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Abstract 

A Petrov-Galerkin finite element formulation for first-order hyperbolic 

systems is developed generalizing the streamline approach which has been 

successfully applied previously to convection-diffusion and incompressible 

Navier-Stokes equations. The formulation is shown to possess desirable 

stability and accuracy properties. 

The algorithm is applied to the Euler equations in conservation-law form 

and is shown to be effective in all cases studied, including ones with discon­

tinuous solutions. Accurate and crisp representation of shock fronts in tran­

sonic problems is achieved. 
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CHAPTER l 

Introduction 

Analysis of inviscid, compressible fluid flows, especially ones with 

discontinuities, has been an interesting and challenging part of the research 

done in the field of computational fluid dynamics (see [L6]). 

Numerous workers in this field have employed finite difference techniques. 

The following represents a brief sampling of some recent works. Ballhaus et 

al. ~B4] used implicit approximate fac~orization schemes to solve the tran­

sonic small disturbance equation. Holst and Ballhaus [H3] applied approxi­

:rnate factorization schemes to the full potential equation in conservation 

form. Holst and Brown [H4] utilized solution adaptive grids for the full 

potential equation in conservation form. Warming and Beam [W3] used approxi­

mate factorization schemes to solve the Euler equations in conservation law 

form. Steger [S3], and Steger and Warming [s2] applied flux vector split­

ting ideas to the solution of the Euler equations in conservation form. 

Finite difference schemes of the above type are mostly limited to problems 

with simple geometries. Finite element methods, on the other hand, can easily 

handle arbitrary geometries. 

In the finite element method, the problem domain is discretized into 

sub-domains (elements) , and, via a weighted residual formulation, the governing 

differential equation system is translated into a system of ordinary differen­

tial equations. 
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In a weighted residual formulation, selecting the weighting functions 

from the same class that the interpolation functions are selected from, 

leads to a {Bubnov) Galerkin formulation. When applied to differential 

equation systems with symmetric operators (e.g. diffusion equations, most 

structural and solid mechanics problems) Galerkin formulations produce 

solutions with a "best approximation" property. That is, the error is mini­

mized with respect to a certain norm. 

For systems with non-symmetric operators (e.g. first-order hyperbolic 

systems), however, the Galerkin formulation does not possess a best approxima­

tion property. This, in some cases, may result in solutions with spurious 

node-to-node oscillations. In fact, this problem is not limited to Galerkin 

finite element formulations. It also arises for finite difference schemes 

when non-symmetric operators are approximated centrally. 

Instead of using weighting functions which lead to a Galerkin formula­

tion, one can employ a Petrov-Galerkin formulation by modifying those weight­

ing functions according to an optimal rule. The basic idea is to minimize 

the spurious oscillations without introducing excessive diffusion to the 

solution. 

An optimal streamline upwind/Petrov-Galerkin formulation for convection 

dominated flows was recently developed by Hughes and Brooks {see [B7, BS, Hl2, 

Hl4, Hl5]) and was successfully applied to the solution of advection-diffusion 

and incompressible Navier-Stokes equations. In this work we present a Petrov­

Galerkin algorithm which is a generalization of the streamline upwind/Petrov­

Galerkin algorithm to hyperbolic systems. The weighting functions (which 

would normally lead to a Galerkin formulation) are perturbed by the product 
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of the coefficient matrix of the hyperbolic system, the gradient of the 

weighting function and a time parameter. The alternatives of transposing or 

not transposing the coefficient matrix in the weighting function, and the 

selection of the time parameter are among the subjects discussed here. The 

algorithm presented, under some very special conditions, reduces to the 

Lax-Wendroff scheme, which is known as a shock capturing algorithm. By incor­

porating the coefficient matrix of the hyperbolic system into the weighting 

function we automatically inject the eigenvalue/eigenvector information of 

the system into our finite element formulation. 

In chapter 2 we briefly review the properties of one-dimensional hyper­

bolic systems and introduce the Petrov-Galerkin algorithms. The selection 

of the weighting functions is discussed in detail. We also investigate under 

what circumstances the weighted residual formulation of a system can be re­

duced to that of uncoupled single degree-of-freedom equations. The proce­

dure of finite element discretization, and the transient algorithm used for 

solving the semi-discrete equation are described. Further, for a special 

case, we write the finite difference equations for the Petrov-Galerkin formu­

lation. 

In chapter 3 we perform a detailed stability and accuracy analysis of 

algorithms for the linear one-dimensional hyperbolic equation. Several algo­

rithms ~f interest are studied and compared. 

Chapter 4 reports nu~erical resul~s in one space dimension. Several 

linear and nonlinear, steady and transient problems are solved using various 

techniques. Special emphasis is placed on problems with discontinuous solu­

tions (shocks) . 
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In chapter 5 we introduce the multi-dimensional versions of the Petrov­

Galerkin algorithms. 

Chapter 6 covers numerical applications in two space dimensions. A 

biconvex thin airfoil problem is solved for subsonic and transonic cases. 

Several algorithms are tested. 

In chapter 7, we draw our conclusions\and make suggestions for future 

research. 

Appendix I reviews the properties of the compressible Euler equations. 

In appendix II, a stability and accuracy analysis of algorithms for the 

one-dimensional, linear parabolic equation is performed. In appendix III a 

similar analysis for the one-dimensional linear second-order hyperbolic equa­

tion is performed. The methods used in appendices II and III are essentially 

the same as that used in chapter 3. 
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CHAPTER 2 

One-dimensional Hyperbolic Systems 

2.1 Initial/Boundary-value Problem 

Let D = ]0,L[ denote the open interval of length L , and let 

Q [O, L] denote its closure. The boundary of D is f = {O, L}, that is, 

the points 0 and L. Spatial and temporal coordinateE are denoted by 

x E IT and t E [O, T] , respectively. 

Consider the following systei-a of m partial differential equations: 

u + AU + G = 0 
-,t ~-,x 

(2.1.l) 

where 

u U(x, t) (2.1.2) 

A = A(U, x, t) (2.1.3) 

G = G(U, x, t) (2.1.4) 

and a comma denotes partial differentiation. 

We are concerned with the case in which (2.1.l) is hyperbolic, that 

is when A has real eigenvalues and there exists a transformation matrix 

S such that 

(2 .1.5) 

where A is the diagonal matrix of eigenvalues of A 

(2.1.l) is called a balance law if there exists a vector 

~ = $(U, x, t) (2.1.6) 
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such that 

A balance law in which G = 0 is said to be a conservation law. 

In the linear case 

A A (x, t) 

and 

G B(x, t)U + /(x, t) 

In the constant-coefficient case A and B are independent of x 

and t 

(2.1. 7) 

(2.1.8) 

(2.1.9) 

Classical references for the study of hyperbolic systems are Courant -

Hilbert [c3] and Courant - Friedrichs [C2]. 

Consideration of the eigenstructure of A enables the specification 

of appropriate boundary conditions. For a general treatment of this topic 

see Yee [Yl]. For the present purposes, it suffices to assume that the 

boundary conditions take the abstract form 

d u = g(t) (2.1.10) 

where d is a boundary operator and g is a prescribed function. 

The initial/boundary-value problem for (2.1.l) consists of finding a 

function U which satisfies (2.1.1), the boundary conditions (2.1.10), 

and the following initial condition: 

U(x, 0) ~o(x) (2.l.11) 

where ~O is a given function of x E ~ . 
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2.2 Weighted Residual Formulation 

Consider a discretization of Q into element subdomains De e l I 

2 , ... , net , where is the number of elements. We assume 

ne.Q, 

n = u ne (2.2.1) 
e=l 

(2.2.2) 

All functions considered in the finite element formulation will be smooth 

on the element interiors (i.e. Qe's). Two classes of functions are impor-

tant in the developments which follow. The classes are distinguished by 

their continuity properties across the element boundaries. 

Functions of the first class are assumed to be continuous across 

element boundaries. These functions are denoted by c0 
= c0

(Q} and may 

be recognized as containing the standard finite element interpolations. 

Functions of the second class are allowed to be discontinuous across 

element boundaries and are denoted by c-1 = c-1 (Q). 

A weighted residual formulation of (2.1.l) is given by 

0 = 1 W • ( U + AU + G) dQ 
Q - -,t --,x 

(2.2.3) 

where W is a weighting function and denotes the dot product. In all 

cases we assume U is approximated by standard, c0 
, finite element 

interpolations. The weighting functions may be selected from a different 

set of functions than the trial solutions. Thus (2.2.3) gives rise to a 

Petrov-Galerkin formulation (see e.g. [Bl, B7, B8, Cl, Dl, Hl, H8, Hl2, Hl4 

Hl5, M2, Rl, Wl]). 
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An important class of Petrov-Galerkin methods, which is emphasized in 

-the se~uel, is defined by the following expression for W 

W = W + T W 
- -,x 

(2.2.4} 

where W is a member of the same class of functions as the trial solutions 

and T is either TA or TAT where T is a parameter which is chosen 

to optimize accuracy according to some criterion. This class of methods 

represents a generalization to hyperbolic systems of the streamline-upwind/ 

Petrov-Galerkin formulation which has been successfully applied heretofore 

to the advection-diffion and incompressible Navier-Stokes equations [B7, BS, 

Hl2, Hl4, HlS]. 

Both choices of T have interesting consequences. For example, 

assume the linear, constant-coefficient case in which G 

0 

Then (2.2.3} reduces to the canonical form 

.J"<~ + T~~,x) • <~,t + ~~.x)dQ 
Q 

0 Choose 

(2.2.5) 

where w == STW and u = s-1u . Thus (2.2.5) is equivalent to a system 

of uncoupled scalar equations. Scalar equations of this form are extensively 

analyzed in Chapter 3. 

Furthermore, the choice T = TAT leads to difference equations which, 

under special circumstances, have essential features in corrunon with the 

well-known Lax-Wendroff method [R2]. 

Under the circumstances which led to (2.2.5), choosing T = TA does 

not result in the canonical form (2.2.5) unless the weighted residual formu-

lation is generalized to 
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O = ~(~ + T~~,x) • Q(~,t + ~~.x)dQ 
Q 

= 

w = s w 

u = s u 

Computational experiences with generalizations of formulations of this 

(2.2.6) 

(2.2.7) 

(2.2.8) 

(2.2.9) 

type proved''cumbersome and unreliable in the nonlinear regime when compared 

with (2.2.3) and (2.2.4), and thus were abandoned. 

Despite the fact that T =TA does not canonically reduce (2.2.3), it 

leads to another optimality property which will be described subsequently 

(see §2. 5) . 

If T is taken to be zero then we have the usual Galerkin method which 

possesses central-difference like character. 
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2.3 Semi-discrete Equations 

Spatial discretization of the weighted residual equation (2.2.3) via 

finite elements leads to the following semi-discrete system of ordinary 

differential equations: 

. 
M v + C v = F (2.3.1) 

where M = M(v, t) is the generalized "mass" matrix, C == C(v, t) is the 

generalized convection matrix, F == F(v , t) is the force vector, v is· 

the vector of (unknown) nodal values of U , and a superposed dot denotes 

time differentiation. The initial-value problem for (2.3.1) consists of 

finding a function v v(t) satisfying (2.3.l) and the initial condition 

v (0) :::: 
~o (2.3.2) 

where ~o is determined from (2.1.11). 

The arrays in (2.3.l) are assembled from element contributions: 

(2.3.3) 

e [me J (2.3.4) m 
-ab 

e f (Na I + N TT)N cill (2.3.5) ~ab = a,x - b 
~"Ge 

ne,Q, 

c A (ce) (2.3.6) 
e=l 

(2.3.7) 



11 

e 
~ab (2.3.8) 

F (2.3.9) 

fe {fe} 
~a 

(2.3.10) 

n 

~ 
en 

fe dQ 2: e •e e e 
= Na G (m b 2°b 

+ c ~b) -a -a -ab n 
b=l 

(2.3.11) 

where /).. represents the finite element assembly operator; a and b are 

(local) element node numbers; 1 ~a , b < n where n is the number - en en 

of nodes for the element under consideration; N is the element shape a 

function associated with node a ; I is the m x m identity matrix; and 

e 
2b is a vector which contains the boundary condition data emanating from 

(2.1.10). The dimensions of the nodal arrays 

and the dimension of and are 

The reader is reminded that 
n 

np 

!I<~· t) = L 
A=l 

NA (x)~ (t) 
A 

e 
~ab and 

e 
~ab are m x m , 

(2. 3. 12) 

where A is the global nodal index, n is the total number of nodes and 
np 

v refers to the components of X associated with node A. 
~A 
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2.4 Transient Algorithms 

by 

where 

We consider first a family of one-step.implicit methods defined 

M a 
-n+Y -n+y 

~n+l 

M = -n+y 

c = -n+y 

+ c v 
-n+Y ~n+y 

v + lit a 
-n -n+a 

~(Y:n+y , tn+y) 

~(~n+Y , tn+yl 

F 
-n+y - ~(Yn+y , tn+y> 

a (1 - Y)a + y~n+l n+y ~n 

v = (1 - Y)v + YYn+l -n+Y ~n 

a = (1 - a)a + aa 
-n+a ~n -n+l 

t (1 - y)t + ytn+l n+y n 

F 
-n+Y 

In the above, 6t is the time step, n is the step number, and 

(2.4.1) 

(2.4.2) 

(2.4.3) 

(2. 4.4) 

(2.4.5) 

(2.4.6) 

(2.4.7) 

(2.4.8) 

(2.4.9) 

a and y are parameters which determine stability and accuracy properties. 

The starting value, ~0 , may be determined from 

~o c:i:o So Yo (2.4.10) 
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where 

~o = ~(~O' 0) (2.4.11) 

~o = ~(~O' 0) (2.4.12) 

~o ~(~O' 0) (2.4.13) 

If y = 1 the above algorithm reduces to the generalized trapezoidal 

method, whereas if y = a , it reduces to the generalized midpoint method. 

These methods have been contrasted in [H7, Hl6]. 

A general family of predictor/multi-corrector algorithms, based on 

the preceding implicit methods, is implemented as follows: 

1. i = 0 i is the iteration counter) 

2. 

3. 

4. 

5. 

6. 

7. 

v (0) = v + b.t(l - a)a 
-n+l -n -n 

(0) 
0 ~n+l = 

R = F (i) M (i) ( i) 
-n+y -n+y ~n+y 

M* 6a = R M* 

(i+l) (i) 
+ 6a ~n+l 

:::: 
~n+l 

(i+l) (i) 
+ a Lit Lia ~n+l = ::'.'n+l 

(predictor phase) 

(i) (i) 
~n+y ~n+y (residual force) 

is the "effective mass") 

(corrector phase) 

If additional iterations are to be performed, i is replaced by 

(2.4.14) 

(2.4.15) 

(2.4.16) 

(2.4.17) 

( 2. 4 .18) 

(2.4.19) 

(2.4.20) 

i + 1 , and calculations resume with step 4. Either a fixed number of 
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iterations may be performed or iterating may be continued until R satisfies 

a convergence condition. When the iterative phase is completed the solution 

at step n + 1 
(i+l) 

is defined by the last iterates (i.e. v = v and 
-n+l -n+l 

(i+l) 
'.:n+l = ~n+l ) . At this point n is replaced by n + 1 and cal:ulations 

for the next time step may begin. 

The properties of the algorithm are strongly influenced by the choice 

of the effective mass. There are various possibilities. For example, a 

fully implicit procedure may be defined by taking 

M* 

where 

M(i) ( ( i) 
== M v I -n+Y - --n+Y 

c (i) = C(v(i) , 
-n+Y - -n+Y 

H (i) = H(v(i) 
I -n+Y - -n+y 

ne.Q, 

H = A (!: e) 
e=l 

= 

= 

and has dimensions 

M(i) + a6t c(il + a6t H(i) 
-n+Y -n+y -n+y 

tn+y> 

tn+Y) 

tn+Y) 

m x m . In general, this definition of 

leads to a non-symmetric band-profile matrix. 

(2.4.21) 

(2.4.22) 

(2.4.23) 

(2.4.24) 

(2.4.25) 

(2.4.26) 

(2.4.27) 

M* 
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An explicit algorithm may be constructed by taking M* to be "lumped" 

(i.e. diagonal) : 

M* = Md. - iag 
(2.4.28) 

There are several schemes for obtaining suitable Md. - J.ag In the present 

work we assume that the diagonal element array is defined by [Zl] 

where 

e 
m I 

a 

0 

if 

if 

= 

a = b 

(2.4.29) 

a 'I b 

(2.4.30) 

(2.4.31) 

In the present work we confine our attention to the implicit and explicit 

schemes defined above. Stability and accuracy analyses are presented in 

Chapter 3. 

However, there are\other possibilities. Implicit-explicit finite element 

mesh partitions [H9, HlO, Hll, Hl3] may prove useful, for example. Additionally, 

to obtain the stability properties of implicit methods, while eliminating the 

equation-solving burden imposed by (2.4.21), approximate factorization schemes 

may be employed. We are presently experimenting with element-by-element 

factorizations which are very convenient from an implementational standpoint 

[ Hl 7]. 
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2.5 Selection of T 

Two expressions for T have been employed in the numerical calculations. 

One is based upon spatial discretization and the other upon temporal discre-

tization. They are given as follows: 

spatial criterion 

In this case we assume 

T = F a h/p (2.5.l) 

where F is a non-dimensional parameter, h is the element length, p 

is the spectral radius of A , that is 

p = max 
1 < i < m 

I A. (A) I 
1 -

(2.5.2) 

and the A. (A) 's are the eigenvalues of A . Note that (2.5.1) is a local 
1 -

specification of T in that it depends upon the element lengths and eigen-

values of A which vary from point to point. Rationale for this form of 

T is provided by the following exar.iples: 

Examples 

1. Consider the scalar model equation 

u + A u = o , t ,x (2.5.3) 

where A is assumed constant. Raymond and Garder [Rl] have shown that 

if 

F a (2.5.4) 
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then the semi-discrete equations achieve fourth-order phase accuracy. 

2. Consider the steady analog of (2.5.3) regularized by a diffusion 

term, 

A. u = E: u ,x ,xx (2.5.5) 

As s + 0 , the choice 

(2.5.6) 

leads to nodally exact solutions. The general case for the advection-

diffusion equation is described in Hughes-Brooks [B7, BB, Hl2, Hl4, Hl5]. 

Remarks 

1. The preceding optimality conditions, (2.5.4) and (2.5.6), need to 

be altered for higher-order elements. For example, in the case of three-

node quadratic elements (2.5.6) should be changed to F a = 114 [Nl] 

Throughout this work only low-order elements are employed. 

2. A weighted residual formulation of a linear, constant-coefficient, 

hyperbolic system with G = 0 can be given in which each uncoupled scalar 

equation is treated optimally, viz. 

0 = f 
~ 

(W + F a h sgn ~ ~,x> • (~,t + ~ ~,x>cill (2.5.7) 

where W == ST w and u = s-l u cf. (2.2.5). Unfortunately, there does 

not appear to be a nonlinear or multidimensional generalization of (2.5.7) 

and consequently, we have not explored the subject further. 
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temporal criterion 

In this case we assume 

T = F a 6t (2.5.8) 

Note that (2.5.8) is a global specification in that ~t is the same for 

all elements. Rationale for this choice is provided by the following 

examples. 

Examples 

1. Assume H = 0 . If T = TA , and F = l , then (2.5.8) leads to 

symmetry of the implicit operator M* (see Eq. 2.4.21). This can be seen 

from the definitions of the element contributions to M* 

me + a~t e 
~ab -ab = !Na ~~ I + a~t J (Na,x Nb 

AT + N ~)dQ N a b,x 
Qe Qe 

+ (a~tl 2 ~Na,x N ATA dQ = (~a + a6t Ce )T (2.5.9) 
b,x -ba 

if 

The obvious advantage in this case is the decreased storage and factor-

zation costs. Symmetric element arrays are also advantageous in implicit-

explicit finite element mesh partitions [Hl3]. This choice also leads to an 

optimality condition in that for a specified residual, R , the increment 

6a is optimal with r:spect to the norm defined by M* . Another way of put-

ting this is to say that the increment of U is optimized with respect to 

the synunetric bilinear form which generates M* . This concept of optimality 

is related to the following optimal steady formulation 
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a(W, U) == -f (~ + T A W ) • G dft st -,x 
(2.5.10) 

where a(• , •) is a symmetric, bilinear form defined by 

= f T - l (W + T A W ) • ( p + T A U ) a.It st - -,x -,x (2.5.11) 

and A and G are assumed to be independent of u , that is 

A = A(x) (2.5.12) 

G = G (x) (2.5.13) 

2. The choices F = 1 , and M* = M . I 
- -diag 

leads to an explicit Lax-Wendroff type method. We shall explore this 

point further subsequently. 

Remark 

The factor, F , in (2.5.1) and (2.5.8) has been included to account 

for nonlinear effects. It has been our experience that a value of F greater 

than one needs to be employed to adequately handle shock-wave phenomena. 
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2.6 Finite Difference Equations 

The finite difference equations for the preceding algorithms are needed 

subsequently for the stability and accuracy analyses and are of interest in 

their own right. In explicating the finite difference equations for an inter-

nal node we have made the following assumptions: (i) linear elements are 

employed; and (ii) h , A and H are constant; and (iii) G varies linearly 

over each element. Furthermore, for notational clarity we have dropped the 

superscript i and subscript n + y. The equations are as follows: 

implicit case 

(~<~ + atlt H)D .+ (- TT + ailt A - ex.lit TT ~)Dl 

+ Mtl 
h 

+ ( -

where 

D v (j) 
r -

Dl ~ (j) 

D2 v (j) 

- r 

T 
T A D2 )tl~(j) 

A D -
2 

1 h 

= '( h + TT Dl)~(j) - - I Dr 2 ~ -

+ (-
h
2
· T ) 

I Dr + T Dl ~ (j) 

2(r ~(j-l) + (1 - 2r)~(j) + r ~(j+l)) 

1 
+ ~ (j+l)) = 2<- ~(j-1) 

1 
2 v (j) = - -(v - + "'.:1:(j+l)) 2 -(j-1) 

(2.6.1) 

(2.6.2) 

(2.6.3) 

(2.6.4) 

and ~ (j) = v(x.) 
- -J 

is the subvector of v which is associated with node 

number j , etc. The value of r is determined by the element quadrature 

rule employed. The following are the most important cases: 
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r rule 

1/4 1 - point Gauss 

1/6 2 - point Gauss (exact) 

0 trapezoidal 

explicit case 

In the explicit case, the right-hand side of (2.6.1) is the same, but 

the left-hand side simplifies to 

(2.6.5) 

Remarks 

1. It is interesting to observe that even though upwind influence has 

been introduced via the weighting function defined by (2.2.4), the resulting 

difference equations are centered about node j 

2. Assume G = 2 , a = l 
T T = TA , T = Llt/2 and the explicit one-

pass (i.e. one-iteration) case, then from (2.4.15), (2.4.16), (2.4.20) and 

(2.6.1) we get 

~n+l (j) = ( ~ -
L\t 
h ( L\t A)2 D2)v (j) 

h - -n 

Eq. (2.6.5) defines the Lax-Wendroff method. 

(2.6.5) 



22 

CHAPTER 3 

Stability and Accuracy Analysis of Algorithms 

for the One-dimensional Linear Hyperbolic Equation 

3.1 Development of the Tools for the Analysis 

3.1.l Introduction 

Model Problem: Convection Equation 

One-dimensional convection of a function U(x,t) is governed by the 

following hyperbolic equation: 

u + \ u = o 
,t ,x (3.1.1) 

where \ is the convection velocity. An initial condition of the following 

form is assumed: 

U(x,O) 
ikx 

= e (3.1.2) 

~ 
8

ikx where i = (-1) and k is the wave number. We note that the function 

is an element of the set of Fourier functions. This is a complete set and 

any piecewise regular function in the range of (0,2TI) can be represented as an 

expansion in this set. 

Exact Solution 

The exact solution of (3.1.1) and (3.1.2), for constant A, is straight~ 

forward. Assuming a solution of the form: 

U(x,t) = X(x)T(t) (3.1.3) 
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leads to: 

X(x) ikx = e (3.1.4) 

T (t) 
Vt 

= e (3.1.5) 

\) - i A. k (3.1.6) 

We define the damping coefficient, ~ , and the frequency, w , as the com-

ponents of the complex parameter v 

\) (3~1.7) 

Thus: 

~ = 0 (3.1.8) 

w A. k (3.1.9) 

3.1.2 Finite Element Solution 

Semi-Discrete Equation 

The Petrov-Galerkin formulations described in chapter 2 leads to the 

following semi-discrete equation: 

. 
Mv+cv=O 

where 

Here j 

v = {v.} 
J 

stands for an interior node, j , and x. 
J 

(3.1.10) 

( 3 .1.11) 

(3 .1.12) 

is the coordinate of 

that node. The matrices M and C were previously defined by (2.3.3) 

and ( 2 . 3 . 6 ) . 
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For the purpose of analysis, we assume constant A and constant mesh 

spacing h . Further, we assume that the finite element solution, also has 

a separable form: 

where 

T 

x 

v = X T 

T (t) 

~x .} 
- J 

Consequently, we get the following semi-discrete form: 

. 
M X T + C X T = 0 

The spatial component of the numerical solution is determined by 

the nodal interpolation of the imposed initial condition (3.1.2): 

X _ ikxJ· _ eiqj . - e -
J 

where the dimensionless wave number, 

q = k h ' 

is a measure of the spatial refinement of the numerical method. 

The jth equation of the system of equations of (3.1.17) is 

I(% ~r - T A e1)• x. 1 J-

I 
2 e2H + (A ~l + TA2 X. 0 
h J 

X. 1 J+ 

(3 .1.13) 

(3.1.14) 

(3'.1.15) 

(3.1.16) 

(3.1.17) 

(3.1.18) 

(3.1.19) 

(3.1.20) 
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where T is the parameter that appeared in section 2.2, and ~r , ~l , ~2 

are the stencils for node j corresponding to the assembly of the element 

level matrices: 

+l 

f Na ' ~ - Nb, t; d t: 
-1 

-.o 
-r 

~l 

(3.1.21) 

(3.1.22) 

(3.1.23) 

These stencils are directly related to the difference operators given by 

(2.6.2)-(2.6.4). Depending on the numerical integration technique used, 

they can assume several fonns. For example, 

D = 2[1/6, 4/6, 1/6] (exact integration) 
-r 

e1 = [-112, a, 1121 (exact integration) 

Q2 = [-1/2, 1, -1/2] 

Further, we define the following array: 

[ -iq e+iq] E = e , 1, 

Then 

[X. l' X., X. 
1

J 
J- J ]+ 

= 

= 

[ 
iq (j-1) iqj 

e , e 

iqj E e 

iq(j+l)l 
e J 

(3.1.24) 

(3.1.25) 

(3.1.26) 

(3.l.27) 

(3.1.28) 
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Substituting (3.1.28) into (3.1.20) leads to 

(h D 
2 ~r 0 (3.1.29) 

Now define the complex scalars M and C corresponding to M and c 

respectively: 

M = 

i'.ltC 

1 2TA 
-(D - - D )E 2 ~r h ~l ~ 

(3.1.30) 

(3.1.31) 

where 6t is the time step of the time integration algorithm. We define 

the following non-dimensional parameters. 

c6t 
All.t 

= 
h 

(3.1.32) 

2TA 
C2T = 

h 
(3.1.33) 

Cllt is called the Courant number. Considering that T has units of 

time, we can view as an algorithmic "Courant number" based on 

2T . If we set c2T = O , we obtain the usual Galerkin formulation. 

With the definitions of (3.1.30) and (3.1.31), (3.1.29) reduces to 

the following ordinary differential equation: 

. 
M T + C T 0 (3.1.34) 

Transient Algorithm 

Transient algorithms were described in section 2.4. We adopt the repre-

sentation: 

. 
y [TI T] (3.1.35) 
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and let Y denote the approximation of Y _n 
th . n -time step. at the 

Given we go through a predictor phase and an iterative phase v 
~ I _n 

to calculate :n+l· 

In the predictor phase we calculate 
(0) 

y 
-n+l 

by the following operation: 

( 0) 
y 
-n+l 

p y 
- _n 

where P is the predictor matrix defined by 

p == 
(1-a) llt l 

0 _J 

The iteratiqe phase starts with the zeroth-iteration value, Y(O) 
-n+l ' 

and continues according to the recurrence rule below: 

Given 

ML .6.T<i> + 
n+l 

.6.T (i) = 
n+l 

• (i+l) 
Tn+l = 

T(i+l) = 
n+l 

solve the following system for yCi+l) . 
,;,n+l · 

CL .6.T(i) = - (MR T(i) +CR T(i)) 
n+l n+l n+l 

a.6.t .6.T (i) 
n+l 

• (i) 
Tn+l + 

• ( i) 
.6.Tn+l 

T(i) + 
n+l 

.6.T (i) 
n+l 

The superscripts L and R refer to the left and right-hand sides of 

(·3 .1. 38). We reserve the option of having different evaluations for M 

(3 .1.36) 

(3.l.37) 

(3.l.38) 

(3.1.39) 

(3 .1.40) 

(3 .1.41) 

and c on different sides, so that we can accomodate all of the algorithms 

described in chapter 2. 
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The recurrence rule defined above can be expressed as: 

(i+l) 
v = 
~n+l 

J y (i) 
- -n+l 

J is the iteration matrix emanating from the recurrence rule: 

J = 

where 

1-a fltCR 

M 

M 

1 

Combining the predictor and iterative phases, we have 

y 
-n+l 

A y 
- -vn 

(3 .1.42) 

(3.1.43) 

(3 .1.44) 

(3 .1.45} 

(3 .1.46) 

Here S is the number of iterations., Exploiting the ·fact that det P = 0 , 

that is 

det A det JS det p = 0 (3.1.47) 

we can write 

A21 A22 
= J.1 

All Al2 
(3.1.48) 

Then, from (3.1.45): 

. 
T J.1 T T J.1 Tn+l n n n+l (3 .1.49) 



Substituting (3.1.49) into (3.1.45): 

T 
n+l 

29 

(tr A)T 
- n 

Numerical Frequency and Damping Coefficients 

For the temporal component, we assume a solution of the form: 

T = 
n 

v tit n 
e 

( 3 .1. 50) 

(3.l.51) 

where v is the numerical counterpart of the exact v defined by (3.1.6). 

From (3.1.50) and (3.1.51): 

- tit \) 
e = tr A (3.l.52) 

Now, we need to calculate tr A 

s P) s (1 - a).6t s 
tr A :::: tr(J = Jll + J21 (3.l.53) 

where are components of JS can be calculated by 

way of the Cayley-Hamilton theorem: 

(3.1.54) 

The coefficients a and b are functions of the eigenvalues, \
1 

and \
2 

, 

of the matrix J 

a (3.l.55) 

b :::: (3.l.56) 

The eigenvalues are given by 
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.A
1 

= l (3.1.57) 

= l - (MR+ a 6t ·cR)/M (3.1.58) 

From (3.1.53)-(3.1.58): 

tr A = l + ~ ( ( 1 - R) S - 1) (3.l.59) 

where 

(3.l.60) 

(3.1.61) 

One can note that, from (3.1.30)-(3.1.33), the terms M and 6tC can be 

expressed in terms_ of the dimensionless parameters q I c6t and c2T 

M = l (D 
2 -r 

(3 .l. 62) 

(3.l.63) 

From (3.1.52) and (3.1.59)-(3.1.63), we can express the complex parameter 

v6t in terms of the dimensionless parameters q I c6t and c2T , that is, 

V6t = ln(tr A) ( 3 .1. 64) 

For comparison, we need to express v6t in terms of the same dimension-

less parameter set. From (3.1.6): 

v6t = - iAk 6t = - i 
A.6t 

h 
kh 

(3.1.65) 

By means of {3.1.64) and (3.1.65) we can study the stability and accuracy 

of a wide variety of algorithms for solving the convection problem. 
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We define the analytical and numerical amplification factors Z and z 

bv 

\)f:. t 
( 3 .1. 66) z = e 

- vt:.t z = e (3.1.67) 
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3.2 Unified Analysis of Algorithms 

Introduction 

In section 3.1 we developed the tools for stability and accuracy analysis 

of a large class of algorithms. The algorithms can be of implicit or explicit 

type. Unification of algorithms into one class enables us to perform one 

general stability and accuracy analysis for the entire class and then study 

individual cases within the framework of this analysis. 

For the purpose of analysis, we classify the algorithms we study into 

two groups: the implicit types are the base algorithms and the explicit types 

are the ones derived from the base algorithms. To each implicit algorithm 

defined, we can (at least in principle) associate an explicit algorithm. This 

concept was described in section 2.4. 

Further, we unify all the algorithms we study into one general Petrov-

Galerkin class. Two main parameters c2T and r (defined in section 2.6) 

determine the particular algorithm in this class. 

We obtain closed form expressions for the modulus (jzj = e-~6t) and the 

frequency (w 6t). These expressions are simple for the implicit and explicit 

1-pass algorithms, and somewhat more complex for the explicit 2-pass aJgorithms. 

Unconditional-stability proofs can easily be made for the implicit 

algorithms; stability limits can be determined for the explicit 1-pass alga-

~ithrns with the same ease. 

Expressions for the exact and numerical frequencies are not in easily 

comparable forms. One can expand these expressions in q or c6t and compare 

them in series form; this requires extra caution and patience in the algebraic 

bookkeeping. Alternately, one can, with a general-purpose program, compute 
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the ratio w/w for the desired ranges of c2T , C~t and q . The latter 

approach is adapted herein. 

3.2.1 Description and Classification of Algorithms 

In the following sections we briefly describe the (implicit) algorithms 

and place them in the general class. 

(Bubnov-) Galerkin Algorithms 

In this group we study two Galerkin (c2T = 0) algorithms; we call these 

GC and GL 

GC is a galerkin algorithm· with consistent (exactly integrated) mass. 

GL, on the other hand, has a lumped mass (integrated with nodal trape-

zoidal rule). 

The stencils D and !?1 are _r 

!?r = 2· ( r, 1 - 2r, r] (3.2.1) 

~l = [ -~, 0, ~ (3.2.2) 

The parameter r , which was described in section 2.6, is set to 1/6 for 

GC and to O for GL . The form of the stencil D 
-1 

integration and is equivalent to central differences. 

Petrov-Galerkin Algorithms 

corresponds to exact 

We study four Petrov-Galerkin algorithms. They are PG(Pade), PG(C
2

T = 1), 

PG(C2T = 2//15) and PG(C2T = c~t). 

PG(Pade) has weighting function W constructed from the following 

element shape functions: 
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N1 ( ~> = o 

N2 (~> = i 

~ E [-1, +l) 

is the usual isoparametric coordinate. In this case we need to replace 

2[~, ~, o] 

and 

[-1, +l, o], 

respectively. 

(3.2.3) 

(3.2.4) 

(3.2.5) 

(3.2.7) 

This method corresponds to the Pade finite difference approximation (see 

[ W3]) • 

The other methods, that is 

1) [Hl5) , 

PG ( C2T = 21.fls ) [ Rl J and 

PG(C2-r = Ctit) (described in chapter 2, section 5) 

employ (3.1.24), (3.1.25) and (3.1.26), corresponding to exact integration 

rules. The name of each algorithm implies the way c
2

T is chosen. 
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3.2.2 .Implicit AlgorLthms 

From (3.1.62)-(3.1.63), the scalars M and Lite become 

M .1.
• C2T 

l - 2r (1 - cos q) -
2 

sin q (3.2.8) 

Lite (3.2.9) 

The stencils of the Bade approximation, (3.2.6) and (3.2.7), lead to, 

M 

L1tc 

l (1 + e -iq) 
2 

Remark: The same expressions can also be obtained by setting r = 1/4 

(3.2.10) 

(3.2.11) 

and c2T = 1 in (3.2.8)-(3.2.9). Therefore, for the purpose of analysis, 

we can include the PG(Pade) algorithm in the two-parameter ce
2

T, r) family 

of Galerkin/Petrov-Galerkin algorithms. 

For the implicit class, (J.1.52), (3.1.59) and (3.1.67) reduce to the 

following expression for the numerical amplification factor: 

~ 

z 1 Q (3.2.12) 

where Q is given by (3.1.61). 

Frequency Analysis 

The following expression for w (;.t is found: 

tan(w 6t) 2 
cl:it W(G + c2T V/2)/ 

(H +a c6t W) (H - (1 - a)Ci::.t W) J (3.2.13) 
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where 

v = 1 - cos q (3.2.14) 

w sin q (3 .2 .15) 

G 1 2 r v (3.2.16) 

H = - C2T W/2 (3.2.17) 

Eq. (3.2.13) is a general expression for any combination of r , c2T and 

a . For example, for the trapezoidal rule (a = ~) the expression reduces to 

ta.'1. (w l.lt) = 
2 

cl.lt W(G + c2T V/2)/ 

Further, if we have a Galerkin algorithm (C2T = 0), then (3.2.18) becomes: 

tan(w ~t) = 2 2 c6 t W G/[G - (~ CL'it W) ] (3.2.19) 

Lumping the mass term reduces this expression to: 

tan(w L'it) = c.6t w / [ 1 - (~ cl.lt w) 
2 J (3.2.20) 

Modulus/Stability Analysis 

The following inequality needs to be satisfied for the stability of an 

algorithm: 

I zl 2 
< i (3.2.21) 

This inequality translates to: 

- ( 1 - 4 r) c 
2 

T v - ( 2 a - 1) ( c~ T v + ( 2 - v) ) < o (3.2.22) 
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As we can easily observe, for a ~ ~ , all the algorithms considered 

are unconditionally stable, provided that r 2_ 1/4 . In particular, 

GC(C2T = 0, r = 1/6) , GL(C2T = 0, r = 0) and PG(Pade) (C2T = 1, r = 1/4) 

have no modulus error, that is, !z! = 1 . 

3.2.3 Explicit Algorithms 

For explicit algorithms, the scalar quantities MR , 6tCR and M are: 

MR = G + i H (3.2.23) 

6tCR = c6tc2T v + i c6t w (3. 2. 24) 

M :::: 1 . (3.2.25) 

Explicit 1-Pass Algorithms 

For 1-pass algorithms, the numerical amplification factor takes the form 

Z = 1 - 6tcR (3.2.26) 

that is 

(3.2.27) 

For the frequency analysis, we get a relatively simple expression: 

tan (W 6t) (3.2.28) 

Clearly, for 1-pass algorithms, r and a have no effect. 

For modulus/stability analysis, the following inequality is considered: 

< l (3 .2. 29) 
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Utilizing the identity w2 
= 2v - v 2 

I this condition can be written as: 

> 0 

We can further wri· te th· · is inequality in two ot'!er forms: 

The first form , 

+ (1 - 2 + v 

provides us with the stability limits on the algorithmic parameter 

The second form, 

< 

provides the stability limit on the Courant number once we select the 

parameter c2T . 

Consider the following cases: 

(3.2.30) 

(3.2.31) 

(3.2.32) 

If c2 T = 0 , then, for the stability condition we get v - 2 > O . 

This implies unconditional unstability. 

If we set c2T = 1 , then, the stability condition is c
6t ~ 1 . 

By setting c2T = C~t , we get the same stability condition: c6t < 1 . 

Explicit 2-Pass Algorithms 

For the 2-pass algorithms, the numerical amplification factor is 

~ 

z (3.2.33) 
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~ 

With this form of Z , the expressions for tan(w 6.t) and. the stability 

condition become rather complicated. Defining the variables 

= (3. 2. 34) 

= (3.2.35) 

we ~an, without any further algebraic elaboration, write the expressions for 

tan(w 6.t), that is, 

tan(w L\t) = 
AlB2 + A2Bl 

l + A1B1 - A2B2 
(3.2.36) 

and for the stability condition 

(3.2.37) 
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3.2.4 Stability and Accuracy Studies 

As the algebra of the analysis gets lengthier, especially for the 2-pass 

algorithms, we find it more convenient to conduct the analysis numerically 

for the desired ranges of the parameters involved. 

For the algorithms previously considered we utilized a general pur-

pose program to determine the stability and accuracy pro2erties. For each 

algorithm, the parameters r and c 2T were given. The quantities ~/w 

and w/w were computed and plotted for the values of c6t 0.2, 0.4, 0.6, 

0 • 8 , 1. 0 and q E ] 0 , 'IT [ • 

For future reference, we describe the following concepts: 

Unit CFL condition [M3]: An algorithm satisfies the unit CFL condition 

if it produces nodally exact solutions for c
6

t = 1 

Order of accuracy: The behaviors of the ~/w and w/w curves for an 

algorithm as q O , reveal the order of accuracy of that algorithm. If ei-

ther of these curves has a finite slope as q + 0 , then the algorithm is first 

order accurate. If both curves have slopes approaching zero as q + 0 , then 

the algorithm is at least second-order accurate. 

The quantity ~/w is called the algorithmic damping ratio (see [H2]) and 

is related to the logarithmic decrement 6 [H2] via the following expression 

0 = = 2Tr(~/W) (3.2.38) 

where T is the numerical prediction for the dependent variable. 

The dimensionless wave number q is a measure of spatial refinement. 

Scaling q by 21T , we get: 



q* .L 
2TI 
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h 
;\ 

(3.2.46) 

which represents the number of elements per wave length. It is reasonable 

to limit study to the range q E Jo, TI[ For example q = TI/2 translates 

to having 4 elements for one full wave form. 

For the entire graphical analysis a = ~ (trapezoidal) . 

3.3 Comparison of Algorithms 

3.3.1 Implicit Algorithm 

Fig. 3.1 shows the frequency ratio (w/w) for the implicit GC, GL· 

and PG(Pade) algorithms. They have no modulus error, and are second-order 

accurate. GC is more accurate than GL for finite q This is due to the 

term 2 r(l - cos q) which vanishes for GL. PG(Pade) satisfies the unit 

CPL condition. For finite q , GC and GL become more accurate as c
6

t 

decreases; the opposite is true for PG(Pade). 

Fig. 3.2 shows the algorithmic damping ratio (~/w) and the frequency 

ratio for the implicit PG(C2T = 1) , PG(C2T = 2//15) and PG(C2T = c6t) 

algorithms. They are .all second-order accurate. As one might expect, 

PG(c2T = c
6
t) behaves like GC as c6t -+ O , like PG(C2T = 1) as c

6
t -+ 1 

and like PG(C2T = 2/115) as 6t -+ 2//15 . 
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3.3.2 Explicit 1-Pass Algorithms 

Fig. 3.3 shows the results for the explicit 1-pass PG algorithms (GC 

and GL are unconditionally unstable; not shown.) PG(Pade) and PG(C2T 1) 

are equivalent because, for 1-pass algorithms, there is no dependence on r 

In this group, only PG(C
2

T = CDt) is second-order accurate. This superior­

ity with respect to order-of-accuracy can easily be seen from (3.2.29), which 

can be written as: 

l-zl2 2 = 1 - CDt V(2(C2T - CDt) + CDt V(l - C2T)) ( 3. 3 .1) 

1-zl 2 Clearly, the departure of from unity is first-order in CDt and V . 

However, if c 2T = CDt , then 

= (3.3.2) 

lz-12 and thus, the departure of from unity is now second-order in cut 

and V . 

The algorithms PG(Pade), PG(C2T = 1) and PG(C2T : CDt) satisfy the 

unit CFL condition. 

The stability limits are c6t < 2/115 for PG(C2T = 2/liS) and CDt < 1 

for the other PG algorithms. 
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3.3.3 Explicit 2-Pass Algorithms 

Fig. 3.4 shows the algorithmic damping ratio and the frequency ratio for 

explicit 2-pass PG algorithms. (GC and GL are unconditionally unstable; 

not shown.) In this group, all the algorithms are second-order accurate. 

PG(Pade) satisfies the unit CFL condition. All the algorithms are stable 

for C~t .::_ l , except for PG(C2T = 2/115) which exceeds the stability limit 

around c~t = 0.8. 
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CHAPTER 4 

Numerical Applications in One Dimension 

4.1 Introduction 

To test the capabilities of our finite element schemes and to estimate 

the effects of several algorithmic parameters involved, we experimented with 

problems from various classes of one-dimensional hyperbolic systems. 

We started with a linear transient problem which had a discontinuous 

solution. Then we studied nonlinear transient problems with continuous and 

discontinuous solutions; these illustrated the concepts of shock stability 

and admissibility. Further, we experimented with a set of nonlinear steady 

problems; these resulted in continuous or discontinuous solutions depending 

on the way the boundary conditions were specified. 

4.2 Numerical Applications in the Linear Transient Case 

4.2.1 Propagation of a Small Disturbance in a Gas 

Barotropic Compressible Flow Equations 

The Euler equations in one dimension are given in appendix I. The mass 

and momentum conservation equations can be uncoupled from the energy conserva­

tion equation by assuming that the flow is barotropic, that is: 

p = p(p) (pressure) (4.2.1) 

Then, the barotropic flow equations can be written as a system of conservation 

equations with conservation variables and flux vector defined as: 
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(4.2.2) 

(4.2.3) 

where p and u are density and velocity, respectively. 

Small Disturbance Equations 

We assume that the departures of p and u from constant values p0 

and uo are very small. Taking to be zero, this assumption can also be 

stated as (see [w4]): 

£ 1 << 1 (4.2.4) 
Po 

p-' (p) 
- l 

p .. (Po) 
<< 1 (4.2.5) 

u << l (4.2.6) 

where p .. (p) is the derivative of p(p) with respect to its argument. With 

these assumptions, we get the following linearized version of the original 

conservation equation system: 

P,t + 0 (4.2.7) 

Po u,t = 0 (4.2.8) 
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Further, by introducing the parameter c ' 

2 
c = P ... <Po> (4.2.9) 

and the scaling 

P* = PIP -
0 

1 (4.2.10) 

u* :::;: - u/c (4.2.11) 

we get 

u + A u = 0 
~,t -,x (4.2.12) 

where 

u :::;: [ :: 1 (4.2.13) 

and 

A :::;: 

[ 

0 -c] 
-c 0 

(4.2.14) 

Clearly, the eigenvalues of A are: 

(4.2.15) 

4.2.2 Initial/Boundary-value Problem 

The equation system of (4.2.12), together with the following initial/ 

boundary-value data was studied numerically by Hughes in [H6]: 

p (x, O) = 0

1 l x E ] 0, 10[ (4.2.16) 

u (x, O) = 



p(O, t) = 

u(lO, t) = 

51 

t > 0 ( 4. 2 .17) 

(We drop the asterisks for notational simplicity.) The parameter c was 

chosen to be unity. 

4.2.3 Finite Element Solutions 

Naming Convention for the T = T b and T = T ~T 

If we choose to define the operator T according to the criterion 

T = T ~ , then the resulting formulation would have a second-order term 

containing the product ATA . Therefore, we name this criterion the "ATA-

form." If we choose the criterion T = T AT on the other hand, then the 

second-order term would contain the product A
2 

. Therefore we name this 

criterion the "A
2
-form". Thus, in the study of this and all the othe!:' 

problems, we adopt the fo].lowing naming convention: 

T = T A - (4.2.18) 

T = - (4.2.19) 

This naming convention will also be used for the multi-dimensional cases. 

Algorithmic Features 

In this problem, both ATA and A2-forms result in the same formula-

·tion due to the symmetry of the opera tor A 

obtain the usual Galerkin technique. 

We can also set T = 0 and 

The finite element mesh contains 20 elements with uniform mesh spacing 
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of .5 . The quadrature rules chosen provide exact integration of the vectors 

and matrices involved. 

The transient algorithm parameters Y and a were set to be 1.0 and 0.5 

respectively. Implicit, explicit 1-pass (designated by El), and explicit 1-pass 

(designated by E2) algorithms were tested. Two different time steps, 0.50 and 

0.25, were used; these time steps correspond to Courant numbers 1.0 and 0.5, 

respectively. For both time steps, we used the temporal criterion for T as 

given by (2.5.8). The parameter F was set to unity. The spatial criterion 

for T , (2.5.1), would result in the same formulation for both time steps, pro-

vided that we set F = 0.5 when ~t = 0.25 

Results 

Fig. 4.1 shows the implicit Galerkin solution for Courant number 1.0 . 

As can be seen, this technique produces spurious oscillations. 

Fig. 4.2 shows the solutions produced by the explicit 1-pass Petrov-Galerkin 

algorithm with a = 1.0 and a = 0.5 . One would expect the solutions to be 

very similar because the explicit 1-pass algorithrn is independent of a 

Slight differen~es occur because the initial start-up conditions are handled 

differently by each algorithm. 

Both algorithms satisfy the unit CFL condition defined in chapter 3 yet, 

in this problem, a = 0.5 produced results inferior to a = 1.0 due to start­

up conditions. Therefore, for the explicit 1-pass algorithm, when it comes 

to a choice between a= 1.0 and a= 0.5, the fo:nner value is preferred. 

Fig. 4.3 shows the solutions (for Courant number 1.0) produced by Petrov-
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Galerkin implicit, explicit I-pass and, explicit 2-pass algorithms. The 

explicit 2-pass results are not distinguishable from the implicit results. 

This implies that, for this problem, as the number of passes increase, the 

explicit algorithm converges quite rapidly to the implicit one. 

Fig. 4.4 shows the results for Courant number 0.5 produced by the same 

set of algorithms. The implicit and explicit 2-pass algorithms are, again, 

.indistinguishable. The explicit 1-pass algorithm produces slightly greater 

oscillations. 
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4.3 Numerical Applications in the Nonlinear Transient Case 

4.3.l Barotropic Compressible Flow 

Barotropic compressible flow was defined in section 4.2. The differen­

tial equations need to be satisfied everywhere except a.t the s!1ock front 

where the Rankine-Hugoniot conditions (see [Ll, L2, L3]), 

= (4.3.1) 

have to be satisfied. Here s is the propagation speed of the shock fro~t 

and [ ] is the jump operator. That is, for any variable Q : 

(4.3.2) 

where the superscripts "-" and "+" refer to the left and the right of 

the shock front, respectively. For barotropic flow these conditions are: 

s[p] 

s[pu] = 

= [p u] 

[Pu2 + p] 

(4.3.3) 

(4.3.4) 

For shock profile to be stable, the entropy condition also must be 

satisfied (see [Ll, L2, L3]). The entropy condition is given in the form of 

inequalities in terms of s and the eigenvalues of the jacobian matrix A . 

In the present case, the eigenvalues are 

= (4.3.5) 
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4.3.2 Initial-value Problems 

We considered two initial-value problems, both studied by Hughes in 

[H6], with the following equation of state: 

p(p) = 1 
27 

The first problem has the following set of initial data: 

p{x, 0) = 1 + 2H(- x) 

u(x, O} = f H(- x) 

(4.3.6} 

(4.3.7) 

(4.3.8) 

where H(x} is the Heaviside step function. This initial data does not 

satisfy the jump relations. Therefore, the initial shock profile splits 

into a stable shock which propagates to the right and a simple wave which 

propagates to the left. 

The second problem has the following set of initial data: 

p(x, O) = 1 + 2H(+ x) (4.3.9) 

p {x, 0) = 
2 3 H(+ x) (4.3.10) 

This is the mirror image of the previous data with respect to the point 

x = 0 . This initial data does not satisfy the entropy condition and there-

fore represents an unstable shock. The result is a rarefaction wave travel-

ing to the right. 
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4.3.3 Finite Element Solutions 

Algorithmic Features 

and 2 A -forms were tested on these problems. 
. 

We also tried 

the Galerkin algorithm for one case only. 

The finite element mesh contains 40 elements with a uniform element length 

of 1.0. 

The transient algorithm parameters y and a were set to 1.0 and 0.5, 

respectively. The time steps were taken to be 0.6 and 0.3 corresponding to 

Courant numbers (based on the maximum eigenvalue) 1.0 and 0.5, respectively. 

The parameter T was chosen according to the temporal criterion given 

by (2.5.8). The parameter F was usually taken to be one, however we 

tested cases where it was greater than one. 

Results 

Fig. 4.5 shows how the Galerkin algorithm performed for ~t = 0.6. 

We used an implicit 3-iteration scheme. The location of the shock (that is 

the shock speed) is in agreement with the exact solution; but there are spu-

rious oscillations behind the shock. 

The Petrov-Galerkin algorithms, in general, performed quite well. The 

conunon discrepancies between the numerical and exact solutions were, with 

varying magnitudes, overshoots at the shock fronts and oscillations behind 

the simple wave. We tested implicit schemes with I, 2 and 3 iterations 

(designated by II, I2 and I3) and explicit schemes with 1, 2 and 3 passes 

(designated by El, E2 and E3). We found that at least 3 iterations were 

needed to get the correct shock structu~es when an implicit scheme is used. 

This observation is in agreement with the findings of Baker [B2, B3]. 
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The element level "mass" matrices and the vectors corresponding to them 

were integrated exactly. For the integration of all the other matrices we 

tested 1, 2 and 3 point Gaussian quadrature rules. Fig. 4.6 shows the com­

parison of the integration rules for ~t = 0.6 with A2-form and T chosen 

temporally. We conducted the comparison tests on implicit 3-iteration (I3) 

and explicit 1-pass (El) algorithms. We observe that the results change 

only slightly with the quadrature rule. One can therefore use 1-point qua~ 

drature for economy reasons without much decrease in accuracy. However, in 

the following problems we used the 3-point quadrature rule. 

Fig. 4.7 shows the results for ~t = 0.6; all are in close agreement 

with the exact solution. All have, with comparable magnitudes, overshoots 

at the shock front and oscillations behind the simple wave. We observe that 

explicit 2 and 3-pass results are very similar. For the ATA-forrn the 

explicit 1-pass algorithm became unstable; for this form we also tested the 

implicit 3-iteration scheme with F = 2 . This slightly reduced the oscil-

lations and the magnitude of the overshoot to the left of the shock front. 

Fig. 4.8 shows the results for ~t = 0.3. The solutions are in agree-

ment with the exact solution with slightly more oscillations behind the shock 

front compared to the ~t = 0.6 case. For the A2-form, there was virtually 

no difference between explicit 2 and 3-pass algoritluns. We also tested the 
~ 

explicit 2-pass algoritlun with F = 2 . This algorithm reduced the oscilla-

tions and the magnitude of the overshoot to the left of the shock front. 

Fig. 4.9 shows the results for the unstable shock problem. We used 

the A2-form with the temporal choice of T the time step was 0. 6. We 

tested the implicit 3-iteration and explicit 2-pass algoritluns. Both solu-

tions were in close agreement with the exact solution. The El algorithm 
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produced slightly more oscillations behind the simple wave. All algorithms 

produced good results for this case. 

4.4 Numerical Applications in the Nonlinear Steady Case 

4.4.l Isothermal Flow in a Nozzle 

We consider the one-dimensional isothermal flow \in a nozzle with cross-

sectional area varying along the axis. The governing balance law equations, 

provided by Lomax et al. [L7], possesses the following conservation variable, 

flux and source vectors: 

u = (4.4.1) 

A (4.4.2) 

G = (4.4.3) 

where the acoustic speed c
2 

is constant and the cross-sectional area is 

A A(x) (4.4.4) 

The jacobian matrices are: 

0 1 

A a.-wau = (4.4.5) 

-u2 + c2 2u 
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0 0 

a~;a~ = (4.~.6) 

2 
0 -c A, /A 

x 

The eigenvalues of A are 
~ 

,\1,2 u + c (4.4.7) 

Assuming that A(x) is a continuous function of x , the Rankine-

Hugoniot conditions for steady flow reduce to: 

[p u] = O (4.4.8) 

2 2 [pu + pc ] = 0 (4. 4. 9) 
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4.4.2 Boundary~value Problem 

We studied steady flows suggested by Lomax et al. [L7]. The cross-

sectional area and the acoustical speed were given by 

A(x) 

The problems considered were: 

1. 0 + (x - 2 • 5) 
2 

12.5 

c = 1.0 

0 < x < 5. 

1. Subsonic inflow - subsonic outflow with no shock. 

2. Subsonic inflow - supersonic outflow with no shock. 

3. Subsonic inflow - subsonic outflow with shock. 

(4.4.16) 

(4.4.17) 

The exact solutions, which can be obtained by the integration of the square 

of the Mach number (in this case u 2), were provided by Lomax et al. [L7]. 
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4.4.3 Finite Element Solutions 

For the boundary conditions of these problems, we set the values of 

the conservation variables as given by the exact solution. The number of 

variables to be specified at each boundary depends on the nature of the flow 

at that boundary. For supersonic inflow, two variables are set; for sub-

sonic inflow or outflow, one variable; and for supersonic outflow, no varia-

ble is specified. 

Considering all the combinations of possible boundary conditions in 

terms of conserv~cion variables, we have the following cases for each problem: 

For subsonic inflow - subsonic outflow problems: 

UlUl: ul at the inflow/u1 at the outflow 

UlU2: ul at the inflow/u2 at the outflow 

U2Ul: u2 at the inflow/u
1 

at the outflow 

U2U2: u2 at the inflow/u2 at the outflow 

For the subsonic inflow - supersonic outflow problem: 

Ul: u
1 

at the inflow 

U2: u2 at the outflow 

Transient Introduction of the Source Term 

In these problems, we introduced the source term into the equation 

system in a transient fashion. That is, instead of having the full value of 

the term A right at the beginning, we let it reach its full value gradu-,x 

ally. This is done by taking A ,x 
as a linear function of time during 
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an initial time interval at the end of which A reaches its full value. ,x 

The numerical A can be expressed as follows: ,x 

(A, x) NUMERICAL 

A ,x 
= (4.4.18) 

where nti denotes the number of time steps marking the end of the transition 

interval. For the problems solved, nti = 10. 

Algorithmic Features 

Both ATA and 
2 

A -forms were employed. We also tested the Galerkin 

algorithm. 

The finite element mesh has 40 elements with uniform element length of 

0.125. The element level "mass" matrices were integrated exactly; all the 

other matrices and vectors were integrated by the 3-point Gaussian quadrature 

rule. 

We set the transient-algorithm parameters Y and a to unity and 

employed implicit schemes with 2 iterations. 

The parameter T was chosen according to both spatial and temporal 

criteria given by (2.5.1) and (2.5.8), respectively. 

The time step for each problem was usually chosen to be ten times the 

estimated critical time step for that problem. We define the critical time 

step ~tCR as the time step for which the Courant number, based on the 

maximum spectral radius, is unity. That is 

= h/max p (~) (4.4.19) 
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where p(~) is the spectral radius of A. 

While full convergence to the steady state solutions was attained in 

about 100 steps, the 50-step solutions were close enough to the steady state 

solutions for practical purposes. 

Results for the Subsonic Inflow-Subsonic Outflow Problem With No Shock 

For this problem the time step was chosen to be 0.735. 

We attempted to solve the problem with all possible boundary-condition 

types. Of the four types tried, only one, UlU2, failed to give the expected 

solution. For each boundary condition type, we tested the usual Galerkin 

algorithm, and 
2 

A -forms, the latter-two with temporal choice of T • 

For the type UlUl we also tested the 
2 

A -form with spatial choice of T 

In all cases F = l . 

For each boundary-condition type, there was no difference between the 

solutions produced by different algorithms. However, the solutions differed 

slightly from one boundary condition type to another. For all types, the 

agreement with the exact solution was very close. Fig. 4.10 shows the results. 

Results for the Subsonic Inflow-Supersonic Outflow Problem With No Shock 

The time step was chosen to be 0.460. 

We solved the problem with both boundary-condition types Ul and U2. For 

each type, we tested the Galerkin algorithm and 
T 

A A , and 
2 

A -forms, the 

latter two with temporal choice of T . In all cases F = 1 

The results are shown in Fig. 4.11. For each boundary-condition type, 

there was no difference between the solutions produced by different algorithms. 

However, the solutions differed slightly from one boundary-condition type to 

another. For all types, the numerical solutions were in close agreement with 
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the exact solution. 

Results for the Subsonic Inflow-Subsonic Outflow Problem With Shock 

Unless specified otherwise, the time step was taken to be 0.5. 

We also attempted to solve this problem with all possible boundary 

condition types. Types UlUl and U2Ul gave the expected solutions. 

We first describe the solutions obtained for type UlUl: 

Fig. 4.12 shows the results for the and 
2 

A - forms with the temporal 

choice of T . The solutions are in close agreement with the exact solution 

everywhere except at the shock front where the shock front is not very crisp 

and shifted to the left by half an element length. 

2 
A -form with spatial choice of Fig. 4.13 shows the results for the T 

The parameter F assumes values 1, 2, 5 and 10. The solutions are in very 

close agreement with the exact solution. There are very slight oscillations 

near the shock front for low F . For F = 1 and F = 2 the shock front is 

across one element only. The error in the shock location is about half an 

element length. As F. increases, the shock front becomes smeared. 

Fig. 4.14 shows the results for the T 
A A-form with spatial choice of 

T . The results are similar to that of Fig. 4.13. The only differences are: 

a. The shock fronts are slightly less crisp. 

! 

b. For F = 1 , we observe oscillations behind the shock front. It 

is interesting to note that the oscillatjons are located in the region 

between the shock front and the point where the flow velocity reaches the 

speed of sound. 

UlU2: 

2 
A -forms, with temporal choice of T , produced smooth 

solutions with no shock. 
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x 

x 
·ure 4.12 Steady nozzle flow, subsonic inflow-subsonic outflow, with shock: 

boundary conditions UlUl, global T, ne£ = 40, 6t = 0.500. 
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U2Ul: 

The time step was taken to be 10, 20, and 40 times the estimated critical 

time step. The results for 
2 

A forms and temporal choice of T 

are very similar and are shown in Figs. 4.15 and 4.16 respectively. The shock 

fronts are shifted to the right about one element length. 

U2U2: 

Both ATA and A
2 

with terrq:>oral choice of T , produced smooth syrnmet-

ric solutions. For this case, it was only the Galerkin algorithm which 

sensed the shock and located it almost at the exact location, but with severe 

oscillations. Fig. 4.17 shows t~e resnlt produced by the GaJerkin algorithm. 

Remark 

We observed that the location of the shock front was shifted about half 

an element length to the left for the boundary condition type UlUl and about 

one element length to the right for the boundary condition type U2Ul. This 

implies that the location of the shock front is dependent to some extent on 

the type of boundary conditions specified. In particular, for two boundary 

condition types (UlU2 and U2U2) the exact solution was not obtained. Proper 

specification of the boundary conditions in problems of this type is a very 

important subject which has attracted several researchers {see [B6, Ml, Yl]}, 

but does not yet seem to be fully understood. 
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CHAPTER 5 

Multi-dimensional Hyperbolic Systems 

In this chapter the presentation of Chapter 2 is generalized to the 

multi-dimensional case. 

5.1 Initial/Boundary-value Problem 

Let nsd be an open region of lR where 

space dimensions. The boundary of n is denoted by I' 

dinates are denoted be x = {x.}. 
- J. 

is the number of 

Spatial coor-

Consider the following system of m partial differential equations: 

U t + A. U . + G = 0 -, -J -,J 

where 

U = u (x, t) 

A. 
-J 

G 

A. U . -J -,J 

~j (!}I X f t) 

:-~ (U, x, t) 

oU/Clx. 

nsd 

2:. 
j=l 

J 

A. U . -J -,J (summation convention) 

Eq. (5.1.1) is the multi-dimensional analog of (2.1.1). 

(5.1.1) 

(5.1.2) 

(5.1.3) 

(5.1.4) 

(5.1.5) 

(5.1.6) 
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Eq. (5.1.1) is said to be hyperbolic if for each k {k.} E 
l 

there exists a transformation matrix S such that 

(5.1. 7) 

where A is a real, diagonal matrix. 

Eq. (5.1.l) is called a balance law if there exist vectors .7. such that 
~-J 

A. 
~J 

= 

If, in addition to (5.1.8), we have that G 

conservation law. 

l < j < n 
sd 

0 , (5.1.l) is called a 

(5.1.1) is called a symmetric hyperbolic system if 

A. 
~J 

= 

The initial condition for (5.1.l) is 

U (x, 0) = 

1 < j < n 
- sd 

x Est 

(5.1.8) 

(5.1.8) 

(5.1.9) 

and boundary conditions are assumed to take the abstract form (2.l.10). 

5.2 Weighted Residual Formulation 

In the present case the weighted residual formulation is given by 

0 f ~ . ( ~' t + ~j ~I j + G) d~ 
st 

(S.2.1) 
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where W is typically assumed to have the following form: 

w = w + T. w. (5.2.2) 
-J.. - , J.. 

and 

T. T. A. (no sum) (5.2.3) 
·_i ]. -]. 

or 

T 
(no sum) (5.2.4) T. = T. A. 

-l. l. - l. 

Eqs. (5.2.1) and (5.2.2) are the multi-dimensional analogs of (2.2.3) 

and (2.2.4)' respectively. 

5.3 Semi-discrete Equations 

The semi-discrete equations of Section 2.3 remain in force except for 

the definitions of the element arrays 
e 

~ab and 
e 

Sab 

fined as follows (cf. (2.3.5) and (2.3.8), resp.): 

e 
~ab 

e 
~ab 

= 

= 

f 
Qe 

f 

T 
(Na I+ N . T.)Nb aQ a,i -i 

(N 
a 

T 
I+ N . T.)A.Nb . dQ 

a, i -J.. -J 'J 

which need to be rede-

(5.3.l) 

(5.3.2) 
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5.4 Transient Algorithms 

The transient algorithms of Section 2.4 also pertain to the present 
case. The only change necessary is to the definition of the element array 
he which now takes the form (cf. (2.4.27)): ~ab 

5.5 Selection of T. 
l 

spatial criteria 

(5.4.l) 

we consider two multi-dimensional generalizations of the local cri-

terion, (2.5.l): 

T. = F Cl h/p l < i < nsd (5.5.1) l 

and 

T. F Cl h./p, (no sum) 1 < i < n (5.5.2) l l l sd 

where p. is the spectral radius of A. that is t l ~1 

(J . = max I A. (A.) I (5.5.3) l J ~1 
1 ~j < m 

and 

p = II p II (p. p.) ~ (5.5.4) 
l l 

h = h. p./p (5.5.5) l l 

h. 2 J JV x. I J (5.5.6) l ~ l 
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Eq. (5.5.6) holds for isoparametric mappings. The gradient operator, 
V , is taken in terms of the natural Cartesian coordinates of the bi-

unit nsd-cube. For example, (5.5.6) yields the following formulas: 

nsd = l 

= 2 

h 

h. 
l 

= 2 I dX/dt_; I 

= 

(5.5.7) 

(5.5.8) 

If other types of finite elements are employed, (5.5.6) needs to be suitably 
modified. 

temporal criterion 

The generalization of the global criterion, (2.5.8), is 

T. = F a L'it l 1 < i < nsd 

The examples which follow (2.5.8) concerning symmetric implicit opera-

(5.5.9) 

tors, incremental optimality, and Lax-Wendroff type methods, may be gene-
ralized to the multi-dimension case in straightforward fashion. 

Remark 

The formulas presented in this section represent esthetic improvements 
of ones used previously [B7, BS, Hl2, Hl4, Hl5]. 
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CHAPTER 6 

Numerical Applications in Two Dimensions 

6.1 Introduction 

Problem Geometry and Governinq Equations 

We consider the problem of a thin biconvex airfoil placed in a uniform 

flow field. The axis of the parabolic arc is aligned with the direction of 

the unifo:nn flow (non-lifting case). Fig. 6.l(A) shows the configuration, 

where b denotes the ratio of the maximum airfoil thickness to the cord 

length. The notatibns used for flow variables are defined in appendix I. 

The subscript " 00 
" refers to the free stream. 

Since we know that the solution will be symmetric with respect to the 

x - axis, we need only consider the half plane 
l 

as our problem 

domain. The parabolic arc bounding the airfoil in this-plane is described 

by the following expression: 

(6.1.l) 

The governing equations are the Euler equations described in section I.l 

and I.3. The ratio of the specific heats is 

y = 1.4 (6.1.2) 

(The reader should not be confused by the use of y for the transient algo-

rithm parameter of chapter 2 and the present usage.) 

The eigenvalues of the coefficient matrices ~l and ~2 can be 

obtained from (I.3.8) by setting {k
1

, k
2

) = (1, 0) and (k
1

, k
2

) = 0.1 

respectively. 
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(A) BOUNDARY VALUE PROBLEM 

(B) 

p = fJ} 
u1= u1: 

e = e 
Cl) 

I> 

Pr:IJ I> 

b 
U1 rIJ I> 

U2cu I> 
x, 

e'° .. 

COMPUTATIONAL DOMAIN u - 0 2 -

X2 
L, L1 

u2 = -4 bx1 u1r:IJ 
x, 

+0.5 I u = 0 
2 

Figure 6.1 Boundary value problem and computational 
domain for thin parabolic are airfoil. 

f 
L2 

1 
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Boundary Conditions 

The free stream parameters are taken to be 

l. (6.1.3) 

The value of will be set according to the following formula, which 

depends on the specified value of the free stream mach number M 
00 

M;, y(y - 1)/2 + 1 
(6.1.4) :::: 

Along the x
1 

- axis, outside the airfoil, we impose the following condition 

u :::: 0 
2 

(6.1.5) 

On the surface of the airfoil, the velocity vector must be perpendicular to 

the surface normal vector. This restriction can be expressed as: 

(6.1.6) 

Assuming that the airfoil thickness is small enough, such that the uniform 

flow field is perturbed only slightly, u
1 

can be approximated in (6.1.6) 
I 

by its free stream value (see [L4]): 

(6.1. 7) 

From (6.1.1) and (6.1.7), the boundary condition on the surface of the airfoil 

can then be expressed as 

== (6.1.8) 
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Nature of the Solution 

Once we set the free stream parameters as given by (6.1.3) the nature 

of the solution depends on the free stream Mach number and the airfoil 

thickness ratio. We fix the thickness ratio to be 

b 0.10 (6.1.9) 

and study the problem for two different values of the free stream Mach 

number. 

The subcritical value ~ = 0.5 results in a symmetric subsonic 

solution, while the supercritical value M = 0.84 
00 

gives a solution with 

a shock around x
1

_ = .3 . 
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6.2 Computational Domain and Algorithmic Features 

Finite Element Mesh and Boundary Conditions 

The computational domain is shown in Fig. 6.l(B). We utilize three 

finite element meshes with different overall size~: the medium and fine 

meshes with L
1 

= L
2 

= 3.5, and the coarse mesh with L
1 

= L
2 

= 2.0. Each 

mesh has 4N elements in the x 2-airection; in the x1-direction, there are 

SN elements across the airfoil and 4N elements each upstream and downstream. 

The number of nodal points are: (16N + 1) x (4N + 1), total, and (SN + 1) 

on the airfoil. For the coarse mesh, N = 1 for the medium mesh N = 2 , 

and for the fine mesh N = 4 . 

The meshes are shown in Fig. 6.2; they are symmetric with respect to the 

x 2 - axis. 

At the left boundary we set p , and e to their free stream values. 

At the upper boundary, we impose the condition u
2 

= 0 , which can physically 

be interpreted as a channel wall. Along the x
1 

- axis we take the boundary 

conditions of (6.1.5) and (6.1.8). Imposing the boundary condition of (6.1.8) 

along the x
1 

- axis instead of on the airfoil surf ace is a standard thin-

airfoil approximation. 

Other Algorithmic Features 

The integrations of all the element level vectors and matrices were per-

formed by using 2 x ~ Gaussian quadrature rule. 

the 

We used the temporal definition of the parameter T. 
l 

with F = 1 and 

2 
A -form. For the subcritical case we also employed the 

T 
A A-form. 

The transient algorithm parameters y and a were both set to unity. 
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COARSE MESH 

MEDIUM MESH 

FINE MESH 

1111111111 

11111111111 

Figure 6.2 Finite element meshes. Coarse mesh, 64 elements; medium mesh, 256 
elements; fine mesh, 1016 elements. 



94 

Implicit methods with one itercttion were employed. 

The time step for each problem was chosen to be ten times an estimated 

critical time step for that problem. Similar to the definition of (4.4.19), 

the critical time step is defined here as: 

= min (h: IP(~.)) 
e,j J J 

(no sum) {6.2.l) 

where the subscript j is the space dimension and the superscript e is 

the element number. Since p(~j) is unknown prior to execution, for the 

estimation of ~tCR we use the free stream value of p (A.) 
-J 

The steady boundary condition of (6.1.8) was implemented in the same 

way as for the nozzle problems of chapter 4. That is, during an initial time 

period of certain length, the thickness ratio was taken as a linear function 

of time, and at the end of this time period (4 time steps) it reached its 

steady-state value. 

6.3 Subcritical Case 

We compare our results, at free stream Mach number .5, to the analytical 

solution of the Cauchy-Riemann equations of the small-perturbation problem. 

Expressing the velocity vector as a sum of its free-stream value (uloo, 0) 

and a perturbation (ui, u;): 

(6 .3 .l} 

the analytical solution (see [L5]) can be written as: 
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Su~ - iu 
~ * ( 1 

- z ln( 
z + 0.5)) =· Ula:, b 2 z - 0.5 

where z = xl + i8 x~ 
.!. 

i = (- 1) ~ and 

B = (1 - M ) ~ 
00 

One can observe from (6.3.2) that, along the x
1 

- axis, the boundary 

condition for u 2 has been satisfied, while, for u
1 

, the following 

expression is obtained: 

= 

The pressure coefficient Cp defined as. 

= 

+ o.51 ) xl 

x1 - a.sf 

can be obtained by the following equation (see [L4]): 

If the second order terms are neglected, then we get: 

= 

Finite Element Solutions 

(6.3.2) 

(6.3.3) 

(6.3.4) 

(6.3.5) 

(6.3.6) 

(6.3.7) 

Fig. 6.3 shows the analytical and finite element (medium and coarse 

mesh) solutions for subcritical flow at M
00 

= .5 . 

The time steps for the regular and coarse meshes were set to 0.23 and 

0.46, respectively. The solutions a~ the er,rl of 30 steps were taken as steady 

state solutions. For the medium mesh, conv.3rgence was achieved in about 
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20 steps. 

The finite element solutions for and 
T 

A A-forms are shown in 

Figs. 6.3(A), (B) and 6.3(C), (D) respectively. 

The values of and u
1 

(U) are plotted along the airfoil. 

The numerical solutions are in close agreement with the analytical 

solution except for the variable u
1 

(U) when the 
T 

A A-f orrn is used. This 

2 
discrepancy is the main empirical reason we have for favoring the A -form. 

When it comes to other variables, such as p and e , similar discrepancies 

were observed between the solutions produced by 

Remarks 

2 
A and 

T 
A A-forms. 

1. The analytical solution predicts infinite, and thus discontinuous, 

values at the leading and trailing edges. 

2. The computational boundaries did not seem to notably influence the 

solution near the airfoil. 

3. It is interesting to observe that the results for the coarsest mesh 

are in close agreement with the analytical solution. 

4. The Galerkin algorithm, on the other hand, produced highly oscilla-

tory results which fed back into the operators of the problem and caused the 

results to diverge. 

6.4 Supercritical Case 

We compare our solutions, at free stream Mach number 0.84, to the finite-

difference solution of Barton [BS] who used the flux vector splitting scheme 

of Steger [S2, S3]. 

The finite difference grid has 97 x 33 points with 75 points along the 

airfoil. The boundary condition on the airfoil was taken to be the same as 
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ours, as given by (6.1.8). However, at the outer boundaries of the compu­

tational domain, free stream boundary conditions were imposed in Barton's 

calculations. 

Finite Element Solutions 

Fig. 6.4 shows the 800-iteration solution of Barton together with the 

finite element solutions for coarse, medium and fine meshes. 

The time steps were set to 0.40 for the coarse mesh and to 0.20 for 

the medium and fine meshes. For the coarse mesh, the 60-step solution, and 

for the medium and fi~e meshes, the 120-step solutions, were taken as the 

steady-states. 

We observe that the medium and fine meshes produced very similar results 

and they are in agreement with the Barton solution, except for a 3-4% shift 

in the location of the shock front. It is known that the way the boundary 

conditions are imposed can change the solution considerably [BS, HS, Sl]. 

Because we imposed different boundary conditions at the outer boundaries of 

the computational domain, and especially, because we imposed a "wall" bound­

ary condition, rather than a free stream boundary condition at the upper 

boundary, we are not surprised that there is some difference between the 

results of Barton and ours. This may be explained as follows: 

It is known that as the free stream Mach number gets higher, the shock 

front moves downstream. When we check our Mach number at the points along 

the upper computational boundary, we see that it is not equal to the free 

stream Mach number 0.84, but higher (about 0.85-0.86). This is consistent 

with the downstream shift of the shock front we obtain. 
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The coarse mesh (which is really much too coarse for this type of problem) 

did the best that could be expected. The peak point of the shock is about 

at the same location found by the medium and fine meshes. The coarse mesh, 

however, has only two elements between the peak and the trailing edge, and 

this is not enough for a distinct representation of the pressure profile to 

t~e right of the shock front. 

The medium and fine finite element meshes, compared with Barton's differ­

ence grid, are also very coarse. Thus we can conclude that, even with rela­

tively crude meshes, the finite element algorithm performed very well on this 

problem. 
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CHAPTER 7 

Conclusions 

In this work we presented a Petrov-Galerkin finite element algorithm 

for first-order hyperbolic equation systems. The immediate purpose was to 

solve fluid dynamics problems governed by the conservation-law form of 

the compressible Euler equations. Finite element algorithms, inherently, 

can be easily applied to problems with arbitrary geometries and boundary con­

ditions. This permits us to utilize the algorithms developed for complicated 

domains that finite difference algorithms would, normally, have difficulty 

with. 

The Petrov-Galerkin algorithm presented here is a generalization to hyper­

bolic systems of the streamline upwind/Petrov-Galerkin algorithm developed by 

Hughes and Brooks [B7, B8, Hl2, Hl4, Hl5]. 

We conducted an extensive stability and accuracy analysis on a linear 

model problem and observed that the algorithms suggested have desirable 

properties. Compared to the usual Galerkin algorithms they minimize spurious 

oscillations without loss of accuracy. 

We tested our algorithms on several problems with governing equations in 

conservation law form. Particular attention was paid to the cases with shocks. 

In one dimension, numerical experiments were made on linear transient, 

nonlinear transient, and nonlinear steady problems. We compared the numerical 

solutions to analytical ones and observed that they were generally in very 

close agreement. The algorithms handled shock fronts very satisfactorily; 
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the shock fronts were, for the most part, very crisp, with minimal spurious 

oscillations. The usual Galerkin algorithm on the other hand, was ineffec­

tive for problems with discontinuous solutions, while for problems with 

smooth solutions it performed satisfactorily. 

In two space dimensions, we tested the algorithms on a thin biconvex 

airfoil problem. For both subsonic and transonic cases, the algorithms 

proved to be successful. For the transonic problem, the location and magni­

tude of the shock front was in good agreement with Barton (Steger flux-vector 

splitting) solution (BS, S2, S3]. The subsonic case results were in close 

agreement with a linear analytical solution. For the subsonic case, we 

obtained a good solution even with a very coarse mesh. For the transonic 

case, the coarse mesh solution was not as good as the medium and fine mesh 

solutions, yet, was qualitatively satisfactory. 

Overall, the finite element algorithms suggested here performed very well 

for problems with smooth and discontinuous solution. The optimal selection 

of the time parameter, l which appears as a factor in the perturbation part 

of the weighting functions, needs further investigation. This needs to be pur­

$Ued from the standpoint of nonlinearities and shocks which are, of course, 

prime concerns in solving the compressible Euler equations. 

We believe that, with the recent advances in the development of Petrov­

Galerkin algorithms, the finite element method has now become a viable alter­

native in computational fluid dynamics. However, the efficiency of finite 

element algorithms still needs to be improved, especially with respect to 

decreasing storage requirements. Recently, an "element-by-element" approch 

to the finite element formulation has been proposed by Hughes, Levit and Winget 
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(see [Hl7]). The preliminary results seem to be promising, particularly 

for problems with symmetric operators. Eventually, with the help of such 

new concepts, the finite element method can be expected to become an economi­

cally competitive and powerful analysis tool in the fi~ld of computational 

fluid dynamics. 
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APPENDIX I 

The Euler Equations 

I.l General Principles 

The compressible Navier-Stokes equations, with no source terms, can be 

written as a system of conservation equations: 

U +:7.. =O 
-,t -J,J 

(I.1.1) 

where U is the vector of conservation variables and the :!7. 's are flux 
J 

vectors, which are, in general, functions of U and its spatial derivative~;: 

= 

If we neglect dissipative effects (i.e. conduction, viscosity, etc.) 

then the flux vectors are functions of U only: 

87, = ::¥, (U) 
-J -J -

and (I.1.1) is called the Euler equations (or the inviscid gas dynamics 

equa-illions) . 

Let us write the Euler equations in a quasi-linear form: 

where 

!:!,t + 

A. 
-J 

A·U · -J-, J = 0 

(I.1.2) 

(I.1.3) 

(I.1.4) 

(I.1.5) 
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Consider the linear combination of coefficient matrices: 

A = k.A. 
J-J 

(I.1.6) 

where k is a real vector. Without loss of generality, we take k to 

be a unit vector. The equation system of (I.1.4) is hyperbolic if for 

each k there exists a non-singular transformation matrix S such that 

the similarity transformation 

-1 
§ A s = A (I. l. 7) 

diagonalizes.the matrix A. Here A is a real diagonal matrix. It turns 

out that, for the Euler equations, this similarity transformation also symme-

trizes the individual coefficient matrices simultaneously. This, in general, 

cannot be expected for all hyperbolic systems. 

To determine the transformation matrix S we need to go through the 

usual procedure of finding the eigenvalues and eigenvectors of the matrix A 

(see [Tl, W2, W3]). We go through this procedure in two phases. The first 

phase consists of a transformation into the primitive variables form: 

U,. + A":u". = 0 
-,t -J-,J (I.1.8) 

where 

(I.1.9) 

Q = au;au~ (I.1.10) 

and 

A" ::::: k.A": 
J-J 

(I.l.11) 
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Here II II refers to the frame of primitive variables. In this frame, the 

coefficient matrices have simpler forms, thus, it is easier to find the 

eigenvalues and eigenvectors. 

In the second phase, the operators R and 
-1 

R ' which diagonalize 

... 
A are constructed and another transformation is performed: 

where 

and 

Here 11 ~ " 

A"." 
-J 

= 

u~ + A"".u~. = o 
-,t -J-,J 

= (Q R) -lA. (Q R) 
- - -J - -

R = au ... ;au"' 

= 

refers to the frame in which A"' is a diagonal matrix. 

(I.1.12) 

(I.l.13) 

(I.1.14) 

(I.1.15) 

The 

transformation matrix S of (I.1.7) is, then, equal to the product QR. 

Further, in this last frame, the individual coefficient matrices are syrnme-

tric: 

(A~)T = J!.~ 
-J -J 

(I.1.16) 

In the following sections, we define all the arrays involved in 

three, two and one space dimensions. 

I.2 Three-dimensional Case 

The conservation variables vector and flux vectors are 

(I.2.1) 
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r µ.P 

-, 

u~pu + ojl P J l 

~ = ~ ujpu2 
+ oj2 P (I.2.2) 

-J l u.pu + oj3 P J 3 

u. (pe + p) _,,, 
J 

where p , u and p are density, velocity and pressure respectively; and 

c5. . is the Kronecker delta. The total energy per unit mass, e , is the 
1) 

sum of the internal and kinetic energies per unit mass. An equation of 

state relates the pressure to the other variables. That is: 

p = p(p, i,} (I.2.3) 

i = e - ~ 1~1 2 (I.2.4) 

where i is the internal energy per unit mass. If we have an ideal gas 

then the equation of state becomes: 

p = {y - 1) p i (I.2.5) 

Here y is the ratio of the specific heats. 

The coefficients matrices are: 
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0 

0 

' + u. : J 

(I .• 2 .6) + u. 
J 

-2 
6jlu3 - 6j3Yul oj 2u3 - cj 3yu2 oj 3u3 - oj3:Yu3 Oj3Y 

oj 3ru /2 - uju3 

I 
+ u. -~-- J 

<Yu2 
ojle: - Yujul 

I 
oj2E: - Yu.ju2 oj3E: - yuju3 

- ye)uj 

! 
yuj 



where 

y = y - 1 

E 
-2 ye - yu /2 
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(I.2.7) 

(I.2.8) 

Matrices for the transformation to the frame of primitive variables are: 

1 

ul p 

Q == u2 p (I.2.9) 

l u 3 
p 

u2/2 Pu1 pu2 PU3 l/y 

and 

-, 
1 

- u /p 1 l/P 

Q -1 = - u2/p l/p (I.2.10) 

- u /p 
3 

l/p 

Y"u212 - yu l - Yu 2 - Yu 3 
y 

where a blank slot indicates a zero term. 

The primitive variables vector is: 

u,. (I.2 .11) 



110 

The coefficient matrices in the frame of primitive variables are defined 

by 
u. oj1P J oj2P oj3P 0 

u. oj 1 /P 
J 

,. 
oj2/P A. ::::: u. 

~J J 

u. oj3/p J 

ojlpc 
2 

oj2pc 
2 

oj3pc 
2 

0 u. 
J 

where c is the acoustic speed: 

R 

The eigenvalues are: 

/..4 ::::: 1..1 + c 

2 c = yp/p 

k·U· 
J J 

/.. = /.. 
5 1 

,. 

- c 

The matrices for diagonalizing ~ (see [ W2, W3)) are 

p/ (/2 c) p/ (/2 c) 
..., 

kl k k3 2 

0 - k 3 k2 kl/12 - kl//2 

R = k3 0 - k k2//2 k2//2 
~ 1 

- k 2 kl 0 k3//2 - k3!12 

0 0 0 pc//2 pc//2 

r kl 0 k3 - k 
2 

- k /c 
2 1 

k2 - k3 0 kl k 2/c 
2 

-1 2 ::::: 
k3 k2 - k 0 k /c 1 3 

0 kl//2 k2//2 k3//2 1/(/2 pc) 

0 - k1/l2 k2//2 k3//2 1/(/2 pc) 

(I.2.12) 

(I.2.13) 

(I.2.14) 

(I. 2 .15) 

(I.2.16) 
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The symmetrized coefficient matrices are [W2, W3] 

where 

A. = 
~J 

•l. 
J 

oj2k3 - <5j3k2 

oj2k3 -- 6j3k2 

u. 
J 

oj3k'1 - oj1k'3 

oj3:kl. - ojlk3 

I.3 Two-dimensional Case 

oj1k"2 - oj2k"1 

6 jl2 - 6j2k1 

k. = ck .//2 
J J 

oj2k'J - oj3k'2 

0 ji'1 - 0j1k'3 

oj1k"2 - oj2k"1 

oj2k'3 - oj3k"2 

oj3k1 - ojlk'J 

oj1k"2 - oj2k"1 

The conservation variables vector and flux vectors are defined by 

u 

(I.2.17) 

(I.2.18) 

(I.3.1) 
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u.p 
J 

ujpu1 
+ oj1 p 

Ul'. = (I.3.2) 
"'] 

ujpu2 + oj 2 p 

uj(Pe + p) 

The coefficient matrices are defined by: 

0 0 

0 - 2 
jlYu /2 - ujul ojlul - oj1Yu1 6j2ul - oj1:Yu2 oj1Y 

(I.3.3) 
+ u. 

J 

. ---·- ···--- ·- -· . -·--

- 2 
6jlu2 oj2Yu1 oj2u2 6j2 yu2 6j2y oj2yu /2 - uju 2 -

+ u. 
J 

--·--- -· -··· 

c:Yu
2 - ye)u. OjlE - yujul oj 2E - yu.u yu. 

J J 2 J 

The matrices for transformation to the frame of primitive variables are: 

1 

ul p 
Q (I.3.4) 

u2 p 

u
2
/2 pul u2 l/Y 
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and 

l 

-1 
- u /P l/p 

l (I.3.5) Q = 
- u2/P l/p 

- 2 yu /2 - yu 
l 

- yu 2 y 

'I'he priltlitive variables vector is 

u .... (r.3.6) 

The coefficient matrices in the frame of primitive variables are defined 

by 

u. t\1P o. p 0 
J )2 

u. 6j 1/P 
.... J (I.3.7) A· = 

~J u. oj 2/P 
J 

2 2 
0 ojlpc oj 2pc u. 

J 

The eigenvalues are: 

Al = A2 = k.u. 
J J 

A3 = Al + c A4 = A.l - c (I.3.8) 

The matrices for diagonalizing A are [W2, W3]: 

l 0 p/ {/2 c) p/{/2 c} 

0 k2 kl//2 - kl/12 
R (I.3.9} 

0 - k l k2//2 k2//2 

0 0 pc.;//2 pc/v'2 
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and 

2 
1 0 0 1/c 

0 k2 - k 0 R-1 1 (I.3.10) = 

0 kl/12 k2//2 1/ (/2 Pc 

0 - kl/12 - k2//2 1/ (/2 pc) 

The symmetrized coefficient matrices are defined by 

A7° = 
~J 

r,, ,... 0 0 ~. v 
J 

0 u. oj1k2 - oj2'k1 8 j1 k2 - 8j2kl J (I.3.11) 
0 oj1k2 - oj2k"1 u. + c k. 0 

J J 

0 oj1:k2 - oj2k'1 0 u. - c k. 
J J 

I.4 One-dimensional Case: 

The conservation variables vector and flux vector are 

1 

u = p u (I.4 .1) 

e 

up 

F = upu + p (I.4.2) 

u (pe + p) 

The coefficient matrix is 



A 

0 

(y - 3)u
2
/2 

fru2 - ye) u 
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l 0 

- (y 3)u (I.4.3) 

ye - 3yu2 /2 yu 

Matrices for transformation to the frame of primitive variables are 

p (I.4.4) 

p u 

and 

r 
1 

Q 
-1 - u/p l/p (I.4.5) 

- 2 yu /2 - yu y 

The primitive variables vector is 

p 

u (I.4.6) 

p 

The coefficient matrix in the frame of primitive variables is 

u p 0 

~ 

0 l/P (I.4.7) A = u 

0 
2 pc u 

The eigenvalues are: 

Al = u 

A2 Al + c A3 = Al - c (I.4.8) 
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The matrices for diagonalizing A~ are [W2, W3]: 

1 p/(12 c) p/(/2 c 

R 0 1/12 - 1/12 (I.4.9) -
0 pc//2 pc/12 

and 

1 0 - l/c 
2 

-1 
0 1/12 1/ c/2 pc) R = 

(I.4.10) 

0 - 1/12 1/ c/2 pc) 

The diagonalized coefficient mat.cix is 

\ 
A = 

(I.4 .11) 



117 

APPENDIX II 

Stability and Accuracy Analysis of Algorithms for the 

One-dimensional Linear Parabolic Equation 

II.l Development of the Tools for the Analysis 

II.1.1 Introduction 

Model Problem: Diffusion Equation 

One-dimensional diffusion of a function U(x,t) is governed by the 

following parabolic equation: 

u,t K U,XX = 0 (II.1.1) 

where K is the diffusion coefficient. An initial condition of the follow-

ing form is assumed: 

U (x, O) (II.1.2) 

The analysis, arguments, parameters, etc., defined in this appendix are 

mostly the same, or very similar to, those of chapter 3; we will just state 

state the ones which are different. 

Exact Solution 

The exact solution is obtained by separation of variables, as was 

done in chapter 3. The spatial component of the solution is given by 

(II.1.2). The damping coefficient and the frequency of the temporal com-

ponent are: 

- (l;, w) 
2 = V = - (K k , 0) (II.1.3) 
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II.1.2 Finite Element Solution 

Spatial Discretization 

For the weighted residual formulation of the problem we use the usual 

weighting function which results in the (Bubnov-) Galerkin formulation. That 

is 
w = w (II.1.4) 

The resulting semi-discrete equation 

Mv + Cv = 0 (II.1.5) 

is obtained by following a procedure which is very similar to the one we 

followed in chapter 2. The element level matrices 

differently: 

= J KN N dD a,x b,x 
Qe 

e m and e c are defined 

(II.1.6) 

(II. l. 7) 

Assuming constant K and mesh spacing h , and going through the 

same arguments that we went through in the corresponding parts of chapter 3, 

the jth equation of the system of equations can be written as: 

(II.1.8) 

thus: 

.b_ D E T + K 
2 D E T 

2 -r - h -2 
= 0 (II.1.9) 
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We define the scalars M and C corresponding to M and C as: 

M = 

tit c = 

!_ D E 
2 -r -

2 K tit 
2 E>2 !E 

h 

The non-dimensional parameter CK is defined as: 

= 

We note that K/h has units of velocity; thus CK can be regarded as 

a "diffusion Courant number". 

(II.1.10) 

(II .1.11) 

(II.1.12) 

The problem is reduced to solving the following ordinary differential 

equation 

. 
M T + C T = 0 (II.1.13) 

Numerical Frequency and Damping Coefficient 

Going through the same steps we went through in chapter 3, we obtain 

vti.t tr A 1 + i ( (1 - R) S - 1) e = = (II. l.14) 

where 

R = (MR + a L\t CR)/M (II.1.15) 

Q ~,t cR/M (II .l .16) 

LltC = CK !22 ~ (II.1.17) 

M ML + a Llt CL (II.1.18) 
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Then 

ln(tr A) (II.1.19) 

For comparison, we need to express v6t in terms of the same dimen-

sionless parameters; from (II.1.3): 

v6t = - l c 2 
2 K q (II.1.20) 

We define the analytical and numerical amplification factors, z and 

z as: 

z = 

z = 

II.2 Unified Analysis of Algorithms 

II.2.1 Introduction 

v6t e 

e v6t 

(II.l.21) 

(II.l.22) 

When we study the stability and accuracy of algorithms for the diffu-

sion equation, we classify the algorithms considered as implicit and explicit 

types. 

This time we do not use Petrov-Galerkin algorithms, therefore, the 

type of implicit algorithm will solely depend on the parameter r 

(defined in section 2.6) which specifies the way mass terms are integrated. 

In the diffusion problem, we observe from (II.l.21) that the exact 

a.mplification factor has no imaginary part and O < Z < l The numerical am-

plification factor has no imaginary part either. However, we also have to 

make surA that the numerical solution is stable. 
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Graphically, we compare the exact and numerical amplification factors 

and inspect the ratio of the numerical damping coefficient to the exact damp-

ing coefficient for several algorithms. 

Obtaining closed form expressions for Z and the damping ratio ~/~ 

is relatively easy, yet, these expressions are not in a simple form. One can 

expand the damping ratio in 6t and h , and observe the temporal and 

spatial accuracies of the algorithms. 

The Galerkin algorithms use the integration stencils: 

D = 2(r, _r l-2r, .... \ _, (II.2.1) 

e2 (- 1 
1 

1 , , -
2 2 

(II.2.2) 

Then the scalars M and 6tC become: 

M = 1 - 2rV (II.2.3) 

6tc = CK v (II.2.4) 

when 

v = 1 - cos q (II.2.5) 

II.2.2 Implicit Algorithms 

For implicit algorithms, the amplification factor from (II.1.14) is 

z 1 - Q (II.2 .6) 

The stability limits are determined by the condition: 

121 < l (II.2.7) 
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The inequality Z < 1 dictates that 

1 + 2aC > 4r 
K 

(II.2.8) 

This condition is automatically satisfied as long as 1 
r < -

-4 The second 

inequality Z > - l requires that: 

Since 

c V(2a - 1) > 4rv - 2 
K 

1 r < - from the first inequality, this condition is satisfied as 
-4 

(II.2.9) 

long as 
1 

a~2· We summarize the unconditional stability conditions for the 

implicit algorithms as: 

r < l. and 
-4 

a>! 
- 2 

(II.2.10) 

For the accuracy analysis, we can employ asymptotic expansions of the 

-
damping ratio in 6t and h . We expand ~/~ in 6t after setting h = 0 

while, for expansion in h we first set 6t = 0 . These expansions are: 

(f) = l + CK k 2 
6t) (~- - a) 

h = 0 

+ (K k
2 

6t) 
2 

( t + a.2 - a.) 
..., 

+ 0 (6tJ) (II. 2 .11) 

( f) 6t 0 l + (k h) 2 (r - l~) 

+ O(h4 ) (II.2.12) 

Observe that from (II.2.11), a= ~ is the condition for second-order 

accuracy is time. From (II.2.12), we see that second-order accuracy in space 

is automatic, and that the value r = 1;12 results in fourth-order accuracy. 
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II.2.3 Explicit Algorithms 

Explicit 1-pass Algorithm 

For this algorithm, the amplification factor is: 

z = 1 - Q (II. 2 .13) 

The inequality Z < 1 is automatically satisfied since CK V > O . The 

second inequality Z > - 1 dictates that c v > 2 • 
K -

when V = 2 ; then, CK < l is the stability limit. 

The worse case occurs 

For the accuracy analysis, the expansions of the damping ratio in ~t 

and h are: 

h 0 

(II.2 .14} 

= (II.2.15) 

Thus the 1-pass algorithm is first-order accurate in time and second-

order accurate in space. 

Explicit 2-pass Algorithms 

The amplification factor for these algorithms is 

Z = l + Q(R - 2) 

The inequality Z < l requires that CK V(- 1 - 2rV +Ci.CK V) < 0 

this leads to 

< 1 + 4r 
2Cl 

(II. 2 .16) 

(II. 2 .17) 
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-The inequality z > - l dictates that CK V(l + 2rV - Cl.CK V) - 2 < 0 ; 

one can show that this is satisfied as long as a> l 
-2 and 

l 
r 2. 4 • Combin-

ing these inequalities with the inequality of (II.2.17), we can state that the 

maximum value CK can assume is 2 ,. corresponding to a = ~ and r = ~ . 

The expansions in 6t and h are: 

WI h = 0 
l + (K k

2 
6t) . (} - C) 

2 2 ( 1 ) + (K k 6t) 3 - Ct 

(II .2 .18) 

WI ~t = l + (k h) 
2 (r - {-2 ) = 0 

(II.2.19) 

Thus, with a = ~ second-order accuracy is achieved in time; and, as 

in the irnplici t case' r = ~ can raise the spatial accuracy from second to 

fourth-order. 

II . 3 s ununary 

Asymptotic expansions, stability limits determined analytically, and 

-graphical representations of Z (figure II.l) and l;/E;, (figure II. 2) are 

utilized for the stability and accuracy analysis of the algorithms considered. 

Stability 

We observe from Fig. II.l that for Cf. = l 
2 , CK = 0.2, 0.4, 0.6, 0.8, 1.0 

and q e]o, ~[ , all the algorithms considered had amplification factors 

which remained in the interval [-1, +l]; that is, all were stable. This can 

also be deduced from the stability limits determined analytically. 

For the implicit algorithms (GC and GL) we have stability as long as 
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Figure II.l Amplification factors for heat equation algorithms. 
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l 
r < - and -4 

l a> -
- 2 

With both the consistent mass al go-

rithm (GC) and the lumped-mass (r = 0) algorithm (GL) are therefore 

stable. 

For the explicit 1-pass algorithm (El) , we fou~d that the stability 

condition is c < l K-
(independent of r and a) ; Fig. II.l (D) also shows 

this clearly. We reca11 that c < l is the condition for z not to 
K 

drop below - 1. O; in Fig. II.l (D) we observe that the curve for CK = l 

just touches the stability limit at q = 'TT. 

For the explicit 2-pass algorithms (E2) , the stability requirements 

are C < (1 + 4r) 
K 

l a.:_ 2 , 
l 

r ~ 4 . The consistent mass (r = !) 
6 

al go-

rithm with satisfies the restrictions on the values of and r . , 

as a restriction on c 
K 

we get The lumped mass (r = 0) algo-

rithm with 1 
a = 2 has a restriction c < 1.0 . 

K-

Accuracy 

For the accuracy of the algorithms, Fig. II.2 provides information for 

l 
a=2, = 0.2, 0.4, 0.6, 0.8, 1.0 and points away from q = O The 

asymptotic expansions on the other hand provide information needed in the 

neighborhood of q = O . 

We observe from Fig. II.2 that the GC implicit algorithm overdarnps wmile 

GL implicit underdamps. Similarly, GC - E2 overdamps while GL- E2 under-

damps. The explicit 1-pass algorithm, on thP. other hand, overdamps or under-

damps depending on the value of CK . The crossover point above which over-

damping occurs, is about CK 0.4 . 

The asymptotic expansions show that all the algorithms considered have 

second-order spatial accuracy for 
l 

r -:f 12 For 
1 

r = - ' 12 
the implicit 
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and explicit 2-pass algorithms attain fourth-order accuracy. The algorithms 

considered have first-order temporal accuracy for . l 
G, .+ -

T 2 • 
l 

For a. = 2 , 

implicit and explicit 2-pass algorithms attain second-order accuracy. 

the 
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APPENDIX II I 

Stability and Accuracy Analysis of Algorithms for 

One-dimensional Linear Second-order Hyperbolic Equation 

III.l Development of the Tools for the Analysis 

III.1.1 Introduction 

Model Problem: Wave Equation 

One-dimensional, undamped wave motion is governed by the following 

second-order hyperbolic equation for U(x, t) : 

u,tt K U = 0 ,xx (III.1.1) 

l 

where (K)~ is the wave-propagation speed. 

The initial conditions associated with the problem are assumed to be 

of the form: 

u (x, 0) = (III.1.2) 

. 
U (x, 0) = (III.1.3) 

We note that these could be viewed as Fourier components of a general set of 

initial conditions for U and U • 

Exact Solution 

For constant propagation speed, assuming a solution of the form 

U (x, t) X(x)T(t) (III.1.4) 

leads to the following spatial and temporal components for the function 
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U(x, t): 

X(x) 
ikx 

= e (III.1.5) 

T (t) = (III. l. 6) 

where the constants A1 and A2 depend on the constants u0 and v0 

and 

(III.l. 7) 

We define the damping coefficient ~ and the frequency w as 

(- ~' W) = V = i/K k (III. l. 8) 

The exact solution is seen to have no damping. 

III.1.2 Finite Element Solution 

Spatial Discretization 

For the weighted residual formulation of the problem, we use the usual 

weighting functions (W = W) which lead to the (Bubnov-) Galerkin fol'.'l!lulation. 

The resulting semi-discrete equation 

.. 
M v + C v = 0 (III. l. 9) 

is obtained by following a procedure very similar to the one we followed in 

chapter 2 and appendix II. The element level matrices Me and Ce are de-

fined as: 

== (III.1.10) 

(III.1.11) 
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Going over a sequence of steps as we did in chapter 3, we end up with 

the following ordinary differential equation 

.. 
M T + C T = 0 

Here the scalars M and C are 

M 
l = Pr E 2 

2 2 
2K lit 

lit c 
h2 !?2 E 

For the purpose of analysis, we assume constant K and h . The 

dimensionless parameter CK is defined as 

= = 

Here, c 
K 

is a Courant number based on the propagation speed 

Time Integration 

/K . 

(III. l.12) 

(III.1.13) 

(III.1.14) 

(III.l.15) 

The ordinary differential equation of (III.1.12) can be solved by a 

family of time integration schemes described in [Hll]. We adopt the repre-

sentation 

y = [T, T, T] 

and let Y denote the approximation to Y at the nth time step. 
-n 

(III.1.16) 

Given Y 
-n 

we go through a predictor phase and an iterative phase 

to calculate v 
:'.:.n+l · 

In the predictor phase, we calculate the zeroth iteration value, Y(O) 
-n+l ' 

by the following operation: 
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p y 
- -n 

Here P is the predictor matrix defined as~ 

1 tit 

p = 0 1 

0 0 

Lit
2 

(1 - 213) 2 

(1 - a.) Lit 

0 

(III.1.17) 

(III.1.18) 

where tit is the time step and a , S are the Newmark parameters which' 

control the stability and accuracy of the algorithm. 

The iterativ.e phase starts with the zeroth-iteration value 

and continues according to the recurrence rule below: 

Given y (i) 
-n+l solve the following system for y (i+l) 

-n+l 

ML .. ( i) 
tiT n+l 

L'lT (il 
n+l 

tiT(i) 
n+l 

.. (i+l) 
T n+l 

•(i+l) 
T n+l 

(i+l) 
T n+l 

+ 

= 

== 

= 

CL Li ( i) 
Tn+l = -

a. tit 

B tit 

.. ( i) 
T 

n+l 

T (i) 
n+l 

2 

.. ( i) 
L'lT 1 n+ 

.. ( i) 
6Tn+l 

+ 

+ 

+ 

.. (i) 
L'lTn+l 

/::,.T (i) 
n+l 

R;r (i) 
(M n+l 

~(i)) 
+ C n+l (III.l.19} 

(III.1.20) 

(III.l.21) 

(III.1.22) 

(III.l.23) 

(III.l.24) 

The superscripts L and R refer to the left and right-hand sides of 
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(III.l.19). We reserve the option of having different evaluations for 

M and C on different sides, as in chapter 3. 

The recurrence rule defined above can be expressed as: 

J is the iteration matrix: 

J = 
1 

M 

where 

(i+l) 
y 
-n+l 

(i) = J y 
-n+l 

M - B ilt2
cR 

- Cl .6.t CR 

CR 

M 

0 

1 

0 

Combining the predictor and iterati11e phases: 

!n+l 
:::: AY 

- _n 

A = 

....J 

(III.1.25) 

(III.1.26) 

(III.l.27) 

(III.1.28) 

(III.1.29) 

Here S is the number of iterations performed in the iterative phase. 

Exploiting the fact that det P = 0 , 

det A det JS det P 0 (III.1.30) 

we determine that at any time step, n+l , Tn+l can be expressed in terms 

of and 
. 
T 1 . n+ 

That is: 

.. 
T 

n+l (III.1.31) 
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We further observe from the structure of the matrix J that the iterates 

T(i+l) 
n+l 

and 
.. (i+l) 
Tn+l have no dependence on 

• ( i) 
T 1 . n+ 

This is, of course, a con-

sequence of the absence of the T term in the ordinary differential equation 

of (III.l.12). This observation suggests that we extract the submatrices J 

and P from the matrices J and P respectively: 

and rewrite 

J = 

p = -

(III.l.28) 

. 
T 

n+l 

1 [ M - S tit2CR - S 6t
2MR] 

M 
R - R - c M - M . 

r l 6.t (l - 26) 
L'.lt2 

] 2 

l 0 0 0 

in a different form: 

T(i+li (i) 
n+l Tn+l 

== J 
.. (i+l) .. ( i) 
T T n+l n+l 

= J8 p y 
- -n 

.. 
== Tn + (1 - a)6.t Tn + a 6.t Tn+l 

(III.l.32) 

(III.1.33) 

(III. l. 34) 

(III.1.35) 

(III .l.36) 

Eq. (III.l.35) reveals that the relation of (III.l.31) degenerates to 

the form: 

(III.1.37) 

with µ being 
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µ = 

where and are the components of 
-S 
J 

(III.l. 38) 

By adopting the equivalents form of (III.l.35)-(III.l.36), we need only 

to calculate the Sth power of a 2 x 2 matrix instead of a 3 x 3 matrix. 

Besides, the only difference between the matrix J here and the matrix J 

of chapter 3 is that the term S6t
2 

replaces the tenn a6t . With this 

in mind, by analogy, we write the eigenvalues of J from (3 .1. 57) -( 3. l. 58') : 

l 

= 

By way of a procedure similar to the one in chapter 3; 

where 

-s 
J == 

1 

b == 

R 

1 - (1 - R) 5 

R 

It is interesting to note that the only difference betTveen the 

matrix J and its Sth power is the insertion of a b term which 

accounts for the number of iterations. From (III.l.38): 

µ 

(III.1.39) 

(III.l.40) 

(III.1.41) 

(III.1.42) 

(III .l .43) 

(III. I. 44) 
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and from (III. 1.35) -(III.l.37) 

{ ::::} ~ ~·{ :: } 
with A* given as -

[ - r- tit 

a)r i1] 
r p 

A* == 
ll.tµ[ (1 - Cl) + arp] (1 + 

where 

µ == ll.t2µ p = l + (.0.t2 /2) (1 - 213) µ 

and 

- (M - B b lit2cR)/M r == 

Numerical Frequency 

We are mainly interested in the invariants of the matrix A* 

where 

tr A* = 2 - E(l + 2CI.) 

det A* = 1 + E(l - 2a) 

E 

~ 

= 
b 
2 

(III.1.45) 

(III.l. 46) 

(III.1.47) 

which are: 

(III.l.48) 

(III.l.49) 

(III.l. 50) 

The eigenvalues and z2 of the matrix A* are found by solving 

the quadratic equation 

z2 - tr A*Z + det A* 0 (III.1.51) 
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T = 
n 
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* one can show that the eigenvalues of A are related to v
1
6t 

and v2D.t by 

e 

(III.1.52) 

(III. l. 53) 

The eigenvalues can be used for comparing the numerical v to the 

exact v . 

We now have z1 and z2 calculated in terms of two dimensionless 

parameters q and CK . We also need to express v in terms of the 

same parameters. From (III.1.8): 

V~t = (0, 6t./K k) = (O, CK q) (III.1.54) 

while 

= (III. l. 55) 

III.2 Unified Analysis of Algorithms 

III.2.1 Introduction 

Stability and accuracy analyses of algorithms for the wave equation 

are made for the implicit and explicit cases. Petrov-Galerkin algorithms 

are not introduced. The type of implicit algorithm depends only on the r 

term (defined in section 2.6). 

The Galerkin algorithms utilize the integration stencils 

D 
~r 

= 

2 [ r, 1 - 2r, r J 

1 1 
[-2,l,-2] 

(III.2.1) 

(III.2.2) 
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The scalars M and 6t2c then become: 

M = 

where 

v 

= 

1 - 2rV 

2c
2 

V 
K 

1 - cos q 

(III. 2. 3) 

(III.2 .4) 

(III.2.5) 

For consistency with the exact solution, we need to have v2~t = 

Z Z = det A* = 1 . 
l 2 

This condition is satisfied if a = 1 
2 

(III.2.6) 

For stability, we require that lz1 1 , lz2 l .:'.:_ 1 ; but this is possible 

only when 

the expression: 

where 

Clearly < 0 

- -The eigenvalues z1 and z2 are given by 

= 

tr ~* 
2 

if and only if 

tr A* 
2 

= 1 - E 

E(E - 2) 

0 < E < 2 

(III. 2. 7) 

(III. 2. 8) 

(III.2.9) 

(III. 2 .10) 
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This is the stability condition, because, if < 0 then 

Otherwise, we would have either jz
1

1 or lz2 j greater than unity. 

III.2.2 Implicit and Explicit 1-pass Algorithms 

For an implicit or explicit 1-pass algorithm, the term E is 

E = 
2 c v 
K 

(1 - 2rV) + 2Sc2v 
K 

(III. 2 .11) 

In this expression, if we set r = B = 0 , we get the value of E for the 

explicit 1-pass algorithm (Warning: This applies to (II.2.11) only, but not 

the algorithm in general). From the inequality of III.2.10 we determine 

the stability limits. 

One can show that E > 0, .if and only if 

c2 
K 

> 4r - 1 
48 (III.2.12) 

It is quite clear that if l r < - , 
-4 then this condition is satisfied uncon-

ditionally. 

The inequality E < 2 implies the following condition: 

If B > .!. - 4 I 
this inequality dictates that: 

c2 > 
K 

4r - 1 
4B - 1 

(III.2.13) 

(III. 2 .14) 

Clearly, if 
1 

r < -
- 4 I 

this condition is satisfied unconditionally. If not, 

then we need to satisfy both (III.2.12) and (III.2.14). One can show 

that (III.2.14) implies (III.2.12). Therefore (III.2.14) is the key condition. 
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If 
1 

B < 4 , we cannot satisfy (III.2.13) unless 

this happens, the restriction on CK is given as: 

c2 < 1 - 4r 
K 1 4S 

1 
r ::_ 4 . Provided that 

(III.2 .15) 

For the implicit algorithm with r = _!_ and 
6 

1 B = 4 we attain uncon-

ditional stability. For the explicit 1-pass algorithm with r = O and 

B = 0 , the condition of III.2.15 becomes 

< 1 . 

III.2.3 Explicit 2-pass Algorithms 

For 2-pass al-gori thms 

One can show that E > 0 if and only if 

< 
4r + l 

46 

For E < 2 , the following condition must be met: 

With l 
B = 4 ' both 

B > 
(1 + 4r)

2 

16 

and r = 0 satisfy this condition. 

the inequality of (III.2.18) implies that 

< 

< 

5 
3 

l . 

for 

for r = 0 

(III.2 :16) 

(III.2.17) 

(III.2 .18) 

(III.2.19) 

Then 

(III.2.20) 

(III.2.21) 



141 

III. 3 Summary 

According to the stability guidelines of the previous sections, with 

1 a = 2 and 
1 

B = 4 ' all the algorithms considered are stable (with no modulus 

error) for the ranges of CKE [O, l] and q E [O, ~] The accuracy infor-

mation is provided by the graphs of Fig. III.l. 

The implicit, lumped mass algorithm (GL) becomes less accurate as CK 

increases. The implicit, consistent mass algorithm (GC), on the other hand, 

maximizes its accuracy around CK = 0.6 

The explicit 1-pass algorithm (El) satisfies the unit CFL condition 

defined in section 3.2.4. This is as we would expect, because if 

A* 
tr -"'-- = 1 - E 

2 

= 1 - v 

= E(E - 2) ::::: 

V (V - 2) 

and therefore the eigenvalues are 

~\,2 :::: (1 - V) + Jv<v 

= cos q + - i sin q 

+iq 
e-

- 2) 

c = 1 
K 

(III.3.1) 

(III.3.2) 

(III.3.3) 

This is the same expression as for the exact solution. The accuracy of 

El increases as C increases within the stability regime. 
K 

The explicit 2-pass (E2) version of GC is more accurate than the 
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Figure III.l Frequency ratios for wave equation algorithms. 
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implicit version until about CK = 0.8 . At this point they almost have 

the same accuracy, and after that the implicit version is more accurate. 

GC-E2 maximizes its accuracy between c = 0.6 
K 

and 0.8 . 
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