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Doctor of Philosophy

Abstract

This work considers phonon entropy effects on phase stability of three binary alloys: Fe-Cr,

FeAl, and Al-Ag. In all cases the vibrational entropy plays an interesting role.

The phonon density of states was measured on body-centered cubic Fe0.50Cr0.50 pre-

pared as a solid solution, and in increasingly un-mixed states induced by annealing the

solid solution at 773 K. Mössbauer spectrometry was used to characterize the extent of

decomposition after annealing. A neutron-weight correction was performed, using results

from the Mössbauer spectra and recent data on inelastic nuclear resonant scattering from

57Fe-Cr. The vibrational entropy of decomposition was found to be –0.17 ± 0.01 k B/atom,

nearly equal to the change in configurational entropy after spinodal decomposition. Vibra-

tional entropy has a large effect on the critical temperature for spinodal decomposition in

equi-atomic Fe0.50Cr0.50.

The vibrational entropy of formation of vacancies in FeAl is studied in detail. Born von

Kármán calculations show that the point defects due to vacancy formation have a strong

stiffening effect on one of the transverse acoustic branches in the (1 1 0) direction. The

vibrational entropy of vacancy formation is measured to be –0.75 kB/vacancy.

The anharmonic vibrational entropy of FeAl is measured in the temperature range of

10 K to 1323 K. It is shown that there is an abnormally large softening between 10 K and

300 K, which is attributed to a local magnetic moment corresponding to Fe anti-site defects

at 10 K. Also measured is an anomalously small anharmonic entropy between 300 K and

1323 K. This could be caused by thermal vacancies and point defects.
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The anharmonic entropy of Al0.40Ag0.60 have been measured to be extremely large be-

tween 20 ◦C and 520 ◦C. The origins of this anharmonicity are unclear. The anharmonic

entropy of Al0.93Ag0.07 between 20 ◦C and 520 ◦C was found to be fully described by lat-

tice expansion. A large Ag resonance peak was measured in Al0.93Ag0.07 at 20 ◦C. The

Mannheim method was used to show that this peak could make a large contribution to the

increased solubility of Ag in Al at high temperatures.
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Chapter 1

Introduction

1.1 Phase Equilibria: To BCC, or not to BCC, that is the

question...

1.1.1 The State of Equilibrium

Throughout your life you have experienced systems in and out of equilibrium. The research

presented in this work is primarily focused on equilibrium states. Let’s briefly examine the

state of equilibrium.

A system reaches equilibrium once the macroscopic parameters do not experience time

evolution. Within the volume of the equilibrium system, there are no gradients in the

intensive variables of the system (T, P, µ). If there happened to be gradients in the intensive

variables, thermodynamic forces would work to reduce these gradients to zero. Thus, these

forces would work to bring the system to a state of equilibrium.

The equilibrium state is the most energetically favorable state available to the system.

A system that is out of equilibrium will evolve toward equilibrium. The driving force for this

transformation is derived from the requirement that the system minimize its free energy.

1.1.2 Free Energy

The free energy of solid-state phases at atmospheric pressure are described by the Gibb’s

Free Energy to be precise. However, because the volume changes of a solid are small enough

to be negligible and can therefore be described by the Helmholtz Free Energy,
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F = E − TS , (1.1)

where E is the total internal energy, T is the temperature, and S is the total entropy. The

usual contributions to the total entropy can be divided into two groups: static and dynamic.

There are two typical static contributions, atomic configurational and magnetic configura-

tional. The dynamic contributions are: vibrational, magnetic, and electronic. Usually these

dynamic components are independent of each other (or orthogonal). However, in special

cases there can be coupling between these components (phonon-phonon, electron-phonon,

etc.). For nonmagnetic systems there are no magnetic contributions to the total entropy.

The electronic contributions to the total entropy are generally small in magnitude due to the

Fermi temperature being significantly larger than the temperature of the transformation.

1.2 Calculating Phase Diagrams

1.2.1 Starting with the Free Energy

The ability to accurately calculate phase diagrams has been the goal of a great deal of

research. Much progress has been made toward this goal. Materials systems are compli-

cated, however, making accurate calculations hard to achieve and leaving many questions

unanswered.

Phase diagrams are derived from free energy minimization calculations. Of all the

phases available to the system, the phase with the lowest free energy will be the equilibrium

phase. The calculation of a eutectic phase diagram (lovingly referred to here as the bunny

diagram) is shown in Fig. 1.1. If two phases are available to our binary alloy, A1−χBχ, at

temperature Tc, then for χ ≤ c1 the α phase has the smallest free energy and therefore will

be the equilibrium phase; likewise for χ ≥ c2 the equilibrium phase will be β. In the region

where c1 < χ < c2, both the α and β phases will be present with a volume ratio following

the Lever Rule. The common tangent is required for equilibrium when two phases are

present so that the chemical potential of A in phase α is equal to the chemical potential of

A in phase β so that there is no diffusion of A atoms between α and β while in equilibrium;

likewise for B atoms.
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Recently, there has been much headway made in the calculation of E using density

functional theory. This reduces the many-electron problem down to many one-electron

problems. This in combination with linear augmented plane wave, linear muffin-tin or-

bitals, pseudo-potential method, or linear combination of atomic orbitals allows for solving

electronic band structure.

Many advances have been made in the calculation of the total entropy. Calculations of

the static components of the entropy are very advanced now.

The simplest model to calculate the configurational entropy in a binary alloy, A1−χBχ,

assumes a perfectly disordered random solid solution. In other words, each lattice point has

a χ probability of being atom B and a 1−χ probability of being atom A. This is the point

approximation,

S simple
C = −kB

[

(1 − χ) ln(1 − χ) + χ lnχ
]

, (1.2)

where kB is the Boltzmann constant. This model breaks down in cases when clustering

of atom species occur. When the atom species prefer to have neighbors of the same type,

clusters will be present. However, as clustering reduces the configurational entropy, Eq. 1.2

can be used as an upper limit on the configurational entropy in such cases. Modern cal-

culations include this short range order or clustering of atoms with the cluster variation

method (CVM).[16, 17, 19, 32, 33]

Calculating vibrational entropy from first principles remains a challenge, especially for

disordered systems. There has been much progress in calculation of vibrational entropy,

or phonon density of states at low temperatures[46, 57, 62]. However, the temperature

dependence of the density of states is not well-predicted. We hope that our work helps to

aid the understanding of phonons and anharmonic phonon phenomena, allowing for better

future computational predictions of vibrational entropy as a function of temperature.

1.2.2 The Role of Vibrational Entropy

Recently, it has been repeatedly shown experimentally, and accepted by the theoretical com-

munity, that the vibrational entropy, ∆Svib, contribution to certain phase transformations

can be large.[2, 25, 23, 52, 54, 53, 3, 4, 82, 75, 77] Of course, here we are referring to the
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Figure 1.1: Calculation of phase diagrams is done via the free energy.
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change in Svib between two phases. It was previously believed that although the magnitude

of the Svib is large, the difference between phases would be insignificant. Therefore, previous

free energy calculations neglected the Svib contribution to the free energy.

This is in conflict with many systems where the measured change in Svib has been a large

contribution to the change in free energy between phases. One can calculate the percent

change in the critical temperature for transformation by inclusion of the Svib versus no

inclusion of the Svib. First we must assume that the Svib will not change the curvature of

F as a function of concentration (i.e., the Svib is not dependent on concentration).1

Let’s look at the system in Fig. 1.1 for a reference. Consider the critical temperature

for phase α at concentration c1. Define the free energy between phase α and β at which

the phase change will occur as ∆F0. If we only consider the configurational entropy, Sconf ,

the free energy can be written as

∆F0 = ∆E − T0∆Sconf , (1.3)

where T0 is the critical temperature when only Sconf is considered.

Correspondingly, if we consider both Sconf and Svib and call the critical temperature Tc

for this case then:

∆F0 = ∆E − Tc(∆Sconf + ∆Svib) . (1.4)

Setting these two equations equal to each other and reducing to the appropriate form gives

the percent change in the critical temperature due to the inclusion of Svib as

% change = − ∆Svib

∆Sconf + ∆Svib
. (1.5)

We see that the critical temperature is reduced by the ratio of ∆Svib to the total change

in entropy. If ∆Svib is equal to ∆Sconf then the critical temperature will be reduced by

50%! A very large difference. If the magnitude of ∆Svib is equal to ∆Sconf , but their signs

are opposite, the phase transformation disappears.

1This is obviously not accurate; however, if the dependence on concentration is small, this can be a valid

exercise.
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Chapter 2

Neutron Scattering

2.1 Introduction

Neutron scattering is a powerful tool for measuring a large variety of material properties

such as crystal structure (including short range order), magnetic configuration, diffusion

constants, crystal field splitting, phonons, and spin waves.

Neutrons have no charge and therefore do not interact easily with materials. Thus,

they measure bulk properties due to their deep penetration of materials. Neutrons are also

massive, unlike x-rays or electrons. This is an extremely useful property, allowing for the

energy of neutrons to be near that of inelastic processes in the material while still having

wavelengths similar to the lattice constant.

2.2 Spallation Neutron Sources

The majority of phonon measurements in this work were done at spallation neutron sources.

Spallation sources are very efficient for measurements over a large portion of phase space.

A typical spallation neutron source, see Fig. 2.1, begins with front-end systems that

comprise an ion source and preaccelerator that create a pulsed, accelerated H− beam. The

values of energy, pulse frequency, and current range between 750 keV–2.5 MeV, 30 Hz–60

Hz, and 26 mA–30 mA depending on the facility design. New facilities are pushing the limits

of design every time they are built. Next the H− are accelerated to 50 MeV - 1 GeV in a

linear accelerator (linac). The pulses are also focused and directed by the superconducting
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magnets of the linac while they are accelerated.

At the end of the linac, the H− are stripped of their electrons as the pulse enters an

accumulator ring. The purpose of the accumulator ring is to squeeze the pulse in time so

that it is a shorter more intense pulse. The final pulse is approximately 10−6 sec in length.

The final average current delivered to the target is 14 µA to 1.4 mA. The final step is the

spallation of neutrons at the heavy metal target. The target is heavy metal so that there are

plenty of neutrons available to be “spalled,” or knocked out, in a series of nuclear reactions

that expel 20 to 30 neutrons for every incident proton that reacts with multiple nuclei. The

neutrons come out of the target with large energies and in all directions.

Figure 2.1: Typical layout of a spallation neutron facility. This particular schematic is of

the SNS currently being built at Oakridge National Laboratory, due for completion in 2006.

2.3 Direct Geometry Chopper Spectrometer

Inelastic neutron scattering measurements were performed on direct geometry chopper spec-

trometers, Fig. 2.2. First, the neutrons need to be slowed in order to obtain wavelengths

necessary to excite phonons. The neutrons are “thermalized” from energies of MeV to tens
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of meV. This occurs by scattering in a moderator, often water. The neutrons reach a kind of

equilibrium with the material of the moderator, attaining energies useful for phonon scat-

tering. Moderators often use materials with large quantities of hydrogen because hydrogen

is a very large neutron scatterer, thus giving the neutrons opportunity to experience the

necessary energy loss into the moderator through multiple inelastic collisions. The neutron

pulse leaving the moderator is a Maxwellian flux distribution (see Fig. 2.3). the energy

peak of this distribution can be modified depending on the type of moderator used.

Figure 2.2: Typical layout of a direct geometery chopper spectrometer. This particular

schematic is of the High Resolution Medium Energy Chopper Spectrometer (HRMECS) at

Argonne National Laboratory.

The inelastic measurement requires a monochromatic incident beam. Let us assume a

desired incident energy of E = E0. To achieve this, the instruments utilize choppers (noted

as rotors in Fig. 2.2). Each instrument typically uses two choppers. The neutrons first

encounter a t0 chopper; the second is the E0 chopper (or Fermi chopper). The choppers act
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Figure 2.3: The Maxwellian distribution exiting the moderator is shown in blue. The

portion of these neutrons passed by the Fermi chopper is shown in red.

like windows in time; they are open when the neutrons with the desired energy are at the

position of the chopper, and closed at the times when neutrons with the wrong energies are

at the chopper. Thus they “chop” the neutron pulse into a smaller segment in time. The

t0 is employed to pass the neutrons with energy ranging around E0 ± E′ and remove any

high energy neutrons from a later pulse that could be phased just right to get through the

E0 chopper. The t0 chopper also blocks the initial gamma flash and burst of unmoderated

MeV fast neutrons that happens when the proton pulse hits the target. The E0 chopper

refines the energies that reach it through the t0 chopper to a much smaller range of energies,

E0 ± ε, where ε � E ′. The shaded region in Figure 2.3 shows the neutrons that are passed

through the open E0 chopper.

Figure 2.4 gives a graphical explanation of how the t0 and E0 choppers work together to

ensure a neutron pulse that is reasonably monochromatic. The lines radiating from p1 are

neutrons that are part of the first pulse. Their velocities are equal to the slope of the line.

Three energies are shown for p1. The desired energy, E0, is the middle line. The horizontal

lines labeled t0 and E0 indicate the position of the corresponding chopper. They have no

slope because they are not moving in distance as a function of time. When the chopper

is open the line disappears allowing neutrons to pass; conversely the horizontal line does

not allow neutrons that hit it to pass, thus indicating that the chopper window is closed.

First consider p1 alone: The t0 chopper allows many energies through but the E0 chopper

only allows energies very close to E0 through. Now consider what happens upon the second
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Figure 2.4: t0 and E0 chopper timing

pulse, p2. Everything is the same for the second pulse as it was with the first save one

thing, the t0 chopper stops a low energy neutron, which the dashed line shows would have

been let through the E0 chopper. If this low energy neutron had not been stopped by the

t0 chopper it would have corrupted the data.

Energy resolution and neutron flux are inversely related in this type of instrument. The

longer the E0 chopper window is open, the more neutron flux on the sample, and the larger

the range of incident energy on the sample which corresponds to a lower energy resolution.

In other words, to have better energy resolution the width of the red region in Fig. 2.3

will decrease; however that will also reduce the area under the curve of the red region,

which is the total flux on the sample. Another way to view the energy resolution of the

spectrometer that is from the E0 chopper is seen in Figure 2.5. The solid line indicates the

desired incident energy. The longer the chopper is open the more neutron energies will be

able to pass, contributing to the energy resolution of the instrument.

The monitors measure the incident neutron flux, which is used in the normalization of

data sets. Many instruments utilize the advancing collimation technologies. LRMECS has
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Figure 2.5: An alternate view of the range in energies that pass through the open Fermi-

Chopper. The longer the the chopper is open, the more energies pass.

a Soller collimator to reduce angular spread of the neutrons after leaving the Fermi chopper.

Collimators absorb neutrons that are divergent. Also available are neutron guides, which

are made of neutron-reflective materials that will increase the neutron flux on the sample

however divergence remains.

The neutrons scatter inelastically with the sample exciting available states within the

sample. In this work we will assume all the energy change in the neutron goes into the

creation or annihilation of phonons. Neutrons can excite spin waves; however, magnetic

scattering is most prominent at low scattering angle, and these data can be neglected in

the subsequent analysis.

The loss or gain of the energy of each neutron is determined from its change in velocity.

The incident energy is monochromatic with known incident velocity. For the fixed distance

in the instrument, the time at which the neutron scatters from the sample is known. This,

along with the time the neutron reaches the detector, gives the velocity of the scattered

neutron. Thus it is a simple calculation to find the energy loss or gain of the neutron.
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This time-of-flight design means that the sample is assumed to be at one point in space,

the radius point for the detector array. Real samples have dimension; neutrons scattered

from the edge of the sample have a different path length from the scattering point to the

detector. If the scattering event is elastic and is closer to the detector than the radius point,

the calculated energy of the scattering event will look inelastic. It will look as though the

neutron gained energy upon scattering. This will contribute to the energy resolution of

the experiment. For example, cylindrical geometry samples will have a double elastic peak

surrounding the zero energy point.

2.4 Coherent and Incoherent Scattering

First consider the interference of two waves: Ψ1 = A1 exp [i(−ωt) + φ1] and

Ψ2 = A2 exp [i(−ωt + φ2)]. The intensity of the superposition of the two waves is

I = |Ψ1 + Ψ2|2 = |Ψ1|2 + |Ψ2|2 + Ψ∗
1 · Ψ2 + Ψ1 · Ψ∗

2 . (2.1)

I = A2
1 + A2

2 + 2A1A2cos∆φ . (2.2)

Let’s generalize the above to a superposition of N waves with the same frequency. The

superposition of all the waves is

Ψ =
N
∑

r=1

Ψr . (2.3)

The total wave will oscillate with frequency, ω, and with an amplitude that is the result of

the phasor sum of each of the individual waves. If all the component waves are inphase then

the amplitude is maximized. The minimum will be zero unless one component amplitude

is so large that the component amplitudes cannot cancel it.

The phasor for the wave is

Ψr = A0e
−i(ωt−φr) . (2.4)
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Therefore the intensity will be

I = |A0|2
∣

∣

∣

N
∑

r=1

eiφr

∣

∣

∣

2
. (2.5)

The exponential can be expanded as

∣

∣

∣

N
∑

r=1

eiφr

∣

∣

∣

2
=
(

∑

r

cosφr

)2
+
(

∑

r

sinφr

)2
(2.6)

∣

∣

∣

N
∑

r=1

eiφr

∣

∣

∣

2
=
∑

r

cos2φr +
∑

r 6=s

∑

s6=r

cosφrcosφs +
∑

r

sin2φr +
∑

r 6=s

∑

s6=r

sinφrsinφs . (2.7)

If all the phases are the same, then we have coherent constructive interference and the

intensity of the superposition is N 2A2
0. If the phases are, however, uncorrelated, then they

are incoherent. If N is also large then the terms with double summations in Eq. 2.7 will

average out to zero as they will have equal amounts of positive and negative contributions.

This will leave
∑

r

(cos2φr + sin2φr) =
N
∑

r

1 = N , (2.8)

giving the intensity of incoherent superposition of waves to be NA2
0. We see now that the

intensity of of the superposition of incoherent waves is

I = ΣN |ΨN |2 , (2.9)

where the intensity of the superposition of two coherent waves is

I = |ΣNΨN |2 . (2.10)

All waves interfere; it is the nature of a wave to interfere with other waves. However,

when many waves are interfering it is helpful to consider whether their phase relationships

are fixed or varying. Coherent scattering produces very different results than incoherent

scattering. A coherently scattered wave has a distinct phase relationship with the incident

wave. This being the case, the interference of the waves will be magnified by all the other

coherently scattered neutrons. The interference of coherently scattered neutrons gives rise

to variation in intensity with scattering angle. In contrast, waves scattered incoherently



14

do not maintain a distinct phase relationship with the incident wave after scattering. The

phase relationship varies randomly for each scattering event. Therefore, the interference of

each pair of scattered incoherent waves will be “washed out” once averaged over all phase

relationships. Incoherently scattered neutrons do not have sharp intensity variations with

angle. They can vary with angle; indeed, phonon scattering increases as a function of the

square of the phonon moment.

2.5 Multiphonon Scattering

The simplest type of inelastic scattering is when one neutron scatters off the sample creating

or annihilating one phonon, seen on the left hand side of Fig. 2.6. However, also possible

is an N-phonon process which is any scattering that involves a total of N phonons. Also

shown in Fig. 2.6 are all the possible two-phonon processes. These processes are detailed

in Chapter 3.
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Figure 2.6: Phonon Scattering Processes
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Chapter 3

Data Analysis

3.1 Raw Neutron Scattering to Vibrational Density of States

3.1.1 Incoherent Approximation

The incoherent approximation [67, 56] is an essential step to the multiphonon correction.

Within the incoherent approximation we are able to assume that the coherent scattering

summed over all angles approximates the incoherent scattering up to a scaling factor. The

idea is that the variations in coherent scattering will average, once summed over all angles,

to be similar to the incoherent scattering. This approximation is particularly well-suited to

poly-crystalline samples since they access more angles than the detector array.

3.1.2 The One-Phonon Scattering Function

Raw data from the chopper spectrometer are in the form of counts vs. angle and time-

of-flight. This raw data includes artifacts of each detector’s efficiency (or sensitivity). In-

dividual detectors have different efficiencies that vary over the lifetime of the detector. A

correction for this variation in efficiency is performed by utilizing a vanadium spectrum.

Vanadium is used because for all practical purposes V scatters completely incoherently; the

cross-sections for V are σinc=5.08 barns and σcoh=0.02 barns. Therefore, the scattering in-

tensity varies smoothly as a function of angle, so any sharp variations in the counts between

detectors is due to detector efficiency variations. Thus, V data give correction factors for

detector counts, allowing a normalization of the detector array.
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Data also need to be normalized by the total number of monitor counts (i.e., the total

number of incident neutrons). For example, if we are going to compare samples A and B,

and sample A was measured twice as long as sample B, then the data need to be normalized

in such a way as to keep sample A from having two times the intensity necessary for the

comparison. Therefore, sample A should be divided by two, otherwise it will have twice the

scattered intensity. This correction is performed by dividing by the monitor counts for all

data sets (monitor 1 can be seen in Fig. 2.2).

The data are then converted or re-binned into angular bins that are approximately

10 ◦ per bin. The time-of-flight axis is also re-binned into energy bins of approximately 0.5

meV. The energy axis represents energy transferred from the neutron into the sample and

is taken to be the energy of the phonon created (> 0) or annihilated (< 0).

Next we subtract the “time-dependent background.” This is the empty can data. It is

usually best to subtract (1− a) times the empty can spectra if your sample is a (a× 100)%

scatterer. This is often best left to the eye for judgement; by overlaying the background

spectra on the data and playing with a multiplication factor so that the high energy back-

ground is mostly removed you may find that you get a better result. (Note: This is only

valid for room temperature and lower measurements where multiphonon scattering is small.)

Typically the factor is between 0.9 and 1.1 Let’s call the data up to this point “raw-data∗”.

The data at this point can be seen in Fig. 3.1, and an enlargement of the inelastic scattering

can be seen in Fig. 3.2.

Once the above corrections have been performed on the raw-data* the data are:

(

∂2σ

∂Ω∂E′

)

total

=
∑

N

[

(

∂2σ

∂Ω∂E′

)

coh±N

+

(

∂2σ

∂Ω∂E′

)

inc±N

]

, (3.1)

the sum of both the coherent and incoherent scattering for all N-phonon processes. However,

within the incoherent approximation after summing over all angles for a poly-crystalline

sample it is assumed that all scattering is incoherent:

1One can use data from a cadmium absorber run in combination with the empty can to account more

accurately for the time-dependent background. However I have not found that this is necessary as the error

is minimal.
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Figure 3.1: Raw neutron scattering data (raw-data*) for angle bins 20 ◦–30 ◦, 60 ◦–70 ◦, and

100 ◦–110 ◦.
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Figure 3.2: Raw inelastic neutron scattering data (raw-data*) for angle bins 20 ◦–30 ◦, 60 ◦–

70 ◦, and 100 ◦–110 ◦.
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(

∂σ

∂E′

)

total

=
∑

N

a

(

∂σ

∂E′

)

inc±N

, (3.2)

where a is a constant coefficient.

Conveniently, the one-phonon scattering can be related to the vibrational density of

states (DOS), which is what we are after! [67]

(

∂2σ

∂Ω∂E′

)

inc±1

=
σinc

4π

k′

k

N

4M
κ2 exp(−2W )

g(ω)

ω

{

coth

(

h̄ω

2kBT

)

± 1
}

, (3.3)

where σ is the the incoherent cross-section of the scattering atom, and k and k ′ are the initial

and final wavevectors, respectively, of the scattered neutron. The change in wavevector of

the scattered neutron, κ = |~κ| = |~k−~k′|, is taken to be the average value of κ for each angular

bin; 2W is the Debye-Waller factor; and g(ω) is the vibrational density of states. Notice

that the inelastic scattering intensity is proportional to κ2 (i.e., increases with scattering

angle). In Fig. 3.2 you can see the phonon scattering intensity increases as κ2 in Eq. 3.3.

From Eq. 3.3, it follows that if we can isolate the incoherent 1-phonon scattering from our

data then it is just a matter of scaling factors to get the DOS. To be left with only the 1-

phonon scattering data, the 0-phonon (or elastic) scattering and the multiphonon scattering

involving a total of 2 or more phonons (or 2-∞ phonon scattering) must be removed from

the our data.

First consider the 0-phonon or elastic scattering correction. The elastic scattering must

be removed. This can be a very daunting task. However, the other factors in the double

differential cross-section approach zero with such strength that it tends to wash out the

elastic peak. This allows for some error in the elastic peak correction. After trying many

different methods including fitting the elastic peak to a Voigt function, Peter Bogdanoff[4]

found that a simple horizontal cut of the elastic peak at the point where inelastic scattering

is obviously present was the easiest method. It has proven to be quite reliable and is

appropriate theoretically within the continuum limit.[4, 6] The “Corrected Data” in Fig. 3.3

has had the elastic peak removed.

Removal of the 2-∞ phonon scattering is not as easy to accomplish. We are at least

able to assume the 6-∞ phonon scattering is negligible, requiring only the 2-5 phonon
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scattering to be taken into account. If this were not true, we would be in the classical

limit and identification of the phonon spectrum would be impossible. Fig. 3.3 also shows

the calculated 2-5 multiphonon scattering, the “Corrected Data” are the data after the

elastic and the multiphonon correction. The next section covers the multiphonon scattering

calculation in detail. So assuming we can calculate the 2-5 phonon scattering as described

below; we can extract the DOS by an iterative process that converges on the Debye-Waller

factor, see Fig. 3.4 for a reference.

For the first iteration, we calculate an initial rough DOS by assuming the raw data is

completely incoherent one-phonon scattering. We do this by dividing out the extra factors in

Eq. 3.3 for each angular bank. We then utilize the incoherent approximation by summing

over all angular bins (see Sect. 3.1.1) leaving only the rough DOS, g ′(ω). In this first

iteration we guess a value for the average mean-square displacement of the atoms for the

Debye-Waller factor. For a room temperature measurement, < u2 >= 0.02Å2 is a good

start. This rough DOS, g′(ω), is then used to calculate the 2-5 multiphonon scattering

(described in Sect. 3.1.3). The 1-5 multiphonon scattering is fit to the raw-data∗ (see

Fig. 3.3) to obtain the scaling factor for the 1-5 phonon scattering. The rough DOS is also

used to calculate the Debye-Waller factor for the next iteration. Now that the multiphonon

contribution is calculated. We start with the raw-data∗, subtract the elastic peak and the

multiphonon scattering from it, which gives us a better estimate of the incoherent one-

phonon double differential cross-section from which we can calculate a new estimate of the

DOS using the mean-square displacement measured from the last DOS. Now we iterate

this process until we converge on the average mean-square displacement or essentially the

Debye-Waller factor. [5]

3.1.3 Multiphonon Scattering Correction

Sect. 2.5 has shown that the scattering of neutrons can excite and annihilate phonons with

infinite possible combinations. Multiphonon scattering processes occur when two or more

phonons are involved in a single scattering of a neutron. All multiphonon scattering must

be removed from the data to achieve scattering involving only one phonon. This is an

essential step in the previous section. This section explains the process that starts with
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Figure 3.4: Iterative data reduction, described in the text to extract the DOS.
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the first estimate of the DOS, and proceeds to generate the intensity from a 2-phonon

through 5-phonon multiphonon scattering. [5] The calculated multiphonon scattering is

then subtracted from the raw data to isolate the 1-phonon scattering, from which a better

DOS is created, using the procedure described in Sect. 3.1.2.

All scattering is assumed to be incoherent in the multiphonon correction. Inclusion

of the coherent scattering has not yet been attempted, as this would require an in depth

simulation of lattice dynamics to obtain the ~κ dependence of the scattering. However the

incoherent approximation has proven to be reliable for powder samples even when there is

large coherent scattering from the sample. This is because the powder averages over all ~κ

covering a large portion of reciprocal space.

The double-differential cross-section can be written for incoherent scattering in the form

(

∂2σ

∂Ω∂E′

)

inc±N

=
σinc

4πh̄

k′

k

N

n!
e−2W

(

3h̄

2m

)n
[

P (ω)
]n−convolution

, (3.4)

where

P (ω) =
〈(~κ · ~es)

2〉ω
ω

g(h̄ω)〈nω + 1〉 +
〈(~κ · ~es)

2〉−ω

−ω
g(−h̄ω)〈n−ω + 1〉 , (3.5)

and nω is the Bose-Einstein distribution. The convolutions are calculated as

[P (ω)]1−convolution = P (ω) , (3.6)

[P (ω)]2−convolution =

∫ ∞

−∞
P (x)P (ω − x)dx . (3.7)

To achieve the 3-phonon convolution one can convolve the 1-phonon with the 2-phonon;

computationally this turns out to be the easiest as the 1- and 2-phonon convolutions are

already stored in memory.
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3.1.4 Partial Density of States

Each atomic species, d, of concentration χd in an alloy has a partial density of states

(PDOS), gχ
d , which combine linearly to create the DOS:

g(E) =
∑

d

χ
d
gχ
d (E). (3.8)

3.1.5 Introduction to Neutron-Weighting and Various Corrections

“Neutron-weighting” is a term used to describe the distortion of the DOS that is caused by

the varying efficiency of different isotopes in scattering neutrons. Therefore, what is mea-

sured by inelastic neutron scattering is the “neutron-weighted density of states” (NWDOS),

which is a weighted linear combination of the PDOS:

gnw(E) ∝ exp(2W )
∑

d

gχ
d (E) exp(−2Wd)

σd

Md
, (3.9)

where exp(−2Wd) is the Debye-Waller factor, σd is the total scattering cross section, and

Md is the molar mass of atom d. The factor exp(2W ) is the average Debye-Waller correction

calculated from the self-consistent neutron-weighted DOS. We can consider exp[−2(W −
Wd)] = 1, an assumption that is most reliable at low temperatures. Thus,

gnw(E) = A
∑

d

gχ
d (E)

σd

Md
xd , (3.10)

where the normalization factor, A, depends on concentrations of the elements and their

scattering strengths,

A =

(

∑

d

σd

Md
χd

)−1

. (3.11)

One can see the neutron-weighting factor, σd/Md, quite clearly when comparing Eq. 3.10

to Eq. 3.8. If σd/Md for all atomic species were equal, Eq. 3.10 would equal Eq. 3.8.

Many methods of correcting for this scattering efficiency difference have been developed

for alloys. The most straightforward is to measure multiple samples under the same measur-

ing conditions with appropriately weighted isotopic distributions so as to remove all scatter

from all but one element. Although this method is very reliable, it can be prohibitively
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expensive.

3.2 Quasi-Harmonic Vibrational Entropy

By measuring the DOS it is possible to calculate the vibrational entropy using the quasi-

harmonic approximation. This measurement includes the vibrational entropy due to the

thermal expansion of the lattice and is given as

Svib(Tm, Tp) = 3 kB

∫ ∞

0
g(E, Tm)

[

(nE (Tp) + 1) ln(nE (Tp) + 1) − nE (Tp) ln(nE (Tp))
]

dE ,

(3.12)

where g(E, Tm) is the DOS measured at Tm, and nE(Tp) is the Bose-Einstein factor popu-

lated at the temperature Tp. Notice that the DOS is weighted by a thermal factor in square

brackets. This factor lays more weight to the low energy modes than to the high energy

modes. This is displayed in Fig. 3.5. The final integrand clearly has higher contributions

at lower energies.

One way to think of this is to consider classical harmonic oscillators. If two simple

harmonic oscillators are at the same temperature and are identical except for different

spring constants, k, which will have more vibrational entropy?

The thermal energy available to the harmonic oscillators will be E, thus the maximum

energy attained by that oscillator will be

E =
kx2

2
+

p2

2m
, (3.13)

where k is the spring constant, p is the momentum, m is the mass on the end of the spring,

and x is the position of the mass. The number of states explored by the system is related

to the phase-space explored by the system. The phase-space can be seen by plotting p vs.

x, Fig. 3.6. Recall from geometry the equation of an ellipse is

1 =
x2

α2
+

p2

β2
, (3.14)

therefore the area of phase-space accessible to the system is elliptical. If we put Eq. 3.13 in
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Figure 3.5: When the DOS is weighted by the thermal factor, the low energy vibrational

modes have a larger contribution to the quasi-harmonic entropy than the high energy modes.
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this form we get

1 =
kx2

2E
+

p2

2mE
, (3.15)

showing that

α =

√

2E

k
, β =

√
2mE . (3.16)

If the two oscillators have spring constants k1 and k2, where k2 < k1, then which

oscillator has more entropy? Notice that a decrease in k corresponds to an increase in

α, since β stays the same, and the area of the ellipse (παβ) or the phase-space increases.

That means that the number of states explored by the spring, Ω, increases because Ω is

proportional to the area of the ellipse. Therefore, because

S = kBlnΩ , (3.17)

the entropy increases as k decreases. So the softer the spring constant, the more entropy

of the oscillator. Thus, the spring with k2 will have more entropy than the spring with

k1. For a harmonic oscillator, k = mω2, where omega is the frequency of vibration. The

energy of vibration is h̄ω, so if the energy of the vibration decreases then ω decreases and k

decreases. We already showed that a decrease in k is an increase in entropy. So a decrease

in vibrational energy is an increase in entropy. This is one way to understand why low

energy modes contribute more entropy to the system.

Figure 3.6: Effect of the energy of vibration on the entropy of vibration.
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3.3 Anharmonic Vibrational Entropy

3.3.1 Measurement of the Anharmonic Vibrational Entropy

The most obvious model for lattice vibrations is the Born von Kármán model. This as-

sumes that the crystal is made of masses (atoms), which are connected to each other by

springs (atomic forces). This model is essentially an immense system of coupled harmonic

oscillators. Of course, no atomic potential is purely harmonic, but for low temperatures the

harmonic potential well is a reasonable first-order approximation.

Unfortunately, at higher temperatures the harmonic model begins to break down as the

atoms begin to access higher energy states. It is not necessarily so obvious how one would

measure the anharmonic vibrational entropy. How do you separate the harmonic from the

anharmonic within the total vibrational entropy for high temperature data?

It is best to first define what the anharmonic vibrational entropy is. Theoretically

the anharmonic vibrational entropy would be the entropy associated with changes in the

DOS due to a non-harmonic atomic potential well. The total vibrational entropy will be

the sum of the anharmonic and the harmonic contributions. For some familiarity with

these two contributions, let’s briefly explore some of the differences between harmonic and

anharmonic potentials and crystals.

The perfect harmonic crystal does not experience lattice expansion as the temperature

increases. Lattice expansion is caused by the break in symmetry of the atomic potential

energy wells of the atoms in the crystal. In a harmonic well the average atomic posi-

tion remains constant at all energies. Also the DOS of a perfect harmonic crystal is not

temperature-dependent. In the anharmonic well the average position shifts with energy.

We can now write down a method for extracting the anharmonic vibrational entropy

from our data. To measure the anharmonic entropy we must have two DOS curves from

the same phase at different temperatures, T1 and T2. T1 should be a low temperature; room

temperature is really the upper limit for this if one is trying to get the purely harmonic

contribution. T2 can be any temperature at which anharmonic effects might be large enough

to notice. What we want to do is measure the difference between what the harmonic sample

would be at high temperatures and what the in-situ sample was at high temperatures. In
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general, using Eq. 3.12,

SAnh = STot(T2, T2) − SHarm(T1, T2) , (3.18)

where we are populating the harmonic DOS at the high temperature to get the harmonic

vibrational entropy at T = T2.

3.3.2 Contributions to the Anharmonic Vibrational Entropy

Contributions to the anharmonic vibrational entropy include lattice expansion, phonons

coupling with themselves, or other phenomena (such as electrons or magnons). It can be

very difficult to figure out which of these are contributing and how much they contribute.

There is a great deal to learn in this field of lattice dynamics.

One of these contributions is well-understood, lattice expansion. Lattice expansion will

“soften” the DOS–as the lattice expands, there is a reduction in the atomic forces between

the atoms corresponding to softer springs. We can use thermodynamics to get the magnitude

of the lattice expansion contribution to the anharmonic entropy.

The expansion of the lattice against the bulk modulus requires elastic energy. The

vibrational entropy must balance this and can be calculated as

SAnh
V ib,Elastic(T1, T2) =

∫ T2

T1

9Bνα2dT , (3.19)

where B is the bulk modulus, ν is the specific volume, α is the coefficient of thermal

expansion, and T1 and T2 are the low and high temperatures over which the anharmonic

changes occur. Ideally, the low temperature, T1, would be as close to 0 K as one can get

experimentally. However, often this is 300 K as it is experimentally easier to measure the

DOS at this temperature.

3.4 Bond-Length vs. Bond Stiffness

We often find ourselves needing the ability to predict the relationship between a bond’s

length and its stiffness (or force constant). The bond stiffness and how it changes with

various conditions is directly related to the DOS and how the DOS changes with the same
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conditions. Stiffer bonds result in a DOS that exists at higher energies while softer bonds

correspond to smaller energies. Recently, there has been theoretical work on this matter

that can help us in the bond length vs. bond stiffness question.

Although we seek intuition and understanding, the theoretical community’s interest in

the question of bond length vs. bond stiffness has also been derived from the need for

calculational efficiency. The largest portion of ab-initio calculations of phonon DOS comes

from the time spent calculating the force constant tensor. The primary goal of the work

on this matter has been to reduce this time by using force constants calculated for one

structure to predict another structure’s force constants. Sluiter et al.[66] and van de Walle

and Ceder[74] found that force constants are not directly transferable between different

structures. However in the work by van de Walle and Ceder[74] it was shown that in

general a particular chemical bond will stiffen as the bond length decreases. Therefore by

breaking apart the structure into bond types (A-B, A-A, and B-B) and considering the

change in the length of these bonds after a phase transition van de Walle and Ceder can

gain better precision in their calculations. An extensive review of this subject is found in

Ref. [76]. We can therefore be somewhat secure in assuming that for a given chemical bond,

if the bond length is decreased the bond will stiffen.
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Chapter 4

Vibrational Entropy of Spinodal Decompostion in

FeCr

4.1 Introduction

This work explores the contribution of vibrational entropy to the phase stability of FeCr.

The Fe-Cr system has a region of spinodal decomposition in its phase diagram. Spinodal

decomposition has been a phenomenon of much theoretical debate over the years and contin-

ues to be re-examined. Since the famous Cahn-Hilliard non-linear diffusion equation[9, 10]

many improvements have been made to decomposition theory. The original advancements

simply increased the precision of the non-linear term.[69, 38, 72] Now that modern com-

puters are capable of calculating the full diffusion equation, simulations have been used to

describe the dynamics of decomposition.[51, 49, 70] Recently, a new method to calculate

decomposition based on the Onsager equation has been developed[78] and modified[35].

During spinodal decomposition of Fe-Cr, the alloy that is originally in a state of solid-

solution decomposes, or unmixes, in a continuous process into a state with Fe-rich and

Cr-rich regions. The internal energy term favors a completely un-mixed state, while the

configurational entropy of mixing promotes the fully mixed state. Unlike structural phase

transitions, which occur from one crystal structure to another, each structure with its own

free energy curve, spinodal decomposition occurs within a single crystal structure with a

single free energy curve that in a simple model has a double minima at low temperatures

where the internal energy term dominates over the entropy term. At high temperatures the
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configurational entropy works to stabilize the solid-solution state. Thus the internal energy

must overcome the configurational entropy contribution at lower temperatures in order to

un-mix. The curvature of each term in the free energy with respect to concentration drives

the decomposition. Appendix A gives a brief introduction to spinodal decomposition. It is

not clear how or if the vibrational entropy would be concentration-dependent, or even if it

is important.

A large amount of work has been done on the Fe-Cr system. Much of this work has

focused on the spinodal decomposition region of the alloy due to its connection with the

brittleness of ferric stainless steels.[81, 79] Therefore the kinetics of decomposition has been

of particular interest.[73] Mössbauer spectroscopy[13] and position-sensitive atom probe[47,

48, 11, 29] continue to be utilized in these studies to view the configurational state as

a function of decomposition, the latter obtaining a three-dimensional atomistic sample

mapping.

Thermal neutron scattering from cubic crystals can be used to measure directly the

vibrational density of states (DOS) of an alloy. The quasi-harmonic approximation gives a

way to calculate the vibrational entropy from the DOS. However the spectra measured by

neutron scattering for an alloy are weighted by the scattering efficiency of each elemental

isotope in that alloy. Therefore unless isotopes are combined in proper proportions to

balance scattering from all elements, which is not always possible and can be prohibitively

expensive, the spectra provide a neutron-weighted DOS (NWDOS). Here a novel approach is

used to correct for neutron-weighting, thus obtaining a true DOS from which the vibrational

entropy of decomposition is measured, –0.17 ± 0.01 kB/atom. This vibrational entropy is

approximately equal to the configurational entropy of decomposition. Additionally, the

critical temperature for spinodal decomposition is lowered by 20% of its original value by

including the vibrational entropy into the free energy.

4.2 Experimental Methods

Shots of 99.99% Fe and 99.995% Cr were weighed to make stoichiometric FeCr samples

within an error of 0.1 atomic percent. These were then arc-melted in an argon atmosphere,

with negligible mass loss and little visible surface oxidation. FeCr ingots were cold-rolled to
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1.5 mm thick, optimizing the sample geometry for a 10% neutron scatterer. Next, samples

were heat-treated to obtain various states of decomposition. The decomposed samples were

annealed at 500 ◦C in a small argon atmosphere for 12, 46, and 433 hours and allowed to

air cool. The solid-solution sample was quenched into ice brine from 1000 ◦C.

X-ray diffraction data were taken on an Inel CPS-120 position-sensitive detector with Co

Kα radiation. These data confirmed that the crystal structure was body-centered cubic. De-

termining the extent of decomposition of each sample is not easily done by x-ray diffraction.

However, Mössbauer spectrometry is an ideal technique to determine the amount of decom-

position attained by the anneal, especially for ferromagnetic Fe-rich phases. Mössbauer

spectrometry measures the chemical environments surrounding the Fe atoms. Spectra con-

sist of dips (hereafter referred to as peaks) that correspond to the 57Fe nuclear excited state

energy splitting caused by the hyperfine magnetic fields (HMF) at 57Fe nuclei.

The Mössbauer spectrometer utilizes a radioactive source, dilute 57Co in Rh, which emits

a γ-ray of energy that is approximately equal to the energy of the unperturbed 57Fe nuclear

excited state, Eo. This source is mounted on a Doppler drive that oscillates the source,

moving it towards and away from a stationary sample. Data are in the form of counts

vs. velocity of the Doppler drive, where velocity is directly related to energy. From the

Mössbauer spectra of the Fe alloy, it is possible to tell how many Cr atoms are first nearest

neighbors (1nn) around each Fe atom. This is covered more thoroughly in section 4.3.1. The

Mössbauer spectra that were measured are consistent with previous experimental data.[13]

Time-of-flight inelastic neutron scattering data were taken on both the Low Resolution

Medium Energy Chopper Spectrometer (LRMECS) and the High Resolution Medium En-

ergy Chopper Spectrometer (HRMECS) at the Intense Pulsed Neutron Source in Argonne

National Laboratory. On both chopper spectrometers the thin walled aluminum cans, 7

cm x 10 cm and 10 cm x 11 cm respectively, of powder samples were measured at a 45

degree angle w.r.t. the incident beam, minimizing self-shielding. LRMECS data were mea-

sured with an incident energy of 55 meV; 60 meV was used for HRMECS. All samples were

mounted on a displex refrigerator and measured at room temperature and atmospheric

pressure. Spectra from empty aluminum cans were also obtained for both instruments.

Spectra were re-binned into energy from time-of-flight. Data were corrected for detector
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efficiency using a white beam vanadium spectrum and normalized w.r.t. the incident flux

on the samples. The time-independent background was removed. The time-dependent

background empty can spectra were then removed from their corresponding sample spectra.

Detector data were re-binned into angular bins of 10 ◦ each. LRMECS data angular range

was taken to be 60 ◦ to 120 ◦. The low angle data were neglected to significantly reduce

any magnetic scattering. The HRMECS data angular ranges were 38 ◦–59 ◦, 88 ◦–91 ◦and

102 ◦–133 ◦. Spectral data less than approximately 5 meV were linearly approximated in the

hydrodynamic limit. All extra factors in the one-phonon double-differential cross-section

were divided out, leaving the NWDOS in an iterative incoherent approximation process

that converges on the mean-square displacement of the atoms from equilibrium and the 2-5

multiphonon scattering. [5] The iterative process assumes a one-phonon scattering function

to create a vibrational density of states. The NWDOS is used to find the two through five

multiphonon scattering contribution to the scattering function which is then removed. The

above data reduction is described in detail in sections 3.1.2 and 3.1.3.

4.3 Results

4.3.1 Mössbauer Spectroscopy

Mössbauer spectroscopy measures the local environment at Fe atoms through effects of

HMF. Cr neighbors contribute to that HMF by contracting the full width of the spectra

w.r.t. a pure Fe spectrum. Each Fe with m Cr neighbors within the shell of interest

contributes a sextet of peaks that is added to produce the total spectra. Using the additive

perturbation model (APM)[22], these sextets can be modeled, including isomer shifts, to

fit the experimental spectra and find the concentration of Cr in Fe. The APM calculates

shifts in reference to a pure Fe sample. The isomer shift moves the sextet for Fe with m Cr

neighbors uniformly by an amount m∆i. The isomer shift depends on the element being

alloyed with Fe. In our case, Cr has an isomer shift of ∆i = −0.02 mm/sec, slightly shifting

all sextets to lower velocities than the pure Fe spectra.

In the case of Cr in Fe, the first and second nearest neighbor shells (1-2 shells) can be

considered as one shell because the HMF and isomer shift contributions are equal for 1nn
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and 2nn chromium. The sextet is composed of three pairs of peaks, each at approximately

±vi, where i goes from 1 to 3. These peaks are approximately positioned at points that are

symmetric across v = 0. From the APM the ∆vm
i or difference in velocity between peaks

in pair i, for Fe with m Cr neighbors in the shell of interest, each pair represented by i, can

be measured.

∆vm
i = ∆vFe

i + m
[

∆Hx
1,2 + κc

]( ∆vFe
i

330kG

)

, (4.1)

where ∆Hx
1,2 is the change in the HMF of Fe due to one Cr in the 1-2 shells, ∆vFe

i is the

full width of pure Fe spectra, m is the number of Cr neighbors in the 1-2 shells around

each Fe, and κ is the cumulative contribution to the HMF of Cr in neighbor shells beyond

the 2nn shell. For Cr the 1nn shell (eight atoms for bcc) and 2nn shell (six atoms for bcc)

are combined into one shell of 14 atoms. In the calculation of the APM all numbers of

Cr neighbors have been considered, therefore, m ∈ {1, 2, ..., 14}. Eq. 4.1 gives the sextet

positions for Fe atoms having m Cr atoms in the 1-2 shells. By a linear combination

of sextets calculated using ∆vm
i for m ∈ {1, 2, 3, 4, 5}, the positions of all peaks in the

measured spectra are calculated. The relative intensities of the component peaks must also

be included in the calculation. The pure Fe sextet peak intensities, from negative velocity

to positive velocity, are typically 3, 3, 1, 1, 3, and 3. We assume a random solid-solution and

use the binomial distribution factors to weight the population distribution fractions of Cr

neighbors for Fe in the shell of interest at a given concentration. The binomial distribution

factor is

P (M,m,χ) =
M !

m!(M − m)!
χm(1 − χ)M−m , (4.2)

where M is the total number of neighbors in the shell of interest, m is the number of Cr

neighbors in the shell of interest, and χ is the concentration of Cr for the alloy. Because

the 1-2 shells have been combined into one shell for Cr, M = 14.

Our solid-solution spectrum was broader than previous work done on Fe-60 at. % Cr[13];

however this is still consistent as the larger Cr concentration will contract the distribution.

The decomposed data are superpositions of two spectra: one from the Fe-rich regions of the
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sample, which will be similar to pure Fe, the other from the Cr-rich regions of the sample.

In the spectrum from material subjected to a 433 hour anneal, the Cr-rich region gives a

paramagnetic peak in the spectra. Experimental Mössbauer spectra from all samples can

be seen in Fig. 4.1. The dashed lines are the best fit of the APM to the spectra giving a Cr

percentage, χ. For the solid-solution spectra, χ is the original Cr concentration of 50%. For

the decomposed spectra, χ is the Cr concentration in the Fe-rich regions. This measured

composition is an average composition, therefore it should slightly take into account the

interfacial regions where the sample changes from Fe-rich to Cr-rich. The composition

deduced for the most decomposed sample is consistent with previous measurements of the

spinodal for this alloy after an anneal of 433 hours at 500 ◦C.[80, 13]

4.3.2 The FeCr Neutron-Weight Correction

In our case, natural Fe scatters neutrons three times more than natural Cr, or σFe/mFe =

3σCr/mCr. The iterative technique, described previously in Chapter 3, results in the

NWDOS, thus the Fe PDOS is overweighted by a factor of 3.

Ruckert, Keune, and Sturhahn, et al. have performed inelastic nuclear resonant x-ray

scattering (INRXS) on various α-Fe(001)/Cr(001) multilayer materials produced by mole-

cular beam epitaxy with different layering orders.[31, 60] INRXS measures only scattering

from 57Fe thus, obtaining the 57Fe PDOS. Novel experiments were performed using 57Fe,

which has resonant scattering, and 56Fe, which does not. The experimenters directly mea-

sured PDOS for monolayers of 57Fe atoms in different layer positions, which corresponds

to 57Fe PDOS from Fe with increasing numbers of Cr neighbors in the 1-2 shells of 57Fe.

Table 4.1 gives data labels and layering order for each of the INRXS samples.

Equation 3.8 showed that the linear combination of PDOS from each alloy component

combines to make the DOS of the alloy. To approximate a neutron-weight correction for our

data using the experimental INRXS data, the Fe PDOS must be broken apart further into

a linear combination of Fe PDOS with increasing numbers of Cr neighbors in the 1-2 shells.

This additional separation of the PDOS assumes that the DOS of the alloy is primarily

described by first and second nearest-neighbor interactions, a reasonable assumption as the

force constants for Fe and Cr are dominated by the 1-2 shells. For our data this means that
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Figure 4.1: Experimental Mössbauer data from all samples. The additive perturbation

model was used to calculate all fits to the experimental spectra and are shown as dotted

lines. The Cr concentration of the sample or Fe-rich regions (where appropriate) are also

given.
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Label FeCr1 FeCr2 FeCr3 FeCr4

Layering Order 56Fe/ 57Fe/ 56Fe Cr/57Fe/ 56Fe Cr/57Fe/Cr 57Fe0.03Cr0.97

µ 0 5 10 13.58

{m}µ [0,1,2] [3,4,5,6,7,8] [9,10,11] [12,13,14]
∑

m∈{m}µ
P (χ = 0.20) 0.448 0.552 0.000 0.000

∑

m∈{m}µ
P (χ = 0.38) 0.054 0.904 0.042 0.000

∑

m∈{m}µ
P (χ = 0.45) 0.017 0.864 0.117 0.002

∑

m∈{m}µ
P (χ = 0.50) 0.006 0.782 0.206 0.006

∑

m∈{m}µ
P (χ = 0.55) 0.002 0.661 0.320 0.017

∑

m∈{m}µ
P (χ = 0.62) 0.000 0.452 0.494 0.054

∑

m∈{m}µ
P (χ = 0.80) 0.000 0.044 0.508 0.448

Table 4.1: Inelastic nuclear resonant x-ray scattering Fe-Cr multilayer sample

information.[60] In samples FeCr1, FeCr2, and FeCr3 the 57Fe layer is a monolayer or

one atom thick. The layers surrounding the 57Fe layer are significantly thick. FeCr4 is a

regular bulk non-layered alloy of 57Fe0.03Cr0.97.
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we should further separate the Fe PDOS into a linear combination of PDOS from each Fe

with m Cr neighbors in its 1-2 shells,

gχ
Fe(E) =

∑

m∈[0,1,2,..14]

P (M = 14,m, χ)gFe,m(E) , (4.3)

where χ is the Cr concentration of the alloy, and gFe,m(E) is the Fe PDOS for Fe with

m Cr neighbors in its 1-2 shells. Unfortunately, the INRXS data were obtained for only

four samples, each with a certain number of Cr atoms in the 1-2 shells of 57Fe, where µ is

the number of Cr neighbors for these samples. Thus by re-binning m into µ we obtain the

fraction of Fe atoms in the alloy Fe1−χCrχ that have µ Cr first and second nearest-neighbors.

This binning range will be referred to as {m}µ. Values for µ and {m}µ are given for each

INRXS sample in Table 4.1. Incorporation of the new re-binning changes Eq. 4.3 to

gχ
Fe(E) =

∑

µ

[
∑

m∈{m}µ

P (M = 14,m, χ)]gµ
Fe,Layered(E), (4.4)

where gµ
Fe,Layered(E) is the normalized measured Fe PDOS from the layered INRXS samples.

The values of
∑

m∈{m}µ
P (M,m,χ) for each χ are seen in Table 4.1. Equation 4.4 is an

approximation for the Fe PDOS of a random bcc Fe-Cr binary alloy with Cr concentration

χ. Thus, Eq. 4.4 was used to correct the neutron-weighting of the solid-solution data,

χ = 0.5. Equation 4.4 is in a form where it can be used in Eqs. 3.8 or 3.10.

However, for the 433 hour anneal data there is a 50% volume fraction of χ = 0.2 and

a 50% volume fraction of χ = 0.8. This complicates the Fe PDOS by dividing it into two

Fe PDOS–one for the Fe-rich region and one for the Cr-rich region. Thus the combined Fe

PDOS including the concentration factor is:

gχ
Fe(E)χ

Fe
=

∑

χ=0.2,0.8

χνχgχ
Fe(E), (4.5)

where νχ is the volume fraction associated with each χ. Equation 4.5 is in a form where

it can be substituted into Eqs. 3.8 or 3.10. It should be noted that the probabilities are

normalized:
∑

m

P (M,m,χ) = 1 =
∑

µ

[
∑

m∈{m}µ

P (M,m,χ)]. (4.6)
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Figure 4.2: Neutron-weight corrected density of states of FeCr, measured on LRMECS at

the Intense Pulsed Neutron Source.

The calculated Fe PDOS can then be employed in a neutron-weight correction for the

solid-solution and the 433 hour anneal. From Eq. 3.10 the process for a neutron-weight

correction is clear. The Fe PDOS is used along with the weighting factors χσ/M , which are

all known, to isolate the Cr PDOS in the measured data. Once the Cr PDOS is isolated

the true, unweighted DOS (Eq. 3.8) is calculated. These corrected DOS curves are seen in

Fig. 4.2 and Fig. 4.3. The decomposed samples show a distinct and increasing stiffening of

all modes with the amount of decomposition. All modes of the DOS stiffen monotonically

with decomposition of the alloy. This stiffening will suppress the vibrational entropy.

The quasi-harmonic vibrational entropy is calculated by Eq. 3.12 with Tm = 20 ◦C and

Tp = 500 ◦C. The vibrational entropy of decomposition is then given by
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Figure 4.3: Neutron-weight corrected density of states of FeCr. Neutron-weight cor-

rection was performed using previously measured Fe partial density of states from α-

Fe(001)/Cr(001) multilayers.
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∆SV,anneal time = SV,anneal time − SV,solid solution , (4.7)

and was calculated for all anneal times. The results were ∆SV,12Hr = –0.01 ± 0.01 kB/atom,

∆SV,46Hr = –0.035 ± 0.01 kB/atom, and ∆SV,433Hr = –0.17 ± 0.01 kB/atom.

4.4 Discussion

4.4.1 Comparison to Configurational Entropy

Configurational entropy calculations for disordered binary alloys have grown beyond the sim-

ple model of the point approximation, Eq. 1.2, for a perfectly disordered alloy. The cluster

variation model has proven to be more accurate. Experimentally, previous diffuse x-ray scat-

tering measurements on Fe0.53Cr0.47 found a slight clustering in the alloy.[59] However, for

the purpose of a simple comparison between the configurational entropy and the vibrational

entropy, Eq. 1.2 will be useful and adequate. It is, nevertheless, worth noting that the cluster

variation model will calculate a smaller configurational entropy than Eq. 1.2 by constrain-

ing the configurational possibilities. Thus Eq. 1.2 will give the uppermost bound on the

configurational entropy. When considering this effect on ∆SC = S433Hr
C −∆SSolid Solution

C it

is clear that if the solid-solution sample experiences some clustering as expected, ∆S simple
C

will be larger than the true ∆S real
C . It is also worth noting that using Eq. 1.2 to calculate

the configurational entropy for the decomposed alloy also assumes implicitly an atomically

sharp interface between large Fe-rich and the Cr-rich regions. However in reality the inter-

face in a spinodally decomposed sample will have some width, perhaps characterized by a

function resembling the error function. This means that the calculated ∆S simple
C is larger

than ∆S real
C . Because the APM gives an average Cr concentration for the Fe-rich zones,

the clustering and interface is included in that average to some extent. Thus the correction

to ∆S simple
C for obtaining a true ∆S real

C could be small. For our two extreme concentra-

tions of Fe-50 at. % Cr and Fe-20 at. % Cr, Eq. 1.2 gives a maximum possible value for

the change in configurational entropy, ∆S simple
C = −0.19kB/atom. Thus, ∆SV ≥ 8

9∆SC , a

truly thermodynamically significant result. Figure 4.4 shows the full comparison between

the vibrational and configurational entropy of decomposition as a function of annealing
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time, and hence degree of decomposition.

-0.15

-0.10

-0.05

0.00
∆S

 [k
B
/a

to
m

]

4003002001000
Time Annealed [Hours]

 ∆Svib

 ∆Scf

Figure 4.4: The development over time of the neutron-weighted vibrational entropy of

decomposition.

4.4.2 Effect on Critical Temperature

In the mean-field approximation, spinodal decomposition in a binary alloy of solute concen-

tration χ occurs below a critical temperature TC, at which the curvature of the free energy

with respect to concentration is zero at χ. The fractional change of the critical temperature

by including the vibrational entropy with the configurational entropy, as opposed to the

configurational entropy alone, depends on curvatures with composition

TCcf − TC

TCcf
=

S ′′
vib(χ)

S ′′
cf(χ) + S ′′

vib(χ)
, (4.8)
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where TCcf is the critical temperature assuming all entropy is configurational, TC is the

critical temperature assuming entropy is configurational and vibrational, S ′′
vib(χ) is the

second derivative of the vibrational entropy with respect to χ, and S ′′
cf(χ) is the second

derivative of the configurational entropy with respect to χ.

To assess the effect of vibrational entropy on the critical temperature for un-mixing

through Eq. 4.8, we used Eq. 1.2 to obtain the curvature S ′′
cf(χ = 0.5) = −4 kB/atom.

Measurements of Svib at different Cr concentrations are needed to obtain the vibrational

entropy as a function of χ, and then its curvature. Force constants for Fe and Cr were

obtained by fitting triple-axis measured phonon dispersions to a set of Fe-Cr alloys, and

these force constants were used in a Born von Kármán simulation to calculate a DOS.[24]

These DOS curves gave vibrational entropies shown in Fig. 4.5, from which we obtain an

approximate numerical value S ′′
vib(χ = 0.5) = −1.0 kB/atom. With these curvatures, Eq.

4.8 predicts a decrease in critical temperature for spinodal decomposition of 20%. This is a

large effect, and is consistent with the large change in vibrational entropy during spinodal

decomposition that was measured in the present work.
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Figure 4.5: Vibrational entropy versus Cr concentration, Svib(χ), calculated in the harmonic

approximation. The five data points are from triple-axis measurements on Fe and Fe1−xCrx

alloys[24] and Cr.[63] The dashed line connects elemental Fe and Cr. The third order

polynomial fit to the alloy data is shown as the solid line and was used to obtain S ′′
vib(χ =

0.5). The magnitude of the measured vibrational entropy of unmixing, −0.17 kB/atom is

shown and labeled.
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The low vibrational entropy of the Cr-rich regions does not occur until high Cr concen-

trations are reached, perhaps correlating with the loss of ferromagnetism. This is consistent

with the larger stiffening of phonon DOS for the alloy heat treated for 433 hours, which

showed a paramagnetic peak in its Mössbauer spectrum. The change in vibrational entropy

after 433 hours (–0.17 kB/atom), is almost precisely the difference between the entropy of

the solid solution and the average entropy of pure Fe and pure Cr, as shown by Fig. 4.5.

The present results, taken with the previous results[24], indicate that the vibrational

entropy does not change significantly until zones are formed with high Cr concentration,

causing these zones to be destabilized somewhat owing to a higher free energy. The phase

boundary for spinodal decomposition therefore should be asymmetrical about the compo-

sition of χ = 0.5, being suppressed to lower temperatures at high Cr concentrations. R. O.

Williams presented experimental data of the miscibility gap in comparison to theoretical

results, see Fig. 4.6.[81] The vibrational entropy would cause an asymmetry such as that

seen in these experimental data. It is also possible that the kinetics may be slowed in the

later stages of spinodal decomposition owing to this asymmetry of vibrational entropy, but

many other factors affect kinetic processes besides the change in free energy. Further study

of the vibrational entropy in alloys of high Cr concentration would be appropriate.

4.5 Conclusions

Inelastic neutron scattering spectra were measured for stoichiometric FeCr samples with in-

creasing degrees of spinodal decomposition, giving neutron-weighted vibrational densities of

states. It was found that all vibrational modes of the density of states stiffen monotonically

as decomposition progresses. Mössbauer spectra confirmed spinodal decomposition of the

samples and gave the average Cr concentration from the Fe-rich regions through analysis

with the additive perturbation model. A neutron-weight correction was performed, giving

the vibrational entropy of decomposition to be –0.17 ± 0.01 kB/atom after 433 hours of

annealing at 500 ◦C.

The simple model of a perfectly disordered crystal gives the configurational entropy

of decomposition to be approximately −0.19kB/atom, making the vibrational entropy of

decomposition approximately equal to the simple configurational entropy of decomposition.
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Figure 4.6: Experimental measurement of the miscibility gap in Fe-Cr in comparison to

theoretical calculations.[81]
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The inclusion of the vibrational entropy term into the free energy calculation was shown

to decrease the critical temperature of spinodal decomposition by 20%. The vibrational

entropy has been shown to play a thermodynamically significant role in the decomposition

of FeCr.
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Chapter 5

FeAl Vacancy Effects in Vibrational Entropy

5.1 Introduction

For quite a long time it has been known that aluminum has large vacancy concentrations.[65]

However, only more recently has the Al alloy B2 FeAl been noted for its large vacancy

concentrations. The phase diagram of Fe-Al is shown in Fig. 5.1[30]. It is now well-

known that B2 FeAl has an abnormally high vacancies concentration at high temperature

in equilibrium, particularly at off-stoichiometric Al-rich concentrations. Alloys of FeAl have

been of interest because of a strong correlation between hardness and heat treatment.[50]

It was eventually shown, quantitatively, that the hardness is due to the large vacancy

concentration in the alloy, establishing that the hardness is proportional to the square of

the vacancy concentration.[14] Chang et al. concluded that vacancies more strongly affect

the movement of dislocations in the B2 lattice than do anti-structure atoms. Later, a

detailed x-ray diffraction study showed a clear contraction of the lattice parameter with

increase in vacancy concentration.[34] Thermodynamic studies of vacancy formation have

given valuable insight into the high vacancy concentrations of this alloy. For example,

positron annihilation measurements were performed on this system measuring the entropy

and enthalpy of vacancy formation.[83]

We have measured the vibrational entropy of vacancy formation in B2 FeAl using in-

elastic neutron scattering. It was found that vacancies have a relatively small effect on the

DOS as a whole. However, the vibrational entropy of formation per vacancy is significant

and is negative! Thus the vibrational entropy does not favor vacancy formation.
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Figure 5.1: Fe-Al Phase Diagram.[30]
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5.2 Experimental Methods

Samples of B2-ordered FeAl with 0.5%, 1.8%, 3.1% vacancies were prepared by quenching

from 550 ◦C, 875 ◦C, and 1100 ◦C, respectively. The measured samples were prepared as

follows. The original ingots were produced by C. T. Liu’s research group at the Oak

Ridge National Laboratory. These ingots were sliced using electric discharge machining

into 1 mm thick pieces to optimize for 10% scattering. The samples were then sealed into

argon atmosphere quartz tubes and quenched into iced brine from their respective quench

temperatures.

The density, ρ, of each sample was measured via gravimetric analysis using ethanol as

the floatation medium. Approximately 22 pieces from each sample were measured giving

the statistics in Table 5.1. X-ray diffraction patterns from all samples were acquired using

an Inel CPS-120 diffractometer with Co Kα radiation and a position-sensitive detector.

A body-centered cubic (bcc) crystal structure was confirmed and lattice parameters were

measured by the XRD data. The density measurements along with lattice expansion give the

vacancy concentration using a Simmons and Balluffi[65] method of vacancy concentration

measurement that was modified to use density, ρ, rather than length, L.

χvac ≈ 3
(∆L

L
− ∆a

a

)

≈
(−ρ

∆ρ
− 1

)−1
− 3∆a

a
(5.1)

The above equation gives the relative vacancy concentration, χvac, between two samples

relative to the low concentration sample. At 550 ◦C, χvac does not equal zero. It has been

measured that χvac ≈ 0.5% at 550 ◦C.[34] It is necessary to offset the measured χvac by

+0.5% giving the values in Table 5.1.

Sample ρ [g/cm3] σ a [Å] χvac [%]

550 ◦C 5.57 0.03 2.9168 0.5

875 ◦C 5.5 0.03 2.9161 1.8

1100 ◦C 5.48 0.01 2.9079 3.1

Table 5.1: Density measurements

Six pieces were taken from the ingot for electron microprobe measurements. Three to
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six positions within these six pieces were then measured for a total of 22 measurements of

local chemical composition. The overall average measured alloy concentration was 50.3±0.2

atomic percent Fe and 49.7±0.2 atomic percent Al. Trace amounts of Ni were also measured

in the sample, 0.006 ± 0.01. The samples were shown to be reasonably homogeneous in

concentration.

We used LRMECS to acquire time-of-flight inelastic neutron scattering data at the

Intense Pulsed Neutron Source of Argonne National Laboratory. Samples were mounted in

thin-wall aluminum cans, 7 cm×10 cm, using an incident beam of monochromatic neutrons

with an energy of 60meV. The flat sample packages were tilted at a 45 ◦ angle off the

direction of the incident beam to minimize self-shielding. All spectra were measured at

room temperature. Background data were acquired from the empty aluminum cans under

the same conditions.

The raw data of intensity versus time-of-flight in the different detector tubes were re-

processed into intensity versus energy, and then converted into an approximate, or “neutron-

weighted” phonon density-of-states using the following steps. The raw data were corrected

for detector efficiency using a white beam spectrum from a vanadium plate, and normal-

ized by the incident flux on the samples. The time-independent background was removed.

The time-dependent parts of the background acquired from the empty cans were then sub-

tracted. Detector data were re-binned into angular bins of 10 ◦ each, using scattering angles

up to 120 ◦. The low-angle data (angles less than approximately 35 ◦) were neglected to min-

imize contributions from magnetic scattering. After subtraction of an elastic peak centered

about 0meV, the data below approximately 5meV were approximated as a straight line,

as expected in the continuum limit. Corrections were then made for thermal factors and

multiphonon scattering (two- through five-phonon processes), using an iterative procedure

in the incoherent approximation (see sections 3.1.2 and 3.1.3).
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5.3 Results

5.3.1 Inelastic Neutron Scattering

The neutron-weighted DOS are obtained after performing the above corrections. These DOS

are seen in Fig. 5.2. The scattering weight ratio Fe:Al of 3.74:1 is quite large, requiring a

neutron-weight correction.
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Figure 5.2: Neutron-weighted FeAl DOS.

A neutron-weight correction is possible because B2 FeAl has a two atom basis (i.e., the

crystal is ordered). Therefore this system will have both acoustic and optical modes. The

number of modes will be divided equally between the optical and acoustic branches. In

this particular system the acoustic and optical branches are well-separated. It is therefore

possible to simply correct the data such that there are equal numbers of acoustic and optical
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modes in the DOS. It is important to understand that this is not a perfect correction, the

fine structure of the DOS may be slightly incorrect–peaks associated with the Fe partial

DOS will remain slightly over emphasized. However, it is a good approximation. Fig. 5.3

shows the neutron-weight corrected data.
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Figure 5.3: The vibrational entropy per vacancy is significant.

B. Meyer et al.[46], calculated the DOS of B2-ordered FeAl using the frozen-phonon

and the ab-initio force constant method within the density-functional theory in local den-

sity approximation and the ab-initio mixed-basis pseudopotential method, see Fig. 5.4.

They calculate phonon dispersion data, which is compared to experiment, Fig. 5.5. The

dispersion momentum directions are defined w.r.t. the Brillouin zone in Fig. 5.6. The gap

energy between the acoustic and optical modes in the measured DOS data is consistent with

calculated DOS of Meyer. We could also use Meyer’s DOS to perform a neutron-weight

correction. However, as this would not correct the vacancy modes in the low energy gap
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region, and as those modes are the only major differences between the measured DOS curves

of different samples, this procedure would not affect the measured vibrational entropy of

formation.
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Figure 5.4: Calculated B2 FeAl DOS by Meyer et al.[46]

5.4 Discussion

5.4.1 Changes in the Phonon DOS

We consider crystallographic features that would affect the origin of the observed vacancy

effects in the DOS, and we propose an explanation for the changes measured in the DOS.

The alloy of B2 FeAl has been studied extensively. In particular, the characteristics of

vacancy formation have been a point of extreme interest and much previous work on vacancy

configuration as a function of equilibrium temperature will be utilized.

Reasonably modern phase diagrams of the B2 phase region at concentrations near
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Figure 5.5: Calculated B2 FeAl Dispersions by Meyer et al.[46]

Figure 5.6: Brillouin zone directions used in Meyer et.al.[46]
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Fe0.50Al0.50 show a high temperature (HT) and a low temperature (LT) region, see Fig.5.7.

The two regions are differentiated by their vacancy concentrations. The HT “phase” has a

significant increase in equilibrium vacancy concentration.[36]

Figure 5.7: Fe-Al phase diagram [36].

Diego et al. have strong evidence that Fe vacancies dominate in the LT region and triple

vacancy defects, shown in Fig. 5.8, dominate in the high temperature region of the B2

structure.[15]

Consider which directional interatomic forces will be most affected by the vacancies. All

directions will be affected slightly from the contraction of the crystal. However, directions

that include both vacancy and interstitial should have larger effects on the force constants.

The (1 1 0) direction is an example of this; it also happens to be the most affected direction

measured in the DOS.

Figure 5.9 gives a better view of the atomic configuration on a (1 1 0) plane. From
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Figure 5.8: Triple-defect configuration at high temperatures.[15] Large balls represent Fe

atoms, small balls represent Al atoms, and squares indicate vacancies.
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Figure 5.9: (1 1 0) crystal plane is highlighted blue in the triple-defect region of the

crystal.[15]
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XRD data it is known that the lattice contracts around the vacancy sites. [34] Not only

will there be a collapse of the crystal due to the vacancies along that direction which will

stiffen the vibrational modes, but the resulting stiffening will most likely be compounded

by the anti-site Fe atom.

The anti-site Fe will replace the body-center to body-center Al-Al bond with a Fe-Al

bond. Using first nearest-neighbor force constants from Fe, Al, and FeAl we can show that

the Fe-Al bond would most probably have a larger force constant than the Al-Al, which

would constrain the motions of the Fe and Al in the (0 0 1) direction. This constraint would

be along the direction of motion of these atoms in a transverse mode. This is not an exact

calculation because the Al crystal structure is fcc (face-center cubic) in comparison to the

Fe and Fe-Al bcc structure. The force constants will be affected by the crystal structure

and the neighboring bond types of the atoms in question. However, we expect that the

forces here are still relevant in their relative magnitude with each other.

To calculate these bond forces we simply use the force constant tensor. When we

multiply the direction of motion of the neighboring atom to the tensor the result is the

force vector acting on the reference atom caused by the motion of its neighbor. The generic

force constant matrix is

K =













xx xy xz

yx yy yz

zx zy zz













. (5.2)

Both Fe and FeAl are bcc; their K will be simplified by symetry operations to

Kbcc =













xx xy xy

xy xx xy

xy xy xx













. (5.3)
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Aluminum is fcc; its K will have a different simplified result:

Kfcc =













xx xy 0

xy xx 0

0 0 zz













. (5.4)

Consider bcc: the first nearest-neighbor in the bcc structure is along the normalized

(1 1 1) direction. Therefore to calculate the force, ~fbcc, on the atom at the origin upon

motion of the body-center atom in a radial direction w.r.t. the origin atom, we have

~fbcc = Kbcc ∗ ~rbcc =













xx xy xy

xy xx xy

xy xy xx

























1√
3

1√
3

1√
3













. (5.5)

Values for Fe are xx = 16.88 and xy = 15.01 arb. units and Fe-Al has values of xx = 16.563

and xy = 18.926 arb. units. Using these values the magnitude of the force on the atom at

the origin is | ~fFe−Fe| = 46.9 arb. units for a Fe-Fe bond and | ~fFe−Al| = 54.4 arb. units for

a Fe-Al bond.

The first nearest neighbor in the fcc structure is along the normalized (1 1 0) direction.

Therefore to calculate the force, ~ffcc, on the atom at the origin upon motion of the face-

center atom in a radial direction w.r.t. the origin atom, we have

~ffcc = Kfcc ∗ ~rfcc =













xx xy 0

xy xx 0

0 0 zz

























1√
2

1√
2

0













. (5.6)

Born von Kármán fits of Al phonon dispersion have measured values of xx = 10.4578,

xy = 10.3657, and zz = −2.6322 in arb. units giving | ~fAl−Al| = 20.8 arb. units for

an Al-Al bond. The Fe-Al bond is significantly stiffer than the Al-Al bond contributing

to the stiffening of the transverse acoustic branches. This force constant method is also

consistent with the types of bonds that are being dealt with. The Fe-Fe bond is dominated

by d-electron bonding, which can be treated in the tight-binding approach. The bond

integral, from the overlap of the 3d electrons in a region of potential, is strongly sensitive
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to interatomic separation and bond angles. The Al-Al bond is more consistent with a

free-electron model, and more sensitive simply to electron density. The Fe-Al bond has

been studied by the theory community, and has been found to have significant covalent

character.[8, 7, 68, 12] 1 A greater stiffness of the Fe-Al bond than the Al-Al bond is

therefore plausible by analysis of bond types and force constants.

As mentioned in Sect. 5.3.1, Meyer et al. calculated the DOS of FeAl using experimen-

tal data and a Born von Kármán model. Although Meyer did not include vacancies in

their calculations, we can still reference their data to consider which dispersion might be

changed by vacancies and cause the shifts seen in our measured DOS. Without having di-

rect dispersion measurements of FeAl with vacancies, it is not possible to know for certain.

Because the vacancies produce only very minute changes in the DOS, using Meyer’s cal-

culation and previously measured FeAl dispersion data for comparison is quite reasonable.

We do not expect the dispersions to change so drastically that a different branch (other

than the red branch) would be contributing to this “shoulder.” Luckily, only the transverse

acoustic dispersion contributes to the “shoulder” at the high energy side of the acoustic

modes, thus it is the sole contributor. This dispersion is along the (1 1 0) direction and

has been highlighted in Fig. 5.10 as the thick-solid (red) line. The horizontal (green) line

in the figure shows the corresponding area in the calculated and measured DOS. It is seen

that the increase in modes at the high energy acoustic “shoulder” with increasing vacancy

concentration corresponds directly to energies associated with the highlighted (red) (1 1 0)

dispersion.

As mentioned, the triple defect could cause a noticeable increase in interatomic forces

along the (1 1 0) direction. This would in turn cause the wave velocity, dw/dk, to increase;

a dashed (red) line in Fig. 5.10 has been superimposed on the data for an example of what

this shift might look like. The dashed line would correspond to the increase in modes at

the acoustic “shoulder” caused by vacancies.

1Some have even gone so far as to call FeAl intermediate between a metal and a ceramic.
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Figure 5.10: (1 1 0) crystal plane in the triple defect.[15]

5.4.2 Vibrational Entropy of Vacancy Formation

Using the quasi-harmonic approximation, Eq. 3.12, the vibrational entropy of each DOS

can be determined and results are given in Table 5.2. To convert from vibrational entropy

per atom to vibrational entropy per vacancy we use the conversion factor

N − v

v

[# of atoms]

[# of vacancies]
=

N

v
− 1 =

1

χvac
− 1 , (5.7)

where N is the number of lattice points in the crystal and v is the number of vacancies in

the crystal. So N − v is the number of atoms in the crystal.

Vacancy Concentration [%] Vibrational Entropy [kB /atom] Error [kB /atom]

0.5 2.95 0.01

1.8 2.93 0.01

3.1 2.93 0.01

Table 5.2: Vibrational entropies if B2 FeAl with quenched in vacancies.

To obtain the average vibrational entropy of vacancy formation between vacancy con-

centrations 0.5% and 3.1% we have taken the difference in the vibrational entropy per atom

from the DOS and then converted using a concentration of 2.6% vacancies to get values

per vacancy. The difference in vibrational entropy between the samples with 0.5% and the
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3.1% vacancies gives a vibrational entropy per vacancy as −0.75±0.53kB/vac. We compare

this to the corresponding configurational entropy of formation.

Let us first look at the discrete calculation. We use our measured values for the vacancy

concentrations: The χvac = 0.005 sample would have concentrations χFe = 0.4975 and

χAl = 0.4975. Similarly, the χvac = 0.031 sample would have concentrations: χFe = 0.4845

and χAl = 0.4845. Using the ternary form for the configurational entropy of mixing,

Sconf(Ternary) = −kB

(

χvaclnχvac + χFelnχFe + χAllnχAl

)

, (5.8)

the average configurational entropy of vacancy formation is Sconf (χvac = 0.031)−Sconf (χvac =

0.005) = 3.4kB/vac, making the magnitude of vibrational entropy of vacancy formation 20%

of the configurational entropy of vacancy formation.

We can also consider the instantaneous change in the configurational entropy to calculate

the configurational entropy of vacancy formation. To do this we use Eq. 5.8 and we set

χFe = χAl = (1 − χvac)/2, then take the derivative ∂S/∂χvac and evaluate the derivative

at χvac = 0.005 and χvac = 0.031. By taking the average of these two values we obtain

the average configurational entropy of vacancy formation between vacancy concentrations

of 0.5% and 3.1%. This was found to be 3.7 kB/atom, similar to the value obtained by

taking the discrete derivative in the previous paragraph.

5.5 Conclusions

Due to the small concentration of vacancies with respect to the number of atoms, the va-

cancies and vacancy related effects on the phonon DOS are small but measurable. When

measured per vacancy however, the vibrational entropy of formation is much more signifi-

cant, –0.75 kB/vac. This is not negligible, however it also is not very large considering that

the corresponding configurational entropy of formation is 3.7 kB/vac. The fact that the

vibrational entropy of vacancy formation is negative, i.e., not favoring formation, is quite

interesting and rather unexpected.
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Chapter 6

Anomalous Anharmonicity in FeAl

6.1 Introduction

Most research on FeAl has focused on the thermal vacancies in the system, originating from

concerns about the brittleness of this material at temperatures above 400 ◦C. To date there

has been little to no work on the phonon thermodynamics of the B2 FeAl system. Thermal

vacancies and point defects could affect the thermodynamics, and are important to know

and understand. Our measurements begin to fill this gap in knowledge for the FeAl system.

There has also been much interest in the magnetic states of Fe-Al alloys. Local magnetic

moments in Fe around vacancies and defects have been calculated [7, 37] and measured [7]

along with magnetic susceptibility [84]. Of most relevance to the present work are the

measurements and calculations by Bogner et al. [7], where a compression of the lattice is

calculated around Fe anti-site defects due to Fe magnetic moments.

In the present work we found a large softening of the phonon DOS between 10 K and

300 K. However the softening becomes a stiffening of the acoustic modes and a broadening

of the optical modes between 300 K and 973 K. This increases even further at 1323 K. The

stiffening is quite surprising as the lattice expands between 300 K and 1323 K. We find

that the phonons in FeAl show extremely strong anharmonicity even at low temperatures.

We explore the possibility that point defects are responsible in part for this anharmonic

behavior.
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6.2 Experimental Methods

The same B2-ordered FeAl from the last chapter with 0.5%, 1.8%, 3.1% vacancies were used

in this experiment. Sample preparation was the same as is described in Ch. 5

Time-of-flight inelastic neutron scattering data were acquired with the LRMECS in-

strument at the Intense Pulsed Neutron Source at Argonne National Laboratory and the

PHAROS instrument at the Los Alamos Neutron Science Center (LANSCE) at the Los

Alamos National Laboratory.

Samples for LRMECS were mounted as described in Ch. 5 and the incident energy was

60 meV. Spectra were measured at room temperature and 10 K using the LRMECS displex

refrigerator. Time-dependent background data were acquired from the empty aluminum

cans under the same conditions.

Samples for PHAROS were mounted in an AS Scientific (ILL) furnace and measured in-

situ at 300 K, 973 K, and 1323 K. The samples were placed in a niobium sample holder, made

of a single layer of 0.075 mm thick foil. Time-dependent background data were acquired for

the furnace without the Nb sample holder. However, the vibrational DOS of Nb has been

measured for temperatures 293 K, 773 K, 1773 K, and 2223 K[27]. Negligible softening of

the DOS is seen between 293 K and 773 K, and very little softening is observed between

293 K and 1773 K. Low energy modes soften by approximately 1 meV between 293 K and

1773 K, therefore the softening of the Nb sample holder will be less than 1 meV. The cutoff

energy undergoes negligible changes between 293 K and 1773 K. Also, because the Nb DOS

is at very low energies, with a cutoff energy of 25 meV, the Fe scattering in the sample

will dominate over the Al at these energies (see Fig. 5.4). Furthermore, the neutron-weight

coefficient of Nb is 1/3 that of Fe. All of this along with the fact that the mass of Nb in

the neutron beam was 1/2 that of the mass of Fe means that the Nb scattering intensity

is approximately 1/6 that of the Fe scattering. Therefore the scattering from the Nb will

not affect the differences between the FeAl DOS at different temperatures. The Nb DOS

curves are shown in Fig. 6.1.[27]

All raw inelastic neutron scattering data were processed as before into neutron-weighted

DOS curves. The previously described neutron-weight correction was also applied to the

10 K and 300 K data to obtain neutron-weight corrected DOS. Because the high temperature
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Figure 6.1: The extremely small softening of the Nb DOS with temperature will reduce any

effect of the Nb sample holder on the measured temperature dependence of our data.[27]

data do not have well-separated acoustic and optical branches, we are unable to perform a

neutron-weight correction.

6.3 Results

6.3.1 Inelastic Neutron Scattering

The room temperature (RT) results are the same data presented in Ch. 5. However the

10 K B2 FeAl DOS proves to be very different from that at RT. There is a large softening

of all modes in the RT DOS w.r.t. the 10 K DOS for both vacancy concentrations, as seen

in Figs. 6.2 and 6.3.

The DOS from measurements on PHAROS shows a marked stiffening between RT,

700 ◦C and 1050 ◦C, this is surprising because the lattice continues to expand within this

temperature range. Although states appear in the gap with increasing temperature, modes

also expand beyond the original RT cutoff energy. These two effects balance each other
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Figure 6.2: A very large anharmonicity is seen considering the extremely low temperatures.
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Figure 6.3: A very large anharmonicity is seen at a vacancy concentration of 3.1% (1050 ◦C

Quenched) and is somewhat larger than that of the 0.5% (or 550 ◦C Quenched) sample.
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out entropically, leaving an approximate decrease in vibrational entropy with increasing

temperature (see Sect. 6.3.2 for a quantitative calculation).
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Figure 6.4: In situ DOS measured with corresponding equilibrium vacancy concentrations.

6.3.2 Anharmonic Entropy

The anharmonic vibrational entropy required to balance the elastic energy of lattice expan-

sion between 10 K and 300 K calculated via Eq. 3.19 was found to be 0.04 kB/atom. The

measured anharmonic vibrational entropy calculated via Eq. 3.18 is 0.14±0.01 kB/atom and

0.17±0.01 kB/atom for samples quenched from 550 ◦C and the 1100 ◦C, respectively. Figure

6.5 gives a comparison of these entropies. The increase in anharmonic vibrational entropy

with vacancy concentration is slightly larger than the error bars, 0.03 ± 0.014kB/atom. We

should assume that this is statistically significant. However, it should be noted that there

is a certain amount of error in our data analysis routine that is not truly accounted for.
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The multiphonon calculation performs a fit to the measured data; this fit has some error

associated with it that is not easily incorporated into the DOS error bars and thus the

entropy calculation. Unfortunately, incorporating this error would be a very complicated

and somewhat subjective maneuver. Thus if we assume this is statistically significant, we

are left with the question, why will vacancies cause extra anharmonicity in our DOS in

particular an extra softening?
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Figure 6.5: Anharmonic vibrational entropy in B2 FeAl as a function of temperature.

The stiffening in the high temperature data w.r.t. room temperature is quite remarkable.

In particular, the lattice has been measured to expand with temperature as one would

expect[58], meaning that a secondary phenomenon is overpowering the lattice softening of

the DOS enough to cause stiffening instead! We will try to explain both the low temperature

and the high temperature anharmonicities in the next section.

The anharmonic entropy has been calculated from the PHAROS NWDOS at tempera-
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tures 973 K and 1323 K w.r.t. the PHAROS 300 K NWDOS. These measured anharmonic-

ities were then shifted by the anharmonic entropy of the 300 K DOS that was measured

on LRMECS. The measured anharmonic entropy calculated via Eq. 3.18 with the above

method is plotted as a function of temperature in Fig. 6.6. Also plotted is the anharmonic

entropy due to lattice expansion as calculated with Eq. 3.19. One can readily see that the

B2 FeAl system has anomalously large anharmonic entropy at 300 K; however, once 973 K

is reached the anharmonic entropy is significantly smaller than expected from the lattice

expansion.
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Figure 6.6: Anharmonic vibrational entropy in B2 FeAl as a function of temperature. The

data point at 300 K was measured on LRMECS for a sample containing 3.1% vacancies.

The data points above 300 K were measured on PHAROS and shifted by the anharmonic

entropy at 300 K from LRMECS.
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6.4 Discussion

6.4.1 Contributions to the Anharmonicity

Previous linear augmented plane wave (LAPW) calculations in conjunction with Mössbauer

spectrometry data on B2 FeAl provide useful information about the local magnetic moment

of anti-site Fe atoms[7]. Figure 6.7 shows the two possible point defects considered by

Bogner et al. 1 They are the Fe vacancy and the Fe anti-site defect. The arrows in Figure

6.7 show the LAPW calculated relaxation of the atoms in those configurations. Notice that

the arrows indicate a compression of the lattice around the Fe anti-site atom.

Figure 6.7: (a) Schematic representation of the ordered B2 structure (Al atoms are larger

spheres). (b) Inclusion of an Fe vacancy. (c) Environment for an Fe anti-site defect. Arrows

mark the relaxation of the atomic positions obtained from the LAPW calculations.[7]

The Mössbauer data analysis by Bogner et al. attributes a magnetic moment only to Fe

1They did not include the triple defect defined in Chapter 5. It is not clear whether they do not believe

the triple vacancy is probable or whether they chose not to include it for some other reason. Nevertheless

we can consider the defects they do include.
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anti-site defect atoms and their eight Fe neighbors. The LAPW calculation shows a lattice

compression around these Fe anti-site atoms in part caused by the magnetic moment of the

cluster. Either the compression of the lattice or the effect of the magnetic moment of the

cluster on its force constants could cause a stiffening in vibrational modes. The direction

of the stiffening is not so obvious and indeed would most likely occur in more than one

direction and in more than one dispersion branch. An overall average stiffening of the DOS

may be expected.

Mössbauer data are plotted in Figure 6.8.[7] The spectra have been fit by four sepa-

rate calculated contributions: perfect B2 ordered Fe, Fe surrounding an Fe vacancy, Fe

surrounding an Fe anti-site atom, and Fe anti-site atoms. The largest change in these con-

tributions is seen in the spectrum from Fe surrounding an Fe anti-site atom (dashed-dotted

line). This spectrum indicates that these Fe are magnetic, seen as a double peak, at 4.2 K.

However this magnetism disappears rapidly with increasing temperature. There seems to

be a lingering effect at 10 K, although not nearly as pronounced as that at 4.2 K. Although

a double peak is not distinguishable at 10 K the Fe surrounding an Fe anti-site atom spectra

is clearly broadened by hyperfine splitting compared to the spectra at 300 K. Therefore,

Bogner et al. find that there exists a localized magnetic state created by Fe anti-site defects.

This state could cause an increase in the force constants surrounding the Fe anti-site defect.

Their Mössbauer spectral analysis shows that this magnetic state occurs below 50 K, and

the hyperfine splitting becomes significant between 20 K and 10 K.

This is a distinctly different phenomenon than that discussed in Chapter 5; although

both give rise to a stiffening in the FeAl DOS, this stiffening is due to magnetic contrac-

tion that only arises at low temperatures and this is most likely affecting many dispersion

directions.

The measured magnetic state of Fe anti-site atoms and their nearest neighbors could

contribute to the anharmonicity seen in our data between 10 K and 300 K. A stiffening of

the 10 K DOS due to the Fe anti-site defects would increase the anharmonicity between

the two temperatures. Although we cannot be certain this as the cause for our measured

anharmonicity, we can say that the evidence points toward Fe anti-site magnetic effects as a

possible cause. This particular explanation would also account for the larger anharmonicity
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Figure 6.8: 57Fe Mössbauer spectra recorded at different temperatures. Fe in ideally ordered

B2 (dashed line), Fe around Fe vacancy (dotted line), corner atoms around Fe anti-site

(dashed-dotted line), and Fe anti-site(dash-dot-dot line).[7]
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seen in the sample with more vacancies because more vacancies correspond to more Fe

anti-site atoms, and thus a larger stiffening at 10 K.

Opposite to the low temperature behavior, between 300 K and 973 K the DOS stiffens

with temperature. This stiffening overwhelms any softening of the DOS due to lattice

expansion. The vibrational entropy per vacancy was measured to be -0.75 kB, large and

negative, in Chapter 5. At higher temperatures the equilibrium concentrations of both

mono- and di-vacancies will increase causing a increasing stiffening in the DOS. Notice

that the characteristics of the stiffening in the in-situ data is extremely similar to that of

the quenched data in Chapter 5. The low energy acoustic modes stiffen, states appear in

the gap, and the high energy optical modes increase in cutoff energy. It is possible that

at higher temperatures the vacancy concentration is large enough to counterbalance any

softening that would have occurred by the expansion of the lattice.

6.5 Conclusions

We measured the anharmonic vibrational entropy of B2 FeAl at 300 K, 973 K, and 1323 K

w.r.t. 10 K. It was found that FeAl has very odd anharmonic behavior, principally an

anomalously large anharmonic entropy at 300 K, which becomes anomalously small at

973 K and 1323 K.

A possible explanation for measured anomalous anharmonicities has been given using

known point defects within the system. At low temperatures, it was shown that localized

magnetic moments of the Fe anti-site defect along with its eight neighbors could cause an

extra stiffening of the 10 K DOS, causing a larger than expected anharmonic entropy at

300 K. Above 300 K it is possible that the thermal vacancies are causing a stiffening in

the DOS, therefore suppressing the anharmonic vibrational entropy below what would be

expected from lattice expansion alone.

It is also possible that the system has electron-phonon or phonon-phonon coupling,

which could contribute to the anharmonicities. This direction would be appropriate to

pursue in the future.
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Chapter 7

Harmonic and Anharmonic Vibrational Entropy in

Al-Ag Alloys

7.1 Introduction

The existence of large anharmonicity in elemental aluminum has been known for a long

time now. Although the vibrational density of states of Al has not been measured at

high temperatures, measurements of the Debye-Waller factor with temperature have been

performed.[45, 1, 18, 43, 55] More recently, there have been computational efforts to cor-

roborate the experimental large anharmonicity by calculating the Debye-Waller factor with

temperature[64] and the heat capacity as a function of temperature[21]. However the anhar-

monicity of Al-Ag alloys has not been studied. In this work we measured the anharmonicity

of Al0.93Ag0.07 and Al0.40Ag0.60. The Al-Ag phase diagram is shown in Fig. 7.1[44]

In-band resonance modes of heavy impurities have been been studied theoretically and

measured previously.[20, 42, 6, 71, 28] These are quasi-localized vibrations of a heavy im-

purity atom in a matrix of light atoms. “In-band” is used to describe the case of heavy

impurities, as the resonant mode energies are located within the allowable normal mode

energies of a crystal made of purely matrix atoms. Unlike normal mode vibrations, the

resonance modes decay with a finite lifetime into normal modes. The resonance modes

peak in the DOS near a resonant frequency, and comprise large amplitude vibrations of the

impurity with its interacting neighbors. The intensity of the DOS resonance peak directly

corresponds to the impurity concentration.
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Figure 7.1: Al-Ag phase diagram.[44]
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Previously, measurements of the low temperature heat capacity have been utilized to

measure the resonance modes in Al0.995Ag0.005 and Al0.9905Ag0.0095. [71, 28] Both groups

were able to measure the central energy of the resonant peak for very dilute Ag in Al.

We have measured the vibrational DOS for Al0.93Ag0.07 and Al0.40Ag0.60 at room tem-

perature and at 520 ◦C along with elemental Al at room temperature. Between room tem-

perature and 520 ◦C we measured a large anharmonicity in both alloys. We also measured

a large resonance peak in the room temperature Al0.93Ag0.07. We compare our measured

peak position with that of Tiwari et al.[71] and Hartmann et al.[28]

7.2 Experimental Methods

Al1−χAgχ binary alloys with χ = 0, 0.07, 0.60 were prepared by arc-melting under an argon

atmosphere, using shots of 99.99% Al and 99.99% Ag. There was negligible mass loss

and little visible surface oxidation after melting, so the compositions are expected to be

accurate to 0.1 at.%. The ingots were cold-rolled to thicknesses optimizing to scatter 10%

of the incident neutrons. The rolled strips were heated to 823 K, and quenched into iced

brine to prepare disordered solid solutions.

X-ray diffraction patterns were acquired from all samples using an Inel CPS-120 dif-

fractometer with Co Kα radiation and a position-sensitive detector. These data confirmed

that the crystal structure was face-centered cubic (fcc), with no evidence of second phases

or obvious compositional non-homogeneity.

Time-of-flight inelastic neutron scattering data were acquired with the LRMECS instru-

ment at the Intense Pulsed Neutron Source at Argonne National Laboratory. Samples were

mounted in thin-wall aluminum cans, 7 cm×10 cm, using an incident beam of monochro-

matic neutrons with an energy of 60meV. The pure Al and the Al0.93Ag0.07 samples were

also measured with an incident energy of 35meV. The flat sample packages were tilted at a

45 ◦angle off the direction of the incident beam to minimize self-shielding. All spectra were

measured at room temperature. Background data were acquired from the empty aluminum

cans under the same conditions.

The raw data of intensity versus time-of-flight in the different detector tubes were re-

processed into intensity versus energy, and then converted into an approximate, or “neutron-
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weighted” phonon density-of-states using the following steps. The raw data were corrected

for detector efficiency using a white beam spectrum from a vanadium plate, and normalized

by the incident flux on the samples. The time-independent background was removed. The

time-dependent parts of the background acquired from the empty cans were then subtracted.

Detector data were re-binned into angular bins of 10 ◦in width, using scattering angles up

to 120 ◦. The low-angle data (angles less than approximately 35 ◦) were neglected owing

to weak phonon scattering. After subtraction of an elastic peak centered about 0meV,

the data below approximately 5meV were approximated as a straight line, as expected in

the continuum limit. Corrections were then made for thermal factors and multiphonon

scattering (two- through five-phonon processes), using an iterative procedure in the inco-

herent approximation. [5] The error in the resulting phonon density-of-states (DOS) due to

neutron-weighting [5] is negligible as the ratio of phonon scattering of Ag:Al is 0.8, almost

1.

7.3 Results

7.3.1 Inelastic Neutron Scattering

The resulting DOS curves for Al0.93Ag0.07 and Al0.40Ag0.60 at room temperature and 520 ◦C

are shown in Figs. 7.2 and 7.3, respectively. Both samples show a very large softening

between 20 ◦C and 520 ◦C. In the case of Al0.40Ag0.60, all modes shift to lower energies. The

cutoff energy decreases by approximately 2 meV. Similarly, the low-energy Debye region

where the DOS is parabolic shifts by 1 meV to lower energies. A large number of modes shift

from higher energies to energies between 10 meV and 18 meV. The softening of Al0.93Ag0.07

does not exhibit a large change in the cutoff energy of its DOS. However, there is a very

large shift of modes into energies from 0 meV through 20 meV. We will show later that this

is the same energy region as the Ag resonance peak. This may or may not be truly the

changes in the resonance peak with temperature, however.
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Figure 7.2: Anharmonic softening is seen between 20 and 520 in the vibrational density of

states of Al0.93Ag0.07.
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states of Al0.40Ag0.60.
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7.3.2 Anharmonic Entropy

The anharmonic entropy between temperatures 20 ◦C and 520 ◦C was determined for both

alloys using Eq. 3.18. The results are plotted in Fig. 7.4. Also plotted in this graph is the

calculated entropy required for lattice expansion using measured values of the bulk modulus,

coefficient of lattice expansion, and density for each alloy, Eq. 3.19. Notice that there is a

large discrepancy between this lattice expansion contribution and the total for Al0.40Ag0.60.

The difference between the two is what we call the “anomalous anharmonic vibrational

entropy,” which comes from exotic phenomena. The origin of this extra entropy could

arise from electron-phonon or phonon-phonon coupling, unknown processes. This is the

first measurement of the anharmonicity of this alloy. Although exciting, the repercussions

are that there are no supportive experiments to investigate its origins. More experiments

and/or calculations will be necessary to gain insight into the cause of this extremely large

anharmonicity. On the other hand, the anharmonic vibrational entropy of Al0.93Ag0.07,

although large, has no anomalous contributions to it. We see from Fig. 7.4 that it is fully

explained by lattice expansion.

7.4 Discussion

7.4.1 Resonance Modes

A large resonance peak was measured in the dilute Ag sample, Al0.93Ag0.07. The peak is

readily seen by comparing the Al0.93Ag0.07 DOS with the Al DOS, Fig. 7.5.

Although it proves to be a minor correction, due to its simplicity in this particular

instance, a neutron-weight correction was performed for Al0.93Ag0.07 at room temperature.

This was done by assuming that the Al PDOS in Al0.93Ag0.07 is the DOS of pure Al, a

very good approximation at such low concentrations of Ag, particularly as the Ag produces

resonance modes. The correction is then straightforward using Eq. 3.10; be sure to notice

that the PDOS for each element is weighted by their concentrations in the alloy. Therefore,

the resonance peak is extracted from the Al0.93Ag0.07 NWDOS by subtracting 93% of the

Al normalized DOS. This peak must then be de-weighted by the ratio of σ/M for the

binary alloy elements leaving the resonance peak that is only weighted by the composition
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Figure 7.4: The anharmonic entropy due to lattice expansion is not large enough to ac-

count for the total anharmonic vibrational entropy of Al0.40Ag0.60, but is successful for

Al0.93Ag0.07.
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of the alloy and is shown in Fig. 7.5. The composition weighted peak (Ag PDOS) is then

added back to the composition weighted Al PDOS to finalize the neutron-weight correction

resulting in the Al0.93Ag0.07 DOS. The 35 meV incident DOS was neutron-weight corrected

by using the integral of the 60 meV incident neutron-weight corrected DOS for Al and

Al0.93Ag0.07 from 0 meV to 17 meV.

The DOS obtained with 35 meV incident energy (See Fig. 7.6) has better energy reso-

lution than the DOS for 60 meV incident energy. The vibrational entropy of mixing Ag in

Al was measured to be 0.03kB/atom using Eq. 3.12 to calculate the difference between the

alloy and a sum of the elemental DOS weighted by concentration. The small vibrational

entropy of mixing is not entirely surprising because the Ag DOS is at energy levels very

similar to that of the resonance modes.

The resonance peak position was found by fitting the Ag partial DOS with a Gaussian

function. Although the peak is not exactly a Gaussian, in principle once instrumental

resolution is convolved with the peak the Gaussian function is a reasonable estimate, as

seen in Fig. 7.5. The Gaussian fit gives a peak position of 11.0 ± 0.1 meV, a FWHM of

8.0 ± 0.2 meV, and an amplitude of 2.94x10−3 ± 7x10−5 meV−1.

Calculations of the specific heat on Al0.995Ag0.005 and Al0.9905Ag0.0095 have been used

to measure characteristics of the resonance modes in this system.[71] At low temperatures

the specific heat has appreciable contributions from low-frequency resonance modes. By

measuring the specific heat it is therefore possible to measure the positions of the resonance

peak. Assuming an isotopic defect (i.e., the Ag-Al force constant is assumed to be that

of Al-Al) the resonance peak position has been calculated to be ωr/ωm = 0.29 [71] and

ωr/ωm = 0.28,[28] where ωr is the frequency of the resonance peak and ωm is the cutoff

frequency of the DOS. Using a cutoff energy value of 43 meV and ωr/ωm = 0.28, we find

that ωr is predicted to be 12 meV. The value of 12 meV is consistent with our measured

value of 11 meV.

It is most probable that the resonance peak changes its characteristics with temperature.

Unfortunately, no experimental or theoretical work has investigated the temperature effects

on the resonance peak. We are therefore left to conjecture about the possible changes that

may occur with an increase in temperature.
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Figure 7.5: An extremely large resonant peak exists at approximately 11meV. Although a

small correction, this data has been neutron-weight corrected.
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89

7.4.2 Resonance Modes and Ag Solubility at High Temperatures

By now it is obvious that the anharmonicity of a system is far from easy to predict. However,

there is one anharmonic contribution that is predictable–the change in vibrations due to the

expansion or contraction of the lattice with temperature change. If no other anharmonic

forces are at work, the typical lattice expands with an increase in temperature and the

DOS shifts to lower energies. This shift in energies corresponds to a softening of the force

constants in the system. Therefore, to investigate changes in the resonance peak with

increasing temperature for Al0.93Ag0.07 we considered how the resonance peak changed as

we varied the force constants using an impurity defect dynamical theory that uses a Green’s

function technique.[42, 26] Using these theories, derivations of the partial density of states

of the impurity (or resonance peak) utilizing the host atom DOS have been performed.[39,

41, 40, 20, 26, 61]

The largest effect of isolated impurities is on nearest-neighbor forces in the host-lattice.

By utilizing this short-range nature of the impurity perturbation to the host lattice, the

Green’s function technique is able to work in the “site representation.” The technique is

therefore used on the nearest-neighbor cluster force constants and the pure lattice Green’s

function enabling closed expressions for all necessary dynamical quantities of the perturbed

lattice.

By using the measured Al DOS, the mass ratio of Al:Ag, and the force constant ratio of

Al-Al bonds to Al-Ag bonds, we can calculate the resonance peak of dilute Ag in Al using

the Green’s function method that was developed by Mannheim, et al.[39, 41, 40] There is

only one free parameter in this calculation, which is the ratio of the host-host force constant

to the impurity-host force constant or A/A′. The modified DOS which includes the impurity

modes is given by

G′(ω) =
(M

M ′

)

G(ω)
{

[1 + ρ(ω)S(ω)]2 +
[(π

2

)

ω G(ω)ρ(ω)
]2}−1

(7.1)

+ δ(ω − ωL)
M

M ′ ×
{

ρ2(ω)T (ω) +
M

M ′ −
[

1 + ρ(ω)
]2}−1

,
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where

ρ(ω) =
(M

M ′

)

− 1 + ω2
[

1 − A

A′

]

/µ(+2) , (7.2)

S(ω) = P

∫ ∞

0
ω′2(ω′2 − ω2)−1G(ω′)dω′ , (7.3)

T (ω) = ω4
∫ ∞

0
(ω′2 − ω2)−2G(ω′)dω′ , (7.4)

µ(n) =

∫ ∞

0
ωnG(ω)dω , (7.5)

ωL is a localized mode frequency that exists if 1+ρ(ωl)S(ωL) = 0 and ωL > ωmax, δ is the

Dirac δ function and P stands for the principal value. The DOS of the pure host crystal is

G(ω). This calculation is described in detail in the paper by Seto et al. [61] As our impurity

modes are resonance modes ωL = 0.

In this way, using the measured Al DOS and the known mass ratio of Al to Ag, we

have calculated the resonant peak with a variety of force constant ratios (A/A’): 1:0.5,

1:1, 1:2, 1:3, and 1:5 where the ratio is (Al-Al):(Al-Ag). Figure 7.7 gives the results of

these calculations that are labeled by the A’ value. The resonance peak softens, increases

in amplitude and decreases in width as force constant ratio decreases corresponding to

temperature increase.

It was shown in Section 7.3.2 that for Al0.93Ag0.07 the total anharmonic vibrational

entropy between temperatures 20 ◦C and 520 ◦C was fully accounted for by the entropy re-

quired to expand the lattice. According to the Mannheim impurity method it would be quite

reasonable for the resonance peak to soften and become sharper with increasing tempera-

ture. How will the temperature dependence of the resonance peak affect the anharmonicity

of the alloy?

Let us assume that the rFC = 4 resonance peak is the Ag PDOS for Ag impurities in

RT. This is consistent with a resonance peak position of 11 meV like that measured in our

DOS. The resonance peak at 520 ◦C is less clear, but looking at our measured 520 ◦C DOS

for Al0.93Ag0.07, the peak could be as low as 8 meV. We estimate that the resonance peak

for rFC = 0.8 is a good approximation for the Ag PDOS at 520 ◦C. We can now measure

the anharmonic vibrational entropy between 520 ◦C and 20 ◦C for any Ag concentration in

Al for which there is a resonance peak. It is reasonable to assume that the resonance peak
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exists for concentrations of Ag from 0% to at least 20%. It is important to note that the

anharmonic vibrational entropy between T1 and T2 can be calculated as

SAnh
(T2−T1)

= χAlS
Anh
Al + χAgS

Anh
Ag , (7.6)

where χAl and χAg are the concentration of Al and Ag, and SAnh
Al and SAnh

Ag are the an-

harmonic vibrational entropy of the Al and Ag PDOS between T1 and T2. SAnh
Ag can be

calculated using the peaks in Fig. 7.7 and Eq. 3.18, the result being 1.0 kB/atom. This is

quite large. Once we weight it by the concentration of Ag, 0.07, we find that the Ag PDOS

contribution to SAnh
(T2−T1)

is only 0.07 kB/atom. Our measured SAnh
(T2−T1) was 0.34 kB/atom,

leaving the χAlS
Anh
Al to be 0.27 kB/atom and therefore SAnh

Al = 0.29kB/atom. Thus we see

that for χAg = 0.07 the resonance peak has a very small effect on the thermodynamics of the

system. The temperature dependence of the DOS should behave much like Al in this case.

Previous publications have offered conflicting information on whether or not Al has anhar-

monicities that are larger than those of the quasi-harmonic model (i.e., larger than those

expected by lattice expansion). Some have calculated that the anharmonicities of measured

Debye-Waller factors are much larger than that expected by lattice expansion.[43, 64] How-

ever, Pathak et al.[55] have calculated that their measured anharmonic contribution to the

Debye temperature is derived totally from the thermal expansion of the crystal up to about

800 K. Our measurement of Al0.93Ag0.07 is therefore in agreement with Pathak et al.

We use the above calculated values to calculate the anharmonic vibrational entropy

for an alloy of Al-20 at. % Ag instead of our measured Al-7 at. % Ag. It is reasonable

to assume that the larger concentration of Ag will not affect the resonance modes or the

PDOS of Al. Therefore we keep the values calculated above for SAnh
Al and SAnh

Ag . Using

SAnh
Al = 0.29kB/atom and SAnh

Ag = 1.0kB/atom we find that SAnh
(T2−T1) = 0.43kB/atom using

Eq. 7.6 with χAl = 0.80 and χAg = 0.20. The anharmonic entropy due to lattice expansion

should be the same (if not smaller with more Ag concentration, as the bulk modulus of

Ag is much smaller than that of Al) so that SAnh
Latt ≤ 0.33kB/atom. This means that for

Al0.80Ag0.20 there could be an anomalous anharmonic vibrational entropy of greater than

or equal to 0.1 kB/atom. The vibrational entropy could be a significant contribution in

an explanation for the large solubility of Ag in Al at high temperatures seen in the phase
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diagram, Fig. 7.1.

7.5 Conclusions

Inelastic neutron scattering spectra were measured on Al0.93Ag0.07 and Al0.40Ag0.60 at 20 ◦C

and at 520 ◦C; a sample of pure Al was also measured at 20 ◦C.

A large softening in the DOS of both alloys was measured. The softening of Al0.40Ag0.60

was anomalously larger than that expected by simple lattice softening. Causes for this

anharmonicity may be phonon-phonon or phonon-electron coupling. The softening of the

DOS of Al0.93Ag0.07, although quite large, is explained within experimental error by lattice

expansion.

A large resonance peak was measured at 20 ◦C in the DOS of Al0.93Ag0.07. It was shown

that the resonance peak is expected to soften as temperature increases according to the

Mannheim method. At 7% Ag, the softening of the resonant peak, although perhaps large,

would not have any significant thermodynamic impact because the partial Ag anharmonic

entropy is weighted by the Ag concentration. However, at 20% Ag, the resonant peak, in

accordance with the Mannheim method, will add at least 0.2 kB/atom to the anharmonic

entropy between 20 ◦C and 520 ◦C. This would contribute to the increased Ag solubility in

Al at high temperatures.
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Chapter 8

Conclusions

8.1 Summary and Discussion

This thesis has explored both harmonic and anharmonic vibrational entropy of Fe- and Al-

based binary alloys. We have considered how these vibrational entropies affect the phase

stability of these systems. In many cases we have found unexpected behavior.

The vibrational entropy of spinodal decomposition was measured in Chapter 4 as –0.17

± 0.01 kB/atom, nearly equal to that of configurational entropy! This is indeed a very

large value for vibrational entropy. However, although this in and of itself is significant,

what is needed to predict the critical temperature of decomposition using a Cahn-Hilliard

model is the curvature of vibrational entropy with respect to Cr concentration. Histori-

cally, theoretical models of decomposition have not included vibrational entropy in the free

energy calculation of the system. Although our measurement of the vibrational entropy of

spinodal decomposition is related to the curvature of vibrational entropy w.r.t. the Cr con-

centration it is not possible to calculate that curvature with only the vibrational entropy of

spinodal decomposition. Therefore, we analyzed previous phonon dispersion measurements

of Fe1−χCrχ alloys in order to measure the curvature of the vibrational entropy of the

alloy with respect to Cr concentration. With this curvature, and the curvature of config-

urational entropy w.r.t. Cr concentration within the point approximation, we showed that

the critical temperature would decrease by at least 20% of its original value by the inclusion

of vibrational entropy into the free energy calculation of the system. The reason that the

decrease is a minimum value and not an exact value is that the model for configurational
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entropy does not account for clustering within the solid solutions. A cluster model would

reduce the configurational entropy at 50% Cr, which is its maximum point in Cr concentra-

tion, thereby reducing the curvature of the configurational entropy with Cr concentration.

By showing that the critical temperature of spinodal decomposition is reduced by at least

20% of its previous value by including vibrational entropy in the free energy calculations,

we have shown that by neglecting vibrational entropy a significant error is included in the

calculation. More importantly, we show that vibrational entropy is a rather important

contribution to the thermodynamics of spinodal decomposition in this system.

In Chapter 5, the vibrational effects of thermal vacancies in FeAl were measured for

the first time using inelastic neutron scattering. The vacancies were found to cause a small

stiffening of acoustic modes into the phonon gap in the DOS. Calculated dispersion curves

showed that the (1 1 0) acoustic branch was clearly affected by the vacancies. The (1 1 0)

direction is expected to be stiffened owing to the collapse of the lattice around the vacancies

along with the stiff Fe-Al bond of the body-center anti-site Fe atom with its neighboring

body-center Al atom. We measured the vibrational entropy of formation of vacancies to be

–0.75 kB/vac.

The density of states as a function of temperature of FeAl was measured in detail in

Chapter 6. We found two distinctly different anharmonic behaviors:

1) Below room temperature, extra anharmonic softening of the DOS was observed,

beyond that explained by lattice expansion.

2) Above room temperature, large anharmonic stiffening of the DOS was observed,

keeping the DOS from softening as the lattice expands.

We give possible explanations for both phenomena. Local magnetic moments of anti-site

Fe and their first nearest neighbors below 50 K could cause the 10 K density of states to

be stiffened, in turn leading to an increased anharmonicity between that and 300 K. At

temperatures above room temperature thermal vacancies increase in concentration. These

vacancies contribute –0.75 kB/vac by stiffening the density of states. This could ultimately

counterbalance the softening of the density of states due to lattice expansion, causing a

large anharmonic stiffening at high temperatures.

The density of states of Al-Ag alloys has been reported in Chapter 7, with some sur-
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prising results. We found that there is an extraordinarily large anharmonic softening in

Al0.40Ag0.60 beyond that of lattice expansion. A large resonance peak was measured in

Al0.93Ag0.07 and was in good agreement with predictions. We also measured the anhar-

monic entropy of Al0.93Ag0.07 between 20 ◦C and 520 ◦C, and found that it is dominated by

the Al partial density of states, which should behave mostly like bulk Al. We found that

contrary to some calculations, the anharmonic vibrational entropy is described fully by the

expansion of the crystal lattice.

Using the Mannheim impurity method, we were able to show that at larger concen-

trations of Ag the resonance peak in Al-Ag may have a much stronger thermodynamic

importance. In fact it could very well be a large part of the reason for the measured

increased solubility of Ag in Al at high temperatures.

8.2 Future Work

In many experiments the results are not only of interest but they ignite more questions

to be answered. The results presented in this work leave many questions unanswered, and

therefore suggest further investigation.

The magnitude of the vibrational entropy of spinodal decomposition in FeCr was unex-

pectedly large. The effects of the vibrational entropy on the critical temperature of spinodal

decomposition was important. We are left questioning whether these findings are isolated to

the Fe-Cr system, or whether they are a prevailing characteristic of all spinodal decomposi-

tion transformations? The answer to this question would be of great value to the materials

science community. Therefore, this work should be pursued. A very good choice for the

first system might be Al-Zn. Not only is it a binary alloy, which is much simpler to model

numerically if necessary, but also, the neutron scattering weight ratio of the two elements is

0.88–almost 1! This makes a neutron-weight correction unnecessary, which greatly simplifies

data reduction. Other systems would be possible, but they would require mixing isotopes

to remove the need for a neutron-weight correction. Isotopes are a much more expensive

route, and are best left as a last resort.

FeAl has shown extremely unexpected results. We found that defects can have large

thermodynamic effects in FeAl, in terms of both vacancy formation and anharmonic phe-
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nomena. It is interesting that defects can have such large anharmonic consequences. At

low temperatures, we found that the disruption of a paramagnetic state (by removing the

atomic order of the crystal and creating a local magnetic moment) has a great effect on the

vibrational density of states. It may prove interesting to search for other systems that have

similar consequences. Furthermore, measurements of phonon-phonon and electron-phonon

coupling would be important to perform on this system. If there is electron-phonon cou-

pling, either point contact spectroscopy or a measurement of the temperature dependence

of the electronic density of states would provide evidence for it. Measurements of phonon

line-shifts and line-widths by either inelastic neutron scattering or raman spectroscopy can

be used in conjunction with theory to measure phonon-phonon coupling phenomena. These

measurements could provide invaluable explanations for the measured anharmonicities in

this alloy and in Al0.40Ag0.60, which had large anharmonicities. Future experiments for

both alloys to explore phonon-phonon and electron-phonon coupling contributions to their

anharmonic entropy would be a reasonable course of action.

The findings from our investigation on Al0.93Ag0.07 leave a gaping hole in current ex-

perimental measurements that needs to be filled in order to formulate a final conclusion.

Measurements of Al-Ag with larger concentrations of Ag, ideally up to 17 atomic % Ag

measured at 550 ◦C, are necessary to finalize the work on the thermodynamic effects of the

resonance modes. It would also be necessary to measure the Al density of states at 550 ◦C

to extract the resonant peak from the alloy data. Once these experiments have been per-

formed, we will know whether the resonant peak has thermodynamic importance at high

temperatures.

Experiments not only require insightful theoretical background but also adequate exper-

imental apparatus. The majority of our research has been moving toward in-situ inelastic

neutron scattering measurements. There is a great deal to be learned about anharmonicities,

but this requires measurements to be performed in-situ. Currently, the furnaces available

for our use are extremely inefficient. They have been designed specifically for diffraction

measurements. These measurements, of course, use elastic neutron scattering. Elastic scat-

tering experiments use samples that are approximately 1/10 the mass of inelastic samples

because elastic neutron flux is very large compared to inelastic flux. When we use a dif-
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fraction furnace, we are forced by the geometry of the furnace to use samples with 1/10 the

mass of what is appropriate to utilize the full incident beam cross-section. The furnaces

are designed with a much smaller beam cross-section in mind, therefore in an inelastic in-

strument there is a great deal of furnace that is directly in the neutron beam, significantly

adding to the background-to-signal ratio. An appropriate step for future experimental suc-

cess is to design a new furnace that is optimized for inelastic chopper spectrometers. This is

something, I am pleased to say, that our research group is currently endeavoring to achieve.
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Appendix A

Simple Introduction to Spinodal Decomposition in

a Binary Alloy

Spinodal decomposition is a unique occurrence. The process takes place in a binary alloy

when the system, which is originally in a random solid solution (i.e., all atoms have equal

probability of being located at all lattice points), segregates into two regions with distinctly

different alloy concentrations. Unlike other more typical phase transitions the crystal struc-

ture does not change during the transformation. Since the crystal structure is the same

for both phases, the free energy will be a single curve instead of two different curves (one

for each crystal structure). In the case of FeCr, upon reaching equilibrium the spinodally

decomposed regions will be Fe0.90Cr0.10 and Fe0.10Cr0.90. All stages are on a bcc lattice, but

not all alloys segregate to such compositional extremes. The solid solution is at equilibrium

at high temperatures, and below the critical temperature the system will decompose. The

kinetics for this decomposition is very slow in FeCr. Even after one month at 500 ◦C the

system will not have reached equilibrium.

Spinodal decomposition begins with infinitesimal compositional fluctuations throughout

the sample that increase over time. Figure A.1 shows how the composition of Cr would

change in a hypothetical FeCr alloy. Early in the decomposition process a sinusoidal wave

is not a bad approximation. The variation in composition is plotted as a a function of

cross-sectional distance in the sample. As time increases (t0 < t1 < t2), the segregation of

the sample increases. At t0 the alloy is a random solid solution of Fe0.50Cr0.50.

We can consider a simple Cahn-Hilliard-type model for spinodal decomposition. In this
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Figure A.1: Compositional fluctuations as a function of aging time in a hypothetical FeCr

alloy. The dash-dot-dot line is at t0, the dash-dot line is at t1, and the solid line is at t2.

model the cause for the separation into two phases comes from an energetic instability in

the free energy of the crystal when the free energy has negative curvature. Let’s calculate

the free energy and see what happens in the case of spinodal decomposition.

We know that ∆G = ∆H − T∆S, so we will need to calculate the enthalpy, H, and the

entropy, S. To calculate the enthalpy we will use the simple quasi-chemical model for the

enthalpy of mixing, where

∆HQCM
Mix = ΩχAχB . (A.1)

If Ω > 0 then the possibility of chemical un-mixing exists because energetically like-

atoms bonds (A-A or B-B) are preferred over mixed atom bonds (A-B). We will use the

point approximation, Eq. 1.2, for the configurational entropy of mixing, ∆S. We can now

calculate ∆G and observe how each term contributes to the shape of the free energy curve.

Using our theory for FeCr as an example, Fig. A.2 plots ∆H, −T∆S, and the resulting ∆G.

The ∆H term is minimized at the pure concentrations of Fe and Cr; this is an essential

characteristic for spinodal decomposition to occur. The −T∆S term is minimized at the
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random solid solution of Fe0.50Cr0.50; it prefers a mixed state. Because the entropy curve

is approximately the same magnitude as the enthalpy term but is wider in shape, the free

energy has double minima. Both minimum positions are energetically equally favorable in

this simple case. Therefore the equilibrium state will be segregated into two phases differing

only in composition, one with 10 at. % Cr, the other with 90 at. % Cr.

Figure A.2: The free energy of a spinodal system and its component terms. The individual

terms of the free energy are labeled, the dashed line is the resulting free energy. In this

temperature range the free energy has double minima, and will be spinodally decomposed

at equilibrium.

Figure A.2 is plotted at a low temperature where spinodal decomposition is the equi-

librium state. Let’s explore how the free energy changes at different temperatures. Only

the entropy term changes with temperature. At low temperatures the double minima ex-

ists. As the temperature increases the magnitude of the entropy term becomes increasingly

negative, eventually overpowering the enthalpy term and dominating the shape of the free
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energy, t2 in Fig. A.3. At these entropy dominated temperatures the double minima no

longer exists and the equilibrium phase is a singe random solid solution phase.

Figure A.3: The free energy of a spinodal system with increasing temperature. The double

minima that exist at low temperatures disappears at the highest temperature. The solid

line is t0, the dashed line is at t1, and the dotted line is at t2 where t0 < t1 < t2

The critical temperature for spinodal decomposition at composition χ occurs when the

curvature of the free energy is zero at χ. Figure A.4 shows how the locus of these critical

temperature points combine to make the miscibility gap that we see in phase diagrams.1

Inside the miscibility gap the sample will chemically separate via spinodal decomposition.

Because the curvature of the free energy is negative in this region, it is unstable and any

fluctuation of composition will start a region of decomposition as the system moves toward

the minima points in the free energy.

1The curvature of the free energy in these plots has been exaggerated for easier visualization of the

G”(χ) = 0 points.
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Figure A.4: Free energy curves are plotted on the left at various temperatures (t0 < t1 < t2).

The points on these graphs at which the curvature of the free energy is zero w.r.t. the

concentration of Cr are noted with solid circles (red). These points correspond to points on

the miscibility gap, which is plotted on the right.
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[21] Mattias Forsblom, Nils Sandberg, and Göran Grimvall. Phys. Rev. B, 69:165106, 2004.
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