A-1

Appendix A
MATLAB Code for X-ray Data and 2D Correlation Analysis

A.1 Save Experimental Parameters..........coooviiiiiiiiininieieee e A-2
A.2 OPEN IMAGE FIlES......ocieiie e A-2
A3 EXIFaC 1(Q) VS. Qv A-4
A4 LOrentZ COFTECTIONoviiiiieiieieeie ettt bbb A-5
AL LONG PEIIOA ...ttt A-6
A.6 SAXS Integrated INTENSILYcoveiieiieii e A-7
A.7 Conventional 2D Correlation ANalYSISccoieiiiiiiniieeeseee e A-8
A.8 HilDErt-NOAa MAFIX......ccciviriiiiiiiiiiieeeee s A-12
A.9 2D Hetero-Spectral ANAlYSIS........ccooiiiiiiiieiice e A-12
A.10 2D Moving WINdowW ANAIYSIS........cccveiiiiieiieie e see s sie e A-14
A1l ACKNOWLEDGEMENTS. ...ttt A-15

A.12 REFERENCES. ... A-16

A-2
Due to the acquisition of x-ray data in many file formats, MATLAB

code was written in order to facilitate data processing. After determination of beam
center and sample-to-detector distance using FIT2D software,* the following algorithms
were employed.

General code is also provided for conventional and hetero-spectral two-

dimensional (2D) correlation analysis, as well as 2D moving window analysis.

A.1 Save Experimental Parameters

This function asks for necessary experimental parameters: beam center (‘x0’,’y0’),
sample to detector distance (‘L’), detector pixel size (‘pixsize’), and x-ray wavelength
(‘lamda’) and saves them in Matlab matrix ‘BNLsaxsApr2009.mat’.

function getparameters

x0=input('Enter x coordinate of center:");
yO=input('Enter y coordinate of center:");
L=input('Enter sample-to-detector distance in mm:');
pixsize=input('Enter pixel size in microns:');
lamda=input('Enter wavelength in angstroms:');
lamda=lamda*10"-10;

pixsize=pixsize*10"-6;

L=L*10"-3;

X0=x0*pixsize;

y0=y0*pixsize;

save('BNLsaxsApr2009.mat'); % save parameter matrix
end

A.2 Open Image Files

This function looks for x-ray images (.tif) in directory ‘dname’ and creates a movie of
I(q) versus q and saves the corresponding 3D matrix. ‘TempA’ and ‘TempB’ are the
slope and y-intercept of the ramp temperature profile, respectively. Variables ‘timeA’ and
‘timeB’ are the slope and y-intercept of the time dependence on the frame number.
‘IC1A’ and ‘IC1B’ are the slope and y-intercept of the IC1 value (prior to sample)
dependence on the frame number. It load background matrices ‘B’ which should be
double-format and corrected for IC1 and any difference for acquisition time. This
function calls radialintegrationBNL.

function waxsdataBNL(dname, TempA, TempB,timeA timeB,IC1A,IC1B,f)
%% prepare for analysis

%load background matrices (only IC1 normalized)
%Iload('Bsaxsls.mat’);

%load('Bwaxsls.mat');

load('Bsaxs7s.mat');

%Iload('PEL161sri871.mat’);

disp(['File selected for analysis: ', dname]);

% create new directories

if isequal(exist(strcat(dname,\movies")),0)
mkdir(dname, movies');

end

if isequal(exist(strcat(dname,\l1vsQ")),0)
mkdir(dname,'lvsQ");

end

waxsfolder=dname;
waxsfiles=dir(waxsfolder);
wsize=size(waxsfiles);
numfiles=wsize(1);

%get movie name

sfile=waxsfiles(10).name;

index=strfind(sfile,'1'); %'r' before for ramps
newdname=sfile(1:index);
moviefile=strcat(waxsfolder,\movies\',newdname," lvsQ";
mov=avifile(moviefile, compression’,'none’,'fps',2);

%find start of files
track=1,
while waxsfiles(track).isdir~=0
track=track+1;
end
intensity=zeros(250,3,numfiles-4);
ii=1;
for count=track:numfiles-2;
if waxsfiles(count).isdir==
sfilename=waxsfiles(count).name;
wholepathwaxs=strcat(waxsfolder,\',sfilename);
imagemat=imread(wholepathwaxs, tiff);
imagemat=double(imagemat)+1;
n=strfind(sfilename,".");
frame=str2double(sfilename(n+1:n+4));
time=timeA*frame+timeB;
Temp=TempA*time+TempB;

IC1=IC1A*frame+IC1B,;
imagemat=imagemat/IC1-f*B;
IvsQ=radialintegrationBNL (imagemat);
intensity(:,1,i))=Temp;
intensity(:,2,i)=1vsQ(:,1);
intensity(:,3,i1)=1vsQ(:,2);
ii=ii+1;
plot(lvsQ(:,1),IvsQ(:,2));
%axis([0 1.94 0 1]); %for WAXS
axis([0 0.12 0 3]); %for SAXS
set(gca,"YGrid','on’);
time2=strcat('Temp=",num2str(Temp)," \circC');
text(0.07,.75,time2);
F=getframe(gcf);
mov=addframe(mov,F);
end

end

mov=close(mov);

intname=strcat(waxsfolder, \IvsQ\',newdname,’_intmat’);

save(intname,'intensity’);

end

A.3 Extract 1(q) vs. g

This function requires the input of a 2D matrix containing intensity values (double)
corresponding to the x-ray scattering image (‘imagemat’). It returns 1(q) vs. q in matrix
‘IvsQ’. It loads the experimental parameters saved in A.1. Start and end pixel counts can
be adjusted as needed. It is important to resize matrices ‘allpixels’ and ‘sortedpix’
accordingly.

function [lvsQ]=radialintegrationBNL (imagemat)

%Iload('BNLwaxsApr2009.mat’);
load('BNLsaxsApr2009.mat");

%%

allpixels=zeros(160801,2); %WAXS: 463761; SAXS: 160801
pixelnum=1;

for xcount=312:712 %WAXS: 168:848; SAXS: 312:712

for ycount=311:711 %WAXS: 173:853; SAXS: 311:711
r=(((0.5*pixsize*(2*xcount-1)-x0)"2+(0.5*pixsize*(2*ycount-1)-y0)"2)"0.5);
gq=4*10"-10*pi*sin(0.5*atan(r/L))/lamda;
allpixels(pixelnum,1)=q;
allpixels(pixelnum,2)=imagemat(ycount,xcount);
pixelnum=pixelnum+1,;

end

end

%%

sortedpix=zeros(160801,2); %WAXS: 463761; SAXS: 160801

[temp, I X]=sort(allpixels);

for count=1:160801 %WAXS: 463761; SAXS: 160801
sortedpix(count,1)=temp(count,1);
sortedpix(count,2)=allpixels(IX(count,1),2);

end

[n,xout]=hist(sortedpix(:,1),250); %can change bin as desired
sizen=size(n);
bin=sizen(2);
Ivsg=zeros(bin,2);
mark=1;
for count=1:bin
Ivsg(count,1)=xout(count); %set binned q
ave=0;
for ii=mark:mark+n(count)-1
ave=ave+sortedpix(ii,2)/n(count);
end
Ivsg(count,2)=ave;
mark=mark-+n(count);
end

%no dezinger
lvsQ=Ilvsq;

end

A.4 Lorentz Correction

This function creates and saves the Lorentz-corrected intensity matrix calculated from the
intensity matrix created in A.2. It also saves each frame as a separate ascii file for
crystallinity evaluation in Origin or other software.

function lorentz

[filename,pathname]=uigetfile("*.mat','Select matrix for ascii extraction’);
disp(['File selected: ', filename])

A=load(strcat(pathname,filename));

mat=A.intensity;

[m,n,K]=size(mat);

lormat=mat;

temp=zeros(189,2); %don't include Temperature values
for count=1:k

for g=1:m
lormat(q,3,count)=lormat(qg,2,count)*2*lormat(q,3,count);
end
temp(:,1)=lormat(1:189,2,count); %1st column is Temp values
temp(:,2)=lormat(1:189,3,count)+0.5;
if count<10
name=strcat('L52cw','00',num2str(count));
elseif (count>9) && (count<100)
name=strcat('L52cw','0',num2str(count));
else
name=strcat('L52cw',num2str(count));
end
save(strcat(pathname,name),'temp’,-ascii’);
end
len=length(filename);
name=filename(1:len-11);
save(strcat(pathname,name,’ lormat’), lormat’);
end

A5 Long Period

This function approximates the long period from the peak of the scattering curve on the
frame range from “start’ to ‘finish’. Note: not valid for noisy data.

function [Lp]=getLp(start,finish)

%% load lorentzian corrected matrix

[filename,pathname]=uigetfile('Select Lorentzian corrected matrix’);

A=load(strcat(pathname,filename));

%intensity=A.intensity;

intensity=A.lormat;

%intensity=A.intmat;

%% adjust matrix size

[m1,n,k]=size(intensity);

intensity(130:m1,:,:)=[]; %was 205 for BNL materials

[m2,n,k]=size(intensity);

intensity(1:10,:,:)=[]; %22 for PEL52,PEL161, and MS3 at BNL; 37 for EH4 for

BNL; 10 for LBL materials

[m,n,K]=size(intensity);

%%

Lp=zeros(finish-start+1,2);

track=1,

for count=start:finish
Lp(track,1)=intensity(1,1,count);
[c,i]=max(smooth(intensity(:,3,count)));
Lp(track,2)=0.2*pi/intensity(i,2,count);

track=track+1;
end

figure(1);

plot(Lp(:,1),Lp(:,2));
xlabel('Temperature (\circC));
ylabel('Long period (nm)’);
plottitle=input('Enter plot title: ','s");
title(plottitle);

len=length(filename);

name=filename(1:len-4);
save(strcat(pathname,name,’ Lpmat’),'Lp");
save(strcat(pathname,name,’ Lpmat'),'Lp",-ascii’);
nameplot=strcat(pathname,name,’_Lpgraph’);
saveas(gcf,nameplot,'fig’);
saveas(gcf,nameplot,'|jpg?);

end

A.6 SAXS Integrated Intensity

This function calculates the SAXS integrated intensity on a frame interval from “start’ to
“finish’.

function [Area]=getArea(start,finish)

%% load lorentzian corrected matrix
[filename,pathname]=uigetfile('Select Lorentzian corrected matrix’);
A=load(strcat(pathname,filename));
intensity=A.lormat;
%intensity=A.intmat;
%% adjust matrix size
[m1,n,k]=size(intensity);
intensity(205:m1,:,:)=[1;
%[m2,n,k]=size(intensity);
%intensity(1:37,:,:)=[1; %22 for all paper materials; 37 for EH4
[m,n,K]=size(intensity);
%%
Lp=zeros(finish-start+1,2);
track=1,
for count=start:finish
Area(track,1)=intensity(1,1,count);
A=0;
for g=2:m
A=A+(intensity(qg,3,count)+intensity(g-1,3,count))*(intensity(qg,2,count)-
intensity(g-1,2,count))/2;

end

Area(track,2)=A,

track=track+1;
end

figure(1);

plot(Area(:,1),Area(:,2));
xlabel('Temperature (\circC)";
ylabel(‘Invariant’);
plottitle=input('Enter plot title: ','s");
title(plottitle);

len=length(filename);

name=filename(1:len-4);

save(strcat(pathname,name,” Areamat’),'Area’);
save(strcat(pathname,name,’ Areamat’),'Area’,'-ascii’);
nameplot=strcat(pathname,name,’_Areagraph’);
saveas(gcf,nameplot,'fig’);

saveas(gcf,nameplot,'jpg?);

end

A.7 Conventional 2D Correlation Analysis

function corrmat
%% Conventional 2D correlation analysis on a ax2xm matrix containing
%% intensity values at equally spaced points along a perturbation

%% load matrix

[filename,pathname]=uigetfile('Select mutli-spectra matrix for analysis');

disp(['File selected: ', filename])

A=load(strcat(pathname,filename));

sepmat=A.sepmat; %adjust if matrix name is not sepmat (ex:
sepmat=A.matrix_name;)

%%
[a,b,m]=size(sepmat);
range=a;

figure(1);

hold on;

for speccount=1:m
plot(sepmat(:,1,speccount),sepmat(:,2,speccount)); %plot all spectra
y(speccount,:)=sepmat(:,2,speccount);

end

xlabel('Raman Shift (cm”~{-1})"); %set axis

ylabel('Intensity'); %set axis

plottitle=input('Enter plot title:','s");
title(plottitle);
hold off;

len=length(filename);
name=filename(1:len-8);
nameall=strcat(pathname,name);
saveas(gcf,nameall,'fig");
saveas(gcf,nameall,'jpg");

%% calculate differential matrix and plot (not necessary)

diffmat=zeros(range,2,m-1);

figure(5);

hold on;

for count=1:m-1
diffmat(:,1,count)=sepmat(:,1,count);
diffmat(:,2,count)=sepmat(:,2,count+1)-sepmat(:,2,count);
plot(diffmat(:,1,count),diffmat(:,2,count));

end

xlabel('Raman Shift (cm”™{-1})"); %set axis

ylabel('Difference in Intensity'); %set axis

title({plottitle;'Change in Spectra'});

hold off;

namediff=strcat(pathname,name,’_diff");

saveas(gcf,namediff,'fig");

saveas(gcf,namediff,'jpg");

depvar=sepmat(:,1,1); % spectral variables
dim=length(depvar);

%% calculate perturbation-averaged spectrum
yave=zeros(1,dim);
for count=1:m
yave=yave+y(count,:);
end
yave=yave/m;

%% plot perturbation-averaged spectrum
figure(2);

plot(depvar,yave);

xlabel('Raman Shift (cm”™{-1})"); %set axis
ylabel('Intensity"); %set axis
title({plottitle;'Averaged Spectra'});
nameave=strcat(pathname,name, ave’);
saveas(gcf,nameave,'fig’);

saveas(gcf,nameave,'|pg’);

%% save average spectrum
avemat(:,1)=depvar;

avemat(:,2)=yave;
nameavemat=strcat(pathname,name,’_avemat');
save(nameavemat,'avemat’);

%% calculate dynamic spectrum
for count=1:m

ys(count,:)=y(count,:)-yave;
end

%% calculate synchronous spectrum
Phi=(1/(m-1))*ys'*ys;

%% if want to set noise threshold to 5%
%][a,a]=size(Phi);

%maxPhi=max(max(Phi));

%for countl=1:a

% for count2=1:a

% if abs(Phi(countl,count2))<0.05*maxPhi
% Phi(countl,count2)=0;

% end

% end

%end

%% plot and save synchronous spectrum

figure(3);

contour(depvar',depvar’,Phi);
%imagesc(depvar',depvar',Phi); %if contour is too noisy
hold on;

plot(depvar,depvar);

xlabel('Raman Shift (cm”~{-1}));

ylabel('Raman Shift (cm”™{-1})");

title({'Synchronous 2D Correlation Spectra:’;plottitle});
axis xy;

hold off;

namePhi=strcat(pathname,name,’ Phi’);
saveas(gcf,namePhi,fig");

saveas(gcf,namePhi,'jpg’);
namePhimat=strcat(pathname,name,’ Phimat’);
save(namePhimat, Phi’);

%% calculate asynchronous spectrum

A-10

N=makeN(m); % calculate Hilbert-Noda matrix (see A.8)
Psi=(1/(m-1))*ys*N*ys;

%% if want to set noise threshold to 5%
%[b,b]=size(Psi);

%maxPsi=max(max(Psi));

%for countl=1:b

% for count2=1:b

% if abs(Psi(countl,count2))<0.05*maxPsi
% Psi(countl,count2)=0;

% end

% end

%end

%% plot and save asynchronous spectrum

figure(4);

contour(depvar',depvar’,Psi’);
%imagesc(depvar',depvar',Psi’); %if countour is too noisy
hold on;

plot(depvar,depvar);

xlabel('Raman Shift (cm”~{-1}));

ylabel('Raman Shift (cm”{-1}));

title({'"Asynchronous 2D Correlation Spectra’;plottitle});
axis xy;

hold off;

namePsi=strcat(pathname,name, Psi");
saveas(gcf,namePsi, fig’);

saveas(gcf,namePsi,'jpg");
namePsimat=strcat(pathname,name,’ Psimat’);
save(namePsimat, Psi’);

%% calculate, plot, and save autocorrelation intensity
v=diag(Phi);

figure(6);

plot(depvar',v);

xlabel('Raman Shift (cm”~{-1}));
ylabel('Autocorrelation Intensity’);
title({'Autocorrelation Spectrum’;plottitle});
nameapow=strcat(pathname,name,’ pow');
saveas(gcf,nameapow,fig");
saveas(gcf,nameapow,'jpg’);

apowmat(:,1)=depvar;

apowmat(:,2)=v;
nameapowmat=strcat(pathname,name,’_apowmat');
save(nameapowmat,'apowmat');

A-11

%%
end

A.8 Hilbert-Noda Matrix

function [N]=makeN(m)
%% calculate Hilbert-Noda matrix
N=zeros(m);
for j=1:m
for k=1:m
if j==k
N(j,k)=0;
else
NQ,Kk)=1/(pi*(k-}));
end
end
end
end

A.9 2D Hetero-Spectral Analysis

function heterocorr

%% Conduct 2D hetero-spectral correlation analysis on two matrices (here
%% SAXS and WAXS data) that contain the same number of points along the
%% perturbation. This is written for ax3xm matrices where there are a

%% spectral variables (which are located in column 2) and m points along
%% the perturbation. Column 3 contains the intensity values. Column 1

%% contains temperatures (not used here).

%% load matrices

[filenamel,pathnamel]=uigetfile('Select SAXS matrix’);

disp([File selected: ', filenamel])

A=load(strcat(pathnamel,filenamel));

sepmatl=A.intensity; %for matrix named intensity or change to
sepmatl=A.matrix_name;

[filename2,pathname2]=uigetfile('Select WAXS matrix’);

disp(['File selected: ', filename2])

A=load(strcat(pathname2,filename2));

sepmat2=A.intensity; %for matrix named intensity or change to
sepmat2=A.matrix_name;

%% establish matrix size -- note: it is required that m1=m2
[al,bl,m1]=size(sepmatl);

[a2,b2,m2]=size(sepmat?2);

%%

for speccount=1:m1

y1(speccount,:)=sepmatl(:,3,speccount); %change if only 2 column
matrix
end
for speccount=1:m2
y2(speccount,:)=sepmat2(:,3,speccount); %change if only 2 column matrix
end
len=length(filenamel);
name=filenamel(1:len-4);
nameall=strcat(pathnamel,name);

depvarl=sepmatl(:,2,1); % spectral variables set 1
depvar2=sepmat2(:,2,1); % spectral variables set 2
diml=length(depvarl);
dim2=length(depvar2);

%% calculate average spectra for each dataset

yavel=zeros(1,diml);

yave2=zeros(1,dim2);

for count=1:m1
yavel=yavel+yl(count,:);

end

yavel=yavel/mi,

for count=1:m2
yave2=yave2+y2(count,:);

end

yave2=yave2/m2;

%% plot average spectra for each dataset
figure(1);

plot(depvarl,yavel);

xlabel('q (A™{-1}));

ylabel('Intensity");

title('Averaged Spectra’);
nameave=strcat(pathnamel,name,’ avel’);
saveas(gcf,nameave,'fig’);
saveas(gcf,nameave,'jpg");
namedepl=strcat(pathnamel,name,’ depvarl’);
save(namedepl,'depvarl’);

figure(2);

plot(depvar2,yave?);

xlabel('q (A™{-1}));

ylabel('Intensity");

title('Averaged Spectra’);
nameave=strcat(pathnamel,name,’ ave2’;
saveas(gcf,nameave,'fig’);

A-13

saveas(gcf,nameave,'jpg");
namedep2=strcat(pathnamel,name,’_depvar2’);
save(namedep?2,'depvar2’);

%% calculate dynamic spectra for each dataset

for count=1:m1
ysl(count,:)=yl(count,:)-yavel,;

end

for count=1:m2
ys2(count,:)=y2(count,:)-yave2,;

end

%% calculate synchronous spectra
Phi=(1/(m1-1))*ys1*ys2;
[a,a]=size(Phi);
maxPhi=max(max(Phi));
for countl=1:a
for count2=1:a
if abs(Phi(countl,count2))<0.05*maxPhi
Phi(countl,count2)=0;
end
end
end

%% plot synchronous spectrum

figure(3);

contour(depvar2',depvarl’,Phi);
%imagesc(depvar',depvar',Phi); %if contours are too noisy
xlabel('g (A™{-1})); %set axis

ylabel('q (AM{-1})"); %set axis

title('Synchronous 2D Correlation Spectra:'’); %set title
axis xy;

%% save synchronous spectrum
namePhi=strcat(pathnamel,name,’ Phi’);
saveas(gcf,namePhi, fig");
saveas(gcf,namePhi,'jpg’);
namePhimat=strcat(pathnamel,name,” Phimat’;
save(namePhimat, Phi’);

end

A.10 2D Moving Window Analysis

function [movwin]=MW?2D(intensity,win)

A-14

A-15
%% conduct moving window 2D analysis on matrix ‘intensity' of window
of size 'win'
[m,n,K]=size(intensity);
%% load desired spectra into y (general spectra)
for count=1:k
y(count,:)=intensity(:,2,count); %for 2 column matrix
end
%% now conduct analysis on smaller windows"
depvar=intensity(:,1,1); %spectral variable
movwin=zeros(k-win+1,m); %2D moving window plot
ycord=zeros(k-win+1,1); %perturbation coordinate
for start=1:(k-win+1)
for count=1:win
ywin(count,:)=y(count+start-1,:);
end
yave=zeros(1,m);
%calculate average spectrum
for count=1:win
yave=yave+ywin(count,:);
end
yave=yave/win;
%calculate dynamic spectra
for count=1:win
ys(count,:)=ywin(count,:)-yave;
end
Phi=(1/(win-1))*ys'*ys; %calculate synchronous spectrum
movwin(start,:)=diag(Phi); %take autocorrelation intensity
frame=start+floor(win/2); % take representative value of frame (or perturbation)
for 'window'
time=10*frame; %set time dependence on frame (or each perturbation point)
ycord(start)=time;
end

%% plot 2D moving window plot
contour(depvar,ycord,movwin,10); %set to 10 contours
xlabel('g (Angstroms™{-1})); %set axis
ylabel('Temperature’); %set axis
end
A.11 ACKNOWLEDGEMENTS
Motivation for this work came from Dr. Eleni Pavlopoulou (University of Athens,

Greece) and Dr. Luigi Balzano (Technical University of Eindhoven, Netherlands).

Understanding of x-ray data analysis was facilitated by Dr. Lucia Fernandez Ballester

A-16
(DUBBLE, ESRF, Grenoble, France), Dr. Timothy Gough (University of

Bradford, UK), Dr. Giuseppe Portale (DUBBLE, ESRF, Grenoble, France), and Dr. Wim
Bras (DUBBLE, ESRF, Grenoble, France). Code development was assisted by Eliot
Gann (ALS, Lawrence Berkeley National Lab), Andrew Metcalf (Caltech) and Meisam
Hajimorad (Caltech). This work was greatly assisted by the National Science Foundation

(NSF) International Research and Education in Engineering (IREE) initiative.

A.12 REFERENCES

1. Hammersley, A. FIT2D. http://www.esrf.eu/computing/scientific/FIT2D/

http://www.esrf.eu/computing/scientific/FIT2D/

	Appendix A
	MATLAB Code for X-ray Data and 2D Correlation AnalysisA.1 S
	A.1 Save Experimental Parameters
	A.2 Open Image Files
	A.3 Extract I(q) vs. q
	A.4 Lorentz Correction
	A.5 Long Period
	A.6 SAXS Integrated Intensity
	A.7 Conventional 2D Correlation Analysis
	A.8 Hilbert-Noda Matrix
	A.9 2D Hetero-Spectral Analysis
	A.10 2D Moving Window Analysis
	A.11 ACKNOWLEDGEMENTS
	A.12 REFERENCES

