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6. QUANTUM MECHANICAL REACTIVE SCATTERING FOR THREE
DIMENSIONAL ATOM PLUS DIATOM SYSTEMS: 1. THEORY
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A method is presented for accurately solving thé Schrddinger
equation for the reactive collision of an atom with a diatomic molecule
in three dimensions.on a single Born-Oppenheimer potential energy
surface. The Schrodinger eqguation is first expressed in body fixed |
coordinates. The wave function is expanded i}n.a set of vibration-
rotation functions, and the resulting coupled equations are integrated
in each of the three arrangement channel regions to generate primitive
solutions. These are then smoothly matched to each other on three
matching surfaces which appropriately separate the arrangement
chan:nel regions. The relsulting matched solutions are linearly combined
to generate wave functions which satisfy the reactance and scattering
matrix boundary conditions, from Which. the corresponding }/‘i and S
ma’cricés are o'bﬁained., The scattering amplitudes in the helicity
representation are easily calculated from the body fixed 2 matriées,
and {from these scattering amplitudes, several types of differential
and integral cross sections are obtained. Simplifications arising
from the use of parity symmetry to decouple the close coupled equations,

the matching procedures and the asymptotic analysis are discussed
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in detail. Relations between certain important angular momentum
operators in body fixed coordinate systems are derived and the
asymptotic solutions to the body fixed Schrédinger equation are

analyzed extensively. Application of this formalism to the three-
dimensional H + Hz reaction is considered including the use of arrange-
ment channel permutation symmetry, even-odd rotational decoupling
and post-antisymmetrization. The‘range of applicability and limitations

of the method are discussed.
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1. INTRODUCTION

One of the most impdrtant goals of chemical dynamics is the
accurate calculation of cross sections for reactive bimolecular
collisions. Such calculations can be used to develop and test approxi-
mate reaction dynamic theories and statistical theories, to advance
our understanding of dynamical processes governing reactive collisions,
an_d to interpret, analyze and make predictions concerning the results
of eXperiments.

In recent years, a number of attempts have been made to solve
this problem accurately (i.e., quantum mechanically) for the simplest
possible such chemical reaction, the coilision of an atom with a diatomic
molecule on a single electronically adiabatic potential energy surface.
One 6f the major difficulties in achieving this goal in the past has
been the absence of computationally efficient procedures for obtaining
accurate solutions to the Schrédinger equation for reactive collisions.
For the simple case in wh'ich the three atoms are confined to move
on a space-fixed straight line, adequately accurate and efficient
methods have been developed Within thé fast severai years and applied

to a vai'iety of systems.l"13

However, when the collinearity restric-
tion is eliminated, the problem becoxﬁes more diffi(;ult, especially
when the atom is permitted to react with either end of the diatom.

To tackle such noncollinear probléms, several diffefent techn'iques |
have been proposed and to a certain extent tested. Baer and Kouril4
ha§e developed an intégral equation method and have applied it to a
simple three-dimensicnal model atom plus diatom system in which

reaction with only one end is permitted. Saxon and Light,and Alten-
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berger-Siczek and Light15 have investigated the coplanar H + H2
reaction using a close coupling-matching procedure which ignored -
closed vibrational channels, while Wyatt and ccm/orkers16 have devei-
oped a somewhat different close coupling procedure in which closed
channels are included, and for which the use of hindered rotor basis

functions leads to simple bifurcation properties. Quite recently,

Elkowitz and Wyattma have applied this procedure to the three-dimen-

17 have applied an integro- -

18

sional H + H, reaction. Wolken and Karplus
differential equation method proposed by Miller™ " to 3D H + H2 using
a one vibrational basis function approximation. o

In 2 previous paperlg, (hereafter referred to as I) we described
a method for accurately solving the Schrodinger equation for reactions -
of the type A + BC — AB + C (— AC + B) cn a single electronic potential
energy surface with the restriction that the motions of the three atomé
be constrained to lie in a single spaced fixed plane. An extensive
application of this method to the planar H + Hy exchange reaction has

now been madé.zo’ 21

The present paper describes an extension of

this method to th’ree—dirriensional atdm-diatorh coliisions. It yieldsa .
computationally practical procedure for accurately calcuiating reaction
créss sections for many atom-diatom chemical reactions. A number of
-~ additional concépts‘ not present‘in the planar problem are introduced,
and the simplifications occurring in an application to thrée—dimensional |
H+ H2 are discussed. Preliminary results of aﬁ application of this
method to the H + Hz reaction on a realistic potential surface have
recently been published22 providing the first fully converged quantum

mechanical cross sections for a chemical reaction. " The extension of
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these calculations to energies above the threshold for vibrational
excitation has lead to the discovery of a dynamical (Feshbach) resc- -
nancez3 for that reaction, a phenomena whose experimental detection
may be an important tool in the characterization of reactive potential
energy surfaces, A more complete description of these results for
H+ H2 is forthcoxning.24 '

The method utilizes a close coupling propagation technique to
generate complete sets of solutions in each of the three arrangement
channel regions of configuration space,followed by a ”matéhing proce-
dure' in which the solutions are ‘smoothly matched to one another on a
set of threé appropriately chosen surfaces which separate these three
‘ regions. The scattering matrices, amplitudes and cross sections‘are
then determined by analyzing the asymptotic behavior of these matched
solutions. As thus formulated, ‘the method is similar in spirit to the
correspandin‘g planar theory described in I and, rfor this reason, many
of the concepts presented in that paper and which carry into the
three-dimensional world without modification will on_iy be summarized
briefly. 'fhere are, however, several differenées in application,

" most notably in the matching procedure, and these will bé discussed in
detail. In addition, the concepts of angular momentum coupling, of
body and space fixed coordinate éYstems, and of parity symmetry
decoupling Will be developed ’thoroughly as their utilization is of great
importance to the three-dimensional method.

| In Section-2 we discuss the body fixed partial wave Schrédinger
equation along with angular momentum coupling and the division of

configuration space into arrangement channel regions. The fully
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coupled Schriodinger equation for the four different internal configura-
tion space regions of each arrangement channel region is discussed
in Section 3 and the matching procedure is outlined in Section 4. In '
Section 5 the bedy fixed R and S matrices are defined and their rela-
tionships to the helicity representation scatiering amplitudes and
cross sections are derived. In Section 6 we discuss the limitations
of the method and its possible generalizations. In each section,
where appropi‘iate, the simplifications pertinent  to the.H + Hz‘
exchange reaction are indicated. Appendix A outlines the derivation
of the body fixed Schridinger equation and indicates relationships
between several iﬁxportant angular momentum operators. Appendix B
' includes a discussion of parity symmetry and the simplifications in

the method which may be gained by explicitly including it.

EQUATION

2.1 Sevparation of Internal Configuration Space into Arrangement

- Channel Regions

We consider the three-~-dimensional collision of an atom A with
a diatomic molecule BC and, in parallel, the B plus CA and C plus
AB collisions. A convenient procedure for specifying the locations of
A(= Aa)’ B (= AB) and C (= Ay) in the center of mass is depicted in
figure 1. R: o ls the vector from the center of mass of BC to A and
1 ,isthe B to C internuclear vector. As [E{a_[ — o, with [Fa-l :
remaining finite, we obtain the separatéd A + BC arrangement channel

(denoted by the symbol @). The vectors R B’ -;ifB and If{:y, iy are
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defined analogously for the arrangement channels B8 (B + AC) and

v (C + AB), respectively. Note that the arrangement of the vectors
in Fig. 1 is eyclic in the indices afy. We let Avk represent any one’
of the cyclic permutations a8y, Bya and ya3, and define the vectors
R,:A’ ?\—A’ Ey, i‘:V and R:x’ fk‘accordingly. We also introduce the scaled
variables R,, I, which are related fo R,, I, by

r, =a, I, (2.1a)
R, =a, Iy (2.1b)
 where . ;
' 3
SN NP P (2.22)
| and #;\’ VK and B, are the reduced masses corresponding to RA
and FA motion, respectively:
“)\,W{=m;k(mv+mx)/(m)\+mv+mx) (2. 2b)
B, =mm /(m, +m) | (2.2¢)

This notation ié identical to that used in I and ié dictated by the con-
siderable mathematical convenience associated wita using scaled
variables. 2227
_ We are interested in solving th’e six~dimensional Schridinger

~ equation for the motions of the three nuclei, on a single electronically
adiabatic potential energy surface, obtained after the motion of the
center of mass of the system is removed. The surface (in the absence
of external fields) is a function of only three appropriately chosen

variables which specify the internal three atom configuration. A

convenient representation of this potential V is afforded by the use of
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the variables R, , ¥, and ¥, (X =,B or y) where 7, is the angle
between R, and ry defined by
p By )

= 1] .

Yy = cos
in terms of which V = Vx(rA,RA,yh). _As was discussed in I (Section
3.1), the variables If‘\k’ ry are useful for describing the triatomic
motions only for configurations in which RA is significantly larger
than, say, RV or R e This is most eaisily understood by representing
V)‘“ in terms bf variables ¢ = (r;+ R;)E (which, as shown in Section 4,
is independent of 1), w A =2 tan—l(r}L»‘/_,'RA) (inthe Otow rangé) and 2%
The properties of such a representation have been discussed eise-'
Wherezg, the most important one being that a change from polar
.‘ lcodrdinates g, wy,7y to €, w,, v, rotates the map of V without dis-
’torting it. For t;he Porter-Karplus H3 surface, this representation
of Vis given in Fig. 2. From it, one can see that the three-dimensional
internal configuration space is naturaliy divided into arrangement
channel region subspaces, labelled by the indices A = @,8,y. In
‘region A, for large g,( R;; is approximately equal to ZA and ry is
approximately half of the distance of the point P¢, wx,yk) to the ZA
axis. Therefore, in that region, 'R)‘, rA’, Y, are the "natural" V_arj.,ables
for describing the translatioﬁal, vibrational and rotational motions,
respectively, of the three atoms, but these same variables are both
awkward and inefficient for representing the correspondiﬁg motions

in arrangement channels v and k. As a result, we will use R?J Tys ¥y

in region X only. Associated to these, we will pick a set of three
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additional external variables (ivhich specify the orientation of the
instantaneous three atom plane with respect to a laboratory system)
which will also be different for different arrang?ment channel regions.
Accofdingly, our procedure for solving the Schrédinger equation
involves first the generation of solutions in each of the three arrange-
ment channel regions A = a?B,y in separate. calculatiohs using variables
apprdpriate to each region.l ‘This is fol].owed by a matching procedure
which yields a set of smooth and continuous solutions throughout all
of configuration space. To complete the problem, we need to
linearly combine these "primitive'’ solutions to generat_e ones which
satisfy the desired asymptotic boundary conditions.

| The procedure thus outlined is general and can be applied to -
~any nondissociative reactive system but in any specific application,
we must specify the boundaries (ih internal configuration space) of
the three arrangement channel regions. As was discussed in I, the
choice of bounding surfaces is primarily determined by the nature of
the potential sﬁrface, but for H + HZ and many cher reactive systems,
a very useful separation is obtained by the use of the three half-planes
T Ty and Ty of Fig. 2. They are limited by and intersect on the
Y, axis. 7, makes an angle By (in the 0 to 7 /2 range) with the Z,
axis given by ' |

— La
‘m._1m

cos B,, = v_K - (2.4a)
_ VA (mk+mK)(mV+mK)
S —

Nl

L

oufim

mKM

sin B, = (2. 4b)

—_(‘mk ¥ m, ) (m,, + mKL

where
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M =my +m +m (2.4c) .

K

Analogous expressions are valid for the angles between 7 KV and ZV, v
and between Ty k and Z e In terms of the internal variables RA’ Ty |

the half planes 7 satisfy the equations

e

Tt Ty =T, 0= 7y = /2 - (2. 5a)
LI 0=y, = 7 /2 ‘ (2. 5b)
Tyt Tx =T 0=y, = 7 /2 ‘ (2. 5¢)

These surfaces, called hereaftef the matching surfaces, are analogous
‘to those used in I and their properties are described in great detail

in that paper (Appendix A). They are of great importance in the -
matching procedure of Section 4 and the method of solution of the
Schriidingei* éqﬁa’cibn in each arrange-inent chaﬁnei region must include
a procedure for determining the wave function on these surfaces.

The reinainder of this section will be concerned with the rotationally

coupled Schrdédinger equations for each arrangement channel region.

2.2 Partial Wave Analysis ‘ S
In the system of coordinates specified by the index A, the

Schrodinger equation for the motions of the three nuclei is:

) v
h il 2 - = - =
{ VT\A "'~2 ’ VF + VA(ITA}R)UVA)"E}‘I’A(}’%:B\A) =0 (2-6)
& ~A :
VK -
where V%— and V% are the appropriate Laplacian operators and E is
e AK /\K . .
the total energy excluding that associated with the motion of the center

of mass. Upon introduction of the scaled coordinates of Eq. 2.1,
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Eq. 2.6 is converted to

2

R

+ V0 )+ Vi, Ry, my)-EHE N, R,) =0 2.7)
SR ¥Y

2
{- 8 (v
- 2L

where the reduced mass u is given by

O
M

L= (“A, VKu”VK) =] m)tmva/(mA + n{u + mK)] (2.8)

We now introduce the space fixed coordinate system Oxyz.
(Fig. 3) centered on the center of mass O of the triatom system and
whose axes are constantly parallel to the axes of a laboratory fixed
system of coordinates. In Oxyz the polar and azimuthal angles of
B\A and r, are BA’ (ph and Brx, qbrk respectively. By expressing the

~ Laplacian operators in Eq. 2.7 in terms of RA’r), and these angles,

the Schridinger equation can be rewritten as:

2 2 2 -2 12 .
b1 1 A A
{" .._(..__ '_@—5 R)\, + .-a—i_ r?\.) + A 7 + s + V(r}\: Rh,')’k)
2U RA aR, N arA 2urA ZpLR)t

, (2.9)
A -
-EFEN(,,Ry) =0
where,h and JA are the usual ofbital and rotational angular momentum

operators expressed in the spherical coordinates 6 2\’ qb)t andierk, qbrk.,

The total angular momentum operator /J\ is the vector sum of,l\K and
A
I=Li+j L (2.10)

and is independent of arrangement channel.

The operators /{2 and J ” (the z component of g\) commute with

each other and with the Hamiltonian H. In the partial wave analysis
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procedure, we ‘expand VR '(;\}L,Ii,h) in'v terms of simultaneous eigenfunc-
2 ’ ' 2
tions \I%TM (E}\’B\A) of I, J, and H with eigenvalues h J(J + 1), EM and

E respectively:

co J
A A
VrsR) = ) ) Co¥m(E@oRy) - @
J=0 M=-J
A . :
The ¥ IM still satisfy Eq. 2.9.

2.2 The Body-Fixed Schrédinger Equation

In the standard space fixed theory (as formulated, for examplé,
by Arthurs and Dalgarnozg), one now expands EEF;M in terms of avset
of simultaneous eigenfunctions of g\z, JZ‘; ,1\; and l; thereby obtaining |
a set of coupled equations in the gquantum numbers jA and 1)\‘. This
derivatioh is summarized in Appendix A A more convenient and
computationally efficient procedure for our purpoées is to transform
to a system of fmdy fixed coordinates. These coordinate systems
were applied to quantum n;lechanical problems long ago by Hirschfelder

and Wigner30

and have been discussed extensively by Curtiss, Hirsch-
felder and Adler31 and more r‘ecenﬂy by Pack32 and much of the present
development will follow that of Pack. In a fully converged calcﬁlation,
both the body fixed and space fixed formalisms leadoto the same |
number of coupled equations and, for fully converged nonreactive atom
diatom calculatibns, they may be implemented with comparabie ease.
However, body fixed coordinate systems lead to an approximate
decoupling of certain degrees of freedom which is not naturally present

in the space fixed analysis and which is useful in the development of

approximate theories. More important, the body fixed analysis leads
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to both computational and conceptual simplifications in the matching
procedure thus providing a considerable z.xdvantage in reactive scattering
calculations over the corresponding space fixed theory.

We now introduce the two different body fixed coordinate systems
OXAYAZA and Ox'yy'z'y (see Fig. 3) as follows: (1) OX,Y, Z, (not |
" to be confused with the internal configuration space coordinate system
OXY,Z, of Fig. 2) is obtained from Oxyz by rotating through the

33 o= qu, B = o Y F 0 so that the resulting Z}\ axis

Euler angles
points along the B\A direction and the YX axis lies in the xy plane;

(2) Ox',\y'z', is obtained from OX, Y, Z, by rotating it counterclock-—
wise about Z, (= Z'A) by an angle ¥, (in O to 27 range) so as to bring

| x')L into the E}\A’ ry plane and y'(which is independent of )\) perpendicﬁlar
to it and oriented in thg direction of }';})&x Iyt

R, X r
y A o (2.12)

IRl

The Euler angles which rotate Oxyz into Ox'xy ’zi are therefore

o= ¢A"v B;= o ¥ - ¥, . In either of the bodyvfixed coordinate systems
OXA‘Y)\ZA or Ox'hy'z'l the variables used to describe the system are
Ty» Rk,qb;t, 8ys ¥y V- As seen from Fig. 2, ¥, is the clockwise angle'
from O_YA to Oy'. Since OY;t is perpéndicula,r to the OXAZA pl:ine and
therefore the R, ,0Z plane, and Oy' is perpendicular to the 3\;\,1&
plane, we conclude that z[/A is the angle between these last two planes.
Therefore, a motion in which RK, qbk, GA’ ry and 'yk are kept constant
but "[/X varies is a "tumbling" (i.e., rigid rotation) of the triatomic

system around the Ry vector. For this reason, the gf;x angle will be -
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called the tumbling angle. In what follows we will {find it most convenient

to use the coordinate system OXAYAZA for deriving the coupled form

of the Schrodinger equation and Ox‘)t y’z‘A in developing the matching
2 2
procedure. The procedure for expressing the operators 1}\ and }\h

of Eq. 2.9 in variables ¢A’ 9)\, gbk, 10} is described in Appendix A.

A

We now expand ¥ in terms of the elements of the Wigner

JM
rotation matrix D (¢, B,7) as folloWs:32
J
A J v A
2, =-J ’ ‘
A

‘The notation used for the matrix elements is that of Davydov. 33
¥ ‘?Qh is called a body-fixed wave function. The quantum number
2y in Eq. 2.13 specifies the component of the total angular momentum
d around B\A or, equivalently, OZA‘ The component of ,1\}l (the angular
‘momentum conjugate to I}\A) around this axis vanishes and therefore
‘Q’A also specifies the Zk component of the rotational angular momentum
j,, in the body fixed frame. The equality of J,, and j,,, is verified
A A

independently in Table I {(which is described in Appendix A). We will
refer to either J Z}\or szk as the tumbling angﬁlar momentum (since
" it describes the tumbling of the triatom around B\A) and ‘QA as the
tumbling quantum number in arrangement channel A.

- As outlined in Appendix A, substitution of Eq. 2.13 into
Eq. 2.9, yields the foliowigg set of QA coupled equations for the

A, .
‘IJJQA(IGA: R?&z Yy KD)\) .
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Jr A JA X JA A
Ho e, Yoo, * Mo, 041 Yoo, Ho 0 1% 50,1
2 (2.14)
= E¥
The HS;T A o+ can be considered as the elements of a tridiagonal
AR

1, R

hamiltonian operator matrix H 3’ A,yh,tpk) Whose diagonal and

off diagonal elements are defined respectively by

_ 2 2 ' 2 3
ngmg =~j-—f(—!~--~————az‘-rk+—-1——- d R,) + - 'hz
ATTA 21 ry ar}L RA BRA : 2;ur .
| (2.15)
+ {30+ DR - 20 E]AZ + i }+V(rk, Rys7;)
2uRA
and
JA B ~ . F
A 0+ 1) - e 21 3F (2.16)
82, , & +1 9 “RAZ \f AN A A

The jf are the .raising and lowering operators of the rotational angular
momentum lk in the body fixed OX)L }\ coordinate system. The

1 /Z}lR)L term in Ey. 2.15 results directly from the 1 1 /2 ;LR?L term

in Eq. 2.9. Definiﬁg :I:} as the 29‘A + 1 dimensional column vector
whose elements are the ?}QA , Eq. 2.14 can be put in the matrix

form
A |
LR @.17)

Equations 2.14 or 2.17 are the body~fixed partial wave Schrédinger

equation. Egq. 2.14 is identical to the corresponding result of Pack32

and indicates that the kKinetic energy operator is no longer diagonal
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in the body fixed representation and is the sole mechanism which
couples different tumbling quantum numbers SZA .' The potential
coupling is 'diagonal in QA and is respondible for coupling between
states of different vibration rotation quantum numbers V)\jk‘ This
separation of kinematic and potential coupling is of prime importance
in the development of approximate decouplipg procedures as will be

discussed in the next section.

2.3 The Rotationally Coupled Schridinger Equation; Tumbling-

Decoupling Approximations

We now expand the body fixed wave functions ¥ ﬁz in terms
A

of the spherical harmonics Y3 Q ('y)\,\,l/)\) Whl(,h as discussed in

Appendix A, are the snmultaneous elo‘enfunchons of sz and ])\Z

00
n — ' - A
‘I‘JQK(r)" R)\.’ 4% ‘P}L) = . Z IQK i ijgl\(')’h; t]lk) WJj)\‘Q’)\(:‘rA’, Rx) (2‘ 18)
h=

If we substitute this into Eq. 2.14, multiply throughout by’

* . ’ N .
Yj 'AQ'A (YA’I‘DX) and integrate over y, and ¥, (using the sphd angle

volume element sin ykd'yl\dz,bk) and finally interchange the primed and
-unprimed quantum numbers it becomes a Schrodinger equation in the

two distancé variables r ’RA:
JA, N ' A

. a (2.19)
IN, SBYY A
tio,, 0.+l WJJAQ 1T A)+t9 2, 1WJ3)\Q)L 1Ry =0
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where
' . s 2
My _ B 2 1 2 NSNER
t S R, + — r,} + ——r
D08 2u R, aR,” * 1, er,. M 2pr
’ HooBy 98y A 9Ty Ty
2 . (2.20)
2
s B (3T + 1) - 20,7+ 5,6, + D]
2UR,
JAj 2 '
A il .
t =- —— £ (3,90, (,,9) (2.21)
ol T gug T ETTATETATA |
1
2
£,05,2) =[3(F + 1) - 9,(2, £ 1)] ey d=a (2.22)
and
AQ, _ \ §

Eg. 2.19 is the three dimensional generalization of an anal‘ogo,u_s
equation for collinear and copla'nar21 reaidions. None of the four
angular coordinates 6}\" (P).’YA’ t,f/x appear in it, with only the twq scaled
distances r)t,R>L remaining. In the collinear éase, none of the ang;ilar
momentum quantum numbers J, Qk or jA appear, and we have only

one such equation. For éystems confined to a space fixed jplane,

Q)\ does not appear (or it can be considered to have the fixed value
zero) since the System does not tumble, 'and_there is therefore no

2, coupling. In that case, j)\ assumes all integer values, including
negative vones,' and there is one set of jk .co'upled equations for each J.
In the present three dimensional case, there is both j)& and Qy cqupling,
but still no Jf_cbupling, Let us consider a kinetic energy matrix

A
gJ (x*A,R)t) and a potential energy matrix Y\A(rA,Rk) whose rows and
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columns are scanned by the indices jx"“q)x and jYA’Q' , respectively.

They are defined by
1

IA i I |
L8 A
£t ). =0. . o} , .t . 2.24
% XN U Z , et 2,8+ (2.24)
je=-
and ]

.t ey A0
e = v’ - (2.25)
~ T3S, QAQA RN

respectively where the several t and V were defined by Eqgs. 2.20
A .
through 2.23. It can be seen that t J is diagonal in j, (and tridiagonal
. . A . . ‘s A
in Q’A) whereas \9{ is diagonal in &, . Defining \Y\I(r)\’R)\) as the column

vector whose elements, scanned by &,,are the functions

: WJJA (rk,R)\), Eq. 2.19 can be rewritten as
™+ VY W) =BW; (2.26)
Eq. 2.26 Shows clearly that the potential coupling is diagonal
in Q)u' This, along with the weakness of the centrifugal coupling

Jx

(due to the terms in t°" of angular origin) for small J and j, has

lead to the development of fairly accurate tumbling-decoupling approxi- -

32,34, 35 i studies of nonreactive atom
J

diatem scattering; In such procedures, the tﬂ>L Q.1 terms in

mations by several workers

Egs. 2.19 and 2.24 are neglected thereby making Eq. 2.26 be diagonal

n 9’;&.‘
the}\; term in Eq. 2.9) is usually replaced by an approximate expres-
32

In addition, the *riz/QuR; term in Eq. 2.20 (which'arises from

sion. Pack” replaces it by ﬁ J(J + 1)/2;1R and McGuire and

34

2\‘ 2

Kouri® ™ by © I}L(I + 1)/2;13 w here 1 is the orbital angular momentum
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36

quantum number in the space-fixed system of coordinates. Such

additional approximations are unnecessary to produce SZA decoupling
and may furthermore introdﬁce additional errors without
significant computational simplification, and we suggest that they
should be omitted. For tl?e case of fiejactive scaftering, an Qh
decoupling requires neglect of the tQAjEZA 41 in Eq. 2.19 for each
arrangement channel region A = @,f,v. The exact matching procedure
described in Section 3 may be retained, or he replaced by approximate
ones which retain the spirit of sz)t decoupling. In a separate paper24
we will present some results of an application of one of these possible
procedureé to 3D reactive scattering. |

The elements of the potential coupling matrixbf Egs. 2.23

and 2.26 fnay he conveniently calculated by expandinvg the potential

VA(rA,RA,'yA) in a series of Legéndre polynomials
[~ o]
A
_ k=0 '
which when substituted into Eq. 2.23 leads to

A8
V. ..
hia

32

2j, +1 3
- ) CUKkI"59,00,)

(r, R = ¥, (—
VN e 2
(2.28)

C(j,ki", 000) Vi(r, ,R,)

where the Clebsch-Gordon coefficients C are expressed in the notation

31 For collisions of an atom with a homonuclear diatomic

&

| of Rose,

molecule (asin H + Hz), the only nonzero terms in Eq. 2.27 occur for

even k (since Vk(rA,RA,yA) is symmetric about vy = 7/2). Since38
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C(jyki'y;000) =0 for j, +k +j'y = odd, : (2.29)

we see that yj does not couple even with odd rotational states. Use

of this decoupling in reducing the necessary calculations for reactions
like H + H2 was discussed in I fof the planar case and most of the
simplifications described there are valid for 3D collisions as well.
Note that Eq. 2.28 involves a single sum over products of Clebsch-
Gordon coefficients, a substantial simplification over the correspondi.ng
' 32 | |

space-fixed exmnsion which requires 6-j symbols.*

Let us now define a new function F Jij g}, (rk, A) by

\
FJh%(rh’RK) R,I, W J 2 (rA,Rk) (2.30)
- Substitution of this into Eq. 2.19 leads to
i 20 ni N
(t - E)FL o + o +t F/:
SZA,SZK JJAQ Z ]}\] \ J3 A SZ SZ +1 JJAQ}J”I
(2.31)
tJ)\])\ A o
Q,,Q, -1 J;Aszh 1
where- |
tg Q. = = + =]+ P)
i ~ (2.32)
+ 5 [J(J +1) - 29, “y i Gy + 1)]

ZuRA
and the remaining quantities are defined by Eqgs. 2.21 - 2.23. In

‘matrix form,Eq. Z.31 can be written as

=JX A Y o
(t +g)Fﬁ=E§J (2.33)
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where t M is defined similarly to ,t\‘n and F,\:\‘,r similarly to Vj\g
Egs. 2.31 and 2. 33 are called the body-fixed rotationally coupled
Schrodinger equation.

-

3.1 Division of r,,R, Configuration Space into Regions

To solve Eq. 2.31 or 2.33 we expand the wave function
F‘{;}ﬂk(r)\’ RA) in terms of a set of one-variable pseudo-vibrational |
functions which locally span the r ’RA configuration space along cuts
which are approximately perpendiéular to a conveniently defined
reaction coordinate. The resulting expansion coefficients satisfy
~ coupled differential equations which must be numerically integrated'
through the arrangement channel region X to generate a set of zolutions
to the Schrdédinger equation in that region. In order to obtain an
efficient repreéentation of the pseudo-vibrational motion everywhere,
we must change both coordinate syétems and basis sets frequently
during this propagation. ‘ This may be done in many different Ways |
depending on the boundaries of the arrangement channel regions and
the shape of the potential energy surface in these regions. For the
H+ H2 reaction, and most others for which the choice of matching
surfaces is given by Eq. 2.5, a convenient procedure consists of
dividing the rA,Rh configuration spaée into four afeas called regions,
as depicted in Fig. 4. For reference, contours of the potential
matrix element Vo(rh,RK) of Eq. 2.2 for the Hg Porter-Karplus
surfacezg. are plotted on the same figure. The regions are denoted

as: I - asymptotic region, II - weak interaction region, III - strong
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interaction region, and IV - matching region. The boundary points
Py , P, and P, are required to lie in the high energy plateau region
corresponding to dissociation of the triatomic system into A+ B+ C
(i.e., large ry and R)\), in positions which are primarily determined
by certain geometrical criteria. These are described in detail in I
and are unchanged in the present application. Within each region,

we choose a set of orthogonal coordinates which efficiently describe
the local vibrational and translational motion. For example, in the
asymptotic region, r, is the natural expansion variable for describing
vibrational motion and R)\ the appropriate propagation variable for
describing translational motion. This is also true in the near interaction
region, but in the strong interaction region, a more efficient repre-
sentation is obtained in terms of the polar coordinates‘pl, N which

are defined by (seé'Fig., 0):
Iy =Ty, = P) COS @, (3.1a)

where the origin of the corresponding coordinate system is located

at r?\o.’Rx{ Here,p, is the effective expansion (vibrational) coordinate
and N is the corresponding propagation coordinate (for translational-
like motion across region III}. In the matching region, a different

set of polar coordinates SX/N is used. These are defined by

ry = sin 7, (3.2a)

R, = cos n (3.2b)



368
and have as origin the point Q in Fig. 5. The quantity ¢ was introduced
after Eq. 2.3 and the angle Ty, is 1/2 of the angle Wy also introduced
at that time and used in the representation of VA(r)\, RA’YA) of Fig. 2.
The variables ¢ and Ty constitute respectively convenient expansion
(¢) and propagation (nA) variables for region IV and also provide a
convenient means for obtaining the Wa§e function on the matching

surface as will be summarized in Section 4.

3.2 The Coupled Schrodinger Equation in the Propagation Variable

We now consider the solution of Eq. 2. 31 in each of the four
refrlons in arrangement channel region A. Much of this treatment »
is completely analogous to the corresponding coplanar theory (Section
- 3.4 of I) and that paper should be consulted for a more detailed

explanation of the concepts involved.

3.2.1 The asymptotic region

The coordinates for this region are rA’RA' In ferms of these,
~ the potential function Vk(rh, Rk,yk) becomes the isolated diatomic
potential vx(rk) since the boundaries of the asymptotic region are

19 so that the potential has assumed its asymptotic form. We

chosen
now expand the wave functmn F Ji Q (rA’RA) of Eq. 2.31 in terms of

the e1genfunct10ns qb (rk) of the v1brat1ona1 Hamiltonian:
)\ }L :

P R = Tep o ®os® ey @y
V:

where the (a) refers to asymptotic region and the ¢ v satisfy

A
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2 2 G, + DK
[- 2 e 22 Pyl ()

2
21 dry 2 pry

| (3.4)

Ma) g x(a)
" Sndy Ty
with boundary conditions
}‘(a) ( ) = )\(3-) (0) = - (3.5)
)\ VAJA ,
63(?) is the asymptotic diatomic vibration rotation energy and
AT _ ~
r; qbé (?) (r}\), except for a normalization constant, is the radial part

of the corresponding diatomic eigenfunction. Substituting Eq. 3.3
into Eq. 2“31, using Eq. 3.4, multiplying by qbg,(aj), (rA) and inte-

: AT A '
grating over r,, we obtain the Schrédinger equation for translational

RA motion in the asymptotic region:

{4, - Liag+1-20, +sk<h+m+k<“) Teiel o (B

1 . A ,
+ 1—{—5[ ;_‘_(VJ;_QA) é-{-(']?t’ QK) gJéi§AQA+1(RA) ‘ (3 .» 6)

A’ .
Wherei

W * -2y M) |
E - ) (3.7
V}J}\ RN S )>
Note that while no vibrational or rotational coupling exists in Eq. 3.6,

the kinetic energy coupling between g's of different SEA persists in

- . . : -2 '
this asymptotic region, decreasing only as R)\ (rather than exponen-
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tially cr as R)\"6 as is often the case with potential coupling). Of

course, as RA — oo (the "far' asymptotic region), Egs. 3.6 completely

uncouple and the g?éag Q become solutions to:
AR
d A(a) xa)
{-ds + kM G2t (r) =0 (3.8)
dr,” " bJ‘AJAQA A '

which are simply linear combinations of exp (+ ik K(ja) RA) for open -
channels (E > 5‘7;(?)) and exp (+ [k Aa) iRA) for closed ones

(E< ek(a)) Eqg. 3.6 may be solved analyhcally either by diagonalizing
the Hamyil’coman in that equation or by realizing that the corresponding
space fixed Schrédinger equation is already diagox;alzg, and thus its

solutions may be linearly combined to satisfy Eq. 3.3. 35

The solutions
of the space- fiked Schrodinger equation for open cha.nnels are related
to spherical Bessel functions 31 (kA;a) RA) and y1 (k Ma) RA)? &Y

where 1 is the orbital angular momentum quantum number. The
corresponding body-fixed solutions are found by equating Egs. A.5

and A.13 of Appendix A, and using Eq. A.14 to solve for the body .
fixed coefficients WJ:\%; Since Egs. 2.30 and 3.3 apply equally fo
both space-fixed and body fixed solutions, we can immediately write

the asymptotic body-fixed solutions for open channels as:
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i, - §2
A(a) M) 23+ 1,7, %
g R,) = R, () 1)
Jv Q A VRJ)~ 4y
‘ (3.9)
| i, Mg ‘
L VAJA A k(a)
X ZC(thlk;szA - 2,0) (E> %)
' vy ]
A Y1, VKJ
In the far asymptotic region, the Bessel functions become38
sin (k"(a) R, - L,7/2)
j @ Ry~ "2 (3.10a)
Lo T2 KM R
VA]A A
and
cos (k"(a)R - L7/2)
A
n o (a) Rx) ~ - MQ)R - (3.10b)
M ON k R - ,
VAJK A

and by expressing the sine and cosine in Eqs. 3.10 in terms of
imaginary exponentials, one can immediately see that Eq. 3.9
satisfies Eq. 3.8 as desired. The use of Eq. 3.8 in formulating the
asymptotic R and S matrix boundary conciitions will be discussed in
‘Section 5.1. For closed channels, the bddy fixed solution is still

of the form in Eq. 3.9 but with the spherical Bessel functions jlx and
y1 replaced by the modified spherical Bessel functions

([k}‘(a) ]RA) and k; (]k }\a) [RA) which behave asymptotically as
A
(a) R,)~ : (3.11

and
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'kk(a) [R
iy (12 R~ & ;‘JA (3.11b)
1 i P a .
A Iy !k"ajx IR,

Let us now introduce a matrix notation for the Schrédinger

equation (Eq. 3.6). We consider the gg(a) Q. as elements of avcolumn

Vadaie

Ma) whose elements are labelled by the indices v,j, &, , which

vector g3
are assumed to scan a total of N values (in a truncated cllosAe—coupling
expansion). This vector represents one of 2N possible linearly inde-
pendent solutions of Eq. 3.6. These 2N solutions which form 2N
column vectors cén be assembled into two matrices of dimension

N‘ x N which we label as g}(a)"" and gg(a‘)_ where a set of indices
V'Aj )\Q’} analogous to the row indices explained above is associated
with each column. 4l The labels + are in general arbitrary, but may
be chosen to distinguish the solutions generéted’in the propagation
from région I to IV (labelled plus) and from IV to I (labelled minus).
Both propagations are necessary to ‘geneArate all 2N solutions (we get
N from the propagation in each direction) In terms of this notation,

Eq. 3.6 may be written as

2§K(a)i - |
J - gf}(&)mh) Eg(a)i (3.12)
dRA - - .
where
93(3-) K"(a)z c?\(a) (3. 13)
2 t 2 h
{ Ma) ) s =5, MMa) (3.14)

A
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‘ Gv'xj \
t' v, ]
Ala

2 - -
R Q’}UQ’)\[ J(J + 1) - ZQA + JK(JA + 1)]

A - : (3.15)

- 69A+1,Q'A§+(Jf 2,0 9) - GQA—I,Q'Ag—(J’ 20¢ Gy 90

where t, stands for the set of indices v, j, 2, and the subscripts and
superscripts on a matrix element des:icrnate its row 'ixld column
respectively. The Uc (n)latrlx arises from the I/RA centrifugal
terms. Eq. 3.12 is the full close-coupled propagation equation for

the asymptotic region I.

3.2.2 The weak interaction region

In this region we still use the variables ry and R)\ to represent
~ vibrational and translational motion but the potential VA(rA,RA,yA) »
is now dependent on RA and vy s well as r,, S0 we no longer use the
asympfotic vibrational eigenfunctions of Egs. 3.3 and 3.4 to expand
the wave function. Since it may be desirable to change vibrational
basis functions several times within region II, we Subdivide that
region into nﬁ- subregmns separated by lines of constant

R, atR, = (R'o', .R' N = RA ). The range of R, for the ith

A
; ADH
subregion is R'A A = R' and we choose e1genfunct10ns for that
i- 1 Ay
subregion to be the eigenfurctions of a refel ence potential Vref(r A
i
where RA. is generally a point (such as the midpoint) within subregion i.

i
The reference potential V? ef(rA;R)L) is in general arbitrary provided
that a complete vibration-rotation expansion can be used, but an
efficient representation of the‘vibraticnal motions can greatly reduce

the number of closed channels required for such completeness.
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: A
Examples of reference potentials are the VO (rk, RA) of Eq. 2.27

and the exact potential VA(rA,RA,:,JA) at fixed 71\. Once a reference
potential is chosen, the vibrational basis functions for subregion i

may be determined by solving

2 2 (5, + 1B
A Y
b A YR A ol ‘“’ ( Nk )

9 Y
11 dr')L Kry

ZAWMR)AW) (3.18)

oA ﬂk

subject to boundary conditions analogous to Eq. 3.5 where the super-
' script (w)indicates weak interaction region. We now expand the

wave function I‘ in terms of these basis functions
Ji, 82 .

A ol AWy L0
FTJ)O (I’)‘, 7‘ gJV J) ’Rhi)qsvlj)_ '(rA’ R)t.) ) (3. 17)
Ya

Substituting this into Eq. 2,31, using Eq. 3.16 to simplify, then

multiplying by gb (W), (rh ,R ) and integrating over ry, we obtain the
1

following coupled dlfferentlal equations (in the matrix notation of

Section 3.2.1):

& A(w) ' ‘
d .
i§g~ (g, R)QWﬁ - (3.18)
N | i =
where

The matrzces Kh(w) and gJ ( w) are given by Eq. 3.14 and 3.15 with
the superscmpt w substxtuted for a, while the J independent potential

coupling matrix is given by



375

! .
MWL _Z_L,I: KQ
(9‘@ )tk - ﬁz QAQ’ f‘ph(w)( A’RA )[ V3 ]' (lha ?L)

“Vpeg(ryi Ry )]‘PMW) (pR Jary (3.20)

= (t lV(rp A’yh) ref(r}\,R )lt'

where t, was defined after Eq. 3.15 and the ) integral is performed.
as indicated in Eq. 2.23. Eq. 3.18 must now be integrated (as
described in Section 3. 3) through éach subregion i of Region . At
the boundary between two subregions (say i and i + 1), a vibrational
basis set change is performed. If one makes both \IfJ;ng and its
derivative with respect to RA continuous at this boundary RA = R'h.’
the following relations between the "g'" coefficients in two adjacent

subregions are obtained:

A, ) =520 A, .21
R i T+ -~ ~ 11
x(w)i DR der(MEg R
gJ (R Ay A ) %J (R A.’Rk.) '
+1 :§7it(W) — L1 (3.21b)
dR)\ » = dRA

where the overlap matrix §?(W) is giveﬁ by

o' o
[S"(‘”]t?‘ 5&;\@’*(“’} (e Ry )lqb"(“’, (x A’R »
| (3.22)

as discussed in I (Section 3.4.2), S j.\(w)

should be orthogonal for a
for a complete vibrational expansion. For a truncated e'-:pansmn as

reqmred by practical considerations, S’ (W) must be nearly orthogonal
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in ordef for us to obtain scattering matrices which satisfy conserva-
tion of {lux (see Section 5) to an acceptabie degree of accuracy. The
transformation between regions I and II is accomplished by setting

i =0in Bgs. 3.21 and interprefihg R:O to mean Rio (Fig. 4) and

>\(\V)( A,

on oM@)
to mean ¢th)\ (r;\).

0
)
"o

3.2.3 The strong interaction region

In this region we use the polar coordinates Py @y of Eg. 3.1
and regard ¢y as the propagation variabie. Before we can expand
our wave function in terms of a set of pseudo-vibrational eigenfunctions
in the variable Py We must first transform Eq. 2.31 to these polar
coordinates. The only ixhportant change in this transformation occurs

_JIM, v ,
intg o (of Eq. 2.32) which becomes:
A' -’)L -

L I T R R T
tﬂaﬂi:_;[ma oo o g :
L p, 9p Dy b
. g 2 2 2 ..
Jy iy + DA R JJ + 1)-22, +j, (j,+1)]

+ N . z T 5 : 2
u(r;\0 - P, €OS ¢,) M(th- Py Sin @)

As for regionvl}l, we cuvide region I into n?n subregions bounded
by lines of constant ¢, (= (P‘Al’gg‘k @' \ = go)\o). We choose _;

;nm .
our vibrational basis set to satisfy '

'2 2
{“ ;‘ .(;gT + Vi\'ef (p)t’(pl )} ¢7\(S (p?t; QDA‘G) . -
Haoy (3.24)

= *sh‘is)(%t )¢>‘(S)

with boundary conditions analogous to Eq. 3.5. <p)\ is generally

a point within the ith subregion and the refex ence potent1a1 has been



377

re-expressed in the polar coordinates so that it has the shape of a
diatomic potential as a function of Py for a given QDAO within region
III (see Fig. 4). The superscrlpt s in Eqg. 3.24 1efers to strong
interaction region. Note that the centrifugal term appearing in Eqs.
3.4 and 3.16 has been omitted. (It has been transferred to Eq. 3.30
below.) This results in a vibrational function qbs(s) ipdependent of
jA , which simplifies the matching procedure (Seczlion 4) and should
not seriously slow down the rate of convergence of the method. If

we now expand F Jiy 2, in terms of these qﬁh(s),

AP
1 - .
A v : ) - A(s) o P&(S) o
FJj)LQ)‘_ (PA: GDA_) - pk z‘ ‘gJVKjKQ)L (QDA ’QD}\i )quvh (p}\ ;¢Ai); (3.2 5)

" we obtain the following matrix equation:

2 23(5)*
-7 (s)((p N )&f}(s}i | (3.26)
dgu,L
where
iZwJ(s) _ Wx )UA(S)WA?GD;\:) N (3.27)
~and
‘l?r(s)(wx;%?h - K\MS)? + QCJA(S) + U\-MS) (3.28)

The matrix p 2y (Whose elements have the physical dimension of the

square of a length) is given by:

]AQ

[0, (qoh )]t SN NN (3.29)

while the centmfugal coupling matrix U J;\(S)
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N H 31 \J . | ‘ 2 3 3
e A(s) o t A _ 63 A&lh{ l{- 1 J(JT + 1) - 2(&_ +—3A(3A + 1)
[QJ (QOA:QOA_)](—' IRy (VA 7 + = - z
= i A pRaY L}p)t (RM - P, Sin goh)

1%

(R)\O - p)\ sin ('0)\)

-+ 2} lvxk) - éj}\‘]tk (VA 2 iv'h>

(1‘7\0 - p?\ cos QDA)

[0, 41,0, T 2E 02 + 0g 1 g0 €328 Gy, )1
(3.30)

As) ..

2
The matrices IEMS) and U are given by equations analogous to

Egs. 3.14 and 3.20 with superscripts and coordinates appropriate

to the strong interaction region substituted where necessary. Note

that the centrifugal coupling (Eq. 3.30) is no longer diagonal inv,.

The effective potential matrix 'ITJMS) is not symmetric in this region
 but rather is equal to the product of two symmetric matrices (Eq. 3.27)

- one of which (QAZ) is the matrix represexl‘;ation of a positive definite

operator. Complications resulting from the use of a nonsymmetric

A
g (s)

ot

in integrating Eq. 3.26 were discussed in 1 (Section 3.5).

To solve the Schridinger equation in region III we need to
propagate théf solution of Eq. 3.26 through eaéh subregion of that
region, relating solutions in adjacent subregions by an equation
analogous to Eqgs. 3.21 and 3.22. To relate the solutions at the
- boundary of regions II ahd III, we use the following formula (which is

derived in a manner analogous to Eq. 3.21):

I

A{s)+ 0 2 aw)x © ’ .
%J( ) (‘PA ”_*Oﬁaxi) :g\’)‘ g\J(W‘) (RP‘Q»;RAI];}:) (3.312)
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A(‘\V)i(R R )
dgj(s)(%L —0,<p>\) o2 ” Yo M‘)ﬁ |
= - Q}\ (3. 31b)
dgaA -~ clRA )
where
v 3 0!
o, h, =5, % <qf>"(s)(pk,<pA ) |p,P lsb"(“’) o "A’Rx o (3.32)
i |
b=1/2, 3/2

3.2.4 The matching region

The polar coordinates ¢, N of Egs. 3.2 are used in region

1V with U acting as the propacration variable. Upon transformatioﬁ

, _JA}

of Eq. 2.31 to these coordinates, the operator ¥ Q, RQ of Eq. 2.32

: A
becomes
’ - 20 3
My Fite,a 1 0 L5,0y + 1)
to Q“""""""""""‘“""”fé’ﬁ z7} + T2
A? 2p gog 9t ¢ om,  2uf sin g,

2 2 (3.33)
h[JT+1) - 20, +j,0, + DI

+ " 3 )
pg cos 1,

Similarly to region III, region IV is divided into n%v subregions by

lines of constant UNE with the vibrational eigenfunctions of each sub-

region satisfying an equation analogous to 3.24:

[- f;l p ef(C:ﬂ;\ )] ¢"‘m><z: ) - e’*‘””(r Doy (339

where the superscript m denotes matching region. Writing
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J3\5%,

F (€,m,) = ¢’ Y gfﬁ(,m) 2 (”MA )¢x(1n)(§ N %) (3.35)
V .

the counterpart of Eq. 3.26 becomes:

2

2g§(m) ~}‘('m)(a ”TA ) gk(m)* (3.36)
?L
where
g M) - gm) gﬁ(m)(nx;nh:) (3.37)
and ‘
Ui = - £ Mo L (3.38)

, ‘ o
The matrix f(nk is defined analogously to QAZ of Eq. 3.44 with ¢
= %

X (m)

- substituted for p, . The matrices K A(m)? and Up are given by

equations similar to Egs. 3.14 and 3.20 regpebtwely with the super-

script m inserted and the appropriate coordinate changes made. The

centrifugal coupling matmx U U 1 €A (m) is given by:

Lme‘ (rk,nk )]t *<V>L?C Iv >{6 l 34 (I(F1)-297

. . 2 . . . 2 . 3
+ 32\,(% + 1)Ycos UNES NN 1)/s1n n}\]‘ : (3.39)
- !53)‘53‘?)\:{ 552;\-%«1;SZ'A‘EJJ’QA)EJ}X’QA)
. 2 V
+ 552?\_1; Qf)\&,(‘;r QA)E_(]N QA)] /QOS nk}

To solve the Schrédinger equatibn in region 1V, one must integrate
Eq. 3.37 through each subregion, relating solutions in adjacent sub-

regiéﬂs by equations analogous to Egs. 3.21 and 3.22. The transforma-
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tion between regions III and IV is accomplished by equations analo-
gous to Eqs. 3.31a and 3.31b (with a plus rather than a minus sign
in the r1ght hand side of the latter) and the matrix § substituted for

E}hb ‘where

Eg} N %"(mkc )i(—«fk—») igb}‘(s)(p Lo, >J> (3. 40)
x ]Q }\ Py ~ III

b =1/2, 8/2

with p, defined in Fig. 3.
0

3.3 Integration of the Schrtidihger Equation

| We genérﬁte the solution g?f and its derivative with respect to
the propagatmn variable by choosma at Ry = R’ (Flgf 3) arbitrary
initial values for these two matrices and mtegratmg numerically
Egs. | 3 12, 3.26 and 3.36 from the beginning of region il fo the énd »

of region IV. The solution gf; and its derivative are determined by
“integrating the same equa;tions from the end of region IV to the beginning
of region II. Any appropriate numerical procedure may be used to
solve these coupled ordinary second order differential equations. A
particuiar cne which is well suited to such equations and which we
uged is the Gordon methodég . More particulars of this procedure
are described in I (Section 3. 5). |

| For the H + Hy reaction, the couf)led equations need only be
solved in one of the three equivalent arrangement channels. Reactions
of the type A + Bg involving two jdentical atoms will require two such

integrations, and reactions with three different atoms will require

«
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three. For arrangement channels for which the target is homonuclear,

Eq. 2.29 implies zero potential coupling between odd and even rota-

tional states. Since all kinetic energy coupling is diagonal in j7L

in all four regions, our matrix differential equations may be decoupled

into separate ones for the even and odd rotational states with a subse-

quent savings in computat-ion timé. Both must be integrated before |

the matching, which mixes thése two sets of solutions, can be performed.
Any chemical reaction displays in addition parity (i.e., inver-

sion through the center of mass) symmetry, as shown for triatomic

systems in Appendix B. Although the body-fixed wave functions ob-

tained from Egs. 2.13, 2.18, 2.30 and either 3.3, 3.17, 3.25 or

. 3.35 are not.eigenfuncﬁohs of the parity operator, they may be

linearly combined to yield solutions which are, and this ‘transformation

to the "parity répresentation" results in a partial decoupling of

Egs. 3.18, 3.26 and 3. 3.6 into two sets, one for even and one for odd

parity. A description of this transformation ahd other consequences

of the parity operation are given in Appendix B.' By using parity

“eigenfunctions, the irs‘iegfation in each arrangement channel is done '

-‘_in two separate steps (four for homonuclear targets). Sinée the

transformation between arrangement chénnels preserves parity

(as shown in Appendix B), the matching procedure also can be done

separately for S'olutions of each parity, as can the calculation of "the

reactance and scattering matrices. The final plane’Wave solution

is not,' however, an eigenfunction of the parity operator, and as a

result the calculation of scattering amplitudes requires a transformation

back to the body fixed representation of the previous two sections.
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The enormous reduction in computation time more than outweighs
the additional work involved in this transformation. Appendix B

"describes this in more detail.

4.1 The X to v Transformation

At the completion of the integrations in each of the three
arrangement channel regions, we have obtained solutions to the
Schridinger equation which span all of configuration space but which
are neither smooth nor continuous at the internal configuration space
boundaries of these regions. In this section we describe the procedure
for linearly combining these solutions so as to produce a smooth
 matching at those boundaries. This procedure will also include the
transformation from A to v coordinates (appropriate for arrangement
channels A and v respectively), é transformation which is both con-
ceptually and numerically facilitated by the use of body fixed coordi- .
nates. Our analysis will focus primarily on the behavior of the wave
function in the vicinity of the half-plane matching surfaces defined bv
Eqs. 2.4 and the remarks preceding and followihg it.

Equations describing the X to v transformation have been
derived for coplanar reactions in Appendix A of I, and most of these
expressioné are still valid in 3D. However, some angles which span
a range of 27 in 2D become polar angles in 3D (with a range of )
so some care is required in making the analogy. The basic equations

which govern the transformation are given byzlg



B\V cos o -sin & Ry
- (4.1)
r, sin @,  cosa, Ty
where @, is the angle between 7/2 and 7 defined by
Uy =T By - (4.2)

B, having been given by Eqgs. 2.4. Eq. 4.1 may be easily derived |
from Fig. 1 and Eq. 2.1. By taking the scalar products R,}R,
rrr, and R }£v in Eq. 4.1 and using Eq. 2.3, we find the following

~Y A

expressions for the }'{)\,rw'y}L R , T v’yv transformation )
2 2 2 . 2 2 in 9 4
R, =cos a, R, +sin a,r, -sin2a,cosy,rR, (4. 3)
.2 -2
r, = sin’ amR}\ + cos Q@ T, +sin2a , cos ¥, 1Ry (4.4)

cos y, = (R,r )" [;i;(R)t -, *} sin 2a,, +R,r, cos 2a , cos y,] (4.5)

| Egs. 4.3 and 4.4 may be com‘pined to yield

2 2 2 2

R, +r, =R, +71, - (4.6)

which, together with Egs. 3.2,proves the invariance of ¢ to arrange-

ment channel. Also of use in our analysis below is the polar angle

A, (in 0 to 7 range) between R, and R, which is determined by
R:R, R o r, -
_ AV A A : A
cos A = =coso, ,— - sina_, cosy, o (4.7)
VA RVRA TVA g VA AR,

v
We now examine the cdnsequences of Egs. 4.3 - 4.7 on the

matching surface T . COmbihing Eq. 2.5a with Eq. 4.6 gives

R, =R ‘ B )
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and this equation together with Eqgs. 2.5a and 4.3 leads to

=
=
[

|

2 2 .
=-cota , cosvy, + (1 + cot @, CoSs yh) . (4.9)

]

A

which is the equation of the matching surface LIS in R)\,rk,y)k coordi-

nates. If Egs. 2.5a, 4.8 and 4.9 are now substituted into Eq. 4.5,

we find

COS 7, = ~COS ¥
gnd since 0 = Yy V=T, We conclude that on LI

Yy, =T =, (4.10)
Eqgs. 2.5a, 4.8, 4.9 and 4.7 may be combined to yield

cos A, =cosa, - sina ,cos yA[cot @, COS ¥,

ot

1 (4.11)
2 2 2
+ (1 +cot a,cos y) ]

which implies that Auk is }a function only of Yy ONT .

It will also be useful to convert R,,r, in Egs. 4.7 - 4.11 to
‘the polar coordinates £ (of Egs. 3.2). First, from Egs. 4.8 é.nd
3.2, we have |

W | (4.12)
and, after some manipulation, Eq. 4.9 becomes

cot 27, =~ cot @, cos Yy (4.13)
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which is the equation of T in C,0y0 2% coordinates. Since Ty =

tanwl(rh/Rh) and is in the 0 to 7 /2 range,‘we conclude that

1N [t

moede, | (4.14)

where w, was defined after Eq. 2.3. Therefore, Eq. 4.13 is equivalent

to
cot w, =-cot @, cos vy, (4.15)

which is the equation of the 7 _~ half-plane of Fig. 2 in the polar
coordinates {,w, 7. Finally, Eq. 4.11 may be reexpressed in

UNERON coordinates as
cos A, =cos @, - sin a}mcos‘y}t tan 7, | (4.16)

We now consider the transformation from the body-fixed
coordinate system Ox“)ty'z*},t (Fig. 3) to Oxfyy‘z‘vg Both systems have
the same y' axis (whichis perpendicular to the three atom plane) and
from Eq. 4.1 and Fig. 3 it can easily be shown that this coordinate
transformation is a ¢lockwise rotation about y by Avh'

Let us determine the effect of the }3\2\', ry— Ev,g " trans- .
formation on the wave functions. The complete body fixed wave
fﬁnctionaas obtained from Egs. 2.13, 2.18 and 2.30 is

' A
F. (ry,R,)
J])\QA AT

. ’ B : J ‘
. ‘I'J‘M '" Z DMQA(,(P)J GA,Q)YjAQ)L(’y)\" 11(/]\)

1,8

\ "Ry |
| | - (4.17)

i J A
=— ) D (D5 0,5 )X 70 (TysRys7y)
o g M, Par T Vi g, Yo Ty
X
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where, from Eq. A.2,
9)& A
w0 6’33 (cos ¥,) FIi g (ry s Ry)
X, = Y A A (4.18)
iy & r,R .
=12 | B

In the second line of Eq. 4.17, the exp iQ,¥, part of ijﬂk(yk, N

has been incorporated into the rotation matrix DI\‘/[IQ which trivially
A

converts ¥ M from the OXKY Z, to the Ox' Ay z! coordmate system.

If ¥, .is fully matched (i.e., a smoothly contmuous solution of the

JdM

- Schridinger equation), it may be expressed in the Ox"yy"z "V coordi-

nate system in an analogous way:

¥ z DMQ ((i)vyez,f VV)XJQ (I‘V,Rv,)/) (4.19)

JM \["‘
. V N

Since the A to v transformation in the body fixed coordinates

OX’Ay'Z*R is accomplished by a counterclockwise rotation by an angle

- & about y, the corresponding body fixed wave functions may be

related by:

A S | v »
X = ). d (A )X . (4.20).
IQ 2. Q,0, Cwrtig,

v
where

J

Q 2,80) =Dg g (0.4,,,0) (4.21)
Vv .

- in the notation of Davydo\n% Eq. 4.20 relates the matched solutions

x}_” and xY for any values of the internal variables.
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4.2 Projecticn of the Wave Function onto the Matching Surface Basis
Functions

In this section we consider the evaluation of the unmatched
wave functions and normal derivatives obtained from the integrations
“in both channels )\ and v on the matching surface 7 oA and their expan-
sion in a set of functions TVZ)EXQA (':’7"’)&) which span tha.t surface. The
complete, unmatched wave function in the OX'AYTZ'}\ coordinate system,
in region IV of internal configuration spac:e(subregibn i) is (from

Eqgs. 4.17, 4.18, 3.35 and 4. 14):

At | At & . .

Yim zf‘ﬁ?ﬁ* ) DMQ (8, A’VA)XJQ Cmon) (4.22)

§2,
- where A+ .

| A E
)\.f.';i«!- ? ﬂ:"h()/\(cosy}‘)(’bv (C 72) )b Tvr 1A0 (77) s 1)1) .

X =), ' (4.23)
I g */*(4 sin Zn‘\) ‘ *

Vah
Here we have dropped the superscript (m) as it will be implicit thi*ough-»
out this section, but we have included the labels t'\+ = (v' I8 4)
to denote the 2N linearly independent solutions obtained (from an N
coupled-chan’nel calculation):. Eq. 4.23 may be evaluated on T Py
using Eq. 4.13 to relate 1, and ¥, . Sihce 0=y, = T/2onT,, We
find thaénx inust lie between T, = (-0 ,)/2 and'n}‘l =7/4 to |
satisfy Eq. 4.13. In order to evaluate Eq. 4.23 over this range of
My s it is convenient to. change to a common set of vibratio.nal basis -
functions ¢VA(§) for all subregions i. This is accomplished by trax}ms-!

formations analogous to Eq. 3.21 and 3.22 with the result that
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PRANE At‘

— \ : ‘ B

X109 A" 2¢7%/* (sin 27,)”" (4.24)
A A

where

PYANEY 2, At & |

AL )\

s, = L N j, (cos 120y ey 5 g ) (4.25)

ON

To insure a smooth matching, we must also consider the derivative
of X JO. normal to r A (other derivatives are possible). Expressions
for this normal derivative operator were derived in I (Appendix A)
where we found .

2 1 sin « Ut B 9

= - +cotaks1ny}t---]
gn,, ¢ sinw, 9w, | 7y

1 sin Qo [ . o 3
= 3 +cot @  siny, —— ] : (4.26)
¢ sin 27, TN A ) "-ay‘ﬂ

sin & ' .
=-i- . vrrs 8 »cotamsinh;—a——-l

Applymg this operator to Eq. 4.21, and evaluatmg the result onm s,

we find
At' & , ,
ax A* .
J 2s5in o At +
AT A g A (4.27)
on C7 /*sin 2 I )
VA O
where ”
RN | RN |
A
BV

and
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At &

M:' dg JV;;?\ Q}\ (nh (YA))
G'JV;J;L N =[z @ {cos ) an, fc,Ot “pa
xgr A (n sl cos o @D%(cosw—(?‘j”l)% (4.29)
JVAJAQA AYVNTYN A Iy A Zjh+3

2 2 é QA
X[(j}\ + 1) - QA } g)j)t+1 (COS ')’A)}]

In deriving Eg. 4.29, the use has been made of Eq. A.3 and certain

recursion relations between the associated Legendre polynomials. 38
We now wish to expand Eqgs. 4.25 and 4.28 on the matching

surface in tefms of a set of functions »T‘I’%‘}LQ}L (C,?’;‘«) which are ortho-

normal and complete on it. (We choose £ and 7y to be the independent

< . 3 .
variables which scan wv;\.) The T Vl;j)\ﬂ)x are given by
T o (Gw) = o) ()D (7)) | (4.30)
v;sz S S Q ") L 4
where the ¢A 's are identical to those of Eg. 4.25 and the D;»;z
a ATTA

are a set of rotational functions Wh1ch must be orthonormal (with
weight function sin 7)\). and complete on the domain 0 = Yy = T /2,
The reason for this choice of the domain of 1N is'analogous to that used
for the coplanar matching in I (Section 5.1). An important consequence
VA

Q used to

Vadashy
expand the wave function of Eq. 4. 25 for each v 2N must be less

of this procedure is that the number of functions T

than the number of v1brat10n rotation basis functions ¢ (C 5" (cos 7))
in that equatlon For many reactions, including H o+ Hz, the number
of TV Q 's should be half the number of vibration-rotation basis

v ]
%A
functions and we shall use this number in the discussion below. This
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would imply that the number of jh's for each vy Q)\ used in the close

coupling expansion must be even. An example of how this might be

done would be to use a complete set of Sz/\'s for each jA within a given

vibrational manifold, except for the case j/\ = jA' . For this case
max . v
(aslong as J = j ) one uses §, =j -1, 3 -3...-§, +1
N Amax A )‘max Amax Amax
For J < jA , we use the same procedure and then eliminate
max '

those &2, for which iﬂkl > J. Other choices are ‘possible but this
particular set of quantum numbers is useful because it leads to an
asymptotic uncoupling of those terms in Eq. 2. 31 Which are not
diagonal in ﬂh for jh = j)‘max and this allows us to solve for the asyn;g«
totic behavior of these partially truncated solutions in a simple way.
' Whafever the choice, this restriction on the method is seldom a
serious limitation because it only affects the highest rotational state
Y for each vy 8, aﬁd this channel is usually closed in a converged
'treatment‘ An‘example of a choice  which is orthonormal over the
0 to 7/2 range (Weighted by sin 7,) is: |
| V’Z@ﬁj‘ (cos y,) for j, + &, =odd .
Djlfb}\(”x) N | n - @3
0 for jA + QA = even

This choice is very appropriate for expanding the Yy dependent part
of Eq. 4.25 for a collinearly dominated lreaqtion such as H + H,
because thes¢ Djf;zk vanish at 12 =7/2 (where'the interaction potential |

on the matching surface is high and the wave function very small)

and are most effective in representing the wave function near Yy = 0.
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(where the potential is low). Other chojces for the D;)‘Q may be
ATA

made in analogy with those discussed for the planar problem in I.

We now expand Eqgs. 4.25 and 4.28 in terms of the T” Q

- and

Ah A
obtaining
At £ M:'
A VA
¢ = ), h T (€, %) (4.32)
9 Z. Jv JA A iy A
ada
At Attt + .
A A vA
3’ = y h'_ T % o (67,) . (4.33)
Vada
At' o 7 /2 9 DS ARES "
A VA A A . :
hoo ' = ). J DG (7)) (cos K)g 4, (n,(ry)sin ¥ dy
IV 388 3; 0 A vA JVXJHXQ)& DALY Gl s Rals
A
(4. 34)
T ’ — 1
h JV’AjAQA = 2 0 ( }\)G JV)LJH {Z (Y)\) sin '}’A d’)’)t (4035) |
JIVA

where Eq. 4.29 is to Lz used in evaluating Eq. 4.35. Note that the
indices VAJAQ}\ in BEgs. 4.32 - 4.35 can assume only N/2 values
(from the discussion above) whereas the indices v‘)\j"‘}tﬂ ')\ scan N

values. This implies that the matrices h* and h'} have dimensions

ad T AT
N/Z x N.
vt' +
We now consider the expansxon of the wave function XJQ

obtamed from the integration in arrangement channel region v on
Atf %
# , in a manner analogous to that for ¥ x* . The expressions for
VA JQ)t

the wave functions are given by Eqgs. 4.24 and 4.25 with v replacing
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‘A everywhere. To find the normal derivatives, the lower line of
Eq. 4.26 is used with the resulting éxpression given by Eqs. 4.27
and 4.28 where v is replaced by X and where the function

VtyV:J:
G'. % is given by
V15,

vt‘y:é (n (5 )}
' . de . 1, (¥
vt' + j, = Q oJv, 3.8 A
G5 g =- D7 V[P, Vlcos ) — XL
JVV]VSZV , 2 iy A dTIV
vt‘yﬁ: ﬁ Qy
- cot gy VQV(n Srfi, cos ?’)\{ij (cos 7,) (4. 36)

1

2j,+1 3 2 R
*—170G,+1) »-sz,,]f:;l)il(cosyk)}]

- -
ZJV + 3
the that Eq. 4.10 has been used in Eq. 4.36 (along with the property
>6°§n(—x) = (-1)j+mﬁ'~3§n(x)) to express all quantities in terms of Yy
The relation between n, and v On T, is obtained from Eqs. 4.12
and 4.13.

The expansions analogous to Eqs. 4.32 and 4.33 are given by

vt % vi' o+

&Y = Y Vo 1t (e) (4.37)
I8, vz; v, i, Tv i, A ,
120 4
Ry 2 |
ot V- oo TP (ey) 4.38
Iq, v% s i e, Tvia (67 (4.38)
vy

where
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vt' it -8 77‘/2
v Ty v 2y
fJVVjVQV - Z\ ( 1) f() 3 Q (Y)t)éoj”y (COS Y?t)
J” .
g v * (4.39)
X8y ]" o (n(ry)) sin v, dv,
y{;’ f Vt’ ﬂ: ‘

V

with E‘qo 4. 36 being used to evaluate Eq. 4.40. All expansions are
made in terms of the coordinate Yx to facilitate later manipulations.

For atom plus homonuclear diatom collisions, the coefficients
¥ .

Zh:t At
IHVash
At‘k

h Ji V.6 of the 7, matchmg by noting in Eq. 4 39 (with X substituted

(AW AN IA% l\.l.- }\‘J. N 44 . _
for v and K for l) that gJV)\]”xQA =0 fqr j"y - ¥y =odd and therefore

f obtained in the Ty matching can be related to the

that (ui} k =~ i) for the non-vanishing terms. ¥For collisions with
a homonuclear diatom, m , =m, so By =B (from Eq. 2.4), and
the mathematical expressions analogous to Eqs. 4.12 - 4,18 for Ty k

are identical to those. equations. Therefore, from Egs. 4.34 and

4. 39 (transformed to Ty J» We have
fJAt }}:tsz — 1)3 A QA_ . ;t A::i:ﬂ (4. 41)
adatiax adat

By similar arguments for the derivative equations, Egs. 4.35 and 4. 40,
using Eqs. 4.29 and 4. 36, we find
At'y &

f ) . ,_
Fav, 5,9, h (4.42)



4 -3 The Matching Equations

We now wish to find the appropriate linear combinations of

the2 X's and g%_,_ 's of Egs. 4.24 and 4.27 in channels A and v
VA i ,
- whiich give smoothly matched solutions x and g—lz%——— satisfying Eq. 4.20
VA

ancd its normal derivative on 7 .. Accordingly, we write
1 : r
Wty gy MA e, 2
RPN t': JE2y Jat’y I8
' A

Nt
Canpi } (4.43)

wheere the coefficients C g in Eq. 4.43 are to be determined by evalua-
tin:€ Eq. 4.20 and its nqrmal derivative on 7 A agd analogous equa-
ticnson7  andw, . The indices (i)t = (i)viQ denote different linearly
insependent matched solutions, witht assuming N values andi =1,2 or
3 zor a total of 3N solutions. ~This is equal to the number of linearly
ins«ependent scattering solutions possible as was discussed in I

(se:ction 5.2). The normal derivative of Eq. 4.43 is:

Gt | My RO
ot I N S C L e WY () oY
ar‘th Lt anmf : " A anm’ R >3 : :

)

Tr< normal derivative of Eq. 4.20 is in generall a complicated quan%

tiz7, but for the particular choice of matching surface specified by

E¢j- 2-92, we have the important relation’?
oA , SRR
VA =0 - | (4.45)
oy |
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which implies

(1)1; ) (1)t
kJQ z J ( ) VJQ ( )
d A e 4.46
Q Q VA .
Bnm QV ‘V A | anm

Let us now substitute EQS. 4,43 and its counterpart for channel v
into Eq. 4.20, as well as 4 44 and its v counterpart into 4.46;
utilizing Eqs. 4.24 and 4.27 (and their v counterparts) along with
Eq. 4.12. We obtain |

~ (1)t+ (1)t— a J
Z {@JQ Caer ‘-I’.ml th' =), 4 . (8,
. 0 VA .

(4.47)

‘ vt’ ot
% (i) t+ (1)t-—
) {‘I’JQ Cap * @JSB Cotr, }
t!
with a similar equation involving @' resulting from the matching of
the normal derivatives. If we now substitute Eqgs. 4.32, 4.33, 4.37
and 4.38 into Eq 4.47 and its equivalent for the derivatives, then

' multlply by the T gz‘ (defmed by Eq 4. 30) and 1ntegrate using

Vada$ty
the orthonormahty pr -Jpertles of the T , we obtain:
t' - 2
. (1)t+ (i)t~ Vi 8,
L {th A Cagtr, hy, 0N CAJt’A} = L (), "%
1Y . vuJVQV
(4.48)
£+ vt' - . : :
t+ v (i)t-
X {f et v oDty
: % Jv ] s'z VJt JvV}VQy QJtV

The demvatwe equatmn is analowous with h' and ' substituted for
] §2

v
hand f above, The quantity (SuA) j Q

is defined as
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7, Vb T2 J.
(Svh)VA]:Q: :S\lr;vu f() Djiszh (VA) dﬂyﬂh(AvA(y)\))
(4. 49)
J p (7,) sin y, dry
where
= f o (D] (0 d  (4.50)
J 33

If we regard s JA as a matrix and use the Davydov definition of dg Q.

then provided that the TV gz form a complete set of functions, we
A , ,

J "J
can rewrlte 21/)\ as

N f o
%}i =exp(14,,) (4.51)
where
v,i82, _ ‘ | - » ,
u)\)v ] 2, = (JAQA ;Auh hzzﬂv) (JSZA in fJSZV) (4.52)

From Eq. 4.51 it is immediately obvious that §V‘; is unitary if the T

are complete, and since the dsg Q. are real, Eq. 4.49 indicates that
A » .

fivi is orthogonal. Let us now write Eq. 4.48 as a matrix equation

by regarding the h, f and C appearing there as the elements of matrices,

obtaining
At D+ (1)- ves (W | - (0)- -
by %AJ +H G =8 A{f Cos *iy Gy b (4.53)

According to the arguments of the previous section, the matrices

At

QJ and}f\J should be of dun\,nsmn N/2 x N while 213\ should be
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N/2 x N/2 and the C's are N x N matrices.. The corresponding deri-
vative equation is obtained from Eq. 4.53 by substituting h' and {'
for hand f. We can combine function and derivative equations into a

single matrix equation involving only N x N matrices by defining the

augmented N x N matrices Qgi i;i and zlg\ as
At
: h
A
Mt - (4.54)
=~ A
hy
4 gVE
vy | R0
Iy = " (4.55)
f1
\ J
: J
A J iyk, g ‘
iu; = 5 ; | (4. 56)
\ b4 B/

where 0 is an N/2 x N/2 matrix of zeros. The resulting matching

equa,tion for 771/)\ is
P+ i)+ (i)~ L~V (1)+ G (1) .
'y gM + B gl = { SHL AR Eaeb R (4.57)

Following the same arguments as were used in I (Seétion 5.2), we now
combine Eq. 4.57 and its counterparts for n kv and Ty i 1nto a single
3N x 3N equation which can then be solved for the coefficients (;,3 _

which determine the matched solutions;‘ The final result is

CreH T =- TNy (4.58)

where
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AV ES A J avt
I Sk o
SN AR+
lgj = 0 gg "§:<v i (4. 59)
A J Ak Ad e
_,»Si)t/{;\fd 2 E
and .
1+ 2+ 3+
991“1 (%J C%J
£ + + +
Cr = %{J Coa | CﬁgJ (4.60)
1+ 2+ +
Ck3 Cry G

9 hére represents anvN x N matrix of zeros.

. Eq. 4.58 can now be used in conjunction with the asymptotic
analysis of the .next section to determine the 3N x 3N coefficient
mat;ices Cﬁf _Which will provide wave functions which are both smoocth
and continuous everywhere and which also satisfy the proper scatiering
boundary conditions. Note that our procedure fof matching simﬁl-
taneously combines the primitive solutions in channels}k, v and «k to yield
soluti’ons which are smoothly continuous throughout all of configuration
space. - This contrasts with the analogous procedures of Wyatt and
coworkers16 and of Light and coworkersl'5 Whichv seem hot to include
the coupling between channels v and k (here represented by the 7 KV.
matching equation) explicitly when dealing with collisions originating.
in channel X. They may have included such coupiing implicitly by
~utilizing the symmétry of the H3 system. However, if AVf and A K

are different atoms we believe that the v-« coupling must be included

explicitly.
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5. ASYMPTOTIC ANALYSIS
5.1 The Reactance and Scattering Matrices

In this section we define the reéctance an;i scattering solutions -
and relate these to the matched solutions of the previous section so as
to complete the determination of the coefficient matrices S * and
also the reactance and scattering matrices 5 and S Sg. ;n 1 we
proved that the R and S matrices (which are physically dimension-
less) can be equlvalently defined in the scaled variables Xy BA, or in
the ”physzcal" ones r;\, ﬁk . Here, for simplicity, we use the scaled
coordinates in all definitions except that of the scattering amplitudes
(Se'ction 5.2).

If we use Eqs. 2.13, 2.18, 2.30 and 3.3 to express the matched
asymptotic wave function (of Eqs. 4.17, 4.18 and 4‘43)} in each

arrangement channel, we find

Wt % 2 p :
Y~ Y 2 Dyg, (92630 Y0, (ovy)

t)x M N
(b Aj <rl) (1) £ (R ) | (5 1)
Jt, O
rARA A, | 7
where

@t o« A+ (i)t @)t- |
e L X Wt AT By (5.2)
;\Jth ti Jty AJtY th )‘.th
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Here we have dropped the superscript () as it will be implicit

throughout Section 6. The sum over'ar,ra,ngement channels serves
as a convenient notation for expressing the asymptotic wavefunction
in all three arrangement channels simultaneously and is made -
possible by the fact that asymptotically there is no overlap between
the separated atom plus diatom wavefunctions in different arrange-

ment channels. An equation analogous to Eq. 5.1 for the derivative

1 2 (L)t | ALy
~§; Fﬁ}l R?& ¥ JM  can be obiained by replacing thk by
, , , ,
ddkt}\:_!— |
oJt
2. inEq. 5.2.
dRh :

The reactance and scattering body-fixed solutions are defined

to have the asymptotic form

PrF

Ao | N J ,
¥ *[Rors] o~ ZID . (6,0,,0 o (%,¥,)
IM R, Rg, R~ A G Mz TATAT L0, AT
N |
X b. . * [Rors] (5.3
R AJt

where, in the far asymptotic region (in which both potential
coupling and the centrifugal coupling of Eq. 3.6 have become

negligible), for the R solution,
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ryr

: ' A
. A . T A
sinkl> . R.-J+j.) =)o
[ vydy A PR Afk

3 82
A c o\ T i
+cos (k .R~(J+3)-~)R "
o VAJA)\ AN 9 JAVA})& Q)\,
AJt [R] = (l ] ,) , ‘ (open c_hannels)
A A
K2R, e KD IR ,
o A B TR A8,
At INv !
A AT
(closed channels) (5.4)
32

and,‘- for the S solution

s AN ’ . ¥t
~iks - Ro-@T+i)2 )

[ e

? - i }u';A
iy j Ry- G+ 5) awie
—e AN g A
V' )\ }\
Xt! -5 .
bﬁ% [s] = !ngkl) (open channels)
[k* . |r , {k>t Ir .
W A G T "VAJAQ;\
O, - @ STV
A A }l
(closed channels) (5.5)
V& . is the velocity (in scaled variables)
]
A ,
hv ‘ A N
Vo i = HkD . /u (5.6)
ah Valx
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and the primed variables v;\j;LSE ;\ in Eqs. 5.4 and 5.5 define the
reagent state in the )\’ arrangement channel. (Note our use of the
abbreviation X t;\ = X t;\, .) 5 y and 8, are the pari;ial wave
reactance and scattering matrices and, for exact solutions of
the Schrdédinger equation, they are symmetric.45
Note that -Q/ rather than @ appears in the definition of Ry and
§ 3 ’I"his choice allows the open channel part of the scattering matrix
;o become the identity matrix in the limit of zero interaction potential
(as will be evident from the partial wave expression for the scattering
amplitude in Section 5.2). The ’phas'e factors ) appearing in
Egs. 5.4 and 5; 5 are arbitrary but will prove‘convenient later on.

- The open channel sub-blocks of R, and S, are iabelled ljg ~and §3, -

and from Egs. 5.4 and 5.5, one can easily show% that
. o -1 .
Sy = (L+iED (I-3EPT , 6.

]

J
0 -
is real and 83. is unifary. From the unitarity of $ J ©One can prove

o~
~

where ] is the identity matrix. In addition to being symmetric, R

flux conservation and from its symmetry, microscopic reversibility |
results, 49 | - |
- Inanactual calculation; we wish tousethe R and S
solutions of the Schrodinger equation at a finite R, for which the
potential coupling has become negligible but the centrifugal coupling
in Eq. 3.6 has not. These solutions can be obtained by taking the |

appropriate linear combinations of space-fixed Bessel functions which

appeared in Eq. 3.9 so that the far asymptotic behavior in Egs. 5.3
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and 5.4 is obtained in that 1imit. In other words, as soon as potential
- coupling has become negligible (but not the centrifugal one) the b in

Eq. 5.3 can be written according to Eq. 3.9 as .

xlti . —% ll' t }\, tl X! tll )\II tll
MRI= (VRS D 4‘3,,{ MR) 6y +0 [R] R '}
AJt hjk At t)\ IX V)\J QA
5. 8)
# 7 1 ey 14 l 1 %/ ) nan
~z A A A t A
A A A
(5.9)
where, for both R and S matrix solutions,”
A,'t' .
A
I v i Q! -Q
_5 7\){(1) A AEC(J’]E Q’,-Q'-,O)
pY )\ ,
"’Q'JVJ 2 , ) ,
, : e S ATATA
X C(J:’A,QA’QA’ QA,O) & (5.10)
: Jv ]XQ}\ ‘ -

For the R solution,
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yg (k>‘ R )s:m(a'ﬂ>L g )——g—

. X y . ..7!._
+]£A(1{ijx3>‘) cos (J N Eh) 5

A g e
'<9 . [R] = lk IR (open channels)
I USRS - |
IL [R)
)&.;\
(closed channels)
(5.11a)
A < T
-y, &S . R)cos (T+j,~L) %
EA LN AN T2
+1£ (k% R Jsin@+j, - £ )»g-
"~
. (JJV i [R] = !kx IRA (open channels)
ATA P\ }\ AT
k, (K. |R))
Ch TR

(closed cha,nnels)

R - (5.11b)
" while, for the S solution, |
N T+, ~L)-E
| RPN
(9 I Ikx . IR < : (open channels)
vJ‘A}A!ZA Vidy A ”; (lk ‘R |
i
LA A SNt |
\\ ‘ (closed channels)

(5.12a)
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(T -0) L
"1(J+3A ﬂ)\)

2 1) g
e hy /& . R))
| By a2
L S] = [k . |R (open channels)
RAPUSN oA
k, (. [R)
nA Vil A
- (closed channels)
(5.12b)
where
+
b7 - oy, s, (6.13)
A A A
where y%t, j 'R i and k g are the spherical Bessel functions
A A A

introduced in Section 3.2.1. To show that Eqs. 5.8 and 5.9 do indeed
reduce respectively to Eqs. 5.4 and 5.5 in the far asymptotic 1imit,
one simply uses Egs. 3. 10 and 3.11. We may use Eq. A.14 to
relate the usual space~fixed S matrix §J to the body-fixed ,~S¢J .

We obtain the R)\, ‘independent unitary transformation

§; = s T S (5.14)
where
XV' j' ﬂ}' XV) j' . ,Q’ "‘j Q
AN s e L A A1) A
Drvia =i, © 03,8 lo,-a,,001* A1) r (5.15)

In order to obtain R, we generate an R solution of the

- Schrodinger equation satisfying the asymptotic conditions of Egs. 5.3
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or 5.8 by taking linear combinations of the matched solutions in

Eg. 5.1:
7
mh L0 X,
Vg [R] = %t IM Q(l)t . (5.16)
; XXt : +
As in I, we are free to choose Q( )t (1)t and require the Cs

matrices to provide for us those linear combinations of the
primitive solutions satisfying both the matching condition (Eq. 4.58)
and the asymptotic conditions. If we substitute Eqs. 5.1, 5.2, 5.3
and 5.8 into Eq. 5, 16 and eXpress ‘everything in matrix notation

(involving matrices of dimension 3N X 3N), we get

~L ' -
V 2 (1.IR] + O-IR] R (€ = ¢t ¢t @' 4+ o (5.17)
= “aed P = e s md T =dJ : ’
where RJ is related to IjJ of Eq. 5.8 by
_ Avyijey i, ‘
(RJ) 3AQA = J kh ?'21 ) (5-18)
AN XVy33 -9,
and
Aty * 'tz
Wy = vy Loy (5.19)
A A
At N e
Note that (g J)xt in Eq. 5.17 is identical to GM' times S5t

in Eq. 5.2. An equation analogous to Eq. 5.17 for the derivative
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~1- 9 A . P
RA »a—ﬁ;: RA Yo 1S easily shown to be

“* (15IR] + Of[R] Ry) (CJ> = g5 C3 (C5)™ + g5~

~ ~ ~

4 <{
N]-

(5.20)
where prime denotes differéntiaiion ’;vith respect to RA’ The
guantity C ( ) is given by Eq. 4.58. Equations 5.17, 5.20
provide therefore two simultaneous linear matrix equations for the
two unknown matrices (SE)"I and ;13 y- Eliminating the former from

these two equations and using Eq. 4.58, we get:

D3

I

-~

-0

5 =-V2W{(I}IR] g7 - I;[R] ,gf) NPT N

SRl - L g Q5N g - s TRIg) 4™ 1

X
2

-(OJ[R]J OJ[R Y WV (5.21)

" Here

w = 05IR] 15[R] - 1;[R] O;[R]  (5.22)

is 2 Wronskian matrix which, as can be seen by inspection of Egs.

5.10 and 5.11, is diagonal and independent of RX. The right-hand
side of Eq. 5.21 involves real matrices which are obtained directly
from the integration and matching steps of the calculation.

Therefore, —f{J and RJ are real.
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With R; and hence 50 determined, we use Eq. 5.7 to
calculate S ;?, which in turn can be related to the scattering amplitude
by the for;ﬁlas of the next section. In addition, the scattering
matrix is related to the probability of transition from initial arrange-

ment channel )’ and quantum state v;\j’sz' to final channel ) and

A
. 47
state VA]AQK by‘
poafa o Anh G 23).
IAV I IV |

The scattering matrix may also be related to the opacity function as

discussed in the next section.

5.2. Scattering Amplitudes and Cross Sections

We now define the scattered plane wave _srolution and relate it
to the scattering solution of the preﬁrious section so as to expr'ess'the
sca.tteririg arhplitude in terms of the opeh parts of the partial Wéve
scattering matrices. Qur analysis will be done using thé helicity |
repreSentation48 in which the axis bf quantizatioh of the incoming and
outgoing rotational states is chosen to coincide with the direction of
the incident and final wave vectors respectively, The helicity
formalism is Very closely related to the use of body-fixed coordinate
systems of the type described in Section 2.2 and leads to a particularly

simple relation between the helicity scattering amplitudes and body-

fixed S matrices.
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We define the helicity representation scattered plane wave

solution by

X o=y —
DY {"A v/ j;L(RX ) q{)V'AJ,A(IK’)
¥ [P] ~ e ' —= Y]’m’ ©p )
I‘x X ])\, A A
—A = _

; 1kV j RA ¢A . (%) ..E

s e MA , V}\‘}k Al
+ 2 _ L2 Y, ™, ) f t,( » ®,)
Y R 7 , ];\mv AT X

A A : X ,

(5.24)

whére the sum over final states includes both open and closed channels.

For -closed channel solutions (which we shall ignore below), Ev i is
. R.) decreases exponentidlly. o
A A
Note that the physical coordinates B :r:x and wave vectors k 5=
; A A

pure imaginary so exp(ikV

ay kv - have been used in Eq. 5.24. In addition, we have introduced
A |

the global index t to denote the quantum numbers vj.mj',

relate mj, to © and hence t to t below). For simplicity the space-

(We will

fixed z axis has been chosen to be in the direction of the incident

wave vector. It then follows (by inspection of F1g 3) that the space-~
fixed and body-fixed z axes will point in opposite diréctions initially
(i.e., for ®,), = -<). The outgoing body-fixed 'z& axis points in
the same direction as the outgoing wave vector thus allowing us to use

Y (v, ) instead of Y, 6. ,¢. ) inthe summation appearing
jym AT jym; vr ?'r
A ]A A J?& A A

in Eq. 5.24.
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The differential scattering cross’'section is defined as the
ratio of the outgoing radial flux per unit solid angle to the incoming
plane wave flux and, from Eq. 5.24, is related to the scattering

amplitude T by

R T |

A v,J AN 2

o, 42} = -—:'-7&-2&-‘ ! f;\l ,EI ! (5. 25)

A t){ VK 14 A - ' ’
W

Q. and Xv’ ’sz' representing open channels. Here

‘for AV}\,}A N
V2 . is the physical velocity
v, j
AR
' Z(F‘-uc‘\ R \ \%
ATA A A “;\,wc

In order to relate T to the scattering matrices, it is
desirable to first d_eﬂnéra scattering solution analogous to Eq. 5.24 in
terms of the scaled coordinates of Eq. 2.1. This is easily done by
removing the "bars* on all symbols containing them in Eq. 5.24.

By comparing the plane wave parts, we see that the resulting
' N
| ‘If A[P] is proportional to ¥ A[P] witha proportlonahty constant

a;p . Comparison of the outgoing wave parts of ¥ and ¥ then yields

D3l

f . by
fx =af'i}\{)‘)

= M, s (5.27)
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which will be useful below. i
.\
One now expands the plane wave part of ¥ X [P] in terms

of a series of products of Legendre polynomials P (cos 0. ,) times
A

Spherical Bessel functions j 12 (k>‘, ],R r), takes the asymptotm lmut
A A
(R » — ) and converts the result to the body-~fixed varlables
: 32
AN and R)\H‘Aqu following the procedure outlined by Pack,
obtaining

'y X
ik JI(R/) @l ()
RI A vkjh A
e AT (A Y (608, )
I‘x@ | .)x J)‘, '

(Ppr(r)

B 1 . v j\ = ’ v '
o~ ( i ) L _ ) ’ S ! (¢ AN 0)
zkv, Ry neo oM, M|y Pugy (O3 O

. A R @) L]
J+jl 41 kg 37 R - (@435
XerQf (Kody) @I +1) i 2 {e aa X A2

D
l[k‘&ngkf(J-Hi)-%—]

Xé‘p-e b !}'
Mﬂ)\ MQ?&

(5.28)

In analogy to Eq. 2.11, the scattered plane wave solutlon

i'Ft

Av jm
¥ A A [p] may be expanded in terms of the scattermg solutions

fl'l
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U Y

AVL] .
AA)
JMQ;L

m’ | Aviiim! Q! Pt steyt
XTI ATV iR
)y XA
Crn YoM Is] (5.29)

Using Eq. 5.28 to express ¥ [P] interms of body-fixed quantities,
- Aty
Egs. 5.3 and 5.5 for the asymptotic form of ¥ JIV? [S], and equating

coefficients of the incoming spherical wave parts, one finds:

;\’Ivljl’mi‘. Ql- } .r
A0 1 J+jl 41
A i (%)2 20+1 7T (5.30)

= 0
2
A I

Cim M, -9

Note that Eq. 5.30 implies m/ =-£’ thus relating ! and t!
, Jy A X X

for the reagent states, If we now equate coefficients of outgoing

spherical wave parts and use Eq. 5.30 to simplify, we get

. -~ h' . B

at; Vs xz Hn“¢, r s o -~
Ak F e DA s 2B

fegr = ( V. . Py 1 0 9m’ m.. ©,) TJ ot
A L Y Aty

(5.31)
‘where

Ty=1-87 (5.32)

is the transition matrix>2 and m; = Q, for the product states so

that fx and t, are identical. Equation 5.31 shows that the helicity

amplitude and body-fixed scattering matrix are related by a single
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sum reminiscent of the analogous result for potential scattering.

This illustrates one of the primary advantages of the use of helicity '
amplitudes in conjunction with body-ﬁxed coordinates svch as those
depicted in Fig. 3. Combining Egs. -5. 31 and 5.2%7, and using Eq. 5.26

and its counterpart for the wave numbers E}\ ] and k>‘ j , we find
y ada
;\t ,
that the physical scattering amplitude £ X f is given by an expression

identical to Eq. 5.31 with all velocities ané‘ wave numbers "barred"

Substituting this into Eq. 5.25, we _fmd

Ay

o A (8 =-—_,-.!E @7+1) dl, (@) Tyt |? (5.33)

A 4k7‘ J=0 m; m]
Vada A A

which demonstrates that the differential cross section is independent of

afy
4))\'49 The integral cross section Q7t f’ is obtained by integrating

Eq. 5.33 over GA and ¢ , and using the orthonormality property of

the dJ fumchcms.33 This yields the remarkably simple expression
XER : ko f 2
Q. = =T E: @J+1)|T w t, } (5.34)
A kv i
ATA
Both ¢ ’t' and Q}U {7 may be averaged over initial m].. and

A ' A
summed over final mi to give the vde’ge'ne-racy averaged quantities
AVAIA AVydy A '

Tyry! it and QA-fV! it respectively. The latter of these two can be
ATA A ' .
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written as32
. o0 -
AV} . v,] o
AN - T ) p M2 5.35
Q. 11 = g L (2J+ 1) <1 ( . )
AV)LJ)\ k}‘l %l J=0 JV,X]A

Y

where the opacity function P g i

v.j At , v
0050 VR R e A
PA = @i+ 1) nZl} Z?, PoE (5.36)

and the limits on the sums are lmj [s min (jx,”J) and
A -

lm';\! = mm (j;,J_).

In an application to the H ‘+ H, reaction, the number of
different distinguishable atom scattering amplitudes and cross sections
may be greatly reduced by considering the symmetries involved. This
' was done in I and the derivations are essentially unchanged in 3D.

. Firét, the scattering amplitudes are invariant to a cyclic permutation

of arrangement channel indices so that (suppressing the f}& fi)

S V_ K _ e A eV _ K oK
flwiv_f" fA_f"AfK and £ ff = 3. Second, f| and

v K? v K
f'; are related by19 '
kv.j'm} e vy mi : ,
. I _ (1Y) ]
f‘“’jmj = (~1) f AV mj ‘ -~ (5.37)

and the non-reactive f i satisfy
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10y : _ :
f:;;iljmj =0 i j-j = odd- ©.39)
These statements imply that f;‘ ‘and fK are the only distinct
scattering amplitudes and that many components of f;t are zero,
These symmetry relations' also apply to the scai:tering matrix §
so that the entire distinguishable atom cross section calculatior: can -
be considerably streamlined, It should be mentioned that although
the cyclic permutational symmetry is buﬂt into the calculation if the
.integration is done in only one of the thx_-ée equivalent arrangement

channel regions,’ Eqgs. 5.37 and 5.38 will only hold rigorously if
s defined by Eq. 4.49 is orthogonal, and this will only be the case

- =V

if the matching surface basis functions given by Eq. 4,30 form a
sufficiently complete set. This provides a test of convergence of the
method as long as the symmetries of Egs. 5.37 and 5.38 are not
built in. .K

-To convert these distinguishable atom scattering- amplitudes
into the corrésponding ir{distinguishable ohés when two or three of the
atoms are idertical, the standard techni@ue of post--zst.ntisymmetrizatic:nsgi
may be used. Applicationto H + H, was given in I and is un(-:harbxgedvA
in the ‘tﬁree-dimensional treatment. In the notation of ‘this paper we

- obtain the following expressions for the antisymmetrized differential

cross sections:
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(a) para — para (j,j’ = even)

p€ ij’ l —f—lf _ .,f_.Vf lz

O~ = =
pt VV’j'
(b) para — ortho (j' = even, j = odd)
(;t.y : v\f "“Vf 2
- -V
g {'f = 3 S i i T i
p Vv’j”" at
{c) ortho — para (j' = odd, j = even)
ot ‘V <
. v; )
(d) ortho — ortho (j,j’ = odd)
01? V | € —-V{': «—Vt .
T = T {EfA? + f}z,l +2[T l } (5.39d)
o v'y’ g : ; .

(5.39a)

(5.39D)

where Eqgs. 5.27 and 5.31 are to be used in evaluating Eqgs. 5.39%a-d.

The expressions for the antlsymmetmzed integral reaction cross

sectmns are:

(a) para — para |

(5.402)
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(b) para — ortho

of _5_ ‘”’t:[ (5.40b)
pt k oy Iaf
(c) ortho — para
pt t
Qupr = =% 7-3(2 nls t,! (5.40¢)
k"v'j' J I
(d) ortho — ortho
of T3 t o?x(f ovt
~ TN s 1 Ap = “, -
Qgp = i 2 @D {loy sm, m,l
= v'j ] .
ovt
+ zlsJ t,l } (5. 40d)

~ As was pointed out in Section 3.3, parity symmetry may be used
in both the integration and matchinglprocedures for any chemical
reaction to reduce the number of states coupled in these stages of the
" calculation. One may also define parity scattering matrices, but the
plane wave solution of Eg. 5.24 does not have parity symmetry so that ‘
these two decoupled parity S matrices must be recoupled before per-.
forming the calculation of the scattering amplitude in Eq. 5.31. This

procedure is outlined in Appendix B.
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6. Discussion
P W W N A W o W W O e

The method we have outlined in Sections 2-5 has a number of
limitations or restrictions which we shall now consider. First, we
have considered the reactive collision of an atom with a diatomic
molecule on a single electronically adiabatic surface. The extension
to multisurface reactions is straightforward and would follow the
general format previously developed for COilinear- reactions. 51 All
‘three reactive arrangement channels are assumed to be energetically
‘accessible and the diatom in each arrangement channel is assumed to
be ina ‘% electronic state. A straightforward modification of the
~ matching procedure which simplifies it appropriately is required for
single reaction path systems (for which one of the three arrangement
channels is ciosed). This was discussed in I. For;diatoms having
electronic states other than ‘% (such as "A with A 0), the

33

rotational states Y, = (8., ¢ ) must be modified”" to

i
S A

] | ,
Dxri A (Er ,qir . 0) and electronic-vibration-rotation coupling must be
heoa | | | |
considered, but the basic integration and matching procedures are

uﬁchangede One basic restriction of the method is its inability to
treat dissociative or break-up channels. This is not a serious \
limitation for many important chemical reacti_ons\a,t thermal enefgies;
A procedure for treating both dissociative and reactive collisions is )
is currently being developed in this Iaboratarj, .

The integration procedure outlined in Section 3 may be applied
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to any reaction for which the criteria of the preceding paragraph
apply, however, the matching procedure (and hence the choice bf
coordinate systeni in the matching region) is strongly dependent on
our choice of matching surfaces (Eqs. 2.5). Other ch‘oicés will
require significant modifications in the details of Section 4, although
the basic concepts involved in matching will still be applicable.
The matching surfaces considered in Eqs. 2.5 should be useful for
many chemical reactions but may not always be ideal for obfaining
rapidly convergenf close coupling expansions. In particular, if the
reaction has a loW barrier for 7}\ = /2 chfigura.t'ions, the expansion
of the‘wave funcﬁon in terms of matching surface basis functions -
VA (Section 4.2) may be slowly convergent. Conversely, too strong
an anisoiropy favoring collinear reactions over perpendicular ones
leads to an ill conditioned close coupling problem. These and related
restrictions on the matching surfaées were outlined in I. |

The asymptotic analysis of Section 5 is quite general and
should be applicable to those chemical reactioné wiiich fit the criteria ,
of the first paragraph of this section. The anti-symmetrized results
pres}ented in Sectibn 5 are only applicable to a collision system of
three identical spin 1 -particles. Other combinations of identical
parﬁcles and spins may be treated by post antisymmetrization
procedures analogous to that in Appendix D of I.

The final criteria regarding the aﬁplicability of the method is

computational efficiency. The lé,rge number of open rotational

channels present in any 3D atom-diatom system makes the applicatibn ‘
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of any coupled channel method a large computational project. Much
effort has however been spent in designing the method so that a
minimum number of such channels are needed for convergence of the
results. We therefore feel that this method should provide a
computationally feasible procedure for studying simple chemical
reactions. The first application of this pro-cedur'e (to 3D H + H224)

supports this statement,
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APPENDIX A: ANGULAR MOMENTUM OPERATORS AND THE
COORDINATE SYSTEMS

In this Appendix we will estabiish the relations between the
rotational and total angular momentum operators in the space-fixed
and bedy-fixed coordinate systems defined in Section 2.2 and Fig. 3.

We first consider the space-fixed coordinate system Oxyz.

If we use the variables ¢ X Gri,. ¢A and GA (Séction 2.2) to des¢ribe
the various components of the operators i, and 4 5 e obtain the
usual expressions for these angular momentumr operators in spherical

- polar coordinates.

‘ . - . .
] = w],ﬁ P . (A.la.)
Az aqbr-h »

Jyx = -ifi (-cosd, ’coter‘ ¢ . sing,. )
A A
(A.1b)

. ) . B
j,, = —ili (-sin¢, cotd . +cosp —)

N o Y "2 96r

(A.lc)

A
Expressions for the components of J are

with a similar expression for the components of ¢, with ¢,,8

~substituted for ¢rh, 61,}§L .

trivially obtained by the addition J = ¢ xt jk" The}yei}genfunctions.
of the operators j: and 1; appearing in Eq. 2.9 (and also sz and

2,,) are the spherical harmonics thmjx(&r s (Prk) “and

A
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0.,d.). We shall define the spherical harmonic Y.m.
‘me !ZA AT T P i

by the expressiozi

ijj. ©,¢) = E’@T 9”] } (cos 0) (A.2)

where

1 m;
(i~ [m;)1 sz *{ (1) Tm>0

: - | 5
(3+ lmjl)l 1 m; < 0

(A.3)

gzjmj (cos ) = lemj[ (cos 8) (

In the space-fixed formalism of Arthurs and Dalgarno, 29 the full
| wavefunction is expanded in terms of a set of functions

R 2.7 ’
& ?3 (9A,¢ ;er~ ’¢r'~) which are simultaneous eigenfunctions of

“J 3, ,Q and ]). These /!ZA i, are obtained from the Yy m.

and Y’ > D)
ﬂ)‘mﬂA via :
75 O, b0 0. ) =20 C(jiJ;m-m M)
%]?\A ATTATR T my M0y AL
o JA A L

(A.4)

where the notation of Roseg"7 is used for the Clebsch Gordon

coefficient C. The full space-fixed wavefunction is then written as

JM
R) = ;} O 830 5 b ) Gy g (rh,R) (A.5)

oL (r
JM AA’ 2}\]



h2l

. JM
and the space-fixed coupled Schrédinger equation for G i g 152 9
. : AT

' . g 2
{- ﬁ2 [ 1 "822 R 4 __:_l__ azo JA(JA’}' ];)ﬁ |
2u R, oRy ATy Bri 2;1,1'>L

rk]+

-

wioW akl E} cM 2, e vy YoM 0
- s « ) -7 14 = .
2uR3 NN 3}\1;\ AR P

o+

(A. 6)
We now consider the transformation to the body-fixed
. ek I, .
coordinate systems XAY}\ZA and XV 2y of Section 2.2
convenient representation of angular momentum operators in these
- coordinate systems involves choosing the.operators ;f and j: as

as independent and expressing the ﬁi of Eq. 2.9 by the expansion

2 T 2 o
ﬁ)\:lg“lhl uJ+3A5({ L+l J). (A.D)

To convert the operators j , and J, and thus the Hamiltonian of
Eq. 2.9 to the body-fixed systems requires first a change from the
l_variables ehthemqu to 9A¢;\y?f”/h as defined in Section 2. 2,
followed by successive rotations of the components of the operators.
These rotational transformations may be accomplished by using the

general expressicn37 |

I = R(@Bn)™ I R(epy) (a8

th

where Jy refers to the k™ component of any angular momentum

operator J in an initial system and
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ird, iBdy ied
Rapy) = e Zeg Yo Z , o (A.9)

k' component of J in a transformed coordinate 7

Ipet refers to the
system which is obtained through rotations by Euler angles «By

from the initial system. One important point to note in the application
of Eq. A.8to the body-fixed coordinate systems . AYKZA or x! Y ZA
is that the components I and Gx)k of the operators J and j

will in general operate - upon one or more of the Euler angles -

th, 8, and ¢, of the transf,ormvations, and thus great care must be
taken in properly commuting the operators. In Table I we express the
components of thefesulting operators J and 'ih. as well as varidus

- combinations thereof in terms of the coordinates chph T)L%\ in the
three coordinate systems Oxvz, OXAYKZR»-—‘and : Ox"\ y’v.l. Some of
the relations in that table have been given previously by Vezzetti and

52 1y Morse and Feshbach®® and by Curtiss, Hirschfelder

31

Rubinow,

and Adler. One very useful point to notice ahout 3\'X s ]AY and .

3;\2 is that their expressions in terms of ¥ v gDA in Table I have the

same functional form as the corresponding j -~ and ]Az in

Egs. A.1. This implies that the rotational angular momentum eigen=

functmns in the XAYAZR coordinate system will simply be the

spherical harmonics Y}AQ 4% where, a’s‘is explained in

N
Section 2.2, Q is the quantum number associated with j AZA

In terms of the coordinate sysiem XAYA.ZA’ the Hamﬂtoman

of Eqv 2.9 may be written as
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Wopt 9o op 1 9 g,
' A 2uri

A
+ 2“R2 [J° +]>\ ZJAZAJZ (]AJ +]AJ BIEAYS (r,, Ry, %)

(A.10)

where the raising and lowering operators are defined in terns of the

37

X)\ and YA components of J and j in the usual way.” " In order to

express the Schridinger equation in X YAZA coordmatbs we must
also rotate the wavefunction as is done in Eq. 2.13. Substituting this
expression, albng with Eq. A.10 into Eq 2. 9; and using the normal
raising and lowering properties of the rotation matrix, 33 i.e

b

| ; |
- ., |
J* ng EE@+1) -9,@, 7 1)° DMQXQ (A1)

(where the = components refer to the body-fixed system), we obtain

the following coupled equations for ¥

o,
{_h A 1 9 ' 3;\
xRl wr Zur?
A .
t ey 2MR§ [T@E+1E ‘*‘% Q. 3;\2 ] + VA, R, %)

' 1
A T i JN
" EN ¥, - gumr GO0 - 0,0, 410 1¥50 4

| .
B z ’ ;
" Tunr @@+ -, @, -3 xp}%fi =0 (A.12)
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Since the rotational eigenfunctions in the X Y. 7, coordinate system

ATATA
are the Y3 Q (¥, ,z,z/}\) the rotationally coupled body-fixed solutions
AA v :
analogous to Eq. A.5 are given by
Uiy (2 R)*E Do (4,0,,0Y; o Bu¥) Wy o (,R)
JM A0~ MS‘ R 'J}QR b Q A

A A
' (A.13)
which is a combination of Egs. 2.18 and 2.13. The body-fixed and

space-fixed representaﬁons may be related by using the equality

J | _ ¢ 47 z - j}\.wgl
Dig, B0 0¥ g 05o¥y) = (5707 ) i‘i(l)

X C@ L0~ 2. 0ZM (9.6, 6. 6. ) (A.14)
FINVIN o\ " c/ ,;)L 7\. N -h -A, ’

Equation A.14 will be of great utility to us in the asymptotic analysis.- :
A further modification of the rotationally coupled Schrodinger equation

is given in Section 2.4.
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APPENDIX B: PARITY DECOUPLING

In this Appendix we consider the decoupling that occurs when,
eigenfunctions of the parity (or inversion) operator j are used in the
close éoupling expansion. This operator inverts all. atoms through the

system's center of mass. For thé ﬂli;eevparticle system We are

considering,

-R (B.1)

o ~
where ¥ is any wave function describing the system. aq' commutes

By 9

system before and after inversion is the same and consequently the

with Vo, and V., . Inaddition, the internal configuration of the.

potential energy is not changed by the parity operation. We conclude
that & commutes with the hamiltonian in Eq. 2.7 for any triatomic
systém. |

If we express R, and 1

A in body-fixed variables, we find

, that
‘ J‘ ‘?(r}tsyka lp;v R)\: ekr ('b?t) =¥ (rh’ Ar”"‘l’xs R}\:”“GA:W'P‘QBK)
(B.2)

The body-fixed wavefunction we are considering is given, from Egs.

2.13, 2.18, 2.30 and 3.3, by
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¥ (LR = i% Ma, 930 ,0) Yj& (%9
X o AA T . B.3)
1,R, g}VA}AQ)L Y (B.3)

" since d leaves the scalars R, and r, unchanged, all derivations

A A

of this Appendix are independent of which of the four regions of each .

arrangement channel region we are concerned with,so we shall omit

any explicit reference to them, using the general form for ¥ ¥ v in

region I or II. Let us now apply v(‘ to Eq B.3, using the

33 J J .
DMQA@s a7 *’y 0) = (-1 x Dy_q. (9,,6,,0) and

3 QA( s~ ""/A) = A I % w)\) By changing the sign of Q, in

relations

‘Eq. B.3 and remembermg that its summation limits in that equat:.on

are invariant with respect to a sign change, we find

JwJM(rA,R ) = @ 1! Z]3 Dyio 93,00, 0; g 05, )
A)\ A

A
¢ij (r?t)

A gx ’
X e . o (R)) (B.4)
. rle ) }JVAJA SZA A

which indicates that "T’}M is not an eigenfunction of the parity
operator & unless J =0 (since  must equal zero as well in that
case). Since F commutes with the Hamiltonian, we should be able

to linearly combine the ¥ r.'s so as to produce simultaneous eigen;
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functions of cﬂ“ and H. Let us consider the linear combinations

= 1 NPT P

. (B.5)
By substituting Eqs. B.3 and B.4 and rearranging, we find that

¢r . ()
TE (. R) = D Dy (6,605 o r,yn) —2A
AN - : sVy s i s
JM AR VA]A@h MQ)L }\ A ‘ J?\QA APTA r}g{)t
1 ., :
—= B1vio TEv. i - )
77 Eivie, t8iv i e,
X
%(ngiQ &y -0, )
b TS L)
| (B. 6)

where the upper term in brackets refers to the plus solution and the
lower to the minus solution. From Eq. B.4, it should be apparent

that

U @Ry == IR (R BT

Since the basis functions D!I{’ISZK ijgx ¢V)'\j>‘ m Eq. B.6 are
unchanged from those in Eq. B.3, the equations of Sections 2-4 may
be converted to the corresponding ones involving parity solutions by
simply linearly combining the g's according to the expression in
brackets in Eq. B.6. To facilitate this, we define a new function

g Via54
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( __L (gk . - by
Vo CIV, iR, + 8T s o )
A l, A JV}\JX Q)&
| , . for QA >0
& 0 ®) = < gy jq 1or8, =0
AT AN .
1 . S|
—= (-g . + g . )
\ V2 IR TN
for Qk <0
(B.8)
or in the matrix notation of Section 3.1,
EYR) = T, g} ®) | | (B.9)

 where the orthogonal matrix T, is given by

1
fw—-(ﬁ t+ Oy _or) for >0
v QAQ}\ 2, -8, by

F28 o F I )
‘ <Tk)v;\'])\ﬂk - :A]'A ¢ 5g: q’ for @ =0
AV, Ny B e A~

1 : :

S ) r 4 8 _yr ) forQ. <0
\ V2 R0, e, -, A

(B.10)

If we include initial conditions of the proper symmetry to form the

matrix g}, we find that
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R

T®) = T, g% ®) (B.11)

To convert the equations of Section 3 to the corresponding expressions

involving parity solutions, we need only to use Eq. B. 11 to transform

them into expressions for “g‘} rather than gf.} . For example, the

fully coupled Schriédinger equatmn (Eq. 3. 18) becomes

da-gszb _ .
2J _ A Ak -
= SI &3 | (B.12)
. |
where
=X A -
Us =L U5 5 (B.13)

U U is identical to U} in all terms of Eq. 3.19 except those off
diagonal in s’z @ .e., in U7‘J) From Eqs.. 3.15 and B. 10, we
find that B | |

"
?{, %4 5V j i
A 2
(UCJ)tK = > {6%9.;“[.1(;4- 1) - zsz}t

o, 6%-199; £ @,2) & G,,9,)} (B.14)

where
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1 forQ) =>1 and Rx< -1

Ag = {2f01~sz>:=0.
A {0 for Q = -1 (B.15)
and
. 1 forsz*>1 and Szks-l
~ BQA: \/Zforszkzl
0 - for QA =0 (B.16)

An examination of the structure of ﬁ}éj indicates that it contains no

elements which couple states whose £, is positive or zero to those

A
whose Qh is negative,} Since only I;Ii‘: 3 provides off-diagonal Qh A
coupling in Eq. B.12, we see that our coupled Schridinger equations

have been sepafated into th uncoupled sets--those with QA = 0

(of parity (-1)7) and those with a, <0 (parity - (-1)%). This
uncoupling is preserved throughout the integration in a given arrange-
ment channel region since the only SZA dependeht coupling appearing
anywhere in this process occurs in centrifugal terms identical to
Eq. B. 14. Thus by constructing parity' eigenfunctions, we can
sep&ravte,our' integration i)roblem into two 'smallér ones (each of whic;h
can be further separated into two parts for homonudeavr'targets
(Section 3.3)). |

| Parily is alsc preserved in the matching procedure beéause

the parity operation is invariant to which arrangement channel cdor-
dinate system one is considering (by inspection of Fig. 1). .This |
-méans that solutions of the same parity symmétry but expressed in

different arrangement channel coordinates should be related to
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each other by a transformation which does not mix in solutions of the
oppbsite parity. To show this, we must first transform the coefficient
matrices h §7 g'}, f g and g; of Section 4.2 to the representation’
involving parity eigenfunctions. This requires a transformation

similar to Eq. B.11

A ’ A
T Tl (B.17)

n =y
U,

‘where Ez:A is an N/2 X N/2 matrix (N = total number of solutions

of both parities) whose precise mathematical form is identical to T;\

in Eq. B.10, but whose actual structure is different because the set

of indices vAj A involving the matching surface basis functions of

Eq. 4.30 will assume only half the number of values that the asymp-
totic solutions do (as discussed in Section 4.3). Note that we still
in Eq. B.17 because right multiplication

_ A
corresponds to linearly combining different initial conditions, and the

right-multiply h 3‘ by T

number of these is always N. By writing equations analogous to
Eq. B.17for f%, 7 and h'}, substituting these into Eq. 4.57
(using Eqs. 4.54, 4.55, 4.56) and simplifying, we obtain |

a7 s-_ TT e+ v
By e B g - B e ]

- =(i)-

where the circumflex symbol implies definitions analogous to Eqgs.

4.54, 4.55 and 4. 56 for "barred" (i.e., parity) quantities, and

- ’ J o ) +
Son = Toa S T | - (B.19)
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From Eq. 4.49 we can rewrite ggh as
a8y
= A. - S?J\ D
(i Yy J)LQA f
J
CEE 'a, *9q!- QA)
X DY 1('}’) f ,sm'yd')’
UL ; . 2,8, 7T
(dinys -~ dgr o )
QA&X Q)\ Q)L
(B.20)
where
L for @ =0 or Q' =0
V2 by : :
1 2 I R s g
f , 2 a\l&_.fﬂx “UA |
08, = 1 for both 2, Q;\ >00r< 0
0 otherwise

and the upper term. in the brackets is used for & NI % 0 and the

"lower term for @,,2] < 0. It should be evident from Eq. B.21 that

sJ does not couple terms of d1fferent parity nor does any part of

PN
Eq. B.18; this implies that the matching procedure can be done

separately for solutions of each parity. It should also be noted that |

- for a complete set of maf,ching sux:fa'ce’functions, the two sub-blocks
5 ; ,
of Sox

orthogonal.

corresponding to solutions of different parity are separately

A convenient procedure for extracting the asymptotic

information from the matched solutions involves first a calculation
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of reactance and scattering matrices which are defined in terms of
parity eigenfunctions. This is followed by a coupling transformation
in which the positive and negative parity S J matrices are combined to
yield the body-fixed S 7 maftrix of Eq. 5_. 5. Fro;n that point onward;
the formulas of Section 5.2 must be used, since the plane wave
scattering solution is not an eigenfunction of g’ (as seen by inspection
of Eq. 5.24). The parity scattering zind reactancé matrix solutions
are defined by equations identicalyin form to Egs. 5.4 and 5. 5, or to
Egs. 5.8 and 5.9, but the incoming and outgoing solutions I; and Oy
of Eg. 5.10 must be parity eigenfunctions and hence satisfy Eq. B.IZ
asymptotically. One can find these solutions by actually diagonalizing
- the ’ésymptotic Hamiltonian obtainedfrom Eq. B.12, or by performing
fransformations analogous to Eq. B.11 on I; and Op. Both proce~
dures lead to expressions for g J aﬁd QJ identical to Eq. 5.8 except
for the following two changes:

| (a) the sum over Qh in tha.t'equa.tion includes only those ﬁx
, and Q;\
appearing in that equation. (The only non-zero terms will always

of the same parity as is specified by the signs of Q

" involve 2, and Q% “of the same signs.) In other words, when
‘ QA,Q; = 0, 2)\ =J +j}\, J +3A~2" oe !J-jhl and when QA,Q; <0,
’QA =J +]>\,-1’_'1“’ fJ-q)J +1,

(b) Eq. 5.10 is to be multiplied by

-y

s Where
QAQ)\
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V2 for Q‘A:O or ' =0

Y
— ' ——
I lforQK-QA_O
Q)\QA 2 for both szx and Q;& = 0;0r<0

0 ot})erwise
(B.22)

This form of _fﬂﬂyﬂi leads to block diagonal I and Qy matrices
thus decoupling the reactanee and scattering matrix analysis for -
solutions of different parities. |

When these expressions for ; 3 and ,QJ are substituted into |
Eqg. 5.21 along with the parity expressions for %ﬁ,' g';: and gf , the
~correct parity reactance matrix ?:T (analogous to ;RJ of Eq. 5.18)
is obtained (where we consider E:’I tg/cqgtgin thgﬂ_e;en’ and odd parity _
reactance matrices as separate sub-blocks). This may be subse-
guently converted to g& via an equation analogous to Eq. 5.6.
Finally, the rbws and columns of the parity scattering maitrix may be

rearranged to form the body-fixed scattering matrix §. via 7

=T8T .29
where
ryrg! v i@
(§J)iv3\j s - (sJ)i,f;fﬁ b (B.24)
=3t AV N A -

and the 3NX 3N T is obtained from the NX N matrices gk’ I, T,

(whose definitions are analogcus‘ to Eq. B. 10), by
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T, 0 O
T ={0Q0 T, 0 (B. 25)
0 o 1,

9 is an N X N matrix of zeros.

o~
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-singecos 8 cosy cot‘r)i

Table 1. Angular Momentum Operators in Spice-Fixed and Body-Fixed Coordinate Systems*
v > R
Oxyz OAAY\Z)‘ O\Ay z
J ——iﬁ(costhoto_— J ——ifi(—.l- 24 eatgl- J,__m(_}.’2§.§i
x 3 X, sind 3¢ oy X sm9 e
-sing-2_ 4 959 9 - 2
sin¢g 30 ¥ Sine 39 )] ““51“1/}3’9- + cot 6 cos ww)
= i i a = - '.2.... = ~ ik Slnu.-.a-..
Jy—-ﬁl(sm¢€?0te—a—$ JY)\ i EY) Jyl m(Slnﬂ 30
0 cos¢ @ 9
+coso‘>-é-0—+ Sind w) +coswa cotesnup )
J, = -if -2 I, =il I, = -1
2 9 z,” "My 7, ="My
gy = ~ikf(cos $ sinp +sin¢d six;g!/cot'y J)(X = i {~cosycoty == a‘p Jygr = il (-coty 2 e
uccs¢ucosscos:,l;cot-y)-§-;— “Smlif'a—?—;
=« (sin ¢ cos s +cos P cos b sin\[/)—:—f]
A . e 2 . . B
}Ay'—~1ﬁ{(sm¢sm6~cosqbsm;p coty XAY = <15 smycot'ya, = - il o

Yy +cosy 57—)-
+(cos¢cosxp-sin¢»cosesinxp)—§~] )
s d R se. @
Ly = «ifi]{cos6 +sing cosy coty i =« i —— = if ——
A2 i{ ?l/ ) l!/ )\Zk ad/ I)LZ‘A 3‘//
& infgind, .:a_ 1
12 ay +
SRS R A P=1 +3 +2° b S PR, R G
. XA .YL Zk x)\ v Zy
=K +cotf ——
E”” 9 < i cotf Iy
, & ( 5 2* y - 2(:056 " 2 A
T sin’g ‘50° qﬁ Sitg apay
% 42 Py .2 2 .2 .2 <2 2 sz 2 2
eyt ixy *he Bhoehxthy, Thae, hoohad Hhy *hal
8 i '
= -K ( + coty 2 ey 3%’/2 =} © = jlcot? ixy’
O S5 T SRS, I SRS D J Led=lp Ty +i v I Bt T = e T 41
AR T etz Tk TRy Ty RN UZ, X, UK AR T ey z, " ax, Xh
- g2 cosygcoty 3* siny il : .
o 3 Ewsms W + Sing —-———‘aya¢ + })‘-Y}EJYK 'Fj}‘yr I r ik cot?J ,
- ging coté 3‘I/a sm\pcot'r azpae

?*
+ coswsm-p (1 -coswcotycote)w]

*The subscript x has been omitted on the symbols @, ¢_, Y Y

Note that the expressions for J°, 5

2 anﬂoj\)‘

«J interms of 6, ¢, ¥, { are independent of coordinate system.
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the advantage of making the T, defined by Eq. B.10 orthegonal.
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FIGURE CAPTIONS

FIG. 1. Vectors used to specify the location of the three atoms A, B

r
Aﬁ’/\,’}/

and C relative to the center of mass G. Ggn, Gy and Gy

denote the locations of the centers of mass of the diatoms

BC, AC and AB,‘ respectively. The vectors R, ;foz’ :13’3,

—— e

R , }"y are defined in text.

FIG. 2. Plot of potential contours for the H + H, reaction in a space

FIG.3.

OXAYAZ}L such that a point P has the spherical polar

coordinates 2;,' w defined in the text after Eq. 2. 3.

LESY
In (a) we depict contours for the fixed values of Yy = 0° and
180°, while in (b) we consider 7, =45° and 225°, and in

(c) 90° and 270°. In (a) we also depict the lines of inter-

section of the y_ =0, 180° plane with the half planes

A

Ton' Ty AK
configuration space into three arrangement channel regions

and 7., of Eq. 2.5, which are used to divide

A, V,k. For each figure, OWA is the iuntevrsection of the
half plane determined by OZ}\, and the corresponding smallest

14

2z with the OXAYA plane.

Space-fixed coordinate system Oxyz and body-fixed

£ _F_F . ° . )
systems OXAYAZA and Ox)\y Zy (Section 2. 2) in relatlon‘ to

the triatomic collision system and to each other.



FIG. 4.

FIG. 5.

LLg

Division of the Rh,r space into four regions I, I, III and

A
IV. The contours are equipotentials of the matrix element

Vg} (rA’R}\) (see Eq.. 3.4) in eV for the Porter Karplus H + H,
potential energy function, The dashed line I, is the line of
steepest ascents for VOA. The locations of the points Py ,‘ P,
and P, are discussed in Section 3.1 of the text. Qis the

origin of this space.

The polar éoordinates p)k; N and §, p N and their inter-

relationship in RA;r configuration space.

A
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7. QUANTUM MECHANICAL REACTIVE SCATTERING FOR THREE
DIMENSIONAL ATOM PLUS DIATOM SYSTEMS: II. ACCURATE
CROSS SECTIONS FOR 3D H + H,
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Quantum mechanical reactive scattering for three dimensional atom
plus diatom systems:, IL._Accurate cross sections for 3D H+ Hy'
George C. Schatz! and Aron Kuppermann

Arthur Amos Noyes Laboratory of Chemical Physics,

Division of Chemistry and Chemical Engineering™,

California Institute of Technology, Pasadena, California 91125

(Received )

Accurate three dimensional reactive and nonreactive quantum
mechanical cross sections for the H + Hz exchange reaction on the-
Porter-Karplus potential energy surface are presented. Tests of
convergence in the calculations indicate a probable accuracy of better
than 5% ior most of ihe resuits 1n the energy range considered (0.3 to
0.7 eV total_ energy). \‘I‘he reactive differential cross sections are
exclusively backwérd peaked with peak widths of about 32° at 0.4 eV
changing to 51° at 0.7 eV. Nonreactive (inelastic) differential cross
sections show backwards to sidewards peaking',l while elak's‘tic Cross

. sections are strongly forward peaked with a nearly monotonic decrease
with increasing scattering angle. Some oscillatipns due to interferences
between the direct and exchange am‘plitudés are obtained in the para to
parés and ortho to ortho (antisymmgtrized) cross sections above the ‘
{effective) threshold for reaction. The reactive cross sections show
significant rotational angular momentum polarization with the
mj = m}.? = 0 transition dominating for low j. In contrast, the

(degeneracy averaged) rotational distributions can be fitted to tempera-
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tureflike expressions to a high degree of accuracy. The integral cross
sections have an effective threshold energy of about 0.55 eV, and
differences of this quantity with the corresponding 1D and 2D results
can largely be interpreted as resulting from bending motions in the
transition state. In comparing these results with those of previous
approximate dynamical calculations, we find best overall agreement
between our reactive integral and differential cross sections and the
quasi-classical oneg of Karplus, Porter and Sharma [ J. Chem. Physc'
43, 3259 (1965)] (at energies above the quasi-classical effeclive
ﬂ'xresholc‘as)5 This results in the near equality of the guantum and
guasi-classical thermal rate constants at 600 K. At lower temperatures
the eifects of tunnelling become very important with the quantum fate '
constant larger than the quasi-classical one by factors of 3.2 and 18

at 300 ¥ and 200 X, respesctively.
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1. INTRODUCTION

| The H+ H, hydrogen atom exchange reaction has been of
fundamental theoretical interest in the field of chemical dynamics
ever since the baginning of quantum mechanics. Great progress in
our understanding of this simplest of chemical reactions has been
made both in the accurate determination of the electronically adiabatic
potential energy surface, 1 and in the calculation of accurate cross
sections and other dynamical im?ormafcion.2"13 A long sought
objective of the dynamical studies has been the accurate guantum
mechanical treatment of the three dimensional collision dynamics.
Such an accurate @b initio understanding of H + HZ is important, for
this system has served as a prime exafnple in the development and

testing of approximate reaction dynamic theories such as quasi-classical

& 4N E 1na
g LUK

b

y LU

methods, “?* *YY semi-classical methods and approximate quantum

3,4,6,7,10,11

methods. In addition, H + Hz has been valuable in the

14,15

development of transition state theory, in the characterization of

134,16

tuhnelling and the concept of vibraﬁonal adiabaticity, 17 and in

analyzing the effects of changes in the potential energy surface on the

reaction dynamics. 18 Much of our understanding of the influence

initial rotational® and'vibrationall?’a state on the dynamics

comes from studies on this system as does our knowledge concerning

10¢

the influence of varying impact parameterz’ or total angular

4,6,10ab

momentum, of resonance and direct reaction mechanisms,z’ 19-21

and other dynamical effects. Nonreactive elastic and inelastic H + Hy
collisions have also been of theoretical interest in the analysis of

- rotational excitation and deactivation processes,lo’ 12,22,23,24,25
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and in examining the nature of the competition and interference

102,12b 4 Jumber of

between reactive and nonreactive processes.
reactive and nonreactive experimental studies of H + H2 and its
isotopic counterparts have been done ranging from kinetic rate
constant determinations, 26 to hot ato_m27 ’and molecular beam28 '
experimenis. The interaction of theory and experiment has been of
mutual benefit throughout their respective evolutionary developments.

In a previous paperzg we presented a method for accurately
solving the Schridinger equation for the dynamics of the three dimen-
sional collision of an atom with a diatomic molecule on a single
electronically adiabatic potential energy surface. ‘This method was
an extension of an earlier coplanar methodSO which has since been

122,01 this paper we present

used extensively to study 2D H + H,.
the results of an application of this 3D procedure to H + HZ‘ The
results include reactive and nonreactive transition probabilities,
integral and differential cross sections, and reagent and product
rotational state distributions. These results will bé thoroughly
compared with those ~f eérliér 3D approxiinate reactive and nonreactive
calculations, and with 1D and 2D accurate ones. Some of the 2D - 3D
comparisons were considered in prelimihary communications, 8,21

and we shall elaborate upon ihem here by developing simple dynamical
models for relating results of different diménsionality. Additional
topics considered include the effecté of indistinguishability of particles,
angular momentum decoupling approximations, and thermal rate

constants. In most calculations, we use the semi-empirical Porter-

Karpluslc potential surface. This surface has been used in several



61
earlier studices, thus enabling comparisons. of these results and ours
without ambiguity being introduced by the use of different potentials,

1f (as

Some additional results for the more accurate surface of Liu
parametrized by us) will also be given.

Section 2 provides a brief outline of the procedure usaed,and
computational considerations governing convergence and accuracy
of the results obtained. The results for the Porter-Karplus potential
energy surface are given in Section 3, and Section 4 includes a summary
of the more significant results presented. In Appendix A we examine
the results of one very simple angular momentum decoupling approxi-

mation and in Appendix B we present some results for the Liu potential

surface.

9 TMITEL AT ATTY AMTON
" B e i R U S L NP R S D O S A

2.1 General Description of the Method

The method used to solve the Schridinger equation for three
dimensional reactive and nonreactive H + Hz collisions has been

29 The wave function describing the

extensively describéd elsewhere.
scaﬁtering process is first partial wave expanded and then transformed
to a representation involving body fixed coordinates. The coordinates
involved in this transformation are pictured in Fig. 1. The body fixed
coordinates Ox)\ 'y'zk‘ are obtained from the space fixed Oxyz by rotation
through the Euler angles & = ¢,, 8 = 0,, y=1, wﬁere Gk’ ¢, are the
polar coordinates of the vector Ry befween the incident atom AA and

diatomic molecule Au Ak {in arrangement channel coordinates 1).

‘*")\ indicates the angle of rotation of the diatom (about O Z. "} with
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respect to the X, Zy plane in Fig. 1. In the body fixed system, the
diatomic internuclear vector Ty between Au and A.k is referenced
relative to I}\ A rather than to space fixed directions. (Note that we
are not using scaled coordinates in this paper in contrast to Ref. 29).
Rotational motion is described by quantum numbers j, and & where
the tumbling . quantum number Q}\- is associgted with the component
of rotational angular momentum along the z At (bo&y fixed) axis. As
shown in Ref. 29, the component of the orbital angular momentum
about ZA' is zero, so g, is also associated with the projection of the
total anguiar momentum along that axis. In order to simultaneously

satisty both criteria, @, must obey the inequality
2, = min (J’jk) ‘ : (2.1)

where J is the total angular momentum guantum number.
Of crucial significance in the body fixed coordinate system of

Fig. 1 is the fact29

that the kinetic energy operafor,couples vibration
i*otation states with different N quaxitum numbers but the same
vibrational and rotational ones (VAjA)’ while the potential energy

- ‘coupling is diagonal in SZA but no§ in V)\jk‘ This allows for the approxi-
mate separation of effects due to tumbling of the three atom plane
about z;\‘ versus those due to potential interactions, and we shéll
examine this separation in Section 3. In addition, it provides for the
natural development of centrifugal decoupling schemes, one of which
~is analyzed in Appendix A. Once the body fixed fully coupled |

Schrodinger equations are set up, they are then solved in two steps.

The first one invelves a numerical integration of these coupled equa-~
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tions through each arrangement channel region in coordinates appro-
priate to that region. This is followed by.a second step in which the
solutions thus generated in each of the three arrangement channel
regions are smoothly matched to ‘one anothér on a set of three surfaces
which separate these regions. The resulting solutions, which should
be smooth and continuous éverywhere are then linearly combined to
yield the appropriate reactance and scattering matrix solutions and
these solutions for different partial waves are then combined to form
the plane wave scattering solutions. By using helicify representation |
scattering amplitudes, we obtain a very simple relationship between
these amplitudes and the body fixed scattering matrix EJ’ namely

 (from Eq. 5.31 of Ref. 29),

X by 1
ATVt m! {v . \ 2 .
S W S 1 (i)lx‘"]i*l
Av, i m, AT ’ A
ATA V., . 2Kk .
0 Arvrhjvhmv.

J , ; Y
X Y d ' (9"")(6A"A5;\m' (2‘2),
J=0 I W Y
}“‘V'Aj'}\m'j

) Ay
'D‘VAJA.mjA

-9

where the reagent state has m, = M = -, and the product state has
A

m'. =9'r VA‘ . and k. represent the appropriate (unscaled)
DY - Vadx
velocities and wave numbers and drg m! (6 )f) is a Wigner rotation
| Y)Y

function (in the notation of Davydoval) with 6‘1\‘ the scattering angle.
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For H+ Hg, the problem can be simplified considerably

because of arrang‘ement channel symmetry and even-odd decoupling
within each arrangement channel (as described in Ref. 29). A major
consequence of these symmetry properties is that only two scattering
amplitudes between a given initial state ijj and final state v’j’m'j
(where m! j is an abbreviation for m'}. ) need be considered, the non-
reactive one (labelled N) and the reactive one (la,belled R). Thus all
the arrangement channel indices A and A' in Eq. 2.3 may be Qropped
as long as the symbols N or R are included as appropriate. As an .
additional consequence, nonreactive fransitions between even and odd
rotational states are forbidden. From the r’eactive‘and nonreactive
scattering amplitudes fN and fR, one may then calculate differential

(gistinguishable atom) cross sections via:

N, R vy 2 .
OijJ""V] m' (6) - ' v;;m -v'j'm J' (2.3).
so that the integral cross sectwn is given by
N,R _ c
ijin»v‘j’m'., Tk Z (2J+ 1) iTJ vim. ~v'j'm'’ l (2.4)
j i Ny J=0 ] j
where ' ,
153t 1
N Vi N | :
‘TJ,vjm. ~v'i'm', ijm. - SJ,vjm. ~v'i'm’', (2. 52)
i - J I J
and
R R o &
T.I,vjmj=-~~v']'m':i SJ VJm3 -~v'i'm'’ i (2. 5b)
The transition probability pNR is given by

d, vjmj *v”j'm'j



465

N'>R — N R 2 _
PJ, V]m] — V!jtn]vj ". ISJ,‘;jnlj"’” V'j'lll'j I (2_6)

Inclusion of parity symmetry in the calculation leads to the relation

gﬁi ~ v'j'm"i : OV?I-,H?J. - vfj‘mm 'j (?' 7
with analogous expressions valid for Q and P J° The angle 6 (or 9)\,)
of Eq. 2.2 refers to the direction of the scattered H atom with respect
to the reagent H atom beam. For reactive collisions, a more
customary angle to us2 is 9R which is the angle of the p.‘(‘OvdL-ICt HZ
with respsect to the incident H, and is the supplement of ¢ (i.e.,
GR =7 -0 ). |
For H + Hz, the physically measurable cross sections must
~ be obtained from wave functions which have been properly antisymme-
trized with respect te interchange of any two identical nuclei. This
~can be done by the technique of posf~antisyn1metrization as was
detailed in Ref. 29, and leads to the following indistinguishable atom

differential cross sections (labelled by the symbol A):
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f N ’ X , - f R 2
%3 S ey | . 3 -yt '
vimg =~ v'jm'; vim, = vim
(j,j' even, para — para)
2
31,3 x
. -~ v'i'm’
vgml 'j !
(j even, j' odd, para — ortho)

Vot
A v'y' 2
o_. S TY U X ‘f -~ vi'm? ‘
wmj v'i'm i ij V]III} v'i'm i (2.8)
(j odd, j' even, ortho — para)

R 2
{ ! v;m - v'j m'] fvjmj.-vvj'mvi!

+2‘fv;|m3—*VJm]| }

K (j,j' odd, orthq — ortho)

| For even j to odd j {odd j fo even j) transitions, the antisymmetrized
ané reactive crdss sactions aré proportional, with é multiplicative
factor of 3 (1), so either quantity gives equivalent information,
For other transitions, there will be interference between direct and
exchange amplitudes as is implied in Eq.- 2.8. |

“Since the rotational sublevels for a given vibration-rotation
state are degenerate , We may define both integral and differential
degeneracy averaged cross sections by (valid for R, N or A transi-
tions): |

Ot it =2-.-Z-—1- o _ . ‘ (2.9)
i~ v'j j+ m}m’} v;m vgm} ‘

and
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QV] - v T2y ¥ 1 E Z ij,m‘ - vi'm’; (2.10)

We may alsc sum these cross sections over all {inal states, obtaining

N _ © .N
i T L Py~ vy (2.11)
. v?j;“ : :
g T2 L Oy gy . (2.12)
ijv )
A RN A o
“%j- (para,ortho) ~ Z Z ij - 'yt (2.13)
v jf

(i* even (para))

{i" odd (ortho))

with a,"ﬁalogous expressions holding for the integral cross sections
with () substituted for 0. The factor of 2 in IBq. 2.11 arises from a
sum ovér the two equivalent reactive arraﬁgg;ement channels (in a dis-
tinguishable atom sense). The final state sum in Eq. 2.12 refers.

specifically to final ortho or para states as is appropriate.

2.2 Convergence and Accuracy Tests, Details of the Calculation

In order tc establish the reliability of the results of }these
calculations, a number of camrergénce and accuracytests were per-
formed, including (a} tests of flux conservation and microscopic‘
rev@sibﬂiﬁy, (b} tests of invariance of the results with respect to the
inclusion of additional vibrational or rotational basis functions in the
close coupling expansion, (¢) tests of i;nvarianée of the resulis with
'reﬁp@ct tg a change in the number of terms used to expand the potential

(see Eq. 2.14 below), and (d) tests of invariance of the results with
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respect to a change in the nature of the reference potential

vref(rh’ RA)Z9 used to generate vibrational basis functions for the
integration. Two additional tests are (e) of invariance with respect
to a change in the matching surface basis functions, and (f) of the
effects of lack of completeness of these matching surface functions
on the ortho to para nonreactive transition prdbabilities. These
latter two tests were not performed, but the analogous planar tests‘lzb
indicated that both effects were not important in that calculation.

Since comparable planar and 3D vibration rotation basis sets were .
used in the two sets of calculations, we have assumed that the matching
surface basis functions of Eq. 4.28 of Ref. 29 will produce adequate

' (5% or better) convergence of the 3D results.

Counservation of flux and microscopic reversibility may be
tested by examining the probability ma’triées for each partial wave, |
an example of which is given in Table I for total energy E = 0.6 eV
and J = 0. Flux conservation requires that the sum of each row or
column of g 3 should equal un‘ityﬂ, while microscopic reversibility
requires that ,EJ be symmetric. In the table we se= that both of these
properties are well satisfied (O. 18% maximum deviation from flux
- conservation and < 3% from symmetry for those probabilities
> 1% 107%). Inthe results presven’ced' in this paper, we consider the
energy range 0.3 to 0.7 eV. For encrgies E in the range 0.3 eV to
0.6 eV, we find maximum deviations from flux conservation of 1%
and from symmetry 10% (for non-negligible probabilities). Between
0.6 émd 0.7 eV we {ind 4% deviations} from flux-conservation and 15%

from symmetry. In order EQ obtain results of this quality, we used
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the vibration rotation basis sets specified in Table II. For J =0,
Eqg. 2.1 greatly reduces the number of channels coupled, thus reducing
computation time, allowing us to use more complete basis sets. This
leads to excellent results for the J = 0 probabilities (similar or bhetter
than those in Table I at all energies considered). However, for
larger J, the number of projections 2 increases gljeatly. This leads
- to prohibitively large computation times if basis sets analogous to
those for J = 0 are used. The ones actually used are those describad
in Table II. The above mentioned accuracy limits were obiained with
them. |

Convergence with respect to the inclusion of additional vibra-~
.tional or rotational channels is exa.mined'in Table III. In part (A)
of t.ha't table, we examine several important transition probebi}ities

at E = 0.65 eV, J =1 for three different rotational basis sets (all with

four vibrations). Upon changing from a j =5 to Jpax = 6 basis set,

max
we find changes of less than 1% in all probabilities. In part (B‘)}We

examine several 0.65 eV, J = 0 probabilities with 4 and 5. vibrations

(all with j =7). Here we find 4% maximum change. An examination

max ,
of the nature of the convergence properties with respect to the inclus_ion

of additional basis functions was examined in greater detail in the

planar calculationlgb where we found that typically 4 vibrations and

o

Imax
of the three dimensional results indicates similar convergence pro-

= 5 were required for 5% convergence. A less extensive study

perties and the results of Table III are in agreement with this statement.
The two criteria (c) and (d) mentioned at the beginning of this

section refer fo changes in the representation of the potential
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V}‘(rk,RA,yk) (where 7y, s the angle between R, and 1, (Fig. 1)),
and in the character of the reference potential V;ef (rA’R)\) used
to generate the vibrational eigenfunctions. As detailed in Ref. _29,

the potential is expanded in a series of Legendre polynomials

O -
VAr,,Ry57y) = 3 Vilr,, Ry P (cosy,) (2.14)
" koo ‘

where, for an atom plus homonuclear diatomic' molecule system like
H+ Hy, the sum on k includes bnly even terms. In an actual calcula~
tion, BEq. 2.14 is truncated after n terms (such as n = 3). This
procedure is justified if the resulting probabilities are not significantly
changed when an additional term is added. To evaluate the effects
| of changing n, we compare in Table IV the results of calculations
lydwith n= 27‘, 3,4 and 5 32 for selected trénéition probabilities at two
different energies. Although the n = 2 results are often significantly
in error (by as much as 30%), we find less than 7% changes in going
from n=3ton=4 and virtually no change at all in going from
"n=4ton =5. All calculations of this paper other than those thse
 results are presented in Table IV used n = 3. The reference potential
functions according to the procedure of Ref. 29 suffers from a lack of

which is used to numerically generate the vibrational basis
uniqueness in the interaction region due to nonseparability of vibra-
tional motions from translational or rotational ones. In fhe coplanar
calculations, two different choices of the reference potential

A A A .
(Vref = V(rA,RA,yk =0) and V__, = V, (r,,R,)) were used. A compari-

son of these calculations indicated that for basis sets with four or
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more vibrations, the results changed by less than 5% between the two
reference potentials. A limited number of three dimensional calcula-

tions indicates that behavior is comparable to the planar case.

Pa i Sa e Ve Eo Vo Wl

3, RESULTS FOR THREE DIMENSIONAL H + Hy

3.1 Transition Probabilities

In this section we examine the J dependence of the reactive
anci inelastic transition probabilities in the energy range 0.3 to 0.7 eV.
Figures 2a and 3a present the reactive probabilities PJ?OO’—- o1 (summed
over final mg). These figures indicate that the probability is a rapidly
decreasing function of J with a peak near J =0 for all but the highest

energy consider“ed“ If we define JM AX 38 the lowest value of J for

which P JR vi— v'j’ has degzreaséd to less than 1% of its maximum value,
J ) v
then JM AX = 4 at 0.3 eV and increases monotonically to about 10 at

0.7 eV. The contributions of these transition probabilities to the

integral reaction cross sec¢tions are weighted by the factor 2J + 1

(see Egs. 2.5 to 2. 7). Figures 2b and éb depict the product (2J + 1) X
R .

FI, e

contribution to Qs _ 4, variesfrom J=1at0.3eVtoJ =4at 0.7 eV.

00 — 01° and we.see that the partial wave which gives the largest

To examine the contributions of the different projection quantum
numbers to the curves in Figs. 2a and 3a, we plot in Fig. 4 the

reaction probgbilities P JI,{OOO - 0lm'. for mfj, =0, %1 (and their sum)

at E =0.6eV. Itis appareﬁt from the figure that m":i =0 makes the

dominant contribution to P JR(){} . g1 for this transition at all J for which
. ’ ‘ : .

the transition probability is non-negligible. The m'j = +1 probability

(which, from Eq. 2.7 is ihdependemt of the sign of m"j) shows a peak
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near J =4 followed by a somewhat slower decreasa with increasing
J than ig exhibited by the m'j = 0 probability. An examination Of,
other transition probabilities at 0.6 eV indicates that in general, the
m i= 0 to m'j = { reaction probability is the dominant one for a given
vi and v'j'. This elfect becomes less important as both J, j or j’
increase as is illustrated in Fig. 5 for the probability PJITOOd D3
butf it remains a }genez‘al fact that the my = m' i 0 transition probability
is the largest one for J <‘JMAX and j =< 4. This statement is also
true for other energies considered. Its effect on the integral Cross '
sections will be discussed in Section 3. 3.

 Let us now éonsider the meaning of this rotational projection
quantum number "iquasi selection rule.” Recall thatQ = ~-m i initially
so that m; = 0 implies {for nonzero j) that the direction of rotation is
perpendicular to the direction of approach, as is schematically indi-
cated in Fig. 6. In this situation, we find that twice during each
diatom rotation, the three atoms are completely collinear (for zéro
impact parameter collisions). For the Porter—Karplus potential
used, le linear orientations greatly favor reactioﬁ ¢ rer other .orientaé
tions. (The linear barrier height is 0.396 eV while the perpendicular
one is about 2.8eV) For collisions where mj #= 0, the“rotational
wave function Yj}\1 g (y)\, z,bk) has a node at y, =0 so that there is zero
probabiﬁty density fgr strictly collinear zero impabt parameter collisions.
(All of these considerations, of course, apply before the incident atom
begins perturbing the diatom target.) Thus we see that only for mj =0

can the system assume initially the linear orientation favorable to
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reaction. After the collision, m 'j =% 'so that again only for m'j =0
can we have a linear orientalion after the collision (regardless of the
scattering angle). Wle should also note that the rotational period

“13 7 s Z 2 . ‘ - . .
(2.7 x 107 °/1i(j+1)] sec)” is generally larger than the interaction
time (which is less than 3 x 107t 39033 for the energies considered
here) so that the rotational motions are generally slow compared to
collision times at these energies and the collision orientation does
not change rapidly during the approach and departure steps. All (;f
this indicates that the m; = m‘j = 0 reaction probability should be -
larger than all others in agreement with our resulis. It also indicates
~why this rule becomes less rigid for large J (where nonzero impact
parameter collisions can lead to 1inea_r orien’cationsA for m].,m"j = D) '
and for large j (where the diatom rotates fast enough to change the
collision orientation rapidly during the collision thus reducing the
advantage of a linear orientation at any one point during the collision).
As a second prediction of this model, we would expect that those transi-
tion probabilities for whicfrx mj =0 or m'j =0 (but not both) should

j por m*j'are zero. We shall

see in Section 3.3 that this prediction is correct. We emphasize that

‘dominate over those fo. which neither m

this projection quantum number selection -rule depends on (a) a potential
surface which favors linear orientations, and (b) projection quantum
numbers refefenced relative to the body fiﬁed éoordinate system ‘of

Fig. 1. The latter reason is important because it singles out the m].

or m'. =0 collisions as leading to a linear collision orientation with

| a greater probability than mj. or m'; = O. By rotating t‘he quantization

J
axis to another direction (such as perpendicular to the three atom plane
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as is done for the coplanar- reaction,;or along a space fixed direction),
we would not be able to unscfamble the information as easily.

Figure 7 shows the J dependence of the phases of the scattering
matrix elements SJ?OOO - 0im'. for m'j =0, ﬂ;l at 0.6 eV (the same
transitions considered in Fig. 4). It is important to note that the
phase is most slowly varying near J =0. Semi-classically this
| implies that the deflection angle should be small for small impact
parameter collisions. This implies that a small scattering angle ¢
will resulf from these.low J collisions, 'or, equivalentlj, a reactive
scatteﬁng angle -EIR near 180°. ; ) |

In Fig. 8a we examine the no'nrea:ctive transition probability
PJ?OOO - oszj , and its sum over final m'j at 0.6 eV as a function
of J. Here we find JM AX = 30 so that a much larger number of partial
waves contribute to the nonreactive cross section than is the case for-
the reactive transitions in Figs. 2 - 5. Note that the m'; = 0 transition
probability is dominant only for very small J (< 6) indicating that the
linear orientation rule is probably not significant here (as might be
expected for a nonréactive collision where the nature of the potehtia.l
in the transitioh state is of lesser significance than it is for reactivé
collisions). An examination of other nonreactive tra:nsition probabilities
- indicates no strong tendency for a mj = - m“j (2 =Q") selection rule as
has often been assumed in r_otationally inelastic scattering; 3‘;"iﬁhus
indicating that the strong coupling or sudden limit does not apply to
H+ Hy inelastic collisions for the potential used. We shall examine
this again in Appendix A for reactive collisions. The transition

probabilities of Fig. 2a may also be expressed in terms.of the orbital
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angular momentum guantum number 1 (as might be used in a space

fixed analysis) by performing a unitary transformation on the body
fixed scattering matrix (see Eqgs. 5.14 and 5.15 of Ref. 29). Figure
8b indicates the resulting transition probabilities (the sum over pro-
jections being an invariant). Heré we again see no particular selection

rule governing the transition probabilities.

3.2 Differential Cross Szctions

In Figs. 9 and 10 we plot the antisymmetrized para to ortho -
differential cross sections 00‘%»01 as a function of the reactive 4
scattering angle GR‘ From Egs. 2.4 and 2.8 it should be apparehi
that these cross sections are just three times ths distinguishable
atom ¢ 0% -1 We see in both figures that the react.ive cr/oss section
| is strongly backward peaked at all energies considered in the éalc‘:ula-‘
tion. The width of the backward peak at half maximum is 48°, 32°,
33° 41°and 51° at E =0.3, 0.4, 0.5, 0.6 and 0.7 eV, respectively.
At the energetic threshold of the process considered, one would
normélly expect isotropic scattering since only the J = 0 partial wave
would contribute to the cross section. At 0.3 eV, Fig. 2 indicates
still a Very small number of significant partial \vavés (J"M AX = 4)

so the backward peak is still rather broad. The width of this back-
ward peak decreases above 0.3 eV to a minimum hear 0.4 eV. As E
incréases above that, the width begins to increase, presumably as a
result of increased cohtributions of 1arger impact paramefter' collisions
(from Figs. 2, 3) to the reaction cross section. '

12b

As was the case in the coplanar reaction, the shape of the
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differential cross section is a sensitilve test of the accuracy of the
calculation. Small fluctuations of either the magnitudes or phases of

the scattering matrix elements from their correct values for any

partial wave can result in spurious oscillations in the differential

cross sections. In addition, premature truncation of the partial wave
sum (Eq. 2.2) can lead to a spurious forward peaking. In order to

avoid spurious oséillations in the cross szctions, we checked c;bnvergence
at several values of J (by the criteria of Section 2.2) and found that |
reasonably uniform convergence had been attained af all J. (Recall

from Table II that the nafure of the vibration rotation basis set ha‘s

to be changed for each J (J = 4).) Premature truncation of the partial
wave sum was avoivded by réquiring that the reactive probabilities at the
cutoff value J o be at least 107* times those at J = 0. In general,

we found Jc "'leI Ax * 5. Both Figs. 9 and 10 show essentially no
indication of spurious oscillations or forward peaking (typically the

BR = 0 cross section is 200 tovl,OOO times smaller. than the 6 = 180°
result). We should also note that the appearance of ’Fi'/gs. 9 and 10

is Quite typical of ali degeneracy averaged para to ortho and ortho to
para cross sections.

| To examine the“mj dependence of the differen.tial cross sections,
~ we plot OO%O ~ 03", for m'j =0, £1, 2, £3. | ‘
(and their sum) . in Fig. 11. Here we see that only the m'j =0
projection gives backward scattering. As [m'j ! increéses from zero,
we find a shift towards more forward scattering with the cross sections
peaking at 6 = 139°, 117° and 102 ° for: [m"j [ =1,2,3, res.pectively.

R
Much of the structure of the angular distributions in Fig. 11 can be
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understood by examining Eq. 2.2 where we find"" that d(){n' (8)

. m. -
is proportional to (sin &) Vtimes a polynomial in cos 8. Since
2m’;

] envelope

A .
OR =7 - 0, the 0504 . g3y Should have a (sin 0 R)
and should conseguently vanish at- HR =0°and 180°. Indeed, one

can gualitatively obtain the m'; =+1 curve by multiplying the m'; =0

] ]
curve by sinze R and simildrly for the higher m'j curves. The
vanishing of the m'j # 0 cross sections at Gq =0° and 180° is also

a consequence of angular momentum conservation. To see this, we
recall that the incident plane wave solution is an eigenfunction of JZ,
the operator corresponding to the projection of the total angular

momentum along the space fixed z axis, with eigenvalue M = mj

(since my is initially zero for the plane wave solution). Since JZ

. e T p e OO . -
commutes with the Hamiltenian ~, M will be a good quantum number.
This is true for any collision, but in the particular case where

36

6, =0° (180°), the final z', axis will be antiparallel (parallel)

R
to the initial z axis, so that the outgoing projection gquantum number O
must equal -M (+M). From this and the discussion following Eq. 2.3,
we find that my =M = ~ Q= -m‘j for QR =0° and m = M=Q'= m’j |
for 0 = 180°. For ob’%()_* 93m" .’ m‘j = 0 is required for both
QR =0° or 180° and hence 'm'j = 0 projections cannot satisfy angular
momentum conservation in these two directions. Finally we should
point out that the dominancé‘of the m Yj =0 component of 09‘6\'0 -~ 03m".
in Fig. 11 is again a consequence of the favored linear transition state
geometry. The m'j = 0 collisions for small impact parameters have-
a significant probability for a iinear or nearly linear collision which

should lead to the observed dominant backward scattering. TFor
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m', »# 0, the collision configurations must be nonlinear (at least in the
product arrangemeunt channel) and we would expeét to see the sidewards
scatlering exhibited in Fig. 11.

In Fig. 12 we plot the nonreactive differential cross sections
Uogrg _ C:Zm*]- (m.‘j =0, +1, #2 and summed) at E = 0.6 eV as a {function
of 8. Here the predominant scattering direction is approximately 90°
although significant cross sections are obtained at all angles. The
forward peaking in the m ’j = 0 component and torward oscillations in
the remaining curves in the figure are probably spurious artifacts
introduced by small errors in the phases of cerfain large J elements
of §J (see related discussion of Ref. 22). Much of our previous analy-
sis regarding the angular dependence of individual m'j cross sections
'applie,s to Fig. 1 as well so we shall not repeat it. We note, however,
that the absence of a linear or near linear orientation restriction in
nonreéctive collisions Iea’ds to significant cross sections at all
scattering angles. Since the j =90 to j' = 2 transition can occur by
both nonreactive and reactive mechaﬁisms, the more meaningful
quantity to consider is the antisymmetrized cross sebtidn of Eq. 2.8.
In Figs. 13, 14 and 15 we plot this para‘tvo para cross se-ctic_m
o3 0‘3* 09 (summed over m'j) along with the nonreactive and reactive
counterparts at E = 0. 5, 0.6 and 0.7 eV. At the lowest energy, the
reactive cross section is typically three orders of magnitude smaller
than the nonreactive one, so thé reSulting para to para cross section
is dominated by the direct amplitude and differs very little from its

nonreactive counterpart. As the energy is increased, the reactive

amplitude increases rapidly and begins to interfere significantly with
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the nonreactive one. This results in the oscillations observed in

o B
00 —~02
oscillations seems to be roughly 10~ 15° in both Figs. 14 and 15 for

in Figs. 14 and 15, The period of these quantum symmetry

6< 80° with a gradual increase in period with increasing 0 until

the oscillations wash out completely at large 6. Figures 13 to 15

also indicate that the peak in o 0%7 oo shifts gradually to forwarq
scattering angles as the energy is increaéed. The contributions of
different m'j to the OO%W 02 at 0.7 eV are shown in Fig. 16 (along
with the distinguishable atom UOIE)IO - 02" for comparison). We see
that the m’j =0 cross section in that figure has the largest oscillations
followed by m*j = +1 and then m-". =+2. This results from the dominant
.contribution of the m'j = 0 reactive scattering amplitude (as evidenced
in Fig. 11) followed by m'j =+1 and finally m'j = x2. Note also that
the phases of the oscillations in Fig. 16a,b,c are not particularly
coherent, so that a certain améunt of cancellation occurs in the sum

over projections (which is shown in Fig. 15).

3.3 Integral Cross Sections

A number of reactive, nonreactive and antisymmetrized integral
Cross sections are listed in Table V. Some of the reactive and para |
to ortho cross sections of that table are plotted as a functiori of energy
in Fig. 17. Both logarithmic and linear scales are used to exhibit
both the tunnelling and threshold regions. If we define the effective
threshold energy ET as that energy for which the cross section is

0.05 bohr’, then E,, = 0.545 eV, 0.550 eV and 0. 615 eV for Q b,

T
Q é% ~p1and Q é% ..03> respectively. Alternatively, since the high
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energy dependence of the cross sections is linear, we could define an
effective threshold energy ET'V as the ener;o;y to which a line fitted
to these linear points extrapolates in the limit of zero cross section.
From this definition, we find ET' '=0.568 eV, 0.565 eV and 0.605 eV for
these same cross sections. Either way we find that the threshold
energies are considerably above the barrier height (0.396 eV) and
this difference will be discuésed in detail in Section 3.5. At energies-
below threshold, the effects of tunnelling give the cross section an
approximately exponential behavior. |

To examine the mj dependence of the cross sections, we list in

Table VI a portion of the "cross section matrix” for

QOjij - aj’m'j
j,i'=2at0.6eV. (Note that these cross sections are distinguishable

reactive ones.) The table indicates that the m; =m'; = 0 cross section

ié typically 10 to 20 times larger than any othe;r croés section with

the same vj and v'j'. In addition, for a given mj, Q is a decreasing |
function of increasing Jm'j l (and, by microscopic reversibility,

Q decreases with increasipg lmj ! for a given mfj). These observations
are indicat{ivé of the very 'signiﬁcant rotational angular momentum
polarization effect that can occur when oniy a restricted range of
geometries can lead to reaction. This aﬁproxiniate selection effect
breaks down eventually for large enough j or j'. Let us consider the.
Cross séctions QO?O ~ Dj'm’,
ratio of the m', = 0 to m’}. = x1 cross section is 22. 3 for j' = 1 decreasing

for varying j' and m'j at 0.6 eV. The

to7.1for j'=2, 3.1 for j' =8 and 1.1 for j' =4. The j' =1 ratiois
10.6, 24.7, 24.9, 22.3 and 14.7at E = 0.3, 0.4, 0.5, 0.6 and 0.7 eV, re-

spectively, indicating that this selection rule is most rigorously obeye‘d
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in the intermediate range of energies just below the effective threshold
energy. We shall examine the rotational energy dependence of the
j and j' distributions in Section 3. 6.

The nonreactive cross sections QOIST»OZ are listed in Table V.
At 0.6 eV, the QO]SIO - 09m" . hé.ve values of 3.01, 3.31 and 1.67 bohr2
for mj, =0, x1 and £2 indicative of the lack of strong rotational
angular momentum polarization effects such as are observed with the
reactive cross sections. Table V also indicates that the Qég ~02 and
QO% 9 are identical in magnitude except at t‘hé highest energy con-~- -
sidered. An additional discussion of the energy depandence of these

nonreactive cross sections is given in Section 3.7.

-3.4 Elastic and Total Cross Sections

The calculation of converged elastic cross sections reqguires
a large number of partial waves (up to 70 at 0.70 eV). Since ihe
Porter-Karplus surface has a repulsive exponential long range function-
alitylc rather than the correct attractive Rk"6 dependence?”i a fully
coupled calculation of the elastic cross sections for the purpose of

37 on this and related systems would

comparison with experiments
not be worthwhile. At several energies, however, we found that a
-very accurate extrapolation to obtain the requiréd large J phase
shifts could be accomplished. For J large enough so thaf both
reactive and inelastic nonreactive transition probabilities are
negligible, it is often the case that the elastic phase shifts have not

yet decayed to zero. Since these 1arge J collisions correspond to

large impact parameters, we would expect that 'only the isotropic
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tail of the potential is important. In such circumstances, a central
field, single channel model of the potential should suffice to predict
these phase shifts. Using a standard central potential integration
rou‘cineBg with the spherically averaged potential V(r e,R) of Eq. 2.14
where v e is the equilibrium internuclear distance, we have calculated
the elastic v = j = 0 phase shifts at the energies considered in Table V.
Typical results are presented in Fig. 18 where we have also plotted

the phase shift of the exact scattering matrix elements (% Arg

N ))
J,000 ~ 0007/

are essentially identical to their central field counterparts for J > 10,

(s The figure indicates that the accurate phase shifts
Indeed, between J = 11 and J = 39 (the highest J for which a fully'
coupled calculation was done), the difference between these two phase
shifts is always less than 0.05 rad and usually less than 0.02 rad.
This is rather interesting, for the modulus of SJ,I\ZJOO - 900 is not

even close to unity as is illustrated in Fig. 18 with a plot of the elastic
transition probability S JI:IOOO ~ 000 2. This presumably indicates. ’
that the phases of the scattering matrix elements are much less
sensitive to the presence of reactive and inelastic channels than are
the moduli. By using these elastic central field phase shifts, we can
now extrapolate the large J behavior of the converged results and thus
calculate accurate elastic cross sections. 39 Typical results for

o Olgg 0o & E = 0.7 eV are plotted in Fig. 19. The elastic differen-
tial cross section shows strong forward peaking with a small oscilla-
tion near @ = 6° and otherwise decreases in a nearly monotonic manner
to 6 =180°, The 8 =110° to 180° behavior of 00130 ~QQQ 1S probably

 not accurately characterized since the small cross sections in this
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region must result from extensive cancellation in the partial wave

sum {(Eq. 2.2) and are easily modified by émall errors in the
scattering matrix elements. Also plotted on the same graph are the
celr;cral field elastic cross section OOE(;O ~ 000 and the total cross

9400 (which is the sum of the cross sections for all possible processes
(N or R) starting from reagents withv =3 = my = 0). We see that all
three cross secfions are essentially idéntical for 6<C30°. Even for
very large scattering angles 00%‘0 and crogj(} 000 agree to within
better than a factor of 2. Moreover, the integral cross sections

Q OTOOand QO%O -00o are 221.0 bohr™ and 220.8 boh.r:-e respectively
indicating that Levine's conservation of total cross section rulello

is obeyed quite accurately for this system. We should, however ,
point out that the above mentioned total cross ssction is considerably
~ larger than the recently measured experimental one37 (for D + Hz)
which is about 151 boh_rz at 0.75 eV. If the antisymmetrized cross
section CO%O ~000 18 cgnsidered, we {ind that quantum symmetry
effects due to interference between the elastic and reactive scattering -
amplitudes are inuch lzss ,signiﬁcant than they w.erer with the inelastic
transitions in Fig. 15. Nevertheless, oscillations in this cross section

A N

“can result in diffefences between ¢ and‘ o as big as 10% of GN for

scattering angles between 30° and 90°.

3.5 Comparison of Collinear, Coplanar and Three Dimensional Results

In the analysis of the coplanar results,lzb it was determined
that a physically meaningful comparison of the 1D and 2D results could

be obtained by examining the J = 0 total reaction probabilities. We
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extend this comparison in Figs. 20 and 21 by plotting the lDz,l’ 41
9D and 3D total reaction probabilities POIS(J =0){ POR for 1D] as a
function of . Both logarithmic and linear scales are used so as to
enable examination over a wide energy range. The figures indicate a
surprisingly simﬂar energy debendence over several orders of
magnitude of probabilities. There are, however, two important
differences both of which provide significant insight into the dynamics.
First, an energy shift of about 0.05 eV occurs in going from 1D to 2D
and again in going from 2D to 3D. In the coplanar analysis, 12b We~
explained the 1D to 2D shift as arising from additional bending energy
required in the coplanar transition state over the linear one. This
bending energy is added to the symmetric stretch energy of the collinear
'transition state which, in turn, is primarily responsible for the shift.
in the collinear effective threshold energy over the barrier height |
energyl?’ (0.396 eV). In the three dimensional case, the bending mode
of the transition state is doubly degeneréte so that a second quantum
of bending energy (approximately the zero point energy which is
0.06 eV) will be required. Indeed, an éxamination of Fig. 20 indicates
that the 1D to 2D and 2D to 3D shifts are identical to within the
accuracy to which the probabilities can be interpolated. The second
difference between 1D, 2D and 3D results lies in the magnitudes of
the maximum probabilities in Fig. 21. Thé collinear probability
peaks near unity while the planar one levels off at about 0.6, and the 3D
one at roughly 0.45. The difference between the 1D and 2D plateau

12b

values has been previously analyzed in terms of the orientation

dependehce of the 2D probability. Since the potential barrier varies
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from 0.396 eV at Yy T 0to2.8eVat Yy a0° 1C,one would expect
a decreasing probability of reaction with iflcreasing 12 (assuming that
we can consider the orienfation of the atom with respect to the diatom
as fixed throughout the reaction). ' If we consider that the total reaction
probability is unity for 0 = = ')7;\ and zero for ?A =y, = 80°, and use
symmetry about 90° for 90° = y, = 180°, then we find that Poa(2D) =
z;}i/n and APDIs(SD) =1 - cos ?Aﬁ In the 2D case, we find that '77}&} =54°
is required to give a reaction probability of 0.6. This estimate of
?A is in approximate agreement with previous estimates of this éngle
from a classical 'amalysis.2 The same angle used in the 3D formula
yields Po}s(BD) = 0.41 which is not considerably différent‘from the
vobserved value of 0.45. This indicates that the 2D and 3D orientation
‘dependence is probably quite similar with primarily dimensionality |
considerations responsible for the difference in reaction probabilities.

At least two procedures for converting 2D integral or differential

cross sections into 3D ones have been proposedl()’42

both of which use
semi-classical arguments in making the connection. We will leave é,
thorough analysis of thﬁse’conversion procedures"to a future publica-
tion, preferring instead to concentrate on approximate 3D procedures
which require comparable or smaller amounts of computation time' |
than the 2D calculation while providing 3D information directly. (See
Appendix A)) We would like to point out however ;ovne rathér remarkable
comparison between 2D and 3D results which is obtained by examining
the differential cross sections. In Fig. 22 we plot the 2D and 3D

differential cross section UO% ~01 (adjusting the respective abscissa

scales to bring them into approximate agreement at GQ =180°). The
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2D result at 0. 55 eV is compared to the 3D one at 0.60 eV so as to

include for any effects due to the bending energy shift. Fig. 22
indicatesa remarkably similar shape in the respective angular distri-
butions over the entire range of scattering angles. A similar compari-
son at other energies in the range considered usually leads to compa.i-able
agreement. This indicates that.the dynamical processes involved are
. indeed quite similar. Such behavior is not unexpected, for the same
sotential is sampled in both cases and the primary difference between
the two calculations is the additional centrifugal coupling resulting
from tumbling of the 3 atom plane, which is present in 3D but not in
2D. The existence of a strong rotational polarization selection effect
as evidenced in Table VI indicates that such coupling is weak in
jcomparison to the potential coupling since it is the potential which is
responsible for the linear geometry reqﬁirement. Thus'ZD and 3D
dynamics should be quite similar and conversion of 2D to 3D results

could prove to be an accurate approximate technique,

3.6 Reagent and Product Rotational State Distributions

We now consider the rotational distributions of the degeneracy
averaged reactive distinguishable atom cross sections (all for v = v' =90).

12b we found that a surprisingly accurate

In the coplanar H + H, study,
fit to this distribution could be obtained with a temperature-like expres-
sion (for a 2D system). This type of disﬁribution cim be derived from
an information theoretic formalism through the assumption that the
sufprisai function43 is linear in the final state rotational energy. For

3D collisions, with only one open vibrational channel, the information
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theoretic expression for the degeneracy averaged cross section
between rotationzl states j and j' may be written as

R -E., /kTJ.(E)

Q. .,:AJ(E}p(Egl,“)(zgwi)e ] (3.1)

3
where the pre-exponential factors compi‘ise the reference or statisti-
cal distribution, and Tj and Aj are the two j' independent parameters .
. of the theory. p(E;.:%q) is the product translational density of states
and is a function of the transiationa]. energy E’;f‘ relative to state j'.
E., is the rotational energy, and we choose Ej’ =0 for i' =0 so
that Eg? =B - Ej' ~ E, where E, is the v' =j' = 0 zero point energ&.
The 2j' + 1 in Eq. 3.2 is the product rotational degeneracy factor.
To see how well our 3D cross sectionsk obey Eq. 3.2, we have plotted
in Fig. 23 the cross sections QO?—-» 0§ divided by (2j' + 1) X E(ng‘)
on a logarithmic scale as a function of hij, for several initial stafes j
at 0.6 eV. (ﬁ(E’;‘) =,o(E§¥) /p(0)  so that p(0) =1.) ¥ Eq. 3.2
is satisfied, then the resulting curves should be linear with slopes
inversely prop)kortional to TQ(E). We see in the figure that the l.ow it
calculated points do indeed 'form nearly straight lines for each j,
thus indicating that the temperature-like distribution is quite accurate
for describing the reactive cross sections. The temperature paraméters
obtained from the siraight lines which connect the low j' points are
326, 326, 328, 31€and 376 Kfor j =0, 1, 2, 3 and 4, reVSpectively.
The first four values are identical to the accuracy to which the
points form a straight line. Actual.ly, one can easily show by abplying
microscopic reversibility to Eq. 3.2 that if the rotational distribution

is temperature-like for all j then Tj(E) must be independent of j.
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The above listed temperatures consequently should all be the same
if thé distributions are truly temperature-~like. Only for j =4 or
j' = 4 are deviations from temperature-like behavior significant. If °
we now perform a similar analysis at several other energies we
obtain Fig. 24 which depicts the j = 0 distributions between 0.45 and
0.70 eV. Temperature-like behavior is evident to a co.mpérable
extent at all energies considered. The temperature parameters
obtained from t‘he slopes of the lines in Fig. 24 vary from 228 ¥ to
446 X as E varies from 0.45 eV to 0.70 eV in steps of roughly 40 K
per 0.05 eV increase in energy.

In the coplanar studylzb we pointed out that the existence of
temperature-~like rotational distribut.ions could be a reflection of‘ the
shape of the potential energy surface near the transition state and the
significant restriction in bending motions which the pstential induces
there. Since the transition state bending motions correlate adiabatically
with asymptotic free rotor motions one might expect that the average
rotational energy of the products should bé related to the average
energy in bending. This relation does not seem to e quantitative,
however, for the average product state rotational energy is roughly
equal to the temperature parameter while the bending energy, as
estimated in the previous section, seems to be somewhat higher
(228 - 446 K for the former and 550 K for the latter). The model ex-
plains the similarity between the coplanar and three dimensional tem-

12b (ersus 326 K for 3D, both at

perature parameters (311 K for 2D
0.6 eV) only if we further assume that only one-of the two degenerate

3D bending modes becomes product rotational motion. It therefore
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appears that some refinement in the model will be necessary in order
to quantitatively explain the temperature-like distributions observed

in Figs. 23 and 24.
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3.7 Comparisons with the Results of Other Three Dimensional

Calculations
in Figs. 25 and 26 we compare our integral cross sections

(labelled SK) with the correspoﬁding oneas obtainéd by se&eral other
methods, all applied to H + HZ on the Porter-Karplus potential surface.
In Fig. 25 we plot the quasi-classical total reactive cross sections
of Karplus, Porter and Shzuc'ma2 (KPS) and the quantum mechanical
results of Elkowitz and Wyatt9 (EW) while Fig. 26 contains the anti-
symmetrized Q g‘a ~ ol of Tang and Karplus4 (TK), Choi and Tang7 (cm
and Wolken and KarplusG (WK). 1t is apparent that the best agreement
in either figure is between ocur Q 0% and Q(% and the corresponding o
quasi-classical quantities. Our converged gquantum result and the
quasi-classical cross sections are essentially identical between
0.6 and 0.7 eV to within the statistical accuracy of the classical
calculation. Agreement between Q&SK} and ch(KPS) is much less
quantitative but still reasonable if one conéiders the small cross
sections involved and the inherent statistical uncertainty in the
classical result. Below the classical thresholdé, we Qbserve charac~-
teristic tunnelling behavior in our quantum cross sections which will
have an importani effect in the comparison of classical and quantum
thermal rate constants (see Section 3.8). Agreement between our
results‘and the corresponding ones Qf Elkowitz and Wyatt is rather
poor considering that both calculations employed extended vibrdtion'

rotation basis sats. Recently, EW have discovered some errors in



Lot

their calculations44 which put the comparison in Fig. 25 into question.
We would, however, like to point out that EW simpliﬁéd their calcula-
tion in three ways, 45 one or more of which could have an appreciable
effect on the results: (a) théy omitted certain Coriolis coupling terms
from the kinetic energy part of the Hamiltonian; (b) the potential was
fitted to analytic expressions so that vibration rotation coupling Wasv
}omitted; and (c) only the v = 0, 1, 2 vibrational states were included
in the close coupling expansion and convergence with respect to |
addition of vibrational states was apparently not tested. The Tang and
Karplus distorted wave curve in Fig. 26 has a much higher effective
threshold energy than ours and consequently much émaller Cross
sections at the same energy. Part of the difficulty could be the
"linear™ aSsumptiqn used4 in evaluating the infcegrals for Mthe transition
amplitude. When this assumption was removed, as Waé done by Choi
and Tang, the cross section increased significantly at the one energy
they considered. We should also note that Choi and Tang7b have also

. . . R i
observed an m j dependen:ce in their PJ,OOO - Q1m®. reaction proba-

bilities quite similar to Fig. 4. It would be interesting to obtain
distorted waveb results such as those of CT at lower energies so that

a more direct comparison with our results may be effected. The one
vibrational basis function results of Wolken and Karplus have an
effective threshold energy much lower than ours for the same transition.
This is probably a consequence of the severely truncated basis set

used (only vibrational quantum state v = 0 and the j=0-3 fotational
levelsﬁ). Convergence properties of severely truncated basis sets

were examined in the coplanar H+ H, study, 12b and it was determined
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there that errors of several orders of magnitude in cross sections
were possible in some cases if both vibrational and rotational
convergence was not achieved.

The quasi~classical and quéntum differential cross sections
GO% (at somewhat different energies) are examined in Fig. 27.
Both angular distributions are backward peaked with very similar
shapes. A very interesting comparison between classical and
guantum dynamics would involve an examination of the classical
rotational polarization effect analogous to the quantum results in
Fig. 11. Such a detailed comparison of cross sections between indi-
vidual quantum states (rather than summed over seifel*al as is the case
‘in Figs. 25 and 27) would be highly desirable in establishing the
general validity of the quasi-classical procedure. ¥Fig. 28 provides
a comparison of the WK, CT and SK UO% -1 angular distributions
at similar energies. We find the distorted wave differential cross
section of Choi and Tang to be very similar to ours while the Wolken
and Karplus cross section differs rather substantially from either.
Part of the error in tha WK result could be due to an ambiguity in the
interpolation of amplitudes and phases of scattering matrix elements
for those‘par‘f:iai waves they did not explicitly calculate. (Only every
third partial wave was done. 6) Ixifjeed, we have found interpolation
procedures to be extremely dangerous (especially for the phases)
and for this reason, we have always computed scattering matrices at
each partial wave required for convergence of the cross section.
- Another comparison of angular distributions is indicated in Fig. 29

where we examine the semi-clasgsical ¢ 0}% 01 of Doll, George and
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| Miliers (DGM) at a much lower energy than has been considered in the
previous two figures. The agreement between the shapes of the
guantum and semi-classical differential cross sections is excellent,
but much less quantitative agreement is seen in a comparison with
the DGM reaction probabilities as is seen in Fig. 30. In that figure,
both methods of computing the semi-classical probability yield results
which are factors of 5 to 10 larger than ours (although closer to ours
than are the c;omparable results of Wolken and Karplus shown in
- the same figure. Presumably a "uniform' type of expression for
evaluating the semi-classical reaction probability is required to bring
those results into agreement co:}nparable to what was obtained in the
same energy range with collinear H + H,. 46

We conclude this section with a comparison of our nonreactive
integral and differential cross sections with those of Wolken, Miller
and Karplus. 22 The latter calculation considered the same potential
surfacelc as did we but ignored the possibﬂity'(')f reactive collisions.
A comparison of the resulting integral cross sections Q(% —~02 is given
in Fig. 31. The differrzncé between the two curves is essentially
within the accuracy of the respective calculations except perhaps at
“the highest energies considered. This is .quite interesting, for WMK
used a one vibration basis function approximation (with, however,
Ve = 6'22) in their calculation. This could indicate that the absence
of closed vibrational c}hannels is of much less significance for non-
reactive collisions than it is for reactive ones. Unfortunately, a

comparison between the WMK differential cross sections ¢ OIE)I ~02

and ours (¥Fig. 32) shows significant disagreement with the WMK
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result highly oscillatory in contrast with our very smooth result.
This disagreement is very suspicious, however, because the WMK'
reaction probabilities and phase shifts are very similar to Figs. 8b
and 18, respectively, implying that the input into the respective
differential cross section calculations is very similar. We believe
that the smooth rather than oscillatory differential cross section
behavior is more reasonable because (a) it is consistent
with a direct mechanism being dominant in the collision process;
(b) it agreés gualitatively with our coplanar result at the same
energy (also plotted in Fig. 32) which is obtained from an entirely

12b and (c) it also qualita-

different kind of cross section expression;
‘tively agrees with the corresponding nonreactive cross sections of
Allison angd Dalg‘arnozg for the same system but a different interaction
potential. Note that Fig. 32 also shows the absence of any forward
peak in the planar cross section. This is additional evidence for the
conclusion of Section 3.2 that the forward peak in the 3D result is

probably spurious.

3.8 Rate Constants

In this section we will examine the bebavior of the para to
ortho rate constant for H + HZ' The ortho to para rate constant can
be easily obtained from kp» o (T) by using the readily available
equilibrium constant. 41

We first défine the rate constant for the transition iji —

v'i'm ?j {(valid for R, N or A transitions):
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V_.?

kvjm. - v'j'm', = <ijm. - v'i'm'. 'vj
J ] J J (3.2)

’ 3
= IQV]IH - V']'rﬂ'l (VV])VVJ P(VV]) d VV]

where the velocities V vi were introduced in Section 2.1 and P(V )
is the Boltzman mstrlbutlon function. Upon explicit substitution of

this functicn into Eq. 3.,2, we find

8 1 ® _tr tr
kij. ~yim', ~Na 7@ 872 j;, Evi Quim, ~ v ' m By )
7 ] (kT) ° i
B
-EZ /xT | |
x e VI dEglj : (3.3)

where p is the reduced mass corresponding to the motion of the atom
with respect to the diatom and Evj is the translational energy relative

to state vj (E% =suV N A is Avagadro's number so that k has

2
Vj )-
3
units of cm /(mole X sec). Expressions for degeneracy averaged rate

constants k Vi~ v'j’ may be obtained by using the degeneracy averaged
Tyj - vt in Eq. 3.3 rather than ¢ jmj - v'j'm'j . The para to ortho
cross section is then obtained from the k_* ey Via:
. Vi— V]
-E_./KT o
| £,2i+1)e v A
kp»o (T) = 2 ; Q Z kvj ._.v.v.ljl‘(T) (3.4)
, vj P v'j'
(j even) (3* odd)
where '
- -EV. /KT
=7 £+ 1) e ] (3.5)

Vi
(i even)
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and E vi is the vibration rotation energy of state V] (E=E vi + E%)
The nuclear spin degeneracy factor f i has the value 1 for j even and 3
for j odd and thus is always unity for kp-*o ' Evefluaf:mn of Egs. 3.3
and 3.4 may be accomplished by using the cross sections
QV‘].A» ortho which are defined in Section 2.1. Some values of thesge
integral cross sections are given in Table V. By numerically evaluating
Eq. 3.3, we have calculated the para to ortho rate constants given in
the first column of Table VII. Both linear and logarithmic interpolation
were considered betweeh the energies at which cross sections were
calculated and the results from the two methods agree to 20% or
bette:. (The linear results are given in Table VII.) Only temperatures
‘below 600 K have been used in the calculation because of substantial
errors which occur in truncating the integral in Bg. 3.3at 0.7 ev
total energy for temperatures above 600 K.

The quantum para to ortho rate constant may also be obtained

(apprommately) from distinguishable atom cross sectlons The total

reactive rate constant k (T) for distinguishable atom collisions is: 2

£(2j + 1 “Eyy/kT
Ry =3 O e )g %R D) (3.6)
vj | v'j'
where
Q- ij @ + 1) e*_E"i/kT (3.7)
Vj '

The factor of 2 at the beginning of Eq. 3.6 arises from an explicitly
performed sum over the two equivalent product arrangement channels.

Now in the limit that a large number of quantum states contribute to
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the sums in Egs. 3.4 and 3.6, we may assume that a sum of rate
constants over just odd product states (or just even states) is approxi-

mately half the sum over all possible states, i.e.,

z k\’?“* V'j'(T) ~ 3 E kvljz_, V’j’(T) (3.8)
V’j' V'j!
(3' odd)
or
(j' even)

In addition, for high enough temperatures,

-E_./&T

. ) -E _/, .
= ; Vi ~ i Vi
Q,= ij(zz +1)e 3 ij(zJ + 1)e
vj V)
(5 odd) - (j even)
(3.9)
= 3 Qr}
So that
= ~ 4 .
Q=Q +Q,~4Q, (3.10)

By realizing that ko"* b is given by an expression analogous to Egs. 3.4
gnd 3.5 but with the even and odd sums interchanged, and by combining
the expressions for ko»p and kp*o" using Eqs.y 737.8 - 3.10 to
simplify and using the relations between anfisymmetrized and dis-
tinguishable reactive rate constants implicit in the discussion

following Eq.‘ 2.8, we find

KR(T) ~ ko (D) + X (T) (3.11)

. o 1
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where K eq is the equilibrium constant. To the same order of

approximation, Eq. 3.9 implies that Keq ~ 3 so Eqg. 3.11 yields
o L 4 | |
KT ~ 3k, o(T) . (3.12)

This implies that by computing kR(T) and using Egs. 2.11 and 3.12,

we can approximately compute k {T). In the second column of

Table VI we list these k;h’t

p—o*
obtained from the di stinguish.able atom

cross sections. Equation 3.11 rather than 3.12 was found to give

slightly better agreement between lelsg and k for T< 300K
and was therefore used in calculatma kpdlsé in the table. We see that

dist
p—~o
significant figures indicating that the approximation is quite accurate

for T= 300K, k (T) and kp—*o(T) are identical to at least 2
even at fairly low temperatures. Our primary reason for developing
this distinguishable atom method for calculating kp» o is for the
purpose of comparing our results with the _quési-—classical rate
constants of Karplus, Porter and Sharma.2 If we use Eq. 3.11 to
convert their caléulated kR(KPS) to k.p_, 0(KPS) we obtain the results
in the third column of Table VII. In the fourth column we have listed
the analogous transition state theory result L o (TST) [ which is

| obtained from the formula given in Ref. 2]. Arrhenius plots of these
quanturﬁ, quasi-classical and transition state theory rate constants
are presented in Fig. 33‘ At 600 K, the quasi-classical kp,-» C'(KPS)
differs from kp*o‘ by only 7% while the TST result is in error by 79%.
The close agreement of the quasi-classical and quantum results is

an obvious consequence of the excellent agreement of the corresponding

integral cross sections (above the classical thresholds) in Fig. 25
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coupled with the excellent validity of Eqs. 3.11 and 3.12. Presumably,
the quantum and quasi-classical rate coustants will continue fo be in
very good agreement at temperatures above 600 K. At lower tempera-
tures, however, tunnelling effects become extremely important with
Ky o (8K) a factor of 3.3 larger than kpﬂ_O(KPS) at 300 K and 18 times
larger at 200 K. The significant nonlinearity in the quantum curve in
Fig. | 31 is also apparently related to tunnelling, although we should
note that previous studies on collinear H + Hz have shown48 that
tunnelling can make significant contributions to the rate constant even
at 1000 X where the Arrhenius plof is quite linear. The transition
state theory rate constant deviates from k

p—-
(KPS), with k (SK) 5p 0 (TST) being 20 at

O(SK) even more
_severely than kp -0
300 K and 427 at 200 K. Part of the error in the TST result is
probably due to the neglect of tunhelling corrections in the expression
»used (i.e., a transmission coefficient of unity has been assumed)
For the SSMK surface.lz, Shavitt16 has estimated one dimensional
transmission coefficients of 1.769 at 600 K, 6.482 at 300 X and
44,867 at 200 K thus indicating the possibility of substantial improve-
ment upon inclusion of these factors. On the other hand, the ratio
p—*o (KPS) /k ~0 (TST) deviates substa.ntialiy from unity in Table VII
despite the fact that tunnelling has been omitted from both calculations.
B’ecause of the strongly nonlinear behavior of kp »o(SK) in Fig. 33 s
the attempt to characterize that rate constant by a single activation
energy is probably not too meahingful. If one does, however, compute

such a quantity by arbitrarily fitting a straight line between the 500 K

and 600 K points, one finds activation energies of 6.3, 7.5 and 8.8
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kecal/mole for kp_y o (SK), kp-«— Q(KPS) and k (TST), respectively.

The guantum activation energy is 1.1 kecal/mole (0. 048 eV) above the

p—~o0

corresponding coplanar one (5.2 kcal/mole)mb and this difference is
almost identical to the 0.00 eV Zﬁ to 3D shift observed in Figs. 20
and 21 for the reaction probability curves.

Since the Porter-Karplus potential surface we used has an
incorrect barrier height (0. 396 eViG versus 0.425 eV for the more
accurate Liu surfacele)f a comparison with experimental results
of thermal rate constant measurements will be deferred until a more
extensive series of results similar to those of Appendix B for the

‘Liu surface are completed.

4. SUMMARY

Let us now summarize the éignifica.nt concepts developed in
this paper. First, in the analysis of the reactive transition probabilities
and cross sections we found a fairly accurate rotational projection
guantum number selection rule {m j=m (j = 0). :Aithough one can find
many factors which are at least partially responsible for this effect,
the primary reason for this specificity and selectivity is the restriction
to nearly linear geometries in the transition state as is detérmined by
the potential energy surface. No Camparable .selecvtion effect was
fomidﬁ for the nonreactive collisions (compare, for example, Figs. {2
and 15). At higher eﬂergies, guantum symmetry intez‘fel*é11Ce oscilla-
tions were observed in the j =0 to j* = 2 para to para differential cross

sections. Such oscillations might be capable of interpretation in terms

o parameters which characterize the potential energy surface
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as has been dore for the related atom-diatom and molecule~molecule
elastic scattering situations. 49 The elastic cross sections revealed
a lack of sensitivity of the 6 < 30° angular distributions to the loss
of flux info inelastic and reé,ct:ive channels, and d.emonstrated the
approximate validity of )'_,evvine's40 conservation of fotal cross section
rule. A comparison of the results of 1D, 2D and 3D calculations
revealed the importance of bending motions in the Ttmnsitiorx state and
demonstrated their connection with threshold energies. In addition,
the orientation dependence of the reaction probabilities was analyzed -
and found to be compatible with the observed maximum values of the
total reaction probabilities. The results of 1D, 2D and 3D comparisons
afforded in this paper should be of great use in the improvement of
1D and 2D models so that they can be used to make guantitative
predictions about 3D results. The degeneracy averaged rotational
distributions were found to 0bey Boltzman-like expressions with a
surprising degree of accuracy. A precise understanding of why this
occurs remains unknown at present but an analysis of the scattering
wave function at the transition state in terms of vibrationally and
rotationally adiabatic wave functions may help to clarify the relation |
of bending energy to product state rotational energy and hence to the
temperature parameter. A comparison of our integfal and differential
cross sections with those of several other approximate‘ calculations
indicates best agreement with the quasi-classical results. The lack of
tunnelling in the classical cross sections produces important differences
in the para to ortho thermal rate constant at temperatures well below

600 K but good agreement at 600 K.
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The wealth of dynamical information presented here makes
clear the great usefulness of these calculations. At the same time,
the large exp‘enditure of computer time indicated in Table II implies
that analogous calculations will be done for only a limited number of
additional systems for which a very detailed understanding of the
important dynamical processes involved is highly desirable. This
places prime emphasis on the development of accurate but efficient
approximate techniques,and the comparisons between accurate and
approximate theories given in Sections 3.9, 3.7 and Appendix A

indicate that such technigues may be possible.
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APPENDIX A: ANGULAR MOMENTUM DECOUPLING APPROXIMA-

In Ref. 29 (Section 2. 3) we described the.use of angular momen-
tum decoupling (tumbling decoupling) approximations for reactive
scattering. In this Appendix, we presént the results of an application -
of one very simple variation of these procedures to 3D H + H2 using
the Porter-Karpluslc potential surface.

The particular decoupling approximation we used can be applied
in two steps. The first involves the neglect of all terms in the A
arrangement channel Hanﬁltonian which are off diagonal in A+ In order
to elaborate upon this, we write the rotationally coupled Schridinger

equation (Eg. 2.19 of Ref. 29) as follows:

™ 3 B : YO
oy A DY
Ca,0, = Va0, )+ Z‘. ERNRE LY |
by | (A.1)

Mi, I

A )Y Y
+t w (r,,R) +t 1% oo _1lr,,R,) =0
2,8, +1 7 Jj, @, +17 )) Q,8,-1 735, 2, -1V T T

where
LN S T 1 3
O N e SN '
: ‘ (A.2)
NS
A\ h S S
. + Tiry? + AR, [JT+1) - 2Q, + 13,0, + 1)]
' 1
BISN . ﬁz \ 12
b g o= [JT+1)-q,(&, =1)]
QSHEL T 2R, AT '
3 (A.3)

X [JA(J)& + 1) - QK(Q}\ + 1)]
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and
A0
A : s 1
VjAjA' (rk’ RA) = <JKQ>\. lvl(r‘)\_y R)&’ VA) h)& Q)} (A~4) )
A
Jj/\QK
function ¥ IM in terms of the A arrangement channel angular functions:

The functions W arise from the expansion of the full wave

_ J A

0  (A.5)
= T Do (8,506,007, o (0, ¥,)W o (5,,R,)
= Mo, ‘P 0 Y e, e VY e, oty
. A ATA AA ,
JAQK v
From Eq. A.1, we see that the only terms in the Hamiltonian which
_ JAj : .
are off diagonal in £, are the t A which come from the orbital
T thzhﬂ _ ,
AR, -
2
angular momentum term 1 , /2 ;zR;. The potential energy Vj b A is
- PN
diagonal in N and hence is treated exactly in the approximation.

JA]

- The last term in the diagonal kinetic energy operator tQ ?2 of Eq.
ATA

A.2 is not approximated in our method as has often been done in

50 pather, this term

analogous nonreactive scattering calculati_oné.
is treated exactly, necessitating the use of noninteger-order spherical
Bessel functions in defermining the asymptotic réaczancerand scattering
matrix solutions. With the neglect of the last two terms in Eq. A.1, the
integration of the Schridinger equation in each arrangement channel
region A may be done separately for each szk. No additional }appro;x:ima-f
tions in any formulas pei'taining to the integration are required. As

- with the fully coupied problem, the homonuc:lear symmefry of the H,
target allows us to decouple even and odd rotational states. Parity

decoupling does not apply, but the reactance and scattering matrices

generated are invariant to the sign of QA" so only SZA = 0 needs to be



505

considered in the calculation. ’

The second step of the approximation refers to the matching
procedure of Ref. 29. In this procedure, the /wave.iunction X J)EZA
(Eq.A.5) expressed in A arrangement channel coordinates, is related

to ngﬂ (in v coordinates) via (Eq. 4.20 of Ref. 29)
" ,

A BN | v
X =) d (A )X “ (A.6
N L g B 192, )

2 y

where A\m is the angie _between R}\ and R " In the fully coupled pro-
cedure, we evaluate Eq. A.6 on a surface T whichr separates
arrangemént channel regions v and A. Analogous equations relating
the v and « regions, and the k and A regions are required to complete
the matching. In the second step of our decoupling approximation, we

replace d,5 o inEa-A.8by 0, q
»)au\} 7\ i ““V\WA,,

mixing that arises from the transformation between the x and v

thereby neglecting all £, and &,,

arrangement channel coordinate systems. Analogous approximations
are made in the vk and ¥\ maiching eqﬁations, théréby forcing the
entire scatfering matrix to be diagonal in the tumbling quantum numbers
2, (A =a,8,y), and antidiagon;ﬂ in the projection qﬁantum numbers
mj)\ (i.e., m'j}\ = - mjA; see Section 5.2 of Ref. 29). We should make
two additional remarks about the procedure:

(1) Because of our separation of the method into integraﬁon |
" and matching steps, the approximate Hamiltonian is not everywhere
invariant to a change in arrangement channel coordinates (Say, from A
to v) as the full one is. The A and v arrangement channel. Hamiltonians

are, however, identical at the T matching surface (although possibly

not smooth}, so no artifacts arising from a discontinuous change in the
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Hamiltonian should occur. Nevertheléss, this is a major disadvantage
of the method, since it leads to a dependence of the results on the
position and shape of the matching surfaces. In all likelihood, in those
situations where changing the matching surfaces has a significant
effect on the results, it will also be true that SZA mixing will be signi-
ficant and hence the neglect of this mixing will be a poor approxima,_—
tion anyways. o1 This difficulty can be eliminated by describing the
problem with the aid of a floating z, axis such as Wyatt and éoworkers
have done45 (in which case the matching is automatically diagonal in |
the local tumbling quantum number Q).

(2) The second step in the decoupling procedure, in which the
matching is uncoupled actually is unnééesséry, for the exact matching
procedure of Ref. 29 may be used wi}_tho;_it_aﬂsignifi‘gant increase in
computation time. One simply uses the decoupled primitive wave
functions (including all possible SZ)L) in the matchi_ng equations derived
in Ref. 29 without any modification at all. Such a method will correctly
include for the QA mixing which occurs in the transformation between
ai*rangement channels and Will therefoie provide'approximate scattering
matrix elements which are off diagonal in QA A =a,B,7). The
éependenée on choice of matching surface ((1) above) is still present,
but should be much less significant in this case. We shall see in the
results below that the complete neglect of QA coupling is only a
moderately good approximation, but that its partial inclusion through
a précedure similar to that described here may improve the results

substantially.
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We now consider an application of this tumbling decoupling.
approximation. The savings in time depe}xds on J, but for J = 4,
the decoupled calculations seem to be factors of 10 to 20 faster than
the fully coupled ones (for equivalent sets of qﬁantum numbers).
Additional savings may be gained by designing the program code more
- specifically for decoupled calculations (as was not done here).

The resulting reaction probabilities P JI,{OOO o1 are plotted
in Fig. 34 for E =0.50, 0.60 and 0.70 eV. For comparison, the -
converged probabilities are also plotted oﬁ the same graph. For
J= C, no §, coupling exists (only Q = 0 ie allowed), so the angular
- momentum decoupling method becomes exact. As J increases from

zero, Fig. 34 indicates that the decoupled and converged probabilities
| separate somewvhat, but they both decay to zero with similar J |
dependence. This contrasts with the J dependence of the decoupled
and converged inelastic nonreactive probabilities P J1:1000 020> Which
bear little resemblance to each other for J > 0. %2 7o examine the
mj dependence of the deceupled' results, we plot ‘in Fig. 35 the proba-
bilities P o1 oz, 28 2 function of J at B =0.60 eV. The m; =0
results look quite similar to those in Fig. 34 at the same energy.
The m i + 1 comparison indicates that bbth decoupled and converged
probabilities are of the same order of magnitude and have good
average agreement, but that the details of the J dependence are actually ~
quite different. This conclusion is, in fact, quite generally frue con-
cerning probabilities for m; = 0. Note that the examination of J .and
m. dependence focuses upon different parts of the Hamiltonian in

J
Eq. A.1 (with the last two terms omitted). The J dependence occurs
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only in the last term of tQ O (Eq. A.2) while the m; or 2, dependence -
N .

A J ‘

arises in both that term, and in the potential (Eq. A.4). Since the

probabilities change much more rapidly with mj than with J (Fig. 35),
A .

it is apparenf. that the SZ>k dependence of V. ., must be crucial to the

j'
mj dependence of g\);ese probabilities, for Jf:}lllng and SZA dependent
contributions to tQ}LS;)L are quite similar and coulc? not be responsible
for such diverse behavior in the probabilities. .

The decoupled and converged para to ortho differential cross
sections O‘O%O 910 are presented in Fig. 36 for the same transition
and energies as were considered in Fig. 34. Here we find that the
converged angular distributions are somewhat more Strongly backward
peaked than are the decoupled ones with the differences between the
two being more pronounced at 0. 70 eV than at 0.50 eV. When the
agg_m‘ ~02m. are examined in ’Fig.A 37, we find that the m; = 0
decoupled and converged results are quite similar to the corresponding
00%0 ~010 of Fig. 36 while the 'mj =+ 1 cross sections are in sur-
prisingly quantitative and qualitative agreement over much of the
angular range. Note that those cross sections hé,ving m'j = -m i =0
"are required to vanish at g = 180° (from the discussion of Section 3.2).

The ihtegral cross sections QO%O ~0l10 are plotted in Fig. 38.
The curves in the lower part of that figure indicate that both decoupled
and converged cross sections have.essentially the same energy depen-
dence, but that the decoupled result is larger than the converged Cross
section by a slowly varying multiplicative factor which has the values

1.74, 1.38, 1.26, 1.38 and 1.61 at 0.3, 0.4, 0.5, 0.6 and 0.7 eV,
respectively. Thus it appears that the neglect of QK coupling makes the
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system somewhat more reactive than its fully coupled counterpart,
but that the error arising from this omiss‘ion is not strongly energy
dependent. In Table VIII, we give the cross section matrix QDjm. “Oj'm'i
analogous to Table VI, for the decoupled results at 0.6 eV. A’compariu )
son of Tables VI and VIII indicates that the decéupled mj = m’j =0 cross
sections are always larger than the converged ones (by factors of

30% to 65%), while the decoupled my = =~m§ =0 resulis are always
smaller than the converged ones (by factors of 3 or less). In order

for us to be able to neglect those cross sections in Table VI which are
off diagonal in 2,, we would generally require that the mj =-m ]' elements
in that table be much larger than all others. Unfortunately, this is
accurately satisfied only for the m]. = —m‘j =0 elemepts. ‘Therefore, we
rezlly should expect that the approximation should be accurate only for
QOI;O ~0j'0 and not for other transitions. The fact that better than an
order of magnitude agreement can be obtained for m; = —m'j =0 is.

quite surprising. An additional question of interest is whether or not

by simply including the full matching procedure outlined in (2) above
(rather than the decoupled matching that we used), we can improve the
accuracy of the découpled cross sections. We think this could in fact

be possible, for the matching seems to bé more impbrtant iﬁ mixing
different SZA’S than is the integration. 53 |

To summarize the results of this Appendix, we have found that

tumbling decoupling procedures are capable of producing reductions
in computation time by factors of 10 to 20 (perhaps more) while still
predicting reasonably accurate reaction probabilities and cross sections.

The procedure used here is at best a crude approximation and it is
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~ possible that more accurate results may be possible by using more
sophisticated decoupling approximations. Finally, we note that

because the potevntial coupling is treated exactly, these kinematic
decoupling procedures are not subject to the gross inaccuracies (at
least at the energies considered) which occur with the one vibrational
basis function approximation. 12 As long as potential coupling dominates
over angular momentum coupling, fhe procedure developed here should

give reasonably accurate physically meaningful results.
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In this Appendix, we present the results of an application
of our 3D reactive scattering proéedure using the H + H2 ab initio

1f, 54

surface of Liu as parametrized by us. We begin by describing

this surface.

In an important recent paperlf, Liu has presexited the results
of a very extensive CI calculation on the collinear H3 systém. Liu's
calculated surface is believed to lie no more than 0.035 eV and no less
than 0.009 eV above the exact surface and should thérefore have the
‘necessary "chemical accuracy" required for accurate reactive cross

- section calculations. His collinear barrier height of 0.425 eV
(9.8 keal/mole) has often been assumed to be the ''true' barrier

height in Hy 10

, and Liu gives upper and lower bounds to it of 0.446 eV
~and 0.412 eV which indicate that the 0.425 eV result cannot be seriously
in error. Liu's calculations have recently been extended to nonlinear
geometrie354, and the estimated error in the results seems to be only
slightly larger (0.01 c¢V) than that stated for the linear calculations. o4
In order for us to use this surface in our calculations, we need an
analytical representation of it of the form V(rl,rz,r3) where r'ys Tg
and rg are the 3 internuclear distances. Although Lester and Yatesss'
have fitted Liu's l.inear;results to a "Porter~Karp1us-—1ikef' parametrized
function, a comparison of their surface with Liu's nonlinear points -
indicates that it is not particularly accurate a\x}ay from collinear geo-
metries. For this reason we decided to try to incorpofate»Liu's data

as accurately as possible in our own fitted surface. Since Liu's
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nonlinear calculations were done for varying ry; Ty at a fixed value of

2 2 . .y ,
1+ Yot 21‘11‘2 cos ), a convenient fitting .

the exterior angle @ (rg =r
procedure for us involves (2) separate least squares fits at each 0
involved,coupled with (b) an analytical interpolation between different

6 for each ry, I'y. This interpolation may be accomplished by writing

‘the potential in terms of a series of Legendre polynomials:

V(rl,rz,rg): V(rl,r2, ) = VO(rl,rz}PO(cos 0) + Vl(rl,rz)Pl(cos 6)
+ Vz(rl?rz)PE(C_OS 0) + V3(r1,r2)P3(cos 6+ ...

where both even and odd Py (cos 6) must be used because V is not
symmetric about 8 = 90°. We solve for the coefficients _Vk(rl,rz)
by requiring Eq. B.1 to be exact for each rl', ry at the values of 8
considered, thereby forming a set of algebraic equations for the

coefficients. Since Liu considered 6 =0°, 30°, 60°, and 90° in his

calculations, we can solve for the first four Vk' (k =0 ~ 3) as follows:
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After using Eq. B.2 to solve for the Vk.(rl,rz) (k =0 - 3), we then
substitute these into Eq. B.3 to interpolafe for V(rl,rz, g) at ainy 6.
Such a procedure is not necessarily particularly accurate, but similar
interpolation procedures on related H + H2 potential functions have

been quite accuratemb

and we shall assume that this is also true here.
Now we consider the fitting of V(rl,rz, 8) for fixed values of
6 and variable ry , Ty. ~ This problem has been examined previously

1d

by Shavitt et al. "~ and by Liulf., For most ry{;ry, We shall use Liu's

analytical fitting function, which has the form (for H+ Hy)

V(ry,ry, 0) =-1.5+ [VHz(rl) +1] + [ VHz(fZ) + 1] |

+ exP["'}’(e)(rl + rz)]. (B.3)
n [k/z] - W 2 s - ‘: Y. 2
X)), Ck_j,j(B)Lr‘l‘”ré + ri' r‘z‘_“j

k=0 j=0
where all energies are in Hartrees and all distances in bohr. VH (r)
: 2

is the H‘2 diatomic potential, which is expanded in the form
. . } , n

Vy (r =-14 exp (-ar) Z | airi - " (B.4) |
2 " i=0 |

The coefficients @ and a, (i =0 - 8) have been tabulated by Liulf.

For linear geomefries, Liu has fitted Eq. B. 3 to his 137 calculated
points through a norﬂin_ear least squares fitting procedure._ Using

n =14 in Eq. B. 3,‘ he was able to fit all calculated points to better

than 0.002 eV. The required coefficients C ij and y (8 = 0) are tabulated
in Ref. 1f and will not be repeated here. In fitting the § = 30°, 60°

56

and 90° surfaces , we used Eq.” B.4 withn = 8. The resulting
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coefficients Cij are given in Table IX and the y (6) are listed in the
first column of Table X. The accuracy of all three nonlinear surfaces
is comparable, with maximum deviations between the ab initio
- points and fitted points‘ less than'0.03 eV everywhere, and 0.01 eV
or less for points near the saddle point. A more'accuraté fit was not
attempted because: (a) an insufficient number of ab initio points were'
available (40 for 6 = 30°, 50 for 60°, and 32 for 90°) to increase n
in Eq. B.3 significantly, (b) the existing fit was within the accuracy
of the ab initio surface (see also Ref. 56), and (c) the interpolation
procedure of Eq. B. 1 was known to be a larger source of error than |
any errors in these lea,ét squares fits (see below). For ry (or rz)

outside the range consivdered in the ab initio calculation, the anaiytiéal
formula (Eq. B.3) gave very inaccurate results. To correct this, the
‘large ry surfaces were replaced by the following: -

(1) for 6 =0°andr > max(8=07);

Wiy, 000 Vg () + (Ve 10,0, 75, 0= 0

. | , » (B. 5a)
‘VHz(rz))eXP(‘k (0 o)(rl - rlmax(o N
(2) for 6 =30°, 60°, 90° and r >.r1max(6),
Vir, 7y, 0) = Viry,xp, 0= 0%) + (Vir, o (6), 1y, 0) |
. (B. 5b)

- =Vlry, 19, 6=07))exp (-M(0)(ry -1y . (6)))

where rlmax(e) and A(6) are parameters. For large ry, Egs. B.5
are used with r; and Ty interchanged. In the above formulas,

V(rlmax(e),rz, 6} is to be evaluated from the least squares expression
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(Eq. B.3) so as to make the potential continuous everywhere. The

functional forms in Egs. B.5 have been chosen b‘e'cause they characterize

the potential quite well for ry near to but less than Ty max and hence

are smooth extrapolations of it for r > r{max’ In addition, Egs. B.b5

form excellent fits to the Porter-Karplus surfacelc for large ry.

The parameters rlmax( 6) and A(8) for 6 =0°, 30°; 60° and 90° are

listed in Table X. o1 From our discussion of Section 3.4 it should be

apparent that the large ry behavior of Eqs. B.5 is still not physically

correéte This is an important defect of our fitted surface, but, as

has previously been demonstrated by Wolken, Miller and Karpluszz,

it should not strongly effect ‘the reactive and inelastic cros“s sections.
Probably the major error in our fitted 3D surface arises

from the angular interpolation procedure. Some indication of this

can be gained by examining the 6 = 120° potential. From Liu's

calculationsMg this potential should have a saddle point energyr of

2.75 eV near ry =re = 2.0 bohr. Unfortunately, the fitted surface

predicts a saddle point of 2.29 eV’occurring at the same ry = Iy.

Although this high energy region is not sampled é’c ‘he collision energies

to be considered below, and the cbnfigurations considered are a rather

extreme test of Eq. B.2, this example does indicate that the interpo-

lation procedure suffers from important inaccuracies. Fortunately,

the most important 6 = 0 configuration is treated essentially exactly

by our procedure so that the saddle point parameters és well as

other properties of the potential surface except the bending energy

1f

are identical to those previously given by Liu. In Liu's} more recent

results, he determined the bending force constant A22 to have the
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value 0.021 a.u. The fitted surface has a saddle point bending
force constant of 0.024 a.u. which is a significanf improvement
over the Lester Yates55 value of 0.030 a.u. For the remainder of
this Appendlx, we will refer to our fitted surface as sunplv the Liu
surface. ‘

We now consider the results of a calculation using this surface.
The details of the procedure used are identical to those described for
the Porter—Karplus sﬁrface in Section 2 above, with one excéption. _
We found that truncation of the expansion of the potential in a series
’of Legendre polynomials Pk(cos v) (Eq. 2.14) at 3 terms did not
produce adequate cvonvergence of the results, but 4 terms did, so 4
‘terms were included in all calculations. As an exémple of this,
at 0.60 eV, the reaction probability PJI?OGO 510 (7 = 0) has the value
0.00524 with 3 terms, 0.00803 with 4 and 0.00797 with 5. At 0.55 eV,
P}fom 010 =0) =0.819 x 107° with 3 terms, 0.00121 with 4 and
0.00119 with 5. These results are typical of the convergence behavior
obtained. Other convergence criteria such as flux conservation,
microscopic reversibility, and convergence With'ren:pect to addiﬁon
of closed rotational or vibrational channels vis co,mpérable to that
obtained with the Porter-Karplus (PK) resuits in Sectidn 2.2,

The resulting total reaction probability POIS (J = 0) is plotted
in Figs. 39 and 40. For compamson we also have plotted the
correspondmg Porter-Karplus probablhty The figure indicates that .
the Liu surface results above 0.45 eV are shifted upwards in energy

by about 0.05 eV from the Porter-Karplus ones. If we recall that the

barrier heights of the Liu and Porter-Karplus surfaces are 0.425 eV
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and 0. 396 eV respectively, then we. see that the shift in energy between
the two curves is more than the shift in barrier heights. This difference
is probably due to the difference in shapes of the barriers since the
Liu barrier is broader than the PK one (i.e., the Liu value of A33, the
asymmetric force constant, is -0.058 a.u., while the PK value is
-0.124 a.u.). This difference in shape is also probably responsible
for the slightly different energy dependence of the two curves in
Fig. 39. At low energies, the Liu probability actually becomes

larger than the PK one. This is very likely a manifestation of the

1f At

longer range exponential tail of the PK surface over the Liu one.
the higher energiés in the figures, the Liu probability levels off at
a somewhat lower value (0.35) than does the PK result (0.44).
According to our earlier arguments (Secti‘on 3.5), this implies that
the range of orientations which lead to reaction with a significant
probability is more restricted for the Liu surface than for the PK
surface. The dependence of the reaction probability on J is examined
in Figs. 41 for the transition PJ?OO g1+ Both the Liu and the Porter-
Karplus probabilities have similar values of JM AX (defined in
Section 3.1) but the Liu result is more highly peaked at low J. This
result if typical for the E = 0.50 eV probabilities. For E < 0.50 eV,
the Liu and PK probabilities have very similar J dependence, even
at low J. |

The Liu and Porter-Karplus differential crosé sections
Ooh o1 2t E =0.4, 0.5 and 0.6 eV are plotted in Figs. 42, 43, and
44, All cross sections are strongly backward peaked with comparable

half widths. The Liu cross sections at 0.50 eV and 0.60 eV are
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slightly more highly peaked in the backward direction than are the
PK ones, but the reverse behavior is found at E =‘0. 40 eV. The Liu
differential cross sections for different projection quantum numbers
show polarization behavior essentially identical tc; the Porter-Karplus
cross sections (as, for example, in Fig. 11).

Table XI summarizes a number of important reactive integral
cross sections for the Liu surface. Most cross se%:tioné have an
energy dependence similar to QO%, which is plotted in Fig. 45.

The comparison between the Liu and PK cross sections in that figure

is very much analogous to the probability comparison in Figs. 39

and 40. When the cross sections QO%O ~0j . are examined for
different j’ and m'j, we find that the‘ ratio of m‘j =0 to m‘j‘ =1 cross
sections has the value 24.2 for j' =1, 7.4 for j' =2, 3.0 for j' =3

and 2.0 for j' =4 all at 0.60 eV. ‘These numbers are quite close to

the analogous Porter-Karplus ones given in Section 3.3. The values

of the j’ =1 ratio at 0.4, 0.5 and 0.6 eV are 14.5, 18.9 and 24.2,

which implies a somewhat different energy dependence than for the

PK cross sections. An analysis of the/rotz_a,tional d‘istributions of the
degeneracy averaged cross sections is pre-senfed in Fig. 46 for

E =0.60 eV. Here, we find highly linear plots indicating good agreement
with the predictions of a temperature-like distribution; The temperature
parameters obtained from the slopes of the straight lines in Fig. 46
are 412, 415, 412, 420 and 423 K for j = 0, 1, 2, 3, 4 respectively.

As we showed in Section 3. 6, microscopic reversibility forces all these
numbers to be the same for truly témperature-—like distributions, so‘

the differences between the above numbers are indicative of the deviations
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from temperature-like behavior. The temperature parameters for
the j = 0 distributions are 187, 301, 412 and 537 K atv0.4, 0.5, 0.6'
ahd 0.7 eV, respectively. There is roughly a 55 K increase in T(E)
for each 0.05 eV increase in the total energy. This rate of increase
of T(E) with E is somewhat larger than it is for the Porter-Karplus
surface (Section 3.6). Sinée the Liu and PK temperatﬁres coincide
near E = 0.4 eV, we see that for energies above this',v’the Liu rota-~
tional distribution is broader than the Porter-Karplus one. Note that
the transition state bending force constant of the fitted surface is

basically identical to thatic

of the Porter-Karplus surface so that the
corresponding bending zéro point energies should b'e the same. | |
H the final state rotational energiés were just a function of the transi-
Ation state bending energies, then we would predict that the Liu and PK
temperatufe paramef.eré should be the same. The fact that they are
somewhat different is an indication that our modél is overly simplistic.
- Let us summarize the differencés and similarities between the
Liu and Porter-Karplus results. First, thev reaction probabilities’a.nd
integral reaction cross sections for the Liu surface have their effective
thresholds shifted upwards in energy from the PXK results by about
0.05 eV. At very low energies, the Liu cross sections are larger
than the PK ones, apparently a result of the longer exponential tail
of the PK surface. Details of the nature of the potential surface in
the transition state region are apparently responsibie for éuch subtle
differences in the Liu - PK comparison as broader Liu rotational

distributions and the narrower Liu angular distributions. (above 0.4 eV).

The general features of the Liu and PK reactive cross sections are



521
basically the same, and even such detailed quantities as the degree
of rotational angular momentum polarization is quantitatively unchanged
in going from one surface to the other. Still remaining to be completed

for this surface is a detailed comparison of the thermal rate constants,

which we shall leave to a future publication.
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TABLE III. Nonreactive and reactive transition probabilities for

E =0.65 eV.
Transition Reactive or e Basis Set
(vi — v'§") Nonreactive a(N=56 Db(N=T72) c (N-=264)

: = 1 . o= 'g =
A J=1, m; = m'; 0
00 — 02 N 0.531 0.527 0.531
01 — 03 N 0.193 ©0.186 0.186
00 — 00 R 0.0404 0.0408  0.0402
00 — 01 R 0.0740 0.0741 0.0739
R

01 — 01 0.134  0.135  0.134

d (N =32) e(N;40)

(B)yd =0, m, =m’, =0

i~™Mi
00 — 02 N 0.517 0.512
01 — 03 N 0.223 0.216
00 — 00 R 0.0432 0.0434
00 — 01 R 0.0780 0.0802
01 — 01 R 0.145 0.150

%k
Basis Sets:

a. 4 vibrations, 14 rotations/vibration (j = 5),

max
b. 4 vibrations, 18 rotations/vibration (j, .. =6).

c. 4 vibrations, 18 rotations for v =0,1; 14 for v = 3, 4.
d. 4 vibrations, 8 rotations/vibration (j max = 1)- |

e. 5 vibrations, 8 rotations/vibration (j pax = 7).
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TABLE ITI. (Cont.)

* L.
In each basis set, all values of the projection quantum numbers

compatible with angular momentum restrictions and with matching

restrictions were included (see Section 2.1 and Ref. 29).
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TABLE VII. Para to ortho thermal rate constants for H + Hza

T(K) k. o(SK)

100
200
250
300
400

500

600

0.270(4)
0.688(7)
0.753(8)
0.442(9)
0.486(10)

0.224(11)

0.640(11)

ARG (KPS)° ko (rs1)°
0.341(4) 0.783(-2) 0.405(-5)
0.722(7) - 0.375(6) 0.161(5)
0.773(8) 0:127(8) - 0.125(7)
0.449(9) 0.136(9) 0.225(8)
0.490(10) 0.268(10) 0.833(9)
0,224(11) 0.168(11) 0;737(16)
0.640(11) 0. 595(11) 0.322(11)

‘ ' : 3
2 All rate constants are in units of cm /(mole x sec). Quantum rate

constants are believed accurate to 20%.

b Results of Ref. 2.
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TABLE IX. Coefficients for the least squares fit to Liu's 8 = 30°,

60° and 90° surfaces.?

N 0 o D =T W g D W O DN W N = DN e O

i j C;5(30%) C;5(609) €;4(90%)
0 5. 67326 6.93856 5. 87575
0 -2.17052 ~3.24026 -1.94989
0 -3.06358 -3. 35290 -6.04608
1 -0.43655 -0.61999 3.00608
0 0.95542 1.08790 ~1,02272
1 0.81781 1.17948 1.81834
0 2.01484 2.01433 2. 55290
1 1.54708 1.82541 1.41960
2 1.59424 1.62723 1.85699
0 0.05805 0.08883 0. 60984
1 0.48219 0.41435 0.70763
2 0.78556 0.73016 0. 57707
0 -1.14517 -1.14989 -1.27928

1 -1.07526 -1.05852 -0. 89655
2 0.17417 ~0.07773 0.21171
3 0.28048 0.53834 0.12530
0 0.37777 0. 36052 0.23299
1 . 0.81861 0.90191 0.79935
2 0.30192 0.10197 0.30292
3 -1.07400 0.92003 -1.00811

-0 ~0.05473 ~0.05276 ~-0.02291
1 0.03868 0.03533 0.09464



TABLE IX. (Cont.)

C45(60°) C5(90°)

i j C;5(30°)

6 2 -0.48780 - -0.47006 -0.63252

5 3 0.00096  -0.03835 -0.05382
0.71595 0.85941

4 4 0.65364

®See text for definition of the C;

All distances are expressed in

bohr and energies in Hartrees when using these coefficients in the

analytical formulas.
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TABLE X. Parameters of the fitted 3D H + Hy surface®

0 Y . T imax A
0 1.53906. ' 4,33 H 0.82

30 1.88123 3.4 1.07

60 1.88264 3.4 1.07

90 1.87689. 3.2 1.07

4See text for definition of the parameters. y and X are in (bohr)"i

i i .
, and rlmax s in bohr
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FIG. 1. Space fixed coordinate system Oxyz, body fixed system
Oxh'y'z}\’ and their relation to the triatomi.c collision system and to
each other. The origin is chosen to lie at the center of mass of the
three atoms. z)\' lies along the vector from AA to the center of mass
of AVA. e y' is perpendicular to the three atom plane and XA.' lies in
that plane so that Xy 'y‘z)\' férm a right handed system. The auxiliary
body fixed system OXA ?AZA is obtained from QOxyz by Euler rotations
o = gf)w B = Oy, v = 0 so that Zy = ZA‘ and Y, lies in the space fixed

&

Xy plane.

FIG. 2. (2) Reaction probability P R (summed over final m'.)
J,00 - 01 1
as a function of J for total energies E = 0.30, 0.35, 0.40 and 0.45 eV.

(b) These same reaction probabilities multiplied by 2J + 1.

FIG. 3. (a) Reaction probability P JROO - 01 analogous to Fig. 2, but
3
at E =0.50, 0.55, 0.60, 0.65and 0.70 eV. (b) 2J + 1 times these

reaction probabilities.

u Lo OR | e T fm o
FIG. 4. Reaction prlcba.blhty PJ, 000 — lei. versus J for m i =0, & 1.
at 0.60 eV total energy (E, = 0.328 eV). Curve labelled sum is the

sum of the probabilities over m’jc

R

FIG. ‘5»., Reaction probability PJ,OOO - 03n1‘j versus J for m‘j =0, 1,

+ 2, + 3 at 0.60 eV total energy, analogous to Fig. 5.
FIG. 6. Influence of projection quantum number m, (j > 0) on the

allowed relative orientations of atom (A) with respect to diatom (BC)

for zero impact parametér collisions: (a) mi =( initialiy so that
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rotational angulaf momentum vector is perpendicqlar to direction of
relative motion; (b) mj > 0 initially so that the j vector lies in a cone
about the relative motion vector and makes an acute angle with if.

In both (a) and (b) the rotation plane of the diatom'is indicated by a small
ellipse.

A N B U] . vy § = . - - . :
K IG. Z«, Phases of SJ; 000 01 111?_; for m ] 0, :k i as a iunu“},(lﬂ O{ J

&

at B =0.80 eV.

¥IG. 8. {(a) Nonreactive transition pz*obabiliiy P J’,I%OO - 02m'. at
0.60 eV total energy for m'; =0, £ 1, + 2, Curve labelled sum is
the degeneracy averaged P JT,NOG -9 {(h) Anal’og(}ué space fixed
probabilities for the three orbital angular momenta 1" = J, J + 2,

J - 2. The sum is invariant to the use of body fixed or space fixed

representations.

S coe X . A : c g

FIG. 9. Difierential cross sections ¢ OS»-()? as a function of the

reactive scattering angle @ R at the same energies as were considered
. £

in Fig. 2.

A

#IG. 10. Differential cross sections 000 —01> 25 in Fig. 9 for the

same energies considered in Fig. 3.

. y ‘ oo o A |
FIG. 11. Differential cross section 7300 — 03mr. LOT m'j =0, £ 1,

+ 2, £3atE =0.60 eV. Curve labelled sum is "tfle degeneracy averaged

A
Y 00 -03°
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FIG. 12. Dilferential nonreactive cross section 0‘03% ~99m 'j for
m'j =0, +1, +2al E =0.60 eV. Curve labelled sum is the degeneracy
averaged o 0% -02°

FIG. 13. Degeneracy averaged differential cross sections OOI‘(I) 027

oo’% 402 and 06% ~ooat E=90.50 eV (E, =0.228 eV). The nonreactive
and antisymmetrized curves are essentially identical for ¢ > 20°.
Note the use of 8 rather than 6 R for plotting the reactive differentiai

- ¢ross section.

nEEER . N A R
FI¢ - 14, Degeneracy averaged 900 ~02° 70002 and ¢ o
analogous to Fig. 13 but at E = 0.60 eV. o

FiG. '15, Degeneracy averaged oolg ~02 9 6% ~02 and ‘o 0% ~02

analogous to Fig. 13 but at 0.70 eV (E, =0.428 eV).

FIG. 16. Differential cross sections O‘G‘%O ~ g9, (solid lines |
labelled A) al}d 9900 — 09m ' (dgshed lines labelled N) for (a) mfi =0,
(b} m°j =+ 1, and (c) m'j =+ 2at E =0.70 eV. The sum of the three

solid curves and of the three dashed curves is shown in Fig. 15.

, b R A A :

FIG. 17. Integral cross sections Q-OO’ QOO .y and Q’OO 03
(degeneracy averaged) as a function of the total energy E and transla-
tional energy E,. Arrows in abscissa indicate the energies at which
the rotational states j =2 - 7 ( for v =0) of H, become energetically

accessible. (a) linear scale, (b) logarithmic scale.
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¥iG. 18. Phasec shift associated with the elastic scattering matrix
element SJ?IOOO . ogo {-e., Arg (SJ)/Z) as a function of J for
E=0.70¢V. Curve tabelled converged is the coupled channel result -
while the central {ield curve ;Es.the result of a single channel calculation
described in text. Also plotted is the (converged) elastic transition

probability PJNODO .. ogo at the same energy (curve with crosses)
5 W

referenced to right hand ordinate.

FiG. 135 Elastic differential cross section ¢y gggs total cross

section GOO,I(‘) (both from the ccupled channel calculation), along with
| * 3 o3 i . - N «

the central field elastic cross section 7600 ~000 (CF), as a function

of scattering angle at E =0.70 eV.

FIG. 20. One, two and three dimensional total reaction probabilities
Pi(1p), P,5(2D, J =0)and P5(3D, J =0), summed over all final

states, as a function of the total energy E and translational energy E,.

FIG. 21. 1D, 2D and 3D total reaction probabilities analogous to Fig. 20

but with a linear rather than logarithmic scale.

FIG. 22. 2D and 3D differential cross sections Uoé—'-Ol(ZD) (o A
of Ref. 12b) and Gﬂé&%Ol (3D). The 3D cross section (solid curve),
at 0.60 eV total enérgy, is referred to the left hand scale while the
2D result (circles) at 0.55 eV, is referenced to the right ordinate

~ scale.
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FIG. 23. Reactive degeneracy averaged integral cross sections
Qol;% 0j' (divided by (2j‘+1)><,°5(}3t.j1;))l as a f‘uhction of the product
rotational energy EJ.Y and the product rotational guantum number j'
at 0.60 eV total energy for initial rotational quantum numbers

i=0,1, 2,3, 4

FIG. 24, Reactive degeneracy averaged integral cross sections

R _ .
Qoo 0j' (divided by (2j'+ 1) xp (E?;ﬂ) as a function of the product
rotational energy Ej' analogous to Fig. 23 at 0.45, 0.50, 0.55, 0.60,
0.65 and 0.70 eV.

FIG. 25. Comparison of reactive integral cross sections from |
-several H + HZ calculations. The Qg{} (KPS) for j =0, 1 and 2 are the
quasi-classical results of Karplus, Porter and Sharma (indicated hy
dashed lines), while Q::O is the analogous total reaction cross Secti'onv
obtained by Elkowitz and Wyatt (indicated by squares). The present

results are Q{% (SK) with i =0, 1, 2 and are connected by solid lines.

FIG. 26. Comparison of the integral cross sectioﬁs Q(}% ~plasa
function of E. The results labelled WK are those of Wolken and
Karplus, TK denotes those of Tang and Karplus, CT the one point
of Choi and Tang, and SK the present results, |

FIG. 27. Comparison of the differential reaction cross section UQ%
as obtained by (a) the quasi-classical trajectory inethod of Karplus,

Porter and Sharma (the histogram labelled KPS) at E =0.752 eV , and
{b) the present coupled channel method (labelled SK) at 0.70 eV.



FIG. 28, Compariscn of the di’?‘fgiential cross section Uoé*m as
calculated by (a) the distorted wave method of Chéi and Tang (dashed
curve labelled CT) at E = 0.772 eV, (b) the one vibration coupled
channel method of Wolken and Karplus (dash»dottéd curve labelled
WK) at E =0.773 eV, and (c) the present method (solid curve labelled
SK) at 0.70 eV. The TK resuits in Ref. 4 have been multiplied by the

necessary factor of 3 to obtain the curve plotted.

FIG. 29. Comparison of the semi-classical differential cross séction
o.()'% ~q1 of Doll, George and Miller (dashed curve labelled DGM) at
0.472 eV with the corresponding 00%»(31 of the present work (solid
curve labelled SK) at 0.45 eV. Note that both curves have been

‘normalized to the same value at 6,2’: 180°.

FIG. 30. Reaction probabilily PJE?)OO ~ goo for J =0 as a function of
the total energy E. Two curves labelled DGM are the semi-classical
results of Doll, George and Miller using the primitive semi-classical
expression (dashed) and classical serﬁi—classical expression (dash-
dotted) using the terminology of Ref., 47. The two crosses are points
from the work of Wolken and Karplus (WK) and the present results (SK)
are denoted by circles. The DGM and WK pro‘babili’cies have been
divided by 3 as described in Ref. 5 to compare with our distinguishable

atom probabilities.

FIG. 31. Nonreactive integral cross section Q01§~62 as a function of
E. The solid curve labelled WMK is the coupled channél result of
Wolken, Miller and Karplus. {The actual points calculated are denoted

by squares.) The present results (SK), given by circles, are connected
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by a dashed line, Arrow in abscissa indicales the energy at which

v =0, j=2of H, becomes energetically accessible.

- FIG. 32. Nonreactive differential cross section orolg -2+ The dashed
curve indicates the results of Wolken, Miller and Karplus (WMXK) at
0.523 eV. The present result (SK) (at 0. 5VeV) is denoted by a solid
curve and the dash-dotted curve denotes the coplanar result (at 0.5 eV)

of Ref. 12b with ordinate scale given on the right side of the graph.

FIG. 33. Arrhenius plot of the para to ortho thermal rate constant.
The present quantum result is denoted by SK while the quasi-classical
result of Karplus, Porter and Sharma is labelled KPS and the ,tranSition

state theory result is labelled TST.

FIG. 34. Reaction probabﬂiti’es PJ,OOO ~010 for decoupled and

converged calculations (solid lines and dashed lines) at E = 0. 50, 0.60

and 0.70 eV.

FI.G° 35. Reaction probabilities PJI?'OI—m. ~02m. for decoupled and
converged calculations (solid lines and dashed lines) With‘mj =0 and

. ::‘:E 1.
m} ’

FIG. 36. Differential cross section ¢ 5%0 Mém for decoupled and

~ converged calculations analogous to those considered in Fig. 34.

FIG. 31. Differential cross section OQ?_m’ ~02m. for decoupled and

canvérged calculations analogous to those considered in Fig. 34.
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FIG. 38. Integral cross secti.on QO%O ~01o 25 2 function of E and E,
for decoupled and converged calculations (solid and dashed lines).

(2) linear scale, (b) logarithmic scale.

FIG. 39. Three dimensional total reaction probability Pyq (J = 0) for
the Liu (squares) and PX (circles) surfaces as a function of the total

~energy E and reagent translational energy E,.

FIG. 40. Total reaction probability POO (J =0)as in F)g 39 but

using linear rather than semﬂogamthmlc scales.

R N . < V
7,00 01 fof the Tiu (squares) and

~ PK (circles) surfaces at E = 0.60 eV as a function of J. '

FIG. 41. Reaction probability P

FIG. 42. Differential cross section GD‘% gy for the Liu (solid) and
PK (dashed) surfaces at E =0.40 eV. V | w

FIG. 43. Differential cross section 00€~ o1 at E = 0.50 eV analogous
to Fig. 41. '

FIG. 44 Differential cross sectlon 00‘% 01 at E = O 60 eV analogous
~ to Fig. 41.

FIG 45, Integral total cross section QOO for the Liu (squares) and
PK (circles) surfaces as a function of E and E,, on a linear scale (a)

and semilogarithmic scale (b).

FIG. 46. Reactive degexiet'acy averaged integral cross sections
-Qofj{-*()j' (divided by (2i' + 1) x 5 (ng‘)) for the Liu surface as a function
of By, and §' for j =0,1,2,3,4 (analogous to Fig. 23).
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8. THE ROLE OF DIRECT AND RESONANT (COMPOUND STATE)
PROCESSES AND OF THEIR INTERFERENCES IN THE QUANTUM
DYNAMICS OF THE COLLINEAR H + Hy EXCHANGE REACTION*

* This paper appeared in the Journal of Chemical Physics 59, 964 (1973).
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THE ROLE OF DIRECT AND RESONANT (COMPOUND STATE)
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DYNAMICS OF THE COLLINEAR H : H, EXCHANGE REACTION'
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George C. Schatz' and Aron Kuppermann
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Arthur Amos Noyes Laboratory of Chemical Physics,
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{(Received )

The quesﬁon of the rela_tive importance of compound state (i.e.
activated complex) and direct reaction mechanisms has been of central
importance for the dynamical foundations of chemical kinetics.i’ 2 Tk;e
studies here. reporied.indicate i:hat in the auantum dynamics of the his-
torically important collinear H + H, exchange reaction not only do both such
mechanisms contribute but alse that their interference plays a central role
in determining the pronounced quantum oscillations of the reaction proba-

3

bility as a function of energy. This accounts not only for the absence

of such oscillations in quasi-classical calculations,? but also for the
inability of the present semi-classical formalism® to produce them. ©
We have used the close-coupling propagation method of Kuppermann7
to obtain accurate values for the elements of the scattering matrix g as a
function of the total energy E for the collinear collision H + H,, using the
same surface as previously. 8 From these elements, we calculated the
reaction probablhtles PR(E),, phases 5R(E) and time delays TR(E)
ﬁd&R(E) [ dE corresponding to the v1brat10nal states iand j of the reagent

and product H,, respectively.
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Fig. 1 shows Pgo(E), 6%0(}3) and TE{O (E) in the energy ranges
0.80 €V to 1.00 eV and 1.20 eV to 1.35 V. 64 (E) and 74(E) are reasonably
smooth monotonic functions except near E = 0. 90 eVVand 1.276 eV. 8 In the
regions of relatively smooth behavior, the direct processes dominate the |
reaction mechanism. The more rapid variations in Ggﬂ(E) and TI(}O(E) |
near 0,90 eV and 1. 276 eV result from the presence of internal excitation
{Feshbach) resonances? at these energies. 10,11 The resonant comi:)onent
of the scattering matrix element SOE(L) has essentially a Breit-Wigner energy

depeﬁdencel 2

while the direct component is characterized, in our case, by

a slowly varying amplitdde and a monotonically decreasing phase.i3 We find
that these direct and rescnant components have amplitudes within an order
6f magnitude or less of one another at the resonance energies and that their
interierences determine the overall shapes of the curves in Fig. 1. The
widths of the resonances at 0. 90 eV and 1.276 eV are about 0.05 eV and

0. 008 eV respectively An additional resonance of intermediate width has

14 From the resonant contribution to SI(}O we

$

been found at E = 1.67 eV.

have computed the corresponding resonance state delay times (TEO{O) res and
displayed them as the solid curves of Fig. Ié. The maximum delay time at

the 1.276 eV resonance is about an order of magni.tude‘ greater than the

14

vibrational period of 1.66 x 1071% sec for the symmetric stretch of H; at

the saddle point, indicating a long-lived state. |

- The interference effects are most clearly revealed by the Argand
pmtlosf Im Sgo versus Re S:g“o ivith E as a parameter, as shown in Fig. 2.
Near 1. 276 eV, a characteristic counter-clockwise resonance (.:ircle15
is traced out while elsewhere the plot tends to circle the 6rigin clockwise

as E increases. The resonance at .90 eV is too broad to show a well-
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formed resonance circle but its effect on the Argand diagrafn is quite
apparent. Despite this broadness; the interference eff ects between the
resonant and direct interactions at each of the resonances result in the
very significant oscillations in the reaction probability plot (Fig. ia) and
are to a large extent responsible for the differences between these exact
quantum calculations and the corresponding quasi-classical and semi-
classical results. ’ Y
We are presently investigating the importance of such resonances

and interferences for other reactions, suchas F + H, » FH + H.16
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FIGURE CAPTIONS

Fig. 1 Reaction probability %% , phase 6?0 of the scattering matrix
element, time delay T:(E){O and resonant component of the time delay
(TIS'O) res for the collinear H + H, reaction as a function of the total
energy E and the relative translational energy Ey. Thearrow in
the abscissa indicates the opening lof the j =2 vibrational state of
H, (at 1.280 eV). For display purposes, the phases in the 1.20 eV
to 1.35 eV range have been increased by 27 with respeet to those

in the 0. 80 eV to 1. 00 eV range.

Fig, 2 Arxgand diagram of Im Slg'o versus Re Sf}o, with the energy E as a '
parameter. The crosses are placed at intervals of 0.01 eV. The
squares near the 1.276 eV resonance are at 0. 001 eV intervals
and indicate that the rescnance component of the phase is increasing
rapidly near this energy {aithough the overall phase varies ina
manner indicated in Fig. ib). The dashed circle calls attention to

the existence of a resonance circle in the energy region near 1.276 eV.
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Figure 2
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9. AN ANALYSIS OF RESONANT AND DIRECT PROCESSES IN
CONVERGED COLLINEAR CALCULATIONS ON ATOM DIATOM
CHEMICAL REACTIONS
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An analysis of resonant and direct processes in collinear atom

*
diatom chemical reactions
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Arthur Amos Noyes Laboratory of Chemical Physics,

I

Division of Chemistry and Chemical Engineering,

California Institute of Technology, Pasadena, California 91125
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The importance of resonant and direct processes is examined
in two colliﬁear atom diatom chemical reactions. The reactions
considered are  the H + HZ exchange reaction (on two different
potential surfaces) and the H + FH — HF + H reaction. Information
examined includes phases and amplitudes of the scattering matrix,
eigenphase shifts, time delays, the lifetime matrix and Argand
diagrams. For the resonances observed in H + Hz, competition
between resonant and direct processes is important, making it
difficult to achieve a separation and parametrization of these two
mechanisms. For H + FH, by using certain symmetry properties
inherent in the system, and examining eigenphase shifts, a complete
separation can, however, be achieved, and the resonance and direct
processes are examined in detajl. Still lacking is a complete physical
picture of the resonant state (which is only poorly described by a

vibrationally adiabatic analysis).
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1. INTRODUCTION

FaVa W, WoN

A very useful concept in scattering theory has been the
classification of collisions as proceeding via direct or resonant
(shape or Feshbach) mechanisms. The literature on the subject is
extensivel-6 as is the diversity of physical applications -~ ranging
from collisions of elementary particles'7 (at GeV collision energies),
to collisions bétween nucleias {(MeV energies), to electron molecule
.s:cattering9 (several eV) and heavy particle scattering (a few meV
to several eV). In the field of atomic and molecular physics, such
diverse processes as predissociation, 10 autoionizationll and uni-
molecular chemical reactions12 are all examples of scattering processes
which may be classified as predominantly resonant. At the same
time, many kinds of collision processes between atoms, molecules
and eleétrons are predominantly direct. 13

Our understanding of direct and resonant processes in atom
diatomic molecule chemical reactions is based largely on the results

of molecular beam experimelaté, 13,14

In these experiments, whenever
the lifetime of the activated complex is appreciably longer than its
average rotational period, the product angular distribution shows
backward forward symmetry and this identifies the reaction as
proceding by a resonant mechanism. Direct reactions, on the other
hand, do not show this forward backward symmetry. This is, however,
usually a course grained experiment, for velocity and state selection

of reagents and products is never more than partially achieved, and

furthermore, resonances with a shorter lifetime than the rotational

period of the transition state are not easily discerned. An alternative



614

proce dure for characterizing direct and resonant processes in chemi-
cal reactions is to examine the results of theoretical calculations.
Unfortunately, most theoretical reactive scattering calculations use
approximate dynamical techniques which either preclude resonant
processes (such as many applications of the distorted wave methodl 5),

16,17
17y

The quasi-classical method, 18 which does in principle include both

or include them with great difficulty (semi-classical methods

direct and resonant mechanisms, does not include their interference.
Alternative procedures which concentrate only on resonant processes
(analogous to the Hartree-Fock model in electron molecule Feshbach
resonanc esg) have yet to be developed for systems with unbound transi-
tion states. In addition to these important problems With dynamical
methods for examining direct and resonant processes in chemical
reactions, the electronically adiabatic potential energy surfaces must
be accurately known in order to reliably make any predictions on a
specific system.

In this paper, we use the results of converged quantum mechnical
calculations on several atom diatom systems to examine the importance
of resonant and direct processes in chemical reactions. In all calcula~-
tions,we assume the three atoms fo be collinear during the collision.
For the types of direct and resonant mechanisms we are interested
in here, this assumption should not crucially affect the conclusions
to be made (as has recently been shown elsewherelg). A preliminary
communication of this work has been published previously. 20 This
paper is largely a phenomenological study in that we will examine

exact collinear results and attempt to see what information can be
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extracted from them concerning the dynamical processes involved.
The analysis will primarily concentrate on the information contained
in the elements of the scattering matrix g Besides the amplitudes
and phases thereof, we will also examine such quantities as time
delays, eigenphase shifts, and the lifetime matrix, all of which are
derivable from § To a certain extent, we shall concentrate on the |
separation of re;onant and direct processes, but it must be remem-
bered that this separation is not unique, and in most cases to be
described below, is not particularly obvious either.

In Section 2 we will introduce the theoretical tools for examining
resonances, and apply them to a simple but relevant analytically
soluble example. The results of collinear calculations are considered
in Section 3. Three separate calculations will be examined: the

21—23)’ the

H+ H2 exchange reaction (using a scaled SSMK surface
H+ FH— HF + H reaction,24 and the H + Hz reaction (using the

Porter-Karplus potential surfacez 5). A summary of the results and
some generalizations which may be obtained from them are included

in Section 4.

2. THEORY

P T W e WV e T

In this section, we introduce the important theoretical quantities
involved in analyzing direct and resonant mechanisms. To do this,
~we develop the simple example of the one dimensional symmetric
square well. As we shall see, this one mathematical dimensional
(1MD) model of a reactive system is similar in many ways to the 2MD

collinear chemical reactions to be examined later.
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Let the depth of the well be -V, (V,> 0), the collision energy
be E,, and the width be 2a. If we assume that we initially have a
wave of unit incident flux for x < -a, then the asymptotic form of the
wave function for this problem is
Yy = Te"™ x> a o
Y = olkX | ge-ikx x. <-a .
where k is the wave number for x < -a and x > +a. T and R are the
reflection and transmission amplitudes, and, the scattering matrix

for this problem is

R T

S = (2.2)
T R

The exact expressions for Rand T arez6
_-3in ewzﬂmsin 2k'a .
R =zés oxa- Iic sin 2k'a (2.3)
e-2ika
T (2.4)

“cos2k'a - £i€ sin 2K'a
2

n=k/k'- k'/k
€ =k/k'+k'/k

where K' is the wave number inside the well.

We now introduce the concept of a time delay for this example.
As is shown in many standard texts26’27
(Egs. 2.1) may be transformed to time dependent solutions by forming

the wave packet

, the time independent solutions
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Wi, 9 = S 1) g () 0710 B e (2.5)

where f(k') determines the width of the packet and has a peak at k" = k.
If we substitute the asymptotic forms of Egs. 2.1 into Eq. 2.5 and use
a stationary phase argument, we can determine an equation for the}
- motion of the center of the wave packet. For the incident wave, we

find

it

x = vt x < -a

where v is the asymptotic group velocity. For the reflected wave
dé
R
=-y(t-h x < -a 2.6
X V( a-'E';— ) ( )

and, for the transmitted wave,
dqu

x=v(t«ﬁaE:—) X> a (2.7
where ¢R and ¢, are the phases of R and T (in Egs. 2.3 and 2.4)
respectively. For fhe transmitted wave packet, the equation of motion
in the absence of a barrier would have been x = v, so we see that the
second term in Eq. 2.7 is proportional to the time delay for the motion
of the wave packet in the potential -V,. By the same reasoning, the
time delay for the reflected wave in Eq. 2.6 also represents the time
spent near the scattering center in excess of the ‘unperturbed' time
of passage,which in this case is the time required to travel to the origin
with Vy = 0, be reflected at the origin by an infinite barrier, and
continue back to x = -cowith the velocity v. In both the reflected and
transmitted waves, we obtain the general definition of time delay,

which may be written as
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¢.. |
=f -1
7 h a5, (2.8)

Q.

where gb_ij is the phase of the element of S associated with the transition

i— j. For the square well, Eqs. 2.3 and 2.4 provide

G =g + (0 + D7 n=0, +1, 2, ...
T R 2 s 2 (2'9)
= -2ka + tan~ " (%etan 2k'a)
and |
2 2 .
2 2E, + V, IT |V, sin 4k'a
_ _ a [Ti 0 o, 0
Tp =R =2/ == ev) - wEE; T voE,  (2-10)

where the transmission probability [T |2 is

IT|° = (cos” 2k'a + Le" sin 2k'a)” (2.11)

Before we examine the physical meaning of the phases ¢ and
time delays 7 let us first introduce the eigenphase shifts and lifetime
matrix for this problem.

The eigenphase shifts are found by diagonalizing E’; in Eq. 2.2.
Since the S matrix is unitary, its eigenvalues must have unit modulus
and we shall write these eigenvalues in the form exp(2i6) where 8 is an
eigenphase shift. For the square well example, the results of the

diagonalization procedure are

»a 1

§:

exp2iAU (2.12)

where the diagonal matrix Ais
] g 0
(2.13)
0 0 A

>



and the matrix Ll is

i 1

U = V2 V2 (2.14)
i -1
V2 2

I:{ is orthogonal since g is unitary symmetric. The labels S and A on

the eigenphase shifts o g and 0 A stand for symmetric and antisymmetric )
respectively, referring to the fact that the linear combinations of the
two scattering solutions (Egs. 2.1 and its reflection through the

origin x = 0) which diagonalize 2 are symmetric and antisymmetric
respectively about x = 0. This is evident by noting that the first

column of I;i results in the addition of these two scattering solutions
while the second leads to their subtraction. By solving Eq. 2.12 for

the eigenphase shifts & S and 5 A in terms of R and T (Eq. 2.2),then

substituting the explicit results in Eqs. 2.3 and 2.4, we find

6 , =-ka - jtan™ (37 sin 2k'a)

N (2.15)
+ 3tan” ($etan 2k'a)
bg=-ka+ ttan™t (4 nsin 2k'a) .16
+ ttan™! (Letan 2k'a) + /2 '
The phase ¢,,, (and hence ¢_) may be related to 8 , and 6. via
T R A S
¢T:5S+5A‘?/2 (2.17)

Note that phases are modulo 27 while eigenphase shifts are modulo 7.
The lifetime matrix Q, as defined by F. Smi.thG, is related ‘

to S by
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% is related to the excess in the probability density of the time inde-

pendent wave function over the probability density of the corresponding

"unperturbed’’ wave function integrated over all space. Smith has

demonstrated that % is hermitian and that g and T (the matrix of time

delays) are related by

Q. =Y S 8.7 (2.19)
] 1))

11

J
This implies that Qﬁ is the average time delay experienced in a

collision where the system is initially in state i. For the square well
example, Egs. 2.2 and 2.19 lead to Q;; = T = T, so both the lifetime
matrix and time delay matrix provide the same information. Also of
interest are the eigenvalues of ,@y which Smith has related to the life-
times of metastable states. One can easily show that % for the square
well problem is diagonalized by the matrix g of Eq 2.14 which also

diagonalizes 8. (This is not generally true.) Iis eigenvalues dg and g,

are simply
ad S
ag = Z*_ﬁ aE, , (2.20)
D,
qp = 20 3E, (2.21)

where 0 g and 5A are given by Eqg. 2.15 and 2. 16.

| Now consider a specific application of the forlmulas of this
section. Suppose that the quantity 8 = (2mV, az/ﬁz) z has the value 315
and consider the range of E,/V,between 0 and 0.009. In Fig. 1 we plot

the resulting transmission probability ‘T lz (Eg. 2.11) as a function of



621

E,/V,. The figure shows a typical resonance profile with a peak in

lT [2 at Eg /V, =0.00464. This resonance energy corresponds to the
infinite square well bound state expression 2k'a = nm where n = 201.
(There are 200 bound states in the well,) This is a typical example

of a shape resonance, but note that |T [2 does not decrease to zero for
energies E,/V, much greater than the resonance energy. This is
because the direct processes are also contributing to lT lz, As Eq /V,
increases, the resonance contributions become less and less significant
while the direct contributions increase and eventually dominate
completely. This is manifested by the fact that [T {2 rises to a constant
value of unity independent of E, for large enough E;/V,. The phase
qu'of Eq. 2.9 is plotted in Fig. 2 as a function of E,/V,. We see that
qu is a monotonically decreasing function of E, /V; even at the resonance
energy. A small inflection is, however, noted there, and an examina~
tion of Eq. 2.9 indicates that the second term in that equation is
responsible for it. Indeed, if that second term alone is plotted (Fig. 2),
we obtain a function which increases rapidly by 7 at the resonance
energy. The first terin in Eg. 2.9 is the direct contribution to cpT and
is a monotonically decreasing function of E, /V,. (See dashed curve

in Fig. 2.) This direct phase is equal to that obtained for reflection

off a hard sphere of radius a (the limit V, — «for qu in Eq. 2.9) and
will be called the hard sphere phase below. This example illustrates
that even though the resonant component of d)T increases by 7 at the
resonance energy, the direct component can easily obscure this. We
should also note that for a general many channel problem, the phase of

Sij is not in general simply the sum of resonant and direct contributions,
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and therefore is not easily separated into two parts as was done in
Fig. 2.

If we examine the eigenphase shift g We find an energy
dependence similar to ¢>T in Fig. 2. § A» Oon the other hand, shows
no inflection near the resonance energy because the second and third
terms in Egs. 2.15 cancel when 2k'a ~n7 for odd n. This example
illustrates the even-odd character of the ;:luasi-bound resonance state.
For odd n, the resonance state will be symmetric with respect to
reflection through x = 0 and hence will not couple to the antisymmetric
eigensolution, although it will couple to the symmetric one. For even
n, the resonance state is antisymmetric and the opposite coupling
occurs. This property of ﬁs and b A can be useful in this example,
because the difference GS -0 A will characterize only resonance contri-
butions, thus enabling us to approximately separate out resonant and
direct contributions. We shall see how this can be useful in Section 3.
For the general multichannel problem, the sum of the eigenphase shifts
should increase by 7 1 at a resonance (in the absence of direct contri-
butions). Inspecti;aﬁ of Eqs. 2.15, 2, i6 and Fig. 2 shows that this is
trivially the case here, but this fact would be difficult to prove without
a procedure for separating off the direct contributions.

We conclude this section by examining the time delays for the
example of Figs. 1 and 2. The direct component of 7 corresponds to
the first term in Eq. 2.10 (-2a/¥). Its negative sign means that the
"time of passage' through the scattering center is shorter than the
time of passage in the absence of a potential. Indeed, since this

unperturbed time of passage is precisely 2a/v, we see that the direct
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mechanism corresponds to scattering in which the incident particle
spends essentially zero time within the boundaries of the well. This
is the expected result for reflection from a hard sphere (V, — ~),
and the value of this direct time delay is, in fact, the smallest time

28 The

delay allowed by causality. This was first shown by Wigner,
resonant contribution to T in Eq. 2.10 is positive and sharply peaked
near the resonance energy. (It is just the slope of the <].‘>T + 2ka curve
in Fig. 2.) The sum of resonant plus direct contributions to Top 18
always negative (since the slope of qu in Fig. 2 is always negative)
in spite of the sharp resonance, thus indicating that caution must be
used in attempting to correlate the absence of resonances with the absence
of positive time delays.

- We should also mention that the ¢, 7and I'l‘.!z can be easily

parametrized in terms of a resonance energy Er and half width I'by

setting (for € > 2)

2 2 2
h .

E, =gots - Vo (2.22)

~_ 8 o ‘
I=-— VE(E, + V,) (2.23)
and expanding all quantities in Egs. 2.9 - 2.11 in powers of E; - E.

We find

¢ = -2ka - T 4+ tan”" (~——-«E-F/2 ) (2.24
T 2 Er = 0 - )
=2, RE/2 (2.25)

TV @R (8, -5

and
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2AE., - By) ;-

IT] =+ (—Z—)") (2.26)

The resonant components of these equations have the usual Lorentzian
form with a maximum time delay TT(EI_) = 2%/T". Although the resonant
interactions considefed in this section have been shape resonances,
much of the discussion is also true about Feshbach (internal excitation)
resonances. In particular, the above parametrization (Eqs. 2.24 -
2.26) can be generalized to many channel problems in a straightforward

manner (Ref. 4).

3. APPLICATION TO COLLINEAR REACTIVE ATOM DIATOM
SCATTERING

We now consider an application of the concepts developed in
Section 2 to the results of accurate quantum mechanical calculations
on collinear atom diatom reactive systems. In all cases, a close
coupling method described elsewherem’zg was used to obtain scattering
matrices for the reactions and energies desired. All transition proba-
bilities and phases considered are accurate to 1% or better, but time
delays and lifetime matrices are subject to much larger uncertainties
(perhaps 5 - 10%) due to the necessity of interpolating between energies
to obtain the required energy derivatives (Egs. 2.8 and 2.18).

We first consider the collinear H + H, reaction on a scaled |

SSMK potential surface, 2122

The reaction_ probabilities for this system
have been extensively analyzed by Truhlar and Kuppermann, 23 The
results of the close coupling calculations in the form of phases ¢ij as a
function of the total energy E (E=E;+ 0.273 eV for H + HZ) are

presented in Figs. 3 - 7. The notation is analogous to Ref. 23 with R



625

symbolizing reactive transitions and V nonreactive ones. All (distinct)
possible initial and final vibrational quantum numbers i and j between
0 and 2 are considered in the figures. Appropriate multiples of 27
have been added so as to make the plots continuous (at least Wheré
they éhould be continuous). From thése plots one can make the
following observations:

(a) The most obvious behavior of the phases is that they are
all monotonically decreasing functions of energy except at a few energies.
This is very much like the phase ¢'T in Fig. 2 for the square well
problem. We shall assign this monotonic energy dependence of the
phases as arising from the direct interactions.

(b) There is a discontinuity of # in the ;qbog plot near E = 0.60 eV.
This discontinuity actually exists and is; related to (but not the same
as) the rapid change of the square well phase by 7 when a transmission
resonance occurs. We shall elaborate upon this below.

(¢) Most of the phase plots (Figs. 3 - 5) show a small but
rapid change in the derivative of the phase near E =0.90 eV. This
fluctuation is more easily seen in the time delay plots (Figs. 6 - 7).
In addition, the reaction probabilities for the 0 — 0 transitions, plotted
in Fig. 10, show a sudden change near 0.90 eV. These observations
-~ a rapid change in time delay and in reaction probability as a function
of energy near 0,90 eV--are indicative that a resonance is occurring
near that energy. }»However, the direct processes are also present
and what we are actually looking at in the figures are contributions
from amplitudes for both of these processes. Since each mechanism

has its own phase, the S matrix phases, time delays and prdbabilities
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show the effects of interferences bétween these mechanisms. The
resonance responsible for the fluctuations at 0.90 eV appears to be
quite broad (width of around 0.03 eV) and is not easily characterized
because the amplitude for the direct processes tends to wash out the
resonant behavior. No simple decomposition of resonant and direct
processes is obvious here, although a partial decomposition is possible
| as will be described for a related H + H, resonance below. It is also
not easy to classify the resonance as cleanly shape or Feshbach in
nature, although it seems logical (from arguments given below) that
this and most other resonances analyzed in this paper are Feshbach
resonances.

(d) The phases plotted in Figs. 3 - 5 show an extremely rapid
fluctuation near E =1,276 eV. Simultaneously, the reaction probabilities
(Fig. 10) underge very rapid fluctuations. This again is indicative of
a resonance but this time it is quite narrow (0.008 eV) and the effects
of phase interferences with the direct interactions are much more
easily discerned. This resonance and that at 0.90 eV were examined
in Ref. 20, and will be further examined below.

(e) Finally, we note that the phases for different transitions
often seem to be related to each other in certain ways. Some of these
relations are consequences of unitarity and other properties of g For
energies below 0.793 eV, -oniy the ground state of H, is open and the 2
matrix is 2 x 2. Unitarity and symmetry of S as well as additional
symmetries which occur specifically for H + HZ and similar reactions

require that (analogous to Eq. 2.9)
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R = dgp+ (o B n=0,+l, £2, ...  (3.1)
so that
R__V
700~ 700 (3.2)
In addition,
V(E, =0) = 3.3
b op (B =0) =nr (3.3)
R — 0 = 1
¢’00(Eo =0) =(n+ 3)7 (3.4)

where n should be determined by Levinson's theorem1 although we
have not tested this yet. For energies above 0.793 eV, more channels
are open and vK. 3.1 ceases to hold. The following relation does,
however, result from the unitarity of §3 at least at the threshold for

opening of the first excited vibrational state of H,
oD = b+ (a+ H)m | (3.5)
One additional relatign also seems to be obeyed near this threshold
4’(% = ¢3§ + 207 (3. é)

but this is not a consequence of unitarity unless we make the additional
assumption that [S(ﬁ[z = }Sovi iz. This latter relation seems to hold
quite well just above the threshold for opening of the first excited
state of H2 although the reason for this is unknown.

Some additional information which we have obtained is in the
form ‘of the eigenvalues of (% at certain energies. These are listed in

"Table I. They cannot be correlated with specific channels and thus
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are listed by magnitude. Note that near E =1.276 eV, one of the
eigenvalues becomes quite large and positive. This apparently
results from the resonance at that energy, but unfortunately, the full
energy dependence of this eigenvalue is lost because the opening of
an additional vibrational state at E =1.28 eV changes Q from 4 x 4 to
6.x 6 and this changes the eigenvalue spectrum considerably.
We shall now discuss the direct contributions to the time delays.
Figs. 8 -~ 9 show that the time delays tend to behave qualitatively
like
R_,V -3 ~%

Tij = Tij a-(E - ei) 2 = (-Ei 2), (3.7
just above the threshold for opening of vibrational state i. (Note i = j
and € is the vibrational energy of state i.) This is similar to the hard
sphere time delays observed with the square well (Section 2). We can
understand the reason for this similarity by observing that when these
direct processes occur, the system spends very little time in the inter-
action region and thus the time delays as a function of energy will be
sensitive primarily to the distance at which the atom and molecule begin
fo interact strongly and less sensitive to the detailed shape of the
potential energy surface. As a result, the scattering region behaves
much like a hard sphere at least in the time delay behavior with 7 pro-
portional to the inverse: of the velocity. In addition, for a reaction
such as H + HZ’ there should be little difference in the direct mechanism
time delays between a reactive and a nonreactive transition with the
same initial and final states. We see in Figs. 8 ~ 9 that this is approxi-

mately the case. Finally, the fime delays often seem to be additive
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according to the relation (which should be the same for both reactive

and nonreactive transitions when direct processes are dominant):

To1 ™ %(TOO + 711) (3.8)

This suggests that we can think of the direct processes as occurring

in separable segments: an incoming time delay in the incident channel,

an instantaneous transition to the exit channel followed by an outgoing
time delay in that channel. The separability of these segments impiies
that we can add the incoming and outgoing time delays of any two channels
to get the overall time delay for the transition between these two channels.
Deviations from the additivity property of time delays indicate that
transitions to intermediate channels are becoming important in the
scattering process.

As mentioned in (b) above, the nonreactive phase cf)(}{) undergoes
an apparently discontinuous change by 7 near E = 0.60 eV. This must
be a discontinuity rather than a rapid change because qbé?) does not
change by 7 in this region of energy and Eq. 3.1 implies that qbag can
changé by 7 while 55%) does not only if n changes by +1 and this would
occur discontinuouslyﬁ. The explanatién of the discontinuity is most
easily unders’cood; by reference to Fig. 11 which contains a plot of
Im(SS’:)) versus Re(S[X)) and similarly for Sg)%. We see that near
E =0.60eV, S(}g goes exactly through the origin. This results in a
reaction probability of unity and we see this in Fig. 10. The change
by 7 in the phase is now easily seen to result from a change in the
sign of S(}g as it goes through the origin.' The physical meaning of

this phenomenon is that when 336 =0, there is no reflected wave,
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As a consequence, a time delay for this channel has no meaning.
Exactly the same phenomenon occurs with the reflection probability

in the square well transmission resonances of Section 2. By analogy,
we will label this discontinuity in the phase for H + Hy as resulting
from a transmission resonance (as distinct from the Feshbach reso-
nances at 0.90 eV and 1.276 eV as discussed below).} Our assignment
of this behavior as resulting from a resonance is somewhat speculative,
since the probability in Fig. 10 shows little resemblance to that in
Fig. 1. In addition, there is little change in the time delay as a
function of energy over what would be obtained from the direct
contribution. An alternative description of this phenomena could be
developed in terms of threshold effects and it appears that a cléar

cut distinction between the resonant and threshold designations will
require additional information.

The resonances at 0.90 eV and 1.276 eV are apparently much
different in nature from that observed at 0.60 eV. Near 0.90 and
1.276 eV, we can explain the energy dependence of the observed
phases (Figs. 3 - 5) and reaction probabilities (Fig. 10) as resulting
from the interference of the direct processes with resonant processes
which occur because of the existence of a metastable vibrational state
of the H3 system. Such discreet states embedded in the continuum have
been seen in nonreactive molecular scatteringSO and related resonances
foi* the same H + H, reaction but a different potential surface, were
examined in Ref. 31. To justify the statement that these resonances
are Feshbach rather than shape resonances, we need to develop a

model which isolates single channel or vibrationally adiabatic processes
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from those which are not. Such vibrationally adiabatic models have

31,32 If we expand the exact

been developed and tested elsewhere.
scattering wave function in terms of symmetric stretch H3 eigenfunctions
(the numerically determined transition state vibrational functions), we
obtain a set of expansion coefficients at each energy, the squares of
which are shown in Table II for energies near the 1.276 eV resonance.
The expansion coefficients indicate the relative importance of the
different vibrationally adiabatic states at the transition state, remem-
bering that asymptotically, !aOO ]2 =1 and la()j !2 =0forj= 0. At
energies well above and well below resonance (i.e., 1.260 eV and

1.290 eV), the reaction is primarily direct, but the coefficients indi-
cate that it is strongly nonadiabatic (within the zero curvature adiabatic
framework chosen). Roughly the same ‘an ]2 are obtained at 1.260 eV
and at 1,290 eV indicating that the rate of change of the direct components
to these coefficients is small. As the energy approaches 1.276 eV

from either above or below, we see in Table II that rapid changes in

the |ag;| occur, with the largest being [ag, | and [agy |°. Since the

i = 2 and 3 states of H, are closed over much of the energy range,

we see that the resonance is responsible for significant changes in

the coelficients for these nonadiabatic virtual states. This is the
expected behavior of a Feshbach resonance. The description is quite
crude, however, for the resonance is not associated exclusively with
any one particular virtual sté;te, and a clean separation of adiabatic

and nonadiabatic effects, or of resonant and direct effects is not
possible. The resonance at 0.90 eV seems to be associated with exci-

tations fo the second vibrational state of H3 (from the same vibrationally
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adiabatic analysis). 32 Although this state is open at 0.90 eV, we still
consider the resonance to be of the Feshbach type, since it results

in excitations between adiabatic vibrational states. Open channel
Feshbach resonances related to this one have been consi‘dered by
Taylor et al. 34 In contrast to the nonadiabatic behavior near 0.90 eV

33 indicates almost

and 1.276 eV, a similar analysis at 0.60 eV
perfectly adiabatic behavior implying that if a resonance occurs at all
at this energy, it must be a shape or transmission resonance, and
not a Feshbach resonance.

- Now we consider the H+ FH— HF + H reaction. Reaction
probabilities for this and related systems have been described else-
where 24 as has the LEPS potential surface. For this reaction, it was
found that a sharp resonantdike oscillation in the transition probabilities
was obtained near E,(HF) ~ 0.412 eV. Fig. 12 shows these proba-
bilities. Two properties of this reaction make it exceptionally easy
to analyze this resonance. First, the amplitude for the direct processes
remains essentially constant over the range of energies in which the
resonance makes a significant contribution. This is manifested by the
symmetry of the curves in Fig. 12 about E;, = 0.412 eV. Second, only
one vibrational state is open in each arrangement channel at the resonance.
energy so the symmetry properties of the scattering matrix are identical
to those previously examined for the square well problem in Section 2.
In that square well analysis, we found that the eigenphase shifts o S
and 6 A could be useful in understanding resonances, since any given

resonance would influence either the symmetric or antisymmetric

eigensolutions but not both. In Fig. 13 we plot these two eigenphase
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shifts for H+ FH. As with the square well example, B‘A is monotonic
over the energy range considered. GS increases near the resonance
energy, indicating that the resonance wave function must be symmetric
with respect to interchange of the two hydrogen atoms in the HFH
complex. The difference between §S and 8 (also plotted in Fig. 13)
increases rapidly by m, in agreement with our expectations that this
difference should correspond to the resonance component of the eigen-
phase shifts. A surprisingly accurate parametrization of GS -0 A may

be obtained by fitting it to the formula

_ T -1 T '
GS - 5A - + tan (m)) (3.9)

which may be obtained from arguments similar to those leading to

Eqgs. 2.24 and 2.26. In Fig. 14 we plot tan (6S . GA)" versus E, for

H+ FH. I Eq. 3.9 is accurate, the resultant curve should be a
straight line of slope 2/T and intercept ZEr/ I. The straight line

drawn in the figure connects all of the calculated pbints very accurately
except those far away from resonance. From the slope and intercept

of the straight line, we find E.= 0.412 eV and T" =0, 0207 eV. These
parameters may then be used to calculate PORO and POX using formulas
analogous to Eq. 2.25. These formulas were used in Fig. 12 to connect
the calculated points and it is obvious that the fit is excellent. A more
stringent test of the validity of the parametrization of Eq. 3.9 is afforded
by examining the Argand diagrams of SO% and SO‘(; analogous to Fig. 11,
To do this, we need also to parametrize the direct contribution to the
eigenphase shifts. | For simplicity we have assumed a linear energy

dependence. An examination of A in Fig. 13 (which should reflect
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primarily the direct mechanism) indicates that this assumption is quite
accurate. The resulting Argand diagrams are plotted in Fig. 15 where
we again see good correspondence between calculated and fitted curves,
except at energies far removed from resonance. The general behavior
of the SORO and SOX curves is to circle the origin clockwise as E,
increases, except near the resonance energy, where a sudden counter-
clockwise circle not about the origin occurs. These counterclockwise
circles have been previously used in analyzing resonances7’ 20,30 and
are often quite useful in identifying their existence provided that the
direct scattering matrix contributions are not strongly energy dependent.
With both 6S and & A parametrized in a simple way, we may now easily
calculate the time delay and lifetime matrices. For example, the

TOX time delay is simply

dd -
Vv A T/2

b = 2h 4 ‘ (3.10)

00 (Er - E{})z + F2/4

and for a linear & A’ ng is simply the sum of a constant direct contri-
bution plus a sharply peak resonant one. The maximum value of 7’0‘6
is 4.3x 107" sec, which is about twice the unperturbed time of passage.
Now we consider the same eigenphase shift analysis for an

analogous resonance in collinear H + HZ' This time we use accurate
results for the Porter—Karplus potential surface25 in the vicinity of

the first internal excitation resonance which occurs at E = 0.875 eV.
Figure 16 shows some of the pertinent reaction probabilities. These
have been given previously by Diestler. 35 This resonance occurs above

the threshold for the first excited vibrational state of H7 , 80 the

scattering matrix is 4 x 4. In this case, the diagonalization of S requires
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an energy dependent matrix I;I\\ and leads to the eigenphase shifts
plotted in Fig. 17. There are now two symmetric eigenphase shifts
GSI and 582 and two antisymmetric ones 0 Al and 0 A2. The anti-
symmetric ones vary monotonically near the resonance energy while
the symmetric eigenphase shifts increase there. Unfortunately,

) Ay and § A DO longer cleanly represent the direct contributions, and
the difference 5S1 + 582 -5 A -8 A, does not increase by 7 (see
Fig. 17). Also, a parametrization analogous to Eq. 3.9 is not very
accurate as is evident from Fig. 18, where the resulting curve is
linear only for an energy range of 0.02 eV. Thus unliké the H + FH
reaction, eigenphase shifts are less useful for characterizing the
resonant and direct interactions for H + H,. A primary reason for
this is the strong energy dependence of the transformation matrix [ﬁ]

for this system. 33

If 2 were energy independent (as was required by
symmetry for H + FH), the eigenphase shifts would provide all of the
energy dependent formation necessary to characterize the scattering
matrix. This is not true for H + Hz, and a description of U will also be
req{lired to complete the characterization of 8. We conciuge this
section by presenting an Argand diagram of S;I({) and SO:EII for H + Hz,
plotted in Fig. 19. SOI(; of that figure is very similar to SORQ (H + FH)

of Fig. 15 and we can consequently see the strong analogy between the
two resonances in these two reactions. Solf shows a more poorly
developed resonance circle because of the stronger influence of the

direct interactions in H + H2 (as is obvious by comparison of Figs. 10

and 16).
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4, SUMMARY

We will now summarize the various tools we have used for
examining direct and resonant processes in chemical reactions.
The scattering matrix itself provides us directly with the transition
probabilities and phases. The probabilities are very sensitive to
resonances as was apparent in Figs. 10, 12 and 16, although the inter-
ference between resonant and direct processes makes it difficult to
parametrize these resonances on the basis of probability information
only. The phases of g (Figs. 3 - T) are usually dominated by the mono-
tonically decreasing contributioné of the direct processes. The influence
of resonances on these phases is apparent in the figures but not easily
separated from the direct contributions. This separation problem is
also usually true of the eigenphase shifts (Figs. 13 and 17), but by
using the symmetry properties of the eigensolutions present in the
reactions considered, a partial separation is possible. . The time
delays provide indications of the existencer of resonances, but their
physical ihterpretation is hampereci bj interferences between direct and
resonant mechanisms. When both of these mechanisms are important

in a reaction, the scattering matrix element Sij contains contributions

from both of them. This leads to a time delay Tij (Eq. 2.8) which is

not in general simply a sum of resonant plus direct contributions (as

it was in Eq. 2.10) but rather it shows the effects of interferences
between the two. This makes it impossible to extract resonant lifetimes
directly from the Tij s without some type of parametrization procedure
similar to that used for the H + FH reaction. The eigenvalues of g seem

to be of lesser usefulness for the problems we are considering,
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because the opening of new channels brings about considerable changes
in the nature of these eigenvalues. Argand diagrams are useful for
identifying resonances and for testing parametrizations, since all of
the information contained in each element of g is displayed in a single
curve.

With the aid of the above tools for characterizing reactions, we
have found that both direct and resonant mechanisms play important
roles in the chemical reactions considered. The resonances are
usually weak and seem to be associated with virtual excitations in
the transition state region. There remains, however, a large number
of unanswefed questions. For example, an adiabatic analysis of the
1.276 eV Feshbach resonance in H + H, indicated that it strongly
perturbs both thé j =2 and 3 levels of the transition state. This implies
that the true resonance state is a mixture of these and other levels. How
can we separate out this resonance state? Equivalently, we can ask,
is there an approximate partitioning of the Hamiltonian which allows us
to isolate the discreet resonance state from the continuum ? Another
unresolved guestion is the separation of resonant effects from threshold
phenomena. This problem occurs for example at 0.60 eV in H + H2
(SSMK surface), where an analysis of probabilities and time delays
could not provide a conclusive description in terms of resonance or
threshold phenomena. It is apparent that for the strongly coupled
reactive problems we are interested'in, a clean separation of resonance
and direct effects will be difficult at best. Nevertheless, the develop-
ment of approximate models for doing this is important, for such

models might be more easily applied to three dimensional reactions
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than are exact calculationslg, and hence would be of use in predicting

and interpreting the results of experiments.
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TABLE 1. Eigenvalues of the collision lifetime matrix Q.

E(eV) - Eigenvalues X 1013 (sec)

1.1005 -0.279 -0.244 -0.131  -0.127

1.1505 -0.255 -0.216 -0.125  -0.116

1.2005 -0.234 -0.192 -0.121 ~-0.099

1.2255 -0.225 -0.180 -0.119 ~-0.076

1.2505 -0.192  -0.152  -0.103  +0.017

1.2605 -0.211  -0.169  -0.115  +0.193

1.26525 -0.208 -0.176  -0.114  +0.571

1.27025 -0.203 -0.168 -0.112  +1.117

1.2726 -0.199 -0.168 -0.110  +1.837

1.2751  -0.192  -0.167 -0.106  +2.769

1.2776  -0.166  -0.152  -0.044  +2.859

1.2799  -0.164 -0.144  -0.076  +3.389

1.2781  -8.726 -6.786 -0.890 -0.529 -0.161  -0.137
1.28525 -3.209 -2.934 -0.773 -0.266 -0.161  -0.126
1

.28025 -2.331 -1.862 -0.649  -0.237 ~0.160  -0.121
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sk
TABLE II. Normalized vibrationally adiabatic projection coefficients

for the v = 0 scattering solution of H + H?

=1

E(eV) laoo 12 '301 ’2 lagz ],2, _ ',"‘03 lz L [304,[2.
1.260 0.100 0.205 0.324 0. 342 0.027
1.265 0.100 0.184 0.423 0.256 0.031
1.270 0.015 0.241 0.090 0.586 0.065
1.2%5 0.014 0.163 0.038 0.682 0.100
1.2775 0.079 0.067 0.171 0.572 0.103
1.280 0.202 0.002 0.499 0.2217 0.061
1.285 0.118 0.079 0.435 0.334 0.030
1.290 0.096 0.104 0.385 0.385 0.027

%k
Normalized so that Z‘ laij [2 =1. Not all Iagj lz have been tabulated.
j ]
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FIG. 1. Transmission probability [T {2 for a symmetric square well

having 8 = 315 as a function of E, /V,.

FIG. 2. Phase c[)T of the transmission amplitude T as a function of
E,/V, for the B = 315 square well. Also plotted is the direct phase
(-2ka) and the resonant phase ng + 2ka as explained in the text.

FIG. 3. Phases gbo% and qﬁgg for H+ H, (SSMK surface) as a function
of the total energy E. Arrows in abscissa at 0.793 eV and 1.28 eV

indicate the value of E at which the i =1 and 2 vibrational states of H,
become energetically accessible. Inset shows the 1.25 eViol.30 ev

energy range in greater detail.
FIG. 4. Phases ¢01 and %1 for H + Hz- analogous to Fig. 3.
FIG. 5. Phases qbllf and qblY for H + Hy analogous to Fig. 3.

FIG. 6. Phases ¢01§, ¢O¥’ qbfz{ and qblz for H + H, analogous to
Fig. 3.

FIG. 7. Phases @23 and ¢2g for H+ Hy analogous to Fig. 3.

FIG. 8. Time delays 'rofé, ‘TOX and 70‘{ for H+ Hy as a function of

the total energy E. The time delays near 1.276 eV are omitted because
the strong interference between resonance and direct interactions at
that energy leads to rapidly oscillating time delays which are difficult
to calculate. (In addition, unless a separation of direct and resonant
effects can be accomplished, the time delays are not neéessarily

physically meaningful. See Section 4.)
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R \'

FIG. 9. Time delays TOI}’ 7y and 744 analogous to Fig. 8.

FIG. 10. Reaction probabilities Pys and Py for H + H, (SSMK

surface) as a function of the total energy E.

FIG. 11. Argand diagram of Solg (outside curve) and SOX (curve going
through the origin) for H + H, in the 0.50 to 0.70 eV energy range.
Numbers next to the circles indicate the energy at which that element

of § was calculated.

FIG. 12. Reaction probabilities PO% (circles)and P()g (squares) for
H + FH as a function of the reagent translational energy E, in the
vicinity of the 0.412 eV resonance. Solid and dashed curves were

calculated by formulas described in the text.

FIG. 13. Eigenphase shifts & g and 8 A and their difference & g - o A

" for H+ FH as a function of E, .

FIG. 14. Tan {5S - 6A) as a function of E; for H + FH. A straight

line has been drawn through the calculated points.

FIG. 15. Argand diagram of SO% (squares) and SOX (circles) for
H + FH for a range of E; between 0.307 eV and 0.484 eV. Solid and

dashed curve are calculated from formulas described in the text.

FIG. 16. Reaction probabilities Py, Pox and P for H+ H, (Porter-

Karplus surface) as a function of E.
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FIG. 17. Eigenphase shifts 64 , 64 , 8, , 8, and the quantity
517 T8y’ TAT Ay

A for H + H, (Porter-Karplus) versus E.
2
FIG. 18. Tan (6S1 + 582 - 5A1 - 6A2) versus E for H + H, (Porter-

Karplus). A straight line has been drawn through the points.

FIG. 19. Argand diagram of SO% (circles) and Soff (squares) for H + H,
(Porter-Karplus) for E between 0.816 eV and 0.925 eV. Calculated

points are at the same energies as those in Fig. 16.
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10. DYNAMICAL RESONANCES IN COLLINEAR, COPLANAR , AND
THREE-DIMENSIONAL QUANTUM MECHANICAL REACTIVE
SCATTERING
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Dynamical resonances in collinear, coplanar, and three-dimensional quantam
mechanical reactive sm
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Abstract
Results of lﬁ), 2D, and 3D calculations on the H + H, exchange reaction
are presented which provide the first evidence for dynamical internal excitation
(Feshbach) resonances in chemical reactions using noncollinear calculations.
The Vcn:héhgevoft }:he resbnance energy and width with collision dimensionality
and’with total angular momentum is analyzed and predictions concerning its

effect on cross sections for certain transitions are made,
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Internal excitation resonances héve been~ observed in a large nu.mber
of diverse collision phenomena including #-p scattering,” electron-atom
and elecfron—-molecule scatteringz and (theoretically) rotationally inelastic
atom molecule scattering,3 but they have yet to be detected in atom-diatom
reactive scattering experiments. Their theoretical existence has previously
been established theoretically only in collinear models of these simple
chemical reactionssg‘"g The results of these collinear calculations indicate.
that they are responsible for oscillations in the reaction probabilit"ies
near the resonance energies due ta their in’cerference8 with the direct
mechanisms. ' However, because of angle and partial wave averaging, it
was not known whether such resonances would exist in the 3-D world. We
present here the resulis of accurate quantummechaxﬁcal calculations for
one~, two-, and three-dimensional collisions forthé historically important
H + H, exchange reaction which provide the first evidence for dynamical
resonances in chemical reactions for noncollinear systems. An under-
standing of the relation between the chara_cterisﬁcs of such resonances
and the nature of the potential surfaces which give rise to them may
prove a sensitivé probe in the experimental characferization of these
surfaces and in the development and testing of approxi;nate reaction-

dynamic theories.
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The methods used for solving the Schridinger equation for the collinear,
coplanar, and three-dimensional H + H, collisions are the same as those we

8-11 In order to obtain accurate resulits in the

developed and used previously.
2-D and 3-D calculations at the relatively high energies at which the resonances
were found, quite large vibration-rotation basis sets were required, involving

five or six vibrations and rotational quantum numbers j =0~ 610 j =0~ 9 for
each vibration for a total of 60 coplanar channels (for all values of total angular
momentum quantum number J), and 40 to 90 (J = 0, 1) three-dimensional channels.
For most of these noncollinear calculations, tests of conservation of flux, micro-
scopic reversibility and invariance with respect to number and choice of expansion
functions indicated convergence of 5 to 10% although a few poorer results (20%)
were included. The collinear results, for which ten vibrational basis functions
were used, are accurate to 0.5% or better. The Porﬂlzer—l‘{au'plus12 potential
energy surface was use& for all calculations.

13

The resulting collinear, ** coplanar, and three-dimensional reaction

probabilities PRS defined in the figure caption, are plotied as a function of the

total energy E in Fig.' 1. It can be seen that : — |
all vibrationally elastic probabilities in Fig. la show a similar behavior, rising

R _0.01) to

from an effective threshold energy Ey, (the value of B for which P
a relatively flat plateau, and dipping later to a minimnum at an energy E pe The
values of By, are 0.420 ev, 0. fl”(O eV, and 0.525 eV and of .Er are 0.873 eV,
0.922 eV, and 0.975 eV for the 1-D, 2-D, and 3-D systems, respectively.

The vibrationally inelastic PR of Fig. 1b are é,lso analogous to one-another
and display maxima at the same energies Er for which the vibrationally elastic
ones show minima. Since the dip in the 1-D Pgﬁ,o curve has been shown, by a
time-~delay analysis, 8 to be due to a Feshbach resonance, we conclude that the

analogous feature for the 2-D and 3-D systems is also due to such a resonance..
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Therefore, the 1-D, 2-D, and 3-D reactions have resonances centeredrat the '
values of Er given above, with approximate widths of 0.022 eV, 0.045 eV, and
0.035 eV, respectively.

The change in resonance energy with dimensionality is almost identical
to the corresponding change in the effective threshold energies and is in the
0. 050veV to 0.055 eV range for both the 1-D to 2-D and 2-D to 3-D shifts.
These shifts agree with previous est:‘maai:esM of the additional zero-point
“"bending' energy which must be put into the triatomic motions of the coplanar
and three-dimensional transition states. This indicates that these resonances
are influenced by the potential ehergy surface in the strong interaction region.
Coplanar calculatiéns indicate that the resonance has a significant effect only
onthe J =0~7 parﬁal waves (which appears to coincide with the range of J for
which Pg{)*l (2-D) is significant), whereas non-negligible reaction proiaabilities
‘DR {2-D} ara found for the wider T rancge 0 - 17. -No-sionificant

K-~y

change of either resonance energy or width with the quantum number J

was detected for the 2-D gystem. 15 This very important result is probably due

to the dominant character of potential (rather than angular momentum) coupling
in the fegion of strong interaction, and permfts us to predict that the partial
wave sum present in the expressions for the reaction cross sections will not
seriously attenuate the effects of the individual partial wave resonances. From -
the width of the 3-D resonance we estimate a lifetime of 3.8 x 107 gec (corre-
sponding .approximately to 2-3 transition state symmetric sfretch vibrations),
about 2/3 of the 1-D lifetime. R
As a result of the preceding considerations, the following qualitative pre-

dictions concerning the effect of the resonance on the reaction cross sections

can'be made: (a) The energy dependence of the vibrationally elastic integral

reaction cross sections should show only a small dip at the resonance energy,
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similar in appearance to the J = 0 reaction probabilities in Fig. la, but prob-
ably of smaller amplitude. (b) The vibrationally inelastic reaction cross sec~
tions should be dominated by the effects of this resonance even when averaged
and summed over a distribution of rotational levels within the reagent and
product vibrational manifolds, respectively. (c) The differential reaction cross
sections at the resonance energies should show significént oscillations as a
function of scattering angle, in contrast with the smooth behaviozz'l1 displayed
away from resonance. }

We conclude, in summary,that resonances do indeed exist in noncollinear
H + H, and can cause non-negligible quantum interference oscillations on
observable reaction cross sections. Such resonances are bound to exist in
other reactions also, as they have already been detected in collinear

17 Since classical trajectory

methods do not include these interterence eiiects, nor do mosi semiciassicai' o 18

calculations for F + H, (D,, HD)16 and C¢ + H,.

and approximate quantum methods,lg a theoretical 3-D treatment of resonances
for most other chemical reactions will require the deirelo;amént of better A
approximate techniques, and the results presentedihere should be valuable in
this endeavor. In addition, = accurate quantura mechanical results (be they
1-D, 2-D, or 3-D) can serve as a useful predictive guide in the experimental
search for dynamical resonances,and it is hoped that the present paper will
stimulate such a search. ' ‘

We thank Ambassador College for . generous use of their computational

facilities.



672

REFERENCES

1.

10.

11.

(&) R. Cool, O. Picconi, and D. Clark, Phys. Rev. 103, 1082 (1956);
(b) R. K. Adair, Phys. Rev° 113, 338 (1959); (¢) R. G. Moorhouse,
Ann. Rev. Nucl. Sci.- 19, 301 (1969).

(@) G. J. Schultz, Phys. Rev. Lett. 10, 104 (1963); (b) P. G. Burke,
Adv. At. Mol. Phys. 4, 173 (1968) and references therein.

(a) D. A. Micha, Phys. Rev. 162, 88 (1967); (b) R. D. Levine,

B. R. Johnson, J. T. Muckerman, and R. B. Bernstein, J. Chem.
Phys. 49, 56 (1968).

(2) D. G. Truhlar and A. Kuppermann, J. Chem. Phys. 52, 3841
(1970); (b) ibid. 56, 2232 (1972). | |

{a) R. D. Levine and 8.-F. Wu, Chem. Phys. Lett., 11, 587 (1971);
(b) 8. F. Wu and R. D. Levine, Mol. Phys. 22, 881 (1971).

(2) D. J. Diestler, J. Chem. Phys. 54, 4547 (1971); (b) D. J. Diestler,
D. G. Truhlar, and A. Kuppermann, Chem. Phys. Lett. 13, 1 (1972).
B. R. Johnson, Chem. Phys. Lett. 13, 172 (1972).

G. C. Schatz and A. Kuppermann, J. Chem. Phys. 59, 964 (1973).
A. Kuppermann, Potential Energy Surfaces in Chemistry, W, Lester,

Ed. (University of California at Santa Cruz, 1970), pp. 121-129;

Electronic and Atomic Collisions, VII International Conference on the

Physics of Electronic and Atomic Collisions, Abstracts of Papers
(North-Holland Publishing Company, Amsterdam, 1971), p. 3.

A. Kuppermann, G. C. Schatz, and M. Baer, J. Chem. Phys. 61,
4362 (1874). |
A. Kuppermann and G. C. Schatz, J. Chem. Phys. 62, 2502 (1975).



12.

13.

14,
15.

16.

17.
18.

19.

673

R. N. Porter and M. Karplus, J. Chem. Phys. 40, 1105 (1964),

These results are essentially identical to those of Ref. 3a.

A. B. Elkowitz and R. E. Wyatt, J. Chem. Phys., 62, 3683 (1975).
Accurate 3-D calculationé fo;* J > 0 in the r_xéighborhood of ‘ﬁhe resonance
are very difficult to perform because of the large number of basis functions
required in the close-coupling expansion. We do however have some -
preliminary 3-D J > 0 resulis which are in agreement With the italicized
statement about the 2-D system. |

G. C. Schatz, J. M. Bowman, and A. Kuppermann, J. Chem. Phys.,
in press. ' |

M. Baer, Mol. Phys. 27, 1429 (1974).

J. M. Bowman and A. Kuppermann, J. Chem. Phys. 59, 6524 (1973);

for a counter-example, see J, R. Stine and R. A. Marcus, Chem. Phys.

Lett. Z§, 55 (1974).

For example, the distorted wave method [K. T. Tang and M. Karplus,
Phys. Rev. A 4, 1844 (1971)] and the one vibrational basis function
method [ G. Wolken and M. Karplus, J. Chem. Phys. 60, 351 (1974)].



674

FIGURE CAPTION

Figure 1: ‘
Collinear (1-D), coplanar (2-D}, and three-dimensional (3-D) reaction
probabilities for the H + H, exchange reaction as a function of the total
energy E and relative translational energy ‘-EO. P()Rw() and P§w1 are the
collinear reaction probabilities from v = 0 of the reagentﬁ2 tovi=0
and v/ = 1,‘ respectively, of the product H,. P?O-»O and Pg{o»;[ are the
2-D or 3-D (as specified) reaction probabilities for the total angular
momentum J = 0 partial wave from v = Ov, i = 0 of the reagent H, to
v’ =0 and v/ = 1, respectively, of the product H, summed over all
product rotational states within a given vibrational manifold. Panel (a)
curves are used to denote vibrationally elastic reaction probabilitiés
wh_ile panel (b) denote vibrationally inelastic ones. The points actually
computed are indiéated on”the cﬁfves/by:éeometrical symbols. Arrow
in abscissa indicates the energy at which the v = 1 state of H, becomes

accessible.
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PROPOSITION I

Abstract

A method for applying sudden (or strong coupling) approximations
to reactive collisions is proposed.’ The method seeks to uncouple or
partially uncouple the rotational and/or vibrational degrees of freedom
by exactly diagonalizing the Schrodinger equation in the regions of
strongest potential coupling. For many applications, this region is
the transition state of the reaction, and if one simultaneously performs
the arrangement channel transformations at that point, a completely
diagonalized arrangement channel transformation is achieved. Recoupling
is then accomplished in the evaluation of the scattering matrix. The
method is, however, more general and may be applied in situations
where computational convenience requires different uncoupling transforma-
tions in different arrangement channels. Because the number of coupled
channels is substantially reduced by this method, a reduction in compu-
tation time by several orders of magnitude is possible, so we may apply
it to a wide variety of atom-diatom and diatom-diatom systems including

many for which more accurate procedures are currently impossible.
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In several recent papersl"3, sudden (or strong coupling)
approximations have been used quite successfully in nonreactive atom-
diatom rotationai excitatidn problems. In these systems, the potential
coupling is strong in comparison with differences in energy between
rotational levels, and is responsible f;r significant probabilities for
large Aj transitions. This is an ideal situation for using rotational
sudden approximations, in which these differences are neglected in
order to uncouple the coupled Schrdinger equations describing the
collision. In many respects, the situation for reactive scattering should
be even more suited to the use of sudden approximations. This is because
the potential coupling is usually more significant for reactive encounters,
Whére there is often a severe steric restriction on reactive geometries.
The results of accurate 3D calculations4’ 5 on the H + H2 reaction
support this contention in two respects. First, the distribution of product
rotational states is temperature-like (with the same temperature parameter
for all initial rotational states) even though the reaction mechanism is
predominantly direct. 6 This indicates a lack of correlation between the
product rotational distributions and the initial state involved. Such an
effect is very likely a consequence of the strong coupling. Second, the
neglect of angular momentum coupling in comparison with potential
coupling (the tumbling decoupling approximation) proves to be reasonably
accurate for reactive collisions even when it is not accurate for inelastic
nonreactive ones. In light of these observations, we believe that sudden
approximations (if properly used) should prove to be accurate approximate

techniques for reactive systems. The primary advantage of this method

is the significant decrease in computational effort possible.‘ The precise
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amount of reduction in time depends on the degree of uncoupling desired,
but for the usual situation in which rotations and projections are uncoupled
while vibrations are not (as described below), the number of coupled
channels needed for convergence at 0.50 eV for H + H24 changes from
100 to 4 or 5. For rotationally inelastic scattering, reductions in
computation time by a factor of 9,000 have been reported for the
“Ar + TIF and Ar + Ny systems. 1 In addition; the procedure may be
generalized to more complicé,ted reactions, such as H2 + HZ’ which are
not currently feasible with more accurate quantum methods.
Let us now describe the general approach to sudden approxima-
tions for reactive atom diatom systems. The fully coupled body fixed
Schriddinger equation for each partial wave J in each arrangement channel

region is (See Ref. 5 for definitions of terms)

2 A
dg
ar *Ba " Qes - YUpgy =0 | (1.1)
where the full wave function ¥ JM_ha,s been expanded as
J ‘(p"xjx A
Yom@eR) = 2 Dyg (906,07 ¢ 0¥ T 81y 5. 0 ®))
vi0 X - AN AT VI
A i
(1.2)
and
t,°f t,'
2. A
By =0, kK (L 3)



679
5 A
t ! Y 2, .
(U J)t - R {ﬁﬂ Q! [J(T+1) - 29}\ + JPL(]A + 1))
r R, - & v
(L. 4)
3,208,y )0 11,00 = .0 E )0 g o
£,(5,0) =00+ 1) - 2,@, £ 1) (1.5)

and
Up)tk 59}@' vy\dy ASV(I“;V Ry ,7y) — vy (ry) [v33302,) (1. 6)

The abbreviation tA has been used for (V)xjxﬂ)t)‘ The vibration rotation.
functions (PV)\jA(rA) ijﬂx(yw 'L[/A) are eigenfunctions of the asymptotic
reference potential V}L(rh) and should be used in evaluating Eq. I.5.

It is important to note that K is a diagonal wave number matrix, U Ueg

is a tridiagonal (in the tumbhng quantum number QA) centrifugal

coupling matrix and Ii p is the potential matrix (which is diagonal in SZA).

In solving Eq. 1.1, one must generally reexpand ¥ IM in terms of a locally
adiabatic vibration rotation basis in order to'obtain an efficient represen-

5,1 To solve the

tation of the wave function in the interaction region.
reactive problem exactly, we must propagate Eq. I.1 through each of
the three arrangement channel regions (for a two path feaction) and then
match the wave functions at the mutual boundaries of these regions.
The z axis of quantization may be changed smoothly during the propagation7
or abruptly at the matching boundary. 5

To make a sudden approximation, we must assume that the off
diagonal elements of I;Lp are large compared to the differences in wave
numbers, and in compa‘riscn»tocentrifugalicouplingior ‘RX.Where'the :

interactions-dre strong and transitions are occurring. This-may be done
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on three different levels of approximation as follows: Case I - The
approximation is assﬁmed for all degrees of freedom--vibrations, |
rotations and projections, and all are uncoupled; Case II - Only rotations
and projections are uncoupled; Case 'III - Only projections are uncoupled.
At collision energies of 1 eV or less, Case I will not be an accurate
approximation because the vibrational spacings are generally large.
Cases II and IIT should be quite accurate however, for the rotational
spacings are small for the low jh’s which are important in reactive
collisions, and the jA dependence of the centrifugal terms is usually
much less important than potential coupling. Case III is very similar to
the tumbling decoupling approximations which have been discussed
elsewhere.5 We shall continue our discussion with Case II. Modifications
necessary for Cases I and III will be stated explicitly where they are

not obvious. If the differences between wave numbers within each vibra-
tional manifold are negligible, then we can set all wave numbers kV}\jA
equal to k_ + where ?A may be chosen as the initial state wave number,

Vada

although other choices are possible. 3 We then neglect the off diagonal
elements of gc I and set j)\ and 2, in the diagonal part of that matrix
(Eq. I1.4) equal to 72& and fz;. This makes gc 7@ multiple of the identity

- matrix. The final step in the approximation involves the transformation
to a "'diagonalized representation' with the aid of a constant unitary

matrix MA to be defined below. We set

ALY
&y = M, by M, (1. 6)
Y = M U, M, (L.7)

and substitute into Eq. I.1 (as modified by the above approximations),
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obtaining
d'n} 2 —
P (M, Ky My - M, U g M, - Uhy =0 (1.8)
A

In order to retain the proper asymptotic solutions, 1 we must (for case

2
II) choose 1\1(1)\ to be diagonal in v, SO that it commutes with I;s’g\ . 1\/{1}\

will also commute with I,/J\\C I since we have simplified it to be proportional
to the identity matrix. Finally, our choice of I\((_‘/\I>L given below will be
such that we should be able to neglect the elements of § which are

off diagonal in jh and SZA. We are finally left with a set of equations

for each jh ’QA which are coupled only in vy and may be solved by

standard collinear reactive methods. °

M

suitably chosen surface in the strong interaction region. Our intent

is chosen so as to diagonalize the Hamiltonian along a

in doing so is to treat the potential coupling exactly in the region where
that coupling is most important. Precisely where that region is cannot
be determined in general without an adiabatic analysis of the full
scattering solution, but for reactive systems with an activation energy
having a restricted range of allowed transition state (or saddle point)
geometries, a very logical choice for this region is the transition state.
Some support for this statement may be seen in a vibrationally adiabatic
analysis of the H + H2 collinear scattering wave function. 11 In that
case, the most strongly nonadiabatic behavior was found near the
transition state. We would expect that a rotationally adiabatic analysis
of 3D results would give similar conclusions. Accordingly, we choose
a surface perpendicular to the reaction coordinate which passes through

the transition state, and diagonalize the Hamilionian there. The rows
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of the matrix l\}\/\lhare composed of the projections of the surface eigen-
functions on the'é.symptotic vibration rotation states. In an application
of Case II, we must determine the vibrational eigenfunctions appropriate
to the most stable geometry at the transition state before diagonalizing
the rotational potential (obtained by averaging the full transition state
potential separately over each vibrational eigenfunction). This procedure
leads to a matrix 1‘,6 which is diagonal in the vibrational quantum
number vy - For a two path reaction, there will generally be a transition
state for reaction to either of the two product arrangement channels.
Both of these transition states must simultaneously be considered in

the diagonalization of the interaction potential. With some cleverness,
the surface functions of any transition state geometry can be determined
and their projections on the asymptotic solutions calculated. In all
cases, a normal mode analysis of the transition state can be performed
‘and a harmonic approximation set of surface eigenfunctions obtained.

If it is desirable to switch to locally adiabatic vibrational functions
during the propagation, we can construct an %h for these adiabatic
functions by simply taking their overlap with the transition state surface
functions. Note that we are free to diagonalize either the full Hamil-
tonian at the transition state, or the approximate one obtained after

simplifying I,E; and U _ ; as described above.

acd
With the Schrddinger equation partially (Cases II and III) or

fully (Case I) uncoupled, we now integrate the resulting differential

equations in each arrangement channel region . At the completion

of these integrations, the different arrangement channel solutions may

be sinoothly matched to one another in one of the following two ways.
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First, if the same transition state surfaces and surface eigenfunctions
are used in defining the 1;/5 matrices for all arrangement channels,
then the uncoupled solutions may be matched directly. Indeed, if the
transition state surfaces and matching surfaces are identical, if
locally adiabatic vibrational functions are used for the propagation
(Case II), and if a floating z axis of quantization is used7, then the
matching simply amounts to a reorganization of solutions and may be
done analytically. Second, if different transition state surface eigen-
functions are chosen in different arrangement channels, then the
matching must be done with the fully coupled g\} solutions which may
be calculated from Eg. 1.6. In this second case, the procedure for
obtaining the scattering matrix, and hence cross sections is identical
- to the exact procedure5 for all steps following the conversion of the

matched and asymptotic uncoupled ?\3 solutions to the coupled g}

solutions. A somewhat more efficient computational procedure seems
to be the first matching method, since in that case,v a recoupling of
the uncoupled solutions may be postponed until the {inal scattering

matrix is calculated, and this last step involves the simple evaluation

of:
VA _ o &VA
S 0.9
where gﬁ is the uncoupled subblock of the scattering matrix between

arrangement channels v and X (x,v. = a,f8,y), ’S\?‘ is the coupled one,

and Mx and Mv are the appropriate transformation matrices in channels
A and v, respectively., We should point out here that this approximation

may be applied to a variety of reactive systems which are essentially
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impossible to treat at present by accurate methods. These include
atom-diatom reactions which have a saddle point geometry in which

the diatom internuclear vector is perpendicular to the vector between
the atom and the center of mass of the diatom. One reaction path
atom-diatom reactions are easily treated, and the comparison between
the results of such an application and that of a two path reaction should
be important in distinguishing the differences in rotational distributions.
Finally, this approximation should also be able to treat diatom-diatom
reactions such as H2 + Hza The major obstacle to accurately treating
this system, namely the large number of coupled channels involved,

is eliminated by this procedure, and the only remaining problem is the
development of locally adiabatic coordinates which provide a framework
in which a noncoupling arrangement channel matching can be accomplished.
If this can be done, then the problem can be solved a single channel

at a time up to the point of calculating the full scattering matrix which

requires the evaluation of Eq. 1.9.
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PROPOSITION II

Abstract

A method for using pseudo-diffraction functions in close coupling
expansions for atom surface elastic scattering is proposed and its
application to the study of the diffraction of He off tungsten and tungsten
carbide surfaces is suggested. The main advantage of pseudo-diffraction
states is that this basis allows for a more efficient representation of
the local behavior of the wave function parallel to the surface. As such,:
it sh"o’uld enable a reduction in the number of diffraction channels
needed and it should allow for the treatment of highly anisotropic
crystal surfaces, including chemically reactive ones and those where
diffusion is important. The application to He + tungsten (112) and
He + tungsten carbide (W(110)R(3x5)) surfaces is proposed as a means
for elucidating the factors which cause these two systems to exhibit
diffraction when other tungsten and tungsten carbide surfaces do not.
Certain questions concerning the remarkable coherence of the diffracted

beam in the He + tungsten carbide experiments will also be considered.
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In recent years, experimental advancements in beam surface
scattering techniques have rendered diffraction scattering a sensitive
probe of the atom surface interaction potemi:ial.1 To theoretically
describe these collision processes, quantumz“ét, se1nic1assical5 and
classica16 techniques appropriate to the atom surface problem have
been developed. The quantum methods usually involve a close coupling
expansion in terms of the "unperturbed' diffraction states (as will be
defined below). This is adequate in situations where the surface
anisotropy is weak so the number of states coupled is small. It is well
establishedz, however, that the coupling is often quite strong, and
the use of close coupling expansions requires a large number (> 30)
of open and closed channels for convergence of the probabilities for

diffractive and specular scattering. By analogy with atom molecule
inelastic and reactive scvattering, we propose to use locally "adiabatic™
pseudo-diffraction states for these close coupling expansions. This
procedure has been quite useful in reducing the number of required
closed channels in atom molecule scattering7 and we expect that the
same will be true in atom surface scattering since the physical pheno-
menon is very analogous. By using pseudo-states in surface scattering,
we may also be able to examine surface reactions, chemisorption, and
diffusion processes well. We shall describe below a method for
numerically obtaining these states and will include a simple example
to illustrate the procedure. In the second part of this proposition,
we consider the application of this close coupling method to He + tungsten
and He + tungsten carbide diffraction; These two systems have been

well characterized experimentallys_'g and many features of the diffraction
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patterns differ substantially from those in the well-studied He + LiFlO

system. An understanding of these differences in terms of the nature
of the interaction potential involved should be useful in characterizing
the structures of the surfaces.

We consider the elastic collision of an atom with a solid crystal-
line surface. The atoms in the crystal are not allowed to exchange
energy with the incident particle and hence their sole purpose is to
define the interaction potential V(r). r =(x,y,z) specifies the coordi-
nates of the incident atom with the z direction normal to the surface
and directed away from the crystal. Inclusion of dissipative processes11
or molecule plus surface coMis.ian:-;l2 has been treated elsewhere and

is done in an analogous way in the present method.

The Schrédinger equation is

2 2 2
(- 2 v} + v el = 2E
2 A - T 2

¥ (r) | (II.1)

The full wave vector k is divided into a z component kz and an x,y
vector K. These components are determined by the direction of the
incident wave. In elastic scattering, the incident wave number K =
(kz, K) is changed (upon interaction between atom and crystal) to

Kin = (krznnj K+ g’»mn) v_zl_here G, ,n is a reciprocal lattice vector and
k;nn = (kz - (K + g}\mn)zjz‘ For nonzero G, we say that diffraction
has occurred, and our scattering problem consists of finding the
probabilities of diffraction into states having different indices m and n.
The diffraction 'states' are given by exp i(K + gmn) ‘R with R = (x,y).
Rather than expand ¥{(r) in terms of exp i(K + G mn)'g for all z (as

has always been done previcusiyszi), we expand it instead in terms
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of locally adiabatic pseudo-diffraction states an(x, y;zi) as follows:

¥(x,y,2) = ), Fo &y (22) (IL. 2)
m,n
an(x, y;zi)solves a two dimensional Schridinger equation for the

x,y motions of the atom for a given Zs and is to be used as the basis
for expansion in a region of z (region i) which contains Z;. The

Schrdinger equation for Fo n(x,y;z) is

2 2 2
{- f—- (58—2* + é“a‘z“) + Vix,y;2)t F (%,752)
B9x 9y
2 2 (IL. 3)
: q11’11’1
= 2“ an(X5Y:Zi)

where V(x, y;zi) can either be the exact potential function V(X; v, %)
evaluated at zZ;, Or it can be some other conveniently chosen reference
potential. Upon substitution of Eq. II.2 into Eq. II.1, using Eq. II.3
to simplify, ‘thén multiplying by F:;m(x,y;zi) and integrating over a
unit cell (the an’s are orthonormal), we obtain

2

d 2 . _ ) .
(d" 5+ dmn)wmn(z’zi) = Z, Umnﬁm’n'(z’zi)ipm'n'(z’ Zi) (I1. 4)

8 m',n’
where

2 2 2
dmn =k - Ynn (I1. 5)
2 *

Umn,m’n‘(Z;zi) :-i_i% ff an (x,y;zi)[ V(x,y,2z) - V(X,y;zi)]

(I1. 6)
X an(x , Y ;zi) dx dy

Eq. Ii. 4 may be propagated through region i by standard integration

13

procedures. By partitioning the total range of integration into

several regions i =0,...,n in which different pseudo~functions are
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chosen for propagation in each region, we may generate complete

solutions to Eq. II.1 in all regions of physical interest. The functions
. . . . i

Y 0 regions i and i + 1 may be .related at the boundary zy, of

these two regions by

“ i
”Dmn(zi) ;Zi-{-l) = Z Smn m'n'(zi.l_l ? Zi)‘{/m 'n'(Zb ;Zi) (II. 7)
mm' ’
where
* N
Smn, mn' fmen (x, yv:'»zi“;.]_) Fm'n'(xa YSZi) dxdy (1I. 8)

By choosing region n to coincide with the asymptotic region, we obtain
the required solutions for calculating the scattering matrix S Yot
mn, m'n

The asymptotic analysis is identical to that described elsewhere. 2

The solution of Eq. II.3 requires a somewhat different procedure
than is used for the analogous atom molecule problems. 7 ]an l2
must be a periodic function, so an can change by at most a phase
upon translation by a lattice vector. In order to properly satisfy the

asymptotic boundary conditions, we must set (see Ref. 14)

) = olK*R :
an(X, yfzi) =€ ~ A(’Omn(x’ Y;Zi) (H' 9)
and impose the condition that ¢ mn be periodic in the lattice spacing.

By substituting Eq. II.9 into Eq. IL.3 we find that ¢ must satisfy"

2 . 2 2, 2 .
{Vg + K-V + (a4, - K) - %é? Vix,y;z)} o =0 (1. 10)

Fa

where ER is the appropriate two dimensional gradient operator. One way

™

to solve Eq. II.10 is to use finite difference procedures. 15 As an

example of this, we examine the somewhat simpler case that arises
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when motion is restricted to the x,z plane only. In that case, Eq. I1.10

becomes
2
. 2 2 2
{ddz + 21K, f— + (A, - By - %‘é V(x;z)f @, =0 (IL. 11)
X X

Evaluating Eq. II.11 by finite difference on a grid of points Xj
(j =0,...,N) which span the one dimensional unit cell, we obtain the

following set of algebraic equations for the gom(xj ;zi):

. | 2 2 2
¢m(xj+1;zi)(1 + 1K A%) + gom(xj;zi)(-z + AX (qm—- KX) + V(xj;zi))
(11.12)

+ Py 132 (1 - 1K Ax)= 0

where Ax is the grid spacing. If ¢ m(X) and qogn(x) are to be periodic
in the lattice spacing,ﬂ then (pm(xO) = gom(xN) and (pm(x_nl) .= (Pm(XN—l)
are the required boundary conditions for Eqs. II.12. If these are in-
corporated into the above equations, we obtain a set of N homogeneous
linear equations for thewc,o\m(xj;zi) which may be solved by standard
eigenvalue-eigenvector methods. 15 Note that the matrix of coefficients
obtained from Eq. II.11 is hermitian.

As an example of this finite difference procedure, we consider
the a,’symptotic case z, = where V(xj;zi) =0. In this situation, the
secular equation obtained from the diagonalization of the matrix of

coefficients can be solved exactly, and we obtain the following expression

for the eigenvalues At

2rmAXx

2 _ 2 ZKX . 2rmAx 2(1'7” cos "“Ef'“‘)
4y = KX + —= sin — + —
Ax AX

(11.13)

m =0,%1,+2,
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with

. _ . 2Tm
qom(xj’zi) - eXp 1 a Xj . (H. 14)

where a is the lattice spacing. Taking the limit Ax - 0,' we find
Ay, = Kx + éﬂm /a which is precisely the asymptotic solution since
27m/a is the one dimensional reciprocal lattice vector.

The main advantage of this procedure is the reduction in
number of closed (dinn < 0) diffraction states that are required for

2
convergence of the probabilities ( [S _) due to a smaller coupling

mnv,m'n' l

in the U y in Eq. II.6. In addition, since the gpmn(x,y;zi)

mn, m'n
adjust locaily to the shape of the potential, it should be possible to treat
highly anisotropic potentials such as those that lead to chemical reaction,
chemisorption and diffusion. Indeed, one can imagine situations where
attractive wells in the crystal lattice might be so '"deep' and well
separated from each other that a decoupling of the surface states is
possible at some point in the propagation followed by separate integrations
"down'' each well.

A very useful application of the method presented above would
be to the diffraction of He off tungsten (112)9 and tungsten carbide
[ W(110)R(3x5)]. 2

pure metal which exhibits diffraction. The surface is characterized

The first of these two surfaces is the only known

by a series of parallel ridges, which will diffract the incident beam |
if it is perpendicular to the ridges, but not if it is parallel. 9 An
obvious application of the close coupling method would be to use the
asymptotic diffraction states for expanding the relatively smooth

| potential along the ridges and pseudo-states to describe the rough
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potential perpendicular to them. A primary question to be examined

in this theoretical study is the relative importance of thermal effects
in broadening and washing out diffraction peaks. This can be examined
by first ignoring and then including dissipation in the calculation ; using,
for example, the discreet function expansion procedure of Wolken11 to
handle the phonon modes.

In the example of helium diffraction from tungsten carbide, 8
the tungsten 110 surface is smooth and it appears that the 3x5 carbide
lattice is primarily responsible for the diffraction. A model of the
structure of the surface has been proposed by Weinberg and Merr1118
- and we should be able to test this model provided that adequate estimates

16 One interesting feature of

of the potential parameters can be made.
the experimental results8 which requires examination is the remarkable
coherence of the diffracted beam. This phenomenon leads to sharp
peaks in the diffraction line profiles and contrasts strongly with the
relatively broad peaks ‘observed in He + LiF scattering. Also of interest
in our theoretical analysis will be the He + tungsten carbide (110)R(1x1)
system. Unlike the (3x5) counterpart, this surface does not show
diffraction peaks in the scattered angular distributions. A comparison

of results from these two carbide surfaces should provide a sensitive

test of the assumed surface structure, and of the interaction potential.
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PROPOSITION III

Abstract

An experimental study of electronic energy transfer in collisions
between metastable mercury (Hg 63P2,0) and the 001 surface of LiF
is proposed. Using a previously developed electron impact excitation
method to specifically excite Hg to the 3P2; 0 states, the transfer
from these states to the 3P1 state (as a result of collisions with the
LiF surface) is detected by observing the resulting 2537 A (3‘P]L —
1SO) emission line. The (electronically) elastically scattered 3]?2,0
states may also be detected, so that transition probabilities between
a number of electronic channels may be ascertained. Additional ~

experiments using ground state Hg are also suggested for the purpose

of characterizing the Hg - LiF interaction potential.
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Energy transfer in collisions between electronically excited
atoms and crystal surfaces is a very poorly understood process both
theoretically and experimentally. Nevertheless, it is very important,
for the quenching of excited atoms at surfaces is often a primary
mechanism for their deactiva.tionl. In addition, surface ionization
in collisions between metastables and metals is an often used (and
not well characterized) procedure for detecting these metastables. 2
A theoretical description of the electronically excited states of the
atom-surface system has largely been confined to modelss, No
realistic attempt to calculate the probabilities for electronic energy
transfer in collisions of atoms or molecules with any kind of surface
has been made. Indeed, the only qualitative theories in e:»dstenc«':}4
are based largely on general principles such as energy conservation,
and provide little mechanistic understanding of the processes involved.
Most experimental studies on collisions between electronically
excited species and surfaces have used metastable rare gas atoms
along with metallic (Pt, Ag, W) or covalent (Si, Ge) targets. 5 In these
cases, the work functions of the crystals are smaller than the excita-
tion energies of the rare gas atoms so a primary result of thé collision
is ejection of electrons, and it is these electrons that are normally
detected. Similar considerations apply to experiments involving meta-
stable mercury (63P2, O) colliding with metallic surfaces. 6 In the
most sophisticated of these surface ionization experiments, 5 the yield

Y M of electrons per metastable collision has been determined, T a

recent experiment? the electronically elastic scattering of metastable
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He, Ar, Ne, Ny, and Hy off Ge (covered with 02) was examined so
that the probability of excited state survival could be evaluated. By
measuring time of flight distributions of metastables in the direct
and scattered beams, it was determined that slower metastables
were being preferentially de-excited. 7

It is apparent from these examples that more quantitative and
defailed experiments are desirable if the energy transfer process
is to be accurately characterized. In this proposition, we consider
the beam surface experunental study of the deactivation of Hg (6 Pz 0)
by LiF (001). The Hg(6 Pz 1, O) states have excitation energies of
5.460 eV, 4.887 eV and 4.667 eV, 8 respectively, but only the J =0
and 2 states are metastable (with natural lifetimes > 10™° sec).
This allows us to monitor the SPZ’0 — 3]?1 energy transfer process
by observing the 2537 fx(?’P}L — 1SO) emission which should occur
shortly (10"7 sec) after the éollision takes place. That this is feasible
was recently demonstrated by Krause et al. 8 in a crossed beam study
of the de-excitation of Hg (*Py) by Hy, Dy, Ny, NO and CH,. In that
experiment, the collision energy was kept below 0.20 eV so that the

excitation channel 3P0 e 3P1 was closed and the 3P2 3

PpE—-V
de-excitation cross section was measured directly. A potential

defect in using this detection procedure in Hg + LiF collisions is that

it will probably not be possible to avoid the SPO — 3]91 excitation
process if the Hg - LiF interaction potential is attractive by more

than 0.20 eV. In any circumstance, we shall be measuring the efficiency

of transfer between electronic energy of the incident atom and phonon

modes of the crystal. A comparison of these results with those of the
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above mentioned crossed beam studies, 8 and with the probabilities
for transitions between other channels in the system (see below)
should provide us a detailed understanding of energy transfer in atom
surface collisions not previously available. Two other measurements
which we can also make on the Hg + LiF system are (a) an analysis
of the electronically elastic 3P2’ 0™ SPZ, 0 probabilities (via a surface
ionization detector), and (b) (in a separate experiment) the characteri-
zation of scattering of ground state (ISO) Hg from LiF (using; for
example, mass spectrometric detection). The latter experiment,
in conjunction with a classical theoretical study should enable an
estimation 6f the Hg (ISO) - LiF interaction potential. One possible
experimental difficulty which might be anticipated is the strong adsorp-
tion of Hg on the LiF surface. Hg (ISO) + LiF(001) scattering was
investigated over 40 years ago by several groupsg’ 10 and it appears
that the scattering mechanism is predominantly direct (as judged by
the absence of a strong cosf component in the angular distribution)_.
The suggestion made above that Hg (189) + LiF should be examined
in the proposed experiment is in part for the purpose of reconfirming
these ground state experiments.

We now consider details of the Hg (SPZ,O) + LiF(001) experiment.
A metastable Hg source has been described in Ref. 8, and can be
used with slight modification in the present experiment. Included
in this source is an electron impact exciter similar to that used by
McDermott and Lichten. 11 This method of excitation is known8 to

produce principally the 63P2 0 metastable states of Hg (with all other
3

excited states decaying before the beam reaches the scattering region).



700

Decay of the 3

Pz, 0 states should be negligible in the experiment if
the total length of the beam path is not much longer than 10 cm.
Following excitation, collimation and modulation, 12 the beam is
impacted on the 091 surface of LiF. Techniques for preparation and
use of LiF crystals are well described elsewhere. 13 The crystal
should be enclosed in an ultrahigh vacuum scattering chamber with
base pressure (with beam off) of close to 107° torr13in order to
avoid rapid build up of adsorbed impurities. The number densities
of Hg atoms used in the crossed beam experiment of Ref, 8 are
similar to those required in gas surface beam experiments7’ 12, 13,

so the two kinds of experiments can be integrated with one another
without significant redesign. The 3P1 — 180 photons will be emitted
before the Hg (3P1) can leave the scattering region so the photon
détector should be directed towards it. It will probably be desirable

to use gratings or interference filters in examining the 2537 A radia-
tion since it is possible that the 3P2, 0~ 180 emission (2271 A and

2657 A) will be induced on the LiF surface if the Hg is strongly adsorbed
there. Techniques for detecting and velocity analyzing the scattered

3P2 0 and 180 Hg atoms are similar to those used elsewhere. 7,9,13
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PROPOSITION IV

Abstract

A study of the properties of fluctuations (in temperature and
concentration) around the nonequilibirium steady states of illuminated
chemically reactive systems is proposed. Included in the analysis
will be an examination of transition probabilities between multiple
steady states, deviations from the Einstein formula for fluctuations,
correlations between temperature and concentration ﬂuctuatidns, and
fluctuations near unstable steady states. A Markovian stochastic
approximation method for obtaining the joint temperature (or energy)-
concentration probability density is suggested along with simplifying
models of the energy transfer processes so as to enable an approxi~

mate analytical study of the resulting master equation.
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The behavior of fluctuations around equilibrium states of
of physical systems has been extensively studied by many different

1,2

approaches, and may be summarized (for small fluctuations) by

the well-known Einstein equation3
P(Ax) ~ exp [AS(x) /k] (1v.1)

(Here P(Ax) is the probability for a fluctuation Ax in the thermodynamic
variable x and AS(x) is the entropy change associated with that fluctua-

tion.) Fluctuations about steady states in nonequilibrium systems (such

as chemically reacting systems) are not as well understood, especially
when the systems are nonlinearly coupled. An understanding of
fluctuations in these situations is, however, fundamental to the charac-
terization of chemical instabilities, very much as the theory of fluc-
tuations from equilibrium has been basic to our understanding of phase
transitions and critical phenomena.4 One question very basic to a
description of fluctuations in nonequilibrium steady state systems is
the validity of the Einstein equation (Eq. IV.1). Following the develop-
‘ment of the "local equilibrium theory" of nonequilibrium processes, 5
Prigogine and Mayer6 postulated the extension of the Einstein formula
to this class of phenomena. A general proof of this proposal has
never been given, although the Einstein formula does Seem to apply
to linear (nonequilibrium) systems as well as to some nonlinear

ones. 7,8 Quite recently, a significant controversy has developed
over whether a model reacting system (first examined by Nicolisg)
violates Eq. IV.1. 10 Even if this controversy is resolved in favor

of the Einstein formula, there will still be a large number of models
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containing unstable sfeady states or marginal steady states for which
this formula simply cannot work. 8 With one exception, studies of
the fluctuation behavior of nonequilibrium systems have been confined
to models of chemically reacting systems where fluctuations in such
continuum properties as temperature, energy, density or pressure
have been ignored. The one exception is a study by Babloyantz and
Nicolisn in which energy fluctuations in a Knudsen gas maodel (non-
reacting) system were examined.

In this proposition we outline the application of theories of
fluctuation behavior to both concentration and temperature fluctua-
tions in a simple model (recently proposed by Nitzan and };{ossj‘2 )
of an illuminated chemically reacting system. We consider the iso-

merization reaction

kl

A+ B (Iv.2)

k,
taking place under constant illumination by monochromatic light which
is absorbed by A alone. This system is assumed to be in thermal
contact with a bath at a temperatureﬁ Te,but no mass transfer into or
out of the system occurs (in contrast to other systems previously
examined7’ 8)L The radiationless relaxation of A is assumed to occur
on a time scale short compared to all other processes, so that
the illumination simply provides a mechanism for input of energy
into the system, where the rate of input is proportional to the concen-

tration of A. The feedback mechanism is provided by the chemical

reaction (IV.2),since the heating of the system (which occurs because



706

of light absorption by A) causes the temperature dependent rate
constants to change, which in turn results in a change in the concen-
tration of the absorber A through this chemical reaction. The perti-
nent dynamical variables in this system are A (the concentration of
species A) and T (the temperature), and the time evolution of these

variables is governed by12 (ignoring diffusion effects)

dA - . (k, + k)A + kea (IV. 3a)
1 2

dt
aT - A - B(T - T,) —A%‘%- (IV. 3b)

N dt

where A + B = a and the two rate constants k,;, k, are assumed to

have Arrhenius temperature dependence (ki = Ky exp(«Ri/kT)). The
first term on the right hand side of Eq. IV.3b arises from light
absorption (hence & is proportional to light intensity and to the absorp-
tion coefficient), the second term refers to equilibration of the system
with the surrounding bath, and the third arises from the enthalpy change
which occurs as a result of chemical reaction (A = (R, - R,)/e with €
proportional to the heat capacity of the system). A steady state analy-

sis of Egs. IV.3ab leads to

Ag =Ry (To)a/(k,(To) + ky(Ty)) (IV.4a)
To =T, + "iﬁi{ (%,/ k)exp] (R, - Rp)/kT,] + 117 (IV. 4b)

The second of these two equations may be solved graphically for the
steady state temperature T,. Nitzan and Rosslz show that one or

three solutions for T, méty be obtained, depending on the values of the
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parémeters describing the system. In the case of three steady states,
a stability analysis indicates that one of these is unstable with respect
to fluctuations around it while the other two are stable. When multiple
steady states exist, continuous and smooth changes in external para-
meters (such as @ and R, - R;) can cause noncontinuous transitions
between them as well as hysteresis effects. Near these points of
transition between different steady states, fluctuations in both T and A
become extremely important since they provide the primary mechanism
responsible for the transitiom‘l This places great emphasis on
characterizing fluctuation behavior in this system and is a primary
motivation for the proposition. A study of fluctuations is interesting
also because the type of nonlinear behavior exhibited in Eqs. IV. 3ab
differs in its qualitative form from that in the constant temperature,

open, chemically reacting systems previously studied,7’ 8

and hence
provides a significantly different example for testing the validity of
the Einstein formula. Also, because temperature and concentration
‘are strongly coupled in Egs. IV.3ab, it will be interesting to analyze
for correlations in fluctuations of these quantities. Such correlations
might be important for the efficient transition between two steady
states. An analysis of fluctuation behavior near the one unstable
steady state exhibited by this system might give us a more quantitative
feeling for the uninhibited growth in these fluctuations which is usually
assmned8 to exist at unstable states. |
Let us now consider possible approaches for characterizing

the temperature and concentration fluctuations in the illuminated

systems. A very straightforward approach to studying concentration
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fluctuations is based on a master equation formulation in which a
Markovian stochastic approximation is used to solve for the probability

function P(x,t) (analogous to P(x) in Eq. IV.1) which gives the pro-
7-10

bability of finding a concentration x at time t. The general form
of the master equation for P(x,t) is
dP(x, 1Y) _ ] p(x,1)] (IV. 5)

dt

where F is a nonlinear difference operator which may be derived by
analogy to the chemical rate laws. Eq. IV.5 may be solved by the
method of mcmaents7 by which we obtain a set of partial differential
eqﬁations for the moment generating function f(sX, t). These partial
differential equations have been solved analytically for a number of
systems, 13 including the constant temperature limit of Eq. IV. 33.14
(which is obtained when the illumination is turned off). To include

the effect of temperature fluctuations or the related energy fluctua-
tions (so that P = P(A, T, t) ér P = P(A,E,t)), we can use the energy
transfer model of Babloyantz and Nicolisl 1 which "discretizes' the
relevant continuous variable (E in their case). A differential difference
equation analogous to Eq. IV.5 is again obtained and this equation may
also be solved by the moment method. In order to use this approach,
we shall need to develop models of the energy transfer processes
occurring in the illuminated systems. Specifically, the transfer of
energy into (via light) and out of (via heat conduction) the chemically
reacting system , as well as the production of energy (from the enthalpy

of reaction) must be modelled in ways analogous to the Knudsen gas
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model of Ref. 11, This should enable us to determine P(A, E,t)

and hence the energy-concentration (or temperature-concentration)
fluctuation behavior. Finally, we should point out that it is certainly
possible that we shall not be able to analytically solve the partial
differential equation for the moment generating function (f(s A S t)
in this case). If approximate techniques also cannot be used to solve

it then a numerical solution will be necessary.
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PROPOSITION V

Abstract

| The calculation of the relative rates of intersysiem crossing
from the photoexcited S1 state of benzoquinone (and related quinones)
to the different spin polarization levels of the lowest excited triplet
state Tl (n,ﬂ*) is proposed. A model of the reduction of these triplet
quinones to semiquinone radicals by alcohols, phenols and amines

is then used to relate the extent of triplet spin polarization to the
experimentally observable chemically induced dynamic electron
polarization (CIDEP) effect in the radicals. A comparison of observed
and predicted polarization ratios should provide a valuable test for
the validity of the triplet polarization mechanism (as opposed to the

radical pair mechanism) in producing the observed CIDEP effect.
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Chemically induced dynamic electron polarization (CIDEP)
refers to the production of a non-Boltzmann distribution of electron
spins in the paramagnetic products of a chemical reaction. In a typical
experiment, the transitory ESR spectra of the radical products which
result from UV or electron beam irradiation of aromatic or conjugated
organic compounds are observed. 1 Since the ESR relaxation rates
of the radicals (in solution) are in the 107° to 107° sec range; an
initially polarized spin distribution will thermalize within that time
period. The ratio of the initial electron spin polarization (measured
from thermal equilibrium) to the equilibrium polarization is called
the polarization ratio y, and the deviation of y from zero measures
the non-Boltzmann character of the spin wpdpulations..’ 2 Since their
discovery in the late 1960's, CIDEP and its close relative CIDNP
- {chemically induced dynamic nuclear polariz'ation) have been the
subject of numerous experimental and theoretical studies. 3 In spite
of this, the primary mechanism responsible for CIDEP is still the

1,2,4-8 4, present, two mechanisms

subject of considerable controversy.
for production of the nonthermal spin distributions seem to be compatible
with most experiments. These are the radical pair mechanism and

the triplet polarization mechanism. To demonstrate these two theories,
we consider the UV irradiation of 1,4 benzoquinohe in an alcohol

9>.

solution (as was recently investigated by Adeleke et al. The benzo-

guinone is initially excited to the Sq state which quickly relaxes by
intersystem crossing to the Tl(n,n )} lowest excited triplet state.
The triplet quinone is then reduced by the solvent via hydrogen atom

abstraction to form a 1,4 benzosemiquinone radical and a phenoxy
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solvent radical. CIDEP is observed in both radicals. The radical

pair theory assumes that the observed spin polarization arises from
interaction between the semiquihone and phenoxy radicals after they
have been formed by chemical reaction. 4,5,10 Any polarization of

the triplet state before reaction is ignored. Rather, it is postulated
that the two product radicals form a solvent stabilized radical pair

at a separation where the splitting of magnetic spin states arising

from hyperfine effects and g tensor shifts is comparable to the exchange
energy of the two unpaired electrons. In such a situation, considerable
mixing of radical pair triplet and singlet states takes place, resulting
in a net spin polarization on each radical. The triplet mechanism,

on the other hand,r assumes that the initial polarization of the three
spin sublevels of the T, state of the quinone is preserved during the
chemical reaction so that the observed spin polarization is a direct
reflection of the triplet polarization produced by spin orbit effects

6-9 It has also heen suggestedl2 that

during intersystem crossing.
both mechanisms are operative, but that different ones are important
in different circumstances. In an important recent experiment, 9
the dependence of semiquinone spin polarization on the orientation of
pblarized UV excitation light was measured and found to be in agreement
with the predictions of the triplet mechanism and not with those of
radical pair theory. At the same time, the radical pair mechanism
has been quite successful in explaining a variety of other experiments, 6
and its accuracy in predicting CIDNP spectra is well known. 8

One important unknown in the theory of the triplet mechanism

in benzoquinone and related quinones is the relative rate of population
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of the individual spin sublevels of the T1 friplet state before chemical
reaction. In this proposition, we consider the calculation of these
rates of intersystem crossing so as to enable an estimation of the
initial triplet polarization and hence of the polarization ratio in the
semiquinone radical product. Such a calculation would enable an
estimate of the relative importance of triplet versus radical pair
mechanisms in producing the observed CIDEP effect. The application
to benzophenone is suggested because (a) this and related quinones
have been studied extensively from a number of different viewpoints

2, 9‘11"(b) ISC rates for it have been studied

by CIDEP techniques,
by picosecond spectroscopy12 (which does not distinguish the spin
polarizations) so some cross checking of the theory is possible;
(c) the molecule is simple enough and has enough symmetry so that
a reasonably accurate characterization of the electronic and vibrational
states will be possible.

‘To calculate the rates of intersystem crossing, we suggest
that the second order perturbation procedure of Henry and Siebramd13
be followed. In this method, the rate constant for the transition
between vibrational level n of the S¢ electronic state and level m of

the 'I“‘3 state is given by

2
n—im h nm l (V. 1)

P, 18 the density of vibrational states in the Ty manifold near level m,

and Hnm is the vibronic matrix element of the interaction hamiltonian

Hy {expanded to second order). I we write Hy as
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H1=H + T

SO N

where HSO is the spin orbit interaction (which mixes states of different
spin multiplicities) and TN represents the nuclear kinetic energy
operator (which mixes Born-Oppenheimer states of the same multi-
plicity), then the application of second order perturbation theory
to the §; — Ty transition includes (a) a direct S1 — Tl mechanism
(in first order) and (b) indirect §; — T, — Ty mechanisms (in second
order). According to the procedure of Henry and Siebrand; evaluation
of Hnm requires the calculation of (a) spin orbit and nuclear kinetic
energy electronic matrix elements , and (b) Franck-Condon vibrational
overlap factors. Hamekéx14 has considered the calculation of the
electronic matrix elements in applicatibns to benzene and acetone
using an LCAO-MO procedure. Presumably; a similar method could
be used for benzoquinone, although it might be desirable to use more
accurate wavefunctions in computing the integrals required. Calculation
of the vibrational normal mode spectrum, the Franck-Condon factors,
and the densities of states has been considered by Burland and Robinson. 15
Once the rates of population of the individual triplet state spin
sublevels are determined, we must develop a model for the chemical
reaction (benonuinone + solvent — benzosemiquinone radical + solvent
radical) so that the polarization ratios in the product radicals can be
calculated. This has been considered by Wong et al., 8 who developed
a model based on the following assumptions: (a) that spin is conserved
in the chemical reaction, and (b) that competition between reaction of

triplet benzoquinone and thermalization of its polarized spin distribu-
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tion provides the primary solvent effect on the polarization ratio.

In addition, any contributions from radical pairs to the spin polariza-
tion is ignored. The assumptions in this model enable a calculation
of the polarization ratio in the radical with a minimum of dynamical
information (only the overall reaction rate and the triplet state spin
lattice relaxation rate are neededz). We suggest using this model as
a zero order test of the triplet mechanism. After that, refinements
to the theory such as the approximate inclusion of surface crossing
in the reaction mechanism can be made to determine the sensitivity
of the polarization ratios to the assumptions in the model given above.
Other approximations which should be tested are (a) the neglect of
solvent interaction on the S1 — Ty intersystem crossing rate, and

(b) the possibility of direct solvent reaction with other than the

lowest vibrational level of Tl’ or with electronic states other than Tlc
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