in width.  The PLIF technique has been used since then to measure a variety of 

chemical species in unsteady reacting flows, including OH as a measure of the heat 

release (Cadou et al. 1991; and Shih et al. 1996), and NO seeded fuel to measure the 

temperature field (Cadou et al. 1998).  PLIF measurements can discriminate strongly 

between different chemical species, while chemiluminescence measurements often 

contain overlapping source contributions to the signal.  A summary of these various 

works involving both chemiluminescence and PLIF is provided in Table 1-1, including 

the acoustic frequencies examined in the studies. 

 

While chemiluminescence measurements are more readily obtained, since they do not 

require a costly laser pump source, they have several disadvantages.  Chemiluminesence 

measurements cannot capture fine structures in flames, since the signal is integrated 

through the depth of the flame.  PLIF images are obtained of only a very specific plane 

where the laser sheet illuminates the flame.  Another disadvantage of chemiluminescence 

is that the signal is several orders of magnitude weaker than PLIF.  This decreases the 

temporal resolution of measurements, since longer integration times are required to 

obtain a sufficiently strong signal.  A typical integration time for a single shot using 
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chemiluminescence is on the order of approximately 100 µs, versus 100 ns when 

performing PLIF. 

 

 Chemiluminescence PLIF 

 

Naturally
Unsteady 

• Poinsot et al. (1987) (440-590 Hz) 

• Sterling and Zukoski (1991) (188 Hz) 

• Broda et al. (1998) (1750 Hz) 

• Kendrick et al. (1999) (235 Hz, 355 Hz) 

• Venkataraman et al. (1999) (490 Hz) 

• Kappei et al. (2000) (370-460 Hz) 

• Cadou et al. (1991) (43 Hz) 

• Shih et al. (1996) (400 Hz) 

• Cadou et al. (1998) (328 Hz) 

Acoustic 
Forcing 

• Chen et al. (1993) (300 Hz, 400 Hz) • Cadou et al. (1998) (360 Hz, 420 Hz) 

 

Table 1-1: Previous work in oscillating flames. 
 

Most experimental work characterizing various combustor configurations has been 

performed on naturally unstable systems (see Table 1-1).  However, these results are 

specific to the combustors tested and provide little insight to how a particular injector or 

burner design will behave in a different combustor.  A study of the acoustic coupling 

between fuel injectors and an applied acoustic field has been carried out by Anderson et 

al. (1998), but only for cold flow experiments.  Work by Chen et al. (1993) with 

premixed flames was specifically designed to simulate solid rocket propellants and used 

the same apparatus as Sankar et al. (1990).  It produced one-dimensional spatial results 

and used only two forcing frequencies.  The study by Cadou et al. (1998) was based on a 

specific 2D dump combustor configuration and showed little response to nonresonant 

forcing.  A more generalized body of work is required to provide a scientific 

understanding of guidelines that will be useful in designing stable combustion systems. 
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Although OH radicals have been used by other researchers (Yip et al. 1994) as a marker 

of the reaction zone, there is some question as to its validity, since OH is known to persist 

in high-temperature product gas regions (Allen et al. 1993; Barlow et al. 1990).  

However, in non-premixed flames, the OH radical quickly vanishes on both sides of the 

reaction zone (Cessou 1996).  Since the burner configuration is only partially premixed in 

this study, we assume OH to be sufficient as an indicator for the heat release, as is 

commonly the case. 

 

The purpose of this study is to demonstrate a novel technique that can be used as part of a 

method to assess stability margins over a range of frequencies for various burner designs.  

It is anticipated that this technique will provide sufficient temporal and spatial resolution 

that can be used to improve predictive capabilities and correlate experimental results with 

numerical simulations.  A burner using a mixture of methane and CO2 is operated in two 

configurations: aerodynamically stabilized and stabilized with a bluff-body.  The burner 

is subjected to a forced acoustic field with frequencies ranging from 22 Hz to 55 Hz.  The 

configuration discussed here has been chosen to simulate a practical application.  It 

serves as a relatively simple device for which the new diagnostics can be tested with 

minimal difficulties arising with the test apparatus.  Results from chemiluminescence 

imaging are presented in chapter 4, and laser diagnostics involving OH PLIF are 

presented in chapter 5. 
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Chapter 2   
 The Rijke Tube 
 

This chapter concerns perhaps the simplest device that exhibits a thermo-acoustic 

instability, namely the Rijke tube.  The experimental campaign, results, and model used 

to predict the stability boundary are discussed. 

 

2.1 Experimental Setup 

The classic Rijke tube (Rijke 1859) consists of a vertically mounted glass tube with a 

wire gauze suspended inside.  The gauze is heated using a flame, which causes the tube to 

“sing” in certain cases.  The essential characteristics of the original device are retained 

with several modifications to better quantify the phenomenon.  One of the major changes 

is orienting the tube horizontally, which removes the mean flow induced by convection.  

This enables a quantitative investigation of the effect the mean flow has on the system.  
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The other major change is use of an electrically heated nichrome grid as a heat source 

instead of a flame since the power input into the system is better characterized. 

 

The electrical horizontal Rijke tube (pictured in Figure 2-1) consists of a 9.5 x 9.5 cm 

square aluminum tube, 1.0 m in length.  Air is sucked in from one end of the tube (taken 

as the origin, x = 0) into a large plenum, which acts as a damping chamber to decouple 

the blower dynamics from the tube. 

 

 

Rijke tube Rijke tube 

Thermocouple array Thermocouple array 

Pressure  Pressure  
transducers transducers 

Damping chamber 

Heater power rods 

Air flow 
P2 P1 

 

 

 

 

 

 

 
Blower 

 

Figure 2-1: Electrical Rijke tube experimental setup. 
 

2.1.1 Heat Source 

As previously mentioned, the heat source consists of a nichrome grid (40 mesh) with a 

wire diameter of 0.01".  It is silver brazed to two strips of copper, which form the positive 

and negative terminals of the heater.  The heater is suspended in a frame machined from 
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macor in order to withstand high temperatures.  Two long copper rods, welded directly to 

the copper strips on the heater, form a solid physical and electrical connection from the 

heater to the power source.  The power source consists of two TCR-20T250 high current 

power supplies, each capable of producing 500 amps of current.  The power supplies are 

load balanced and operate in parallel, enabling the system to draw up to 1000A.  The 

actual power supplied is dependent on the resistance of the nichrome grid, which changes 

with temperature.  The power supplies are computer controlled using a software-

implemented controller to stabilize the output power, although fluctuations on the order 

of ±1% can occur. 

 

The heater is located at a position of x/L = ¼.  This is the ideal location for driving the 

fundamental mode of an open-open Rijke tube, according to Rayleigh’s criterion.  Input 

power is determined by directly measuring the voltage between the copper rods and 

measuring the current through one of the rods using a current sensor (Amploc, CL500).  

The final input power measurement is corrected to account for power dissipation along 

the copper rods. 

2.1.2 Air Flow 

The mean air flow through the Rijke tube is provided by a GAST R1102 blower, 

operating at 3450 rpm with a maximum throughput of 0.0127 m3/s at standard 

atmospheric conditions.  The blower is operated at full capacity with a 2" by-pass ball 

valve controlling the amount of air drawn through the damping chamber, or from the 

atmosphere.  A large plastic shroud (not pictured) is placed above the entrance to the 

Rijke tube to minimize air current effects on the system. 
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The flow rate is measured using a laminar flow element (Meriam 50MW20) and a 

differential pressure transducer (Honeywell Microswitch).  This measurement takes place 

between the damping chamber and the blower.  A thermocouple, located upstream of the 

laminar flow element, is used to correct for air density and viscosity to produce the total 

air mass flow rate. 

2.1.3 Pressure Transducers 

Selection of the proper pressure transducers used in this experiment was critical since 

they must provide accurate measurements in a hot environment.  The transducers used 

were PCB model 112A04, coupled with a 422D11 charge amplifier and a 482A20 signal 

conditioner.  Table 2-1 lists some of the important characteristics of the pressure 

transducers.  Charge-mode piezoelectric transducers were used, since the majority of the 

electronics is located in a separate charge amplifier, increasing the operating temperature 

range while retaining relatively high sensitivities.  The two pressure transducers, flush 

mounted in the tube at positions x/L = 0.15 and x/L = 0.80, are labeled P1 and P2 

respectively (see Figure 2-1).  In most cases, P1 is on the cold side of the tube and P2 is 

on the hot side. 
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Sensitivity 100 mV/psi 

Maximum Pressure 5000 psi 

Linearity < 1% FS 

Temperature Range -400 to +600 F 

Flash Temperature 3000 F 

Resonant Frequency > 250 kHz 

Rise Time < 2 µs 

 

Table 2-1: PCB 112A04 pressure transducer properties with 422D11 charge amp. 

2.1.4 Thermocouples 

An array of 15 type K thermocouples is suspended from the top of the tube to the 

centerline, at positions of x = 5, 10, 15, 22, 27, 30, 35, 40, 45, 50, 56.7, 63.3, 70, 76.7, 

and 90 cm.  An additional thermocouple is located just before the laminar flow element 

that measures the mean flow through the tube.  The odd spacing results from a desire to 

place more thermocouples nearer to the heat source, as well as to allow the heater to be 

located at key locations without interfering with the thermocouples.  Since the 

thermocouples have a relatively large time constant, they are multiplexed and sampled at 

2 Hz (i.e., all 16 thermocouples are read in 0.5 s).  It is not possible for thermocouples to 

respond quickly enough at the acoustic time scales required in the experiment.  They are 

used solely for bulk temperature measurements.  
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2.1.5 Data Acquisition System 

In order to provide accurate measurements of the acoustic pressures and other relevant 

phenomenon in the Rijke tube, a fast sampling system is required.  The data acquisition 

system is based on a Pentium III 700 MHz computer.  A Computer Boards CIO-

DAS1602/12 (12 bit) data acquisition board is installed in the machine, using Sparrow 

(Murray, 1995) as the software interface.  An EXP-16 expansion board accommodates 

the 16 thermocouples in a multiplexed array and also provides cold junction 

compensation.  The channels acquired are listed in Table 2-2. 

Channel Measurement 

0 System thermocouples 

1 Cold junction compensation 

2 Pressure transducer P1 

3 Pressure transducer P2 

4 Heater voltage 

5 Flow rate (LFE pressure drop) 

6 Heater current 

 

Table 2-2: Data acquisition analog measurements. 

The DAS1602/12 is operated in single-ended mode, giving a total of up to 16 analog 

input channels.  It also contains two analog output channels, one of which is used to 

control the power supplies.  In this configuration, data could be acquired in short bursts at 

over 8000 Hz, and for extended periods of time streaming to the hard drive at over 4000 

Hz.  For this Rijke tube, the primary frequencies are the first two modes at approximately 
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190 Hz and 380 Hz.  These frequencies were easily captured at the data rates capable by 

the data acquisition system. 

2.2 Experimental Procedure 

In order to carefully map the stability boundary, a methodical system of acquiring data 

was employed.  Variables in the Rijke tube experiment are the heater power (P), air flow 

rate or velocity (V), and heater position (x).  Based on previous works (Katto and Sajiki 

1977; Madarame 1981a), the stability region should be similar to the one schematically 

shown in Figure 2-2. 

 
P 

Unstable 
region  

 

V  

x  

Figure 2-2: Expected stability boundary. 
 

For this work, only one heater position (x/L = ¼) is investigated, although the experiment 

is easily modified to include other heater positions, which can preferentially drive 

alternate harmonics in the tube. 

 

Before commencing an experimental run, the tube is subjected to a warm-up procedure, 

in order to minimize temperature variations as the power input is increased.  The warm-

up depends on the actual conditions under which the experimental run will take place, 

based on anticipated stability boundaries.  Typically, the power input will be set to 
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approximately 200 W below the unstable point for a particular flow condition, and the 

tube run at that rate for 20 minutes.  If the stability boundary is not known or incorrectly 

selected, a more conservative estimate of the stability boundary is used at the expense of 

an increased duration for the experiment. 

 

Since the flow rate is manually controlled, the flow condition is set, and the power 

increased via computer control.  Initial power increments of 50 W are used while 

relatively “far” from the stability boundary.  As the boundary is approached, the power 

increments are reduced to the limits of resolution of the controller and power supplies.  

The tube is held steady at each condition for approximately 120 seconds until the system 

temperature field has settled and is quasi-static, before data is acquired.  Due to the 

presence of hysteresis at certain conditions, there exist two possible states for the system.  

The small steps in power followed by a long waiting period prevent transient thermal 

effects from triggering (Burnley and Culick 2000) the transition to the unstable regime.  

Once the tube has become unstable, a few more data points are taken within the 

instability boundary, and then the power increments are reversed to determine the “return 

to stability” boundary.  In a similar fashion, power decrements are initially large and then 

subsequently refined as the boundary is approached.  At each point, a full set of data is 

acquired for post-processing. 

2.3 Results 

The raw data obtained by the data acquisition system is post-processed, with the variables 

converted into appropriate units.  The pressure signals are filtered using a 5th order 
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Butterworth highpass filter with a cutoff frequency of 20 Hz, to eliminate low frequency 

noise and environmental effects.   

 

Examples of data traces taken at a stable and unstable condition are shown in Figure 2-3 

and Figure 2-4 respectively.  Notice that while both conditions are very similar, their 

behavior is quite different.  This is due to hysteresis effects, which must take into account 

the time history or evolution of a particular condition.  This will be explored in greater 

detail in the next section. 

 

Notice in the stable case (Figure 2-3), there is no coherent pressure oscillation.  The low 

frequency drift in the signal is due to thermal drift and noise induced in the pressure 

transducers.  The unstable case (Figure 2-4) shows a well-defined pressure oscillation in 

both transducers.  Differences in amplitude are due to the position of the transducers with 

respect to the modeshape of the acoustic modes, as well as transducer P2 being located in 

the hot section.  The temperature profiles are characterized by a large jump at x = 25 cm 

(the position of the heater gauze) of approximately 300 K.  There is significant cooling of 

the air as it progresses downstream in the tube, which is often neglected in modeling 

efforts.  The mass flow rate fluctuates with a period characteristic of the blower (RPM 

and number of fan blades).  In the unstable case (Figure 2-4), the flow rate oscillates 

approximately out of phase with the pressure oscillations, as would be expected.  In both 

cases, the power fluctuates with a small amplitude high frequency superimposed over a 

lower frequency higher amplitude, which is due to the action of the controller on the 

system. 
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Figure 2-3: Steady state stable Rijke tube data recordings.  (Mean power = 995 W, 
mean mass flow = 3.3 g/s). 
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Figure 2-4: Steady state unstable Rijke tube data recordings.  (Mean power = 995 
W, mean mass flow = 3.1 g/s). 
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Figure 2-5: FFTs of an unstable case in the Rijke tube. 
 

For the unstable case shown in Figure 2-4, the corresponding FFTs are plotted in Figure 

2-5.  The first and second modes are most prominent (higher modes are not significant, 

and are not shown) at approximately 190 Hz and 380 Hz respectively.  The spectrum of 

the flow rate shows a response at the fundamental excitation frequency, but significantly 

lower excitation of the second mode when compared with the relative magnitudes of the 

pressure responses, possibly attributable to the damping chamber. 
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2.3.1 Hysteretic Behavior 

As the Rijke tube transitions from a stable to an unstable operating condition, it is 

important to identify as precisely as possible when this transition actually takes place.  

One possible measure of the instability is the amplitude of the pressure oscillation.  A 

problem with this definition arises since noise and flow-induced vortices can give rise to 

increasing pressure amplitudes measured by the transducers.  Thus, the appropriate 

threshold that defines the transition to instability is not well defined.  Instead, a 

combination of approaches is taken, using observation of both the amplitude of the 

oscillation as well as the frequency of the strongest mode excited.  Once the Rijke tube 

goes unstable, the frequency “locks in” to an unstable mode of the tube.  In this case, 

since the Rijke tube is in an open-open configuration with the heat source located at the 

¼ point, the main unstable frequency will be approximately a half-wave (with appropriate 

end corrections) as dictated by Rayleigh’s criterion and chamber acoustics. 

 

Hysteresis implies that the history of the system is important in determining the current 

state of the system.  Hysteresis has been viewed previously in a dump combustor (Isella 

et al. 1997) and in a Rijke burner (Seywert 2001).  An example of the hysteresis in the 

electrical Rijke tube is shown in Figure 2-6.  The cold section represents data taken by 

transducer P1 at x = 0.15 m, and the hot section by transducer P2 located at x = 0.8 m. 

The triangles pointing up indicate data points taken as the power is being increased.  

Since the transitional points are of primary interest, many of the preliminary settings are 

not recorded and often by-passed as described in the warm-up procedure.  Once the 
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Figure 2-6: Bulk RMS pressures at a mean flow rate of 3.15 g/s. 
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Figure 2-7: Bulk RMS pressures at a mean flow rate of 2.44 g/s. 
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unstable point has been reached and slightly exceeded, characterized by a sharp increase 

in  pressure amplitudes at approximately 1075 W, the input power is decreased.  As the 

power is gradually decreased, indicated by the downward-pointing triangles, the 

amplitude of the limit cycle slowly decreases.  A large hysteresis loop exists, from 

approximately 1050 W down to 650 W, when the Rijke tube returns to stable operation.  

Note, that the amplitude of the pressure oscillations decreases with decreasing power, 

which could produce uncertainty as to when the system is again stable.  Though in this 

case the transition is well defined, in other cases, such as the one in Figure 2-7, the 

transition may not be as obvious.  At a flow rate of 2.44 g/s, it is not entirely clear 

whether the data point at approximately 443 W should be classified as stable or unstable.  

If an additional data point existed at a power level of 440 W, the ambiguity would be 

even greater. 

 

As stated above, the definition chosen requires analysis of the frequencies produced 

corresponding to the first mode of the pressure oscillation.  Returning to the first example 

at a mass flow rate of 3.15 g/s, Figure 2-8 and Figure 2-9 show the breakdown of 

frequencies and pressure amplitudes for the two most dominant modes in the system.  It 

is clear from examination of the first mode, that the system has become unstable at a 

power level of 1070 W as the power is increased, and has returned to stable operation as 

the power is decreased at 650 W.  In a similar fashion, Figure 2-10 and Figure 2-11 

reproduce the same plots for the 2.44 g/s condition.  It is now possible to classify the 

somewhat ambiguous point at a power of 443 W, observed in Figure 2-7.  The frequency 

of the first mode in Figure 2-10 shows that at 443 W the system is still locked to the  
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Figure 2-8: Frequencies of oscillations for first two dominant modes at 3.15 g/s. 
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Figure 2-9: RMS pressures of oscillations for first two dominant modes at 3.15 g/s. 
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Figure 2-10: Frequencies of oscillations for first two dominant modes at 2.44 g/s. 
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Figure 2-11: RMS pressures of oscillations for first two dominant modes at 2.44 g/s 
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unstable mode of the Rijke tube.  This observation is corroborated by the plot of pressure 

amplitude (Figure 2-11), which shows that a limit cycle still exists significantly over 

noise levels at 443 W.  It can be reasonably concluded that the system has returned to 

stable operation at 437 W. 

 

2.3.2 Stability Boundary 

The records presented in the previous section show the presence of hysteresis in the Rijke 

tube system.  This however is not always the case.  At lower mass flow rates, there is no 

hysteresis behavior.  The results of mapping the stability boundary of the Rijke tube in 

two dimensions, power and mass flow rate (heater position is left for future work), are 

summarized in Figure 2-12.  Red lines indicate increasing heater power and the point 

when the system goes unstable.  Blue lines indicate the point when the system first 

returns to stable operation, as the heater power is being decreased. 

 

Errors bars are included, and are taken from the rms values generated during the data 

collection process.  Points below mass flow rates of 0.5 g/s were not taken due to high 

power requirements coupled with the low flow rates, which produced extremely high grid 

temperatures and risked overheating various elements of the apparatus.  At high flow 

rates, the experiments were limited by the maximum throughput capacity of the blower. 
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Figure 2-12: Stability boundary for Rijke tube at x/L = ¼. 
 

Of particular interest is the large hysteresis region that appears at mass flow rates greater 

than approximately 3 g/s.  This is most likely due to nonlinearities arising in the 

acoustics, but may also be partially attributable to transitions to turbulence, postulated by 

Poncia (1999).  Mass flow rates from 3.0 to 3.5 g/s correspond to velocities of 40 to 50 

cm/s, and Re  (Reynolds number based on hydraulic diameter) in the range of 1200 to 

1500.  Transitional Reynolds numbers are typically in the range of 2000 to 3000 for 

normal pipe flows.  However, the presence of the grid and frame may trip the system to 

turbulence earlier.  The flow field is further complicated since the flow will not become 

fully developed in the relatively short (1 m long) tube length.  At moderate flow rates, 

HD
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there is no significant hysteresis beyond the uncertainty present in the experiment.  At 

very low mass flow rates, the extreme slope of the curve also does not appear to contain 

hysteresis. 

2.4 Prediction of the Stability Boundary 

A condition for the stability boundary of the Rijke tube can be found by consideration of 

the energy added and dissipated by the system.  Starting with the conservation equations 

of mass and momentum (equations 1-1 and 1-2) and expanding in terms of small 

fluctuations, a linearized wave equation with a heat source can be derived assuming a 

one-dimensional model, with a nearly uniform temperature profile.  The linearized wave 

equation containing a heat source (Maling 1963) and generic linear damping (Howe, 

1998) is given by 

(2-1)    p , ),(')1(),('),('),(' 2 xtQxtpaxtpxt txxttt
&ργα −=−+

where p is the sound pressure, ρ is the gas (air) density, γ is the ratio of specific heats, Q  

is the heat release rate per unit mass, α represents generic linear damping, and 

indicates fluctuating quantities.  The solution of equation (2-1) is sought as a Fourier 

expansion of the eigenmodes of the chamber, following the method of Culick (1976). 
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where the acoustic field has been represented by the modeshape ψ, with a time-varying 

amplitude, η, and a length correction lc, has been introduced to compensate for the non-

ideality of the node locations of the acoustic mode outside the chamber with respect to 

the actual length, L.  With the assumption of a uniform temperature profile along the 

tube, the speed of sound is constant and the modeshapes are orthogonal.  Considering the 

simplest case of the existence of only one unstable mode, namely the first mode of the 

system (n=1), equation (2-1) can be converted from a partial differential equation into an 

ordinary differential equation.  Substitution of equation (2-2) into equation (2-1), 

multiplying both sides of the resulting equation by ψ , and integrating over the 

effective length of the tube, a dynamic equation for the amplitude of the first mode is 

obtained (indices dropped for convenience) 
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where k=ω/a represents the wave number. 

 

A common model for the steady heat release in the Rijke tube is that the heat release is 

coupled to the flow velocity in the system.  In a similar way, the unsteady heat release 

couples with the instantaneous velocity with the addition of a time delay τ  (Putnam and 

Dennis 1954). Due to symmetry considerations, it is evident that the heat release should 

be independent of the direction of flow, but rather proportional to the magnitude of the 

flow.  It is also assumed that the heat release takes place in an infinitesimally thin region 

characterized by the location of the heater grid, lg.  With these considerations, the heat 

release rate per unit mass can be expressed by 
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where  is the electric power supplied to the grid and S is the cross-sectional area of the 

Rijke tube.  The acoustic velocity of the first mode can be found from equation (2-3), and 

is given by 
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Since we are interested in determination of the stability boundary, the acoustic velocity 

can be considered to be much smaller than the mean flow velocity.  Linearizing equation 

(2-6) to form  and making use of equation (2-7) for the acoustic velocity, the integral 

on the right-hand side of equation (2-5) can be solved, resulting in  
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where the forcing and damping parameters are represented by  and α  respectively.  

They are assumed to be of low enough magnitude, that they can be considered to be small 

corrections to the undamped linear oscillator equation.  The mode amplitude can be 

approximately considered to vary harmonically in time, with a growth parameter A 

yielding 

c
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Making use of equation (2-9), the energy dissipated per cycle is 
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The condition for the onset of instability occurs when Wa > Wd.  Comparing equations 

(2-10) and (2-11) and using equality of Wa and Wd to indicate the stability boundary, the 

system first goes unstable when  

(2-12)   
ω
α

ωτ
π

γ
γ

π
≥

+
+− )sin()
2

)(2
sin(1

2
1

c

cg

oo lL
ll

Sup
P . 

Taking into account damping in wall boundary layers (other losses typically have 

negligible contributions), the losses are modeled classically by (Howe, 1998) 
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where χ is the thermal diffusivity, ν is the kinematic viscosity, and R is the tube radius.  

Thus we arrive at 
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which is an explicit criterion for instability involving all relevant parameters: supplied 

power, mean flow velocity, grid location, natural frequency, time delay, system geometry 

and fluid properties.   
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Note that the time delay τ  is generally found from previous experiments and simulations, 

to be less than a quarter of a period, so the phase ωτ  can be considered to lie between  

and π .  Several observations can be drawn from equation (2-14). 

0

2/

• A necessary condition for instability is the location of the grid in the first half of 

the tube (in accordance with Rayleigh’s criterion). 

• No limit cycle is possible using a linear stability analysis. 

• In the limits u  or  with the other parameters fixed, the system is 

stable. 

∞→0 0→P

• In the limit as  the system is unstable. ∞→P

The limit  cannot be analyzed with this approach, since it violates the initial 

assumption that the acoustic velocity is a small fluctuation imposed over the mean flow.  

It is evident that a stability diagram with flow velocity and power input as the variable 

parameters will result in a linear relationship.  However in reality, the time delay and 

amount of energy transported to the acoustical mode are not constant, so that the exact 

stability boundary may not be predicted by equation (2-14). 

00 →u

2.5 Comparison of Prediction with Experimental Results 

In order to reconcile the model of the previous section with experimental results, a better 

model must be constructed for the heat release, which takes into account the time delay 

and change in heat transfer characteristics at low flow rates.  Kwon and Lee (1985) 

performed numerical simulations to compute the heat transfer from an isothermal wire to 

an acoustic wave.  They define an efficiency factor, E, resulting from their simulations, 

which relates the amplitude of the heat release and phase delay as a function of non-
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dimensionalized mean flow velocity, ωχ/*
oo uu = , and heater wire radius, χω /* r=r .  

Transforming equation (2-14) for use with the model of Kwon and Lee, the efficiency 

factor can be defined as 
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and is plotted for r* = 1.0 in Figure 2-13. 

 

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

u
o
*

E

 

Figure 2-13: Efficiency factor, E, for r* = 1.0. 

 

Recall the assumption that the temperature is approximately uniform in the tube.  

Temperature selection affects the physical properties of the air, which in turn changes the 

scaling of the non-dimensional parameters.  Two mean temperatures were selected, 
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which are representative of the low and high range of temperature in the tube.  For the 

experimental conditions used, r* varies from approximately 0.5 at 600K up to 1.0 at 

300K.  The difference in the efficiency curve for r* between 0.5 and 1.0 is very small, so 

only the efficiency factor for r* = 1.0 is considered. 

 

The resulting stability boundary is plotted in Figure 2-14 for both temperatures.  

Qualitatively, the predicted curves show the correct shape, but fail to accurately predict  
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Figure 2-14: Stability boundary prediction.  Solid black line is for T = 600K, and the 
dashed black line for T = 300K. 
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the stability boundary.  It can be argued that the lower temperature curve is more suitable 

for low power inputs, but it still over-predicts the power required to cause instability.  In 

general, the model over-predicts power requirements at low flow rates, and under-

predicts power requirements at higher flow rates. 

2.6 Summary 

The experimental apparatus and approach for collecting a set of accurate measurements 

that characterize the Rijke tube have been presented.  The experiment is capable of 

capturing both steady-state and transient behavior, spanning the relevant parameters 

(mass flow rate, heater power input, and heater position) over a wide range of values.  In 

addition, bulk temperature profiles are collected along the centerline of the tube, which 

have not been measured previously.  Experimental results show the presence of hysteresis 

at high mass flow rates (above 3 g/s).  A stability curve is presented summarizing the 

stability characteristics of the Rijke tube, with the heater at a position of x/L = ¼. 

 

A one-dimensional model using linear acoustics is used in conjunction with numerical 

heat transfer results from Kwon and Lee (1985) to attempt to predict the stability 

boundary.  It is based on the physical parameters of the experiment, and is not limited to 

this configuration only.  The results agree qualitatively, although accurate prediction of 

the stability curve was not achieved.  It is evident that a more detailed model, involving  

• an accurate heat transfer model including radiation 

• fluid mechanical considerations 

• at least two-dimensional, possibly three-dimensional effects 

• nonlinear acoustics and multiple acoustic modes 
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will be necessary to predict accurately the limit cycle amplitudes and stability 

characteristics of the Rijke tube. 
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Chapter 3   
 Full-Scale Flare and 
 Sub-Scale Model 
 

 

This chapter describes a practical, industrial application of a device exhibiting 

characteristics similar to a Rijke tube, namely a large flare.  A description of the device 

and the data collected on site is contained in this chapter.  This chapter also describes the 

sub-scale design and modeling efforts, as well as the results that were obtained.  

Ultimately, this motivates the more advanced diagnostic techniques that were employed 

in Chapter 4. 
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3.1 Full-Scale Flare  

3.1.1  Introduction 

One of the nations largest landfill sites, local to Caltech, uses a pair of large flares to burn 

off its production of landfill gas.  As solid waste material decomposes, landfill gas is 

collected by a system of gas wells, trenches, and collection pipes.  A portion of the 

landfill gas (composed primarily of methane and carbon dioxide) is used to power a 50 

MW power plant and on-site vehicles.  The remainder is sent to the flare station, shown 

in Figure 3-1, to be burnt under controlled conditions, minimizing emission of unburnt 

hydrocarbons (UHC), NOx, and other undesirable pollutants. 

 

This particular landfill site receives in excess of 12,000 tons of solid waste per day.  As 

the decomposition rates are anticipated to continue to increase, so will the production of 

 

Figure 3-1: Landfill flare station. 
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landfill gas.  In anticipation of increased capacity requirements, each flare is designed to 

process landfill gas at a maximum rate of 5500 SCFM.  However, at approximately 50% 

of maximum capacity, the flares emit a low frequency rumbling, which disturbs local 

homeowners.  This acoustic, low frequency noise is a result of the flares being unstable. 

3.1.2 Description of Full-Scale Flare 

The flare can be considered to be a type of Rijke tube, with closed-open boundary 

conditions, versus the Rijke tube’s open-open boundary conditions.  Each flare stands at a 

height of 45 feet, with an inner diameter of 12 feet.  The burner inside the flare consists 

of an array of 180 fuel spuds (see Figure A-2 for more details) distributed evenly on ten 

welded straight lengths of 12-inch steel pipe.  Each spud is 4.5 inches in height with an 

inner diameter of 0.688 inches.  The tops of the spuds extend to a height of 5.7 feet 

relative to the ground.  Landfill gas exits the spuds into a burner block section, which 

extends to a height of 8.8 feet relative to the ground.  The burner block contains an 

eductor section, which accelerates the flow and allows it to jet-mix with entrained air. 

 

Air enters the flare through two sets of horizontal louvers, located on opposite sides at the 

bottom of the flare.  The smaller louver is 3 feet high by 3 ¼ feet wide, while the larger 

louver is 4 feet high by 7 feet wide.  During the tests undertaken on-site, analysis of the 

landfill gas mixture showed 40% methane, 33% carbon dioxide, and the balance made up 

of nitrogen and trace gases (Bjerkin, 1999). 
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3.1.3 Diagnostics 

In order to characterize the flare system, sets of instrumentation arrays were designed to 

slide into access ports in the side of the flare and on the gas feed line.  Each 

instrumentation pair consisted of a pressure transducer (RE Technologies, Model PTX1) 

recessed to prevent damage from high temperatures and a type-K thermocouple.  The  
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Figure 3-2: Instrumentation layout on full-scale flare. 
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thermocouples extended approximately 2 feet into the chamber.  The pairs were located 

at heights of 37 feet, 9.2 feet, and 1 foot, labeled 1, 2, and 3 respectively.  An additional 

pressure transducer was located on the gas inlet line and is referred to as transducer 4.  

Data was acquired on site with a Computer Boards CIO-DAS1602/12 data acquisition 

board and a CIO-EXP16 expansion board for the thermocouples, both installed in a 

Pentium II 400 MHz computer.  Pressure data was acquired at 1 kHz, while temperature 

data was multiplexed and acquired at 2 Hz.  A diagram showing the instrumentation on 

the flare and a few of the flare’s physical characteristics is shown in Figure 3-2. 

3.1.4 Results 

The flare was run at mass flow rates of 2500-3100 SCFM.  The data presented here is for 

the 3100 SCFM flow condition, since it is the highest mass flow condition tested and is 

representative of the system instability.  Fuel composition was approximately 40% 

methane and 33% carbon dioxide with a balance of nitrogen and trace gases.  The 

temperature distribution at the three data ports is shown in Figure 3-3.  This represents 

the bulk temperature in the flare, since the time constant of the thermocouples is too large 

to respond to acoustically driven temperature fluctuations.  The large jump in temperature 

at 9.2 feet is due to the presence of the burner block section just below this data port 

(Figure 3-2). 

 

Pressure data taken from the site is shown in Figure 3-4, for each of the four 

measurement locations.  This data has been low-pass filtered with a cutoff frequency of 

200 Hz to remove any high frequency noise.  Note the lower amplitudes of the 

oscillations for Pressures 1 and 3, since Pressure 1 is situated near the top of the tube 
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(atmospheric boundary condition), and Pressure 3 is located at the bottom of the tube.  

Even though there is an acoustically “solid” boundary at the bottom of the flare, the 

presence of the open louvers introduces a mixed boundary condition, at least with respect 

to the pressure transducer, which only penetrates 2 feet into the chamber through the 

bottom louver.  Pressure 4, located on the gas inlet line, is similar to Pressure 2, even 

though there is the burner section in between the two transducers.  The pressure traces 

show these positions to be of similar amplitude and qualitatively, to follow the same 

pattern. 

 

 

Figure 3-3: Flare bulk temperature profile. 
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Figure 3-4: Flare pressure traces (low pass filtered at a cutoff of 200 Hz). 
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FFTs for the pressure traces are shown in Figure 3-5.  They indicate peaks at 

approximately 8.6 Hz and 21.5 Hz, corresponding to the first and second modes of a 

closed-open acoustic system. 

 

Making use of the FFT results, the pressure traces can be selectively bandpass filtered 

about their most prominent frequencies.  A 6th order butterworth phase-preserving 

bandpass filter is applied to the pressure data about the first and second acoustic modes of 

the system, and displayed in Figure 3-6 and Figure 3-7 respectively.  Figure 3-6 clearly 

shows all pressures to be in-phase, as would be expected for a quarter-wave (the 1st mode 

of an open-closed system).  Corresponding to this result is the bandpass filtered data for 

the 2nd mode.  Figure 3-7 indicates that Pressure 1 and Pressure 2 are generally speaking 

in-phase, which suggests that the pressure node of the 2nd mode occurs somewhere 

below Pressure 2.  Pressure 3 is out-of-phase with the pressures in higher sections of the 

flame, as expected, with the inlet Pressure 4 again mirroring what is seen at Pressure 2. 
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Figure 3-5: FFT of pressure traces in full-scale flare. 
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Figure 3-6: Flare pressure traces, filtered using a 6th order butterworth phase-
preserving bandpass filter between 7-10 Hz (1st mode). 
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Figure 3-7: Flare pressure traces, filtered using a 6th order butterworth phase-
preserving bandpass filter between 21-24 Hz (2nd mode). 
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3.1.5  Possible Driving Mechanisms 

There exist a number of potential mechanisms that could be driving the flare towards 

instability.  These may be working independently or acting in concert to exceed the 

natural losses associated with the flare system.  They can be summarized as follows: 

• Indirect Energy Transfer:  Combustion induced buoyancy creates the draft of air; air 

flowing past physical edges causes vortex shedding that then excite acoustic waves.  

This is analogous to the operation of wind instruments or sirens. 

• Feed System Coupling:  Fluctuations of pressure and/or velocity in the fuel supply 

system and in the air flow through the louvers cause fluctuations of the fuel/oxidizer 

mixture ratio, which then cause fluctuations in the energy release that further pump 

the acoustic resonance. 

• Chemical and/or Heat Transfer Sensitivity: Combustion processes in the burners are 

sensitive to pressure and velocity fluctuations, producing an internal feedback path 

which causes the combined system (burner and flow dynamics) to be linearly 

unstable. 

Attempts to clarify which mechanism is responsible for the instability through sub-scale 

modeling of the system are detailed in the next section. 

3.2 Sub-Scale Flare Model 

3.2.1 Apparatus and Diagnostics 

A 1/12th sub-scale model of the flare was designed and constructed, in an attempt to 

characterize the acoustic properties of the chamber and its interaction with the burner, 

and is shown fully assembled in Figure 3-8.  The model consisted of a 12.5-inch diameter 
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quartz tube, 42 inches in length, with six ½-inch laser drilled holes along one side for 

instrumentation access.  The quartz tube rests inside an aluminum base assembly that has 

front and back cutouts to simulate the louver action of the full-scale flare.  The aluminum 

base and quartz tube together form the chamber section, shown in Appendix A,  

Figure A-1. 

 

The corresponding burner section is shown in detail in Figure A-2.  It is comprised of 

eight lengths of 1-inch diameter aluminum tubing, welded together to form the inlet feed 

system of the burner.  There are five spuds on each length of tubing, which serve to 

provide fuel.  The burning region, which occurs above the two rings, is shown in the 

Section A drawing of Figure A-2.  These two rings form the “eductor” section of the 

burner, which was only approximately modeled in this apparatus and will be explored 

further in the next chapter. 

 

The data acquisition system used on the sub-scale flare was essentially the same as that 

on the full-scale flare, though the specific transducers differed.  The type-K 

thermocouples (Omega KMQSS-062U-6) and pressure transducers (PCB 112A04 with 

422D11 charge amplifiers) were mounted in water-cooled instrumentation bosses (Figure 

A-3) that attached to the quartz tube through the laser drilled instrumentation ports.   
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Figure 3-8: Schematic of sub-scale flare model assembly. 
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3.2.2 Scaling of the Model 

The first step in characterizing the sub-scale flare model was an attempt to operate it in an 

unstable regime. A wide variety of conditions were experimented with to elicit 

oscillations from the model including: 

• Diffusion flames 

• Premixed flames 

• Single and double meshes above the burner spuds 

• Raising the burner from its natural position to x/L = 1/3 up to x/L = 1/2  

• Running with and without burner “shields” 

• Placing a mesh over the shields 

• Doubling the chamber length by adding a stainless steel extension tube 

• Secondary fuel pulsed injection 

 

The strategy behind most of these techniques was to increase the intensity of heat release 

in a region that would be favorable to drive an acoustic instability according to 

Rayleigh’s criterion.  Switching from a diffusion to a premixed flame and using meshes 

both serve to concentrate the heat release in a more localized region.  If the heat release is 

distributed too evenly, regions of strong damping will be created that will cancel out 

driving regions.  Raising the position of the burner placed the heat release in a 

geometrically more favorable position for the excitation of the 2nd mode.  This did not 

induce oscillations, hence, changes were next applied to the chamber geometry rather 

than just the burner. 
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Doubling the chamber length served two purposes – to lower the fundamental frequency 

of the system, as well as increasing the aspect ratio, L/D.  This is significant due to the 

scaling of the acoustic radiative losses out the open end of the chamber.  According to 

Clanet et al. (1999), the characteristic time for radiative damping can be given by 

(3.1)     ( )
aL
D

rad 8
1 2ω

τ
= , 

where ω is the acoustic frequency, D is the chamber diameter, a is the speed of sound, 

and L is the chamber length.  The acoustic radiative losses are proportional to ω2/L.  

Increasing the chamber length by a factor of 2 correspondingly decreases the fundamental 

frequency by a factor of 2.  Therefore, a doubling of the chamber length results in an 

eight-fold decrease in acoustic radiative losses.  Similarly, Clanet et al. (1999) show that 

diffusive losses due to the presence of viscous and thermal boundary layers at the lateral 

walls are proportional to ω½.  As a result, lowering the fundamental frequency will also 

lower acoustic diffusive losses. 

 

Another technique that was tested was to inject secondary fuel into the system, using an 

automotive fuel injector.  Secondary fuel injection was superimposed over the main fuel 

feed, so the system was subjected to a mean fuel flow rate with a fluctuating component.  

The objective was to enhance natural resonant frequencies, by providing small-scale 

disturbances that would hopefully be further amplified as the instability developed into a 

limit cycle.  This concept had physical relevance, since the landfill gas entering the fuel-

scale flare would have a varying fuel composition and thus a fluctuation in fuel flow rate. 
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None of the mentioned techniques were successful in generating a “naturally” self-

sustained limit cycle behavior in the sub-scale flare model.  The most promising 

technique was secondary fuel injection coupled with the extended chamber length, 

producing measurable pressure oscillation in the chamber at 130 Hz.  This case, however, 

was deemed to be too artificial, since the amplitude of the fluctuating fuel flow rate was 

of the same order as the mean flow rate.  As a consequence, any attempts to stabilize the 

sub-scale model would not be relevant to the full-scale flare. 

3.3 Conclusions 

Measurements taken of the full-scale flare operating in its unstable regime indicate the 

presence of modes at 8.6 Hz and 21.5 Hz.  This corresponds well to the natural first (1/4 

wave) and second (3/4 wave) modes that would arise in a closed-open system.  The 

frequencies do not match precisely due to changes in the speed of sound due to 

temperature gradients in the chamber.  The pressure amplitudes do not correspond 

completely to a closed-open system, since at the closed boundary the presence of louvers 

produces a mixed boundary condition.  Although the bottom of the flare is closed 

acoustically to a longitudinal mode, the louvers open the bottom of the flare to the 

atmosphere, greatly dampening the amplitude of the pressure oscillations. 

 

The sub-scale model of the flare was unsuccessful at developing self-sustained pressure 

oscillations.  This was due in large part to the distributed nature of the heat release 

(approximately over an 18 inch high region) in the model, compared to the relatively 

concentrated heat release that occurs in the flare.  Another factor was the acoustic losses 

due to changes in the frequencies being studied.  Artificial pumping of the acoustic 
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modes in the sub-scale model was achieved using a fuel injector; however, this would not 

be useful in a study to suppress oscillations in the full-scale flare.  It therefore becomes 

necessary to take a closer look at the dynamics of the flame in order to improve its 

stability characteristics. 
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Chapter 4   
 Chemiluminescence 
 Measurements 
 

This chapter describes the methods used to visualize a flame under an acoustically forced 

pressure field.  It relates to Chapter 3 in that the burner configuration is modeled after an 

individual spud from the flare and is motivated by a need for a more fundamental 

understanding of combustion dynamics in flames in unstable systems.  The flowfield is 

imaged using two different techniques: shadowgraph and chemiluminescence.  IN 

addition, chemiluminescence gives a measure of the heat release rate in the flame.  

Details regarding the experimental setup and diagnostics are also provided in this chapter.   
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4.1 Experimental Setup 

The test section, shown in Figure 4-1, consists of three major components: the acoustic 

driving system; the acoustic cavity; and the burner section.  It is based in part on the sub-

scale model of the flare burner, discussed in Chapter 3. 

4.1.1 Acoustic Driving System 

The acoustic driving system is mounted above the acoustic cavity on the outer quartz 

tube.  It consists of a large tubular stainless steel section in the shape of a cross, 

approximately 12 inches in diameter, which extends the overall length of the acoustic 

chamber an additional 24 inches.  The exhaust section is open to the atmosphere, 

providing an acoustically open exit condition.  A pair of acoustic drivers are sealed to a 

pair of air jet film cooling rings (to prevent failure of the drivers), which are in turn 

sealed to opposite sides of the steel structure.  The acoustic drivers are 12 inch 

subwoofers (Cerwin-Vega model Vega 124), with a sensitivity of 1 W @ 1 m of 94 dB, 

and a continuous power handling capacity of 400 W.  A 1000 W power amplifier 

(Mackie M1400i) and a function generator (Wavetek 171) provide the power and signal 

to the acoustic drivers.  Significant power is required to provide reasonable amplitude 

pressure oscillations.  The amplitude of the fundamental driving mode is actively 

controlled by custom-designed electronics (see section 4.3.4), which measure the 

pressure in the acoustic chamber at the burner with a pressure transducer (PCB 106B50), 

and appropriately scale the power output of the speakers.  The signal from the transducer 

is notch-filtered to ensure the intended driving mode is correctly amplified or attenuated. 
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Quartz was used in order to withstand high flame temperatures, as well as to allow 

transmission of the ultraviolet laser sheet and fluorescence signal.  The tube also has 

several laser-drilled holes at various locations to provide instrumentation entry ports.  See 

Appendix A for more precise details on the dimensions of the acoustic chamber. 

4.1.3 Test Burners 

The burner sections are shown in Figure 4-3, in the aerodynamically stabilized and bluff-

body stabilized configurations used.  The design allows for a variety of different 

flameholder configurations to be easily tested.  Elements common to both arrangements 

include a fuel spud that ejects a premixed jet of fuel and an additional gas into the eductor 

block made of machinable ceramic.  The jet entrains air as it enters the eductor, where it 

is jet-mixed, resulting in a partially premixed flame.   

 

For the aerodynamically stabilized flame, the flame is stabilized above the recirculation 

zone created as the flow exits the eductor and expands into the 4.5 inch tall burner tube.  

In the bluff-body stabilized burner, two additional tabs (constructed of machinable 

ceramic) are provided in the stabilization zone, which can provide a stronger recirculation 

zone for the flame to attach itself.  In this case, the burner tube is 3.75 inches tall, with 

the remaining height taken up by a small quartz piece and the ceramic flameholder to 

bring the total height to 4.5 inches.  The tabs are approximately 0.5 x 0.5 x 0.5 inches in 

size yielding a blockage of approximately 7.4%, and are tapered on the upstream side.  

More details of the bluff-body tabs can be seen in Figure 4-2.  Each burner has two sets 

of burner tubes in which the flame is stabilized, one made of pyrex (I.D. 2.17 inches, 

O.D. 2.35 inches) and the other one of quartz (I.D. 2.17 inches, O.D. 2.33 inches).  The 
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pyrex burner tubes are used for the shadowgraph and chemiluminescence measurements.  

Quartz tubes are required for the PLIF experiments, since they need to be able to transmit 

UV light.  They also have two 1/8-inch slits cut on opposite sides in order to allow the 

laser sheet to pass through and illuminate the flame.  The slits eliminate luminescence of 

the quartz tube caused by the laser sheet, which interferes with the fluorescence signal. 

 

Figure 4-4 provides details of the gas feed system.  Fuel for the burner is 50% methane 

premixed with 50% CO2 gas to increase the mass flow.  The premixer inlets for each gas 

are choked in order to prevent disturbances from propagating upstream and affecting flow 

rates. The mixture is subsequently passed through a laminar flow element (Meriam 

Model 50MJ10 Type 9).  The temperature of the mixture is measured by a type-K 

thermocouple and a digital thermometer (Analog Devices, Model AD2050-K), while the 

pressure drop is measured by a barocel pressure sensor (Datametrics model 590D-10W-

3P1-H5X-4D, 1400 electronic manometer).  From these measurements, the flow rate is 

determined.  The flow then exits the fuel spud and entrains atmospheric air.  The 

volumetric flow rate through the spud is 2.14 SCFM, yielding a jet velocity of 30 m/s (Re 

= 20,000).   

 

 

 

 

 

Figure 4-2: Bluff-body stabilized burner flameholder detail, viewed from the 
upstream side. 
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(a) 

 

(b) 

Figure 4-3: (a) Aerodynamically stabilized burner (b) bluff-body stabilized burner. 
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Figure 4-4: Gas feed system. 
 

4.2 Acoustic Properties 

In order to determine the acoustic properties of the chamber, a second pressure transducer 

was used to traverse the height of the chamber, while using the acoustic drivers to excite 

the system during a cold test. 

 

Figure 4-5 shows the peak-to-peak pressure amplitudes under identical power conditions 

to those in the hot flame conditions.  The driving frequencies used in this section were 22, 
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Figure 4-5: Peak-to-peak pressure amplitudes in the chamber, driven at various 
frequencies (no flame). 
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Figure 4-6: RMS pressure in the chamber, when driven at various frequencies (no 
flame). 
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27, 32, 37, and 55 Hz2.  Due to difficulties inherent in producing low frequencies by the 

acoustic drivers (a very large excursion range is required), less power is given to the 

system at 22 Hz and 27 Hz to avoid driver failure.  This is evident in the lower peak 

amplitudes at 27 Hz, however it is not as evident at 22 Hz.  In the 22 Hz case, non-

linearities in the drivers cause additional modes to be excited and cause the increased 

peak amplitudes.  Figure 4-6 displays the rms pressures for the same test.  Due to the 

driver nonlinearity, the rms pressure for 22 Hz matches those for the higher three 

frequencies, which are driven at the same (higher) power level.  The drivers have a 

smoother response at 27 Hz that results in lower rms pressures at this frequency, since it 

is driven at a lower power level. 

 

An important result from this test is the modeshape of the acoustic wave that the driving 

system establishes in the chamber.  In Figure 4-5, the variations in peak amplitude at 

different heights and frequencies are shown.  The maximum variation in peak amplitude 

is less than 3% from the mean amplitude for 32-55 Hz, increases to 6.4% at 27 Hz, and 

increases further to 8.1% at 22 Hz.  If any of the driving frequencies excited a natural 

mode of the system, a distinct modeshape would be apparent from the amplitudes of the 

pressure traces at different heights (i.e., nodes and antinodes would be identifiable).  

Since the variation in amplitude is relatively low and the curve is flat, it can be 

reasonably concluded that the acoustic drivers produce a bulk mode in the system and not 

a standing wave. 

                                                           
2 Actual frequencies were 22.02, 27.02, 32.02, 37.02, and 55.02 Hz, to prevent the system from “mode-
locking” with the 10 Hz laser repetition rate. 



 71

4.3 Diagnostics 

This section describes the diagnostics used in the flow visualization and combustion 

dynamics experiments, excluding equipment specific to PLIF, which is found in the next 

section. 

4.3.1 Pressure Transducers 

A piezoelectric pressure transducer (PCB Piezotronics, model 106B50) is located at a 

height of 3 inches above the fuel spud, where the flame is stabilized in the burner.  This 

transducer was selected for its high sensitivity (493.3 mV/psi) and thermal 

characteristics.  An additional piezoelectric transducer (PCB, 112A04) with a sensitivity 

of 2258 mV/psi was used to traverse the length of the test section when determining the 

modeshape of the system under various forcing frequencies.  A PCB model 482A16 

power supply and amplifier, using a gain stage setting of 100, powered both transducers. 

4.3.2 Data Acquisition System 

The computer used in the data acquisition system consisted of an AMD Athlon 650 MHz 

processor with 512 MB of RAM and approximately 100 GB of total hard drive space 

(image files are large).  The system contains a CD-RW drive used to archive the data.  

Installed in the computer are two DAS1602/16 (Computer Boards) 16-bit data acquisition 

boards.  One operates in differential mode measuring quantities including the oscillator 

frequency, pressure, laser shot energy, camera triggers, and control effort, while the other 

board operates in single-ended mode and measures three type-K thermocouple 

temperatures in the acoustic chamber (at heights of 18, 25, and 37 inches).  Also in the 

same computer is the PCI controller card for the Princeton Instruments ICCD camera and 
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the IEEE 1394 FireWire card used to interface with the Vision Research Phantom V4.0 

camera.  The software package used to acquire data is National Instruments LabView 5.1. 

4.3.3 High-Speed Video Camera 

A Vision Research Phantom V4.0 high-speed video camera is used to capture images for 

the shadowgraph and chemiluminescence experiments.  It is based on a proprietary 512 x 

512 pixel monochrome SR-CMOS (Synchronous Recording, Complementary Oxide 

Metal Semiconductor) sensor, capable of exposure times as low as 10 µs.  The camera 

contains 256 MB of memory on board, which allow it to acquire data at 1000 frames per 

second, for just over 1 second.  Higher frame rates are possible by lowering the pixel 

resolution.  The camera is equipped with a C-mount, and a Nikon 50 mm F/1.4 lens is 

used with a C-mount-to-F-mount adapter.  Use of a lens with a low f-stop number 

increases the light gathering capacity of the lens and decreases it’s depth of view.  A 

decreased depth of view is advantageous, since it minimizes line-of-sight integration, 

though small contributions out of the focal plane that smear the image will be inevitable. 

4.3.4 Additional Electronics 

Two custom electronics units used in the experiments were designed and built by co-

experimenter Steven L. Palm.  The first is an active control unit that regulates the power 

amplifier output to the acoustic drivers.  Output from the pressure transducer (PCB 

106B50) is notch filtered by the controller to determine the amplitude of the fundamental 

frequency the acoustic drivers are producing in the chamber.  This is compared with an 

adjustable preset value in the controller, which uses PI control to regulate the system to 

ensure a constant pressure amplitude at the transducer location (a height of 12 inches, 
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approximately level with the flame stabilization zone).  The second unit is a peak 

capture/amplifier box, which reads the output from the pyroelectric joulemeter 

(Molectron J9LP) measuring laser shot energy and amplifies the signal so it can be read 

by the data acquisition system.  More details on this equipment can be found in the work 

of Palm (in progress). 

4.3.5 Shadowgraph Setup 

The reacting flowfield was visualized using the high-speed Phantom V4.0 video camera 

described above, in a standard Z-configuration shadowgraph arrangement.  Two 30 cm 

diameter spherical mirrors collimate the continuous light generated by an Ealing 250W 

universal arc-lamp supply driving a Mercury arc-lamp (Ealing, Model 27-1031).  More 

details on the shadowgraph imaging arrangement are shown in Figure 4-7.  Due to the 

curved surfaces of the burner and acoustic chamber, imaging was performed on an 

unforced flame above the burner tube. 

 
Hg lamp Lens 

Pinhole 

Burner 

High-speed 
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Spherical 
Mirror 
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Figure 4-7: Shadowgraph imaging setup. 
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4.3.6 Chemiluminescence Measurements 

In combustion experiments, a now common method of determining the reaction zone is to 

image the light emitted in the combustion zone (McManus et al. 1995).  Of particular 

importance are C2, CH, and OH radicals, since they are produced as intermediaries of the 

combustion process.  Hurle et al. (1968) established the linearity between the radiation 

emitted and the volumetric heat release.  Numerous studies involving combustion 

instabilities have taken place using this relationship (Samiengo et al. 1993; Shih et al. 

1996; Broda et al. 1998).  The major limitations with this technique are the integration of 

the intensities along the line of sight, and relatively long integration times O(~100 µs) 

due to low signal strength. 

 

Consistent with previous JPC researchers, no filters are used, and the total radiation 

emitted from the combustion process is taken to be proportional to the heat release rate.  

The measurements taken by Sterling (1987) used a masked photomultiplier to achieve 

spatial resolution, and were subsequently improved upon by Zsak (1993) and Kendrick 

(1995), with the introduction of the Hycam (high-speed film camera) providing two-

dimensional spatial resolution.  In this work, advances in imaging technology further 

simplify measurements by use of the Phantom digital high-speed video camera described 

earlier.  This provides temporally and spatially resolved measurements of the heat release 

subjected to a forced acoustic field, without the jitter introduced by a high-speed 

mechanical film camera. 
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4.4 Shadowgraph Results 

In this particular configuration, the shadowgraph imaging technique provided limited 

results.  Results could not be obtained under forced conditions and in the interior of the 

burner tube.  While the flow fields are similar, there exist some differences between the 

aerodynamically and bluff-body stabilized cases, as shown in Figure 4-8.  The bluff-body 

burner shows wider spreading of the flame outside of the burner and also displays finer 

structures in the downstream section.  These can be attributed to the stronger recirculation 

zones and vorticity generated by the bluff-bodies. 

 

 

(a) 

 

(b)

Figure 4-8: Shadowgraph results above the burner tube for (a) aerodynamically and (b) 
bluff-body stabilized cases. 
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4.5 Chemiluminescence Results 

4.5.1 Two-Dimensional Flame Structure 

Single shot chemiluminescence images from the Phantom V4.0 camera were smoothed using 

a 3 x 3 median filter in Matlab.  Images were then averaged by phase-locking to the pressure 

signal.  Images were selected by locating their temporal locations, and selecting the images to 

be averaged based on their proximity to the sixteen phase divisions used.  Approximately 15 

images were used in the average at each phase position.  The maximum phase resolution 

jitter was found to be less than 2 degrees in all cases.  Contours were computed and plotted 

for each case (five forcing frequencies x two burners) showing eight phases in a cycle, and 

are displayed in Figure 4-9 through Figure 4-13.  Contour levels are plotted at 5, 20, 40, 60, 

80, and 95 percent levels of the maximum intensity of the 0 degree phase contour plot for 

each case.  In all cases, the phases are taken as a sine wave, with 0 degrees corresponding to 

a zero crossing with a rising edge. 

 

For forcing at 22 Hz (Figure 4-9), the bluff-body burner shows a larger stabilization zone 

than the aerodynamic burner (40% contour), centered at approximately a height of 5 cm.  

Note that the center “hole” at 8 cm at a phase of 0 degrees is actually at a contour of 5%, and 

not 40%.  Characteristics to note in both cases are the traveling of a wave in the upstream 

direction on the outer edge of the flame, from 0 to 180 degrees.  At 180 degrees, the wave 

reverses itself, and travels back downstream.  There is also a distinct change in intensity as 

the flame oscillates.  The intensity contour at 40% can be seen to grow into the burner tube as 

the flame evolves from 0 to 180 degrees, and in the bluff-body case even connects with the 

40% contour levels in the stabilization zone.  Again, as the pressure changes from 180 to 360 
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degrees, this intensity zone separates from each other and travels back downstream.  These 

two oscillating characteristics are generally observed for each forcing frequency, except for 

the 55 Hz case. 

 

At a frequency of 27 Hz (Figure 4-10), much the same phenomenon is observed, with a 

decrease in the amplitude of the outer propagating wave.  In addition, there appears to be a 

superimposed higher frequency, lower amplitude outer wave, continuously traveling 

downstream.  As the forcing frequency is increased to 32 Hz (Figure 4-11), the intensity of 

the flame in the burner tube has diminished – note the decrease in size of the 40% contour in 

the flame stabilization zone inside the tube.  Once the acoustic oscillations reach 37 Hz 

(Figure 4-12), an interesting reversal occurs.  The contours in the stabilization zone show a 

significantly larger 40% contour for the aerodynamically stabilized burner, than the bluff-

body stabilized case.  Recall in all previous cases, the bluff-body stabilized burner yielded 

stronger stabilization zones or at least zones comparable to that of the aerodynamically 

stabilized burner.  Finally, for the 55 Hz case (Figure 4-13) there is essentially no change 

between contours at different phases.  The low amplitude traveling waves on the outer rim of 

the flame are present, but none of the bulk oscillations of intensity or flame shape that 

occurred in previous situations. 
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Figure 4-9: Chemiluminescence contour plots at 22 Hz for (a) aerodynamically 
stabilized and (b) bluff-body stabilized cases. 
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Figure 4-10: Chemiluminescence contour plots at 27 Hz for (a) aerodynamically 
stabilized and (b) bluff-body stabilized cases. 
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Figure 4-11: Chemiluminescence contour plots at 32 Hz for (a) aerodynamically 
stabilized and (b) bluff-body stabilized cases. 
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Figure 4-12: Chemiluminescence contour plots at 37 Hz for (a) aerodynamically 
stabilized and (b) bluff-body stabilized cases. 
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Figure 4-13: Chemiluminescence contour plots at 55 Hz for (a) aerodynamically 
stabilized and (b) bluff-body stabilized cases. 
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4.5.2 Axial Flame Structure 

In order to emphasize the periodic motion contained in the flames, axial plots showing the 

mean intensity as a function of height and phase were constructed and plotted on a 2D 

contour plot.  Mean intensities were calculated using a threshold intensity of 15, 

corresponding to approximately 5% of the maximum intensity level in the flame.  Values 

below the threshold were considered to be outside the flame zone and not incorporated into 

the mean.  In addition, the axial contours were averaged over a period, and the averages used 

to normalize the plots, which further enhances the periodic motion of the flame (Figure 4-14 

through Figure 4-23).  The mean plots of flame intensity are absolute – they are not 

normalized in any way to enable comparison between different forcing conditions.  The 

flame base is defined at an intensity level of 15, and can be easily seen on the mean axial 

intensity plots.  Data at conditions below approximately 2 cm (below the flame base) on the 

normalized intensity plots should be disregarded, since they are outside the flame zone 

(denoted by dark blue structures).  Both sets of plots are repeated over an additional period 

for illustrative purposes. 

 

Immediately observed is the fluctuation of the flame base (note: the lowest intensity plotted 

is at 15, i.e., the flame base).  In each case, the flame base oscillates in a sinusoidal manner, 

corresponding to the driving frequency imposed by the acoustic drivers.  Table 4-1 compiles 

the mean flame height, the amplitude of the oscillation, and the percent changes of these 

parameters when transitioning from the aerodynamically stabilized burner to the bluff-body 

burner. 
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 Mean Height (cm) Amplitude of Oscillation 

(peak-to-peak) (cm) 

Frequency (Hz) Aero BB Relative 

Change 

Aero BB Relative 

Change 

22 1.65 1.17 -29% 0.89 1.02 +15% 

27 1.88 1.25 -33% 0.56 0.40 -28% 

32 2.07 1.90 -8% 0.55 0.24 -56% 

37 1.53 2.14 +40% 0.50 0.28 -44% 

55 0.37 1.06 +186% 0.14 0.16 +14% 

 

Table 4-1: Flame base position and oscillation. 
 

At low frequencies, the bluff-body stabilizer has the effect of lowering the mean flame base 

position.  At approximately 32 Hz, a change in the characteristics of the bluff-body flame 

seems to occur.  At frequencies greater than 32 Hz, the bluff-body case shows increased 

flame base positions relative to the aerodynamic case.  For frequencies between 22 and 37 

Hz, the flame base increases continuously, except for the aerodynamically stabilized burner, 

which shows a sharp lowering of the mean flame base at 37 Hz.  At 55 Hz, both burners 

appear to enter into a different regime from the lower frequencies.  In addition, the bluff-

body burner generally has a lower amplitude of oscillation than the aerodynamically 

stabilized burner. 

 

Figure 4-14 and Figure 4-15 show the mean and normalized axial intensities at 22 Hz.  It is 

evident from the flame structure that both burners are responding strongly to the acoustic 

forcing.  The ranges of motion taken from the normalized axial intensity are comparable in 
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size, with the aerodynamic burner tending to oscillate at a higher overall position.  Note the 

higher angle of oscillation for the aerodynamic case in Figure 4-15.  This implied a larger 

velocity of the flame, possibly due to flow retardation caused by the enhanced recirculation 

off the bluff-body burner. 

 

At 27 Hz, the mean axial intensities (Figure 4-16) show a stronger coupling in the 

aerodynamic case.  The normalized intensities (Figure 4-17) show comparable angles (i.e., 

velocities) and a similar range of motion.  As the driving frequency is increased to 32 Hz, 

there is a much stronger motion observed in the aerodynamic case (Figure 4-19).  Again, the 

velocities of the motion are comparable between the two cases.  At 37 Hz, there is much 

stronger anchoring of the flame in the aerodynamic case at the flame base, as shown in 

Figure 4-20.  Figure 4-21 shows significantly more motion in the bluff-body case, which is 

observed for the first time.  At the highest frequency tested of 55 Hz, Figure 4-22 and Figure 

4-23 show very little motion in both cases. 
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Figure 4-14: Mean axial intensities at 22 Hz (a) aerodynamic (b) bluff-body. 
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Figure 4-15: Normalized axial intensities at 22 Hz (a) aerodynamic (b) bluff-body. 
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Figure 4-16: Mean axial intensities at 27 Hz (a) aerodynamic (b) bluff-body. 
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Figure 4-17: Normalized axial intensities at 27 Hz (a) aerodynamic (b) bluff-body. 
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Figure 4-18: Mean axial intensities at 32 Hz (a) aerodynamic (b) bluff-body. 

0  

0.5

1  

1.5

2  

0 90 180 270 360 450 540 630 720

2

4

6

8

10

12

14

16

Phase [deg]

H
ei

gh
t [

cm
]

(a)

0  

0.5

1  

1.5

2  

0 90 180 270 360 450 540 630 720

2

4

6

8

10

12

14

16

Phase [deg]

H
ei

gh
t [

cm
]

(b)

 

Figure 4-19: Normalized axial intensities at 32 Hz (a) aerodynamic (b) bluff-body. 
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Figure 4-20: Mean axial intensities at 37 Hz (a) aerodynamic (b) bluff-body. 
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Figure 4-21: Normalized axial intensities at 37 Hz (a) aerodynamic (b) bluff-body. 
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Figure 4-22: Mean axial intensities at 55 Hz (a) aerodynamic (b) bluff-body. 
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Figure 4-23: Normalized axial intensities at 55 Hz (a) aerodynamic (b) bluff-body. 
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4.5.3 Modified Rayleigh Index 

Since the chemiluminescence measurements can be used as a measure of the heat release, it 

is possible to use the measurements in order to calculate Rayleigh indices.  As mentioned 

previously, following the development by Culick (1987), Rayleigh’s criterion can be stated 

mathematically as 

(4-1)           dtqpdV
p

E
t

t
′∫ ∫ ′−

=
+τ

γ
γ 1

∆ , 

where ∆E is the incremental energy added to the acoustic field over a period τ due to the 

coupling between the fluctuating pressure, p′, and the fluctuating heat release, q′.  For the 

purposes of this work, equation (4-1) can be modified to yield a frequency-driven or forced 

Rayleigh index that has been nondimensionalized and normalized to account for the driving 

pressure amplitude and period.  The dependence on gas composition is also removed to give 

(4-2)     ξd
qp

qpR
rms

f ∫
′′

=
1

0

, 

where prms is the root-mean-square of the amplitude of the driving pressure wave, and q  is 

the mean intensity of the heat release.  p′ is redefined as the driving pressure amplitude, and 

q′ becomes the fluctuation in heat release.  The time dependence has been normalized by the 

period of the driving acoustic wave, T, to give a nondimensional time ξ.  Rf can be applied 

globally to a system to yield a global frequency Rayleigh index, or over a series of small 

control volumes to produce a 2D map of the frequency Rayleigh index.  This will affect the 

definition of q in equation (4-2), but will be valid provided it is defined in a consistent 

manner. 
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4.5.4 Global Forced Rayleigh Results 

The phase information brings with it the ability to calculate Rf directly for the system.  Since 

the heat release varies both spatially and temporally, it is important to define how the heat 

release is calculated in the modified Rayleigh index, equation (4-2).  For the global results, 

the heat release is first calculated according to 

(4-3)            , ∫ ∫ ′=′
x yL L

D dxdyyxqq
0 0

2 ),,()( ξξ

where is the spatially integrated heat release of the spatially resolved quantity, .  In 

order to evaluate contributions only from the driving frequency, R

q′ Dq2′

f is calculated for a 

pressure signal that has been bandpass filtered about the fundamental driving frequency. 
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Figure 4-24: Chemiluminescence global forced Rayleigh indices. 
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The global forced Rayleigh indices are shown in Figure 4-24.  They indicate that the 

aerodynamically stabilized burner in general is more damped than the bluff-body case, 

except at 37 Hz. 

 

4.5.5 Spatially Resolved Forced Rayleigh Results 

A complete set of spatially resolved Rayleigh results can be found in Appendix C.  Spatially 

resolved 2D contour plots and axial forced Rayleigh indices at 32 Hz are shown in Figure 

4-25 and Figure 4-26 respectively.  The 2D contour plots are shown with contour lines drawn 

at levels of –20 up to +20, in increments of 2.  The positive contours as solid lines, and the 

negative contours are shown as dashed lines.  The 2D indices show a strongly damped 

anchoring zone at the base of the flame, followed by a driving region in the upper portion of 

the burner tubes.  As the flame exits the burner tube, it is again damped.  Some pockets of 

driving zones also appear, with larger zones appearing in the bluff-body stabilized case. 

 

The axial Rayleigh plots yield similar information, but enable better comparison of the two 

burner types.  The bluff-body axial Rayleigh index peaks approximately 1 cm earlier than the 

aerodynamic burner, and again shows a stronger driving region at the top end of the flame.   
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Figure 4-25: Chemiluminescence 2D forced Rayleigh indices at 32 Hz for (a) 
aerodynamic and (b) bluff-body stabilized burners. 
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Figure 4-26: Chemiluminescence axial forced Rayleigh indices at 32 Hz. 



 95

4.6 Summary 

This chapter describes the experimental apparatus and diagnostics used to visualize the 

two burner types under examination with acoustic excitation.  Shadowgraph imagery and 

chemiluminescence visualization techniques were employed to provide details of the flow 

field and flame locations.  In particular, chemiluminescence provided measures of the 

flame base location at different forcing frequencies, and the response between the 

aerodynamically stabilized and bluff-body stabilized burners.  In general, the bluff-body 

burner lowered the position of the flame base, except at 37 Hz, where the opposite effect 

was observed.  Results at 55 Hz showed very little response from the flame to the 

acoustic excitation.  It appears that the burners enter a different regime when they are 

excited at 55 Hz. 

 

The chemiluminescence measurements also provide relative heat release measurements, 

which can be used to calculate Rayleigh indices.  Global forced Rayleigh indices indicate 

that the aerodynamically stabilized burner provide more damping at all frequencies, 

except 37 Hz.  Spatially resolved Rayleigh indices were also computed, with examples of 

2D contours and axially integrated plots presented. 

 

Chemiluminescence measurements raise questions regarding its validity, particularly in 

flames that are not two-dimensional in nature, due to the line-of-sight integration that 

occurs.  A possible solution in axisymmetric systems is use of an Abel inversion 

technique (Smith et al. 2001), which is able to extract planar information from the 

chemiluminescent signal.  However, in highly turbulent environments such as the flames 
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under study in this work, such a technique is not possible.  Adding to this is the 

complexity that the bluff-body stabilized burner is not axisymmetric.  These concerns 

give rise to more accurate spatially resolved measurements, which are explored in detail 

in the next chapter. 
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Chapter 5   
 OH PLIF Measurements 
 

This chapter describes the experimental results and measurements of combustion 

dynamics of a flame under a forced oscillatory pressure field.  The test apparatus and the 

majority of the diagnostics are the same as in the previous chapter.  The focus of this 

chapter is on the enhanced spatial and temporal resolution brought about with the 

introduction of laser diagnostics and OH PLIF measurements, a more advanced technique 

than chemiluminescence. 

5.1 Planar Laser-Induced Fluorescence of OH 

5.1.1 PLIF Theory 

Laser diagnostics have proven to be ideally suited to acquiring chemical species data.  In 

particular, laser-induced fluorescence (LIF) is capable of resolving minor species 

concentrations at low parts-per-million (ppm) levels.  According to Crosley (1993), 
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detection of the hydroxyl radical (OH) in an atmospheric flame is possible at sub parts-

per-billion (ppb) concentration levels, with a spatial resolution of 1 mm3 and a temporal 

resolution of 10 ns, with a signal level on the order of 100 photoelectrons. Other laser 

techniques such as Raman scattering (Masri et al. 1996) are sensitive to concentrations on 

the order of 1000 ppm, which are adequate for major species detection, but several orders 

of magnitude too high for minor species.  Raman scattering is also limited by only 

providing point-wise measurements.  Perhaps the major advantage of laser techniques is 

the ability to provide nonintrusive, in-situ measurements.  The introduction of a physical 

probe will inevitably disturb the flowfield, distorting the physics of the experiment.  

Another issue to note is the difficulty for a physical probe to survive in a high 

temperature, high pressure combustion environment.  The flexibility of laser diagnostics 

includes the capability of spreading the laser beam into a sheet.  Planar laser-induced 

fluorescence (PLIF) can then be performed, yielding species information as a 2-D planar 

image, as opposed to LIF that resolves only a single point with each pulse. 

 

PLIF and LIF operate on essentially the same principles, with the primary difference 

being the way in which data is collected.  In an LIF system, a photomultiplier can be used 

as a detector, whereas PLIF requires an intensified CCD camera or some other detector 

that provides spatial resolution.  Another obvious consequence is the need for additional 

optics to produce the laser sheet. 

 

Laser-induced fluorescence involves three essential features.  First, the species of interest 

must be brought to an excited electronic state, usually via a tunable-dye laser, pumped by 
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an Nd:YAG or Excimer laser.  The excited molecules then fluoresce, by emitting photons 

and decaying to lower energy states.  The emitted photon can be at the same wavelength 

as the excitation source, though this is not necessarily the case.  In fact, it is more 

convenient if it is not, since detection can take place without interference from the laser 

source.  The last step involves detection of the fluorescence signal.  Figure 5-1 outlines 

schematically this process. 

 Excited state 
2  

 

Ground state 
1 

Laser source 
Absorption Q21  

Detector  
 Spontaneous 

emission  
 

 

Figure 5-1:  Simplified energy level transfer diagram for LIF. 

 
The quenching (or collisional quenching) rate, Q, is of primary importance in 

determining the accuracy of LIF measurements.  Quenching represents energy loss of the 

molecule by some pathway other than fluorescence.  Possibilities include collision with 

other molecules, dissociation, ionization, chemical reaction, or even transitions to 

unmonitored molecular energy states. 

 

A technique to avoid errors introduced by unknown quenching rates is to perform 

saturated LIF.  This involves using a high intensity laser such that the quenching rate is 

small compared to absorption and stimulated emission rates.  This has the additional 

advantage of maximizing the strength of the fluorescence signal that is detected.  A 

problem of saturated LIF is the need for a high-powered, tunable laser with good beam 

quality.  Further difficulties include the finite time required to achieve saturation and 
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subsequent relaxation of the probed species, especially when temporal accuracy is 

necessary (Eckbreth 1988).  Depletion of the laser-pumped level also leads to 

fluorescence being a nonlinear function of population fraction (Seitzman and Hanson 

1993). 

 

An alternative to saturated LIF is to operate in the linear fluorescence regime.  This 

allows for the use of comparatively low powered lasers, but does not eliminate the 

quenching dependence.  Quenching rates can generally be modeled, but the modeling 

requires knowledge of the precise state of the system, such as temperature and 

concentrations of all other species.  For single point measurements, Raman scattering can 

be used to determine major species concentrations, however this is not practical in a two-

dimensional flowfield.  Temperatures in the flowfield can be determined through a 

variety of techniques.  Seeding the flow with a temperature sensitive tracer molecule such 

as NO, and performing PLIF on the tracer gas can yield temperature fields (Cadou 1996).  

Another popular method is use of a two-line technique, which measures the rotational 

temperature by ratio of the two fluorescence signals (Cattolica 1981; Lucht et al. 1982; 

Palmer and Hanson 1996).  Rayleigh scattering can also yield a two-dimensional 

temperature field by measuring the density and inferring temperature.  Combining 

Rayleigh scattering with a point two-line LIF measurement has been used to improve 

precision (Heberle et al. 2000). 

 

A model for the collisional quenching of NO (Paul et al. 1994) and OH (Paul 1994) has 

been developed for flame environments.  Comparisons with experimental results show 
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relatively good agreement with the empirical correlations proposed (Tamura et al. 1998).  

Making use of Paul’s models, a successful technique for LIF of NO in high pressure (up 

to 10 atm) environments was developed by Battles and Hanson (1995). 

 

According to Allen et al. (1995a), the fluorescence signal can be modeled by a two-level 

steady state model, and is given by 

(5-1)       [ ]f c
eff

P
j t B i i i

i
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where: 
 

η

Ω

χ

 = quantum efficiency of ICCD photocathode 

 = collection optics solid angle 

Vc = collection volume of one detector pixel 

Iν = laser spectral fluence 

Aeff = effective Einstein coefficient for spontaneous emission 

A = Einstein coefficient for spontaneous emission 

Q(χP, P, T) = electronic quenching rate 

j = mole fractions of measured species j, in measurement volume 

Pt = total gas pressure 

fB, i(T) = Boltzmann fraction of absorbing species in state i 

Bi = Einstein coefficient for stimulated emission for transition i 

gi(ν, P, T) = overlap integral (convolution of absorption and laser lineshape 

profiles). 
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It is important to note in equation (5-1), that the fluorescence signal is directly 

proportional to the species mole fraction within the probed volume, and thus can be 

related to species concentration.  Quenching can be accounted for through the use of the 

models of Paul previously mentioned.  The quenching rate is defined as 

(5-2)         Q = <vj> <<σ>> P/kBT, 

 
where <vj> = (8kBT/πmj)1/2 and <<σ(χP, T)>> is the total electronic quenching cross 

section, given by 

(5-3)         . 〈〈 〉〉 ∑ 〈〈 〉〉σ χ χ σ ( ,  T)  =   (1 + / )  (T) i i
i

1/2
j i im m

 
These modeling efforts however still require detailed information regarding the species 

concentrations and temperature within the probed volume. 

 

An alternative to modeling of the quenching rate and arguably superior is direct 

measurement of the fluorescence decay time as performed by Kollner and Monkhouse 

(1995) using point measurements and a picosecond laser.  A similar approach is 

discussed by Cadou (1996) and also involves measurement of the fluorescence signal as 

it decays, since it provides a direct measurement of the quenching rate.  This requires an 

extremely fast collection system, since the fluorescence signal decays on the order of a 

few nanoseconds.  While this is possible for single point measurements with use of a 

photomultiplier tube, current multi-point detectors, such as intensified CCD cameras, do 

not possess the speed required to perform this measurement. 
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The primary purpose of applying a quenching correction is to provide quantitative species 

concentration information.  Due to limitations in modeling and current equipment 

technologies, a quenching correction is a nontrivial task for this work.  Previous work 

with methane diffusion flames has shown uncorrected LIF measurements of OH 

concentration to be within ± 10% of the actual value (Barlow and Collignon 1991).  

However, due to differences in the constituents and geometry of the reacting flow of this 

work, direct comparison is not possible.  Since the primary purpose of this work is to 

provide relative measurements, a fully quantitative measurement is not required.  

Therefore, no attempt is made to correct for quenching effects in the flowfield. 

5.1.2 Laser System 

The PLIF system is based on an Nd:YAG laser (Continuum Powerlite 9010) operating at 

10 Hz, pumping a tunable dye laser (Continuum ND6000), which in turn drives a 

mixer/doubler system (U-oplaz) as in Figure 5-2.  The Nd:YAG laser outputs 2000 

mJ/pulse at 1064 nm (IR), and is equipped with a secondary harmonic generation system 

to provide 1000 mJ/pulse at 532 nm (green).  The 532 nm beam pumps the dye laser, 

while excess energy at 1064 nm (energy not converted to 532 nm) is passed through a 

delay line.  The delay line allows the 1064 nm beam to coincide spatially and temporally 

with the output of the dye laser for frequency mixing purposes.  The mixer/doubler 

system, shown in more detail in Figure 5-3, was custom designed in cooperation with Dr. 

Sheng Wu of U-oplaz Technologies, for optimal energy conversion by special tuning of 

the BBO crystals (Wu et al. 2000).  Use of Rhodamine 590 as the dye laser in methanol 

optimizes conversion efficiency near 564 nm (> 200 mJ/pulse), which is then doubled to 

approximately 282 nm to excite the (1,0) band of OH (Dieke and Crosswhite 1962).  
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Energy in excess of 60 mJ/pulse is easily provided by this system, but this experiment did 

not require operation at full power, providing approximately 30 mJ/pulse in the 

measurement volume.  This maintains fluorescence in the linear regime, and represents 

an ideal compromise between systemic error (~15%) and SNR (~ 3.4%) over other laser 

pumping options (Seitzman and Hanson 1993). 

5.1.3 Optics 

In order to take calibration shots of the laser beam profile, a method is employed which 

allows the beam energy to be “turned down” without changing the actual beam energy 

output (and also the beam characteristics) of the laser.  This involves passing the beam 

through a zero-order half-waveplate (U-oplaz, coated for 285 nm) mounted on a rotatable 

stand (about the beam axis), which polarizes the beam to a particular orientation.  The 

beam then passes through a thin film plate polarizer (CVI, TFP-280-PW-2025-UV).  This 

allows the energy transmitted to vary from “full power” when the polarization is in line 

with the waveplate, to “minimum power” (approximately 3-4% of full power) when the 

polarizer is not aligned with the waveplate.  Figure 5-4 gives more details of the optical 

arrangement.  After the polarizer, a portion of the beam (approximately 2%) is split using 

a beamsplitter.  Shot-to-shot laser energy is measured for each pulse with an energy 

meter (Molectron J9LP).  The beam is then narrowed using a plano-concave cylindrical 

lens (radius of curvature = 100 mm), and spread into a sheet in the plane at 90° to the 

converging plane by a plano-convex cylindrical lens (radius of curvature = 25.43 mm).  It 

should be noted that all beam steering is done using total-internal-reflection prisms, and 

all optics are UV grade fused silica, coated with an antireflective coating which 

minimizes reflections to less than 1% from 225 nm up to over 400 nm. 
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Figure 5-2: PLIF system. 
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Figure 5-3: Mixer/doubler system (Stages available but not used are indicated by 
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Figure 5-4: OH PLIF optics arrangement. 
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5.1.4 ICCD Camera 

The detector for the fluorescence signal is an intensified CCD camera (Roper 

Scientific/Princeton Instruments ICCD-MAX), using a 512 x 512 Thomson CCD array, 

operated with a gate width of 200 ns.  The photocathode used in the camera is a 

handpicked DEP “super-blue” model, for maximum quantum efficiency in the UV.  Due 

to the requirement of high QE as well as fast gating, the microchannel plate (MCP) of the 

camera is gated, since the thin UV sensitive coating on the photocathode does not allow 

the intensifier to be gated quickly.  Attached to the camera is a catadioptric (similar to 

Cassegrain telescope designs) all-reflective F/1.2 UV lens with a focal length of 105 mm.  

The lens provides exceptionally fast light throughout, as well as minimizing spherical and 

chromatic aberrations.  This results in a spatial resolution of 215 µm x 215 µm per pixel 

at the focal plane with an image size of 11 cm2.  A 2 mm thick UG5 Schott glass filter to 

block light generated by the laser, and a 2 mm thick WG305 Schott glass filter to remove 

light generated by flame luminosity and ambient sources filter the fluorescence signal.  A 

digital delay/pulse generator (Stanford Research Systems DG-535) controls camera 

timing, which is synchronized to the laser pulse. 

 

Particular benefits of this PLIF system include flexibility, exceptionally high energy 

output, conversion efficiencies, and collection efficiencies.  Other molecules of interest to 

combustion can be readily probed using this system such as CH and NO, with much 

higher energy levels than previous researchers (Hanson et al. 1990; Allen et al. (1995a)). 
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5.2 Experimental Procedure 

The following steps outline the general procedures followed in conducting the 

combustion dynamics experiments. 

1. Laser setup. 

• Verify the calibration of the dye laser, either with a wavemeter or an opto-

galvanic (OG) cell. 

• Optimize the mixer/doubler tuning crystal angles for maximum energy 

conversion. 

2. Setup necessary gas flows. 

• Air jacket flow over acoustic drivers. 

• Nitrogen purge through ICCD camera. 

3. Optics alignment. 

• Focus the ICCD camera on a card in the test section.  Ensure the laser sheet is 

passing through the probed volume cleanly.  This is done with the aid of the 

ICCD camera taking focusing images so scattered light from the laser sheet 

can be minimized. 

4. Beam profile calibration. 

• Minimize laser energy throughput using the waveplate.  Set camera gain to 1, 

and gate width to 10 ms.   

• Allow laser sheet to impinge on fluorescent card and acquire the beam profile 

with the ICCD camera, placing card in three different positions (left, center, 

right). 
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• Return camera gain to 200, and gate width to 200 ns and waveplate to allow 

maximum laser energy throughput. 

5. Take background images. 

• Typically 200 images with no flame, but with the laser sheet passing through 

the test section. 

6. Set experimental conditions. 

• Light burner and set methane and carbon dioxide flow rates (see Appendix B 

for more details). 

• Set acoustic driver power on controller, and activate drivers. 

• Allow laser sheet to pass through test section. 

7. Perform experimental run (duration approximately three minutes). 

• Start LabView data acquisition program. 

• Start WinView camera imaging software, typically taking 300 images (limited 

by system RAM). 

8. End experimental run. 

• LabView and WinView routines end automatically.  Save camera images to 

hard drive (takes several minutes due to file size). 

• Turn off fuel and CO2 flows, extinguishing the flame. 

• Turn off acoustic drivers. 

9. Repeat experiment. 

• Repeat steps 6-8 until more than 5000 images have been acquired at a 

particular test condition. 

10. Take post-run background images. 
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11. Take post-run beam profile calibration images. 

12. Change experimental conditions. 

• Changes may include drive frequency, burner height, or burner configuration. 

• Repeat steps 4-11 until experimental session is complete. 

13. Shutdown systems. 

 

After the experiments have been performed, the raw data files are zipped and burned to 

CD-ROM for archival purposes.  The data is then ready for post-processing, described in 

the next section. 

5.3 Data Reduction 

5.3.1 Phase Characterization 

By taking advantage of the periodic forcing of the chamber, and assuming that the flame 

responds accordingly in a periodic fashion, the PLIF images can be phase-binned and 

averaged together, to generate the periodic response of the OH fluorescence in the flame.  

As previously mentioned, the oscillating pressure used to phase-resolve the images is 

acquired by a pressure transducer located 8 cm above the fuel spud, in the zone where the 

flame is stabilized.  The transducer signal is filtered about the fundamental driving 

frequency using a phase preserving 4th order butterworth bandpass filter in Matlab, to 

produce a clean signal with which to phase-bin.  Each image is placed in an appropriate 

bin, based on the position of the incident laser shot (and subsequent camera trigger) 

relative to the rising edge zero crossing of the pressure signal.  This process is illustrated 

schematically in Figure 5-5 using 8 bins, while in the actual data analysis, 36 bins are 

used.  Since the hydroxyl radical is an intermediary of combustion and thus an indicator 
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for the reaction zone in the flame, this procedure yields a proportional measurement of 

the heat release over a period of the acoustic driving cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5: Phase-binning procedure for OH PLIF images. 
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5.3.2 Image Processing 

Due to the distributed nature of the flame under study and limitations on the ICCD 

camera’s field of view, multiple sets of images were taken at each test condition at 

different heights.  Each case contains a total of over 5000 images, phase-averaged into 36 

equally spaced bins.  Statistics indicate an even distribution among the bins, with well 
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over 100 images per bin.  The averaged background is subtracted in each bin to eliminate 

scattering effects from the laser; and corrections are made for variations in spatial and 

shot-to-shot beam intensity.  Images at the same phase but different heights are then 

matched geometrically, and their intensities adjusted to match in the overlap region using 

a least-squares minimization routine.  The composite images are then smoothed using a 

filter, using the weighting matrix given in Table 5-1.  The weight is determined by the 

inverse of the distance to the center pixel.  Stronger smoothing is done in the y-direction, 

the direction of the flow.  Further details regarding the software written to perform these 

processes can be found in Palm (in progress). 

 

5/1  1/2 1/ 5  
1/ 2  1 1/ 2  

1 1 1 
1/ 2  1 1/ 2  
1/ 5  1/2 1/ 5  

 

Table 5-1: Smoothing filter weighting matrix. 

 

 

5.4 OH PLIF Results 

5.4.1  Pressure and Heat Release Measurements 

Phase-averaged images for 12 of the 36 bins are displayed in Figure 5-6 for a 

representative case of the aerodynamically stabilized burner, driven at 32 Hz.  The 

relative change between images is more easily observed by noting the variation in 

intensity over the lower right quadrant of each image.  Spatial integration of the phase-
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averaged OH PLIF images gives a “global” heat release at each phase angle.  Plots of 

chamber pressure and the computed global heat release, and their corresponding FFTs are 

shown in Figure 5-7 through Figure 5-16. 

 

It is evident from plots of the lowest frequency of 22 Hz (Figure 5-7 and Figure 5-8) that 

the pressure signals contain much more harmonic content than the fundamental 

frequency.  Limitations of the response of the acoustic drivers at low frequencies account 

for the excitation of higher harmonics.  Data at the 27 Hz condition show a similar, 

although largely attenuated effect.  Once frequencies reach 32 Hz, the pressure traces are 

relatively clean, and show almost no harmonics.  These effects are common for both the 

aerodynamically and bluff-body stabilized configurations. 

 

In general, the FFTs of heat release show a response at the same driving frequency as the 

excited acoustic mode.  Figure 5-7 through Figure 5-10 (22 Hz & 27 Hz cases) show 

higher harmonic content virtually identical in both the pressure and heat release.  At 

driving frequencies greater than 27 Hz, the heat release contains elevated levels of higher 

harmonic content, which does not appear in the pressure traces.  In both 32 Hz cases, the 

additional frequency content other than the fundamental in the heat release traces is 

minimal.  However, the 37 Hz cases contain significant amounts of higher frequency heat 

release content, particularly at the 2nd mode of the system at 74 Hz.  This result is most 

clearly evident at 55 Hz in Figure 5-15 and Figure 5-16, which show the ringing of higher 

frequency modes over the fundamental mode of heat release at this driving frequency.  In  
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Figure 5-6: OH PLIF images over a period of a sinusoidal pressure oscillation for 
the aerodynamically stabilized burner at 32 Hz.  The intensity scale is in number of 
counts, and the x and y coordinates are in pixels. 
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Figure 5-7: Pressure and heat release traces and power spectrums for the 
aerodynamically stabilized burner driven at 22 Hz. 
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Figure 5-8: Pressure and heat release traces and power spectrums for the bluff-body 
stabilized burner driven at 22 Hz. 
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Figure 5-9: Pressure and heat release traces and power spectrums for the 
aerodynamically stabilized burner driven at 27 Hz. 
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Figure 5-10: Pressure and heat release traces and power spectrums for the bluff-
body stabilized burner driven at 27 Hz. 
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Figure 5-11: Pressure and heat release traces and power spectrums for the 
aerodynamically stabilized burner driven at 32 Hz. 
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Figure 5-12: Pressure and heat release traces and power spectrums for the bluff-
body stabilized burner driven at 32 Hz. 
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Figure 5-13: Pressure and heat release traces and power spectrums for the 
aerodynamically stabilized burner driven at 37 Hz. 
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Figure 5-14: Pressure and heat release traces and power spectrums for the bluff-
body stabilized burner driven at 37 Hz. 
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Figure 5-15: Pressure and heat release traces and power spectrums for the 
aerodynamically stabilized burner driven at 55 Hz. 
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Figure 5-16: Pressure and heat release traces and power spectrums for the bluff-
body stabilized burner driven at 55 Hz. 
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this case, the aerodynamically stabilized case shows the 2nd and 3rd modes, while the 

bluff-body case displays only significant content of the 3rd mode. 

 

The FFTs of pressure and heat release contain amplitude and phase information of their 

respective signals.  This information can be extracted at a particular frequency, by inverse 

FFT of the peak at the frequency under consideration.  A representative plot is shown in 

Figure 5-17, displaying the relationship (scaled for comparison) between the first mode 

of heat release and pressure.  Figure 5-17 (a) displays the relative phases for an 

aerodynamically stabilized burner subjected to acoustic forcing at 22 Hz, and Figure 5-17 

(b) displays the relative phases for the bluff-body stabilized case.  It can be noted that the 

bluff-body case shows a larger phase difference between the pressure and heat release 

than the aerodynamically stabilized case.  This concept will be explored in more detail in 

the next section with respect to Rayleigh’s criteria. 
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(a) 

 

 

(b) 

 

Figure 5-17: Phase relationship between the 1st mode of pressure and heat release 
for the (a) aerodynamically stabilized and (b) bluff-body stabilized cases at 22 Hz.  

Heat release traces have been scaled for ease of comparison. 
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5.4.2 Forced Rayleigh Index 

As stated in section 4.5.3, the forced or frequency-driven Rayleigh is defined as 

(5-4)     ξd
qp

qpR
rms

f ∫
′′

=
1

0

, 

where prms is the root-mean-square of the amplitude of the driving pressure wave, and q is 

the mean intensity of the heat release.  p′ is redefined as the driving pressure amplitude, 

and q′ becomes the fluctuation in heat release.  The time dependence has been normalized 

by the period of the driving acoustic wave, T, to give a nondimensional time ξ.  Again, Rf 

can be applied globally to a system or locally to produce spatially resolved maps of 

Rayleigh indices.  

5.4.3 Global Rayleigh Results 

Rf can be computed directly for the system with the phase relationship between heat 

release and pressure.  Since the heat release varies both spatially and temporally (while 

the pressure is assumed to vary only temporally), it is important to define how the heat 

release is calculated in the modified Rayleigh index, equation (5-4).  For the global 

results, the heat release is first calculated according to 

(5-5)            , ∫ ∫ ′=′
x yL L

D dxdyyxqq
0 0

2 ),,()( ξξ

where is the spatially integrated heat release of the spatially resolved quantity, q .  In 

order to evaluate contributions from modes other than the driving frequency, R

q′ D2′

f is 

calculated in two ways: directly from the pressure and heat transfer global response; and 
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for a pressure signal that has been bandpass filtered about the fundamental driving 

frequency. 

 

The forced global Rayleigh index is plotted in Figure 5-18.  In general, the bluff-body 

(1st pressure mode filtered) stabilized configuration is less sensitive to changes in the 

pressure field than the corresponding aerodynamically stabilized counterpart.  This 

manifests itself as a frequency-driven global Rayleigh index with a lower magnitude.  

The requirement of filtering the pressure about the primary excitation frequency is 

justified, since the dynamic response of the flame is sought at a particular frequency, 

without the additional harmonics introduced through inadequacies of the acoustic drivers.  

This is especially apparent at a frequency of 22 Hz, which shows the discrepancies 

between results for the aerodynamically stabilized burner when the first mode is filtered, 

and when it is not. 
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Figure 5-18: Frequency driven global Rayleigh index. 
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5.4.4 Spatially Resolved Rayleigh Results 

The pressure field generated in the chamber is a bulk mode (established in the previous 

chapter), resulting in a relatively uniform pressure over the reaction zone at each phase.  

This allows a 2-D map of Rayleigh’s criterion to be computed, using the assumption of 

uniformity in pressure in the chamber at a particular instant in time.  Note that the flame 

may introduce its own pressure oscillations associated with the dynamical response the 

flame has to the bulk pressure field.  The 2-D map will give insight into which zones in a 

particular configuration are more susceptible to acoustic oscillations.   

 

Figure 5-19 through Figure 5-23 are contour plots of the 2-D forced Rayleigh index, Rf 

for both the aerodynamically and bluff-body stabilized cases, at each of the five forcing 

frequencies examined.  Solid contours represent positive values for Rf (driving), while 

negative values are indicated by the dashed contours (damping).  For the first four 

frequencies (22-37 Hz), the contour levels are [-20, –10, –4, –2, 2, 4, 10, 20].  Due to 

significant differences in the dynamical response of the system at 55 Hz, contour levels 

of [-3, –1.5, 1.5, 3] were used for clarity.  In all cases, the pressure has been band pass 

filtered about the fundamental of the driving frequency.   

 

Comparison of Figure 5-19(a) and Figure 5-19(b) denotes the differences between the 

aerodynamically stabilized and bluff-body stabilized cases at 22 Hz.  The bluff-body tabs 

appear to induce a stronger recirculation zone in the stabilization region at the base of the 

flame, resulting in the flame stabilizing at a lower height and with more (negative) 

intensity.  This region is less susceptible to instability than the aerodynamically stabilized 
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case.  In the positive region, the strong “level +10” contours are smaller than in the bluff-

body case, with the positive region in general being slightly smaller than the aerodynamic 

situation.  Note it is possible to observe the quartz burner tube, which ends at 

approximately 8 cm in height, before the flame diverges.  In the region where the flame 

diverges, there is a large negative Rf in both cases.  These trends are also observed as the 

driving frequency is increased to 27 Hz in Figure 5-20, but with the disparities in sizes of 

the positive regions becoming more pronounced, and heights of the flame stabilization 

zone becoming less pronounced.  By Figure 5-21 at 32 Hz, the penetration of the positive 

region in the central core of the flame has been greatly decreased, and differences in the 

flame stabilization height have disappeared.  The highest positive contours of Rf are 

found at 32 Hz, but the diminished size of the positive zone, combined with the 

appearance of larger negative zones do not produce as large global Rayleigh indices as 

the 27 Hz case (Figure 5-18).  As the driving frequency is increased to 37 Hz (Figure 

5-22), the positive zone contributions to the frequency-driven Rayleigh index have 

decreased further in size.  Once the acoustic frequencies have reached 55 Hz in Figure 

5-23, the character of the Rayleigh contour plot changes dramatically.  The large positive 

structures have vanished in the center of the flame and are replaced by large, relatively 

low amplitude negative zones. 
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Figure 5-19: Contour plot of Rf for (a) aerodynamically and (b) bluff-body stabilized 
burners at a driving frequency of 22 Hz. 
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Figure 5-20: Contour plot of Rf for (a) aerodynamically and (b) bluff-body stabilized 
burners at a driving frequency of 27 Hz. 
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Figure 5-21: Contour plot of Rf for (a) aerodynamically and (b) bluff-body stabilized 
burners at a driving frequency of 32 Hz. 
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Figure 5-22: Contour plot of Rf for (a) aerodynamically and (b) bluff-body stabilized 
burners at a driving frequency of 37 Hz. 
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Figure 5-23: Contour plot of Rf for (a) aerodynamically and (b) bluff-body stabilized 
burners at a driving frequency of 55 Hz. 
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The contour plots have been replotted into two sets of 2-D color plots (Figure 5-24 and 

Figure 5-25) of Rayleigh indices, showing only the left side of the flame’s dynamical 

response.  This allows for ease of comparison as the driving frequency is changed.  As 

the forcing frequency increases from 22 Hz to 37 Hz, the size of the central “hot zone” 

(positive local Rayleigh index) decreases and the “cold zone” (negative local Rayleigh 

index) that appears above it travels down and increases in size. The large drop in the 

global Rayleigh index (Figure 5-18) at 37 Hz corresponds to the appearance of larger 

negative regions, particular in the central core of the flame.  Other trends are similarly 

observed between the global and 2-D Rayleigh indices.  Although this does not hold at a 

drive frequency of 55 Hz, comparison of the plots show that the 2-D Rayleigh indices are 

of very low magnitude throughout the flame.  The flame therefore seems to be relatively 

insensitive to a driving frequency of 55 Hz.  These trends are more clearly seen in an 

axial Rayleigh plot (Figure 5-26), which is obtained by integrating the 2-D plot along the 

radial direction at each height.  This plot indicates that the magnitude of the Rayleigh 

index is slightly lower for the bluff-body versus aerodynamically stabilized case. 

 

The global Rayleigh index data (Figure 5-18) appears to indicate that the flame should 

also be insensitive to a drive frequency of 22 Hz – even more so than the 55 Hz case 

(lower magnitude of Rf).  However, comparison of the 22 Hz cases in Figure 5-24 and 

Figure 5-25 denote that in this situation, correspondingly large negative regions balance 

regions of large positive Rayleigh index.  This point emphasizes the importance of 

spatially resolved data of Rayleigh’s index.  It is conceivable that a local flame region 

responding in phase to a pressure fluctuation could drive an instability due to nonlinear 
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and geometric effects, if it were situated at an especially critical region (i.e., the ¼ point 

in a Rijke tube), even if the global Rayleigh index indicated a stable state.  Local regions 

with Rf > 0 can also be identified and modified at the design stage, to improve the 

stability margins of combustion systems. 

 

 



 138

 
    22 Hz      27 Hz       32 Hz        37 Hz         55 Hz 
 

 

 

 

 

 

 

 

 

 

 

Figure 5-24: Aerodynamically stabilized 2-D Rayleigh plots. 
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Figure 5-25: Bluff-body stabilized 2-D Rayleigh plots. 
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Figure 5-26: Axial Rayleigh index plot:  Solid lines are the aerodynamically 
stabilized burner, and dashed lines are the bluff-body stabilized case. 

 

5.4.5  Combustion Response 

The concept of a response function is well known in solid propellant combustion as a 

modeling tool to quantify the coupling between the pressure and the burning rate.  For 

solid propellants, it is typically formulated as ( ) ( ppmm /// ′′

)~

) , where m represents the 

mass flux, represents fluctuation quantities, and (  denotes time-averaged quantities 

(Culick, 1968).  In this work, it is possible to measure a similar combustion response 

( )′
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function directly, which can be used to close the loop between combustor dynamics and 

combustion dynamics (Figure 1-2).  The combustion response function is defined as 

(5-6)      ( )
( )pp

qq

rms

rms
R /

/
′
′

=C  

In general, CR will be a complex quantity, since there is a phase difference between the 

heat release and pressure.  Again, this can be evaluated globally or for spatially resolved 

regions, similar to the Rayleigh index, through judicious use of normalization values. 

 

The global combustion response for both sets of burners is plotted in Figure 5-27.  The 

phase of the heat release has been defined such that it lags the pressure wave.  The form  

 

Figure 5-27: Global combustion response function. 
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of the global combustion response function is similar to the classic quasi-steady response 

function used in solid propellants (Isella, 2001), containing a single resonant peak.  A 

simple scaling analysis of the magnitude of the fluctuations shows that for pressure 

amplitudes on the order of ~ 0.005 psi (Figure 5-7 through Figure 5-16) with a 

combustion response magnitude of 200, the heat release fluctuation is approximately 7% 

of the mean heat release rate. 

p′

 

The local combustion response is plotted in Figure 5-28 and Figure 5-29, displaying the 

magnitude and phase respectively.  The magnitude plot (Figure 5-28) has been 

normalized using the spatial mean of the heat release rate, as opposed to a temporal 

mean.  This is discussed further in Appendix D, where the alternate method is also 

displayed.  The plots are generated by performing an FFT in time for each spatial 

location, extracting the fluctuating heat release and phase, and constructing the response 

function. 

 

The spatially resolved plots of magnitude show, in general, that the bluff-body stabilized 

flame has a weaker response than the aerodynamically stabilized flame, which 

corresponds to the global result (Figure 5-27).  The phase plots (Figure 5-29) show 

regions where the heat release is in phase (0° to –90° dark red, -270° to –360°dark blue) 

and out of phase (-90° to -270° orange to light blue). 
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Figure 5-28: Combustion response – magnitude (a) aerodynamically stabilized (b) 
bluff-body stabilized. 
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Figure 5-29: Combustion response – phase (a) aerodynamically stabilized (b) bluff-
body stabilized. 
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The additional information provided by the combustion response function can be used in 

conjunction with the Rayleigh index to understand what is occurring in the flame during 

driving or damping.  Examining first the global plots, at 22 Hz the global Rayleigh index 

(Figure 5-18) shows the bluff-body (first mode)3 to be considerably less driven than the 

aerodynamic counterpart.  The global combustion response at 22 Hz (Figure 5-27) shows 

that while the magnitude of the response is similar, the heat release of the 

aerodynamically stabilized burner is more in phase with the pressure oscillation than the 

bluff-body burner.  At 27 and 32 Hz, the phase relationship between the burners is nearly 

identical, while the bluff-body has a weaker response to acoustic driving, and thus lower 

Rayleigh indices.  At 37 Hz, the aerodynamic burner has a lower Rayleigh index than the 

bluff-body burner.  While the magnitude of the response is lower for the bluff-body, it is 

also slightly more in phase with the pressure, thus a higher Rayleigh index.  This 

demonstrates the high sensitivity of the system to slight variations in phase.  Finally at 55 

Hz, the magnitude of the combustion response has dropped very low, such that there is 

very little driving or damping, and the Rayleigh index drops close to zero. 

 

A similar discussion will apply to the spatially resolved plots of Rayleigh index (Figure 

5-24 and Figure 5-25) and combustion response (Figure 5-28 and Figure 5-29).  

Considering primarily the phase plots, they generally display an anchoring region 

centered at a height of 2 cm, followed by a strong driving section at the top of the burner 

tube, and another damped region at the exit of the tube.  The 55 Hz case shows extremely 

 

                                                           
3 For comparative purposes, the filtered first mode Rayleigh index is always used. 
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weak driving in the combustion response magnitude, as well as very few coherent 

structures in phase. 

 

5.5 Summary 

A novel system is presented which is capable of measuring the combustion dynamics of a 

flame under forced oscillatory conditions.  The diagnostic used in this chapter is OH 

PLIF, which provides temporally and spatially resolved measurements, and makes use of 

the periodic forcing of the flame.  The technique presented in this work can potentially be 

used to directly measure the response of any optically accessible combustion system to an 

acoustic field.  It has been applied to a jet-mixed burner in two configurations: an 

aerodynamically stabilized and a bluff-body stabilized design.  Results are presented in 

the form of spatially resolved and global Rayleigh indices, as well as global and spatially 

resolved combustion response functions of the burner.  The importance of spatially 

resolved data manifests itself in the development of more stable designs, as well as 

improving predictive modeling capabilities.  A database of spatially and temporally 

resolved data on instabilities is important to verify work done in numerical simulations 

 

The 2-D contour and axially integrated plots of Rayleigh’s index indicate that the 

dependence on frequency has a stronger impact on the dynamic response of the flame 

versus burner configurations tested.  Though geometric differences between the burners 

are slight, the bluff-body design appears to be superior in terms of insensitivity to an 

imposed acoustic field.  The most dramatic difference between the two burner designs 

occurs at the lowest frequency, 22 Hz, as illustrated in the global change in Rayleigh 



 146

index (Figure 5-18).  The experimentally derived combustion response function indicates 

that in the 22 Hz case, the change in Rayleigh index is due to primarily to a shift in phase 

characteristics between the two burners.  The Rayleigh index and combustion response 

can be used in conjunction, to better understand the dynamics of the flame and acoustic 

interaction. 

 

These results agree with work by Chen et al. (1998), which demonstrate improved 

general flame stability (i.e. flame anchoring, but not necessarily improvements with 

respect to combustion instabilities) with the use of a bluff-body.  A more direct 

comparison can be made to the work of Kendrick et al. (1999), where a bluff-body 

stabilized system is shown to be superior at resisting the tendency to produce acoustic 

oscillations than an aerodynamically stabilized system.  This does not necessarily indicate 

a configuration less prone to combustion instabilities since the aerodynamically stabilized 

burner has a lower Rayleigh index at a drive frequency of 37 Hz using OH PLIF 

diagnostics.  Furthermore, assessment of the tendency for instabilities to appear must be 

based on analysis of the complete system, comprising the combustion dynamics and the 

dynamics of the combustor. 
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Chapter 6  
 Concluding Remarks 
 

This work provides experimental measurements of a variety of devices involving thermo-

acoustic interactions pertaining to the general problem of combustion instabilities.  We 

begin with an electrically driven Rijke tube, perhaps the simplest demonstration of heat-

induced pressure oscillations, continue on to a large scale industrial flare, and conclude 

with detailed measurements of the combustion dynamics of two burners under forced 

oscillatory conditions. 

 

Measurements from the Rijke tube indicate the presence of hysteresis with respect to the 

power input at high mass flow rates (over 3 g/s in this configuration).  As the heater input 

power is increased until the Rijke tube exhibits instability, when the power is reversed, 

significantly less power continues to sustain the oscillation.  A detailed stability map with 

uncertainty of the stability boundary over a range of mass flow rates and heater power 
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levels is provided, at a heater location of x/L = ¼.  A precise definition of instability is 

introduced combining both pressure amplitudes and frequencies of decomposed modes, 

which allows for better determination of system instability in possibly ambiguous 

situations.  A one-dimensional linear stability model is offered that accounts for 

variations of heat release and associated time delays by incorporating numerical 

simulations from Kwon and Lee (1985).  This model is based entirely on physical 

properties of the experiment and uses no empirical fits.  The model qualitatively 

reproduces the instability curve, but is unable to accurately match the stability boundary 

over a wide range of mass flow rates, nor provide an explanation for hysteresis. 

 

Data collected on the industrial flare emphasized the nonorthogonality of the acoustic 

modes, with the quarter-wave mode occurring at 8.3 Hz, and the three-quarter-wave 

mode located at 21.5 Hz.  Sub-scale modeling efforts brought forth difficulties in scaling 

unstable frequencies, since the acoustic losses scale with frequency. 

 

A novel technique was demonstrated which can measure the combustion dynamics of a 

flame in an acoustically excited environment.  Measurements of the combustion 

dynamics of two versions (aerodynamically and bluff-body stabilized) of a partially 

premixed jet burner were taken using two different techniques.  Chemiluminescence 

measurements offered greater convenience since a laser source is not required, while OH 

PLIF measurements have finer spatial and temporal resolution.  The method employed in 

this work is useful in the design and prediction of how a particular burner will respond in 

a real combustor environment. 
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Chemiluminescence measurements also provide insight into the flow visualization of 

burners.  The evolution of the flame and flame base mean location and oscillation 

amplitude were observed at each of the forcing conditions over an entire cycle.  Forcing 

at 55 Hz was virtually transparent to both burner configurations, and is considered to be a 

different regime of operation.  At frequencies below 37 Hz, the flame base position 

decreased with the bluff-body stabilized burner when compared with the aerodynamically 

stabilized system.  At 37 Hz the opposite effect occurred. 

 

Forced Rayleigh indices were computed using two techniques: heat release derived from 

OH PLIF measurements, and heat release inferred from flame chemiluminescence.  

Examination of 2-D spatially resolved Rf contour plots using OH PLIF (Figure 5-19 to 

Figure 5-23) and the same plots computed using chemiluminescence (Figure C-6 to 

Figure C-10), shows fairly consistent discrepancies due primarily to the line-of-sight 

integration occurring with chemiluminescence.  Most obvious is the hollow core in the 

OH measurements, since the flame is not burning in the core region of the burner.  There 

are also differences in the relative sizes of the flame damping and driving zones. 

 

Starting at the base of the flame, the OH results show a much smaller damped zone than 

the chemiluminescence results.  Axial plots show qualitative agreement in the general 

shape of the response for both techniques, however the relative magnitudes differed in 

various zones.  Global Rayleigh indices for the first mode of pressure filtered show the 

bluff-body burner superior in all cases in resisting oscillations in all cases except at 37 
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Hz.  The opposite result is obtained for chemiluminescence global Rayleigh indices.  Part 

of this discrepancy is attributable to the fact that the chemiluminescence imaging 

technique integrates across the flame.  Another factor is the contribution of other 

chemiluminescent species that do not indicate zones of heat release, such as CO2.  The 

OH PLIF Rayleigh results agree with the chemiluminescent flow visualization of the 

flame base; a lower flame base corresponds to a stiffer flame, which is more able to resist 

coupling with the acoustic waves. 

 

The combustion response of the flame is also computed, based on the OH PLIF 

measurements.  It is useful in conjunction with the Rayleigh index in explaining the 

combustion dynamics of the flame.  The high sensitivity of the Rayleigh index to the 

phase of the combustion response is demonstrated, particularly for the 37 Hz case.  These 

measurements of the combustion dynamics of a flame are the first of its kind. 

 

Directions for Future Work 

The Rijke tube experiment offers an ideal test bed to develop theoretical models to 

predict limit cycle amplitudes and stability boundaries.  The experimental configuration 

is easily modified to produce stability maps at other heater locations of interest, such as 

x/L = 1/8, which, according to Rayleigh’s criteria, should preferentially drive the 2nd 

mode of the system.  In order to accurately model the response of the Rijke tube, more 

detailed models of heat release from the grid and gas dynamics will be required.  

Prediction of limit cycle amplitudes will also require additional modeling of nonlinear 
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processes.  Nonorthogonality of the modes should be addressed, as temperature profiles 

indicate a complex temperature distribution as the flow develops. 

 

Although chemiluminescence does not provide accurate Rayleigh indices in this work, it 

should be investigated further, using OH PLIF as a means to evaluate its accuracy.  

Possible improvements would be to use a bandpass filter to eliminate sources of 

chemiluminescence that do not indicate heat release.  The sensitivity of the camera must 

also be increased if this is done, possibly by addition of an intensifier.  Other species of 

interest can also be probed using PLIF techniques, such as CH and NO.  Zones of NOx 

production under an acoustic field can be identified and possibly minimized in future 

burner designs to aid in the development of ultra low emissions engine systems. 

 

Since a framework has been established for measuring combustion dynamics, a variety of 

other burner designs can be evaluated.  A simple burner, easily modeled would be useful 

in verifying results from numerical and theoretical models.  Additional improvements 

would entail improvement of the test section, such as the use of flat windows to improve 

optical access.  The addition of other diagnostics such as PIV will improve visualization 

of the flow field, more precisely mapping vorticity production and velocity responses to 

the acoustic field. 
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Appendix A  
 Mechanical Drawings 
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Appendix B  
 Gas Mixture Viscosity 
 Calculation 
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For a gas mixture, the mixture viscosity can be calculated using the following equation 

(Kanury, 1975): 
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and χi is the mole fraction of species i, Mi is the molecular weight of species i, µi is the 

viscosity of species i, and n is the total number of species. 

 

In the experiments measuring combustion dynamics, a binary gas mixture is used.  The 

mixture viscosity is important since the flow is premixed and measured using a single 

laminar flow element.  A quadratic fit for the viscosity of several gases, valid from 5 °C –

45 °C is performed, such that 

(B-2)      µi = a2 T2 + a1 T + a0, 

where µi is the viscosity of species i in micropoise (1 gm/cm/sec = 106 micropoise) and T 

is in °C.  The constants a2, a1, and a0 are given in Table B-1. 

Species a2 a1 a0 
CH4 -0.005 0.710 96.499 
CO2 -0.010 1.060 130.500 
N2 -0.010 1.100 160.000 

 

Table B-1: Coefficients for viscosity quadratic fit,  
valid for P = 1 atm, 5 °C < T < 45 °C. 
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Appendix C  
 Chemiluminescence 
 Rayleigh Indices 
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This appendix contains the spatially resolved chemiluminescent forced Rayleigh indices.  

Figure C-1 to Figure C-5 show the axial profiles, with the aerodynamic and bluff-body 

burners plotted together.  The axial profiles are obtained by integrating the averaged 2-D 

flame contours at each height and phase, and multiplying with the bulk averaged and 

filtered (about the driving mode) pressure.  The 2-D plots (Figure C-6 to Figure: C-10) 

are obtained by direct evaluation of Rayleigh’s criterion with the averaged 2-D contours. 
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Figure C-1: Chemiluminescence axial forced Rayleigh indices at 22 Hz. 
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Figure C-2: Chemiluminescence axial forced Rayleigh indices at 27 Hz. 
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Figure C-3: Chemiluminescence axial forced Rayleigh indices at 32 Hz. 
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Figure C-4: Chemiluminescence axial forced Rayleigh indices at 37 Hz. 
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Figure C-5: Chemiluminescence axial forced Rayleigh indices at 55 Hz. 
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Figure C-6: Chemiluminescence 2-D forced Rayleigh indices at 22 Hz for (a) 
aerodynamically and (b) bluff-body stabilized burners. 
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Figure C-7: Chemiluminescence 2-D forced Rayleigh indices at 27Hz for (a) 
aerodynamically and (b) bluff-body stabilized burners. 
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Figure C-8: Chemiluminescence 2-D forced Rayleigh indices at 32Hz for (a) 
aerodynamically and (b) bluff-body stabilized burners. 
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Figure: C-10: Chemiluminescence 2-D forced Rayleigh indices at 55 Hz for (a) 
aerodynamically and (b) bluff-body stabilized burners. 
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Appendix D  
 Locally Normalized 
 Combustion Response 
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The magnitude of the local combustion response can be plotted in two ways: 

• using the a spatial heat release mean, or 

• using a local, temporal mean for the heat release. 

Section 5.5 uses the former method, as it was found to be more useful, however it was not 

evident that this would be the case. 

 

The main problem that arises when using the local temporal mean to normalize the heat 

release is at the edges of the flame.  The edges of an oscillating flame are continually 

fluctuating in space, as well as time.  As a result, a particular spatial location near the 

edge may or may not contain a flame at any particular instant.  While the mean heat 

release rate will be non-zero (compared to a region outside the flame zone), the temporal 

mean will be very low due to the periods of time when there is no flame present.  This 

causes the qq /′  term in the combustion response function to be extremely large 

compared to other interior regions of the flame. 

 

This phenomenon is displayed in Figure D-1, using a log scale for the magnitude.  The 

same process that magnifies the edge of the flame also enhances any inherent noise in the 

image field.  This is seen in Figure D-1 as the “fingers” extending from to the left.  

Although it was determined that these plots are not practically useful, they are presented 

here to provide guidance in future works. 
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Figure D-1: Locally normalized combustion response – magnitude (intensity is on a 

log scale) (a) aerodynamically stabilized (b) bluff-body stabilized 
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