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Abstract

We describe the design, construction, and first results of the Norris Survey of the
Corona Borealis Supercluster, a redshift survey of a 6° x 6° region in the core of the
Corona Borealis supercluster.

The redshift survey has been conducted with the 176-fiber Norris Spectrograph
on the Hale 5m telescope. The input catalog is based on machine scans of Schmidt
plates and consists of over 5 x 10° objects calibrated in the Gunn ¢ and r bands. We
chose to observe 36 20" diameter fields arranged in a 6 x 6 grid across the core of the
supercluster. We have completed observations of 23 of these fields, plus an additional
9 fields which were closely spaced along the ridge of galaxies between Abell 2061 and
Abell 2067. We have measured redshifts for 1491 extragalactic objects, 420 with ~ 8A
resolution and the remainder with ~ 4A resolution. Our newly measured redshifts
were augmented with 163 from the literature, yielding 1654 redshifts for the entire
survey. The faintest galaxies in the survey have magnitudes of ¢ ~ 22.5™ and the
most distant galaxies have redshifts of z ~ 0.7.

We have measured an unexpectedly small number of redshifts (528) in the Corona
Borealis supercluster since the supercluster is not as dense as originally believed and
since a background supercluster at z ~ 0.11 makes a substantial contribution to
the projected surface density of galaxies. Despite the small number of redshifts for
galaxies in the supercluster, we are able to draw the following conclusions about
the dynamics and structure of the Corona Borealis supercluster. (1) The galaxy
distribution within the supercluster is far from smooth. The galaxy density falls
rapidly away from the Abell cluster cores. (2) The virial mass of the supercluster is
(1.740.2) x10'°A~" M), which yields a B band mass-to-light ratio of 22441214 (%) o
(3) The dynamics of the supercluster, as revealed through an analysis of the two-point

correlation function, suggest that the supercluster has not yet generated large mean

flows towards itself and that, therefore, the supercluster has only recently begun to
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break away from the Hubble expansion.

Since the sample of redshifts extends to z = 0.5, we have been able to investigate
the evolution of large-scale structure and of the galaxy population. By computing the
projected two-point spatial correlation function w,(r,), we have rﬁeasured the correla-
tion length ro(2) and the power-law index « of the real space correlation function E(r)
as a function of redshift. We find that the correlation length declines dramatically
with increasing redshift. Incorporating measurements of ro(2) from other surveys, we
measure the evolutionary parameter € to be 2.25 4 0.1 for v = 1.7, well in excess of
the linear theory prediction ¢ = v — 1. We do not see evolution in the clustering of
red galaxies; the clustering evolution is limited to the blue galaxies.

We have also measured the pairwise velocity dispersion o2 on a scale of ~ 141
Mpc through an analysis of the two-point spatial correlation function computed as a
function of pair separations along and perpendicular to the line-of-sight. Although
012 18 quite sensitive to the treatment of rich clusters in the survey, we conclude that
012 Is significantly larger than the canonical value of 340 + 40 km s™! computed by
Davis and Peebles (1983). This result is in accord with other recent estimates of oys.

We have characterized structure on scales of ~ 1002~ Mpc by measuring the
one-dimensional power spectrum of our survey. We measure a significant peak on
scales of ~ 100h™" Mpc. The structures responsible for the peak are readily identifi-
able in redshift-right- ascension cone diagrams: superclusters are separated by large
underdense regions.

Using 598 field galaxies with 0 < z < 0.5 from our survey, we have computed
the field galaxy luminosity function as a function of color and redshift. We find
compelling evidence that the B band field galaxy luminosity function evolves with
redshift. The evolution is limited to blue galaxies; the red galaxies show no sign of
change to z = 0.5. The evolution of the luminosity function of blue galaxies, which
is corroborated by a (V/V,,..) test, is reflected in the blueward shift of the median
galaxy color with redshift and in the increasing fraction of galaxies displaying the

star-formation indicators [O II] and H§ with redshift.
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Chapter 1 Introduction

As the largest identified structures in the universe, superclusters are of fundamental
interest. The superclusters are only < 10 times more dense than the field, and thus the
superclusters are still expanding with the Hubble flow, albeit at a decelerated rate. In
contrast, the overdensity of an object that has just become virialized is ~ 200, and the
overdensity of an Abell cluster is ~ 1000. Since the dynamical times of superclusters
are comparable to the Hubble time, superclusters are unlikely to be relaxed and
should therefore bear imprints of the physical processes that were dominant during
the epoch of supercluster formation. For example, Zeldovich (1970) has predicted
that superclusters should be flattened along one axis (shaped like a “pancake”) in a
universe in which the largest structures form first. Redshift surveys of superclusters
also offer the possibility of measuring the distribution of dark matter on scales far
larger than hitherto possible. Understanding the distribution of dark matter on large
scales is crucial for estimating the mean density of the universe, {o. In addition, a
measurement of the peculiar velocites generated by the supercluster, either directly
using an independent distance indicator or statistically from the anisotropy of the
galaxy distribution of the supercluster in redshift-space, can provide a complementary
estimate of .

The Corona Borealis Supercluster is the most prominent example of superclus-
tering in the northern sky. Using the “Lick Counts,” Shane and Wirtanen (1954)
were the first to remark on the extraordinary cloud of galaxies that constitute the
supercluster. Abell also noted the Corona Borealis Supercluster and included it in
his catalog of “second-order clusters,” or clusters of clusters of galaxies. In fact, the
Corona Borealis Supercluster includes 7 Abell clusters at z ~ 0.07 in a 36 deg? region
on the sky and contributes significant power to the two-point correlation function of
nearby Abell clusters. In the same region, there are five background Abell clusters,

three of which are at z &~ 0.11. Counts of galaxies in the field of the supercluster,
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which include the background clusters, show a factor of 3 excess over counts in sim-
ilarly high galactic fields. Picard (1991a) speculated that the supercluster may be
responsible for the excess counts, although he realized that if the supercluster were
entirely responsible for the excess, it would generate fluctuations in the microwave
background of the order 67/T & 2 x 107*, far in excess of what is observed (Smoot
et al. 1992).

The only previous observational investigation of the dynamics of a supercluster was
the study by Postman, Geller, and Huchra (1988) of the Corona Borealis supercluster.
They collected 182 redshifts for galaxies mainly near the cores of the Abell clusters
contained within supercluster. By adding up the virial masses of the Abell clusters,
they concluded that the lower limit to the mass of the supercluster is 2.4 x 10%°
Mg . They also computed that if the mass-to-light ratio on supercluster scales is
comparable to that on cluster scales, then the supercluster mass is 8.2 x 10'> M, or
about the mass required to bind the system (assuming a supercluster radius of 10-15
Mpc). Their analysis was limited by the fact that they had to make assumptions
about the shape of the supercluster. In order to overcome this limitation, a new
study of the dynamics of the supercluster would require several thousand redshifts,
a number sufficient to measure the mean density of the supercluster to 5%. The
only feasible way to obtain such a large number of redshifts, many of which would
necessarily be for intrinsically faint galaxies, would be to use an efficient multiobject
spectrograph on a 4-m class telescope.

The Norris Spectrograph, which mounts at the Cassegrain focus of the Palomar
200-inch telescope, is just such an instrument. Norris uses 176 fibers which can be
independently positioned across the 400 arcmin® field-of-view. Norris was originally
designed to conduct a survey of faint field galaxies. However, the commissioning of
Norris was such a struggle that it seemed wise to pursue a more modest goal in order
to gain experience with the spectrograph before embarking on a very challenging
survey of faint field galaxies. With the results of Picard’s (1992) analysis of galaxy

counts in the Corona Borealis region fresh in our minds, and with Picard’s catalogs

from which to select objects to observe, we decide to do an extensive redshift survey



of the Corona Borealis Supercluster.

The core of the Corona Borealis Supercluster covers a 6° x 6° region on the sky,
centered at right ascencion 15720™, declination +30°. Since it is infeasible to survey
36 deg® with an instrument with a field-of-view of 400 arcmin?, we decided to observe
36 fields arranged in a regular grid with a grid spacing of 1 deg. We chose to avoid
the cores of the Abell clusters since redshifts for many galaxies in the cluster cores
are available from Postman, Geller, and Huchra (1988). Our observing strategy was
strongly influenced by the long time (~ 1 hour) required to retrieve and redeploy the
fibers. It is clearly very ineflicient to change setups frequently during the night. We
thus observed at most three fields a night, with total exposures of 2-3 hours per field.
Our principal goals at the outset were to delineate the structure of the supercluster,
to study the dynamics of the supercluster, and to investigate the relationship between
the spectral properties of galaxies and the environment in which they are embedded.

In short, we find that the supercluster is clumpy, far from relaxed, and that the
density falls rapidly away from the Abell clusters. Since the virial theorem yields
reasonable estimates of the masses of unrelaxed systems (Carlberg 1994), we have
computed the virial mass of the supercluster, My = (1.7 £ 0.2) x 10'°2~! My. The

mass-to-light ratio of the supercluster is 224 + 1‘21h(%> comparable to that of

rich clusters of galaxies (Faber and Gallagher 1979). By®' modeling the two-point
correlation function, we conclude that the supercluster has not vet generated large
mean flows towards itself and that, therefore, the supercluster has only recently begun
to break away from the Hubble expansion. Although the mean overdensity of the
supercluster is approximately 10, many of the galaxies that appear in images to be
part of the supercluster are actually in the background. These background objects
constitute a faint galaxy sample, which consists of roughly 1000 objects and reaches
redshifts of z ~ 0.7 and magnitudes as faint as r ~ 22™. We have thus collected a
sample of galaxies well-suited for studying the evolution of galaxies and large-scale
structure to a look-back time of roughly half the Hubble time (z = 0.5).

In order to observe directly the evolution of field galaxies, one needs large samples

of galaxies with measured redshifts from which to construct the luminosity function
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as function of redshift. Construction of such a sample has only recently become
possible with the introduction of efficient multiobject spectrographs on 4-m class
telescopes (e.g., Ellis et al. 1995, Lilly et al. 1995). We, and many others, have been
motivated to search for evolution in the galaxy population by the suggestive results
of faint galaxy counts and of redshift surveys of small numbers of faint galaxies.
Estimates of galaxy counts based on replicating the properties of the local galaxy
population at higher redshifts fall short of the observed counts for B 3 20™ (Tyson
1988, Maddox et al. 1990b, Metcalfe et al. 1995), a discrepancy which requires
rapid galaxy evolution in the last billion years (z ~ 0.1). In addition, the redshift
distribution observed in surveys of faint galaxies, while having roughly the range in
redshift expected from the local population, has far more galaxies at intermediate
redshifts than predicted (Glazebrook et al. 1995a). A natural interpretation of such
observations is that the number density of galaxies has evolved strongly since z ~ 0.5.

Indeed, the existence of such evolution is revealed in our survey. Galaxies as blue
or bluer than a Coleman, Wu, and Weedman (1980) Sbc galaxy show convincing signs
of evolution. The luminosity function of blue galaxies at 0.2 < z < 0.5 has a higher
normalization and possibly a steeper power-law slope at faint absolute magnitudes.
There is no sign that red galaxies evolve, which suggests that we may be observing
two different galaxy populations. The change in the nature of the galaxy population
with redshift is also revealed in the spectra of individual galaxies. Galaxies show
more signs of star formation with increasing redshift, although galaxies with spectra
typical of old stellar populations certainly continue to appear.

The evolution we observe is not, however, as rapid as expected from the galaxy
counts. This is due to the fact that the normalization of our local luminosity function
is at least a factor of 2 higher than that found by Loveday et al. (1992) in the
Stromlo/APM survey. The higher normalization removes the need for rapid evolution
since z ~ 0.1. Although the APM survey is based on photographic plates which are
difficult to calibrate, it is unlikely that there are large enough systematic errors to
account for the discrepancy in the normalization (Metcalfe, Fong, and Shanks 1995).

We conclude that the most plausible explanation is that our Galaxy resides in an
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underdense region with a diameter of ~ 100~ Mpc.

We have also studied the large-scale structure in our survey. Our most striking
observation is that immediately beyond the Corona Borealis Superclusters, there is
a void with a diameter of 100h™! Mpc (h is the Hubble constant Hy in units of 100
km s™ Mpc™!) which is bordered on its far side by another supercluster. This back-
ground supercluster, which we have dubbed the “Abell 2069 Supercluster,” contains
three Abell clusters and is roughly half as dense as the Corona Borealis Supercluster.
By measuring the two-point spatial correlation £(r) as a function of redshift, we have
studied the evolution of clustering. One of the fundamental postulates of cosmol-
ogy is that structure grows from tiny fluctuations in the early universe under the
action of gravity (Peebles 1994). Observing the evolution of clustering is therefore
of crucial importance for constraining models of the growth of structure. We find
that the correlation length declines rapidly beyond z &~ 0.3. The interpretation of
this observation is complicated by the fact that we may not be observing the same
galaxy population at high redshift as at low redshift, and we know that the correla-
tion lengths of different galaxy types vary in local samples. The population at high
redshift is bluer than the local population and since local blue galaxies have a smaller
correlation length than the red galaxies (Loveday et al. 1995), the inferred evolution
1s much more modest.

We have also measured the pairwise peculiar velocities of the galaxies in our
sample. The canonical value of the pairwise peculiar velocity is oy = 350 + 50 km
s™' (Davis and Peebles 1983). This is much lower than predicted in the cold dark
matter model. Recently, however, Marzke et al. (1995) have measured o7, ~ 540+ 180
km s7', a value which is much easier to reconcile with the CDM model. We, too,
measure a high value of o12. The volume of our survey is sufficiently large that we
should be measuring a fair value of o1,; however, the presence of the Corona Borealis
supercluster could certainly be biasing our result high.

This thesis has by no means tapped all of the scientific potential of our vast

data set. In particular, many of the individual objects have very interesting spectra

which warrant detailed studies. We have discovered six quasars, including one at
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z = 3.88. We have also found many active galaxies and many starburst galaxies.
Most interestingly, perhaps, galaxies with E+A spectra, that is, an A-star spectrum
superposed on the spectrum of an old stellar population, are quite common in our
survey.

Although we originally intended for this thesis to be a detailed study of the dy-
namics of the Corona Borealis Supercluster, our most compelling results come from
the analysis of the faint, intermediate redshift galaxies in our sample. The fact that
there is marked evolution of both galaxies and large scale structure at intermediate
redshifts suggests where the future of the Norris Spectrograph lies. Norris is ideally
suited to carry out an extensive redshift survey of galaxies at z ~ 0.5. Such a redshift
survey would complement the extremely large local redshift surveys which will soon
be underway (e.g., the 2dF survey, the Sloan survey) and the faint galaxy redshift

surveys which have already begun at the Keck Telescope.
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Chapter 2 Observations and Catalog

Construction

2.1 Introduction

Abell, from his survey of galaxy clusters on the Palomar Observatory Sky Survey
plates (Abell 1958), was the first to observe and note the existence of clusters of
clusters of galaxies. These clusters of clusters of galaxies, which he called “second-
order clusters” and which have since dubbed “superclusters,” are the largest identified
structures in the Universe. The dynamical timescale of superclusters is comparable
to the Hubble time, which implies that dynamical processes have not yet erased
imprints of the principal processes at work during the formation of the supercluster.
One hopes, therefore, that studies of superclusters will ultimately vield information
on the nature of density fluctuations in the early Universe and may offer clues about
the epoch of galaxy formation. In addition, by studying the peculiar velocities of
galaxies generated by the supercluster, one may be able to estimate €.

The Corona Borealis supercluster was first noted as an extraordinary “cloud” of
galaxies by Shane and Wirtanen (1954). In the 6° x 6° region centered on right
ascension 15"20™, declination +30°, there are 12 rich Abell clusters, seven of which
have redshifts near z ~ 0.07. These seven (Abell 2056, 2061, 2065. 2067, 2079, 2089,
and 2092) define the core of the Corona Borealis supercluster. Three of the remaining
clusters (Abell 2062, 2069, 2083) have redshifts near = &~ 0.11, and two (Abell 2059,
2073) are even more distant. Using the magnitudes of the brightest galaxies in the
individual clusters as rough distance indicators, Shane and Wirtanen (1967) were
able to deduce that the supercluster consisted of two separate components seen in
projection, with the more distant component roughly twice as distant as the nearer

one. In Figure 2.1, we show a combined contour/greyscale plot of the galaxy surface
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density in the core of the supercluster. The Abell clusters are the prominent regions of
enhanced galaxy surface density (the precise location of the Abell clusters is show in
Figure 2.10). One can also discern an overall density enhancement between the Abell
clusters. Galaxy counts in Corona Borealis confirm the presence of the supercluster,
as noted by Picard (1991a). In Figure 2.2, we plot the galaxy number counts in the
g and r bands and compare the counts to a fit to the counts of Weir, Djorgovski,
and Fayyad (1995) in a high Galactic latitude field. Over the range 16.0 < ¢ < 19.0
(correspondingly, 16.5 < r < 19.5), the Corona Borealis counts are roughly a factor
of three higher than those in the field of Weir, Djorgovski, and Fayyad (1993).

The true extent of the Corona Borealis supercluster on the sky is unknown. Bah-
call (1992) has marshalled circumstantial evidence to argue that while the region
containing the 7 Abell clusters is only ~ 20A~* Mpc (k is the Hubble constant Hy
divided by 100 km s~! Mpc™!) on a side, the entire supercluster extends for at least
~ 100h~! Mpc on the sky. First, one of the peaks in the redshift distibution of the
Broadhurst et al. (1990) pencil-beam survey is at the redshift of Corona Borealis,
even though the survey was aimed 45° away from the core of the supercluster. Sec-
ond, the far side of the Bodtes void, at right ascension 14"30™, declination +50°,
(Kirshner et al. 1937) is also at a redshift of z ~ 0.07. As our data show, the depth
of Corona Borealis on the sky is only ~ 40~~! Mpc. Corona Borealis thus appears to
be a flattened pancake similar to the structures originally hypothesized by Zeldovich
(1970).

Although it was certainly not practical to survey the whole 100~A~* Mpc x 100~7!
Mpc region (which corresponds to 730 square degrees), our aim was to delineate ac-
curately the structure of Corona Borealis out to a radius of ~ 202" Mpc. Since there
are far too many galaxies even within the core of the supercluster to hope to obtain
spectroscopy for each one, we have chosen a sparse-sampling strategy of observing 36
fields distributed in a regular 6 x 6 grid across the core of the supercluster. The grid
spacing 1s 1°. Each of the fields was to be observed once with the 176-fiber Norris
Spectrograph mounted at the Cassegrain focus of the Palomar 5m telescope. Since

retrieving and redeploying the fibers, which is done by a robot, takes nearly an hour,
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we decided to observe only two fields a night, with one field change in the middle
of the night. The total exposure times on each field were thus typically 2-3 hours,
yielding redshifts for galaxies as faint at g ~ 22™. We have obtained 1491 redshifts
for extragalactic objects, 469 of which lie within the core of the supercluster.

With this sample, we intend to examine the structure and dynamics of the core of
the supercluster and to investigate the relationship between the spectral properties
of galaxies and the large-scale structure in which the galaxies are embedded. The
dynamics of the core of Corona Borealis were previously studied by Postman, Geller,
and Huchra (1988), who measured 182 velocities for galaxies in the vicinities of the
clusters A2061, A2065, A2067, A2079, A2089, and A2092. With this small number
of redshifts, they were limited to calculating the virial masses of the Abell clusters
and could say little about the structure of the supercluster as a whole. With over 2.5
times as many galaxies, we hope to be able to perform a more detailed examination
of the supercluster.

Roughly two-thirds of the galaxies for which we have obtained redshifts are more
distant than Corona Borealis. This large sample provides an excellent basis for studies
of large-scale structure and galaxy evolution to redshifts of z ~ 0.5. In future papers
in this series, we will present measurements of the evolution of both the two-point
spatial correlation function and the luminosity function. In addition, we will constrain
the star-formation history of galaxies by investigating the change in the equivalent
widths of diagnostic spectral lines (e.g., [O 1] A3727, Hé, and HB) with redshift.

The paper, the first in the series presenting results from the Norris Survey of the
Corona Borealis Supercluster, is organized as follows. We describe the construction
of the input catalog and the selection of objects to observe in §2 and the details of the
observations and data reduction in §3. We present the redshift catalog in §4, along
with an analysis of potential selection effects within the catalog. In §5, we briefly
discuss the six quasars discovered in our survey. We will generally use Hy = 75 km
s™' Mpc™!, although we will when appropriate parameterize it as Hy = 100h km s~?

Mpc™!, and ¢ = 0.5.



. 10
2.2 Description of the Survey

2.2.1 Construction of the Input Catalog

All of the spectroscopic targets have been selected from catalogs based on Second
Palomar Observatory Sky Survey (POSS-II, Reid et al. 1991) plates. The 14 inch
square glass plates are taken with the Oschin Schmidt 48-inch telescope at Palomar
and cover 6.6° X 6.6° on the sky. The unvignetted portion of the plate extends to
a radius of 3° from the plate center. We have used plates taken in two colors: blue
(11la-J emulsion and a GG395 filter, Acentral ~ 4800&) and red (IIla-F emulsion and
a RG610 filter, Acentral ~ 6500A). We refer to the blue plates as J plates and the red
plates as F' plates. The plates are graded by the POSS-II staff according to image
quality, number and type of cosmetic defects, uniformity of response, and blank sky
photographic density. The two plates we have used in the survey were both graded C1,
primarily because of noticeable but generally unimportant cosmetic blemishes. The
field number, plate number, center location, approximate photographic sky density,
exposure time, sky transmission quality, grade, and calibrated limiting magnitude are
summarized in Table 2.1.

The principal requirements for the catalogs derived from the plates are that the
positions be accurate to 0.3” RMS in order to place accurately the fiber probes, that
the object magnitudes be well calibrated (omag < 0.3™), and that the star-galaxy
separation be reliable to as faint a magnitude as possible. The original catalog was
constructed by A. Picard from a COSMOS scan of an F' plate of POSS-II field 449.
Since a comprehensive description of the construction of the catalog has already
been given by Picard (1991b) (see also Picard 1991a), we will only briefly describe
the salient points. The COSMOS machine of the Royal Observatory of Edinburgh
generates, for every object detected, a long list of parameters, the most important
of which for us are right ascension, declination, instrumental magnitude, area, and
peak intensities. The procedure for separating stars from galaxies is based on the
simple observation that stars, being unresolved, occupy a well defined locus on a plot

of area versus magnitude for all objects. In contrast, galaxies have a larger area than
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stars at a given magnitude, allowing galaxies and stars to be objectively separated.
In fact, Picard uses a more complex statistic incorporating area, peak intensity, and
local sky brightness which allows for a cleaner separation of stars from galaxies. He
estimates that for r < 19.0 the completeness in the catalog is greater than 90% and
the stellar contamination is less than 10%. The catalog was magnitude calibrated
using CCD images of clusters of galaxies in the ¢ and r bands of the Thuan-Gunn
(1976) photometric system. For objects in the magnitude range 16.5™ < r < 19.0™,
the accuracy of the COSMOS magnitudes is 0.18™. Fainter than r = 19.0™, the
COSMOS magnitudes become increasingly more unreliable with an RMS error of
~ 1™ at r ~ 217,

In 1995, we switched from the COSMOS-based catalog of the F' plate to J and
F catalogs generated with the Sky Image Cataloging and Analysis Tool (SKICAT,
Weir, Djorgovski, and Fayyad 1995; Weir, Fayyad, and Djorgovski 1995; Weir 1995).
SKICAT processes digitized versions of the plates and uses sophisticated machine-
learning techniques to perform star-galaxy separation, thereby pushing the limit of
accurate star-galaxy separation to g ~ 20.5™ and r ~ 19.6™, over half a magnitude
fainter than the COSMOS scan. The evaluation of object parameters (e.g., magni-
tudes, second moments, etc.) is carried out using the Faint Object Classification and
Analysis System (FOCAS, Jarvis and Tyson 1979; Valdes 1982. The principal advan-
tage of the SKICAT catalog was the substantial decrease in the number of observed
objects which turned out to be stars.

One difficulty with the SKICAT system, however, is that the errors in the ce-
lestial coordinates are ~1”. These errors are far too large for use with the Norris
Spectrograph. Therefore, we have matched several thousand objects in the SKICAT
J catalog with objects in the original COSMOS catalog and used these objects as ref-
erence objects to determine the transformation between SKICAT (z,y) coordinates
and celestial coordinates, thus reducing the RMS errors to ~0.3".

We have magnitude-calibrated both plates using g, r, and ¢ CCD images of galaxies

in Abell 2069. The fitted linear relations between the CCD magnitudes and the plate

instrumental magnitudes are shown in Figure 2.3 (J) and Figure 2.4 (F). We only
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fit the data in the regions 16.0™ < g < 20.5™ and 16.5™ < r < 19.6™ where the plate
instrumental magnitude response is linear (Weir, Djorgovski, and Fayyad 1995). In
these regions, the RMS error was g ~ 0.3™ and r ~ 0.2". Beyond g = 20.5™ and
r = 19.6™, the scatter is markedly larger, reaching ~ 1™ for the faintest galaxies. The
¢ band fit is noticeably biased for objects with magnitudes greater than g = 20.5™.
The r band fit shows no apparent bias.

From the SKICAT catalogs, we were able to record a large number of features
for each object. These included the objects’ total magnitudes, aperture magnitudes,
core magnitudes, detection areas, total areas, ellipticities, positions angles on the sky,
and intensity-weighted first moment radii. Weir, Djorgovski, and Fayyad (1995) have
shown that the FOCAS total magnitude, measured by integrating the sky-subtracted
light of the object across an area determined by growing the detection area out until
the total area is twice the detection area, provides an unbiased estimate of the true
magnitude of an object to at least ¢ = 22™. Due to the bright isophotal limits for
photographic plates, isophotal magnitudes consistently underestimate the total light
in an object. We have also measured aperture magnitudes in a circular éperture with
a 5" radius, which is 2.5 times the typical full-width at half-maximum (FWHM) of the
seeing disk. Aperture magnitudes substantially underestimate the total luminosity of
large objects but provide accurate and unbiased estimates for faint objects. The core
magnitude is the integrated luminosity of the center 9 arcsec? of the object and is
thus closely related to the object’s central surface brightness. The intensity-weighted

first moment radius, obtained by evaluating

> rl(z,y)) 3 z.y), (2.1)

arca area

characterizes the size of an object on the sky and is equal to twice the scale-length

for a galaxy with an exponential profile and to twice the half-light radius for a galaxy

1
with an r /4 profile.
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2.2.2 Selection of Norris Fields

During the early, exploratory phase of the project, we observed 9 fields along the ridge
of galaxies between Abell 2061 and Abell 2067. These 9 fields are called “corborl”
through “corbor9.” After the exploratory observations proved successful, we chose
to observe 36 fields, “cbl” throught “cb36,” arranged in a 6 x 6 rectangular grid
over the 6° x 6° field centered on the Corona Borealis supercluster. We have mainly
avoided fields which contain an Abell cluster within them since redshifts for galaxies
within the Abell clusters can be obtained from the literature. Within each field, we
would fine tune the placement of the spectrograph on the sky, typically by 15 and
occasionally by nearly half a degree, in order to maximize the number of fibers on
bright galaxies. Occasionally, for example, a bright star would saturate a significant
portion of the field on the original plates, making galaxy detection impossible in the
saturated region, and we would move from the nominal center in order to avoid the

blank zone. The observed field centers are listed in Table 2.2.

2.2.3 Selection of Objects

Objects are selected from the input catalogs by an interactive computer program
called AUTOFID2. Every object in a field is assigned a priority based on its mag-
nitude and its star-galaxy classification. The scheme for assigning priorities is sum-
marized in Table 2.3. AUTOFID2 attempts to assign fibers to as many high priority
objects as possible subject to the simple rules designed to protect the fibers. The
fibers are not allowed to cross, are not allowed to bend more than 5°, and are not
allowed to come within 16" of each other. These rules combine to virtually eliminate
pairs of objects with separations less than 30” on the sky. Sky fibers were placed
interactively by the observer. We attempted to use fibers not assigned to objects as
the sky fibers, but we were often forced to remove fibers from extremely faint objects
in order to have sky fibers well distributed across the field. We generally placed 8 to
18 sky fibers, as recommended by Wyse and Gilmore (1992) for adequate sampling
of the sky.
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2.3 Observations and Data Reduction

2.3.1 Observations with the Norris Spectrograph

All of the spectra were obtained with the Norris Spectrograph mounted at the Cassegrain
focus (f/16) of the Hale 5m telescope. The Norris Spectrograph has been extensively
described by Hamilton et al. (1993). The spectrograph has 176 fibers, each of which
covers 1.6” (FWHM) on the sky. The fibers are positioned individually by a robot
and are held to the focal plane by magnets. The field-of-view of the spectrograph is
nearly 400 arcmin?, although edges of the field are severely vignetted. We have used
two detectors in the course of the survey. In 1992 and 1993, we used a Tektronix
10242 thinned, back-side illuminated CCD with 24um pixels, which was the largest
CCD then available at Palomar. Since the spectrograph was designed to be used with
20482 CCD with 27um pixels, we were only able to image half of the fibers during
the 1992 and 1993 runs. Starting in 1994, we used a Tektronix/SITe 20482 thinned,
back-side illuminated CCD with 24um pixels, enabling ~ 150 fibers to be imaged.
The large CCD has excellent blue response, which substantially improved the quality
of the spectra obtained.

The wavelength range for all observations was ~3900 A to ~6500 A. The lower
edge of the range was determined by the requirement that [O I1]3727 A be observable
for galaxies in the supercluster (z ~ 0.07). The upper edge of the range was limited by
the bright sky at Palomar which makes sky subtraction with fibers infeasible beyond
~6500 A. With the small CCD, the required spectral coverage was obtained using a
300 lines mm™! grating, yielding a resolution of ~8 A. With the large CCD, we were
able to cover the same range with a 600 lines mm™"' grating, yielding a resolution of
~4 A.

We have experimented with various schemes for flatfielding the spectra and deter-
mining the relative throughput of the fibers. The Norris Spectrograph was designed
with a moveable collimator that can be “dithered” perpendicular to the dispersion
so that each fiber illuminates a swath which is 2-3 times the width of the undithered

spectrum. With a dithered flatfield, the data could still be flatfielded even if the
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position of the spectra on the chip had changed due to spectrograph flexure. Unfor-
tunately, the profiles of the dithered flatfield spectra were not rectangular. Rather,
the profiles have sharp horns at each end where the chip was exposed for a greater
length of time as the collimator slowed and reversed its direction of motion at the
ends of each cycle. We eventually decided that since modern Tektronix chips are so
flat, we would use traditional undithered dome flats and hope that the minor shifts
in the position of the spectra on the chip would cause negligible errors.

The total exposure time varied from field to field and ranged from 5000 seconds
to nearly 12000 seconds. The total exposure time was made up of individual short
exposures, ranging in length from 1500 seconds to 4000 seconds, to facilitate cosmic-
ray removal and to pause for reference arc exposures. No attempt was made to obtain
spectra of flux standard stars. Two velocity standard stars, HD 132737 (spectral
type KO III) and HD 171232 (spectral type G8 III), were observed for use as cross-
correlation templates. See Table 2.4 for a summary of the dates of the observations,
the exposure times, the seeing, the sky transparency, the spectral resolution, and the
number of extragalactic objects successfully identified.

The data were reduced using standard IRAF ! routines. As described in detail
by Wyse and Gilmore (1992), it is crucial to account for the scattered light in the
spectrograph. Although most of the light from a fiber is emitted in a narrow cone, a
small but nevertheless significant amount (a few percent) is emitted into 27 radians.
The scattered light was successfully removed using the IRAF task APSCATTER
which makes a two-dimensional fit to the regions in between the spectra where, after
bias-subtraction, all the counts are due to scattered light. After the scattered light
was subtracted, the apertures were extracted from the object, arc, and flatfield frames.
The fiber-to-fiber throughput variations, including the effect of the vignetting of the
field, were removed with dome flatfield frames. The fibers in the center of the field

have throughput variations of £30%, while the fibers on the vignetted portions of

TRAF is distributed by the National Optical Astronomy Observatories, which are operated by the
Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement
with the National Science Foundation.
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the field have overall throughputs as much as 20 times less than the fibers in the
center of the field. A mean flatfield spectrum was formed by averaging together
all of the extracted flatfield spectra and was then divided back into the extracted
flatfield spectra in order to create normalized flatfield spectra. A 20-piece third-order
spline was fit to the normalized flatfield spectra in order to remove pixel-to-pixel
variations. The correction for the fiber-to-fiber wavelength-dependent throughput
differences was completed by dividing these smooth fits into the object spectra. Note
that this process leaves pixel-to-pixel sensitivity variations uncorrected, but we believe
that the CCD’s we used are sufficiently flat that this is not a significant problem. We
also verified that the dome flatfields were exposing the instrument similarly to the
night sky by computing the overall throughput of the fibers by measuring the flux
in the [O I] A3577 night sky line. The throughputs computed in these two manners
agreed very well. The object and sky spectra were wavelength calibrated using the
comparison arc spectra to an accuracy of better than 0.2 A RMS. The sky spectra
were averaged with 3o rejection to form a master sky spectrum. Since the fiber-to-
fiber throughput variations had already been corrected with the dome flatfieds, the
master sky spectrum could be directly subtracted from the object spectra without
any rescaling. The accuracy of the sky subtraction ranged from 1-4% RMS, with
the quality of the sky subtraction strongly dependent on the brightness of the night
sky. Finally, the reduced object spectra from each individual exposure were median-
combined in order to reject cosmic rays. In a number of cases, however, there were
only two individual exposures, in which case the spectra were simply added together
without applying any sort of cosmic ray rejection scheme.

A random sample of 24 spectra is shown in Figures 2.6 - 2.8. The spectra have
been smoothed with a 4 pixel boxcar to the resolution of the spectrograph. Since
the continua have not been flux-calibrated, the shape of the spectra reflects both the
intrinsic continuum of the object and the spectral response of the spectrograph. We
have marked the spectral features used in the identifications with dotted lines. There
are four stars in the 24 spectra (Figure 2.6a, 2.6b, 2.7g, and 2.7h), with the star in

Figure 2.6 showing the deep TiO absorption bands of a late-type star. The objects
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in Figure 2.6d and Figure 2.8a exhibit the strong nebular emission lines of galaxies
undergoing starbursts. Many of the other galaxies have [O II} A3727 emission, which
is indicative of modest continuing star formation. Two of the objects (Figure 2.6h
and 2.8h) have strong Balmer series absorption lines, a signature of the presence of

an A-star population in the galaxy.

2.3.2 Redshift Identification

All redshift identifications were made by TAS. The vast majority of identifications
were straightforward as the blue-sensitive CCD’s we used ensured that we generally
had a strong signal in the region of Ca K A3934, Ca H 3968, and the 4000A break,
features which are visible in our spectra from z = 0 to z ~ 0.6. We also frequently
identified [O II] A3727, G band A4304, HS A4861, [O III] AA4959, 5007, Mg b band
A5175, and Na D A5893. For a small number of spectra, the redshift is based solely
on the identification of a single emission line as [O II] A3727. There are no other
“single-line” redshifts included in the sample.

WLWS and DH independently reviewed a random sample of 100 objects identified
by TAS. There were only five disagreements, four which we judged unclassifiable on
the second inspection and one which TAS incorrectly identified. We therefore believe

that our redshift identifications are 95% accurate.

2.3.3 Automatic Measurement of Lines

With 1485 galaxies (the remaining extragalactic objects are quasars) in the catalog,
it is clearly impractical to measure the equivalent widths of lines by hand. We have,
therefore, chosen to develop an entirely automated program to detect and measure
lines. Automated detection and measurement of spectra lines was first successfully
employed by Young et al. (1979) (YSBCW), and the state-of-the-art is the program
developed by Schneider et al. (1993) for the Hubble Space Telescope Quasar Absorp-
tion Line Key Project. Not surprisingly, all of these programs are bedevilled by the

difficulty of automatically finding the level of the continuum. The Key Project team
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resorted to modifying interactively the level found by the software. Determining the
continuum level for galaxies is even more difficult than for quasars. Galaxies have not
only the problem of crowding of lines, notably in the Balmer series of galaxies with
prominent A-star features, but also have both sharp absorption lines and sharp emis-
sion lines. We were unable to develop an algorithm that could cope simultaneously
with the crowded Balmer series and with emission lines. YSBCW employed a scheme
in which the standard deviation of a segment of the spectrum is compared with the
“theoretical” standard deviation based on the counting statistics and points in deep
absorption lines are rejected until the two standard deviations agree. We found that
this scheme biased the continuum level unacceptably high.

Since, however, the important lines for the study of the spectral evolution of
galaxies (e.g., [O II], Hé, HB, etc.) occur in relatively uncrowded regions of the
spectrum, we decided to fit the continuum with a 20-piece third-order spline and to
accept that the fit would be poor in crowded regions. Tests of our software, which
are described below, demonstrate that our equivalent width estimates are not biased.
We only report equivalent widths for the following four lines: [O II] A 3727, Hé, HB,
and [O II1] A 5007.

We searched for lines using the technique described by Schneider et al. (1993).
First, the error array for the continuum-normalized spectrum was computed. At
each pixel, the standard deviation in a 10 pixel segment centered on the pixel was
calculated. The array of such points was fitted with a one-piece third-order spline in
order to interpolate over sharp features due to spectral lines, and this fit was used
as our error array. We next formed an equivalent width array by computing at each
pixel the equivalent width of a marginally resolved Gaussian line. (Note that we
define an emission line to have a positive equivalent width and an absorption line to
have a negative equivalent width.) The error in the equivalent width at each pixel is
computed by summing the error array weighted by the same Gaussian profile. The
local extrema of the equivalent width array are candidate lines. If the equivalent width
at a local extremum point was less than 4 times the error in the equivalent width,

we rejected the line. The accepted lines were passed on to a Gaussian deblending
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routine, and the equivalent widths W and centroids A of the deblended lines were

remeasured using the expressions derived by YSBCW:

W=>(1-N), (2.2)

2

A:Z&@—MVZ@—M% (2.3)

where the sum extends from A - 1.3FWHMagaussian 10 A + 1.3 FWHMGgGaussian, Vi 18
the number of counts in pixel 7, and A; is the wavelength of the center of pixel :. In

order to be finally accepted as a real line, the putative line had to pass five tests:

1. The difference between the Gaussian centroid and the YSBCW centroid must
be less than 10A.

S

The Gaussian FWHM must be greater than 3.5A and less than 50A.

3. The Gaussian equivalent width must be 4 times the YSBCW error in the equiv-
alent width.

4. The difference between the Gaussian equivalent width and the YSBCW equiv-
alent width must be less than 5A.

5. The RMS error of the Gaussian fit must be less than 1.0.

Once a line was judged real, its features were recorded in a database file. The
FWHM, amplitude, centroid, and equivalent width all came from the Gaussian fit.
The error in the equivalent width was estimated by summing in quadrature the error
in each pixel involved in the equivalent width computation. The error in the centroid

was calculated with the following expression from Schneider et al. (1993):

o(A) = V2000

(2.4)

U(W)l
W

where ojine = 0.424TFWHM. From tests with mock spectra (described below), we de-

termined that the estimated errors were accurate for spectra in which the wavelength
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scale was known exactly. For the real spectra, however, the wavelength scale is not
known exactly, resulting in an often dramatic underestimate of the error in the line
centroid. In order to calibrate the line centroid error due to errors in the wavelength
scale, we measured the positions of the bright sky lines in our 32 master sky spec-
tra. The sky lines are sufficiently strong that the purely statistical errors in the line
centroids are negligible. The standard deviation of the measurements of the lines’s
centroids about their published central wavelengths was then taken as an estimate
of the wavelength scale-induced errors. For the data taken with the lower resolution
300 1/mm grating, we added a wavelength scale error of 0.6A in quadrature with
the statistical estimate. For the 600 1/mm grating, we added 0.2A in quadrature.
The mean wavelength errors of the sky lines were 0.09A and 0.12A for the 300 I/mm
grating and the 600 1/mm grating, respectively.

In order to test our line finding and measuring program, we ran the program
on simulated spectra created using the MKIDSPEC task in IRAF. We attempted
to recover lines of equivalent width 1.3A and FWHM 6A in spectra with signal-to-
noise ratios in the continua ranging from 10 to 100 per pixel. The trials verified that
the program was correctly estimating the equivalent widths and centroids and their
errors. Figure 2.5 illustrates the results for 1825 trials with a signal-to-noise ratio of
17.3.

The positions of features found by our automatic program were compared with
the expected positions of the prominent lines based on our estimate of the redshift
of the object. If the centroid was within 5A, we considered the line matched. The
redshift of the object was then computed from the weighted mean of the redshifts
of the identified lines. Only 5% of the 1493 non-stellar objects were not successfully
matched by the program.

2.3.4 Automatic Measurement of Velocities

We attempted to measure the recession velocities of every object using cross-correlation

techniques as described by Tonry and Davis (1979) and implemented in the IRAF
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external package XCSAO. As note above (§3.1), we used HD 132737 (spectral type
KO0 III) and HD 171232 (spectral type G8 III) as our cross-correlation templates.
The spectra were cleaned of emission lines (and prominent sky line residuals) and
continuum-subtracted by fitting with a 20-piece third-order spline with rejection of
points more than 3o above the continuum. Before performing the cross-correlation,
the template was redshifted to the estimated redshift. We found that this procedure
greatly increased the reliability of the cross-correlation redshift determinations.

For objects for which we successfully estimated redshifts with both the line mea-
surement program and the cross-correlation program, the final estimate of the velocity
of the object was formed by computing the weighted mean of the two velocity de-
terminations. If only one of the methods yielded a velocity, then we simply used
that one estimate as our final estimate. There were 70 objects for which the redshift
could not be estimate by either the line measuring program or the cross-correlation
program. For these 70 objects, we simply recorded our visual estimate of the redshift
and assigned a velocity error of 300 km s™! (0.001 in redshift). All velocites were
corrected for heliocentric motion.

We determined the typical errors of the velocities by comparing velocities deter-
mined for the 25 objects which we successfully observed twice and by comparing
velocities for the 31 objects we observed for which velocities are listed in ZCAT
(Huchra et al. 1992). The distributions of velocity differences for the objects ob-
served twice and for the objects with matches in ZCAT are shown in panels (a) and
(b), respectively, of Figure 2.9. For the 25 objects with two observations, the average
velocity difference was 6 km s~! and the standard deviation was 115 km s~!. For the
31 objects with velocities listed in ZCAT (Huchra et al. 1992), the average velocity
difference was 35 km s~! and the standard deviation was 108 km s™*. A further check
on the accuracy of our velocity estimates is provided by comparing the velocities of
the 1014 objects for which we were able to measure velocities with both the line mea-
suring routine and the cross-correlation routine. The velocity differences, which are
shown in panel (¢) of Figure 2.9, are Gaussian-distributed with a mean error of 48 km

s7! and a standard deviation of 105 km s™'. We therefore set the velocity error for
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all the objects with automatic velocity measurements at 100 km s~! unless the error
estimates from the automatic measurements were larger than 100 km s, in which

case we used the larger error estimate.

2.3.5 Objects Culled from the Literature

We have added 163 objects from ZCAT (Huchra et al. 1992) and from the Postman,
Geller, and Huchra (1988) redshift survey of Corona Borealis. The velocites and
velocity errors were taken from the published catalogs. All other object features were
taken from our SKICAT catalogs. The objects taken from the literature may be
identified in the redshift catalog by having names that do not have the “CB” prefix.

2.4 The Redshift Catalog

The redshift catalog is summarized in Tables 2.5 and 2.6, which list the data for
identified objects and unidentified objects, respectively. The columns listed in Table
2.5 are the following: (1) object name; (2) and (3), 1950.0 equinox right ascension
and declination; (4) and (5), total and core magnitude in the ¢ band; (6) and (7),
total and core magnitude in the r band; (8) the total area; (9) the intensity-weighted
first radial moment; (10) the redshift; and (11) - (14), the rest equivalent widths of
[O 11] A3727, Hé, HS, and [O III] A3007. The total area and intensity-weighted first
radial moment are taken from the J plate, unless the object was only detected on
the F plate, in which case the measurements from that plate were used. Objects
that were only identified on the F' plate are identifed by having a name beginning
with “CB-99.” Stars were recorded as “star” in the redshift column. As noted above
(83.2), only equivalent widths for spectral lines in uncrowded regions of the spectrum
are reported in Table 2.5. For the table of unidentified objects, Table 2.6, the listed
columns record the information that can be gleaned from the plates only: (1) object
name; (2) and (3), 1950.0 equinox right ascension and declination; (4) and (5), total
and core magnitude in the g band; (6) and (7), total and core magnitude in the r

band; (8) total area; and (9) the intensity-weighted first radial moment. Unidentified
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objects only detected on the F' plate have names beginning with “CB-00.”

The distribution of the identified galaxies on the sky is given in Figure 2.10. The
positions of the 12 Abell clusters in the field are marked with large circles. The
objects without many close neighbors were taken from the literature. The largest
concentration of identified objects is along the ridge of galaxies between Abell 2061
and Abell 2067. The distibution of the galaxies in redshift is given in Figure 2.11.
There are two prominent peaks in the figure: the Corona Borealis supercluster at
2 ~ 0.07 and the more distant supercluster at z = 0.11.

We present two redshift-right-ascension “pie” diagrams in Figures 2.12 and 2.13.
In Figure 2.12, we plot all of the galaxies in our survey, whereas in Figure 2.13 we
plot an expanded view of galaxies with redshifts less that z = 0.15. The pie diagrams
have been plotted with enlarged opening angles of 90°, which, since the survey only
covers 6°, stretches structures along the dotted lines. The most striking feature of
the pie diagrams is the sharply delineated void of ~ 752~ Mpc diameter centered at
right ascension 15"22™, z & 0.09 and bounded by the two superclusters. There are no
prominent “fingers-of-God” in these diagrams because we have measured velocities
for comparatively few galaxies in the cores of the Abell clusters.

Redshift-magnitude diagrams for the g and r bands are shown in Figure 2.14. We
have also plotted for reference the tracks of non-evolving, k-corrected L* galaxies with
spectra typical of E, Sbe, Scd, and Im type galaxies. The spectral energy distributions
for the different morphological types were taken from Coleman, Wu, and Weedman
(1980). The most luminous galaxies in our survey are roughly 2.5 times (1™) brighter
than L*. The prominent horizontal strips at z ~ 0.07 and z = 0.11 are the two

superclusters.

2.4.1 Completeness in Magnitude

The distribution of galaxies with measured redshifts is shown in Figure 2.15. We also
plot, with the right-hand ordinate, the galaxy counts in the field. By a comparison of

the shapes of the two distributions, we deduce that the redshift catalog is complete
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only to ¢ = 19.0™ and r = 18.5™ magnitude. However, we have measured a sub-
stantial number of redshifts for galaxies out to ¢ = 22.5™ and r = 22.0™. We utilize
the entire incomplete catalog for statistical studies by averaging over a large number
of randomly-selected magnitude-limited sub-samples, each of which can be analyzed
using standard techniques.

The spectroscopic identification rate, the ratio number of objects (stars, galaxies,
and quasars) successfully identified to the number of objects observed, is shown in
Figure 2.16. The rate remains above 80% to ¢ = 19.5™ and r = 19.0™ and then falls

to fainter magnitudes.

2.4.2 Completeness in Surface Brightness

The discovery of large numbers of low surface brightness galaxies (e.g., Sprayberry
et al. 1995) has raised the issue of how surface brightness effects may be biasing
the results of galaxy surveys, especially those, such as this one, which are based on
catalogs originally derived from photographic plates. In particular, surface bright-
ness selection effects may be an important element in the explanation for the excess
counts of blue galaxies relative to observations of local galaxies. McGaugh (1994)
has demonstrated that the deep surveys, such as those by Tyson (1988) and, more
recently, Metcalfe et al. (1995), are sufficiently sensitive to detect low surface bright-
ness galaxies to intermediate redshifts (z ~ 0.5), whereas the Schmidt-plate based
surveys used to define the properties of the local galaxy distribution (e.g., Maddox
et al. 1990b) will miss most low surface brightness galaxies.

As our survey is based on plates from POSS-II, which are taken at a location with
a bright night sky, we do not expect to be sensitive to low surface brightness galaxies.
In Figure 2.17 (g) and Figure 2.18 (r), we plot the objects’ core magnitudes against
their total magnitudes. Since objects are detected by the presence of contiguous
pixels 2.50 above the sky background, whether or not an object is detected depends
directly on the core magnitude. In Figures 2.17 and 2.18, the stars form a narrow

sequence, and the galaxies are broadly distributed above the stars (i.e., with lower



25

surface brightness). The distribution of the galaxies in g does not appear to be
restricted in surface brightness until geore & 22.0™, which corresponds to a central
surface brightness of ¢ ~ 24.4 mag arcsec™®. We have also plotted the tracks, as a
function of redshift, of three illustrative model galaxies as observed in 2” seeing. The
locus of galaxies is bounded by an L* disk with an exponential scale-length of 3.5h71
kpc and an absolute magnitude of M, = —20.0 + 5log,;, » and an L* spheroid with a
half-light radius of 3.0~ kpc and absolute magnitude of M, = —20.2 + 5log,, h. A
low surface brightness L™ disk with an exponential scale-length of 10~ kpc would
only be detectable to z a 0.13. The bulges of low surface brightness spiral galaxies,
with half-light radii of ~ 4h~! kpc and luminosities of approximately one half the disk
luminosities (Sprayberry et al. 1993), would be readily detectable in our survey to
high redshifts; however, it is unlikely that all of the light of the low surface brightness
disks would be recovered.

Statistical analyses of the data will be based on samples with geore < 22.0™ or

with 7core < 21.7™ and should be free from surface brightness selection effects.

2.4.3 Completeness in Color

In Figure 2.19 we plot the g — r color of every galaxy as a function of redshift. Lower
and upper limits on the colors of galaxies which were only detected on one plate are
also shown. The typical error in the color is 0.4™. We also plot the tracks of non-
evolving, k-corrected galaxies with spectral energy distributions from Coleman, Wu,
and Weedman (1980). The galaxy population appears to become slightly redder with
increasing redshift, although there is a substantial number of galaxies at all redshifts
bluer than a flat-spectrum object (f, = 0).

The g — r color distributions as function of total magnitude of the galaxies and
unidentified objects and of the stars and unidentified objects are shown in Figure
2.20 and Figure 2.21, respectively. The galaxies and the unidentified objects cover
the same parts of the diagram except for the region with ¢ —r > 1™ and ¢ < 20™,

which is exclusively populated by stars. Taking the galaxies and stars together, it is
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clear that the color distibution of the identified objects covers the same range as that
of the unidentified objects. This fact indicates that the survey does not suffer from

significant color biases.

2.4.4 Completeness in Angular Separation on the Sky

The fiber assignment program AUTOFID2 introduces spatial selection biases on a
range of angular scales. In panel (a) of Figure 2.22, we plot the ratios of the number
pairs of attempted objects and the number of pairs of identified objects to the number
of pairs in the input catalog as a function of angular separation on the sky. The
restrictions on the proximity and bending angles of fibers combine to eliminate pairs
with angular separations of <30”. There is also a gradual bias against pairs with
separations »10’. The maximum possible angular separation of a pair, given the
field-of-view of the Norris Spectrograph. is 26'.

In panel (b) of Figure 2.22, we plot the ratio of the number of identified objects
to the number of attempted objects as a function of angular separation. The ratio
remains constant to ~10’, falls gradually to ~17’, and falls steeply thereafter. The
decline to large angular separation reflects the vignetting of the edges of the field of

the Norris Spectrograph.

2.5 Quasars

We have discovered six quasars in the course of our survey. The redshifts range from
z = 1.04 to z = 3.88. The basic data for the quasars are given in Table 2.7, and
the spectra are shown in Figure 2.23. All of the quasars were discovered when we
were selecting objects from the COSMOS scan of the F plate. It is curious that
no quasars were discovered when the object selection was based on detection on the
J plate. Quasar CB-26.2177 (Figure 2.23e) is the only quasar for which we have
detected intervening absorption systems. The quasar has four Mg II systems at z =
0.742, 0.903, 1.102, and 1.160. The strongest system at z = 0.903 has associated Fe IT
A2585, A2600 absorption at the observed wavelengths of 4919.3A and 4947.8A. The
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faintness of CB-26.2177 (g = 20.6™) ought to facilitate the detection in deep images
of the objects responsible for the Mg II absorption systems.

2.6 Summary

We have presented the 1485 galaxies, 6 quasars, and 395 stars which comprise the
Norris Survey of the Corona Borealis Supercluster. We have augmented these data
with an additional 163 galaxies taken from the literature. Although not magnitude-
limited, the survey includes galaxies as faint as ¢ = 22.5™ and r = 22.0™. We have
quantified and understood the selection biases in magnitude, surface brightness, color,
and angular separation on the sky. Our survey not only provides the largest dataset
ever assembled for the study of the dynamics and structure of a supercluster, but
also provides a large sample useful for studies of large-scale structure and of galaxy
evolution to z ~ 0.5. Subsequent papers in the series will present studies of the
evolution of the two-point spatial correlation function and of the luminosity function
as a function of redshift. We will also discuss in a future paper objects of individual
interest, such as E+A galaxies, Seyfert galaxies, and quasars, and include Palomar
60-inch images of many of the objects.

All of the data which we have collected for this survey and which we have not
presented here (e.g., the entire plate catalogs, spectra for individual objects, etc.)

may be obtained from TAS.

TABLE 2.1
POSS-II PrLAaTES IN CORONA BOREALIS

Field Plate RA Dec Density Exp  Trans Grade Miim
(1950.0) (1950.0) (min)

J449 3091 15%20™ 30° 1.46 70  Hazy Cl g=216
F449 1165 15h20™ 30° 0.99 60 Clear C1 ra 211
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TABLE 2.2
SURVEY FIELDS IN CORONA BOREALIS
Field RA Dec Observed?
(1950) (1950)
corborl 15:22:38 31:24:24 Yes
corbor2 15:22:00 31:17:02 Yes
corbor3 15:21:16 31:09:39 Yes
corbor4 15:20:41 31:02:42 Yes
corbor) 15:20:06 30:56:13 Yes
corbor6 15:19:33 30:52:04 Yes
corbor7 15:19:02 30:46:29 Yes
corbor8 15:18:34 30:41:22 Yes
corbor9 15:17:59 30:34:23 Yes
cbl 15:11:26 28:09:20 Yes
cb2 15:11:28 28:34:45 Yes
cb3 15:12:01 29:35:31 Yes
cb4 15:13:01 30:37:20 Yes
cbb 15:13:14 31:25:46 Yes
cb6 15:13:05 32:04:26 Yes
cb7 15:17:09 27:52:06 Yes
cb8 15:17:04 28:30:37 Yes
cb9 15:16:02 29:39:17 No
cb10 15:16:02 30:27:17 No
cbll 15:16:12 31:24:36 Yes
cb12 15:16:02 32:03:17 No
cb13 15:19:18 28:15:30 Yes
cbl4 15:19:34 28:45:10 Yes
cb1h 15:19:20 29:39:07 Yes
cb16 15:20:02 30:27:17 No
cb17 15:20:02 31:15:17 No



TABLE 2.2—Continued
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Field RA Dec Observed?
(1950) (1950)
cbl8 15:20:02 32:03:17 No
cb19 15:24:37 28:02:45 Yes
cb20 15:23:49 28:36:17 Yes
cb21 15:24:09 29:52:30 Yes
cb22 15:22:53 30:29:35 Yes
cb23 15:24:50 31:19:36 Yes
cb24 15:24:23 32:14:56 Yes
cb25 15:28:44 28:03:18 Yes
cb26 15:29:12 29:07:46 Yes
cb27 15:28:37 29:38:37 Yes
cb28 15:28:02 30:27:17 No
cb29 15:27:50 31:05:09 Yes
cb30 15:28:02 32:03:17 No
cb31 15:32:02 28:03:17 No
cb32 15:32:02 28:51:17 No
cb33 15:32:02 29:39:17 No
cb34 15:32:02 30:27:17 No
cb35 15:31:31 31:13:53 Yes
cb36 15:32:02 32:03:17 No
TABLE 2.3
PRIORITY SCHEME FOR AUTOFID2
Magnitude Range Classification Priority
14.0 < ¢ £19.0 galaxy 900
19.0 <€ ¢ €20.0 galaxy 800
20.0< ¢ <220 galaxy 600
14.0 € ¢ £20.0 star 200
20.0 <¢g <220 star 100
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TABLE 2.4
SUMMARY OF OBSERVATIONS
Field UT Date Exp Seeing Trans Spec. Res. N(z)
(sec) (") (A)
corborl 26 Apr 1992 7200 1.0 Cirrus 8 24
corbor2 27 Apr 1992 7200 1.0 Clear 8 23
corbor3 27 Apr 1992 7200 1.0 Clear 8 37
corbor4 27 May 1992 9300 1.5 Clear 8 31
corbor) 30 May 1992 9000 1.5 Cirrus 8 28
corbor6 28 May 1992 10934 2.0 Clouds 8 26
corbor7 29 May 1992 8714 2.0 Cirrus 8 42
corbor8 29 May 1992 6600 1.5 Cirrus 8 38
corbor9 30 May 1992 9000 1.5 Clear 8 20
cbl 17 Mar 1993 8000 1.8 Cirrus 8 30
cb2 18 Mar 1993 8000 2.2 Clear 8 11
cb3 20 Apr 1993 8000 1.0 Clouds 8 10
cb4 20 Apr 1993 5800 1.0 Clouds 8 32
cb5 19 May 1993 8000 1.0 Clear 8 21
cb6 19 May 1993 6700 1.0 Clear 8 26
cb7 20 May 1993 7200 2.5 Fog 8 24
cb8 20 May 1993 6800 2.5 Fog 8 30
cbll 30 May 1995 7500 1.0 Clear 4 65
cb13 4 May 1994 5000 1.0 Cirrus 4 82
cbl4 3 May 1994 9000 1.0 Clear 4 70
cbl) 8 Apr 1994 7200 1.5 Clouds 4 69
cb19 29 May 1995 7500 < 1.0 Clear 4 39
cb20 2 May 1994 6000 1.0 Cirrus 4 87
cb21 2 May 1994 7000 1.0 Cirrus 4 81
cb22 3 May 1994 9000 1.5 Clear 4 79
cb23 28 May 1995 12000 1.0 Clouds 4 70
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TABLE 2.4— Continued

Field UT Date Exp Seeing Trans Spec. Res. N(z)
(sec) () (A)
cb24 30 May 1995 7500 1.0 Clear 4 59
cb25 29 May 1995 7500 1.0 Clear 4 72
cb26 4 May 1994 8000 < 1.0 Cirrus 4 76
cb27 4 May 1995 12000 1.5 Clear 4 69
cb29 5 May 1994 5000 < 1.0 Clouds 4 68
cb35 5 May 1994 6000 <1.0 Clouds 4 65
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TABLE 2.6
UNIDENTIFED OBJECTS

Object RA Dec. Jtot Geore Ttot Tcore Area irl

(1950) @) ™
CB-1.7719 15:11:03.0 28:04:28.8 20.26 21.29 19.79 20.82 47 2.14
CB-1.7693 15:11:03.7 28:05:35.3 21.50 22.36 20.37 21.64 19 1.56
CB-2.7850 15:11:05.0 28:33:43.4 20.71 21.55 19.99 21.01 31 1.66
CB-1.7629 15:11:06.0 28:06:38.3 20.78 21.18 19.78 20.86 30 1.46
CB-1.7557 15:11:08.6 28:07:58.8 18.67 20.09 18.36 19.59 111 2.84
CB-1.7487 15:11:09.4 28:28:01.6 20.09 21.11 18.97 19.94 48 1.96
CB-2.7647 15:11:09.6 28:43:31.1 21.47 21.76 20.61 22.00 8 1.01
CB-1.7496 15:11:10.4 28:07:16.9  20.64 21.59 19.98 20.99 35 1.71
CB-00.12 15:11:11.2 28:26:12.5 21.89 22.19 16 1.45
CB-1.7390 15:11:12.2 28:29:34.7 19.08 20.13 18.46 19.57 66 215
CB-2.7570 15:11:12.3  28:35:40.8 20.64 21.59 20.12 21.29 40 2.08
CB-1.7429 15:11:12.4 28:05:55.5 19.68 20.80 19.99 21.47 54 2.07
CB-1.7350 15:11:13.5 28:29:18.1 20.44 21.35 20.34 21.45 51 2.05
CB-1.7395 15:11:13.7 28:08:16.0 19.92 20.80 18.94 20.09 50 1.85
CB-00.15 15:11:15.3  28:40:32.1 s ce- 21.42 22.16 23 1.74
CB-00.13 15:11:15.3 28:30:27.2 s ce- 20.95 22.07 22 2.10
CB-2.7413 15:11:16.4 28:34:24.3 18.02 20.77 18.82 21.00 86 3.43
CB-2.7350 15:11:17.5 28:43:49.5 18.08 20.42 18.17 20.33 135 3.83
CB-00.3 15:11:17.5 28:14:16.3 .- - 21.16 22.01 18 1.40
CB-2.7325 15:11:18.4 28:38:19.4 20.48 21.06 19.98 20.80 16 1.37
CB-2.7276 15:11:19.3 28:41:20.0 22.20 22.77 21.17 22.20 12 1.39
CB-1.7168 15:11:19.5 28:30:20.8 19.51 20.92 19.34 20.49 75 2.51
CB-2.7264 15:11:20.0  28:38:21.4 22.33 22.65 21.09 21.74 7 0.93
CB-1.7191 15:11:20.7  28:04:01.5 19.06 20.40 18.78 19.96 79 2.58
CB-1.7129 15:11:22.4 28:04:22.7 21.02 21.51 20.01 21.25 32 1.55
CB-1.7055 15:11:22.4 28:28:59.8 20.25 21.08 20.12 20.88 38 1.75
CB-1.7077 15:11:23.3 28:10:14.8 20.23 21.18 20.28 21.21 44 1.77
CB-1.7002 15:11:23.7  28:30:35.6 21.31 22.21 20.99 21.83 19 1.47
CB-1.7049 15:11:24.6 28:00:25.2 18.65 19.84 19.20 20.18 82 2.20
CB-1.6843 15:11:27.9 28:26:58.3 18.80 19.67 18.68 19.59 41 1.77
CB-1.6851 15:11:28.7  28:14:03.5 19.67 20.75 19.55 20.76 53 1.99
CB-1.6758 15:11:29.3  28:30:53.7 18.65 20.21 18.17 19.67 120 2.93
CB-2.6883 15:11:29.5 28:35:01.8 19.24 20.58 18.63 19.89 87 2.73
CB-1.6757 15:11:30.3 28:18:43.2 19.78 20.80 19.77 20.83 53 2.20
CB-1.6725 15:11:30.4 28:30:36.8 20.84 21.81 19.41 20.66 31 1.77
CB-1.6784 15:11:30.7  28:05:39.3 21.03 22.18 20.24 21.56 26 1.72
CB-2.6828 15:11:30.8  28:39:16.3 22.16 22.66 20.12 21.38 8 1.05
CB-1.6726 15:11:31.9 28:08:06.1 19.24 20.34 18.80 19.98 55 2.11
CB-00.14 15:11:32.8 28:38:42.9 pee - 21.58 22.05 19 1.37
CB-1.6676 15:11:33.3  28:07:34.4 20.39 21.49 20.53 21.73 44 2.20
CB-1.6599 15:11:33.4 28:32:35.1 20.84 21.60 21.24 21.82 39 1.87
CB-1.6576 15:11:34.1 28:29:51.1 21.28 22.28 21.85 21.89 27 1.65
CB-2.6705 15:11:34.3 28:38:18.5 20.27 21.99 19.78 21.11 46 2.37
CB-1.6598 15:11:34.5 28:17:34.0 21.20 21.52 21.03 21.84 24 1.38
CB-1.6585 15:11:35.0  28:12:39.3 22.65 22.58 20.67 21.60 7 1.21
CB-3.6651 15:11:35.6  29:34:22.5 19.67 20.17 18.15 18.71 18 1.42
CB-1.6572 15:11:36.0 28:01:20.7 22.13 22.79 19.91 21.07 13 1.29
CB-1.6526 15:11:37.1 28:03:55.9 18.58 19.58 17.92 18.89 20 1.39
CB-3.6592 15:11:37.1 29:35:01.5 17.24 18.21 15.88 16.78 108 2.15
CB-2.6591 15:11:37.5 28:39:01.5 18.46 20.20 18.71 20.35 137 3.26
CB-1.6428 15:11:37.9 28:19:00.5 18.35 19.82 17.88 19.27 125 2.95
CB-1.6446 15:11:38.4 28:05:04.6 19.09 20.49 - cee 72 2.23
CB-00.36 15:11:39.1 29:39:44.3 ... v 20.80 21.68 25 2.12
CB-1.6402 15:11:39.6 28:03:48.8 19.99 20.90 20.10 20.91 51 1.95
CB-2.6505 15:11:39.7  28:39:00.1 18.08 19.68 17.92 19.68 103 3.07
CB-1.6301 15:11:40.3 28:26:18.3 21.56 21.61 20.24 20.57 7 0.95
CB-2.6473 15:11:40.3 28:37:16.2 20.23 21.43 19.97 21.25 48 2.17
CB-1.6293 15:11:41.3 28:13:06.1 16.89 19.06 16.28 18.28 394 5.19
CB-3.6427 15:11:41.5 29:31:17.3 18.29 20.14 18.20 19.80 175 3.72
CB-16285 15:11:41.7 28:08:31.3 20.08 2093 1973 2097 43 1.84
CB-1.6205 15:11:42.2  28:28:40.6 19.99 21.40 20.31 21.68 59 2.33
CB-3.6406 15:11:42.4 29:25:55.9 20.81 21.24 19.46 20.21 19 1.30
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CB-1.6253 15:11:43.0  28:02:16.3 20.72 21.44 19.77 20.57 28 1.61
CB-3.8366 15:11:43.5 29:29:30.2 21.44 22.43 21.03 21.83 21 1.45
CB-3.6328 15:11:43.8 29:37:55.9 19.29 20.44 18.88 20.13 67 2.25
CB-2.6342 15:11:44.0  28:40:28.8 20.74 21.82 20.22 21.25 37 2.06
CB-1.6059 15:11:45.1 28:32:17.9 21.533 22.22 21.79 21.85 14 1.63
CB-1.6104 15:11:45.1 28:17:17.0 20.76 21.67 19.95 21.17 28 1.63
CB-2.6246 15:11:46.0  28:43:24.3 22.29 22.63 21.04 21.92 12 1.17
CB-1.6028 15:11:46.3  28:27:01.3 21.14 21.98 20.21 21.63 32 1.75
CB-1.6065 15:11:46.7 28:07:23.4 17.90 19.31 17.98 19.26 47 2.10
CB-3.6209 15:11:46.8 29:43:16.9 19.19 20.73 18.38 19.95 108 3.12
CB-00.16 15:11:46.9 28:35:19.2 ce s 21.13 21.89 15 1.57
CB-1.5990 15:11:46.9 28:29:49.5 20.70 21.67 20.56 21.52 20 1.60
CB-3.6229 15:11:47.1 29:29:11.4 19.94 21.32 20.39 21.62 57 2.33
CB-1.6025 15:11:47.7 28:06:24.9 20.84 21.50 20.09 20.81 22 1.36
CB-1.5957 15:11:47.8  28:30:38.9 17.97 19.03 17.22 18.17 110 2.47
CB-1.6008 15:11:48.6 27:59:49.5 20.71 21.40 20.56 21.87 30 1.60
CB-3.6126 15:11:48.9  29:43:37.7 21.43 21.82 20.22 21.00 15 1.16
CB-3.6164 15:11:49.0  29:26:53.2 20.03 21.40 18.50 20.08 52 2.33
CB-1.5952 15:11:49.8 28:00:30.4 17.81 19.58 17.82 19.46 167 3.27
CB-3.6124 15:11:49.8 29:30:57.8 20.65 21.30 19.94 21.04 33 1.58
CB-1.5867 15:11:49.9 28:26:20.3 19.30 20.71 18.51 19.64 88 2.58
CB-3.6081 15:11:51.4 29:27:03.9 20.05 20.76 20.34 21.07 42 1.63
CB-00.11 15:11:51.7  28:29:17.3 .- o 20.83 21.89 25 1.85
CB-3.6031 15:11:52.5 29:27:50.1 20.56 21.28 20.06 21.37 35 1.75
CB-3.5974 15:11:54.5 29:32:25.1 18.97 20.44 18.38 19.64 96 2.70
CB-3.5908 15:11:56.2 29:34:13.6 19.89 20.97 19.70 21.35 59 2.20
CB-3.5865 15:11:56.9  29:37:52.0 20.76 21.48 20.02 21.15 30 1.65
CB-3.5716 15:12:00.9 29:34:13.8 20.98 21.93 20.64 21.66 11 1.38
CB-3.5709 15:12:01.0 29:36:03.3 18.89 20.54 18.32 20.08 T 2.96
CB-00.35 15:12:02.4 29:30:26.5 s s 21.11 21.94 19 1.61
CB-3.5642 15:12:02.7 29:35:52.5 20.83 21.43 20.58 21.21 9 1.12
CB-00.34 15:12:03.7  29:33:00.4 cee .. 20.87 21.56 16 1.45
CB-00.33 15:12:05.3  29:34:26.0 cee ce 20.33 21.12 27 1.56
CB-3.5465 15:12:08.4 29:33:55.2 18.63 19.36 17.49 18.46 32 1.58
CB-3.5422 15:12:09.3  29:33:16.0 20.42 20.87 18.80 19.93 6 0.83
CB-3.5346 15:12:10.9 29:39:54.5 21.05 21.73 21.13 21.83 25 1.47
CB-00.32 15:12:11.4 29:30:46.7 ... -.- 19.49 20.58 18 1.54
CB-3.5270 15:12:14.0 29:31:56.1 20.11 20.54 19.03 20.03 8 0.99
CB-3.5192 15:12:16.0  29:41:54.2 18.96 20.04 18.85 19.98 76 2.11
CB-3.5178 15:12:17.2 29:32:26.1 19.22 20.38 19.04 20.15 65 2.17
CB-3.5115 15:12:18.7 29:32:20.6 18.47 19.32 17.66 18.38 74 1.87
CB-3.5029 15:12:20.7  29:31:12.8 19.06 20.10 18.42 19.57 62 2.14
CB-00.31 15:12:22.7  29:26:49.1 s oo 18.80 20.08 50 2.22
CB-3.4869 15:12:24.2 29:35:13.6 18.90 19.70 18.15 19.25 7 1.93
CB-4.4379 15:12:32.4  30:47:11.9 20.45 21.52 19.76 20.64 46 2.73
CB-4.4346 15:12:33.8 30:42:08.9 19.97 21.53 19.76 20.76 66 2.81
CB-4.4290 15:12:35.0  30:45:38.1 19.41 20.66 18.75 19.99 56 2.30
CB-6.4403 15:12:36.1 32:07:09.0 20.77 21.42 20.40 21.72 31 1.61
CB-4.4234 15:12:37.2 30:34:48.9 19.80 20.96 20.56 20.87 54 2.08
CB-6.4284 15:12:38.6  32:12:01.2 19.60 20.61 18.38 19.54 63 2.05
CB-6.4253 15:12:39.3 32:10:42.0 20.15 20.79 19.70 21.03 49 1.61
CB-6.4279 15:12:39.6  32:00:04.2 19.66 20.61 18.62 19.55 29 1.73
CB-4.4129 15:12:40.0 30:31:32.8 18.59 19.68 18.29 19.40 94 2.25
CB-6.4184 15:12:40.9 32:10:44.7 21.79 22.16 19.88 21.52 16 1.22
CB-4.4090 15:12:41.1 30:31:56.5 19.24 20.07 18.72 19.21 62 1.90
CB-4.4058 15:12:41.8 30:34:02.9 20.01 20.69 19.51 20.45 45 1.68
CB-4.4017 15:12:42.9 30:34:50.4 20.15 21.24 21.02 21.58 40 1.89
CB-6.4015 15:12:44.6 32:10:19.2 21.27 22.56 20.54 21.22 20 2.00
CB-4.3924 15:12:45.1 30:34:00.1 21.535 22.31 20.44 21.63 20 1.57
CB-4.3879 15:12:46.3  30:40:38.0 21.61 22.44 21.18 21.73 16 1.43
CB-4.3885 15:12:46.7  30:28:49.1 19.56 20.82 18.62 19.85 66 2.26
CB-00.47 15:12:46.8 31:33:27.6 ... cee 21.33 21.87 15 1.40
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CB-6.3917 15:12:46.8  32:12:17.7 19.86 20.98 19.44 20.31 53 2.05
CB-5.3674 15:12:48.5 31:27:58.4 18.16 18.98 17.67 18.43 67 1.88
CB-5.3591 15:12:50.4  31:30:42.3 20.01 21.20 19.95 21.14 63 2.39
CB-4.3721 15:12:50.8  30:36:45.3 21.78 22.09 21.28 21.75 12 1.26
CB-00.42 15:12:50.8 31:23:54.8 .- ce 20.73 21.88 19 1.54
CB-6.3751 15:12:51.1 32:09:17.9 21.99 22.73 21.27 21.87 14 1.30
CB-6.3773 15:12:51.2  31:57:15.3 20.47 22.12 21.36 22.07 42 2.29
CB-5.3539 15:12:51.4  31:31:48.7 20.56 21.68 19.98 21.23 48 2.48
CB-5.3571 15:12:51.8 31:16:04.5 21.02 21.79 19.94 21.20 31 1.70
CB-4.3630 15:12:52.7 30:44:45.1 21.25 22.56 21.23 22.08 16 1.39
CB-6.3662 15:12:53.0  32:12:42.1 21.24 22.05 19.50 20.69 20 1.47
CB-5.3492 15:12:53.5  31:18:37.0 20.75 21.68 19.50 20.78 32 1.71
CB-4.3605 15:12:53.7 30:34:31.9 19.24 20.89 19.78 21.33 7 2.95
CB-6.3631 15:12:54.1 32:05:54.8 20.58 21.39 s cee 47 1.87
CB-5.3459 15:12:54.4  31:15:54.4 18.48 19.24 17.38 18.23 82 1.82
CB-5.3404 15:12:55.0  31:31:06.1 19.63 20.98 19.80 21.09 62 2.26
CB-6.3566 15:12:55.5  32:04:31.7 18.58 20.45 18.07 20.01 120 3.80
CB-5.3393 15:12:56.0 31:19:18.3 21.32 21.70 21.31 21.92 25 1.52
CB-6.3498 15:12:56.5  32:13:33.6 21.22 22.08 20.50 21.70 25 1.62
CB-5.3366 15:12:56.8 31:16:07.4 19.07 19.72 18.22 18.97 56 1.68
CB-5.3339 15:12:57.0  31:26:43.7 22.22 22.60 21.07 21.74 6 0.88
CB-00.50 15:12:57.3 32:05:03.1 s L 21.11 22.21 27 1.73
CB-6.3494 15:12:57.7 31:56:26.1 19.67 20.57 19.11 20.23 58 1.98
CB-4.3374 15:12:58.0 30:43:49.8 21.43 22.46 21.61 22.13 27 2.42
CB-5.3293 15:12:58.1 31:24:06.1 20.69 21.52 cee o-- 34 1.74
CB-00.49 15:12:58.8  32:07:36.1 .- --- 20.47 21.88 28 1.91
CB-6.3341 15:13:00.3  32:09:02.9 21.73 22.24 19.86 21.06 18 1.39
CB-4.3250 15:13:00.8 30:45:30.4 21.52 22.07 20.12 21.34 22 1.43
CB-00.41 15:13:03.4 30:30:03.3 e .. 22.08 22.54 13 1.24
CB-6.3198 15:13:03.6 32:12:46.6 18.35 19.71 18.27 19.74 110 2.63
CB-5.3045 15:13:04.6  31:24:44.2 19.87 20.93 19.09 20.10 55 2.04
CB-6.3192 15:13:04.9  31:54:29.2 22.62 22.44 21.49 21.85 7 0.92
CB-6.3096 15:13:06.2  32:07:08.3 21.75 22.01 21.36 21.63 18 1.25
CB-5.2955 15:13:06.5 31:26:46.0 21.53 22.26 20.92 22.03 14 1.38
CB-6.3058 15:13:06.8  32:11:04.1 19.99 21.04 19.38 20.24 51 2.05
CB-6.3022 15:13:07.8  32:08:19.5 19.99 21.13 19.63 21.19 48 2.13
CB-00.44 15:13:07.9  31:20:47.8 .- ce. 21.07 22.04 14 1.68
CB-00.1 15:13:08.4  30:40:03.1 22.16 22.79 20.53 2217 11 1.33
CB-6.2965 15:13:08.9 32:13:46.0 17.99 18.83 16.77 17.74 89 1.94
CB-5.2821 15:13:10.4  31:24:35.0 21.19 22.09 20.64 21.33 21 1.42
CB-6.2908 15:13:10.6  32:10:50.5 19.67 20.40 19.23 19.92 50 1.69
CB-5.2791 15:13:11.5 31:18:43.6 19.45 20.44 18.81 19.77 63 2.14
CB-00.48 15:13:11.5  32:00:36.6 ce- ce 20.77 21.92 18 1.44
CB-6.2855 15:13:11.7 32:13:56.8 21.26 22.41 20.07 20.95 23 1.87
CB-4.2824 15:13:11.8  30:44:12.5 21.27 22.11 20.37 21.81 22 1.55
CB-00.51 15:13:12.8  32:09:46.2 see ce 20.95 21.82 27 1.78
CB-6.2827 15:13:13.3  31:56:42.3 20.80 21.59 19.39 20.44 27 1.59
CB-5.2666 15:13:14.6  31:24:08.5 20.92 21.75 20.59 21.63 22 1.71
CB-4.2750 15:13:14.8  30:30:04.5 21.10 22.31 20.91 21.68 23 1.98
CB-00.46 15:13:15.0 31:28:57.4 .- o 21.21 22.00 18 1.71
CB-6.2689 15:13:15.7 32:07:54.9 21.80 22.57 21.33 21.77 13 1.30
CB-5.2582 15:13:16.1 31:27:33.3 20.05 21.09 20.35 21.23 55 2.07
CB-5.2587 15:13:16.6  31:19:11.5 18.85 19.93 18.15 19.20 84 2.25
CB-6.2665 15:13:16.7 31:58:49.5 20.89 21.75 20.22 21.74 29 1.74
CB-4.2642 15:13:17.1 30:31:06.8 21.20 21.68 22.78 21.87 16 1.44
CB-4.2613 15:13:17.1 30:39:09.9 22.24 22.64 21.52 21.99 10 1.09
CB-6.2588 15:13:17.6  32:14:19.3 21.05 21.84 21.00 21.67 34 1.80
CB-00.39 15:13:18.5  30:31:24.5 ce ce . 21.53 22.13 9 1.41
CB-6.2547 15:13:18.8  32:09:21.9 20.19 20.91 19.70 20.35 51 1.82
CB-00.45 15:13:19.9  31:19:26.0 s i 21.41 21.90 15 1.41
CB-6.2492  15:13:20.3 32:08:52.5 20.89 22.12 20.11 21.18 37 206
CB-6.2517 15:13:20.4  31:56:15.0 18.99 20.05 18.35 19.43 89 2.29
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CB-4.2480 15:13:20.5 30:31:48.7 21.23 22.03 19.98 21.17 23 1.68
CB-6.2479  15:13:21.1  32:03:15.1 21.08 22.05 20.50 21.56 27 1.68
CB-4.2421 15:13:21.2  30:38:58.0 22.33 2294 2097 22.10 T 097
CB-5.2306  15:13:22.6 31:30:04.8 21.88 22.46  20.23 21.02 16 1.29
CB-6.2422 15:13:22.6  32:05:30.5 19.85 20.83 19.94 20.37 17  1.64
CB-5.2314  15:13:22.8 31:22:33.1 21.63 22.02  19.72 20.56 20 1.40
CB-4.2355 15:13:23.2  30:29:40.4 21.36 21.93 20.06 21.31 21 1.47
CB-5.2270  15:13:23.4  31:32:17.6 22.70 22.58 21.36 21.98 15 1.20
CB-4.2308  15:13:23.7 30:45:12.2 19.51 20.53 19.44 20.61 59 2.05
CB-6.2377  15:13:23.8 32:00:30.0 20.42 21.28 19.92 21.11 40 1.82
CB-4.2305 15:13:24.3  30:34:38.6  20.24 21.08 20.40 21.48 47 1.89
CB-6.2294 15:13:25.0  32:13:47.3 20.40 21.46  20.08 21.34 36 1.84
CB-5.2214 15:13:25.3  31:22:41.6 21.70 22.13  20.38 21.23 12 1.07
CB-4.2244 15:13:25.5  30:44:25.5 18.06 19.39 17.27 18.55 106 2.63
CB-6.2292 15:13:25.9  31:57:59.2 18.30 19.58 17.43 18.68 111 2.78
CB-4.2212  15:13:26.6  30:41:25.5 19.38 20.29 18.48 19.53 61 1.92
CB-00.43  15:13:26.7 31:20:51.1 vee cee 19.95 21.31 40 2.39
CB-6.2201 15:13:27.8  32:04:54.2 20.38 21.59  20.24 21.13 37 1.85
CB-5.2036  15:13:28.6 31:33:03.9 19.84 21.12  20.07 20.97 58 2.42
CB-6.2104 15:13:29.5  32:10:59.0 20.86 2211 19.47 20.46 33 1.94
CB-6.2124 15:13:29.5  32:02:55.7  22.19 22.61 20.23 21.51 6 0.92
CB-5.1971 15:13:30.4  31:23:00.8 19.99 21.39 20.26 21.44 64 2.50
CB-5.1926  15:13:30.6  31:34:44.3 20.39 21.81 21.00 21.76 46  2.27
CB-6.2055 15:13:30.8  32:05:03.1 16.56 19.22 16.50 18.90 391 5.24
CB-5.1954 15:13:31.0 31:19:39.9 18.68 19.52 18.06 18.81 27 1.59
CB-6.2008 15:13:31.7 32:04:26.4 17.96 19.48 17.79 19.29 145 3.08
CB-5.1895 15:13:32.4 31:17:51.6 21.00 22.20 21.23 21.52 21 1.72
CB-5.1843  15:13:33.3  31:22:33.1 17.31 19.16 16.85 18.45 276 3.86
CB-5.1797  15:13:34.6  31:24:37.5 19.77 20.80 18.47 20.02 56 2.06
CB-5.1755 15:13:35.3  31:27:23.9 18.97 19.75 17.97 18.84 67 1.86
CB-5.1709  15:13:36.7 31:22:10.1 17.25 18.99 17.07 18.74 192 3.8
CB-5.1667 15:13:38.1  31:21:35.3  20.37 21.08 20.13 20.35 23  1.55
CB-5.1622 15:13:38.8  31:28:14.2 17.83 19.65 17.84 19.75 187 3.26
CB-5.1581 15:13:39.7  31:32:49.2 14.90 16.96 13.42 15.29 220 3.53
CB-5.1543  15:13:41.0 31:28:47.0 20.43 20.84 18.47 19.30 33 1.49
CB-11.7144 15:15:24.0  31:26:15.4 19.98 21.60 19.61 20.91 57 2.70
CB-11.7093 15:15:25.1 31:30:19.3  22.31 22.57 s .. 11 1.28
CB-11.7029 15:15:26.6 31:30:47.7 17.75 19.33 17.12 18.53 181 3.20
CB-11.6955 15:15:28.7  31:31:31.7 17.51 18.51 16.38 17.54 115 2.28
CB-11.6958  15:15:29.1  31:20:49.0 20.53 21.34 20.03 21.42 37 1.81
CB-11.6922 15:15:29.8  31:31:08.7 20.52 21.45 19.49 20.79 43 1.96
CB-11.6889  15:15:30.6  31:34:25.3  22.39 23.15 cee - 8 148
CB-11.6800 15:15:32.9  31:30:30.7 22.16 23.13 8 1.77
CB-11.6798  15:15:33.3  31:23:50.8 21.24 22.05 26 1.57
CB-11.6746  15:15:34.8 31:16:26.0 20.18 21.43 cee oo 45  2.21
CB-11.6635 15:15:37.1  31:33:22.6 19.28 20.30 19.37 20.17 69  2.04
CB-11.6401 15:15:43.0  31:20:38.0 22.34 22.78 - s 7 094
CB-11.6355 15:15:44.3  31:25:48.2 21.67 22.71 o e 14 1.96
CB-11.6354 15:15:44.6  31:14:55.1 19.57 20.83 20.14 21.08 58 2.36
CB-11.6318 15:15:45.0 31:32:09.9 21.77 22.59 20.91 21.70 13 1.21
CB-11.6097 15:15:50.4  31:33:33.0 21.68 22.35 20.59 21.72 12 1.16
CB-11.6101 15:15:50.5  31:24:28.4 20.63 21.50  20.20 21.17 34 1.70
CB-11.5861 15:15:56.0  31:20:55.8 22.08 22.78 cee s 8 1.32
CB-11.5627  15:16:00.3 31:16:54.1 22.58 22.74 7 0.83
CB-11.5467 15:16:03.9  31:24:41.8 22.29 22.70 7 0.94
CB-11.5458  15:16:04.3  31:20:33.3 21.12 2237 22 1.70
CB-11.5406  15:16:05.3 31:17:03.4 22.72 22.90 s s 11 1.22
CB-11.5351 15:16:06.4  31:23:22.1 21.04 21.92  20.59 22.10 31 1.72
CB-11.5036  15:16:14.1 31:25:48.2 18.49 19.80 17.92 19.21 84 272
CB-11.4878 15:16:18.0 31:21:56.9 22.12 22.75 20.05 21.89 7 1.18
CB-11.4828  15:16:19.0 31:18:55.4 20.20 21.58 21.03 22.09 55 2.58
CB-11.4703  15:16:22.0 31:32:21.9 20.29 21.03 20.46 21.19 40 1.78
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CB-11.4654 15:16:23.5 31:31:23.6 21.04 22.56 o Lo 18 1.90
CB-11.4629 15:16:24.3  31:33:23.9 21.63 22.54 22.41 22.49 18 1.43
CB-11.4641 15:16:24.5  31:15:20.2 22.13 22.63 e 13 1.68
CB-11.4459 15:16:29.0 31:20:33.0 16.99 20.25 22 2.06
CB-11.4359 15:16:31.0 31:22:00.9 21.72 22.87 12 2.10
CB-11.4259 15:16:33.2  31:26:37.2 22.17 22.81 cee Lo 8 1.09
CB-7.4877 15:16:35.0 28:30:48.6 19.82 20.84 20.37 21.32 55 2.04
CB-11.4075 15:16:37.7 31:28:18.4 22.21 22.77 ce ces 9 1.03
CB-7.4716 15:16:38.0 28:30:46.8 19.27 20.28 19.17 20.10 69 2.19
CB-11.3983 15:16:39.9  31:29:17.3 19.11 21.12 20.22 21.62 107 3.39
CB-7.4571 15:16:40.8 28:23:29.9 20.78 22.02 20.18 21.29 30 1.97
CB-11.3930 15:16:41.3 31:24:27.1 22.45 22.85 s .- 6 0.93
CB-11.3926 15:16:41.5 31:17:33.7 22.32 22.89 - .- 6 0.97
CB-7.4544 15:16:41.9 27:58:57.2 21.96 22.56 21.55 22.07 8 1.11
CB-7.4515 15:16:42.0  28:24:13.1 19.78 20.77 19.09 20.27 48 2.01
CB-7.4501 15:16:42.7 27:58:16.8 19.71 20.32 19.68 20.36 50 1.61
CB-11.3876 15:16:42.9  31:23:25.8 22.26 22.67 ... .. 7 093
CB-7.4452 15:16:43.1 28:30:32.7 21.52 21.96 21.15 21.95 21 1.33
CB-00.57 15:16:43.7 27:59:49.5 ce cee 21.56 21.99 8 1.08
CB-11.3809 15:16:44.5 31:16:04.9 22.23 23.16 7T  1.46
CB-00.60 15:16:44.9 28:33:58.9 ses v 21.37 21.95 13 1.22
CB-11.3769 15:16:45.4 31:19:18.4 22.38 22.97 cee B 8 093
CB-7.4360 15:16:45.4  28:23:35.6 20.81 22.15 20.47 21.76 28 1.90
CB-7.4329 15:16:46.8 27:45:18.4 19.48 20.97 19.25 20.74 75 2.92
CB-7.4266 15:16:47.2  28:29:49.6 19.40 20.37 18.99 20.11 64 2.03
CB-7.4293 15:16:47.5 27:42:49.7 21.23 22.12 19.78 21.36 20 1.44
CB-7.4220 15:16:48.1 28:25:46.9 19.18 20.54 19.08 20.60 75 2.40
CB-11.3642 15:16:48.4 31:33:11.9 20.08 21.20 19.57 20.71 46 2.11
CB-7.4250 15:16:48.5 27:44:41.9 19.17 20.32 17.97 19.02 75 2.67
CB-11.3629 15:16:48.9  31:29:13.9 20.57 21.40 19.67 20.54 21 1.56
CB-7.4211 15:16:49.1 27:51:04.1 19.41 20.20 19.18 20.01 54 1.84
CB-11.3622 15:16:49.3 31:16:02.1 16.93 18.59 16.25 17.75 305 3.70
CB-00.56 15:16:50.3  27:59:04.4 ce. s 20.71 21.86 26 1.62
CB-11.3559 15:16:50.8  31:22:55.9 22.34 22.97 <. .. 7 1.16
CB-7.4084 15:16:51.4  28:29:14.0 20.70 22.02 21.38 21.86 32 1.94
CB-7.4113 15:16:51.6 27:54:16.4 21.72 22.15 20.13 21.05 13 1.21
CB-11.3525 15:16:51.6 31:25:22.8 20.64 21.35 19.47 20.58 37 1.75
CB-8.4144 15:16:51.9 28:38:39.2 18.03 18.95 16.75 17.76 124 2.40
CB-00.58 15:16:52.4  28:22:41.6 cee v 20.48 21.38 20 2.07
CB-7.4026 15:16:53.3  27:46:02.0 21.90 22.54 20.74 21.73 13 1.27
CB-11.3457 15:16:53.4  31:23:59.2 22.03 22.72 21.83 22.20 13 1.36
CB-11.3442 15:16:53.5 31:32:31.5 15.60 17.38 13.87 15.25 374 3.49
CB-7.3972 15:16:54.5 27:45:14.8 20.60 21.47  20.15 21.38 32 1.70
CB-7.3940 15:16:55.1 27:54:28.2 20.98 21.70 20.51 21.61 24 1.49
CB-11.3356 15:16:55.8 31:34:19.4 19.87 20.84 18.84 19.90 59 2.00
CB-7.3889 15:16:55.8  28:01:00.9 21.05 2237 -20.81 21.92 26 1.92
CB-11.3317 15:16:57.3  31:27:38.9 20.39 21.77 ces e 40 2.18
CB-7.3802 15:16:57.9 27:46:20.6 21.00 21.56 19.85 20.78 26 1.53
CB-7.3774 15:16:58.2  28:00:46.3 21.80 22.45 19.94 21.26 15 1.35
CB-7.3716 15:16:59.5 27:47:21.8 20.59 21.26 20.56 21.16 12 1.14
CB-7.3678 15:16:59.6 28:27:55.2 19.46 20.45 18.43 19.55 33 2.02
CB-7.3664 15:17:00.6 27:48:58.9 19.65 20.48 19.48 20.44 53 1.86
CB-11.3168 15:17:01.0 31:26:44.4 21.80 22.72 s S 11 1.36
CB-7.3498 15:17:03.8 27:44:38.2 20.31 21.33 18.46 20.01 13 1.47
CB-7.3451 15:17:04.8 27:59:01.1 21.27 21.73 20.74 21.26 17 1.35
CB-7.3417 15:17:05.6  27:44:00.8 21.253 22.06 20.66 21.78 12 1.19
CB-7.3389 15:17:06.3  27:49:35.2  21.50 22.52 21.58 21.92 18 1.37
CB-7.3350 15:17:06.5 28:25:59.5 19.10 20.01 18.19 19.49 77 2.08
CB-7.3306 15:17:07.7 28:22:21.3 20.80 21.51 19.44 20.62 31 1.62
CB-7.3294 15:17:08.6 27:48:51.0 19.63 21.00 19.66 20.68 65 2.39
CB-7.3272 15:17:09.2 27:42:54.6 19.94 20.75 19.94 20.64 45 1.83
CB-00.52 15:17:10.0 27:51:53.0 e cee 20.95 21.93 26 2.23



83

TABLE 2.6— Continued

RA

Object Dec. Gtot Geore Tiot Tcore Area irl

{1950) @y 0
CB-7.3185 15:17:10.4  28:26:53.2 19.33 20.49 18.93 20.07 68 2.26
CB-7.3183 15:17:11.2 27:45:04.6 21.63 2213 19.96 21.02 14 1.21
CB-00.59 15:17:11.4  28:35:32.1 eee v 21.58 21.87 6 0.93
CB-7.3157 15:17:11.6 27:53:06.6 21.14 21.86 20.51 21.62 18  1.45
CB-7.3107 15:17:11.9 28:28:50.0 19.47 20.49 18.77 19.71 64 2.02
CB-7.3086 15:17:13.0 27:51:33.7 20.92 21.80 19.84 20.95 25 1.64
CB-7.3035 15:17:14.2 27:45:06.1 21.01 21.99 19.94 21.30 19 1.45
CB-7.3009 15:17:14.2 28:23:26.1 18.95 20.34 18.48 19.46 80 2.54
CB-7.3007 15:17:14.7 27:56:57.1 21.44 22,10 21.55 21.39 15 1.31
CB-00.53 15:17:15.2 27:53:26.8 e cen 21.06 21.86 19 1.56
CB-7.2972 15:17:15.3 28:26:18.9 18.70 19.95 18.34 19.55 92 2.48
CB-7.2980 15:17:15.6 27:44:38.5 22.10 22.53 20.37 21.50 10 1.18
CB-7.2841 15:17:18.1  28:26:45.8 20.09 21.13 20.14 20.93 38 1.78
CB-7.2834 15:17:18.7 27:47:43.0 20.59 21.58 20.31 21.65 40 2.13
CB-7.2777 15:17:19.6  27:45:23.3 19.37 21.01 19.70 21.12 77T 2.65
CB-8.2789 15:17:19.9 28:36:36.0 18.31 19.96 18.13 19.66 95  3.00
CB-00.54 15:17:20.4 27:57:22.9 cee oo 21.35 22.00 13 1.74
CB-7.2650 15:17:21.7 28:25:15.9 21.28 21.70 ce- s 11 1.08
CB-7.2655 15:17:22.2  27:50:44.5 19.26 20.32 18.65 19.95 73 2.15
CB-7.2638 15:17:22.5 27:58:37.0 21.97 22.56 21.06 21.81 13 1.28
CB-8.2625 15:17:23.1  28:36:37.7 21.06 2216  22.05 22.09 25 1.77
CB-7.2536 15:17:24.0 28:26:02.0 18.67 20.11 18.38 19.68 102 2.64
CB-7.2561 15:17:24.1  27:45:42.1 22.01 22.43  21.23 21.79 11 1.09
CB-7.2473 15:17:25.3 28:23:07.8 20.30 2119 19.21 20.19 16  1.41
CB-00.55 15:17:26.0 27:59:08.9 cen v 21.36 22.06 30 1.73
CB-7.2452  15:17:26.1 27:45:19.7 19.27 20.62 18.76 20.20 51 215
CB-8.2463 15:17:26.4 28:34:03.8 20.61 21.20 20.99 21.27 17 1.37
CB-7.2408 15:17:26.5 28:23:40.6 19.44 20.83 18.65 20.05 64 2.59
CB-8.2404 15:17:27.5 28:38:16.1 21.24 21.81 20.12 21.31 26 1.79
CB-7.2343  15:17:28.1 27:43:53.2 19.52 20.69 18.45 19.78 28 1.74
CB-8.2343 15:17:28.9 28:39:21.1 22.34 22.57  21.49 21.86 7  0.90
CB-7.2266 15:17:29.6 27:49:56.0 19.17 20.46 18.42 19.67 84  2.47
CB-7.2186 15:17:31.5 27:54:53.3 18.29 19.40 17.81 18.90 98  2.42
CB-7.2189 15:17:31.5 27:44:36.7 19.57 20.36 18.66 19.70 47 1.70
CB-7.1983 15:17:35.9 27:54:36.8 19.34 20.43 18.58 19.77 70 2.15
CB-10.1333 15:17:46.3 30:43:48.9 19.97 21.75 20.46 21.58 57 2.69
CB-10.1292 15:17:47.4 30:41:08.9 21.14 22.12  19.41 20.97 22 1.65
CB-10.1291 15:17:47.5 30:30:52.0 18.59 20.05 18.63 20.10 104 2.64
CB-10.1258 15:17:48.7 30:27:33.7 19.76 20.46 19.61 20.15 44 1.59
CB-10.1243 15:17:48.8 30:40:50.2 21.67 22.09 20.16 21.22 13 1.15
CB-10.1081 15:17:53.2  30:40:15.7 19.57 20.87 19.07 20.77 61 2.27
CB-10.1076 15:17:53.4 30:25:01.8 19.33 20.56 19.48 21.02 80 2.48
CB-10.860 15:17:58.8 30:26:45.9 21.59 21.93 20.42 21.07 10 1.06
CB-10.724 15:18:02.8 30:32:12.5 20.68 21.78  20.40 21.05 31 1.81
CB-10.676 15:18:04.2 30:35:30.1 21.74 2227 20.54 21.67 11 1.10
CB-10.659 15:18:04.8 30:30:54.5 20.41 21.16  20.19 21.22 38 1.73
CB-10.602 15:18:06.6 30:34:51.8 20.55 21.39 19.68 21.11 33  1.67
CB-10.585 15:18:06.9 30:33:28.4 21.64 22.49 20.33 21.23 14 1.29
CB-10.557  15:18:07.7 30:26:27.3 19.22 19.87 18.66 19.45 52 1.60
CB-10.524 15:18:08.4 30:36:11.1 20.24 21.87 19.92 21.04 46  3.23
CB-10.521 15:18:08.7 30:30:37.5 21.66 22.30 21.03 22.05 12 1.25
CB-10.379 15:18:12.6 30:33:36.5 19.56 20.15 18.95 19.91 33 1.48
CB-00.69 15:18:16.4 30:27:45.6 s cen 21.51 22.38 19 1.62
CB-10.175 15:18:17.4  30:27:05.8 19.47 20.58 19.27 20.29 73 2.18
CB-10.60 15:18:20.6 30:26:18.3 19.92 20.77  19.55 20.60 45 1.82
CB-00.68 15:18:21.1 30:43:28.6 .- L 20.35 21.77 31 1.82
CB-16.10942 15:18:23.5 30:32:24.0 20.43 20.94 19.89 20.68 31 1.46
CB-16.10907 15:18:24.4 30:39:15.4 19.60 20.64 18.68 19.94 66 2.34
CB-15.10592 15:18:24.8 29:42:37.0 18.86 19.58 18.29 19.06 60 1.78
CB-00.70  15:18:25.8 30:33:18.6 .- e 20.74 21.50 19 1.77
CB-13.11937 15:18:29.6 28:18:01.5 18.99 20.40 19.33 20.70 91 2.68
CB-15.10357 15:18:29.7 29:46:09.3 20.71 21.86 e se 50 2.36
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CB-16.10681 15:18:29.7 30:27:59.5 18.03 19.43 18.04 19.39 131 2.73
CB-15.10321 15:18:30.2 29:36:17.4 21.72 22.35  21.28 21.72 15 1.18
CB-15.10271 15:18:31.1  29:36:57.9 18.49 19.31 17.54 18.38 53 1.79
CB-15.10249  15:18:31.4 29:43:28.2 18.17 18.91 16.28 17.29 84 1.84
CB-13.11822  15:18:32.0 28:17:32.7 19.72 20.88 19.45 20.57 55 2.19
CB-15.10207 15:18:32.8 29:34:20.9 19.94 20.99 18.97 20.47 66 2.55
CB-13.11765 15:18:33.4 28:21:12.3 19.06 20.15 18.45 19.68 81 2.22
CB-15.10152  15:18:34.0 29:44:34.9 20.25 21.12  20.45 21.17 40 1.74
CB-15.10144  15:18:34.1  29:32:59.7 20.21 20.87 19.71 20.60 41 1.70
CB-16.10521 15:18:34.2 30:39:27.6 18.24 19.45 18.23 19.38 103 2.38
CB-15.10139  15:18:34.3 29:36:11.1 19.64 20.79 19.64 20.74 61 2.18
CB-15.10123  15:18:34.9 29:47:07.2 22.01 22.29  20.42 20.98 8 1.06
CB-16.10500 15:18:35.0 30:42:14.9 19.03 19.79 17.73 18.59 61 1.85
CB-16.10486  15:18:35.2  30:44:57.3 18.92 19.78 17.91 18.82 78 1.98
CB-13.11678 15:18:35.2 28:18:15.8 20.98 21.70 20.12 20.91 28 1.68
CB-15.10089 15:18:35.8 29:42:51.7 22.15 22.64 20.29 21.60 13 1.22
CB-15.10082 15:18:36.0 29:34:04.6 20.26 20.78 20.26 21.10 34 141
CB-13.11647 15:18:36.2  28:10:44.6 19.47 20.62 18.94 19.99 81 2.69
CB-13.11629  15:18:36.7 28:13:41.3 19.24 20.36 18.13 19.33 74 230
CB-16.10422 15:18:36.8 30:42:41.9 17.46 18.89 16.75 18.14 177  3.05
CB-15.10045 15:18:36.9 29:48:10.9 21.69 21.99 20.23 20.82 19 1.27
CB-13.11590  15:18:37.5 28:16:14.4 22.04 22.60 20.62 21.73 10 1.09
CB-16.10397  15:18:37.7 30:34:28.5 17.93 18.74 16.64 17.66 71 1.85
CB-15.10000 15:18:38.0 29:33:28.0 20.59 21.16 19.55 20.50 18 1.37
CB-15.10001 15:18:38.0 29:39:45.7 20.30 21.33 18.99 20.78 45 1.98
CB-13.11547  15:18:38.5 28:23:44.3 19.06 19.67 18.06 18.80 57 1.60
CB-16.10344  15:18:39.1 30:38:26.2 17.40 19.52 17.54 19.45 207 3.78
CB-15.9943  15:18:39.5 29:37:23.4 21.35 21.82  20.65 21.20 20 1.38
CB-13.11475 15:18:39.9 28:13:52.9 19.87 21.10  19.83 21.12 47 1.99
CB-16.10266  15:18:40.9 30:53:48.0 20.43 2117  21.16 21.88 38 1.79
CB-15.9848 15:18:41.7 29:30:23.2 19.89 20.89 19.38 20.49 57 2.15
CB-00.5 15:18:43.3  28:22:34.4 .- ... 21.06 21.78 19 1.42
CB-14.10094 15:18:47.0  28:48:58.9 19.71 20.80 19.36 20.91 63 217
CB-16.10009 15:18:47.3 30:41:32.8 20.39 21.49 20.31 21.55 30 195
CB-13.11111 15:18:47.4  28:06:49.3 19.36 20.58 18.72 19.78 69 233
CB-16.9958 15:18:48.3 30:45:09.8 20.58 21.37  20.46 21.40 30 1.70
CB-14.10021 15:18:48.6  28:51:53.6 20.14 20.63 19.22 19.90 39 1.43
CB-13.11049 15:18:48.8 28:14:11.3 20.98 21.29 21.31 22.04 23 1.28
CB-16.9930  15:18:49.0 30:49:06.4 20.85 21.92 20.99 21.75 26 1.61
CB-15.9510 15:18:49.7 29:46:58.1 20.74 21.56  20.77 21.77 34 2.06
CB-14.9937 15:18:50.7 28:54:03.6 19.30 19.99 18.28 19.06 59 1.70
CB-15.9452  15:18:50.9 29:42:27.1 22.29 22.65 21.51 22.00 9 1.01
CB-15.9435 15:18:51.2 29:38:39.6 19.30 20.59 18.74 20.18 83 2.56
CB-13.10933 15:18:51.4 28:12:38.5 20.92 21.63 20.97 21.54 32 1.76
CB-14.9914  15:18:51.4 28:54:25.1 21.14 21.84 20.83 21.81 24 1.54
CB-16.9835 15:18:51.5 30:50:50.3 19.34 20.57  19.77 20.61 71 2.74
CB-16.9784  15:18:52.8 30:46:02.4 19.30 20.18 18.62 19.68 68  2.00
CB-15.9348 15:18:53.5 29:29:54.6 20.19 20,94 19.68 20.57 44 1.74
CB-16.9748 15:18:53.5 30:47:43.0 20.27 20.74 20.05 20.86 35 143
CB-14.9824 15:18:53.6  28:49:26.7 21.01 21.84 20.96 21.88 25 1.60
CB-14.9814 15:18:53.8 28:37:11.3 20.79 21.47  20.97 21.64 38 1.83
CB-14.9777 15:18:54.8 28:51:46.7 21.55 22.15 20.82 21.79 15 1.21
CB-14.9745 15:18:55.5 28:37:20.2 18.90 20.05 18.76 19.72 84 2.26
CB-00.66 15:18:55.9  30:50:54.8 .- e 21.37 22.06 23 1.90
CB-14.9655 15:18:57.3  28:46:24.4 20.62 21.18 20.44 21.53 30 1.53
CB-14.9649 15:18:57.6 28:41:48.8 18.32 20.73 18.96 21.06 205 4.48
CB-00.10 15:18:58.1  29:33:04.4 pe ces 20.32 21.59 28 1.77
CB-13.10503  15:19:00.4 28:14:14.4 21.07 21.77  20.31 21.39 30 1.78
CB-16.9396  15:19:00.4 30:39:25.8 18.58 20.77  18.64 20.84 162 4.69
CB-14.9351 15:19:04.0 28:38:08.1 20.64 21.35 20.34 21.08 28 1.54
CB-15.8857  15:19:04.4 29:39:48.5 19.69 20.84 19.47 20.83 66 2.41
CB-13.10283  15:19:04.7 28:14:09.1 19.95 21.07  19.67 20.87 48 2.01
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CB-15.8799 15:19:06.2  29:40:12.7 21.74 22.28 21.50 21.77 10 1.14
CB-14.9252 15:19:06.3  28:49:01.1 19.05 19.78 18.47 19.34 65 1.79
CB-16.9171 15:19:06.4 30:45:34.9 21.30 21.83 20.59 21.01 13 1.97
CB-16.9084 15:19:08.0 30:45:45.5 15.34 17.92  14.75 17.42 7 2.74
CB-16.9089 15:19:08.0  30:52:09.5 19.06 20.82 18.71 20.46 111 3.60
CB-16.9069 15:19:08.3 30:51:46.5 20.32 21.13 20.03 20.98 36 1.80
CB-15.8577 15:19:10.9 29:32:30.5 21.21 21.75 20.56 21.84 26 1.53
CB-14.8959 15:19:12.5 28:39:51.4 19.66 20.26 19.07 19.98 45 1.56
CB-14.8914 15:19:13.4  28:42:56.3 21.95 2290 21.23 22.22 12 1.31
CB-15.8460 15:19:13.7  29:34:25.3 20.93 21.54 20.98 21.26 9 1.05
CB-16.8747 15:19:15.1 30:50:23.2 18.97 20.06 18.27 19.50 55 2.05
CB-15.8401 15:19:15.3  29:35:53.0 20.91 21.60  20.41 21.38 37 1.78
CB-14.8776 15:19:16.5  28:45:47.4 21.50 22.60 21.41 22.28 20 1.95
CB-16.8685 15:19:16.5 30:41:55.6 22.70 23.11 20.49 21.96 6 1.02
CB-15.8300 15:19:17.7 29:35:58.7 20.26 21.25 20.21 20.95 37 1.84
CB-17.8020 15:19:17.8 30:57:22.5 19.18 20.36 19.66 20.64 71 2.23
CB-14.8696 15:19:18.0 28:49:25.1 21.81 2236  21.54 22.09 8 1.01
CB-14.8633 15:19:19.1 28:41:44.9 19.43 20.61 19.67 20.79 65 2.15
CB-16.8533 15:19:20.0 30:46:53.5 18.55 19.54 18.17 19.14 44 1.88
CB-13.9518 15:19:20.1 28:25:29.7  20.79 22.21 21.03 21.92 27 1.88
CB-16.8458 15:19:21.6  30:40:42.2 19.05 20.49 18.77 20.17 91 2.90
CB-00.67 15:19:21.6  30:51:14.2 o s 21.92 22.08 8 1.18
CB-15.8115 15:19:21.7 29:29:47.0 19.56 20.96 19.31 20.88 66 2.58
CB-14.8463 15:19:22.8  28:40:49.7 21.69 2212 21.32 22.18 16 1.26
CB-15.8057 15:19:23.0 29:47:34.7 19.53 20.86 19.00 20.37 74 2.42
CB-16.8370 15:19:23.5 30:53:03.2 17.50 18.97 16.78 18.20 180 3.02
CB-16.8371 15:19:23.6  30:55:36.6 18.44 20.01 18.13 19.79 99 2.70
CB-15.7991 15:19:24.5 29:41:25.0 20.83 21.93 20.12 21.00 27 1.89
CB-13.9265 15:19:25.4 28:06:37.3 21.97 22.96  20.89 21.54 9 1.31
CB-16.8283 15:19:25.6  30:45:20.7 21.52 21.77 20.44 21.60 21 1.31
CB-16.8232 15:19:26.7 30:52:23.9 19.55 20.41 19.10 20.12 28 1.61
CB-16.8213 15:19:27.0 30:46:42.5 21.03 21.68 20.49 21.47 6 0.94
CB-15.7876 15:19:27.2 29:46:25.1 20.70 21.36  20.35 21.66 10 1.10
CB-15.7754 15:19:29.5  29:29:34.4 21.72 22.79 21.18 22.06 15 1.78
CB-00.4 15:19:29.7  28:08:06.9 s s 20.20 21.66 26 1.77
CB-14.8129 15:19:30.0 28:41:05.5 19.67 20.64 19.34 20.48 53 1.96
CB-16.8018 15:19:30.9 30:43:10.2 19.53 20.78 19.38 20.61 63 2.19
CB-16.7924 15:19:33.1 30:43:53.6  20.47 21.46 20.04 21.23 41 1.94
CB-13.8809 15:19:34.2  28:12:33.7 21.44 22.06 20.27 21.41 20 1.49
CB-16.7860 15:19:34.8 30:43:30.6 21.07 22.11 20.26 21.47 28 1.77
CB-16.7772 15:19:36.9 30:47:39.1 18.31 19.84 17.87 19.51 124 2.78
CB-13.8603 15:19:38.5  28:14:58.6 20.92 21.71 19.99 21.23 34 1.78
CB-14.7718 15:19:38.7  28:42:45.5 19.25 20.65 18.94 20.64 73 2.72
CB-13.8577 15:19:39.1 28:18:31.8 19.20 20.23 18.23 19.43 55 2.05
CB-00.6 15:19:40.4  28:41:33.6 ce cen 21.67 22.11 15 1.35
CB-15.7225 15:19:41.6 29:41:44.6 19.21 20.12 18.48 19.53 61 1.90
CB-15.7099 15:19:44.1 29:37:12.2 21.86 22.73 20.89 21.52 13 1.58
CB-17.6733 15:19:45.7 31:05:09.3 21.41 2218 19.55 21.08 15 1.53
CB-16.7387 15:19:46.7 30:47:42.9 22.58 22.56 20.14 20.98 11 1.07
CB-13.8116 15:19:47.7 28:13:35.3 19.23 21.25 20.83 21.39 74 3.80
CB-13.8072 15:19:48.4 28:06:11.7 19.01 20.45 18.99 20.26 95 2.63
CB-17.6607 15:19:49.1 30:59:02.8 18.90 19.56 16.96 17.90 64 1.68
CB-14.7245 15:19:49.3  28:45:40.3 19.40 20.21 19.31 20.12 61 1.89
CB-16.7284 15:19:49.3  30:49:22.6 19.06 20.00 18.68 19.53 67 2.01
CB-13.7997 15:19:49.8 28:22:43.4 20.17 21.11 19.86 20.96 44 1.94
CB-13.7943 15:19:50.9  28:23:24.4 20.43 21.33 19.79 20.75 34 1.68
CB-13.7890 15:19:51.6  28:13:22.9 21.43 22.07 20.67 21.80 24 1.59
CB-16.7175 15:19:52.1 30:48:20.0 18.68 19.74 18.58 19.88 84 2.17
CB-17.6473 15:19:52.4 30:58:11.8 19.17 2017 18.21 19.52 23 1.54
CB-15.6726 15:19:52.7 29:35:28.8 19.62 20.98 19.66 21.04 65 2.35
CB-14.7071 15:19:53.1  28:42:08.0 19.83 20.41 18.33 19.13 45 1.62
CB-17.6445 15:19:53.3  31:01:33.7 22.29 23.01 20.80 21.85 8 1.03
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CB-16.7111  15:19:53.5 30:54:20.8 21.64 22.44 2031 21.86 16 1.37
CB-15.6667 15:19:53.9 29:40:07.5 22.30 22.89 2045 21.71 12 1.20
CB-00.64 15:19:54.6 31:00:06.6 e <. 2173 22.25 19 1.45
CB-13.7735  15:19:54.8 28:06:19.1 20.18 21.32 18.95 20.20 46  2.35
CB-14.6982  15:19:55.5 28:49:15.0 21.48 21.72 20.03 20.35 11 1.11
CB-13.7691  15:19:55.8 28:24:57.5 18.54 19.88 18.03 19.43 87 2.48
CB-13.7658 15:19:56.3 28:16:02.6 18.20 19.56 17.48 18.65 84 245
CB-15.6487  15:19:57.7 29:31:03.7 21.58 22.17 21.15 21.69 17 1.35
CB-17.6220 15:19:59.0 31:00:59.0 18.87 19.93 1859 19.70 83 2.18
CB-13.7416  15:19:59.7 28:10:22.0 20.36 21.39 19.37 20.44 39  1.88
CB-15.6387  15:20:00.1  29:29:55.9 19.35 20.31 19.29  20.50 65 1.93
CB-16.6870  15:20:00.1 30:48:56.1 20.44 21.30 19.74 21.11 38 1.79
CB-17.6163  15:20:00.2 30:59:47.1 1889 1094 17.69 18.63 80 2.29
CB-13.7347  15:20:01.1 28:22:09.9 16.81 18.43 16.10 17.65 269 3.57
CB-14.6685  15:20:01.9 28:44:54.4 20.20 20.90 20.06 20.73 35  1.56
CB-15.6300 15:20:02.0 29:46:52.7 19.94 21.44 1870 20.22 55 2.35
CB-00.9  15:20:02.9  29:33:00.3 .- .- 2088 21.62 24 1.75
CB-15.6259  15:20:02.9 29:46:18.9 16.39 17.74 14.60 15.67 147  2.60
CB-15.6198  15:20:04.1 29:43:35.1 19.69 21.14 19.75 21.39 73 2.58
CB-15.6165  15:20:04.5 29:31:10.5 21.14 22.02 20.08 21.06 25 1.76
CB-13.7175  15:20:04.5 28:19:02.8 18.90 20.08 18.18 19.36 95  2.42
CB-17.5963  15:20:04.6 31:04:23.4 20.12 20.94 19.86 20.77 40 1.72
CB-15.6151  15:20:04.9 29:44:35.8 20.77 21.67 19.67 20.70 33 1.76
CB-00.8  15:20:05.8 29:33:54.6 .. <. 2129 21.83 15 1.34
CB-17.5901  15:20:05.9 31:02:06.0 21.69 22.45 21.26 21.94 14 1.28
CB-15.6092  15:20:06.0 29:46:50.2 19.01 19.63 18.33 19.01 63  1.67
CB-15.6037  15:20:07.1 29:37:24.4 19.21 1987 17.50 18.36 54 1.66
CB-14.6450  15:20:07.5 28:51:04.7 20.47 21.66 20.80 21.70 35 1.83
CB-15.6007  15:20:07.7 29:44:50.2 17.62 19.78 17.41 19.31 247  3.95
CB-16.6552  15:20:08.2 30:49:53.0 19.97 21.67 20.23 21.83 60 268
CB-00.7 15:20:08.6 29:33:07.3 . ... 2165 21.92 16 1.39
CB-15.5943  15:20:08.8 29:46:35.8 19.13 19.85 18.56 19.44 39 1.62
CB-15.5896  15:20:09.5 29:33:55.3 18.93 20.11 18.26 19.37 81 2.25
CB-16.6479  15:20:09.8 30:48:53.6 20.68 21.99 19.33 21.29 42 2.49
CB-14.6316  15:20:10.3 28:53:09.6 18.62 19.33 17.26 18.17 74 1.79
CB-14.6278  15:20:10.8 28:36:44.3 19.66 20.30 18.17 19.08 22 1.39
CB-14.6271 15:20:10.9 28:44:18.2 21.44 21.81 20.47 20.88 8 0.97
CB-16.6387  15:20:12.2  30:50:09.9 20.09 20.71 19.26 20.43 41 164
CB-15.5781  15:20:12.3 29:36:00.4 17.98 19.64 1811 19.74 148  3.10
CB-16.6330  15:20:13.9 30:48:25.2 21.18 21.51 19.82 20.64 24 1.33
CB-14.6053  15:20:16.2 28:47:01.6 21.16 21.84 20.19 21.74 23 1.44
CB-14.5987  15:20:17.4 28:44:17.6 18.21 19.58 17.83 19.13 45 2.10
CB-16.6137  15:20:19.1 30:49:15.0 21.72 22.68 20.52 21.55 16 1.61
CB-14.5787  15:20:21.3  28:47:47.4 20.54 22.13 20.93 22.10 36 2.10
CB-17.5122  15:20:23.1 31:07:18.8 19.91 21.03 19.50 21.12 59  2.21
CB-16.5896  15:20:25.2 30:48:13.7 18.70 20.08 18.44 20.04 105 2.63
CB-17.4988  15:20:26.4 31:02:39.7 20.21 21.01 19.26 20.69 48 2.06
CB-16.5819  15:20:27.4 30:48:49.4 21.34 22.07 20.73 21.88 19  1.40
CB-17.4872  15:20:29.1 31:00:29.4 22.76 22.69 20.90 21.51 9 1.20
CB-17.4773  15:20:31.2 31:03:02.7 21.83 22.52 20.80 21.72 12 1.24
CB-17.4655  15:20:33.4 31:03:18.1 20.51 21.38 20.77 21.53 34  1.80
CB-17.4618  15:20:34.3 31:02:52.0 18.55 20.05 1815 19.52 109 2.91
CB-17.4545  15:20:35.8 31:00:00.9 18.34 19.56 17.58 18.79 41 2.08
CB-17.4452  15:20:38.0  31:10:50.5 21.10 21.93 20.21 20.69 29 1.86
CB-00.63  15:20:38.1 30:59:55.1 e <. 2184 2223 6 1.07
CB-17.4347  15:20:40.4 31:12:18.8 17.25 18.87 16.75 18.10 269 3.56
CB-17.4312  15:20:41.2 31:16:43.4 18.62 19.72 17.69 18.86 102 2.43
CB-17.4229  15:20:43.3 31:14:08.1 18.70 19.88 18.41 19.72 88 2.35
CB-17.4204  15:20:43.8 31:08:13.2 17.07 18.24 . . 158 2.76
CB-17.4168  15:20:44.9 31:10:47.2 17.93 19.69 17.64 19.54 139 3.06
CB-17.4117  15:20:46.1  31:06:37.6 18.3¢ 19.17  16.59 17.65 75 1.90
CB-17.4081  15:20:46.9 31:07:19.4 20.27 21.04 1960 20.85 36 1.62
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CB-17.4009 15:20:48.5 31:09:17.6 19.45 20.85 19.19 20.54 49 2.28
CB-17.3918 15:20:50.1  31:08:13.7 21.62 22.52 21.13 21.73 14 1.46
CB-17.3813 15:20:52.6 31:11:27.2 18.84 20.63  19.10 20.87 123 3.13
CB-17.3749 15:20:53.7  31:09:38.7 21.88 22.70  20.91 21.68 14 1.40
CB-17.3589 15:20:57.3 31:04:47.1 19.17 20.25 18.70 19.98 72 2.13
CB-17.3556  15:20:58.0  31:05:27.8 20.25 21.27  20.18 21.42 39 1.86
CB-17.3487 15:20:59.7 31:09:34.3 19.89 21.06 20.36 21.65 45 2.18
CB-17.3459 15:21:00.0 30:59:15.7 20.66 21.63 20.13 21.25 30 1.69
CB-17.3446 15:21:00.8 31:16:15.6 21.68 22.25 cee ce 8 1.18
CB-17.3412 15:21:01.5 31:15:29.4 20.81 21.58 19.88 21.00 33 1.74
CB-17.3341 15:21:03.4 31:00:12.6 20.69 21.05  20.68 21.63 30 1.36
CB-16.3968 15:21:07.1  30:53:55.5 20.83 22.11 19.77 20.88 29 1.85
CB-17.3096 15:21:08.7 31:11:39.0 17.47 19.28 16.63 18.41 63  3.07
CB-17.3011 15:21:10.6 31:10:26.9 20.70 21.33 19.95 21.26 30 1.63
CB-17.2858 15:21:13.1 31:01:20.2 19.09 20.37  19.19 20.54 51 2.16
CB-17.2834 15:21:13.7  31:04:54.9 20.70 21.87 20.89 21.83 31 1.76
CB-17.2564 15:21:20.6  31:06:02.7 21.04 21.75 21.74 21.74 26 1.52
CB-17.2480 15:21:22.1 30:57:38.6 20.23 21.02 20.98 22.02 32 1.58
CB-17.2487 15:21:22.3 31:08:00.8 19.95 20.84 19.96 20.98 51 1.91
CB-17.2489 15:21:22.4  31:10:30.4 19.18 20.13 18.88 20.16 71 2.01
CB-17.2364 15:21:25.5 31:14:14.5 18.17 19.64 17.59 18.98 111 2.89
CB-17.2211 15:21:28.5 31:03:44.0 19.75 20.98 19.86 20.88 58 2.20
CB-17.2114 15:21:31.3 31:16:03.2 18.58 19.91 17.69 18.92 114 2.65
CB-17.2054 15:21:32.5 31:11:44.5 17.32 19.31 17.30 19.09 255 4.15
CB-17.1988 15:21:34.2 31:10:21.4 19.40 20.43 19.67 20.74 59 2.13
CB-17.1911 15:21:36.1 31:07:52.8 20.24 21.53 20.66 21.22 52 2.77
CB-17.1868 15:21:37.0 31:02:36.6 17.89 19.73 17.68 19.57 161 3.34
CB-17.1880 15:21:37.1  31:14:52.0 18.06 19.27 17.98 19.27 89 2.37
CB-17.1823 15:21:37.9 31:07:11.0 19.22 20.28 1847 19.72 19 1.48
CB-17.1559 15:21:44.2 31:21:52.5 18.73 19.78 18.11 19.08 7 2.08
CB-17.1525 15:21:45.1 31:15:52.2 20.61 21.28 21.10 21.39 32 1.64
CB-17.1479 15:21:46.5 31:24:28.4 20.25 20.71 19.95 20.77 37 1.41
CB-17.1436 15:21:47.3 31:18:55.7 17.45 18.53 16.06 17.30 143 2.64
CB-17.1392 15:21:48.4 31:19:21.4 18.98 20.15 18.70 19.47 41 2.14
CB-17.1344 15:21:50.0 31:23:44.8 18.27 19.50 17.69 18.97 120 2.56
CB-00.61 15:21:55.7  31:23:35.2 .. - 22.16 22.15 6 1.58
CB-17.946 15:22:00.5 31:34:06.4 18.98 19.69 18.21 18.90 61 1.69
CB-17.836 15:22:02.8 31:17:42.4 21.11 21.56  20.18 21.29 22 1.38
CB-17.802 15:22:03.6  31:24:23.8 18.17 19.69 17.91 19.18 141 3.00
CB-16.844 15:22:04.8  30:32:59.2 19.78 20.78 18.86 19.97 64 2.33
CB-17.752 15:22:05.0 31:32:43.5 20.98 21.77  19.98 20.96 26 1.59
CB-17.701 15:22:05.3 31:08:01.6 19.95 20.78 .- .- 10 1.16
CB-17.646 15:22:06.3  31:06:59.8 21.96 22.16  20.04 21.27 12 1.06
CB-16.728 15:22:07.1 30:35:40.9 20.62 21.86 19.67 20.89 40 2.49
CB-17.649 15:22:07.1  31:32:06.5 20.57 21.61 19.71 20.95 37  2.08
CB-17.584 15:22:08.4 31:25:33.3 20.25 21.61 20.09 21.16 41 2.00
CB-16.628 15:22:09.0 30:31:40.4 20.67 21.53 19.92 21.15 33 1.77
CB-00.62 15:22:09.2 31:13:17.6 e cee 21.30 22.10 21 1.81
CB-16.594 15:22:10.0 30:36:27.3 19.49 20.20 19.55 20.32 51 1.72
CB-16.456 15:22:12.5 30:26:16.6 18.17 19.40 17.82 19.08 27 1.67
CB-16.447 15:22:13.2 30:38:36.3 22.18 22.35 19.94 21.13 11 0.98
CB-16.414 15:22:13.3  30:21:51.5 20.00 20.76 19.40 20.45 42 1.77
CB-17.368 15:22:13.6 31:16:48.4 17.57 18.98 16.96 18.35 182 291
CB-17.356 15:22:13.9 31:17:04.4 20.28 21.15 19.73 20.77 41 1.93
CB-16.294 15:22:15.7 30:21:40.0 19.15 19.98 19.06 19.94 62 1.87
CB-17.194 15:22:17.8 31:08:15.4 21.82 22.16 20.22 21.10 14 1.23
CB-17.93 15:22:20.7 31:11:14.3 19.73 21.40 19.21 20.93 76 2.82
CB-17.84 15:22:21.3  31:15:33.8 21.26 21.89 19.97 21.14 21 1.45
CB-17.69 15:22:21.4  31:07:45.2 18.21 19.90 17.56 19.23 63 3.13
CB-23.9060 15:22:23.4  31:14:41.8 20.19 21.29 20.07 21.28 44 1.99
CB-22.9376  15:22:23.8 30:30:11.3 20.60 21.45 19.56 21.20 36 1.75
CB-23.9032 15:22:24.2  31:18:30.0 20.94 21.31 20.34 21.28 30 1.48
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CB-23.9037  15:22:24.3  31:30:22.4 21.08 22.03  20.80 22.01 23 1.50
CB-22.9342 15:22:24.8 30:34:24.5 21.23 22.15 21.09 21.67 22 1.55
CB-23.8871 15:22:27.6  31:09:14.0 21.79 2237 2335 22.29 9 1.01
CB-23.8796 15:22:30.2  31:18:37.6 21.48 22.17  20.42 21.39 17 1.42
CB-23.8742 15:22:31.5 31:16:21.4 21.32 21.83  20.74 21.89 20 1.39
CB-23.8698 15:22:32.9 31:17:04.9 21.13 22.01 20.86 21.47 21 1.47
CB-22.8966  15:22:33.0 30:33:53.5 21.24 22.22 21.85 22.09 23 1.71
CB-23.8674  15:22:33.7 31:23:01.2 21.00 21.71 20.41 21.20 27 1.50
CB-23.8601 15:22:35.5 31:18:58.2 21.43 21.86 20.57 21.48 20 1.40
CB-23.8574 15:22:36.2  31:23:43.6 20.06 21.26 19.95 21.27 52 2.18
CB-22.8722 15:22:38.0 30:37:17.9 20.67 21.55 20.44 21.39 30 1.69
CB-23.8495 15:22:38.0 31:19:45.9 21.26 22.29 19.72 21.38 20 1.51
CB-23.8439 15:22:39.3 31:17:46.6 19.00 19.52 17.89 18.71 58 1.56
CB-23.8408 15:22:40.4  31:22:21.9 20.77 21.30 19.77 20.58 29 1.43
CB-23.8399 15:22:40.8 31:24:42.3 21.11 21.85 20.66 21.76 28 1.64
CB-23.8364 15:22:41.3 31:17:40.5 21.58 2216 20.62 21.50 13 1.17
CB-22.8429 15:22:43.5 30:33:17.6 21.34 21.67 19.96 20.68 28 1.46
CB-23.8201 15:22:45.7 31:18:55.8 19.85 21.12 19.42 20.77 63 2.35
CB-22.8100 15:22:51.5 30:26:14.4  20.82 21.56 21.65 22.04 23 1.48
CB-23.7916 15:22:53.7  31:28:22.7 17.71 19.50 17.72 19.57 183  3.42
CB-23.7869 15:22:55.1 31:31:18.9 19.01 20.02 18.05 19.17 28 1.62
CB-23.7790 15:22:56.5 31:24:11.9 16.24 18.62 15.92 17.89 188 3.87
CB-23.7722 15:22:58.5 - 31:27:52.2 17.30 18.34 15.18 16.02 137 2.34
CB-22.7678 15:23:00.7  30:33:39.7 20.96 21.59 20.87 21.73 21 1.22
CB-20.9245 15:23:00.8 28:39:42.1 19.41 20.55 18.M 19.82 57 2.02
CB-20.9123 15:23:03.2  28:42:12.3 18.22 19.99 18.64 20.32 59 2.81
CB-20.9024 15:23:05.2  28:41:39.5 20.81 21.97  20.75 21.78 34 1.91
CB-19.8716 15:23:06.8 28:27:01.0 17.95 18.87 16.77 17.85 114 2.18
CB-00.18 15:23:10.8  28:45:20.4 oee s 20.45 21.72 23 1.82
CB-19.8480 15:23:12.1 28:27:179 19.75 20.68 19.46 20.44 58 1.96
CB-20.8661 15:23:12.4  28:42:56.0 20.22 21.26 20.35 21.31 39 1.95
CB-20.8643 15:23:12.9 28:45:16.2 19.24 20.35 19.64 20.51 85 2.16
CB-22.7181 15:23:13.3  30:28:58.8 19.41 20.64 19.33 20.79 37 1.97
CB-20.8522 15:23:15.4  28:40:05.0 21.45 21.70 20.82 21.47 22 1.38
CB-20.8484 15:23:16.3  28:45:08.8 19.83 20.70 19.19 20.23 55 2.03
CB-20.8424 15:23:17.4  28:38:48.3  20.53 21.48 21.55 21.99 37 1.83
CB-19.8182 15:23:17.9  28:29:00.5 18.61 19.68 17.62 18.84 8 0.97
CB-20.8289 15:23:20.4  28:36:12.1 20.01 20.91 19.15 20.20 48 2.01
CB-21.6583 15:23:22.2  30:00:59.8 17.22 18.89 16.43 18.05 282 3.88
CB-21.6488 15:23:24.4  29:58:27.6 18.73 20.00 18.07 19.38 101 2.59
CB-21.6439 15:23:25.1 29:50:08.0 20.68 21.25 19.43 20.22 34 1.61
CB-20.8067 15:23:25.7 28:35:01.1 20.73 21.77  20.05 21.23 31 1.72
CB-22.6754 15:23:25.7 30:38:23.9 21.32 21.87 20.25 21.01 22 1.53
CB-21.6418 15:23:26.0 29:58:56.8 18.98 20.47  18.47 20.02 92 2.97
CB-00.21 15:23:27.1 29:59:28.9 cee cee 21.36 21.78 9 1.20
CB-21.6348 15:23:27.4  29:48:37.7 17.69 19.37 cee .- 165 4.23
CB-22.6628 15:23:28.3 30:38:23.3 18.87 19.57 17.56 18.34 66 1.73
CB-00.19 15:23:30.7 29:44:13.6 cee cee 21.55 22.02 12 1.44
CB-21.6156 15:23:32.6  29:42:55.6 21.03 21.79  20.13 21.11 27 1.49
CB-22.6391 15:23:33.8  30:23:34.4 18.48 20.22 18.26 19.79 116 3.33
CB-24.5970 15:23:33.9  32:21:21.1 17.12 19.14 17.09 19.10 193 3.47
CB-22.6369 15:23:34.8  30:36:10.4 19.78 20.62 19.49 20.68 48 1.78
CB-24.5902 15:23:35.7 32:21:15.9 18.32 19.88 18.54 19.90 129 2.79
CB-22.6322 15:23:35.9  30:31:50.1 19.92 20.68 19.94 20.82 21 1.39
CB-24.5865 15:23:37.0 32:20:56.1 18.44 19.22 17.62 18.41 7! 1.86
CB-24.5825 15:23:38.2  32:21:47.4 19.63 20.55 18.80 19.99 57 1.94
CB-22.6248 15:23:38.5  30:36:47.9 19.98 21.44 19.58 21.38 62 2.52
CB-24.5778 15:23:39.5 32:19:44.9 20.52 21.71 21.04 21.75 47  2.49
CB-24.5752 15:23:39.6  32:08:19.8 18.36 19.59 17.47 18.69 80 2.31
CB-22.6194 15:23:39.8  30:37:59.9 21.34 22.10 2047 21.75 14 1.28
CB-24.5701  15:23:40.6 32:12:01.3 21.92 22.40 o v 6 1.03
CB-21.5790  15:23:41.8 29:58:17.3 19.74 20.30 19.30 20.36 47  1.54
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CB-24.5662  15:23:41.9 32:13:33.6 21.13 22.52 - . 19 1.93
CB-24.5673  15:23:42.0 32:19:49.4 19.73 20.70 19.30 20.37 52 1.92
CB-24.5627  15:23:43.0 32:14:07.9 22.28 22.61 e e 8 0.94
CB-24.5623  15:23:43.4 32:18:36.8 21.48 22.30 21.58 22.17 18  1.41
CB-24.5590  15:23:44.2 32:12:11.6 21.99 22.52 e .- 8 1.07
CB-24.5542  15:23:45.8 32:19:48.8 20.51 21.78 21.29 22.26 48  2.30
CB-24.5519  15:23:46.0 32:11:37.2 22.21 22.88 20.04 21.50 12 1.52
CB-21.5476  15:23:48.3 29:46:39.3 20.61 21.82 21.10 21.70 35 2.00
CB-24.5387  15:23:49.2 32:07:37.9 21.98 22.51 20.73 21.61 10 1.12
CB-24.5393  15:23:49.7 32:19:41.6 22.12 22.64 . N 9 1.07
CB-20.6924  15:23:530.0 28:37:37.3 20.05 21.00 21.18 21.83 40 1.82
CB-19.6608  15:23:51.5 28:08:06.1 20.44 21.39 20.01 20.89 36 1.78
CB-20.6836  15:23:51.7 28:37:13.6 22.36 2265 21.75 22.06 6 0.88
CB-19.6562  15:23:52.5 28:08:29.0 21.63 22.53 .- .- 17 1.78
CB-24.5271  15:23:52.7 32:13:49.5 22.29 22.77 21.72 22.24 9 1.03
CB-21.5310  15:23:52.8 30:00:11.4 21.17 22.11 21.41 21.87 20 1.38
CB-24.5254  15:23:52.9 32:08:04.3 21.16 22.08 20.81 21.96 22 1.54
CB-24.5239  15:23:53.1 32:04:59.4 18.76 20.10 1872 20.15 99  2.54
CB-19.6479  15:23:54.1 28:03:53.5 21.86 22.87 .- .- 11 1.63
CB-19.6396  15:23:55.8 27:53:57.3 20.09 20.99 19.39 20.24 48  1.89
CB-19.6392  15:23:56.3 28:01:37.0 17.10 19.37 17.33 19.34 254  4.65
CB-19.6377  15:23:56.9 28:10:11.4 22.19  22.49 .- .- 7 094
CB-19.6323  15:23:57.7 28:03:50.7 21.90 22.69 2227 22.88 12 1.26
CB-21.5041  15:23:58.2 29:48:48.2 20.14 21.16 2026 21.18 45  1.93
CB-19.6268  15:23:59.1 28:01:43.1 22.27 22.74 N, N 7 0.90
CB-19.6245  15:23:59.3 27:54:33.2 20.33 21.08 20.16 20.86 26 1.55
CB-19.6273  15:23:59.4 28:09:26.0 21.61 22.50 .. - 14  1.50
CB-21.4972  15:24:00.2 29:58:14.1 21.07 21.54 20.02 21.00 13 1.20
CB-24.4993  15:24:01.0  32:14:25.0 22.08 22.42 2244 22.42 8 1.12
CB-21.4896  15:24:01.8 29:43:38.9 22,92 2342 20.70 21.95 7 1.00
CB-19.6141  15:24:02.1 27:56:51.8 22.46 23.10 - 6 1.37
CB-19.6151  15:24:02.6 28:11:18.2 19.26 20.05 17.72 18.52 69 2.13
CB-23.5335  15:24:02.8 31:25:58.3 21.48 22.27 .. - 17  1.46
CB-19.6086  15:24:03.3 27:54:08.1 20.18 20.93 19.13 20.02 44 1.81
CB-19.6094  15:24:03.5 28:02:00.3 22.15 23.03 ‘.- - 10 1.45
CB-23.5300  15:24:03.7 31:26:22.7 22.08 22.47 .- .- 8 0.93
CB-19.6127  15:24:04.0 28:26:60.0 20.93 21.95 21.45 21.90 20 1.52
CB-19.6083  15:24:04.2 28:12:05.9 1855 20.66 1879 20.95 143 3.50
CB-23.5267  15:24:04.6 31:25:19.3 19.45 20.79 20.13 21.62 62 2.34
CB-23.5207  15:24:06.1 31:20:58.8 20.34 21.38 19.50 20.72 43 2.02
CB-24.4798  15:24:06.4 32:14:07.8 21.86 22.48 ‘- e 11 1.19
CB-24.4802  15:24:06.5 32:16:23.0 21.72  22.60 ‘.- e 15  1.43
CB-23.5170  15:24:07.0 31:24:33.9 19.59 21.23 20.31 21.41 76 2.85
CB-23.5137  15:24:07.1 31:09:57.1 19.73 20.74 18.76 19.93 56 2.13
CB-19.5921  15:24:07.6 28:04:31.2 22.45 22.85 21.44 21.84 6 0.84
CB-23.5113  15:24:08.2 31:19:07.8 21.89 21.79 21.02 21.46 25  1.43
CB-23.5114  15:24:08.6  31:27:19.7 21.98 22.79 10 1.21
CB-19.5895  15:24:08.6 28:10:51.7 19.53 20.94 19.86 21.47 64  2.29
CB-21.4645  15:24:08.7 29:54:24.7 23.00 23.43 21.73 21.33 13 1.54
CB-24.4712  15:24:09.2  32:21:05.0 20.50 22.00 21.71 22.10 38 2.14
CB-19.5794  15:24:10.3  28:00:31.9 22.01 22.69 .. .- 9 1.11
CB-23.4995  15:24:10.5 31:10:25.9 20.67 22.27 19.88 20.88 33 2.32
CB-21.4592  15:24:10.7 30:01:12.1 21.17 21.79 21.28 21.63 16 1.33
CB-23.5009  15:24:11.0 31:29:08.4 20.34 21.22 19.61 21.15 42 1.82
CB-23.4996  15:24:11.1  31:20:44.7 21.48 22.34 2128 21.79 16  1.60
CB-20.6027  15:24:11.1 28:35:22.3 20.59 21.83 19.77 21.41 47  2.30
CB-23.4966  15:24:11.4 31:15:07.1 21.94 22.38 .- .- 6 0.83
CB-19.5710  15:24:11.9  28:00:00.8 21.96 22.71 12 1.27
CB-23.4951  15:24:12.1  31:19:53.9 21.94 22.50 - R, 10 1.09
CB-24.4562  15:24:12.1  32:12:02.4 21.02  22.19 21.04 21.84 28  1.96
CB-23.4940  15:24:12.5  31:18:51.5 21.69  22.25 cee e 14 1.21
CB-24.4530  15:24:13.5  32:20:11.4 22.40 22.84 7 1.07
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CB-19.5612  15:24:14.0  27:57:07.7 22.30 22.82 20.82 21.94 6 1.01
CB-23.4788  15:24:15.7 31:13:18.3 21.69 22.49 .- .- 10 1.30
CB-19.5503  15:24:16.1  27:55:49.5 22.07 22.55 21.21 22.30 8 1.01
CB-23.4778  15:24:16.4  31:21:52.5 22.18 2244 21.72 21.96 8 0.99
CB-19.5442  15:24:17.2  27:55:00.8 21.74 22.53 . .- 12 1.44
CB-23.4686  15:24:17.8 31:10:15.1 21.96  22.94 9 167
CB-24.4320 15:24:18.7 32:13:44.8 22.33  22.70 e .- 6 086
CB-19.5437  15:24:19.0 28:26:45.7 19.62 20.45 1874 19.68 34 1.89
CB-23.4639  15:24:19.0  31:13:43.3 22.02 22.68 .- . 7 1.54
CB-23.4628 15:24:19.4 31:18:57.4 21.16 22.22 20.68 21.88 23 1.82
CB-19.5332  15:24:20.4 28:06:47.2 20.44 21.71 19.98 21.32 47 2,14
CB-20.5612  15:24:20.9  28:45:39.5 17.49 19.36 17.39 19.09 196  4.03
CB-24.4222  15:24:21.2 32:12:31.0 22.61 23.14 .- .- 6 1.04
CB-23.4547  15:24:21.8 31:22:31.8 19.39 20.04 17.91 1867 47  1.63
CB-20.5550  15:24:21.9  28:38:04.4 21.24 22.28 21.06 21.86 25 2.04
CB-19.5198  15:24:23.0 28:07:34.6 22.08 22.64 N, . 8 1.16
CB-19.5250  15:24:23.1 28:27:52.3 19.40 20.26 1948 20.44 63  1.90
CB-24.4178  15:24:23.3  32:24:41.5 21.94 22.75 e . 12 1.31
CB-19.5219  15:24:23.8 28:27:18.8 21.27 21.91 20.96 21.54 26 1.71

CB-00.17  15:24:24.5  28:36:15.2 e -ee 2144 2207 14 1.22
CB-21.3938  15:24:24.8 29:52:54.9 21.13 21.72 20.49 21.80 22 1.37
CB-19.5056  15:24:25.1  27:59:25.0 22.01  22.52 e - 7 1.05
CB-23.4392  15:24:25.3 31:17:22.9 21.92 22.41 10 1.04
CB-19.5064  15:24:25.4  28:05:06.5 21.67 22.40 e - 13 1.29
CB-23.4384  15:24:26.1 31:28:59.2 21.62 22.39 22.06 22.59 15 1.39
CB-24.4030  15:24:26.6  32:05:02.9 22.62 23.08 e - 7 1.07
CB-24.4027  15:24:27.3  32:16:39.8 20.98 22.01 2039 21.50 27 1.75
CB-21.3837  15:24:27.5 29:50:23.9 19.09 20.05 1845 19.79 77T 2.15
CB-24.4002  15:24:27.5 32:07:53.4 21.19 22.21 20.83 21.74 29 1.94
CB-20.5300  15:24:27.8 28:40:07.4 19.68 20.60 19.26 20.34 48  1.86
CB-19.4924  15:24:28.0 27:59:05.3 22.00 22.79 . . 8 1.24
CB-23.4285  15:24:28.2  31:20:54.7 22.13  22.76 7 1.03
CB-19.4892  15:24:28.3  27:54:22.6 22.63  23.07 e - 6 1.01
CB-19.4969  15:24:28.4  28:27:20.5 17.84 19.31 17.21 18.7% 164 2.96
CB-20.5275  15:24:28.6  28:43:46.2 17.64 18.51 16.26 17.42 102 2.00
CB-24.3948  15:24:28.9  32:05:03.7 22.23  22.91 .. .- 7  1.04
CB-20.5245  15:24:29.0 28:35:54.3 18.60 19.39 17.40 18.22 73 1.83
CB-24.3970  15:24:29.3  32:23:32.5 22.35 22.91 e .. 6 0.88
CB-23.4191  15:24:30.2 31:17:24.1 22.29 22.79 8 097
CB-19.4794  15:24:30.3  27:59:52.9 21.65 22.77 .. - 15 1.81
CB-19.4786  15:24:30.7 28:08:21.5 22.03 22.81 21.63 22.25 10 1.26
CB-23.4157  15:24:31.4  31:23:20.2 22.46 22.73 - .- 6 0091
CB-21.3686  15:24:31.9 29:51:03.9 21.48 22.26 20.66 21.40 16  1.36
CB-19.4683  15:24:32.2  27:59:29.5 22.37 22.62 . - 14 1.22
CB-20.5127  15:24:32.3  28:45:57.8 20.01 20.58 18.61 19.29 39 156
CB-24.3798  15:24:33.3  32:09:23.2 21.84 22.40 22.06 22.24 17 1.64
CB-20.5076  15:24:33.4  28:45:36.5 20.93 22.08 19.96 21.16 24 1.77
CB-20.5031  15:24:34.1  28:38:30.2 18.13 19.72 18.38 19.82 156  3.12

CB-00.20  15:24:34.4  29:57:35.8 . -.. 20,02 21.20 43 2.05
CB-24.3768  15:24:34.4  32:11:09.9 21.81 22.51 - . 10 117
CB-23.4012  15:24:34.9  31:26:28.5 20.48 21.67 20.57 21.59 18 1.55
CB-24.3760  15:24:35.0  32:15:44.6 22.47 22.93 - e 6 1.01
CB-24.3719  15:24:36.0  32:14:29.7 21.98 22.52 _ . 11 111
CB-21.3527  15:24:36.3  29:52:19.6 18.70 20.18 1833 19.72 84 293
CB-24.3705  15:24:36.6 32:16:36.5 22.10 22.67 S .- 6 1.35
CB-21.3474  15:24:37.3  29:43:44.1 22.01 22.54 21.07 21.97 15 1.35
CB-23.3920  15:24:37.4  31:24:34.5 21.86 22.91 21.65 21.98 11 213
CB-21.3256  15:24:143.0  29:44:20.8 19.14 20.92 18.81 20.60 101 3.49
CB-24.3443  15:24:44.1  32:24:48.3 21.52 21.97 21.18 22.09 17 1.27
CB-21.3248  15:24:44.3  30:00:16.8 20.95 21.52 21.42 21.73 18 1.32
CB-24.3361  15:24:145.6  32:10:45.4 22.55 23.01 . 6 1.06
CB-23.3596  15:24:46.1  31:22:22.6 21.74 22.68 15 1.39
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CB-23.3523 15:24:48.0 31:23:46.3 19.91 21.30 21.35 22.08 52 2.35
CB-21.3050 15:24:48.2  29:42:57.1 19.73 20.67 19.08 20.62 65 2.22
CB-24.3297 15:24:48.3  32:21:33.0 21.72 22.68 see ce 13 1.39
CB-19.3873 15:24:49.2 27:57:16.6  20.62 22.21 21.90 22.11 33 2.22
CB-21.3031 15:24:49.5  29:58:58.7 22.22 22.51 20.99 22.04 13 1.21
CB-24.3232 15:24:49.7 32:18:25.6 20.19 21.59  20.28 21.54 54 2.23
CB-19.3824 15:24:50.3 27:54:01.7 22.38 22.88 cee ce 6 0.94
CB-21.2958 15:24:50.9 29:51:50.9 17.41 18.37 16.36 17.45 83 2.06
CB-24.3145 15:24:52.7 32:24:12.4 21.54 22.38 e ce 16 1.46
CB-24.3107 15:24:53.2  32:12:31.5 22.05 22.63 8 1.02
CB-24.3115 15:24:53.6  32:22:25.7 21.21 22.06 24 1.64
CB-24.3070 15:24:54.4  32:15:50.0 21.99 22.74 cee ce 9 1.07
CB-21.2814 15:24:54.4 29:57:36.4 18.92 20.28 18.39 19.89 91 2.63
CB-24.3037 15:24:55.0 32:06:17.0 17.29 19.76 17.63 19.96 295 4.53
CB-23.3266 15:24:55.1  31:27:06.8 22.16 22.54 o oo 14 1.32
CB-21.2774 15:24:55.4  30:00:47.2 21.10 2147 18.52 20.22 6 0.85
CB-19.3617 15:24:55.7 27:57:14.7 18.39 19.77 18.18 19.56 113 2.65
CB-24.2955 15:24:57.7 32:09:19.1 22.09 22.92 21.96 22.48 9 1.30
CB-19.3535 15:24:58.5 28:06:07.9 20.33 21.42 20.73 21.81 37 1.81
CB-24.2961 15:24:58.6  32:24:54.1 22.10 22.72 cen .. 12 1.21
CB-19.3469 15:24:59.5 27:53:18.6 21.29 22.60 cen ce- 21 2.54
CB-19.3482 15:24:59.9  28:05:43.1 20.43 21.38 21.81 22.17 38 2.02
CB-24.2872 15:25:00.4 32:10:48.0 19.92 21.11 20.13 21.26 40 1.92
CB-24.2866 15:25:01.2  32:22:20.7 18.81 20.47  19.05 20.56 116  3.11
CB-24.2820 15:25:01.6  32:06:07.1 21.84 22.36 .- o 8 1.23
CB-19.3322 15:25:02.8 27:57:37.8 22.26 22.79 cee se 6 0.86
CB-24.2795 15:25:03.2  32:18:20.0 20.98 21.85 20.60 21.85 34 1.88
CB-19.3244 15:25:04.8 28:00:14.4 21.63 22.57 cee ve 15 1.40
CB-24.2708 15:25:04.9 32:08:34.3 21.61 22.22 20.35 21.24 13 1.21
CB-24.2723 15:25:05.0 32:15:00.1 20.43 21.38 20.78 21.47 40 1.77
CB-19.3201 15:25:05.7 27:58:42.6 22.98 22.74 .- ce 6 0.87
CB-24.2661 15:25:05.7 32:06:15.4 19.08 19.90 17.50 18.38 89 2.10
CB-24.2687 15:25:06.2  32:21:15.0 20.07 21.33 18.45 20.09 48 2.16
CB-23.2873 15:25:06.2 31:23:35.6 20.84 21.84 19.85 21.11 33 1.82
CB-23.2848 15:25:06.5 31:12:56.4 20.92 22.24 21.27 21.94 29 2.15
CB-19.3169 15:25:07.3 28:11:35.9 20.46 21.88 20.41 21.43 38 1.98
CB-24.2639 15:25:07.4 32:22:41.1 19.83 20.64 18.97 20.18 15 1.26
CB-23.2826 15:25:07.6  31:19:59.6  20.43 21.59 20.61 21.09 46 2.21
CB-24.2584 15:25:08.7 32:22:17.9 20.30 21.45 20.30 21.32 44 2.18
CB-19.3012 15:25:09.9 27:56:45.6 21.63 22.40 20.48 21.70 14 1.37
CB-19.3047 15:25:10.1 28:11:45.1 21.88 22.49 21.84 22.28 14 1.23
CB-19.2992 15:25:10.2  27:53:53.3 22.57 22.99 20.96 21.72 6 0.84
CB-24.2498 15:25:10.9  32:23:38.0 19.89 21.25 19.59 21.21 55 2.29
CB-19.2945 15:25:11.2  27:53:05.7 20.97 21.68 20.50 20.82 22 1.55
CB-23.2691 15:25:11.9  31:24:46.7 21.96 22.95 cee ce- 10 1.26
CB-19.2924 15:25:12.0 27:57:11.9 21.36 22.16 22.08 22.65 21 1.43
CB-19.2857 15:25:14.7  28:11:36.8 22.05 22.79 ce .. 7 1.07
CB-19.2820 15:25:14.8  28:00:13.6 21.11 21.89 21.09 21.71 24 1.55
CB-19.2758 15:25:16.8 28:11:44.3 21.85 22.59  20.28 21.04 12 1.19
CB-19.2734 15:25:16.9  28:06:32.5 22.26 22.91 e ce. 7 1.09
CB-19.2704 15:25:17.2 28:01:06.8 22.94 22.74 ce. .. 7 1.55
CB-19.2635 15:25:18.5  28:00:42.5 20.46 21.91 20.06 21.30 42 2.58
CB-23.2356 15:25:20.1 31:26:02.6 21.69 22.45 21.98 22.28 15 1.35
CB-19.2541 15:25:20.7  28:03:52.7 20.86 22.38 <. ... 27 2.99
CB-19.2513 15:25:21.8  28:09:38.5 21.40 22.22 21.57 21.82 16 1.41
CB-19.2462 15:25:23.0 28:08:02.4 19.54 20.74 18.82 19.46 65 2.33
CB-23.2158 15:25:24.8 31:14:09.6  22.05 22.63 e s 6 1.19
CB-23.2174 15:25:25.3  31:27:55.7 19.87 21.27 19.45 20.82 57 2.38
CB-23.2126 15:25:25.8 31:16:02.9 21.93 22.73 21.62 22.03 10 1.40
CB-23.2129 15:25:26.3  31:28:53.3 19.98 20.35 19.72 20.32 43 1.44
CB-23.2037  15:25:28.6  31:23:49.8 21.33 22.45 e e 16 2.00
CB-23.2001  15:25:29.7 31:24:44.7 20.88 21.87 21.75  22.29 38 2.01
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(1950) @ "

CB-23.1979 15:25:29.8 31:17:24.0 20.14 21.44 19.31 20.50 45 2.07
CB-23.1932 15:25:31.4  31:26:29.3 21.13 22.40 22.05 22.80 30 2.54
CB-23.1821 15:25:33.9  31:21:54.7 22.61 23.28 o cee 18 1.50
CB-23.1724 15:25:36.9  31:19:41.4 17.22 18.47 16.36 17.52 149 3.08
CB-29.8651 15:27:02.1  31:14:23.0 21.34 22.88 19.68 21.21 20 1.98
CB-29.8574 15:27:04.0 31:10:48.4 20.35 21.52 19.37 20.70 29 1.82
CB-29.8501 15:27:06.5 31:14:35.8 21.86 22.29 20.52 21.17 8 0.93
CB-28.7712 15:27:08.0 30:55:42.6 18.35 20.10 18.93 20.51 135  3.14
CB-29.8295 15:27:10.3  31:05:45.7 18.78 20.60 18.80 20.63 101 2.94
CB-29.8269 15:27:11.1 31:05:24.5 21.68 22.42 21.05 21.77 14 1.28
CB-29.8142 15:27:14.7 31:07:10.9 22.24 22.39 20.84 21.84 10 1.04
CB-29.8100 15:27:15.7 31:05:50.0 20.39 20.85 19.79 20.95 35 1.52
CB-28.7359 15:27:18.1 30:55:54.4 18.03 1993 18.03 19.76 72 2.81
CB-29.7989 15:27:19.0 31:12:24.1 21.18 21.62 20.15 21.00 28 1.48
CB-29.7435 15:27:33.3  31:12:23.7 19.78 20.50 19.63 20.41 46 1.69

CB-00.29 15:27:42.9 31:12:27.8 o cen 21.53 22.03 15 1.27
CB-27.5750 15:27:49.5  29:42:37.1 21.35 21.87 20.32 21.72 23 1.57
CB-27.5702 15:27:51.3 29:43:42.6 22.11 22.46  21.59 22.39 7 092
CB-29.6572 15:27:54.0 31:07:20.6 22.43 22.93  21.40 22.12 6 1.01
CB-27.5526 15:27:55.0 29:36:51.8 19.13 20.66 19.16 20.78 60 2.64
CB-27.5549 15:27:55.0 29:41:45.6 21.82 22.27 cee e 9 1.07

CB-00.30 15:27:55.3  31:14:01.4 cen ... 20.69 21.70 25 1.93
CB-27.5438 15:27:57.4  29:39:49.5 19.54 20.48 19.03 20.37 56 1.90
CB-25.6435 15:27:58.1 28:08:52.7 20.42 21.26  20.59 21.44 11 1.18
CB-25.6379 15:27:59.5 28:12:45.6 20.17 21.45 19.45 20.49 43 1.97
CB-25.6299 15:28:00.4 28:05:15.8 20.14 21.63 21.02 21.80 50 2.35
CB-27.5316 15:28:00.9 29:47:46.0 22.35 22.78 .- ce- 8 1.02
CB-27.5264 15:28:01.8 29:44:53.2 21.36 22,43  20.18 21.66 19 1.96
CB-27.5208 15:28:02.0 29:29:41.9 22.61 23.01 .- e 6 0.90
CB-25.6198 15:28:02.5 28:03:52.8 20.15 21.13 20.21 21.07 32 1.76
CB-25.6135 15:28:02.9 27:56:22.6 19.27 20.96 19.31 21.07 82 2.72
CB-25.6175 15:28:03.1 28:07:16.4 21.08 21.94 21.15 22.05 26 1.58
CB-29.6104 15:28:03.9 31:05:43.7 22.81 22.98 21.01 21.74 7 0.90
CB-25.6105 15:28:04.0 28:02:33.0 21.00 22.02 21.27 22.13 26 1.64
CB-25.6107 15:28:04.5 28:08:23.8 18.80 20.22 18.36 19.75 109 2.88
CB-25.6034 15:28:05.6  28:04:08.5 20.51 21.35 20.74 21.74 32 1.74
CB-29.6067 15:28:05.7 31:14:08.6 19.53 20.85 18.61 19.93 77 2.52
CB-27.5037 15:28:06.3 29:29:15.9 19.93 20.81 19.80 20.36 43 1.85
CB-25.6029 15:28:06.4 28:13:11.3 21.94 22.06 o L. 9 1.24
CB-25.5939 15:28:06.8 27:55:27.4  22.39 22.78 L ce 7  0.90
CB-25.5917 15:28:08.2 28:07:47.7 21.63 22.55 21.86 22.22 16 1.45
CB-25.5898 15:28:08.4 28:02:08.0 21.86 22.45 v oo 11 1.17
CB-25.5866 15:28:08.7 27:54:30.6 19.74 20.98 19.56 21.29 66 2.28
CB-27.4947 15:28:08.8 29:30:53.5 22.83 23.46 .- cee 7 1.16
CB-27.4974 15:28:08.9  29:40:40.9 21.865 22.45 s ces 16 1.40
CB-25.5815 15:28:10.1 27:59:53.4  20.51 21.48 20.39 21.66 26 1.78
CB-25.5849 15:28:10.7  28:12:24.1 20.11 21.38 20.65 21.74 52 2.17
CB-27.4846 15:28:11.9  29:36:53.6 22.93 23.20 ... ce- 6 0.91
CB-29.5750 15:28:12.3  31:06:09.6 18.98 20.80 18.57 20.74 113 3.01
CB-25.5727 15:28:12.5  28:09:24.7 21.30 22.32 22.26 22.85 17 1.42
CB-27.4807 15:28:13.3 29:39:06.8 21.81 22.73 .- .. 8 1.28
CB-25.5644 15:28:13.5  28:02:28.0 20.30 21.19 20.41 21.41 33 2.07
CB-25.5471 15:28:15.8 27:53:28.7 19.76 20.84 19.22 20.39 51 2.09
CB-25.5473 15:28:17.0  28:06:35.2  22.43 22.89 21.08 22.07 8 0.98
CB-27.4525 15:28:20.3  29:29:30.4 21.61 22.25 21.09 21.92 16 2.06
CB-29.5082 15:28:22.4  30:58:54.2 21.73 22.25 21.44 22.02 12 1.19
CB-28.4859 15:28:23.4  30:55:15.2 18.94 19.86 18.34 19.48 74 2.01
CB-26.4747 15:28:23.9 29:14:05.1 19.37 20.06 18.78 19.60 52 1.73
CB-25.5090 15:28:24.0  28:00:06.9 19.26 20.34 18.97 19.96 71 2.26
CB-27.4348 15:28:24.2  29:29:25.5  20.25 21.59 cee e 29 2.75
CB-~29.5045  15:28:24.2 31:10:34.1 20.40 21.50 20.71 21.25 37 2.24
CB-27.4321 15:28:25.6  29:33:16.7 21.52 22.78 .- Se e 21 1.83



93

TABLE 2.6— Continued

RA
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CB-26.4667 15:28:25.7  29:11:34.0 19.79 20.71 19.15 20.45 59 2.00
CB-29.4927 15:28:26.5 31:13:42.4 20.38 21.01 19.92 20.55 34 1.56
CB-25.4977 15:28:27.9 28:11:57.1 19.06 20.57 18.89 20.37 102 3.14
CB-27.4248 15:28:28.5  29:39:27.2 22.40 22.94 e ces 9 1.05
CB-26.4519 15:28:29.1 29:12:47.1 22.34 22.84 20.67 21.76 9 1.03

CB-00.27 15:28:30.3  29:13:50.8 cen ce- 21.68 22.15 14 1.40
CB-26.4431 15:28:30.4  29:07:14.5 21.78 22.83 21.08 22.07 14 1.72
CB-25.4847 15:28:30.6 28:06:46.6 19.47 20.90 19.63 20.80 68 2.63
CB-25.4767 15:28:32.0  28:01:41.2 22.15 22.64 .. cee 6 0.91

CB-00.26 15:28:32.1 29:12:51.7 ce- ve 20.48 21.69 19 1.51
CB-26.4372 15:28:32.2 29:06:21.2 20.04 20.60 18.65 19.35 42 1.55
CB-27.4109 15:28:32.7  29:42:55.8 20.60 22.00 21.13 21.69 37 2.41
CB-26.4334 15:28:33.0 29:04:08.2 19.22 20.81 20.34 21.35 83 2.70
CB-29.4532 15:28:33.0 30:58:57.2 18.98 20.15 18.19 19.59 82 2.35
CB-27.4036 15:28:33.6  29:36:42.8 21.69 22.70 o see 14 1.38
CB-26.4269 15:28:34.0 29:00:07.8 21.14 21.61 21.30 22.01 28 1.52
CB-27.4043 15:28:34.2  29:43:28.9 20.35 22.27  20.81 21.80 52 2.67
CB-26.4231 15:28:34.8 29:00:57.4 20.79 22.18 20.51 21.76 34 2.09
CB-25.4618 15:28:35.3  27:56:19.8 22.52 23.25 e ces 7 1.10
CB-27.3929 15:28:35.7  29:29:31.4 21.77 22.53 cee .o 10 1.41
CB-29.4461 15:28:35.8 31:14:26.2 21.75 22.42 19.97 21.78 11 1.25
CB-29.4362 15:28:37.6  31:11:25.9 21.34 21.60 20.95 21.46 22 1.35
CB-25.4386 15:28:40.5 27:58:08.5 21.81 22.55 21.70 22.24 12 1.36
CB-25.4288 15:28:42.6  28:02:16.4 22.41 22.89 ce pee 6 0.92
CB-27.3647 15:28:44.1 29:28:43.2  21.94 22.73 .- .- 10 1.30
CB-26.3797 15:28:46.2  29:12:22.1 19.24 20.69 18.70 20.39 60 2.50
CB-27.3585 15:28:47.1 29:37:58.6  22.17 22.64 see e 7 091
CB-25.4065 15:28:47.1 27:57:38.9 22.24 22.91 9 1.32
CB-27.3577 15:28:47.9 29:44:12.4 22.38 23.09 ces cee 9 1.18
CB-26.3697 15:28:48.8 29:13:01.9 20.90 21.48 20.03 21.04 23 1.45
CB-26.3691 15:28:49.4  29:16:28.6  20.55 21.45 20.86 22.00 31 1.59
CB-26.3655 15:28:50.1 29:14:12.6  22.27 21.97  20.75 21.77 20 1.22
CB-27.3315 15:28:53.3 29:42:22.5 21.60 22.18 19.57 20.97 20 1.65
CB-25.3667 15:28:55.5  28:01:22.2 21.33 22.44 ce ce 18 1.67
CB-27.3179 15:28:56.8  29:40:19.6 19.76 21.52 20.42 21.20 85 3.79
CB-27.3133 15:28:57.9 29:41:37.6 19.21 20.78 18.95 20.27 77 2.58
CB-25.3490 15:29:00.7 28:03:28.5 20.27 21.80 19.96 21.19 47 2.65
CB-25.3507 15:29:01.0 28:10:56.8 19.76 20.80 19.87 20.82 60 2.18
CB-27.2862 15:29:03.6  29:33:45.2 22.23 22.55 ce ce. 6 0.88
CB-25.3322 15:29:04.0 28:02:06.8 21.67 22.67 21.78 22.36 12 1.50
CB-25.3248 15:29:05.5 27:59:23.5 20.26 21.25 19.69 20.68 45 2.23
CB-25.3251 15:29:06.0 28:06:52.5 19.51 20.40 19.26 20.47 62 2.03
CB-27.2677 15:29:08.6 29:34:46.3 22.18 22.64 S cee 7 098
CB-27.2598 15:29:09.7  29:29:14.7 21.49 22.55 21.73 22.54 24 1.75
CB-27.2624 15:29:10.4  29:39:43.3 21.80 22.40 21.46 21.93 12 1.24
CB-27.2547 15:29:12.4  29:45:36.6 21.89 22.67 .- v 11 1.22
CB-27.2477 15:29:12.5 29:31:24.3 21.17 22.43  21.95 22.19 19 1.74
CB-25.2905 15:29:13.2  28:00:04.4 22.87 22.90 21.15 21.82 7 1.15
CB-27.2442 15:29:13.2  29:29:20.5 16.96 18.08 15.57 16.55 144 2.33
CB-27.2398 15:29:14.6  29:31:39.1 21.22 22.41 21.61 22.03 22 1.67
CB-25.2801 15:29:15.0 27:54:07.1 20.31 21.40 19.72 20.89 39 1.95
CB-27.2400 15:29:15.8  29:43:59.7 19.19 20.55 19.18 20.49 80 2.46
CB-25.2773 15:29:16.7 28:05:46.6 22.14 22.64 s cen 6 0.92
CB-27.2306 15:29:17.0  29:31:24.2 19.63 20.77  19.98 21.03 60 2.20
CB-25.2694 15:29:18.5  28:08:49.7 21.99 22.52 cee s 9 1.10
CB-27.2223 15:29:19.8  29:34:57.0 21.09 21.92 21.93 22.08 18 1.32
CB-25.2599 15:29:20.4  28:03:43.1 20.13 21.05 20.39 21.30 37 1.71
CB-27.2219 15:29:20.5 29:40:46.0 21.73 22.77 2065 21.86 18 1.89
CB-25.2563 15:29:21.9  28:10:20.3 22.21 22.87 ce s 10 1.32
CB-25.2521 15:29:22.1 27:59:28.7  21.19 22.73 ce- - 21 1.87
CB-25.2534 15:29:22.6 28:08:48.1 19.64 20.19 19.40 20.15 46 1.52
CB-26.2383  15:29:23.1 29:11:58.6  20.57 21.46 21.12 21.65 36 1.82
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CB-25.2483 15:29:23.4  28:01:02.0 19.07 20.24 18.77 19.80 76 2.22
CB-27.2082 15:29:24.5  29:40:27.1 19.74 20.68 18.82 19.92 52 1.90
CB-25.2438 15:29:25.8  28:12:05.3  20.19 21.87 20.58 21.81 54 2.48
CB-25.2348 15:29:27.1 28:04:54.2  22.51 22.25 21.26 21.78 6 1.14
CB-25.2232 15:29:30.3  28:09:38.9 20.33 21.53 19.65 21.25 42 2.06
CB-26.2008 15:29:31.2 29:02:44.0 21.42 22.83 20.09 21.41 19 1.56
CB-26.1925 15:29:33.5 29:07:59.3 19.00 20.19 18.28 19.35 90  2.27
CB-00.25 15:29:33.6  28:58:02.0 cee cee 21.09 21.84 20 1.47
CB-26.1389 15:29:46.8 29:16:10.8 19.69 2017 18.73 19.71 46 1.49
CB-26.1157 15:29:52.3  29:11:00.3 22.19 22.67 21.28 22.10 7 0.97
CB-26.966 15:29:56.9  29:12:32.2 20.95 22.32 20.43 21.88 29  2.20
CB-35.8818 15:30:46.1 31:15:26.1 17.29 19.31 17.32 19.26 206 3.50
CB-35.8757 15:30:48.0 31:16:22.4 20.61 21.96  20.93 21.59 34 1.92
CB-35.8747 15:30:49.0 31:22:03.2 19.55 20.37 19.46 20.63 26 1.52
CB-35.8649 15:30:50.1 31:07:37.2 17.65 19.25 16.79 18.24 176  3.37
CB-35.8526 15:30:53.0  31:09:11.5 20.51 20.88 20.05 20.83 35 1.50
CB-35.8432 15:30:55.4 31:05:29.0 18.79 20.12 18.16 19.38 83 2.72
CB-35.8443 15:30:56.4 31:17:11.5 21.96 22.78 21.83 22.08 11 1.13
CB-35.8206 15:31:01.6 31:10:46.4 22.23 22.56  20.57 21.66 6 0.95
CB-35.8174 15:31:04.1  31:23:02.0 22.39 22.12 .- ce 6 0.95
CB-35.8023 15:31:07.5 31:23:27.4 20.05 21.18 19.31 20.67 28 1.86
CB-35.7940 15:31:08.0 31:11:03.3 20.33 20.85 2017 21.00 32 1.46
CB-35.7771 15:31:11.1  31:05:10.9 19.75 20.43 19.27 20.23 49 1.69
CB-35.6752 15:31:32.0  31:08:24.4 19.87 21.20 19.58 21.20 64 2.44
CB-35.6701 15:31:34.3 31:17:15.9 17.70 20.18 18.30 20.40 273  4.69
CB-35.6538 15:31:38.2  31:21:45.3 20.17 21.31 19.90 21.11 48 2.12
CB-00.37 15:31:44.5  31:20:24.3 ce .- 21.95 22.30 16 1.52
CB-35.6135 15:31:46.6 31:19:26.3 18.46 19.69 18.40 19.72 96 2.33
CB-35.5923 15:31:50.5 31:08:35.0 19.18 20.80 18.79 20.23 88 2.82
CB-35.5861 15:31:53.0 31:16:26.6 17.94 19.29 17.42 18.68 120 2.66
CB-35.5625 15:31:58.5  31:11:48.5 21.10 21.75 21.15 21.77 27 1.54
CB-35.5499 15:32:02.7 31:21:26.0 22.13 22.74 20.70 21.91 6 1.08
CB-00.38 15:32:04.1 31:17:18.3 .. cen 21.82 22.19 15 1.29
CB-35.5407 15:32:05.6  31:21:08.7 20.44 21.60 20.16 21.39 34 1.86
CB-35.5343 15:32:05.8 31:12:11.8 21.26 22.72 21.50 22.25 21 1.70
CB-35.5299 15:32:05.9 31:04:36.0 18.84 19.96 18.97 20.18 74 2.18
CB-35.5164 15:32:10.6  31:15:40.2 20.22 21.09 19.55 20.76 14 1.42
CB-35.5116 15:32:10.9 31:07:14.6  20.59 21.31 20.71 21.47 33 1.70
CB-35.50687 15:32:11.8 31:06:13.6 19.61 20.66 19.18 20.49 50 2.03
CB-35.5086 15:32:12.2 31:12:22.7 19.25 19.94 17.81 18.62 59 1.74
CB-35.5136 15:32:12.4 31:22:23.3 18.94 19.97 18.24 19.48 28 1.63

CB-35.4951  15:32:16.2  31:15:54.8 21.26 22.38 21.56 22.23 18  2.02
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TABLE 2.7
QUASARS FOUND SERENDIPITOUSLY

Objects RA Dec. Jot Tiot z
(1950.0) (1950.0)

CB-1.6913 15:11:27.9 28:04:41.1 20.53 19.83 1.040
CB-17.3716 15:20:54.6 31:12:51.9 20.09 20.50 2.887
CB-20.6206 15:24:08.0 28:25:23.2 21.68 21.24 3.880
CB-29.8162 15:27:13.9 31:05:00.5 19.42 19.38 1.264
CB-29.7534 15:27:29.8 31:00:07.0 21.97 20.84 1.147
CB-26.2177 15:29:26.4 29:00:50.7 20.57 21.03 2.886
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Fig. 2.1.— A combined contour/grayscale plot of the galaxy density on the sky in
the Corona Borealis supercluster for all galaxies brighter than ¢ = 19™. The contour
levels run from 100 galaxies per square degree to 1200 galaxies per square degree.
The ridge of galaxies between Abell 2061 and Abell 2067 connects the two strikingly
dense regions at o = 15*22™ . § = +30°36™ and o = 15724™ . § = +31°0™. The blank
region in the southwest corner is where the plate sensitometer spots are located.
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Galaxy Counts in the Corona Borealis Field
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Fig. 2.2.— Galaxy counts in the (a) ¢ and () r bands in the Corona Borealis field.
The straight line is a fit to the counts of Weir, Djorgovski, and Fayyad (1995) from a
high-Galactic latitude field. The solid line marks the region in which the counts are
reliable; the dotted line is an extrapolation to fainter magnitudes. The counts in the
Corona Borealis field are a ~3 higher than the counts in the comparison field.
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Fig. 2.3.— CCD g magnitudes for galaxies in Abell 2069 plotted against the plate
instrumental magnitudes. The straight line is the best fit to the data in the region
16™ < g < 20.5™. The RMS error is ~ 0.3™ in this range and is considerably worse

for ¢ > 20.5™.
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Fig. 2.4— CCD r magnitudes for galaxies in Abell 2069 plotted against the plate
instrumental magnitudes. The straight line is the best fit to the data in the region
16.5™ < r < 19.6™. The RMS error is ~ 0.2™ in this range and is considerably worse
for r > 19.6™.
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Fig. 2.5.— Histograms of errors {«a) in line centroids and (4) in equivalent widths
for 1825 simulated spectra. Each spectrum has a signal-to-noise ratio of 17.3 and
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Velocity Errors
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Fig. 2.9.— Histogram of velocity errors for (a) objects which were successfully ob-
served twice, (b) objects which were matched to objects in the literature, and (c)
objects for which velocities were determined with both the line measurement program
and the cross-correlation program. The three distributions are roughly Gaussian with
no significant bias. The standard deviations of the distributions are all consistent with
typical velocity errors of 100 km s™?.
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Fig. 2.11.— Redshift histogram of all galaxies in our survey. The Corona Borealis
supercluster is the largest peak (z ~ 0.07). The background supercluster is at z ~
0.11. These superclusters are each overdense relative to the field by a factor of a few.
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Fig. 2.12.— Redshift-right-ascension pie diagram for all 1649 galaxies in our survey.
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Fig. 2.13.— Redshift-right-ascension pie diagram for the 1054 galaxies in our survey
with z < 0.15. Note that the opening angle of the plot is 90°whereas the opening
angle of the survey is only 6°. The two superclusters are the conspicuous chains of
galaxies at z ~ 0.07 and z ~ 0.12. There is a void of ~ 755~ Mpc between the
densest regions of the two superclusters.
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Redshift-Magnitude Diagram
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Fig. 2.14.— Magnitude-redshift diagrams in (a) g and (b) r bands. The lines mark
the tracks of non-evolving, k-corrected L* galaxies with spectral energy distributions
typical of Hubble types E, Sbc, Scd, and Im. The two superclusters are the prominent
strips of galaxies at z ~ 0.07 and z a2 0.12. The brightest galaxies observed are ~ 2.5
times (1™) brighter than L*.
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Fig. 2.16.— Spectroscopic identification rate, the ratio of objects identified to the
number of fibers placed on objects, in g and r band for the survey.
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Core Magnitude vs. Total Magnitude
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Fig. 2.17.— Core magnitude gcore versus total magnitude gioiar for the stars and
galaxies in our sample which were detected on the J plate. The dotted line at geore =
22.0™ 1s our surface brightness completeness limit. The three solid lines labelled
“LSB,” “L* disk,” and “L~ spheroid” mark the tracks (as function of redshift) of our
simple models of those galaxies, as observed in 2” seeing. For a sample magnitude
limited at giotal = 21™, the L~ disk and L spheroid leave the sample through the
faintness of their total magnitude rather than through the faintness of their core
magnitude, as desired for a sample limited by total magnitude.
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Fig. 2.18.— Core magnitude rcoe versus total magnitude 7y for the stars and
galaxies in our sample which were detected on the F plate. The dotted line at
Teore = 21.7™ 1s our surface brightness completeness limit. The three solid lines
labelled “LSB,” “L* disk,” and “L* spheroid” mark the tracks (as a function of
redshift) of our simple models of those galaxies, as observed in 2" seeing. For a sample
magnitude limited at rta = 20.5™, the L* disk and L* spheroid leave the sample
through the faintness of their total magnitude rather than through the faintness of
their core magnitude, as desired for a sample limited by total magnitude.
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Fig. 2.19.— g — r colors of the galaxies in our sample as a function of redshift.
The arrows represent upper and lower limits for galaxies that were only detected on
one plate. The tracks of non-evolving, k-corrected spectra of Hubble types E, Sbc,
Scd, and Im (Coleman, Wu, and Weedman 1980) are also shown. The dotted line
represents the color of an object with a flat spectrum (f, = 0.). Despite the scatter
created by our substantial magnitude errors (c(g — r) &~ 0.4™), it is clear that there
1s an excess of blue galaxies at all redshifts.
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Fig. 2.20.— g — r color distributions as a function of ¢ magnitude of the galaxies
and unidentified objects. The fact that the galaxies and unidentified objects cover
the same range in color, except for the region with g — r > 1™ and g < 20™ which is
occupied by stars (see Figure 2.21), suggests that the survey suffers from no significant
color biases.
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AUTOFIDZ and Vignetting Selection Effects
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Fig. 2.22.— (a) ratios of number of pairs attempted and identified to the number

of pairs in the input catalog as a function of angular separation on the sky, and (b)
ratio of number of pairs identified to the number of pairs targeted. The upper panel
(a) illustrates the spatial selection effects induced by the program AUTOFID2. The
lower panel () illustrates the effect of the vignetting at the edges of the field.
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Chapter 3 The Structure and Dynamics

of the Corona Borealis Supercluster

3.1 Introduction

Superclusters are the largest known structures in the universe. With densities < 10
times the density of the field, superclusters have either very recently begun to collapse
under their own gravity or are still expanding with the Hubble flow, although at
a decelerated rate. The dynamical times of superclusters are comparable to the
age of the universe, and so signatures of the dominant physical processes when the
supercluster was formed have not yet been erased by dynamical evolution. One can
therefore imagine that studies of superclusters will ultimately yield clues about the
formation of galaxies and large-scale structure. In addition, studies of the peculiar
velocities of galaxies generated on the outskirts of superclusters offer a means of
estimating the mean density of the universe Q.

The Corona Borealis supercluster is the most prominent example of superclus-
tering in the northern sky. Using the “Lick Counts,” Shane and Wirtanen (1954)
were the first to remark on the extraordinary cloud of galaxies that constitute the
supercluster. Abell also noted the Corona Borealis supercluster and included it in
his catalog of “second-order clusters,” or clusters of clusters of galaxies. In fact, the
Corona Borealis supercluster includes 7 Abell clusters at z & 0.07 in a 36 deg? region
on the sky and contributes significant power to the two-point correlation function of
nearby Abell clusters. In the same region, there are five background Abell clusters,
three of which are at z ~ 0.11. Counts of galaxies in the field of the supercluster,
which include the background clusters, show a factor of 3 excess over counts in sim-
ilarly high galactic fields. Picard (1991a) speculated that the supercluster may be

responsible for the excess counts, although he realized that if the supercluster were
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entirely responsible for the excess, it would generate fluctuations in the microwave
background of the order 67/T = 2 x 10~*, far in excess of what is observed (Smoot
et al. 1992).

The true extent of the Corona Borealis supercluster on the sky is unknown. Bah-
call (1992) has marshalled circumstantial evidence to argue that while the region
containing the 7 Abell clusters is only ~ 20~h~! Mpc (& is the Hubble constant H,
divided by 100 km s™* Mpc™!) on a side, the entire supercluster extends for at least
~ 100~™! Mpc on the sky. First, one of the peaks in the redshift distibution of the
Broadhurst et al. (1990) pencil-beam survey is at the redshift of Corona Borealis, even
though the survey was aimed 45° away from the core of the supercluster. Second, the
far side of the Bodtes void, at right ascension 14*30™, declination +50°, is also at a
redshift of z &~ 0.07 (Kirshner et al. 1987). As our data show, the depth of Corona
Borealis on the sky is only ~ 40h~! Mpc. Corona Borealis thus appears to be a
flattened pancake similar to the structures originally envisioned by Zeldovich (1970).
Although it is certainly not practical to survey the whole 1002=! Mpc x 1002~ Mpc
region (which corresponds to 730 square degrees), our aim is to delineate accurately
the structure of the core of Corona Borealis out to a radius of ~ 20A~! Mpc.

The only previous observational investigation of the dynamics of a supercluster was
the study by Postman, Geller, and Huchra (1988) of the Corona Borealis supercluster.
They collected 182 redshifts for galaxies mainly near the cores of the Abell clusters
contained within supercluster. By adding up the virial masses of the Abell clusters,
they concluded that the lower limit to the mass of the superclusteris 2.4 x 105 a1 M@.
They also computed that if the mass-to-light ratio on supercluster scales is comparable
to that on cluster scales, then the supercluster mass is 8.2 x 10"*A™! M), or about
the mass required to bind the system (assuming a supercluster radius of 10 — 1541
Mpc). Their analysis was limited by the fact that they had to make assumptions
about the shape of the supercluster. In order to overcome this limitation, a new
study of the dynamics of the supercluster would require several thousand redshifts,
a number sufficient to measure the mean density of the supercluster to 5%. We

thus decided to undertake a large redshift survey of the Corona Borealis Supercluster
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using the 176-fiber Norris Spectrograph on the Palomar 5-m telescope. In addition
to creating an accurate map of the structure of the supercluster, we hoped to be able
to answer two fundamental questions about the dynamics of the supercluster: is the
supercluster bound, and are there substantial departures from the Hubble flow in the
supercluster?

The paper, the second in the series of papers presenting the results from the Norris
Survey of the Corona Borealis supercluster, is organized as follows. In §2, we review
the technical details of the survey. In §3, we describe our visual impressions of the
Corona Borealis Supercluster from our data. In §4, we apply the virial theorem in
order to estimate the mass of the supercluster, and we compute the mass-to-light ratio
of the supercluster using the luminosity function computed in Small, Sargent, and
Hamilton (1996a), Paper IV in the series. In §5, we present an analysis of the velocity
field of the supercluster based on fitting a simple model to the observed two-point

correlation function. In §6, we briefly summarize our results.

3.2 The Norris Survey of the Corona Borealis Su-

percluster

The Norris Survey of the Corona Borealis Supercluser has been described in detail in
Small et al. (1996), Paper I of the current series, and will be only briefly reviewed
here. The core of the supercluster covers a 6° x 6° region of the sky centered at right
ascension 15"20™, declination +30° and consists of 7 rich Abell clusters at z = 0.07.
Since the field-of-view of the 176-fiber Norris Spectrograph is only 400 arcmin?, we
planned to observe 36 fields arranged in a rectangular grid with a grid spacing of
1°. We mainly tried to avoid the cores of the Abell clusters since redshifts for many
galaxies in the cores are available from the literature. As it turned out, we successfully
observed 23 of the fields and 9 additional fields along the ridge of galaxies between
Abell 2061 and Abell 2067, yielding redshifts for 1491 extragalactic objects. We have

extended our survey with 163 redshifts from the literature, resulting in 1654 redshifts
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in the entire survey. Only 528 objects lie in the redshift range of the supercluster,
0.06 < z < 0.09. (We describe how we chose this redshift range in §3 below.) Of
these, 489 (93%) are more than one Abell radius (1.52~! Mpc) from the core of an
Abell cluster.

The survey is only complete in apparent magnitude to Gunn r = 18.5™. However,
we have substantial numbers of galaxies out to r = 22.0™. The lack of a magnitude-
limited sample does not cause difficulties for the analysis in this paper since the
redshift range we are studying is so narrow, Az = 0.03. We do not expect significant
changes in the selection function of the survey over such a small redshift range. The
velocities errors in our sample are typically ~ 100 km s™!, a factor of at least 3 smaller
than the pairwise velocity dispersion of galaxies. The use of a fiber-fed spectrograph
imposes spatial sampling biases on the survey. The fibers cannot be placed within 16”
of each other, and their motion is further restricted by limits on the bending angles
of the fibers. These two effects combine to eliminate pairs of objects with angular
separations of < 30", or with separations on the plane of the sky < 0.1A~! Mpc at
z = 0.07. Since we are concerned mainly with separations of > 1~~! Mpc, the bias
against pairs with small angular separations can be ignored. The number of pairs
with angular separations on scales of 10’ to 20 is diminished by the fiber assignment
program and by vignetting in the spectrograph. The affected spatial scales are < 271
Mpc at the redshift of the supercluster.

3.3 The Structure of the Corona Borealis Super-

cluster

Even projected on the sky, the Corona Borealis supercluster has an irregular shape. In
Figure 3.1, we plot the surface density of galaxies across the field. The Abell clusters
in the field, including the ones that are more distant than the supercluster, stand
out prominently against the field galaxies. Four of the Abell clusters (A2056, A2065,
A2079, and A2089) are together in the southern part of the supercluster, A2061 and
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A2067 are right next to each other in the northern part, and A2092 is isolated in the
northeastern part. Only in the diamond-shaped region described by A2056, A2065,
A2079, and A2089 can an extended area with excess galaxy counts be discerned.

In Figure 3.2, we plot redshift-right-ascension diagrams for all galaxies in our
survey with z < 0.10. The diagrams are split by declination as indicated in the figure.
An inspection of the figure reinforces the impression that the density distribution of
the supercluster is far from smooth. The supercluster is sharply delimited along the
line-of-sight by foreground and background underdense regions. The well defined
boundaries of the supercluster lead us to restrict our analyses of the supercluster to
galaxies with 0.06 < 2z < 0.09. The group of galaxies at cz ~ 10000 km s! are part
of the “Great Wall” of galaxies described by Geller and Huchra (1989).

The location on the sky of all Corona Borealis supercluster galaxies in our survey is
plotted in Figure 3.3. The seven large circles mark the positions of the Abell clusters
in the supercluster, and the squares mark the locations of the fields which we have
observed. The 17 small squares, 6 at right ascension 15"13™, 2 at right ascension
15*17™, and 9 along the A2061-A2067 ridge, represent fields which were observed
when only a 1024 CCD was available at Palomar, thus reducing the number of
usable fibers by a factor of 2. The galaxies in the plot that do not lie within one of the
rectangles have been taken from the literature. The number of galaxies successfully
identified at all redshifts ranges from 10 to 42 for the small squares and from 59 to 87
for the large squares. Thus, the Norris fields which contain only a few supercluster
galaxies are sparsely populated because the supercluster is truly not dense in those
regions. Once again, one has the impression that the supercluster is lumpy and
irregular. While there are certainly supercluster galaxies in the space between the
Abell clusters, the surface density of galaxies falls rapidly with increasing distance
from the cluster cores. The comparatively small number of supercluster galaxies in the
central part of the region defined by the seven Abell clusters is particularly striking.
Also impressive is the rapid decline in density to the northwest of the A2061-A2067

ridge.

In Figure 3.4, we plot the recession velocity ¢z of all galaxies versus their angular
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distance from the center of the supercluster. To determine the center on the sky of the
supercluster, we have simply computed the mean right ascension and declination of a
sample of supercluster galaxies magnitude-limited at » < 18.5™. The celestial coordi-
nates (1950 equinox) of the center are right ascension 15"23™, declination +29°48™.
We have distinguished in the plot between galaxies with absorption-line spectra (solid
circles), emission-line spectra (unfilled circles), and unknown spectra (crosses; these
galaxies are taken from the literature). The Corona Borealis Supercluster is the broad
swath of galaxies with velocities between ~ 18000 km s~ and ~ 27000 km s~!. The

structure centered at ~ 33000 km s}

is a background supercluster which we have
dubbed the “Abell 2069 Supercluster.” It is striking that the velocity dispersion of
the Corona Borealis supercluster does not decline strongly with angular distance from
the center, as is seen for isolated Abell clusters (e.g., Coma, Kent and Gunn 1982;
Abell 2670, Sharples, Ellis, and Gray 1988). It is also notable that absorption-line

galaxies appear to be more strongly clustered than the emission-line galaxies.

3.4 The Mass of the Corona Borealis Superclus-

ter

Since the supercluster is apparently unrelaxed and contains obvious substructure
(e.g., the Abell clusters themselves), there is no completely satisfactory way to esti-
mate the mass of the supercluster. Although it is certainly questionable to apply the
virial theorem to estimate the mass of the supercluster, we choose to do so since N-
body simulations demonstrate that virial mass estimates are generally within a factor
of 2 the correct value, even when the system is not virialized (Carlberg 1994). Accord-
ing to Carlberg’s simulations, the virial theorem vields a consistently low estimate
of the mass because galaxies lose orbital energy during infall into large structures,

resulting in a slight reduction of the galaxies’ velocity dispersion with respect to that
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of the dark matter. The virial mass may be estimated from observables using

-1
My = -?’-G’ia?<i> , (3.1)

Tp

where o is the line-of-sight velocity dispersion and (1/r,)~! is the mean harmonic

projected separation,

oD 1\
<r—> = ?N(N ~1) (Z ; 5—) : (3.2)
where 0;; is the angular separation of galaxies ¢ and j, D is the radial distance to
the cluster, and N is the total number of galaxies. We use the statistically robust
techniques of Beers, Flynn, and Gebhardt (1990) to estimate the mean redshift z
and velocity dispersion o of the supercluster. We find = 0.0747 + 0.0003 and & =
1792£91 km s™" (corrected by (1+ )" for cosmological effects). With these values,
we find the virial mass of the Corona Borealis supercluster to be (1.7 +0.2) x 10*64-1
M@, in good agreement with the estimate of Postman, Geller, and Huchra (1988).
By integrating the supercluster luminosity function, we can compute the mean
luminosity density of the supercluster and thereby measure the mass-to-light ratio
of the supercluster on scales of 10 — 20A=! Mpc. In Paper IV, we fit the superclus-
ter luminosity function with a Schechter function with ¢* = 0.01 + 0.04A% Mpc~3,
M(B)* = (—19.85 £ 0.32) + 5log,o b, and @ = —1.33 4+ 0.13. The mean luminosity

density of the supercluster is
(L) = ¢"L'T (@ +2) = (1.9 £ 1.0) x 10°ALyMpc~3, (3.3)

where I' is the usual gamma function. Taking the solid angle of the survey to be
0.11 sr and the limits of the supercluster to be at z = 0.06 and z = 0.09, the volume
of the supercluster is 4 x 104~ Mpc®. The mass-to-light ratio of the supercluster
in the B band is thus (224 + 121)h(%)®, similar to that of rich clusters of galaxies
(Faber and Gallagher 1979). Allowing for a factor of 2 underestimate of the mass of

the supercluster, our result taken at face value implies that Qy < 0.3 on supercluster
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scales. The mass of the supercluster appears to be sufficient (> $My) to bind the
system.

A structure with a mass of 2 x 10"°M; is very rare in a flat cold dark méfter
universe. Out to z = 1 and over the entire sky, one would expect to observe < 1 ob ject
with such an enormous mass (C.-P. Ma, private communication). Unfortunately, the
cumulative mass distribution function is falling extremely rapidly at ~ 108 Mg. In
a cold dark matter universe, one would expect to observe ~ 100 objects with half the
mass of the Corona Borealis Supercluster in the volume out to z = 1. Therefore, the
existence of an object as massive as the Corona Borealis supercluster comparatively

close to our Galaxy cannot yet be used to constrain the cold dark matter theory.

3.5 The Peculiar Velocity Field of the Superclus-

ter

3.5.1 The Two-Point Correlation Function &(r,, 7)

Redshift-space maps of the spatial distribution of galaxies are distorted by the peculiar
motions of galaxies. The measured redshift of a galaxy is the sum of the Hubble
motion of the galaxy plus the line-of-sight peculiar velocity. The “fingers of God” seen
in redshift surveys of rich clusters of galaxies, in which the large velocity dispersion
of a cluster spreads out the cluster galaxies along the line-of-sight in redshift space,
are the most prominent signatures of redshift space distortions. On large scales,
coherent infall into overdense regions and outflow from underdense regions enhance
the correlation function. Since the velocities on large scales can be simply related to
the mean mass density of the universe Qg with linear theory, an analysis of redshift
space distortion can in principle yield an estimate of Qg (Sargent and Turner 1977,
Fisher et al. 1994a). The distribution of galaxies on the plane of the sky is not,
however, distorted by peculiar velocities. Thus, correlation functions, which one
assumes are isotropic in real space, are anisotropic in redshift space. It is, therefore,

useful to compute correlation functions as functions of separations along the line-of-



127
sight (7) and perpendicular to the line-of-sight (r,).
The two-point correlation function £(r,, ) is the joint probability § P of finding a

galaxy in each of two volume elements dV;, dV; separated by r, and =,
6P = (1 + €&(rp, 7))dVid Vs, (3.4)

where 7 is the mean galaxy density. In order to compute £(r,,7), we construct a
catalog of randomly distributed points with same selection function as the real data.

We estimate (r,, 7) using the estimator derived by Hamilton (1993):

DD(ry, m)RR(ryp, 7)

1+€(rp77r) = DR(T 7_)2 ’
py

(3.5)

where DD(r,, 7), RR(rp, %), and DR(r,,7) are the number of data-data, random-
random, and data-random pairs, respectively, with separations r, and 7. The virtue of
Hamilton’s estimator is that it is affected only in secoﬁd order by density fluctuations
on the scale of the survey. In addition, Hamilton’s estimator does not require an
independent measurement of the mean galaxy density of the survey.

We calculate the error in {(r,, 7) using simple Poisson statistics, o(¢) = (1 +
£)/v/DD. Traditionally, bootstrap resampling of the data has been employed to
estimate the errors (Ling, Frenk, and Barrow 1986). However, bootstrap errors are
not expected to yield accurate estimates of the errors for correlation statistics (Press
et al. 1992, Fisher et al. 1994b). This is illustrated by considering an attempt to
estimate the significance of a void in an observed galaxy distribution using bootstrap
errors. The void will always remain empty in the bootstrap samples, causing an
underestimate of the error in the mean density. Similarly, the bootstrap method will
overestimate the error in the estimate of the mean density of an overdense region.
Since £ is pair-weighted, it is heavily weighted by the densest regions. Using N-body
simulations, Fisher et al. (1994b) have found that the simple Poisson error estimate
is, in fact, slightly more accurate than bootstrap error estimates for 3 < r < 15~}

Mpec. For r g 3h™' Mpc, we double the Poisson errors to match crudely the error



128
estimated by Fisher et al. (1994b) for an ensemble of N-body simulations.

The random catalog has 50 times the number of galaxies as the real catalog so that
errors in the counts for the random catalog will be negligible. Since the supercluster
covers a narrow range of redshift, Az = 0.03, we chose the redshifts of the galaxies
in the random catalog uniformly in the interval 0.06 < z < 0.09. We have also
drawn redshifts for the galaxies in the random catalog from the distribution P(z|m)
that a galaxy with an apparent magnitude m has redshift z, a technique described
in detail in Small (1996), Paper III in the series. The results with two methods were
indistinguishable within the errors.

Since the survey was sparsely sampled, some care must be taken in assigning the
celestial coordinates to the galaxies in the random catalog. For each galaxy in the
real catalog, we choose 50 celestial coordinates at the same time that we choose the
50 redshifts. The celestial coordinates are selected randomly from the survey field
to which the real galaxy belongs. This method correctly accounts for the varying
number of galaxies successfully identified per survey field. If a galaxy in the real
catalog was taken from the literature, then we chose the 50 celestial coordinates in
the random catalog to be uniformly distributed throughout the whole 6° x 6° survey
area. We compared the results using this method with those obtained using a scheme
in which, for every galaxy in the real catalog, 50 celestial coordinates were chosen
at random from a circle with radius 1’ centered on the real object. There were no

significant differences between the results using the two schemes.

3.5.2 A Model for &(rp, )

The distortions of £(r,,7) contain information on the velocity distribution function
of galaxy pairs, F(w]r), where w is the velocity difference of a pair with vector
separation v. Peebles (1980) has modeled {(r,, ) as a convolution of the real space

correlation function &(r) with F(w|r),

L+ 6, m) = [[L4+EOIF(wit)dw (3.6)
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This expression can be simplified if we assume that the velocity dispersion of pairs
varies slowly with pair separation and that there is no preferred direction in the
velocity field. With those assumptions, £(r,, ) depends only on the distribution of

line-of-sight velocities, and we have

L4E(rym) = [[1+ EMIF(velr) o (37)

If we separate r into components (r,,y) perpendicular to and along the line-of-sight,

then 7'2 = 7'12) -+ y27 Vips = Ho(?'f' - y)7 and

L+ E(rp,m) = [+ 6(/72 + ) F(Holr — v)lr)dy (35)
It has been found in the analyses of previous surveys (Davis and Peebles 1983,

Fisher et al. 1994a) that an exponential distribution of pairwise line-of-sight velocities,

1
\/5012

F(vgp5) = e—\/fvzos/du’ (3.9)

where 017 is the line-of-sight velocity dispersion, fits the data well. In general, one
should also include the mean streaming of galaxies due to coherent motions generated
by large-scale structure. However, as discussed below, we find adequate fits without
incorporating mean streaming into the model. Also, we are neglecting the scale
dependence of o15. The Cosmic Virial Theorem (Peebles 1980) predicts that the
dispersion of bound objects scales as 012 & r17?/2, which is only weakly dependent
on r for v in the observed range 1.6 to 1.8.

We estimate o), by fitting Equation 3.8 to the observed &(r,, 7). A traditional
x* analysis is not appropriate, however. The points of ¢ are correlated, and the
distribution of { is not gaussian over portions of the (r,, ) plane. Since we are more
interested in just whether or not the model (Equation 3.8) can fit the data in a region
with as complex structure as the supercluster, rather than in the precise value of
012, we have merely done the fitting by eve. In any case, a measurement of oy, for

the supercluster would be of little value for comparisons with other surveys or with
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models of structure formation since the value we measure would not be representative

of a fair sample of the universe.

3.5.3 Fits to £(r,, 7) for the Supercluster

In Figure 3.5, we plot {(r,, 7) for all galaxies in the Corona Borealis supercluster.
Contours above {(r,,7) = 1 are spaced logarithmically (0.1 dex), while contours
below £(rp,7) = 1 are drawn every Aé(r,, ) = 0.2. The dark dashed line is at
£(rp,7) = 0. Levels below £(r,,7) = 0 are given by the light dashed lines. The
prominent elongation of the contours along the 7 axis for r, < 52~ Mpc is caused
by the velocity dispersion of bound clusters of galaxies and is the equivalent of the
“fingers of God” seen in redshift space. The clustering is surprisingly weak in the
supercluster, with £(r,, 7) rising above 1 only within £ 32~ Mpc of the origin of the
plot.

{(rp, ™) is plotted against separation along the line-of-sight (x) for 0 < r, < 2h~1
Mpc in Figure 3.6. We also show fits to Equation 3.8 with oy, = 600, 700, and 800 km
5!, assuming that the real space correlation function is £(r) = (r/ro)™", ro = 2.75h™
Mpc, v = 1.7. The estimated value of the pairwise velocity dispersion oy, ~ 7004100

km s~?

is much larger than the canonical value o5 = 340 & 40 km s~ computed by
Davis and Peebles (1983) for the CfAl survey, but it is roughly consistent with the
recent results of Marzke et al. (1995) and Guzzo et al. (1995), both of whom have
found o ~ 600 km s™!.

In Figure 3.7, we plot £(r,, 7) against line-of-sight separation 7 for 2 < r, < 4h™1
Mpc. The data are adequately fit with oy = 375 £ 100 km s~!. The fact that the
model successfully represents the observations while not incorporating mean stream-

ing suggests that the Corona Borealis Supercluster has not yet generated streaming

motions with velocities > 100 km s~!.
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3.6 Summary

We have not been able to achieve our original goal of accurately delineating the
structure of the supercluster because the supercluster is considerably less dense than
we believed at the beginning of this project. In particular, the background (z =
0.11) Abell 2069 supercluster contributes substantially to the projected galaxy counts.
Nevertheless, our data illustrate that the galaxy distribution within the supercluster
is irregular, clumpy, and unrelaxed overall. The mass of the supercluster is enormous,
(1.7 £0.2) x 10'*M(), which is more than sufficient to bind the system. The mass-
to-light ratio of the supercluster is, however, comparable to that of rich clusters of
galaxies. The clustering of galaxies within the supercluster is quite weak and can be
fit adequately by assuming that there are no streaming motions. These last two facts

imply that the supercluster has only recently begun to separate from the Hubble flow.
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Fig. 3.1.— A combined contour/grayscale plot of the galaxy density on the sky in
the Corona Borealis supercluster for all galaxies brighter than ¢ = 19™. The contour
levels run from 100 galaxies per square degree to 1200 galaxies per square degree.
The ridge of galaxies between Abell 2061 and Abell 2067 connects the two strikingly
dense regions at & = 15722™ § = +30°36™ and a = 15"24™_ § = +31°0™. The blank

region in the southwest corner is where the plate sensitometer spots are located.
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Fig. 3.2.— Redshift-right-ascension cone diagrams for galaxies in our survey with
cz < 30000 km s, divided into 3 declination slices. The Corona Borealis supercluster
is the prominent overdense region between cz =~ 18000 km s™! and cz ~ 27000 km
s~!. The smaller structure at cz =~ 10000 km s~ is part of the “Great Wall” of
galaxies. The galaxy distribution in the supercluster 1s quite clumpy, suggesting that

the supercluster is not yet relaxed.
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Fig. 3.3.— Location on the sky of galaxies in the Corona Borealis Supercluster. The
seven large circles mark the positions of the 7 Abell clusters contained within the
supercluster. The 32 survey fields are represented by squares. The data in the small
squares were obtained when only half of the Norris Spectrograph’s fibers were useable
because a large format 2048 CCD was not vet available at Palomar. The data in
the large squares were obtained using the full complement of 176 fibers. The number
of galaxies successfully identified at all redshifts ranges from 10 to 42 for the small
squares and from 59 to 87 for the large squares. Galaxies not in one of the squares
were obtained from the literature.
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Fig. 3.4.— Recession velocity cz versus angular separation from the supercluster cen-
ters. The solid circles are absorption-lines galaxies, the unfilled circles are emission-
line galaxies, and the crosses are galaxies taken from the literature whose spectral
properties are not known. In order of increasing redshift, the prominent structures
are the “Great Wall” at cz ~ 10000 km s~!, the Corona Borealis Supercluster at
cz ~ 21000 km s~!, and the Abell 2069 Supercluster at cz ~ 33000 km s~2.
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Fig. 3.5.— Contour plot of £(r,, 7) for the Corona Borealis Supercluster.The contours
are in steps of A¢(r,, 7) = 0.2 for £(r,, 7) < 1 and logarithmic (0.1 dex) for £(rp, 7) >
1. &(rp,7) = 1 is marked by the heavy solid contour while £(r,,7) = 0 is marked
by the heavy dashed contour. The dashed contours represent £(r,,s) < 0. The
prominent elongation of the contours along the w axis for r, < 5k~ Mpc is due
to high velocity dispersion of virialized clusters of galaxies. The clustering in the
supercluster is quite weak.
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Chapter 4 Evolution of Galaxy

Clustering and Large-Scale Structure to

z ~ 0.5

4.1 Introduction

One of the most cherished postulates of the standard model of cosmology is that
gravitational instability shaped the large-scale structure of the universe: tiny fluctu-
ations in the early universe have grown through the action of gravity to become the
galaxies, clusters of galaxies, and superclusters of galaxies which we observe today
(Peebles 1994). In order to observe the evolution of structure, one needs to construct
a sample of galaxies with cosmologically significant redshifts, a task which has only
recently become possible with use of efficient multiplexing spectrographs on 4m class
telescopes. In this paper, we investigate large-scale structure and the evolution of
galaxy clustering out to z = 0.5 using galaxies from our redshift survey of the Corona
Borealis Supercluster.

A simple way to characterize clustering is to measure a hierarchy of n-point cor-
relation functions (Peebles 1980). In practice, only the two-point correlation function
&(r) can be accurately measured from redshift surveys. £(r) has been measured lo-
cally for optical samples of galaxies and has been found to have a power-law form
&(r) = (r/ro)™" with the correlation length rq ~ 5—6h~! Mpc (k is the present value
of the Hubble constant measured in units of 100 km s™! Mpc™) and v ~ 1.7~ 1.8
for r < 20h™" Mpc (Loveday et al. 1995, Marzke et al. 1995). Cole et al. (1994)
have measured {(r) for z £ 0.3 and find no evidence for evolution in the comoving
correlation length. However, Le Fevre et al. (1995) have observed evolution of the

correlation length in a large sample of galaxies with 0 < z < 1.3. In addition, studies
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of the two-point angular correlation function of galaxies find that faint galaxies are
significantly less correlated than what would be predicted from the local correlation
function with only modest growth of clustering (Brainerd, Smail, and Mould 1995).
Unfortunately, interpretations of the evolution of clustering are complicated by the
fact that one may not be observing the same types of galaxies at high redshift as at
low redshift. In local samples, early-type galaxies are clustered more strongly than
late-type galaxies (Loveday et al. 1995). Indeed, Brainerd, Smail, and Mould (1995)
suggest that, by accounting for the change in the observed morphological mix with
redshift, rapid clustering evolution need not be required.

The two-point correlation function is distorted in redshift space by peculiar ve-
locities. On small scales, the velocity dispersion of bound clusters of galaxies sup-
presses the apparent correlation function, whereas on large scales, coherent motions
of galaxies towards overdense regions and away from underdense regions enhance the
correlation function. An analysis of the distortions allows one in principle to mea-
sure the mean velocity dispersion of pairs of galaxies, 012, and to estimate the mean
density of the universe, {)o (modulo the bias parameter). The canonical value of o1,
is 340 & 40 km s, which was obtained by Davis and Peebles (1983) using data from
the CfA1 redshift survey. This measurement of o;; has become one of the strongest
constraints on models of structure formation because the standard cold dark mat-
ter model, with the power spectrum normalized to match the quadrupole anisotropy
measured in the cosmic microwave background, predicts o5 ~ 1000 km s~ for a flat
universe (Davis et al. 1983). The value of oy, predicted by the CDM model can be
reduced either by assuming an open universe or by assuming that the galaxies are
a biased tracer of the underlying mass distribution, but it is very difficult to reduce
012 to the value measured by Davis and Peebles (1983). Recently, however, Guzzo
et al. (1995) and Marzke et al. (1995), using the Perseus-Pisces redshift survey and
the combined CfA2/SSRS redshift survey, respectively, have obtained values of o1,
which are roughly twice as high as the canonical 340440 km s™! and have emphasized
the sensitivity of oy, to the volume in which it is measured and to the treatment of

the richest clusters in the sample. Our survey allows us to measure oy, in the largest
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volume yet probed, ~ 5 x 105! Mpc®. This volume is sufficiently large that the
value of 012 measured in our survey should be within ~ 10% of the cosmic mean
(Marzke et al. 1995).

A measurement of the mean streaming motion of galaxy pairs can be used to
estimate {}o. Unfortunately, our data set is not large enough to usefully constrain
Qo, especially since it is very difficult to disentangle the effects on the two point
correlation function of large structures perpendicular to the line-of-sight from those
of large-scale streaming (Fisher et al. 1994a).

There have been recent reports of clustering of galaxies on scales far larger than
those on which £(r) is measured. Most famously, Broadhurst et al. (1990) found that
peaks in their narrow pencil-beam survey of the North and South galactic poles oc-
curred at regular intervals of ~ 1282~! Mpc. Landy et al. (1995) have detected excess
power on 100k7! scales in the two-dimensional power spectrum of galaxies in the Las
Campanas Redshift Survey (Shectman et al. 1995). Estimating the significance of the
result of Broadhurst et al. (1990) is complicated by the fact that small-scale power in
the three-dimensional power spectrum projects to large scales in the one-dimensional
power spectrum (Kaiser and Peacock 1991). The amount of power projected varies
roughly as the inverse of the angular size of the survey. The Broadhurst et al. (1990)
pencil-beam was 10’ wide. In contrast, our survey is 6° wide, thus greatly reducing
the power projected to large scales.

The paper, the third in the series of papers presenting results from the Norris
Survey of the Corona Borealis Survey, is organized as follows. In §2, we briefly describe
the survey, emphasizing those points which are relevant to the current analysis. We
review the techniques for measuring £(r,,7) and discuss how to measure the real
space correlation function and the pairwise velocity dispersion in §3. The evolution
of the real space correlation function is investigated in §4. The results for the pairwise
velocity dispersion are presented in §5. The presence of structure on ~ 100A~! Mpc
scales is analyzed in §6. We summarize our conclusions in §7.

Unless otherwise noted, we use ¢o = 0.5 throughout the paper.
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4.2 The Norris Survey of the Corona Borealis Su-

percluster

The Norris Survey of the Corona Borealis Supercluser has been described in detail in
Small et al. (1996), Paper I of the current series, and will be only briefly reviewed
here. The core of the supercluster covers a 6° x 6° region of the sky centered at right
ascension 15"20™, declination +30° and consists of 7 rich Abell clusters at z ~ 0.07.
Since the field-of-view of the 176-fiber Norris Spectrograph is only 400 arcmin?, we
planned to observe 36 fields arranged in a rectangular grid with a grid spacing of
1°. As 1t turned out, we successfully observed 23 of the fields and 9 additional fields
along the ridge of galaxies between Abell 2061 and Abell 2067, yielding redshifts for
1491 extragalactic objects. We have extended our survey with 163 redshifts from
the literature, resulting in 1654 redshifts in the entire survey. 1022 of these galaxies
lie beyond the Corona Borealis Supercluster, although of these 1022, 298 galaxies
are in a background supercluster (z &~ 0.11) which we have dubbed the “Abell 2069
Supercluster.”

The survey is only complete in apparent magnitude to Gunn r = 18.5™. However,
we have substantial numbers of galaxies out to r = 22.0™. In order to compute
the two-point correlation function one must create a random sample of galaxies with
the same selection effects as the real data. We chose random redshifts not from
the probability distribution P(M|z) that an object at redshift z has an absolute
magnitude M, which would be appropriate for a magnitude limited sample, but rather
from the probability distribution P(z|{m) that an object with apparent magnitude m
has a redshift z. We describe the creation of the random sample in more detail below

The velocity errors in our sample are typically ~ 100 km s™*. In order to compute
the real space two-point correlation function, we integrate the redshift space two-
point correlation function along the line-of-sight, thus accounting for the effects of
velocity errors (and real peculiar velocities). The sampling of galaxies on the sky is

not uniform in our survey. The Norris Spectrograph fibers cannot be placed within



143

16" of each other, and their motion is further restricted by limits on the bending
angles of the fibers. These two effects combine to eliminate pairs of objects with
angular separations of g 30”. However, as illustrated in Figure 4.1, this bias is
insignificant since a pair of galaxies at z = 0.5, the highest redshift we consider in
this paper, must have a separation of less than 0.32™! Mpc to be affected. The
fiber assignment program introduces a bias against pairs with separations > 10’
Vignetting at the edges of the spectrograph field of view further limits the number
of pairs at large separations. Since the survey fields do not overlap, the bias against
pairs with separations between 10’ and 20’ causes the correlation function on comoving
scales that subtend 10’-20’ to be severely underestimated and very noisy. The affected
range is shown in Figure 4.2 as a function of redshift.

We do not believe that the survey is biased against particular galaxy types to
z = 0.5. The 4000A break and Ca H, Ca K lines of old stellar populations and the
[O II] line of star-forming galaxies are within our spectral range to z = 0.5. The
color distribution of the objects that we observed but failed to identify is similar to
the color distribution of the objects that we successfully observed (Paper I). (Note
that this does not imply that the morphological mix at z = 0.5 is identical to the

morphological mix at z = 0.)

4.3 The Two-Point Correlation Function £(r,, )

4.3.1 Definition and Computation of {(r,, 7)

Redshift-space maps of the spatial distribution of galaxies are distorted by the peculiar
motions of galaxies. The measured redshift of a galaxy is the sum of the Hubble
motion of the galaxy plus the line-of-sight peculiar velocity. The “fingers of God” seen
in redshift surveys of rich clusters of galaxies, in which the large velocity dispersion
of a cluster spreads out the cluster galaxies along the line-of-sight in redshift space,
are the most prominent signatures of redshift space distortions. On large scales,

coherent infall into overdense regions and outflow from underdense regions enhance
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the correlation function. Since the velocities on large scales can be simply related to
the mean mass density of the universe {3y with linear theory, an analysis of redshift
space distortion can in principle yield an estimate of 3y (Sargent and Turner 1977,
Fisher et al. 1994a). The distribution of galaxies on the plane of the sky is not,
however, distorted by peculiar velocities. Thus, correlation functions, which one
assumes are isotropic in real space, are anisotropic in redshift space. It is, therefore,
useful to compute correlation functions as functions of separations along the line-of-
sight (7) and perpendicular to the line-of-sight (r,).

The two-point correlation function £(rp, 7) is the joint probability § P of finding a

galaxy in each of two volume elements dV}, dV; separated by r, and ,
§P = n*(1 + &(rp, 7))dVid Vs, (4.1)

where 7 is the mean galaxy density. In order to compute £(r,,7), we construct a
catalog of randomly distributed points with same selection function as the real data.

We estimate £(r,, 7) using the estimator derived by Hamilton (1993):

DD(r,, m)RR(r,, )
DR(ry, )2

1+ ¢&(rp,7) = ; (4.2)

where DD(r,,7), RR(r,,7), and DR(r,, 7) are the number of data-data, random-
random, and data-random pairs, respectively, with separations r, and 7. The virtue of
Hamilton’s estimator is that it is affected only in second order by density fluctuations
on the scale of the survey. In addition, Hamilton’s estimator does not require an
independent measurement of the mean galaxy density of the survey.

We calculate the error in (7, 7) using simple Poisson statistics, o(£) = (1 +
¢)/v/DD. Traditionally, bootstrap resampling of the data has been employed to
estimate the errors (Ling, Frenk, and Barrow 1986). However, bootstrap errors are
not expected to yield accurate estimates of the errors for correlation statistics (Press
et al. 1992, Fisher et al. 1994b). This is illustrated by considering an attempt to

estimate the significance of a void in an observed galaxy distribution using bootstrap
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errors. The void will always remain empty in the bootstrap samples, causing an
underestin;a,t,e of the error in the mean density. Similarly, the bootstrap method will
overestimate the error in the estimate of the mean density of an overdense region.
Since ¢ is pair-weighted, 1t is heavily weighted by the densest regions. Using N-body
simulations, Fisher et al. (1994b) have found that the simple Poisson error estimate
is, in fact, slightly more accurate than bootstrap error estimates for 3 < r g 15871
Mpc. For r £ 3h~ Mpc, we double the Poisson errors to match crudely the error
estimated by Fisher et al. (1994b) for an ensemble of N-body simulations.

The random catalog has 50 times the number of galaxies as the real catalog so that
the errors in the counts for the random catalog will be negligible. As noted above, our
sample of galaxies is not magnitude-limited. In order to generate the redshifts of the
galaxies in the random catalog, we have selected the redshifts from the distribution

P(z|m) that a galaxy with an apparent magnitude m has a redshift z:

_oMEm) |
PEm) = o g m) 2 43

Here, ¢(M) is the luminosity function, M (z,m) is the absolute magnitude of a galaxy
such that it would have apparent magnitude m at redshift z, and dV/dz is the rela-
tivistic volume element. For each galaxy in the real catalog, we choose 50 redshifts
from P(z|m). We have also drawn the redshifts from the observed redshift distribu-
tion, heavily smoothed with a gaussian with a dispersion of 9000 km s™!. Our results
for the two methods of choosing redshifts agree well.

Since the survey was sparsely sampled, some care must be taken in assigning the
celestial coordinates to the galaxies in the random catalog. For each galaxy in the
real catalog, we choose 50 celestial coordinates at the same time that we choose the
50 redshifts. The celestial coordinates are selected randomly from the survey field
to which the real galaxy belongs. This method correctly accounts for the varying
number of galaxies successfully identified per survey field. If a galaxy in the real
catalog was taken from the literature, then we chose the 50 celestial coordinates in

the random catalog to be uniformly distributed throughout the whole 6° x 6° survey
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area. We compared the results using this method with those using a scheme in which,
for every galaxy in the real catalog, 50 celestial coordinates were chosen at random
from a circle with radius 1’ centered on the real object. There were no significant

differences between the results using the two schemes.

4.3.2 The Spatial Correlation Function &£(r)

In order to compute the real space correlation function é(r), we project £(r,, #) onto

the r, axis. The projection depends only on the real space correlation function:

wylry) = 2 [ €ry,m)dn (4.4
= 2/ (r2 +y%) )Y dy, (4.5)
where y is the line-of-sight separation in real space. The integrand in the second

expression for w,(r,) is the correlation function in real space. If we assume that

&(r) = (r/ro)™", the integral for w,(r,) can be evaluated analytically to give:

By fitting a power law to wp(r,), we can measure the correlation length and power

(4.6)

p

law index of the real space correlation function.

4.3.3 A Model for &(r,, 7)

The distortions of £(r,, ) contain information on the velocity distribution function
of galaxy pairs, F(w|r), where w is the velocity difference of a pair with vector
separation v. Peebles (1980) has modeled £(r,, ) as a convolution of the real space

correlation function £(r) with F(w|r),

Lt €(rym) = [+ E0)P(wlr)dw (+7)
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This expression can be simplified if we assume that the velocity dispersion of pairs
varies slowly with pair separation and that there is no preferred direction in the
velocity field. With those assumptions, é(r,, ) depends only on the distribution of

line-of-sight velocities, and we have

L+ () = [+ EOIF (vraelr e (48)

If we separate r into components (r,,y) perpendicular to and along the line-of-sight,

then 7'2 = T'Z + y2, Vios = HO(W = y)7 and

L+ lrpm) = [+ €07+ NP (Hlr = y)ir)dy (49)

It has been found in the analyses of previous surveys (Davis and Peebles 1983,

Fisher et al. 1994a) that an exponential distribution of pairwise line-of-sight velocities,

1
F(105) = fzme—ﬂ%s/m, (4.10)

where o1 is the line-of-sight velocity dispersion, fits the data well. We have assumed
that the mean of the distribution of pairwise line-of-sight velocities is 0. In general,
one would expect coherent infall on large scales to generate streaming motions and
thus that the mean would not be zero. However, on the small scales for which have
sufficient data, the dispersion o, is much larger than the expected streaming motions.
Also, we are neglecting the scale dependence of oy;. The Cosmic Virial Theorem
(Peebles 1980) predicts that the dispersion of bound objects scales as 012 o r1=/2,
which is only weakly dependent on r for v in the observed range 1.6 to 1.8.

We estimate oy, by fitting Equation 4.9 to the observed ¢(r,, 7). A traditional
x? analysis is not appropriate, however. The points of ¢ are correlated, and the
distribution of £ is not gaussian over portions of the (r,, ) plane. Since the differences
associated with the treatment of the richest structures in the survey (e.g., whether or
not to exclude the superclusters or merely to remove galaxies near the Abell cluster

cores are much larger than the statistical errors, we have merely done the fitting by
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eye. This is sufficient for answering the main question we wish to address in this

analysis, namely, is 032 larger than the canonical value of 340 40 km s™* (Davis and

Peebles 1983)?

4.4 The Evolution of £(r, z)

Assuming that £(r, z) is well fit by a power-law (r/ro)™", where r and ry are comoving

coordinates, we can describe the evolution of £(r, z) using (Groth and Peebles 1977)
£(r, z) = £(r, 0)(1 + z)= G+l (4.11)

For clustering which is fixed in comoving coordinates, the evolutionary parameter
¢ = v — 3. For clustering which is fixed in physical coordinates, ¢ = 0. Linear theory
predicts € = 4 — 1 (Peebles 1980).

We have computed £(r) in the redshift intervals 0.2 < z < 0.3 and 0.3 < z < 0.5
by fitting to the projected correlation function wy(r,). In Figure 4.3, we plot wy(r;)
for our two redshift intervals, along with fits to the local wy(r,) computed from the
CfA+SSRS (Marzke et al. 1995) and Stromlo/APM surveys (Loveday et al. 1995).
w,(r,) declines dramatically with redshift between z = 0. and z ~ 0.4. In order to
compute the evolutionary parameter ¢, we have included measurements of r¢(z) from
the CfA+SSRS survey, the Stromlo/APM survey, and the CFRS survey (Le Fevre
et al. 1995). The data from these surveys and our own are shown in Figure 4.4 along
with the best fit to Equation 4.11. We assume v = 1.65 and that v does not change
with redshift. We measure ¢ = 2.25 & 0.1, although the value of x? per degree of
freedom v is quite poor, x2/v = 21.5/5. Despite the uncertainties in the fit, it is clear
that the measured value of ¢ is significantly larger than the value predicted by linear
theory (¢ = 0.7 for v = 1.7).

The interpretation of the decline is not straightforward, however, since we may
not be observing similar galaxy populations at the various epochs. In local samples,

it 1s found that intrinsically bright galaxies are more strongly clustered than intrin-
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sically faint galaxies and that early-type galaxies are more strongly clustered than
late-type galaxies (Loveday et al. 1995). Galaxies with faint absolute magnitudes are
progessively excluded from our survey with increasing redshift. Galaxies in the range
0.2 < z < 0.3 are almost all brighter than M(B) = —18.5 4+ 5log,o h, and galaxies in
the range 0.3 < z < 0.5 are almost all brighter than M(B) = —19.0 + 5log,, . Since
the intrinsically faint galaxies are less clustered than the intrinsically bright galax-
ies, a survey with a fainter magnitude limit than ours would presumeably measure
smaller correlation lengths than we have, thereby further increasing the value of the
evolutionary parameter € over the linear theory prediction.

We have shown in Small, Sargent, and Hamilton (1996a), Paper IV in the current
series, that the median color of the galaxies becomes bluer with increasing redshift.
In the redshift interval 0.2 < z < 0.3, 64% (137/215) of the galaxies in our survey
have emission lines, whereas 77% (146/190) of the galaxies have emission lines in
the redshift interval 0.3 < z < 0.5. The increasing blue fraction with redshift could
dilute the measured correlation function and artificially inflate the measured value
of . In order to investigate this effect, we have computed w,(r,) separately for the
absorption-line objects and the emission-line objects. We divided the data according
to spectral type rather than photometric color because we know the spectral type of
every galaxy in the survey while there are a handful of galaxies which were detected
on only one of the original POSS-II plates. (Estimates of w,(r,) with smaller samples
separated by color into galaxies redder than a Coleman, Wu, and Weedman (1980)
Sbe galaxy and those as blue or bluer than their Sbc galaxy were consistent with
those computed for the samples divided by spectral properties.) In Figures 4.5 and
4.6 we plot w,(r,) as a function of redshift for the emission-line and absorption-line
objects, respectively. We also include in the figures fits to w,(r,) for the appropriate
galaxy types from Loveday et al. (1995) and from Le Fevre et al. (1995). We do
not see any signs of evolution of the clustering strength of the emission-line galaxies,
contrary to the results of Le Fevre et al. (1993). The emission-line galaxies do evolve,
however. The emission-line galaxies are less strongly correlated than the absorption-

line galaxies, as seen in local samples. Unfortunately, we do not have a sufficient
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number of galaxies with 0.3 < z < 0.5 to confirm the observation of Le Fevre et al.
(1995) that the blue and red populations become similarly clustered for z > 0.5.

The lack of evidence for a reduction in the strength of the clustering of red galaxies
with redshift suggests that large value of the evolutionary parameter ¢ that we have
measured is partly due to the change in the observed morphological mix with redshift,
in accord with the conclusions of Brainerd, Smail, and Mould (1995). The evolution
of the clustering of the blue galaxies is still, however, dramatic. Loveday et al. (1995)
measured 7o = 4.4 & 0.1A™! Mpc (in proper units) for spiral and irregular galaxies
with z,eq = 0.05. Combining this result with our estimate of the correlation length
(converted to proper units) for blue galaxies with 0.2 < 2z < 0.5 (2peg = 0.3), 70 =

2.1+ 0.2h7" Mpc, we find roughly that € ~ 2 for the blue population alone.

4.5 The Pairwise Velocity Dispersion o,

We have computed o, for three samples from our survey: all galaxies with 0 < z <
0.3, all galaxies with 0 < z < 0.5 that are not within 52~ Mpc of the center of
an Abell cluster, and all galaxies with 0.13 < 2 < 0.5. We have chosen these three
samples to illustrate the sensitivity of oy, to presence of rich clusters in the survey
volume. The volume of our survey to z = 0.5 is 5 x 104~ Mpc®, which is roughly 3
times larger than the volume of the combined CfA+SSRS redshift survey.

In Figure 4.7, we plot {(r,, ) for all galaxies with 0 < z < 0.5. The dark solid
line marks £(rp,7) = 1. Contours above {(r,,7) = 1 are spaced logarithmically (0.1
dex), while contours below {(r,,7) = 1 are drawn every Aé(r,,7) = 0.2. The dark
dashed line is at &(r,, 7) = 0. Levels below £(r,,7) = 0. are given by the light dashed
lines. The prominent elongation of the contours along the 7 axis for r, < 547! Mpc
is caused by the velocity dispersion of bound clusters of galaxies and is the equivalent
of the “fingers of God” seen in redshift space. The rise in £(r,,7) at r, &~ 127! Mpc
is due to the correlation of the Abell clusters in the survey. In Figure 4.8, we plot
£(rp, ) versus 7 for 0 < r, < 1h~" Mpc along with curves computed using Equation

4.9 for o1, =800, 900, and 1000 km s™!, where o1, has been corrected for a redshift
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of zpeq = 0.11. The curve with o5 = 900 km s™! fits the data well. The curves with
12 = 800 and 1000 km s~ bracket the range of acceptable fits.

(rp, m) for all galaxies with 0 < z < 0.5 and not within 5A~! Mpc of an Abell
cluster is shown in Figure 4.9. The contour levels are the same as for Figure 4.7.
The elongation of the contours along the 7 axis for small r, are not as pronounced as
for the sample which included galaxies in the cores of the Abell clusters. The weak
compression of the contours along the 7 axis for r, & 5h~! Mpc is the signature of
coherent galaxy motions generated by large-scale structure. This compression was
not visible in Figure 4.7 because of the large velocity dispersion of the Abell clusters
in the complete sample of galaxies with 0 < z < 0.5. As shown in Figure 4.10, the
pairwise velocity dispersion drops by nearly 300 km s~ with the removal from the
sample of the galaxies in the Abell clusters. &(r,,w) is well fit using Equation 4.9
with o2 = 625 £ 100 km s~ (corrected for z,,eq = 0.23).

Lastly, we plot £(rp, 7) for all galaxies with 0.13 < z < 0.5 in Figure 4.11. By
restricting the galaxies to have z > 0.13, we remove the two superclusters. The
contour levels are the same as for Figure 4.7. The elongation of the contours along
the 7 axis for small r, is still apparent, but it is substantially reduced from the
two samples which included the superclusters. The presence of coherent large-scale
motions is evident in the compression of the contours along the 7 axis for r, & 5h71
Mpc. £(rp,7) is plotted versus = for 0 < r, < 2h~™' Mpc in Figure 4.12. We find
using Equation 4.9 that oy = 325 + 100 km s™!, which agrees within the errors with
the original result of Davis and Peebles (1983) and with the results of Marzke et al.
(1995) for the combined CfA+SSRS survey with the Abell clusters of richness class
one or greater removed.

We confirm, for the largest volume yet studied, the results of Guzzo et al. (1995)
and Marzke et al. (1995) that the value of 0y, averaged over all galaxies is substantially
larger than the canonical value of 340 = 40 km s™! and that oy, could be as large as
600 km s™'. Such a large value is consistent with the value of oy, predicted by low

density (2h ~ 0.2) and biased cold dark matter models (Davis et al. 1985).
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4.6 Structure on Scales of ~ 100h~! Mpc

In Figure 4.13, we plot the redshift-right-ascension diagram for all the objects in our
survey with cz < 80000 km s~*. The Corona Borealis and Abell 2069 superclusters are
the two prominent structures at z ~ 0.07 and z = 0.11, respectively. The structure
at cz &~ 10000 km s~! is part of the “Great Wall” of galaxies identified in the CfA
redshift survey (Geller and Huchra 1989). Between the structures, there are large
underdense regions with scales of ~ 1002~ Mpc.

The presence of structure on scales of ~ 100h=! Mpc is confirmed by computing
the one-dimensional power spectrum in our survey. Following Kaiser and Peacock

(1991), we compute
St
Sp = =) € (4.12)
N =1

where N is total number of objects and z; is the comoving distance to object . We
plot the power spectrum |6;|?, the contribution to the fractional density variance
from a single mode, in Figure 4.14. The prominent peak in the power spectrum at
k = 0.06h radians Mpc™! corresponds to structures on the scale of ~ 100A~! Mpec.
Computing the significance of a peak in the one-dimensional power spectrum is com-
plicated by that fact that small scale power in the three-dimensional power spectrum
1s projected onto large scales (small £) in the one-dimensional power spectrum. Kaiser
and Peacock (1991) estimate that for a cylindrical survey with depth L and radius

R, the mean power for one mode is

1642 = 1.79 (%)R(%) ) (4.13)

where r¢ is the correlation length of small scale clustering and we have assumed that
the power-law index of the correlation function is v = 1.7. Taking L ~ 1000h~?
Mpc (which corresponds to the survey extending to z ~ 0.5), R ~ 30A~! Mpc, and
ro ~ 5h~! Mpc, we find that the expected mean power at large-scales is |82 ~ 0.01.

The probability that such a peak with height ~ 0.08 would occur at random is only

exp(—0.08/0.01) = 3x10™*. Our results, in agreement with those of Broadhurst et al.
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(1990) and Landy et al. (1995), strongly suggest that ~ 100h~! Mpc is a preferred

scale in the galaxy distribution.

4.7 Summary

We have presented an analysis of large-scale structure and the evolution of clustering
for galaxies selected from the Norris Survey of the Corona Borealis Supercluster. We
have found compelling evidence for a decline in the strength of galaxy clustering
with redshift. The observed decline is quite dramatic and, if we assume that the
variation of the observed morphological mix with redshift 1s minor, implies a value
of the evolutionary parameter ¢ = 2.25 + 0.1 which is considerably larger than the
linear theory prediction (e = 0.7 for correlation function power-law index v = 0.7).
The variation of the observed morphological mix does, however, appear to play an
important role. When our samples are divided into absorption-line (red) galaxies and
emission-line (blue) galaxies, we find that there is no sign of evolution of the clustering
of the red galaxies while the clustering of the blue galaxies is changing rapidly with
redshift. These observations are consistent with the notion that red galaxies have
been in place in the dense regions of the universe, and thus highly clustered, for a
long time while the blue galaxies have only started falling into the clusters at late
times.

We have measured the pairwise velocity dispersion o5 for 3 samples of galaxies
taken from our survey. Our estimates suggest, like those of Guzzo et al. (1995) and
Marzke et al. (1995), that o1, is approximately twice the canonical value measured by
Davis and Peebles (1983), 012 = 340 + 40 km s™!. The estimates are, however, very
sensitive to the removal or inclusion of the richest clusters of galaxies. By removing
the superclusters, we can reduce oq5 by a factor of 2. The low value of 72 measured
by Davis and Peebles (1983) had been one of the most stringent constraints on models
of structure formation. The models gain considerable room for maneuver if o5 really
is in the neighborhood of 600 km s™!.

The large-scale structure in our survey is striking. For z g 0.2, where we have
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sampled the galaxy distribution well, we see structures of ~ 100A~! Mpc. Large
superclusters are bordered by vast underdense regions. The visual impression is con-
firmed by the power spectrum of our survey, which exhibits a highly significant peak
at wavenumbers that correspond to ~ 100! Mpc scales. If there is indeed a pre-
ferred scale in the galaxy distribution, this will present a great challenge to hierarchi-
cal structure formation models, which are based on the assumption that the power

spectrum is scale free.
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TABLE 4.1
POWER-LAW FITS TO w,(r,)

Sa'mple Zmed Nobj g Y
(A~ Mpc)
0<2<05 0.11 1610 6.14+0.01 1.6540.01
0 < z < 0.5, cluster galaxies removed  0.12 1327 4.774+0.02 1.71 +£0.01
0.13<2<0.5 0.23 628 4.61+0.05 1.70£1.70
02<2<05 0.29 399 426+0.15 1.63£0.10
0.29 399  4.43+0.08 1.7 (fixed)
0.2 <z <0.5, red 026 122 533x0.29 1.4240.17
0.26 122 6.62+£0.14 1.7 (fixed)
0.2 < z < 0.5, blue 030 276 2.73+0.29 140+£0.17
030 276  3.78£0.14 1.7 (fixed)
0.2<2<0.3 024 213 3964018 1.50+£0.11
0.24 213  291£0.29 1.7 (fixed)
03<2<05 0.36 186  2.63£046 1.51+£0.30
0.36 186  3.13+£0.26 1.7 (fixed)
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Fig. 4.1.— Angular size of 1 comoving Mpc as a function of redshift for Qg =1
and Q = 0.2. The fiber placement algorithm (AUTOFID2) introduces a strong bias
against pairs with separations less than 60”. The horizontal line marks this scale.
Since our estimates of £(r) are limited to r > 0.5A! Mpc, the bias against small
separation pairs does not have a significant effect on our analysis.
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Fig. 4.2.— Comoving scales affected by the bias against large angular separation
pairs as a function of redshift. There is a substantial bias against pairs of galaxies
with angular separations between 10’ and 20" due to the fiber assignment algorithm
and to vignetting of the edge of the spectrograph field. The number of pairs with
comoving separations on the plane of the sky that correspond to these angular scales
is greatly reduced.
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Fig. 4.3.— Projected correlation function w,(r,) as a function of redshift. We plot
w,(r,) for the redshift intervals 0.2 < z < 0.3 and 0.3 < z < 0.5. We also plot fits to
wp(r,) measured in the CFA+SSRS (solid line) and Stromlo/APM (dotted line) local
redshift surveys. It is evident that the clustering strength declines with redshift. The

unfilled square at r = 62! Mpc which is unusually low is affected by the large angle
bias discussed in §2.
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Fig. 4.4.— Evolution of the proper correlation length with redshift. The solid line

shows the fit t0 70 prop(2) = T0prop(0)(1 + 2)BT)/Y with 74 0p(0) = 6.2571 Mpc,
€ = 2.25, and v = 1.65.
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Fig. 4.5.— Projected correlation function wy(r,) of absorption-line galaxies. The
filled circles are w,(r,) for absorption-line galaxies in our sample with 0.2 < z < 0.5
(zmea = 0.26). The solid line shows the fit to w,(r,) as measured by Loveday et al.
(1995) for early-type galaxies with 2z, = 0.05. The dotted line shows the fit to
wp(r,) as measured by Le Fevre et al. (1995) for red galaxies with 0.2 < z < 0.5. Our
results suggest that the clustering strength of red galaxies has not changed markedly
since z ~ 0.3, in disagreement with the conclusion of Le Fevre et al. (19953).
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Fig. 4.6.— Projected correlation function wy(r,) of emission-line galaxies. The filled
circles are wpy(r,) for emission-line galaxies in our sample with 0.2 < z < 0.5 (2eq =
0.30). The solid line shows the fit to w,(r,) as measured by Loveday et al. (1995)
for late-type galaxies with z,es = 0.05. The dotted line shows the fit to w,(r,) as
measured by Le Fevre et al. (1995) for blue galaxies with 0.2 < z < 0.5. We find that
blue galaxies are significantly less clustered at 0.2 < z < 0.5 than locally. However,
we do not observe as dramatic a decline as that observed by Le Févre et al. (1995).
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7 (h™" Mpe)

Fig. 4.7.— Contour plot of £(r,, 7) for all galaxies with 0 < z < 0.5. The contours are
in steps of Af(r,,7) = 0.2 for £(rp, 7) <1 and logarithmic (0.1 dex) for {(r,,7) > 1.
£(rp, ) = 1 is marked by the heavy solid contour while {(r,,7) = 0 is marked by the
heavy dashed contour. The dashed contours represent £(r,,7) < 0. The prominent
elongation of the contours along the 7 axis for r, < 52~ Mpc is due to high velocity
dispersion of virialized clusters of galaxies.
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Fig. 4.8.— &(rp, ) as a function of # for 0 < r, < 1A~! Mpc for all galaxies with
0 < z < 0.5. The data are well fit by Equation 4.9 with oy, = 900 + 100 km s™*.



164

——— T
§ U
O L -
N
w .
S L
Q
= F 1
n L ]
f/ L
£ © L -
A 4 |
4
& X
o TR VORI SN CHNS R S PR TS Y SR T S S | L
0 5 10 15

-1
_ (h™" Mpc)

Fig. 4.9.— £(rp, ) for galaxies with 0 < z < 0.5 and more than 52! Mpc from the
center of an Abell cluster. The contours are identical to those in Figure 4.7. The
elongation of the contours along the 7 axis at small r, is visible as well as the weak
compression of the contours at 7, & 5h~! due to coherent galaxy motions generated
by large scale structure.
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Fig. 4.10.— {(ry, %) as a function of 7 for 0 < r, < 141 Mpc for galaxies in the
range 0 < z < 0.5 and more than 52! Mpc from the center of an Abell cluster. The
data are well fit by Equation 4.9 with oy, = 625 + 100 km s—!.
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Fig. 4.11.— £(rp, m) for all galaxies with 0.13 < z < 0.5. The contours are identical
to those in Figure 4.7. The two superclusters are not included in this sample. The
elongation of the contours along the 7 axis at small r, is visible as well as the weak
compression of the contours at 7, ~ 52! due to coherent galaxy motions generated
by large scale structure.
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range 0.13 < z < 0.3, thereby excluding the superclusters. The data are well fit by
Equation 4.9 with 15 = 325 + 100 km s~1.
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Fig. 4.13.— Redshift-right-ascension cone diagrams for galaxies in our survey with
cz < 80000 km s™!, divided into 3 declination slices. The Corona Borealis Superclus-
ter is the prominent clump of galaxies at z & 0.07. The Abell 2069 Supercluster is at
z & 0.11. The galaxies at ¢z &~ 10000 km s™! are part of the “Great Wall” of galaxies
identified by Geller and Huchra (1989).
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Chapter 5 Galaxy Evolution to z ~ 0.5

5.1 Introduction

Only with recent introduction of efficient multi-object spectrographs on 4-m class
telescopes has it become possible to construct large samples of faint galaxies with
measured redshifts. With such a sample, one can compute the luminosity function
of galaxies as a function of redshift and thereby directly observe the evolution (or
lack thereof) of the galaxy population. Previously, however, clues that some sort of
galaxy evolution must be occurring have been gleaned from both deep photometric
surveys (e.g., Peterson et al. 1979, Koo 1981, and, more recently, Tyson 1988 and
Metcalfe et al. 1995) and from small surveys of faint galaxies (e.g., Broadhurst, Ellis,
and Shanks 1988, Cowie, Songaila, and Hu 1991, and Glazebrook et al. 1995a). The
photometric surveys have found that the local galaxy luminosity function, normalized
to the galaxy counts at the bright end (B ~ 16™), underestimates the number of
galaxies counted at magnitudes fainter than B > 21™. The early faint galaxy redshift
surveys, while insufficient to compute the luminosity function at higher redshifts, do
provide a constraint on galaxy evolution through the redshift distribution observed at
faint magnitudes. These redshift surveys have shown that while the range of redshifts
observed at faint magnitudes is consistent with the range expected from assuming that
galaxies have not evolved, the number of galaxies at intermediate redshifts (z ~0.5)
1s underestimated.

The evidence for evolution is, of course, dependent upon having the correct model
for the local luminosity function. While redshift surveys of local galaxies (Loveday
et al. 1992, Marzke, Huchra, and Geller 1994) have precisely estimated the character-
istic magnitude M™ of the luminosity function, there remains considerable uncertainty
about both the normalization and the slope at low luminosities. The normalization

could conceivably be biased by the properties of the local galaxy distribution or by
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photometric errors in calibrating the measured intensities on the photographic plates
used for the large-angle, local surveys. Increasing the normalization by a factor of 2
would significantly reduce the evolution required for galaxies brighter than B ~ 22™.
A steeper faint-end slope would also reduce the required evolution. The photographic
surveys on which the local galaxy luminosity function is based all have quite bright
surface brightness limits (B g 25™ arcsec™?) and low luminosity, low surface bright-
ness objects could be missed entirely.

In this paper, we investigate the evolution of the galaxian luminosity function
from z = 0 to z = 0.5 based on data obtained during the course of our redshift survey
of the Corona Borealis supercluster. The primary motivation for the survey was to
study the dynamics of the supercluster. However, the majority of galaxies for which
we measured redshifts actually lie behind the Corona Borealis supercluster, thus pro-
viding a sample suitable for study of the evolution of the luminosity function. The
galaxies were originally selected from plates taken as part of the Second Palomar Ob-
servatory Sky Survey (POSS-II; Reid et al. 1991) and have therefore been calibrated
in the Gunn ¢ and r bands, which correspond to the photographic J and F bands.
Previous redshift surveys have been either selected in bluer bands (B), for sensitivity
to changes in star-formation rates, or redder bands (I and K), for sensitivity to old
stellar populations which more reliably trace mass. Although we had no option but
to use the g and r bands, the two bands have the virtue that corrections to the rest
B-band, where luminosity functions are traditionally computed, are small since the
g band matches the rest B-band at z ~ 0.2 and the r band matches the rest B-band
at z =~ 0.5.

The paper, the fourth in the series presenting results from the Norris Survey
of the Corona Borealis Supercluster, is organized as follows. In §2, we summarize
our survey, particularly emphasizing those features that are directly relevant to the
computation of the luminosity function. We discuss the details of the computation
of the luminosity function in §3. The results are given in §4 for both field galaxies

and for the two superclusters individually and are discussed in §5. Finally, we draw

conclusions in §6.
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We use a Hubble constant Hy = 100k km s~! Mpc™ and a deceleration parameter

qo = 0.5.

5.2 The Norris Survey of the Corona Borealis Su-

percluster

The Norris Survey of the Corona Borealis Supercluser has been described in detail in
Small et al. (1996), Paper I of the current series, and will be only briefly reviewed
here. The core of the supercluster covers a 6° x 6° region of the sky centered at right
ascension 15"20™, declination +30° and consists of 7 rich Abell clusters at z ~ 0.07.
Since the field-of-view of the 176-fiber Norris Spectrograph is only 400 arcmin?, we
planned to observe 36 fields arranged in a rectangular grid with a grid spacing of
1°. As it turned out, we successfully observed 23 of the fields and 9 additional fields
along the ridge of galaxies between Abell 2061 and Abell 2067, yielding redshifts for
1491 extragalactic objects. We have extended our survey with 163 redshifts from
the literature, resulting in 1654 redshifts in the entire survey. 1022 of these galaxies
lie beyond the Corona Borealis Supercluster, although of these 1022, 298 galaxies
are in a background supercluster (z = 0.11) which we have dubbed the “Abell 2069
Supercluster.”

Since the Norris Spectrograph has a high density of fibers (1 fiber for every 2.3
arcmin?), we covered a broad range in apparent magnitude: 13.0™ < r < 21.6™.
With this broad range, we are able to compute the local luminosity function down
to M(B) ~ —15™ + 5log,;oh and the luminosity function for 0.2 < z < 0.5 to
M(B) ~ —18.5™ + 5log,, h. As our original motivation for the survey was to study
the dynamics of the Corona Borealis supercluster, we chose a comparatively high
spectral resolution for a faint galaxy redshift survey. A third of the objects were
observed with ~ 8A spectral resolution when the largest CCD available at Palomar
was a 10242 device with 24um pixels, and the rest were observed with ~ 4A resolution

with a very efficient 20482 CCD (also with 24um pixels). The high quality spectra
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in our survey will enable us to correlate the spectral properties of individual galaxies
with evolution of the luminosity function of the population of galaxies.

As noted above and described in detail in Paper [, the objects have been selected
from POSS-1I photographic plates of POSS-II field 449, which neatly covers the entire
core of the supercluster. We have both a J (Kodak III-aJ emulsion with a GG395
filter) and an F (Kodak III-aF emulsion with a RG610 filter) plate. The plates
were digitized with 1 arcsec?® pixels at the Space Telescope Science Institute and
then processed using the Sky Image Cataloging and Analysis Tool (SKICAT, Weir
1995). The instrumental intensities recorded by SKICAT were calibrated with CCD
sequences in ¢, r, and ¢ of galaxies in Abell 2069. The random magnitude errors are
g~ 0.3" and r ~ 0.2™ for ¢ < 20.5™ and r < 19.6™ and become substantially worse
at fainter magnitudes.

The survey is only complete in magnitude to r = 18.5™. However, we have
substantial numbers of galaxies out to r = 22.0™. In order to use these galaxies
in our analysis, we define small samples of the data that are complete to fainter
limits. By repeatedly constructing and then averaging over the samples, we can
compute accurate estimates of the luminosity functions as long as we do not suffer
from redshift or galaxy type selection biases. Since we limit the computation of the
luminosity function to z < 0.5, we are unlikely to be affected by a bias in redshift.
The 4000A break and Ca H, Ca K lines of old stellar populations and the [O 11 line of
star-forming galaxies are within our spectral range to z = 0.5. The color distribution
of the objects that we observed but failed to identify is similar to the color distribution
of the objects that we successfully observed, which leads us to conclude that we do
not suffer any biases against certain types of galaxies.

In Paper I, we carefully studied the surface brightness selection effects present in
our sample. We found that by restricting our sample to objects with core magnitudes
Tcore < 21.7™, where the core magnitude is the integrated magnitude within the

2

central 9 arcsec”, we are free from surface brightness selection effects. For comparison,

Teore = 21.7™ corresponds to a central surface brightness of ¢ < 24.1 r mag arcsec™

for a galaxy with an L* (=~ —20.2 + 5log,, » mag in the » band) disk.
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5.3 Calculation of the Luminosity Function

5.3.1 k-Corrections

Galaxy luminosity functions are generally compared in the rest-frame B band. Since
our photometric data were obtained in the observed ¢ and r bands, we need to
convert, using k-corrections and rest-frame colors, to the rest-frame B band. This
task is greatly eased by the fact that the observed g and r bands match the rest-
frame B band at z ~ 0.2 and z ~ 0.5, respectively. We identify each galaxy in
the survey with one of the four spectral energy distributions (corresponding to the
Hubble types E, Sbc, Scd, and Im) from Coleman, Wu, and Weedman (1980) on the
basis of the galaxy’s observed g — r color and redshift. Once a galaxy is associated
with a particular Hubble type, we can then compute the k-correction and assign the
galaxy rest-frame B — g and B — r colors from the Coleman, Wu, and Weedman
(1980) spectral energy distributions. We compute the absolute rest-frame B-band

magnitude as follows:

M(Brest = M(T)rest + (B — T)rest
= Tobs — 910810 Di(2) — 25. — ky(2) + (B ~ T)rest (5.1)

= Tobs — Dlogyg Dr(2) — 25. + 2.5log (1 + z) — kesy,

where k; incorporates the corrections based on the spectral energy distribution
and Dy is the luminosity distance in Mpc. The 2.5log;o(1 + z) term represents the
change in the bandwidth with redshift and is included in the traditional k-correction.
Following Lilly et al. (1995), we have separated the bandwidth stretching term, which
has negligible error since it depends only on the accurately measured redshift, from
the terms which depend on the spectral energy distribution and are therefore much
more uncertain. We plot k.ss for the g and r bands in Figure 5.1. By converting from
Jobs for objects with z < 0.3 and from rqs for objects with z > 0.3, k.;; may be kept
less than 1™ for z < 0.7 for all spectral types.
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5.3.2 Method

We have used the step-wise maximum-likelihood (SWML) method of Efstathiou, Ellis,
and Peterson (1988) to estimate the luminosity function. The probability of observing
a galaxy of absolute magnitude M; at redshift z; in a flux-limited catalog is given by,

L M)
[2p) 6(M)dM

—~~
(&1
8]

~—

Pi 9
where ¢ is the luminosity function and M,,,.(2;) is the instrinsically faintest galaxy
observable at z; in the flux-limited catalog. The luminosity function is parameterized

as a set of numbers ¢, and then the likelihood,

N
=1

where N is the number of galaxies in the sample, is maximized with respect to the
ox. The virtue of the SWML method is that it is not biased by the presence of clus-
tering since the normalization of the luminosity function cancels out of the expression
for the probability p;. One must then estimate the mean galaxy density separately.
We use a standard technique, which we describe below. We did not use the tradi-
tional 1/Vj,,, method (Schmidt 1968) employed by Ellis et al. (1995) and Lilly et al.
(1995) since the method is sensitive to clustering. We have, however, compared the
results of the two techniques for samples with z > 0.2, where the clustering in our
survey is not pronounced, and found that they agree satisfactorily. For z < 0.2, we
can construct volume-limited sub-samples with » < 20.5 in which any galaxy with
M(B) < —18.5™ + 5logyq h is visible in the entire volume. Of course, the value of
the luminosity function in a given magnitude bin for a volume-limited sample is es-
timated by counting the number galaxies with absolute magnitudes in the bin and
then dividing by the volume of the sample and the width of the bin. The SWML
luminosity functions for z < 0.2 agree well with the luminosity functions estimated

from the volume-limited samples.

We compute the mean density 7 of a magnitude-limited sub-sample using the
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following estimator:

_ 1 1
n= 1% Z s(z;)’ (5:4)

=1

where V' is the volume of the sample, V is the number of objects in the sample, and

s 1s the selection function. The selection function,

M) g MYdM _
3( z) fiwogmx (M)dM (05)

gives the fraction of the luminosity function visible at a given redshift. Here, ¢ is
the luminosity function, My, (z) is the maximum absolute magnitude that an object
can have at redshift z and still be included in the sample, and M,,,, is the absolute
magnitude of the most instrinsically faint galaxy in the sample. In practice, one does
not begin evaluating the integrals at —oo, but rather at the absolute magnitude of
the most instrinsically bright galaxy in the sample. The estimator in Equation 5.5
is almost identical to the minimum variance estimator derived by Davis and Huchra
(1982) for s > 0.1 and is unbiased by density inhomogeneities.

We have adjusted the widths of the absolute magnitude bins in order to ensure
that there are equal numbers of objects per bin. We never use fewer than 10 objects
per bin. An additional complication of computing a luminosity function in the B
band where the objects have been selected in the r band is that one must ensure that
any object, regardless of its color, is detectable in both bands. If one ignores this
complication, then the faintest objects at a given redshift will be biased in color. In
our survey, since the r band is centered at a longer wavelength than the B-band, the
faintest objects would be biased to the red. In order to avoid such a bias, we adjust
our absolute B magnitude limits as a function of redshift so that the bluest galaxy
at any B magnitude limit would be observable in the r band.

If there are a sufficient number of points, we have fit a Schechter (1976) function,
¢(M)dM — ¢*6—e'92(M"_M)+.92(M'—M)Q7 (5‘6)

where ¢~ is the normalization, M* determines the location of the bright-end exponen-
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tial cutoff, and « is the faint-end slope, using a standard y? minimization algorithm
with the Schechter function integrated over the width of the magnitude bin. We in-
tend these fits to be useful for comparisons with other work. Usually, there are too

few points for the fits to be well defined.

5.3.3 Sub-Samples

Since the SWML method can only be applied to a magnitude-limited sample, we must
generate magnitude-limited sub-samples from our survey. This is a straightforward
task since we have the galaxy counts in the field from our two POSS-II plates (see
Figure 5 of Paper I). Once a magnitude limit is chosen, we compute the effective area
on the sky of the sub-sample by dividing the galaxy counts per square degree at the
magnitude limit by the number of objects with measured redshifts at the magnitude
limit. We then randomly reject objects in the brighter magnitude bins until the
magnitude distribution of the objects in the sub-sample has the same shape as the
galaxy counts. In order to estimate the luminosity function, we average together the
results of 100 sub-samples and use the standard deviation of the 100 sub-samples as

the standard deviation of the estimated luminosity function.

5.4 Results

In the following subsections, we report our results for the local luminosity function,
the evolution of the luminosity function, and the luminosity functions of the Corona
Borealis and Abell 2069 superclusters. The parameters of the best fitting Schechter
functions are summarized in Table 5.1. We wish to emphasize that the fitted Schechter
functions are intended only to guide the eye and that comparisons of the various
luminosity functions in this paper are best done by comparing the individual data

points.
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5.4.1 The Local Luminosity Function

The local galaxy luminosity function is plotted in Figure 5.2. The unfilled circles show
the luminosity function for r < 18.5™, z < 0.2, with the superclusters removed. The
filled circles show the luminosity function for z < 0.2, with the superclusters included.
The points brighter than < —18™ + 5log;o b come from a sample with » < 18.5™,
and the fainter points come from a sample with r < 20.5™. In order to remove the
superclusters, we simply delete all objects with 0.06 < z < 0.13. The solid curve
shows the luminosity function computed by Loveday et al. (1992) for 1658 galaxies
with 0.002 € z < 0.13 and 15™ < by < 17.15™ selected from the APM Galaxy
Survey (Maddox et al. 1990a). The median redshift of the Loveday et al. (1992)
survey is z = 0.051. Both of our local luminosity functions have shapes similar to
that of Loveday et al. (1992), but they have significantly higher normalizations. If we
conservatively compare the Loveday et al. (1992) to our luminosity function with the
superclusters removed, then we find that the normalization of the local luminosity
function must be increased by a factor of 2. We do verify, however, that the slope at
the low luminosity end is flat, at least for galaxies which do not have unusually low

surface brightnesses which would not be detectable on photographic plates.

5.4.2 The Luminosity Function to z = 0.5

We have computed the field galaxy luminosity function in two redshift intervals:
0 < z<0.2and 0.2 < z < 0.5. The results are plotted in Figure 5.3. The luminos-
ity functions for the low redshift interval are identical to those shown in Figure 5.2.
The unfilled squares are the luminosity function of the high redshift interval. Since
we chose to observe the Corona Borealis field because it contains one of the most
prominent examples of galaxy clustering in the northern sky, 1t is not fair to include
the Corona Borealis supercluster and the Abell 2069 supercluster (which is also re-
sponsible for the great projected overdensity) in the local field luminosity function.
On the other hand, it is also unreasonable to completely remove the two superclus-

ters since we may be observing superclusters in the higher redshift sample and we
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have not removed them. The true local luminosity function should be bracketed by
the luminosity function with the superclusters removed and the luminosity function
with the superclusters included. Assuming that the normalization of the true local
luminosity function is indeed lower than the normalization of the luminosity function
with the superclusters included, then we do see evidence for evolution in the lumi-
nosity function, which in this case appears to be an increase in the comoving number

density.

5.4.3 The Luminosity Function to z = 0.5 Divided by Color

We have divided our sample of galaxies into those which are redder than the Coleman,
Wu, and Weedman (1980) Sbc galaxy (rest-frame g — r = 0.24™) and those which
are as blue or bluer than the Coleman, Wu, and Weedman (1980) Sbc galaxy. The
luminosity functions of the red galaxies are shown in Figure 5.4, and the luminosity
functions of the blue galaxies are shown in Figure 5.5.

There is no sign of evolution of the red galaxies. The 0.2 < z < 0.5 luminosity
function (the two unfilled squares) match within the errors both the local luminosity
function with the superclusters removed and the local luminosity function with the
superclusters included. This is in accord with results of Lilly et al. (1995), who divided
galaxies into red and blue classes just as we have, and with those of Ellis et al. (1995),
who divided galaxies into [O II]-strong and [O II]-weak classes. The lack of evolution
is not surprising given that the light of red galaxies i1s dominated by long-lived stellar
populations.

In contrast to the red galaxies, the luminosity function of blue galaxies shows
striking evidence for evolution. The high redshift points are consistently above the low
redshift points, with the difference becoming larger at fainter intrinsic magnitudes.
The luminosity function at 0.2 < z < 0.5 appears to have a higher normalization
than the local luminosity function and to have a steeper faint-end slope. Since blue
galaxies do not cluster as strongly as red galaxies, the differences between the local

luminosity functions with and without the superclusters removed are minor, thus
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making conclusions about evolution more robust. Again, these results agree with

those recently presented by Lilly et al. (1995) and Ellis et al. (1995).

5.4.4 The Supercluster Luminosity Functions

The luminosity functions of the Corona Borealis supercluster and the Abell 2069
supercluster are given in Figure 5.6. We take the redshift range of the Corona Borealis
supercluster to be 0.06 < z < 0.09 and that of the Abell 2069 supercluster to be 0.10 <
z < 0.13. The faintest four points of the Corona Borealis luminosity function come
from a sample with r» < 20.0™, whereas the brighter points come from a sample with
r < 18.5™. Similarly, the faintest two points of the Abell 2069 supercluster luminosity
function come from a sample with r» < 20.0™, whereas the brighter points come from
a sample with » < 18.5™. We also plot the Loveday et al. (1992) luminosity function
for comparison. The normalization of the Corona Borealis supercluster function is
a factor of 2 greater than that of the Abell 2069 supercluster. The shapes of the
luminosity functions of the two superclusters are similar. The Schechter function
fits to the two supercluster luminosity functions both suggest that the supercluster
luminosity functions rise more steeply (o ~ -1.3 to -1.5) to faint absolute magnitudes
than the local field galaxy luminosity function (a ~ -0.7 to -1.0). In addition, M~
the characteristic luminosity of the Schechter function, is nearly a magnitude brighter

in the superclusters than in the local field.

5.5 Discussion

5.5.1 The Local Luminosity Function

Evidence for rapid evolution of the galaxy luminosity function to z ~ 0.1 from galaxy
counts was based crucially on normalizing the local luminosity function to the bright
(B ~ 16™) galaxy counts from Schmidt-telescope photographic surveys (e.g., Maddox
et al. 1990b). It now appears that normalizing at B ~ 16™ is incorrect since the

normalizations of the local luminosity functions of our survey and that of Ellis et al.
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(1995) are at least a factor of 2 higher than that of Loveday et al. (1992). It unlikely
that systematic errors in the conversion of plate instrumental intensities to calibrated
magnitudes could be entirely responsible for the differences (Metcalfe, Fong, and
Shanks 1995). The difference could be explained by the presence of a local underden-
sity extending to the median depth of the APM survey, ~ 150~2~! Mpc (z ~ 0.05).
Glazebrook et al. (1994) discounted this explanation using an argument based on
extrapolations of measured galaxy clustering. If one assumes that galaxy clustering
can be described on all scales by a power law correlation function &(r) = (ro/r)" with
ro ~ 5h™! Mpc and v ~ 1.8 (Marzke et al. 1995), then one would predict that by
reaching a depth of ~ 150h~! Mpc, the APM survey contained a fair sample of the
local universe. The presence of a ~ 100h~! Mpc diameter void in between the two
superclusters in our survey and the detection of excess power on ~ 100A~! Mpc scales
in the Las Campanas redshift survey by Landy et al. (1995) suggest, however, that
it is incorrect to assume that galaxy clustering can be accurately described on large
scales by an extrapolation of the clustering on small scales. Thus, the explanation
for the low normalization of the local counts from photographic surveys may indeed
be that we live in a local underdensity.

It has also been proposed that the faint-end of the luminosity function may be
steeper than the canonical slope a = —1.0, where « is Schechter parameter describing
the faint-end slope (Equation 5.6). A steep faint-end slope would remove the need for
rapid evolution of the luminosity function at small redshifts. Loveday et al. (1992)
measured the luminosity function to M(B) = —15 + 5log h and found no evidence
for an upturn in the luminosity function. However, McGaugh (1994) has noted that
field galaxy surveys based on photographic plates with high surface brightness detec-
tion thresholds may completely miss low surface brightness galaxies. If low surface
brightness galaxies exist in great numbers and if they have low luminosities, then they
could make up a steep and undetected tail to the luminosity function. Unfortunately,
as our survey is also constructed from plate material, we too are not sensitive to low
surface brightness galaxies. We measure a g —1 for our local luminosity function, in

agreement with Loveday et al. (1992). Ellis et al. (1995), part of whose survey was
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selected from images with a low surface brightness limit of y,, = 26.5 mag arcsec™2,

also measure @ ~ —1., which suggests that there may not be a large population of

low surface brightness galaxies.

5.5.2 The Evolution of the Luminosity Function to z = 0.5

We asserted in §4.2 that the luminosity function of blue galaxies (as blue or bluer
than Sbc) evolved from 0 < 2 < 0.2 to 0.2 < z < 0.5 and that the luminosity function
of red galaxies (redder than Shc) did not. A powerful way to verify this result is to
compute (V/Vina,) for appropriate samples (Schmidt 1968). If there is no evolution
in the number density of objects, (V/V,,.z) = 0.5; if the number density declines,
(V/Vinez) < 0.5; and if the number density increases, (V/V,..z) > 0.5. As with the
luminosity function computation, we estimate (V/V,,,,) for a given redshift range
and magnitude limit from the average of (V/V,,.,) calculated for 100 magnitude-
limited sub-samples drawn from the parent catalog. The quoted error is the standard
deviation of the 100 realizations. The values of (V/V,,.,) for various samples, all with
the two superclusters removed, are given in Table 5.2. For blue galaxies as a whole
(Hubble types Sbc, Scd, and Im), we have evidence at the 2.50 level for an increase
in the number density with redshift. The evolution is most evident in the bluest
galaxies. A sample with only galaxies with colors typical of types Sbc and Scd is
consistent with no evolution, whereas a sample with only the bluest galaxies (Hubble
type Im) is clearly evolving. According to the (V/V,,,,) test, the red galaxies do not
evolve, in agreement with the luminosity function analysis.

Now that we have established that the blue galaxies are evolving with redshift,
we wish to investigate whether we can detect differences in the spectral properties of
the evolving population with redshift. First, we remark that the color distribution
of objects with measured redshifts is similar to the color distribution of unidentified
objects, leading us to believe that the type distribution of the identified objects 1s not
strongly biased (Paper I). Although emission lines are generally easier to detect than

absorption lines, the difficulty of identifying emission lines at observed wavelengths
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longer than 5577A, where there are many strong night sky features, combined with
the strength of Ca H, Ca K, and the 4000A break in absorption line objects at
0.4 £ 2z < 0.6 mitigate the bias in favor of emission line objects. A sample of the
spectra of 8 absorption line objects in this redshift range is shown in Figure 5.7 to
illustrate the strength of their characteristic features.

In Figure 5.8, we plot the observed g—r color of all the objects in our survey along
with the tracks of five representative model spectra. The bluest spectrum is simply a
flat-spectrum object, f, = 0. The four other spectra are typical of the Hubble types
E, Sbc, Scd, and Im and are taken from Coleman, Wu, and Weedman (1980). The
large, solid diamonds mark the median color in the redshift ranges 0.13 < z < 0.2
(arranged to exclude the superclusters), 0.2 < 2 < 0.3,03 <2< 04,04 < z<0.5,
and 0.5 < z < 0.6. One can see that the median color becomes progressively bluer
with respect to the model spectra with increasing redshift. From the luminosity
function analysis, we expect the number of red galaxies not to change with redshift
while the number of blue galaxies should increase, thus shifting the median color of
the galaxy population to the blue, in accord with the observations.

The shift of the median color to the blue is presumeably associated with increased
star formation activity at earlier times. In our spectra, there are two convenient
star formation indicators, [O II] A3727 and Hé A4101. [O ] emission is found in
galaxies with ongoing star formation, and its strength is proportional to the strength
of Ha (Kennicutt 1992). Strong Hé absorption is a signature of the presence of a
population of A-stars, which are visible ~1 Gyr after a burst of star formation. Both
of these lines are reliably measured by automated programs (see Paper I) since both
occur in regions of the spectrum where the continuum is featureless and there 1s
little crowding from other lines. An important virtue of the Hé line is that, since
it appears in absorption, a galaxy with detectable Hé would have been identified no
matter what its spectral characteristics, which implies that there is no bias towards
detecting objects with Hé absorption. A galaxy with [O II] emission is, of course,

easier to identify than if it had had only absorption lines. However, as we discussed

above, the combination of the difficulty of identifying weak emission lines in the face
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of strong sky subtraction residuals and of the ease of identifying the strong features
characteristic of absorption line galaxies at moderate redshifts suggests to us our
survey is not strongly biased towards detecting objects with [O II]. In Figures 5.9 and
5.10, we plot as a function of redshift the fraction of galaxies with [O II] emission
and the fraction of galaxies with Hé absorption, respectively. The vertical dotted line
in Figure 5.10 marks the redshift beyond which H§ is shifted into the region of the
spectrum in which sky subtraction becomes increasingly difficult. Both figures show
an increase 1n star formation activity with redshift, a result which is consistent with
the results from the analyses of the luminosity function and the median colors.

The increase in star formation activity with redshift could either be due to an
increase in the number of galaxies forming stars or to stronger bursts in the same
galaxies that are currently forming stars now. In other words, we wish to decide
whether we are observing evolution in the number of star forming galaxies or in the
luminosity of star forming galaxies. In Figure 5.11, we plot the rest equivalent width
of [O II] versus redshift for the galaxies in our sample. As the range of rest equivalent
widths does not vary significantly with redshift, which implies that individual galaxies
were not forming stars more rapidly at z ~ 0.5 than at z ~ 0, we conclude that
observed increase in star formation activity with redshift must be due to an increase

in the number of star forming galaxies.

5.5.3 The Supercluster Luminosity Functions

The luminosity functions of the two superclusters have quite similar shapes, although
their normalizations differ by a factor of 2. Both superclusters are substantially more
dense than the field, by a factor of 10 for the Corona Borealis supercluster and a factor
of 5 for the Abell 2069 supercluster, on scales of several x10* Mpc®. It is important
to know whether we are fairly sampling the superclusters in the sense that we are not
biased towards either the Abell clusters within the superclusters or to the “field” of
the superclusters. The mean density of the Corona Borealis supercluster, computed

by simply integrating the fitted luminosity function from M(B) = —=23™ to M(B) =
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—15™,is i & 0.9h® Mpc~2. For each galaxy in our survey, we can define a local galaxy
density focq around the given galaxy by measuring the distance to, say, the fifth
nearest neighbor, ds, and computing 7i;,.e1 = d5°. The median local galaxy density
for the galaxies with measured redshifts in the Corona Borealis supercluster is 7j,cq1 &
0.9h% Mpc~3, which is identical to the mean density of the supercluster and implies
that we have fairly sampled the supercluster. For the Abell 2069 supercluster, 7 =~
0.9h% Mpc~2 also, but the median local galaxy density is only eeqs = 0.4h% Mpc™3.
Thus, we are somewhat biased towards the “field” of the Abell 2069 supercluster. The
overall resemblance between the supercluster luminosity functions and the field galaxy
luminosity function suggests that galaxy formation and evolution must not depend
strongly in environment. There are, however, two important differences between the
luminosity functions in the field and in the superclusters that must ultimately be due
to environmental effects.

First, the characteristic absolute magnitude M™ of the supercluster luminosity
functions is nearly a magnitude brighter than that measured in our survey for lo-
cal field galaxies. The high density environments of the superclusters are clearly
conducive to the formation of luminous galaxies.

The second difference is that the faint-end slopes of the two supercluster luminosity
functions are steeper (a ~ -1.3 to -1.5) than the faint-end slope of the field galaxy
luminosity function (@ ~ -0.7 to -1.0). Our results are consistent, however, with those
of previous studies of the luminosity function in rich clusters (e.g., Sandage, Binggeli,
and Tammann 1985, Bernstein et al. 1995, and De Propris et al. 1995) which have
found that the faint-end slope is steep, ranging from e =~ —1.3 to @ = —2.2. This
agreement would be unexpected if there are large numbers of low surface brightness
galaxies in the superclusters since our original object detection used a high surface
brightness threshold on Schmidt photographic plates. In fact, Bernstein et al. (1995),
who recently measured the luminosity function of the core of the Coma cluster using
a deep CCD image and found o = —1.42 £ 0.05 for —19.4 < Mg < —11.4, did not
find a large population of low surface brightness galaxies, despite having a very faint

detection threshold of 27.6 R mag arcsec’.
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5.6 Summary

We have presented an analysis of the luminosity function of galaxies in the Norris
Survey of the Corona Borealis Supercluster. We have found compelling evidence for
evolution of the field galaxy luminosity function within our sample. The evolution
15, however, limited to the galaxies that are as blue or bluer than Hubble type Shc
and is strongest for samples restricted to the bluest (Im) galaxies. The median color
of the field galaxy population becomes increasingly bluer with redshift, and a larger
fraction of galaxies at higher redshift exhibit spectral signatures of ongoing or recently
completed star formation. We are unable to detect any evolution of galaxies redder
than Sbc. Since the blue galaxies at 0.2 < z < 0.5 are evidently not evolving into
the red population observed at low redshifts, one is naturally led to ask, what has
happened to the blue galaxies? Since the low and high redshift luminosity functions
do not have the same shape, pure luminosity evolution cannot be solely responsible
for the observed changes. A crucial clue is provided by galaxy counts as a function
of morphological type obtained with the Hubble Space Telescope (HST) (Glazebrook
et al. 1995b, Driver et al. 1995). The counts of faint elliptical and early-type spiral
galaxies match predictions based on counts in the local universe, provided that the
local luminosity function is normalized a factor of 2 higher than found by Loveday
et al. (1992). In contrast, the HST number counts of late-type and irregular galaxies
are far in excess of the counts expected from observations of nearby galaxies, even
with a high normalization of the local luminosity function. It is perhaps the case
that the excess galaxies at z ~ 0.5 merge and thereby reduce their number by z = 0.
Moreover, mergers would naturally create the irregular morphologies commonly seen
in the HST images.

The galaxy evolution that we have observed is consistent with the results derived
from the quasar absorption-selected sample of Steidel, Dickinson, and Persson (1994).
The authors found that the galaxies responsible for quasar absorption lines in the
range 0.2 < z < 1.0, which typically have luminosities near L*, do not evolve. The

faint blue galaxies—the ones which we have seen to be evolving strongly— do not
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appear 1n the Steidel, Dickinson, and Persson (1994) sample. Since the luminosity
function of the absorbing galaxies computed by Steidel, Dickinson, and Persson (1994)
has a normalization approximately equal to that of our local luminosity function for
red galaxies and is well fit by a Schechter function, we are tempted to identify our
non-evolving population of red luminous galaxies with the similarly non-evolving
population of quasar absorbers.

The luminosity function of local field galaxies, while having a shape which is well
described by a Schechter function with bright-end cutoff M(B) + 5log;o b &~ —19.5™
and faint-end slope @ &~ —1.0 in agreement with the results of wide-angle shallow
surveys, has a normalization that is a factor of ~2 higher. Since it seems doubtful
that errors in the calibration of photographic plate magnitudes could conspire to
reduce the normalization of the luminosity function without also changing the shape,
we conclude, albeit reluctantly, that the local samples must be underestimating the
normalization because we live in a low density region with a scale of ~100~~! Mpc.

The luminosity functions of the two superclusters show significant differences from
the field galaxy luminosity function, despite considerable overall similarity. The char-
acteristic luminosity is brighter, by nearly a magnitude, and the faint-end slope is
steeper (a ~ —1.4 instead of o ~ —1.0). Since the superclusters are 5-10 x denser
than the field, we are likely observing the influence of the environment on galaxy

formation and evolution.
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TABLE 5.1
SCHECHTER FUNCTION FITS
sample® ¢  M(B)* —5log, h a x?/vP
(h* Mpc™3)

z < 0.2, SC’s removed 0.06 £0.02 -19.05+£0.26 —0.67+0.23 1.86/2
z < 0.2, SC’s included 0.05+0.01 -19.514+0.18 -1.19+0.11 7.28/8
02<z<05 0.01 £0.03 —20.66 +2.73 —2.10£0.93 0.8/2
z € 0.2, red, SC’s removed  0.024+0.01 —18.95+0.52 —0.65+0.45 2.76/3
z < 0.2, red, SC’s included  0.044+0.01 —-19.05+0.16 —0.80£0.11 4.08/2
02<z<05,rted ... too few data points ...............
z < 0.2, blue, SC’s removed 0.04 £0.02 —-18.92+0.32 —0.70+0.29 2.00/2
z < 0.2, blue, SC’s included 0.05 £0.01 —19.01 £0.17 —0.72+0.13 3.44/2
0.2 < z < 0.5, blue 0.01+0.05 -20.31+£229 -—-2.07+1.17 0.38/2
Corona Borealis SC 0.104+£0.04 -19.85+0.32 —-1.334+0.13 15.12/9
Abell 2069 SC 0.05+£0.04 -19.914+0.59 —-1.53+0.24 3.36/4

25C stands for “supercluster.”
®, is the number of degrees of freedom of the fit.

TABLE 5.2
(V/Viaz) FOR 0 < 2 < 0.5

sample (V/Vinaz)
r < 20.5, all red galaxies 0.47 £ 0.04
r < 20.5, all blue galaxies 0.55 +£0.02
r < 20.5, Sbc, Scd galaxies 0.53 +0.04
r < 20.5, Im galaxies 0.58 +£0.03
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Fig. 5.1.— Effective k-corrections from the observed (a) g and (b) r bands to the
rest-frame B band. The effective k-correction, k.ss, is the traditional k-correction
with the bandwidth stretching term removed and the rest-frame color correction to
the B band added. It thus incorporates all of the spectrum-dependent corrections
required to transform from the observed band to the rest-frame B band. The four
curves in each panel labeled E, Sbc, Scd, and Im are the four spectral types from
Coleman, Wu, and Weedman (1980). By transforming from the observed ¢ band for
z § 0.3 and from the observed r band for z > 0.3, k.;s is always less than 1™.
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Fig. 5.2.— Luminosity function for galaxies with » < 18.5 and 0 < z < 0.2. The
unfilled circles show the luminosity function with the two superclusters at z =~ 0.07
and z = 0.11 removed. The filled circles show the luminosity function with the super-
clusters included. The solid curve is the Schechter function fit to the local luminosity
function of Loveday et al. (1992). Although the shapes of the luminosity functions
are similar, the normalization of the Loveday et al. (1992) luminosity function is low
by at least a factor of 2.
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Fig. 5.3.— Luminosity function for galaxies between z = 0 and z = 0.5. As in Figure
5.2, the unfilled circles, filled circles, and solid curve show the local luminosity func-
tion with superclusters removed, the local luminosity function with the supercluster
included, and the Loveday et al. (1992) luminosity function, respectively. The unfilled
squares show the luminosity function for galaxies with 0.2 < z < 0.5. Since the true
local luminosity function is unlikely to be as high as the luminosity function which
includes the two superclusters, it appears that the number density of galaxies has
increased to higher redshift.
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Fig. 5.4.— Luminosity function for red galaxies between z = 0 and z = 0.5. We
define red galaxies as galaxies redder than Coleman, Wu, and Weedman (1980) Sbc
galaxies. The open circles show the local luminosity function of red galaxies with
the superclusters removed. The solid circles show the local luminosity function of red
galaxies with the superclusters included. The (two) open squares show the luminosity
function of red galaxies with 0.2 < z < 0.5. The solid curve is the Schechter function
fit to the local luminosity function of Loveday et al. (1992). These data suggest that
the luminosity function of red galaxies does not evolve to z = 0.5.
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define blue galaxies as galaxies as blue or bluer than the Coleman, Wu, and Weedman
(1980) Sbc galaxy. The open circles show the local luminosity function of blue galaxies
with the superclusters removed. The solid circles show the local luminosity function of
blue galaxies with the superclusters included. The open squares show the luminosity
function of blue galaxies with 0.2 < z < 0.5. The solid curve is the Schechter function
fit to the local luminosity function of Loveday et al. (1992). These data suggest that
the luminosity function of blue galaxies has evolved significantly from 0 < z < 0.2 to

0.2 <z<0.5.
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background supercluster (squares). The Schechter function fit to the local luminosity
function of Loveday et al. (1992) is shown by the solid line. The luminosity functions
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of 2.
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Fig. 5.8.— Median observed g—r color as a function of redshift. We plot the observed
g —r color as a function of redshift along with the tracks of five representative model
spectra. The bluest track is that of flat-spectrum galaxy, f, = 0. The other four tracks
are those typical of the Hubble types E, Sbc, Scd, and Im. The large, filled triangles
mark the median g — r color in the redshift intervals 0.13 < 2 < 0.2, 0.2 < z < 0.3,
03<z2<04,04 <z2<0.5 and 0.5 < z < 0.6. The median color of the galaxy

population becomes bluer with increasing redshaft.
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Fig. 5.9.— Fraction of galaxies with [O II] A3727 emission as a function of redshift.
The redshift intervals are 0 < z < 0.06, 0.13 < z < 0.2, and every tenth thereafter.
The superclusters are excluded from the analysis. As [O II] is an indicator of ongoing
star formation, the increasing fraction of galaxies exhibiting [O II] with redshift is
evidence for an increase in the rate of star formation with redshift.
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Fig. 5.10.— Fraction of galaxies with Hé A4101 absorption as a function of redshift.
The redshift intervals are 0 < z < 0.06, 0.13 < z < 0.2, 0.2 < z < 0.3, and
0.3 < z < 0.4. The vertical dotted lines marks the redshift beyond which Hé is shifted
into the region of the spectrum that is heavily contaminated by night sky emission.
Hé absorption is a signature of the presence of a ~1 Gyr old A-star population. The
increase in the fraction of galaxies with Hé absorption with redshift indicates that
the rate of star formation was higher in the past.
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which suggests that individual galaxies were not forming stars more rapidly in the
past.
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