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Abstract

As information-bearing objects, data-storage systemsattgal consumers of information-
theoretic ideas. For many issues in data-storage systbmbestt trade-off between cost,
performance and reliability, passes through the appboati error-correcting codes. Error-
correcting codes that are specialized for data-storagemgsis the subject studied by this
thesis. On the practical side, central challenges of stosygtems are addressed, both
at the individual-device level and higher at the enterplesel for disk arrays. The re-
sults for individual devices include a new coding paradigmMulti-Level Flash storage
that benefits storage density and access speed, and aldoes-thigpughput algorithm for
decoding Reed-Solomon codes with large decoding radii.ré&ts for storage arrays ad-
dress models and constructions to combat correlated diaviaees, and also introduce new
highly-regular array-code constructions with optimaluadancy and updates. On the the-
oretical side, the research stretches across multipledafeoding theory innovation: new
codes for new error models, new codes for existing error Hs@ad new decoding tech-
niques for known codes. To bridge the properties and canstraf practical systems with
the mathematical language of coding theory, new well-nadéiet models and abstractions
are proposed. Among them are the models aBymmetric/-limited-magnitude errors
andClustered erasuresLater, after maximizing the theory’s power in addressing ab-
stractions, the performance of storage systems that entipdoyew schemes is analytically

validated.



Chapter 1

Introduction

Error-correcting codes are a cardinal component of any mouotormation-bearing sys-
tem. In highly optimized systems, itis either impossiblefficient to guarantee perfectly
reliable information throughout the system, and thus ecmrecting codes are employed
to protect the user’s data from the aggregate system ingiaxfe It may be fair to say that
among all system components, the error-correcting codeeiddast accessible and least
understood one by engineering professionals outside pieisific expertise. This fact can
be attributed to the inherent exponential blowout of theecgigace, that renders impractical
any bottom-up design technique that may be very effectivettoer system blocks. Simu-
lations are partially effective in predicting some of thénaeiors of the coding sub-system,
but they largely fail in providing sufficient insight that winl assist the synthesis of good
codes. That often leads to shifting the design efforts awamy the error-correcting code,
and resorting to codes that had proved successful in otls&grsyg — overlooking the special
characteristics of the particular system that may allowitizerporation of more efficient
codes. Contributing to that phenomenon is the exceptiamtaess that Coding Theory has
already achieved: finding good codes that efficiently apgiraarious theoretical limits.
Yet those victories of Coding Theory in combating a few clrednmodels should not
raise the misconception that all the good codes have aliee€ely found. As important as
those channels may be, they represent only the tip of thergletineory of information.
Claude E. Shannon, in his founding article of Informatiore®ty, formulated his ideas in
rigorous mathematical terms, but also included a genecgdeeo obtain reliable informa-

tion, put in layman’s words [Sha48, Section 14]:
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"The redundancy must be introduced in the proper way to cdrtti&particu-

lar noise structure involved.”

Hence a core foundation in theory, as well as a promisingegiyan practice, is to under-
stand the system’s underlying unreliability sources, b@ttural and man(engineer)-made,
and use that knowledge in the construction of better codes.

While the idea of tailoring the solution to the specificiti@sthe problem may sound
trivial, in the context of Coding Theory it enfolds a primarigallenge. In order to provide
precise error-control characterizations of combinat@tuctures, there is a need to intro-
duce newabstractions that on one hand represent the system realities, and orthiee o
hand are amenable to analysis and design. Thus an ességpidletween understanding
the problem and finding a solution, is the search for usefsirabtions that will constitute
the bridge from practice to theory. Later, after maximizthg theory’s power in address-
ing the abstractions, performangalidationwill constitute the return bridge from theory
to practice (See Figure 1.1). Each chapter of this thesisagtstlon such a round trip from
practice to theory and then back — leveraging new theotetiethods to the improvement

of storage-system performance.

abstraction >

< validation ‘

Figure 1.1:Coding Theory and Practice

Theory

1.1 Coding for Data-Storage Systems

“Pundits have proclaimed it for years; articles in the populpress have
plumbed its implications for every imaginable enterpribasinesses are en-

amored with it; on-line and print magazines are devoted t@davernment is
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wrestling with it, movies have been made about it; peopletalieng about

it—can there be any doubt?” —James A. Dewar

There is no doubt that mankind has entered the “Informatige”A In any area of life,
we are immersed in information. The most obvious productnédrimation is... more
information, hence orders of magnitudes growth in its gtii@stare exhibited in short time
scales. For the data-storage industry, a consistent, gteggase in demand introduces
technological challenges, since leaps in storage dességiire changes that considerably
alter the design framework and implementation constraifsths, wisdoms and arts that
were highly effective yesterday, may be secondary or obstdelay. Unfortunately, market
pressures often do not allow an orderly rethinking processhtfe new challenges at hand,
and instead crude adaptations of previous schemes aregolursu

Storage systems in general, have some common propertiesffiiet the implementa-
tion of error-correcting codes within them. Such propestibose that are the most relevant

to the results of subsequent chapters, are listed below.

e High access speedsStorage devices provide information transfer rates in tigeio
of 100-MB/sec (Mega-Byte per second). Such high accessispadorce stringent
constraints on the complexity of the coding modules, andlid coding schemes

that are viable options in systems with significantly lowansfer rates.

e Dynamic updates. Information stored in dynamic-storage systems changes fre
guently in unpredictable patterns. Therefore, re-enaptie information after each
small update is inefficient, and codes are required to mirgrtiie number of parity

updates needed per small information update.

o Flexibility. In storage devices the encoder and decoder are implementieel same
physical module, obviating issues of standardization atetoperability that hinder

coding novelty in communication applications.

e Controlled error sources. Error-correcting codes can be used in storage systems to
combat errors that are intentionally introduced in a cdigtbway. The introduction

of controlled errors, and correction thereof, allow moreithdity in the performance
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requirements from other system blocks. The error-comgatode thus allows system

components to dynamically trade-off different performauparameters.

e Media variety. There are numerous types of storage media and architecaaels
with dissimilar properties and challenges. Emerging gfer@chnologies, with their
unique imperfections, keep storage error-correcting salgibrant and diverse re-

search area.

This list suggests that common abstractions addressed dyn@gdheory (e.g. minimum
distance, code rate, decoding complexity), are insuffidi@capture the diverse properties
and constraints of storage systems, and warrants the uttioth and study of useful new

ones.

1.2 Storage-System Challenges

Delivering cost-effective reliable data storage to usges paramount mission that involves
a variety of efforts. As in other competitive technologio@rkets, the numerous engineer-
ing challenges of large-scale storage systems are divid@e@mcapsulated in standardized
layers, allowing vendors to offer highly specialized saos for small parts of the general
problem. At the device level, the main challenge is to tambasen physical media (e.qg.
Magnetic, Semiconductor, Micro-mechanical) into a demskraliable storage unit. At the
enterprise level, multiple devices of different kinds ahéu@cteristics are combined into a
storage array that protects the data from failures of imtliai units. Error-correcting codes
are a major ingredient in driving performance and reliapitf both storage devices and
storage arrays. Higher layers of storage systems handl@etyaf non-trivial services
such as virtualization, backups and security. The restiltkis thesis address immediate
concerns of storage systems, both at the device level (dod@dulti-level Flash memo-
ries, improved decoding of Reed-Solomon codes) and at tieeise level (efficient array
codes for Clustered failures, highly regular array codethwptimal redundancy and up-
dates). Therefore, itis hoped and believed that the fasii#gng and innovation-demanding

data-storage technology will benefit from the proposed watltand ideas.
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1.3 Summary of Contributions

1.3.1 Contribution Hierarchy

From a coding-theoretic perspective, three layers of ngwamprise the results of this
thesis. Clearly no layer is generally more important thamect to the advancement of
storage error-correcting codes, but this classificatidpshim ordering the chapters of the

thesis to follow some hierarchy. As depicted in Figure 12, top layer, codes for new

Codes for new error models

Chapters 2, 3

New codes for existing error mod

Chapter 4

Improved decoding for known codes

Chapter 5

Figure 1.2:Three Layers of Novelty

error models, consists of Chapters 2 and 3. The middle Iagsv,codes for existing error
models, includes the new MDS codes of Chapter 4. The bottger,lanproved decoding
for known codes, is the subject of Chapter 5.

What follows next is a summary of the subjects studied inttésis. For each subject
we note the main observations that triggered its investgaand summarize the impact

on this subject by differentiating our research contribog from previously known results.



6
1.3.2 Asymmetric Limited-Magnitude Error-Correcting Cod es for Multi-

Level Flash Memories

In Multi-Level Flash Memories, the cell’'s range of threshtgvels is discretized tg lev-
els. Programming a cell to one particular level thus represseg g bits of information.
Representing multiple bits in a single cell improves theage density, with an obvious
toll on error margins whose shrinking affects device rdligband access speeds. The
inherent separation between cell programming and celiregaa the operation of Flash
devices makes the dominant error sourasgmmetric—- changing the threshold level in
one known direction. Moreover, properties of the physicakchanisms utilized for pro-
gramming cause errors of low magnitudes to be much moreylitkeln higher magnitude
ones. These observations on Multi-Level Flash charatiesiare illustrated (fog = 8) in
Figure 1.3. Level number 1 (circled) is stored by a Flash, egltl is predominantly prone

to small errors in the rightward direction. This unique babaof Flash errors motivates

aviVavata¥ata¥a

Low magnitude

Figure 1.3:Common Errors in Flash Storage

the study ofg-ary codes that corredterrors that are botlasymmetricand haveimited
magnitudes

The following example illustrates the correction of asyntmedimited-magnitude er-
rors as a special case of the methods of Chapter 2. Supposavweayroup ob symbols,
each taken from the alphabgd, 1, ...,7}. To correctt = 2 errors of magnitudé = 1 in
the upward direction, the code is defined as follows. Astithted by the sample words in
Figure 1.4 below, if the codewords are restricted to havgeeiall symbols with odd parity
or all symbols with even parity, then the required protetti® achieved. For each of the

two sample codewords in row (a) of the figure, the channebduces two upward errors
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of magnitudel (b). By finding the minority between even/odd symbols, theatmns of
the errors are detected (c)-in bold, and the original sysbot recovered by decrementing

the erroneous symbols (d).

Sample 1 Sample 2
codeword codeword
(@) 315(3[1]1 41621210
corrupted corrupted
(b) 415(312]1 4161321
located located
(c) 4|5(3(2|1 416321
corrected corrected
(d) 3(5(3[1]|1 4161211210

Figure 1.4:Example of correcting asymmetric limited-magnitude esrofa) Two sample code-
words. (b) Introduction of = 2 asymmetric errors with magnitude= 1 to each of the sample
codewords. (c) Error location by finding the minority betwesven/odd symbols. (d) Error correc-
tion by decrementing the symbols on the error locations.

In Chapter 2, thé asymmetric/-limited-magnitude error model undergoes a compre-
hensive coding-theoretic treatment. Starting from theremodel definition, sufficient and
necessary conditions are proved for codes under that emdemand are then used to con-
struct codes and prove upper bounds on code sizes. For somige$of parameters, the

main code construction is shown to be optimal. The resuissammarized in Table 1.1

below.
Error model wy(e) <t, 0<e </
Sufficient condition dp>t+1
Necessary conditiof dp>t+1
Constructions Constructions 2.1, 2.2, 2.3
Upper bounds Theorems 2.6, 2.8

Table 1.1: The theory of correcting asymmetric limited-miawgde errors

Beyond its theoretical thrust, Chapter 2 contains multgmatributions to the appli-
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cation of asymmetric limited-magnitude codes in Flashagjerdevices. Using additional
insights on the Flash media, a refined error model is constjefficientsystematicode
constructions are proposed, and an implementation aothiteis described. Maybe the
most interesting aspect of applying asymmetric limitedgnmitude codes to Flash storage,
is that they can be used to speed-up memory write operatyaldwing clever introduc-
tion of controlled errors by Flash programming algorithiibis aspect is studied in detail
at the end of Chapter 2, furnishing that opportunity withhogualitative and quantitative

reasoning.

1.3.3 Codes for Random and Clustered Device Failures

Traditionally, MDS (Maximum Distance Separable) array eé®dre used to protect disk
arrays against device failures. Using MDS codes for thappse implicitly endorses the

following two statements:
1. All failure patterns are equally likely for a given numlzdifailed devices.
2. The amount of redundancy has the dominant effect on theemgmtation cost.

The practical merit of the research detailed in Chapter 8 lipon the premise that for
high-order failure-resilient disk arrays, both statenseare not true in practice. Alternative

statements that motivate this study are:

1. Infailure events that affect many devices, combinattbasinclude clustered failures

are more likely than completely isolated failures.

2. Because of severe 1/O constraints, the limiting factordhe deployment of high-
order failure-correcting codes is their encoding, decgdamd most critically: update

complexity.

The first of these observations motivates a new classificagfofailure combinations —
based on both the number of failures and the numbetusitersthat the failures occupy.

The well known Random-failure model and Burst-failure micale both special cases at
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Figure 1.5:Classification of patterns by their respective numbers astelrs. For each array, the
number of clusters that contain the four shaded squareslisaired.

the two extremes of this new classification. An abstractsif@sition of patterns according
to the number of clusters is given in Figure 1.5.

Compared to the previously studied modehailtiple burststhis model seems to better
capture correlated failure patterns in disk arrays, sihdeeés not predefine thezeof the
clusters, only their number. Consequently, for the modeppsed here, the two patterns at
the bottom of Figure 1.5 have the same classification, evaungtinthey have distinct clus-
ter sizes. Those two patterns seem like equally plausibieoouwes of two “independent”
failure events, each affecting multiple disks in a singlesteér.

Through a new array-code construction called RC (Randonst€fed) codes, Chap-
ter 3 combines the two alternative observations above ter @ffvery attractive coding
scheme that combines good reliability performance with lmplementation complexity.
This is done by prioritizing failure combinations based bait cluster classification, and
finding more efficient codes that are specialized for the éigdriority failures. Proving
and illuminating the merits of RC codes is the focus of Chapiget by taking a broader
view they can be regarded as a sample demonstration of tleeaj@otential in considering

error models that are based on the new error-clusteringi€izetion.

1.3.4 Cyclic Lowest-Density MDS Array Codes

Structureis a blessing to an error-correcting code. While random sadwially have un-

matched error-probability performance, their usage ircpical systems is inconceivable
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due to implementation-complexity issues. There are maaynges where more regular
code designs are preferred over unstructured codes, evidie abst of some degree of
performance loss. Low Density Parity Check (LDPC) codesnis such area where the
challenge of bridging the theoretical state-of-the-attvpractical systems involves a care-
ful introduction of structure. It is not just the runtime cplexity of the coding blocks that

benefits from conforming to some structural constraints,dtso the ease of the system
specification, implementation and verification.

Put in that light, the three new code constructions of Chaptiemonstrate clear value.
New highly regular codes with the same favorable propedie&nown, less structured
ones, are an obvious design alternative that can reduceleritygn more than one man-
ner, without compromising the other code properties. Tlgelaity of the proposed array
codes is manifested in thesystematically-cycliproperty, which is an especially attractive
sub-class of the well known class ofclic codes. An example of a systematically-cyclic

array code is given in the Figure 1.6 below.

ap a1 as as ay as

Ar+aztag|dz+agtas|dq+astag|ds+dgt aqdo+ajtag|di+aztasz

Figure 1.6: Sample systematically-cyclic lowest-density MDS arrageo Each column can be
obtained from the column to the left by addib@modulo6) to all its indices.

This sample code has the property that any of its columns eaabbained by adding
1 (modulo6) to every index in the column to the left. This property tiatss to many
advantages in the implementation of systematically-cyatides in different data-storage
systems.

Putting in concrete terms, the codes constructed in Chdpaee lowest-density MDS
array codes that are also systematically-cyclic. The MDO&perty means that these codes
have optimal redundancy. The lowest-density property m¢laat these codes are optimal
in terms of the number of parity-bit updates needed for alsinmgformation-bit update.
Codes that are both lowest density and MDS are known in taeatitre, but they are still
relatively rare combinatorial structures. Therefore atres with some degree of surprise,

that there exist codes that enjoy the lowest density and MiBtees, while simultaneously
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having a very nice and useful structure of being systemiaticsclic codes.

1.3.5 Decoding Beyond Half the Minimum Distance

Instances of failed decoding are especially undesirabiaia-storage systems, since they
cost a permanent loss of user data. Thus increasing the idga@dlius of error-correcting
codes beyond half their minimum distance is an attractigspect in practice. The two
main challenges of decoding beyond half the minimum disgtacalled in the literature
list decoding are the algorithmic feasibility of such decoders, and ffeceof non-unique
decoding on the post-decoding error probability. Chaptad#ances our understanding of
both issues, and offers constructive algorithmic improgata to decoding Reed-Solomon
codes beyond half their minimum distance.

With the objective to improve the average decoding compjexi Reed-Solomon list
decoders [GS99], the analysis of interpolation polynomisalrefined to understand how
their degrees depend on the numbemstantaneougrrors. Previous analyses only con-
sidered the number aforst-caseerrors correctable by the code. By bounding polynomial
degrees from above given an error weight, a strong such dieppee is revealed. That phe-
nomenon then motivates finding an interpolation algorithhose running time depends
on the instantaneous interpolation degree, thus improtfiegaverage decoding time and
the decoder throughput. A conceptual comparison betweemdcoding complexity of
list-decoding algorithms before and after the contribosi@f Chapter 5 is illustrated in
Figure 1.7 below.

The other major thrust of Chapter 5 is to analyze how decobeypnd the unique-
decoding bound affects the miscorrection probability sf iecoders. A high miscorrec-
tion probability means that in practice increasing the digog radius comes with the cost
of occasionally introducing additional errors instead ofrecting existing ones. A new
lower bound on the miscorrection probability of list decsleveals cases where decoding
beyond the unique-decoding bound provably and signifigantireases the probability of
miscorrection. More light on the behavior of list decodexrshed using a new combinato-

rial upper bound on the codeword-list size output by a listodier of a generaj-ary code.
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Decode Decode
time time

0 } t t t oror ) ' ' ! ; error
weight t weight

(a) (b)

Figure 1.7:Decoding time as a function of the Hamming weight of the evemtor. (a) Previously
known algorithm whose running time depends only on the woase error weight. (b) A new
algorithm and analysis yield running times that decreagbeasrror weights decrease.

A closed-form bound is derived that improves over the bestwn bound for moderate
and large alphabet sizes. Curiously, the same proof candgktasobtain an upper bound
on the sizes of constant-weight codes, that is better thanléssical-ary Johnson bound
for moderate and large alphabet sizes. This improvemertcsraplished by proving the

following inequality on fundamental coding theoretic éiet':

Ag(n,d,t) < Ag(n,2(d —t),t)

1.4 The Audience of the Thesis

The author perceives himself as both a scientist and an eagiMoreover, the precedence
order of the two subjective definitions is variable and magrae between one day and
the next. Consequently, a blend of practical and theoleitisight has been carefully

interwoven to form a cohesive presentation, which hopgfuthuld make it accessible and
enjoyable for both types of audiences. In the parts thatudisthe engineering aspects
of the results, sensible conjectural argumentation waenadtlowed; but whenever exact

mathematical statements appear, their treatment is dastewith uncompromised rigor.

1Aq(n, d,t) is the size of the largest-ary constant-weight code of length weight+ and minimum
distancei. A(n,2(d —t),t) is the size of the largest binary constant-weight code aftlen, weightt and
minimum distance (d — t).
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The academic prerequisites to access the thesis mategiadoarnigh. Some very basic

terminology and general understanding of error-contralesomay be found helpful.
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Chapter 2

Asymmetric Limited-Magnitude
Error-Correcting Codes for Multi-Level
Flash Memories

The observation of physical behaviors that significantlgt aonsistently deviate from the
implicit assumptions taken by known models, naturallysapon new models that better
describe the observed behaviors. When that happens, ounoenmwisdom that has helped
us to understand and tackle old models is abandoned, and ¢heew and design tools
need to be developed. The success of a new model, as an digéaty depends on both
the practical and the theoretical opportunity spaces thapéns. On the practical side,
it should improve matters compared to previously availaaitions. On the theoretical
side, it should encompass sufficient structure to allow ¢tnetilation and manipulation of
meaningful mathematical statements that advance its staheling. This chapter presents
a comprehensive study of a new error model that is motivayddlti-Level Flash Mem-

ories. The main contributions of the chapter are summartiztolv.

e Definition and motivation of a new error modélasymmetric/-limited-magnitude

errors.

e A combinatorial necessary and sufficient condition for eotability under the new

error model.

e A general and efficient code construction that is shown togiaral for useful fam-

ilies of parameters, and to outperform the previously basikn codes.
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e Construction of efficiensystematicodes to benefit practical implementation.

e Construction of codes for simultaneous asymmeind symmetrié-limited-magnitude

errors.

e Analytic study of the Flash-programming speed-up offergcabymmetric limited-

magnitude error-correcting codes.

Part of the results hereof have appeared in [CSBBO07].

2.1 Introduction

A channe] as a mathematical entity [Sha48], specifies the probébilislationships be-
tween its inputs and its outputs. The Theory of Informatiaages ways and limitations to
attain (communicate/store) reliable information, desgiie intrinsic unreliability imposed
by the channel. To move from the probabilistic setup of Infation Theory to obtain error-
control guarantees, a@rror modelis derived from the channel model. An error model
renounces the probabilistic description of the errors arsdeiad, specifies combinatorial
constraints on the error-introducing process, in a prearsg deterministic way (usually
assuming a specific finite block length).

The most well studied channel model for error-correctindesois the symmetric chan-
nel. According to this model, a symbol taken from the codé@alget is changed by an error
event to another symbol from the same alphabet, and all sackitions are equally proba-
ble. The natural error model that corresponds to the symowtannel is the model afym-
metric errors whereby the Hamming weight is used as a constraint on legal eectors.
The popularity of the symmetric channel model, and the spwading Hamming error
model, stem from their applicability to practical applicets, but more so from the power-
ful construction techniques that were found to address tHaraddition to the symmetric
error model, many other models, variations and generadiaatwere studied, each moti-
vated by a behavior of practical systems or applicationsaniples that are most relevant

to this chapter are thginary asymmetricg-ary asymmetri¢and Varshamov’g-ary asym-



17
metric with bounded L1 norrarror models, detailed, respectively, in [Klg81], [Web92]
and [Var73].

This chapter studies block codes that corrAsymmetric Limited-Magnituderrors.
This model is parametrized by two integer parameteisthe maximum number of symbol
errors within a code block, arids the maximal magnitude of an error on any code location.
The following example illustrates the coding problem antdaduces the main idea of the
code construction. Suppose we have a group symbols, each taken from the alphabet
{0,1,...,7}. To correctt = 2 errors of magnitudé = 1 in the upward direction, the
code is defined as follows. As illustrated by the sample wardsgure 2.1 below, if the
codewords are restricted to have either all symbols withpattty or all symbols with even
parity, the required protection is achieved. For each oftébee sample codewords in row
(a) of the figure, the channel introduces two upward erromsafnitudel (b). By finding
the minority between even/odd symbols, the locations oéthars are detected (c)-in bold,

and the original symbols are recovered by decrementingrio@eous symbols (d).

Sample 1 Sample 2
codeword codeword
@ 3(5/3|1]1 416121210
corrupted corrupted
(b) 415/3[2|1 416|321
located located
(c) 4|5/3(2]|1 416|321
corrected corrected
(d) 3(5(3[1]1 4161211210

Figure 2.1:Example of correcting asymmetric limited-magnitude esrofa) Two sample code-
words. (b) Introduction of = 2 asymmetric errors with magnitude= 1 to each of the sample
codewords. (c) Error location by finding the minority betwesyen/odd symbols. (d) Error correc-
tion by decrementing the symbols on the error locations.

As will soon be argued, the model of asymmetric limited-niagite errors is motivated
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by the unique error mechanisms that affect reliability aockeas speed in Multi-Level Flash
Memories. Before clearing the stage for that interestimgranodel, we summarize in Fig-
ure 2.2 various asymmetric channels and error models. Tiheow of Figure 2.2 gives
graphical descriptions of three asymmetric channels: tharp asymmetric, the-ary
asymmetric, and thg-ary asymmetric{ = 1) limited-magnitude channels. The bottom
row specifies error models that are derived from the cornedpy channel models, with
references to the first published result for each model. @db#st of our knowledge, no re-
sults pertaining to the model elasymmetric limited-magnitude errors had been published

prior to this chapter’s contributions.

Binary Asymmetric g-ary Asymmetric Asymmetric Limited-
. , 3 3 Magnitude

_ 3 _
Channel 0 0 2 2 2 _

t Asym. errors t Asym. errors [Web92]| All errors [AAKOZ]

Error [KF59]
Models Bounded L1-norm error | t errors (this chapter)

[Var73]

Figure 2.2:Asymmetric Channels and Error Models. At the top row are ciehdiagrams repre-
senting transitions with non-zero probabilities. At theétbm row are combinatorial error models
derived from the corresponding channel models. The ciiatrefer to the first work that considered
each error model.

A natural application for asymmetric limited-magnitudeogrcorrecting codes, and
the primary motivator for their study here, is the ubiquidtiash data-storage technol-
ogy. The term Flash Memory or Flash Device refers to a Noraiel Memory (NVM)
technology that is both electrically programmable andteleally erasable. This property,
together with high storage densities and high speed pragiag) has made Flash Memory

the dominant non-volatile memory technology and a promieeabler for many portable
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applications and technologies. To scale the storage gevfsilash memories, thilulti-
Level Flash Cellconcept is used to increase the number of stored bits in dERBDI].
Thus each Multi-Level Flash cell stores oneqfevels and can be regarded as a sym-
bol over a discrete alphabet of sige The most conspicuous property of Flash storage
is its inherent asymmetry between cell programming (chatgeement) and cell erasing
(charge removal). This asymmetry causes significant eoorces to change cell levels in
one dominant direction. Moreover, all reported common frlasor mechanisms induce
errors whose magnitudes (the number of level changes) gnéfisantly smaller than the
overall programming window (the alphabet size). These tworecharacteristics com-
bined, strongly motivate the model of asymmetric limitedgnitude errors studied in this
chapter. In addition to the (uncontrolled) errors that draje Flash Memory design and
operation, codes for asymmetric limited-magnitude ercars be used to speed-up memory
access by allowing less precise programming schemes tinadlirce errors in a controlled
way. For a more detailed discussion of the ways Flash Memaoaea benefit from the new
codes herein, please refer to section 2.7.

Asymmetric limited-magnitude error-correcting codes avproposed in [AAKO02] for
the special case = n (n is the code-block size). These codes follow Shannon’s géner
method for achieving zero-error communication over notsgrmnels [Sha56], and they turn
out to be a special case of the general construction metronided in this chapter.

The (all even/all odd) sample code described earlier in thepter is one instantia-
tion of a general construction method that provides codealf@ossible code parameters.
The main strength of this method is that for any target alphaize (determined by the
number of threshold levels), asymmetric limited-magnétedor correctability is inherited
from symmetricerror correctability of codes over alphabets of size 1 (in the case of the
example above, itis the binary repetition code.). Thuslkasalection of known symmetric-
error-correcting codes becomes handy to offer codes teaiatimized for the asymmetric
limited-magnitude channel. As a favorable by-product ef ¢bnstruction method, encod-
ing and decoding of the resulting codes are performed onahlgis whose sizes depend
only on/, irrespective of the code alphabet (which may be much latg@n/). This is a

major advantage in both redundancy and complexity, conaitarether proposed codes for
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Multi-level Flash memories (e.g. [GCKTO03]), whose encagdamd decoding are performed
over the large code alphabet.

After discussing the asymmetriclimited-magnitude error model in Section 2.2, the
main code construction is presented in Section 2.3, togeitie encoding and decoding
procedures. Evaluation of the resulting codes is perfonrm&ection 2.4, where asymptotic
optimality is shown fo = 1 and for a general whent grows “slowly” relative to the code
lengthn. A more conclusive optimality is shown by constructing cetleat are “perfect”
in the asymmetric-limited-magnitude error model. In addition, Section 2ofpares the
code sizes to sizes of codes for a related error model. $e2toand Section 2.6 discuss
extensions of the code construction with motivations fromcgical applications. Those
include the construction of systematic codes (Section, 26) codes for simultaneous

asymmetric and symmetric limited-magnitude errors ($&cH.6).

2.2 t Asymmetric /-Limited-Magnitude Error-Correcting

Codes

An alphabeQ) of sizeq is defined as the set of integers modgid0,1,2,...,9 —1}. For
a codewordr € Q" and a channel output € Q", the definition of asymmetric limited-

magnitude errors now follows.

Definition 2.1 A vector of integerg = (e, ..., e,) is called at asymmetric £-limited-

magnitude error word if [{i : e; # 0}| < t,andforalli, 0 <e; < {.

Given a codeworde € Q", at asymmetric/-limited-magnitude model outputs a vector
y € Q", such thatr + e = y, ande is at asymmetric/-limited-magnitude error word.
The + symbol denotes addition over the reals. A generalizatiothefabove definition
is when we allow asymmetric errors to wrap around (frgm 1 back to0), whereby we
interpret the+ symbol above as addition modujo

Theg-ary asymmetrid-limited-magnitude error model studied in this chapter gea-
eralization of the binary asymmetric error model studiechbynerous authors (see [KIg81]

for a detailed treatment of this model). Another generdlira proposed by Varshamov [Var73],
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studiesg-ary asymmetric errors that have no magnitude limit for wdiial coordinates,
but the sum of the error vector elements is bounded by sonegeni. WhenT = t/,
codes for the Varshamov model in particular correasymmetric-limited-magnitude er-
rors. However, for many applications, such as Multi-Levash memories, the Varshamov
model may be a too strong error model. These applicationgozatly benefit from the
constructions presented here, which give better codesnmstef size, and also enjoy sim-
ple encoding and decoding algorithms (the number-theoké&irshamov codes have no
efficient encoding or decoding algorithms).

The discussion of codes for the asymmetrlamited-magnitude channel model is com-
menced with the definition of a distance that captures thesctability of t asymmetric

£-limited-magnitude errors.

Definition 2.2 Forx = (x1,...,x,) € Q"andz = (z1,...,2z,) € Q", defineN(x, z) =
I{i:x; >z} andN(z,x) = |{i : x; < z;}|. Thedistance d, between the words, z is
defined

dy(x,z) =
n—+1 if maxi{|xi—zi|}>€

max(N(x,z),N(z,x)) otherwise

Thed, distance defined above allows to determine the numbéiiafited-magnitude

errors, correctable by a code

Proposition 2.1 A codeC C Q" can correctt asymmetric/-limited-magnitude errors if

and only ifd,(x, z) > t + 1 for all distinctx, z in C.

Proof: A code fails to correct aasymmetrid-limited-magnitude error word if and only
if there exist two distinct codewordsz and twot asymmetric/-limited-magnitude error
wordse, f, such thak + e = z + f, or equivalentlyx — z = f —e.

(<) Assume that for a pair,z, d;(x,z) > t + 1. Then at least one of the following
holds:
1.N(x,z) > torN(z,x) >t
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2. |x; — z;| > {for at least one indeke {1,...,n}.

Case 1 implies thaf — e has either more thah positive elements or more than
negative elements, none of which is possible by the defmiiche error vectors, f.

Case 2 implies that for somigeithere; > ¢ or f; > ¢, both impossible by the definition
of e,f.

Since the same arguments apply to arnyin the code, the code necessarily corrects all
possiblet asymmetrid/-limited-magnitude errors.

(=) Assume there exist a pair of codeworesg, for whichd,(x,z) < t < n. Then
bothN(x,z) < tandN(z,x) < t are true, andx; — z;| < ¢ at all indices. In that case
we can seff; = x; — z; at all indicesi such thatr; > z; ande; = z; — x; at all indicesi
such that; > x;. With zeros at all other indices, suely satisfyx — z = f — e without
violating the conditions of asymmetric/-limited-magnitude errors. O

Although the asymmetrié-limited-magnitude distance measufgis not a metric, i.e.
the triangle inequality does not hold, it still provides aessary and sufficient condition
for the correctability of asymmetrié-limited-magnitude errors. In subsequent sections, it
will be used both to prove the correction capability of codastructions, and to obtain

upper bounds on the size of codes.

2.3 Construction of t Asymmetric /-Limited-Magnitude
Error-Correcting Codes

We now provide the main construction of the chapter. Fortimtal convenience, given
x = (x1,...,%,), the vector(x; mod ¢, x, mod ¢/,. .., x, mod ¢) will be denoted

by x mod 4’. To obtain a code over alphab@tthat corrects or less asymmetric errors
of /-limited-magnitude, one can use codes for symmetric emues small alphabets as

follows.

Construction 2.1 Let X be a code over the alphab&) of sizeg’ = ¢+ 1. The codel
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over the alphabe@ of sizeg (9 > ¢ + 1) is defined as

C={x=(x1,...,x0) €Q":xmod (/+1) € Z}. (2.1)

In words, the codewords @f are the subset of the words @f* that are mapped to code-

words ofZ, when their symbols are reduced modigfle= ¢ + 1.

Codes obtained by Construction 2.1 have the following eroorection capability.

Theorem 2.2 C correctst asymmetrid-limited-magnitude errors if. correctst symmetric

errors. Ifg > 2¢,! the converse is true as well.

Proof: The proof proceeds by showing that any pair of codewasdsin C is atd, dis-
tance of at most + 1 apart. By Proposition 2.1, this would conclude tatorrects allt
asymmetric/-limited-magnitude errors. We distinguish between tweesas
l.xmod (/+1) =zmod ({+1)
2.xmod ({+1) # zmod (£ +1)

Sincex # z, Case 1 implies that for at least one index {1,...,n}, |x; — z;| > ¢,
settling theird, distance to ber + 1.

Case 2, and the fact thathas minimum Hamming distance of at least+ 1, imply that
x andz differ in at leas®t + 1 locations and thus, in particulanax(N(x, z), N(z,x)) >
t+1.

For the converse, i£ does not correct allsymmetric errors, then there exists a quadru-
ple(x € L, € %,e, f),suchthax+e =+ f (mod ¢+ 1), ande, f aret asymmetric
¢-limited-magnitude error vectors. Therefore, the vectors x + (¢ +1) - A(C+ f —
x—e)andz = ¢+ ({+1)-A(x+e—¢— f), (wWhereA(v) is a vector with ones
wherev; > 0 and zeros elsewhere), are codeword€¢ @ind they satisfx +-e = z + f.
Sinceq > 2/, the last sum is a valid channel output. We conclude thaetegists an

uncorrectable error word fa?, and the converse follows. |

1a reasonable assumption since the best codes are obtaired wih> g’
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Construction 2.1 is clearly useful as it leverages the camgnsively studied theory
of codes for symmetric errors, to obtain codes for asymmdimited-magnitude errors.

However, Construction 2.1 is a special case of the follovaiogstruction.

Construction 2.1A. Let = be a code over the alphabéX of sizeq’. The code over the
alphabetQ of sizeg (g > ¢’ > ¢) is defined as

C={x=(x1,...,xy) €EQ":xmod g € L}. (2.2)

The relationship betwednhandZXZ in the general case are summarized below. The proof

is almost identical to that of Theorem 2.2.

Theorem 2.3 C correctst asymmetrid-limited-magnitude errors iL correctst asymmet-
ric ¢-limited-magnitude errors with wrap-around. 4f > 4’ + ¢, the converse is true as

well.

Remark:If 4’ | g thenC correctst asymmetric/-limited-magnitude errorsvith wrap-
aroundfor X with the same properties as above.

It is easy to see how Construction 2.1 is a special case oft@mtion 2.1A. When
g = ¢+ 1, an asymmetri¢-limited-magnitude error with wrap-around is equivalemet

symmetric error (with no magnitude limit).

2.3.1 Discussion and analysis of the code constructions

The size of the codé is bounded from below and from above by the following thearem

Theorem 2.4 The number of codewords in the cadles bounded by the following inequal-
ities.

in.z<c<[i—‘n.z 2.3
2] e < [2] e @3

Proof: Letx = (x1, ..., xn) be acodeword of. A valid codeword of” can be obtained
by replacing eacly; by any element of the sétx € Q : x = x; (mod g’)}. The size of
this setis[q/q’] if x; < g mod ¢4’ and|q/q’ | otherwise. Thus for any codg, the lower

and upper bounds above follow. O
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In the special case whef = 2, the size ofC can be obtained exactly from the weight

enumerator of.

Theorem 2.5 Letq’ = 2 and X be a code ove@’ = {0, 1}. Then the size of the codg
as defined in{2.2), is given by

n
q n—w q w
cl=3 4 |3] |2
WZO @ M LzJ
where A, is the number of codewords bfwith Hamming weighto.

Proof: When2 | g, the right hand side equalg/2)" - |~

, as the matching lower and
upper bounds of (2.3) predict. Whént g, a0 in x can be replaced bjg/2] different
symbols ofQ and al in x can be replaced byg/2 | different symbols. Using the weight
enumerator o we obtain the exact value for the size(above. O

This theorem can be extendedglo> 2, but in such cases knowing the weight distri-
bution of X does not suffice, and more detailed enumeration of the codedded for an
exact count.

The/-AEC codes suggested in [AAKO2], that correct all asymnegtfimited-magnitude
errors, can also be regarded as a special case of this cotimtrinethod. To show that,
let 0 be the trivial length: code, over the alphab€&)’ of size/ + 1, that contains only the

all-zero codeword. Define

C={xecQ":xmod ({+1) €0}
={xecQ":x;=0mod ({+1) fori=1,2,...,n} [AAKO2].

Since0 can correct = n symmetric errors¢ can correct = n asymmetric-limited-

magnitude errors.

2.3.2 Decoding

The main construction of this chapter (Construction 2.@ues the problem of construct-

ing asymmetrid-limited-magnitude error-correcting codes, to the prablaf constructing
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codes for symmetric errors. The correction capability @ tlode constructions was proved
in section 2.3 using arguments on their minimdpdistance, arguments that have a non-
algorithmic character. We next show that a similar reductpplies also to the algorithmic
problem of efficiently decoding asymmetiidimited-magnitude error-correcting codes.

In the following, we describe how, given a decoding algantfor the codeX, one
can obtain a decoder for the code that has essentially the same decoding complexity,
with only a few additional simple arithmetic operations. €ltlecoding procedure herein
refers to the more general Construction 2.1A, and it cleadplies to the special case of
Construction 2.1 = ¢ +1).

Letx = (x1,...,%,) € C be a codeword ang = (y1,...,y») € Q" be the channel
output when up tad asymmetric/-limited-magnitude errors have occurred. Denote the
correspondingt codeword byxy = x mod 4’, and also defing) = y mod 4’ ande =

(P — x) (mod ¢’). First we observe that singe > ¢, if 0 < y; — x; < £ theny; — x; =

(y; — x;) mod ¢q’. Using the simple modular identity

(y; — x;) mod ¢’ = (y; mod ¢’ — x; mod ¢') mod ¢’
= (i —x;) mod 7' = ¢;,

we get thaty; — x; = €;, and in particular, if0 < y; —x; < ¢, then0 < ¢; < £. In
other words, if the codeword over Q suffered an asymmetri¢:limited-magnitude error
at locationi, then the codeworgy over Q' suffered an asymmetrié-limited-magnitude
error with wrap-around at the same locatipand with the same magnitude. Given at most
t asymmetric-limited-magnitude errors with wrap-around, a decoderdaran recovee
from 1. Thus, the equality; — x; = ¢; allows the same decoder to recowerom y.

A schematic decoder of an asymmetfidimited-magnitude error-correcting codé
that uses a decoder for a symmetric error-correcting codegiven in Figure 2.3. Given
a channel outpuy € Q", the decoder takes the symbol-wise modgl@f y to obtain
P € Q'". Then a decoder foE is invoked with the inputp and an error estimate is
obtained such thgt + & = ¢ mod 4/, andk is a codeword of within the correction

radius of the decoder fax. Note that the codeword estimagas discarded and not used



27
for the decoding ofC. Finally, € is subtracted frony to obtain the codeword estimate

xelC.

c O" VR
yeQ modg ¥ Decoder for NP2
y  xez

Figure 2.3:Decoding asymmetrié-limited-magnitude error-correcting codes. A decoderXds
run on the received symbols modujg and the error estimate of the decoder is subtracted from the

original received word.

2.3.3 Encoding

Construction 2.1 (and 2.1A) defined the caflas a subset dp”, without specifying how
information symbols are mapped to codewords. There are magg to map information
to codewords of, and the simplest one, that applies to gny such thay | 4/, is detailed
below. For an alphabet of size= A - ¢/, whereA, ¢4’ are integers, information is mapped
to a lengthn codeword ofC as follows. n symbols,(a,...,a,), over the alphabet of
size A are set as pure information symbols. Additionallynformation symbols over the
alphabet of sizg’ are input to an encoder @f to obtainn symbols,(x, .- ., x,,), over the
same alphabet. Finally, each code symhadverQ is calculated by:; - 4’ + x;.
Other encoding functions can map information symbols toeeantds ofC in a different
way than the simple encoding function above. Different niaggwith good properties are
discussed in Section 2.5 and Section 2.6.

Example 2.1 now attempts to convey the main ideas of the @mga@ohd decoding of

asymmetric/-limited-magnitude error-correcting codes.

Example 2.1 LetZy be the binary Hamming code of lengthh = 2" — 1, for some integer

2Non-binary Hamming codes can be used as well when1.
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m. First we define the codéy in the way of Constructiof.1
Cu={x=(x1,...,x,) € Q":xmod 2 € Zy}.

By the properties af i, the code’ corrects a single asymmetric= 1 limited-magnitude
error. When the code alphabet sizgis- 2P for some integeb, the perfect codéy, whose
size equaldCy| = A" . g = 2(b=1)n . gn—m — pnb—m hy equation(2.3), admits a
simple function fromub — m information bits to codewords @fy over Q, as illustrated
in Figure 2.4 below. In Figure2.4 (a), nb — m information bits are input to the encoder.
The encoder then uses a binary Hamming encoder to encedes: of the information bits
into a lengthn Hamming codeword (Figurg.4 (b)). Finally, in Figure2.4 (c), eachg-ary
symbol of the codeword € Cy is constructed fronh bits using the usual binary-to-integer

conversion, the top row being the least-significant bits;of Q. Decoding is carried out

m | n—m info mparityl n —m info| € £y
n(b —1) info b n(b —1) info b
n n
(@) (b)
~Isb

— x,€Q=1{0,1,...,2" -1}

msb

(©)

Figure 2.4:Encoding Procedure fafy. (a) Input information bits. (b) Encoding the top row of
bits. (c) Mapping bit column vectors to symbols over the alpdt of the cod€y.

by using a Hamming decoder on the top row to find the limited+#itade error location
and magnitude (for binary Hamming codes the magnitude isygdd). The top row word
is not corrected by the Hamming decoder, but rather the error miagi@ is subtracted

from theQ-ary wordy to obtain a decoded codeword. To recover the informatiosddier
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decoding, th&) symbols are converted back to bits in the usual way, andutiparity bits

are discarded.

2.4 Optimality of the Code Construction and Comparison

to Related Codes

2.4.1 Perfect Codes

For some parameters, the codes constructed in the preveatisrs are the best conceiv-
able ones for the asymmetrielimited-magnitude error model. These codes pegfect
codes in the sense that they attain the sphere-packing bourasymmetric/-limited-
magnitude errors. Thg-ary symmetric sphere-packing bound is first generalizeabion-
metric /-limited-magnitude errors (with wrap-around), and theis shown that asymmet-
ric /-limited-magnitude error-correcting codes that meet boand with equality can be

obtained by using other known perfect codes, e.g., perfatgin the Hamming metric.

Theorem 2.6 If C is at asymmetrid-limited-magnitude (with wrap-around) error-correcting

code, of lengtm over an alphabet of sizg then

o\
Cl- > <i)£l <q" (2.4)

i=0

Proof: The proof uses the same arguments as the proof for symmaetois e Assume
the number of(x, €) pairs exceedg”, wherex is a codeword ana is at asymmetric

¢-limited-magnitude error word. Then there exists a vegtar Q" such that
y=x+e=x+¢€

where eitherx # x’ or e # € (or both). Ifx # x’ then we have a contradiction since
giveny the decoder will not be able to distinguish betwaeandx’. If x = x/, the additive
property of the channel implies = €' as well, in contradiction to the assumption that

(x,€) # (x',€). Therefore the product of the code size and the number of sxilohe
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errors cannot exceef which gives the bound provided. O
Perfectt asymmetric/-limited-magnitude error-correcting codes are obtaifedugh

the following proposition.

Proposition 2.7 If there exists a perfect asymmetfidimited-magnitude code over an al-
phabet of sizg’, then there exists a perfect asymmetrimited-magnitude code with the
same length, over an alphabet of any sjzeuch thay’ | g, that corrects the same number

of errors.

Proof:
Let C andX be as in Construction 2.1A. We first substitute the expreskiothe code

size from (2.3) into the left side of the sphere packing bound

c| io (’:)e — (%)n-m }io (’:)e

If the codeX over the alphabet of sizg is perfect, then its size satisfies

: ny i n
|Z|Z (i)g :q/

i=0

Substituting the latter into the former we get

! n i " n n
ey ()e=(2) =
i=0 q

which completes the proof.
O
Alternatively, perfect codes are codes which induce a tpamtiof the space into error
spheres. As was already noted, whgn= ¢ + 1, thet asymmetric/-limited-magnitude
error sphere coincides with the Hamming metrisymmetric error sphere. Thus, taking
2 to be a perfect code in the Hamming metric (e.g., Hamming dayscodes), produces
perfect asymmetrié-limited-magnitude error-correcting codes over an algtal sizeg,

whereq’ | g.
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Other perfect codes may exist even whgn# ¢ + 1. For example, when = 1,
the asymmetrid-limited-magnitude error sphere is the semi-cross exathimeStein in
[Ste84].
One may wonder if anynherentlynew perfect code are produced by Construction 2.1A.
The answer, unfortunately, is no: Construction 2.1A sintpkes translations of the tiling
provided by the base codeto accommodate for the larger alphabet. This is depicted in

the following example.

Example 2.2 Let £ be the perfect ternary lengtih = 2 code capable of correcting one
asymmetrid -limited-magnitude errorz = {00, 11,22}. The code induces a tiling @%
with the error sphere, and is shown in Figu2ed. Since this tiling is with wrap-around, it
also induces a natural tiling with wrap-around ﬁgk for everyk € N. Specifically, foiC,
the code over an alphabet of siggroduced from- by Constructior2.1A, the resulting

tiling is also shown in Figure.5.

(a) (b)
Figure 2.5:Asymmetric limited-magnitude error-correcting codesiisgs. In Example 2.2, the
tilings induced by (a) the codg, and (b) the cod€.

2.4.2 Asymptotic optimality of Construction 2.1

The implication of Construction 2.1 is that “large” codes $§ymmetric errors over an al-
phabet of siz¢ + 1 imply “large” codes for asymmetrié-limited-magnitude errors over
any larger alphabet. Showing the reverse implication, nathat “large” codes for asym-
metric /-limited-magnitude errors imply “large” codes for symmeterrors, would con-

clude that Construction 2.1 is optimal in terms of the rasglicode sizes. Optimality
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is achieved in this case since given the “large” code for sytnimerrors implied by the
reverse direction, Construction 2.1 can be invoked to yalde of the same size as the
original “large” code for asymmetrié-limited-magnitude errors. The purpose of this sub-
section is to show that asymptotically, Construction 2vegithe largest possible codes for

asymmetric-limited-magnitude errors.

Definition 2.3 Define therate R of a codeC of lengthn over an alphabet of sizeas

1
R=—
n

log, [C]|

where|C| is the number of codewords ¢h

Theorem 2.8 If C is at asymmetric/-limited-magnitude error-correcting code with rate
R and block-length: that tends to infinity, then

1) Whend = 1 and for arbitraryt, there exists a cod@, constructed by Constructidhl,
with the same rate&.

2) For a generall and fort = o(n/logn) (i.e. lim,_, tlogn/n = 0: t has a slower
growth compared ta/ log 1), there exists a codg, constructed by Constructidhl, with

the same ratR.

Proof: We first give an overview of the proof technique using the chagof Figure 2.6.
Construction 2.1 allows obtaining codes for asymmetrignited magnitude errors from
codes for symmetric errors with an inflation factky ,(n) < 4" /(¢ +1)" (upper part
of Figure 2.6). To prove that the construction is optimal, meed to prove the converse
— that codes for symmetric errors can be obtained from codeadymmetric/-limited
magnitude errors with asymptotically equivalent deflafiactor (lower part of Figure 2.6).
The way this is done in the proof is by first proving the existenf codes foasymmet-
ric errors with deflation factoK, ,(n), and then showing that codes for symmetric errors
are equivalent in rate to codes for asymmetric errors. Thepmsition of these two steps
establishes the asymptotic rate optimality of ConstrucHd.. To exercise the proof ideas
above we introduce the following notation. L&tM,(n, t) be the size of the largest length

n code that corrects asymmetric/-limited-magnitude errors over an alphabet of size
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A

. XKq,g(Tl)
Construction: |z | — C|
/const(n)
or

/poly(n) /Kqe(n)
Converse: |Z| <« [Z4] <« C|

Figure 2.6:1dea of rate-optimality proof. The converse at the lowet pathe diagram is proved
in two steps. First large codes for asymmetric errors ar@gatdo exist; then small (constant or
polynomial) gaps between codes for asymmetric and symenetrors are proved.

Let Asym,(n,t) be the size of the largest lengthcode that corrects asymmetric errors
(symbols change only in the upward direction, with no magatlimit), over an alpha-
bet of sizea. Finally, letA,(n,t) be the size of the largest lengthcode that corrects
symmetric errors, over an alphabet of sizeA,(n, t) used here is a replacement of the
more commonly used, (1, d) [HP03, Ch.2], whereby the parametestands for the min-
imum Hamming distance of the code instead of the number oéctable symmetric errors
(thereforeA,(n, t) = Aq(n, 2t + 1)).

To avoid the excessive use of tiie] operator, assume théf + 1) | 4. The set of all
g" words over the alphabet of sizeis partitioned intog” /(¢ 4 1)" subsets, each of size
(¢+1)", as follows. Each subset contains a single word whose symisel modulo/ + 1
equals the all zero vector. In addition to this vector, thes&i contains the sum of that
vector with all(¢ + 1)" — 1 non-zero vectors over the alphabet of sfze 1. Each subset
has the property that no two words within it differ in any cdimate by more thaf. A

sample such partition for = 2, g = 4 and? = 1 is given below.

0 0/0 212 0]2 2
0 10 3(2 1(2 3
1 01 2|3 0|3 2
1 1|1 3|3 1|3 3
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This property is equivalent to havinty(x, z) < n + 1 for everyx, z in the subset.

Suppose there is a codethat corrects asymmetric/-limited-magnitude errors. Then
there exists at least one subset, with at lédt¢ + 1)" /" codewords ofC. Since any
two codewordsy, z in that subset satisfy,(x, z) < n + 1, each such pair has to satisfy
max(N(x,z), N(z,x)) > t. In other words, the codewords 6fthat belong to the same
subset, form a code that corre¢tasymmetric errors with no magnitude limit of size at
least|C|(¢ + 1)"/q". Without loss of generality, the subset with many codewasdbe
one that contains the all zero codeword. Generality is raaiet since neitheé¥ (x, z) nor
N(z, x) are changed when a constant vector is subtracted fromenidz. Consequently,
the codewords of this subset imply the existence of a codeavealphabet of sizé + 1

that corrects asymmetric errors with no magnitude limit. Formally,
Asym,, (n,t) > (51)"AlMy(n, t)

on the other hand, Construction 2.1 and Theorem 2.4 prowvidddilowing lower bound
onAlMy(n,t):
AlMy(n,t) > (+45)"Arsa(n,t)

Combining the lower and upper bounds we obtain
Apiq(n, t) < (%)"AEMq(n,t) < Asym, ,(n,t) (2.5)

which is consistent with the trivial inequality, 1 (n,t) < Asym, ,(n,t) (any code for
symmetric errors is also a code for asymmetric errors). Theff the theorem is achieved

by bounding the gap betweén . ;(n, t) andAsym,  (n, t) using the following lemmas.
Lemma 2.9 [Bor81]: Ag(n, t) > qAsym,(n,t).
Proof: See [Klg81]. O

Lemma2.10 A; 1(n,t) > (né)ZtAsymHl(n,t).

Proof: We will show that a code for symmetric errors can be obtaimethfa code for

asymmetric errors by expurgating all but at leadt/4n¢)? fraction of codewords of the
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asymmetric-error-correcting code. Any two codewords inaaymmetric-error-correcting
code have Hamming distance of at least 1. Any two codewords in & symmetric-error-
correcting code have Hamming distance of at I@ast 1. The number of words (and in
particular, an upper bound on the number of codewords) tlesdiedistance betweent- 1

and2t from a codeword of & asymmetric-error-correcting code is

2t _ t ,
S (’7)5’ =0y ( " .)el
=11 \! S\t

efi ( " .)ei < (n0)?

] t+1

Since(,},) < n'ti/t,

and thus expurgating all but at ledst(n¢)% of the codewords, yields a code fbsym-

metric errors:

1
Ag_;'_l (7’1, t) > WAsym[H_l(n, t)

Combining Lemma 2.9 with (2.5), fat = 1 we obtain

(g)nAz(n, 1) < AM,(n, 1) < (

N

n
) Aol )
While Lemma 2.10 end (2.5) imply, for general
(¢10) At (n, £) < AM(n, 8) < ()% (41) Agga (m, )

Taking the logarithm, dividing by: and taking the limit: — oo, the upper and lower
bounds ofA/M,(n, t) are identical for botlf = 1 and for general (under the restrictions
ont of part 2 of the theorem). Hence asymmetkiimited-magnitude codes obtained from

symmetric codes by Construction 2.1 are asymptoticallynogoit O
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2.4.3 Comparison to Varshamov codes

Prior to this chapter’s introduction of theasymmetric/-limited-magnitude error model,
the closest error model that achieves this correction aéifyab the g-ary asymmetric error
model proposed by Varshamov [Var73]. In particular, thewnaodes for the Varshamov
model are better than known codes for symmetric errors. Afing to the Varshamov
model, parametrized by an integer param@teif a vectorx = (x1,...,x,) overQ" is
transmitted, the channel output is a vecter e overQ”, such thae; > 0 andy? ;e; < T
(the addition and summation are over the reals). When t/, aT error correcting code for
the Varshamov channel is alsa asymmetric/-limited-magnitude error-correcting code.
Since thel' = t¢ Varshamov model allows errors that are not allowed bytthgymmetric
(-limited-magnitude channel (i.e. errors with high magdés, which are unlikely in the
target application), we expect the code constructions isfadhapter to yield better codes
compared to the best known Varshamov codes. This secti@cthmpares between sizes
of codes that are obtained using Construction 2.1, and lbaends, provided in [McE73],
on the sizes of various Varshamov codes. This comparisoncizmplete since it only
discusses thsizesof the codes. Evidently,asymmetric/-limited-magnitude codes enjoy
efficient encoding and decoding procedures, a property wkarshamov codes are not
known to have in general. We also do not discuss the restnigton the block sizes of

the code constructions, in order to avoid overloading tisewlsion with secondary details.

2.4.3.1 Comparison for/ =1

When the asymmetric errors have a magnitude limif o 1, we compare the codes of
Construction 2.1 to Varshamov codes with= t. Whent = 1, the two error models are
identical and both constructions yield codes that are penfethat metric, whose sizes are
q"/(n+1). Whent = 2, Varshamov codes are known to haye/ (n?> + n + 1) code-
words, while using the (punctured) Preparata codes [MSTi/1%} in Construction 2.1
gives2q" /(n + 1)2, roughly twice as many codewords. For a genéyahere exist Var-
shamov codes with sizeg'/(n + 1)!. If we apply Construction 2.1 with BCH codes

with designed distanc2t + 1, we get the same code size. However, using the Goppa
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codes [MS77, Ch.12] instead gives a superior siz¢'gf! codewords.

2.4.3.2 Comparison for a general

While for ¢ = 1 the advantage of the codes for asymmetrlonited-magnitude errors in
terms of the code sizes is small, for largeralues these codes are significantly larger than
Varshamov codes. Even if we only uget 1)-ary BCH codes in Construction 2.1, codes
of sizesq” /(n 4+ 1)! are obtained, wherg = 2t¢/(¢ + 1). Comparing taj"/(n + 1)

of Varshamov codes shows a significant advantage to the tdv@onstruction 2.1 since

t' < min(¢t,2t).

2.5 Systematic Asymmetric Limited-Magnitude Error-Corre cting

Codes

All its advantages notwithstanding, Construction 2.1 ewgfthe shortcoming of not admit-
ting a systematic representation ov@r A code(C over an alphabe@ is said to be in
systematic form if its coordinatefyy, ..., x, } can be partitioned into an information set
I = {xq,...,x} and a parity seP = {x;,1,...,x,}, such that each symbol iR is a
function of symbols inl only. As seen in Figure 2.4(b)yz code symbols contain parity
contribution. Each of these symbols also has a pure-information component, so it can
neither belong to th@ set, nor to thd set of a systematic-code coordinate set. This non-
systematic structure implies that “many” code symbols amngsome parity contribution: a
bad property in practice as it dictates accessing many el for each information up-
date. In this section we proposgstemati@asymmetric limited-magnitude error-correcting

codes that have fewer parity symbols.

2.5.1 Systematic codes fof = 1 limited-magnitude errors

When the error magnitudéis bounded byi, the codeX in Construction 2.1 is a binary

code. As we show next for this case, a modification of any @ébdan be carried out, that
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yields a systematic code with the same correction capgbilihe construction method of

systematic codes fdr = 1 is first presented in Example 2.3.

Example 2.3 In this example we propose a systematic variant to the €egdeiven in Ex-
ample2.1 The encoding function given below generates a code thathgasame correc-
tion capabilities ag’y, namely any singlé = 1 asymmetric error is correctable, though
the resulting code is different. Specifically, the dimensiof the systematic code are differ-
ent. For this example we assume that the alphabet size obtieis2™ (m — the number

of parity bits in the binary code), compared 26 for arbitrary b in Cy. This assumption
can be lifted with a small increase in redundancy that degesrdthe actual code param-
eters. For ann, k = n — m] binary Hamming cod& , the length of the systematic code
isn —m + 1, compared ta: in the non-systematic case. The systematic code is encoded
as follows. In Figure2.7 (a), km information bits are input to the encoder. The encoder
then uses a binary Hamming encoder to encodectiméormation bits of the top row into

a lengthn = k + m Hamming codeword (Figur2.7 (b)). The parity bits of the Hamming
codeword are now placed as a separate column. The mappingsddls) symbols, shown

in Figure 2.7 (c), is the usual (positional) mapping for tikdnformation symbols and the
Gray mapping for the parity symbol.

To decode, a word aD¥+1 is converted back to bits using the same mappings, and a
binary Hamming decoder is invoked for thecoded bits. By construction, a single= 1
asymmetric error ovef) translates to a single bit error in the Hamming codeword: in
the k information symbols, ald = 1 error flips the least-significant bit that is part of the
Hamming codeword, and in the parity symbol,/a# 1 error flips exactly one parity bit in

the column, thanks to the Gray code used in the mapping.

The code proposed in Example 2.3, together with its encddeétgding, can be gener-
alized to any! = 1 limited-magnitude asymmetric error-correcting code as stated by the

following proposition.

Proposition 2.11 Let X be a binary systematic code of lengtlandm < b - r parity bits,
for any two integerg andb > 1. If £ correctst symmetric errors, then it can be used to

construct asystematia asymmetrid = 1 limited-magnitude error-correcting code over
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Figure 2.7: Encoding procedure for a systematic code with= 1. (a) Input information bits.
(b) Encoding the top row of information bits followed by theagement of parity bits in a separate
column. (c) Mapping bit column vectors to symbols over thghabet of the code. The standard
positional mapping for information columns and the Gray piag for parity columns.

an alphabet of sizg = 2P, This code has lengthh — m + r, of whichr symbols are parity

symbols.

Proof: The general construction follows closely the one in ExanZo8 n — m infor-
mation bits are used to encode a codeword offhem < br parity bits are grouped into
r columns ofb bits each. Then thesecolumns are mapped @ symbols using the Gray
mapping and information bits are mapped to symbols usingts&ional mapping. The
property that each limited-magnitude error results in oyramsetric error in the codeword

of X is preserved for this general case. O

2.5.2 Systematic codes fof > 1 limited-magnitude errors

If we try to extend the construction of the previous sub-secio codes for > 1 limited-

magnitude errors, we immediately face a stumbling blockthé&ligh generalized Gray
codes exist for non-binary alphabets, their properties alosaffice to guarantee a simi-
lar general construction. The crucial property, that a lei@gymmetric limited-magnitude
error translates to a single symmetric error in the-1)-ary code, is lost for the general

case. For example, if fof = 2 a symbol represents the ternary reflected Gray code-
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word 0001, then an error of magnitud2 will result in the Gray codewor®012, whose
Hamming distance t0001 is 2 and notl as required. Thus, a limited-magnitude error
at this symbol may induc@ errors for the ternary cod&. Evidently, this effect is not
unique to thg¢ + 1)-ary reflected Gray code, and there is no mapping betwegy sym-
bols{0,1,...,(¢+ 1) — 1} and(¢ + 1)-ary b-tuples with this property. This sub-section
proposes a construction for systematic asymmetilienited-magnitude error-correcting
codes, for arbitrary.

The construction of systematic asymmetitimited-magnitude error-correcting codes
builds on the non-systematic Construction 2.1. Two modifices of Construction 2.1 need
to be instituted to yield a systematic code. The first is usirapdeX’ that has different
correction properties thah used before. The second is a special mapping between parity
symbols ofZ’ and code symbols @’ overQ.

Let g andg’ = ¢+ 1 be the alphabet sizes of the cod¥sand Z, respectively. Assume
for simplicity thatg = 2(¢ + 1)*, for some integes. If this is not the case, the same
construction can still be used, only the mappings betw@eandQ will be slightly more
complicated.

The codeX’

Let £ be a linear systematic code over an alphabet of gize ¢ + 1. The number of
information symbols of is denoted, and the number of parity symbolsis The parity-
check matrix ofz is denoted byH. Columns{0,...,m — 1} of H correspond to the:
parity symbols of the codE. Let H' be the parity-check matrix that is obtained frdirby
replicating all columns i € {0,...,m — 1} such that # 0 (mod s), and appending
them toH. H’ is the parity-check matrix of the linear codé that hasn parity symbols
andk + |m(s —1)/s| information symbols.

The mapping Q' < Q for parity symbols

From them parity symbols oft’, each group of parity symbols, denotetﬂgj), cery cbgj_)l,

is mapped to a single parity symbol @f using the following formula

. s—1 . )
= +25 (e +1). (2.6)
i=1
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The systematic cod@’ is now specified using its encoding function.

Construction 2.2 Let & be a[k + m, «| linear code over the alphabed’ of sizeq’ =

¢+ 1. The systematic cod® over the alphabef of sizeg = 2(¢ + 1)° hask + |m(s —
1)/s] information symbols anflm/s| parity symbols. The parity symbols are computed
by taking the moduld + 1 of the information symbols, encoding them using a systemati
encoder forZ’, and mapping the resulting: parity symbols ovef)’ to [m/s] symbols
over(Q, as described irf2.6).

Note that the length of the cod® is k + |m(s — 1)/s| + [m/s] = k + m, the length of
the non-systematic codé

Codes obtained by Construction 2.2 have the following ezoorection capability.

Theorem 2.12 C’ correctst asymmetric/-limited-magnitude errors i correctst sym-

metric errors.

Proof: The key point in the proof is that an asymmetfitimited-magnitude error in
a parity symbolj of C’ may only chang@éj) out of thes parity symbolsd)éj), ey d)gj_)l
of £’, mapped to this symbol. The way was extended fronx allows correcting errors
in the added information symbols, as long as the parity syswwboseH columns were
replicated are guaranteed to be error free. This fact camrbfied by using a decoder fa
that first computes the syndrome usiAg and then inputs this syndrome to a decoder for
Y. Thust or less asymmetrié-limited-magnitude errors in any combination of infornuati
and parity symbols will result in a correctable error for tuleX’. O

To clarify Construction 2.2 an example is now provided.

Example 2.4 Suppose we want to prote2d information bits with a systematic code that
correctst = 1 asymmetrid = 3 limited magnitude error, over an alphabet of sige- 32.
Sincet = 1 and/ = 3, we takeX to be the quaternary Hamming code. More specifically,

we choos€ to be the[5, 3] Hamming code over the alphabet of size= 4 whose parity-
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check matrix is given below.

H =

1 01 11
01|11 2 3

Them = 2 left columns of correspond to the parity symbols bf Note thaty = 2(4’)?
ands = 2.

Replicating the right parity column we obtald’, the parity-check matrix of’.
| 10j0 11
0O 1|1 12 3

The encoding 020 bits of information into a codeword of a systematic c@dewvith the

Encoding

specified parameters is described in Fig@r8. Shaded cells represent parity symbols and
unshaded cells represent information symbols. In FigliBa), the top two bit rows are
used to encode a word a&f over the Finite Field of siz&. In the right part of Figure2.8(b),
information bits are mapped to symbols@fusing the usual binary to integer conversion.
In the left part, the parity symbols &f are mapped to a symbol @ using the mapping
defined in equatio(2.6). Figure 2.8(c) shows the final codeword 6f.

As implied by the constarit in equation (2.6), only half of the alphab@tis used in
the parity symbols. That is equivalent toextra redundanbit for each parity symbol of
C’. Note that the half factor is true for arbitrafy Whenever > 1, that amount of addi-
tional redundancy compares favorably to using the Ahlswetdd. “all error correcting”
scheme [AAKO02] for the parity symbols, which allows usindya1/(¢ + 1) fraction of
the alphabe@.

To better understand Construction 2.2, it may be benefigigigw it as a concatenated
coding scheme. The cod¥ is a concatenation of the outer codlé and an inner code
for each symbol (the mappin@’ < Q) that partially corrects an asymmetridimited-
magnitude error, to have the outer cadeobserve at most one symmetric error. Figure 2.9

illustrates this view of the systematic-code construction
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Figure 2.8: Encoding of a systematic sample code with= 1 and/ = 3. (a) Encoding the
top two rows using the modified quaternary Hamming code fpayimbols in shaded boxes). (b)
Mapping information bits using the standard positional piag and mapping parity quaternary
symbols using the mapping in (2.6). (c) The resulting codevawver the alphabet of siZA2.

2.6 Codes for Asymmetric and Symmetric Limited-Magnitude

Errors

In Flash memory applications, a dominant error source mageanost of the errors to be
in one known direction. However, other, more secondaryremarces can inject errors that
are more symmetrical in nature, but still have low magnitidéo answer such plausible
scenarios, we address a variation of the asymméthimited-magnitude error model to

include a (small) number afymmetric-limited-magnitude errors.

Definition 2.4 A (t;, ;) asymmetric/symmetric £-limited magnitude error is a vectore
such that{i : e; # 0} < t; +¢;. In addition,t; of the indices ot satisfy—¢ < ¢; < ,
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Figure 2.9:Concatenated-Coding view of Construction 2.2. The mapflhg> Q can be viewed
as an Inner code in a concatenated coding scheme in vithiishthe Outer code.

and the remaining — t indices satisfy) <e; < /.

In the following, we present a construction method for codes that correct(ty, ;)
asymmetric/symmetrié-limited-magnitude errors. This enhanced error corrdtitghs
achieved by modifying Construction 2.1 with the additioraofauxiliary binary code and
a special mapping from information bits geary symbols. We assume for simplicity that

g = 2°(¢+ 1), for some integes.

Construction 2.3 Leto = (oy,...,0,) be a codeword of a codE, over an alphabet of
sizel + 1, that correctst = t; + ty symmetric errors. LeV = (73,...,05) be a two-
dimensional binary array of sizex n, taken from an array cod€ that corrects a single
bit error in each of at most; columns. Each symbol ok € CT,I is composed from a
symbol of the codeworat and a bit vector of the codewoiid as follows.
For anyi,

xj = (£ +1) - Gray(7;) + o;

whereGray (if) is the sequential number of the vecibin a binary Gray code on bits.

The codeC; ; contains all|Z| - [C| compositions of the codewordsDandC.

Proposition 2.13 The codeCm is a (tTrtI) asymmetric/symmetri¢-limited-magnitude

error-correcting code.

Proof: Decoding ome is performed in two steps. Firstlﬂ,m is decoded as if it was
a plaint asymmetric-limited-magnitude error-correcting code (of Constraot.1). For

thetI coordinates that possibly suffered errors in the downwatton, the first decoding

3Such codes can be obtained by lengpth binaryt; error-correcting codes, or more cleverly, using J.K
Wolf’s Tensor-Product code construction method [Wol06]
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step miscorrects these errorsaractly/ + 1 levels below their correct levels. Thus, for
each of thesé; miscorrections, the Gray mapping guarantees that the essoiting from
this ¢ 4+ 1 level discrepancy will be observed by the cddas a single bit error. O
Example 2.5 below illustrates the encoding and decoding ajde originating from

Construction 2.3.

Example 2.5 In this example we prote¢t symbols over an alphabet of sige= 12 against

t; = 2 asymmetric errors plu$1 = 1 symmetric error. Both the asymmetric and symmet-
ric errors have magnitude limit of = 2. In Figure2.10 o is a codeword of the ternary
repetition code that correct$; + tp =3 symmetric errors. The bits oV , placed in two
rows, are a codeword of the (shortened) binary Hamming cddiength 14. Each column

of V is mapped to an integer i{0,1,2,3} using the Gray code, and the final codeword

x combinesV and o through the formula

x=3-Gray(V)+o

O(1/0}1{1/01 Gray

X 111|828 |5]2]|5

Figure 2.10:Example of a code for asymmetric and symmetric limited-nitaigle errors. From
top to bottom: a codeword of the ternary repetition code; a binary Hamming codewordrayed
into a2 x 7 array and its Gray mapping; the final codewardbtained by combining andV.

Decoding of the sample code above is illustrated in Figudl The codeword in (a)
is corrupted by2 asymmetric (upward) errors ariddownward error; the resulting word is

given in (b). In (c) the result of correcti@asymmetridimited-magnitude errors is given.
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The “corrected” array V is shown in (d), and the top bit of the third column from right
(marked with a bold-fac@) is found to be in error. Finally, in (e) the third symbol from
right (in bold face) is adjuste@ levels upward after a miscorrection was detected at the

previous step.

(& codeword 11|18 (2 (8|52 15

(b)  corrupted 111102 |8 |4 |3 |5

(c) A/¢M decoded 11/8|2 (82|25

- 1 1]0 1
(d) correctedV 0
10| 1]0 0
+3
(e) SIM adjusted 11/8(2|8|5|2|5

Figure 2.11Example of decoding asymmetric and symmetric limited-nitagie errors. (a) Code-
word. (b) Codeword corrupted by asymmetric and symmetnidtéd-magnitude errors. (c) First
decoding step: correction of asymmetric limited-magretd/M) errors. (d) Resulting corrected
codewordV is decoded using a Hamming decoder. (e) Adjusting the misction of the symmetric

error found in the previous step.

Note that the amount of redundancy (of bath and V ) required in the example to
correct(2,1) asymmetric/symmetric errors is smaller thanWf is not restricted and the
repetition code is taken over an alphabet of sze+ 1 = 5 (that scheme would corre8t

symmetric/ = 2 limited magnitude errors).

The counter-intuitive part of Construction 2.3 is thbary Gray mappings are used
regardless of the error-magnitude This fact implies that the codes and C cooperate
with each other to achieve the prescribed correction céipalatherwiseC would need to

operate over a larger alphabet for- 1.
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2.7 Asymmetric Limited-Magnitude Error-Correcting Codes

in Flash Devices

While the majority of the results of this chapter are forntethin mathematical terms, their
great practical promise should not be overlooked. The gapd®n a good coding scheme
from a theoretical perspective and an attractive codingsehin practice is deep and often
daunting — it was proved historically that improved errosilience, lower redundancy,
and even efficient decoding do not suffice to attract techgyolmroviders to implement
a coding scheme. In this section our intention is to projeetd¢oding results above, on
the design and operation of real Flash devices, thus shaiwaigvalue for that particular
application. To do that we first show how asymmetric limitedgnitude error-correcting
codes can be deployed with minimal excess hardware ovesrtuftash architectures. Next
we analyze, as a function éf the savings in programming time offered by asymmetric

limited-magnitude error-correcting codes.

2.7.1 Implementation architecture

The codes proposed in this chapter enjoy a key property g&ns to allow a relatively
painless access to them by commercial Flash products. Théhia the error-correcting
engine of the new code constructions are codes for the syneehaannel, which are used
anyway by common Flash devices to correct memory errorsipea simple modification
of the Flash architecture to obtain a much more targetedntieat of the observed errors.
In Figure 2.12, a simplified architecture of a typical Flaglvide is presented. The Flash
cell contents are measured and converted to discrete lasilg the A/D (Analog to Digi-
tal converter) block. Then, to match the chosen error-cbirmg code for symmetric errors,
the discrete levels are represented in the appropriateabfinusing the Alphabet Con-
verter) and fed to the ECC (Error-Correcting Code) decodére outputs of the decoder
are then delivered to the device user. By converting theprethirammed levels to a lower
alphabet the structure of the Flash errors is lost and camnatilized by the ECC decoder.

In comparison, for the coding scheme proposed in this cinagtmilar architecture pro-
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vides guaranteed error control against common asymmaetnited-magnitude errors. In
Figure 2.13, the cell levels are similarly measured and eded to discrete levels. The
modulo? 4+ 1 of these levels are fed to the same ECC decoder as in Figu2e Rtiose
error estimatesre now subtracted from the discrete measured levels ogéultralphabet
(the subtraction is represented by te adder blocks). The corrected symbols are then

passed to the user after a possible alphabet conversion.

C AL LA

Figure 2.12:Flash architecture with symmetric error-correcting codEise correction of errors is
performed on the low-alphabet symbols, thus not utilizimg $pecific characteristics of Multi-level
Flash errors.

By installing circuitry to support the modulo operation aichple additions, the device
designer is free to choose variable ECC Decoder blocks taimlany error correction

capability specified by and/.

2.7.2 Programming speed-up

As mentioned in the introduction of this chapter, asymnaeliited-magnitude error-
correcting codes can be used to speed up the cell progranproegss by allowing faster,
less precise programming pulse sequences. The behavidypical optimized Flash pro-
gramming sequence is shown in the graphs of Figure 2.14 hakitaken from [BSHO5].

The integers of the horizontal axis represent the progrategpsequential numbers and the
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Figure 2.13: Proposed Flash architecture with asymmetric limited-nitage error-correcting
codes. Here the error estimates from the decoder are stégtrilom the symbols over the orig-
inal alphabet thus utilizing the error structure for tasgkerror correction.

vertical axis represents electric-current levels to whitdsh cells are programmed. A cir-
cle on the a graph represents a current level achieved bysa piilsome point along the
programming sequence. The different graphs in Figure Zpdesent program sequences
with different target current values. As can be clearly seeost of the progress toward the
target value is achieved by the early pulses, and the nuradaiter pulses are used for a fine
asymptotic convergence to a value very close to the tardedrefore, having even a small
error resiliency against asymmetric limited-magnitudees can allow the programming
sequence to terminate long before hitting the target vadue o the asymptotic nature of
the programming curves) thus significantly speeding up mgraocess. Increasing the
error resiliency beyond the flat part of the curve does notsagdificant benefits as at the

steeper part of the curve the vertical concentration of @gning points becomes sparser.

To supplement the experimental evidence above, that tatereo asymmetric limited-

magnitude errors can speed-up the programming sequencgnditqtive analysis of the
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Figure 2.14:Performance of a Flash adaptive program sequence [BSHO%. cifcles on each
curve describe the results of an iterative programmingréttyo for a given target value.

time savings is now carried out. The inputs to a Flash programg algorithm are thanitial
andtargetcurrent levels; its output is a programming pulse of somehvahd amplitude,
that attempts to move closer to the target level, under samstaints. To have an analytic
description of the programming sequence, we need to modgbribgramming algorithm
in a way that captures its main design constraints in practic Flash devices, preventing
over-programmingwhereby the programming result exceeds the target level,arucial
consideration taken by the programming algorithm. Theardsr that being that Flash
devices do not support single-cell erasures, and an owgr@mming instance requires
erasing a full Flasiblock an operation that is very costly in terms of time and devieamv
The analysis that follows, strongly builds on that propetylash devices.

Suppose a Flash cell is to be programmed from a lower letek higher target levdk.
Since the changé&in the current level is a random variable whose distributiepends on

the chosen programming pulse, we model it aexgonentially distributecandom variable
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with meanl/u. p will be determined by the programming algorithm as a functbl;, I,
and subject to a constraint of fixing a low probability of oygogramming. Specificallyy
will be taken such that
Pr(l;+6>1Ip)=¢

€ is a global parameter that specifies the allowable prolglfiover-programming. Sub-

stituting the exponential distribution &f we get the integral equation

/oo pexp(—ud)dd =€ (2.7)

Ip—1;

(See Figure 2.15 for illustration.)
pdf(s)

T

Ir—1I; \\\ 5

€

Figure 2.15: Choice of a programming distribution based on the specifiethability of over-
programming. For starting levé] and target levelr the parameter of the exponential distribution
is chosen such that the marked area under the probabilitgitgieiunction graph equals (the
specified probability of over-programming)

Solving (2.7) and rearranging we get

_In(e)
Ir— I,

‘LL:

Hence we have the following relationship between the loweelll; and the final (higher)
level I; :

liy1=1+6;, ©&; ~ Exponential[—1In(e)/(Ir — I;)] (2.8)

Note that the parameter of the exponential distribution;adt each step depends on the

starting levell; that is itself a random variable.
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Starting from an initial level,, the programming algorithm recursively updates the cell
level according to (2.8), and stops after thié step if, > Ir — A, whereA is the maxi-
mum allowed deviation from the target levigl. Discussed in detail later, the paramefter
specifies the device tolerance to programming errors in thnevard direction. A pictorial

illustration of the modeled programming sequence is giveRigure 2.16.

Ir A
| In
()7’1‘t fffffffffffffffffff In_l
,,,,,,,,,,,,,,,,,,,, I
53 777777777777777777777 12
)
k- Il
01
Iy

Figure 2.16:A pictorial illustration of the modeled programming seqoen On the left side are
the initial level I, the target levelr and the tolerance paramet&r In the middle is a sequence of
exponentially distributed level incremeris, &, . . ., 8, resulting from the programming algorithm.
On the right side are the instantaneous levelmitil the process terminates ht

To analyze the performance of the programming algorithnmees to find the expected
number of stepg, such that
L1 <Ip—A<LI,

However, given the compléstructure of the random process finding the mean of: is
hard. Instead, we will approximafgs mean crossing time by the (deterministic) crossing
time of the mean of;. This latter calculation is significantly easier since we cae the
linearity of expectation to obtain a recursive formula fog mean of;. The accuracy of that
approximation can be established using concentrationd®(eng. Chebyshev inequality),

however for the discussion here a first order approximatimukd suffice.

4]; is a Markov process with an uncountable number of states



53

Now taking the mean of equation (2.8) we write

. 17 - _
liy1=1L+E [E} =i+ Ke(Ip — ;) (2.9)

whereK. £ —1/1n(e). Rewriting (2.9) provides a recurrence relation on the esgu

programmed levels

Ii+1 = Tl(l — Ke) + KcIp

Solving the recurrence for initial leve)) we get the expression
R n .
I = Io(1 = Ke)" + IpKe § (1= Ke)'™!
i=1

which after simplification becomes
I, =1Ir — (1 = K)"(Ig — Ip) (2.10)

Now, by equating (2.10) tdr — A we can calculate the timd when the sequence of

meangd,, crossedr — A:
Ir—(1—K)N(Ip—Ip) =Ir— A

that gives
N — log(Ir — Iy) — log(A)
—log(1 —K¢)

(2.11)

The importance of (2.11) is that it describes how the numbegquired pulsedN depends
on the error margim\. To compare the programming speed of Flash devices with ahd w
out an asymmetric limited-magnitude error-correctingeode define two different error
margins,A. and A, respectively (the subscriptstands forcodedand the subscriptc
stands founcodedand obvioushyA. > A,.). The difference between the corresponding

numbers of pulsed/,. andN, is then

_ log(Ac/Aue)
Nue = Ne = — log(1 — Ke¢)
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A conservative assumption is to s&t = (¢ + 1)A,., where/ is the parameter of the
asymmetric/-limited-magnitude error-correcting code. This assumpttorresponds to
allowing the uncoded device a tolerance of one level (overdiscrete alphabé&®), and
the coded device a tolerance b&dditional levels for the total of + 1 levels. Under that

assumption, the saving in the number of programming pulgeals

log(¢+1)
—log(1 — Ke¢)

NMC_NC — (212)
For an over-programming probability= 0.01 the above equals

Nyc— N, =4.08log(¢/+1)

Values of savings for different values 6fre given in Table 2.1.

Nyc — N¢
2.84
4.48
5.66
6.57
7.31
7.94

OB WN RS

Table 2.1: Approximate average savings in programminggsuisr sample values df

Another quantity of interest is the percentage of savidgg — N.) /Ny, x 100, which
depends on the particular differenge— I. For a programming window afs — Iy = aA,
a is an integer specifying the target increase in discretel$gthe part of the programming

duration saved by the code equals

log(¢+1)
loga
aslongas < g—¢. The mediaP saving percentage is obtained by taking: g/2 andis
equal to
log(¢+1)
log(q/2) -

SThe median savings is a simple approximation to the averagegs, which has an unwieldy expression.
For small? (compared tq) it is a relatively good approximation.
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For a sample number of levejs= 32, the median savings in programming time suggested

by the model is plotted in Figure 2.17.
% Savings

40%

20%

14

1 2 3 4
Figure 2.17: Percentage of program-time savings as a function of the'sadagnitude limit
parameter/. Significant savings are suggested even for smahd returns are diminishing for
growing 4.

As seen in both Figure 2.17 and Table 2.1, while even siedllues suggest signif-
icant savings, increasing beyond some point exhibits diminishing returns and does not
significantly contribute to increased savings in prograngrtime. Note that this last qual-
itative observation is one we have already made when disguBggure 2.14 earlier in the
sub-section. Thus both analytical and experimental eweenotivate the application of
asymmetric limited-magnitude error-correcting codesttfvemall /), as clearly codes for
symmetric errors will not be an efficient solution for progmaing speed-up.

Note that while our model successfully predicts the asymptmehavior of the pro-
gramming algorithm (through thed — K, )" sequence in (2.10)), it stops short of account-
ing for some of the properties of the curves in Figure 2.14.example, the expression for
N, — Nc in (2.12) suggests that the numbers of saved pulses areandept of the ini-
tial and target levels. Whereas comparing the uppermostraddle curves of Figure 2.14
clearly concludes that this is not the case in practice, argliés that there may be other

constraints on the programming algorithm not included inmodel. The design of real
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programming algorithms in the presence of asymmetric éatinagnitude error-correcting

codes is thus an interesting and promising research avenue.

2.8 Conclusions and Future Research

This chapter proposes a new coding technique that is methiat Multi-Level Flash Mem-
ories. Defining a natural new error model has opened the wagiimple but powerful con-
struction method that enjoys good storage and implememtafficiencies. By an interplay
between symbol mappings and constraints on the full codekbs®veral useful extensions
to the basic code construction are achieved. An attractiopgsty of the codes herein is
that the coding parametertst, ¢ need not be fixed for a Flash Memory device family. After
implementing the simple circuitry to support this codingthea in general (modulo and
other arithmetic operations), different code parametars lze chosen, by using varying
external coding modules for the symmetric error-corregtiode. Many of the strengths
of this construction method were not explored in this chap®hen the reading resolu-
tion is larger than the code alphabet size (e.g., readetgivea real number rather than
an integer), improved decoding techniques can be readgiieapusinglimited-magnitude
erasuresor other soft interpretations of the read symbols. Bettstayatic codes may be
obtained by observing the relationship between the limited)nitude errors and the errors
they induce on the low-alphabet code, and then replacingyhemetric error-correction
properties required here (which are too strong) with vagidmequal Error Protection prop-
erties.

Proving the asymptotic optimality of Construction 2.1 finalues of/ andt lies upon

the existence of a proof to the following conjecture.

Conjecture 2.1 For anya andt, A,(n, t) (size of largest-ary code for symmetric errors)
and Asym (n, t) (size of largest-ary code for asymmetric errors) satisfy the following
equality.

1 1
lim —log, [Aq(n,t)| = lim —log, |Asym,(n,t)|

This was proved for = 2 and for restricted if a > 2.
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More on the practical side, there is a need to devise optimizalgorithms that “bud-
get” controlled errors to achieve maximal savings in progmrang time. An experimental
study on commercial standard Flash devices may also beuhétpduantify the improve-

ment in density that these codes can achieve.
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Chapter 3

Codes for Random and Clustered Device
Failures

Similarly to the previous chapter, this chapter shows hdmee design goals, in conjunc-
tion with clever construction methods, can provide effitieading schemes that match
more realistic characteristics and constraints of pratiiata-storage systems. If in the
previous chapter it was found useful to renouncesyrametryassumption on the channel,
this time around it is thenemorylessnessssumption on the channel that is shown to be
limiting and inessential. When array codes are used asaatisins of failure-protected
storage arrays, each array column represents a physicakedavstorage unit. The tradi-
tional MDS (Maximum Distance Separability) requirementtba codes assumes device
failures that are uniformly distributed across the storagay, without taking into account
the effects of the physical layout of the devices within thraya The main motivation to de-
part from the MDS model in this chapter, is the premise thatadefailures tend to cluster,
and therefore, a failure pattern of the form of Figure 3.1¢apore likely than the isolated
failures of Figure 3.1(b). The main contributions of thisapker can be summarized as

follows.

e A new classification of error combinations based on the nurabelusters that they

occupy.

e Construction of a family of codes with excellent Clustem¥dsure correction and
good Random-erasure correction capabilities. The newshdee superior encod-

ing, decoding and update complexities compared to the stk codes for Ran-
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Figure 3.1:Clustered and Non-clustered patternd dvice failures. (a) Clustered pattern includes
two adjacent failures. (b) Non-clustered pattern has iedlilures only.

dom erasures.

e Statistical analysis of the reliability of redundant diskegs under Random and Clus-

tered failures.

3.1 Introduction

Protecting disk arrays and other dynamic-storage systgaisist device failures has long
become an essential part of their design. Implementedisokito data survivability in the
presence of failed hardware have progressed considenalheilast two decades. In the
dawn of failure-protected storage systems, relativelypsgnschemes were implemented. In
RAID [PGK88] arrays, a redundant disk is used to store paiityof the information disks,
which allows recovering from any single disk failure. Simmata replication and data
striping are also commonly used to avoid data loss. Meamywhibrage requirements are
growing rapidly and at the same time, device reliability weduced to control the imple-
mentation cost. Consequently, recovering from only a gifgjlure has become inadequate
while data replication is turning infeasible. Schemes Hratbased on the Reed-Solomon
codes [MS77] can recover from more failures, and with a gesdiency-redundancy trade-
off, but they require complex decoding algorithms (in eitepace or time) and they also
have high update complexity — many parity writes are needesimall data updates. These
shortcomings left such schemes out of reach of many stogglecations.

The class of codes calleatray codes|[BFvT98] addresses both issues of simple de-
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coding and efficient updates, while maintaining good steraficiency. The idea behind
array codes is that the code is defined on two-dimensionaysawof bits, and encoding and
decoding operations are performed over the binary alphaisatg simple Exclusive OR
operations. An example of an array code with two parity caisrthat can recover from
any two column erasures is given below. Thesigns represent binary Exclusive OR oper-
ations. The three left columns contain pure information #edtwo right columns contain

parity bits that are computed from the information bits ascsfed in the chart below.

alblclat+b+c|a+ft+etc
die|fl|d+e+f|d+bt+e+c

Like encoding, decoding is also performed using simple &ige OR operations. For
example, recovering the bitsb, d, e at the two leftmost columns is done by the following

chain of computations.

e = c+(@a+bt+c)+(d+e+f)+(at+ftetc)+(d+b+e+c)
d = e+f+(d+e+f)

a = c+fH+et+(a+f+e+c)

b = c+a+(a+b+c)

It is left as an exercise to verify that any two column eraswan be recovered by the code
above. The small-write update complexity (the qualifierall-writeis often omitted) of an
array code is the number of parity-bit updates required feingle information-bit update,
averaged over all the array information bits. In the samplgecabove, each of the bits
a,b,d, f requires2 parity-bit updates, and each efc requires3 parity-bit updates. The
update complexity of that sample code is hefte2 +2 - 3) /6 = 2.333.

In the literature of array codes a column serves as an alistndo a disk or other physi-
cal storage unit, and column erasures represent diskdailirhe sample array code consid-
ered above, belongs to an infinite family of array codes dal¢ENODD codes [BBBM95],

that protecp information columns against two column erasures, for anp@p (in the ex-
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ample we tooky = 3). The EVENODD family of codes and its relatives (e.g. [CEE]),
can recover from any two erasures with optimal redundandp @) and enjoy simple de-
coding and fairly low update complexity. EVENODD codes foomna than two erasures
exist [BBV96], but their decoding becomes more complex faawgng numbers of era-
sures, and their update complexity grows as fastras 1, for r correctable erasures. A
high update complexity limits the system performance asigases excess disk /O oper-
ations, even if no failures occur. High update complexigodmplies high wear of parity
disks whose direct consequence is the shortening of distinies.

The primary incentive to move to higher order failure resice in disk arrays is to
combat “catastrophic” events, in which multiple disks &amultaneously. For such events,
the assumption that device failures occur independentigach other is no longer true,
and many failure mechanisms cause multiple disk failurasalre highly correlated. Since
adjacent disks in the array share cabling, cooling, power mechanical stress, failure
combinations that are clustered are more likely than cotalyldsolated multiple fail-
ures. Consequently, array codes that have excellent Gaasteilure correctability, good
Random-failure correctability, and low update complexitg desirable for high order fail-
ure protection of disk arrays.

Motivated by correlated disk failures in high-order faduevents, a new classification
of erasure combinations is proposed. Each combinationlahuo erasures will be classi-
fied by the number of erased columns, and by the numbelustersin which the erased
columns fall. The number of clusters captures the numbeinaligpendent” failure events,
each possibly affecting multiple disks in a single clustéris model is related to the model
of multiple bursterasure correction, however the new (and stronger) moegehséo better
capture the correlated failure patterns in disk arrayssesindoes not predefine tisg&zeof
the clusters, only their number.

This chapter pursues the first attempt to improve the perdioge of array codes by
prioritizing the correctable failures based on their reatocations in the array. By doing
that, we part from the abstraction of a fault tolerant steragay as an MDS code, in the
hope to achieve a more realistic trade-off between redurydand performance. A more

general “black box” framework to trade-off storage space access efficiency, discussed
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in [HCLO7], does not offer benefits comparable to the reshdieein. The main contri-
bution of this chapter is the construction of an array-coamily, called RC codes (for
Random/Clustered), that corrects essentially all Clesteand7 out of 8 non-Clustered,
4-failure combinations. The RC codes are better than EVENQDBDP4) in all implemen-
tation complexity parameters. They improve the encodind)@coding complexities by
25% and the small-write update complexity B$.57%. They also support twice as many
disks compared to EVENODD codes, for the same column sizecohgpare RC-coded
disk arrays to EVENODD-coded ones in terms of their relippperformance, analysis of
the Mean Time To Data Los8{TTDL), under Random and Clustered failures is carried

out.

3.2 Definitions and Notations

3.2.1 Array Codes

The definitions in this sub-section are standard coding+théerminology that provides

a good abstraction for failure-resilient disk arrays. lehgthn array code consists of
columns. A column is a model for, depending on the exact apfiin, either a whole
disk or a different physical data unit (such as a sector) endlsk array. In the codes
discussed here, there areolumns that store uncoded information bits arablumns that
store redundant parity bits (thus= k + r). This array structure has the advantage that
information can be read off a disk directly without decodingless it suffered a failure,
in which case a decoding process is invoked. An array codeattraits this structure is
calledstrongly systematicA column erasureccurs when, for some physical reason, the
contents of a particular column cannot be used by the decodlererasure is a model
for a device failure whereby all the data on a disk (or otheysotal unit) is known to
have become unusable. We say that an array with given coluasures iscorrectable

by the array code if there exists a decoding algorithm thatependent on the specific
array contents, can reconstruct the original array fromrased columns only. An array

code is called MDSNlaximum Distance Separabld it has r redundant columns and it
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can correct all possible combinationsotolumn erasures. MDS codes obviously have
the strongest conceivable erasure correction capabdityafgiven redundancy, since the
k information columns can be recovered frany k columns. Beyond space efficiency
of the code, one should also consider its 1/O efficiency. Iffi@iency of a disk array is
determined by themall-writeandfull-columnupdate complexities of the array code used.
The small-write update complexity (often simply called afglcomplexity) is defined as
the number of parity-bit updates required for a single infation bit update, averaged over
all information bits. The full-column update complexitytlee number of parity columns
that have to be modified per a single full-column update. Aaptrucial performance
marker of an array code is ierasure-decoding complexjtgefined as the number of bit
operations (additions, shifts) required to recover thesedacolumns from the surviving

ones. Unless noted otherwigewill refer to a general prime numbe.

3.2.2 Random/Clustered erasure correction

To describe column erasure combinations whose only réstmnics the number of erased

columns, it is customary to use the somewhat misleading Ranmdon{LC83] erasures.

Definition 3.1 An array is said to recover from Random erasures if it can correct all

combinations op erased columns.

The Random erasure model is most natural when storage noeldsi\awn to, or more
commonly, assumed to behave uniformly and independentatf ether. Indeed, almost
all array-code constructions discussed in the literaturead correcting Random erasures.
Refinement of the erasure model is possible by adding réstricon the relative locations
of the erased columns. This chapter considélssterederasures where the erasures
fall into a limited (< p) number of clusters. We now turn to some definitions related t
the Clustered erasure model. In wordgilasteris a contiguous block of columns. More

precisely,

Definition 3.2 In an array code with columns numberé@, 1,2, ...,n — 1}, acluster is

a set ofo columns such that the difference between the highest naeshlsetumn and the
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lowest numbered one is exactty— 1.

For example{2, 3,4,5} is a cluster witho = 4. Now given a set of columns, the number
of clusters that it occupies is the partition of that set toinimal number of subsets, each
of which is a cluster according to the definition above. Nowimaude another definition

that will be useful later.

Definition 3.3 A set ofp columns is callecClustered if the number of clusters it occupies

is strictly less tharp.

Random erasures have no restriction on their respectivébatsof clusters and therefore
they include both Clustered and non-Clustered erasures.offter extreme is theolumn
burstmodel where all erased columns need to fall into a singletefus hese two well-
studied extreme cases open our presentation and later th&€ are shown to be very
effective for all intermediate cases of Clustered erasufgs illustration of the column-

clustering definitions is given in Figure 3.2.

(a)

(b)

()

Figure 3.2:Classification of column combinations by their respectiuenbers of clusters. Four
columns (marked with X) that fall into (a) One cluster (b) Telasters (c) Three clusters (d) Four
clusters (non-Clustered)
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3.3 Preliminaries and Relevant Known Results

The purpose of this section is to discuss relevant knowntseisus ufficient detail to prepare
for the presentation of the new RC codes in the next secti@meSalgebraic tools used
later for RC codes have been used before for other codes,ssdbtion also serves to

elucidate those tools prior to their use by the actual codetroction.

3.3.1 Codes for erasures in a single cluster

Assume that our design goal is a disk array that will sustajnezasure op columns in a
single cluster, without requiring any Random erasure @ioa capability. One option is
to take a code that corrects apyRandoncolumn erasures that, in particular, corrects any
Clusteredp erasures. However, as can be expected, this may not be thegpesach since
correcting all Random erasures is a far stronger requirertineth excludes much simpler
and more efficient constructs. As this section shows, a siraptl well known technique
calledinterleavingcan achieve that task optimally both with respect to theireguedun-
dancy and in terms of the code update complexity.

Let CP be an array code with’ columns, out of whictk’ = n’ — 1 are information
columns. The remaining column holds the bit-wise parityrafk’ information columns.
Define the cod€ P, as the lengtth = pn’ code that is obtained by the interleavingmof
codewords of2P. In other words, ifC™Y), C(), ..., C(P) arep codewords of’ P, then the

corresponding code word 6P, will be

Cgl) ng) Cgp) Cgl) ng) Cgp) Cgl)

Proposition 3.1 The cod& P, corrects anyp erasures in a single cluster.

Proof: Any erasure that is confined to at mgstonsecutive columns erases at most one
column of each constituentP code. These single erasures are correctable by the individ-
ualCP codes. O

It is clear that the cod€P, has optimal redundancy since it satisffes= r andp is a

well known and obvious lower bound on the redundancior anyp, the codeCP, has
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update complexity (both small-write and full-column)Igfwhich is optimal since a lower
update complexity would imply at least one code bit that dependent of all other bits,

and erasure of that bit would not be correctable.

3.3.2 Codes for Random erasures

As mentioned in sub-section 3.3.1, array codes that coamegip Random erasures also
correct anyp Clustered erasures. In this section we seek to survey ayfahiRandom
erasure correcting codes: the EVENODD [BBBM95],[BBV96|des. These codes en-
joy several properties that make them most appealing fotamepntation in disk arrays.
The purpose of presenting the codes here is twofold. Fimsthe absence of prior codes
that combine Clustered and Random correction capabijliE®8NODD will be used as
the current state-of-the-art for comparison with our cangton. Second, the analysis of
the new RC codes herein is made simpler by building on pregsepreviously shown for
EVENODD.

3.3.2.1 EVENODD for correcting 2 Random disk erasures

An EVENODD code [BBBM95] takeg data columns, each of size— 1 and adds to them
2 parity columns of the same size. The encoded array is therefsize(p — 1) x (p+2).
EVENODD can correct ang column erasures so it is clearly optimal in terms of added
redundancy (MDS). Other properties of EVENODD are thatgtiengly systematic, it has
low small-write update-complexity that is approximatelyecabove optimal, and optimal
full-column update complexity. In addition, it can be eneddind decoded using simple
XOR and shift operations. The simplest way to define the EVER@ode is through its
encoding rules. Given g — 1) x p information bit array, parity columi® and parity
columnQ are filled using the rules shown in Figure 3.3, for the case 5. An imaginary
row, shown unshaded, is added to the array for the sake oémtieg the structure of the
encoding function. Parity columA is simply the bit-wiseevenparity of the information
columns ¢ parity groups are marked using tHedifferent icons in Figure 3.3a). Parity

columnQ is the slope-1 diagonal parities of the information bits ¢s# groups are marked
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by icons in Figure 3.3b). Whether the parity of these diagjgnaups is set to be even or
odd is decided by the parity of the information bits that Iretbe diagonal that was left
blank in Figure 3.3b.

|

He*Oe
He*Oe
He*e
He %o
He*e
HexOL
H® # @

()
®x

\\\\\\

He*Oe
B He %
K2

fffffff

(@) (b)

Figure 3.3:Encoding of the EVENODD code. Each array of icons specifieseticoding rules for
one parity column. Each parity bit is calculated from all theoermation bits that carry the same
icon shape. (a) Horizontal parityy (b) Diagonal parityQ

3.3.2.2 Algebraic description of EVENODD

In the previous sub-section, EVENODD codes were definedgusiair simple encoding
functions. We now include the algebraic description of EMEDD codes from [BBBM95]
that will be most useful for later proofs in this chapter. @ohs of the(p — 1) x (p +2)
array are viewed as polynomials of degreg — 2 overlF, modulo the polynomiaM, (x),
where My (x) = (x¥ +1)/(x+1) = xP" 1+ xP72+ ...+ x+ 1 (recall that inF,
summation and subtraction are the same and both done usifgtiean XOR function).
According to that view, the polynomial for a column vector= |cy, ... ,cp_z]T is de-
notedc(a) = cp_pa? % + - - - + 1 + . Bit-wise addition modul@ of two columns is
equivalent to summing the corresponding polynomials inrthg of polynomials modulo
Mp(x), denotedR,. Multiplying c(e) by « results in a downward shift of if ¢, 5 is
zero. In the case, > = 1, reduction modulaVi,(x) is needed andc(w) is obtained
by first downward shiftingco, . . . ,Cp_3,O]T and then inverting all the bits of the shifted

vector. Then, it is not hard to see that the encoding rulegctipin Figure 3.3 induce the
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following parity check matrix oveRR,.

11 --- 1 |10

1 o -+ a7 1|0 1

The top row ofH represents the horizontal parity constraint®ofvhere all columns have

the same alignment. The bottom row represents the diagan#} ponstraints of), where

a column is shifted one location upwards relative to its tefighbor. The structure of the
ring R, provides for the even/odd adjustment of Qeparities, as a function of the parity
of the bits in the blank cells. The importance of this algebdefinition of the code is due

to the fact that proving correctability of an erasure conalion reduces to showing that the
determinant of a sub-matrix dff has an inverse in the rin,. Subsequent sections will

discuss that in more detail.

3.3.2.3 EVENODD for correcting 3 and more Random disk erasugs

In [BBV96], EVENODD was generalized to codes that correct 2 Random erasures.
The main idea in the generalization is to add more parity roolsi that constrain the code
bits across diagonals with different slopes (recall thaEENDDD uses slope8 and1).

Discussing EVENODD generalization in depth is beyond th@pscof this chapter. We

only mention the following facts that are relevant to ourganetation.

e The asymptotic small-write update-complexity of the gah&VENODD code fam-
ilyis 2r — 1 —o0(1). o(1) refers to terms that tend to zero as the code length goes to

infinity. Their full-column update-complexity is

e Forr > 3, generalized Random erasure correcting EVENODD codes are only
guaranteed to exist fgr that belong to a subset of the primes: those that satisfy that

2 is a primitive element in the Galois field GF).

e The best known way to decode general EVENODD codes is usia@ldorithm
of [BR93] overR,, for which the decoding complexity is dominated by the term
rkp.
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3.3.3 The RingR,

Properties of the rindR, are used in subsequent sections to prove the correctadifilsa-
sure patterns by RC codes. This same ring was studied foranaalgsis in [BR93] and later
in [BBV96]. Accordingly, the purpose of this section is tonsonarize useful properties of
R p, following the necessary mathematical definitions. Rettalt the elements of the ring
R, are polynomials with binary coefficients and degreg¢ — 2. Addition is defined as the
usual polynomial addition ovef, and multiplication is taken moduldl,(x) = zf’;ol Xt
Elementf(«) is invertible in the ring if and only ifged(f(x), Mp(x)) = 1, where
ged (-, -) stands for the polynomiajreatest common divisorlf f(«) is non-invertible
(ged(f(x), My(x)) # 1), then there exists an elemerlix) € R, such thatf («)g(x) =
0. In that case we say th#f«), ¢(«) are both divisors 0f. For convenience of notation
the elemenlzf.’:_o2 o is denotedx” 1. Note also thatr’ = 1. The following is a useful

lemma from [BR93].

Lemma 3.2 For any primep, all elements of the forms’ anda’ + 1 are invertible, for

anyl <i <p.

Next a fundamental closure property of rings is worth mamitig.

Lemma 3.3 A product of invertible elements is invertible.

Lemmas 3.2 and 3.3 together provide a family of ring elem#rdsare invertible for any
prime p, namely products of monomials and binomials. When the pyrhas the property
that2 is a primitive element in Gfp), thenM,(x) is irreducible, R, becomes dield and
consequently all non-zero elementsfof are invertible. (See [LN86] for more details on
finite fields). Hence, for such primes, the following Lemmaeitkma 2.7 of [BBV96])

provides additional invertible elements.

Lemma 3.4 If a polynomialg(x) has an odd numberof terms and < p, theng(«) is

invertible inR ,, providedM,, (x) is irreducible.
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3.4 Definition of the RC Codes

3.4.1 Geometric Description

P R/ R, O

2p

Figure 3.4:The RC-code array. RC codes h&einformation columns and parity columns. The
column size iy — 1.

Referring to Figure 3.4, the RC code gsinformation columns (white) op — 1 bits
each and parity columns (shaded) with the same number of bits. Tharinétion columns
are numbered in ascending order from left to right using titegers{0,1,2,...,2p —
1}. Parity columns are not numbered and we use letter labelthéon. The code is
defined using its encoding rules shown in Figure 3.5, for tieep = 5. As before, an
imaginary row is added to the array to show the structure efaihcoding function. Each
icon represents, similarly to the definition of EVENODD i182.1, a group of bits that are
constrained by the code to have even/odd parities. PatityrooP, located in the left most
column of the left parity section, is simply the bit-wise avgarity of the2p information
columns. Parity columrR’, located second from left, is the slopel diagonal parity
of the odd numbered information column§l, 3, ...,2p — 1}. The bit groups oiR’1 are
set to have even patrity if the bits marke® have even parity, and odd parity otherwise.
Parity columnRy, located in the left most column of the right parity sectiemthe slope
2 diagonal parity of theevennumbered information columng, 2,...,2p — 2}. Parity
column Q, located in the right most column of the right parity sectigthe XOR of
the slopel diagonal parities of both the even numbered columns and ddenambered
columns. The parity groups @ andR,, similarly to those ofR/, are set to be even/odd,

based on the parity of the correspondiB® groups. Note that parity columrz and Q
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can be decomposed infb= P0 & P1 andQ = Q0 & Q1, whereP0, Q0 depend only on
even information columns anéil, Q1 only on odd ones.
For a formal definition of the code we write the encoding fumts$ explicitly. Denote
by c; ; the bit in locationi in information columnj. For an integet, define(l) to be!

(mod p). Now we write the explicit expression of the parity bits.

2p—1

[%:: é}) QJ
j=0

p—1
R}, =S1© @ ciirjjit-
=0
p—1
where S1 = @ Clp—1+j),2j+1
j=0
p—1
Ro, = So® P ciizjy o)/
j=0
p—1
where Sp = @ C(p—1-2j),2j
=0
p—1 p—1
Qi=So® (P ci—j2) ® (D ci—jaj),
j=0 j=0
p—1 p—1

where  Sg = (P cp-1-j)2) © (D cp-1-jy2j+1)
j=0 j=0
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Figure 3.5:Encoding of the RC code. From top to bottom: the parity groofgsarity columnsP
(slope 0),R] (slope -1),Q (slope 1) andR (slope 2). Parity column® andR} each depends on
only half of the columns, contributing to the low implemeiga complexity of RC codes.

3.4.2 Algebraic Description

Using the ringR ,, the parity check matrix{ of the RC code fop = 5 is given by

(10/111 111 1 11 1]0oo0]
01/01 0 of 0 &> 0 &> 0 a0 0
00|10 a* 0 a* 0 a 0 & 0|1 0
_0011 a a o ar o8 8 ot cx401_
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The correspondence between the encoding function in Fi§leand the parity check
matrix above is straight forward. The columns of the parityeck matrix correspond to
columns of the code array. The two left most columns are foitppaolumnsP and R}
and the two right most columns are f&; and Q. Columns in between correspond to
information columns in the array. In the parity check matriow 1 represents the con-
straints enforced by parity columiy rows2, 3,4 similarly represent the parity constraints
of R}, Ro, Q, respectively. In any rovy, the difference of exponents efin two different
columns is exactly the relative vertical shift of the twouwmins in the icon layout of the
appropriate parity in Figure 3.5. For example, in the top,ralhvinformation columns have
the same element(= ), to account for the identical vertical alignment of the isan

the encoding rule of parity. For generap the parity check matri¥{ has the following

form. ) )
10/11---1 1 1 1 - 1100
0101 --- 0 a® 0 aH ... x |00

H= . . (3.1)
00[10---a% 0 20t 0 ... 0 |10
00[11 -+ o o ot ot .o aP 101

After presenting the RC code family, we proceed in the negtige to prove its Random

and Clustered erasure correction capabilities.

3.5 Erasure Correctability of RC Codes

In this section we prove that essentially all Clustered coiions of4 erasures are cor-
rectable by RC codes. Moreover, considering Random erasurectability, we prove that

a7/8 portion ofall combinations oft erasures are correctable by RC codes.

3.5.1 Clustered erasure correctability

We first prove RC codes’ excellent correction capability ddstered erasures. This result
is established in Theorems 3.8 and 3.9 below that follow asece of lemmas. Recall that

the2p + 4 columns of the RC codes are labelg® R, 0,1,...,2p —2,2p — 1, Ry, Q}.
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Lemma 3.5 For any primep, for a combination of erasures, i columns are either even
numbered information columns or parity columns{iRy, P, Q}, and1 column is an odd
numbered information column or the parity coluf, then it is a correctable-erasure.
The complement casgodd (orR} or P or Q) and1 even (orRy), is correctable as well.

(in particular, any 3-erasure is correctable).

Proof: The RC code can correct the erasure patterns under consiteusing a two-
step procedure. The first step is to recover the erased oddmation column. Since only
one odd column is erased, parity colurRf can be used to easily recover all of its bits.
Then, when all odd columns are availabid, andQ1 are computed, and used to fifd
andQO0 from P andQ (if not erased) by

PO=PI1&P , Q0=QlaQ

After that step, between even information columRg, PO and QO0, only 3 columns are
missing. Since even columnRy, PO andQO0 constitute an EVENODD code with= 3,
the3 missing columns can be recovered. The complement casedd andl even column
erasures is settled by observing that odd colum)sP1 andQ1 constitute am = 3 MDS
code [HXO05]. O
The next Lemma presents the key property that gives RC cbdedavorable Random

and Clustered erasure correctability.

Lemma 3.6 For any primep such thatp > 5 and2 is primitive in GHp), for a combina-
tion of4 erasures, i columns are even numbered information columnsZaodlumns are

odd numbered information columns, then it is a correctabbérasure.

Proof: For the case o2 even an® odd information column erasures we consider two
erasure patterns. All possible erasure combinations ¢okihd are either covered by these
patterns directly or are equivalent to them in a way disatibstow. The discussion of each
erasure pattern will commence with its representing diagra these diagrams, a column
markedO represents an even column and a column maikegpresents an odd column.

Between each pair of columns, an expression for the numhbmriomns that separate them
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is given .

a) Erasures of the form

0|«—2j—|1|«—2(k—-1)—|0|<—2—|1

The variables, k, I satisfy the following conditionst <k, 1 <j+k+1<p—1.

The location of the first even erased column, together wikh! determine the loca-
tions of the4 erasures. Any even cyclic shift of the diagram above doexhange the
correctability of the erasure pattern since this shift githee same sub-matrix of the parity-
check matrix, up to a non-zero multiplicative constant. é&nwve can assume, without
loss of generality, that the first even erased column is éxtat the leftmost information
column. To prove the correctability of this erasure pattern examine the determinant
(overR,) of the square sub-matrix dfl, that corresponds to the erased columns. This
determinant is itself an element &, and if it is provablyinvertiblein &R,, for everyp
that satisfies the conditions of the lemma, then the erasamination is correctable by
the RC code.

The sub-matrix that corresponds to the erasure patterneabov

1 1 1 1
. 0 a/ 0 oIkl
M = _
1 0 a20th 0
1 (xj 0(7+k (Xj—s—k—s—l
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Evaluating the determinant of this matrix gives

‘ Mgf,k,l)‘ G2kl g2j k] Rk kel
T T N B L
— oc_l(ocj+k+l)(ock+l—|—1)-

(o o ol +1 4+ a7F)

The first three factors in the product are invertible for aegdlj, k, [ and any primep by
Lemma 3.2. The last factor is invertible for gk, I and anyp > 5 such tha® is primitive

in GF(p), by Lemma 3.4. Furthermore, for = 5, checking all possible assignments of
j, k, 1 and verifying that the last factor does not eqv(x), we conclude that this pattern
is correctable fop = 5 as well.

b) Erasures of the form

0|«—2j—-1—=|0|—2k—|1|—2I-1—|1

The variablegj, k, | satisfy the following conditions1 < j, 1 <1[1,1 < j+k+1 <
p—1.

Here, like in the previous pattern, we assume, without Idggeoerality, that the first
even erased column is located in the leftmost informatidaroo.

The sub-matrix that corresponds to the erasure patterneabov

1 1 1 1
1 o2 0 0
1 (Xj (Xj—&-k (Xj—&-k—&-l
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Evaluating the determinant of this matrix gives

‘Méj,k,l)‘ N SIS 5 SR L5 ST S S
NI B SR I

= (@+)( @+ 1)+ T+ a - a kT

The first two factors in the product are invertible for anydeg k, I and any primep by

Lemma 3.2. The last factor is invertible for gJlk, | and anyp > 5 such tha® is primitive

in GF(p), by Lemma 3.4. O
The next Lemma treats additional erasure combinationsribitde parity columns and

that are not covered by Lemma 3.5.

Lemma 3.7 For any primep such thaty > 3 and2 is primitive in GFp), the following

4-erasure combinations are correctable:
1. R}, 1 odd information column an@ even information columns
2. Ry, 1 even information column aritlodd information columns

3. Ro,R, 1 even information column antl odd information column, except pairs of

information columns numberet, 2i 4 1, respectively, fol <i < p.

Proof: The sub-matrix that corresponds to case 1 is, up to a muéie non-zero

constant,
1 1

1 0
Gh |0 a0 1
1 0 a2Uth g
1 0

ol ol Tk

The variableg, k satisfy the following conditionst <k, 1 < j+k < p — 1. Evaluating

the determinant of this matrix gives

‘MY"‘)) — (a1 (R ok 1),
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an invertible element ip > 3.

The sub-matrix that corresponds to case 2 is, up to a muéfiie non-zero constant,

1 1 1 0

: 0 o/ a ik 0
M;]'k) —

1 O 0 1

1 o otk 0

The variablesj, k satisfy the following conditionsl < k, 1 < j+k < p—1. The

determinant now equals
)Mg’k)‘ = a T+ ) (a1 1),

an invertible element ip > 3.

The sub-matrix that corresponds to case 3 is, up to a musie non-zero constant,

1 1 00
: 0 a/ 10
M:(S]): ,
1 0 01
1 o 00
whose determinant equals
‘ng)) = al+1,

an invertible elementip > 3 and if j > 0. The latter condition is equivalent to requiring
that the even and the odd information columns are not nurdligy@i + 1, respectively,
for1 <i<p. O
Finally, we are ready to prove the main result of this sultieac RC codes are next
shown to correct all 4-erasures in up to two clusters, andsinall 4-erasures in three

clusters. Given the Lemmas above, establishing thesdaseasuather straightforward.
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Theorem 3.8 For any primep such thatp > 3 and2 is primitive in GHp), RC codes

correct all 4-erasures that fall into at most two clusters.

Proof: If a 4-erasure falls into two or less clusters, then it eithas2 even and2 odd
columns or3 even andl odd columns (or the complement). Ffor Q is erased, then the
remaining3 columns cannot be all odd or all even. Lemmas 3.5, 3.6 anddli®eas all
such combinations, except the two special cd3€s 2,3, Ro} and{R},2p,2p +1,Ro}.
These combinations can be addressed by internal reordefrienen information columns
in a way that does not affect any of the other proved propedfdhe code. Also note that
here we only require¢h > 3, compared tp > 5 in Lemma 3.6, since the only 4-erasure
that gives a non-invertible determinant 8, for p = 5 falls into three clusters (see the

proof of Lemma 3.6). O

Theorem 3.9 For any primep such thatp > 5 and 2 is primitive in GHp), the ratio
between the number of RC-correctaltterasures that fall into three clusters and the total
number of4-erasures with three clusters is greater thd8696. Asp goes to infinity, this

ratio tends tol.

Proof: A 4-erasure with three clusters has two clusters of $iaad one cluster of size
2. If a 4-erasure falls into three clusters, then it either Basven and2 odd columns
or 3 even andl odd columns (or the complement). Lemmas 3.5, 3.6 and 3.7eaddr
all such combinations, except the following special cas{éﬁ., 2i,2i +1,Ry} cannot be
corrected as it is not covered by case 3) of Lemma 3.7. Al&R,2i +1,2j+ 1} and
{2i,2j, Rg, Q} cannot be corrected as they are excluded from Lemma 3.5.

Hence the number of non-correctable 4-erasures with tHusgees is

()

The total number of 4-erasures with three clusters is

("5)
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(in general this equal3(”g3) for lengthn arrays since by taking any choice ®fpoints

on a lengthw — 3 line, we can uniquely obtain an erasure combination withelalusters,
following the procedure below. We first choo3epoints from then — 3 line to be the
cluster locations. Then the point that represents the elwsith size2 is selected from
these3 points (for that we have the fact@). Given these choices, the 3 clusters are
obtained by augmenting the sizeluster with an additional point to its right and in addition
augmenting each of the two left points with a point to its tigh a cluster spacer.)

Thus the ratio between the number of correctable such 4sgsnd the total number

of such 4-erasures equals

) -p-2) p?
3(2103—1) 4p3 —12p?2 +11p -3
L S SR U
8p—12 8p—-4 p-—-1

Forp = 11, the ratio attains its minimal value 6f9696. Moreover, it is readily seen that

this ratio equald — o(1), whileo(1) are terms that tend to zero agoes to infinity. O

3.5.2 Random erasure correctability

RC codes are next shown to corre@ 8 portion of all combinations of erasures.

Theorem 3.10 For any primep such thatp > 5 and2 is primitive in GHp), the ratio
between the number of RC-correctaldlerasures and the total number éferasures is

greater thar0.865. Asp goes to infinity, this ratio tends /8 = 0.875.

Proof: Building on Lemmas 3.5, 3.6 and 3.7, the number of correetdi#rasures equals

5(’933)<p+1>—<p+1>2 = (0)6)
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(1), obtained by Lemma 3.5, is the number of ways to séewen information columns
(or Rp or P or Q) and1 odd information column (oR/), multiplied by2 to include the
complement case, and subtracting the doubly counted catibis with bothP andQ.

(2), obtained by Lemma 3.6, is the number of ways to s@esten an® odd informa-
tion columns.

(3), obtained by 1) and 2) of Lemma 3.7, is the number of waysetect2 even infor-
mation columns andl odd information column, multiplied b to include the complement
case.

(4), obtained by 3) of Lemma 3.7, is the number of ways to $ele@ven information
column2i and an odd information column which is rit+ 1.

The total number of 4-erasure combinations is

2p+4
4
Taking the ratio of the two we obtain

7p* + 34p3 +59p% + 32p + 12
8p* +40p3 + 70p% + 50p + 12

Forp = 11, the ratio attains its minimal value 6f865. Moreover, it is readily seen that

this ratio equal§ /8 — o(1), whileo(1) are terms that tend to zero pgjoes to infinity. O

3.6 Efficient Decoding of Erasures

In the previous section, the decodability of Clustered aadd®m erasures was proved by
algebraic reasoning. In this section we take a more cortsteygath and study simple and
efficient ways to decode Random and Clustered erasures.urpege of this analysis is to
prove that decoding the RC code can be done wkpg+ o(p?) bit operations, while the
best known algorithm for a 4-erasure correcting MDS codkkjs+ o(p?) [BR93]. Since

k is taken to be in the order gf, saving aboukp bit operations gives a quadratic (ir)

savings in computations that is very significant in practardargep.
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For the sake of the analysis, we only consider erasureinfotmationcolumns since
these are the most common and most challenging cases. Wewvaeowmnly consider era-
sures of two even columns and two odd columns, since for R@s;dtie three even and
one odd case (or three odd and one even), reduces to a comrettihnree even (or odd)
erasures, preceded by a simple parity completion for thglesindd (or even) column era-
sure. A very simple and efficient decoder for three odd-colwerasures can be obtained
by using the decoder of the STAR code, given in [HX05], andraesaomplexity modifi-
cation of that decoder can be used for the case of three edamn erasures. Throughout
the section we will assume that one of the erased columng igttmost even information

column, as all other cases are cyclically equivalent.

3.6.1 Description of 4-erasure decoding algorithm

A general 4-erasure can be decoded using a straightforwakgure ovefkR,. Ways
to perform the steps of that procedure in an efficient way heetbpic of the next sub-
section. The erased symbols, which represent the contéhe@rased array columns, are
denoted by{eq, 01, 2,02 }. €1, e2 have even locations and, 0, have odd locations. First

the syndrome vectar of the array is calculated by taking the product
s = Hr

wherer is the lengtt2p + 4 column vector oveR , that represents the array contents, with
erased columns set to the zero element. Then the erasedroban be directly recovered
by

€1
el =S (3.2)
()

02




where E denotes thel x 4 sub-matrix of H that corresponds to the 4 erased columns

locations:
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(101 1 1 ]
0 o Lo oy 1
1 0 o O

I 1 oy v o3 |

Recall from (3.1) that each; is an element ifk, of the formali, for some0 < I; < p.

Therefore ,E can be written as

(101 1 1]
O a* 0 a@
1 0 a*® 0

I 1 a* av a¥ |

The inverse of, which is used in (3.2) to decode erasures, is now given insed form

E—l —

(XZv((Xu + (Xw)

OCM—HJ

ot 4+ o

Ocv—kw

((Xu +“U+“w+au+v+“v+w)_1 X

(1427 0 0
0 at + o 0
0 0 1+ a”
I 0 0 0
iH20+w ot 4o o
T (¥ 4 a4 P ot
TR, 14 a4 g
QO o i) o

- -1

ot 4 o?

OCZU

at(1+ av)
1
a’ (14 av)

From (3.2) and the closed-form expression above, the eagatiole; can be recovered

by the following product

e = [(a"+a’+a’+a" T+ a" ) (1+a%)] -

1

. [ (XZZ)((XL[ +(Xw), (Xu—i—Zv—&—w’ ot +(XU+(XW, (XZZ) ] .S
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Oncee; is known,e, can be recovered using a simple parity completion with tlleodi
parity columnRy. The bits of the odd columns are then recovered by a chain dR XO
operations with the aid of parity columi#sQ, that can now be adjusted i, Q1 when
all even columns are known.

Calculatinge; then reduces to the following chain of calculations
1. Finding the inverse ofa” + a” + a® + a7 + a?*%) (1 4 a”) overR,.

2. Multiplication of sparsék, elements by denskR, elements. The sparse elements
are the four elements from the matrix (that have a smalk{ 3) constant number
of non-zero monomials, for any) and the dense elements are the four syndrome

elements.

3. Multiplication of two densék, elements resulting from the previous steps.

3.6.2 Analysis of 4-erasure decoding algorithm

We now analyze the number of bit operations required for elsdoding task.

1. Finding inverses of R, elements
The inverse of an elemeif{a) € R, is the elemenf («) that satisfiesf (x) f(x) +
a(x)M,(x) = 1, for some polynomiak(x). When f(«) is invertible, the poly-
nomial f(x) can be found by the Extended Euclid Algorithm for finding thead-
est common divisor of the polynomialgx) and M,(x). An efficient algorithm
for polynomial greatest common divisors is given in [AHU7T3h.8] that requires
O(plog* p) bit operationsQ(log p) polynomial multiplications, each takir@(p log® p)

bit operations, as shown in item 3 below).

2. Multiplication of a sparse R, element by a denseék, elementrequiresO(p) bit
operations. Since the number of non-zero monomials in tlaessppolynomial is
constant inp, the trivial polynomial multiplication algorithm requiseO(p) shifts

and additions modul@.
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3. Multiplication of two dense R, elementscan be done i (p log® p) bit operations
using Fourier domain polynomial multiplication. We deberithis procedure for the
special case of polynomial coefficients over(@JF: Let N > 2p — 2 be the smallest
such integer of the fornrN = 2¢ — 1. Let w be a principalNth root of unity in the
finite field GR2¢). Thenw defines a Discrete Fourier Transform on lenitivectors
over GH2"). The product of two polynomials of degrge- 2 or less can be obtained
by element-wise multiplication of their individual Dist¢esFourier Transforms, and
then applying the Inverse Discrete Fourier Transform tadselting length\ vector.
Using the FFT algorithm, each transformation requitdsN log N) operations over
GF(2), or O(Nlog® N) bit operations. The element-wise multiplication requires
N multiplications over GE2!), or O(Nlog? N) bit operations. Sinc&V < 4p,

the total number of bit operations needed for multiplying lenseik , elements is
O(plog®p).

3.7 Reliability Analysis of RC-code Protected Disk Arrays

The main motivation for the construction of array codes inggal, and RC codes in par-
ticular, is to provide efficient protection for disk arraygadnst device failures. The benefit
of deploying an array code in a practical storage systemaonisly lies in the trade-off
it achieves between erasure correction capability andemphtation complexity. To this
end, the correction capability characterization of RC spd@ed their benefits in implemen-
tation complexity were derived in concrete terms that caclearly specified to the storage-
system operator. However, to achieve an effective datagtion using those codes, one
needs to instill these specifications into a statisticahfevork for analyzing theeliability

of the stored data. For a time instangdhe reliability of a disk array is defined as the
probability that no data has been lost at tim&ib92]. Finding the full reliability distri-
bution for all timest is hard except for very simple protection structures. Tfuees the
expectedime before data loss, denotddTTDL (Mean Time To Data Loss), is used in
practice as a quantitative indicator for the system reliigbiUltimately, this section will

detail a procedure to find thel TT DL of RC-code protected disk arrays in the presence of
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Random and Clustered device failures. This will be done #éiftet presenting the general
method of MTTDL calculation as applied in the literature to MDS codes undard®m

failures.

3.7.1 MTTDL calculation for MDS codes under Random failures

Using the method presented in [Gib92, Ch.5] for singlet@m@gorrecting arrays under
Random failures (termelthdependent disk lifetimeakerein), we calculate th®ITTDL of
all-4-erasure-correcting arrays as an example that wilaber used for comparison with
RC codes. The direct calculation of théTTDL becomes a simpler task if disk failures
and repairs follow a Markov process and can thus be deschipédarkov state diagram.

To allow that, the following assumptions are made.

e Disk lifetimes follow an exponential distribution with egumeat MTTEy;q =

1/A.
e Repair times are also exponential with mediT TR ;s = 1/

e The number of disks is large compared to the number of tolerilures so the
transition probabilities between states do not depend @imitantaneous number of

failed disks.

When those assumptions are met, the reliability of a diskyacan be described by the

state diagram shown in Figure 3.6. The label of each statesepts the number of failed
nA nA nA nA
O\/e m@@@ O
H H H H
Figure 3.6: State diagram description of all-4-erasure correctingyarunder Random failures.

The failure process with rateA moves to a higher failure state. The repair process with mate
moves to a lower failure state.

IMTTF stands for Mean Time To Failure while MTTR stands for M&me To Repair
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disks. StateF (Fail) represents permanent data loss resulting from ar&aitount that is
above the array tolerance. The exponential distributidlosvaspecifying the transitions
between states in terms cdtes The transition rate from lower to higher states is the
inverseMTTFyg; of individual disks, times the number of disks in the arralieTeverse
transitions that represent repairs have rates that arenleeseM TTR4; assumed in the
system. Using the state diagram, thel'TDL is the expected time beginning in stéte

and ending on the transition into stdte
MTTDL £ E[0 — F]
The Markov property of the process permits the decompasitio

1
E[0 — F] = E[time stays in 0] + E[1 — F] = ) +E[1 — F|

Linear relationships betweefi — F] andE[j — F| are induced whenever statand
statej are connected. Th®TTDL is then obtained as the solution (fBfj0 — F]) of the

following linear system.

[ 1 0 0 o |[Eo—m] [ L
T 1 _u-@ﬁ\ 0 0 E[1 — F] ﬁ
0 — 1 _ui};\m 0 E2—F] | = u+1nA
0 0  —ufm 1 — 5 E[3 — F] T
0 0 0 — 1 | | E4—F _ujm_

that is found to be
1
MTTDLypss = F(SM 4+ 4uA3 4+ 31 2A% 4203 A + 1)

whereA £ n) was used for notational convenience.
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3.7.2 MTTDL calculation for RC codes under Random and Clustered

failures

For the model of Random failures, thdTTDL of RC codes can be calculated by a

straightforward application of the method in the previoub-section — executed on the

transition diagram of Figure 3.7.

A/8
A /A\\ A 7A/8
Canc
T i u I

Figure 3.7:State diagram description of RC-coded arrays under Randdorefs. Since an RC
code corrects only @/8 ratio of 4-erasures, the failure rate out of st&tés split to two rates with
different terminal states.

The corresponding linear system of equations orbthetive state$, 1,2, 3,4 is

1 -1 0 0 E[0 — F] *
A 1
A — 1
0 _MLA 1 —ITA 0 E2—F] | = A
7 A 1
1
i 0 0 0 _].L—FL/\ 1 i _E[4—>F]_ _m_

The solution of that system gives

39A% + 35uA3 + 262 A% + 173 A + 8ut
8AS + uA4

MTTDLRC,random =

The exactMTTDL calculations are now used to compare the reliability of RGesto the
reliabilities of all-4-erasure and all-3-erasure cornegtcodes. For the comparison, is
fixed to bel100/876011n1, which applies e.g. to an array witld0 disks andM TT Fy;ec =
livear. The MTTDL in hours ([hr]) is then calculated for repair rateetweer).01 i/
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and10wn. The graph shows that RC codes outperform 3-Random faiadescby an order
MTTDL [n

1014

1012

1010

108

100

1L [1/hr]

Figure 3.8: MTTDL curves under Random failures for RC codes, all-3-erasudealimt-erasure
correcting codes. Under Random failures, RC codes are ofaeagnitude better than all-3-erasure
correcting codes, and two orders of magnitude inferior kt@tarasure correcting codes.

of magnitude, despite having the same encoding complakigysame update complexity
and asymptotically the same decoding complexity. Howenvbgn Random failures only

is assumed, RC codes are still two orders of magnitude belRarlom failure-correcting

codes.

To compare RC codes and 4-Random failure codes in the pres#rimoth Random
and Clustered codes, the state diagram of RC codes in Figdreegds to be modified
to comprise additional states that represent Clusterddrési. The state diagram of 4-
Random failure codes in Figure 3.6 remains the same sinsectile is oblivious to the
distinction between Random and Clustered failures. To@llstered failures into account
in the Markov failure model, we add the following assumpsida those of the previous

sub-section.

e Times to Clustered failures (failures that are adjacenttarmrepaired previous fail-

ure) are exponentially distributed with meay.
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e The exponentially distributed repair process eliminasetated failures before Clus-

tered ones.

With these assumptions, the state diagram of RC-codegientarrays with Random and

Clustered failures is given in Figure 3.9. Sta?é8’ and4’ in the upper branch represent

Figure 3.9:State diagram description of RC-coded arrays under RandwhCéustered failures.
A new failure process with ratg introduces Clustered failures.

2, 3 and4 Clustered (not all-isolated) failures, respectively. Ttamsitions marked witly
represent moving from all-isolated failures to a Clustdegldire combination. At the upper
branch, both Random and additional Clustered failuredtrasGlustered failure combina-
tions — and that accounts for the transitions marked x. From staté) a Clustered failure

is not well defined, but the rate is added to the transition to maintain consistency with
respect to the total failure raté\(+ x) outgoing from all other states.

Solving the8 x 8 linear system for the diagram in Figure 3.9, thNE[TDL can be cal-
culated in closed form for all combinations gf A, 1. This ability to have a closed form
expression for theVITTDL of RC codes, under both Random and Clustered failures, is
crucial for a system operator to predict the reliability bétstorage array under more real-
istic failure assumptions. The resultiddTT DL curves for RC codes under three different
x values are plotted in Figure 3.10, and compared taMHET DL of a 4-Random failure

code under the same conditions (4-Random codes give the BEIT& L. independent of
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the ratio betweery and A, as long as their sum is fixed). Not surprisingly, the curvies o
Figure 3.10 prove that as Clustered failures become moreardgont) the reliability of RC
codes is approaching the reliability of a 4-Random failcogrecting code.

MTTDL [pq
1014

1012

1010

1L [1/hr]

2 4 6 8

Figure 3.10:MTTDL curves under Random and Clustered failures for RC codeslaAesasure
correcting code. For three valuesxafthe MTTDL of RC codes is shown by the solid curves. The
MTTDL of an all-4-erasure correcting code is the same for all \sabfey.

3.8 Code Evaluation and Comparison with Existing Schemes

We compare RC codes to EVENODD £ 4) codes using various performance criteria.
The failure-correction properties in Table 3.1 apply foy @nime p such tha® is primitive
in GF(p).

The redundancy is 4 for both codes. RC codes can support u@poinformation
columns while EVENODD can only have up fo Since parity column®, andR/ each
depends on half of the information columns, the encodingperity of RC codes iSkp,
compared totkp in EVENODD. In both cases, whenis of the same order of, the
decoding complexity is dominated by syndrome calculatidosRC codes this has been

shown in Section 3.6). Therefore, similarly to the encodiage, RC codes need ab8kp
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RC Codes| 4-EVENODD
Code Length (up to) 2p p
Redundancy 4 4
Encoding Complexity  3kp 4kp
Decoding Complexity  3kp 4kp
Update Complexity 5 7
Clustered Failures ~ All All
Random Failures 7/8 All

Table 3.1: Comparison of RC Codes and EVENODD Codes

bit operations to decode, comparediip for EVENODD. As for the update-complexity,
RC codes are significantly more efficient. Their small-wtifglate complexity i$. Each
of the 2p(p — 1) updated information bits needsparity updatesP, Q, R, for bits in
even columns and, Q, R} for bits in odd columns. Thé(p — 1) bits that belong t&O
diagonalsZ(p — 1) in Q andp — 1 in each ofR, R}) require additionap — 1 parity-bit
updates each for adjusting even/odd parities. The smak-wpdate-complexity of RC is

then obtained by averaging

bp(p—1) +4(p -1 _
2p(p —1) =3-o(1)

Recall that EVENODD has small-write update-complexitef- 1 —o(1) = 7 — o(1).
The full-column update-complexity of RC Bswhile EVENODD's is4. Thus RC offers a
28.57% improvement in the average number of small-writes 25% improvement in the
number of full-column updates. The fraction of Clusteresmbeires correctable by RC codes
is1—o(1), essentially the same as EVENODD'sraction. Only in Random erasure-
correction capability are RC codes slightly inferior to ENGDD codes, the fraction of

correctable Random erasureg’j&88 — o(1) compared td for EVENODD.

3.9 Discussion

The key idea in the construction of the family of RC codespiiritd a “good” “cooperating
interleaving” of two codes. By “cooperating interleaving& mean that some of the code

parity bits are computed from only one constituent codepliugr parity bits are computed
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from both codes. By “good” we mean that &lerasure combinations, except those that fall
exclusively on one constituent code, will be correctabléh®ycode. For the particular case
addressed by RC codes, the challenge was to simultaneausgcthboth combinations
of (3 even/odd] odd/even) column failureand combinations of Z even2 odd) column
failures. Both are needed to cover all cases of Clusterdatrési. In that respect, Pyramid
codes [HCLO7] use “cooperating interleaving” in their ctyastion. Nevertheless, these
interleavings are not “good” in the sense that there are maong uncorrectable erasures
beyond what allowed by the definition of “good” above.

A central contribution of this chapter is the classificatafrcolumn sets by the number
of clusters they occupy, and the use of that classificaticantlyze the correctability of
Clustered4-erasures. Admittedly, that classification is much moreegainthan its context
here. From a coding theoretic perspective, a rich varietgradr models can be defined
based on that abstract classification. It is an interestpgngproblem, one with great
practical promise, whether a general theory of Clustereat eorrection can be found, that

includes both general code constructions and tight uppende
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Chapter 4

Cyclic Lowest-Density MDS Array
Codes

It is when practical motivations meet mathematical beab#t & research area becomes
attractive and vibrant. Many areas of Coding Theory haveritbed thanks to their in-
triguing links to frontiers of deep mathematics. When qioest about code properties
translate to the most fundamental combinatorial or algelpeoblems, the code designer
is humbled by the increased load that is adjoined to his gitemin the area of array
codes, the problem with the clearest reflections in mathiesyaand with simultaneously

a great practical appeal, is the constructionamfest-densityMDS codes. This chapter
adds new results, to the handful of previously known ones;dmstructing codes that are
lowest-density, MDS, and alsxyclic, thus offering better codes in the practical sense and
improved understanding of the underlying combinatoriditess. The main contributions

of the chapter are summarized below.
e Definition of a new class of array codesystematically-cycliarray codes.

e Construction of three new families of lowest-density, sysatically-cyclic, MDS

array codes.

e Description of the complexity benefits systematicallylwycodes offer to practical

storage systems.

The results of this chapter appear in [CB06] and [CBO7].
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4.1 Introduction

MDS (Maximum Distance Separable) codes over large symipbladlets are ubiquitous
in data storage applications. Being MDS, they offer the mmaxn protection against de-
vice failures for a given amount of redundancy. Array co@dssmentioned in the previous
chapter, are one type of such codes that are very useful iardirhigh-speed storage sys-
tems, as they enjoy low-complexity decoding algorithmsyek as low update complexity
when small changes are applied to the stored content. Tivatmntrast to the family of
Reed-Solomon codes [MS77, Ch.10] that in general has nathesé favorable properties.

A particular array-code sub-class of interestawest densityarray codes, those that
have the smallest possible update complexity for theirmpatars. Since the update com-
plexity dictates the access time to the storage array, avéinel absence of failures, this
parameter of the code is the primary limiting factor of theleamplementation in enter-
prise storage systems. Examples of constructions thatl yoglest-density array codes
can be found in [ZZS81],[XBBW99],[XB99],[LR06],[BR99].nlthis chapter we propose
lowest-density codes that are alsgclic or quasi-cyclic Adding regularity in the form of
cyclic symmetry to lowest-density MDS array codes makeg thglementation simpler
and potentially less costly. The benefit of the cyclic synmnbecomes especially signifi-
cant when the code is implemented in a distributed way oimndistetwork nodes. In that
case, the use of cyclic codes allows a uniform design of iragé nodes and the interfaces
between nodes. The code constructions additionally ofteearetical value by unveiling
more of the rich structure of lowest-density MDS array codes

As an example, we examine the following code defined @nxab array. The+ signs

represent the binary Exclusive-OR operation. This codeshiaormation bitsay, . . ., as,

ap 5] as as as as

Ar+Aa3+ta4|a3+a4+as|aq4+aAs+dg|ds+ag+ aqdo+artas altaz+as

and 6 parity bitsay + az + a4, as + a4 + as, ag + as + ag, as + ag + a1, apg + a1 +
a,, a1 + a> + az. It is easy to see that afl information bits can be recovered froamy

set of 3 columns. For example, if we want to recovey, a4, a5 from the bits of the3
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left columns, we can proceed by = (a3 + a4 + as) + (a4 + as + ag) + a9, thenay =
ay + (ap +as +ay) +as, andfinallyas = (a3 + a4 + as) + az + a4. Since3 columns have
6 bits in total, the code is Maximum Distance Separable (MB8Hitionally, the code has
lowest-density, since updating an information bit regeig@arity updates — a trivial lower
bound for a code that recovers from ahyrasures. However, the focus of this chapter is
a different property of this sample code: its cyclicity. Tangince oneself that the code is
cyclic, we observe that all the indices in a column can beinbthby adding one (modulo
6) to the indices in the column to its (cyclic) left. Thus anyfsbf the information bits row
results in an identical shift in the parity bits row (and hettige code is closed under cyclic
shifts of its columns).

The sample code above, as well as all the codes constructbed rhapter, belong to
a sub-class of cyclic array codesystematically-cyclic array codesection 4.3 contains
characterizations of cyclic array codes in general andcesyatically-cyclic codes (first de-
fined here), in particular. Codes in the systematicallylicygsub-class enjoy greater im-
plementation benefits relative to the general class of cyddes. Properties of cyclic and
systematically-cyclic array codes that imply simpler iemplentation are provided in sec-
tion 4.6. In particular, these properties manifest simpledates and encoding, and more

efficient erasure and error decoding.

array dimensions r notes
Kio | (p—1)/2 x (p—1) | 2
kKo | (p—1)/r x (p—1) | 3,4 2 primitive in GHp)
Kio | (p—1) x 2(p—1) | 2 2-quasi-cyclic

Table 4.1: Summary of cyclic code constructions

In sections 4.4 and 4.5, three families of lowest-densysteamatically-cyclic (or systematically-
guasi-cyclic) MDS array codes are constructed. The famdie named;,, k>, andks,,
respectively (the> qualifier designates a cyclic or quasi-cyclic code), andr ihperties
are summarized in Table 4.1 above. For all prines;, provides systematically-cyclic
codes on arrays with dimensiofis — 1)/2 x (p — 1) and redundancy = 2, over any
Abelian group. For all primeg, such that|p — 1 and2 is primitive in GRp), k2., which

is a generalization of;,, provides systematically-cyclic codes on arrays with disiens
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(p —1)/r x (p — 1) and redundancy = 3,4, over fields of characteristi2. «,, is the
first known family of cyclic lowest density MDS array codesthvir > 2. Finally, for
all primesp, k3, provides systematically-quasi-cyclic codes on arrayswlimensions
(p —1) x 2(p — 1), over any Abelian group. A specific instance of the famgly is
denotedk;,(p), for some primep. Cyclic codes with the same parameters<as were
proposed in [ZZS81], but these are not systematicallyicyaeid therefore enjoy only part
of the propertiesc;, have. Non-cyclic codes with the same parameters,asare given
in [LRO6]. In addition, the existence of codes with the saraeameters ag;, and ks,
was shown in [XBBW99]. However, using the suggested contbired construction tools
of [XBBW99] gives non-cyclic codes.

The construction technique we use is first constructing eyartic lowest-density MDS
codes, and then explicitly providing a transformation teitlparity check matrices that re-
sults in new, non-equivalent, cyclic codes with the sameamum distance and density. For
easier reading, a construction of a sample code precedegettezal construction method

in section 4.4 while the construction of section 4.5 workeaample after each step.

4.2 Definitions

A linear array codeC of dimensiong x n over a fieldF = GF(g) is a linear subspace
of the vector spac&”’. The dual cod& " is the null-space of overF. To define the
minimum distance of an array code we regard it as a code oeealfthabetr’, where
F? denotes lengtth vectors overF. Then the minimum distance is simply the minimum
Hamming distance of the lengthcode overF?. Note that though the code symbols can be
regarded as elements in the finite field @, we do not assume linearity over this field.
C can be specified by either its parity-check matihof size N, x nb or its generator
matrix G of size (nb — N,) x nb, both overF. An array S of sizeb x n is a codeword
of C if the lengthnb column vectoro, obtained by taking the bits ¢f column after col-
umn, satisfiedio = 0, where0 is the lengthN,, all-zero column vector. From practical
considerations, array codes are required teystematicnamely to have a parity-check (or

generator) matrix that is systematic, as now defined.
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Definition 4.1 A parity-check (or generator) matrix is called [weaklggjstematic if it has
Ny, (or nb — Np), not necessarily adjacent, columns that when stackedttegéorm the

identity matrix of ordemN,, (or nb — N), respectively.

Given a systematiél matrix or G matrix (one can be easily obtained from the other), the
nb symbols of theb x n array can be partitioned intdy,, parity symbols andib — N,

information symbols. Define thdensityof the code as the average number of non-zeros in

N(G)
nb—N,'’

systematic, an alternative expression for the density-is

a row of G:

whereN (M) is the number of non-zeros in a matd{. WhenH is
N(H)—N,
nb—N,

in this chapter, all have the lowest possible density, anddfbelow.

. The codes proposed

Definition 4.2 A codeC is calledlowest density if its density equals its minimum distance.

(the minimum distance is an obvious lower bound on the dg{BR99]). If b|N, and the
minimum distancel equals% + 1, then the code is called Maximum Distance Separable
(MDS) with redundancy = %

Throughout the chaptégs, t] denotes the setx € Z : s < x < t}. To simplify the
presentation of the constructions in the chapter, we intcecanother structure that defines

a code when, as is the situation here, the parity check mzas>elements if0, 1}.

Definition 4.3 Given a parity check matrix of a codeC, define thendex array A. to be
ab x n array of subsets d0, N, — 1]. The set in location, j of A contains the elements
{x : hispj(x) = 1}, whereh; denotes thé™ column ofH and’;(x) denotes ther™

element ofy, x € [0, N, — 1]

Each set imA¢ represents a column dfl. If H is systematicAc hasN, sets of sizel,
called singletons. Note th&- has the same dimensions as the code array. As an example
we take af = 6,b = 3, N, = 6) systematic code and provide in Figure 4.1 a generator

matrix G and a parity check matrikl with its index arrayA..
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0100000000001 0O0|1O00O0
0011000001 00000000O0
1000100000000O0O01O00O0
0000011000001 00000O0
100{100/010/000(00O0[000O0] =
G:000000001100000100 T
000100100010[000[000]| =
1000000000011 00000] "
0000001 O0O0OI1T0O0O0O1TO0|000O0
0001000000000 O01IT00O0
0O00O0OO0OOIOOOI1T0OO1TO0O0O0|010O0
1000001 00000000001
nb
(10001001 0/001000(001T
0011 00010010001|000
H:000001100010010001 >
0010000011 00010010 =
0100010000011 00010
|10 10010001100 0{001f1 0 0

0 1 2 3 4 5 T
Ac=145]50101]1,2]2,3|3,4| ~
1,312,4(3,5/4,0(5,1(0,2 |

n

Figure 4.1:G,H and the index arraj\¢ for a samplen = 6,b = 3, N, = 6 codeC. Each set of
Ac specifies the locations of the ones in a single columHA of

4.3 Cyclic Array Codes

The codes constructed in this chapter are codes of lengtler F* which are cyclic bunot
linear (though thewre usually linear ovefF). In this section we wish to discuss such codes
in general, providing conditions for a code to be cyclic. Qveyy to characterize cyclic
array codes is as cyclic group codes over the direct-proghactp of the additive group of
F. Another is to view them as lengtkb linear b-quasi-cycliccodes. For the most part,
the latter view will prove more useful since the construatian the chapter are not explicit
group theoretic ones. In fact, the description of array soaling index arrays we chose
here was used in [TW67] to describe quasi-cyclic code canstns. We start off with the

basic definition of cyclic codes.
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Definition 4.4 The code overF? is cyclic if

s=(s09,81,--+,Sn-2,81-1) € C

/
=s' = (s1,82,...,5:-1,%) € C

ands; € F?.

Cyclic codes oveF? are related to quasi-cyclic codes ovein the following manner.

Proposition 4.1 An array codeC of lengthn over F? is cyclic if and only if the codé;p
of lengthnb over F, that has the same parity check matrix, is quasi-cyclic wakic block

lengthb.

This equivalence allows us to use the characterization asigeyclic codes from [PW72,

pp.257], to determine the cyclicity of an array code.

Theorem 4.2 A codeC onb x n arrays andN, = pn, p an integer, is cyclic if it has a

parity check matrix of the form

Qy |Q1|..-1Qu
Q- 1|Qo |- | Quo

Q |Qzf...] Qg

whereQ; are arbitrary matrices of sizg x b.

Note that if H is notrequired to have full rank gbn, then Theorem 4.2 captures the most
general cyclic array codes (thestatement can be replaced with i&rand only ifone.).

However, there exist cyclic array codes that do not haveréulk matricesH, of the form

1 0(1 0
given above. For examplé] = ] has the following words as codewords

0 1101

olol [1/1] |olo 11}
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and hence it is cyclic. However, there is Bo< 4 parity check matrix for this code that
Qo | Oy
Q1 | Qo

A sub-class of the cyclic codes characterized abeystematically-cyclic array codes

admits the structure o

next defined. These are cyclic array codes in which each aohasp parity symbols, at

the same locations for all columns.

Definition 4.5 A codeC onb x n arrays andN, = pn, p an integer, issystematically-

cyclicif it has a parity check matrix of the form

IP, |OP,|...|OP, ;
H _ OP.n_l IP(.) P OP.n_Z
opP, |OP,|...| 1P,

wherel and O represent, respectively, the identity and all-zero masiof orderp. P; are

arbitrary matrices of size x (b — p).

An equivalent characterization can be obtained using thexrarrayA. of the codeC.

Corollary 4.3 to Theorem 4.2 and Definition 4.6 provide thsaiacterization.

Corollary 4.3 A codeC onb x n arrays andN, = pn, p an integer, is cyclic if it has an
index array representatioA., in which addingo to all set elements modu}: results in

a cyclic shift ofA..

Definition 4.6 A codeC onb x n arrays andN, = pn, p an integer, is systematically-
cyclic if it has an index array representatiéw, in whichN, of the sets are singletons and

addingp to all set elements modujm: results in a cyclic shift oA..
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4.4 k1., K2. Cyclic Lowest-Density MDS codes with

n:p—l,b:p—_1

r

The constructions of the code families in this chapter dpdbie index arrays of codes
with dimensions parametrized by a prirpe For two of the code families #,, k2., the
construction uses abstract properties of Finite Fieldshiiaia index-array sets that guar-
antee cyclic lowest-density MDS codes for all code dimemsidlo better understand the
construction method of;,, k2., the general construction is preceded by the construction
of one particular instance of the family;. (7).

k10(7) is a cyclic MDS array code with dimensiofts= 3,n = 6 and redundancy
r = 2. In the finite field with7 elements GF7),! pick a = 6, an element of multiplicative
orderr = 2. Pick 3 = 3, an element with multiplicative order— 1 = 6. Usinga and 3,

GF(7) is partitioned into the following sets;.

C_1={0} , Co={p° p%%}={1,6}
Ci={B" Bla} ={3,4} , C={B Ba}={2,5}

The elements of the set5_1, C1, C; (Cy is discarded since it contains the elemgnt 1 =
6) are permuted by the permutatif® 1,2, 3, 4, 5] ¥, [0,2,1,4,5,3] and the correspond-

ing setsD; now follow.

Do = (C-1) = {0} ,
Dy =9(C1) ={4,5} , Dy =19P(C) ={1,3}

The setd,, D, D, define the first column of the index array i, (7). Each of the other

5 columns is obtained by addirigmoduloé6 to the elements of the sets in the column to its

1GF(p) used for the code construction should not be confused Fithe code alphabet
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left. The final index array of the codg,(7) is now given.

0| 1|2 |3 | 4|65
Ac.7) = |4,5(50(0,1]1,2(2,3|3,4].
1,3|2,4/3,5/4,0(5,1|0,2

It is left as an exercise to verify thai,(7) is cyclic, lowest-density and MDS.

We now provide the general construction of the code famiigsks,.
Let » be a divisor ofp — 1, andp an odd prime. Letx be an element in Gfp) of order
r and 3 be an element in Gfp) of orderp — 1. The order of an elementin GF(p) is
defined as the smallest non-zero integeuch thate’ = 1 (mod p). « and B define a
partition of GHp) to pT_l + 1 sets. These sets are tﬁ{?;i cosets of the multiplicative
subgroup of order of GF(p), plus a set that contains only the zero element. Except for

the zero set, all sets are of cardinality

C_1 = {0} Ci={B, Ba,. . Ba 1} (4.1)

where0 <i < PT_l. The set&’; are used in [LRO6] to construct (non-cyclic) lowest density
MDS codes with redundanay= 3, 4. The same construction, only with= 2, provides
(non-cyclic) lowest density MDS codes by applying the petrfe-factorization of com-
plete graphs wittp + 1 vertices by Anderson [And73], to the construction of [XBBW9
Shortened versions of the non-cyclic constructions of [XB®] and [LRO6] are used in
the proofs of the constructions of this chapter, and are ehq andk,, respectively. As
shown by [LRO6]«, provides lowest density MDS codes for a wide range of pararaet
WhenF has characteristi2, MDS codes are obtained for= 3 andr = 4, whenevee is
primitive in GHp). For larger characteristics, codes with additionahlues were shown
to be MDS. For = 2, k1 provides MDS codes over any Abelian group [XBBW99].
Sincekq,, Ky, follow the same construction (only with differen}, in the forthcom-
ing discussion we treat them as one family (denatggh,). Following the presentation
of the k1, 2, construction, we explicitly present the construction fee hon-cyclic MDS

codeskq ». This is done for the benefit of proving the MDS propertyef >, - through a
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minimum-distance preserving transformation from the tgacheck matrix ofx; » to that
of k16,20

Better readability in mind and with a slight abuse of notatioperations on sets denote
element-wise operations on the elements of the sets. Sydlifiif (x + /), is used to
denotex + 1 (mod z), then(S + 1), denotes the set that is obtained by additgthe el-
ements ofS moduloz. Similarly, permutations and arithmetic operations ors sepresent
the corresponding operations on their elements.

We now turn to show how the sef$ of equation (4.1) are used to construct the cyclic
lowest-density MDS codes;,, k.. Definely = {i: Vx € C;, 0 < x < p —1}. [y isthe
set of all indices, except for the unique indeXfor which C;; contains the elemempt— 1.

Clearly |Ip] = 2. Denote thg™ element ofly by Io(j), j € [0, 2 — 1], where indices
in I are ordered lexicographically. The permutatipn [0, p — 2] — [0, p — 2] is defined
to bey(x) = B* —1 (mod p). We also define the inverse ¢f, 1(y) = logg(y + 1).

The constructing set®; are now defined using; and the permutatiot.

_ | 1
D; = (Cyyj)), for j€ [0, F — —1].

The construction ok;, 2. is now provided by specification of the index array, ..

In A the set at location

K1o,207

(i) e 0,22~ 1x[0,p-2)

(Dj+1)p-1.

The codes, 2, are systematically-cyclic by Definition 4.6 since the top1g = 0)
contains sets of size and for every, translations of the same séis are taken.

As for the codes », forevery0 < m < p —1definel,, = {i: Vx € (C;+m),, 0 <
x < p—1} (I, isthe set of all indices except for the unique indekfor which (C; +m),,
contains the element — 1). It is obvious that for everyn, |I,| = pT_l since for every

translationn of the set<C;, only one set contains the element 1. Denote thg'™h element
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of I, by Iu(7), j € [0, Pl 1], where indices if,, are ordered lexicographically. The

r

codex » is defined via an index arrad;, ,.

In A the set at location

Kl,Z’

(Ci+m)y, i=In(j).

Note that because of the restrictidbg I, k1 » providesnon-cyclic codes.

The known MDS property of; » is next used to prove the MDS propertyaf, oo.

Theorem 4.4 k1,2, andk » have the same redundancy, minimum distance and density.

Proof: We explicitly show an invertible transformation fro,_,, to A, , that pre-

K1,2
serves the code redundancy, density, and minimum distafceefer to an element in
the set at locatiorij, /) in an index arrayA¢, we use the tuplé¢x, j,I,C). The aforemen-
tioned transformation is given by showing the{, , is obtained fromA,, , by a mapping
(x,7,1,K1020) < (P(x),]',m, k12). The mappinge < (x) represents permuting the
rows of the parity check matrix and the mappiag!) < (j/,m) represents permuting
columns of the parity check matrix (which for array codesgéneral, does not preserve
the minimum distance). As will soon be proved, the mapind) < (j’,m) has a spe-
cial property that it only reorders columns of the index graamd reorders setwithin its
columns {u is a function ofl, independent of, and;’ is a function of botly, I.). Hence, all
operations preserve the redundancy of the code, its minidistance and its density. More
concretely, we need to show that for evérg [0, p — 2] there exists am € [0, p — 2]

such that every has a corresponding= I,,(j') that together satisfy
Y(Dj+)p-1] = (Ce + m)p

Since(Dg + 1)1 consists of the single elemehand(C_; + m), consists of the single

elementm, the integers andm have to satisfyn = ¢ (1). Then, for the remainder of the
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sets ( > 0), we rewrite the above condition as

YUDj+Dpa] = (Ce+ (1))

Definei = Iy(j), we can now prove the above statement

YUDj+ 1) p—1] = Y[(PIC] + D)pa] =

(BloBa((CitThp1)+ _ ), =(p'C+p —1), =

(Clitny, , T¥(D)p

and the required transformation is

(x, ], 1, K10,20) < (P(x), ], (1), k1,2), wherej’ satisfiesly,;y (') = (lo(j) + 1) (p—1)/r
forj > 0,andj’ = j=0forj=0.

4.4.1 Example:ki,(7) revisited — the transformation from «;(7)

To construck (7), the sets
C.1={0}, Co={1,6}, C1 = {3,4}, Co ={2,5}

are used by taking the sef§; +m)7 to be the sets oA, (7 in columnm, leaving out the

particular set in that column that contains the elentent

Aqir) =13,4(2,0(3,1|4,2(53|1,2
2,5(4,5(4,0(5,1/0,1|0,3
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The permutationsp andy written explicitly are[0,1,2, 3,4, 5] 9, 0,2,1,5,3,4] and
0,1,2,3,4,5] ¥, [0,2,1,4,5,3]. ¥ acting on the arraj, 7) yields

ol2]1|4]|5]3
P(Aq 7)) =|4,5[1,0|4,2]5,1|3,4|2,1
1,3]5,3|50/3,2/0,2]0,4

which after reordering of columns and sets within colummailes in the systematically-

cyclic codex, (7).

0 1 2 3 |14 |5
=14,5(50(0,1|1,2/2,3|3,4
1,312,4(3,5(4,0/5,1|0,2

Ao (7)

4.5 k3.: Quasi-Cyclic Lowest-Density MDS Codes with
n=2p—-1),b=p—-1,r=2

Before constructing the 2-quasi-cyclic codg,, we discuss quasi-cyclic array codes in
general. The definitions and characterizations providedyfolic array codes in section 4.3

can be generalized to quasi-cyclic array codes.
Definition 4.7 The code overF? is T-quasi-cyclic if

s=(s09,81,--+,Sn-2,8,-1) € C

/
= s =(st,S741,---,54-1,50,---,57-1) € C

ands; € F?.

A generalization of Theorem 4.2 to quasi-cyclic array cadesw provided.

Theorem 4.5 A codeC on b x n arrays andN, = pn, p an integer, isT-quasi-cyclic
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(n = AT) if it has a parity check matrix of the form

Qp Q ... Oy
Qi1 Q .- Qo

Q Q ... Q

whereQ); are arbitrary matrices of siz&p x Tb.

Systematically-quasi-cyclic codes are now defined thrahglr index arrays as a general-

ization of systematically-cyclic codes defined in Definiti$.6.

Definition 4.8 A codeC onb x n arrays andN, = pn, p an integer, issystematically-
T-quasi-cyclic if it has an index array representatiof¢, in which N, of the sets are

singletons and addin@p to all set elements modulmz, results in aT-cyclic shift ofAc.

4.5.1 Construction of thek;, codes

The codexs, is defined over arrays of siZ@ — 1) x 2(p — 1). Since itis a systematically
quasi-cyclic codeT = 2), we denote théV,, = 2(p — 1) parity constraints in the index
arrayA,, by ag, bo,a1,b1,...,ay_2,b, 2. Then = 2(p — 1) columns of the array will
be marked by the same labels. The construction to followgifips the contents ofd’
columns” @;) and ‘b columns” ¢;) of A, separately.

Let p be an odd prime ang@ be a primitive element in Gfp). The permutationp :
[0,p —2] — [0, p — 2] is defined, as in section 4.4, to f¢x) = ¥ — 1 (mod p). The
inverse permutation is theny(y) = log;(y +1). For any permutatiorp, we usep(a;)
and¢(b;) to denote, respectivelyy,;) andby,;). Alsoa; + 1,b; + [ are used fon; ;,b; 1,
respectively, anduas, a;],[bs, b;] are used fokas, as11,...,a:} and{bs, bsy1,..., b}, re-

spectively.
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451.1 aColumns

Define the set§;, i € [0, p — 2] to be

M= {ai,b<i_1>p} (4.2)

Define the setd;, j € [1, p — 2] to be

Ay = {day), by, } (4.3)

Thea columns ofA; are now defined. The setin locati¢d, a;), a; € [ag,a, 2] is {a;}
and the set in locatiofy, a;) € [1,p — 2] x [ag,ap_2]iS(A;+1),_1.

As an example we write thecolumns ofA,,_(5). Forp = 5 the setd; are

To = {a0,bs}, T1 ={a1,bo}, To = {az, b1}, T3 = {as, by}

For 3 = 2, the permutationp is [0, 1,2, 3] Y, [0,1,3,2]. The sets\;, defined through the

permutationyp, are

Ay ={a1,bo}, Ay ={az, b1}, Az = {ap, b3}

Finally, thea columns ofA, 5) are provided.

ap a1 ap as
ai, bo a, by as, by ao, b3
az, by ao, ba ai, bs az, by

ay, b3 as, by ao, b1 ai, by
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45.1.2 bColumns

Define the followingp sets

{bo, bp—1},{b1,bp—2}, ..., {b(p=3)/2,b(ps1)/2}
{ao,ap—1},{a1,ap—2}, ... {ap—3)/2,8(ps1) 2}

Aap-1)/2:bp-1) 2}

The indices of every set sum to— 1. From the sets above define the followipg- 1 sets

{ bo HAbu byt {bp—3)2 b(ps1)2}
Aavapat, . Aap-3)/2,0(p11) 2}
A8(p-1)/2:b(p-1)/2}-

The element, | was removed from the sdig, b, 1} and the se{ag,a, 1} was re-
moved altogether. After modifying the sets listed above,r#sulting sets contain distinct
elements from the sefso, a, »] and[bg, b, »]. The setsVy, ..., V,_, are obtained by

permuting the sets above usitig

{1h(bo) }, {th(01), P(bp-2)}, - {P(bp—3)/2), P(bpi1y2)}
z{1/_)(011);1/_)(“;7—2)}/---,{11’(“(;7—3)/2) P(a (p+1)/2)}
A(agp_1)2), ¥(bp_1)/2)}-

Theb columns ofA,,, are now defined. The setin locati¢f b;) € [0, p — 2] x [bo, b, 2]
is <V] + Z>p_1

As an example we write thie columns ofA, (5). Forp = 5, thep — 1 sets, before
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operating thep permutation are

{ bo },{b1,bs3}
Aar, a3}

’ {HZI bZ}

After applying they) permutation, the sef§, V1, V5, V3 are obtained

{ bo } {b1, b2}
,{ﬂ1,ﬂ2}

’ {Elg,, b3}

Finally, theb columns ofA, 5, are provided.

b() bl bz b3
by, ba bz, b3 bz, bo bo, b1
ai, a2 az,das as, ap ao, a1
as, b3 ap, bo a1, by az, by

By mapping the indicesao, by, ..., a,2,b,_2) to the integer indices0, 1, ...,2p —

3), the codexs, clearly satisfies the requirements of Definition 4.8, hence

Proposition 4.6 The code<s, is systematicall2-quasi-cyclic.

The rest of this section is devoted to proving tkat is an MDS code.

4.5.2 Proof of the MDS property

To prove the MDS property of the codes,, a two step proof will be carried out. First
we define a different, non-quasi-cyclic coklg and show that it is MDS. Then we show a
distance preserving mapping from the rows and columns opéniy-check matrix oks

to those ofkj,. k3 is now defined. The definition only specifies the sets of eatimuo of
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A, without specifying the set locations within a column. THedinition suffices for the
MDS proof and for the mapping provided later. The array digiens and code parameters

of k3 are identical to those of;_ .

Definition 4.9 The columnsig, by, a1,b1,...,a,2,b, 2 of the codex; are defined as
follows.

1) Anacolumm; € [ag, a,2] of A, contains the sefs; } and all sets{a;,, b, } such that
m—m'=1+1 (mod p). Only thep — 2 such sets witlin, m") € [0, p —2] x [0, p — 2]
are taken.

2) Ab columrb; € [by, b, 2] of A, contains the sefb; }, the sef{a(;_q) 5, b(;_1)/»}, and
all sets{a,, a,,} and{by, b,,} suchthavn +m' =1 —1 (mod p). Here too, only the
p — 3 sets with(m, m’) € [0,p — 2] x [0, p — 2] are taken.

To prove the MDS property o3, we define and use a graphical interpretation of index
arrays. This interpretation can be applied when the indexyak., of a binary parity-
check matrix, has only sets of sizes two or less. Given arxiagg&y whose union of sets
is{0,1,...,R—1}, denote byKg1 the complete graph on the R 1 vertices labeled
{0,1,...,R—1,00}. Each set of size two{x, y}, defines a subgraph &fr1, called
set-subgraph, that has the vertiagg and an edge connecting them. Each set of size one,
{x}, defines a set-subgraph Kk that has the vertices, co and an edge connecting
them. A bit? assignment to an array corresponds to the union of set-aphgiin locations

with non-zero entries. The following is a simple but usefo$ervation.

Proposition 4.7 A bit assignment to an array is a codeword®if and only if all vertices
have even degrees in s set-subgraph union (the subgraph is a cycle or a union of

edge-disjoint cycles, with possibly some isolated vesjice

The above graphical interpretation is now explained witlexample.

2A similar interpretation works for array symbols from any éllan group
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Example 4.1 Let the array cod€ be defined by the following index array.

1,312,4/3,5[4,0|5,1|0,2

The word
110/ 110] 0] O0

Vi=|0]|1|0/0]0]0
0|1]0]0|0]0

has the set-subgraph union in Figute(a). Vertices4, 5 have odd degrees af and thus

the wordV; is not a codeword of . On the other hand, the word

Vo={0]|1|1/0]0]0

has the set-subgraph union in Figute2(b). All vertices have even degrees and thuss

a codeword ot .

(@) (b)

Figure 4.2:Set-subgraph unions of the cofe(a) For the word/;. (b) For the codeword,.

The next Lemma establishes the MDS propertg9by showing that there are no code-

words of column weight smaller th&éh
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Lemma 4.8 For any two columns fronfag, by, a1, by, . . S Ap-2, bp_z}, there are no non-

zero codewords of; that are all zero outside these two columns.

Proof: For each pair of columns, the proof will show that no subgrafithe set subgraph
corresponding to these two columns, can contain a cycle.célémere are no non-zero
codewords with column weigi or less. We distinguish between three cases. A similar
proof, but for a different combinatorial construct (whicbes not yield quasi-cyclic codes)
appears in [And73].

Case 1:Two a columns contain all non-zero locations.
For columnsz; anda;, suchtha) <[ <[+ v < p — 2, the set-subgraph is given in
Figure 4.3. A solid edge comes from a set in columm@and a dashed edge comes from a

set in columm; .. Note that the edges satisfy the constraints of 1 in Defimii®. To

a b1 a_y b1 Ay b1
—————— o o -0 o --®
(0. 0]
\\ A4 bv—l A14+20 bZUfl a143v bsvfl
> o - o o - o o

Figure 4.3: Set-subgraph of columng,a;,,. Solid edges represent sets from columrwhose
indices have differencé+ 1. Dashed edges represent sets from colump whose indices have
differencel + v + 1. Having a cycle as a subgraph implies eithertv = | +sv (mod p) (ana
vertex shared by top and bottom branches)-¢v — 1 = sv — 1 (mod p) (ab vertex shared by
top and bottom branches). Each results in a contradiction.

have a cycle as a subgraph, there must exist two integessich that + ¢t < p and either
l—tv=14sv (mod p) or—tv —1 = sv—1 (mod p). The first condition refers to
the case when an index offrom the upper chain is identical to an indexmofrom the
lower chain (and thus a cycle is created). The second condigéfers to the case when an
index ofb from the upper chain is identical to an indextofrom the lower chain. Each of
the conditions require + f)v = 0 (mod p), which is a contradiction for a primg.

Case 2:Two b columns contain all non-zero locations.

For columnsb; andb; ., suchtha) <[ <[+ v < p — 2, the set-subgraph is given in
Figure 4.4. The edges satisfy the constraints of 2 in Defini$.9. Cycles with an odd

number of edges are not possible since elements appear abnuesin every column (any
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Figure 4.4:Set-subgraph of columrig,b;, ,. Solid edges represent sets from colubprwhose
indices sum téd — 1. Dashed edges represent sets from colbmp whose indices sum v — 1.
Having a cycle as a subgraph implies either fv = [ 4+ sv (mod p) (ana vertex shared by top
and bottom chains) ortv — 1 = sv — 1 (mod p) (ab vertex shared by top and bottom chains).
Each results in a contradiction.

vertex has one solid edge and one dashed edge incident ®a liave a cycle with an even
number of edges, the same contradictory conditions of Cagpl.

Case 3:0nea column and oné column contain all non-zero locations.

Denote the non-zero columns lay andb,. A solid edge comes from a set in column
a; and a dashed edge comes from a set in colbmnAssume first that the cycle does
not contain the edge that corresponds to the specia{®gt ), b—1),2}. Then the
number of edges in the cycle is a multipleb{because of the --+a — b --» b — a
structure), and it has the structure of Figure 4.5. For eath pf length4 of the pattern
a--»a— b--»>b — a,the index of the finak vertex is greater b/ 4+ 2 modulop
than the index of the initiat vertex. Therefore, as seen at the top vertex in Figure 4.5,
the existence of such a cycle depends on the condition thaf + 2s(I + 1) (mod p),
for somes < (p —1)/2. This is a contradiction for a primg and! < p — 1. Now
assume that there exists a cycle that does contain the fdge) », b—1)/2}. In that
case there exists a path fram to b_;_, (the only two vertices with degreb) with the
structure of Figure 4.6. For each path of lengtbf the patterb — a --»a — b --+ b,

the index of the finab vertex is greater b2/ + 2 modulop than the index of the initial
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Figure 4.5:A cycle from columnsi;,b,. Solid edges represent sets from colummvhose indices
have differencd + 1. Dashed edges represent sets from colimwhose indices sum t — 1.
The two indices assigned to the top vertex imply thati + 2s( + 1) (mod p), which results in
a contradiction.

b vertex. Therefore, as seen at the top right vertex in Figuée #he existence of such
a path depends on the condition that—2 = [ +2s(I + 1) (mod p), or equivalently
2(s+1)(I+1) =0 (mod p), forsomes < (p —1)/2. This is again a contradiction for

aprimep and! < p — 1. O

Lemma 4.9 A, can be obtained from,, by a minimum-distance preserving transforma-

tion.

Proof: We show that by permuting the indices &f, , its columns and sets within its
columns,A,, can be obtained. All these operations preserve the redegdemnimum
distance of the code and its density. We provide the transdtion and prove its aforemen-
tioned property fom andb columns separately.

a Columns:

Recall that the set in locatidfy, a;) € [1, p — 2] x [ag, ap—2] Of A, is

{(W(aj) +D)p-1, (D(bj-1) +1p-1}.
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b1 2s(141)

be_l_l a e
¢ b_; ,@--__
./. 1-2 ’\.a...

b - -
I+21+2 a.

Figure 4.6:A path from columns;,b,. If there exists a path from vertex to vertexb_;_, then
the two indices assigned to the right top vertex imply that-2 = [ +2s(I + 1) (mod p), which
results in a contradiction.

To show the transformation we look at the difference betwbem index and thé index

above

(D(j) +Dp-1— (P = 1) +1)p-,

and permute each summand usipdp get

Y [(PG) +Dpa] = [(P(—1) +1D)pa] =
substituting the permutationg, 1) we write

=B(j+1—j) =B —1+1=9()+1.

In words, pairs ofi, b indices ofA,,_, after permutation, have the same relation as the pairs
of indices ofA., (as defined in 1 of Definition 4.9), with columns permuted by same
permutation. Since all elements in the sets of colurohA,, are distinct, permuting the
indices and columns using results in the same sets that foAp, .

b Columns:
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We proceed similarly to the previous case but this time lddka sum

Y [(PG) +Dpa] Y [(Dp—1—j)+1)pa] =
and substitute), 1 to get

_ ﬁlogﬁ(j+1)+l — 14 ﬁlogﬁ(p—j)-&-l 1=

=B(j+1-j)-2=p-1-1=9y() -1

For b columns too, permuting the indices and columnsgf results in the sets ok, (as
defined in 2 of Definition 4.9). O

Lemma 4.8 and Lemma 4.9 together prove the main theorem ckttteon.

Theorem 4.10 For every primep, k3.(p) has minimum column distane and thus it is
an MDS code.

4.6 Implementation Benefits of Cyclic and Quasi-Cyclic

Array Codes

Cyclic and Quasi-Cyclic array codes possess a more regulastgre relative to general
array codes. Regular structures often simplify the reibrmaof error-correcting codes
in complexity-limited systems. Cyclié x n array codes can be specified using ohly
sets, compared to theb sets that are required to specify non-cyclic codes. Thatsiea
that encoder/decoder designs are much simpler for cycliee@nd they require lower
storage overhead for decoding tables. A pictorial illustraof this advantage is given in
Figures 4.7 and 4.8. The graph that represedta6 array code is givenin Figure 4.7. The
18 nodes of the graph marked withh) represent thé8 array bits, partitioned té groups,
each represents an array column. bheodes markedH , represent the parity constraints
that the array bits must satisfy. To implement the cdleedges need to be specified,

resulting in a complex realization of encoders and decoddéwosvever, if the code is cyclic,
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then the description of Figure 4.8, with onyedges, is sufficient and allows a simpler
regular implementation of the code (all other bit groupsehtihe same local connectivity,

appropriately shifted cyclically). In particular, whenetlarray code is implemented in

OO0

Figure 4.8:A compact description of a sampex 6 cyclic array code using 5 edges.

a distributed fashion, as practiced in storage and netwtotage applications, the cyclic
symmetry of the codes allows using a single uniform desigmflanodes, contrary to non-
cyclic codes in which each node needs to perform differeptagmons.

Though the exact advantage of cyclic codes depends on thi@egiand constraints of

particular implementations, we next attempt to motiva@rthse in general, by illustrating
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some of their properties. The properties are given for cyctides only, but quasi-cyclic

codes enjoy similar properties with a slightly reduced syt

4.6.1 Encoding and Updates

Property 4.1 In a systematically-cyclic array code (see Definitidrp), if updating an
information symbol at array locatiofy, ) requires updating parity symbols at array loca-
tions{(j1,11),...,(jr Ir) }, then updating an information symbol at array locatigin! +

s) requires the same parity updates at array locations

{(j1,lh1 +5),...,(jr Iy + )}, where all4 operations are modula.

This property, established directly from the parity-chetktrix structure of systematically-
cyclic array codes, simplifies the circuitry needed for lptates, an operation that is in-
voked at a very high rate in a typical dynamic storage apfboa In cylindrical storage

arrays, it also allows to update a group of array symbolsautlabsolute angular synchro-
nization. Cyclic codes that are not systematically cycbadt enjoy the same property, in

general.

4.6.2 Syndrome Calculation

The syndrome of a wordR with dimensiong x n is obtained by first converting it, by
column stacking its elements, to a lengthcolumn vector. Then it is defined as = Hr.

Computing the syndrome is a first step in error and erasuredieg of array codes. A
more economic calculation of syndrome symbols is achiegedyfclic array codes thanks

to the following property.

Property 4.2 In a cyclic array code, if symbal of the syndrome is a functiof of the
symbols in the following array location§(j1,11), (j2,12),...], then symbol + s of the

syndrome is the functiofi(j1, 1 +5s), (j2,12 +s), .. .], indices taken modulo.
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4.6.3 Erasure and Error Decoding

Property 4.3 If in a cyclic array code, a set of erased columfis= {iy,...,i;} is re-
covered by a matrix vector produﬁ/(ls, wheres is the syndrome of the codeword with
missing symbols set to zero, then the set of erased coldmas {i; +s, ..., i; + s} (in-
dices modular) is recovered b)HXluss, wherelU; is the sparse matrix that cyclically

shifts the syndromgs locations upward.

This property relies on the fact that for cyclic codés,, = DsH, whereD; is the sparse
matrix that cyclically shifts the rows afx, ps locations downward. Taking the inverse
results inH,! = H,'D;! = H,'Us. The benefit of that property is that many of the
decoding matrices are cyclically equivalent, and theeefmtly al/n portion of decoding
matrices needs to be stored, compared to non-cyclic ardgscaith the same parameters.
A similar advantage exists for error decoding, where thdicyxuivalence of syndromes

allows a simpler error location.

4.7 Conclusion

Beyond the practical benefit of the constructed cyclic cottesse codes and their relation-
ship to known non-cyclic codes raise interesting theoa¢titiestions. The indirect proof
technique used for all three code families is a distinctix@pprty of the code construc-
tions. It is curious that a direct MDS proof of the more stwretd cyclic codes, seems
hard to come by. Such a proof may reveal more about the steucfuthese codes and
possibly allow finding new code families. This optimisti@wi is supported by computer
searches that find cyclic lowest-density MDS codes with ipatars that are not covered

by the known families of non-cyclic codes.
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Chapter 5

Decoding Beyond Half the Minimum
Distance

Instances of failed decoding are especially undesirabtiaia-storage systems, since they
cost a permanent loss of user data. Stronger decoders thebaact more errors are there-
fore sought, to improve the system'’s reliability withoutroducing additional redundancy.
This task of increasing the decoder’s decoding radius lerntt&b major challenges: high
decoding complexity and increased miscorrection proligbiBoth issues are the subject

of this chapter. The main contributions of this chapter castommarized as follows.

e Analysis and optimization of Reed-Solomon list decodesgdan thénstantaneous

number of errors.
e A new lower bound on the miscorrection probability of liscdeers.

e The best known closed-form upper bound on the list size fdesamver moderately
large alphabets. The same bound also improves over thecehgsary Johnson

bound for constant-weight codes.

The majority of the results in this chapter have appeare@€B0Ob] and in [CB04].

5.1 Introduction

The core precept of Coding Theory is the trade-off betweelumdancy and correction

capability. Countless constructions and bounds couple<arbrrection capabilities with
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the corresponding redundancy that they carry. More oftam tiot, correction capability
is measured in worst-case terms, allowing the employmeatwibinatorial and algebraic
analysis tools over the Hamming and other metric spaces.r fe$a studied framework,
at least in the combinatorial/algebraic domain, is thatxih§j the code redundancy, and
analyzing the performance decoderawith increased correction capabilities. This area of
study is calledist decoding debuted in the two articles by Elias [Eli57] and by Wozen-
craft [Woz58]. Despite the overwhelming theoretical horig opened by these works, list
decoding remained off the coding-theory mainstream, mameicause of the absence of
algorithmic solutions to increasing the decoding radiusn#&or swing to the favor of list
decoding ensued when Sudan introduced a polynomial-tshedcoder for Reed-Solomon
codes [Sud97], that had a strong impact on a multitude of@césearch areas in Theo-
retical Computer Science. In the Information Theory comityuthe advent of efficient
list-decoding algorithms has also created a great intei@sised on understanding the is-
sues of applying list-decoding schemes in communicati@hdata-storage systems. This
chapter mostly follows the latter, more practically orietht research trajectory of list de-

coding. In particular, it adds insight and novelty in thddeling study fronts:

e Algorithmic efficiency. How can list decoding be made less complex? A finer-grain
analysis and optimization of list-decoding algorithms,jetthis outside the scope of

their study in the computer science domain.

e Non-uniqueness of decoding.What are the practical consequences of decoding
beyond the unique-decoding bound? Study of possible degaalitcomes of list

decoders, reasoning about their interpretation and impapierformance.

Discussing the algorithmic list-decoding problem in sae$i 5.2, 5.3, 5.4, and 5.5, we fo-
cus on Reed-Solomon codes for both hard-decision and softidn decoding. While the
worst-case list-decoding complexity of Reed-Solomon sadevell understood as a func-
tion of the code parameters and the decoding radius, thigaasanores the effect of the
number ofinstantaneous erroren the decoding complexity. In systems that employ RS
codes, the average number of instantaneous errors inedduc the channel, is typically

much lower than the decoder’s worst-case decoding radiescél optimizing the decod-
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ing complexity with respect to the number of instantanecusrg, improves the average
decoding time and in turn the decoder’s throughput. An aye@ase analysis of classi-
cal RS decoders is pursued in [BM85], where the running-titegendence on the error
weight is obtained experimentally. The study of [GKKGO6¢lsgto improve the average
case complexity of the RS algebraic soft decision decod®0p&], by using a layered
decoder whose decode time depends on the instantaneousetharse. In this chapter,
the average-case analysis hinges on the dependence witéhgolation cost(the num-
ber of required interpolation coefficients) on the errorg¥ei This dependence is studied
and quantified in section 5.3 using analytical tools for h@edision decoders. Then, in
section 5.4 an interpolation algorithm is proposed whosming time favorably depends
on the instantaneous interpolation cost. This algorithpmaposition achieves improved
average-case running time for both hard-decision anddsfision decoding. Finally, in
section 5.5, a comparison of the instantaneous interpolabsts of hard-decision and soft-
decision decoders is carried out using simulations of bettoders.

The second part of the chapter in sections 5.6 and 5.7, dissusecoder behaviors
and code properties of general error-correcting codesasaonally using Reed-Solomon
codes only as examples. The effect of increased decodirnigsraxh themiscorrection
probabilityis especially interesting, and section 5.6 adds insighhanissue. In particular,
it shows that miscorrections occur significantly more frexgly, even for small increases
in the decoding radius, questioning “popular belief” thanaall average list-size implies
that list decoders behave essentially the same as uniquelelsc Section 5.7 presents
a closed-form upper bound on the decoder’s output-list sizes bound is an important
tool to achieve the bounds on miscorrection in the precesi@agion, and a very interesting
combinatorial result in its own. This bound joins many oth&empts at bounding the
size of the list, in both the Information Theory and Comp&erence communities. For
moderately large alphabets it is the best known closed-fmund, and its generality allows

using bounds on binary constant-weight codes to furthéteigit.
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5.2 Review of Guruswami-Sudan Algebraic List Decoding

A codewordC from an [n, k,d] Reed-Solomon (RS) code is the evaluation of a degree
k — 1 or less message polynomif{x) on n distinct points of GFg), {«1, ..., a,}. Let

E be an error vector of Hamming weightover the same alphabet Gf. The received
word R is defined aR = C + E, over GKgq) arithmetic. Classical decoding algorithms
of RS codes, e.g. the Berlekamp algorithm, the Massey dligoriand their predecessor
Peterson-Gorenstein-Zierler algorithm (see [Bla83] fesatiption of the algorithms), all

attempt to efficiently solve the following linear system wfequations ¥ = number of

errors):
51 S22 -0 Sy Sy Ay —Sv41
S» S3 - Sy Svi1 A —Syvi2
S3 S4 -+ Syp1 Sy Ay | = | —Svis
| Sv Syp1r ot Sav2 Sver | [ M1 | =52y |

where/; are the coefficients of the unknown error-locator polyndiaiel S ; are the known
syndromes. Whed > 2v + 1, this system of equations has a unique solution and thus
the algorithms mentioned above can decode errors up to lmalfninimum distance: the
unique-decoding bound.

A completely different approach to decoding RS codes, thataorrect more errors
than classical algorithms, has been introduced by Sudati9[uand improved by Gu-
ruswami and Sudan [GS99], using relatively simple but pdwatgebraic-geometric ideas.
In the Guruswami-Sudan (GS) algorithm [GS99], the receivedd is used to interpolate
a bivariate polynomiaQ(x, y). To achieve a large correction radiu3(x, y) should be
the minimal(1, k — 1)-weighted degreebivariate polynomial that satisfies the following
n("31) constraints:DysQ(a;, R;) = 0fori = {1,...,n} and{(r,s) : r+s < m}.

m is a decoder parameter called tinéerpolation multiplicity D, :Q(«, 3) is the Hasse

lthe (1, v)-weighted degree of a bivariate polynomial is the maximurarall of its monomialsxiyf of
the sumi 4 vj



127
derivative ofx-orderr andy-orders, evaluated on the point= «, y = 3 (more on Hasse
derivatives in sub-section 5.3.1 below and in [McEO3a]thtse interpolation constraints
are satisfied byQ(x, v), it is guaranteed that codewords within the prescribed diecp
radius of the decoder will be found by factorization@(x, v). A block diagram of the GS

list-decoding algorithm is given in Figure 5.1 below.

R(x) Q. (0 (vt
INTERPOLATE | +o¥ £acTOR 1002 0911

received bi»variatg IistVof candidate
word (m) polynomia codewords

\d

Figure 5.1:Block diagram of the Guruswami-Sudan list-decoding altani

By formulating the interpolation as a system of homogendmesr equations it has
been observed that("}') + 1 coefficients are sufficient to mak@(x, y) satisfy the
above constraints. We denote By, this worst case number of interpolation coefficients,
s0Cye = n(’”z+ 1) + 1. Cue will be later called the worst casaterpolation costof the
GS (n,k,m) decoder. The key yield from that decoding scheme is that ficmuft con-
dition to correctt errors ism(n —t) > dyx_1(Cuc), whered; ;_1(J) is the minimal
(1,k — 1)-weighted degree of a bivariate polynomial wiftcoefficients. Since in gen-
eral the number of correctable errarss larger than| (d — 1) /2], half the minimum dis-
tance of the code, the decoder output issaithat possibly contains multiple codewords.
Hence the qualifielist-decodings used for the GS decoder, as well as for other decoders
that correct beyond the unique decoding bolil— 1) /2. Throughout the chapter, we
assume that the monomials of the interpolating polynonaatsordered by nondecreas-
ing (1, k — 1)-weighted degrees, with reverse-lexicographic tie-birggki.e. x(k=1s pre-
cedesx(*~1(s=1)y (or in general, if two monomials have the saifiek — 1)-weighted
degree, then a monomial with lowgrdegree precedes others with highedegrees). For

a more detailed discussion of multivariate polynomials mmahomial ordering please refer
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to [CLO97].

5.3 Interpolation Polynomials for Low-Weight Errors

In this section we develop tools for bounding the intergolatost given an error weight.
The bounds are achieved by providing classes of interpggiblynomials for received
words resulting from an error of a given weight, and then wrial the degrees of these
polynomials to get upper bounds on interpolation costs hi©dnd we have introduced the
worst case interpolation coBt,., which is determined by the decoder parameters m.
For the sake of the forthcoming analysis, we define the em&ght dependent interpola-
tion costC,(e) as the number of interpolation coefficients required givereaor worde

of Hamming weight. Note thatl,(e) is not a function ot alone; different interpolation

costs are possible for different error words of a given weigh

5.3.1 Hasse derivatives

For their central role in the interpolation procedure, Hadsrivatives and their properties

are discussed in detail.

Definition 5.1 (The (r,s) Hasse derivative)The (,s) Hasse derivative of a polynomial

Q(x,v), denotedD, ;Q(x, y) is defined as

i ' i—r,,j—S
D.:Q(x,y) =y () (]) ai Ty
1,]

whereq; ; is the coefficient of'y/ in Q(x, ).

Hasse derivatives owe their use in RS list-decoding to theviing fact

D, sQ(a, B) = coeffyrysQ(x + o, y + B)

In words, the coefficient of"y* in the polynomialQ(x + «, y + 3) equals ther, s) Hasse

derivative of the polynomiaD(x, y), evaluated at the point= «, y = 3. We now turn to



129

state (without proof) the well-known product rule for Hasteivatives.

Lemma 5.1 (The Hasse Derivative product rule)

The Hasse derivative of a productlopolynomials

D 1,8

L
= Z I_l Dri,siQi

A= i=1

L
[1<
=1

S1+--+sp=s
From Lemma 5.1 we get the following lemma.

Lemma5.2 If Q(«, 3) = 0, then for ever{r,s : r+s < m}, D,s[Q(«, B)"] = 0,

whereD, s [Q(«, 3)™] is ther, s Hasse derivative of)(x, y)™, evaluated at, 3).

Proof: Lemma 5.1 states that

Dy [Q(x, y)m] = Z I_l D”irsiQ(x’ y)
rtetm=r 1=1

sincer +s = S (r; +s;) < m, for every assignmenttq, s, ..., 7, Sm at least one of
the pairs(r;, s;) equals(0,0). That means every product in the sum contains at least one
factorDg 0Q(x, y) = Q(x, y). Substituting x, y) = («, 8), the right hand side evaluates

to zero. ]

5.3.2 Closed form upper bound on interpolation cost

Theorem 5.3 Let E be an error vector of weight and let{jy, j»,..., j.} be the error
locations. Then there exists an interpolation polynomihbse last monomial (according
to the(1, k — 1)-weighted degree order with reverse-lexicographic tiealiirg) has(x, y)-

degree of(em, m). This polynomial can be explicitly written as

Qx,y) = [(y = fx)(x —aj) (x —aj,) - (x — )] " (5.1)
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Proof:

ro+ri 4 tre=r i=1
Sg+S + o tse =5

ot b bram =1
If (r,s) satisfyr +s < m, then obviouslyy +s < m andr; < mfori = {1,...,e}.
Therefore by Lemma 5.2, any product in the sum will have bdédctor of y — f(x) and
factors ofx — «;, foralli = {1,...,e}. This establishes thd?, s Q(«;, R;) = 0 for both
the correct symbols and the corrupted symbols. O

The strength of the arguments used in the proof above is tiegt allow to predict
the form of interpolating polynomials for any error weight, even katit constructively
interpolating particular received words.

Taking the polynomial structure of (5.1) with some strafghvard monomial counting

we get a bound oB, (¢e) in the following corollary.

Corollary 5.4 LetA = m(e+k—1) andr = A mod (k — 1). For any error of weight

we have the following bound

A? A rlk—r—1)
2(k—1) 2" 2(k—1)

Ce(e) < +m+1 (5.2)

Proof: Theorem 5.3 proves that there exists an interpolating motyial with (1, k — 1)-
weighted degree afn + (k — 1)m = A, whose last monomial (according to the monomial
order) isx®"y™. The expression in the right hand side of (5.2) is the sttéogivard cal-
culation of the position ok*"*y™ in the monomial order, or equivalently the interpolation
cost. The inequality comes from the fact that thexa@y beother interpolating polynomials,

besides the one of Theorem 5.3, with lower interpolation.cos O
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5.3.3 The no errors case

Theorem 5.5 Let p = k/n be the rate of the RS code. When the received Rordl a

codeword, the interpolation coBp () satisfies

Co(e) < [pCuc]

Proof: Definev = k — 1. WhenR is a codewordR can be interpolated by the bivariate
polynomialQ(x, y) = (y — f(x))™. The last monomial ofy — f(x))™ in the monomial

order isy™, whose(1, v)-degree isnv.

Lemma 5.6 The location ofy” in the monomial order isr("‘fl) +m+ 1.

Proof: Because of the reverse lexicographic ordering,is the last monomial whose
(1,v)-degree isnv. Hence a polynomial whose last monomialié hasC non-zero coef-

ficients and is given below.

C=16,j):i+0j < mo| :v(mil) fmt1

Now using Lemma 5.6 we get

C:v(m;rl) +m+1:k(m;rl) —%(m+1)(m—2)

Substitutingk("1 1) = pCec — p:

B:pﬁwc—p—%(m—l—l)(m—Z)

(m+1)(m—2) > —1andso

N|—=

C < pluwc—p+1 < [pCuc]

SinceC¢(0) < C the theorem follows. O
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5.3.4 Tighter bounds for higher weight errors

Whene is large, bounds on the interpolation cost can still be ole@j though using (5.2)

may not be the best choice. For such cases we can use theifgltveorem.

Theorem 5.7 Let E be an error vector of weight and let{ji, j2,..., j.} be the error

locations. A polynomial of the form

Q(x,y) = (y — f(x))" P(x,y)

is an interpolating polynomial wheR(x, y) satisfies("; ') + (n — e)(””’_’g“) interpo-

lation constraints.

Proof: We first find a minimal(1, k — 1)-degree polynomiaP(x, ) that satisfies the
following constraints. For the corrupted locationg j1, j», ..., je}, We require the usual
interpolation constraintﬁ)rlsP(oc]-i, R;,
uncorrupted locations we require fewer such constraifg; P(«;, R;) = 0 for every

) = 0 forevery(r,s) : r+s < m. Forthen —e

(r,s) : r+s < m —m’. Since for the corrupted symbolx, i) alone satisfies all inter-
polation requirementsQ(x, y) obviously does so too. As for the uncorrupted symbols we

write
D;sQ(x,y) = Z Dy, 5, (y _f(x))m/Drzfszp(xf y)

rptrp=r

S$1+sp =5

Splitting the sum to two disjoint intervals

DrsQ(x,y) = S Drs(y— f(x))" Dpys,P(x,y)+

rptrp=r
S]+sy=5s:

ry s <m’'

+ S Drs(y—f(x)" DrsP(xy) =

rntrn=r
s1+sy=s5:

ry s >m'
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Z Drllsl (y _f(x))mle,SzP(x/ ]/) + z Drllsl (y _f(x))mle,SzP(x/ ]/)

rptrp=r rt+rp=r
s1+sy=s: s1t+s=s:

r sy <m’ ro+sy <r+s—m'
The left sum is zero by Lemma 5.2 and the right sum is zero sines — m’ < m — m’

and the(r,, sp) : 12+ sp < m — m' Hasse derivatives d(x, i) vanish on the uncorrupted

locations by construction. O

Corollary 5.8 For any0 < m’ < m, let deydy be the monomial whose index in the
monomial order ise("31) + (n — ) (" +1) and defineA’ = dy + (k — 1)(m’ +dy),

r" = A" mod (k — 1). Then the interpolation cost is bounded by

(A A k=7 —1)

+=+

Cele) < 2—1) " 2 T 2(k—1)

+m' +dy+1 (5.3)

Proof: x*y% is the last monomial of the polynomi&x, ) used in Theorem 5.7. The
last monomial ofQ(x, y) is x*y™ +4v_ and its(1, k — 1)-weighted degree ig, + (k —
1)(m' +d,) = A’. Now finding the interpolation cost @(x, y) is a matter of calculating
the index ofdeym/+dy in the monomial order, in the same way that has been done in
Corollary 5.4. O

Notes:
(1) Theorem 5.3 is a special case of Theorem 5.7 with= m andP(x, y) univariate
in x. In general;n’ can be freely chosen to find the best bound on the interpolatist
Ce(¢) for each error weight.
(2) The more general bound of (5.3) is not given in closed fsimee calculating,, and
dy in closed form as functions of the monomial index in the oridarot possible. Closed
form upper bounds oi, andd, can be used instead, but the tightness of the bound would
be compromised in this case.
3) The power of the composition @(x, y) as a product of two polynomials seems
to lie on the following fact. In the interesting casés< m’ < m, for each uncor-
rupted location the composition polynomiaj — f(x))" P(x, y) satisfies more interpo-
lation constraints relative to the sum of constraints fatisby the individual components

(y — f(x))™ and P(x,y). (v — f(x))"™ satisfies(m/;rl) constraints,P(x, y) satisfies
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(””’_’g/“) and as proved in Theorem 5Q(x, y) satisfies("; ). These numbers reflect a

difference ofm’(m — m’).

5.3.5 Interpolation costs for a sample RS code

In section 5.3 bounds are given for the error-weight depehidéerpolation costs. Here we
wish to explore the tightness of these bounds by interpaateceived words induced by
different error words and comparing the observed intergaecosts to the bounds above.
For that task a GS decoder was implemented and run pnig = [31,15] RS code.
The interpolation multiplicity chosen for the decoderis= 3, which allows correctin@
errors and has a worst case interpolation co$gf= n(’”;l) +1 = 187. The results are
summarized in Table 5.1 below. Each row reflects a valueard the columns compare
observed results to the bounds. The columns tagdservedare the maximum, average
and minimum interpolation costs used by the decoder. Thesgbars were generated
using repeating runs< 10° pere) with random errors. Foe < 6, no interpolation costs
smaller than the closed form bound of Corollary 5.4 were ol Fore = 7 the bound
is attained in almost all instances, with few exceptionsptaia difference oR. That is
the case also for = 8, only that Corollary 5.8 is used to find an improved bound over
Corollary 5.4. For = 9 the best upper bound for the interpolation codljs. The results
of this experimental study are that the upper bounds ongotation costs provided here are
tight in the worst case (max values attain the bounds fa) aind close to tight even in the
average case. Hence, at least for this sample decoder, tii@lbprovide a succinct and
reliable characterization of the decoder behavior. Vdiidathe upper bounds’ tightness
becomes a practical challenge for long codes with largepotation multiplicities, and
general analytical lower bounds seem hard to come by.

5.4 From Interpolation Cost to Decoding Complexity

In the preceding section it has been argued that in many taseésterpolation cost is sig-
nificantly lower than the worst cadkg,.. That immediately means factorization algorithms
would run faster in low cost instances. However, the mostpaationally expensive part

of the decoder is the interpolation algorithm. Unfortumgta reduced interpolation cost
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observed
#errors| worst case closed form| improved | max| averagel min
e Cove (5.2) (5.3)
0 187 88 - 88 88 88
1 187 100 - 100 | 100 | 100
2 187 112 - 112 | 112 | 112
3 187 124 - 124 124 124
4 187 136 - 136 | 136 | 136
5 187 149 - 149 149 149
6 187 164 - 164 | 164 | 164
7 187 179 - 179 | 178.95| 177
8 187 194 183,m' =1 | 183 | 182.97| 179
9 187 209 187 ,m' =0 | 187 | 186.93 | 184

Table 5.1: Interpolation costs for tfjg1, 15] RS code withn = 3

does not automatically provide reduced running time ofrppa&ation algorithms. Admit-
tedly, we will see that accepted interpolation algorithnesnibt translate the savings in
coefficients to savings in running time. That is true everightl of the fact that these al-
gorithms do eventually output the lowest degree interpagbolynomials. This situation

is unfortunate since the decoder fails to benefit from thestvoase/instantaneous-case gap
that was pointed out earlier in the chapter. We examine sablwors of two interpolation
algorithms in the case of reduced interpolation cost. Wessgbently suggest modifica-

tions to the interpolation algorithms to improve their age-case running time.

5.4.1 Gaussian elimination interpolation

By formulating the interpolation problem as a system of hgereous linear equations,
Gaussian elimination stands out as a natural straight fonabgorithm to solve it. This

interpolation method is not the most efficient that exisis ae present it only to illustrate
the connection between interpolation cost and running.titneaive way to use Gaussian
elimination is to start with E(ch —1) x C.c matrix and perform full Gaussian elimina-
tion. The number of rows being the number of interpolationstmints and the number
of columns is the worst case interpolation cost. Since theattimis under-determined, at
termination we are guaranteed to reveal linearly depenctdomns which result in coeffi-

cients of an interpolating polynomial. To analyze the rungrtime of the above procedure,
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we will approximate the dimensions of the matrix By, x Cy.. It is well known that the
running time of Gaussian elimination orca< ¢ matrix approache%c3 finite field opera-

tions (plus lower order terms{c3)) [TB97, ch. IV]. This follows from

C C 2
2y Y (c—k+1) 33
k=1 j=k+1

Thus using straightforward Gaussian elimination Wouldsm:me%[]g,c finite field opera-
tions, regardless of the actual interpolation cost of theodeng instance. By using a simple
variation on that process we can save considerably in tla¢ namber of field operations.
When a shorter interpolation polynomial exists, some ofablemns in the matrix will not
participate in the interpolation. Exploiting that, a rowesation should be performed on
a column index, only if the columns to its left are linearlglépendent. This replaces the
row operation on the full row vector performed in Gaussiamelation. An even more
obvious modification is stopping the process at the first timearly dependent columns
are revealed. If we denote= G, ¢/ = C.(¢) andy = %’ then the running time of the

modified Gaussian elimination will be

Cc
1
25 Y ( (/ —k+1) = Zcc? + 2 (c— ) =

and that yields g% — 1y factor of saving.

5.4.2 The standard interpolation algorithm

Now we wish, for the same purpose of average-case analpsimrisider the standard,
most efficient interpolation algorithm used in RS list deogd This algorithm and its
variants are intensively studied in the literature [KgtP6HO0O], [KVO03b], [AKS04] and

more. Its mathematical richness notwithstanding, onlyuglhosketch of the algorithm is
presented here, to focus on the computational issue at fidnedkey idea of the algorithm

is to interpolatel 4 1 polynomials, each with a differentdegree, and upon termination
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select the one with the lowest interpolation cost. By fixihg #-degrees throughout the
update process, a “greedy” update rule cumulatively sasisdll interpolation constraints,
and is guaranteed to output minimal polynomials for egctegree. The algorithm pseudo-
code description given in Figure 5.2, refers to this greepglaie rule that successively
eliminates discrepancies with respect to all interpotationstraints. Thargminoperator
selects the indexof the polynomialQ); whose highest monomial has the lowest index with
respect to the standard monomial ordering. The non-zewmapancy of that lowest degree

polynomial is used to eliminate the discrepancies of otligindr degree polynomials.

Initialize

Qj = yj, Vj S {0,...,L} /1 L is a bound on the y-degree of the output polynoni al
fori:;l to Cpe — 1 /'l interpolation constraints

Q) 55.1) := discrepancy of); with respect to constrairit

j* = argmin(j : 5;0 #0)
forall j with non—zeroégi)
(2) forj # j* updateQ; with no change in degree
for j* updateQ;- with degree increment
output Q; with minimal degree

Figure 5.2:Standard interpolation algorithm (sketch)

Analyzing the complexity of the algorithm, it iterates 8p. — 1 constraints and in
each iteration performs operatio(i) and(2) on (at most)L + 1 polynomials, each with
no more tharl,,. coefficients. Therefore the worst case running timéﬁ%,c finite field
operations.

We next observe that the running time will not be significabitter in cases when the
final interpolation cost is small. The reason being that t@putation load is dominated
by operations on non-minimal polynomials. Even if a polymain® ;- satisfies all inter-
polation constraints with low cost, the algorithm does nodw the identity of thag* in
advance and has to successively update all polynor@athat have higher costs. It also
does not a priori know the final required cost and thus canrciude polynomials with
higher costs during computation. Consequently, this fastrpolation algorithm will have
an average case running time not better than that of the wasst

To fix that undesirable behavior, we modify the algorithm iway that discrepancy
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calculations and polynomial updates are performed only agnmmials whose coeffi-
cient counts are guaranteed to be at most the final intefponlabst. This can be done
by modifying the algorithm iteration, with no increase inmsBcase running time. Storage
complexity is higher, as older versions of polynomi@ls are needed for updates during
runtime. One can think of the modified algorithm as a relayetsion of the standard
algorithm where each time the leading candidate (the mihdegree polynomial) is se-
guentially updated, until a better candidate is found. @miy, before it is updated with
degree increase, the best candidate stores its coeffigrdtdiscrepancies to allow for fu-

ture candidates to "catch up” with their updates. In Figu@ the modified algorithm is

presented.

Initialize

Qi=y, vVie{o,...,L}

ij =0, Vje {0,...,L} /1 constraint pointer for each j

j* =0 = argmin]-Qj

while i]'* < ch— 1 /7 while no Q;j satisfies all constraints
. i
find 5(’)

i
if 55.,13'*) = 0 continue

(*) mem-lookup (A[]',ij*] , Q[],Z]x]) /1 1ook for stored poly
if (found)update Q;- with no change in degree
else .

store (A[j*,i-] , QIj*, i) — (5", Q)
update Q- with degree increment
= argmin]-Qj /1 proceed with the best candidate

output Q)
Figure 5.3:Interpolation algorithm with improved average running&im

mem-lookupn (*) refers to the action of looking up a stored polynon{@lthat had a
non-zero discrepancy an-. The following facts facilitate the correctness of the aitjon
and its complexity.

(1) Discrepancy calculations and polynomial updates arapeed only on polynomi-
als with degrees lower than or equal to the final interpotagiolynomial.

(2)  The firstQ; whose pointeri; reaches an indexis the lowest degree polynomial
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that satisfies constrainis...,i — 1. Therefore, the stored polynomials will always be the
lowest degree polynomials that satidfy...,i — 1 but noti.
(3)  If mem-lookup fails forQ; on constraint;, it is equivalent toQ; being the lowest
degree polynomial with non-zero discrepancyipn
(4)  The polynomial whose pointeéy first reache$ . satisfies all constraints and is the
minimal to achieve that.
For every constraint with non-zero discrepancy, at mostgmignomial is stored and each
of these has at moBt () coefficients. Thus in this non-optimized formulation, tiecaint
of memory required for coefficient storage is bounded({,)>. The time complexity
of the algorithm isy(2,, since for each constraint, discrepancy calculation etakia

wce?

polynomial with at most/C,,. coefficients.

16

Figure 5.4: Channel model for soft-decision decoding. One3@fsymbols is transmitted and
corrupted by a noise proced§ with bounded support—1,1). The small support ensures a very
simple case of soft-decision decoding where only two sysiboé assigned non-zero interpolation
multiplicities.

5.5 Interpolation Cost in Soft-Decision Decoders

The bounds presented thus far apply to GS decoders whichehfaxed interpolation mul-
tiplicity m. They do not apply to the weighted interpolation used byt&odand Vardy’s
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200

AVerage interpolation cost

4 —+&— Soft decision
—~A— Hard decision
80 | | | | | | | |
0 1 2 3 4 5 6 7 8 9

# hard errors

Figure 5.5: SD-HD comparison, average interpolation cost. Low erroights reduce the in-
terpolation cost in hard-decision decoding and much less swmft-decision decoding. For the
same-worst case complexity the soft-decision decoder ighghaverage-case complexity.

soft decision decoder that was shown to correct more errtvsnvsoft inputs are avail-
able. In this section we examine another aspect of algebadtedecision list-decoders:
their error-dependent interpolation costs. Since sofisil@e decoders surrender their fixed
multiplicity property, none of the bounds above apply tontheMoreover, when the de-
coder inputs are soft symbols, different ways exist to defiegnstantaneous channel error
upon which the interpolation cost may depend. The difficoftgnalytic treatment of the
soft decision case arises from the fact that the interpmiatost depends on the interpola-
tion multiplicities which in turn depend on the channel eiroa non-simple fashion. The
bounds obtained for the hard decision case used the steuatahe interpolation polyno-
mial endowed by the fixed multiplicity:. It is therefore conjectured that the soft decision
decoder will not enjoy as favorable interpolation cost wétraand consequently will have

higher average case decoding complexity, even if it is chegidor the same worst case cost
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Figure 5.6: Interpolation cost of SD decoder, MAX, MIN and AVERAGE. Caay to hard-
decision decoding, soft-decision decoding exhibits highability of the interpolation cost given
an error weight.

as the hard decision decoder. To support that conjectureeeseto the experimental realm.

5.5.1 Simulation results for soft-decision decoding

For the[31, 15] RS code of section 5.3.5, we simulated soft decoding oveaarei whose
description follows. We regard th& alphabet symbols as integers lying on a ring of
circumference32 (see Figure 5.4). The noise is taken to be an additive (ma2jla.i.d
random process, denoted = {Ny,...,N,}. For simplicity we take the probability
density function ofN; to have a bounded suppdit-1,1). This property implies that
at most two symbols will be assigned non-zero interpolatraritiplicities by the Kotter-
Vardy algorithm. The decoder we used has a worst case inlé&imo cost identical to that
of the hard decision decoder we used in section 5&,5:= 187. It is thus interesting to

compare the instantaneous interpolation costs exhibitélddsoft-decision decoder to that
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of the hard-decision decoder. To have a ground for comparise plot the interpolation
cost as a function of the number of "hard” errersaused by the channel. This number can
be recovered by = |{N; : |N;| > 0.5}|. In Figure 5.5 the hard decision (HD) and soft
decision (SD) average interpolation costs are plotted asetibn of the number of errors.
Each point on the graphs was obtained from an ordéfdfruns. We see that for low error
weights the SD decoder requires higher interpolation cositspared to the HD decoder.
For high weights SD is more efficient but only slightly. Anetrdifference can be seen
in Figure 5.6. While Table 5.1 shows the low variability oethost for the HD decoder,
Figure 5.6 shows that this is not the case for its SD counterpath the relative flatness
in Figure 5.5 and the variability across runs in Figure 5dicate that in SD decoding, the
dependence of the interpolation costs on the error weightler weak, contrary to the HD
case. Once decoder running times depend on the instantamterpolation costs and not
merely on the worst-case, the average decoding time of SDdaées may be higher than

HD, even if they have identical worst-case running times.

5.6 Miscorrection Probability of List Decoders

When the number of symbol errors within a code block is ladgeoding can go wrong in
two different ways. The first, calledecoding failure is when the decoder cannot correct
the errors and thus declares failure without providing aggdthesis on the transmitted
codeword (detected error). The second, and more detrirheateome, is calleaniscor-
rection, that happens when the decoder outputs a wrong codeworsl lagibthesis on the
transmitted codeword (undetected error). Three possiteding outcomes are illustrated
in Figure 5.7. The circle marked, represents the transmitted codeword, the sqliaise
the received word, and is a different codeword (not the transmitted one) found i@ th
decoding ball.

Miscorrections cannot happen whenthe decoding radius of the decoder (the radius
of the Hamming ball around the received word to which decadyputs are limited), and
e, the Hamming weight of the error, satisfy- e < d, whered is the minimum Hamming

distance of the code. In the common case of decoders withmadxiecoding radius under



143

O\
Co A

o’éo
(@) (b) (c)

Figure 5.7: Possible decoding outcomes. (a) Successful decoding. €bpding failure. (c)
Miscorrection.

unigue decodingt + 1 = d), any error of weight > t maycause miscorrection, and
obviously any error of weight < t is successfully corrected. In the case of unique decod-
ing, when the code is linear and the channel is symmetrigytbleability of miscorrection
can be calculatedxactlyif the weight distribution of the code is known [HM77]. Thia$
independently been shown for the special case of linear Midlesin [Che92].

For a given error weight, all error words of that weight are partitioned irdecodable
words error words that result in a miscorrection, andn-decodable wordserror words
that are either successfully decoded or result in decodiigré. Finding the miscorrection
probability is thus reduced to counting the number of debtal@rror words of weight
e and dividing this number by the total number of error wordshe same weight. The
notion of decodable words is best described graphicallfigure 5.8, a bipartite graph is
shown whose left nodes are all the codewords, excludingltize® codeword, and right
nodes are error words of some weightAn edge connects a codeword and an error word
if their Hamming distance is (the decoding radius) or less. If the code is linear, one can
assume that the all zero codeword was transmitted. In tlsat, dais readily seen that error
wordsE on the right that have at least one incident edge, are detmudatrds that result
in miscorrection. This is true since the decoder will outpathypotheses the non-zero
codewords connected to the error word. WR2éR-1 < d, an error word can have at most
one incident edge, otherwise it would imply two codewords re in distance less than

d apart. In that case counting tleelgesof the graph is equivalent to counting decodable
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words; and indeed, it is observed that the counting methbdeth [HM77] and [Che92]

count the exact number of edges in that graph.

C E

|
°

|
Figure 5.8:Decodability graph under unique decoding. A right errorgvaode is connected to

a left codeword node if they are at Hamming distahoe less from each other. Unique decoding
guarantees that the degree of any error-word node is at mest o

When the decoding radius is stretched beyond unique degd@2iin> d), error words
may have multiple incident edges, and counting edges bexomlg an upper bound on
the number of decodable words (a similar observation wasenrafMcEO3b]). A graph-
ical description of this scenario is shown in Figure 5.9: widhe received words in the
graph, marked with dashed circles, have multiple incideiges and are therefore multiply

counted as decodable words, resulting in an overestimatiesomiscorrection probability.

The main observation of this section, made simple by theeringsaphical description,
is that alower bound on the number of decodable words can be obtained usiogzer
bound on the number of edges incident on error-word nodethelhumber of decodable
words is denoted;(¢), the number of edges in the graph dendi&d, andM is an upper

bound on the degree &f nodes, then

el
M

< Di(e) < |&]
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Figure 5.9:Decodability graph under list decoding. Some error-wordemhave degrees greater
than one that leads to multiply-counted decodable erradsio

Good boundsVI on the degree of nodes, arguably useful in obtaining lower bounds
on miscorrection, turn out to independently be a fundamemtzblem in the area of list
decoding — that of bounding the size of the decoder’s outigtit For moderately large
alphabets, the bound derived in the next section is theggglinown closed-form bound
on the list size, and hence provides the best known lowerdbouarthe miscorrection prob-
ability. Bounds on miscorrection probability of a sampl& lilecoder are now compared.
Results for a linear MDS code with parametars= 31,k = 15,d = 17,9 = 32 (g is
the alphabet size of the code) are shown in Figure 5.10 favdieg radius oft = 9. The
curves from top to bottom are: i) the upper bouid| using the method from [HM77].
ii) improved lower bound&|/M, usingM from the next section. iii) lower bound that
counts the exact number of correctable words for decodénsasfty = (d —1)/2 = 8.
The true value of the miscorrection is proved to be betweentwo upper curves. The
sample results reflectib orders of magnitude improvement by the new bound compared
to the (previously best known) bound that assumes decoditigs of an optimal unique
decoder. Consequently, in spite of the constant factor gweden the new lower bound
and the upper bound, the new lower bound does show that tremestion probability

grows significantly when decoding beyond the unique degpdound.
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Figure 5.10:Bounds on the miscorrection probability for a [31,15] MDSlepdecoded to radius

9. The solid curve is an upper bound by counting edges in tbed#bility graph. The lower dashed
curve is a lower bound that counts decodable words only withé unique-decoding sphere. The
upper dashed curve is the new lower bound.

5.7 A Combinatorial Bound on the Decoder’s Output-List
Size

For a decoding instance of a decoder whose radius is gréateh@alf the code’s minimum
distance, unique decoding is not guaranteed and the deoatfauts, in general, a list of
codewords that fall in the decoding Hamming ball. Boundiragrf above the size of this
codeword list is a well studied problem with both theordterad practical appeal. Codes
that have short lists for relatively large decoding radé sermedist-decodableand their
design is of prime interest. In this section we focus on cagesre the worst-case list-size
is bounded by a constant number (independent)pfind try to find the smallest of such
constant bounds. From a theoretical standpoint, a listthetes at most polynomial in the
code length is a necessary condition for having a polynotimia list-decoding algorithm.
For practical usage of list decoders however, very smalstai-size lists are desirable, to
minimize the information uncertainty at the decoder output

Though list-decodability of a code does not necessarilfyrgpod minimum distance,
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the minimum distance does ensure a certain degree of Icstelddility. The bound derived
in this section, as those that predate it, uses the minimatarttte of a code to bound the list
size of a radiug decoder for that code. Hence it appliesttycode with a given minimum
distance. The reason we can bound the number of codewordgddiast Hamming
ball, just based on the minimum distance is rather obvioasking many codewords in
a small ball is impossible when every pair of codewords sthdod at least! apart. As
mentioned in other works that deal with the worst case |z, sinost notably [Eli91] and
[Gur01, Ch.3], this problem is closely related to the prablef bounding the maximal
size of a constant-weight code. Accordingly, Johnson bdosmsked arguments [MS77,
pp.525], with necessary modifications, prove effectivetii@r list-size problem. In [EIli91],
the Johnson bound is shown to provide a valid list-size banrite binary case. The-
ary case was addressed in [GRS00], though the main bounel therbe extracted from
the g-ary generalization of the Johnson bound, and a simple agguon its applicability
to the list-size problem (see for example 2.3.1 of [HPO3]tfw g-ary Johnson bound).
An improvement over [GRSO00] for short codes was reportedsi8(1] using a geometric
approach. The bound presented here is better than its meslms when the alphabet
sizeq is “large enough”. The threshold alphabet size for the bawrnige tighter depends
solely on the ratiogl/n andt/n. Therefore, for code families such that their alphabet
grows with their length (e.g. Reed-Solomon), this bound & asymptotically tighter.
For sample codes, the new bound is compared to the best knowmdkand are found
to offer improvement even for relatively short codes. Thie@uraging behavior of the
bound is further validated by showing that the bound is véoge, at most a small constant
away, to the algebraic bound of [McEO3a] for RS codes, dedming simpler and more
general - thus proving that RS codes are not significantlyenigt-decodable than any
other code with the sam(gr, d, t) parameters. We note that in [RR03], the authors proved
a similar conclusion that the Guruswami-Sudan algebraimbdan the decoding radius of
a list decoder applies to a general block code. Neverthelbissresult yields no closed
form expression for the list size. Such a simple closed faxpression is often required to
analyze the behavior of the code, as was done in the prevemi®s with lower bounds

on the miscorrection probability. Moreover, the bound présed here is more general and
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may be further tightened using non-Johnson based techsique

5.7.1 Derivation of the bound

For a code with lengtlk and minimum distanceé we want to bound the number of code-
words that can reside in an arbitrary Hamming ball of radiuSimilarly to Elias [EIi91]
and Goldreich et al [GRSO00], our analysis is combinatonal ghus applies to a general
code. In distinction from those known bounds, we give a bowhith is independent of

the alphabet size of the code.

Theorem 5.9 Let C* be a lengthu code over any alphabet of sizeand with minimum
Hamming distancé. Let M(E) be the number of codewords in Hamming distance at most
t from a particular wordE: M(E) = [{C € C* : D(C,E) < t}|. Thenif[(d —1)/2] <

t < d we have

M(E) < Aax(n,2(d — 1), 1) (5.4)

whereA;(n,2(d —t),t) is the size of the largest binagpnstant-weight code with weight

t and minimum distanc®(d — t).

Proof: We first consider the maximal number of codewords onstinéaceof thet ball.
LetM'(E) = |{C € C*: D(C,E) = t}|. We fix E and defineM’ = M'(E). For any pair
of codewordsC;, C; that are both in distandefrom E, we haved < D(C;, C;j) < 2t. We
useX(!) to denote the symbol on tHé coordinate ofX. Then we define a pair of binary
vectorsK;, K; to beK;(l) = 1if C;(I) # E(I) and0 otherwise, similarly forK;. Then
{l: Ki(l) = 1}| = [{m : K;(m) = 1}| = t. We define thespanof two binary vectors as

the number of coordinates that drén at least one of the vectors
span(Xi,X]') =|{I:X()=1}U{m: X](m) =1}

We claim that
span(K;, K;) > d
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Otherwise there were more than- d coordinates in whicl€; (/) = E(I) = C;(I), which
would contradict the distance requiremdn{C;, C;) > d. So a necessary condition to
find M’ codewords in distancefrom E is the existence oM’ binary vectors of weight

t such that each pait, j), i # j, hasspan(K;, K;) > d (note that this condition is not
sufficient since two codewords may haWg!) # E(I), C;(I) # E(I) butC;(I) = C;(I) -
thus violating the minimum distance requirement). Thenefeince no two codewords can
have the same weightbinary vector as theiK vectof, an upper bound on the number of
such binanyK vectors will be an upper bound avi’ for any alphabet size. The weight and
span requirements together imply that the one&;odndK; are allowed to overlap on at
most2t — d coordinatesi{! : Ki(I) = 1} N {m : K;(m) = 1}| < 2t —d. This key fact
allows boundingVl’ from above using bounds on the sizebiriary constant-weight codes

with minimum distance(t — (2t —d)) = 2(d — t):
M/ < Az(ﬂ,Z(d - t)/ t) (55)

To complete the proof we want to show that the upper bounatb6is also an upper bound
on M. We defineW (X) to be the Hamming weight aX and claim the following. If we
haveM binary words such that every pdiK;, K;) taken from them satisfies

(GL)W(K;), W(K;) < t

(G2) spartK;, K;) > d

then there exisM binary words such that any pair satisfies

(PL)W(K;), W(K;) =t

(P2)spar(K;, K;) > d

This implication is established by the following two argumtee First, increasing the weight
of K; or K; by changing arbitrary — W (K) zeros to ones cannot decrease the span. Second,
such modification cannot result in having two identi&alvectors and so the number of
distinct vectors is preserved in the process. The secont suibtle, argument is resolved
by observing that < d and the non-decrease of the span imply that having two iclnti

K vectors with weight violatesspan(K;, K;) > d, in contradiction with (G2) above. O

2such a pair would havepan(K, K) =t < d
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Note that if the alphabet af* is binary ¢ = 2), the inequality (5.4) is useless since
the conditiond < 2t + 1 implies M’ < Aj(n,d,t) < Ax(n,2(d —t),t). However,
as shown in the next sub-section, even for relatively smphabet sizes, the bound on
Ap(n,2(d —t),t) in the next Corollary turns out to be the best known bound enligt

size M.

Corollary 5.10 LetC* be a lengthx code over any alphabet of sigeand with minimum
Hamming distancé. Thenif| (d —1)/2| <t <n (1 —/1- d/n) we have

M(E) < nd—)

— 2 _2nt+dn (5.6)

Proof: To use Theorem 5.9, we first prove that

t<n<1—m):>t<d

This can be done by simple manipulation as follows.

n(l—m) —n—Jn(n—d)<n—(n—d)=d

Now, re-deriving the classical binary Johnson bound [MSZM,17] for the parameters
of (5.4) we get
2 M?
n

2 _
(t——2t+d)M M—zdit
n E_2t+d

—tM < (2t —d)M(M — 1)

<0

Solving for M, we get
n(d—t)
< "
M= t2 —2nt +dn

under the condition
2

t
—=2+d>0 (5.7)
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Solving for the condition (5.7)

t<n|l—4/1—d/n 5.8
(1-y1=dp) 5.8

O
We next turn to analyze the proposed bound (5.6). In subeseBst7.2, we evaluate itin
comparison to the best known closed-form combinatoriahloisyiand give exact threshold
on the alphabet size, above which it is tighter than the presty best known. In sub-
section 5.7.3, we explore the strong link the bound has ted¢keningly unrelated algebraic

bound for Reed-Solomon codes.

5.7.2 Comparison with known combinatorial bounds

A possible justification for g-independent bound arises from the following. Ignoring the
alphabet size in the proof of Theorem 5.9 required us to cthenbverlapping coordinates
towardsd, which is less restrictive (and thus result in a looser bguhdn the Johnson
bound in the binary case. However, if the alphabet size geldenough”, overlapping
symbols are most likely to be different anyway, and the spguirement will capture the
limitation on the number of codewords in the ball. As it tuos, this simplification proves
advantageous for giving strictly tighter bounds for alpétastabove some threshold.

To simplify the analysis we fix the relative distance py= 1 — d/n and the decoding
radius byd = 1 — t/n. Now the bound (5.6) is rewritten as

o—v

M <
52—y

(5.9)

Henceforth we denote the bound in the right hand side of B9M. For nontrivial
codes we requir® < y < 1 and fors we require,/y < 6 < HTV The lower limit is
to maintain positive denominator in (5.9) and the uppertlimpresents decoding beyond
half the minimum distance. The main bound of [GRS00, Thm,4rBjich, to the best of
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our knowledge, is the tightest known, asserts
1-m(1-7)

q
YA he

(5.10)

which for largeq tends toélz‘Tyy, a value larger than (5.9) sinée< 1. The exact alphabet
sizeq, above which (5.9) is tighter than (5.10) can be recovers@, function ofy, 5, by

solving the following inequality foy

(1_7)(1_%) d—vy

G-P-(-Do-1 &

The above simplifies to a linear inequality and yields theshold

5(1+vy)—2y
2 —y

q>qo(y,98) =

Hence we proved the following proposition.

Proposition 5.11 For § > /¥ andg > qo(v, 8), the boundM¢c = (5 —y)/(5* —v)
is the best known closed-form upper bound on the list sizegeharal code with relative

distancel — vy, decoded to relative radius— 9.

Table 5.2 shows a comparison of the bounds for sample cod&s rightmost column is

the gy found above for the corresponding parametegrg, t.

(n,d, 1), q (5.6) | [GRSO0] 40
(31,17,9),32 | 4 10 2
(31,17,10),32 | 31 51 11
(255,33,17),256 | 120 | 239 | 9
(18,17,13),19 | 10 18 8

Table 5.2: Bound comparison for sample decoders

We note that the numbers in column (5.6) of the table do notrawg over values
computed by thenon-closed-formbound of [RR03]. However, the general inequality
M < Ajy(n,2(d —t),t) allows to use stronger bounds on binary constant-weighésod

to potentially improve over the particular Johnson-teglei used in both Corollary 5.10
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and [RRO3]. Such tighter bounds do exist for specific paramseir families of parameters
(e.g. the Erdds-Hanani exact evaluation®of(n, 2t — 2, ) [MS77, Ch.17]). It should also
be noted that the upper bound on the list size given in (5sl@entical to thej-ary John-
son bound for constant-weight codes, hence the new uppedd@.) is tighter than the

g-ary Johnson bound as a bound on constant-weight codes.

5.7.3 Comparison with algebraic bound for Reed-Solomon ca$

The decoding radii for which the proposed bound applieslaoséd that satisfy (5.8). For

Reed-Solomon codes that implies
t<n—y/(k—1)n,

which equals exactly the famous Guruswami-Sudan bound dooding Reed-Solomon
codes efficiently using the GS algorithm [GS99]. This cailecice of domains between
the bounds allows us to set forth a comparison between therglesombinatorial list-size

bound, and the Reed-Solomon specific algebraic bound.

Algebraic list-size Bound

In [McEO3a] McEliece provides a two step, closed form ligiesbound, derived from ar-

guments on maximal degrees of bivariate polynomials. Tl $irep is determining the

minimum interpolation multiplicity required to achieve decoding radiustof

m>(k_1).t+\/n(2t+k—1—n) 1=+ y—25+1

2 —D2—(k—Dn) 7 2(62—v) (5.11)

The second step uses a list-size bohgl that is given as a function of the multiplicity.

1 n
My =~ <m—|—§) P (5.12)

~ here means that the right hand side is less thgreater than the true value of the bound

(this notation was chosen over the usagé-ofto obtain cleaner expressions). Substituting

3In [McEO03a]t is bounded givem: so the expression here is the corresponding bound givent.
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m from (5.11) into (5.12) we get

VY 1-86+VT=25+7v+1(6*—v)
MA ~ .
2 2 —y
So far we have a combinatorial boun- = ‘f{]y and an algebraic boundl 4, above. We
want to argue thad. is close toM 4 despite being more general. The following theorem

shows that when approaching the strongest GS decoder (dgoadlii that attain the GS

bound)M- andM 4 converge to the same bound.

Theorem 5.12 limé_,ﬁ ﬁ—é‘ =1

Proof: Elementary substitutiod = ,/y into A}\fl—é‘
)

It is also possible to show that the differenek- — M 4 is small for generay, 6.

Theorem 5.13 For every pairy, 6 the combinatorial and algebraic bounds on the list size

satisfy

1 2
M-—-—M — |1
¢ A<4[+1—ﬁ}

Proof: We first prove a simple lemma.

Lemma5.14 If \/y < § < 1Y then

1-25+7y
1-26+y>-—"—+"'1 5.13
V — (5.13)

Proof:

1-25+7)2 2
<71_ﬁ ) ~(Vitmiy) =
452y +2+4yy)+H2v(1+y)
a (1—y7)? B

<0

f—/%/_/lw
e

(1= v7)?

>0
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the lemma follows since both sides of (5.13) are positive’se y> < 0 = x < y. O

We are now ready to prove the theorem

1
4

My + [14‘

- >
82—y 41-y) &2 —vy
>\/77_ —y T Y n 3—Vy -y _
2 52—7 41-y) & —vy

_ 6=yt yr-y
LY - W6+ V)

The first inequality follows from Lemma 5.14, the equalitgrin straightforward rearrange-

ments and the last inequality from the positivity of both tluenerator and denominator for
O<y<1l ¥y<s< 0

Substituting sample values gfwe get the following corollary.

Corollary 5.15

(1) Mc = My forall 6 wheny < 0.11

(2) Mc — M < 1forall 6 wheny < 0.51
(B) M¢c — My < 4forall 6 wheny < 0.8
(4) Mc — My < 9forall 6 wheny < 0.9

It is thus concluded that the list decodability of Reed-&wo codes is not known to be
significantly better than that of any other code with the sgrmemeters (apart from the

existence of a constructive way to list-decode them, of ®ur
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5.8 Notes and Open Questions

Analytic treatment of soft-decision algebraic list deosdes hard in general. However,
analyzing the interpolation costs of restricted soft-dexi decoders (such as the one used
here with only two non-zero multiplicities), can help impnag their average running time.

There is still a large gap between the lower and upper bound$h® miscorrection
probability, mainly because of the coarse bounding tealigsed here. It is an interesting
open question whether finer arguments on the degrees ofwomis in the decodability
graph can be used to obtain tighter lower bounds. It is pdeishat using knowledge on
the particular code for such degree arguments will improxex our current method that is
general to any code of the given parameters.

For the problem of finding upper bounds on the codeword-ir, St is interesting to
note that there exist either pure combinatorial bounds @fmeral codes), or pure alge-
braic bounds (for specific codes e.g. Reed-Solomon), betinpiad progress may come by

combining combinatorial and algebraic arguments to olitghter bounds.
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Chapter 6

Forward-Looking Summary

In this short chapter, the author will take a step back fromgmotional attachment to the
research results above, and will instead wear the hat of biased (but positive) critique.
The purpose of this process is to depart from the serial jegapdn-driven mode of presen-
tation, and try to sieve out and evaluate core concepts teahaoduced throughout the
thesis. Then, when a general concept is identified, the sobitee thesis suddenly looks
quite limited, and projecting intriguing and farther-reagy research directions becomes

simple and natural.

¢ In symmetric channels and error models, alphabet symbelsalastract objects that
carry no geometric meaning. The key idea in the construstairChapter 2, is that
when alphabet symbot encompass structure, a powerful technique is to construct
codes that in addition to constraints on the code block, lesecmappings between
the code alphabet and lower alphabets that capture the ggoofi¢he error model.
Admittedly, the error model considered here is a relativaple instantiation of
this idea, so it is a wide and interesting research trajgdmextend this method to

other error models that are motivated by other applications

e Chapter 3 introduces a valuable new characterization oé-¢ocation sets, that is
used to propose an error model callétlistered erasuresEven that specific error
model is only addressed for the case of uptterasures. A very interesting open
guestion is then whether this useful new cluster-basedchkeanzation lends itself to

a nice coding-theoretic treatment in a much broader scope.
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Another important outcome of the results of Chapter 3 isithabme cases departing
from the MDS requirement on the code has minimal negativarhen its correction
capability and significant positive impact on its implenatidn complexity. MDS
erasure codes are heavily used in many fields as an abstijact ¢hften called k
out of n schemes”). In many of these other usages of MDS codes, the raperty
is too strong, and a refinement of the particular model regpénts can similarly

lead to algorithmic savings.

The very regular structure of the new array codes of Chaptend their low-density
parity-check matrices, make them excellent candidates telsoded using iterative
message-passing decoders. However, such decoders weuldhase array codes
as one-dimensional binary codes, not utilizing the stmgctf their column-based
error model. To improve iterative decoding of array codegry promising research
path follows the idea of augmenting the code graphs of arcales with auxiliary
nodes that bias the decoder toward errors that fall into dlsraenber of columns.
It is conjectured that performance gain can be achieved eiiout assuming any

knowledge on the distribution of errors.

If we needed more evidence of the great structure of Reedr8m codes, Chap-
ter 5 has added its small share: analytically characteyimterpolation costs given
instantaneous error weights. Examining and improving Reeldmon decoders un-
der low instantaneous error weights can be generalizeditgdioe same for different
restrictions on the error vectors. The mathematical rissref Reed-Solomon codes

suggests that this may be doable for other such restrictiengell.

The list-size upper bound in the second part of Chapter Shefotlowing remark-

able property. Even though it doest take into account the code alphabet gizeits
derivation, it gives strictly and significantly tighter bmads compared to the Johnson
bound that is a function gf (and has a much more complicated expression because of
that). That happens whens above some relatively small threshold. The new bound
thus proves that generalizing results from binary codesdoy codes in the obvious

way does not necessarily give the best results. Anothecuditfi in generalizing bi-
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nary results to higher alphabets is encountered in Conmeétl in Chapter 2, whose
settlement to the affirmative would prove optimality of thasymmetric/-limited
magnitude code construction for afyandt. Both examples indicate that more at-
tention and more clever techniques are needed toward imqy@ur understanding

of g-ary coding in general.
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