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6. QUANTUM MECHANICAL REACTIVE SCATTERING FOR THREE 

DIMENSIONAL ATOM PLUS DIATOM SYSTEMS: I. THEORY 
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A method is presented for accurately solving the Schrodinger 

eauation for the reactive collision of an atom with a diatomic molecule 
~ . 

in three dimensions.on a single Born-Oppenheimer potential energy 

surface. The Schrodinger equation is first expressed in body fixed 

coordinates. The wave function is expanded in a set of vibration-

rotation functions, and the resulting coupled equations are integrated 

in each of the three arrangement channel regions to generate primitive 

solutions. These are then smoothly matched to each other on three 

matching surfaces which appropriately separate the arrangement 

channel regions. The resulting matched solutions are linearly combined 

to generate wave functions which satisfy the reactance and scattering 

matrix boundary conditions, from which the corresponding R and S 
' ~ ~ 

matrices are obtained. The scattering amplitudes in the helicity 

representation are easily calculated from the body fixed S matrices, 
~ 

and from these scattering amplitudes, several types of differential 

and integral cross sections are obtained. Simplifications arising 

from the use of parity symmetry to decouple the close coupled equations, 

the matching procedures and the asymptotic analysis are discussed 
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in detail. Relations between certain important angular momentum 

operators in body fixed coordinate systems are derived and the 

asymptotic solutions to the body fixed Schrodinger equation are 

analyzed extensively. Application of this formalism to the three­

dimensional H + H2 reaction is considered including the use of arrange­

ment channel permutation symmetry, even-odd rotational decoupling 

and post-antisymmetrization. The range of applicability and limitations 

of the method are discussed. 
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1. INTRODUCTION 
""'""'~ 

One of the most important goals of chemical dynamics is the 

accurate calculation of cross sections for reactive bimolecular 

collisions. Such calculations can be used to develop and test approxi­

mate reaction dynamic theories and statistical theories, to advance 

our understanding of dynamical processes governing reactive collisions, 

a11:d to interpret, analyze and make predictions concerning the results 

of experiments. 

In recent years, a number of attempts have been made to solve 

this problem accurately (i.e., quantum mechanically) for the simplest 

possible such chemical reaction, the collision of an atom with a diatomic 

molecule on a single electronic.ally adiabatic potential energy surface. 

One of the major difficulties in achieving this goal in the past has 

been the absence of computationally efficient procedures for obtaining 

accurate solutions to the Schrodinger equation for reactive collisions. 

For the simple case in which the three atoms are confined to move 

on a space-fixed straight line, adequately accurate and efficient 

methods have been developed within the last several years and applied 

to a variety of systems. 1- 13 However, when the collinearity restric­

tion is eliminated, the problem becomes more difficult, especially 

when the atom is permitted to react with either end of the diatom. 

To tackle such noncollinear problems, several different techniques 

have been proposed and to a certain extent tested. Baer and Kouri14 

have developed an integral equation method and have applied it to a 

simple three-dimensional model atom plus diatom system in which 

reaction with only.one end is permitted._ Saxon and Light,and Alten-



berger-Siczek and Light15 have investigated the coplanar H + H2 

reaction using a close coupling-rnatching procedure which ignored 

closed vibrational channels, while Wyatt and coworkers16 have devel­

oped a somewhat different close coupling procedure in which closed 

channels are included, and for which the use of hindered rotor basis 

functions leads to simple bifurcation properties. Quite recently, 

Elkowitz and Wyatt16a have applied this procedure to the three-dimen­

sional H + H2 reaction. Wolken and Karplus17 have applied an integro­

differential equation method proposed by Miller18 to 3D H + H2 using 

a one vibrational basis function approximation. 

In a previous paper19 (hereafter ref erred to as I) we described 

a method for accurately solving the Schrodinger equation for reactions 

of the type A+ BC -- AB+ C (--AC + B) on a single electronic potential 

energy surface with the restriction that the motions of the three atoms 

be constrained to lie in a single spaced fixed plane. An extensive 

application of this method to the planar H + H2 exchange reaction has 

now been made. 20 , 21 The present paper describes an extension of 

this method to three-dimensional atom-diatom collisions. It yields a 

computationally practical procedure for accurately calculating reaction 

cross sections for many atom-diatom chemical reactions. A number of 

additional concepts not present in the planar problem are introduced, 

and the simplifications occurring in an application to three-dimensional 

H + H2 are discussed. Preliminary results of an application of this 

method to the H + H2 reaction on a realistic potential surface have 

recently been published22 providing the first fully converged quantum 

mechanical cross sections for a chemical reaction. · The extension of 
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these calculations to energies above the threshold for vibrational 

excitation has lead to the discovery of a dynamical (Feshbach) reso­

nance23 for that reaction, a phenomena whose experimental detection 

may be an important tool in the characterization of reactive potential 

energy surfaces. A more complete description of these results for 

H + H2 is forthcoming. 24 

The method utilizes a close coupling propagation technique to 

generate complete sets of solutions in each of the three arrangement 

channel regions of configuration space,followed by a "matching proce­

dure" in which the solutions are smoothly matched to one another on a 

set of three appropriately chosen surfaces which separate these three 

regions. The scattering matrices, amplitudes and cross sections are 

then determined by analyzing the asymptotic behavior of these matched 

solutions. As thus formulated, the method is similar in spirit to the 

corresponding planar theory described in I and, for this reason, many 

of the concepts presented in that paper and which carry into the 

three-dimensional world without modification will only be summarized 

briefly. There are, however, several differences in application, 

· most notably in the matching procedure, and these will be discussed in 

detail. In addition, the concepts of angular momentum coupling, of 

body and space fixed coordinate systems, and of parity symmetry 

decoupling will be developed thoroughly as their utilization is of great 

importance to the three-dimensional method. 

In Section-2 we discuss the body fixed partial wave Schrodinger 

equation along with angular momentum coupling and the division of 

configuration space into arrangement channel regions. The fully 
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coupled Schrodinger equation for the four different internal configura-

tion space regions of each arrangement channel region is discussed 

in Section 3 and the matching procedure is outlined in Section 4. In 

Section 5 the body fixed R and S matrices are defined and their rela­

tionships to the helicity representation scattering amplitudes and 

cross sections are derived. In Section 6 we discuss the limitations 

of the method and its possible generalizations. In each section, 

where appropriate, the simplifications pertinent to the H + H2 

exchange reaction are indicated. Appendix A outlines the derivation 

of the body fixed Schrodinger equation and indicates relationships 

between several important angular momentum operators. Appendix B 

includes a discussion of parity symmetry and the simplifications in 

the method which may be gained by explicitly including it. 

2. THE BODY FIXED ROTATIONALLY COUPLED SCHRODINGER 

2 .1 Separation of Internal Configuration Space into Arrangement 

Channel Regions 

\Ve consider the three-dimensional collision of an atom A with 

a diatomic molecule BC and, in parallel, the B plus CA and C plus 

AB collisions. A convenient procedure for specifying the locations of 

A (= Aa) 1 B (= A[3) and C (= AY) in the center of mass is depicted in 

figure 1. Ila is the vector from the center of mass of BC to A and 

!.a is the B to C internuclear vector~ As Illa I - 00 , with Ir al : 

remaining finite 1 we obtain the separated A+ BC arrangement channel 

(denoted by the symbol a). The vectors R[3, -r-~ and R , r are 
,,.... ""tJ ,,.,.y ..--..y 
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defined analogously for the arrangement channels f3 (B + AC) and 

y (C +AB), respectively. Note that the arrangement of the vectors 

in Fig. 1 is cyclic in the indices a,By. We let A.vK represent any one' 

of the cyclic permutations af3y, f3ya and yap, and define the vectors 

IlA.' ~' l!v' ~v and JiK' ~K accordingly. We also introduce the scaled 

variables 13..x' !:.A which are related to IlA.' !.A by 

-1 -

!A= aA. ~-

!lA == aA.~ 

where 

and µA, VK and µvK are the reduced masses corresponding to Rx 

and r.A motion, respectively: 

Jl.t..,vK = mA(mv+m)/(mA. +mv+mJ 

llvK = mvm K/(mv+ m K) 

(2. la) 

(2. lb) 

(2. 2a) 

(2~ 2b) 

(2. 2c) 

This notation is identical to that used in I and is dictated by the con-

siderable mathematical convenience associated with using scaled 

variables. 25- 27 

We are interested in solving the six-dimensional Schrodinger 

equation for the motions of the three nuclei, oh a single electronically 

adiabatic potential energy surf ace, obtained after the motion of the 

center of mass of the system is removed. The surface (in the absence 

of external fields) is a function of only three appropriately chosen 

variables which specify the internal three atom configuration. A 

convenient representation of this potential Vis afforded by the use of 
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the variables RA, r A. and yA. {A. =a, {3 or y) where YA. is the angle 

between RA. and r.A defined by 

-1 
i'A. ==cos 

IlA· ~ 
l~IJ~I 

(2. 3) 

in terms of which V = v"(1\,R.A,yA.). __ As was discussed in I (Section 

3 .1), the variables ~, ~ are useful for describing the triatomic 

motions only for configurations in which RA is significantly larger 

than, say, Rv or RK. This is most eapily understood by representing 

VA in terms of variables ~ = (r~ + R~) 2 
(which, as shown in Section 4, 

is independent of A), w A. = 2 tan -i (rl\./R1..) (in the 0 to 'IT range) and Yx. 
The properties of such a representation have been discussed else­

where28, the most important one being that a change from polar 

coordinates~' wA,,yA. to~' wv, Yv rotates the map of Vwithout dis­

torting it. For the Porter-Karplus H3 surface, this representation 

of Vis given in Fig. 2. From it, one can see that the three-dimensional 

internal configuration space is naturally divided into arrangement 

channel region subspaces, labelled by the indices.>.:::: a,/3,y. In 

region A., for large~' RA. is approximately equal to ZA. and rA. is 

approximately half of the distance of the point P(~, wX, yA-) to the Zx 

axis .. Therefore, in that region, RA, rx, y.\ are the "natural" variables 

for describing the translational, vibrational and rotational motions, 

respectively, of the three atoms, but these same variables are both 

awkward and inefficient for representing the corresponding motions 

in arrangement channels v and K. As a result, we will use R1._, rA., y'A 

in region X only. Associated to these, we will pick a set of three 
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additional external variables (which specify the orientation of the 

instantaneous three atom plane with respect to a laboratory system) 

which will also be different for different arrangement channel regions. 

Accordingly, our procedure for solving the Schrodinger equation 

involves first the generation of solutions in each of the three arrange­

ment channel regions A. ::::: a, {3, y ID: separate. calculations using variables , . 

appropriate to each region. This is followed by a matching procedure 

which yields a set of smooth and continuous solutions throughout all 

of configuration space. To complete the problem, we need to 

linearly combine these "primitive" solutions to generate ones which 

satisfy the desired asymptotic boundary conditions. 

The procedure thus outlined is general aud can be applied to · 

. any hondissociative reactive system bt.~t in any specific application, 

we must specify the boundaries (in internal configuration space) of 

the three arrangement channel regions. As was discussed in I, the 

choice of bounding surfaces is primarily determined by the nature of 

the potential surface, but for H + H2 and many other reactive systems, 

a very useful separation is obtained by the use of the three half-planes 

rrv">t.' 'iT KV and 1f>..K of Fig. 2. They are ~imited by and intersect on the 

Y>.. axis. 1T VA makes an angle f3v'A: (in the 0 torr /2 range) with the ZA 

axis given by 

cos f3vlt = ·mm ~ i V K. (2.4a) 
m>.. + mJ(mv + mK) 

sin {3vA. = GmA + :K~V + mKJ 
1 

(2. 4b) 

where 
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(2.4c). 

Analogous expressions are valid for the angles between 1r KV and Zv, 

and between 1TAK and ZK. In terms of the internal variables R>..,r>..,yA. 

the half planes rr satisfy the equations 
/ 

1T VA: 1\ = rv 0 :::s y :.\ ~ 1T /2 (2. 5a) 

1T KV: rv = r K 0 :'.S y ~ 1T /2 v (2. 5b) 

1T AK: r K = r>.. 0 :'.S y ~ 1f /2 
K 

(2. 5c) 

These surfaces, called hereafter the matching surfaces, are analogous 

to those used in I and their properties are described in great detail 

in that paper (Appendix A). They are of great importance in the 

matching procedure of Section 4 and the method of solution of the 

Schrodinger equation in each arrangement channel region must include 

a procedure for determining the wave function on these surfaces. 

The remainder of this section will be concerned with the rotationally 

coupled Schrodinger equations for each arrangement cha!lnel region. 

2. 2 Partial Wave Analysis 

In the system of coordinates specified by the index A., the 

Schrodinger equation for the motions of the three nuclei is: 

n.2 2 

{- v~ - _n_ v: + vA(r:A,RA,yA)-E}wA(~,~) = 0 (2.6) 
21\, VK ~ 2JJ.vK ~ 

2 2 
where V R and V - are the appropriate Laplacian operators and E is 

• ..--.fi. ~ . 

the total energy excluding that associated with the motion of the center 

of mass. Upon introduction of the scaled coordinates of Eq. 2. 1, 
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Eq. 2. 6 is conve.rted to 

(2. 7) 

where the reduced mass µ is given by 

(2. 8) 

We now introduce the space fixed coordinate system Oxyz 

(Fig. 3) centered on the center of mass 0 of the triatom system and 

whose axes are constantly parallel to the axes of a laboratory fixed 

system of coordinates. In Oxyz the polar and azimuthal angles of 

R, and r, are fJ,, </>, and e , cf> respectively. By expressing the 
~A ~A A A rA. rA. 
Laplacian operators in Eq. 2. 7 in terms of RA., rA. and these angles, 

the Schrodinger equation can be rewritten as: 

(2. 9) 

where k._ and lA are the usual orbital and rotational angular momentum · 

operators expressed in the spherical coordinates 8,, cf>, and e , <P • 
. A A ~ ~ 

The total angular momentum operator {is the vector sum of k._ and 

(2.10) 

and is independent of arrangement channel. 
2 

The operators { and Jz (the z component of .i[) commute with 

each other and with the Hamiltonian H. In the parti~l wave analysis 
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procedure, we -expand \IF i\ ·(~, :13) iD: terms of simultaneous eigenfunc-
:\ 2 . . 2 

tions 1J! JM (~, 1111.) of i[ , Jz and H with eigenvalues 1i J(J + 1L nM and 

E respectively: 
00 J 

w~\~, ~) = L L c JMw~(~, 1li\) 
J=O M=-J 

The w~M still satisfy Eq. 2. 9 . 

2. 2 The Body-Fixed Schrodinger Equation 

(2.11) 

In the standard space fixed theory (as formulated, for example, 
29 · A . 

by Arthurs and Dalgarno ) , one now expands ~JM in terms of a set 
2 - 2 2 

of simultaneous eigenfunctions of !.! , Jz~ .lx and k_ thereby obtaining 

a set of coupled equations in the quantum numbers jA and lA. This 

derivation is summ:;t.rized in Appendix A. A more convenient and 

computationally efficient procedure for our purposes is to transform . 
to a system of body fixed coordinates. These coordinate systems 

were applied to quantum mechanical problems long ago by Hirschfelder 

and Wigner30 and have been discussed extensively by Curtiss, Hirsch-
31 . 32 

f elder and Adler and more recently by Pack and much of the present 

development will follow that of Pack. In a fully converged calculation, 

both the body fixed and space fixed formalisms lead to the same 

number of coupled equations and, for fully converged nonreactive atom 

diatom calculations, they may be implemented with comparable ease. 

However, body fixed coordinate systems lead to an approximate 

decoupling of certain degrees of freedom which is not naturally present 

in the space fixed analysis and which is useful in the development of 

approximate theor~es. More important,_ the body fixed analysis leads 
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to both computational and conceptual simplifications in the matching 

procedure thus providing a considerable advantage in reactive scattering 

calculations over the corresponding space fixed theory. 

\Ve now introduce the two· different body fixed coordinate systems 

OX>... YA ZA. and Ox\y'z\ (see Fig. 3) as follows: (1) OX.\. Y.\. ZA (not 

to be confused with the internal configuration space coordinate system 

O~Y.xZ.A of Fig. 2) is obtained from Oxyz by rotating through the 

Euler angles33 a =</>"A.' (3 = {)>...' y = 0 so that the resulting ZA axis 

points along the IJ>i. direction and the YA. axis lies in the xy plane; 

(2) Ox\y'z \is obtained from OXA YA.ZA. by rotating it counterclock­

wise about ZA. (= z\) by an angle tf;A. (in 0 to 211 range) so as to bring 

x\ into the 1lA., ~ plane and y' (which is independent of A.) perpendicular 

to it and oriented in the direction of IlA.X !:A.: 

~x·!A 
y= 

l~x~I 
(2.12) 

The Euler angles which rotate Oxyz into Ox\y'..z~ are therefore 

a = ~, {3 = e>.., y = tf;>... In either of the body fixed coordinate systems 

OX"A.. Y>..ZA. or Ox\ytz\ the variables used to describe the system are 

rA, RA.,<P'A' eA., lfl;v YA.: As seen from Fig. 2, tf;A. is the clockwise angle 

from OYA to Oy'. Since OYA is perpendicular to the OXA. ZA. plane and 

therefore the~' OZ plane, and Oy' is perpendicular to the~'~ 

plane, we conclude that l/J'A is the angle between these last two planes. 

Therefore, a motion in which Rx, <I\.' (}'A' rA. and yA are kept constant 

but lfix varies is a 11tumblingrr (i.e., rigid rotation) of the triatomic 

system around the 11.A vector. ~or this reason, the ~>.. angle will be 
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called the tumbling angle. In what follows we will find it most convenient 

to use the coordinate system OX,\ YA. ZA. for deriving the coupled form 

of the Schrodinger equation and Ox\ y• z 1.A in developing the matching 
2 2 

procedure. The procedure for expressing the operators J.,\ and 111. 

of Eq. 2. 9 in variables <PA., eA., tf;>i., yA is described in Appendix A. 

We now expand 'li'~M in terms of the elements of the Wigner 

rotation matrix D (a,{3,y) as follows: 32 
~ 

J 

w~Jv1<~' ~x) = L nrin ( <P11.' eA.' 0)'1';a (r>.., RI\, Yx_' l/111.) <2 • 13) 
S1 =-J ;\ A. 

A 

.The notation used for the matrix elements is that of Davydov. 33 

'1!;Q is called a body-fixed wave function. The quantum number 
A 

OJ.. in Eq. 2 .13 specifies the component of the total angular momentum 

!! around ~ or, equivalently, O~.A. The component of IA. (the angular 

'momentum conjugate to~) around this axis vanishes and therefore 

nA. also specifies the Z;.. component of the rotational angular momentmn 

~ in the body fixed frame. The equality of JZA and j"-ZA. is verified 

independently in Table I (which is described in Appendix A). \Ve will 

refer to either J z or j>..Z as the tumbling angular momentum (since 
A. A. 

· it describes the tumbling of the triatom around ~) and nA as the 

tumbling quantum number in arrangement channel A.. 

As outlined in Appendix A, substitution of Eq. 2 .13 into 

Eq. 2. 9, yields the following set of n>.. coupled equations for the 

w;Q (rA., Rx, YA.' \(;A): 
A 
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(2.14) 

The H~'A n, can be considered as the elements of a tridiagonal 
~'X' A. 

hamiltonian operator matrix ~J\rA, R1t/YA., lf;A.} whose diagonal and 

off diagonal elements are defined respectively by 

(2 .15) 

and .. 
(2.16) 

The j; are the raising and lmvering operators of the rotational angular 

momentum kin the body fixed OXA. YA.ZA. coordinate system. The 
2 2 2 

1/2µRA. term in Eq. 2.15 results directly from the )A, /2µRA. term 

in Eq. 2. 9. Defini~g ! ~ as the 2QA. + 1 dimensional column vector 

whose elements are the w;n , Eq. 2.14 can be put in the matrix 
A. 

form 

(2.17) 

Equations 2. 14 or 2. 17 are the body-fixed partial wave Schrodinger 

equation. Eq. 2 .14 is identical to the corresponding result of Pack32 

and indicates that the kinetic energy operator is no longer diagonal . 
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in the body fixed representation and is the sole mechanism \Vhich 

couples different tumbling quantum numbers QA. The potential 

coupling is diagonal in QA and is respondible for coupling between 
. 

states of different vibration rotation quantum numbers v>Jx. This 

separation of kinematic and potential coupling is of prime importance 

in the development of approximate decoupling procedures as will be 

discussed in the next section. 

2. 3 The Rotationally Coupled Schrodinger Equation; Tumbling:_ 

Decoupling Approximations 

We now expand the body fixed wave functions'±' /a in terms 
.A 

of the spherical harmonics Y. n (y.A, lf;A) which, as discussed in 
J.A""A • 2 

Appendix A, are the simultaneous eigenfunctions of .h_ and j.AZ : 
. ~ A 

.w 1 (rA, RA, yA, l/I)) = 2..'. yj n (Y;v lf/A) w~ n (~A' RA) <2• 18) 
A jA =='~I A A A A 

If we substitute this into Eq. 2.14, multiply throughout by 
* . 

Y
1
., Q' (y.A, lflx) and integrate over 'Y.x and lf;A. (using the solid angle 

A A. . • 
volume element sin yA. dy.A diJ;A) and finally interchange the primed and 

·unprimed quantum numbers it becomes a Schrodinger equation in the 

two distance variables r/\, RA: 

Ji\jA. A. . 
00 

A.QA A 
(tn n - E)w J. n (rA,"RA,> + L v . . , w J.' n (rA.,R>) 

A.' 11. JA. A. j, =In I J.xJ A. J A. "-
. A. ·A 

JAjA A J~A A 
+ tnA.,nA.+1 wJj/\QA.+l(rA.,R>i) + tni\.,nA.-lwJji\.ni\.-1(rA,RA) = o 

(2 .19) 
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where 

2 . (2. 20) 

+ n 2 [ J(J + 1) - 2nA2 + jA (jA + 1)] 
2µ.RA , ... 

(2. 2J) 

(2. 22) 

and 

(2. 23) 

Eq. 2 .19 is the three dimensional generalization of an analogous 

equation for collinear and coplanar21 reactions. None of the four 

angular coordinates eA., <PA' yA., if;A. appear in it, with only the two scaled 

distances rA., R.x remaining. In the collinear case, none of the angular 

momentum quantum num~ers J, nA. or jA. appear, and we have only 

one such equation. For systems confined to a space fixed plane, 

nA. does not appear (or it can be considered to have the fixed value 

zero) since the system does not tumble, and there is therefore no 

nA. coupling. In that case, jA. assumes all integer values, including 

negative ones, and there is one set of j.A coupled equations for each J. 

In the present three dimensional case, there is both jA. and nA. coupling, 

but still no J-coupling. Let us consider a kinetic energy matrix 

fX (r.;v Rx) and a potential energy matrix f <r .A, RA.) whose rows and 



columns are scanned by the indices j>..,.n.A and fx,n>._, respectively. 

They are defined by 

(2. 24) 

and 

(2. 2'5) 

respectively where the several t and V were defined by Eqs. 2. 20 

through 2. 23. It can be seen that~ JA. is diagonal in jA. (and tridiagonal 

in n,\_) whereas YA is diagonal in QA. Defining \~(rA, RA) as the column 
,,.,_ 

vector whose elements, scanned by n'/11 are the functions 

w;j:XQA. (rt..,RA.), Eq. 2.19 can be rewritten as 

(iJ>t + yA)~ = E~ 
~ .,,.... 

(2. 26) 

Eq. 2. 26 shows clearly that the potential coupling is diagonal 

in S\.. This, along with the weakness of the centrifugal coupling 

(due to the terms in 1.1\ of angular origin) for small J and jA. has 

lead to the development of fairly accurate tumbling-decoupling approxi­

mations by several workers32 ' 34,. 35 in studies of nonreactive atom 
. J 

diatom scattering. fu such procedures, the tn >.. Q ±l terms in 
.X' A 

Eqs. 2.19 and 2. 24 are neglected thereby making Eq. 2.26 be diagonal 
2 2 

in Q~: In addition, the 11/2µ.RA. term in Eq. 2.20 (which.arises from 
2 

the k_ term in Eq. 2. 9) is usually replaced by an approximate expres-

sion. Pack32 replaces it by r{J(J + 1)/2µRA.
2

' and McGuire and 

Kouri
34 

by t{1A (lit+ 1)/2µR./ w~ere 11\. is the orbital angular momentum 
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quantum number in the space-fixed system of coordinates. 36 Such 

additional approximations are unnecessary to produce nA. decoupling 

and may furthermore introduce additional errors without 

significant computational simplification, and we suggest that they 

should be omitted. For the case of reactive scattering, an nA.. 
. . . JA.jA. • 

decoupling requires neglect of the tn Q ±l rn Eq. 2.19 for each 
I\.' A. 

arrangement channe 1 region A = a, {3, y. The exact matching procedu1:.e 

described in Section 3 may be retained, or be replaced by approximate 

ones which retain the spirit of n.A decoupling. In a separate paper24 

we will present some results of an application of one of these possible 

procedures to 3D reactive scattering. 

The elements of the potential coupling matrix of Eqs. 2. 23 

and 2. 26 may be conveniently calculated by expanding the potential 

vA(r>.., RA.., yA.) in a series of Leg~ndre polynomials 
00 

vA(ri\.,RA,Y)) = Lr V~(rA,R~)Pk(cos Y>) 
k ::: 0 

which when substituted into Eq. 2. 23 leads to32 

i\.Q>.. co 2jA + 1 -! . . ' 
vj,j\ (rA.,Ri\.) = [1 ( ., ) C(J>..kJ i\.;nl\.oni\.) 

A A k=O 23 A + 1 

C(ji\.kj1A.;OOO) V~(rA., RI\.} 

(2. 27) 

(2.28) 

where the Clebsch-Gordon coefficients C are expressed i.n the notation 

of Rose. 37 For collisions of an atom with a homonuclear diatomic 

molecule (as in H + H2), the only nonzero terms in Eq. 2. 27 occur for 

even k (since vA(ri\., Ri\., yi\.) is symmetric about y>.. = 1T /2). Since38 



C(jA.kj'>..;000) = 0 for jA. + k + j'A. == odd, (2. 29) 

we see that v>-- does not couple even with odd rotational states. Use 
~ 

of this decoupling in reducing the necessary calculations for reactions 

like H + H2 was discussed in I for the planar case and most of the 

simplifications described ~here are valid for 3D collisions as well. 

Note that Eq. 2. 28 involves a single sum over products of Clebsch­

Gordon coefficients, a substantial simplification over the corresponding 

space-fixed expansion which requires 6-j symbols. ,32 

Let us now define a new function F;jAQA (r,\, R,\) by 

·. Substitution of this into Eq. 2. 19 leads to 

where 

_J.i\.j,\ ti.2 ·/ 02 j,\ (j,\+1) 
ton =--[--2+--2 ]+ z 

A' ,\ 2µ. oRA orA 2µ.rA 
2 

+ li 2 (J(J + 1) - 2nA.2 + j,\(j.i\. + 1)) 
2µRA. 

and the remaining quantities are defined by Eqs. 2.21 - 2.23. In 

matrix form,Eq. 2. 31 can be written as 

(2. 30) 

(2.31) 

(2. 32) 

(2. 33) 
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where--~ JA. is defined similarly to 1._JJ... and !S similarly to ~· 
.r... ,.... 

Eqs. 2. 31 and 2. 33 are called the body-fixed rotationally coupled 

Schrodinger equation. 

3. THE INTEGRATION IN ARRANGEMENT CHANNEL REGION A. 

3.1 Division of r.h, R;,. Configuration Space into Regions 

To solve Eq. 2. 31 or 2. 33 we expand the wave function 

F'~A. n,A.(rA, R.~) in terms of a set of one-variable pseudo-vibrational 

functions which locally span the r.i\., RA configuration space along cuts 

which are approximately perpendicular to a conveniently defined 

reaction coordinate. The resulting expansion coefficients satisfy 

coupled differential equations which must be numerically integrated 

through the arrangement channel region /t. to generate a set of solutions 

to the Schrodinger equation in that region. In order to obtain an 

efficient representation of the pseudo-vibrational motion everywhere, 

we must change both coordinate systems and basis sets frequently 

during this propagation. This may be done in many different ways 
' . 

depending on the bou:1.;.daries of the arrangement channel regions and 

the shape of the potential energy surface in these regions. For the 

H + H2 reaction, and most others for which the choice of matching 

surfaces is given by Eq. 2. 5, a convenient procedure consists of 

dividing the rA,RA configuration space into four areas called regions, 

as depicted in Fig. 4. For reference, contours of the potential 

matrix element V0 (rA,RA.) of Eq. 2.2 for the H3 Porter-Karplus 

surface39 are plotted on the same figure. The regions are denoted 

as: I - asymptotic region, II - weak interaction region, ill - strong 



interaction region, and IV - matchi_ng region. The boundary points 

P ~, P 0 and P 1 are required to lie in the high energy plateau region 

corresponding to dissociation of the triatomic system into A+ B + C' 

(i.e., large r.x and R.x_), in positions which are primarily determined 

by certain geometrical criteria. These are described in detail in I 
.. •" 

and are unchanged in the present application. Within each region, 

we choose a set of orthogonal coordinates ·which efficiently describe 

the local vibrational and translational motion. For example, in the 

asymptotic region, rA is the natural expansion vari.able for describing 

vibrational motion and R.A the appropriate propagation variable for 

describing translational motion. This is also true in the near interaction 

region, but in the strong interaction region, a more efficient :repre-

sentation is obtained in terms of the polar coordinates p'A, 1JA. which 

are defined by (see Fig. 5): 

(3. la) 

(3.1b) 

where the origin of the corresponding coordinate system is located 

at rA. , RA • Here ,pA. is the effective expansion (vibrational) coordinate 
0. 0 

and q;"A is the corresponding propagation coordinate (for translational-

like motion across region III). In the matching region, a different 

set of polar coordinates ~' 17). is used. These are defined by 

r:>.. = ~ sin 7711. (3.2a) 

(30c2b) 



368 

and have 'as origin the point Qin Fig. 5. The quantity ~was introduced 

after Eq. 2. 3 and the angle rrA. is 1/2 of the angle wA also introduced 

at that time and used in the representation of v\rA, RA,y11_) of Fig. 2 .. 

The variables ~ and 17A constitute respectively convenient expansion 

(~) and propagation (11;) variables for region IV and also provide a 

convenient means for obtaining the wave function on the matching 

surface as will be summarized in Section 4. 

3. 2 The Coupled Schrodinger Equation in the Propagation Variable 

We now consider the solution of Eq. 2. 31 in each of the four 

regions in arrangement channel region A. Much of this treatment 

is completely analogous to the corresponding coplanar theory (Section 

3. 4 of I) and that paper should be consulted for a more detaile<l 

explanation of the concepts involved. 

3. 2 .1 The asymptotic region 

The coordinates for this region are r:>t., RA. In terms of these, 

the potential function V\rA, RA, y11_) becomes the isolated diatomic 

potential vA.(r.i\) since the boundaries of the asymptotic region are 

chosen19 so that the potential has assumed its asymptotic form. We 

now expand the wave function FJA. n (rA,R:>t.) of Eq. 2. 31 in terms of 
JA A 

the eigenfunctions ¢A. 
1
. (r~) of the vibrational Hamiltonian: 

VA A 

(3. 3) 



(3. 4) 

with boundary conditions 
·"' 

(3. 5) 

E i\(c;t) is the asymptotic diatomic vibration rotation energy and 
VA.Ji\ 

r ~~ cf> ;~j~ (r ,\)' except fOr a normalization constant, is the radial part 

of the corresponding diatomic eigenfunction. Substituting Eq. 3. 3 

into Eq. 2. 31, using Eq. 3. 4, multiplying by </> "A}a), (r,) and inte-
. V~A A 

grating over r.A, we obtain the Schrodinger equation for translational 

RI\ motion in the asymptotic region: 

2 

{ d 1 2 · ] i\(a) 2 } A.(a) 
--2 - -2 [ J(J + l) - 2Qi\ + ji\ (ji\ + i) + kv J. gJ J. Q (RI\.) 
dRi\ Ri\ A. >.. vA. A. A. 

(3. 6) 

where 
' 

(3. 7) 

Note that while no vibrational or rotational coupling exists in Eq. 3. 6, 

the kinetic energy coupling between g's of different nA. persists in 

this asymptotic region) decreasing only as Rx- 2 
(rather than exponen-
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-6 
Hally or as RA a.s is often the case with potential coupling). Of 

course, as RA-> 00 (the "far' 1 asymptotic region), Eqs. 3. 6 completely 

uncouple and the gJi\(a)
3
. " become solutions to: 

VA A~"A. 

2 

{ --9-.,- + kA(~) 2} gA.(a~ (R ) = 0 (3. 8) 
dR - Vi\JA. Jvi\Ji\S°ti\ A 

i\ 

which are simply linear combinations of exp (± i kvA.)a) RA} for open 

/\(a) I /\(a) A A. 
channels (E > Ev J. ) and exp (± kv J. I Ri\) for closed ones 

A>.. i\ A. 
(E < E;(a

3
. )). Eq. 3. 6 may be solved analytically either by diagonalizing 

AA 
the Hamiltonian in that equation or by realizing that the corresponding 

space fixed Schrodinger equation is already diago~a129 , and thus its 

solutions may be linearly combined to satisfy Eq. 3. 3. 35 The solutions 

of the space-fixed Schrodinger equation for open channels are related 

to spherical Bessel functions jl (kA.(a) R)) and y1 (k A.(a
3
_> RI\.), 

29 

A. V>..J>.. i\ Vi\ i\ 
where lA is the orbital angular momentum quantum number. The 

corresponding body-fixed solutions are found by equating Eqs. A. 5 

and A.13 of Appendix A, and using Eq. A.14 to solve for the body 

fixed coefficients wJ~ n '. Since Eqs. 2 6 30 and 3. 3 apply equally to 
"A A. 

both space-fixed and body fixed solutions, we can immediately write 

the asymptotic body-fixed solutions for open channels as: 



x Ic(Jj>..lA;nl\. - n>-o) 

IA 
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In the far asymptotic region, the Bessel functions become
38 

sin (kA.(~) RA. - lA. 1T/2) 
• A.(a) VA.JA. 
J1 (kv j R") r-.J --~x(...-a ....... ) ---

A.. A. A k J. Rx 
VA>.. 

and 

(3. 9) 

(3. lOa) 

(3. lOb) 

and by expressing the sine and cosine in Eqs. 3.10 in terms of_ 

imaginary exponentials, one can immediately see that Eq. 3. 9 

satisfies Eq. 3. 8 as desired. The use of Eq. 3. 8 in formulating the 

asymptotic R and S matrix boundary conditions will be discussed in 

Section 5.1. For closed channels, the body fixed solution is still 

of the form in Eq. 3. 9 but with the spherical Bessel functions jl and 
A. 

y1 - replaced by the modified spherical Bessel functions 
A 

i 1 ( jk~(j) IRA) and k1 ( jk~(j) IRA} 
40 which behave asymptotically as 

A. A. A. A. A. .\ I i'.(a) 
kV j IRA 

. I .A(a) I i e .A I\ 
11>. ( kvA.jA. Ri\),..., 2 jkX(~) IR 

Vi'.h •. >.. 

(3. lla) 

and 
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(3 .. llb) 

Let us now introduce a matrix notation for the Schrodinger 

equation (Eq. 3. 6). We consider the g"-J(a)J. " as elements of a column 
v/... .A ll"i\. 

vector 'i/j(a) whose elements are labelled by the indices vA_ji\st/..., which 

are assumed to scan a total of N values (in a truncated close-coupling 

expansion). This vector represents one of 2N possible linearly inde­

pendent solutions of Eq. 3. 6. These 2N solutions which form 2N 

column vectors can be assembled into two matrices of dimension 

N x N which we label as (s(a)+ and g}(a)- where a set of indices 

v'>-.j1A. rt>. analogous to the row indices explained above is associated 

with each column. 4:i The labels± are in general arbitrary, but may 

be chosen to distinguish the solutions generated in the propagation 

from region I to IV (labelled plus) and from IV to I (labelled minus). 

Both propagations are necessary to generate all 2N solutions (we get 

N from the propagation in each direction). In terms of this notation, 

Eq. 3. 6 may be written as 

l A.(a)± 
fiJ = UA(a)(R ) A.(a)± 

~ A ~J (3.12) 

where 

(3.13) 

(3 .14) 
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{3.15) 

- 0a +1 gr ~+(J,nA)~+(jA,QA) - 6n -1 Q' ~_(J,QA)~_(jA,~)} 
.A ' .A , A ' A 

where t>.. stands for the set of indices vAj.A QA. and the subscripts and 

superscripts on a matrix element designate its row and column 

respectively. The ~~A.(~atrix arises from the 1/RA
2 

centrifugal 

terms. Eq. 3.12 is the full close-coupled propagation equation for 

the asymptotic region I. 

3. 2. 2 The weak interaction region 

In this region we still use the variables r.A and RA. to represent 

vibrational and translational motion but the potential vA(rA., RA, yA.) 

is now dependent on RA. and yA. as well as rA., so we no longer use the 

asymptotic vibrational eigenfunctions of Eqs. 3.3 and 3.4 to expand 

the wave function. Since it may be desirable to change vibrational 

basis functions several times within region II, we subdivide that 

region into n11 subregions separated by lines of constant 
' . 

RA. at RA. = (Ri ,R~, · •• R' A. =RA. ) • The range of RA for the ith 
o Ann. ~ 

subregion is R~. :s R.A :s R~. and we choose eigenfunctions for that 
i-1 l . A. o ) 

subregion to be the eigenfurctions of a refe1·ence potenttal V ref(r_x;RA.. 
0 . l 

where RA. is generally a point (such as the midpoint) within subregion i. 

The refer
1

ence potential v;ef(rA.; RA.) is in general arbitr<l:ry provided 

that a complete vibration-rotation expansion can be used, but an 

efficient representation of the vibrational motions can greatly reduce 

the number of closed channels required for such completeness. 
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>.. 
Examples of reference potentials are the v 0 (1\, RA) of Eq. 2. 27 

and the exact potential v\rA, RA, y>) at fixed yA. Once a reference 

potential is chosen, the vibrational basis functions for subregion i 

may be determined by solving 
2 

d2 jA. (jA. + l)n . . o A.{w) . o 
--2 + -- "! Vref(ri\,RA.. )} cpv j (rA.,Ri\_) 
drA 2µ,rA. . l A. A l 

(3.16) 

subject to boundary conditions analogous to Eq. 3. 5 where the super­

script (w) indicates weak interaction region. We now expand the 

wave function F;J. Q in terms of these basis functions 
A i\ 

A ~ A.(w) o >..(w). o 
FJj)i:\ (rfi_'RA_) = L, gJv:i.hS11 (RA;Ri\)<f>v,h (ri\;RA) 

VA .• ·- -- - .. .. -
(3.17) 

Substituting this into Eq. 2. 31, using Eq. 3.16 to simplify, then 

multiplying by ¢A.~wJ:\ (r"; R~ ) and integrating over r'\, we obtain the v I\ A. 11. 11.i 11. 

following coupled differential equations (in the matrix notation of 

Section 3. 2 .1): 

(3.18) 

where 

(3.19) 

The matrices f (w)
2 

and §A.(w) are given by Eq. 3.14 and 3.15 with 

the superscript w substituted for a! while the J independent potential 

coupling matrix is given by 
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(3. 20) 

where t.A was defined after Eq. 3.15 and the yA integral is performed. 

as indicated in Eq. 2. 23. Eq. 3.18 must now be integrated (as 

described in Section 3. 3) through each subregion i of Region II. At 

the boundary between two subregions (say i and i + 1), a vibrational 

basis set change is performed. If one makes both '\][J>g and its 
A 

derivative with respect to RA continuous at this boundary Ri\ = R\.' 
1 

the following relations between the "g" coefficients in two adjacent 

subregions are obtained: 

(3.2_1a) 

dP-.A(w)±(R' ;Ro ) 
RJ i\. A. ,..,. 1 l 

(3. 21b) 

where the overlap matrix ~~(w) is given by 

(3.22) 

as discussed in I (Section 3. 4. 2), S~(w) should be orthogonal for a 
~l 

for a complete vibrational expansion. For a truncated expansion, as 

required by practical considerations, s'~(w) must be nearly orthogonal 
~l 
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in order for us to obtain scattering matrices which satisfy conserva-

tion of flux (see Section 5) to an acceptable degree of accuracy. The 

transformation between regions I and II is accomplished by setting 
. 0 

i = 0 in Eqs. 3. 21 and interpreting RA to mean RA
0 

(Fig. 4) and 
A.(w) o A.(a) 0 

<P. 
3
. (r ... ; R._ ) to mean <P. 

3
. (r .J. 

VA A. I\ 1\0 VA. A I\ 

3. 2. 3 The strong interaction region 

In this region we use the polar coordinates pA., cp>.. of Eq. 3. 1 

and regard <fl-A_ as the propagation variable. Before we can expand 

our wave function in terms of a set of pseudo-vibrational eigenfunctions 

in the variable pA, we must first transform Eq. 2;31 to these polar 

coordinates. The only important change in this transformation occurs 
- Ji\j/\. 

in t 0 ~ (of Eq. 2. 32) which becomes: 
\}"l\.Ytt.h. . 

,..,! ~ 2 

- ·"~J.A tr 1 a a 1 a 
tg n =--[---pA.-+-z --z) 

A A 2µ Px apA opA PA ocpl\. 
(3. 23} 

2 2 2 
jA (j.A + l)ti ti ( J(J + 1)-2QA +jA. (jA. +1)] 

+-- 2+ 2 

2µ(rA
0 

- PA cos cp>) 2µ(R/\.
0 

- pl\ sin cpA.) 
' . 

As for region II, we aivide region III into nirr subregions bounded 

by lines of constant cpA ( = <p\ , cp\ ••• cpr A. = <pA ) • We choose 
1 2 >mm 0. 

our vibrational basis set to satisfy 

(3. 24) 

0 
with boundary conditions analogous to Eq. 3. 5. cpl\. is generally 

l 
a point within the ith subregion and the reference potential has been 
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re-expressed in the polar coordinates so that it has the shape of a 
0 

diatomic potential as a function of Px for a given 'PA.. within region 
l 

III (see Fig. 4). The superscripts in Eq. 3.24 refers to strong 

interaction region. Note that the centrifugal term appearing in Eqs. 

3. 4 and 3.16 has been omitted. (It has been transferred to Eq. 3. 30 

below.) This results in a .vibrational function cf>A.(s) independent of 
VA . 

jA., which simplifies the matching procedure (Section 4) and should 

not seriously slow down the rate of convergence of the method. If 

we now expand FJxJ. Q in terms of these cf>A.{s), 
A A VA. 

l . . 

A. _ -2 X(s) . 0 A.(s) . 0 

FJj n (pA,cpA) -PA l gJv j n (<1\_,cpA.)c/Jv (pA,cpA_), 
AA - AAA l A l 

(3. 25) 

VA 
we obtain the following matrix equation: 

(3. 26) 

where 

tf.(s) = p \cp o)UX(s)(<p ;cp o) 
RJ' ~ A.. RJ" A A.

1
. . l 

{3. 27) 

and 

(3. 28) 

2 
The matrix~ (whose elements have the physical dimension of the 

square of a length) is given by: 

2 o t'x j\n'A. 2 

[PA (cpAi) ]tA. = 6jA. n"- <vA. IPA Iv\> (3.29) 

while the centrifugal coupling matrix lJ.~ A.(s) is 
.,..... 
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[ OQA +1, Q\ ~+ (J, nA)~+ (jA, ai')+ onA-1, 0\ ~_(J, QA)~-:-(jA., n~_)]} 

(3. 30) 

The matrices f(s)
2 

and ~(s) are given by equations analogous to 

Eqs. 3.14 and 3. 20 with superscripts and coordinates appropriate 

to the strong interaction region substituted where necessary. ·Note 

that the centrifugal coupling (Eq. 3. 30) is no longer diagonal in vA.. 

The effective potential matrix U }-(s) is not symmetric in this region 

but rather is equal to the product of two symmetric matrices (Eq. 3. 27) 
. 2 

one of which (~ ) is the matrix representation of a positive definite 

operator. Complications resulting from the use of a nonsymmetric 

f.tj(s) in integrating Eq. 3.26 were discussed in I (f;ection 3. 5) . 
.,... 

To solve the Schrodinger equation in region III we need to 

propagate the solution of Eq. 3. 26 through each subregion of that 

region, relating solutions in adjacent subregions by an equation 

analogous to Eqs. 3. 21 and 3. 22. To relate the solutions at the 

boundary of regions II and III, we use the following formula (which is 

derived in a manner analogous to Eq. 3. 21): 

(3. 31a) 
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(3. 31b) 

where .... 

b ::: 1 /2 ' 3 /2 

3. 2. 4 The matching region 

The polar coordinates ~' 1JA_ of Eqs. 3. 2 are used in region 

IV with 1J... acting as the propagation variable. Upon transformation 
II. • _JA.j 

of Eq. 2. 31 to these coordinates, the operator t n A. n of Eq. 2. 32 
MA.'3ltA 

becomes 
2 

_JAjA 1l 1 a a 1 a2 ti jA (jA + l) 
t =--[--~-+2--21+ 2 2 

nit, n;\ 2µ ~ a~ a~ ~ OTJA. 2 µ.~ sin 'flt.. 
2 2 

n [ J(J + 1) - 2ni\ + j"-(ji\ + 1)] 
+ ~--~--=2~---,,.2~--~~~~ 

2 µ.~ cos 1Ji\ 

(3. 33) 

Similarly to region Ill, region IV is divided into niv subregions by 

lines of constant iJA., with the vibrational eigenfunctions of each sub­

region satisfying an equation analogous to 3~24: 

where the superscript m denotes matching region. Writing 
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(3.35) 

the counterpart of Eq. 3. 26 becomes: 

2 . 

~ e:~(m) == lf (m) (11 ;rt o) ~>t(m)± 
d17A ~ ~ ~ i\ ...._J 

(3. 36) 

where 

{3~ 37) 

and 

(3. 38) 

2 0 2 
The matrix~ (TJA..) is defined analogously to~ of Eq. 3. 44 with~ 

substituted for p~. The matrices ~A.(m)2 
and ~~(m) are given by 

equations similar to Eqs. 3.14 and 3.20 respectively ~..,vith the super­

script m inserted and the appropriate coordinate changes made. The 

centrifugal coupling matrix 11~!1.(m) is given by: 

(3. 39) 

= ojA, j'A[ OQA +1, n'>._ ~+ (J, nA)~+ (jA' QA) 

2 

+On _1 Q' ~_(J,QA)~_(jA,QA)]/cos 'lJJ 
ll"A. ' A. . II; 

To solve the Schrodinger equation in region IV, one must integrate 

Eq. 3. 37 through each subregion, relating solutions in adjacent sub­

regions by equations analogous to Eqs. 3.21 and 3.22. The transforma-
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tion between regions Ill and IV is accomplished by equations analo­

gous to Eqs. 3. 3la and 3. 3lb (with a plus rather than a minus sign 

in the right hand side of the latter) and the matrix ~b substituted for 

~~b where 

with pA defined in Fig. 3. 
0 

b = 1/2, 3/2 

g. 3 -~1tegration of the Schrodinger Equatl2fl 

...... 

(3. 40) 

We generate the solution~+ and its de.v.iva.tive with respect to 
.,...._ 

the propagation variable ?Y choosing at Rlt ::::: Hx
0 

(Fig. 3) arbitrary 

initial values for these two matrices and integrating numerically 

Eqs. 3. 12~ 3. 26 and 3. 36 from the beginning of region II to the end 

of region IV. The solution~- and its derivative are deter1nined by 
""' 

· integrating the same equations from the end of. region IV to the beginning 

of region II. Any appropriate numerical procedure may be used to 

solve these coupled ordinary second order differential equations. A 

particular one which is well suited to such equations and which we 
A2 

used is the Gordon method~ , More particulars of this procedure 

are described in I (Section 3. 5). . 
For the H + H2 reaction, the coupled equations need only be 

solved in one of the three equivalent arrangement channels. Reactions 

of the type A+ B2 involving two ·identical atmns will require two such 

integrations, and reactions with three differt-mt atoms will require 



382 

three. For arrangement channels for which the target is homonuclear, 

Eq. 2. 29 implies zero potential coupling behveen odd and even rota­

tional states. Since all kinetic energy coupling is diagonal in jA 

in all four regions, our matrix differential equations may be decoupled 

into separate ones for the even and odd rotational states with a. subse­

quent savings in computation time. Both must be integrated before 

the matching, which mixes these two sets of solutions, can be performed. 

Any chemical reaction displays in addition parity (i.e., inver­

sion through the center of mass) symmetry, as shown for triatomic 

systems in Appendix B. Although the body-fixed wave functions ob­

tained from Eqs. 2.13, 2.18, 2.30 and either 3.3, 3.17, 3.25 or 

3. 35 are not eigenfunctions of the parity operator, they may be 

linearly combined to yield solutions which are, and this 'transformation 

to the "parity representation" results in a partial decoupling of 

Eqs. 3.18, 3. 26 and 3. 36 into two sets, one for even and one for odd 

parity. A description of this transformation and other consequences 

of the parity operation are given in Appendix B. By using parity 

eigenfunctions, the integration in each arrangement channel is done 

in two separate steps (four for homonuclear targets). Since the 

transformation between arrangement channels preserves parity 

(as shown in Appendix B}, the matching procedure also can be done 

separately for solutions of each parity, as can the calculation of the 

reactance and scattering matrices. The final plane wave solution 

is not, however, an eigenfunction of the parity operator, and as a 

result the calculation of scattering amplitudes requires a transformation 

back to the body fixed representation of the previous two sections. 
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The enormous reduction in computation time more than outweighs 

the additional work involved in this transformation. Appendix B 

describes this in more detail. 

4. THE MATCI-IlNG 

4. 1 The A. to v Transformation 

At the completion of the integrations in each of the three 

arrangement channel regions, we have obtained solutions to the 

Schrodinger equation which span all of configuration space but which 

are neither smooth nor continuous at the internal configuration space 

boundaries of these regions. In this section we describe the procedure 

for linearly combining these solutions so as to produce a smooth 

matching at those boundaries. This procedure will also include the 

transformation from .A to v coordinates (appropriate for arrangement 

channels "A and v respectively), a transformation which is both con­

ceptually and numerically facilitated by the use of body fixed coordi­

nates. Our analysis will focus primarily on the behavior of the wave 

function in the vicinity of the half-plane matching surfaces defined by 

Eqs. 2. 4 and the remarks preceding and following it. 

Equations describing the A. to v transformation have been 

derived for coplanar reactions in Appendix A of I, and most of these 

expressions are still valid in 3D. However, some angles which span 

a range of 21T in 2D become polar angles in 3D (with a range of rr) 

so some care is required in making the analogy. The basic equations 

which govern the transformation are given by:19 



384 

= (4.1) 
cos aVA 

where a
11

A. is the angle between rr /2 and 1f defined by 

(4. 2) 

{3
11

A. having been given by Eqs. 2. 4. Eq. 4.1 may be easily derived 

from Fig. 1 and Eq. 2 .1. By taking the scalar products ~11• ~v' 
r • r and R • r in Eq. 4.1 and using Eq. 2. 3, we find the following ,...v ""v "'v ..... v . 

expressions for the R.x,rA.,yA. -~ Rv,rv,Yv transformation .. 

Eqs. 4. 3 and 4. 4 may be compined to yield 

(4. 3) 

(4. 4) 

(4. 5)' 

{4. 6) 

which~ together with Eqs. 3. 2,proves the invariance of ~ to arrange­

ment channel. Also of use in our analysis below is the polar angle 

AVA (in 0 to 1f range) behyeen ~and ~v w.hich is determined by 

R •R R · r · 
cos AVA = ; R'.:..A =cos a.VA___!::. - sin al/A cos YA.RA (4. 7) 

11 A. Rv v 

We now examine the consequences of Eqs. 4. 3 - 4. 7 on the 

matching surface 7r v>... ~Combining Eq. 2. 5a with Eq. 4. 6 gives 

R =R A. v (4.8) 
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and this equation together with Eqs. 2. 5a and 4. 3 leads to 

(4. 9) 

which is the equation of the matching ~urface rr VA in RA, rA., yA coordi­

nates. If Eqs. 2. 5a, 4. 8 and 4. 9 are now substituted into Eq. 4. 5, 

we find 

cos Yv ==-cos /'.A 

and since 0 :s y.A, y 
11 

:s 1f, we conclude that on 1T vi\. 

Yv == rr - Yx 

Eqs .. 2. 5a, 4. 8, 4. 9 and 4. 7 may be combined to yield 

cos !::,.. VA == cos a VA - sin a VA cos Y.x [cot a VA cos }'A 
1 

2 2 2 
+ (1 + cot aVA cos YA) ] 

which implies that !l.v.A is a function only of YA on rr vA.. 

(4.10) 

(4.11) 

It will also be useful to convert RA., rA. in Eqs. 4. 7 - 4.11 to 

the polar coordinates ~'1JA (of Eqs. 3.2). First, from Eqs. 4.8 and 

3. 2 1 we have 

(4.12) 

and, after some manipulation, Eq. 4. 9 becomes 

cot 271.\ == - cot a vA. cos yA (4.13) 
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which is the equation of rr vi\. in ~,"'>..'YA.· coordinates. Since i/x_ = 

tan-\rA/R}) and is in the 0 torr /2 range, we conclude that 

(4.14) 

where "-). was defined after Eq. 2. 3. Therefore, Eq. 4.13 is equivalent 

to 

cot ~ = -cot avA. cos l'A. 

which is the equation of the 1T vX half-plane of Fig. 2 in the polar 

coordinates ~, wA., Y.x. Finally, Eq. 4.11 may be _reexpressed in 

1JA., Y.x coordinates as 

{4.15) 

( 4.16) 

We now consider the transformation from the body-fixed 

coordinate system Ox\y'z\ (Fig. 3) to Ox'vytz'v· Both systems have 

the same y' axis (which is perpendicular to the three atom plane) and 

from Eq. 4.1 ~nd Fig. 3 it can easily be shown that this coordinate 

transformation is a c~ ockwise rotation about y by 6.vi\. 

Let us determine the effect of the R", r" -> R , rv trans-""" ,.... /\, .,,.... v -" 

formation on the wave functions. The complete body fixed wave 

function,as obtained from Eqs. 2.13, 2.18 and 2~ 30 is 
i\ 

. F Jj S1 (rA, Ri\) 
-.Jr JM ~ L n.:rni\ (¢ii\, o"-' O}Yji\ nx (yx, 1/li\) __ A. _A. __ _ 

JAUi\ ri\Ri\ 

= ~ I D~n <<PA' 8;vlfl11)x;n (rll,Ri\,y>) 
v~ n i\ . A . . 

i\ 
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where, from Eq. A. 2, 

( 4.18) 

In the second line of Eq. 4.17, the exp in>.. tf.l"A part of YjAQA (yA, t/.11.) 

has been incorporated into the rotation matrix nJnA. which trivially 

converts '11 JM from the OXx_ Y >.,Zi\ to the Ox\y'z 'A coordinate system. 

If ~JivI is fully matched (i.e., a smoothly continuous solution of the 

Schrodinger equation), it may be expressed in the Ox' vyrz 'v coordi­

nate system in an analogous way: 

(4.19) 

Since the A. to v transformation in the body fixed coordinates 

Ox'A.y'z\ is accomplished by a counterclockwise rotation by an angle 

- Avi\. about y, the corresponding body fixed wave functions may be 

related by: 

(4. 20) 

where 

J J 
dn Q (6.VA) = Dn n (O, fl.VA' 0) (4. 21) 

v .i\ II- v 

in the notation of Davydov .33 Eq. 4. 20 relates the matched solutions 

xA and xv for any values of the internal variables. 
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4. 2 Projection of the Wave Function onto the Matching Surface Basis 

Functions 

In this section we consider the evaluation of the unmatched 

wave functions and normal derivatives obtained from the integrations 

·in both channels A. and v on the matching surface 1T VA' and their expan­

sion in a set of functions T vA.
3
• Q (~, yA) which span that surface. The 

VA:\ A. 
complete, unmatched wave function in the Ox\y'z'A. coordinate system, 

in region IV of internal configuration space (subregion i} is (from 

(4. 22) 

·where 

(4. 23) 

Here we have dropped the superscript (m) as it will be implicit through­

out this section, but we have included the labels t\± = (v\_j'.AQ\. ±} 

to denote the 2N linearly independent solutions obtained (from an N 

coupled-channel calculation). Eq. 4. 23 may be evaluated on 1T vA. by 

using Eq. 4~ 13 to relate 77A. and yA.. Since 0:::;; y.A ::s 1T /2 on 1T vA' we 

find that 11.A must lie between TJAo = (1T - avlt) /2 and 7J'Ai = 1T /4 to 

satisfy Eq. 4. 13. In order to evaluate Eq. 4. 2 3 over this range of 

11A' it is convenient to change to a common set of vibrational basis 

functions <P. (~)for all subregions i. This is accomplished by trans-
vA 

formations analogous to Eq. 3. 21 and 3. 22 with the result that 
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(4.24) 

where 

(4. 25) 

To insure a smooth matching, we must also consider the derivative 

of xJQ normal to 7r VA (other derivatives are possible). Expressions 
A 

for this normal derivative operator were derived in I (Appendix A) 

where we found 

1 sin av/\ a . ·a 
= - [ - + cot a sin y - ] 

>" sin w ow vi\ A oy 
~ i\ i\ A 

1 sin a v A ( .n. a - a 
= l'.; 2 - + cot aVA sin YA - ] 

sin 217... 011... oy, 
'"' 4~ • A. 

(4. 26) 

1 sin a VA t o . · o -= - - [ 2 - - cot a sin y - ] 
~ sin 2rrA OTJv vA. A oy v 

Applying this operator to Eq. 4. 21, and evaluating the result on 1T vA., 

we find 
i\t' ± - I\ 

oxJQA. 2sin av.A i\t' ± 
--- == 12 - <I>' I\ 

onVA ~ I "sin 27]A J~ 
(4. 27) 

where 

(4. 28) 

and 
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(4. 29) 

In deriving Eq. 4.29, the use has been made of Eq. A.3 and certain 

recursion relations between the associated Legendre polynomials. 38 

We now wish to expand Eqs. 4. 25 and 4. 28 on the matching 

surface in terms of a set of functions T v::\.J. n (~, Yx) which are ortho­
v::\. A.~"x 

normal and complete on it. {\Ve choose ~ and Yx to be the independent 

variables which scan tr vi\..) The T vA.
3
• n are given by 

VA A. A. 

(4. 30) 

where the ¢).. 's are identical to those of Eq. 4. 25 and the D.v'h 
~ ~A. 

are a set of rotational functions which must be orthonormal (with 

weight function sin YA} and complete on the domain 0 < yA· < 1f /2. 

The reason for this choice of the domain of yA. ~s analogous to that used 

·for the coplanar matching in I (Section 5.1). An important consequence 

of this procedure is that the number of functions T vx .. n used to 
V/\..JA. ~"A. 

expand the wave function of Eq. 4. 25 for each vA., QA. must be less . n 
than the number of vibration rotatiqn basis functions <P (~)~ A(cos y..,) 

. VA JA, A 

in that equation. For many reactions, including H + H2, the number 

of T v;\
3
_ n 's should be half the number of vibration-rotation basis 

vi\ i\ A. 
functions and we shall use this number in the discussion below. This 
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would imply that the number of jx's for each vA.' n.A used in the close 

coupling expansion must be even. An example of how this might be 

done would be to use a complete set of nA 's for each jA within a given 

vibrational manifold, except for the case jA. = jA. • For this case 
max 

(as long as J > jA. ) one uses nA. = jA. - 1, jA. - 3 ... -jA. +1 
max max max max 

For J < jA. , we use the same procedure and then eliminate 
max · · 

those fl.A for which lnA. I > J. Other choices are possible but this 

particular set of quantum numbers is useful because it leads to an 

asymptotic uncoupling of those terms in Eq. 2. 31 which are not 

diagonal in nil for jA = jA. and this allows us to solve for the asymp~ 

totic behavior of these pa1:1t~~lly truncated soluttons in a simple way. 43 

Whatever the choice, this restriction on the method is seldom a 

serious limitation because it only affects the highest rotational state 

jA. for each vA, nil, and this channel is usually closed in a converged 

treatment. An example of a choice which is orthonormal over the 

0 to 1T /2 range (weighted by sin yA.) is: n . 
· ..f26j A. (cos yA.) for jA + nA =odd 

A . . 
DJ.v>n (y~) = 

A A 
(4. 31) 

This choice is very appropriate for expanding the yA dependent part 

of Eq. 4. 25 for a collinearly dominated reaction such as H + Hz 

because these D.v~ vanish at yl\. ~ 1T /2 (where the interaction potential 
· JA. A. 

on the matching surface is high and the wave function very small) 

and are most effective in representing the wave function near yA = 0. 
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(where the potential is low). Other cho;i.ces for the D3~\1 may be 
.A A 

made in analogy with those discussed for the planar problem in I. 

V./e now expand Eqs. 4. 25 and 4. 28 in terms of the T vA.J. n , 
VA A. A. 

obtaining 

At' ± .At' ± 
T:~ Q (~,yA.) A [, h ~ <I>Jn = 

A. 
v11).A 

JvAJAnA A. A. A. 
(4. 32) 

71.t' ± /\.ti ± 

T;/\.~A. nA (~, yA) 
<I>, .A :::= l h' A 

JQA JvAjAnA 
vA.j/\ 

'(4.33) 

and 

(4. 35) 
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.A everywhere. To find the normal derivatives, the lower line of 

Eq. 4. 26 is used with the resulting expression given by Eqs. 4. 27 

and 4. 28 where v is replaced by .A and where the function 
vt' ~1: 

G'J i: Q is given by 
v v1 v~ v 

(4. 36) 

Note that Eq. 4.10 has been used in Eq. 4. 36 (along with the property 

@j\-x) = (-l)j+mt?j(x)) to express all quantities in terms of YA.. 

The relation between Tlv and Y>,_ on 1T vA.-~s obtained from ·Eqs. 4.12 

and 4.13. 

The expansions analogous to Eqs .. 4. 32 and 4. 33 are given by 

where 

vt' ± v 
CI> Jn == 

v 

vt 1 ± 
.:r...r V 
""'Jn -v 

(4. 37) 

( 4. 38) 
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j" -n f 1T /2 VA . n v 
= I. (-1) v v 0 DJ. n CY).)(>;1'" (cos YA) 

v v . v . 
j"v 

(4. 39) 

(4. 40) 

with Eqo 4. 36 being used to evaluate Eq. 4. 40. All expansions are 

made in terms of the coordinate yA. to facilitate later manipulations. 

For atom plus homonuclear diatom collisions, the coefficients 
11.t' ± 

f JjA ~A nA. obtained in the rrA.K matching can be related to the 

>t.t' ± 
hJ. A. ("\ of the 1T ., matching by noting in Eq. 4. 39 (with A substituted 

h. v .... \).:;, VA '.... . 
'" ,~ II. II.I, A;.L 44 . . 

for v and K for i\) that gJ 
3
. rt n = 0 for J'\ - J ' ... =odd and therefore 

j" j' Vil Xll"A 11. 11. 

that (-1) ll = (-1) A. for the non-vanishing terms. For collisions with 

a homonuclear diatom, m v = m K so fJA. K = {J vi\ (from Eq. 2. 4), and 

the mathematical expressions analogous to Eqs. 4.12 - 4.16 for 7r A. 
' . . K 

are identical to those equations. Therefore,, from Eqs. 4. 34 and 

4. 39 (transformed to 1T AK}, we have 

llt' ± j\_-!tA A.t\± 
fJ ~ n :::: (-1) hJ · r. 

VAJA.ll"A VAJA.~"A. 
(4. 41) 

By similar arguments for the derivative equations, Eqs. 4. 35 and 4. 40, 

using Eqs. 4. 29 and 4. 36, we find 

A.tr± . j\~n~ · A.t\± 
f' A. == - \-1) I\ ~ h' ': 

JvAjA 11>. JVAJA nA 
(4. 42) 
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4 __ 3 The l\1atching Equations 

We now wish to find the appropriate linear combinations of 
- a-

th2e x's and ~ 's of Eqs. 4. 24 and 4. 27 in channels .A and v 

·whlich give sm~~thly matched solutions x and ~_X_ satisfying Eq. 4. 20 
- ~ 

an;d its normal derivative on 1T vA.. Accordingly, we write 

, - A.t'.A + (i)t+ - A.t\- (i)t-
= L { XJn c JA.t' + XJn c JA.t' } 

t' A. .A A. A 
.A 

(4.43) 

wh"ere the coefficients C JA. in Eq. 4. 43 are to be determined by evalua­

ti:rt~g Eq. 4. 20 and its normal derivative on 1T vA.' and analogous equa­

tic>1ns on rr KV and 1T AK' The indices (i)t = (i)vjQ denote different linearly 

in&ependent matched solutions, with t assuming N values and i = 1, 2 or 

3 .;.-or a total of 3N solutions. This is equal to the number of linearly 

in&ependent scattering solutions possible as was discussed in I 

The normal derivative of Eq. 4. 43 is: 
.At' + .At' -- A. - A axJn axJn '°' { A. C (i)t+ A. C (i)t- }· 

Li --- JAt' + J~\.t' 
t' A 

anvi\ , .A onVA .j\ 

(4. 44) 

Trr€ normal derivative of Eq. 4. 20 is in general a com.plicated quan­

tH}',. but for the particular choice of matching surface specified by 

Ecj.· 2. 5a, we have the important relation19 

·(o!lvi\) = 0 
on A. 

v on 1T 
11.A 

(4. 45) 



which implies 

0 (i)t 
XvJQ v 

Let us now substitute Eqs. 4. 43 and its counterpart for channel v 

into Eq. 4. 20, as well as 4. 44 and its v counterpart into 4. 46; 

utilizing Eqs. 4. 24 and 4. 27 (and their v counterparts) along with 

Eq. 4.12. We obtain 

. . { .:xt'i\ + (i)t+ A.t\- (i)t- J I <P JQ c Ji\t' + .:ii JQ c JA.t' } = Ii dQ n <~vi\.) 
t' · "A .A .A A. st v A. . 

A v 

vt' + (" vt' - (" x I { <I? v c i) t;- + <I> v c i)t,- } 
t'. JQv Jvt v JQv Jvt v 

v 

(4. 46) 

(4. 47) 

with a similar equation involving i.P' resulting from the matching of . 

the normal derivatives. If we now substitute Eqs. 4. 32, 4. 33, 4. 37 

and 4. 38 into Eq. 4. 47 and its equivalent for the derivatives, then 

multiply by the T v3~ n (defined by Eq. 4. 30) and integrate using 
VA. i\ i\ , 

the orthonormality pr•Jperties of the Tvi\, we obtain: 

' vPv+ . (i)t+ vt'z_,- (i)t-
x i.:{fJvjQ cvJt' +fJvjfl cvJt} 

t' v lJ v v ll 11 v v 
v 

The derivative equation is analogous with h' and f' substituted for 
J v vivflv 

hand f above. The quantity (s .'.\) . n is defined as 
v VA_JA \)£ti\ 

(4. 48) 
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( 4. 49) 

where 

(4. 50) 

If we regard s J~ as a matrix and use the Davydov definition of d~ ..... , 33 
~VA ~uvouA 

then provided that the T vA.J. n form a complete set of functions, we 
VA. A. >.. 

can rewrite ~zi as 

(4. 51) 

where 

(4. 52) 

From Eq. 4. 51 it is imm~diately obvious that ~v~ is unitary if the T 

are complete, and since the ar[ n are real, Eq. 4. 49 indicates that 
v A. 

~v{ is orthogonal. Let us now write Eq .. 4. 48 as a matrix equation 
"" 
by regarding the h, f and C appearing there as the elements of matrices, 

obtaining 

(4. 53) 

According to the arguments of the previous section, the matrices 

~± and£;± should be of dimensi~n N/2 x N while ~v\ should be 
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N/2 x N/2 and the C's are N x N matrices. The corresponding deri­

vative equation is obtained from Eq. 4. 53 by substituting h' and f' 

for h and f. \Ve can combine function and derivative equations into a 

single matrix equation involvi~1g only N x N matrices by defining the 
"A± AlJ± ,... J 

augmented N x N matrices ~ , JJ- and ~y;A. as 

h>..± 
"A.± ~ 
~ = 

h'A.± 
~ 

(4. 54) 

f v± 

'fV± -
~J 

~ -
f' V± 
~ 

(4. 55) 

. ( J g ) " J ~vi\. 
s -RVA -

J ,.. 
\ ~ ~VA I 

(4. 56) 

where 0 is an N/2 x N/2 matrix of zeros. The resulting matching 
A! 

equation for 1T vA. is 

(4. 57) 

Following the same arguments as were used in I (Section 5. 2), we now 

combine Eq. 4. 57 and its counterparts for 1T KV and 11 'AK into a single 

SN x 3N equation whic.h can then be solved for the coefficients ~ . 

which determine the matched solutions. The final result is 

C +{C -)-1 
- - (N +)-1 N -

AJ~ -RJ ~ (4. 58) 

where 
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'h"-± A J ""V± 0 -~vA.b ~J ,,... ,..,. ....,,, 

N± 0 "V± A J ff{± (4. 59) == ~ -s 
~ ........ ~f{V~ .,... 

A J ""A± 0 
/\. K± 

-s f !!.I R),K:R:J :R: 

and 
cl± 
AA.J 

c2± 
~J 

c3± 
N..J 

c ± 1± c2± c3± (4.60) == c 
~J :R:VJ ~l!J AVJ 

cl± 2± c3± 
:R:KJ ClKJ :R:KJ 

o here represents an N x N matrix of zeros. 

Eq. 4. 58 can now be used in conjunction with the asymptotic 

analysis of the next section to determine the 3N x 3N coefficient 

mat~ices fiJ± which will provide wave functions which are both smooth 

and continuous everyv,rhere and which also satisfy the proper scattering 

boundary conditions. Note that our procedure for matching simul­

taneously combines the primitive solutions in channels A., v and K to yield 

solutions which are smoothly continuous throughout all of configuration 

space. This contrasts with the analogous procedures of \Vyatt and 

coworkers16 
and of Light and coworkers15 which seem not to include 

the coupling between channels v and K (here represented by the 1f 
KV 

matching equation) explicitly when dealing with collisions originating. 

in channel A.. They may have included such coupling implicitly by 

utilizing the symmetry of the H3 system. However, if Av and A" 

are different atoms we believe that the v-K coupling must be included 

explicitly. 
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5. ASYMPTOTIC ANALYSIS 

In this section we define the reactance and scattering solutions 

and relate these to the matched solutions of the previous section so as 

to complete the determination of the coefficient matrices ~; and 

also the reactance and scattering matrices ~J and ~J. In I we 

proved that the R and S matrices (which are physically dimension­

less) can be equivalently defined in the scaied variables !.)"'~A or in 

. the "physical" ones !.A.' ~A. Here, for simplicity, we use the scaled 

coordinates in all definitions except that of the scattering amplitudes 

(Section 5. 2). 

· If we use Eqs. 2.13, 2.18, 2. 30 and 3. 3 to express the matched 

asymptotic wave function (of Eqs. 4.17, 4.18 and 4.43) in each 

arrangement channel, we find 

where 

(i)t 
e 11.Jt (RA) 

A 

(i)t ·- :0 { A.tx + (i)t+ xt~ - c (i)t- } 
eA.Jt - t' gJt CAJt' + gJt A•Tt~ 

A .A A A. A. I\, 

(5.1) 

(5. 2) 
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Here we have dropped the superscript (a) as it will be implicit 

.throughout Section 5. The sum over ar.rangement channels serves 

as a convenient notation for expressing the asymptotic wavef-tmction 

in all three arrangement channels sin1ultaneously and is made 

possible by the fact that asymptotically there is no overlap between 

the separated atom plus .diatom wavefunctions in different arrange-

ment channels. An equation analogous to Eq. 5.1 for the derivative 

1 0 (i)t ).t~± 
-- -- R -W can be obtained by replacing g by 
Ri\ oR_x :A JM .TtA. 

.xt' ± 
dgJt:X 

.A 

The reactance and scattering body-fixed solutions are defined 

to have the asymptotic form 

where, in the far asyn1ptotic region (in which both potential 

coupling and the centrifugal coupling of Eq. 3. 6 have become 

negligible), for the R solutioni 

(5. 3) 
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A.'t' 

( 
sin (k~ j RA - (J + j A.) ~ ) oi\t A 

A.A A. 

A. ).VAjAO~ 
+cos (kV j RA- (J + j>) 211' ) RJiv' j' ~Q' 

A. >i.· A. A i\ 

(open channels) 

lk~ ]. IRA it' -lk~ 3· IRA AV j ~ 
i\A A AA i\A i\ e <\.t - e Rjx,v' ., _g, 

i\ i\]i\ A 

(closed channels) (5e 4) 

and, for the S solution32 

. 
(open channels) 

lk~ j IRA it' -fk~ j IRA A.V j Q 
AA i\ A.A. i\A. A e l>A.t - e SJiV. j' -Q' 

A. A I\ A. 

(closed channels) (5. 5) 

v.X . is the: velocity (in scaled variables) 
VAJA 

(5 .. 6) 
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and the primed variables v~j~n~ in -Eqs. 5.4 and 5. 5 define the 

.reagent state in the A.' arrangement channel. (Note our use of the 

abbreviation X t~ = X t', . ) BJ and § J are the partial wave 
A X - - . 

reactance and scattering matrices and, for exact solutions of 

the Schrodinger equation, they are symmetric. 45 

Note that -n~ rather than n~ appears in the definition of ~J and 

~J. This choice allows the open channel part of the scattering matrix 

to become the identity matrix in the limit of zero interaction potential 

(as will be evident from the partial wave expression for the scattering 

amplitude in Section 5. 2). The phase factors i±(J+jA.) appearing in 

Eqs. 5. 4 and 5. 5 are arbitrary but will prove· convenient later on. 

The open channel sub-blocks of '!!-J and ~J are labelled ~J ·and ~J, 

and from Eqs. 5. 4 and 5. 5, one ;an easify show46 that 

(5. 7) 

where I is the identity matrix. In addition to being symmetric, R 0 

~ =J 
0 0 -

is real and ~J is unitary. From the unitarity of ~J one can prove 

flux conservation and from its symmetry, microscopic reversibility 

results. 45 

· In an actual calculation, we wish to use the R and S 

solutions of the Schrodinger equation at a finite R.A. for which the 

potential coupling has become negligible but the centrifugal coupling 

in Eq. 3. 6 has not. These solutions can be obtained by taking the 

appropriate linear combinations of space-fixeq Bessel functions which 

appeared in Eq. 3. 9 so that the far asymptotic beha~ior in Eqs. 5.3 
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and 5.4 is obtained in that limit. In other words, as soon as potential 

coupling has become negligible (but not the centrifugal one) the b in 

Eq. 5. 3 can be written according to Eq. 3. 9 as 

_,. 

:x't' _.!. x"t" xe x1 t 11 A."t" 
bA.Jtx [R] = cl v; j I) 2 

~ .. , {rJA./'- [R] ox't~ + oJA.tA ,[R] R3x;,J., -n' } 
.A. .A. A. X. A. It A i\ A.>, >~ 

(5. 8) 

(5.9) 

where, for both R and S matrix solutions,· 

- x (5.10) 

For the R .solution, 
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( 

while, for the S solution, 

y /1 (k~ J. R...) sin (J +j, - £-,.) i 
x.A A A A A A 2 

+ j £ (k~ 3· RA) cos (J + jA- £A) 71'2 
A. A It 

(open channels) 

(closed channels) 

(5. lla) 

-y1 (k~ j RA.) cos (J + ji\ - 2-A.) ~ 
Ii. A. .A 

+ j_t, (k;_j,RA.) sin (J + j/\.- £.A) ; 
II. I\ 

(open channels} 

(closed channels) 

(5. llb) 

(open channels) 

2il elk; J. IR, 
A ~i\ A 

(closed cham1els) 

(5.12a) 
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(open channels) 

{closed charu1els) 

{5.12b) 

where 

(±) 
h11 = -y" ± iL, 

XA x.A .\'..A 
(5. ~3) 

where Yg_ , j 1 , il. and kl. 
. A A A A. 

are the spherical Bessel functions 

introduced in Section 3. 2. 1. To show that Eqs. 5. 8 and 5. 9 do indeed 

reduce respectively to Eqs. 5. 4 and 5. 5 in the far asymptotic limit, 

one simply uses Eqs. 3.10 and 3.11. We may tLSe Eq. A.14 to 

"' relate the usual space-fixed S matrix ~J to the body-fixed ~J. 

We obtain the RA independent unitary transformation 

(5.14) 

where 

In order to obtain '!JJ' we generate an R solution of the 

Schrodinger equation satisfying the asymptotic conditions of Eqs. 5. 3 
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or 5. 8 by taking linear combinations of the matched solutions in 

Eq. 5.1: 

A't' A 
WJM: IR] 

(i)t Jxt~ 
= 6 '1r JM Q.(i)t 

(i)t 
(5. 16) 

xe xt' 
As in I, we are free to choose Q(i){ = o (i)~ and require the ~~ 
matrices to provide for us those linear combinations of the 

primitive solutions satisfying both the matching condition (Eq. 4. 58) 

and the asymptotic conditions. If we substitute Eqs. 5. 1, 5. 2, 5. 3 

and 5. 8 into Eq. 5.16 and express everything in matrix notation 

(involving matrices of dimension 3N x 3N), we get 

l 

V-2 n~rRl + O~fRl R~) (C:)-1 = e:"!= c-::: tc:)-1 
+ft: 

~ ~~- - ~u- -~tJ" ·~u~ ~t.•~u ·~, ~J 

where '!JJ is related to ~J of Eq. 5. 8 by 

and 

xt' ± 
Note that (~J)A.tA.A. in Eq. 5.17 is identical to 6A.X times 

(5 .17) 

(5.18) 

(5.19) 

A.t' ± .A 
gJt 

'A 
in Eq. 5. 2. An equation analogous to Eq. 5.17 for the derivative 
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't' ~1 · o A i\ 
R -- R ~ is easily shown to be 

A BR i\ J:J\1 
A. 

(5. 20) 

where prjme denotes differentiation with respect to RA.. The 

quantity ~; (~jf1 is given by Eq. 4. 58. Equations 5.17,. 5. 20 

provide therefore two simultaneous linear matrix equations for the 

two unknown matrices (~j)- 1 
and ~J· Eliminating the former from 

these two equations and using Eq. 4. 58, we get: 

- .!. -1{ ( , r ] + [ ] ,-i-. ( +)-1 -~J = -yz Yf .!Jt.R ~J - .!J R ~J J ~J "!JJ 
- -.. .,...., - - - ~ r-..1 -

(5. 21) 

Here 

(5. 22) 

is a Wronskian matrix which, as can be seen by inspection of Eqs. 

5.10 and 5 .. 11, is diagonal and independent of RA. The right-hand 

side of Eq. 5. 21 involves real matrices which are obtained directly 

from the integration and matching steps of the calculation. 

Therefore, ~ J and ~ J are real. 
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\Vith ~J and hence ~~ determined, we use Eq. 5. 7 to 

calculate E], which in turn can be related to the scattering ainplitu'de 

by the formulas of the next section. In addition, the scattering 

matrix is related to the probability of transition from initial arrange­

ment channel >...' and quantum state v' j' !!' to final channel A. and 
A. A. A. 

state vA.jA.Qll by
47 

(5. 23) 

The scattering matrix may also be related to the opacity function as 

discussed in the next section. 

5. 2. Scattering Am litudes and Cross Sections 
,,.....__...,.....,,,.....~ ~~ 

We now define the scattered plane wave solution and relate it 

to the scattering solution of the previous section so as to express the 

scattering amplitude in terms of the open parts of the partial wave 

scattering matrices. Our analysis will be done using the helicity 

representation48 in which the a.xis of quantization of the incoming and 

outgoing rotational states is chosen to coincide Wiith the direction of 

the incident and final wave vectors respectively •. The helicity · 

formalism is very closely related to the use of body-fixed coordinate 

systems of the type described in Section 2. 2 and leads to a particularly 

simple relation between the helicity scatteri.~g amplitudes and body­

fixed S matrices .. 
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Vie define the helicity representation scattered plane wave 

solution by 

(5. 24) 

where the sum over final states includes .both open and closed channels. 

For -closed channel solutions {which we shall ignore below), ky _
3
. is 

' ' 
pure imaginary so exp(ikv j RI\.) decreases exponentially. 

A.A. 
Note that the physical coordinates !3-, ,'f, and wave vectors k . =. 

/\, /\. VA.JA. 

ai\ kv j . have been used in Eq. 5. 24. In addition, we have introduced 
A.A. 

A 

the global index t to denote the quantun1 numbers vjmj·. (y{e will 
. ,.. 

relate mj to n and hence t to t below). For simplicity the space-

fixed z. axis has been chosen to be in the direction of the incident 

wave vector c It then follows (by inspection of Fig. 3) that the space­

fixed and body-fixed z axes will point in opposite directions initially 

(i. e. , for @x) z - - co). The outgoing body-fixed z~ axis points in 

the same direction as the outgoing wave vector thus allowing us to use 

Yj m. (YI\., l/J.x) instead of Yj m. (er , </>"" ) in the summation appearing 
i\ Ji\ i\ lx A. ~A. 

in Eq. 5.24. 
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Tue differential scattering cross· section is defined as the 

ratio of the outgoing radial flux per unit solid angle to the incoming 

plane wave flux and, from Eq. 5. 24, is related to the scattering 

amplitude f by 

A 

l 
__ >..tx 2 

fx t' I 
X 

(5. 25) 

for A.VAjAQA and A'v{j~n~ representing open channels. Here 

VA . is the physical velocity 
vAhl 

I 2fR - i::-A . \ 

l 
' -v J , 

:::: A. A. 

µA.,VK 

..... 1. 
\ ?. 

) 
In order to relate f to the scattering matrices, it is 

(5. 26} 

desirable to first define'a scattering solution analogous to Eq. 5.24 in 

terms of the scaled coordinates of Eq. 2.1. This is easily done by 

removing the Hbarstt on all symbols containing them in Eq. 5. 24. 

BY. comparing the plane wave parts, we see that the resultfng 
.xf1 _xe 

v A [P] is proportional to '1t .A [P] with a proportionality constant 
3 
2 -ax g Comparison of the outgoing wave parts of w and w then yields 

.JJ 
f ,-l-, 
xf~ 

(5. 27) 
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which will be useful below. 
xf'. 

One now e:z..11ands the plane wave part of '¥ X [P] in terms 

of a series of products of Legendre polynomials P £' (cos OA.,) times 
I A 

spherical Bessel functions j 
1
, (k\ ., R , ), takes the asymptotic limit 
A VA.J.X X ' - • -

(RX ~ co) and converts the result to the body-fixed variables 

r.A"YA. o/1._ and R.X8.A <f>x· following the procedure outlined by Pack, 32 

obtaining 

f 

ik~ '3·' (R I ) AA .,.,.x_ z e . 

1 

J+j' +l -f[k~ j' R:.,-(J+j~)..!L] 
x Yj'n' (YA,t/JA) (2J+l) i A {e AA A 2 

A A. 

In analogy to Eq. 2 .11, the scattered plane wave solution 
. ,. 

(5. 2:8) 

A_1V' j' ffi·. 
~ A A. JA [P] may be expanded in terms of the scattering solutions 

'A'v' j' m'. 
'!! A A j]\[S] as 
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A.'v' j' m~ 
A A JX ) 

'1r [P 
i\'v' 3"' m~. n' .A "A \}".A A.'v' j'Q' 

_ ~ c J"A w A. x A. Is] 
-JMQ' JM JM 

A 

(5. 29) 

Using Eq. 5. 28 to express 'Ir [P] in terms of body-fixed quantities, 
>{t,1 

Eqs. 5. 3 and 5. 5 for the asymptotic form of '11 J; [S], and equating 

coefficients of the incoming spherical wave ·parts~ one finds: 

2J + 1 _J+j~ +l 
2 l (5.30) 

Note that Eq. 5. 30 implies mji\ == -n~ t~us relating fx_ and t{ 

for the reagent states. If we now equate coefficients of outgoing 

spherical wave parts and use Eq. 5. 30 to simplify, we get 

(5. 31) 

where 

(5. 32) 

is the transition matrix32 and mj =QA for the product states so 
i\ 

A 

that ti\ and ti\ are identical. Equation 5. 31 shows that the helicity 

amplitude and body-fixed scattering matrix are related by a single 
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sum reminiscent of the analogous result for potential scattering. 

This illustrates one of the primary advantages of the use of helicity 

amplitudes in conjunction with body-fixed coordinates si!ch as those 

depicted in Fig. 3. Combining Eqs. ·5. 31 and 5. 27, and using Eq. 5. 26 

and its counterpart for the wave numbers k~ j and k~ . .j, , we find 
-Af A A A A 

that the physical scattering amplitude f , fi\ is given by an expression 
A I 

identical to Eq. 5. 31 with all velocities antf wave numbers nbarredn. 

Substituting this into Eq. 5. 25; we find 

.... 
1 I ~ J xtA 12 

---.,"""'2- J~O (2J + 1) dm' ... m. (GA) T JA.' f~. 
4k~, j' - JA Ji\ A 

AA 

(5. 33) 

which demonstrates that the differential cross section is independent of 

~· 49 The integral cross section ~rt. is obtained by :integrating 
. i\ 

Eq. 5. 33 over ei\ and ¢'A, and using the orthonormality property of · 

the dJ functions. 33 This yields the remarkably ~imple expression 

1T ~ ~.ri\ 2 
L.J (2J + 1) I TJ, I ""t'. I 
J=O I\. A. 

(5. 34) 

may be averaged over initial m~. and 
JA. 

summed over final m
1
.. to give the degeneracy averaged quantities 
i\ . 

i\Vi\j'A AVAjA . 
a'A'v' f and Qx'v, f respectively. The latter of these two can be 

A A A. 'A . 
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•tt 32 wri en as 

{5. 35) 

where the opacity function P J is· · 

(5. 36) 

and the limits on the sums are Jm. I smi.n (j, ;J) and 
JA . A 

Im'. ·I s min (j~, J). J, A . 
l'I. 

In an application to the H + H2 reaction, the number of 

different distinguishable atom scattering amplitudes and cross sections 

may be greatly reduced by considering the symmetries involved. This 

was done in I and the derivations are essentially unchanged in 3D. 

First, the scattering amplitudes are invariant to a cyclic permutation 

of arrangement channel indices so that {suppressing the fA., f~): 

fA = f' = fC f 11 = r == f:A and fA = f 11 = f~. Second, f~ and 
A. 11 K' A. 11 K V K A A 

{V are related by19 
.A 

and the non-reactive f .A satisfy 
). 

(5.37) 



.>..v'j' m~ 
fA_v.m. J = 0 

J ) 
if 
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· ., ou'd J - J = (5. 38) 

These statements imply that f~ ·and f ~ are the only distinct 

scattering amplitudes and that many components of f ~ are zero. 

These symmetry relations· also apply to the scattering matrix ~ J 

so that the entire distinguishable at01n cross section calculation can 

be considerably streamlined. It should be mentioned that although 

the cyclic permutational symmetry is built into the calculation if the 

integration is done in only one of the three equivalent arrangement 

channel regions, Eqs. 5. 3 7 and 5. 3 8 will only hold rigorously if 

~~A. defined by Eq. 4. 49 is orthogonal, and this will only be the case 

if the matching surface basis functions given by Eq. 4. 30 form a 

sufficiently complete set. This provides a test of convergence of the 

method as long as the symmetries of Eqs. 5. 37 and 5. 38 are not 

built in. 

To convert these distinguishable atom scattering· amplitudes 

into the correspondini:;; indistinguishable ones when two or three of the 

atoms are identical, the standard technique of post-antisymmetrization50 

may be used. Application to H + H2 was given in I and is unchanged 

in the three-dimensional treatment. In the notation of this paper we 

obtain the following expressions for the antisymmetrized differential 

cross sections: 
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(a) para -+ para (j, j' == even) 

pf vvj I -;\J _vt 
1
2 

(5. 39a) 
(J t' ::: f ~J' - f i'.£1 p· vv'j' 

(b) para __. ortho (j' = even, j = <?dd) 

A 

Yvj I Ivf 1
2 ot 

3 
(T pf' = (5. 39b) 

vv'Y .xt' 

(c) ortho _...,. para (j' = odd, j = even) 

pt vvj i-vt l2 (5. 39c) (T ,., = f ..... , 
ot 

vv'j' 
.At 

(d) ortho--> ortho (j,j' =odd) 

A 

""" ot vvj .At f ... { 1- -V 12 1-vt l 2} 
er of1 = f A.t' + f A.t' + 2 f A.f'' (5. 39d) 

vv'j' 

where Eqs. 5. 27 and 5. 31 are to be used in evaluating Eqs. 5. 39a-d. 

The expressions for the antisymmetrized integral reaction cross 

sections are: 

(a) para-+ para 

(5 .. 40a) 
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(b) para -+ orth o 
,, 

I; I ovf !2 ot 1T (5.40b) 
Q pt' = 3 (2J+l) s ft k 2, ., J JA. 

VJ 

(c) ortho ~ para 

pf 
A 

1T ~ I oiit !2 (5. 40c) Qof'. = ~ (2J + 1) . s J)l_t' . ~2 

k· ,., 
VJ 

(d) ortho _, ortho 
,.. 

6 i f o A.£ o vt 
1

2 of 1T 
Q otf ::=: J (2J+l){ o.f' -SJ/\.t' -SJ/J' k 2 ,., 

VJ 

2 j S ovt 12} 
+ JA.t' (5. 40d) 

As was pointed out in Section 3. 3, parity symmetry may be used 

in both the integration and matching procedures for any ~hemical 

react.ion to reduce the number of states coupled in these stages of the 

· calculation. One may also define parity scattering matrices, but the . 

plane wave solution of Eq. 5. 24 does not have parity sy1nmetry so that 

these two decoupled parity S matrices must be recoupled before per­

forming the calculation of the scattering amplitude in Eq. 5. 31. This 

procedure is outlined in Appendix B. 
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6. Discussion 
~ 

The method we have outlined in Sections 2-5 has a number of° 

limitations or restrictions which we shall now consider. First, we 

have considered the reactive collision of an atom with a diatomic 

molecule on a single electronically adiabatic surface. The extension 

to multisurface reactions is straightforward and would follow the 

general format previously developed for collinear reactions. 51 All 

three reactive arrangement channels are assumed to be energetically 

accessible and the diatom in each arrangernent channel is assumed to 

be in a r~ electronic stateo A straightforward modification of the 

matching procedure which simplifies it appropriately is required for 

single reaction path systems (for which one of the three arrangement 

channels is closed). This was discussed in I. For diatoms having 

electronic states other than 
1
E (such as 1A with A~ 0), the 

rotational states Yj m (Br , </> ) must be modifiect33 to 
A. jA X ri\. . · 

j:A . , 
Dm. A (er ,'Pr , 0) and electronic-vibration-rotation coupling must be 

JA. It :A 

considered, but the basic integration and matching procedures are 

unchanged. One basic restriction of the method is its inabil.ity to 

treat dissociative or break-up channels.. This is not a serious 

limitation for many important chemical reactions at thermal energies. 

A procedure for treating both dissociative and reactive collisions is . 

is currently being developed in this laboratory~ 

The integration procedure outlio.ed in Section 3 may be applied 
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to any reaction for which the criteria of the preceding paragraph 

apply, however, the matching procedure (and hence the choice of 

coordinate system in the matching region) is strongly dependent on 

our choice of matching surfaces (Eqs. 2. 5). Other choices will 

require significant modifications in the details of Section 4, although 

the basic concepts involved in matching will still be applicable~ 

The matching surfaces considered in Eqs. 2. 5 should be useful for 

many chemical reactions but may not always be ideal for obtaining 

rapidly convergent close coupling expansions. In particular, if the 

reaction has a low barrier for 'YA= 7T/2 configurations, the expansion 

of the wave function in terms of matching surface basis functions 

TV.A (Section 4. 2) may be slowly convergent. Conversely, too strong 

an anisotropy favoring collinear reactions over perpendicular ones 

leads to an ill conditioned close coupling problem. These and related 

restrictions on the matching surfaces were outlined in I. 

The asymptotic analysis of Section 5 is quite general and 

should be applicable to those chemical reactions w\ich fit the criteria 

of the first paragraph of this section. The anti-symmetrized results 

presented in Section 5 are only applicable to a collision system of 

three identical spin f -particles. Other combinations of identical 

particles and spins may be treated by post antisymmetrization 

procedures analogous to that in Appendix D of I. 

The final criteria regarding the applicability of the method is 

computational efficiency. The large number of open rotational 

channels present in any 3D atom-diaton1 system makes the application 
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of any coupled channel method a large computational project. :Much 

effort has however been spent in designing the method so that a 

minimum number of such channels are needed for convergence of the 

results. Vie therefore feel that this method should provide a 

computationally feasible procedure for studying silnple chemical 

reactions. The first application of this procedure (to 3D H + H
2 
24) 

supports this statement. 
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APPENDIX A: ANGULAR MOMENTillvI OPERATORS AND 11-IE 
~ 

COORDINATE SYSTE11S 

~ 

In this Appendix w~ will establish the relations between the 

rotational and total angular rr10mentum operators in the space-fixed 

and body-fixed coordinate systems defined in Section 2. 2 and Fig. 3. 

We first consider the space-fixed coordinate system Oxyz • 
. 

If we use the variables <Pr , fJr , <f\ .. and eA. (Section 2 .. 2) to describe 
~ ~ 

the various components of the operators lA. and !A we obtain the 

usual expressions for these angular momentum operators in spherical 

polar coordinates. 

(A. la) 

jA.X. 

(A. le) 

with a similar expression for the components of ~A wit~ </>A.,e>.. 

substituted for cpr , er . Expressions for the components of J are 
A A -

trivially obtained by the addition : = ~A. + 1)..., The eigenfunctions_ 

of the operators j~ and l~ appearing in Eq. 2. 9 (and also j>..z and 

l)..z) are the spherical hannonics Yj m· (e. , cpr ) ·and 
A l"A rX X 



Yim (eA,<f>A). 
A £.A. 

by the expression 

where 

yjm: (fJ' <!>) 
J 
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We shall define the spherical harmonic y .m. 
J J 

imj <!> m· 
= e . fJ'J •. J {cos 6) 

..[2; J 
(A.2) 

) 
1-{ mj 2j + 1 2 (-1) mj > 0 

2 1 m. ~ 0 
J 

(A.3) 

In the space-fixed formalism of Arthurs and Dalgarno, 29 the full 

wavefunction is· expanded in terms of a set of functions 

where the notation of Rose37 is used for the Clebsch Gordon 

coefficient C. The full space-fixed wavefunction is then written as 

(A. 5) 
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and the space-fixed coupled Schrodinger equation for GJM is29 
j>..l.i\. 

(A. 6) 

We now consider the transformation to the body-fixed 

coordinate systems X>.. Y "A.Z'A and x~y~z~ of Section 2. 2 · 

convenient representation of angular inomentum. operators in these 

coordinate systems involves choosing the.operators [ and lA. as 

as independent and expressing the ~~ of Eq. 2. 9 by the expansion 

(A. 7) 

To convert the operators 1 A. and ~' and thus the Hamiltonian of 

Eq. 2. 9 t'? the body-fixed systems requires first a chang·e from the 

. variables ei\. cp)..erA. </.>r>... to eA. </>i\. 'YA. l/l'A as defined in Section 2. 2, 

followed by successive rotations of the components of the operators. 

These rotational transformations may be accomplished by using the 

general expression37 

(A.8} 

where Jk refers to the kth component of any angular momentum 

operator i!, in an initial system and 
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(A. 9) 

Jk' refers to the k' th component of :! in a tr~nsformed coordinate 

syste1n which is obtained through rotations by Euler angles a{3Y 

from the initial system. One important point to note in the application 

of Eq. A. 8 to the body-fixed coordinate systems .X.AYA. ZI\. or x~ y'z~ 

is that the components Jk and (j.A)k of the operators { and 1.A 
will in general operate - upon one or more of the Euler angles 

cf:>">..' e .A and tf!A. of the transformations, and thus great care must be 

taken in properly commuting the operators. In Table I we express the 

components of the resulting operators :! and 1.A as well as various 

combinations thereof in terms of the coordinates 81\. </>'A YA. lf!"A in the 

three coordinate svstems Oxvz. OX, Y. -Z-:- and -Ox' v''7.' _ RomA 0f 
. - ·. A A A A~ A 

the relations in that table have been given previously by Vezzetti and 

Rubinow, 52 by Morse and Feshbach53 and by Curtiss, Hirschfelder 

and Adler. 
31 

One very useful point to notice about j~Xi\, jA y A. and. 

jA.ZA is that their expressions in terms of 'YA, tf;'A in Table I have the 

same functional form as the corresponding j, , j ... · and j, in 
. "-x AY AZ .. 

Eqs .. A. L This implies that the rotational angular inomentum eigen-

functions in the XA YA ZA. coordinate systen1 will simply be the 

spherical harmonics Yjxni\. (YA.' t/J) where:> as is ~~plained in 

Section 2.2, nA is the quantum nillnber associated with j>...Zx 
In terms of the coordinate system XA. Y >.. ZA, the Hamiltonian 

of Eq" 2 .. 9 may be written as 
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(A.10) 

where the raising and lowering operators are defined in terns of the 

xA. and YA. components of ;!_ and l A in the usual way. 3 7 
In order t~ 

express the Schrodinger equation in XA. YA. ZA. coordinates, we must 

also rotate the wavefunction as is done in Eq. 2.13. Substituting this 

expression, along with Eq. A.10 into Eq. 2. 9, and using the normal 

raising and lowering properties of the rotation n1atrix, 33 i.e., 

(A.11) 

(where the ± components refer to the body-fixed system), we obtain 

the following coupled equations for w}
0 A. 

2 .2 n: 1 a2 
, 1 a2 Ji\. {- - f-n-~ R + - ~rA.2 r,] + 2 2 2µ .A c,R i\. rA u .t1. µr, 

A. "-

(A .. 12) 
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Since the rotational eigenfunctions in the XA Y X. ZA coordinate system 

are the y. n (Y,, lj;i\), the rotationally coupled body-fixed solutions 
]~~A A . 

analogous to Eq. A. 5 are given by 

w-JM (!'.A' ~A) = i~x ~!\ (<I\' 0 A' 0) yiPx (YA"">) '\r~ A !lA (rA;R,_) 

(A.13) 

which is a combination of Eqs. 2.18 and 2.13. The body-fixed and 

space-fixed representations may be related by using the equality 

(A.14) 

Equation A.14 will be of great utility to us in the asymptotic analysis. 

A further modification of the rotatio~ally coupled Schrodinger equation 

is given in Section 2. 4. 
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In this Appendix we consider the decoupling that occurs when . 
.... 

eigenfunctions of the parity (or inversion) operator J are used in the 

close coupling expansion. This operator inverts all atoms through the 

system's center of mass. For the three-particle system we are 

considering, 

(B. 1) 

,.. 
where ~ is any wave function describing the system. J- commutes 

with V~ and V~ • In addition, the internal configuration: of the .. 
..... A_ ...... ). 

system before and after inversion is the same and consequently the 

potential energy is not changed by the parity operation" We conclude 
... 

that J-- commutes with the hamiltonian in Eq. 2. 7 for any triatomic 

system. 

If we express RA. and !x in body-fixed variables, we find 

that 
.... 

J- iJ! ( r A' i' A' t/I A' RA' e A' cf> A) = 'Ir (r A' y A' 1f - t/I A' RA' 1T - e A' 1T + </>A) 

(B.2) 

The body-fixed wavefunction we are considering is given, from Eqs. 

2.13, 2.18, 2. 30 and 3. 3, by 
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x (B. 3} 

Siµce J leaves the scalars RA and r A unchanged, all derivations 

of this Appendix are independent of which of the four regions of each 

arrangement channel region we are concerned with,so we shall omit 

any explicit reference to them, using the general form for 'Y JM in 
.,.. . 

region I or II. Let us now apply Ji. to Eq. B.3, using the 
. 33 J . J J 

relat~ons DMOA (<PA+ 1T ,?T-eA, 0) = (-1) ~ DM--OA· (~A' eA, 0) and 

Yj o (Yi\, w- a/IA) = Yj -ri '· ('YA, lf!i\}. By changing the sign of Oi\ in 
i\ A. i\ .i\ . 

Eq. B. 3 and remembering that its summation limits in that equation 
. 

are invariant with respect to a sign change, we find 

.... 

JwJM (:£A,~A) = 

x 
r R 

(B.4) 
i\ A • 

which indicates that w}M is not an eigenfunction of the parity 

oper~tor ~ unless J = 0 (since O must equal zero as well in that 

case). Since J- commutes with the Hamiltonian, we should be able 

to linearly combine the '1t JM 's. so as ~o produce simultaneous eigen-
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functions of J and H. Let us consider the linear combinations 

(B. 5) . 

By substituting Eqs. B. 3 and B.4 and rear~anging, we find that 

x 
1 - (g · n - g • · n ) --/"?, JV,).,\!~, V~l~-~{J, 

• - AA A AA A ) 

(B. 6) 

where the upper term in brackets refers to the plus solution and the 

lower to the minus solution. From Eq. B.4, it should be apparent 

that 

(B. 7} 

Since the basis functions ~n Y. n <P • in Eq .. B. 6 are 
i\. J i\. i\. v A J i\. 

unchanged from those in Eq. B. 3, "the equations of Sections 2-4 may 

be converted to the corresponding ones involving parity solutions by 

simply linearly combining the g's according to the expression in 

brackets in Eq. B. 6. To facilitate this, we define a new function 
- • 54 g via 
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( 

_1_ (gX . . A 
..f2 JVAJAUA + gJvi\j:>..-Q:A.) 

for QA> 0 

· 1 A.. A 
..f2 (-gJvAjAOA + gJvAh~-nA) 

for QA< 0 

(B~ 8) 

or in the matrix notation of Section 3. 1, 

(B~ 9) 

where the orthogonal matrix Ji\ is given by 

for QA== 0 

1 
:{2 (-60.xn~ + onA -n~) for nA < o 

(B.10) 

If we include initial conditions of the proper symmetry to form the 

matrix ~ , we find that 
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{B.11) 

To convert the equations of Section 3 to the corresponding expressions 

involving parity solutions, we need only to use Eq. B.11 to transform 

them into expressions for ~} rather than ~1 ~ For example, the - . ~ ~ 

fully coupled Schrodinger equation (Eq. 3 .18) becomes 

(B.12) 

where 

(B.13) 

!J J is identical to '!f £ in all terms of Eq. 3 .19 except those off 

diagonal in QA. (i.e., in ~~ J ). From Eqs. 3 .15 and B. 10, we 

find that 

(B.14) 

where 



and 
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{ 

1 for n>. ~ 1 

Ag, = {2 for n~ -· o . 
A 0 for QA. = -1 

[ 

1 for QA.> 1 

Bo = -{2 for QA. = 1 
.A 0 · for n = 0 

A 

and OA < -1 

and n ~ -1 
A 

(B.15) 

(B.16) 

An examination of the structure of U ;\ .J indicates that it contains no 
~c 

elements which couple states whose nA. is positive or zero to those 

whose 01\. is negative. Since only ~~J provides off-diagonal GA 

coupling in Eq. B.12, we see that our coupled Schrodinger equations 

have been separated into two uncoupled sets--those with nA =::: 0 

(of parity (-1)J) and those with nA < 0 (parity ·- (-ll ). 'This 

uncoupling is preserved throughout the integration in a given arrange­

ment channel region since the only QA dependent coupling appearing 

anywhere in this process occurs in centrifugal terms identical to 

Eq., B., 14.. Thus by constructing parity eigenfunctions, we can 

separate our integration problem into two s1naller ones (each of which 

can be further separated into two parts for homonuclear targets 

(Section 3 ~ 3)). 

Parity is also preserved in the matching procedure because 

the parity operation is invariant to which arrangement channel coor-. . 

dinate system one is considering (by inspection of Fig. 1 )... This 

means that solutions of the same :parity symmetry but expressed in 

different arrangement channel coordinates should be related to 
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each other by a transformation which does. not mix in solutions of the 

opposite parity. To show this, we must first transform the coefficient 

t ·. h i\ h' A. f v d f' v f S t. 4 2 t th t t. ma uces ::::::J, ::::J , ::::::J an ::::::J o ec ion . o e represen a ion· 

involving parity eigenfunctions. This requires a transformation 

similar to Eq. B.11 

-:x i\ 
~J = T' h Ji\ :::;: :::::::v')... ::::::;J ·-

(B. l '7) 

where T 1
... is an N/2 x N/2 matrix (N = total number of solutions ::;: v I\. 

of both parities) whose precise mathematical form is identical to rx 
in Eq. B.10, but whose actual structure is different because the set 

of indices vi\j:A involving the matching surface basis function~ of 

Eq. 4. 30 will assume only half the number of values that the asymp­

totic solutions do (as discussed in Section 4. 3). Note that we still 

right-multiply ~} by IA. in Eq. B.17 because right multiplication . 

corresponds to linearly combining different initial conditions, and the 

number of these is always N. By writing equations analogous to 

Eq. B.17 for ~~, ~;;' and g'J-, substituting these i.nto Eq. 4. 57 

(using Eqs. 4. 54, 4. 55, 4. 56) and simplifying, we obtain 

{B.18) 

where the circumflex symbol implies definitions analogous to Eqs. 

4. 54, 4. 55 and 4. 56 for "barred" <!:_e., parity) quantities, and 

(B.19) 
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From Eq. 4. 49. we can rewrite ~~/\. as 

J J ' 
(dn'n + .dn' -n ) · 

X :A :A :A 

(B.20) 

where 

( ~2 for 0 = 0 or O' = 0 
I\ :A 

.e,..,.~ n - ,...1- ..:. ·n.- --

l 
2 ~v ... '"":A - '"':A - v 

fO O' = 1 for both n/\.,n~ :> O or< O :A /\. 

0 otherwise 

and_ the upper term. in the brackets is used for n/\.,n~ i. 0 and the 

. lower term for OA.,O~ < 0. It should be evident from Eq. B. 21 that 

~~/\. does not couple terms of different parity nor does any part of 

Eq. B .. 18; this implies that the matching procedure can be done 

separately for solutions of each parity. It should also be noted that 

for a complete set of matching surface functions, the two sub-blocks 

of sJ"x corresponding to solutions of different parity are separately 

orthogonal~ 

A convenient procedure for extracting the asymptotic 

information from the n1atched solutions involves first a calculation 
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of reactance and scattering matrices which are defined in terms of 

parity eigenfunctions. This is fallowed by a coupling transformation 

in which the positive and negative parity SJ matrices are combined to 

yield the body-fixed SJ matrix of Eq. 5. 5. From that point onward: 

the formulas of Section 5. 2 must be used, since the plane wave 

scattering solution is not an eigenfunction of J~ (as seen }?y inspection 

of Eq. 5. 24). The parity scattering and reactance matrix. solutions 

are defined by equations identical in form to Eqs. 5. 4 and 5. 5, or to 

Eqs. 5. 8 and 5. 9, but the incoming and outgoing solutions ~J and £>J 
of Eq. 5 .10 must be parity eigenfunctions and hence satisfy Eq. B.12 

asymptotically. One can find these solutions by actually diagonalizing 

the ·asymptotic Hamiltonian obtained frmn Eq. B.12, or by performing 

transformations analogous to Eq. B.11 on ~J and 2J· Both proce­

dures lead to expressions for ~J and ~J identical to Eq. 5. 8 except 

for the following two changes: 

(a) the sum over £A in that equation includes only those £.A 

of the same parity as is specified by the signs of ni\ an~ n~ 

appearing in that equation. (The only non-zero terms will always 

· involve n'A and n~ of the same signs.) In other words, when 

OA, n~ > o, l"A = J + jA.' J + j.A-2' • • ·, IJ - ji\ I and when n"A,n~ < o, 
J.A = J + j A-1, ••• ' I J - j i\ I + 1 0 

(b) Eq. 5.10 is to be multiplied by f 0 n' where 
X A. 
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.f 2 for n· = O or n' = o 
A A 

1 for n = n' = o 
A. A 

2 for both QA and nA > 0 ; or < 0 

0 otherwise 
.~ 

(B. 22) 

This form of fuX,O~ leads to block diagonal lJ and 2J matrices 

thus decoupling the reactance and scattering matrix analysis for 

solutions of different parities. 

When these expressions for JJ and $1J are substituted into 

Eq. 5. 21 along with the parity expressions for ~~,· ~'J and r;f, the 

. correct parity reactance matrix ;;.J- (analogous to ;;.J of Eq. 5.18) 

is obtained (where we consider °tJJ to_contain th_e_eyen and odd parity 

reactance matrices as separate sub-blocks). This may be subse­

quently converted to ~J via an equation analogous to Eq. 5. 6. 

Finally, the rows and columns of the parity scattering matrix may be 

rearranged to form the body-fixed scattering matrix ~J via 

(B.23) 

where 

(B. 24) 

and the 3NX 3N T is obtained from the Nx N matrices T T T 
~ =A' ~v' ~K . 

{whose definitions are analogous to Eq. B. 10), by 
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IA 0 
::::; 

T = 0 Iv ~ 

0 0. 
~ ~ 

~ 

O is an N x N matrix of zeros. 
~ 

0 
~ -
0 {B. 25) 
::::; 

T 
~K 
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Table 1. Angular Momentum Operators in Space-Fixed and Body-Fbwd Coordinate Systems* 

Oxyz ox>. y>.z>. Ox~y'z~ 
~~~~~~~~~~~~~~-~~~~~~~~~~·~~~~-~~~~~~~~~~~~~~~~-

J = - fil (-cos cp cotO ~ 
x a¢ 

-sin.pJL. + ::os ¢ JL.) 
i!-8 sin</ iJlf/ 

JY = - iii (-sin¢cote -h 
a cos .p a 

+ cos <!>70 + sinO Oil/ ) 

i>.x = -rn[(cos cp sine +sincp sin \lJcotY 

- cos <P cos e cos !f;coty) -f-
u!f/ 

- (sin<P cos 1/J +cos</> cos(} sinl{l)~Y] 

ixy = - ili [(sin cp sine - cos <P sin !J.t cot y 

'· -sinl{lcos8coslflcoty):1/I 

+(cos cp cos ip- sin.P cos 8 sin tfl) ;,, ] 

j>.z = -ili[(coso +sino cos !/lcoty) :I/I 
~!=:inf:t,cdn,1,.~0· 1 

' iiy • 

l>." :!. = jl\.Z Jz + jll.X Jx +illy JY 

= ~li2[ cos 1f;coty a2 
+ sinl[; _L 

sine a;pq> sine ayacp 
aa . a2 

~ sin\{I cote ilJ/loY - sm\(lcoti' oJ/laO 

a2 a2 
+ cos 1/t aYaB + (1 - cost/J coty cot o) a,jl] 

Jx =-ili(--2..,...~+cotoJ-.) J, =-ili(-cos_if: _..?_ 
J\ sm" ilci> vl/J xJ\ sinO iJ</> 

J il. iJ 
y =- 1-aa 

JI. 

l;xy/c = -lli (-sinwcot'Y a~/ 

+ COS\fl a!) 

. =a J z =-ul-
A Ji. olf/ 

jA. J "j>.Z Jz + jAX Jx 
~ ~ l >. >. JI. 

+j>.Y Jy 
l A. 

+sinlfltltr +cote cos !J.t~) 

Jy' = _ ili (sin t'I _ _ .£._ 
sinO iJ¢ 

+ cosipf0 - cotosinl{I a~) 

a2 .z .z .. a 
JA = lJ\X! + l;xy' + l>.z' 

J\ l 

- ili cot Y jly' 

j;i,. ' f. = i>.z' J z' + j.i\.x:' Jx' 
~ .i\. .i\. >. ><. 

+ J>s' Jy' - iti cotYJY, 

*The subscript>. has been omitted on the symbols 9, cp, Y, t/J. 
Note that the expressions for J 2

, j~ and 1.. •I in terms of 6, cp, 'Y, 'if! are independent of coordinate system. 
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FIGURE CAPTI01'1"'S 
.,,..,_,....,,,..._~~ 

FIG. 1. Vectors used to specify the location of the three atoms A, B' 

and C relative to the center of mass G. GBC' G AC and GAB 

denote the locations of the centers of mass of the diatoms 

BC, AC and AB, respectively. The vectors 

rt:H R ~ r are defined in text. 
""'P "'Y "''Y 

FIG.: 2. Plot of potential contours for the H + H2 reaction in a space 

OXAYAZ.A such that a point P has the spherical polar 

coordinates ~' wA, YA defined in the text after Eq. 2. 3. 

Jn (a) we depict contours for the fixed values of y i\ = .0 ° and 

180°, while in (b) we con~-i~:_r _ _!A == 45 ° and 225 °, and in 

(c) 90° and 270°. In (a) we also depict the lines of inter­

section of the y i\ == 0, 180 ° plane with the half planes 

1T ii>.., 11I' KV and rr ·Ale of Eq. 2. 5, which are used to divide 

configuration space into three arrangement channel regions 

i\, v, K. For each figure, OW A is the inte--:-section of the 

half plane determined by OZi\ and the corresponding smallest 

'YA with the OXA Yi\ plane. 

FIG. 3. Space-fixed coordinate system Oxyz and body-fixed 

systems OXAY A. ZA and Ox~y'z~ (Section 2. 2) in relation to 

the triatomic collision system and to each other. 
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FIG. 4. Division of the R/I., rA space into four regions I, IT, III and 

IV. The contours are equipotentials of the matrix element 

V~ (r A.' R
1
) (see Eq. 3. 4) in eV for the .Porter Karplus H + H2 

potential energy function. The dashed line L is the line of 

steepest ascents for v0"A. The locations of the points P~, P0 

and P 1 are discussed in Section 3 .1 of tlrn teJ..i.. Q is the 

origin of this space. 

FIG. 5. 'The polar coordinates pA.' <pA. and ~' 'f/'A and their inter-
.. 

relationship in R'A' r .A configuration space. 
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7. QUANTUM MECHANICAL REACTIVE SCATTERING FOR THREE 

DIMENSIONAL ATOM PLUS DIATOM SYSTEMS: II. ACCURATE 

CROSS SECTIONS FOR 3D H + H2 
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Accurate three dimensional reactive and nonreactive quantum 

mechanical cross sections for the H + H2 exchange reaction on the 

Porter-Karplus potential energy surface are presented. Tests of 

convergence in the calculations indicate a probable accuracy of better 

inan 5% ior most of the resuits in the energy range considerec.t to. a to 

0. 7 eV total energy). The reactive differential cross sections are 

exclusively backward peaked with peak widths of about 32 ° at 0. 4 eV 

changing to 51 ° at 0. 7 eV. NonrE'.active (inelastic) differential cross 

sections show backwards to sidewards peaking, while elastic cross 

. sections are strongly forward peaked with a nearly monotonic decrease 

with increasing scattering angle. Some oscillations due to interferences 

between the direct and exchange amplitudes are obtained in the para to 

para and ortho to ortho (antisymmetrized) cross sections above the 

{effective) threshold for reaction. The reactive cross sections show 

significant rotational angular momentum polarization with the 

mj = mj' = 0 transition dominating for low j. In contrast, the 

(degeneracy averaged) rotational distributions can be fitted to tempera-
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ture-like expressions to a high degree of accuracy. The integral cross 

sBctions have an effective threshold energy of about 0. 55 eV, a.nd 

differences of this quantity with the corresponding 1D and 2D results · 

can largely be interpreted as resulting from bendi.ng motions in the 

transition state. In eomparing these results with those of previous 

approxirnate dynamical calculations, we find best overall agreement 

between our reae.Uve integral and differential cross sections and the 

quasi-classical ones of Karplus, Porter and Sharma ( J. Chem. Phys. 

43, 32 59 (1965)] (at energies above the auasi-·classical effective 
~ .t. ' 

thresholds). This results in the near equality of the quantum and 

quasi·-classical ther.mal rate constants at 600 IC At lower temperatures 

. the effects of tunnelling become very important with the quantu.m rate 

constant larger than the quasi-classical one by factors of 3. 2 and 18 

at 300 Kand 200 K, respectively. 
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1, INTRODUCTION 

The H + H2 hydrogen atom exchange reaction has been of 

fundan:icntal theoretical interest in the field of chemical dynamics 

ever since the beginning of quantum mechanics. Great progress in 

our understanding of this simplest of chemical reactions has been 

made both in the accurate determination of the electronically adiabatic 

potential energy surface, 1 and in the calculation of accurate cross 

sections and other dynamical information. 2- 13 A long sought 

objective of the dynamical studies has been the accurate quantum 

mecha.nical treatment of the three dimensional collision dynamics. 

Such an accurate ab initio understanding of H + H2 is important, for 

this system has S8rved as a prime example in the development and 

testing of approximate reaction dynamic theories such as quasi-classical 
" "'"~ r:: 11),J . 

methods,'""'' ;.v1,; semi-classical methodsv' .1..vu. and approximate quantum 

methods. 3, 4 , B, 7 ' lO, 11 In addition, H + H2 has been valuable in the 

development of transition state theory, l 4 , 15 in the characterization of 

tunnellingl 3a, 16 and the concept of vibrational adiabaticity, 17 and in 

analyzing the effects of changes in the potential energy surface on the 

reaction dynamics. 18 Much of our understanding of the influence 

initial rotational2 and _vibrationa113a state on the dynamics 

comes from studies on this system as does our lmowledge concerning 

the influence of varying impact parameter2 ' lOc or total angular 

t 4, 6, lOab f d ct· t t· · h . 2, 19-21 momen um, o resonance an irec reac 1011 mec amsms, 

and other dynamical effects. Nonreactive elastic and inelastic H + n2 

collisions have also been of theoretical interest in the analysis of 

rotational excitation and deactivation processes, l0,~2 , 22 , 2 3,24,25 
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and in examining the nature of the competition and interference 

between reactive and nonreactive process.es. lOa, 12b A number of 

reactive and nonreactive experimental studies of H + H2 and its 

isotopic counterparts have been done ranging from kinetic rate 

constant determinations, 26 to hot atom27 and molecular beam28 

experiments. The interaction of theory and experiment has been of 

mutual benefit throughout their respective evolutionary developments .. 

In a previous pa.per29 we presented a method for accurately 

solving the Schrodinger equation for the dynamics of the three dimen­

sional collision of an atom with a diatomic molecule on a single 

electronically adiabatic p:)tential energy surface. This method was 

an extension of an earlier coplanar metl10ct30 which has since been 

used extensively to study 2D H + H2. 12a, b In this paper we present 

the results of an application of this 3D procedure to H + H2 • The 

results include reactive and nonreactive transition probabilities, 

integral and differential cross sections, and reagent and product 

rotational state distributions. These results will be thoroughly 

compared with those d earlier 3D approximate reactive and nonreactive 

calculations, and with lD and 2D accurate ones. Some of the 2D - 3D 

comparisons were considered in preliminary communications, 81 21 

and we shall elaborate upon them here by developing simple dynamical 

models for relating results of different dimensionality. Additional 

topics considered include the effects of indistinguishability of particles, 

angular momentum decoupling approximations, and thermal rate 

constants. In most calculations, we use the semi-empirical Porter­

Karplus1c potential surface. This surface has been used in several 
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earlier studies, thus enabling comparisons.of these results and ours 

without ambiguity b2ing introduced by the use of different potentials. 

Some additional results for the more accurate surface of Liulf (as 

parametrized by us) will also be given. 

Section 2 provides a brief outline of the procedure us2d,and 

computational considerations governing convergence and accuracy 

of the results obtained. The results for the Porter-Karplus potential 

energy sarface are given in Section 3, and Section 4 includes a summary .. 
of the more significant results presented. In Appendix A we examine 

the results of one very simple angular momentum decoupling approxi­

mation and in Appendix B we present some results for the Liu potential 

surface. 

C) 'T'Ul:i' 0 AT 0TTT A 'T'Tr'\'M 
..... £.I..-"-..> '-""'~ ..... ~·..,/ ""'.a....fA.4..r... .... '-' ..... " 

.,,,....._--~~~-...,,"'-""'~ ................... -....-... ........ 

2 .1 General Description of the Jl.1:ethod 

The method used to solve the Schrodinger equation for three 

dimensional reactive and nonreactive H + H2 collisions has been 

extensively described elm~where. 29 The wave function describing the 

scattering process is first partial wave expanded and then transformed 

to a representation involving body fixed coordinates. The coordinates 

involved in this transformation are pictured in Fig. 1. The body fixed 

coordinates OxA 'y'zx' are obtained from the _space fixed Oxyz by rotation 

through the Euler angles a == ¢'!.., {3 = BA.' '}' == lf;;\. where 6 A' </>A. are the 

poiar coordinates of the vector llA. between the incident atom AA. and 

diatomic molecule Av Ak (in arrangement cham~el coordinates >..). 

lf;>.. indicates the angle of rotation of the diatom (about 0 z.A ') with 
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respsct to the Xii_ ZA. plane in Fig. 1. In the body fixed system, the 

diatomic in'.:ernuclear vector ~ between Av and Ak is referenced 

relative to ~A rather than to space fixed directions. (Note that we 

are not using scaled coordinates in this paper in contrast to Ref. 29). 

Rotational motion is described by quantum numbers jA and ~ where 

the tumbling . quantum number 51;~ is associ~.ted with the component 

of rotational angular momentum along the z A' (body fixed) axis. As 

shown in Ref. 29, the component of the orbital angular momentum 

about zA.' is zero, so~ is also associated with the projection of the 

total angular momentum along that axis. In order to simultaneously 

satisfy both criteria, n A must obey the inequality 

(2.1) 

where J is the total angular momentum quantum number. 

Of crucial significance in the body fixed coordinate system of 

Fig. 1 is the fact29 that the kinetic energy operator couples vibration 

rotation states with different nx_ quantum numbers but the_ same 

vibrational and rotational ones (v.11)>.), while the potential energy 

·coupling is diagonal inst A. but not in v>).i\.. This allows for the approxi-

mate separation of effects due to tumbling of the three atom plane 

about z>- v versus those due to potential interactions, and we shall 

examine this separation in Section .3. In addition, it provides for the 

natural development of centrifugal decoupling schemes, one of which 

is analyzed in Appendix A. Once the body fixed fully coupled 

Schrodinger equations are set up, they are then solved in two steps. 

The first ona involves a numerical integration of these coupled equa-



463 

tions through each arrangement channel region in coordinates appro-

priate to that region. This is followed by a second step in which the 

solutions thus generated in each of the three arrangement channel 

regions are smoothly matched to ·one another on a set of three surfaces 

which separate these regions. The resulting solutions, which should 

be smooth and continuous everywhere are then linearly combined to 

yield the appropriate reactance and scattering matrix solutions and 

these solutions for different partial waves are then combined to form 

the plane wave scattering solutions. By using helicity representation 

scattering amplitudes, we obtain a very simple relationship between 

these amplitudes and the body fixed scattering matrix~' namely 

. (from Eq. 5.31 of Ref. 29), 
.A'v' j' m! {v">.. \ ! 

A . .A X J A vA.jA. \ .1 ,~) A -j~ +l 

iA.v~_j.A mJ. ~ l V.A,, . ' ) 2kA. . \LJ 

A \ v 11.J A. VAJX. 

(2.2) 

where the reagent state has m. ::: M =-~and the product state has 
h 

n A · A mt. =\\Ci\_ e v . and k J. represent the appropriate (unscaled) 
JA A VAJA VA .\. 

velocities and wave numbers and d~. m'. (Ot_) is a Wigner rotation 
l.>.. Jx_ 

function (in the notation of Davydov31) with eA 1 the scattering angle. 
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For H + H.,, the problem can be. simplified considerably 

L.. 

because of arrangement channel symmetry and even-odd decoupling 
I 

within each arran~;ement channel (as described in Ref. 29). A major 

consequence of these symmetry properties is that only two scattering 

ampHtudes between a given initial state vjm. and final state v'j'm'. 
J J 

(where m'j is an abbreviatfon for m'j') need be considered, the non-

reactive one (labelled N) and the reactive one (labelled R). 'I'hus all 

the arrangement channel indices A. and .A' in Eq. 2. 3 may be dropped 

as long as the symbols N or R are included as appropriate. As an 

additional consequence, nonreactive transitions between even and odd 

rotational states are forbidden. From the reactive and nonreactive 

scattering amplitudes fN and fR, one may then calculate differential 

(distinguishable atom) cross sections via: .. 
N R v v'j' I N R j2 

a . ' ,., , (6) = V f ' ,., , VJm.-v J m. · . vjm.-v J m. 
J J VJ J J 

(2. 3) 

so that the integral cross section is given by 
00 

N,R 1T I N R 12 

Qvjm.-v'j'm'. =1("?- ~ (2J+ l) TJ,~jm.-v'j'm'. 
J J ~ J~ l J 

I . 

(2. 4) 

where 
N v'j'm'. N 

TJ,vjm.-v'j'm'. =ovjm. J - 8J,vjm. --v'j'm'. 
J J J . J J 

(2. 5a) 

and 

R R 
T J, vjm. -v'j'm'. =-SJ, vjm. -v'j'm '. 

J J J J 
(2. 5b) 

The transition probability PJN,.~ ,., , is given by 
, VJmj -v J m j 
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p N,R /s N,R j 2 

J, vjm. - v 1j'm'. == J, vjm ...... v'j'm'. 
) J . J J 

(2. 6) 

Inclusion of p:trity symmetry in the calculation leads to the relation 

a N,R 
vjm. - v'j'm' · 

J . J 

N,R 
==a . ,., ' VJ- m. - v J - m . 

J J 
(2. 7) 

with analogous expressions valid for Q and P J. The angle e (or ell.,) 

of Eq. 2. 2 refers to the direction of the scattered H atom with respect 

to the reagent H atom beam. For reactive collisions, a more 

customary angle to use is eR which is the angle of the product H2 

with respect to the inc.ident H, and is the supplement of e (i.e., 

eR =1T -e ). 
For H + H2, the physically measurable cross sections must 

be obtained from wave functions which have been properly antisymme-

trized with respect tc interch2.nge of any two identical nudei. This 

. can be done by tha technique of post-antisymmetrization as was 

detailed in Ref. 29, and leads to the following indistinguishable atom 

differential cross sections (labelled by the symbol A): 
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A Vv'j' 
avjm. - v'j'm '. = V . x 

J ) VJ 

I N R 12 
fvjm. - ·v'j'm'. - fvjm. - v'j'm '. 

J J J J 
(j, j' even, para - para) 

3 j fv"tn. - v'j'm' .12 
J _ J . 

(j eyen, j' odd, para - ortho) 

lfv1fm.-v'j'm'.1
2 

(2.8) 
J • J , 

(j odd, j' even, ortho - para) 

{ lr~mj- v'j'm '· + fv"tnj - v'j'm' .1
2 

J J 

. + 2 lrv"tn .... v'j'm'. f 2}. 
J J 

(j, j' odd, ortho - or tho) 

For even j to odd j (odd j to even j) transitions, the antisymmetrized 

and reactive cross sections are proportional, with a multiplicative 

factor of 3 (1), so either quantity gives equivalent information. 

For other transitions, there will be interf er enc e between direct and 

exchange amplitudes as is implied in Eq. 2. 8. 

Since the rotational sublevels for a given vil:>ration-rotation 

state are degenerate, we may define both integral and differential 

degeneracy averaged cross sections by (valid for R, Nor A transi­

tions): 

1 
a vj - v' j' = ~j + 1 (2. 9) 

and 
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(2.10) 

\Ve may also sum these cross sections over all ~inal stat.es, obtaining 

N \' N a ..... L a , r·1 
VJ VJ -- VJ 

(2 .11) 
vvj ~ 

.R 
IJ • "· 1· 

VJ'""' V'J 
/ (2.12) 

A 
(j, { th' VJ ...... ,para; or o) 

\'"' .A 
= L- L1 ovj-"' v,r (2 .. 13) 

V
1 r 

er even (para)) 

(j 1 odd (ortho)) 

with _analogous expressions holding for the integral cross sections 

v1ith 1Q substituted tor a. 'fhe fact?r of :!. in Eq. 2. 11 arises from a 

sum over the two equivalent reactive arrangement channels (in a dis" 

tinguishable atom sense)" The final state sum in Eq. 2.12 refers. 

specifically to final ortho or para states as is appropriate. 

2. 2 Conv~e and Accuracy_TeS~§;. Detail? of t!1e Calculati2E~ 

In order to establish the_ reHability of the results of these 

calculations,, a number of convergence and accuracy tests were per­

formed, including (a) tests of flux conservation and microscopic 

reversibility, (b) tests of invariance of the results with respect to the 

inclusion of additional vibrational or :rotational basis functions in the 

close coupling expansion, (c) tests of invariance of the results with 

respect to a change in the nurnber of tern1s used to expand the potential 

(see Eq. 2 .14 belowL and (d) tests of invariance of the results with 



468 

respt:>ct to a change in the nature of the reference potential 

vref(r>.., H.1) 29 
US(-)d to g8nerate vibrational basis functions for the 

integration. Two additional tests are (e) of invariance with respect 

to a change in the matching surface basis functions, and (f) of the 

effects of lack of completeness of these matching surface functions 

on the ortho to para nonreactive transition probabilities. 'I'hese 
12 latter two tests were not psrformed, but the analogous planar tests b 

indicated that both effects were not important in that calculation. 

Si.nee comparable planar and 3D vibration rotation basis sets were 

used in the two sets of calculations, we have assumed that the matching 

surface basis functions of Eq. 4. 28 of Ref. 29 will produce adequate 

(5% or better) convergence of the 3D results. 

Conservation of flux and microscopic reversibility may be 

tested by ·exari1i:riing the probability matrices for each partial wave, 

an example of which is given in Table I for total energy E = 0. 6 eV 

and J = 0. Flux conservation requires that the sum of each row or 

column of !:J should equal unity, while microscopic reversibility 

requires that ~ be symmetric. In the table we se3 that both of these 

properties are well satisfied (0.18% maximum deviation from flux 

conservation and< 3% from symmetry for those probabilities 

> 1 x 10-4
) •. In the results presented in this paper, we consider the 

energy range 0. 3 to 0. 7 eV. For energies E in the range 0. 3 eV to 

0. 6 eV, we find maximum deviations from flux conservation of 1 % 

and from symmetry 10% (for non-negligible probabilities). Between 

0. 6 and 0. 7 eV we find 4% deviations from flux·conservation and 15% 

from symmetry. In order to obtain results of this quality, we used 
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the vibration rotation basis sets specified in Table II. For J = 0, 

Eq. 2.1 greatly reduces tho number of channels coupled, thus reducing 

computation tirne, allowing us to use more complete basis sets. This 

leads to excellent results for the J == 0 probabilities (similar or better 

than those in Table I at all energies considered). Hmvever, for 

larger J, the number of projection~ &1 increases greatly. Th1s leads 

to prohibitively large computation times if basis sets analogous to 

those for J == 0 are used. The ones actually used are those described 

in Table II. The above mentioned accuracy limits were obtained \Vith 

them. 

Convergence \vith respect to the inclusion of additional vibra­

. tional or rotational channels is examined in Table III. In part (A) 

of that table, we examine sever2.l imp~rt2.nt transition prot:-."!Jilities 

at E = 0. 65 eV, J = 1 for three different rotational basis sets (all with 

four vibrations). Upon changing from a j = 5 to j = 6 basis set, max max 

we find changes of less than 1 % in all probabilities. In part (B') we 

examine several O. 65 eV, J = 0 probabilities with 4 and 5. vibrations 

(all with jmax = 7). Here we find 4% maximum change. An examination 

of the nature of the convergence properties with respect to the inclusion 

of additional basis functions was examined in greater detail in the 

planar calculation12b where we found that typically 4 vibrations and 

jmax = 5 were required for·5% convergence. A less extensive study 

of the three dimensional results indicates similar convergence pro-

perties and the results of Table III are in agreement with this statement. 

The two criteria (c) and (d) mentioned at the beginning of this 

section refer to changes in the representation of the potential 
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0(rA.,RA.,yA.) (where YA. is the angle between 11>.. and£>.. (Fig. 1)), 

and in the character of the reference potential V~ef (rA., RA.) used 

to generate the vibrational eigenfunctions. As detailed in Ref. 29, 

the potential is expanded in a series of Legendre polynomials 

VX(rA.,RA.;yA_) = L ~(rA.,Ri\.)Pk(cosyA.) 
k=O 

(2.14) 

where, for an atom plus homouuclear diatomic' molecule system like 

H + H2' the sum on k includes only even terms. In an actual calcula­

tion, Eq. 2.14 is truncated after n terms (such as n = 3). This 

procedure is justified if the resulting probabilities are not significantly 

changed when an additional term is added. To evaluate the effects 

of changing n, we compare in Table IV the results of calculations 
'' 'J'l ' 

with n = 2, 3, 4 and 5 <,/ .... for selected transition probabilities at two 

different energies. Although the n = 2 results are often significantly 

in error (by as much as 30%), we find less than 7% changes in going 

from n = 3 ton = 4 and virtually no change at all in going from 

n = 4 ton = 5. All calculations of this paper other than those whose 

results are presented in Table IV used n = 3.. The reference potential 
A 

V ref which is used to numerically generate the vibrational basis 

functions according to the procedure of Ref. 29 suffers from a lack of 

uniqueness in the interaction region due to nonseparability of vibra­

tional motions from translational or rotational ones. In the coplanar 

calculations, two different choices of the reference potential 
A A A . 

{Vref = V(rA.,RA.,yA. = 0) and Vref = V0 (rx_, RA)) were used. A compari-

son of these calculations indicated that for basis sets with four or 
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more vibrations, the results changed by less than 5% between the two 

reference potentials. A limited number of three dimensional calcula­

tions indicates that behavior is comparable to the planar c~se. 

~~~B§§QLTS FOR THREE nrr;g:~l!~ 

3.1 Transition Probabilities 

In this section we examine the J dependence of the reactive 

and inelastic transition probabilities in the energy range 0 .. 3 to 0. 7 eV. 

Figures 2a and 3a present the reactive probabilities P J ~O _ 01 (summed 

over final mj). These figures indicate that the probability is a rapidly 

decreasing function of J with a peak nea~ J = 0 for all but the highest 

energy considered. If we define JMAX as the lowest value of J for 

which PJR . tl·, has decreased to less than 1 % of its maximum value, 
, VJ - V • 

then JMAX = 4 at 0. 3 eV and increases ·monotonically to about 10 at 

Oe 7 eV. The contributions of these transition probabilities to the 

integral reaction cross sections are weig~ted by the factor 2J + 1 

(see Eqs. 2~ 5 to 2. 7). Figures 2b and 3b depict the product (2J + 1) x 

P~ 00 _ 01 , and we.see that the partial wave which gives the largest 
' . 

contribution to Q0~ _ 01 varies from J = 1 at 0. 3 eV to J = 4 at 0. 7 eV. 

To examine tha contributions of the different project-ion quantum 

numbers to the curves in Figs. 2a and 3a, we plot in Fig. 4 the_ 

reaction probabilities PJ~OOO- Olm'. for m'j = 0, ±1 (and their sum) 
J . 

at E == 0. 6 eV. It is apparent from the figure that m '. = 0 makes the 
J 

dominant contribution to P J~ 00 _ 01 for this transition at all J for which 

the transition probability is non-negligible. The m'. = ±1 probability 
J 

(which, from Eq. 2. 7 is independent of the sign of m'.) shows a peak 
. . . ' . . J 
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near J :::: 4 followed by a somewrnt slower decrease with increasing 

J- than is exhibited by the m 1 • == 0 probability. An examination of 
) 

other transition prob::ibilities at 0. 6 eV indicates that in general, the 

m. == 0 to m'. == 0 re;:<_ction probability is the dominant one for a given 
J J . 

vj and v'j'. Th.is effect becomes less impJrtant as both J, j or j' 

increase. as is illustrated in Fig. 5 for the probability PJ~ 000 _ ~3m, .' 
. J 

but it remains a general fact that the mj = m 1j == 0 transition probability 

is the largest one for J < J.rv1:AX and j ::s 4. This statement is also 

true for other energies considered. Its effect on the integral cross 

sections will be discussed in Section 3. 3. 

Let us now consider the meaning of this rotational projection 

. quantum number 1:quasi selection rule. n Recall that g ::::: -mj initially 

so that m~ == 0 implies (for nonzero j) that the direction of rotation is 
J 

perpendkular to the direction of approach, as is schematically indi·-

cated in Fig. 6~ .In this situation, we find that twice during each 

diatom rotation, the three atoms are completely collinear (for zero 

impact parameter collisions). For the Porter-Karplus potential 

used, le linear orientations greatly favor reactio~ c rer other orienta­

tions. (The linear barrier height is 0. 396 eV while the perpendicular 

one is about 2. 8 eV) For collisions \vhere mj ;.z:: 0, the rotational 

wave function YjA m. {yA.' t/J>.) has a node at yA == 0 so that there is zero 
. ~ . 

probability density for strictly collinear zero impact parameter collisions. 

(All of these considerations, of course, apply before the incident atom 

begins perturbing the diatom target.) Thus we see that only for m. = 0 
J 

can the system assume initially the linear orientation favorable to 



473 

reaction. After the collision, m 'j == Q 'so that again only for m 'j = 0 

can 'Ne have a linear orientation after the collision (regardless of the 

scattering angle). Vie should also note that the rotational period 
l 

(2. 7x10-13/[j(j+1)] 
2 

sec)
2 

is ge11erally larger thari the interaction 

time (which is less than 3 x 10-14 sec33 for the energies considered 

here) so that the rotational motions are generally slow compared to 

collision times at these energies and the collision orientation daes 

not change rapidly during the approach and departure steps. All of 

this indicates that the mj = m 'j == 0 reaction probability should be 

larger than all others in agreement with our results. It also indicates 

why this rule becomes less rigid for large J (whare nonzero impact 

parameter collisions can lead to linear orientations for mj' m 'j ~ 0) 

and for large j (where the diatom rotates fast enough to change tr..e 

collision orientation rapidly during the collision thus reducing the 

advantage of a linear orientation at any one point during the collision). 

As a second prediction of this model, we would expect that those transi­

tion probabilities for whic~ mj = 0 or m 'j = 0 (but not both) should 

dominate over those fo, which neither m. nor m tJ. are zero. We shall J . 

see in Section 3. 3 that this prediction is correct. We emphasize that 

this projection quantum number selection rule depends on (a) a potential 

surface which favors linear orientations, and (b) projection quantum 

numbars referenced relative to the body fixed coordinate system of 

Fig. 1. The latter reason is important because it singles out the m. 
J 

or m'. == 0 collisions as leading to a linear collision orientation with 
J 

a greater probability than mj or mtj ~ 0. By rotating the quantization 

axis to another direction (such as· perpendicular to the three atom plane 



as is done for the coplanar reaction,. or along a space fixed direction), 

we would not be able to unscramble the information as easily. 

Figure 7 shows the J dependence of the phases of the scattering 

matrix elements SJ~OO- Olm'. for m'j == O, ±1 at O. 6 eV (the same 
J 

transitions considered in Fig. 4). It is important to note that the 

phase is most slowly varying near J = 0. Semi-classically this 

implies that the deflection angle should be small for small impact 

parameter collisions. This implies that a small scattering angle B 

will result from these low J c.ollisions, or, equivalently, a reactive 

scattering angle 8R near 180 °. 

In Fig. Ba we examine the nonreactive transition probability 

PJ~OO _ 02m'j , and its sum over final m 'j at 0. 6 eV as a function 

of J. Here we find JMAX == 30 so that 3: much larger number of partial 

waves contribute to the nonreactive cross section than is the case for· . 
the reactive transitions in _Figs. 2 - 5. Noto that the m'j = 0 transition 

probability is dominant only for very small J ( < 6) indicating that tJle 

linear orientation rule is probably not significant here (as might be 
' expected for a nonreactive collision where the nature of the potential 

in the transition state is of lesser significance than it is for reactive 

collisions). An examination of other nonreactive transition probabilities 

indicates no strong tendency for a mj = - m'j (n =n') selection rule as 

has often been assumed in rotationally inelastic scattering, 34 thus 

indicating that the strong coupling or sudden limit does not apply to 

H + H2 inelastic collisions for the potential used. We shall examine 

this again in Appendix A for reactive collisions. The transition 

probabilities of Fig. 2a may also be expressed in terms. of the orbital 
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angular momenLum quantum number 1 ~as might be used in a space 

fixed analysis) by performing a unitary transformation on the body 

fixed scattering matrix (see Eqs. 5.14 and 5.15 of Ref. 29). Figure 

Sb indicates the resulting transition probabilities (the sum over pro­

jections being an invariant). Here we again see no particular selection 

rule governing the transition probabilities. 

3. 2 Differential Cross Sections 

In Figs. 9 and 10 we plot the antisymmetrized para to ortho 

differential cross sections a ai-ol as a function of the reactive 

scattering angle eR. From Eqs. 2. 4 and 2. 8 it should be apparent 

that these cross sections are just three times the distinguishable 

atom a 0~ -o1 · \Ve see in both figures that the reactive cross section 
, 

is strongly backward pBaked at all energies considered in the calcula­

tion. The width of the backward peak at half maximum is 48 °, 32 °, 

33 °, 41° and 51° at E = 0. 3, 0. 4, 0. 5, 0. 6 and 0. 7 eV, respectively. 

At the energetic threshold of the process considered, one would 

normally expect isotropic scattering sin~e only the J = 0 partial wave 

would contribute to the cross section. At 0. 3 eV, Fig. 2 indicates 

still a very small number of significant partial waves (JMAX = ~) 

so the backward peak is still rather broad. The width of this back­

ward peak decreases above O. 3 eV to a minimum near 0. 4 eV. As E 

increases above that, the width begins to increase, presumably as a 

r~sult of increased contributions of larger impact parameter collisions 

(from Figs. 2, 3) to the reaction cross section. 

As was the case in the coplanar reaction, 12b the shape of the 
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differential cross section is a sensitive test of the accuracy of the 

calculation. Small fluctuations of either the magnitudes or phases of 

the scattering matrix elements from their correct values for any 

partial wave can result in spurious oscillations in the differential 

cross sections. In addition, premature truncation of the partial wave 

sum (Eq. 2. 2) can lead to a spurious forward peaking. In order to 

avoid spurious oscillations in the cross sections, we checked convergence 

at several values of J (by the criteria of Section 2. 2) and found that 

reasonably uniform convergence had been attained at all J. (Recall 

from Table II that the nature of the vibration rotation basis set has 

to be changed for each J (J < 4).) Premature truncation of the partial 

wave sum was avoided by requiring that the reactive probabilities at the 
- . -4 

cutoff value Jc be at least 10 times th~se at J = 0. In general, 

we found Jc "'JfyiAX + 5. Both Figs. 9 and 10 show essentially no 

indication of spurious osci~lations or forward peaking (typically the 

e R = 0 cross section is 200 to 1, 000 times smaller than th~ .fJ = iso 0 

result). We should also note that the appearanGe of Figs. 9 and 10 

is quite typical of all degeneracy averaged para to ortho and ortho to 

para cross sections. 

'I'o examine the mj dependence of the differential cross sections, 

A we plot a000 _ 03m,. form'.== o, ±1, ±2, ±3. 
J J 

(and their sum) in Fig. 11. Here we see that only the m'j = O 

projection gives backward scattering. As lm'j I increases from zero, 

we find a shift towards more forward scattering with the cross sections 

peaking at eR = 139 °' 117 ° and 102 ° for· Im fj r = 1, 2' 3' respectively. 

Much of the structure of the angular distributions in Fig. 11 can be 
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understood by exarnining Eq. 2. 2 where we find 31 that ct0J 1 ( ~) 
I · 111 .• 

m. J 
is proportional to (sin 0) J times a polynomial in cos e. Since 

A 2m'· 
DR == 11 - e, the a 000 ..... 03m,. should have a (sin BR} J envelope 

and should consequently van
1
ish at. eR = 0 ° and 180 °. Indeed,. one 

can qualitatively obtain the rn'j = ±1 curve by multiplying the m 'j = 0 
2 

curve by sin e R and similarly for the higher m 'j curves. The 

vanishing of the rn'j ;;e 0 cross sections at e R == 0 ° and 180 ° is also 

a consequence of angular momentum conservation. To see this, we 

recall that the incident plane ·wave solution is an eigenfunction of Jz, 

the operator corresponding to the projection of the total angular 

momentum along the space fixed z axis, with eigenvalue M == mj 

(since m1 is initially zero for the plane wave solution). Since Jz 

commutes with the Ha.miltonian
35

, M wiHbe a good quantum number. 

This is true for any collision, but in the particular case where 
I 

eR = 0 ° (180°L the final z '.x axis36 will be antiparallel (parallel) 

to the initial z axis, so that the outgoing projection quantum number n 
must equal -M (+M). From this and the discussion following Eq. 2. 3, 

we find that m. == M = -·~v~ -m r. for e.R = 0° and 1n. == M == Q' =in 1 • 

OJ . A J ' • ~ ) 
for OR = 180 . For a000 _ 03m,., m j == O is required for both 

J . 
OR = 0 ° or 180 ° and hence m'j ~ 0 projections cannot satisfy angular 

mon1entum conservation in these two directions. Finally we should 

point out that the dominance of the m 'J. = 0 component of a 0~0 ... 03m,. 
. J 

in Fig. 11 is again a consequence of the favored linear transition state 

geometry. The m 'j = 0 collisions for small impact parameters have 

a significant probability for a linear or nearly linear collision which 

should lead to the observed dominant backward scattering. For 
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m '. ;r- 0, the eollision configurations must be nonlinear (at least in the 
J 

product arrangement channel) and we \vould expect to see the sidewards 

scattering exhibited in Fig. 11. 

In Fig. 12 we plot the nonreactive differe1i.tial cross sections 

a0N00 O'>. , (111 1
• == 0, ±1, ±2 and summed) at E ::::: 0. 6 eV as a function 

\ - • "-<lll . ) ] . 

of e. Here the predominant SGattering direction is approximately 90° 

although significant cross sections are obtained at all angles. The 

forward peaking in the m 1
• = 0 comp::ment and forward oscillations in 
J 

the remaining curves in the figure are probably spurious artifacts 

introduced by small errors in the phases of certain large J elements 

of ~ (see related discussion of Ref. 22). Much of our previous analy-
""· 

. sis regarding the angular dependence of in~Hvidual m 'j .cross sections 

applies to Fig. 1 as well so we shall not repeat it. We note, however, 

that the absence of a linear or near linear orientation restriction in 

nonreactive collisions leads to significant cross sections at all 
I 

scattering angles. Since the j == 0 to j' = 2 transition can occur by 

both nonreactive and reactive mBchanisms, the more meaningful 

quantity to consider is the antisymmetrized cross section of Eq. 2. 8. 

In Figs. 13, 14 and 15 we plot this para to para cross section 

a 0~ _ 02 (summed over m 'j) along with the nonreactive and reactive 

counterparts at E ::::: 0. 5, 0. 6 and 0. 7 eV. At the lowest energy, the 

reactive cross section is typically t~ree orders of magnitude smaller 

than the nonreactive one, so the resulting para to para cross section 

is dominated by the direct amplitude and differs very little from its 

nonreactive counterpart. As the energy is increased, the reactive 

amplitude increases rapidly and begins to interfere significantly with 
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the nonreactive one. This resnlts in.the oscillations observed in 

a 60 _,. 02 in Figs. 14 and 15. The period of these quantum symmetry 

oscillations seems to be roughly 10 '- 15 ° in both Figs. 14 and 15 for 

B< 90 ° \Vith a gradual increase in period with increasing e until 

the oscillations wash out completely at large e. Figures 13 to 15 

N also indicate that the peak in a 00 .... 02 shifts gradually to f or\vard. 

scattering angles as the energy is increased. The contributions of 

different m 'j to the aot _ 02 at 0. 7 eV are shown in Fig. 16 (along 

with the distinguishable atom a0~0 - 02mr. for comparison). We see 
J 

that the m 1
• = 0 cross section in that figure has the largest oscillations 
J 

followed by m'. = ±1 and then m'. = ±2. This results from the dominant 
J J 

. contribution of the m 'j = 0 reactive scattering amplitude (as evid.enced 

in Fig. 11) followed by m'. = ±1 and finally m'. = ±2. Note also that . • ] • J 

the phases of the oscillations in Fig. 16a, b, c are not particularly 

coherent, so that a certai:i;i amount of cancellatiqn occurs in the sum 

over projections(whlch is shown in Fig. 15). 

3. 3 Inte.zral Cross Sections 

A number of reactive, nonreactive and antisymmetrized integral 

cross sections are listed in Table V. Some of the reactive and para 

to ortho cross sections of that table are plotted as a function of energy 

in Fig. 17. Both logarithmic and linear scales are used to exhibit 

both the tunnelling and threshold regions. Ji we define the effective 

threshold energy ET as that energy for which the cross section is 
2 R 

0. 05 bohr , then ET = 0. 545 eV, 0. 550 eV and~· 615 eV for Q 00 , 

Q 6'6-ol and Q 01_,_03, respectively, Alternatively, since the high 
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energy dependence of the cross sections is linear, we could define an 

effective threshold energy Ern 1 as the energy to which a line fitted 
.l 

to these linear points extrapolates in the limit of zero cross section. 

From this definition, \ve find ET'·== 0. 568 eV, 0. 565 eV and 0. 605 eV for 

these same cross sections. Either way we find that the threshold 

energies are considerably above the barrier height (0. 396 eV) and 

this difference will be discussed in detail in Section 3. 5. At energies · 

below threshold, the effects of tunnelling give the cross section an 

approximately exponential behavior. 

To examine the mj dependence of the cross sections, we list in 

Table VI a portion of the "cross section matrixn Q0j!. _ oj 'm'. for 
J J 

. j, j' ::::: 2 at 0. 6 eV. (Note that these cross sections are distinguishable 

reactive ones.) The table indicates that the m. == m 1
• :::: 0 cross section 

J ] 
is typically 10 to 20 times larger than any other cross section with 

the same vj and v'j '. In addition, for a given mj, Q is a decreasing 

function at increasing Im'. I <anct, by microscopic reversibility, 
' J 

Q decreases with increasing Im- I for a given m '.). These observations 
' J J 

are indicative of the very significant rotational angular momentum 

polarization effect that can occur when only a restricted range of 

geometries can lead to reaction. This approximate selection effect 

breaks down eventually for large enough j or j'. Let us consider the 

cross sections Q0~0 - Oj'm'. for varying j' and m'j at O. ~ eV. The 
J 

ratio of the m'. == 0 to m'. = ±1 cross section is 22. 3 for j' == 1 decreasing 
J J 

to 7 .1 for j' = 2, 3. 1 for j' :::: 3 and 1. 1 for j' = 4. The j' :::: 1 ratio is 

10. 6, 24. 7, 24 .. 9, 22. 3 and 14. 7 at E = 0. 3, 0. 4, 0. 5, 0. 6 and 0. 7 eV, re­

spectively) indicating that this selection rule is most rigorously obeyed 



in the intermediate range· of energies just below the effective threshold 

energy. \Ve shall examine the rotational energy dependence of the 

j and j1 distributions in Section 3. 6. 

The nonreactive cross sections Q 0~ ..... 02 are listed in Table V. 

At 0. 6 eV, the Q0~0 _ ~2m ,j have values of 3. 01, 3. 31 and 1. 67 bohr
2 

for m., == O, ±1 and ±2 indicative of the lack of strong rotational 
J 

angular momentum polarization effects such as are observed with the 

reactive cross sections. Table V also indicates that the Q J6 .... 02 and 

Q :0-oz are identical in magnitude except at the highest energy con­

sidered. An additional discussion of the energy dep.3ndence of these 

nonreactive cross sections is given in Section .3. 7 . 

. 3.4 ElasUc and Total Cross Sections 

The calculation of coDverged elastic c1~oss sections r1;;qui:res 

a large number of partial waves (up to 70 at 0. 70 eV). Since the 

Porter-Karplus surface has a repulsive exponential long range function­

alitylc rather than the ,correct attractive RA. - 6 dependence 37 a fully 

coupled calculation of the elastic cross sections for the purpose of 

comparison with experiments37 on this and related systems would 

not be worthwhile. At several energies, however, we found that a 

very accurate e.x.-trapolation to obtain the required large J phase 

shifts could be accomplished. For J large enough so that both 

reactive and inelastic nonreactive transition probabilities are 

negligible, it is often the case that the elastic phase shifts have not 

yet decayed to zero. Since these large J collisions correspond to 

large impact parameters, we would expect that only the isotropic 
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tail of the potential is imiJortant. In .such circumstances, a central 

field, single channel model of the potential should suffice to predict 

these phase shifts. Using a standard central potential integration 

routine38 with the spherically averaged pe>tential V 0(re, R) of Eq. 2 .14 

where re is the equilibrium internuclear distance, we have calculated 

the elastic v == j == 0 phase shifts at the energies considered in Table V. 

Typical results are presented in Fig. 18 where we have also plotted 

the phase shift of the exact sc2~ttering matrix elements (~ Arg 

(SJN 000 _ 000)). The figure indicates that the accurate phase shifts 
' 

are essentially identical to their central field counterparts for J > 10. 

Indeed, between J == 11 and J = 39 (the highest J for which a fully 

coupled calculation was done), the difference between these two phase 

shifts is always less than 0. 05 rad and usually less than O. 02 rad. 

This is rather interesting, for the modulus of SJ ~OO _ 000 is not 
' 

even close to unity as is illustrated in Fig. 18 with a plot of the elastic 

transition probability !s J: 000 .... 000 !
2

• This presumably indicates 

that the phases of the scattering matrix elements are much less 

sensitive to the presence of reactive and inelastic c~1annels than are 

the moduli. By using these elastic central field phase shifts, we can 

now extrapolate the large J behavior of the converged results and thus 

calculate accurate elastic cross sections. 39 
Typical results for 

a 0~0 _ 000 at E = 0. 7 e V are plotted in Fig. 19. The elastic differen­

tial cross section shows strong forward peaking with a small oscilla­

tion near e = 6 ° and otherwise decreases in a nearly monotonic manner 

to 8=180°. The 8=110° to 180° behavior of cro~0-000 is probably 

not accurately characterized since the small cross sections in this 
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region must result from extensive cancellation in the partial wave 

sum (Eq. 2. 2) and are easily modified by small errors in the 

scattering matrix elements. Also plotted on the same graph are the 

central field elastic cross section· a 0~0 _ 0
00 

and the total cross 

a 0~0 (lvhich is the sum of the cross sections for all possible processes 

(N or R) starting from reagents with v = j = mj = 0). We see that all 

three cross sections are essentially identical for e < 30 °. Even for 
. T E very large scattering angles a000 and a000 .... 000 agree to within 

better than a factor of 2. Moreover, the integral cross sections 
T E 2 2 • Q 000and Q 000 _ 000 are 221. O bohr and 220. 8 bohr respectively 

indicating that Levine's conservation of total cross section rule 40 

. is obeyed quite accurately for this system. \Ve should, however, 

point out that the above mentioned total cross S·Bction is considerablv - "' 

larger than the recently measured experimental one37 (for D + H2) 
2 

which is about 151 boh.r at 0. 75 eV. If the antisymmetrized cross 

section a 0~0 _ 000 is c?nsidered, we find that quantum symmetry 

effects due to interference between the elastic and reactive scattering 

amplitudes are much lc-ss significant than they were with the inelastic 

transitions i.n Fig. 15. Nevertheless, oscillations in this cross section 

can result in differences between a A and o-N as big as 10% of aN for 

scattering angles between 30 ° and 90 °. 

3. 5 Comparison of Collinear, Coplanar and Three Dimensional Results 

In the analysis of the coplanar results, 12b it was determined 

that a physically meaningful comparison of the lD and 2D results could 

be obtained by examining the J = 0 total reaction probabilities. We 
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extend this comp::i.rison in Figs. 20 and 21 by plotting the lD~l, 41 

2D ai~d 3D total reaction p:robabilities P0~(J = 0) [ P0R for lDj as a 

function of E, Both logarithmic and linear scales are used so as to 

enable examination over a \Viele energy range. The figures indicate a 

surprisingly similar energy dependence over several orders of 

magnitude of probabilities. There are, however, two important 

differences both of which provide significant insight into the dynamics. 

First, an energy shift of about 0. 05 eV occurs in going from lD to 2D 

and again in going from 2D to 3D. In the coplanar analysis, 12b we 

explained the lD to 2D shift as arising from additional bending energy .. 

required in the coplanar transition state over the linear one. This 

bending energy is added to the symmetric stretch energy of the collinear 

transition state which, in turn, is primarily responsible for the shift. 

in the collinear effective threshold energy over the barrier height 

energy13 (0. 396 eV). In the three dimensional case, the bending mode 

of the transition state is doubly degenerate so that a second quantum 

of bending energy (approximately the zero point energy which is 

0. 06 eV) will be required. Indeed; an examination of Fig. 20 indicates 

that the lD to 2D and 2D to 3D shifts are identical to within the 

accuracy to which the probabilities can be interpolated. The second 

differenGe between lD, 2D and 3D results lies in the magnitudes of 

the maximum probabilities in Fig. 21. The collinear probability 

peaks near unity while the planar one levels off at about O. 6, and the 3D 

one at roughly 0. 45. The difference between the lD and 2D plateau 

values has been previously analyzect12b in terms of the orientation 

dependence of the 2D probability. Since the potential.barrier varies 
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from 0. 396 eV at y/\. = 0 to 2. 8 eV at I\.== 90 ° le, one would expect 

a decreasing probability of reaction with increasing yl\ (assuming that 

we can consider the orientation of the atom with respect to the diatom 

as fixed throughout the reaction). ·If we consider that the total reaction 

probability is unity for 0 < Yx. :S y>... and zero for yA < Y;., < 90 °, and use 

symmetry about 90 ° for 90 c; :S Yx :S 180 °, then we find that P0~(2D) == 

2 yft./rr and _P0~(3D) = 1 - cos Y>.: In the 2D case, we find that Yt... == 54 ° · 

is required to give a reaction probability of 0. 6. This estimate of 

Y1t is in approximate agreement with previous estimates of this angle 

from a classical analysis. 2 The same angle used in the 3D formula 

yields P0~(3D) = 0. 41 which is not considerably different "from the 

observed value of 0. 45. This indicates that the 2D and 3D orientation 

dependen~e is probably quite similar with primarily dimensionality 

considerations responsible for the difference in reaction proba.bilities. 

At least two procedures for converting 2D integral or differential 

cross sections into 3D ones have been proposedlO, 42 both of which use 

semi-classical arguments in making the connection. We will leave a 

thorough analysis of th~se conversion procedures to a future publica­

tion, preferring instead to concentrate on approximate 3D procedures 

which require comparable or smaller amounts of computation time 

than the 2D calculation while providing 3D information directly.· (See 

Appendix A~) We would like to point out ,however ,one rather remarkable 

comparison between 2D and 3D results which is obtained by examining 

the differential cross sections. In Fig. 22 we plot the 2D and 3D 

differential cross section a oi-ol (adjusting the respective abscissa 

scales to bring them into approximate agreement at e R = 180 °). The 
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2D result at 0, 55 eV is compared to the 3D mw at 0. 60 eV so as to 

tnclude for any effects due to the bending energy shift. Fig. 22 

indicates-a remarkably similar shape in the respective angular distri..:. 

butions over the entire range of scattering angles. A sirn.ilar compari-

son at other energies in the range considered usually leads to comparable 

agreement. This indicates that.the dynamical processes involved are 

indeed quite sirnilar, Such behavior is not unexpected, for the same 

pJtential is sampled in both cases and the primary difference between 

the two calculations is the additional centrifugal coupling resulting 

from tumbling of the 3 atom plane, which is present in 3D but not in 

2D. The existence of a strong rotational pola.rization selection effect 

as evidenced in Table VI indic:ates that such coupli.ng is weak i~ 

comparison to the potential coupling since it is the potential which is 

responsible for the linear geometry requirement. Thus 2D and 3D 

dynamics should be quite similar and conversion of 2D to 3D results 

could prove to be an accurate approximate technique. 

3. 6 Reagent and Product Rotational State D~_§?t:ri_l?_!:l_~ions 

V.fe now consider the rotational distributions of the degeneracy 

averaged reactive distinguishable atom cross sections (all for v = v' = 0). 

In the coplanar H + H2 study, 12b we found that a surprisingly accurate 

fit to this distribution could be obtained with a temperature-like expres­

sion (for a 2D system). This type of distribution can be derived from 

an information theoretic formalism through the assumption that the 

surprisal function 43 is linear in the final state rotational energy. For 

3D collisions~ with only one open vibrational channel, the information 



487 
theoretic expression for the degeneracy averaged cross section 

between rotational states j and j t may be written as 

R t
. -E.i/kT.(E) 

Q A 'E'\ (t<, r)(2"' 1) J J · ., :::: __ .\ iP J,.J., J + ... e · 
~J .... ) J J (3. 1) 

where the pre-exp::mential factors comprise the reference or statisti-

cal distribution, and Tj and Aj are the two j' independent parameters 

of the theory. p(E~~) is the product translational density of states 

and is a function of the translational energy Ei~ relative to state j'. 

E., is the rotational energy, and we choose E., == 0 for j' = 0 so 
J J . 

that E~~ = E - E., - E0 where E0 is the v' = j' == 0 zero point energy. 
J J 

The 2j' + 1 in Eq. 3. 2 is the product rotational degeneracy factor. 

To see how well our 3D cross sections obey Eq. 3. 2, we have plotted 

. in Fig. 23 the cross sections Q0f _ Oj' divided by (2j' + 1) x p(Ei~) 

on a logartthmic scale as a function of Ji...:j, for several initial states j 
- tr tr -at 0.6 ev. (j)(E.,) :::::p(E.,)/p(,o) so that p(O) = 1.) If Eq. 3.2 

J J 
is satisfied, then the resulting curves should be linear with slopes 

inversely proportional to Tj(E). \Ve see in the figure that the low j'. 

calculated points do indeed form nearly straight lines for eac.h j, 

thus indicating that the temperature-like distribution is quite accurate 

for describing the reactive cross sections. The temperature parameters 

obtained from the straight lines which connect the low j' points are 

326, 326, 328, 318 and 376 K for j = 0, 1, 2, 3 and 4, respectively. 

The first four values are identical to the accuracy to which the 

points form a straight line. Actually, one can easily show by applying 

microscopic reversibility to Eq. 3. 2 that if the rotational distribution 

is temperature-like for all j then T/E) must be independent of j. 
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The above listed temperatures consequently should all he the same 

if the distributions are truly temperature-like. Only for j = 4 or 

j 1 == 4 are deviations from temperature-like behavior significant. If · 

we now perform a sirnilar analysis at several other energies we 

obtain Fig. 24 which depicts the j == 0 distributions bet\veen 0. 45 and 

0. 70 eV. Temperature-like behavior is evident to a comparable 

extent at all energies considered. The temperature parameters 

obtained from the slopes of the lines in Fig. 24 vary from 228 K to 

446 K as E varies from 0. 45 eV to 0. 70 eV in steps of roughly 40 K 

per 0. 05 eV increase in energy. 

In the coplanar study12b we pointed out. that the existence of 

temperature-like rotational distributions could be a reflection of the 

shape of the potential energy surface near the transition state and the 

significant restriction in banding motions which the potential induces 

there. Since the transition state bending motions correlate adiabatically 

with asymptotic free rotor motions one might expect that the average 

rotational energy of the products should be related to the average 

energy in bending. This relation does not seem to 11e quantitative, 

however, for the average product state rotational energy is roughly 

equal to the temperature parameter while the bending energy, as 

estimated in the previous section, seem-s to be somewhat higher 

(228 - 446 K for the former and 550 K for the latter). The model ex-

plains the similarity between the coplanar and three dimensional tem­

perature parameters (311 K for 2D12b versus 326 K for 3D, both at. 

0. 6 eV} only if we further assume that only one of the two degenerate 

3D bending modes becomes product rotational motion-. It therefore 
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appears that sorne refinement in the model 1.vill be necessary in order 

to quantitatively explain the temperature-like distributions observed 

in Figs. 23 and 24. 



~~L.Qor~nrisons V{_ith the Results of Other Three Dimensional 

Cale ulations 

In Figs. 25 and 26 we compare our integral cross sections 

(labelled SK) with the corresp:mding ones obtained by several other 

methods, all applied to H + H2 on the Porter-Karplus potential surface. 

In Fig. 25 we plot the quasi-classical total reactive cross sections 

of Karplus, Porter and Sharma
2 

(KPS) and the quantum mechanical 

results of Elkowitz and Wyatt9 (EW) while Fig. 26 contains the anti­

symmetrized Q ~ _ 01 of Tang and Karplus 4 (TK), Choi and Tang 7 (CT) 

and Wolken and Karplus6 (WK). It is apparent .that the best agreement 

in either figure is between our Q 0~ and QBl and the correspondlng 

quasi-classical quantities. Our converged quantum result and the 

quasi-classical cross sections are essentially identical between 

0. 6 and 0. 7 eV to within the statistical accuracy of the classical 

calculation. Agreement between Q~SK) and Q0~(KPS) is much less 

quantitative but still reasonable if one considers the small cross 

sections involved and the inherent statistical uncertai.nty in the 

classical result. Below the classical thresholds, we observe charac-

teristic tunnelling behavior in our quantum cross sections which will 

have an important effect in the comparison of classical and quantum 

thermal rate constants (see Section 3. 8). Agreement between our 

results and the corresponding ones of Elkowitz and Wyatt is rather 

poor considering that both calculations employed extended vibration 

rotation basis sets. Recently, EW have discovered some errors in 
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their calculations 44 which put the comparison in Fig. 2 5 into question. 

We would, however, like to point out that E\V simplified their calcula­

tion in three ways, 45 one or more of which could have an appreciable 

effect on the results: (a) they omitted certain Coriolis coupling terms 

from the kinetic energy part of the Hamiltonian; (b) the potential was 

fitted to analytic expressions so that vibration rotation coupling was 

omitted; and (c) only the v = 0, 1, 2 vibrational states were included 

in the close coupling expansion and convergence with respect to 

addition of vibrational states was apparently not tested. The Tang and 

Karplus distorted wave curve in Fig. 26 has a much higher effective 

threshold energy than ours and consequently much smaller cross 

sections at the same energy. Part of the difficulty could be the 

"linear" assumption used4 in evaluating the integrals for the transition 

amplitude. When this assumption was removed, as was done by Choi 

and Tang, the cross section increased significantly at the one energy 

they considered. We should also note that Choi and Tang 7b have also 

observed an m 'j dependence in their P J ~OO _ Olm!. reaction proba-
, J 

bilities quite similar to Fig. 4. It would be interesting to obtain 

distorted wave results such as those of CT at lower energies so that 

a more direct comparison with our results may be effected. The one 

vibrational basis function results of Wolken and Karplus have an 

effective threshold energy much lower than ours for the same transition. 

This is probably a consequence of the severely truncated basis set 

used (only vibrational quantum state v == 0 and the j = 0 - 3 rotational 

levels6). Convergence properties of severely truncated basis sets 

were examined in the coplanar H + H2 study, 12b and it was determined 
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there that errors of several orders of magnitude in cross sections 

were possible in some cases if both vibratlonal and rotational 

convergence was not achieved. 

The quasi-classical and quantum differential cross sections 

u 0~ (at somewhat different energies) are examined in Fig. 27. 

Both angular distributions are backward peaked with very similar 

shapes. A very interesting comparison between classical and 

quantum dynamics would involve an examination of the classical 

rotational polarization effect analogous to the quantum results in 

Fig. 11. Such a detailed comparison of cross sections between indi­

vidual quantum states (rather than summed over several as is the case 

in Figs. 25 and 27) would be highly desirable in establishing the 

general validity of the quasi-classical procedure. Fig. 28 provides 

a comparison of the WK, CT and SK a 66-o1 angular distributions 

at similar energies. \Ve find the distorted wave differential cross 

section of Choi and Tang to be very similar to ours while the Wolken 

and Karplus cross section differs rather substantially from either. 

Part of the error in th~ \VK result could be due to an ambiguity in the 

interpolation of amplitudes and phases of scattering matrix elements 

for those partial waves they did not explicitly calculate. (Only every 

third partial wave was done. 6) Indeed, we have found interpolation 

procedures to be extremely dangerous (especially for the phases) 

and for this reason, we have always computed scattering matrices at 

each partial wave required for convergence of the cross section~ 

Another comparison of angular distributions is indicated in Fig. 29 

where we examine the semi-classical a 0~ _ 01 of Doll, George and 
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Miller~ (DG:rvI) at a much lower energy than has been considered in the 

previous two figures. The agreemeDt. between the shapes of the 

quantum and semi-classical differential cross sections is excellent, 

but much less quantitative agreem·ent is seen i.n a comparison with 

the DGM re,tction probabilities as is seen in Fig. 30. In that figure, 

both methods of computing the semi--classical probability yield results 

which are factors of 5 to 10 larger th.an ours (although closer to ours 

than are the comparable results of "\:Volken and Karplus showff in 

the same figure. Presumably a "uniform11 type of expression for 

evaluating the semi-classical reaction probability is required to bring 

those results into agreement comparable to what was obtained in the 

same energy range with collinear H + H2 . 46 

We conclude this section with a comparison of our nonreactive 

integral and differential cross sections with those of Wolken, l\'1iller 

and Karplus. 22 The latter calculation considered the same potential 

surface1
c as did we but ignored the possibility of reactive collisi.ons. 

A comparison of the resulting integral cross sections Q ~ _ 02 is given 

in Fig. 31. The differ::nce between the two curves is essentially 

within the accuracy of the respective calculations except perhaps at 

· the highest energies considered. This is quite interesting, for \V.M:I{ 

used a one vibration basis function approximation (with, however, 

j = 6 22) in their calculation. This could i.ndicate that the absence 
max · 

of ~losed vibrational channels is of much less significance for non-

reactive collisions than it is for reactive ones.. Unfortunately, a 

comparison between the W}.11K differential cross sections a :0 _ 02 

and ours (Fig. 32) shows significant disagreement with the \VMK 



result highly oscillatory in contrast with our very smooth result. 

This disagreement is very suspicious, however, because the \VMK 

reaction probabilities and phase shifts are very similar to Figs. 8b 

and 18, respectively, implying that the input into the respective 

dffferential cross section calculations is very similar. We believe 

th2,t the smooth rather than oscillatory differential cross section 

behavior is more reasonable because (a) it is consistent 

with a direct mechanism being dominant in the collision process; 

(b) it agrees qualitatively \Vith our coplanar result at the same 

energy (also plotted in Fig. 32) which is obtained from an entirely 

different kind of cross section expression;12b and (c) it also qualita-

tively agrees with the corresponding nonreactive cross sections of 

Allison Bnd Dalgarno23 for the same system but a different interaGtion 

potential. Note that Fig. 32 also shows the absence of any for ward 

peak in the planar cross section. This is additional evidence for the 

conclusion of Section 3. 2 that the forward peak in the 3D result is 

probably spurious. 

3. 8 Rate Constants 

In this section we will examine the behavior of the para to 

ortho rate constant for H + H2. The ortho to para rate constant can 

be easily obtained from kp- 0 (T) by using the readily available 

·1·b . t t 47 equ1 1 rrnm cons an . 

\Ve first define the rate constant for the transition vjm. ~ 
J 

v'j'm 1 • (valid for R, Nor A transitions): 
J 
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kvjm. - v'j'm'. = (Qvjm. - v'j'm'. vvj> . 
J J J J (3. 2) 

= J Qvjm ...... v'j 'm'. (V v/V vj P(V vj) d
3

V vj 
J J 

where the velocities V . were introduced in Section 2 .1 and P(V .) 
~ ~ 

is the Boltzman distribution function. Upon explicit substitution of 

this function into Eq. 3. 2, we find 

kvjm. - v'j'm'. =NA 
8 1 

rrµ (kT)372 

00 

J Etr ( tr) 
o vj Qvjm. - v'j'm~. Evj 

J J ~ J J 

(3. 3) 

where µ. is the reduced mass corresponding to the motion of the atom 

with respect to the diatom and Evj is the translational energy relative 

to state vj (E~j = ~ µ Vvj
2
). NA is Avagadro's number so that k has 

3 
units of cm /(mole x sec). Expressions for degeneracy averaged rate 

constants kvj _ v'j, may be obtained by using the degeneracy averaged 

a . ,., in Eq. 3.3 rather than a ·m 'J"'m'. The para to ortho VJ - V J VJ ..... V . · J J . 
cross section is then obtained from the k 1:1- , . , via: . VJ - VJ 
· -E ./kT 

f{2j + 1) e VJ 
kp-o (T) = L 

vj 
Qp 

(j even) (j' odd) 

where 

-· -E ./kT 
Q = ~ f .(2j + 1} e VJ p lJ J 

vj 

{j even) 

(3. 4) 

(3. 5) 



and E . is the vibration rotation energy of state vj (E = E . + Eti~). VJ ' . VJ VJ 
The nuclear spin degeneracy factor f. has the value 1 for j even and 3 

J 
for j odd and thus is always unity for kp-o Evaluation of Eqs. 3. 3 

and 3. 4 may be accomplished by using the cross sections 

Q A ·which are defined in Section 2 .1. Some values of these vj - ol'tho 
integral cross sections are given il~ Table V.. By numerically evaluating 

Eq. 3. 3, we have calculated the para to ortho rate constants given in 

the first column of Table VIL Both linear and logarithmic interpolation 

were considered bebveen the energies at which cross sections were 

calculated and the results from the two methods agree to 20% or 

better. (The linear results are given in Table VII.) Only temperatures 

. below 600 K have been used in the calculation because of substantial 

errors which occur in truncating the i.ntegral in Eq. 3. 3 at 0. 7 eV 

total energy for temperatures above 600 K. 

The quantum para to ortho rate constant may also be obtained 

(approximately) from distinguishable atom cross sections. The total 

reactive rate constant kR(T) for distinguishable atom collisions is:2 
-E ./kT · 

f .(2j + 1) e· VJ R 
lcR(T) = 2 l Q l· kvj _ vrj'(T) (3. 6) 

where 

vj v'j' 

-E ./kT 
Q = ~ f. (2j + 1) e VJ 

. J . 
VJ 

(3. 7) 

The factor of 2 at the beginning of Eq. 3. 6 arises from an explicitly 

performed sum over the hvo equivalent product arrangement channels. 

Now in the limit that a large number of quantum states contribute to 
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the sums in Eqs. 3. 4 and 3. 6, \Ve may assume that a sum of rate 

constants over just odd product states (or just even states) is approxi-

mately half the sum over all possible states, i.e., 

v k R (T) ,..., .!. \' k R (T) 
l. vj-.. v'j' 2 L. vj- v'j' 
v'j' v'j' 

(j' odd) 

or 
(j' even) 

In addition, for high enough temperatures, 

So that 

· -E ./kT 
Q

0 
= L f/2j + 1) e VJ 

vj 

(j odd) 

-E ./kT 
,.., 3 Lfj(2j + l)e VJ 

vj 

(j even) 

- "J Q - v ·n 
1~ 

Q=Q +Q "'4Qp 
0 p. . 

(3. 8) 

(3. 9) 

(3 .10) 

By realizing that k 
0 

_ p is given by an expression analogoi.1s to Eqs. 3. 4 

and 3. 5 but with the even and odd sums interchanged, and by combining 

the expressions for k
0

_P and kp-o' using Eqs. 3.8 - 3.10 to 

simplify and using the relations between antisymmetrized and dis-

tinguishable reactive rate constants implicit in the discussion 

following Eq. 2. 8, we find 

kR(T) rv k (T) + k (T) 
p-o o-p 

. 1 
""' kp-o (T) (1 + ~) 

eq 

(3.11) 



where K is the equilibrium constant. To the same order of eq 

approximation, Eq. 3. 9 implies that Keq,..., 3 so E:q. 3.11 yields 

(3. 12) 

This implies that by computing kR(T) and using Eqs. 2.11 and 3.12, 

we can approximately compute k p-o (T). In _the second column of 

Table VII we list these k dist obtained from the cli~tinguishable atom p·-o 
cross sections. Equation 3. 11 rather than 3 .12 was found to give 

. dist < 0 slightly better agreement bet\veen kp ..... 
0 

and kp _ 0 for T 30 K 

and was therefore used in calculating kp~s; in the table. We see that 

for T > 300 K. k dist (T) and l< (T) are identical to at least 2 ' p-o p-o 

significant figures indicating that the approximation is quite accurate 

even at fairly low temperatures. Our primary reason for developing 

this distinguishable atom method for calculating k p-
0 

is for the 

purpose of comparing our results with the quasi-classical rate 

constants of Karplus, Porter and Sharma. 2 If we use Eq. 3.11 to 

convert their calculated kR(KPS) to k p-
0 

(KPS) we obtain _the results 

in the third column of Table VII. In the fourth column we have listed 

the analogous transition state theory result kp-
0 

(TST) [which is 

obtained from the formula given in Ref. 2). Arrhenius plots of these 

quantum, quasi-classical and transition state theory rate constants 

are presented in Fig. 33. At 600 K;, the quasi-classical kp _ 
0 

(KPS) 

differs from kp-
0 

by only 7% while the TST result is in error by 79%. 

The close agreement of the quasi-classical and quantum results is 

an obvious consequence of the excellent agreement of the corresponding 

integral cross sections (above the classical thresholds) in Fig. 25 
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coupled with the excellent validity of Eqs. 3.11 and 3.12. Presumably, 

the quantum and quasi-classical rate constants will continue to be in 

very good agreement at temperatures above 600 K. At lower tempera­

tures, however, tunnelling effects become extremely important wi.th 

kp .... o (SK) a factor of 3. 3 larger than kp_
0

(KPS) at 300 Kand 18 times 

larger at 200 K. The significant n~nlinearity in the quantum curve in 

Fig. 31 is also apparently related to tunnelling, although we should 

note that previous studies on collinear H + H2 have shown 48 that 

tunnelling can make significant contributions to the rate constant even 

at 1000 K where the Arrhenius plot is quite linear. The transition 

state theory rate constant deviates from kp-o (SK) even more 

. severely than kp _ 
0 

(KPS), \vith kp -o (SK) /kp ...... 
0 

(TST) being 20 at 

300 Kand 427 at 200 K. Part of the error in the TST result is 

probably due to the neglect of tunnelling corrections in the expression 

used2 (i.e., a transmission coefficient of unity has been assumed). 

For the SSMK surface
12

, Shavitt16 has estimated one dimensional 

transmission coefficients of 1. 769 at 600 K, 6. 482 at 300 .Kand 

44. 867 at 200 K thus indicating the possibility of substantial improve­

ment upon inclusion of these factors. On the other hand, the ratio 

k (KPS)/k (TST) deviates substantially from unity in Table VII p-o p-o 

despite the fact that tunnelling has been omitted from both calculations. 

B
1

ecause of the strongly nonlinear behavior of kp _
0 

(SK) in Fig. 33, 

the attempt to characterize that rate constant by a single activation 

energy is probably not too meaningful. If one does, however, compute 

such a quantity by arbitrarily fitting a straight line between the 500 K 

and 600 K pointss one finds activation energies of 6. 3, 7. 5 and 8. 8 
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kcal/mole for kp ...... 0 (SK), kp ..... 
0 

(KPS) and. kp- 0 (TST), respectively. 

The quantum activation energy is L 1 kcal/mole (O. 048 e'V) above the 

corresponding coplanar one (5. 2 kcal/mole)12b and this difference is 

almost identical to the 0, 05 eV 2D to 3D shift observed in Figs. 20 

and 21 for the reaction probability curves. 

Si.nee the Porter-Karplus potential surface we used has an 

incorrect barrier height (0. 396 ev1c versus 0. 425 eV for the more 

accurate Liu surface18), a comparison with experimental results 

of thermal rate constant measurements will be deferred until a more 

extensive series of results similar to those of Appendix B for the 

Liu surface are completed. 

4. SUMMARY 

Let us now summarize the significant concepts developed in 

this paper. First2 in the analysis of the reactive transition probabilities 

and cross sections we found a fairly accurate rotational projection 

quantum number selection rule (mj ::::: m fj = 0). Although one can find 

many factors which a1 ... e at least partially respon.sible for thi.s effect, 

the primary reason for this specificity and selectivity is the restriction 

to nearly linear geometries in the transition state as is determined by 

the potential energy surface. No cornp:uable select.ion effect was 

found for the nonreactive collisions (compare> for example, Figs. 12 

and 15). At higher energies, quantum symmetry interference oscilla·-' 

tions were observed in the j = 0 to r ::::: 2 para to para differential cross 

sections. Such oscillations might be capable o[ interpretation in t:enns 

of parameters ·which characterize the potential energy surface 
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as has been done for the related atom-diatom and molecule-n10lecule 

elastic sc2Jtcring situations. 49 The elastic cross sections revealed 

a lack of sensitivity of the 0 < 30 ° angular distributions to the loss 

of flux into inelastic and reactive channels, and demonstrated the 

approximate validity of Levine 1s 40 conservation of total cross section 

rule. A comparison af the results of lD, 2p and 3D calculations 

revealed the impCJrtance of bending motions in the transition state and 

demonstrated their connection with threshold energies. In addition, 

the orientation dependence of the reaction probabilities was analyzed 

and found to be compatible \Vith the observed maximum values of the 

total reaction probabilities. The results of lD, 2D and 3D comparisons 

afforded in this paper should be of great use in the improvement of 

1D and 2D models so that they can be used to make quantitative 

predictions about 3D results. The degeneracy averaged rotational 

distributions were found to obey 8oltzman-Iike expressions with a 

surprising degree of accuracy. A precise understanding of why this 

occurs remains unknown at present but an analysis of the _scattering 

wave function at the transition state in terms of vibrationally and 

rotationally adiabatic wave functions may help to clarify the relation 

of bending energy to product state rotational e1iergy and hence to the 

temperature parameter. A comparison of our integral and differential 

cross sections with those of several other approximate calculations 

indicates best agreement with the quasi-classical results. The lack of 

tunnelling in the classical cross sections produces important differences 

in the para to ortho thermal rate constant at temperatures well below 

600 K but good agreement at 600 K. 
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The 1vealth of dynamical information presented here makes 

clear the great usefulness of these calculations. At the same time, 

the htrge expenditure of computer time indicated in Table II implies 

that analogous calculations will be- done for only a limited number of 

additional systems for which a very detailed understanding of the 

important dynamical processes involved is highly desirable. This 

places prime emphasis on the development of accurate but efficient 

approximate techniques,and the comparisons between accurate and 

approximate theories given in Sections 3. 5, 3. 7 and Appendix A 

indicate that such techniques may be pos·sible. 
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APPENDIX A: ANGULAR M0.1\.1ENTUM DECOUPLING APPROXIMA-
.,......~~~"'"""""~·,....,,...."""'W...,.,.,..~"'-'""'~""'~~~~ 

TIO NS: APPLICATION TO 3D H + H . 

In Ref. 29 (Section 2. 3) we described the .use of angular momen­

tum decoupling (tumbling decoupling) approximations for reactive 

scattering. In this Appendix, we present the results of an application 
. . 

of one very simple variation of these procedures to 3D H + H2 using 

the Porter-Karplus1c potential surface. 

The particular decoupling approximation we used can be applied 

in two steps. The first involves the neglect of all terms in the A 

arrangement channel Hamiltonian which are off diagonal in n A. In order 

to elaborate upon this, we write the rotationally coupled Schrodinger 

equation (Eq: 2. 19 of Ref. 2 9) as fallows: 

where 

(A.2) 

(A.3) 
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.i\QA -~ 
v

3. 
j '(r1,.,R1) = (jA.QA. Iv (rA.,Rlt,yA) ljA.'n"-) 

A..i\ 

The functions '.VJ"-. Q arise from the expansion of the full wave 
JA. A 

(A.4) 

function '1'" JM in terms of the .i\ arrangement channel angular functions: 

w JM(!A, Ilx) == L D~.i\<ct>x_, e>.., l/J>.) x}n>t (rx, R.i\, Y>) 
nl\ (A. 5) 

= L: o4n (c/>A, BA,O)Yj n (yA,tj;A)WJ~ n (rA,R.i\) 
j.i\ Q.i\ .i\ .i\ A. .i\ A 

From Eq. A.1, we see that the only terms in the Hamiltonian which 
Jl\j . 

are off diagonal in nA. are the t 0 ~ ±l which come from the orbital 
>.. ;\ 

2 2 .i\Q.i\ 
angular momentum term 1, /2µ.R, . The potential energy V. ·

3
: , is 

~A A ~A 

diagonal ih nA. and hence is treated exactly in the appro~hnation. 
JAJ 

The last term in the diagonal kinetic energy operator t 0 ~ of Eq. 
A A. 

A. 2 is not approximated in our method as has often been done in 

analogous nonreactive scattering calculations. 50 Rather, this term 

is treated exactly, necessitating the use of noninteger-order spherical 

Bessel functions in determining the asymptotic reac::ance and scattering 

matrix solutionso With the neglect of the last two terms in Eq. A.1, the 

integration of the Schrodinger equation in each arrangement channel 

region X may be done separately for each QI\.. No additional approxima­

tions in any formulas pertaining to the integration are required. As 

with the fully coupled problem, the homonuclear symmetry of the H2 

target allows us to decouple even and odd rotational states. Parity 

decoupling does not apply, but the reactance and. scattering matrices 

generated are invariant to the sign of QA.' so o_nly QX 2: 0 needs to be 
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considered in the calculation. 

The second step of the approximation refers to the matching 

procedure of Ref. 29. In this procedure, the wave function x}'Q 
I. 

(Eq.A. 5) expressed in A. arrangement channel coordinates, is related 

to 1.f; ~n (in v coordinates) via (Eq. 4. 20 of Ref. 29) 
v 

x:;n == L ctr/ n (t.\z,71.) xfn / (A. 6) 
.A S1 v ;\ v 

v 
where t.\vA. is the angle ?ehveen RA. and Rv. In the fully coupled pro-

cedure, we evaluate Eq. A. 6 on a surface TT VA which separates 

arrangement channel regions v and A.. Analogous equations relating 

the v and K regions, and the Kand A regions are required to complete 

the matching. In the second step of our decoupling approximafion, we 

renlace ct!,... in Ea.---A. 6 by o ..... ,..... thereby neglecting all n,_ and n .. 
- """vll"A. ""z:/''"'A., " v 

mixing that arises from the transformation between the A. and v 

arrangement channel coordinate systems. Analogous approximations 

are made in the VK and KA. matching equations, thereby forcing the 

entire scattering matrix to be diagonal in the tumbling quantum numbers 

S\. (A. = a, {3 , y), and antidiagonal in the projection quantun1 numbers 

ml. (i.e., m '. = - m
3
. ; see Section 5. 2 of ReL 29). We should make 

A. JA A. 
two additional remarks about the procedure: 

(1) Because of our separation of the method into integration 

- and matching steps, the approximate Hamiltonian is not everywhere 

invariant to a change in arrangement channel c.oordinates (say, from A. 

to v) as the full one is. The A. and v arrangement channel Hamiltonians 
- -

are, however, identical at the 1f VA matching surface _(although possibly 

not smooth), so no artifacts arising from a discontinuous change in the 
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Hamiltonian should occur. Nevertheless, this is a major disadvantage 

of the met.hod, since it leads to a dependenc~ of the results on the 

position and shape of the matching surfaces. In all likelihood, in those 

situations where changing the matching surfaces has a significant 

effect on the results, it will also be true that nx mixing will be signi­

ficant and hence the neglect of this mixing will be a poor approxima­

tion anyways. 51 This difficulty can be eliminated by describing the 

problem with the aid of a floating z.A axis such as Wyatt and coworkers 

have done 45 (in which case the matching is automatically diagonal in 

the local tumbling quantum number n). 

(2) The second step in the decoupling procedure, in which the 

matching is uncoupled actually is unnecessary, for the exact matching 

proce~ure <?_f Ref. 2~_ !Uay b~ used withm1t _a signif!_<!ant in~rea~e in 

computation time. One simply uses the decoupled primitive wave 

functions (including all possible rl.x) in the matching equations derived 

in Ref. 29 without any modification at all. Such a method will correctly 

include for the QA mixing which occurs in the tra_nsforrnation between 

arrangement channels and will therefore provide ap;_Jroximate scattering 

matrix elements which are off diagonal in n.A (A. == a, {3, y). The 

dependence on choice of matching surface ((1) above) is still present, 

but should be much less significant in this case. We shall see i.n the 

results below that the complete neglect of QA. coupling is only a 

moderately good approximation, but that its partial inclusion through 

a procedure similar to that described here may improve the results 

substantially¢ 
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We now consider an application ·Of this tumbling decoupling 

approximation. The savings in time depends on J, but for J =::: 4, 

the decoupled calculations seem to be factors of 10 to 20 faster than 

the fully coupled ones (for equivalent sets of quantum numbers). 

Additional savings may be gained by designing the program code more 

specifically for decoupled calculations (as was not done here). 

The resultfng reaction probabilities P }~ 000 _ 010 are plotted 

in Fig. 34 for E = 0. 50, O. 60 and 0. 70 eV. For comparison, the 

converged probabilities are also plotted on the sa'rne graph. For 

J == 0, no !ix coupling exists (only ~ = 0 is allowed), so the angular 

momentum decoupling method becomes exact. As J increases from 

zero, Fig. 34 indicates that the decoupled and converged probabilities 

separate somewhat, but they both decay to zero with similar J 

dependence. This contrasts with the J dependence of the decoupled 

and converged inelastic nonreactive probabilities P J~ 000 _ 020 , which 

bear little resemblance to each other for J > 0. 52 To examine the 

mj dependence of the dec~upled results, we plot in Fig. 35 the proba­

bilities P J~ Ol-m. -O£.m. as a function of J at E ~ 0. 60 eV. The mj = O 
J J 

results look quite similar to those in Fig. 34 at the same energy. 

The mj = ± 1 comparison indicates that both decoupled and converged 

probabilities are of the same order of magnitude and have good 

average agreement, but that the details of the J dependenc;e are actually 

quite different. This conclusion is, in fact, quite generally true con­

cerning probabilities for mj ;:::; 0. Note that the examination of J and 

mj dependence focuses upon different parts of the Hamiltonian in 

Eq. A.1 (with the last two terms· omitted). 'rhe J dependence occurs 
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J,\jA 
only in the last term of tnA. nA. (Eq. A~ 2) while the mj or n_A. dependence 

arises in both that term, and in the potential (Eq. A. 4) .. Since the 

probabilities change much more rapidly with m. than with J (Fig. 35), 
i\~ J. 

it is apparent that the nA dependence of v. 
1
., must be crucial to the 

JJI. i\ 
m. dependence of these probabilities, for the J and nA dependent 

J JA.j . 
contributions to tn ~ are quite si.milar and could not be responsible 

~~i\ i\ . 

for such diverse behavior in the probabilities. 

The decoupled and converged para to ortho differential cross 

sections a0i0 _ 010 are presented in Fig. 36 for the same transition 

and energies as were considered in Fig. 34. Here we find that the 

converged angular distributions are somewhat more strongly backward 

peaked than are the decoupled ones with the differences between the 

two being more pronounced at 0. 70 eV than at O. 50 eV. When the 

ucft"-m. _02m. are examined in Fig. 37, we find that the mj = 0 
J J 

decoupled and converged results are quite similar to the corresponding 

u0i0 _ 010 of Fig. 36 while the mj = ± 1 cross sections are in sur­

prisingly quantitative and qualitative agreement over much of the 

angular range. Note that those cross sections having m 'j = -mj ,c 0 

·are required to vanish at eR = 180 ° (from the discussion of Section 3. 2). 

The integral cross sections ~1o _010 are plotted in Fig. 38. 

The curves in the lower part of that figure indicate that both decoupled 

and converged cross sections have. essentially the same energy depen­

dence, but that the decoupled result is larger than the converged cross 

section by a slowly varying multiplicative factor which has the values 

1. 74, 1. 38, L26, 1. 38 and 1. 61 at 0. 3, 0. 4, O. 5, 0. 6 and Ot 7 eV, 

respectively. Thus it appears that the neglect of QA coupling makes the 
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system somewhat more reactive than its fully coupled counterpart, 

but that the error arising from this omission is not strongly energy 

dependent. In Table VIII, we give the cross section matrix QOjm. -Oj'm,. 
. J ] 

analogous to Table VI, for the decoupled results at 0. 6 eV. A compari-

son of Tables VI and VIII indicates that the decoupled mj = m 'j = 0 cross 

sections are always larger than the converged ones (by factors of 

30% to 65%), while the decoupled mj = -mj r=O results are always 

smaller than the converged ones (by factors of 3 or less). In order 

for us to be able to neglect those cross sections in Table VI which are 

off diagonal in n;v we would generally require that the mj = -mj elements 

in that table be much larger than all others. Unfortunately, this is 

accurately satisfied only for them. = -m'. = 0 elements. Therefore, we J J . 

really should expect that the approximation should be accurate only for 

Q0~ -Oj ,0 and not for other transitions. The fact that better than an 

order of magnitude agreement can be obtained for mj = -mj ;:.: 0 is 

quite surprising. An additional question of interest is whether or not 

by simply including the full matching procedure outlined in (2) above 

(rather than the decou~Jled matching that we used), we can improve the 

accuracy of the decoupled cross sections. We think this could in fact 

be possible, for the matching seems to be more important in mixing 

different QA rs than is the integration. 53 

To summarize the results of this Appendix, we have found that 

tumbling decoupling procedures are capable of producing reductions 

in computation time by factors of 10 to 20 (perhaps more) while still 

predicting reasonably accurate reaction probabilities and cross sections. 

The procedure used here is at best a crude approximation and it is 
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possible that more accurate results may be possible by using more 

sophisticated decoupling approximations. Finally, we note that 

because the potential coupling is treated exactly, these kinematic 

decoupling procedures are not subject to the gross inaccuracies (at 

least at the energies considered) which occur with the one vibrational 

basis function approximation. 12 As long as potential coupling dominates 

over angular momentum coupling, the procedure developed here should 

give reasonably accurate physically meaningful results. 
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APPENDIX B. 3D RESULTS FOR A PARAMETRIZED FIT TO THE 

AB UJ.ITIO LIU SURFACE 

In this Appendix, we present the results of an application 

of our 3D reactive scattering procedure using the H + H2 ab initio 

f f L . 1f 54 t . d. w b . b d .b. sur ace o m ' as parame rize oy us. e egm y escr1 mg 

this surface. 

In an important recent paperlf, Liu has presented the resuits 

of a very extensive CI calculation on the collinear H3 system. Liu's 

calculated surface is believed to lie no more than 0. 035 eV and no less 

than 0. 009 eV above the exact surface and should therefore have the 

necessary "chemical accuracy" required for accurate reactive cross 

. section calculations. His collinear barrier height of 0. 425 eV 

(9. 8 kcal/mole) has often been assumed to be the t'true" barrier 

height in H3
16, and Liu gives upper and lower bounds to it of 0.446 eV 

and 0. 412 eV which indicate that the 0. 425 eV result cannot be seriously 

in error. Liu's calculations have recently been extended to nonlinear 

geometries54, and the es~imated error in the results seems to be only 

slightly larger (0. 01 e:V) than that stated for the linear calculations. 54 

In order for us to use this surface in our calculations, we need an 

analytical representation of it of the form V(r 1, r 2 , r 3) where r 1 , r 
2 

and r 3 are the 3 internuclear distances. Although Lester and Yates55 

have fitted Liu 's linear results to a "Porter-Karplus-like." parametrized 

function, a comparison of their surface with Liu 's nonlinear points 

indicates that it is not particularly accurate away from collinear geo­

metries. For this reason we decided to try to incorporate Liu's data 

as accurately as possible in our own fitted surface. Since Liu's 
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nonlinear calculations were done for varying r 1 , r 2 at a fixed value of 

the exterior angle e (r~ = ri + r~ + 2r 1r 2 cos 8), a convenient fitting . 

procedure for us involves (a) separate least squares fits at each () 

involved,coupled with (b) an analytical interpolation between different 

e for each r 1, r 2. This interpolation may be accomplished by writing 

the potential in terms of a series of Legendre polynomials: 

V(r1,r2,r3)= V(r1 ,r2' 9) = V0(rl'r2)P0(cos 8) + v1(r1,r2)P1(cos e) 

(B.1) 
+ V2(rpr2)P2(cos 8) + v3(r1,r2)P3(cos e) + ••• 

where both even and odd Pk(cos e) must be used because V is not 

symmetric about e = 90°. We solve for the coefficients Vk(rl'r2) 

by requiring Eq. B.1 to be exact for each r 1, r 2 at the values of e 

considered, thereby forming a set of algebraic equations for the 

coefficients. Since Liu considered e = 0 ° 1 30 °, 60 °, and 90 ° in his 

calculations, we can solve for the first fou~ V k (k = 0 - 3) as follows: 
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After using Eq. B.2 to solve for the Vk(r1,r2) (k = 0 - 3), we then 

substitute these into Eq. B. 3 to interpolate for V(rpr2, 8) at any e. 
Such a procedure is not necessarily particularly accurate, but similar 

interpolation procedures on related H + H2 potential functions have 

been quite accurate12b and we shall assume that this is also true here. 

Now we consider the fitting of V(rl'r2 , 8) for fixed values of 

e and variable rl' r 2• This problem has been examined previously 

by Shavitt et al. ld and by Liulf. For most r 1 , r2' we shall use Liu's 

analytical fitting function, which has the form (for H + H2) 

+ exp[-y(8)(r1 + r 2)] 

n [k/2) 

x Li i 
k=O j=O 

(B. 3) 

where all energies are in Hartrees and all distances in bohr. V H (r} 
2 

is the H2 diatomic potential, which is expanded in the form 

n 
V H (r' = ·-1 + exp (-ar) L: 

2 : i=O 

i . 
a.r 

l 
(B. 4) 

The coefficients a and a. (i = 0 - 8) have been tabulated by Liu 1f. 
l 

For linear geometries, Liu has fitted Eq. B. 3 to his 137 calculated 

points through a nonlinear least squares fitting procedure~ Using 

n = 14 in Eq. B. 3, he was able to fit all calculated points to better 

than 0.002 eV. The required coefficients c .. and y (e = 0) are tabulated 
. lJ 

in Ref. 1f and will not be repeated here. In fitting the (} = 30 °, 60 ° 

and 90 ° surfaces
56, we used Eq: B. 4 with n = 8. The resulting 
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coefficients C .. are given in Table IX and the y ( 0) are listed in the lJ . 
first column of Table X. The accuracy of all three nonlinear surfaces 

is comparable, with maximum deviations between the ab initio 

points and fitted points less than ·o. 03 eV everywhere, and 0. 01 eV 

or less for points near the saddle point. A more accurate fit was not 

attempted because: (a) an· insufficient number of ab initio points were 

available ( 40 for 8 = 30°, 50 for 60 °, and 32 for 90 °) to increase n 

in Eq. B. 3 significantly, (b) the existing fit was within the accuracy 

of the ab initio .surface (see also Ref. 56), and (c) the interpolation 

procedure of Eq. B.1 was known to be a larger source of error than 

any errors in these least squares fits (see below). For r 1 (or r 2) 

outside the range considered in the ab initio calculation, the analytical 

formula (Eq. B. 3) gave very inaccurate results. To correct this, the 

large r 1 surfaces were replaced by the following: 

(1) for (} = 0° and r >rlmax(e = 0°); 

V(r1,r2 , e=0°)= V~(r2) + (V(rlmax(0°),r2' B =0°) 

-VH2 (r2))exp(-A. (Oo}(rl - rlmax(Oc))) 

(2) fore= 30°, 60°, 90° and r > rlmax(O), 

(B. 5a) 

(B. 5b) 
-V(rp r 2 , e =0 °) )exp (-i\( e)(r l - rl~ax( 8))) 

where rlmax(e) and A.(8) are parameters. For large r 2 , Eqs. B. 5 

are used with r 1 and r 2 interchanged. In the above formulas, 

V(rlmax( B), r 21 8) is to be evaluated from the least squares expression 
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(Eq. B. 3) so as to make the potential continuous everywhere. The 

functional forms in Eqs. B. 5 have been chosen because they characterize 

the potential quite well for r 1 near to but less than rlmax and hence 

are smooth extrapolations of it for r > rlmax· In addition, Eqs. B. 5 

form excellent fits to the Porter-Karplus surface1c for large r 1. 

The parameters r lmax< 8) and A.( 8) for 8 = 0 °, 30 °, 60 ° and 90 ° are 

listed in Table X. 57 From our discussion of Section 3. 4 it should be 

apparent that the large r 1 behavior of Eqs. B. 5 is still not physically 

correct. This is an important defect of our fitted surface, but, as 

has previously been demonstrated by Wolken, Miller and Karplus22 , 

it should not strongly effect the reactive and inelastic cross sections. 

Probably the major error in our fitted 3D surface arises 

from the an_gular interpol_~tion p_rocedure. Some indication of this 

can be gained by examining the e = 120 ° potential. From Liu' s 

calculations54, this potential should have a saddle point energy of 

2. 75 eV near r 1 = r 2 = 2. 0 bohr. Unfortunately, the fitted surface 

predicts a saddle point of 2. 29 eV occurring at the same r 1 = r 2 . 

Although this high energy region is not sampled at '.he collision energies 

to be considered below, and the configurations considered are a rather 

extreme test of Eq. B.2, this example does indicate that the interpo­

lation procedure suffers from important inaccuracies. Fortunately, 

the most important e = 0 configuration is treated essentially exactly 

by our procedure so that the saddle point parameters as well as 

other properties of the potential surface except the bending energy 

are identical to those previously given by Liu. 1f In Liu' s more recent 

results~ he determined the bending force con~tant A~fa to have the 
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54 value 0. 021 a. u. . The fitted surface has a saddle point bending 

force constant of 0. 024 a. u. which is a significant improvement 

over the Lester Yates55 value of 0. 030 a. u. For the remainder of 

this Appendix, we will refer to our fitted surface as simply the Liu 

surface. 

We now consider the results of a calculation using this surface. 

The details of the procedure used are identical to those described for 

the Porter-Karplus surface in Section 2 above, with one exception. 

We found that truncation of the expansion of the potential in a series 

of Legendre polynomials Pk( cos y) (Eq. 2 .14) at 3 terms did not 

produce adequate convergence of the results, but 4 terms did, so 4 

terms were included in all calculations. As an example of this, 

at 0.60 eV, the reaction probability PJ~OO-OlO (J = 0) has the value 

0. 00524 with 3 terms, 0. 00803 with 4 and 0. 00797 with ·5. At 0. 55 eV, 

PJ~ 010 _ 010(J = 0) = 0. 819 x 10-
3 

with 3 terms, 0. 00121 with 4 and 

0.00119 with 5. These results are typical of the convergence behavior 

obtained. Other convergence criteria such as flux conservation, 

microscopic reversibility, and convergence with re ;pect to addition 

of closed rotational or vibrational channels is comparable to that 

obtained with the Porter-Karplus (PK) results in Section 2. 2. 

The resulting total reaction probability P0~ (J = 0) is plotted 

in Figs. 39 and 40. For comparison, we also have plotted the 

corresponding Porter-Karplus probability. The figure indicates that 

the Liu surface results above 0. 45 eV are shifted upwards in energy 

by about 0. 05 eV from the Porter-Karplus ones. If we recall that the 

barrier heights of the Liu and Porter-Karplus surfaces are 0. 425 eV 
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and 0. 396 eV respectively, then we. see that the shift in energy between 

the two curves is more than the shift in barrier heights. This difference 

is probably due to the difference in shapes of the barriers since the 

Liu barrier is broader than the PK one (i.e. , the Liu value of A33 , the 

asymmetric force constant, is -0. 058 a. u., while the PK value is 

-0.124 a. u.). This difference in shape is also probably responsible 

for the slightly different energy dependence of the two curves in 

Fig. 39. At low energies, the Liu probability actually becomes 

larger than the PK one. This is very likely a manifestation of the 

longer range exponential tail of the PK surface over the Liu one. 1f At 

the higher energies in the figures, the Liu probability levels off at 

a somewhat lower value (0.35) than does the PK result (0.44) .. 

According to our earlier arguments (Section 3. 5), this implie? that 

the range of orientations which lead to reaction with a significant 

probability is more restricted for the Liu surface than for the PK 

surface. The dependence of the reaction probability on J is examined 

in Figs. 41 for the transition PJ~o-oi · Both the Liu and the Porter­

Karplus probabilities have similar values of JMAX (defined in 

Section 3. 1) but the Liu result is more highly peaked at low J. This 

result if typical for the E > 0. 50 eV probabilities. For E < 0. 50 eV, 

the Liu and PK probabilities have very similar J dependence, even 

at low J. 

The Liu and Porter-Karplus differential cross sections 

a0~_01 atE=0.4, 0.5 and 0.6 eVare plotted in Figs. 42, 43, and 

44. All cross sections are strongly backward ·peaked with ~omparable 

half \Vidths. The Liu cross sections at 0. 50 eV and ·O. 60 eV are 
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slightly more highly peaked in the backward direction than are the 

PK ones, but the reverse behavior is found at E = 0. 40 eV. The Liu 

differential cross sections for different projection quantum numbers 

show polarization behavior essentially identical to the Porter-Karplus 

cross sections (as, for example, in Fig. 11). 

Table XI summarizes a number of important reactive integral 

cross sections for the Liu surface. Most cross sections have an 

energy dependence similar to Q0~y which is plotted in Fig. 45. 

The comparison between the Liu and PK cross sections in that figure 

is very much analogous to the probability comparison in Figs. 39 

and 40. When the cross sections Q0~0 _ Oj 'm,. are examined for 
. J 

different j' and m 'j, we find that the ratio of m 'j = 0 to mt j = 1 cross 

sections has the value 24. 2 for j' = 1, 7. 4 for j' == 2) 3. 0 for j' = 3 

and 2.0 for j' = 4 all at 0.60 eV. These numbers are quite close to 

the analogous Porter-Karplus ones given in Section 3. 3. The values 

of the r = 1 ratio at 0.4, 0. 5 and 0.6 ev are 14. 5, 18~9 and 24.2, 

which implies a somewhat different energy dependence thaµ for the 

PK cross sections. An a!'lalysis of the rotational distributions of the 

degeneracy averaged cross sections is presented in Fig. 46 for 

E = 0. 60 e V. Here, we find highly linear plots indicating good agreement 

with the predictions of a temperature-like distribution. The temperature 

parameters obtained from the slopes of the straight lines in Fig. 46 

are 412, 415, 412, 420 and 423 K for j == O, 1, 2, 3, 4 respectively. 

As we showed in Section 3. 6, microscopic reversibility forces all these 

numbers to be the same for truly temperature-like distributions, so 

the differences between the above numbers are indicative of the deviations 
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from temperature-like behavior. The ~emperature parameters for 

the j = 0 distributions are 187, 301, 412 ahd 537 Kat 0. 4, 0. 5, 0. 6 

and 0.7 eV, respectively. There is roughly a 55 K increase in T(E) 

for each 0. 05 eV increase in the total energy. This rate of increase 

of T(E) with E is somewhat larger than it is for the Porter-Karplus 

surface (Section 3. 6). Since the Liu and PK temperatures coincide 

near E = O" 4 eV, we see that for energies above this, the Liu rota­

tional distribution is broader than the Porter-Karplus one. Note that 

the transition state bending force constant of the fitted surface is 

basically identical to that1c of the Porter-Karplus surface so that the 

corresponding bending zero point energies should be the same. 

If the final state rotational energies were just a function of the transi­

tion state bending energies~ then we would predict that the Liu and PK 

temperature parameters should be the same. The fact that they are 

somewhat different is an indication that our model is overly simplistic . 

. Let us summarize the differences and similarities between the 

Liu and Porter-Karplus results. First, the reaction probabilities and 

integral reaction cross sections for the Liu surface have their effective 

thresholds shifted upwards in energy from the PK results by about 

0.05 eV. At very low energies, the Liu cross sections are larger 

than the PK ones, apparently a result of the longer exponential tail 

of the PK surface~ Details of the nature of the potential surface in 

the transition state region are apparently responsible for such subtle 

differences in the Liu - PK comparison as broader Liu rotational 

distributions and the narrower Liu angular distributions. (above O. 4 e V). 

The general features of the Liu and PK reactive cross sections are 



521 

basically the same, and even such det3:iled quantities as the degree 

of rotational angular momentum polarization is quantitatively unchanged 

in going from one surface to the other. Still remaining to be completed 

for this surface is a detailed comparison of the thermal rate constants, 

which we shall leave to a future publication. 
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TABLE III. Nonreactive and reactive transition probabilities for 

E = 0. 65 eV. 

Transition Reactive or 

{vj -+ v'j') N onreac ti ve 

{A) J = 1, m. =m'. ::: 0 
J J 

00-+ 02 

01 - 03 

00-+ 00 

00-+ 01 

01- 01 

(B) J = u, m. = m:j 

oo- 02 

01- 03 

00 - 00 

00-+ 01 

01-01 

* Basis Sets: 

N 

N 

R 

R 

R 

= i) 

N 

N 

R 

R 

R 

Basis Set 

a {N = 56) b {N = 72) 

0.531 0. 527 

0.193 0.186 

0.0404 0.0408 

0.0740 0.0741 

0.134 0.135 

d {N = 32) e (N = 40) 

0.517 0.512 

0.223 0.216 

0.0432 0.0434 

0.0780 0.0802 

0.145 0.150 

a. 4 vibrations, 14 rotations/vibration (j max = 5). 

b. 4 vibrations, 18 rotations/vibration (j max = 6). 

c. 4 vibrations, 18 rotations for v = 0,1; 14 for v = 3,4. 

d. 4 vibrations, 8 rotations/vibration (j max = 7). 

e. 5 vibrations, 8 rotations/vibration U.max = 7). 

c (N = 64) 

,-' 

0. 531 

0.186 

0.0402 

0.0739 

0.134 
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TABLE III. (Cont.) 

* · In each basis set, all values of the projection quantum numbers 

compatible with angular niomentum restrictions and with matching 

restrictions were included (see ·section 2.1 and Ref. 29). 
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TABLE VII. Para to ortho thermal rate constants for H + H2 a 

------
T(K) kp'. ... 0 (SK) dist ( ) kp _ 0 SK k . (KPS)b p-o k <TST)b p-o· 

100 0. 270(4) 0.341(4) o. 783(-2) 0. 405(-5) 

200 0. 688(7) 0. 722(7) . 0.375(6) 0.161(5) 

250 0.753(8) 0. 773(8) O; 127(8) 0.125(7) 

300 0.442(9) 0.449(9) 0.136(9) 0. 22 5(8) 

400 0. 486(10) 0. 490(10) 0. 268(10) 0.833(9) 

500 0. 224(11) 0. 224(11) 0.168(11) 0. 737(10) 

600 0. 640(11) 0. 640(11) 0. 595(11) 0. 322(11) 

a All rate constants are in units of cm 
3 
/(mole x sec). Quantum rate 

constants are believed accurate to 20%. 

b Results of Ref. 2. 
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TAB.LE IX. Coefficients for the least squares fit to Liu's O = 30°, 

60 ° and 90 ° surfaces. a 

i j c .. (30°) 
lJ . 

c .. (60 °) 
lJ c .. (90 °) 

lJ 

0 0 5.67326 6.93856 5. 87575 

1 0 -2.17052 -3.24026 -1. 94989 

2 0 -3.06358 -3.35290 -6.04608 

1 1 -0.43655 -0.61999 3.00608 

3 0 0.95542 1.08790 -1.02272 

2 1 0.81781 1.17948 1. 81834 

4 0 2.01484 2.01433 2. 55290 

3 1 1. 54708 1. 82541 1."41960 

2 2 1.59424 1. 62723 1.85699 

5 0 0. 05805 0.08883 0.60984 

4 1 0.48219 0.41435 0.70763 

3 2 0.78556 0.73016 o. 57707 

6 0 -l.14517 -1.14989 -1. 27928 

5 1 -1. 07526 -1. 05852 -0.89655 

4 2 0.17417 -0.07773 0.21171 

3 3 0.28048 0.53834 0.12530 

7 0 0.37777 0.36052 0.23299 

6 1 . o. 81861 0.90191 0.79935 

5 2 0.30192 0., 10197 0.30292 

4 3 -1.07400 0.92003 -1. 00811 

8 0 -0.05473 -0.05276 -0.02291 

7 1 0.03868 o. 03533 0.09464 
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TABLE IX. (Cont.) 

i j c .. (30 °) c .. (60 °) c .. (90 °) 
IJ IJ IJ 

6 2 -0.48780 -0.47006 -0. 63252 

5 3 0.00096 -0.03835 -0.05382 

4 4 0.69364 0.71595 0.85941 

aSee text for definition of the Cij" All distances are expressed in 

bohr and energies in Hartrees when using these coefficients in the 

analytical formulas. 
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TABLE X. Parameters of the fitted. 3D H -1: H2 surfacea 

0 

0 

30 

60 

90 

y 

l. 53906. 

1.88123 

1. 88264 

1.87689. 

r lmax A 

4.33 0.82 

3.4 1.07 

3.4 1.07 

3.2 1. 07 

aSee text for definition of the parameters. y and A. are in (bohr) -r 

and r 1 is in bohr. max 
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FIG. 1. Space fixed coordi:1ate system Oxyz, body fixed system 

Ox>... 'y 'z;" 1 and their relation to the triatomic collision system and to 

each other. The origin is chosen to lie at the center of mass of the 

three atoms. z.A' lies along the vector from AA to the center of mass 

of AVA. g' :( is p2rpendicular to the three atom plane and xx' lies in 

that plane so that xA'y'z>..' form a right handed system. The auxiliary 

body fixed system OX?l YAZA is obtained from Oxyz by Euler rotations 

a =</>A' {3 = e)\_, y = 0 so that ZA = z>...' and YA. lies tn the space fixed 
.. 

xy plane. 

FIG. 2, (a) Reaction probability P J: 00 _ 01 (summed over final m'j) 

as a function of J for total energies E = 0. 30, 0. 35, 0. 40 and 0. 45 eV. 

(b) These same reaction probabilities multiplied by 2J + 1. 

FIG. 3. (a) Reaction probability P JR 00 _ 01 analogous to Fig. 2, but 
' 

at E = 0. 50, 0. 55, 0, 60, 0. 65 and O. 70 ev. (b) 2~T + 1 times these 

reaction probabilities. 

FIG. 4. Reaction probability Pf 000 _Olm'. versus J for m'J. =0, ± 1 
' J 

at 0. 60 eV total energy (E0 = 0. 328 eV). Curve labelled sum is the 

sum of the probabilities over m'r 

FIG. 5. Reaction probability PJ ROOO 03 , ·e J f , 0 1 . , - m j v rsus or m j = , ± , 

± 2, ± 3 at 0. 60 eV total energy, analogous to Fig. 5. 

FIG. 6. Influence of projection quantum number m. (j > 0) on the 
J 

allowed relative orientations of atom (A) with respect to diatom (BC) 

for zero impact parameter collisi-ons: (a) m. :o:::: 0 initially so that J . 



rotational angular· momentum vector is perpendicular to direction of 

relative motion; (b) mj > 0 initially so that the j vector Hes in a cone 

about the relative motion vector and makes an acute angle with it. 

In both (a) and (b) the rotation plane of the diatom is indicated by a small 

ellipse. 

1=>11,.~ "'es of" S R for~ '11 1 = 0, l:: 1· as a ft1nr·~-1·c·11 of· T 
l C~ LJ ' J} 0 Q Q - 01111 y ~ " . • : ' 'v I .. J l 

J J 
at E = 0.60 ev. 

FIG. 8. (a) Nonreactive transition probability P J}boo _ 02 m'. at 
J 

0, 60 eV total energy for m'j ==OJ ± 1, ± 2, Curve labelled sun~ is 

the degeneracy averaged P J ~O _ 02 . (b) Analogous space fixed 
' 

probabilities for the three orbital angular mornenta P = .T, ;r + 2, 

,J - 2. The sum is invariant to the use of body fixed or space fixed 

representations. 

FIG, 9. Differential cross sections o O~ -Ol as a function of the 

reactive scattering angle e R at the same energies as were considered 

in Fig. 2, 

l"IG. 10. DHfe:rential cross sections ff({~ _01 , as in Fig. 9 for the 

same energies considered i.n Fig, 3. 

FIG. lL Differential cross section a056 _ 03m'. for m 1 j ::::- 0, ± 1, 

± 2$ ± 3 at E = O" 60 eV. Curve lab~lled sum is tf1e dege1;eracy averaged 
A 

a 00 -03' 
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FIG. 12. Differential nonreactive cross section a 0~0 ...... 02 m,. for 

) 
m'j == 0, ± 1, ± 2 a.t E == 0.60 eV. Curve labelled sum is the degeneracy 

N averaged a 00 _ 02 . 

FIG. 13. Degeneracy averaged differential cross sections a J6 _02 , 

a oi-02 and CT J-6 _ 02 at E == 0. 50 eV (E0 = 0. 228 eV). The nonreactive 

and antisymmetrized curves are essentially identical for e > 20 °. 

Note the use of () rather than e R for plotting the reactive differential 

cross section. 

1-:i.,.,·, 14 D . d N A d R rL1. • egeneracy average a 00 _ 02 , a 00 _ 02 an u 00 -02 

analogous to Fig. 13 but at E = 0. 60 eV. 

FIG. 15, Degeneracy averaged CT O~ _ 02, 9" to ._ 02 and a 0~ -02 

analogous to Fig. 13 but at 0. 70 eV (E0 == 0. 428 eV). 

FIG. 16. Differential cross sections CT oio _ 02m'. (solid lines 
J 

labelled A) and a000 _ 02 m rj (dashed lines labelled N) for (a) m'j = 0, 

(b) m'j == ± 1, and (c} m'j == ± 2 at E = O. 70 eV. The sum of the three 

solid curves and of the three dashed curves is shown in Fig. 15. 

·FIG. 17. Integral cross sections Q tfo, Q cfo _., 01 and Q-0~ _ 03 
(degeneracy averaged) as a function of the total energy E and transla­

tional energy E0 • Arrows in abscissa indicate the energies at which 

the rotational states j = 2 - 7 (for y = O) of H2 become energetically 

accessible. (a) linear scale, (b) logarithmic scale. 



FIG. 18. Phase shift associated with the elastic scattering matrix 

element s.TNOOO _ 000 (i.e., Arg (SJ)/2) as a function of J for 
' 

E:::: 0. 70 cV. Curve labelled converged is the coupled channel result 

\Vhile the central field curve is the result of a single channel calculation 

deseribed in text. Also plotted is the (converged) elastic transition 

probability P J~~JO -~ 000 at the same energy (curve with crosses) 

referenced to right hand ordinate. 

FIG. 19. Elastic differential cross section c-0~0 _ 000 ) total cross 

section a 00~ (both from the coupled channel calculation), along with 

the central field elastic cross section a 0~0 _ 000 (CF}, as a function 

of scattering angle at E == 0. 70 eV. 

FIG. 20. One, two and tlu·ee dimensional total reaction probabilities 
-· -

P ~(lD), P 0~(2D, J == O)and P 0~(3D, J' == 0), summed over all final 

states, as a function of the total energy E and translational energy E 0 • 

FIG. 2L lD, 2D and 3D total reaction probabilities analogous to Fig. 20 

but with a linear rather than logarithmic scale. 

FIG. 22. 2D and 3D differential cross sections a 0~ _ 01 (2D) (a A 

of Ref. 12b) and u 0~ _ 01 (3D). The 3D cross section (solid curve), 

at 0. 60 eV total energy, is referred to the left hand scale while the 

2D result (circles) at 0. 55 eV, is referenced to the right ordinate 

scale, 
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FIG. 23. Heactive degeneracy averaged integral cross sections 

Q0~ _ Oj, (divided by (2j 1 +l)x,o(Jlj~)). as a function of the product 

rotational energy Ej 1 and the product rotational quantum number j' 

at 0. 60 eV total energy for initial ·rotational quantum numbers 

j = 0' 1, 2' 3' 4. 

FIG. 24. Reactive degeneracy averaged integral cross sections 
R . 

QOO - Oj' (divided by (2j 1 + 1) x p (E~~) as a function of the product 
J 

rotational energy Ej, analogous to Fig. 23 at 0. 45, 0. 50, 0. 55, 0. 60 > 

0. 65 and 0. 70 ev. 

FIG. 25. Comparison of reactive integral cross sections from 

·several H + H2 calculations. The Q~j (KPS) for j = 0, 1 and 2 are the 

quasi·-classical results of Karplus: Porter and Sharma (inrlir'.rih~d hy 

dashed lines), while QR is the analogous total reaction cross section 
00 

obtained by Elkowitz and \Vyatt (indicated by squares). The present 

results are Q~ (SK) with j = O, 1, 2 and are connected by solid lines. 

FIG. 26. Comparison of the integral cross sections Qc}6 _01 as a 

function of E. The results labelled WK are those of Wolken and 

Karplus, TK denotes those of Tang and Karplus, CT the one point 

of Choi and Tang, and SK the present results. 

FIG. 27. Comparison of the differential reaction cross section <J ~ 

as obtained by (a) the quasi-classical trajectory method of Karplus, 

Porter and Sharma (the histogram labelled KPS) at E == 0. 752 eV, and 

(b) the present coupled channel method (labelled SK) at 0. 70 eV. 
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FIG. 28. Comparison of the differential cross section a0~ _ 01 as 

ca.lculatcd by (a) the distorted wave method of Choi and Tang (dashed 

curve 10.belled CT) at E = 0. 772 eV, (b) the one vibration coupled 
. 

channel method of \Volken and Karplus (dash-dotted curve labelled 

\VK) at E = O. 773 eV, and (c) the present method (solid curve labelled 

SK) at 0. 70 eV. The TK results in Hef. 4 haye been multiplied by the 

necessary factor of 3 to obtain the curve plotted. 

FIG. 29. Comparison of the semi-classical differential cross section 

a60 ..... 01 of Doll, George and Miller (dashed curve labelled DGM) at 

0. 472 eV with the corresp::mding a oi-ol of the present work (solid 

curve labelled SK) at 0. 45 eV. Note that both curves have been 

normalized to the same value at OH = 180 °. 

FIG. 30. Reaction probability P J 1too _ 000 for J = 0 as a function of 
' 

the total energy E. Two curves labelled DGM are the semi-classical 

results of Doll, George and Miller using the primitive semi-classical 

expression (dashed) and classical semi-classical express~on (dash­

dotted) using the terminology of Ref. 47. The two crosses are points 

from the work of w·olken and Karplus (WK) and the present results (SK) 

are denoted by circles. The DGM and \VK probabilities have been 

divided by 3 as described in Ref. 5 to compare with our distinguishable 

atom probabilities. 

FIG. 31. Nonreactive integral cross section Q 0~ _ 02 as a function of 

Eo The solid curve labelled Wl\1K is the coupled chamiel result of 

\Volken, lv'l:iller and Karplus. (The actual points calculated are denoted 

by squares.) The present results (SK), given by circles, are connected 
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by a dashed line. Arrow in abscissa indicates the energy at which 

v = O, j == 2 of H2 becornes energetically a?cessible. 

FIG. 32. Nonreactive differential cross section a 0~ ... 02 . The dashed 

curve indicates the results of \Vol~en, Miller and Karplus (\Vl\fK) at 

0. 523 eV. The present result (SK) (at 0. 5 eV) is denoted by a solid 

curve and the dash-dotted curve denotes the coplanar result (at 0. 5 eV) 

of Ref. 12b with ordinate scale given on the right side of the graph. 

FIG. 33. Arrhenius plot of the para to ortho thermal rate constant. 

The present quantum result is denoted by SK while the quasi-classical 

result of Karplus, Porter and Sharma is labelled KPS and the transition 

state theory result is labelled TST. 

FIG. 34. Reaction probabilities PJ, 000 -010 for decoupled and 

converged calculations (solid lines and dashed lines) at E = O. 50, O. 60 

and 0. 70 ev. 

FIG. 35. Reaction probabilities PJROl- _ 02 . for decoupled and 
, mj mj 

converged calculations (solid lines and dashed lines) with mj = 0 and 

mj = ± 1. 

FIG. 36. Differential cross section a 6to _010 for decoupled and 

converged calculations analogous to those considered in Fig. 34. 

FIG. 37. Differential cross section a0t-m. _02m. for decoupled and 
J J 

converged calculations analogous to those considered in Fig. 34. 
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FIG. 38. Integral cross section Q0i 0 _ 010 as a function of E and E0 

for decoupled and converged calculations (solid and dashed lines). 

(a) linear scale, (b) logarithmic scale. 

FIG. 39. Three dimensional total reaction probability P0~ (J = O} for 

the Liu (squares) and PK (circles) surfaces as a function of the total 

. energy E and reagent translational energy E 0 • 

FIG. 40. Total reaction probability P0~ (J = 0) as in Fig. 39 but 

using linear rather than semilogarithmic scales. 

FIG. 41. Reaction probability P J~ OO -Ol for the Liu (squares) and 

PK (circles) surfaces at E = O. 60 eV as a function of J. · 

FIG. 42. Differential cross section u 0~ _ 01 for the Liu (solid) and 

PK (dashed) surfaces at E = 0. 40 eV. 

FIG. 43. Differential cross section a0~ -.o~ at E = 0. 50 eV analogous 

to Fig. 41. 

FIG. 44. Differential cross section a65 _01 at E = 0. 60 eV analogous 

to Fig. 41. 

FIG. 45. Integral total cross section Q0~ for the Liu (squares) and 

PK (circles) surfaces as a function of E and E 0 , on a linear scale (a), 

and semilogarithmic scale (b). 

FIG. 46. Reactive degeneracy averaged integral cross sections 

Q0~ -or (divided by (2j f + 1) x p(E1~)) for the Liu surface as a function 

of E. t and j' for j = 0, 1, 2, 3, 4 (analogous to Fig. 23). J . . • 
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8. THE ROLE OF DIRECT AND RESONANT (COMPOUND STATE) 

PROCESSES AND OF THEIR INTERFERENCES IN THE QUANTUM 

DYNAMICS OF THE COLLINEAR H + H2 EXCHANGE REACTION* 

* This paper appeared in the Journal of Chemical Physics~~ 964 (1973). 
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PROCESSES AND OF THEIR INTERFERENCES IN THE QUANTUM - ~ 
DYNAMICS OF THE COLLINEAR H + H EXCHANGE REACTION* 

George C. Schatz t and Aron Kuppermann 

Arthur Amos Noyes Laboratory of Chemical Physics, t 

California Institute of Technologyz Pasadena, California 91109 

(Received ) 

The question of the relative importance of compound state {i.e. 

activated complex) and direct reaction mechanisms has been of central 

importance for the dynamical foundations of chemical kinetics. l, 2 The 
studies hei:e-reportecLindicate that in the auantum dvnamics of the his-

torically important collinear H + H2 exchange reaction not only do both such 

mechanisms contribute but also that their interference plays a central role 

in determining the pronounced quantum oscillations of the reaction proba­

bility as a function of energy. 3 This accounts not only for the absence 

of such oscillations in quasi-classical calculations 1 

4 but also for the 

inability of the present semi-classical formalism5 to produce them. 6 

We have used the close-coupling propagation method of Kuppermann 7 

to obtain accurate values for the elements of the scattering matrix S as a 
~ 

function of the total energy E for the collinear collision H + H2 , using the 

same surface as previously. 3 From these elements, we calculated the 

reaction probabilities ~(E), phases on(E) and time delays rfl{E) = 
ti doTI(E) I dE corresponding to the vibrational states i and j of the reagent 

and product H:., respectively. 
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Fig. 1 shows P~0(E), o~0(E) and -r~ (E) in the energy ranges 

0. 80 eV to 1. 00 eV and 1. 20 eV to 1. 35 eV. o~(E) and r~0(E) are reasonably 

smooth monotonic functions except near E == 0. 90 eV and 1. 276 eV. 8 In the 

regions of relatively smooth behavior, the direct processes dominate the 

reaction mechanism. The more rapid variations in o~0(E) and r~0(E) 
near 0. 90 eV and 1. 276 eV result from the presence of internal excitation 

(Feshbach) resonances 9 at these energies. 1O, 11 The resonant component 

of the scattering matrix element So~ has essentially a Breit-Wigner ~nergy 

dependence12 while the direct component is characterized, in our case, by 

a slowly varying amplitude and a monotonically decreasing phase.13 We find 

that these direct and resonant components have amplitudes within an order 

of magnitude or less of one another at the resonance energies and that their 

interferences determine the overall shapes of the curves in Fig. 1. The 

widths of the resonances at 0. 90 eV and 1. 2.76 eV are about 0. 05 eV and 

0. 008 eV respectively, An additional resonance of intermediate width has 

been found at E = L 67 ev.14 From the resonant contribution to S~0 we 
' 

have computed the corresponding resonance state delay times (T~0) res and 

displayed them as the solid curves of Fig. le. The maximum delay time at 

the 1. 276 eV resonance is about an order of magnitude greater than the 

vibrational period of 1. 66 x 10-14 sec for the symmetric stretch of H3 at 

the saddle point, indicating a long-lived state, 

'l'he interference effects are most clearly revealed by the Argand 
15 

plot of Im s~0 versus Re s~0 with E as a parameter, as shown in Fig. 2. 

Near 1. 276 eV, a characteristic counter-clockwise resonance ~ircle 15 

is traced out while elsewhere the plot tends to circle the origin clockwise 

as E increases. The resonance at Q. 90 eV is too broad to show a well-
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formed resonance circle but its effect on the Argand diagram is quite 

apparent. Despite this broadness, the interference effects between the 

:resonant and direct interactions at each of the resonances result in the 

very significant oscillations in the reaction probability plot (Fig. la) and 

are to a large extent responsible for the differences between these exact 

quantum calculations and the corresponding quasi-classical and semi-

classical results. 

We are presently investigating the importance of such resonances 

and interferences for other reactions, such as F + H2 ..... FH + H. 16 
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Fig. 2 
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FIGURE CAPTIONS 

Reaction probability lb~ , phase o~0 of the scattering matrix 

element, time delay T~o and resonant component of the time delay 

(T~0} res for the collinear H + H2 reaction as a function of the total 

energy E and the relative translational energy E0 • The arrow in 

the abscissa indicates the opening of the j = 2 vibrational state of 

H2 (at L 280 eV), For display purposes, the phases in the 1. 20 eV 

to 1. 35 eV range have been increased by 21T with respect to those 

in the 0. 80 eV to 1. 00 eV range. 

Argand diagram of Im s~0 versus Re s~0 with the energy E as a 

parameter. The crosses are placed at intervals of O. 01 eV. · The 

squares near the 1.276 eV resonan_ce are ~t0.001 eV !ntervaJ.s 

and indicate that the resonance component of the phase is increasing 

:rapidly near this energy (although the overall phase varies in a 

manner indicated in Fig. lb}. The dashed circle calls attention to 

the existence of a resonance circle in the energy region near 1. 276 eV. 
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9. AN ANALYSIS OF RESONANT AND DIRECT PROCESSES IN 

CONVERGED COLLINEAR CALCULATIONS ON ATOM DIATOM 

CHEMICAL REACTIONS 
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The importance of resonant and direct processes is examined 

in two collinear atom diatom chemical reactions. The reactions 

considered are the H + H2 exchange reaction (on two different 

potential surfaces) and the H + FR -l> HF+ H reaction. Information 

examined includes phases and amplitudes of the scattering matrix, 

eigenphase shifts, time delays, the lifetime matrix and Argand 

diagrams. For the resonances observed in H + H2' competition 

between resonant and direct processes is important, making it 

difficult to achieve a separation and parametrization of these two 

mechanisms. For H + FH, by using certain symmetry properties 

inherent in the system, and examining eigenphase shifts, a complete 

separation can, however, be achieved, and the resonance and direct 

processes are examined in detail. Still lacking is a complete physical 

picture of the resonant state (which is only poorly described by a 

vibrationally adiabatic analysis). 
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1. INTRODUCTION 
~~ 

A very useful concept in scattering theory has been the 

classification of collisions as proceeding via direct or resonant 

(shape or Feshbach) mechanisms. The literature on the subject is 

extensive1- 6 as is the diversity of physical applications -- ranging 

from collisions of elementary particles 7 (at GeV collision energies), 
8 

to collisions between nuclei {MeV energies), to electron molecule 

scattering9 (several eV) and heavy particle scattering (a few meV 

to several eV). In the field of atomic and molecular physics, such 

d. a· · t· 10 t · · t· 11 ct • iverse processes as pre issocia 10n, au 010n1za 10n an un1-

molecular chemical reactions12 are all examples of scattering processes 

which may be classified as predominantly resonant. At the same 

time, many kinds of collision processes between atoms, molecules 

and electrons are predominantly direct. 
13 

Our understanding of direct and resonant processes in atom 

diatomic molecule chemical reactions is based largely on the results 

of molecular beam experiments. 13 , 14 In these experiments, whenever 

the lifetime of the activated complex is appreciably longer than its 

average rotational period, the product angular distribution shows 

backward forward symmetry and this identifies the reaction as 

proceding by a resonant mechanism. Direct reactions, on the other 

hand, do not show this forward backward symmetry. This is, however, 

usually a course grained experiment, for velocity and state selection 

of reagents and products is never more than partially achieved, and 

furthermore, resonances with a shorter lifetime than the rotational 

period of the transition state are not easily discerned. An alternative 
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procedure for characterizing direct and resonant processes in chemi­

cal reactions is to examine the results of theoretical calculations. 

Unfortunately, most theoretical reactive scattering calculations use 

approximate dynamical techniques which either preclude resonant 

processes (such as many applications of the distorted wave method15), 

or include them with great difficulty (semi-classical methods16' 17). 

The quasi-classical method~ 18 
which does in principle include both 

direct and resonant mechanisms, does not include their interference. 

Alternative procedures which concentrate only on resonant processes 

(analogous to the Hartree- Fock model in electron molecule Feshbach 

resonances9) have yet to be developed for systems with unbound transi­

tion states. In addition to these important problems with dynamical 

methods for examining direct and resonant processes in chemical 

reactions, the electronically adiabatic potential energy surfaces must 

be accurately known in order to reliably make any predictions on a 

specific system. 

In this paper 5 we use the results of converged quantum mechnical 

calculations on several atom diatom systems to examine the importance 

of resonant and direct processes in chemical reactions. In all calcula­

tions,we assume the three atoms to be collinear during the collision. 

For the types of direct and resonant mechanisms we are interested 

in here, this assumption should not crucially affect the conclusions 

to be made (as has recently been shown elsewhere19). A preliminary 

communication of this work has been published previously. 20 This 

paper is largely a phenomenological study in that we will examine 

exact collinear results and attempt to see what information can be 
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extracted from them concerning the dynamical processes involved. 

The analysis will primarily concentrate on the information contained 

in the elements of the scattering matrix S. Besides the amplitudes 
~ 

and phases thereof, we will also examine such quantities as time 

delays, eigenphase shifts, and the lifetime matrix, all of which are 

derivable from §_. To a certain extent, we shall concentrate on the 
,... 

separation of resonant and direct processes, but it must be remem­

bered that this separation is not unique, and in most cases to be 

described below, is not particularly obvious either. 

In Section 2 we will introduce the theoretical tools for examining 

resonances, and apply them to a simple but relevant analytically 

soluble example. The results of collinear calculations are considered 

in Section 3. Three separate calculations will be examined: the 

H + H2 exchange reaction (using a scaled SSMK surface21
-

23
), the 

II+ FH - HF+ H reaction, 24 and the H + H2 reaction (using the 

Porter-Karplus potential surface25). A summary of the results and 

some generalizations which may be obtained from them are included 

in Section 4. 

In this section, we introduce the important theoretical quantities 

involved in analyzing direct and resonant mechanisms. To do this, 

we develop the simple example of the one dimensional symmetric 

square well. As we shall see, this one mathematical dimensional 

(lMD) model of a reactive system is similar in many ways to the 2MD 

collinear chemical reactions to be examined later. 
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Let the depth of the well be - V0 (V0 > 0), the collision energy 

be E0 , and the width be 2a. If we assume that we initially have a 

wave of unit incident flux for x < -a, then the asymptotic form of the 

wave function for this problem is 

t/lk = Teikx 

,1, _ eikx + Re-ikx 
"i"k -

x> a 

x.<-a 
(2.1) 

where k is the wave number for x <-a and x >+a. T and Rare the 

reflection and transmission amplitudes, and, the scattering matrix 

for this problem is 

R T 

S= 

T R 

The exact expressions for R and T are26 

1 • -2ika . 2 , 
_ -21ne sm k a 

R - cos 2k'a - !i E sin 2k'a 

e-2ika 
T =cos 2k'a - ii E sin 2k'a 

17::: k/k' - k'/k 

€ = k/k' + k'/k 

where k' is the wave number inside the well. 

(2. 2) 

(2. 3) 

(2. 4) 

We now introduce the concept of a time delay for this example. 

As is shown in many standard texts26' 27 , the time independent solutions 

(Eqs. 2.1) may be transformed to time dependent solutions by forming 

the wave packet 
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1/J(x, t) = J f(k") 1/J klT(x) e -iw (k")tdk" (2. 5) 

where f(k") determines the width of the packet and has a peak at k" = k. 

If we substitute the asymptotic forms of Eqs. 2.1 into Eq. 2. 5 and use 

a stationary phase argument, we can determine an equation for the 

· motion of the center of the wave packet. For the incident wave, we 

find 

x = vt x< -a 

where vis the asymptotic group velocity. For the reflected wave 

. d</>R 
x = -v(t - n~) x <-a (2. 6) 

and, for the transmitted wave, 

d</>T 
x = v( t - n (f.E-) 

u 
x> a (2. 7) 

where <PR and <PT are the phases of Rand T (in Eqs. 2. 3 and 2.4) 

respectively. For the transmitted wave packet, the equation of motion 

in the absence of a barrier would have been x = vt, so we see that the 

second term in Eq. 2. 7 is proportional to the time delay for the motion 

of the wave packet in the potential - V 0 • By the same reasoning, the 

time delay for the reflected wave in Eq. 2. 6 also represents the time 

spent near the scattering center in excess of the \'unperturbed" time 

of passage, which in this case is the time required to travel to the origin 

with V0 = 0, be reflected at the origin by an infinite barrier, and 

continue back to x = -oowith the velocity v. In both the reflected and 

transmitted waves, we obtain the general definition of time delay, 

which may be written as 
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d<j> •• 
7. - ~ ___'._!J 
.. - .u dE 
lJ 0 

(2. 8) 

where <j> •• is the phase of the element of S associated with the transition 
·lJ ~ 

i ~ j. For the square well, Eqs. 2. 3 and 2. 4 provide 

n = 0, ±1, ±2, ••. 
(2. 9) 

= -2ka + tan-1 (~Etan 2k'a) 

and 

a IT 12 2E0 + V0 jT j
2

v0 

2 

sin 4k'a 
'TT= 'TR= -2a/v +v ( Eo +Vo) - Ji ( (2.10) 4v 'Eu+V0 )E0 

where the transmission probability jT 1
2 

is 

I. 12 2 2 2 -l 
T = (cos 2k'a + iE sin 2k'a) (2.11) 

Before we examine the physical meaning of the phases <P and 

time delays r let us first introduce the eigenphase shifts and lifetime 

matrix for this problem. 

The eigenphase shifts are found by diagonalizing S in Eq. 2. 2. 
~ 

Since the S matrix is unitary, its eigenvalues must have unit modulus 

and we shall write these eigenvalues in the form exp(2i0) where o is an 

eigenphase shift. For the square well example, the results of the 

diagonalization procedure are 

S = U exp2iA U 
,,....., ..,..... "" """ (2.12) 
,,...., """' ..,...... .,,..... 

where the diagonal matrix A is 
~ 

0 

(2 .13) 
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and the matrix U is 
~ 

1 1 - -
U= 

-{2 -{2 
(2.14) 

~ 

1 -1 -
-{2 ..f2 

U is orthogonal since Sis unitary symmetric. The labels Sand A on 
.~ A 

the eigenphase shifts o 8 and o A stand for symmetric and antisymmetric 

respectively, referring to the fact that the linear combinations of the 

two scattering solutions (Eqs. 2 .1 and its reflection through the 

origin x = 0) which diagonalize S are symmetric and antisymmetric 
::::::. 

respectively about x = 0. This is evident by noting that the first 

column of U results in the addition of these two scattering solutions 
:A: 

while the second leads to their subtraction. By solving Eq. 2.12 for 

the eigenphase shifts o Sand 5 A in terms of R and T (Eq. 2. 2), then 

substituting the explicit results in Eqs. 2. 3 and 2. 4, we find 

o A= -ka - itan-
1

(!17sin 2k'a) 

+ itan- 1 (~Etan 2k'a) 

o 8 = -ka + itan-~ (~ 'fJ sin 2kta) 

+ itan-
1 (~Etan 2k'a) + rr /2 

(2.15) 

(2.16) 

The phase <PT (and hence <PR) may be related too A and o_8 via 

</> T = o S + o A - 1T /2 (2.17) 

Note that phases are modulo 27T while eigenphase shifts are modulo 1T. 

to S by 
~ 

The lifetime matrix Q, as defined by F. Smith6, is related 
:A: 
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(2.18) 

Q is related to the excess in the probability density of the time inde-
:::::: 

pendent wave function over the probability density of the corresponding 

"unperturbed" wave function integrated over all space. Smith has 

demonstrated that~ is hermitian and that~ and;;, (the matrix of time 

delays) are related by 

* 
Qii = Z:: 8ij 8ij 1 ij (2.19) 

j 

This implies that Qii is the average time delay experienced in a 

collision where the system is initially in state i. For the square well 

example, Eqs. 2.2 and 2.19 lead to ~i = 'R = 'T' so both the lifetime 

matrix and time delay matrix provide the same information. Also of 

interest are the eigenvalues of g, which Smith has related to the life-
,.. 

times of metastable states. One can easily show that g for the square 
...... 

well problem is diagonalized by the matrix U of Eq. 2.14 which also 
~ 

diagonalizes ~- (This is not generally true.) Its eigenvalues q
8 

and qA 

are simply 

(2. 20) 

(2. 21) 

where 6 Sando A are given by Eq. 2.15 and 2.16. 

Now consider a specific application of the formulas of this 
1 

section. Suppose that the quantity /3 = (2mV0 a
2 
/11

2
) 

2 
has the value 315 

and consider the range of E0/V0 between 0 and O. 009. In Fig. 1 we plot 

the resulting transmission probability IT !2 
(Eq. 2.11) as a function of 
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E 0 /V0 • The figure shows a typical resonance profile with a peak in 

IT !2 
at E0 /V0 :;:: 0. 00464. This resonance energy corresponds to the 

infinite square well bound state expression 2k'a :;:: mr where n :;:: 201. 

(There are 200 bound states in the well.) This is a typical example 

of a shape resonance, but note that IT 1
2 

does not decrease to zero for 

energies E0 /V0 much greater than the resonance energy. This is 

because the direct processes are also contributing to IT 1
2

• As E0 /V 0 

increases, the resonance contributions become less and less significant 

while the direct contributions increase and eventually dominate 

completely. This is manifested by the fact that IT 1
2 

rises to a constant 

value of unity independent of E0 for large enough E 0 /V 0. The phase 

<PT of Eq. 2. 9 is plotted in Fig. 2 as a function of E0 /V0 • We see that 

<PT is a monotonically decreasing function of E0 /V 0 even at the resonance 

energy. A small inflection is, however, noted there, and an examina­

tion of Eq. 2. 9 indicates that the second term in that equation is 

responsible for it. Indeed, if that second term alone is plotted (Fig. 2), 

we obtain a function which increases rapidly by 1T at the resonance 

energy. The first term in Eq. 2. 9 is the direct contribution to <PT and 

is a monotonically decreasing function of E0 /V 0. (See dashed curve 

in Fig. 2.) This direct phase is equal to that obtained for reflection 

off a hard sphere of radius a (the limit V0 - oofor <PR in Eq. 2. 9) and 

will be called the hard sphere phase below. This example illustrates 

that even though the resonant component of <PT increases by 1T at the 

resonance energy, the direct component can easily obscure this. We 

should also note that for a general many channel problem, the phase of 

Sij is not in general simply the sum of resonant: and direct contributions, 
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and therefore is not easily separated into two parts as was done in 

Fig. 2. 

If we examine the eigenphase shift o 8, we find an energy 

dependence similar to <PT in Fig. 2. o A' on the other hand, shows 

no inflection near the resonance energy because the second and third 

terms in Eqs. 2.15 cancel when 2k'a c: mr for odd n. This example 

illustrates the even~odd character of the quasi-bound resonance state. 

For odd n, the resonance state will be symmetric with respect to 

reflection through x = 0 and hence will not couple to the antisymmetric 

eigensolution, although it will couple to the symmetric one. For even 

n, the resonance state is antisymmetric and the opposite coupling 

occurs. This property of 08 and o A can be useful in this example, 

because the difference 08 - 5 A will characterize only resonance contri­

butions, thus enabling us to approximately separate out resonant and 

direct contributions. We shall see how this can be useful in Section 3. 

For the general multichannel problem, the sum of the eigenphase shifts 

should increase by 11' 
1 at a resonance (in the absence of direct contri­

butions). Inspection of Eqs. 2.15, 2.16 and Fig. 2 shows that this is 

trivially the case here, but this fact would be difficult to prove without 

a procedure for separating off the direct contributions. 

We conclude this section by examining the time delays for the 

example of Figs. 1 and 2. The direct component of T corresponds to 

the first term in Eq, 2.10 (-2a/v). Its negative sign means that the 

"time of passage" through the scattering center is shorter than the 

time of passage in the absence of a potential. Indeed, since this 

unperturbed time of passage is precisely 2a/v, we see that the direct 
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mechanism corresponds to scattering in which the incident particle 

spends essentially zero time within the boundaries of the well. This 

is the expected result for reflection from a hard sphere (V 0 _, - oo}, 

and the value of this direct time delay is, in fact, the smallest time 

delay allowed by causality. This was first shown by Wigner. 28 The 

resonant contribution to TT in Eq. 2 .10 is positive and sharply peaked 

near the resonance energy. (It is just the slope of the <PT + 2ka curve 

in Fig. 2.) The sum of resonant plus direct contributions to TT is 

always negative (since the slope of <PT in Fig. 2 is always negative) 

in spite of the sharp resonance, thus indicating that caution must be 

used in attempting to correlate the absence of resonances with the absence 

of positive time delays. 

We should also mention that the <PT' T and !Tf can be easily 

parametrized in terms of a resonance energy Er and half width rby 

setting (for E » 2) 

2 2 2 

E l'in1T V 
r = 8ma2 - 0 (2. 22) 

8 r = - -fE (E + V0 ) mr r r (2. 23) 

and expanding all quantities in Eqs. 2. 9 - 2.11 in powers of E 0 - E . 
r 

We find 

1I -1 ( r /2 <PT = -2ka - 2 + tan E _ E ) 
r o 

(2. 24) 

7 = _2a + nr /2 
T v (r/2)2 +(Er - Eo)2 

(2. 2 5) 

and 
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(2. 26) 

The resonant components of these equations have the usual Lorentzian 

form with a maximum time delay 7 T(Er) = 2n/r. Although the resonant 

interactions considered in this section have been shape resonances, 

much of the discussion is also true about Feshbach (internal excitation) 

resonances. In particular, the above parametrization (Eqs. 2. 24 -

2. 26) can be generalized to many channel problems in a straightforward 

manner (Ref. 4). 

3. APPLICATION TO COLLINEAR REACTIVE ATOM DIATOM 

SCATTERING 
~ 

We now consider an application of the concepts developed in 

Section 2 to the results of accurate quantum mechanical calculations 

on collinear atom diatom reactive systems. In all cases, a close 

coupling method described elsewhere17 ' 29 was used to obtain scattering 

matrices for the reactions and energies desired. All transition proba­

bilities and phases considered are accurate to 1 % or better' but time 

delays and lifetime matrices are subject to much larger uncertainties 

(perhaps 5 - 10%) due to the necessity of interpolating between energies 

to obtain the required energy derivatives (Eqs. 2. 8 and 2.18). 

We first consider the collinear H + H2 reaction on a scaled 

SSMK potential surface. 21 - 22 The reaction probabilities for this system 

have been extensively analyzed by Truhlar and Kuppermann. 23 The 

results of the close coupling calculations in the form of phases cp .. as a 
lJ 

function of the total energy E (E = E0 + 0. 273 eV for H + H2) are 

presented in Figs. 3 - 7. The notation is analogous to Ref. 23 with R 
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symbolizing reactive transitions and V nonreactive ones. All (distinct) 

possible initial and final vibrational quantum numbers i and j between 

0 and 2 a:re considered in the figures. Appropriate multiples of 2n 

have been added so as to make the plots continuous (at least where 

they should be continuous). From these plots one can make the 

fallowing observations: 

(a) The most obvious behavior of the phases is that they are 

all monotonically decreasing functions of energy except at a few energies. 

This is very much like the phase <f>..T in Fig. 2 for the square well 

problem. We shall assign this monotonic energy dependence of the 

phases as arising from the direct interactions. 

(b) There is a discontinuity of 1f in the ¢ 0°YJ plot near E = O. 60 eV. 

This discontinuity actually exists and is related to (but not the same 

as) the rapid change of the square well phase by 1T when a transmission 

resonance occurs. We shall elaborate upon this below. 

(c) Most of the phase plots (Figs. 3 - 5) show a small but 

rapid change in the derivative of the phase near E = 0. 90 eV. This 

fluctuation is more easily seen in the time delay plots (Figs. 6 - 7). 

In addition, the reaction probabilities for the 0 .- 0 transitions, plotted 

in Fig. 10, show a sudden change near 0. 90 eV. These observations 

-- a rapid change in time delay and in reaction probability as a function 

of energy near O. 90 eV--are indicative that a resonance is occurring 

near that energy. However, the direct processes are also present 

and what we are actually looking at in the figures are contributions 

from amplitudes for both of these processes. Since each mechanism 

has its own phase, the S matrix phases, time delays and probabilities 
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show the effects of interferences between these mechanisms. The 

resonance responsible for the fluctuations at 0. 90 eV appears to be 

quite broad (width of around 0. 03 eV) and is not easily characterized 

because the amplitude for the direct processes tends to wash out the 

resonant behavior. No simple decomposition of resonant and direct 

processes is obvious here, although a partial decomposition is possible 

as will be described for a related H + H2 resonance below. It is also 

not easy to classify the resonance as cleanly shape or ;Feshbach in 

nature, although it seems logical (from arguments given below) that 

this and most other resonances analyzed in this paper are Feshbach 

resonances. 

(d) The phases plotted in Figs. 3 - 5 show an extremely rapid 

flu-ctuation near E = 1. 276 eV. Simultaneously, the reaction probabilities 

(Fig. 10) undergo very rapid fluctuations. This again is indicative of 

a resonance but this time it is quite narrow (O. 008 eV) and the effects 

of phase interferences with the direct interactions are much more 

easily discerned. This resonance and that at 0. 90 eV were examined 

in Ref. 20, and will be further examined below. 

(e) Finally, we note that the phases for different transitions 

often seem to be related to each other in certain ways. Some of these 

relations are consequences of unitarity and other properties of S. For 
~ 

energies below 0. 793 ev, only the ground state of H2 is open and the~ 

matrix is 2 x 2. Unitarity and symmetry of Sas well as additional 
"" 

symmetries which occur specifically for H + Hz and similar reactions 

require that (analogous to Eq. 2. 9) 
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n = 0, ±1, ±2, ... (3 .1) 

so that 

(3. 2) 

In addition, 

¢ ri'o (E0 :::: 0) = rnr (3. 3) 

¢~ (E0 :::: 0) :::: (n + ~ )1T (3. 4) 

where n should be determined by Levinson' s theorem 1 although we 

have not tested this yet. For energies above 0. 793 eV, more channels 

are open and Eq. 3.1 ceases to hold. The following relation does, 

however, result from the unitarity of S, at least at the threshold for 
~ 

opening of the first excited vibrational state of H2 

(3. 5) 

One additional relation also seems to be obeyed near this threshold 

R V 
¢01 = ¢01 + 2mr (3. 6) 

but this is not a consequence of unitarity unless we make the additional 

assumption that jsJi.! 2 
= Is~ !2

• This latter relation seems to hold 

quite well just above the threshold ~or opening of the first excited 

state of H2 although the reason for this is unknown. 

Some additional information which we have obtained is in the 

form of the eigenvalues of 9 at certain energies. These are listed in 
,,... 

·Table I. They cannot be correlated with specific channels and thus 
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are listed by magnitude. Note that near E = 1.276 eV, one of the 

eigenvalues becomes quite large and positive. This apparently 

results from the resonance at that energy, but unfortunately, the full 

energy dependence of this eigenvalue is lost because the opening of 

an additional vibrational state at E = 1. 28 e V changes Q from 4 x 4 to .,... 

6 .x 6 and this changes the eigenvalue spectrum considerably. 

We shall now discuss the direct contributions to the time delays. 

Figs. 8 - 9 show that the time delays tend to behave qualitatively 

like 

R l 1 v -- --
T •. = T •. a - (E - € .) 2 = (-E. 2). 

lJ lJ l l 
(3. 7) 

just above the threshold for opening of vibrational state i. (Note i > j 

and Ei is the vibrational energy of state i.) This is similar to the hard 

sphere time delays observed with the square well ,(Section 2). We can 

understand the reason for this similarity by observing that when these 

direct processes occur, the system spends very little time in the inter­

action region and thus the time delays as a function of energy will be 

sensitive primarily to the distance at which the atom and molecule begin 

to interact strongly and less sensitive to the detailed shape of the 

potential energy surface. As a result, the scattering region behaves 

much like a hard sphere at least in the time delay behavior with r pro­

portional to the inverse; of the velocity. In addition, for a reaction 

such as H + H2 , there should be little difference in the direct mechanism 

time delays between a reactive and a nonreactive transition with the 

same initial and final states. We see in Figs~ 8 - 9 that this is approxi­

mately the case. Finally 1 the time delays often seem to be additive 
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according to the relation (which should be the same for both reactive 

and nonreactive transitions when direct processes are dominant): 

(3. 8) 

This suggests that we can think of the direct processes as occurring 

in separable segments: an incoming time delay in the incident channel, 

an instantaneous transition to the exit channel followed by an outgoing 

time delay in that channel. The separability of these segments implies 

that we can add the incoming and outgoing time delays of any two channels 

to get the overall time delay for the transition between these two channels. 

Deviations from the additivity property of time delays indicate that 

transitions to intermediate channels are becoming tmportant in the 

scattering process. 

As mentioned in (b) above, the nonreactive phase cp~ undergoes 

an apparently discontinuous change by 7f near E == 0. 60 eV. This must 

be a discontinuity rather than a rapid change because cp~ does not 

cha.nge by 1l' in this region of energy and Eq. 3.1 implies that cp~ can 

change by 1T while oJ6 does not only if n changes by ±1 and this would 

occur discontinuously. The explanation of the discontinuity is most 

easily understood by reference to Fig. 11 which contains a plot of 

Im(S~) versus Re(sci6) and similarly for S~. We see that near 

E == 0. 60 eV, sci6 goes exactly through the origin. This results in a 

reaction probability of unity and we see this in Fig. 10. The change 

by rr in the phase is now easily seen to result from a change in the 

sign of S~ as it goes through the origin. The physical meaning of 

this phenomenon is that when S~ = 0, there is no reflected wave. 
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As a consequence, a time delay for this channel has no meaning. 

Exactly the same phenomenon occurs with 'the reflection probability 

in the square well transmission resonances of Section 2. By analogy, 

we will label this discontinuity in the phase for H + H2 as resulting 

from a transmission resonance (as distinct from the Feshbach reso­

nances at 0. 90 eV and 1. 276 eV as discussed below). Our assignment 

of this behavior as resulting from a resonance is somewhat speculative, 

since the probability in Fig. 10 shows little resemblance to that in 

Fig. 1. In addition, there is little change in the time delay as a 

function of energy over what would be obtained from the direct 

contribution. An alternative description of this phenomena could be 

developed in terms of threshold effects and it appears that a clear 

cut distinction between the resonant and threshold designations will 

require additional information. 

The resonances at O. 90 eV and 1. 276 eV are apparently much 

different in nature from that observed at 0. 60 eV. Near 0. 90 and 

L276 eV, we can explain the energy dependence of the observed 

phases (Figs. 3 - 5) and reaction probabilities (Fig. 10) as resulting 

from the interference of the direct processes with resonant processes 

which occur because of the existence of a metastable vibrational state 

of the H3 system. Such discreet states embedded in the continuum have 

been seen in nonreactive molecular scattering30 and related resonances 

for the same H + H2 reaction but a different potential surface, were 

examined in Ref. 31. To justify the statement that these resonances 

are Feshbach rather than shape resonances, we need to develop a 

Inodel which isolates single channel or vibrationally adiabatic processes 
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from those which are not. Such vibrationally adiabatic models have 
31 32 been developed and tested elsewhere. ' If we expand the exact 

scattering wave function in terms of symmetric stretch H3 eigenfunctions 

(the numerically determined transition state vibrational functions), we 

obtain a set of expansion coefficients at each energy, the squares of 

which are shown in Table II for energies near the 1. 276 eV resonance. 

The expansion coefficients indicate the relative importance of the 

different vibrationally adiabatic states at the transition state, remem­

bering that asymptotically, !a00 j
2 

== 1 and la0j !2 
= 0 for j ~ 0. At 

energies well above and well below resonance (i.e., 1. 260 eV and 

1. 290 eV), the reaction is primarily direct, but the coefficients indi-

cate that it is strongly nonadiabatic (within the zero curvature adiabatic 

framework chosen). Roughly the same !a0 j 1
2 

are obtained at 1. 260 eV 

and at 1. 290 eV indicating that the rate of change of the direct components 

to these coefficients is small. As the energy approaches 1. 276 eV 

from either above or below, we see in Table II that rapid changes in 

the !a0j !2 
occur, with the largest being !a02 !

2 
and !a03 j

2
• Since the 

i ::::: 2 and 3 states of H2 are closed over much of the energy range, 

we see that the resonance is responsible for significant changes in 

the coefficients for these nonadiabatic virtual states. This is the 

expected behavior of a Feshbach resonance. The description is quite 

crude, however, for the resonance is not associated exclusively with 

any one particular virtual state, and a clean separation of adiabatic 

and nonadiabatic effects, or of resonant and direct effects is not 

possible. The resonance at 0. 90 eV seems to be associated with exci­

tations to the second vibrational state of H3 (from the same vibrationally 
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adiabatic analysis). 32 Although this state is open at 0. 90 eV, we still 

consider the resonance to be of the Feshbach type, since it results 

in excitations between adiabatic vibrational states. Open channel 

Feshbach resonances related to this one have been considered by 

Taylor et al. 34 In contrast to the nonadiabatic behavior near 0. 90 eV 

and 1. 276 eV, a similar analysis at 0. 60 ev33 indicates almost 

perfectly adiabatic behavior implying that if a resonance occurs at all 

at this energy> it must be a shape or transmission resonance, and 

not a Feshbach resonance. 

Now we consider the H + FH ~HF+ H reaction. Reaction 

probabilities for this and related systems have been described else­

where 24 as has the LEPS potential surface. For this reaction, it was 

found that a sharp resonant-like oscillation in the transition probabilities 

was obtained near E0 (HF) ~ 0.412 eV. Fig. 12 shows these proba­

bilities. Two properties of this reaction make it exceptionally easy 

to analyze this resonance. First, the amplitude for the direct processes 

remains essentially constant over the range of energies in which the 

resonance makes a significant contribution. This is manifested by the 

symmetry of the curves in Fig. 12 about E0 == 0. 412 eV~ Second, only 

one vibrational state is open in each arrangement channel at the resonance 

energy so the symmetry properties of the scattering matrix are identical 

to those previously examined for the square well problem in Section 2. 

In that square well analysis, we found that the eigenphase shifts 0
8 

and o A could be useful in understanding resonances, since any given 

resonance would influence either the symmetric or antisymmetric 

eigensolutions but not both. In Fig. 13 we plot these two eigenphase 
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shifts for I-I+ FH. As with the square well example, f.rA is monotonic 

over the energy range considered. 08 increases near the resonance 

energy, indicating that the resonance wave function must be symmetric 

with respect to interchange of the two hydrogen atoms in the HFH 

complex. The difference between 08 and o A (also plotted in Fig. 13) 

increases rapidly by 7f, in agreement with our expectations that this 

difference should correspond to the resonance component of the eigen­

phase shifts. A surprisingly accurate parametrization of 08 - o A may 

be obtained by fitting it to the formula 

1T -I ( r ) o S - o A = - 2" + tan 2(E - Eo) 
r :: 

(3. 9) 

which may be obtained from arguments similar to those leading to 

Eqs. 2. 24 and 2.26. In Fig. 14 we plot tan (08 ~ o Af versus E0 for 

H + FH. If Eq. 3. 9 is accurate, the resultant curve should be a 

straight line of slope 2/r and intercept 2Er/r~ The straight line 

drawn in the figure connects all of the calculated points very accurately 

except those far away from resonance. From the slope and intercept 

of the straight line, we find Er = 0. 412 eV and r == O. 0207 eV. These 

parameters may then be used to calculate P0~ and Po~ using formulas 

analogous to Eq. 2. 2 5. These formulas were used in Fig. 12 to connect 

the calculated points and it is obvious that the fit is excellent. A more 

stringent test of the validity of the parametrization of Eq. 3. 9 is afforded 

by examining the Argand diagrams of s0~ and s0~ analogous to Fig. 11. 

To do this) we need also to parametrize the direct contribution to the 

eigenphase shifts. For simplicity we have assumed a linear energy 

dependence. An examination of o A in Fig. 13 (which should reflect 
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primarily the direct mechanism) indicates that this assumption is quite 

accurate. The resulting Argand diagrams are plotted in Fig. 15 where 

we again see good correspondence between calculated and fitted curves, 

except at energies far removed from resonance. The general behavior 

of the s0~ and s06' curves is to circle the origin clockwise as E 0 

increases, except near the resonance energy, where a sudden counter­

clockwise circle not about the origin occurs. These counterclockwise 

circles have been previously used in analyzing resonances 7 ' 20 , 30 and 

are often quite useful in identifying their existence provided that the 

direct scattering matrix contributions are not strongly energy dependent. 

With both 08 and o A parametrized in a simple way, we may now easily 

calculate the time delay and lifetime matrices. For example, the 

7' o~ time delay is simply 

v do A ti r/2 r00 =2ll.CIE + 2 . 2 (3.10) 
(Er - E0 ) + r /4 

and for a linear 5 A' -r 0~ is simply the sum of a constant direct contri­

bution plus a sharply peak resonant one. The maxi.mum value of r0~ 
is 4. 3 x 10-14 

sec, which is about twice the unperturbed time of passage. 

Now we consider the same eigenphase shift analysis for an 

analogous resonance in collinear H + H2. This time we use accurate 

results for the Porter-Karplus potential surface25 in the vicinity of 

the first internal excitation resonance which occurs at E = O. 875 eV. 

Figure 16 shows some of the pertinent reaction probabilities. These 

have been given previously by Diestler. 
35 

This resonance occurs above 

the threshold for the first excited vibrational state of H2' so the 

scattering matrix is 4 x 4. In this case, the diagonalization of S requires 
~ 
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an energy dependent matrix U and leads to the eigenphase shifts 
~ 

plotted in Fig. 17. There are now two symmetric eigenphase shifts 

os and os and two antisymmetric ones o A and o A . The anti-
1 2 1 2 

symmetric ones vary monotonically near the resonance energy while 

the symmetric eigenphase shifts increase there. Unfortunately, 

o A and o A no longer cleanly represent the direct contributions, and 
1 2 

the difference o S + o S - o A ~ o A does not increase by rr (see 
1 2 1 2 

Fig. 17). Also, a parametrization analogous to Eq. 3. 9 is not very 

accurate as is evident from Fig. 18, where the resulting curve is 

linear only for an energy range of 0. 02 eV. Thus unlike the H + FH 

reaction, eigenphase shifts are less useful for characterizing the 

resonant and direct interactions for H + H2 . A primary reason for 

this is the strong energy dependence of the tr an sf ormation matrix U 
~ 

for this system. 33 If U were energy independent (as was required by 
:A: 

symmetry for H + FH), the eigenphase shifts would provide all of the 

energy dependent formation necessary to characterize the scattering 

matrix. This is not true for H + H2 , and a description of -q will also be 
....... 

required to complete the characterization of S. We conclude this .,... .,.... 

section by presenting an Argand diagram of s0~ and s0~ for H + H2 , 

plotted in Fig. 19. s0~ of that figure is very similar to s0~ (H + FH) 

of Fig. 15 and we can consequently see the strong analogy between the 

two resonances in these two reactions. s0~ shows a more poorly 

developed resonance circle because of the stronger influence of the 

direct interactions in H + H2 (as is obvious by comparison of Figs. 10 

and 16). 
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4. SUMMARY 
~ 

We will now summarize the various tools we have used for 

examining direct and resonant processes in chemical reactions. 

The scattering matrix itself provides us directly with the transition 

probabilities and phases. The probabilities are very sensitive to 

resonances as was apparent in Figs. 10, 12 and 16, although the inter­

ference between resonant and direct processes makes it difficult to 

parametrize these resonances on the basis of probability information 

only. The phases of ~ (Figs. 3 -. 7) are usually dominated by the mono-
""' 

tonically decreasing contributions of the direct processes. The influence 

of resonances on these phases is apparent in the figures but not easily 

separated from the direct contributions. This separation problem is 

also usually true of the eigenphase shifts (Figs. 13 and 17), but by 

using the symmetry properties of the eigensolutions present in the 

reactions considered, a partial separation is possible. The time 

delays provide indications of the existence of resonances, but their 

physical interpretation is hampered by interferences between direct and 

resonant mechanisms. When both of these mechanisms are important 

in a reaction, the scattering matrix element Sij contains contributions 

from both of them. This leads to a time delay Tij (Eq. 2. 8) which is 

not in general simply a sum of resonant plus direct contributions (as 

it was in Eq. 2 .10} but rather it shows the effects of interferences 

between the two. This makes it impossible to extract resonant lifetimes 

directly from the Tij vs without some type of parametrization procedure 

similar to that used for the H + FH reaction. The eigenvalues of~ seem 
"""' 

to be of lesser usefulness for the problems we are considering, 
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because the opening of new channels brings about considerable changes 

in the nature of these eigenvalues. Argand diagrams are useful for 

identifying resonances and for testing parametrizations, since all of 

the information contained in each element of S is displayed in a single 
""' ,.. 

curve. 

With the aid of the above tools for characterizing reactions, we 

have found that both direct and resonant mechanisms play important 

roles in the chemical reactions considered. The resonances are 

usually weak and seem to- be associated with virtual excitations in 

the transition state region. There remains, however, a large number 

of unanswered questions. For example, an adiabatic analysis of the 

1. 276 eV Feshbach resonance in H + H2 indicated that it strongly 

perturbs both the j ::: 2 and 3 levels of the transition state. This implies 

that the true resonance state is a mixture of these and other levels. How 

can we separate out this resonance state? Equivalently, we can ask, 

is there an approximate partitioning of the Hamiltonian which allows us 

to isolate the discreet resonance state from the continuum? Another 

unresolved question is the separation of resonant effects from threshold 

phenomena. This problem occurs for example at 0. 60 eV in H + H2 
(SSMK surface), where an analysis of probabilities and time delays 

could not provide a conclusive description in terms of resonance or 

threshold phenomena. It is apparent that for the strongly coupled 

reactive problems we are interested in, a clean separation of resonance 

and direct effects will be difficult at best. Neverthel~ss, the develop­

ment of approximate models for doing this is important, for such 

models might be more easily applied to three dimensional reactions 
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than are exact calculations19 , and hence would be of use in predicting 

and interpreting the results of experiments. 
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TABLE I. Eigenvalues of the collision lifetime matrix 9. 

E(eV) 
13 

Eigenvalues x 10 (sec) 

1.1005 -0.279 -0.244 -0.131 -0.127 

1.1505 -0.255 -0.216 -0.125 -0.116 

1.2005 -0.234 -0.192 -0.121 -0.099 

1. 2255 -0. 225 -0.180 -0.119 -0.076 

1. 2505 -0.192 -0.152 -0.103 +0.017 

1.2605 -0.211 -0.169 -0.115 +0.193 

1. 26525 -0.208 -0.176 -0.114 +0.571 

1. 27025 -0.203 -0.168 -0.112 +1.117 

1. 2726 -0.199 -0.168 -0.110 +l.837 

1.2751 -0.192 -0.167 -0.106 +2.769 

1.2776 -0.166 -0.152 -0.044 +2.859 

1. 2799 -0.164 -0.144 -0.076 +3.389 

1.2781 -8.726 -6.786 -0.890 -0. 529 -0.161 -0.137 

1. 28525 -3.209 -2.934 -0.773 -0.266 -0.161 -0.126 

1.29025 -2.331 -1. 862 -0.649 -0.237 ··0.160 -0.121 
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* TABLE II. Normalized vibrationally adiabatic projection coefficients 

for the v = 0 scattering solution of H + ~. 

E(eV) I aoo 1
2 I ao1 l

2 

I ao2 l2 . 12 I ao3 .. I ao4 l2 

1.260 0.100 0.205 0.324 0.342 0.027 

1.265 0.100 0.184 0.423 0.256 0.031 

1.270 0.015 0.241 0.090 0.586 0~065 

1.275 0.014 0.163 0.038 0.682 0.100 

1. 2775 0.079 0.067 0.171 0. 572 0.103 

1.280 0.202 0.002 0.499 0.227 0.061 

1.285 0.118 0.079 0.435 0.334 0.030 

1. 290 0.096 0.104 0.385 0.385 0.027 

* Normalized so that L I aij 1
2 

= 1. Not all I a0j !2 
have been tabulated. 

j 
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FIG. 1. Transmission probability IT !2 
for a symmetric square well 

having (3 = 315 as a function of E 0 /V 0. 

FIG. 2. Phase cpT of the transmission amplitude T as a function of 

E 0 /V0 for the f3 = 315 square well. Also plotted is the direct phase 

(-2ka) and the resonant phase cpT + 2ka as explained in the text. 

FIG, 3. Phases ¢0~ and <PoX for H + H2 (SSMK surface) as a function 

of the total energy E. Arrows in abscissa at 0. 793 eV and 1. 28 eV 

indicate the value of E at which the i = 1 and 2 vibrational states of H2 

become energetically accessible. Inset shows the 1. 25 eV to 1. 30 eV 

energy range in greater detail. 

FIG. 4.-. Phases ¢0~ and <Poi for H + H2 analogous fo Fig. 3. 

FIG. 5. Phases <P 1~ and ¢ 1Y for H + H2 analogous to Fig. 3. 

· R V R V FIG. 6. Phases <1>02 , c;0 02 , ¢ 12 and <1>12 for H + H2 analogous to 

Fig. 3. 

FIG. 7. Phases ¢2~ and ¢2~ for H + H2 analogous to Fig. 3. 

FIG. 8. Time delays T0~, TO~ and 1 0Y for H + H2 as a function of 

the total energy E. The time delays near 1. 276 eV are omitted because 

the strong interference between resonance and direct interactions at 

that energy leads to rapidly oscillating time delays which are difficult 

to calculate. (In addition, unless a separation of direct and resonant 

effects can be accomplished, the time delays are not necessarily 

physically meaningful. See Section 4c) 
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FIG. 9. Time delays To~' 'T 1~ and T 1i analogous to Fig. 8. 

FIG. 10. Reaction probabilities P0~ and P0~ for H + H2 (SSMK 

surface) as a function of the total energy E. 

FIG. 11. Argand diagram of s0~ (outside curve) and s0~ (curve going 

through the origin) for H + H2 in the 0. 50 to 0. 70 eV energy range. 

Numbers next to the circles indicate the energy at which that element 

of S was calculated. ,,.... .,,.... 

FIG. 12. Reaction probabilities P0~ {circles) and P0~ (squares) for 

H + FH as a function of the reagent translational energy E0 in the 

vicinity of the 0. 412 eV resonance. Solid and dashed curves were 

calculated by formulas described in the text. 

FIG. 13. Eigenphase shifts o Sand o A and their difference o 8 - o A 

for H + FH as a function of E0 • 

FIG. 14. Tan (08 - o A) as a function of E0 for H + FH. A straight 

line has been drawn through the calculated points. 

FIG. 15. Argand diagram of s0~ (squares) and s0~ (circles) for 

H + FH for a range of E0 between 0. 307 e V and 0. 484 e V. Solid and 

dashed curve are calculated from formulas descrtbed in the text. 

R R R FIG. 16. Reaction probabilities P00 , P01 and P 11 for H + H2 (Porter-

Karplus surface) as a function of E. 
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FIG. 1 7. Eigenphase shifts o S , o 8 , o A , o A and the quantity 
1 2 1 2 

08 + 08 - o A - 6 A for H + H2 (Porter-Karplus) versus E. 
1 2 1 2 

FIG. 18. Tan U>s + 08 - o A - 5 A ) versus E for H + H2 (Porter-
1 2 1 2 

Karplus). A straight line has been drawn through the points. 

FIG. 19. Argand diagram of s0~ (circles) and s0~ (squares) for H + H2 
(Porter-Karplus) for E between 0. 816 eV and 0. 925 eV. Calculated 

points are at the same energies as those in Fig. 16. 
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10. DYNAMICAL RESONANCES IN COLLINEAR, COPLANAR, AND 

THREE-DIMENSIONAL QUANTUM MECHANICAL REACTIVE 

SCATTERING 
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Internal excitation resonances have been observed in a large number 

of diverse collision phenomena including 7I-p scattering, 1 electron-atom 

and electron-molecule scattering2 and (theoretically) rotationally inelastic 

atom molecule scattering, 3 but they have yet to be detected in atom-diatom 

reactive scattering e:?..'Periments. Their theoretical existence has previously 

been established theoretically only in collinear models of these simple 

chemical reactions, 4-s The results of these collinear calculations indicate 

that they are responsible for oscillations in the reaction probabilities 

near the resonance energies due to their interference 8 with the direct 

mechanisms. However, because of angle and partial wave averaging, it 

was not known whether such resonances would exist in the 3-D world. We 

present here the results of accurate quantum mechanical calculations .for 

one-, two-, and three-dimensional collisions forthe historically important 

H + H2 exchange reaction which provide the first evidence for dynamical 

resonances in chemical reactions for noncollinear systems. An under­

standing of the relation between the characteristics of such resonances 

and the nature of the potential surfaces which give rise to them may 

prove a sensitive probe in the e:x'Perimental characterization of these 

surfaces and in the development and testing of approximate reaction­

dynamic theories. 
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The methods used for solving the Schrodinger equation for the collinear t 

coplanar, and three-dimensional H +. H2 collisions are the same as those we 

developed and used previously.8- 11 In order to obtain accurate results in the 

2-D and 3-D calculations at the relatively high energies at which the resonances 

were found, quite large vibration-rotation basis sets were required, involving 

five or six vibrations and rotational quantum numbers j == 0 ·· 6 to j = 0 - 9 for 

each vibration for a total of 60 coplanar channels (for all values of total angular 

momentum quantum number J)} and 40 to 90 (J = O, 1) three-dimensional channels. 

For most of these noncollinear calculations, tests of conservation of flux, micro­

scopic reversibility and invariance with respect to number and choice of expansion 

functions indicated convergence of 5 to 10% although a few poorer results (20%) 

were included. The collinear results, for which ten vibrational basis functions 

were used} are accurate to O. 5% or better. The Porter-Karplus1 2 potential 

energy surface was used for all calculations. 

The resulting collinear, 13 coplanar, and three-dimensional reaction 

probabilities pR, defined in the figure caption, are plotted as a function of the 

total energy E in Fig.· L rt can be seen that-------------­

all vibrationally elastic probabilities in Fig. la show a similar behavior, r1smg 

from an effective threE'.hold energy Eth (the value of E for which PR= 0. 01) to 

a relatively flat plateau, and dipping later to a minimum at an efi:ergr Er. The 

values of Eth are O. 420 eV, 0. 470 eV, and 0. 525 eV and of E are 0. 873 eV, . , r 
0.922 eV, and 0. 975 eV for the 1-D, 2-D, and 3-D systems, respectively. 

The vibrationally inelastic pR of Fig. lb are also analogous to one-another 

and display maxima at the same energies Er for which the vibrat~onally elastic 

one.s show minima. Since the dip in the 1-D P~-o curve has been shown, by a 

time-delay analysis~ 8 to be due to a Feshbach resonance, we conclude that the 

analogous feature fo:r the 2-D and 3-D systems is also due to such a resonance. 



670 

Therefore, the 1-D, 2-D, and 3-D reactions have resonances centered at the 

values of Er given above, with approximate widths of 0.022 eV, 0.045 eV, and 

0. 035 eV, respectively, 

The change in resonance energy with dimensionality is almost identical 

to the corresponding change in the effective threshold energies and is in the 

0. 050 eV to 0. 055 eV range for both the 1-D to 2-D and 2-D to 3-D shifts. 

These shifts agree with previous estimates14 of the additional zero-point 

"bending" energy which must be put into the triatomic motions of the coplanar 

and three-dimensional transit.ion states. This indicates that these resonances 

are influenced by the potential energy surface in the strong interaction region. 

Coplanar calculations indicate that the resonance has a significant effect only 

on the J == 0 - 7 partial waves (which appears to coincide with the range of J for 

which P~O-l (2-D} is significantL whereas non-negligible reaction probabilities 

P~:- .. i?.~n) ~rP. f01.mrl for the wi.rler .T ran1.:re 0 - 17. -No sfa:nificant uu-u ' . ...; --~-----

change of either resonance energy or width with the quantum number J 

was detected for the 2-D system. 15 This very important result is probably due 

to the dominant character of potential (rather than angular momentum) coupling 

in the region of strong interaction, and permits us to predict that the partial 

wave sum present in the expressions for the. reaction cross sections will not 

seriously attenuate the effects of the individual partial wave resonances. From 

the width of the 3-D resonance we estimate a lifetime of 3. 8 x 10-14 sec (corre­

sponding approximately to 2-3 transition state symmetric stretch vibrations), 

about 2/3 of the 1-D lifetime. 

As a result of the preceding considerations, the following qualitative pre­

dictions concerning the effect of the resonance on the reaction cross sections 

can·be made: (a) The energy dependence of the vibrationally elastic integral 

reaction cross sections should show only a small dip at the resonance energy, 
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similar in appearance to the J = 0 reaction probabilities in Fig. la, but prob­

ably of smaller amplitude. (b) The vibrationally inelastic reaction cross sec­

tions should be dominated by the effects of this resonance even when averaged 

and summed over a distribution of rotational levels within the reagent and 

product vibrational manifolds> respec~ively. (c) The differential reaction cross 

sections at the resonance energies should show significant oscillations as a 

function of scattering angle, in contrast with the smooth behavior 11 displayed 

away from resonance. 

We conclude, in summary, that resonances do indeed exist in noncollinear 

H + H2 and can cause non-negligible quantum interference oscillations on 

observable reaction cross sections. Such resonances are bound to exist in 

other reactions also, as they have already been detected in collinear 

calculations for F + H2 (D2 , HD)16 and Ct~ H2 • 
17 Since classical trajectory 

.. :n:;_eth~ds do not include these interterence eiiects, nor do mosi semil:iass.i.1,;al 1 fl, 1 R 

and approximate quantum methods, 19 a theoretical 3-D treatment of resonances 

for most other chemical reactions will require the development of better 

approximate techniques, and the results presented here should be valuable in 

this endeavor. In addition, accurate quantum mechanical r_esults (be they 

1-D, 2-D, or 3-D} can serve as a useful predictive guide in the experimental 

search for dynamical resonances,and it is hoped that the present paper will 

stimulate such a search. 

We thank Ambassador College for 

facilities. 

generous use of their computational 
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FIGURE CAPTION 

Figure 1: 

Collinear (1-D), coplanar (2-D), and three-dimensional (3-D) reaction 

probabilities for the H + H2 exchange reaction as a function of the total 
R R energy E and relative translational energy ·E0. P0_ 0 and P 0_ 1 are the 

collinear reaction probabilities from v = 0 of the reagent H2 to v 1 = O 

R R and v' = 1~ respectively, of the product H2 • P 00_ 0 and P 00_ 1 are the 

2-D or 3-D (as specified) reaction probabilities for the total angular 

momentum J = 0 partial wave from v = 0, j = 0 of the reagent H2 to 

v' = 0 and v' = 1, respectively, of the product H2 summed over all 

product rotational states within a given vibrational manifold. Panel (a) 

curves are used to denote vibrationally elastic reaction probabilities 

while panel (b) denote vibrationally inelastic ones. The points actually 

computed are indicated on the curves by geometrical symbols. Arrow 

in abscissa indicates the energy at which the v = 1 state of H2 becomes 

accessible. 
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PROPOSITION I 

Abstract 

A method for applying sudden (or strong coupling) approximations 

to reactive collisions is proposed. The method seeks to uncouple or 

partially uncouple the rotational and/or vibrational degrees of freedom 

by exactly diagonalizing the Schrodinger equation in the regions of 

strongest potential coupling. For many applications, this region is 

the transition state of the reaction, and if one simultaneously performs 

the arrangement channel transformations at that point, a completely 

diagonalized arrangement channel transformation is achieved. Recoupling 

is then accomplished in the evaluation of the scattering matrix. The 

method is, however, more general and may be applied in situations 

where computational convenience requires different uncoupling transforma­

tions in different arrangement channels. Because the number of coupled 

channels is substantially reduced by this method, a reduction in compu­

tation time by several orders of magnitude is possible, so we may apply 

it to a wide variety of atom-diatom and diatom-diatom systems including 

many for which more accurate procedures are currently impossible. 
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In several recent papers1- 3, sudden (or strong coupling) 

approximations have been used quite successfully in nonreactive atom­

diatom rotational excitation problems. In these systems, the potential 

coupling is strong in comparison with differences in energy between 

rotational levels, and is responsible for significant probabilities for 

large Aj transitions. This is an ideal situation for using rotational 

sudden approximations, in which these differences are neglected in 

order to uncouple the coupled Schr5dinger equations describing the 

collision. In many respects, the situation for reactive scattering should 

be even more suited to the use of sudden approximations. This is because 

the potential coupling is usually more significant for reactive encounters, 

where there is often a severe steric restriction on reactive geometries. 

The results of accurate 3D calculations 4 , 5 on the H + H2 reaction 

support this contention in two respects. First, the distribution of product 

rotational states is temperature~like (with the same temperature parameter 

for all initial rotational states) even though the reaction mechanism is 

predominantly direct. 6 This indicates a lack of correlation between the 

product rotational distributions and the initial state involved. Such an 

effect is very likely a consequence of the strong coupling. Second, the 

neglect of angular momentum coupling in comparison with potential 

coupling (the tumbling decoupling approximation) proves to be reasonably 

accurate for reactive collisions even when it is not accurate for inelastic 

nonreactive ones. In light of these observations, we believe that sudden 

approximations (if properly used) should prove to be accurate approximate 

techniques fo:r reactive systems. The primary advantage of this method 

is the significant decrease in computational effort possible. The precise 
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amount of reduction in time depends on the degree of uncoupling desired, 

but for the usuC'll situation in which rotations and projections are uncoupled 

while vibrations are not (as described below), the number of c.oupled 
4 channels needed for convergence at 0. 50 eV for H + H2 changes from 

100 to 4 or 5. For rotationally inelastic scattering, reductions in 

computation time by a factor of 9,.000 have been reported for the 
1 

Ar+ TlF and Ar+ N2 systems. In addition, the procedure may be 

generalized to more complicated reactions, such as H2 + H2, which are 

not currently feasible with more accurate quantum methods. 

Let us now describe the general approach to sudden approxima­

tions for reactive atom diatom systems. The fully coupled body fixed 

Schrodinger equation for each partial wave Jin each arrangement channel 

region is (See Ref. 5 for definitions of terms) 

(I.1) 

(I. 2) 

and 

(I. 3) 
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i\ ~~ 2 
(~J\"\ = ---,,-2 - { o0 a' [ J(J + 1) - 2~ + j.A(ji\ + 1)] 

" Rx - i\ i\ 

and 

(I. 4) 

-~+(J,ni\)~)ji\,ni\)on+l n' - ~_(J,ni\)~_(ji\,ni\)on -1 n' 
' --A ' i\ i\ ' i\ 

(I. 5) 

, tA 2 
\U \ = - ~ o0 nt {v~)i\. ni\ lv(rA., Ri\, Yx) - vA. (r>.) Iv~}~ ni\) (I. 6) 
~P' i\ 1i i\ i\ 

The abbreviation ti\ has been used for (v>..JA.Oi\}. The vibration rotation. 

functions <P. . (r...)Y. 0 (yi\,-o/>.) are eigenfunctions of the asymptotic 
VAJA A l.x A 

reference potential vi\ (r>..) and should be used in evaluating Eq. I. 5. 
2 

It is important to note that~ is a diagonal wave number matrix, 'Y.cJ 
~ ~ 

is a tridiagonal (in the tumbling quantum number n1) centrifugal 

coupling matrix and U is the potential matrix (which is diagonal in 0,.). 
~p II. 

In solving Eq. I.1, one must generally reexpand '1! JM in terms of a locally 

adiabatic vibration rotation basis in order to obtain an efficient represen­

tation of the wave function in the interaction region. 5' 7 To solve the 

reactive problem exactly, we must propagate Eq. I.1 through each of 

the three arrangement channel regions (for a two path reaction) and then 

match the wave functions at the mutual boundaries of these regions. 

The z axis of quantization may be changed smoothly during the propagation 7 

or abruptly at the matching boundary. 5 

To make a sudden approximation, we must assume that the off 

diagonal elements of U are large, compared to the differences.in wave 
~p 

numbers, and in comparison fo. centrifugal. coupling .for RA-where the. 

interactions-are strong and transitions are occµrr.ing. This may be done 
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on three different levels of approximation as follows: Case I - The 

approximation is assumed for all degrees of freedom--vibrations, 

rotations and projections, and all are uncoupled; Case II --Only rotations 

and projections are uncoupled; Case III - Only projections are uncoupled. 

At collision energies of 1 eV or less, Case I will not be an accurate 

approximation because the vibrational spacings are generally large. 

Cases II and III should be quite accurate however, for the rotational 

spacings are small for the low jA 's which are important in reactive 

collisions, and the jll. dependence of the centrifugal terms is usually 

much less important than potential coupling. Case III is very similar to 

the tumbling decoupling approximations which have been discussed 

elsewhere.
5 

We shall continue our discussion with Case II. Modifications 

necessary for Cases I and III will be stated explicitly where they are 

not obvious. If the differences between wave numbers within each vibra-

tional manifold are negligible, then we can set all wave numbers k . 
VA.Ji\. 

equal to k ...,.. where ji\. may be chosen as the initial state wave number, 
Vi\.JA 

although other choices are possible. 3 We then neglect the off diagonal 

elements of 1IcJ' and set jA. and OA. in the diagonal part of that matrix 

(Eq. I. 4) equal to j;.\ and OA. This makes ~J a multiple of the identity 

matrix. The final step in the approximation involves the transformation 

to a "diagonalized representationn with the aid of a constant unitary 

matrix ~i\. to be defined below. We set 

(I. 6) 

,_.,_, 

u =Mu M 9:p 9':A ~P ~A (I. 7) 

and substitute into Eq. I.1 (as modified by the above approximations), 
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obtaining 

2 >.. 
d~J 2"'"' - A. 
--2 + (M..,. K"\ M..,. - M..,. l!r-Jl\J" - U ) hJ == 0 (I. 8) 
dR ~I\. ~"' ~/l :R:/\. ~'"' ~/\. ~P ~ 

.A 

In order to retain the proper asymptotic solutions, 1 we must (for case 
2 

II) choose ~A to be diagonal in v,\ so that it commutes with~ . ¥A. 
will also commute with U J since we have simplified it to be proportional 

~ 

to the identity matrix. Finally, our choice of Wx given below will be 

such that we should be able to neglect the elements of ~p which are 

off diagonal in j.A and QA. We are finally left with a set of equations 

for each hl' QA. which are coupled only in vA and may be solved by 

standard collinear reactive methods. 9 

~A. is chosen so as to diagonalize the Hamiltonian along a 

suitably chosen surface in the strong interaction region. Our intent 

in doing so is to treat the potential coupling exactly in the region where 

that coupling is most important. Precisely where that region is cannot 

be determined in general without an adiabatic analysis of the full 

scattering solution, but for reactive systems with an activation energy 

having a restricted range of allowed transition state (or saddle point) 

geometries, a very logical choice for this region is the transition state. 

Some support for this statement may be seen in a vibrationally adiabatic 

analysis of the H + H2 collinear scattering wave function. 11 In that 

case, the most strongly nonadiabatic behavior was found near the 

transition state. We would expect that a rotationally adiabatic analysis 

of 3D results would give similar conclusions. Accordingly, we choose 

a surface perpendicular to the reaction coordinate which passes through 

the transition state, and diagonalize the Hamiltonian there. The rows 
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of the matrix ~A. .. are composed of the projections of the surface eigen­

functions on the asymptotic vibration rotation states. In an application 

of Case II, we must determine the vibrational eigenfunctions appropriate 

to the most stable geometry at the transition state before diagonalizing 

the rotational potential (obtained by averaging the full transition state 

potential separately over each vibrational eigenfunction). This procedure 

leads to a matrix '¥1t which is diagonal in the vibrational quantum 

number vlt. For a two path reaction, there will generally be a transition 

state for reaction to either of the two product arrangement channels. 

Both of these transition states must simultaneously be considered in 

the diagonalization of the interaction potential. With some cleverness, 

the surface functions of any transition state geometry can be determined 

and their projections on the asymptotic solutions calculated. In all 

cases, a normal mode analysis of the transition state can be performed 

and a harmonic approximation set of surface eigenfunctions obtained. 

If it is desirable to switch to locally adiabatic vibrational functions 

during the propagation, we can construct an ~It for these adiabatic 

functions by simply taking their overlap with the transition state surface 

functions. Note that we are free to diagonalize either the full Hamil­

tonian at the transition state, or the approximate one obtained after 
2 

simplifying ~\ and U J as described above. 
~\. ~ 

With the Schrodinger equation partially (Cases II and III) or 

fully (Case I) uncoupled, we now integrate the resulting differential 

equations in each arrangement channel region A.. At the completion 

of these integrations, the different arrangement channel solutions may 

be smoothly matched to one another in one of the following two ways. 
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First, if the same transition state surfaces and surface eigenfunctions 

are used in defining the ¥A. matrices for all arrangement channels, 

then the uncoupled solutions may be matched directly. Indeed, if the 

transition state surfaces and matching surfaces are identical, if 

locally adiabatic vibrational functions are used for the propagation 

(Case II), and if a floating z axis of quantization is used 7 , then the 

matching simply amounts to a reorganization of solutions and may be 

done analytically. Second, if different transition state surface eigen­

functions are chosen in different arrangement channels, then the 

matching must be done with the fully coupled ~ solutions which may 

be calculated from Eq. I. 6. In this second case, the procedure for 

obtaining the scattering matrix, and hence cross sections is identical 

to the exact procedure 5 for all steps following the conversion of the 

matched and asymptotic uncoupled~~ solutions to the coupled~ 
solutions. A somewhat more efficient computational procedure seems 

to be the first matching method, since in that case, a recoupling of 

the uncoupled solutions may be postponed until the final scattering 

matrix is calculated, and this last step involves the simple evaluation 

of: 

(I. 9) 

where ~{A. is the uncoupled subblock of the scattering matrix between 

arrangement channels v and A. (>t, v = a, {3, y), ~~ll is the coupled one, 

and ~I\ and ¥v are the appropriate transformation matrices in channels 

/I. and v, respectively. We should point out here that this approximation 

may be applied to a variety of reactive systems which are essentially 
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impossible to treat at present by accurate methods. These include 

atom-diatom reactions which have a saddle point geometry in which 

the diatom internuclear vector is perpendicular to the vector between 

the atom and the center of mass of the diatom. One reaction path 

atom-diatom reactions are easily treated, and the comparison between 

the results of such an application and that of a two path reaction should 

be important in distinguishing the differences in rotational distributions. 

Finally, this approximation should also be able to treat diatom-diatom 

reactions such as H2 + H2. The major obstacle to accurately treating 

this system, namely the large number of coupled channels involved, 

is eliminated by this procedure, and the only remaining problem is the 

development of locally adiabatic coordinates which provide a framework 

in which a noncoupling arrangement channel matching can be accomplished. 

If this can be done, then the problem can be solved a single channel 

at a time up to the point of calculating the full scattering matrix which 

requires the evaluation of Eq. I. 9. 
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PROPOSITION II 

Abstract 

A method for using pseudo-diffraction functions in close coupling 

expansions for atom surface elastic scattering is proposed and its 

application to the study of the diffraction of He off tungsten and tungsten 

carbide surfaces is suggested. The main advantage of pseudo-diffraction 

states is that this basis allows for a :more efficient representation of 

the local behavior of the wave function parallel to the surface. As such,·. 

it should enable a reduction in the number of diffraction channels 

needed and it should allow for the treatment of highly anisotropic 

crystal surfaces, including chemically reactive ones and those where 

diffusion is important. The application to He + tungsten (112) and 

He + tungsten carbide (W(l10)R(3x5)) surfaces is proposed as a means 

for elucidating the factors which cause these two systems to exhibit 

diffraction when other tungsten and tungsten carbide surfaces do not. 

Certain questions concerning the remarkable coherence of the diffracted 

beam in the He + tungsten carbide experiments will also be considered. 
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In recent years, experimental advancements in beam surface 

scattering techniques have rendered diffraction scattering a sensitive 

probe of the atom surface interaction potential.
1 

To theoretically 

describe these collision processes, quantum2- 4, semiclassical 5 and 

classica16 techniques appropriate to the atom surface problem have 

been developed. The quantum methods usually involve a close coupling 

expansion in terms of the "unperturbed!! diffraction states (as will be 

defined below). This is adequate in situations where the surface 

anisotropy is weak so the number of states coupled is small. It is well 

established2, however, that the coupling is often quite strong, and 

the use of close coupling expansions requires a large number (> 30) 

of open and closed channels for convergence of the probabilities for 

diffractive and specular scattering. By analogy with atom molecule 

inelastic and reactive scattering, we propose to use locally "adiabatic 11 

pseudo-diffraction states for these close coupling expansions. This 

procedure has been quite useful in reducing the number of required 

closed channels in atom molecule scattering 
7 

and we expect that the 

same will be true in atom surface scattering since the physical pheno­

menon is very analogous. By using pseudo-states in surface scattering, 

we may also be able to examine surface reactions, chemisorption, and 

diffusion processes well. We shall describe below a method for 

numerically obtaining these states and will include a simple example 

to illustrate the procedure. In the second part of this proposition, 

we consider the application of this close coupling method to He + tungsten 

and He+ tungsten carbide diffraction. These two systems have been 

well characterized experimentally8- 9 and many features of the diffraction 
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patterns differ substantially from those in the well-studied He + LiFlO 

system. An understanding of these differences in terms of the nature 

of the interaction potential involved should be useful in characterizing 

the structures of the surfaces. 

We consider the elastic collision of an atom with a solid crystal­

line surface. The atoms in the crystal are not allowed to exchange 

energy with the incident particle and hence their sole purpose is to 

define the interaction potential V(r). r = (x, y, z) specifies the coordi-"" ,,..... 

nates of the incident atom with the z direction normal to the surface 

and directed away from the crystal. Inclusion of dissipative processes11 

or molecule plus surface collisions12 has been treated elsewhere and 

is done in an analogous way in the present method. 

The Schrodinger equation is 

2 2 2 
11 2 tik (- - "-r + V(r)) W:~r) = - w (r) 

2µ _,.... ,.-.. 2µ AC 

(II.1) 

The full wave vector k is divided into a z component k and an x, y 
~ z . 

vector K. These components are determined by the direction of the ,,.... 

incident wave. In elastic scattering, the incident wave number k = ,... 

(kz, ~ is changed (upon interaction between atom and crystal) to 

~~nn = (k~n, I_f + 9:mn) ~here 9:mn is a reciprocal lattice vector and 
.. mn 2 2 2 
kz = (k - (~ + 9:mn) ) . For nonzero 9:mn, we say that diffraction 

has occurred, and our scattering problem consists of finding the 

probabilities of diffraction into states having different indices m and n. 

The diffraction "states" are given by exp i(K + G ) "R with R = (x, y). 
J--... ,..,, .... mn .;.... .-... 

Rather than expand '11 (r) in terms of exp i(K + G ) .. R for all z (as ·"' .-.... ....... n1n ....... 

has always been don~ previously2- 4), we expand it instead in terms 
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of locally adiabatic pseudo-diffraction states F (x, y;z.) as follows: · mn I 

(II. 2) 

m,n 
F (x, y; z

1
)) solves a two dimensional Schrodinger equation for the mn 

x, y motions of. the atom for a given zi' and is to be used as the basis 

for expansion in a region of z (region i) which contains zi. The 

Schrodinger equation for F mn (x, y;z) is 

2 2 2 

{ 11 a a ~} . - -(-2 + -2-) + V(x,y ,zi) Fmn(x,y,zi) 
. 2µ ax ay 

2 2 

nqmn 
::: F (x, y; z

1
.) 

2 µ mn 

(II. 3) 

where V(x, y;zi) can either be the exact potential function V(x, y, z) 

evaluated at zi, or it can be some other conveniently chosen reference 

potential. Upon substitution of Eq. II. 2 into Eq. II.1, using Eq. II. 3 

* to simplify, then multiplying by Fmn(x, y;zi) and integrating over a 

unit cell (the F mn 's are orthonormal), we obtain 

2 

(_Q_ + d
2 

)''' (z·z ) = \' U (z·z )''' (z· z) 
.. 2 mn 'Ymn ' i l.J mn,m'n' ' i 'Ym'n' ' i 

dz m' n' 
' 

(II. 4) 

where 
2 2 2 

dmn =k - qmn (II. 5) 

Umn, m'n'(z;zi) ==? J J F:n (x, y;zi)[ V(x,y, z) - V(x,y; zi)] 

(IL 6) 
x F (x, y;z.)dxdy mn i 

Eq. II. 4 may be propagated through region i by standard integration 

procedures. 13 By partitioning the total range of integration into 

several regions i = 0, ... , n in which different pseudo-functions are 
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chosen for propagation in each region, we may generate complete 

solutions to Eq. II.1 in all regions of physical interest. The functions 

'I.fl in regions i and i + 1 may be related at the boundary zbi of 
mn 

these two regions by 

o/mn(z~;zi+l) = L 8mn,m'n'(zi+l'zi)~m'n'(z~;zi) (II. 7) 

m'n' 

where 

(II. 8) 

By choosing region n to coincide with the asymptotic region, we obtain 

the required solutions for calculating the scattering matrix Smn, m 'n ,. 

The asymptotic analysis is identical to that described elsewhere. 2 

The solution of Eq. II. 3 requires a somewhat different procedure 

than is used for the analogous atom molecule problems. 7 jFmn 1
2 

must be a periodic function, so F mn can change by at most a phase 

upon translation by a lattice vector. In order to properly satisfy the 

asymptotic boundary conditions) we must set (see Ref. 14) 

(II. 9) 

and impose the condition that <p mn be periodic in the lattice spacing. 

By substituting Eq. II. 9 into Eq. II. 3 we find that <pmn must satisfyc 

2 • 2 2 2 ·. 
{VR + 21K• VR + (qmn - K) - ~ V(x,. y;z.)} <p = 0 

.,..,. ....... ~ . i mn 
.,....., J""- .i.l. • 

(II.10) 

where .YR is the appropriate two dimensional gradient operator. One way 

to solve Eq. II.10 is to use finite difference procedures. 15 As an 

example of this, we examine the somewhat simpler case that arises 



when motion is restricted to the x, z plane only. In that case, Eq. II.10 

becomes 

2 
d . d 2 2 ~ } 

{-2 + 21K - + (q - K ) - 2 V(x:;z.) cp = 0 
dx xdx m x n l m 

(II.11) 

Evaluating Eq. II.11 by finite difference on a grid of points xj 

(j = 0, ... , N) which span the one dimensional unit cell, we. obtain the 

following set of algebraic equations for the cp m (xj ;zi) : 

2 2 2 
cp (x. 1;z.)(1 + iK 6.x) + <p (x.;z.)(-2 + 6.x (q - K) + V(x.;z.)) m J+ 1 --x m J i m x J i 

(II.12) 
+ cp (x. 1;z.)(1 - i K: Sx)'= o 

m J- l x 

where D.x is the grid spacing. If cpm(x) and cp~(x) are to be periodic 

in the lattice spacing, then cpm(x0) = cpm(xN) and cpm(x_·1) = cpm(xN-l) 

are the required boundary conditions for Eqs. II.12. If these are in­

corporated into the above equations, we obtain a set of N homogeneous 

linear equations for the <p (x. ;z
1
.) which may be solved by standard 

·ID J 

eigenvalue-eigenvector methods. 15 Note that the matrix of coefficients 

obtained from Eq. II.11 is hermitian. 

As an example of this finite difference procedure, we consider 

the asymptotic case zi = oo where V(xj; zi) = 0. In this situation, the 

secular equation obtained from the diagonalization of the matrix of 

coefficients can be solved exactly, and we obtain the following expression 

for the eigenvalues qm: 
2(1 . .., cos 27TmD.x) 2 2 2K x q =K +--

m x ~x 

. 27TmD.x a Sln a + · · 2 

6.x 

m = 0, ±1, ±2, ... 

(TI.13) 



with 

( ) 
. 27Im cp x.;z. =exp I -- x. 

m J i a J 
(Il.14) 

where a is the lattice spacing. Taking the limit D..x -4 0, we find 

q = K + 2nm/a which is precisely the asymptotic solution since 
m x 

21Tm/a is the one dimensional reciprocal lattice vector. 

The main advantage of this procedure is the reduction in 
2 

number of closed (d < 0) diffraction states that are required for mn 

convergence of the probabilities ( I Smn m rn, l2 ) due to a smaller coupling 
' 

in the Umn, m 'n' in Eq. II. 6. In addition, since the <Pmn(x, y;zi) 

adjust locally to the shape of the potential, it should be possible to treat 

highly anisotropic potentials such as those that lead to chemical reaction, 

chemisorption and diffusion. Indeed, one can imagine situations where 

attractive wells in the crystal lattice might be so "deep" and well 

separated from each other that a decoupling of the surface states is 

possible at some point in the propagation fallowed by separate integrations 

"downn each well. 

A very useful application of the method presented above would 

be to the diffraction of He off tungsten (112)9 and tungsten carbide 

[ W(110)R(3x5)]. 8 The first of these two surfaces is the only known 

pure metal which exhibits diffraction. The surface is characterized 

by a series of parallel ridges, which will diffract the incident beam 

if it is perpendicular to the ridges, but not if it is parallel. 9 An 

obvious application of the close coupling method would be to use the 

asymptotic diffraction states for expanding the relatively smooth 

potential along the ridges and pseudo-states to describe the rough 
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potential perpendicular to them. A primary question to be examined 

in this theoretical study is the relative importance of thermal effects 

in broadening and washing out diffraction peaks. This can be examined 

by first ignoring and then including dissipation in the calculation; using, 

for example, the discreet function expansion procedure of Wolken11 to 

handle the phonon modes. 

In the example of helium diffraction from tungsten carbide, 8 

the tungsten 110 surface is smooth and it appears that the 3x5 carbide 

lattice is primarily responsible for the diffraction. A model of the 

structure of the surface has been proposed by Weinberg and Merrin8 

and we should be able to test this model provided that adequate estimates 

of the potential parameters can be made. 16 One interesting feature of 

the experimental results8 which requires examination is the remarkable 

coherence of the diffracted beam. This phenomenon leads to sharp 

peaks in the diffraction line profiles and contrasts strongly with the 

relatively broad peaks observed in He + LiF scattering. Also of interest 

in our theoretical analysis will be the He + tungsten carbide (llO)R(lxl) 

system. Unlike the (3x5) counterpart, this surface does not show 

diffraction peaks in the scattered angular distributions. A comparison 

of results from these two carbide surfaces should provide a sensitive 

test of the assumed surface structure, and of the interaction potential. 
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PROPOSITION Ill 

Abstract 

An experimental study of electronic energy transfer in collisions 

between metastable mercury (Hg 63P2 0) and the 001 surface of LiF 
' is proposed. Using a previously developed electron impact excitation 

method to specifically excite Hg to the 3P2 0 states, the tr an sf er 
' from these states to the 3P1 state (as a result of collisions with the 

LiF surface) is detected by observing the resulting 2537 A (3P1 -> 

1s0) emission line. The (electronically) elastically scattered 3p 2 0 
' states may also be detected, so that transition probabilities between 

a number of electronic channels may be ascertained. Additional 

experiments using ground state Hg are also suggested for the purpose 

of characterizing the Hg - LiF interaction potential. 
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Energy tr an sf er in collisions between electronically excited 

atoms and crystal surfaces is a very poorly understood process both 

theoretically and experimentally. Nevertheless, it is very important, 

for the quenching of excited atoms at surfaces is often a primary 

mechanism for their deactivation1. In addition, surface ionization 

in collisions between metastables and metals is an often used (and 
2 not well characterized) procedure for detecting these metastables. 

A theoretical description of the electronically excited states of the 

atom-surface system has largely been confined to models3• No 

realistic attempt to calculate the probabilities for electronic energy 

transfer in collisions of atoms or molecules with any kind of surface 

has been made. Indeed, the only qualitative theories in existence 4 

are based largely on general principles such as energy conservation, 

and provide little mechanistic understanding of the processes involved. 

Most experimental studies on collisions between electronically 

excited species and surfaces have used metastable rare gas atoms 

along with metallic (Pt, Ag, W) or covalent (Si, Ge) targets. 5 In these 

cases, the work functions of the crystals are smaller than the excita­

tion energies of the rare gas atoms so a primary result of the collision 

is ejection of electrons, and it is these electrons that are normally 

detected. Similar considerations apply to experiments involving meta­

stable mercury (63P 2 0) colliding with metallic surfaces. 6 In the 
' 

most sophisticated of these surface ionization experiments, 5 the yield 

y M of electrons per metastable collision has been determined. In a 

recent experiment; the electronically~ scattering of metastable 



He, Ar, Ne, N2, and H2 off Ge (covered with o2) was examined so 

that the probability of excited state survival could be evaluated. By 

measuring time of flight distributions of metastables in the direct 

and scattered beams, it was determined that slower metastables 

were being preferentially de-excited. 7 

It is apparent from these examples that more quantitative and 

detailed experiments are desirable if the energy transfer process 

is to be accurately characterized. In this proposition, we consider 

the beam surface experimental study of the deactivation of Hg (63P2 0) 

by LiF (001). The Hg(6
3
P2 1 0) states have excitation energies of ' 

' ' 
5.460 eV, 4.887 eV and 4.667 eV, 8 respectively, but only the J = 0 

and 2 states are metastable (with natural lifetimes > 10-3 sec). 

This allows us to monitor the 3P2, 0 ----) 3P1 energy transfer process 

by observing the 2537 A (3P1 ~ 
1s0) .emission which should occur 

shortly (10-
7 

sec) after the collision takes place. That this is feasible 

was recently demonstrated by Krause et al. 8 in a crossed beam study 

of the de-excitation of Hg (3P2) by H2' n2, N2, NO and CH4. In that 

experiment, the collision energy was kept below O. 20 eV so that the 

excitation channel 3P0 ---4 
3P1 was closed and the 3P2 -> 

3p 1,E ~ V 

de-excitation cross section was measured directly. A potential 

defect in using this detection procedure in Hg + LiF collisions is that 

it will probably not be possible to avoid the 3p 0 ~ 
3p 1 excitation 

process if the Hg ~ LiF interaction potential is attractive by more 

than O. 20 eV. In any circumstance, we shall be measuring the efficiency 

of tr an sf er between electronic energy of the incident atom and phonon 

modes of the crystal. A comparison of these results with those of the 
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above mentioned crossed beam studies, 8 and with the probabilities 

for transitions between other channels in the system (see below) 

should provide us a detailed understanding of energy transfer in atom 

surface collisions not previously available. Two other measurements 

which we can also make on the Hg+ LiF system are (a) an analysis 

of the electronically elastic 3P2 0 -) 3P2 0 probabilities (via a surface 
' ' 

ionization detector), and (b) (in a separate experiment) the characteri­

zation of scattering of ground state (1s0) Hg from LiF (using, for 

example, mass spectrometric detection). The latter experiment, 

in conjunction with a classical theoretical study should enable an 

estimation of the Hg (
1s0) - LiF interaction potential._ One possible 

experimental difficulty which might be anticipated is the strong adsorp­

tion of Hg on the LiF surface. Hg (1s0) + LiF(OOl) scattering was 

investigated over 40 years ago by several groups9 ' lO and it appears 

that the scattering mechanism is predominantly direct (as judged by 

the absence of a strong cos() component in the angular distribution). 

The suggestion made above that Hg (1s0) + LiF should be examined 

in the proposed experiment is in part for the purpose of reconfirming 

these ground state experiments. 

We now consider details of the Hg (3P2 0) + LiF(OOl) experiment. 
' 

A metastable Hg source has been described in Ref. 8, and can be 

used with slight modification in the present experiment. Included 

in this source is an electron impact exciter similar to that used by 

McDermott and Lichten. 11 This method of excitation is known8 to 

produce principally the 63P2 0 metastable states of Hg (with all other 
J 

excited states decaying before the beam reaches the scattering region). 
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Decay of the 3P2 0 states should be negligible in the experiment if 
' 

the total length of the beam path is not much longer than 10 cm. 

Following excitation, collimation and modulation, 12 the beam is 

impacted on the 091 surface of LiF. Techniques for preparation and 

use of LiF crystals are well described elsewhere. 13 The crystal 

should be enclosed in an ultrahigh vacuum scattering chamber with 

base pressure (with beam off) of close to 10-10 torr13in order to 

avoid rapid build up of adsorbed impurities. The number densities 

of Hg atoms used in the crossed beam experiment of Ref. 8 are 

similar to those required in gas surface beam experiments 7 ' 12 ' l3, 

so the two kinds of experiments can be integrated with one another 

without significant redesign. The 3P 1 -t 
1s0 photons will be emitted 

before the Hg (3P 1) can leave the scattering region so the photon 

detector should be directed towards it. It will probably be desirable 
0 

to use gratings or interference filters in examining the 2 537 A radia-

tion since it is possible that the 3P2 0 -..-) 1s0 emission (2271 A and 
' 0 

2657 A) will be induced on the LiF surface if the Hg is strongly adsorbed 

there. Techniques for detecting and velocity analyzing the scattered 
3P2 0 and 1s0 Hg atoms are similar to those used elsewhere. 7' 9, 13 

' 
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PROPOSITION IV 

Abstract 

A study of the properties of fluctuations {in temperature and 

concentration) around the nonequilibirium steady states of illuminated 

chemically reactive systems is proposed. Included in the analysis 

will be an examination of transition probabilities between multiple 

steady states, deviations from the Einstein formula for fluctuations, 

correlations between temperature and concentration fluctuations, and 

fluctuations near unstable steady states. A Markovian stochastic 

approximation method for obtaining the joint temperature (or energy)­

concentration probability density is suggested along with simplifying 

models of the energy transfer processes so as to enable an approxi­

mate analytical study of the resulting master equation. 
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The behavior of fluctuations around equilibrium states of 

of physical systems has been extensively studied by many different 

approaches, l, 2 and may be summarized (for small fluctuations) by 

the well-known Einstein equation3 

P(Ax) ..... exp [6.S(x) /k] (IV. l) 

(Here P(Ax) is the probability for a fluctuation 6.x in the thermodynamic 

variable x and 6..S(x) is the entropy change associated with that fluctua­

tion.) Fluctuations about steady states in nonequilibrium systems (such 

as chemically reacting systems) are not as well understood, especially 

when the systems are nonlinearly coupled. An understanding of 

fluctuations in these situations is, however, fundamental to the charac­

terization of chemical instabilities, very much as the theory of fluc­

tuations from equilibrium has been basic to our understanding of phase 

transitions and critical phenomena. 4 One question very basic to a 

description of fluctuations in nonequilibrium steady state systems is 

the validity of the Einstein equation (Eq. IV. l). Following the develop­

ment of the n1ocal equilibrium theory" of nonequilibrium processes, 5 

Prigogine and Mayer6 postulated the extension of the Einstein formula 

to this class of phenomena. A general proof of this proposal has 

never been given, although the Einstein formula does seem to apply 

to linear (nonequilibrium) systems as we 11 as to some nonlinear 

ones. 7 ' 8 Quite recently, a significant controversy has developed 

over whether a model reacting system (first examined by Nicolis9) 

violates Eq. IV. l. lO Even if this controversy is resolved in favor 

of the Einstein formula, there will still be a large number of models 
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containing unstable steady states or marginal steady states for which 

this formula simply cannot work. 8 With one exception, studies of 

th~ fluctuation behavior of nonequilibrium systems have been confined 

to models of chemically reacting systems where fluctuations in such 

continuum properties as temperature, energy, density or pressure 

have been ignored .. The one exception is a study by Babloyantz and 

Nicolis11 in which energy fluctuations in a Knudsen gas model (non­

reacting) system were examined. 

In this proposition we outline the application of theories of 

fluctuation behavior to both concentration and temperature fluctua­

tions in a simple model (recently proposed by Nitzan and ~oss12) 
of an illuminated chemically reacting system. We consider the iso-

merization reaction 

(IV. 2) 

taking place under constant illumination by monochromatic light which 

is absorbed by A alone. This system is assumed to be in thermal 

contact with a bath at a temperature T e,but no mass transfer into or 

out of the system occurs (in contrast to other systems previously 

examined 7 ' 8). The radiation less i relaxation of A is assumed to occur 

on a time scale short compared to all other processes, so that 

the illumination simply provides a mechanism for input of energy 

into the system, where the rate of input is proportional to the concen­

tration of A. The feedback mechanism is provided by the chemical 

reaction (IV. 2),since the heating of the system (which occurs because 
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of light absorption by A) causes the temperature dependent rate 

constants to change, which in turn results in a change in the cone en-

tration of the absorber A through this chemical reaction. The perti­

nent dynamical variables in this system are A (the concentration of 

species A) and T (the temperature), and the time evolution of these 

variables is governed by12 (ignoring diffusion effects) 

dT dA - = a.A - t3(T - T ) - A -
dt e dt 

where A+ B =a and the two rate constants kv k 2 are assumed to 

(IV. 3a) 

(IV. 3b) 

have Arrhenius temperature dependence (ki = Kiexp(.-Ri/kT)). The 

first term on the right hand side of Eq. IV. 3b arises from light 

absorption (hence a is proportional to light intensity and to the absorp­

tion coefficient), the second term refers to equilibration of the system 

with the surrounding bath, and the third arises from the enthalpy change 

which occurs as a result of chemical reaction (A.= (R2 - R1)/E with E 

proportional to the heat capacity of the system). A steady state analy­

sis of Eqs. IV. 3ab leads to 

(IV. 4a) 

(IV. 4b) 

The second of these two equations may be solved graphically for the 

steady state temperature T0 • Nitzan and Ross12 show that one or 

three solutions for T0 may be obtained, depending on the values of the 
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parameters describing the system. In the case of three steady states, 

a stability analysis indicates that one of these is unstable with respect 

to fluctuations around it while the other two are stable. When multiple 

steady states exist, continuous and smooth changes in external para­

meters (such as a and R2 - R1) can cause noncontinuous transitions 

between them as well as hysteresis effects. Near these points of 

transition between different steady states, fluctuations in both T and A 

become extremely important since they provide the primary mechanism 

responsible for the transition. 4 This places great emphasis on 

characterizing fluctuation behavior in this system and is a primary 

motivation for the proposition. A study of fluctuations is interesting 

also because the type of nonlinear behavior exhibited in Eqs. IV. 3ab 

differs in its qualitative form from that in the constant temperature, 

open, chemically reacting systems previously studied, 7 ' 8 and hence 

provides a significantly different example for testing the validity of 

the Einstein formula. Also, because temperature and concentration 

are strongly coupled in Eqs. IV. 3ab, it will be interesting to analyze 

for correlations in fluctuations of these quantities. Such correlations 

might be important for the efficient transition between two steady 

states. An analysis of fluctuation behavior near the one unstable 

steady state exhibited by this system might give us a more quantitative 

feeling for the uninhibited growth in these fluctuations which is usually 

assumed8 ~o exist at unstable states. 

Let us now consider possible approaches for characterizing 

the temperature and concentration fluctuations in the illuminated 

systems. A very straightforward approach to studying concentration 
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fluctuations is based on a master equation formulation in which a 

Markovian stochastic approximation is used to solve for the probability 

function P(x, t) (analogous to P(x) in Eq. IV .1) which gives the pro­

bability of finding a concentration x at time t. 7-lO The general form 

of the master equation for P(x, t) is 

dP(&!L = F[ P(x, t)] 
dt 

(IV. 5) 

where Fis a nonlinear difference operator which may be derived by 

analogy to the chemical rate laws. Eq. IV. 5 may be solved by the 

method of moments 7 by which we obtain a set of partial differential 

equations for the moment generating function f(sx, t). These partial 

differential equations have been solved analytically for a number of 

systems, 13 including the constant temperature limit of Eq. IV. 3a14 

(which i.s obtained when the illumination is turned off). To include 

the effect of temperature fluctuations or the related energy fluctua­

tions (so that P = P(A, T, t) or P = P(A, E, t)), we can use the energy 

transfer model of Babloyantz and Nicolis11 which ndiscretizesn the 

relevant continuous variable (E in their case). A differential difference 

equation analogous to Eq. IV. 5 is again obtained and this equation may 

also be solved by the moment method. In order to use this approach, 

we shall need to develop models of the energy transfer processes 

occurring in the illuminated systems. Specifically, the transfer of 

energy into (via light) and out of (via heat conduction) the chemically 

reacting system, as well as the. production of energy (from the enthalpy 

of reaction) must be modelled in ways analogous to the Knudsen gas 
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model of Ref. 11. This should enable us to determine P(A, E, t) 

and hence the energy-concentration (or temperature-concentration) 

fluctuation behavior. Finally, we should point out that it is certainly 

possible that we shall not be able to analytically solve the partial 

differential equation for the moment generating function (f(s A' sT, t) 

in this case). If approximate techniques also cannot be ,used to solve 

it then a numerical solution will be necessary. 
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PROPOSITION V 

Abstract 

The calculation of the relative rates of intersys'tem crossing 

from the photoexcited s1 state of benzoquinone (and related quinones) 

to the different spin polarization levels of the lowest excited triplet 

* state T 1 (n, 1f ) is proposed. A model of the reduction of these triplet 

quinones to semiquinone radicals by alcohols, phenols and amines 

is then used to relate the extent of triplet spin polarization to the 

experimentally observable chemically induced dynamic electron 

polarization (CIDEP) effect in the radicals. A comparison of observed 

and predicted polarization ratios should provide a valuable test for 

the validity of the triplet polarization mechanism (as opposed to the 

radical pair mechanism) in producing the observed CIDEP effect. 
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Chemically induced dynamic electron polarization (CIDEP) 

refers to the production-of a non-Boltzmann distribution of electron 

spins in the paramagnetic products of a chemical reaction. In a typical 

experiment, the transitory ESR spectra of the radical products which 

result from UV or electron beam irradiation of aromatic or conjugated 

organic compounds are observed. 1 Since the ESR relaxation rates 

of the radicals (in solution) are in the 10-5 to 10-6 sec range, an 

initially polarized spin distribution will thermalize within. that time 

period. The ratio of the initial electron spin polarization (measured 

from thermal equilibrium) to the equilibrium polarization is called 

the polarization ratio y, and the deviation of y from zero measures 

the non-Boltzmann chara".ter of the spin, ,populations: 
2 

Since their 

discovery in the late 1960 1s, CIDEP and its close relative CIDNP 

(chemically induced dynamic nuclear polarization) have been the 

subject of numerous experimental and theoretical studies. 3 In spite 

of this, the primary mechanism responsible for CIDEP is still the 

subject of considerable controversy. l, 2 ' 4-B At present, two mechanisms 

for production of the nonthermal spin distributions seem to be compatible 

with most experiments. These are the radical pair mechanism and 

the triplet polarization mechanism. To demonstrate these two theories, 

we consider the UV irradiation of 1, 4 benzoquinone in an alcohol 

solution (as was recently investigated by Adeleke et al. 9). The benzo­

quinone is initially excited to the s1 state which quickly relaxes by 

* inter system crossing to the T 1 (n, rr ) lowest excited triplet state. 

The triplet quinone is then reduced by the solvent via hydrogen atom 

abstraction to form a 1, 4 benzosemiquinone radical and a phenoxy 
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solvent radical. CIDEP is observed in both radicals. The radical 

pair theory assumes that the observed spin polarization arises from 

interaction between the semiquinone and phenoxy radicals after they 

have been formed by chemical reaction. 4 , 5, lO Any polarization of 

the triplet state before reaction is ignored. Rather, it is postulated 

that the two product radicals form a solvent stabilized radical pair 

at a separation where the splitting of magnetic spin states arising 

from hyperfine effects and g tensor shifts is comparable to the exchange 

energy of the two unpaired electrons. In such a situation, considerable 

mixing of radical pair triplet and singlet states takes place, resulting 

in a net spin polarization on each radical. The triplet mechanism, 

on the other hand, assumes that the initial polarization of the three 

spin sublevels of the T 1 state of the quinone is preserved during the 

chemical reaction so that the observed spin polarization is a direct 

reflection of the triplet polarization produced by spin orbit effects 

during intersystem crossing. 5- 9 It has also been suggested2 that 

both mechanisms are operative, but that different ones are important 

in different circumstances. In an important recent experiment, 9 

the dependence of semiquinone spin polarization on the orientation of 

polarized UV excitation light was measured and found to be in agreement 

with the predictions of the triplet mechanism and not with those of 

radical pair theory. At the same time, the radical pair mechanism 

has been quite successful in explaining a variety of other experiments, 6 

and its accuracy in predicting CIDNP spectra is well known. 3 

One important unknown in the theory of the triplet mechanism 

in benzoquinone and related quinones is the relative rate of population 
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of the individual spin sublevels of the T 1 triplet state before chemical 

reaction. In this proposition, we consider the calculation of these 

rates of intersystem crossing so as to enable an estimation of the 

initial triplet polarization and hence of the polarization ratio in the 

semiquinone radical product. Such a calculation would enable an 

estimate of the relative importance of triplet versus radical pair 

mechanisms in producing the observed CIDEP effect. The application 

to benzophenone is suggested because (a) this and related quinones 

have been studied extensively from a number of different viewpoints 

by CIDEP techniques, 2 , 9 -ll~ (b) ISC rates for it have been studied 

by picosecond spectroscopy
12 

(which does not distinguish the spin 

polarizations) so some cross checking of the theory is possible, 

(c) the molecule is simple enough and has enough symmetry so that 

a reasonably accurate characterization of the electronic and vibrational 

states will be possible. 

To calculate the rates of intersystem crossing, we suggest 

that the second order perturbation procedure of Henry and Siebranct13 

be followed. In this method, the rate constant for the transition 

between vibrational level n of the s1 electronic state and level m of 

the T 1 state is given by 

k - 21T I lz 
n-m - fi Pm Hnm (V.1) 

Pm is the density of vibrational states in the T 1 manifold near level m, 

and Hnm is the vibronic matrix element of the interaction hamiltonian 

H1 (expanded to second order). If we write H1 as 
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where Hso is the spin orbit interaction (which mixes states of different , 

spin multiplicities) and TN represents the nuclear kinetic energy 

operator (which mixes Born-Oppenheimer ::_;tates of the same multi­

plicity), then the application of second order perturbation theory 

to the s1 ~ Tl transition includes (a) a direct s1 ~ Tl mechanism 

(in first order) and (b) indirect s1 ~ Tn ~ T 1 mechanisms (in second 

order). According to the procedure of Henry and Siebrand, evaluation 

of H requires the calculation of (a) spin orbit and nuclear kinetic nm 
energy electronic matrix elements, and (b) Franck-Condon vibrational 

overlap factors. Hameka 14 has considered the calculation of the 

electronic matrix elements in applications to benzene and acetone 

using an LCAO-MO procedure. Presumably, a similar method could 

be used for benzoquinone, although it might be desirable to use more 

accurate wavefunctions in computing .the integrals required.. Calculation 

of the vibrational normal mode spectrum, the Franck-Condon factors, 

and the densities of states has been considered by Burland and Robinson. 15 

Once the rates of population of the individual triplet state spin 

sublevels are determined, we must develop a model for the chemical 

reaction (benzoquinone + solvent~ benzosemiquinone radical+ solvent 

radical) so that the polarization ratios in the product radicals can be 

calculated. This has been considered by Wong et al., 8 wpo developed 

a model based on the following assumptions: (a) that spin is conserved 

in the chemical reaction, and (b) that competition between reaction of 

triplet benzoquinone and thermalization of its polarized spin distribu-
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tion provides the primary solvent effect on the polarization ratio. 

In addition, any contributions from radical pairs to the spin polariza­

tion is ignored. The assumptions in this model enable a calculation 

of the polarization ratio in the radical with a minimum of dynamical 

information (only the overall reaction rate and the triplet state spin 

lattice relaxation rate are needed2). We suggest using this model as 

a zero order test of the triplet mechanism. After that, refinements 

to the theory such as the approximate inclusion of surface crossing 

in the reaction mechanism can be made to determine the sensitivity 

of the polarization ratios to the assumptions in the model given above. 

Other approximations which should be tested are (a) the neglect of 

solvent interaction on the s1 ---7 T1 intersystem crossing rate, and 

(b) the possibility of direct solvent reaction with other than the 

lowest vibrational level of T 1 , or with electronic states other than T 1" 
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