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Abstract

A Petrov-Galerkin finite element formulation for first-order hyperbolic
systems is developed generalizing the streamline approach which has been
successfully applied previously to convection-diffusion and incompressible
Navier-Stokes equations. The formulation is shown to possess desirable
stability and accuracy properties.

The algorithm is applied to the Euler equations in conservation-law form
and is shown to be effective in all cases studied, including ones with discon-
tinuous solutions.> Accurate and crisp representation of shock fronts in tran-

sonic problems is achieved.
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CHAPTER 1

Introduction

Analysis of inviscid, compressible fluid flows, especially‘ones with
discontinuities, has been an interesting and challenging part of the research
done in the field of computational fluid dynamics (see [16]).

Numerous workers in this field haye employed finite difference techniques.
The following represents a brief sampling of some recent works. Ballhaus et
al. (B4] used implicit approximate tfactorization schemesvto solve the tran-
sonic small disturbance equation. Holst and Ballhaus [H3] applied approxi-
mate factorization schemes to the full potential equation in conservation
form. Holst and Brown [H4] utilized solution adaptive grids for the full
potential equation in conservation form. Warming and Beam [W3] used approxi-
mate factorization schemes to solve the Euler equatioﬁs in ¢onservation law
form. Steger [S3], and Steger and Warming [S2] applied flux vector split-
ting ideas to the solution of the Euler equations in conservation form.

Finite difference schemes of the above type are mostly limited to problems
with simple geometries. Finite element methods, on the other hand, can easily
handle arbitrary geometries.

In the finite element method, the problem domain is discretized into
sub~domains (elements), and, via a weighted residual formulation, the governing
differential equation system is translated into a system of ordinary differen-

tial equations.



In a weighted residual formulation, selecting the weighting functions
from the same class that the interpolation functions are selected from,
leads to a (Bubnov) Galerkin formulation. When applied to differential
equation systems with symmetric operators (e.g. diffusion equations, most
structural and solid mechanics problems) Galerkin formulations produce
solutions with a "best approximation” property. That is, the error is mini-
mized with respect to a certain norm.

For systems with non-symmetric operators (e.g. first-order hyperbolic
systems), however, the Galerkin formulation does not possess a best approxima-
tion property. This, in some cases, may result in solutions with spurious
node-to-node oscillations. In fact, this problem is not limited to Galerkin
finite element formulations. It also arises for finite difference schemes
when non-symmetric operators are approximated centrally.

Instead of using weighting functions which lead to a Galerkin formula-
tion, one can employ a Petrov-Galerkin formulation by moedifying those weight-
ing functions according to an optimal rule. The basic idea is to minimize
the spurious oscillations without introducing excessive diffusion to the
solution.

An optimal streamline upwind/Petrov-Galerkin formulation for convection
dominated flows was recently developéd by Hughes and Brooks (see [B7, B8, H12,
H14, H15]) and was successfully applied to the solution of advection-diffusion
and incompressible Navier-Stokes equations. In this work we present a Petrov-
Galerkin algorithm which is a generalization of the streamline upwind/Petrov-
Galerkin algorithm to hyperbolic systems. The weighting functions (which

would normally lead to a Galerkin formulation) are perturbed by the product



of the coefficient matrix of the hyperbolic system, the gradient of the
weighting function and a time parameter. The alternatives of transposing.or
not transposing the coefficient matrix in the weighting function, and the
selection of the time parameter are among the subjects discussed here. The
algorithm presented, under some very special conditions, reduces to the
Lax—-Wendroff scheme, which is known as a shock capturing algorithm. By incor-
porating the coefficient matrix of the hyperbolic system into the weighting
function we automatically inject the eigenvalue/eigenvector information of
the system into our finite element formulation.

In chapter 2 we briefly review the properties of one-dimensional hyper-
bolic systems and introduce the Petrov-Galerkin algorithms. The selection
of the weighting fﬁnctions is discussed in detail. We also investigate under
what circumstances the weighted residual formulation of a system can be re-
duced to that of uncoupled single degree-of-freedom equations. The proce-
dure of finite element discretization, and the transient algorithm used for
solving the semi-discrete equation are described. Further, for a special
case, we write the finite difference equations for the Petrov-Galerkin formu-

lation.

In chapter 3 we perform a detailed stability and accuracy analysis of
algorithms for the linear one-dimensional hyperbolic equation. Several algo-
rithms of interest are studied and compared.

Chapter 4 reports nurmerical results 1in one space dimension. Several
linear and nonlinear, steady and transient problems are solved using various
techniques. Special emphasis is placed on problems with discontinuous solu-

tions (shocks) .



In chapter 5 we introduce the multi-dimensional versions of the Petrov-
Galerkin algorithms.

Chapter 6 covers numerical applications in two space dimensions. A
biconvex thin airfoil problem is solved for subsonic and transonic cases.
Several algorithms are tested.

In chapter 7, we draw our conclusionsgand make suggestions for future
research.

Appendix I reviews the properties of the compressible Euler equations.

In appendix 1II, a stability and accuracy analysis of algorithms for the
one-dimensional, linear parabolic equation is performed. In appendix III a
similar analysis fo; the one-dimensional linear second-order hyperbolic equa-
tion is performed. The methods used in appendices II and III are essentially

the same as that used in chapter 3.



CHAPTER 2

One-dimensional Hyperbolic Systems

2.1 Initial/Boundary-value Problem

Let § = ]0,L][ denote the open interval of length L , and let
Q = [0, L] denote its closure. The boundary of & is [ = {0, L}, that is,
the points 0 and L. Spatial and temporal coordinates are denoted by

xe Q and t €(0, T] , respectively.

Consider the following system of m partial differential equations:

g't + AU + G = 0 (2.1.1)
where
U = Ulx, t) (2.1.2)
§ = %(9, %, t) (2.1.3)
G = G(U, x, t) (2.1.4)

and a comma denotes partial differentiation.
We are concerned with the case in which (2.1.1) is hyperbolic, that
is when A has real eigenvalues and there ekists a transformation matrix

S such that

~

stas = A (2.1.5)

where A 1is the diagonal matrix of eigenvalues of A .

(2.1.1) is called a balance law if there exists a vector

F = FU, x, B (2.1.6)

~ ~ A~



such that

A = 0%/93U (2.1.7)

A balance law in which G 0 is said to be a conservation law.

In the linear case

A = A(x, t) (2.1.8)

and

L@
ln

B(x, t)U + ~/(x, t) (2.1.9)

In the constant-coefficient case A and B are independent of x

and t

Classical references for the study of hyperbolic systems are Courant -
Hilbert [C3] and Courant - Friedrichs [C2].

Consideration of the eigenstructure of A enables the specification
of appropriate boundary conditions. For a general treatment of this topic
see Yee [Yl]. For the present purposes, it suffices to assume that the

boundary conditions take the abstract form
3 U = gl(t) (2.1.10)

where d 1is a boundary operator and g 1is a prescribed function.
The initial/boundary-value problem for (2.1.1) consists of finding a

function U which satisfies (2.1.1), the boundary conditions (2.1.10),

and the following initial condition:
g(xf 0y = Uo(x) (2.1.11)

where U, is a given function of x & 0 .



2.2 Weighted Residual Formulation

Consider a discretization of §! into element subdomains Q¢ , e=1,

2 feeay neR , where neQ is the number of elements. We assume
Nag, —
2 = v Q (2.2.1)
e=1
Neg,
g = N 0f (2.2.2)
e:

All functions considered in the finite element formulation will be smooth
on the element interiors (i.e. 0%'s). Two classes of functions are impor-
tant in the developments which follow. The classes are distinguished by
their continuity properties across the element boundaries.
Functions of the first class are assumed to be continuous across
. . 0 0 =
element boundaries. These functions are denoted by C = C (1) and may

be recognized as containing the standard finite element interpolations.

Functions of the second class are allowed to be discontinuous across

element boundaries and are denoted by ct = C—l(Q).

A weighted residual formulation of (2.1.1l) is given by

-

£

LR

" (U, +AU +QdD (2.2.3)

where @ is a weighting function and -+ denotes the dot product. 1In all
cases we assume U is approximated by standard, CO , finite element
interpolations. The weighting functions may be selected from a different
set of functions thap the trial solutions. Thus (2.2.3) gives rise to a

Petrov-Galerkin formulation (see e.g. [Bl, B7, B8, Cl, D1, Hl1, H8, H12, H14

H15, M2, R1, W1]).



An important class of Petrov-Galerkin methods, which is emphasized in

the sequel, is defined by the following expression for @ :

'

= W + TW (2.2.4)
~ X o~ X

where W 1s a member of the same class of functions as the trial solutions

~

and ? is either TA or TéT where T 1s a parameter which 1s chosen
to optimize accuracy according to some criterion. This class of methods
represents a generalization to hyperbolic systems of the streamline-upwiné/
Petrov-Galerkin formulation which has been successfully applied heretofore
to the advection-diffion and incompressible Navier-Stokes equations [B7, B8,

H12, H14, H15].

Both choices of T have interesting consequences. For example,

assume the linear, constant-coefficient case in which G = 0 . Choose
T = TAT . Then (2.2.3) reduces to the canonical form
0 = W+ Thw ) ¢+ (T _ + AU )dQ ' (2.2.5)
~ '\"V’X ‘th ~~,X
§2
. — _ T = _ -1 . .
where W =SW and U =S “U . Thus (2.2.5) is equivalent to a system

of uncoupled scalar equations. Scalar equations of this form are extensively

analyzed in Chapter 3.

Furthermore, the choice ? = TéT leads to difference equations which,
under special circumstances, have essential features in common with the
well-known Lax~Wendroff method [R2].

Under the circumstances which led to (2.2.5), choosing T = TA does

not result in the canonical form (2.2.5) unless the weighted residual formu-

lation is generalized to



0 = (xg + T‘i“l],x) . Q(Q,t + zjg'x)dsz (2.2.6)
§2
where
o = ssHt (2.2.7)
W= sW (2.2.8)
u = §§ (2.2.9)

Computational experiences with generalizations of formulations of this
type proved-cumbersome and unreliable in the nonlinear regime when compared
with (2.2.3) and (2.2.4), and thus were abandoned.

Despite the fact that T = t% does not canonically reduce (2.2.3), it
leads to another optimality property which will be described subsequently
(see §2.5).

If T is taken to be zero then we have the usual Galerkin method which

possesses central-difference like character.
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2.3 Semi-discrete Egquations

Spatial discretization of the weighted residual equation (2.2.3) via
finite elements leads to the following semi-discrete system of ordinary

differential equations:

R
i
+

: Q)

v = F (2.3.1)

where M = M(v, t) is the generalized '"mass" matrix, C = C(v, t) is the

~ ~ o~ ~

generalized convection matrix, F = F(v , t) is the force vector, v is
the vector of (unknown) nodal values of U , and a superposed dot denotes
time differentiation. The initial-value problem for (2.3.1) consists of

finding a function v = v(t) satisfying (2.3.1) and the initial condition

~

v(0) = Vo (2.3.2)
where VO is determined from (2.1.11).
The arrays in (2.3.1) are assembled from element contributions:
Reg
v o= A @) (2.3.3)
~ e=1
e = e
m [me, ] (2.3.4)
n® = (N, I + N, _ TON_aR (2.3.5)
~ab a =~ a,x ~ b T
n®
neR o
c = A S (2.3.6)
- e=]1
c® = [cg] (2.3.7)
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e _ f T | ‘
Sab T Je (N, T+N, THAN 40 (2.3.8)
neﬂ,
F = A (£9 (2.3.9)
- e=1
£ = {£]} (2.3.10)
n
e f en e e e .
= - +
fa _ 0e Ny € a8 Z (Ifab 9 * Sap ) (2.3.11)
b=1 .

where A represents the finite element assembly operator; a and b are

(local) element node numbers; 1 <a , b < o, where n, is the number

of nodes for the element under consideration; Na is the element shape

function associated with node a ; I is the m x m identity matrix; and

e . . - .

gb is a vector which contains the boundary condition data emanating from
. . e i ‘

(2.1.10). The dimensions of the nodal arrays mab and c:b are m X m ,

and the dimension of f: and gkeJ are m X 1 .

The reader is reminded that
nnp
Ut) = D NyEY (© 2.3.12)
A-1 A | ‘

where A is the global nodal index, nnp is the total number of nodes and

v refers to the components of ¥ associated with node A.

~



2.4 Transient Algorithms

1

2

We consider first a family of one~step implicit methods defined

by

M

~n+1

where

~n+y

~n+y

Frty

a
n+y

v
~n+Y

a
~n+0

t
n+y

In the above,

a
~n+Y ~n+y

Cney Ynay

v + At a

~N ~n+
¥(2n+Y ' tn+Y)

Q(an ¢ tn+y)

Fl¥nsy + Enay

+

(1 - Y)a
“n

~N

(1

o)a

~

+

(1 - \()tn +

At is the time step,

Y§"n%-l

YYn'f'l

ca
~n+l

Ytn+l

F iy

n

is the step number,

and

(2.4.1)

(2.4.2)

(2.4.3)

(2.4.4)

(2.4.5)

(2.4.06)

(2.4.7)

(2.4.8)

(2.4.9)

o and Y are parameters which determine stability and accuracy properties.

The starting value, a_. , may be determined from

~0

My ag

Fo

So

Yo

(2.4.10)



where

My = M{yy, 0)
Co = Clug, O
Fo = E(vye 0)

(2.4.11)

(2.4.12)

(2.4.13)

If Y = 1 the above algorithm reduces to the generalized trapezoidal

method, whereas if Yy = o . it reduces to the generalized midpoint method.

These methods have been contrasted in (a7, Hl6].

A general family of predictor/multi-corrector algorithms, based on

the preceding impl@cit methods, is implemented as follows:

1. i =20 ( 1 is the iteration counter)
2. vi0) _ -
Inp1 = ¥p AR - @iz,
(predictor phase)

(0)

3. “n+l ~
_ (1) _ (1) (1) _ (i) (1) .

4. R = En*Y ¥R+Y &ty gn+Y Yn+Y (residual force)
5. M* Ag = R ( M* is the "effective mass")

(i+1) _ (i)
6 §n+l - §n+l + Aé

(corrector phase)

(1+1) _ (1)

7. Vel = v + o At Ag

If additional iterations are to be performed, i 1is replaced by

(2.4.14)

(2.4.15)

(2.4.16)

(2.4.17)

(2.4.18)

(2.4.19)

(2.4.20)

i+ 1, and calculations resume with step 4. Either a fixed number of
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iterations may be performed or iterating may be continued until R satisfies
a convergence condition. When the iterative phase is completed the solution

. . . . _ o (1i+1)
at step n + 1 1is defined by the last iterates (i.e. Vel = Vo+l
(i+1)

341 = 2p41 ). At this point n is replaced by n + 1 and cal:ulations

and

for the next time step may begin.
The properties of the algorithm are strongly influenced by the choice

of the effective mass. There are various possibilities. For example, a

fully implicit procedure may be defined by taking

(1) (1)

M*¥ = M + oAt Cc'* 4+ aAt H (2.4.21)
~ ~n+Y ~n+Y ~n+Y
where
(1) _ (1)
¥n+y = y(Y1+Y ' tn+y) (2.4.22)
(1) _ (1)
Coy = Sy vty (2.4.23)
(1)  _ (1)
§n+Y - g(zn+Y ' tn+Y) (2.4.24)
Day,
o= A @ (2.4.25)
e=1
e _ e
h™ = (b)) (2.4.26)
e I+ N T, oG N
= + —_—
]i}ab f (Na ~ a,x T %0 M o (2.4.27)
e Y
2
and th has dimensions m X m . In general, this definition of @*

leads to a non-symmetric band-profile matrix.
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An explicit algorithm may be constructed by taking M* to be "lumped"

(i.e. diagonal):

* =
M gdiag (2.4.28)
There are several schemes for obtaining suitable ydjag . In the present
work we assume that the diagonal element array is defined by [2Z1]
mS I if a=b
e a - y
Yab = (2.4.29)
0 if a#b
where
e 2
n = BfNa ao (2.4.30)
Qe
n
en P :
B = fdQ Z fNa an _ (2.4.31)
Q° a=1 QF

In the present work we confine our attention to the implicit and explicit
schemes defined above. Stability and accuracy analyses are presented in
Chapter 3.

However, there are!other possibilities. Implicit-explicit finite element
mesh partitions [H9, H10, H1l, H13] may prove useful, for example. Additionally,
to obtain the stability properties of implicit methods, while eliminating the
equation~solving burden imposed by (2.4.21), approximate factorization schemes
may be employed. We are presently experimenting with element-by-element
factorizations which are very convenient from an implementational standpoint

[H17].
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2.5 Selection of T

Two expressions for T have been employed in the numerical calculations.
One 1is based upon spatial discretization and the other upon temporal discre-

tization. They are given as follows:

spatial criterion

In this case we assume
T = F ah/p (2.5.1)

where F is a non-dimensional parameter, h 1is the element length, ©p

is the spectral radius of A , that is

p = max [A. (a)] (2.5.2)
1<i<m *7

and the Ai(A)'s are the eigenvalues of A . Note that (2.5.1) is a local
specification of T in that it depends upon the element lengths and eigen-
values of A which vary from point to point. Rationale for this form of

T 1is provided by the following examples:

Examples

1. Consider the scalar model equation
U + AU = 0 (2.5.3)

where ) 1is assumed constant. Raymond and Garder [Rl] have shown that

if

Fa = s (2.5.4)
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then the semi-discrete equations achieve fourth-order phase accuracy.
2. Consider the steady analog of (2.5.3) regularized by a diffusion

term,

AU = €U (2.5.5)
As ¢ =+ 0, the choice {
. 1
Fa = ~/2 (2.5.6)

leads to nodally exact solutions. The general case for the advection-

diffusion eguation is described in Hughes-Brooks [B7, B8, H12, H14, H15].

Remarks

1. The preceding optimality conditions, (2.5.4) and (2.5.6), need to
_be altered for higher—orde; elements. For example, in the case of three-
node quadratic elements (2.5.6) should be changed to F a = 1/4 [N1]
Throughout this work only low-order elements are employed.

2. A weighted residual formulation of a linear, constant-coefficient,
hyperbolic system with G = 0 can be given in which each uncoupled scalar

~

equation is treated optimally, viz.

0 = _/‘(W'+ FahsgnAW )+ (U. +AU )daQ (2.5.7)
Q ~ ~ ~ X "‘"t ~o

= _ o7

where W = S W and §'= §_1 U ; cf. (2.2.5). Unfortunately, there does

not appear to be a nonlinear or multidimensional generalization of (2.5.7)

and consequently, we have not explored the subject further.
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temporal criterion

In this case we assume

T = F o At (2.5.8)

Note that (2.5.8) is a global specification in that At is the same for
all elements. Rationale for this choice is provided by the following

examples.

Examples

l. Assume H=0. If T=TA , and F =1, then (2.5.8) leads to

~ ~

symmetry of the implicit operator M* (see Eq. 2.4.21). This can be seen

from the definitions of the element contributions to M*

e e _ -/P T
Eab + QAL gab = Na Nb an I+ alAt J(‘(Na,x Nb AT+ Na Nb,x é)dﬂ
Q° Qe
12 T _ e e T
+ (cAt) fNa,x Ny o A3 A = (@ +oabtcp) (2.5.9)

0

The obvious advantage in this case is the decreased storage and factor-

zation costs. Symmetric element arrays are also advantageous in implicit-—

explicit finite element mesh partitions [H13]. This choice also leads to an
optimality condition in that for a specified residual, R , the increment
Aa is optimal with r:spect to the norm defined by M* . Another way of put-

ting this is to say that the increment of U is optimized with respect to
the symmetric bilinear form which generates M* . This concept of optimality

is related to the following optimal steady formulation



19

a(W, U) = - W+TAW ) * Ga (2.5.10)

where a(* , °) 1is a symmetric, bilinear form defined by

W, U) = ~/Pr‘l(w +TAW.) - (U+TAU _)dD (2.5.11)
~f S 5 ~ ~ ~,% ~ < %X

and A and G are assumed to be independent of U , that is

A = Ax) (2.5.12)
G = G(x) (2.5.13)

. _ T _ 1 _
2. The choices T=T1A , F=1, o= "/2, and M*= Maiag -
leads to an explicit Lax-Wendroff type method. We shall explore this

point further subsequently.

Remark
The factor, F , in (2.5.1) and (2.5.8) has been included to account
for nonlinear effects. It has been our experience that a value of F greater

than one needs to be employed to adequately handle shock~wave phenomena.
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2.6 Finite Difference Egquations

The finite difference equations for the preceding algorithms are needed
subsequently for the stability and accuracy analyses and are of interest in
their own right. In explicating the finite difference equations for an inter-
nal node we have made the following assumptions: (i) linear elements are
employed; and (ii}) h , é and H are constant; and (iii) G varies linearly
over each element. Furthermore, for notational clarity we have droppred the

superscript 1 and subscript n + Y. The equations are as follows:

implicit case

(%(I + alAt H)Dr S+ (- TT + At A - alAt gT g)Dl

2 T ' h
— ] = - + D a
+ alt L, A D2>A§(j) ( S ID T l) (3
2 T . h T ) :
- . L . -2 + D_ ]G (3) .6.
+ ( AD -& T A 02>Y(3) 4 ( 5 ID +T Dy G (3 (2.6.1)
where
D v(j = 2(x . + (1 - 20)v(3) + r v , 2.6.2
L V() (r v gy * r)v(3) Y 541y ( )
D. v(3) = E(=v,. o+ V) (2.6.3)
1= 2 ~{(3-1) ~(3+1)
!
D,v(i) = - (v, . -2V +v ) (2.6.4)
~ 2 ~(3-1) ~ ~(3+1)
and v(j) = v(xj) is the subvector of v which is associated with node
number j , etc. The value of r 1is determined by the element quadrature

rule employed. The following are the most important cases:
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r rule
1/4 1 - point Gauss
1/6 2 - point Gauss (exact)
0 trapezoidal

explicit case

In the explicit case, the right-hand side of (2.6.1) is the same, but

the left-hand side simplifies to

h Aa(3)

Remarks

{(2.6.5)

1. It is intéresting to observe that even though upwind influence has

been introduced via the weighting function defined by (2.2.4), the resulting

difference equations are centered about node

2. Assume G = Q , o=1, T= TQT ’

3

T = At/2 and the explicit one-

pass (i.e. one-iteration) case, then from (2.4.15), (2.4.16), (2.4.20) and

(2.6.1) we get

o At At |2 .

Eq. (2.6.5) defines the Lax-Wendroff method.
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CHAPTER 3

Stability and Accuracy Analysis of Algorithms

for the One~-dimensional Linear Hyperbolic Equation

3.1 Development of the Tools for the Analysis

3.1.1 Introduction

Model Problem: Convection Equation

One~dimensional convection of a function U({x,t) 1is governed by the

following hyperbolic eguation:

U’t + A U’X =0 (3.1.1)

where ) 1is the convection velocity. An initial condition of the following
form is assumed:

Ux,0) = e™X (3.1.2)
where 1 = (~l)% and k is the wave number. We note that the function eikx
is an element of the set of Fourier functions. This is a complete set and

any piecewise regqular function in the range of (0,27) can be represented as an

expansion in this set.

Exact Solution

The exact solution of (3.1.1) and (3.1.2), for constant X , is straight~

forward. Assuming a solution of the form:

U(x,t) = X(x)T(t) , (3.1.3)
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leads to:

X(x) = eif¥ (3.1.4)
T(t) = e°F (3.1.5)
w=-1Xk (3.1.6)

We define the damping coefficient, & , and the frequency, w , as the com-

ponents of the complex parameter V

-(E,w) =V (3.1.7)
Thus:

£ =0 (3.1.8)

w = ik (3.1.9)

3.1.2 Finite Element Solution

Semi-Discrete Equation

The Petrov-Galerkin formulations described in chapter 2 leads to the

following semi~discrete equation:

Mv+Cv=0 (3.1.10)
where
v = {Vj} (3.1.11)
. o= U(x. 3.1.12
V] U(x]) ( )

Here j stands for an interior node, j , and xj is the coordinate of
that node. The matrices M and C were previously defined by (2.3.3)

and (2.3.6).
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For the purpose of analysis, we assume constant A and constant mesh

spacing h . Further, we assume that the finite element solution, also has

a separable form:

v=XT {(3.1.13)
where
|
T = T(t) (3.1.14)
X ={X.} (3.1.15)
X, = X(x. (3.1.
j X J) (3.1.16)

Consequently, we get the following semi-discrete form:

MXT+CXT=0 (3.1.17)
The spatial component of the numerical solution is determined by

the nodal interpolation of the imposed initial condition (3.1.2):

x, = o1k%y o ciad (3.1.18)

where the dimensionless wave number,

qg=%kh, (3.1.19)

is a measure of the spatial refinement of the numerical method.

The jth equation of the system of equations of (3.1.17) is
h .
{(E’Pr - TA 91)T #5-1
/ 2 2 X. - 0
* (X BT g 92>T} 3 (3.1.20)
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where 7T 1is the parameter that appeared in section 2.2, and Dr ’ Dl ' D2
are the stencils for node 3j corresponding to the assembly of the element

level matrices:

+1
f NaNb dg < D (3.1.21)

f N_N ag < 131 (3.1.22)

J~ N, ¢ N ag ~— D, (3.1.23)

These stencils are directly related to the difference operators given by

(2.6.2)~(2.6.4). Depending on the numerical integration technique used,

they can assume several forms. For example,

D_= 2[1/6, 4/6, 1/6] (exact integration) (3.1.24)
D, = [-1/2, 0, 1/2] (exact integration) (3.1.25)
D, = [-1/2, 1, -1/2] (3.1.26)

t

Further, we define the following array:
E = [e 9, 1, ™Y (3.1.27)

Then

] = [ela(-D) | iad ia(3+D),

X
[ i

. .. X., X
i-1 3

= et g (3.1.28)

~
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Substituting (3.1.28) into (3.1.20) leads to

h . 2
(GD,-TADDET+ (AD; + T A" S D)IET =0 (3.1.29)

Now define the complex scalars M and C corresponding to M and C

respectively:

M = =(D_--—D,)E (3.1.30)

_ At 2TA
AtC = —1’-{_ (Pl + —1_-1— PZ)E: (3.1.31)

where At is the time step of the time integration algorithm. We define

the following non-dimensional parameters.

AL .
cAt = n (3.1.32)
2TA
C2T = n (3.1.33)
CAt is called the Courant number. Considering that 7T has units of
time, we can View C2T as an algorithmic "Courant number" based on
2T . If we set C2T = 0 , we obtain the usual Galerkin formulation.
With the definitions of (3.1.30) and (3.1.31), (3.1.29) reduces to
the following ordinary differential equation:
MT + cT = 0 (3.1.34)

Transient Algorithm

Transient algorithms were described in section 2.4. We adopt the repre-

sentation:

Y = [, T (3.1.35)
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and let Yn denote the approximation of Y at the nth—time step.

Given Yn , we go through a predictor phase and an iterative phase
to calculate ¥n+l’
0) . .
In the predictor phase we calculate Yé+l by the following operation:
(0)
= T
Yorp = 2 Yn (3.1.36)

where P 1s the predictor matrix defined by

1 (1-0) At
P = (3.1.37)
Y o
The iterative phase starts with the zeroth-iteration value, Yégi .
and continues according to the recurrence rule below:
. (1) . (i+1)
Given ¥n+l solve the following system for gﬁ+l :
L am (i) L (1) R (1) R (i) :
M7 AT + AT = - (M T +C T .
n+l ¢ n+l ( n+l n+l) (3.1.38)
(i) « (1)
= t
ATn+l ol ATn+l (3.1.39)
e (i+l) e (i) °{1)
T+l = Tn+l + ATn+1 (3.1.40)
(i+1) _ (1) (1)
Tn+l = Tn+l + ATn+l (3.1.41)

The superscripts L and R refer to the left and right-hand sides of

(3.1.38). We reserve the option of having different evaluations for M

and C on different sides, so that we can accomodate all of the algorithms

described in chapter 2.
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The recurrence rule defined above can be expressed as:

(i+1) _ (i)
L R N (3-1.42)
J is the iteration matrix emanating from the recurrence rule:
R R
1-o AC - oAt -’—f—
M M
g = ’ (3.1.43)
R R
- C
e 1 - g?
where
M o= M’ 4 oAt T (3.1.44)

Combining the predictor and iterative phases, we have
= A Eh (3.1.45)
A = 3p R | (3.1.46)

Here S is the number of iterations.. Exploiting the fact that det P = 0 ,

that is
det A = det gs det P = 0 - - (3.1.47)
we can write
A A
21 22
X‘“’ = T = yu (3.1.48)
11 A12 .
Then, from (3.1.45):
T =per , 7 =y T (3.1.49)
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Substituting (3.1.49) into (3.1.45):

Tn+l = (tr é)Tn (3.1.50)

Numerical Frequency and Damping Coefficients

For the temporal component, we assume a solution of the form:

A L (3.1.51)

where V is the numerical counterpart of the exact VvV defined by (3.1.6).

From (3.1.50) and (3.1.51):

At
ev = tr A (3.1..52)
Now, we need to calculate tr A :
) S S
= P = - PR
tr A tr(g ~) It (1 - a)At Joq (3.1.53)
S S S S
where J;; and J,, are components of J° . J° can be calculated by
way of the Cayley-Hamilton theorem:
I =al+bd (3.1.54)

The coefficients a and b are functions of the eigenvalues, Xl and AZ ,

of the matrix J

(3.1.55)

3]
1

S S -
(Al - KZ)/(kl Xz)

b o= (AN

14y ) (3.1.56)

S
szl)/(kl - A2

The eigenvalues are given by
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A, =1 (3.1.57)
A, = 1- R+ o At SRy | (3.1.58)

From (3.1.53)-(3.1.58):

- Q _ ;S -
tera = 1+2(1-n 1) (3.1.59)
where

R = (MR + o At )y /M (3.1.60)
0 = AtcR/M (3.1.61)

One can note that, from (3.1.30)-(3.1.33), the terms M and AtC can be

expressed in terms. of the dimensionless parameters q , cAt and CZT
1
M= = - 3.1.62
Atc = (D, + C,_ D,)E (3.1.83)

Cae 'Pp * Cyp DYIE

From (3.1.52) and (3.1.59)-(3.1.63), we can express the complex parameter

VAt in terms of the dimensionless parameters q , CAt and C2T , that is,

VAt = 1n(tr a) (3.1.64)

For comparison, we need to express VAt in terms of the same dimension—

less parameter set. From (3.1.6):

At

VAt - ik At = - i kh

i

By means of {3.1.64) and (3.1.65) we can study the stability and accuracy

of a wide variety of algorithms for solving the convection problem.
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We define the analytical and numerical amplification factors

vAt

N
[
®

VAt
e

[N
[

Z

and 2

(3.1.66)

(3.1.67)



32

3.2 Unified Analysis of Algorithms

Introduction

In section 3.1 we developed the tools for stability and accuracy analysis
of a large class of algorithms. The algorithms can be of implicit or explicit
type. Unification of algorithms into one class enables us to perform one
general stability and accuracy analysis for the entire class and then study
individual cases within the framework of this analysis.

For the purpose of analysis, we classify the algorithms we study into
two groups: the implicit types are the base algorithms and the explicit types
are the ones derived from the base algorithms. To each implicit algorithm
defined, we can (at least in principle) associate an explicit algorithm. This
concept was described in section 2.4.

Further, we unify all the algorithms we study into one general Petrov-
Galerkin class. Two main parameters C2T and r (defined in section 2.6)
determine the particular algorithm in this class.

We obtain closed form expressions for the modulus (|Z| = e_gAt) and the
frequency (0 At). These expressions are simple for the implicit and explicit
l-pass algorithms, and somewhat more complex for the &xplicit 2-~pass algorithms.

Unconditional-~stability proofs can easily be made for the implicit
algorithms; stability limits can be determined for the explicit l-pass algo-~
Zithms with the same ease.

Expressions for the exact and numerical frequencies are not in easily
comparable forms. One can expand these expressions in g or CAt and compare

them in series form; this requires extra caution and patience in the algebraic

bookkeeping. Alternately, one can, with a general-purpose program, compute
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the ratio &/w for the desired ranges of C2T ’ CAt and g . The latter

approach is adapted herein.

3.2.1 Description and Classification of Algorithms

In the following sections we briefly describe the (implicit) algorithms

and place them in the general class.

(Bubnov-) Galerkin Algorithms

In this group we study two Galerkin (C2T = 0) algorithms; we call these

GC and GL .
GC is a galerkin algorithm with consistent (exactly integrated) mass.
GL, on the other hand, has a lumped mass (integrated with nodal trape-

zoidal rule).

The stencils D and D are

~r ~1
D, = 2{r, 1 - 2, r] ) (3.2.1)
D, = [ =% 0, %] (3.2.2)
The parameter r , which was described in section 2.6, is set to 1/6 for
GC and to 0 for GL . The form of the stencil Pl cqrresponds to exact

integration and is equivalent to central differences.

Petrov-Galerkin Algorithms

We study four Petrov-Galerkin algorithms. They are PG(Padeé), PG(C2T = 1),

PG(C, = 2/V15) and PG(Cyp = Cpy) -

PG (Padé) has weighting function W constructed from the following

element shape functions:
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ﬁl(g) = 0 (3.2.3)

ﬁ2(g) = 1 (3.2.4)
where

£ e [-1, +1] (3.2.5)

is the usual isoparametric coordinate. In this case we need to replace

D. and Dy by

2[%, %, 0] (3.2.6)
and

(-1, +1, o] , (3.2.7)
respectively.

This method corresponds to the Padé finite difference approximation (see
(w3l).

The other methods, that is

PG(Cyp = 1) [H15] ,
PG(Cyr = 2//15 ) [R1] and
PG(Cyr = Cae) (described in chapter 2, section 5)

employ (3.1.24), (3.1.25) and (3.1.26), corresponding to exact integration

rules. The name of each algorithm implies the way C2T is chosen.
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3.2.2 Implicit Algorithms

From (3.1.62)-(3.1.63), the scalars M and AtC become

c

. -2
M=1-2r (1 - cos q) - i —§I=sin 4 (3.2.8)

AtC = Cpaplor (1 - cos q) + 1 Crp sin g (3.2.9)

The stencils of the Padé approximation, (3.2.6) and (3.2.7), lead to,

M = % (1 + e 19 (3.2.10)
Atc = cAt (1 - e'iq) (3.2.11)

Remark: The same expressions can also be obtained by setting r = 1/4

and CZT =1 in (3.2.8)-(3.2.9). Therefore, for the purpose of analysis,
we can include the PG(Padé) algorithm in the two-parameter (CZT’ r) family
of Galerkin/Petrov-Galerkin algorithms.

For the implicit class, (3-1.52), (3.1.59) and (3.1.67) reduce to the

following expression for the numerical amplification factor:

Z = 1 - 0 (3.2.12)

where @ 1is given by (3.1.61).

Frequency Analysis

The following expression for @ At is found:
~ _ 2
tan(w At) = CAt W(G + C2T v/2)/
[(G + Cpelo V) (G - (1 - a)cAtczTV) +

(H+a Cy W)(H- (1-a)C W] (3.2.13)
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where
vV = 1 ~-cos g (3.2.14)
W = sing (3.2.15)
G = 1-2rvV (3.2.16)
H = - Cyp W/2 (3.2.17)
Eq- (3.2.13) is a general expression for any combination of «r , C2T and

o . For example, for the trapezoidal rule (0 = %) the expression reduces to

2

tan(w At) = Cpp WG + Cor v/2)/
2 _ 1 2
(G (5 CppCyp M7 #
2 1 2
H® = (5 ¢y W) ] (3.2.18)

Further, if we have a Galerkin algorithm (C2T = 0), then (3.2.18) becomes:
tan(® At) = C,, W G/[G2 - & cC w 2] (3.2.19)
At At e
Lumping the mass term reduces this expression to:

- B 2
tan(w At) = Crp W /1 - (% Cre w) <) (3.2.20)

Modulus/Stability Analysis

The following inequality needs to be satisfied for the stability of an

algorithm:

122 < 1 (3.2.21)

This inequality translates to:

2
-1 -4mnC, V- (2a-1(CV+ (2= v)) <o (3.2.22)
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As we can easily observe, for & > % , all the algorithms considered

are unconditionally stable, provided that r < 1/4 . 1In particular,
GC(C2T =0, r=1/6) , GL(C2T = 0, r = 0) and PG(Pade) (C2T =1, r=1/4)
have no modulus error., that is, {2{ =1

3.2.3 Explicit Algorithms

. . L R i
For explicit algorithms, the scalar gquantities MR ,  AtC and M are:

MR = G +iH (3.2.23)
AtcR = Cp.C vV+ic W (3.2.24)
At-2T At Al

M o= 1. (3.2.25)

Explicit l-Pass Algorithms

For l-pass algorithms, the numerical amplification factor takes the form
Z = 1 - AtcR (3.2.26)

that is

For the frequency analysis, we get a relatively simple expression:

W
- Cre
tan(w At) = T-¢c W (3.2.28)
At~2T

Clearly, for l-pass algorithms, r and & have no effect.

For modulus/stability analysis, the following inequality is considered:

[N
O

]5}2 = (1 - CAtc2TV)2 + (Cpy W) 2 <1 (3.2.:
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A . . 2
Utilizing the identity W* = 2v - V2 + this condition can be written as:

2
2(Cor = Cpp) + G VL = )T > 0 (3.2.30)

We can further write this inequality in two other forms:

The first form,

NG

1 2 1 = 1
2 1
- _ — < -
— (1 =+ > Sl (i-ir—— (3.2.31)
At (CAtv) .

provides us with the stability limits on the algorithmic parameter (
2T

The second form,

2C
2T
c < (3.2.32)

At
(2-va-c2))

provides the stability limit on the Courant number once we select the

parameter C2T .
Consider the following cases:

If Cor = 0 , then, for the stability condition we get V - 2 >0

This implies unconditional unstability.

If we set C2T =1 , then, the stability condition is CAt <1.

< 1.

By setting C = C : WwWe get the same stability condition: CAt <

2T At

Explicit 2-Pass Algorithms

For the 2-pass algorithms, the numerical amplification factor is

z = 1+ AecRR + o aec® - 2) (3.2.33)
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With this form of 2 , the expressions for tan(w At) and the stability

condition become rather complicated. Defining the variables

R

(A1, By) = AtC (3.2.34)

R

R
(B B,) = M +a Atc™ - 2 (3.2.35)

l,

we can, without any further algebraic elaboration, write the expressions for

tan{® At), that is,

A.B, + A,B
- 2 271 y
tan(® At) = - 1l+ - -~ (3.2.36)
1B1 7 BB ~
and for the stability condition
. 2 2. .2 2
2(ABy = A,B,) + (A] + A))(B] +B,) < 0 . (3.2.37)
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3.2.4 Stability and Accuracy Studies

As the algebra of the analysis gets lengthier, especially for the 2-pass
algorithms, we find it more convenient to conduct the analysis numerically
for the desired ranges of the parameters involved.

For the algorithms previously considered we utilized a general pur-
pose program to determine the stability and accuracy properties. For each
algorithm, the parameters r and C2T were given. The quantities S/&
and (/w were computed and plotted for the values of CAt = 0.2, 0.4, 0.6,
0.8, 1.0 and g € Jo, 7

"For future reference, we describe the following concepts:

Unit CFL condition [M3]: An algorithm satisfies the unit CFL condition

if it produces nodally exaci solutions for CAt = 1

Order of accuracy: The behaviors of the 5/& and W/w curves for an

algorithm as g 0 , reveal the order of accuracy of that algorithm. If ei-
ther of these curves has a finite slope as g - 0 , then the algorithm is first
order accurate. If both curves have slopes approaching zeroc as g =+ 0 , then
the algorithm is at least second-order accurate.

The gquantity é/& is called the algorithmic damping ratio (see [H2]) and
is related to the logarithmic decrement 3 [H2] via the following expression

E‘(tll)

§ = 1n = 2m(E/w) (3.2.38)

P
it 2T
noB

where T is the numerical prediction for the dependent variable.

The dimensionless wave number q 1is a measure of spatial refinement.

Scaling g by 2T , we get:



41

« = 9. - h 3.2.46
k. 27 A ( )

which represents the number of elements per wave length. It is reasonable
to limit study to the range gq € ]0, w{ . For example g = T/2 translates

to having 4 elements for one full wave form.

For the entire graphical analysis « % (trapezoidal).

3.3 Comparison of Algorithms

3.3.1 Implicit Algorithm

Fig. 3.1 shows the frequency ratio (&/w) for the implicit GC, GIL-
and PG(Padé) algorithms. They have no modulus error, and are second-order

accurate. GC 1s more accurate than GL for finite q . This is due to the
term 2 r(l -~ cos q) which vanishes for GL. PG (Padé) satisfies the unit

CFL condition. For finite q , GC and GL become more accurate as CAt

decreases; the opposite is true for PG (Pade) .
Fig. 3.2 shows the algorithmic damping ratio (g/&) and the frequency

ratio for the implicit PG(C,. = 1) , PG(C,y, = 2/v15) and PG(Cy, = Cp.)

algorithms. They are .all second-order accurate. As one might expect,

PG(C2T =C behaves like GC as C -~ 0, like PG(C2T =1) as C,,  * 1

At At
and like PG(C, = 2//15) as At > 2/V15 .

At)
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3.3.2 Explicit 1l-Pass Algorithms

Fig. 3.3 shows the results for the explicit l-pass PG algorithms (GC
and GL are unconditionally unstable; not shown.) PG(Padé) and PG(C2T = 1)
are equivalent because, for l-pass algorithms, there is no dependence on
In this group, only PG(C2T = CAt) is second-order accurate. This superior-
ity with respect to order-of-accuracy can easily be seen from (3.2.29), which

can be written as:

12]2 =1 - Cpp V(2(C,0 = ) +Cp V(L = C2)) (3.3.1)
Clearly, the departure of |2]2 from unity is first-order in CAt and V .
However, if C2T = Cre 7 then
52 = 1- (Cyp v - Cit) (3.3.2)
and thus, the departure of Iﬁ[z from unity 1s now second-order in Cat

and V .

The algorithms PG (Padé), PG(C2T = 1) and PG(C2T = CAt) satisfy the
unit CFL condition.

The stability limits are cC, < 2/V/15 for PG(C2T =2/V15) and ¢, <1

At At —
for the other PG algorithms.
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3.3.3 Explicit 2-Pass Algorithms

Fig. 3.4 shows the algorithmic damping ratio and the frequency ratio for
explicit 2-pass PG algorithms. (GC and GL are unconditionally unstable;
not shown.) In this group, all the algorithms are second-order accurate.
PG(Padé) satisfies the unit CFL condition. All the algorithms are stable

for C <1, except for PG(C2T = 2/¥15) which exceeds the stability limit

At —

around C = 0.8.



ALGORITHMIC DAMPING RATIO

ALGORITHMIC DAHPING RATIO ALGORITHHIC DAMPING RATIO

ALGORITHMIC DAMPING RATIO

- (A PGIPROE] E2
S
Cat
1O e
g 8 ———
s 6 ————
I d
.2 rcataranas .
=4 _/'_ =~
57 -
g
?
]
? Y Y v
8.0 Q.5 1.0 1.5 2.0 2.5 3.0
DIMENSIONLESS WAVE NUMBER
s (O} PGIC2T~1) E2
<

0.2%

8]

?

]

"o oS 1.0 1.5 2.0 2.5 1.0
DIMENSIONLESS WRAVE NUMBER

e (E) PG(C2T=2/SQRT(15)1 E2

S

N

0.5

0.10

4

i

?

]

"0 0.5 1.0 L.5 2.0 2.5 1.0
DIMENSIONLESS WRVE NUMBER

o (B) PG(C2T=-COT) E2

-3

0.25
1

0.0

)

~0.05

~0.20

0.0 a5 1

.0 1.5 2.0
DIMENSIONLESS WRAVE NUMBER

2.5 3.0

47

(=]
~

FREQUENCY RATIO FREQUENCY RATIO FREQUENCY RATIO

FREQUENCY RATIO

(8} PGIPARDE) E£2

w
i
e
8.8 0.5 1.0 .5 2.0 2.5 1.0
DIMENSIONLESS WAVE NUMBER
- (0} PGIC2T=-1) E2
~

i.5

a4
v
2
o
0.0 0.5 1.0 1.5 2.0 2.5 3.0
DIMENSIONLESS NHVEANUﬂBER
G PG(C2T~2/S0RT(1S)) E2
s
e
2
i
g
e
0. 0.5 1.0 1.5 2.0 2.5 1.0
DIMENSIONLESS WAVE NUMBER
- (H} PG(C2T-COT) =2
~
'
=
o -~
= ~—_~::sg_“-—____‘_-;;:::;,,/‘
‘ '\\
o
&
o
a T
0.0 2.5 10

0.5 1.0 1.5 2.0
BIMENSIONLESS WRVE NUMBER

Figure 3.4 Algorithmic damping and frequency ratios for
explicit 2-pass algorithms



48

CHAPTER 4

Numerical Applications in One Dimension

4.1 Introduction

To test the capabilities of our finite element schemes and to estimate
the effects of several algorithmic parameters involved, we experimented with
problems from various classes of one-~dimensional hyperbolic systems.

We started with a linear transient problem which had a discontinuous
solution. Then we studied nonlinear transient problems with continuous and
discontinuous solutions; these illustrated the concepts of shock stability
and admissibility. Further, we experimented with a set of nonlinear steady
problems; these resulted in continuous or discontinuous solutions depending

on the way the boundary conditions were specified.

4.2 Numerical Applications in the Linear Transient Case

4.2.1 Propagation of a Small Disturbance in a Gas

Barotropic Compressible Flow Equations

The Euler equations in one dimension are given in appendix I. The mass
and momentum conservation equations can be uncoupled from the energy conserva-

tion equation by assuming that the flow is barotropic, that is:

p = pp) {(pressure) (4.2.1)

Then, the barotropic flow equations can be written as a system of conservation

equations with conservation variables and flux vector defined as:
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I 1
u' = p (4.2.2)

[OJS
F = 5 (4.2.3)
pu + p

where p and u are density and velocity, respectively.

Small Disturbance Equations

We assume that the departures of p and u from constant values pé

and u are very small. Taking Ug to be zero, this assumption can also be

0

stated as (see [W4]):

g _ < 1 (4.2.4)
Po

P® << 1 ‘ (4.2.5)
P (DO)

| — << 1 (4.2.6)
Vb (py)

where p (p) 1is the derivative of p(p) with respect to its argument. With
these assumptions, we get the following linearized version of the original

conservation equation system:

+ QO u = 0 (4.2.7)

P U, * P oo . = 0 (4.2.8)



50

Further, by introducing the parameter c¢ ,

2 = p” (pgy) (4.2.9)
and the scaling
p*r = p/oO -1 (4.2.10)
u* = - u/c (4.2.11)
we get
Upe + BU,y = O (4.2.12)
where
- o*
U = (4.2.13)
u*
and
0 ~-C .
A = (4.2.14)
-C 0

Clearly, the eigenvalues of A are:

A = +c (4.2.15)

4.2.2 Initial/Boundary-value Problem

The equation system of (4.2.12), together with the following initial/

boundary-value data was studied numerically by Hughes in (6]

li
O

p(x, 0)
x € 10, 10] (4.2.16)

I
b=t

ul{x, 0)
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i
(@]

p(0, t)
t >0 (4.2.17)

il
o

u(lo, t)

{(We drop the asterisks for notational simplicity.) The parameter ¢ was

chosen to be unity.

4.2.3 Finite Element Solutions

Naming Convention for the T =T A and T =T T

]

If we choose to define the operator T according to the criterion

T =1 a , then the resulting formulation would have a second-order term.

containing the product ATA . Therefore, we name this criterion the »ala-

form." If we choose the criterion T =T AT , on the other hand, then the
second-order term would contain the product Az'. Therefore we name this

criterion the "A2—fbrm". Thus, in the study of this and all the other

problems, we adopt the following naming convention:

0 = 1 a ~—= 2Ty (4.2.18)

T = 1 al «— a2 (4.2.19)

This naming convention will also be used for the multi-dimensional cases.

Algorithmic Features

In this problem, both ATA and A%forms result in the same formula-

We can also set T = 0 and

~

tion due to the symmetry of the operator A .

obtain the usual Galerkin technique.

The finite element mesh contains 20 elements with uniform mesh spacing
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of .5 . The quadrature rules chosen provide exact integration of the vectors
and matrices involved.

The transient algorithm parameters Y and O were set to be 1.0 and 0.5
respectively. Implicit, explicit l-pass (designated by El), and explicit l-pass
(designated by E2) algorithms were tested. Two different time steps, 0.50 and
0.25, were used; these time steps correspond to Courant numbers 1.0 and 0.5,
respectively. For both time steps, we used the temporal criterion for T as
given by (2.5.8). The parameter F was set to unity. The spatial criterion
for T, (2.5.1), would result in the same formulation for both time steps, pro-

&

vided that we set F = 0.5 when At = 0.25

Results

Fig. 4.1 shows the implicit Galerkin solution for Courant number 1.0

As can be seen, this technique produces spurious oscillations.

Fig. 4.2 shows the solutions produced by the expliéit l-pass Petrov-Galerkin
algorithm with o = 1.0 and o = 0.5 . One would expect the solutions to be
very similar because the explicit l-pass algorithim is independent of o
Slight differenzes occur because the initial start-up conditions are handled
differently by each algorithm.

Both algorithms satisfy the unit CPFL condition defined in chapter 3 vet,
in this problem, o = 0.5 produced results inferior to o = 1.0 due to start-
up conditions. Therefore, for the explicit l-pass algorithm, when it comes
to a choice between o = 1.0 and o = 0.5, the former value is preferred.

Fig. 4.3 shows the solutions (for Courant number 1.0) produced by Petrov-
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Galerkin implicit, explicit l-pass and, explicit 2-pass algorithms. The
explicit 2-pass results are not distinguishable from the implicit results.
This implies that, for this problem, as the number of passes increase, the
explicit algorithm converges quite rapidly to the implicit one.

Fig. 4.4 shows the results for Courant number 0.5 produced by the same
set of algorithms. The implicit and explicit 2-pass algorithms are, again,

indistinguishable. The explicit l-pass algorithm produces slightly greater

oscillations.
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4.3 Numerical Applications in the Nonlinear Transient Case

4.3.1 Barotropic Compressible Flow

Barotropic compressible flow was defined in section 4.2. The differen-
tial equations need to be satisfied everywhere except at the shock front

where the Rankine-Hugoniot conditions (see [Ll, L2, L3)]),

s[u] = [#F] . (4.3.1)

have to be satisfied. Here s 1is the propagation speed of the shock front

and [ | is the jump operator. That is, for any variable 0

(0] = o ~¢” (4.3.2)

where the superscripts "-" and "+" refer to the left and the right of

the shock front, respectively. For barotropic flow these conditions are::

gle] = [p ul] (4.3.3)

slou] = [ou® + p] : (4.3.4)

For shock profile to be stable, the entropy condition also must be
satisfied (see [L1l, L2, L3]). The entropy condition is given in the form of
inequalities in terms of s and the eigenvalues of the jacobian matrix A& .

In the present case, the eigenvalues are

™

A = uz (p7(0) (4.3.5)
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4.3.2 Initial-value Problems

We considered two initial-value problems, both studied by Hughes in

[H6], with the following equation of state:

13
P(P) = o p (4.3.6)

The first problem has the following set of initial data:

p(x, 0) = 1 + 2H(- x) (4.3.7)
_ 2
uf{x, 0) = E-H(— X} (4.3.8)

where H(x) is the Heaviside step function. This initial data does not
satisfy the jump relations. Therefore, the initial shock profile splits
into a stable shock which propagates to the right and a simple wave which

propagates to the left.

The second problem has the following set of initial data:

p(x, 0) = 1 + 2H(+ x) ' (4.3.9)
o(x, 0) = %H(+ x) ' (4.3.10)

This is the mirror image of the previous data with respect to the point
x = 0 . This initial data does not satisfy the entropy condition and there-
fore represents an unstable shock. The result is a rarefaction wave travel-

ing to the right.
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4.3.3 Finite Element Solutions

Algorithmic Features

Both ATA and Az-forms were tested on these problems. We also tried

the Galerkin algorithm for one case only.

The finite element mesh contains 40 elements with a uniform element length
of 1.0.

The transient algorithm parameters Y and O were set to 1.0 and 0.5,
respectively. The time steps were taken to be 0.6 and 0.3 corresponding to
Courant numbers (based on the maximum eigenvalue) 1.0 and 0.5, respectively.

The parameter T was chosen according to the temporal criterion given
by (2.5.8). The parameter F was usually taken to be one, however we

tested cases where it was greater than one.

Results’

Fig. 4.5 shows how the Galerkin algorithm performed for At = 0.6.

We used an implicit 3~iteration scheme. The location of the shock (that is
the shock speed) is in agreement with the exact solution; but there are spu-
rious oscillations behind the shock.

The Petrov-Galerkin algorithms, in general, performed gquite well. The
common discrepancies between the aumerical and exact solutions were, with
varying magnitudes, overshoots at the shock fronts and oscillations behind !
the simple wave. We tested implicit schemes with 1, 2 and 3 iterations
(designated by Il1l, I2 and I3) and explicit schemes with 1, 2 and 3 passes
(designated by El, E2 and E3). We found that at least 3 iterations were
needed to get the correct shock structures when an implicit scheme is used.

This observation is in agreement with the findings of Baker [B2, B3].
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The element level "mass" matrices and the vectors correspondiﬁg to them
were integrated exactly. For the integration of all the other matrices we
tested 1, 2 and 3 point Gaussian quadrature rules. Fig. 4.6 shows the com-
parison of the integration rules for At = 0.6 with Az—form and T chosen
temporally. We conducted the comparison tests on implicit 3-iteration (I3)
and explicit l-pass (El) algorithms. We observe that the results change
only slightly with the quadrature rule. One can therefore use l-point qua-
drature for economy reasons without much decrease in accuracy. However, in

the following problems we used the 3-point guadrature rule.

Fig. 4.7 shows the results for At = 0.6; all are in close agreement
with the exact solution. All have, with comparable magnitudes, overshoots
at the shock front and oscillations behind the simple wave. We observe that
explicit 2 and 3-pass results are very similar. For the ATA—form the
explicit l-pass algorithm became unstable; for this form we also tested the
implicit 3-iteration scheme with F = 2 . This slightly reduced the oscil-
lations and the magnitude of the overshoot to the left ;f the shock front.

Fig. 4.8 shows the results for ‘At = 0.3. The solutions are in agree-
ment with the exact solution with slightly more oscillations behind the'shock
front compared to the At = 0.6 case. For the Az—form, there was virtually
no difference between explicit 2 and 3-pass algorithms. We also tested the

v P
explicit 2-pass algorithm with F = 2 . This algorithm reduced the oscilla-
tions and the magnitude of the overshoot to the left of the shock front.

Fig. 4.9 shows the results for the unstable shock problem. WQ used
the Az—form with the temporal choice of T ; the time step was 0.6. We

tested the implicit 3-iteration and explicit 2-pass algorithms. Both solu-

tions were in close agreement with the exact solution. The E1 algorithm
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produced slightly more oscillations behind the simple wave.
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produced good results for this case.

All algorithms

4.4 Numerical Applications in the Nonlinear Steady Case

4.4.1

Isothermal Flow in a Nozzle

We consider the one~dimensional isothermal flow |{in a nozzle with cross-

sectional area varying along the axis.

The governing balance law equations,

provided by Lomax et al. [L7], possesses the following conservation variable,

flux and source vectors:

'
u

where the acoustic speed c2

The jacobian matrices are:

l 2
~pc” A
p.¢

gl
= pa (4.4.1)
=
-
A 1 (4.4.2)
puz + pc2
fo
(4.4.3)

r

is constant and the cross-sectional area is

A

= A(x)

(4.4.4)

(4.4.5)
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9G/au = (4.4.6)

5 .
-c A,x/A 0
The eigenvalues of A are

Al,2 = u+c (4.4.7)

Assuming that A(x) is a continuous function of x , the Rankine-

Hugoniot conditions for steady flow reduce to:
[pul = o0 (4.4.8)
%]

[pu?® + oc =0 (4.4.9)
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4.4.2 Boundary=value Problem

We studied steady flows suggested by Lomax et al. [L7]. The cross-
sectional area and the acoustical speed were given by

(x - 2.5) 0

15.5 (4.4.16)

A
W
IA

7

Alx) = 1.0+

c=1.0 (4.4.17)

The problems considered were:
1. Subscnic inflow - subsonic outflow with no shock.
2. Subsonic inflow - supersonic outflow with no shock.
(3. Subsonic inflow -~ subsonic outflow with shock.
The exact solutions, which éan be obtained by the integration of the squafe

of the Mach number (in this case u?), were provided by Lomax et al. [L7].
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4.4.3 Finite Element Solutions

For the boundary conditions of these problems, we set the values of
the conservation variables as given by the exact solution. The number of
variables to be specified at each boundary depends on the nature of the flow
at that boundary. For supersonic inflow, two variables are set; for sub-
sonic inflow or ocutflow, one variable; and for supersonic outflow, no varia-

ble is specified.
Considering all the combinations of possible boundary conditions in
terms of conserv.cion variables, we have the following cases for each problem:
For subsonic inflow - subsonic outflow problems:
Ulul: U at- the inflow/U1 at the outflow
vlu2: U at the inflow/U2 at the outflow

U2U0l: U at the inflow/Ul at the outflow

u2U2: U at the inflow/U2 at the outflow

For the subsonic inflow ~ supersonic outflow problem:

Ul: Ul at the inflow

U2: U2 at the outflow

Transient Introduction of the Source Term

In these problems, we introduced the source term into the equation
system in a transient fashion. That is, instead of having the full value of
the term A % right at the beginning, we lét it reach its full value gradu-

’

ally. This is done by taking A < as a linear function of time during
’
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an initial time interval at the end of which A % reaches its full value.

14

The numerical A can be expressed as follows:
’

X

(A ) n/nti n<n
+ X/ NUMERICAL

A (4.4.18)
P X

i

> .
1l n __nt:L

where n s denotes the number of time steps marking the end of the transition

interval. For the problems solved, ng, = 10.

Algorithmic Features

Both ATA and Az—forms were employed. We also tested the Galerkin
algorithm.

The finite element mesh has 40 elements with uniform element length of
0.125. The element level "mass" matrices were integrated exactly; all the
other matrices and vectors were integrated by the 3~point Gaussian quadrature
rule.

We set the transient-algorithm parameters Y and & to unity and
employed implicit schemes with 2 iterations.

The parameter T was chosen according to both spatial and temporal
criteria given by (2.5.1) and (2.5.8), respectively.

The time step for each problem was usually chosen to be ten times the
estimated critical time step for that problem. We define the critical time
step AtCR as the time step for which the Courant number, based on the

maximum spectral radius, is unity. That is

Atz = h/max p(a) (4.4.19)
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where p(A) is the spectral radius of A4 .
While full convergence to the steady state solutions was attained in

about 100 steps, the 50-step solutions were close enough to the steady state

solutions for practical purposes.

Results for the Subsonic Inflow-Subsonic Outflow Problem With No Shock

For this problem the time step was chosen to be 0.735.

We attempted to solve the problem with all possible boundary-condition
types. Of the four types tried, only one, UlU2, failed to give the expected
solution. For each boundary condition type, we tested the usual Galerkin
algorithm, ATA and Az—forms, the latter.two with temporal choice of T .
For the type UlUl we also tested the A2—form with spatial choice of 7T
In all cases F = 1 .

For each boundary-condition type, there was no difference between the
solutions produced by different algorithms. However, the solutions differed

slightly from one boundary condition type to another. For all types, the

agreement with the exact solution was very close. Fig. 4.10 shows the results.

Results for the Subsonic Inflow~Supersonic Outflow Problem With No Shaock

The time step was chosen to be 0.460.

We solved the problem with both boundary-condition types Ul and U2. For
each type, we tested the Galerkin algorithm and ATA , and Az-forms, the
latter two with temporal choice of T . In all cases F =1

The results are shown in Fig. 4.11. For each boundary-condition type,
there was no difference between the solutions produced by different algorithms.
However, the solutions differe@ slightly from one boundary-condition type to

another. For all types, the numerical solutions were in close agreement with
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Figure 4.10 Steady nozzle flow, subsonic inflow-subsonic outflow, with no shock:
neg = 40, At = 0.735. Comparison of different boundary conditions.

(A1l methods give essentially the same results.)
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the exact solution.

Results for the Subsonic Inflow~Subsonic Outflow Problem With Shock

Unless specified otherwise, the time step was taken to be 0.5.

We also attempted to solve this problem with all possible boundary
condition types. Types UlUl and U2Ul gave the expected solutions.

We first describe the solutions obtained for type UlUl:

Fig. 4.12 shows the results for the ATA and Az-forms with the temporal
choice of T . The solutions are in close agreement with the exact solution
everywhere except at the shock front where the shock front is not very crisp
and shifted to the left by half an element length.

Fig. 4.13 shéws the results for the Az—form with spatial choice of T
The paraﬁeter F assumes values 1, 2, 5 and 10. The solutions are in very
close agreement with the exact solution. There are very slight oscillations
near the shock front for low F . For F =1 and F = 2 the shock front is
across one element only. The error in the shock location is about half an
element length. As F. increases, the shock front becomes smeared.

Fig. 4.14 shows the results for the ATA—form with spatial choice of
T . The results are similar to that of Fig. 4.13. The only differences are:

a. The shock fronts are slightly less crisp.

b. For F =1, we observe oscillations behind the shock front. It
is interesting to note that the oscillations are located in the region
between the shock front and the point where the flow velocity reaches the
speed of sound.

Ulu2:

2 . .
Both ATA and A -forms, with temporal choice of 7T , produced smooth

solutions with no shock.
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X

ure 4.12 Steady nozzle flow, subsonic inflow-subsonic outflow, with shock:
boundary conditions UlUl, global T, ngg = 40, At = 0.500.
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(A)

RO

(B)

figure 4.13 Steady nozzle flow, subsonic inflow-

subsonic outflow,
boundary conditions UlUl, local T

with shock:
» A2, ngy = 40,

At = 0.500.
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X

igure 4.14 Steady nozzle flow, subsonic inflow~-subsonic outflow, with shock:
boundary conditions UlUL, local T , aTa, Ngg = 40, At = 0.500.
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U2UL:

The time step was taken to be 10, 20, and 40 times the estimated critical
time step. The results for ATA and A-2 forms and temporal choice of T
are very similar and are shown in Figs. 4.15 and 4.16 respectively. The shock
fronts are shifted to the right about one element length.

v2uz:

Both ATA and A2 with temporal choice of T , produced smooth symmet-
ric solutions. For this case, it was only the Galerkin algorithm which
sensed the shock and located it almost at the exact location, but with severe

oscillations. Fig. 4.17 shows the result produced by the Galerkin algoxrithm.

Remark

We observed that the location of the shock front was shifted about half
an element length to the left for the boundary condition type UlUl and about
one element length to the right for the boundary condition type U2U1l. This
implies that the location of the shock front is dependent to sbme extent on
the type of boundary conditions specified. In particular, for two béundary
condition types (UlU2 and U2U2) the exact solution was not obtained. Proper
specification of the boundary conditions in problems of this type is a very
important subject which has attracted several researchers (see [B6, ML, YL]),

but does not yet seem to be fully understood.
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Steady nozzle flow, subsonic inflow-
boundary conditions U201, global T

Figure 4.15 Subsonic outflow, with shock:
. A%, ngp = 40.
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Figure 4.16 Steady nozzle flow, subsonic inflow-subsonic outflow, with shock:
boundary conditions u2ul, global T , aTa, ngg = 40.
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CHAPTER 5

Multi~dimensional Hyperbolic Systems

In this chapter the presentation of Chapter 2 is generalized to the

multi-dimensional case.

5.1 Initial/Boundary~-value Problem

) Ngg
Let {! be an open region of IR where Ngg is the number of
r

space dimensions. The boundary of § isg denoted by T . Spatial coor-
dinates are denoted be x = {xi}.

Consider the following system of m partial differential equations:

18) + A, . + G = Q0 5.1.1
~,t 'v] “[:]/J ~ ~ ( )
where
U = U(x, t) (5.1.2)
= < 4 <

2y A5 (U, x, t) 123 <ng, (5.1.3)

G = r-;(g, x: t) (5.1.4)

Uu. = 35U/9x%. 5.1.5

Y5 ol 3 ( )
nsd

éj U 3 = zz: éj U 5 (summation convention) (5.1.6)
j=1

Eg. (5.1.1) is the multi-dimensional analog of (2.1.1).
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. . Ngd
Egq. (5.1.1) is said to be hyperbolic if for each 5 = {ki} € IR

there exists a transformation matrix S such that

-1
k. A. = 5.1.7
s ~{ ] zgj)g 1~\ { )

~

where A 1is a real, diagonal matrix.

Eq. (5.1.1) is called a balance law if there exist vectors é% such that
= 3 < 9 < ;
éj Bég/ag 1 <3< D g (5.;.8)
If, in addition to (5.1.8), we have that G = 0 , (5.1.1) is called a
conservation law.
(5.1.1) is called a symmetric hyperbolic system if
a. = a7t 1<3<n (5.1.8)
~7 =73 — 7 — Tsd
The initial condition for (5.1.1) is
U(x, 0) = U,L(x), x € (5.1.9)

and boundary conditions are assumed to take the abstract form (2.1.10).

5.2 Weighted Residual Formulation

In the present case the weighted residual formulation is given by

= 0. . . 5.2.1
0 fvg (g,t+z~x.j 9,3 +§)dQ ( )
9]
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where W 1is typically assumed to have the following form:

WS W W (5.2.2)
and
‘Fi = Ti éi (no sum) (5.2.3)
or
T
= T. A, (no sum) (5.2.4)
~1i i <1

Egs. (5.2.1) and (5.2.2) are the multi-dimensional analogs of (2.2.3)

and (2.2.4), respectively.

5.3 Semi-discrete Equations

The semi-~discrete equations of Section 2.3 remain in force except for
the definitions of the element arrays T:b and c:b which need to be rede-

fined as follows (cf. (2.3.5) and (2.3.8), resp.):

e T

m, = f (N, I+ 0N, ; TON & (5.3.1)
Qe

s = f (N I+ N TY)ALN an (5.3.2)

~ab _ a =~ a,i ~i'~j"b,7 cDes

ne
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5.4 Transient Algorithms

The transient algorithms of Section 2.4 also pertain to the present

case. The only change necessary is to the definition of the element array

?:b which now takes the form (cf. (2.4.27)):

ne 7. 9G q
S, = (N T+, ; T N, d (5.4.1)
e -

5.5 Selection of Ti

spatial criteria

We consider two multi-dimensional generalizations of the local cri-

terion, (2.5.1):

T, = Fah/p 1<i<n, (5.5.1)
and
i < 5.5.2
T, = Fua hi/pi (no sum) 1<ic< neg ( )
where pi is the spectral radius of éi » that is,
p; = max lxj(gi)] (5.5.3)
1<j<m
and
o = Iloll =1t 0p" (5.5.4)
= 5.5.5
h hi Oi/D ( )
- (5.5.6)
hi 2 "Y Xil,
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Eq. (5.5.6) holds for isoparametric mappings. The gradient operator,
V , is taken in terms of the natural Cartesian coordinates of the bi-

unit nsd—cube. For example, (5.5.6) yields the following formulas:

ng = 1 h = 2 |ox/3¢] (5.5.7)
2 2, /2
(SXi dx;
Nngg = 2: h, = 2 ng- + o (5.5.8)

If other types of finite elements are employed, (5.5.6) needs to be suitably

modified.

temporal criterion

The generalization of the global criterion, (2.5.8), is

T, = Falt 1<i<n (5.5.9)

1 sd

The examples which follow (2.5.8) concerning symmetric implicit opera-
tors, incremental optimality, and Lax-Wendroff type methods, may be gene~-

ralized to the multi-dimension case in straightforward fashion.

Remark

The formulas presented in this section represent esthetic improvements

of ones used previously [B7, B8, H12, H14, H15].
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CHAPTER 6

Numerical Applications in Two Dimensions

6.1 Introduction

Problem Geometry and Governing Egquations

We consider the problem of a thin biconvex airfoil placed in a uniform
flow field. The axis of the parabolic arc is aligned with the direction éf
the uniform flow (non~lifting case). Fig. 6.1(A) shows the configuration,
where b denotes the ratio of the maximum airfoil thickness to the cord
length. The notat;Ons used for flow variables are defined in appendix I.
The subscript " ® " refers to the free stream.

Since we know that the solution will be symmetric with respect to the
Xy - axis, we need only consider the half plane X, > 0 as our problem
domain. The parabolic arc bounding the airfoil in this.plane is described

by the following expression:

_ b - 2
x, = 3 [1-( xl)] (6.1.1)

The governing egquations are the Euler equations described in section I.1

and I.3. The ratio of the specific heats is

Y = 1l.4 (6.1.2)
{The reader should not be confused by the use of Y for the transient algo-
rithm parameter of chapter 2 and the present usage.)
The eigenvalues of the coefficient matrices él and A, can be
obtained from (I.3.8) by setting (kl, k2) = (1, 0) and (kl, k2) = 0.1

respaectively.
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(A) BOUNDARY VALUE PROBLEM

(B) COMPUTATIONAL DOMAIN U2°0

X
y 2 T
p= p [ l_1 | i~ ]_1 Fo—-—
© L
U1= u"m} 2
= ew Ugp = ~4bx1u1w
-0.5 +05
u2=O /

Figure 6.1 Boundary value problem and computational
domain for thin parabolic are airfoil.
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RBoundary Conditions

The free stream parameters are taken to be

Po= 1. , u, =0. , e, =1 (6.1.3)
The value of u]ﬁo will be set according to the following formula, which
depends on the specified value of the free stream mach number M
M 1
2 w 1V 7 Do (6.1.4)
Mo = T2 T

M Y(y - 1)/2 + 1
Along the xl-axis, outside the airfoil, we impose the following condition

o
n ll2

u, =0 , x, =0, |x] > .5 (6.1.5)

On the surface of the airfoil, the velocity vector must be perpendicular to

the surface normal vector. This restriction can be expressed as:

Y2 %2 (6.1.6)
u1 dxl

Assuming that the airfoil thickness is small enough, such that the uniform
flow field is perturbed only slightly, ul can be approximated in (6.1.6)

{

by its free stream value (see [L4]):

u2 dx2
a = a;—' (6.1.7)
1o 1

From (6.1.1) and (6.1.7), the boundary condition on the surface of the airfoil

can then be expressed as

u, = - 4bxu |x,] < .5 (6.1.8)
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Nature of the Solution

Once we set the free stream parameters as given by (6.1.3) the nature

of the solution depends on the free stream Mach number and the airfoil

thickness ratio. We fix the thickness ratic to be

b = 0.10 (6.1.9)

and study the problem for two different values of the free stream Mach
number.

The subcritical value M, = 0.5 results in a symmetric subsonic
solution, while the supercritical value M_ = 0.84 gives a solution with

a shock around xl_= .3
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6.2 Computational Domain and Algorithmic Features

Finite Element Mesh and Boundary Conditions

The computational domain is shown in Fig. 6.1(B). We utilize three
finite element meshes with different overall sizes: the medium and fine
meshes with Ll = LZ = 3.5, and the coarse mesh with Ll = L2 = 2.0. Each
mesh has 4N elements in the xz-direction; in the xl—direction, there are
8N elements across the airfoil and 4N elements each upstream and downstream.
The number of nodal points are: (16N + 1) Xv(4N + 1), total, and (8N + 1)
on the airfoil. For the coarse mesh, N =1 , for the medium mesh N = 2 .
and for the fine mesh N =.4 .

The meshes are shown in Fig. 6.2; they are symmetric with respect to the

X = is.
2 axis

At the left boundary we set 0 , ul and e to their free stream values.
At the upper boundary, we impose the condition u2 = 0 , which can phvsically
be interpreted as a channel wall. Along the Xy - axis we take the boundary
conditions of (6.1.5) and (6.1.8). Imposing the boundary condition of (6.1.8)

along the X, - axis instead of on the airfoil surface is a standard thin-

airfoil approximation.

Other Algorithmic Features

The integrations of all the element level vectors and matrices were per-
formed by using 2 X ? Gaussian quadrature rule.

We used the temporal definition of the parameter Ti with F =1 and
the szform. For the subcritical case we also employed the ATA—form.

The transient algorithm parameters Yy and o were both set to unity.
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Figure 6.2 Finite element meshes.
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Implicit methods with one iteration were employed.
The time step for each problem was chosen to be ten times an estimated
critical time step for that problem. Similar to the definition of (4.4.19),

the critical time step is defined here as:

Mtep = min(nS/p(a))) (no sum) (6.2.1)
e,]

where the subscript J is the space dimension and the superscript e is
the element number. Since p(gj) is unknown prior to execution, for the

estimation of AtCR we use the free stream value of p(éj) .

The steady béﬁndary condition of (6.1.8) was implemented in the same
way as for the nozzle problems of chapter 4. That is, during an initial time
period of certain length, the thickness ratio was taken as a linear function
of time, and at the end of this time period (4 time steps) it reached its

steady-state value.

6.3 Subcritical Case

We compare our results, at free stream Mach number .5, to the analytical
solution of the Cauchy-Riemann equations of the small-perturbation problem.
Expressing the velocity vector as a sum of its free-stream value (ulm, 0)

and a perturbation (ui, u;):

(6.3.1)

the analytical solution (see [L5]) can be written as:
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.- 4. _ (z + 0.5)
Bul iu, = u]m b p (l Z 1ln Z - 0.5 ) (6.3.2)
_ . _ 5
where 2 = Xy + iB X5 , 1= (-1) and
= - =
B = (1-m) (6.3.3)
One can observe from (6.3.2) that, along the X, - axis, the boundary

condition for U, has been satisfied, while, for ui , the following

expression is obtained:

x. + 0.5]
- 1 4 1
u = Eulmb;(l-xl 1n xl_o.sg) (6.3.4)
The pressure coefficient Cp , defined as.
P - Py
c = — 6.3.
P 5 op_(u, )2 (6:2-9)
ST P

can be obtained by the following equation (see [L4]):

u‘ \.1, 2 U./ 2
.o 2(_1)+ <_1) . (_2_) 6.3.6
P | uloo uy uy

If the second order terms are neglected, then we get:

v
CP = = 2 ;— (6.3.7)
1w

Finite Element Solutions

Fig. 6.3 shows the analytical and finite element (medium and coarse
mesh) solutions for subcritical flow at M, = .5

The time steps for the regular and coarse meshes were set to 0.23 and
0.46, respectively. The solutions at the erd of 30 steps were taken as steady

state solutions. For the medium mesh, convergence was achieved in about
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20 steps.
L . 2 T .

The finite element solutions for A and A A~-forms are shown in
Figs. 6.3(A), (B) and 6.3(C), (D) respectively.

The values of CP(CP) and ul(U) are plotted along the airfoil.

The numerical solutions are in close agreement with the analytical

T . .
solution except for the variable ul(U) when the A A-form 1is used. This
2

discrepancy is the main empirical reason we have for favoring the A -form.

When it comes to other variables, such as ¢ and e , similar discrepancies

. 2 T
were observed between the solutions produced by A and A A-forms.

Remarks

1. The analytical solution predicts infinite, and thus discontinuous,
values at the leading and trailing edges.

2. The computational boundaries did not seem to notably influence the
solution near the airfoil.

3. It is interesting to observe that the results for the coarsest mesh
are in close agreement with the analytical solution.

4. The Galerkin algorithm, on the other hand, produced highly oscilla=-
tory results which fed back into the operators of the problem and caused the

results to diverge.

6.4 Supercritical Case

We compare our solutions, at free stream Mach number 0.84, to the finite-
difference solution of Barton [B5] who used the flux vector splitting scheme
of Steger [S2, S3].

The finite difference grid has 97 X 33 points with 75 points along the

airfoil. The boundary condition on the airfoil was taken to be the same as
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ours, as given by (6.1.8). However, at the outer boundaries of the compu-

tational domain, free stream boundary conditions were imposed in Barton's

calculations.

Finite Element Solutions

Fig. 6.4 shows the 800-iteration solution of Barton together with the
finite element solutions for coarse, medium and fine meshes.

The time steps were set to 0.40 for the coarse mesh and to 0.20 for
the medium and fine meshes. For the coarse mesh, the 60-step solution, and
for the medium and fine meshes, the 120-step solutions, were taken as the
steady-states.

We observe>that the medium and fine meshes produced very similar results
and they are in agreement with the Barton solution, except for a 3-4% shift
in the location of the shock front. It is known that the way the boundary
conditions are imposed can change the solution considerably [BS, HS5, S1].
Because we imposed different boundary conditions at the outer boundaries of
the coﬁputational domain, and especially, becausg we imposed a "wall" bound-
ary condition, rather than a free stream boundary condition at the upper
boundary, we are not surprised that there is some difference between the

results of Barton and ours. This may be explained as follows:

It is known that as the free stream Mach number gets higher, the shock
front moves downstream. When we check our Mach number at the points along
the upper computational boundary, we see that it is not egual to the free
stream Mach number 0.84, but higher (about 0.85-0.86). This is consistent

with the downstream shift of the shock front we obtain.
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The coarse mesh (which is really much too coarse for this type of problem)
did the best that could be expected. The peak point of the shock is about
at the same location found by the medium and fine meshes. The coarse mesh,
however, has only two elements between the peak and the trailing edge, and
this is not enough for a distinct representation of the pressure profile to
tﬁe right of the shock front.

The medium and fine finite element meshes, compared with Barton's differ-
ence grid, are also very coarse. Thus we can conclude that, even with rela-
tively crude meshes, the finite element algorithm performed very well on fhis

problem.
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CHAPTER 7

Conclusions

In this work we presented a Petrov-Galerkin finite element algorithm
for first-order hyperbolic equation systems. The immediate purpose was to

solve fluid dynamics problems governed by the conservation-law form of

the compressible Euler equations. Finite element algorithms, inherently,

can be easily applied to problems with arbitrary geometries and boundary con-
ditions. This permits us to utilize the algorithms developed for complicated
domains that finite difference algorithms would, normally, have difficulty
with. |

The Petrdv-Galerkin algorithm presented here is a generalization to hyper-
bolic systems of the streamline upwind/Petrov-Galerkin algorithm developed by
Hughes and Brooks [B7, B8, H12, Hl4, H15].

We conducted an extensive stability and accuracy analysis on a linear
model problem and observed that the algorithms suggested have desirable
properties. Compared to the usual Galerkin algorithms they minimize spurious
oscillations without losS of accuracy.

We tested our algorithms on several problems with governing equations in
conservation law form. Particular attention was paid to the cases with shocks.
In one dimension, numerical experiments were made on linear transient,
noﬁlinear transient, and nonlinear steady problems. We compared the numerical

solutions to analytical ones and observed that they were generally in very

close agreement. The algorithms handled shock fronts very satisfactorily;
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the shock fronts were, for the most part, very crisp, with minimal spurious
oscillations. The usual Galerkin algorithm on the other hand, was ineffec-
tive for problems with discontinuous solutions, while for problems with

smooth solutions it performed satisfactorily.

In two space dimensions, we tested the algorithms on a thin biconvex
airfoil problem. For both subsonic and transonic cases, the algorithms
proved to be successful. For the transonic problem, the location and magni-
tude of the shock front was in good agreement with Barton (Steger flux-vector
splitting) solution [B5, S2, S3]. The subsonic case results were in close
agreement with a linear analytical scolution. For the subsonic case, we
obtained a good solution even with a very coarse mesh. For the transonic
case, the coarse mesh solution was not as good as the medium and fine mesh
solutions, yet, was gqualitatively satisfactory.

Overall, the finite element algorithms suggested here performed very well
for problems with smooth and discontinuous solution. The optimal selection
of the time parameter, T , which appears as a factor in the perturbation part
of the weighting functions, needs further investigation. This needs to be pur-
sued from the standpoint of nonlinearities and shocks which are, of course,
prime concerns in solving the compressible Euler equations.

We believe that, with the recent advances in the development of Petrov-
Galerkin algorithms, the finite element method has now become a viable alter-
native in computational fluid dynamics. However, the efficiency of finite
element algorithms still needs to be improved, especially with respect to
decreasing storage regquirements. Recently, an "element-by-element" approch

to the finite element formulation has been proposed by Hughes, Levit and Winget
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(see [H17]). The preliminary results seem to be promising, particularly

for problems with symmetric operators. Eventually, with the help of such
new concepts, the finite element method can be expected to become an economi-
cally competitive and powerful analysis tool in the fi~ld of computational

fluid dynamics.
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APPENDIX I

The Euler Equations

I.1 General Principles

The compressible Navier-Stokes equations, with no source terms, can be

written as a system of conservation equations:

U, o+ F o= 0 ,  1<3<n (I.1.1)

~t ~3.3 sd

where U 1s the vector of conservation variables and the 3%'5 are flux

-~

vectors, which are, in general, functions of U and its spatial derivatives:

& = FU, U ) (1.1.2)

If we neglect dissipative effects (i.e. conduction, viscosity, etc.)

then the flux vectors are functions of U only:
F = ég(g) (X.1.3)

and (I.1.1) is called the Euler equations (or the inviscid gas dynamics
equations).

Let us write the Euler equations in a quasi-linear form:

U . .= .1.4
L Y 0 (1.1.4)

where
éj = agji/gu (I.1.5)
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Consider the linear combination of coefficient matrices:
A = Kk.A, (I.1.6)

where Xk 1s a real vector. Without loss of generality, we take k to
be a unit vector. The egquation system of (I.1.4) is hyperbolic if for

each k there exists a non-singular transformation matrix S such that

the similarity transformation
S'as = A (I.1.7)

diagonalizes. the matrix A . Here 4 is a real diagonal matrix. It turns
out that, for the Euler equations, this similarity transformation also symme-
trizes the individual coefficient matrices simultaneously. This, in general,
cannot be expected for all hyperbolic systems.

To determine the transformation matrix S Wwe need to go through the
usual procedure of finding the eigenvalues and eigenvectors of the matrix A
(see [T1, W2, W3]). Wé go through this procedure in two phases. The first

phase consists of a transformation into the primitive variables form:

u- ‘ut. = 1.
Ue + gjg,j 0 (I.1.8)
where
A = otao (I.1.9)
~3 4 ~3=
Q0 = ou/du” (I.1.10)
and
A" = k.Al (L.1.11)



106

Here " ~ " yefers to the frame of primitive variables.

coefficient matrices have simpler forms, thus,
eigenvalues and eigenvectors.

In the second phase, the operators R and rR7L,

-

A , are constructed and another transformation is performed:
>+ AtU*, = 0 |
~,t ~j~lj ~

where

2 -’l - '-l
A = R ‘R = (QOR) A (QR)
~3J ~ o~ = o I
R = By7/0U°
and
&% = k.AZ
< i
Here " * " refers to the frame in which A® is a diagonal matrix.

transformation matrix S of (I.1.7) is, then, egual to the product

In this frame,

the

it is easier to find the

which diagonalize

(1.1.12)

(I.1.13)

(1.1.14)

(.1.15)

The

QR.

Further, in this last frame, the individual coefficient matrices are symme-
tric:
= T 3
(A = A I.1.16
~3) 3 ( )
In the following sections, we define all the arrays involved in
three, two and one space dimensions.
I.2 Three—-dimensional Case
The conservation variables vector and flux vectors are
(1
et ]
u = p#u‘?} (I.2.1)
U3
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/“jp N
ujpul + Gjl p
%g = J u;pu, + éjz p /p (I1.2.2)
ujpu3 + 6j3 p

\uj(pe + P) .

where p , u and p are density, velocity and pressure respectively; and

Gij is the Kronecker delta. The total energy per unit mass, e , is the

sum of the internal and kinetic energies per unit mass. An equation of

state relates the pressure to the other variables. That is:

p = pl, i) (1.2.3)

i= e~z |ul? ] (1.2.4)

where 1 is the internal energy per unit mass. If we have an ideal gas

then the equation of state becomes:
p = (y-1 pi (1.2.5)

Here 7Y is the ratio of the specific heats.

The coefficients matrices are:
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1 6 u
1% - ¢
-lYu

(I.2.6)



where

Matrices for the

and

<1

= v -1

- uy/p

7ﬁ2/2

e

ye - ?ﬁZ/Z

Pu Du2
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pu,

1/p

where a blank slot indicates a zero term.

The primitive variables vector is:

an

Y

(1.2.7)

(I.2.8)

transformation to the frame of primitive variables are:

o~
H
»
N
D
O

~—

(1.2.10)

(r.2.11)



The coefficient matrices in the frame of primitive variables are

by —
u. S. §. §. 0
J j1° 32p 33°
. S,
Yy jl/p
A, = . 5.
~J . 32/p
uy 6j3/o
2 2 2
0 .. pc §..pc 8. .pc u,
L 31° 52° 53 i
wvhere ¢ 1is the acoustic speed:

The eigenvalues are:

110

Yp/p

Q
f

The matrices for diagonalizing A (see [W2, W3]) are

Ky k,

0 - X,

R = Ky 0

- Ky k1

0 0

[ 0

1

Ky kg

R = k, K,
0 kl//5
o - kA2

k3 o/ (/2 ¢) 0/ (/2 ¢ -
K, k V2 -k V2
-k, ko/V2 - %, /V2
0 k4/v2 ~ ky/V2
0 pc/V2 oc/V2
L - k2 - kl/c2 i
0 kl - kz/c2
- X, 0 - k3/02
Ky /v2 Ko /2 1//2 oc)
- kN2 - ka2 1/6/2 pe)

-

defined

(1.2.12)

(I.2.13)

(r.2.14)

(T.2.15)

(I.2.16)
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The symmetrized coefficient matrices are [W2, W3]

S5aka = Sy3ka S5aky - Gypky
L Sy2k3 7 Sy3ky 853ky = 833k4
where
X,
J

I.3 Two-dimensional Case

S31%2 7 S42k

8

j1kg = S50k

= ckj//f

6j2k3 - 6j3k2

~i
|

i3l j1m3

§ -~ 8,

j1%2 = O52%y

u. + ck.

8

§..k

3371

j1°2

j2K3

- 8,

-8

-3

e

j3¥2
3173

j2¥1

The conservation variables vector and flux vectors are defined by

[ =

(I.é.l?)

(r.2.18)

(I.3.1)
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The coefficient matrices are

__2 —
8,,Yu%/2 = usuy ! S5qup - 851V
|

i +u'
i
§..yu?/2 - u.u S 8. T
j2 2 j142 2™
j
— |
(Yu® - yelu ? §..€ - yu.u
j j1 j1

112

(ujp

u + 6.
uyee T oy P
ujpu2 + 6j2 P

uj (Pe + P)

defined by:

puy u, 1/Y

—d

(.3.2)

(1.3.3)

(.3.4)
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and
1
- u,/p 1/0
Q—l - 1 (1.3.5)
- - u2/p /0
-2 — — —
Yo /2 Yy - Y4, Y |
The priﬁitive variables vector is
p
u
v’ o= 1 (1.3.6)
)

by _ —
&, §,
u, S../P
Ay = ) " (I.3.7)
Uy éjz/p
2 2
_O Gjlpc 8 ,Pc uj _

The eigenvalues are:

Ay = Ay + cC r A=A =c (1.3.8)

The matrices for diagonalizing A~ are [W2, W3]:

1 0 o/ (V2 &) p/(V2 o)
0 k k,/v2 -k, V2
R = 2 1 1 (1.3.9)
~ 0 - kg k2//5 - kz//i
0 0 pc/v2 pc/vV2 _
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and
1 o 0 - 167
1 oo |0 ) ! 0
~ 0 K, /Y2 k,/V2  1/(/2 pe
0 -k N2 - kz//E 1/(/2 pe)
The symmetrized coefficient matrices are defined by
A =
~J
. -
u, o 0 0
J
0 uj 6]1k2 - 6j2kl 6]1k2 - 532 1
S..k, - S..k. + : 0
0] Jlk2 52%1 uj c kj
0 6jlk2 szkl 0 uj - cC kj-J

I.4 One-~dimensional Case:

The conservation variables vector and flux vector are

up
F o= upu + p

u(pe + p)

The coefficient matrix is

(I.3.10)

(I.3.11)

(I.4.1)

(I.4.2)
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0 1

A = (y - 3)u2/2 - (y -

e

3Ju

(?ﬁz - ve)u Ye -~ 37&2/2

_'Y‘

Yu

(I.4.3)

Matrices for transformation to the frame of primitive variables are

1
0 = | p
u /2 Pu
and
—l
g_l = - u/p 1/p
?ﬁ2/2 - yu

The primitive variables vector is

The coefficient matrix in the frame of primitive variables is

M 0
2= o
0 pc
The eigenvalues are:
Xl =qu
A2 = Al + c , XB = Al -

/Y|

(I.4.4)

(I.4.5)

(I.4.6)

(I.4.7)

(1.4.8)



The matrices for diagonalizing g' are [W2, W3]:

[ 1

R = 0]

and

0

b

1le

p/(V2 c)  p/ (V2 c

1/V/2 - 1/V2

pc/V2 pc/vV2 N
0 - l/c2

1/V2  1/(/2 pe)

- 1//2 1/ (/2 pc)_J

The diagonalized ccefficient matrix- is

[, N

(I.4.9)

(I.4.10)

(I.4.11)
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APPENDIX II

Stability and Accuracy Analysis of Algorithms for the

One~dimensional Linear Parabolic Equation

II1.1 Development of the Tools for the Analysis

II.1.1 Introduction

Model Problem: Diffusion Equation

One-dimensional diffusion of a function

following parabolic equation:

U(Xlt)

is governed by the

(Ir.1.1)

where K is the diffusion coefficient. An initial condition of the follow-

ing form is assumed:

u(x, 0) = kX

(IT1.1.2)

The analysis, arguments, parameters, etc., defined in this appendix are

mostly the same, or very similar to, those of chapter 3; we will just state

state the ones which are different.

Exact Solution

The exact solution is obtained by separation of variables, as was

done in chapter 3. The spatial component of the solution is given by

(II1.1.2). The damping coefficient and the frequency of the temporal com-

ponent are:

(IT.1.3)
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II.1.2 Finite Element Solution

Spatial Discretization

For the weighted residual formulation of the problem we use the usual
weighting function which results in the (Bubnov-) Galerkin formulation. That

is

=
I
=

(IT.1.4)

The resulting semi-discrete egquation

M (IZ.1.5)

1 g
+
X9}
i<
i
[N e]

is obtained by following a procedure which is very similar to the one we

followed in chapter 2. The element level matrices @e and c€ are defined

~

differently:
mS, = J(°N N, an (II.1.6)
ab a'b i
08
e —
Cap = fK Na,be,x an (Ir.1.7)
oe

Assuming constant K and mesh spacing h , and going through the

same arguments that we went through in the corresponding parts of chapter 3,

the jth equation of the system of egquations can be written as:

‘\j_l
Ep 7+ 2pm = 0 (I1.1.8)
2 <r h =<2 % T
Xj+l
thus:
h D : 2 = 0 I.1.9)
5D, ET+K{DET = (IT.1.
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We define the scalars M and C corresponding to M and C as:

M = l-D E (I1.1.10)
2 ~r ~
2 Kk At
At C = Z——D_ E (IT.1.11)
h2 ~2 ~

The non-dimensional parameter CK is defined as:

c, = 2k At (I1.1.12)
2

We note that «/h has units of velocity; thus CK can be regarded as

a "diffusion Courant number".

The problem is reduced to solving the following ordinary differential
equation

MT+CT=20 (IT.1.13)

Numerical Frequency and Damping Coefficient

Going through the same steps we went through in chapter 3, we obtain

RTAS - A= 1+2(a-w°- 1) (I1.1.14)
where
R = (% +a At cNy/m (II.1.15)
0 = At c®m (II.1.16)
AtC = C. D, E (II.1.17)

M+ o At P (I1.1.18)

=|
i
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Then

VAt = 1In(tr A) < (II.1.19)

For comparison, we need to express VAt in terms of the same dimen-

sionless parameters; from (II.1.3):

VAt = -k k2 At = -.% c. q° (I1.1.20)

We define the analytical and numerical amplification factors, Z and

Z 7 as:

evAt

[\N]4

IT.2 Unified Analvysis of Algorithms

I1.2.1 Introduction

When we study the stability and accuracy of algorithms for the diffu-
sion equation, we classify the algorithms considered as implicit and explicit
types.

This time we do not use Petrov-Galerkin algorithms, therefore, the
type of implicit algorithm will solely depend on the parameter =r
(defined in section 2.6) which specifies the way mass terms are integrated.

In the diffusion problem, we observe from (II.1l.21) that the exact
amplification factor has no imaginary part and 0 < 2 < 1 . The numerical am-
plification factor has no imaginary part either. However, we also have to

make sure that the numerical solution is stable.

evAt (Ir.1.21)

(I1.1.22)
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Graphically, we compare the exact and numerical amplification factors
and inspect the ratio of the numerical damping coefficient to the exact damp-
ing coefficient for several algorithms.

Obtaining closed form expressions for Z and the damping ratio E/E
is relatively easy, yet, these expressions are not in a simple form. One can
expand the damping ratio in At and h , and observe the temporal and
spatial accuracies of the algorithms.

The Galerkin algorithms use the integration stencils:

Dr = 2(r; 1-2», r) (I1.2.1)
1 1

D = - - -

D, =3, 1.-35) (I1.2.2)

Then the scalars M and AtC become:

M = 1 - 2xv (I1.2.3)

Atc = CK v (I1.2.4)
when

v = 1 - cosq (I1.2.5)

IT1.2.2 Implicit Algorithms

For implicit algorithms, the amplification factor from (II.1l.14) is

~ C .V
2 = — = l —_— °
oo 1+ V(-2r +ac) (11.2.6)

The stability limits are determined by the condition:

~

1Z2] <1 (IT.2.7)
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The inequality 2 < 1 dictates that

1 + 20LC,< > 4r (1r.2.8)

This condition is automatically satisfied as long as r 5_%-. The second

inequality Z > - 1 requires that:
CKV(2u -1 > 4rv - 2 (11.2.9)

Since r < from the first inequality, this condition is satisfied as

|

1 . - - - )
long as o 235 . We summarize the unconditional stability conditions for the

implicit algorithms as:

and ¢ 2.%‘ (I1.2.10)

| =

r <

For the accuracy analysis, we can employ asymptotic expansions of the
damping ratio in At and h . We expand é/g in At after setting h = 0

while, for expansion in h we first set At = 0 . These expansions are:

—§= h= 0 =l+(Kk2At)<]§‘—-oc>
+ (K k2 At)2 (%-+ az - u)
+ O(Ats) (I71.2.11)
£ _ 1
g At___o—-l+(kh) (r 12>
4
+ 0(h™) (I1.2.12)

Observe that from (II.2.11), o =% is the condition for second-order
accuracy is time. From (II.2.12), we see that second-order accuracy in space

is automatic, and that the value r = l/12 results in fourth-order accuracy.
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II.2.3 Explicit Algorithms

Explicit l-pass Algorithm

For this algorithm, the amplification factor is:

Z = 1-9 = 1- c .V (II.2.13)
The inequality Z < 1 1is automatically satisfied since CK V>0 . The
second inequality Z > - 1 dictates that Cc V2 2 . The worse case occurs
when V =2 ; then, C < 1 is the stability limit,

K

For the accuracy analysis, the expansions of the damping ratio in At

£ _ 1 2 1 2 2
g) h =0 1+ ‘2‘ (k k= At) + 3 (k k° At)

+ 0(Atd) (I1.2.14)
£ - L 2 L omh 2.15
: At = 0 1 - > (k h) (I1.2.15)

Thus the l-pass algorithm is first-order accurate in time and second~

order accurate in space.

Explicit 2-pass Algorithms

The amplification factor for these algorithms is

Z = 1+Q(R=-2) = 1+ Co V(= 1+ V(- 2r +ac,)) (II.2.16)

The inequality 2 < 1 requires that C'< V(-1 - 2rv + ac,. V) <0 ;

this leads to

1 + 4r

T (IT.2.17)
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The inequality 2 7 - 1 dictates that Ce V(1 + 2rv - ac. vy -

2
one can show that this is satisfied as long as a > %- and %—. Combin~-

ing these inequalities with the inequality of (II.2.17), we can state that the
maximum value C can assume is 2, corresponding to o =% and r = %

K

The expansions in At and h are:

(8

1+ (kK2 At),(é - <)

h =20 2
2 2 {1
+ (K k© At) (3-- a)
3 T A 7O
+ 0(At7) (IT1.2.18)
£ _ 2 (L1
(g) peop = Lt Gn @ 17)

+ omd (I1.2.19)

Thus, with o = % second-order accuracy is achieved in time; and, as
in the implicit case, < =i%- can raise the spatial accuracy from second to

fourth-order.
I1.3 Summary
Asymptotic expansions, stability limits determined analytically, and

graphical representations of Z (figure II.l) and é/g (figure I1I.2) are

utilized for the stability and accuracy analysis of the algorithms considered.

Stability
1
We observe from Fig. II.l that for a = §-, c. = 0.2, 0.4, 0.6, 0.8, 1.0
and g €]0, m[ , all the algorithms considered had amplification factors

which remained in the interval [-1, +1]; that is, all were stable. This can

alsc be deduced from the stability limits determined analytically.

For the implicit algorithms (GC and GL) we have stability as long as
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Figure II.1 BAmplification factors for heat equation algorithms.



1

r <3 and o i'% . With o = %-, both the consistent mass (r = =) algo-

|+

rithm (GC) and the lumped-~mass (r = 0) algotithm (GL) are therefore
stable.

For the explicit l-pass algorithm (El), we found that the stability
condition is CK-S 1 (independent of r and a); Fig. II.l1 (D) also shows
this clearly. We recall that CK <1 1is the condition for Z not to
drop below - 1.0; in Fig. II.1 (D) we observe that the curve for Co = 1

just touches the stability limit at g = T.

For the explicit 2-pass algorithms (E2), the stability requirements

are C_ < (1L +4r) , « 1'% PR 5_%’. The consistent mass (r = %0 algo-

rithm with o = %g satisfies the restrictions on the values of o and r ;
. 5

as a restriction on ‘CK ; we get CK 5_3 . The lumped mass (r = 0) algo-

rithm with ¢ = %- has a restriction C)< <1.0.

Accuracy
For the accuracy of the algorithms, Fig. II.2 provides information for
1 .

a =3 CK = 0.2, 0.4, 0.6, 0.8, 1.0 and points away from gq = 0 . The

asymptotic expansions on the other hand provide information needed in the
neighborhocod of g = 0

We observe from Fig. II;Z that the GC implicit algorithm overdamps while
GL implicit underdamps. Similarly, GC- E2 overdamps while GL- E2 under-
damps. The explicit l-pass algorithm, on the other hand, overdamps or under-
damps depending on the value of CI< . - The crossover point above which over-
damping occurs, is about CK = 0.4 .

The asymptotic expansions show that all the algorithms considered have

1 1

second-order spatial accuracy for r # iz - For r = 13’ the implicit
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and explicit 2-pass algorithms attain fourth-order accuracy. The algorithms
considered have first-order temporal accuracy for G # %-. For O =3, the

implicit and explicit 2-pass algorithms attain second-order accuracy.
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APPENDIX III

Stability and Accuracy Analysis of Algorithms for

One~dimensional Linear Second-order Hyperbolic Equation

III.1 Development of the Tools for the Analysis

III.1.1 Introduction

Model Problem: Wave Equation

One-dimensional, undamped wave motion is governed by the following

second-order hyperbolic equation for U(x, t):
8 - K U = 0 (ITr.1.1)

1
where (k) ? is the wave-propagation speed.
The initial conditions associated with the problem are assumed to be

of the form:

U(x, 0) 1kx (III.1.2)

It
(o
®

U(x, 0) v etkX (ITII.1.3)

We note that these could be viewed as Fourier components of a general set of

initial conditions for U and U .

Exact Solution

For constant propagation speed, assuming a solution of the form

Ulx, t) = X(x)T(t) (IIT1.1.4)

leads to the following spatial and temporal components for the function
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U(x, t):

X(x) = e (III.1.5)

+Vt -Vt

T(t) = A,e + A2e (IT1.1.6)

where the constants A; and A, depend on the constants U, and V,

and

Y = -xk (II1IT.1.7)

We define the damping coefficient & and the frequency w . as

(- &, w) =v =ik k (III.1.8)

The exact solution is seen to have no damping.

IIT.1.2 Finite Element Solution

Spatial Discretization

For the weighted residual formulation of the problem, we use the usual
weighting functions (W = W) which lead to the (Bubnov-) Galerkin forrulation.

The resulting semi-discrete equation
Mv + Cv = 0 (I1I1.1.9)

is obtained by following a procedure very similar to the one we followed in

chapter 2 and appendix II. The element level matrices M® and c® are de-

fined as:
e .
m. o= fNaNb daq (III.1.10)
Qe
Ce = an
b <Ny oV, x (Irr.1.11)
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Going over a sequence of steps as we did in chapter 3, we end up with

the following ordinary differential equation

MT + CT = 0 (IIT.1.12)

Here the scalars M and C are

1
M = 3D, E (I11.1.13)
2
2 2K At
At Cc = D, E (IIT.1.14)
2 ~2 =
h
For the purpose of analysis, we assume constant K and h . The
dimensionless parameter C‘< is defined as
2 2
2k At 2 VKAt
- = 2cC = 2|7 (I171.1.15)
h2 K h

Here, CK is a Courant number based on the propagation speed K.

Time Integration

The ordinary differential equation of (III.1.12) can be solved by a
family of time integration schemes described in [Hll]. We adopt the repre-

sentation

v = [7, T, T] (III.1.16)

and let Yn denote the approximation to Y at the nth time step.

Given Yn , we go through a predictor phase and an iterative phase
to calculate Y
~n+1
. . . 0]
In the predictor phase, we calculate the zeroth iteration value, Y£+; ,

by the following operation:
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(0)
- P Y I ado..
¥n+l P Zn (IIT.1.17)

Here P is the predictor matrix defined as:

2
1 At (1-2:3)%3

P = 0 1 (L - a) At (I11.1.18)

where At 1is the time step and o , B are the Newmark parameters which’

control the stability and accuracy of the algorithm.

The iterative phase starts with the zeroth-iteration value Y(Si
~n
and continues according to the recurrence rule below:
. (i) . (i+1)
Given gn+l solve the following system for ¥n+l
L om(i) L (1) _ = (1) R, (1)
e e A <o) (II1.1.19)
o (1) _ (1)
ATn+l = o At ATn+l (IIT.1.20)
ar® o g ae? agtt) (III.1.21)
n+l n+l T
=(i+l)  _ (1) = (1)
Tn+l Tn+l + ATn+l (I11.1.22)
o (1+1) _ s (1) + (1)
The1 = Tpyp AT (III.1.23)
(i+1) _ (i) (i)
Th+1 Tae1 AT 1 (III.1.24)

The superscripts L and R refer to the left and right-hand sides of
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(III.1.19). We reserve the option of having different evaluations for

M and C on different sides, as in chapter 3.

The recurrence rule defined above can be expressed as:

(i+1) _ (i)
~n+l = Jra (IIT.1.25)
J 1is the iteration matrix:
M- g a’c® o - 8 AR
J = é - a At c® 1 - a At MR (II1.1.26)
7 M
- cR 0 M- MR
_ —
where
Moo= M+ oA ch (II1.1.27)
Combining the predictor and iterative phases:
Yo - A {n (I11.1.28)
— S
é = g E (IIT.1.29)

Here S 1is the number of iterations performed in the iterative phase.

Exploiting the fact that det P o,

det JS det P = 0

det A

(IIT.1.30)

4

we determine that at any time step, ntl , %n+l can be expressed in terms

of Tn+l and ’I‘n+l . That is:

n+l 1l "n+l 2 "n+l

(IT1.1.31)
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We further observe from the structure of the matrix J that the iterates

T(l+l) and %(l+l) have no dependence on féii

This 1 -
n+l n+1 s, of course, a con

sequence of the absence of the T term in the ordinary differential equation

of (ITII.1.12). This observation suggests that we extract the submatrices J

and P from the matrices J and P respectively:

~

_ L M-8 ac’cR - g At
Jg =z R - = (III.1.32)
M - C M- M
2
B [ 1 At (1 -28) &F
E = = (I11.1.33)
l 0 0 0
and rewrite (III.1.28) in a different form:
4 5 N . -
T(i+l) T(1)
n+l n+l
1 > = 7 > (III.1.34)
v (i+1) (1)
Tﬂ+l Tn+l
.. P y
r N
n+
| Tl
-8 —
= TP Y (ITI.1.35)
T ~ ~ ~n
. n+l )
Ty = T+ (1 -o)bt T +abdtT 4 (IIT.1.36)

Eg. (III.1.35) reveals that the relation of (III.1l.31) degenerates to

the form:

(IIT1.1.37)

n+l n+1

with Y being
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J
21
= — II1.1.38
M 35 ( )
11
-5
where 3?1 and 3?1 are the components of g

By adopting the equivalents form of (III.1.35)-(III.1.36), we need only
to calculate the Sth power of a 2 X 2 matrix instead of a 3 X 3 matrix.
Besides, the only difference between the matrix E' here and the matrix J
of chapter 3 is that the term BAt2 replaces the term oAt . With this

in mind, by analogy, we write the eigenvalues of J from (3.1.57)-(3.1.58):

~

Ay =1 (III.1.39)
Ay = 1 - MR+ B At2cR)/ﬁ' (III.1.40)

By way of a procedure similar to the one in chapter 3;

. . |¥-8D At2cR - B B AR
J = = —~ R _ - R (ITI.1.41)
- M - b C M-DbM
where
S
b = L- (1 -R (IIT.1.42)
R
R = (Mm% + B At?cRy (ITI.1.43)
It is interesting to note that the only difference between the
matrix J and its Sth power is the insertion of a b term which
accounts for the number of iterations. From (III.1.38):
= ~R
-BcC .
= IT1.1.44
: - 2 R ( )
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and from (III. 1.35)—-(IIX.1.37)
Tn+l Tn
. = A* . (III.1.45)
Tn+l Tn
with A* given as
r P r At
A* = _ o (ITI.1.46)
Atul (1 - @) +arp] (L +a)r U
where
— 2 2
u = At“u , p = 1+ (At"/2)(1 - 2R)u
and
r = M - B b At°C™) /M (ITT.1.47)

Numerical Frequency

We are mainly interested in

tr A*
det %*
where
E
The elgenvalues 21 and 52
the gquadratic equation
2% - tr

the invariants of the matrix A* , which are:

(II1.1.48)

2 - E(1 + 20)

1+ E(1 - 20) (I11.1.49)

it

(IIT.1.50)

of the matrix A* are found by solving

A*Z + det A* = Q (ITI.1.51)
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Assuming a solution of the form:

T = A

JViben o Volen (III.1.52)
n 1 2

*

one can show that the eigenvalues of A are related to GlAt

and §2At by

Vi At _ §2At o
e 1 B e = Z2 (I11.1.53)

N

The eigenvalues can be used for comparing the numerical V to the
exact V .

We now have Zl and 52 calculated in terms of two dimensionless
barameters gq and C,< . We also need to express V 1in terms of the

same parameters. From (III.1l.8):

VAt = (0, Atvk k)

It

(0, CK q) (IIT.1.54)

while

~

v At = 1n(Z

1,2 (IT1.1.55)

1,2

I1I.2 Unified Analysis of Algorithms

I1X.2.1 Introduction

Stability and accuracy analyses of algorithms for the wave equation
are made for the implicit and explicit cases. Petrov-Galerkin algorithms
are not introduced. The type of implicit algorithm depends only on the «r
term (defined in section 2.6).

The Galerkin algorithms utilize the integration stencils

2{r, 1 - 2r, r] (IIT.2.1)

l»)
[

1
D, = [—‘% Pl -3 (III.2.2)
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The scalars M and At2C then become:

M = 1 - 2rv (I11.2.3)
atc = 2ci v (III.2.4)

where
i VvV = 1 -cos g (I11.2.5)

For consistency with the exact solution, we need to have GZAt =

- BlAt ; that is

(I11.2.6)

it
[o})
0]
ct
b
*

Il
)—l

Z
12

This condition is satisfied if O

For stability, we require that ’ill ’ lézl'i 1 ; but this is possible

only when ‘Ell = IEZI = 1 . The eigenvalues 51 and 52 are given by
the expression:
2
= _  tr A* A
21,2 T T3 AN\T7T (III.2.7)
where
*
trzé = 1-E (IIT.2.8)
A2
= = E(E - 2) (I11.2.9)
Az
Clearly T <0, if and only if

0 <ECZ<2 (111.2.10)
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2
This is the stability condition, because, if %;- < 0 then I%l[ = [22] =1 .

Othexrwise, we would have either [51[ or ]52[ greater than unity.

IIT.2.2 Implicit and Explicit l-pass Algorithms

For an implicit or explicit l-pass algorithm, the term E is

E = (ITX1.2.11)
(1 - 2rv) + 2ec§v

In this expression, if we set r = B = 0 , we get the value of E for the
explicit l-pass algorithm (Warning: This applies to (II.2.11) only, but not
the algorithm in general). From the ineguality of III.2.10 we determine
the stability limigs.

One can show that E > 0 ,  if and only if

2 > 4r - 1
K - 4B

(@]

(IT11.2.12)

It is quite clear that if r < , then this condition is satisfied uncon-~

N[

ditionally.

The inequality E < 2 implies the following condition:

(ar - c2(a8 - 1))V < 2 (I111.2.13)
If B 3_%-, this inequality dictates that:
2 4r - 1
ce o> === .
« 2 48 -1 (I11.2.14)
Clearly, if «r ﬁ_% this condition is satisfied unconditionally. If not,

then we need to satisfy both (III.2.12) and (III.2.14). One can show

that (III.2.14) implies (III.2.12). Therefore (III.2.14) is the key condition.
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1 ,
If B < %—, we cannot satisfy (III.2.13) unless < i_z . Provided that

this happens, the restriction on C’< is given as:

2 1l - 4r

cC < —— .2.15

« S T4 (I11.2.15)
For the implicit algorithm with ¢ = %— and B = %’ we attain uncon-

ditional stability. For the explicit l-pass algorithm with r = 0 and

R =0, the condition of III.2.1l5 becomes

ci < 1. (III.2:16)

IIT.2.3 Explicit 2-pass Algorithms

For 2-pass algorithms
2 2
E = CKV(l + 2rv - 28 ch) (I11.2.17)
One can show that E > 0 if and only if

2 A+l

c. < e (I11.2.18)
For E < 2 , the following condition must be met:
(1 + 4r)°
B > 16 (II1.2.19)
With B8 = %—, both r = é— and r = 0 satisfy this condition. Then
the inequality of (III.2.18) implies that
2 5 1
< — = —
C’< <03 for r G (II1.2.20)
2
C < 1. for r =0 (II1.2.21)
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IIT.3 Summary

According to the stability guidelines of the previous sections, with
o = % and B = T all the algorithms considered are stable (with no modulus
error) for the ranges of C_ € [0, 1] and q € [0, m] . The accuracy infor-
mation is provided by the graphs of Fig. III.l.

The implicit, lumped mass algorithm (GL) becomes less accurate as Cl<
increases. The implicit, consistent mass algorithm (GC), on the other hand,
maximizes its accuracy around CK = 0.6

The explicit l-pass algorithm (El) satisfies the unit CFL condition

defined in section 3.2.4. This is as we would expect, because if C’< =1

*
tr é— = 1l -E=1-~- C2V
2 K
= 1 -V (IT11.3.1)
A2 2 2
i E(E - 2) = CKV(CKV - 2)

= V(v

2) (III.3.2)

and therefore the eigenvalues are

1]

Z) 5 (1-v) £ JVv - 2)

cos q + i sin g

]

oFia (ITI.3.3)

This is the same expression as for the exact solution. The accuracy of
El 1increases as CK increases within the stability regime.

The explicit 2-pass (E2) version of GC 1is more accurate than the



142

3 (A} GC IMPLICIT 3 (8) GL IMPLICIT
4 8
o o
=5 =8
& &
P P
ﬁa ES
5.0 Q.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 a0,
DIMENSIONLESS WRVE NUMBER DIMENSIONLESS WAVE NUMBER
(C) GC (AND GL) EI ~ () GC E2
2 2
q | A
[ ] o’
=8 =8
[¢ nliand o -
< o=
1] o
Q <
Ld [#%]
& &=
! 2
.8 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 1.0

OIMENSIOMLESS WAVE NUMBER

Figure III.1

OIMENSIONLESS WAVE NUMBER

(£} G 2
2 E L E
4
Q
=8
=2
o=
P
%le
[7%)
fr
2
0.0 0.5 I 1.5 2.0 2.5 3.0

a
DIMENSIONLESS WAVE NUMBER

Frequency ratios for wave equation algorithms.



143

implicit version until about CK = 0.8 . At this point they almost have
the same accuracy, and after that the implicit version is more accurate.

GC-F2 maximizes its accuracy between C|< = 0.6 and 0.8
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