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ABSTRACT

The absolute oscillator strengths for the silver resonance
lines, Ag I A A 3281 and 3383, and the cadmium intersystem line,
Cd I X 3261, were measured from the total absorption for both weak
lines and strong lines. For strong lines, cross sections for self-
broadening were measured for the resonance lines of silver, lead
thallium, cadmium, and zinc. In the limit of large oscillator
strengths, good agreement has been obtained with theory, while
for small oscillator strengths, only qualitative agreement has been

found.
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INTRODUCTION

When radiation from a continuous source passes through a gas of
free atoms, selective attenuation occurs at those frequencies capable of
exciting the atoms to some higher state. An examination of an absorption
line thus formed would reveal that it has been dispersed and is no longer
infinitely narrow. This dispersion is commonly referred to as "'line
broadening'. Aside from purely instrumental causes and in the absence
of external electric or magnetic fields, line broadening can be attributed
to the finite lifetimes of the atomic levels involved, to the thermal
motions of the absorbers, and to any collisional processes that perturb
the atomic levels of the absorber.

Collision broadening can be further delineated by the type of
interaction governing the collision. For charged perturbers, Stark
broadening occurs which depends on the inverse square of the perturber --
absorber distance in the Linear Start Effect and on the inverse fourth
power of this distance in the Quadratic Stark Effect. Next in order of
importance comes resonance self-broadening which occurs when the
absorber and perturber are both the same kind of atom. The effect of
this type of broadening is proportional to the inverse €ube of the perturber-
absorber separation. Finally, collision broadening is also caused by the
Van der Waals forces of other atoms present near the absorber. Since
the Van der Waals interaction varies as the inverse sixth power of the
absorber-perturber distance, the broadening due to this cause is important
only at preésures greater than one atmosphere. As can be seen from this
short listing, line broadening encompasses an extensive field. An investi-

gation of this size could not possibly cover the entire field., For more
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extensive coverage of line broadening, the reader is referred to the
rather substantial literature on the subject [ 1] .

The interest of this investigation in collision broadening stems from
the possibility of using collision broadening as a new means of measuring
oscillator strengths. A survey of the various theories of collision
broadening reveals that resonance self-broadening varies linearly with
the quantity NfA, whcre N is the atomic density, f is the oscillator
strength, and A is the central wavelength of the unperturbed atomic
transition. This particular type of collision broadening could, therefore,
be used Lo measure oscillator strengths, provided that a reliable method
be devised for measuring or calculating the cross section for self-
broadening.

At present no reliably confirmed theory exists from which cross
sections for self-broadening can be calculated. All the present theories
[ 1, 2, 3, 4] predict the same order of magnitude, but differ in the exact
numerical value they predict for the cross section. In view of this
situation, no attempt was made to calculate the cross sections from any
theory. Rather in this investigation the self-broade'ning cross section
was treated as an empirical parameter to be evaluated from the data.

In looking for a method to measure self-broadening cross sections,
various methods that had already been used for measuring oscillator
strengths were re-examined for their adaptability to this particular
experiment. Of the various possibilities considered, only two methods
offered real promise; namely, the Hook Method of Rozhdestwensky [ 5]
and the method of total absorption used by King and Stockbarger | 6]

and by Estabrook [ 7 ] . The Hook Method utilizes the anomalous
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dispersion near a strong absorption line to measure the oscillator
strength. It could be used together with a measurement of the total
absorption to yield the cross section for s.elf—broadening. Although the
Hook Method is the more accurate of the two methods, the use of a
Jamin interferometer over long distances renders it difficult to apply.
The method of total absorption was, therefore, chosen for this work.

In this method, a quartz cell is evacuated to a high vacuum
(<1077 mm. of Hg), filled with a metallic charge, and sealed under
vacuum. The cell is placed in a muffle furnace and is heated to vaporize
the metallic sample. The temperature of the cell is carefully measured,
and the uniformity of the temperature along the length of the cell is
ascertained. After the temperature measurement, the cell with the
metallic vapor is irradiated by a source of continuous radiation. The
resulting absorption line is dispersed by a 21 foot concave grating
spectrograph and photographed on fine grain, high contrast plates.

When the plates are developed, the absorption lincs arc reduced to
equivalent widths W}\ by the standard techniques of photographic photo-
metry, Using the temperature measurements, the atomic density can
be determined from published vapor pressure data. A plot of W;/ N
versus N is next made, and the resulting linear slope yields the cross
section for resonance self-broadening.

To summarize then, the primary objective of this investigation is to
adapt the method of total absorption to measure resonance self-broadening
cross sections for strong lines. Measurements will be made over a wide
range of atomic densities and oscillator strengths, and for a number of

different spectral transitions. It is hoped that such measurements will
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serve to broaden present knowledge about resonance self-broadening,
and perhaps even to confirm one of the present theories on the subject.
Lastly as an additional objective, this investigation seeks to measure

the oscillator strengths for Cd I A 3261 and Ag I A A 3281 and 3383.
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I. THEORETICAL AND EXPERIMENTAL PARAMETERS

Before evaluating any experimental results, it would be well to
review the theory of line formation. Thelpurpose for such a resume is
to show what parameters the theory predicts for a spectral line and to
relate these parameters to the experimentally-measured quantities.
First it will be necessary to define the basic terms and mathematical
conventions used throughout this work since the usages of various authors
differ widely.

In this investigation, v in sec. "1 will denote the frequency, and A

in cm., the wavelength of a spectral line. Also the angular frequency

w = 27 will often be used. To avoid possible confusion between the

two types of frequencies, all angular frequencies will always be denoted

as (ang. sec.) '. According to this notation, the energy Emn for the

transition n—m will be written as E = hy =hw » The order of
mn mn mn

subscripts, m and n, will always be such that the first subscript refers to

the final state and the last subscript-to the initial one. Also Voon is

positive for absorption and negative for emission.

Absorption Coellicient

The next parameter to be considered is the absorption coefficient kV
that characterizes the attenuation of radiation of frequency v as it
traverses an absorbing medium. For a traversal of length df and unit
cross section (lem?), the decrement of intensity dIy determines the

absorption coefficient according to the law
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dI, = -k,I,d} (1-1)

InI-1, IV is the intensity in the interval between ¥ and v + dv ex-

+1

ot cm-z) sterad ! sec . In most cases of practi-

pressed in (ergs sec

cal interest, kV does not depend on the path length. A simple integra-

tion then yields

-kyd
Iv = one (I-2)

IV is called the transmitted intensity, and 10V ,». the incident intensity.

The simultaneous measurement of both these intensities determines kv .

The Residual Intensity and the Equivalent Width

In most experimental situations, Iy and Im} are not accessible

to direct measurement, What is usually measured is either the residual

intensity _f a line:

-ky £ ;
n, = .%02’ =€ (L-3)

or the equivalent width:

W= [(-n)dv = [(1-€™)ay o

©
For an absorption line, r, wogld be found by measuring the depth of
the line profile below the continuum, while WV would equal the entire
area under the line profile. Either measurement permits the evalua-

tion of the abhsorption coefficient.
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Correlation of ku with the Oscillator Strength {

After defining the basic terms used in this work, the next task is to
relate the absorption coefficient to the oscillator strength. Although
there are several approaches that lead to this result, a suitable deriva-
tion can be gotten from the condition for monochromatic thermal radia-
tive equilibrium. The equation relating the Einstein A and B coefficients

that states this condition is

BrrmN,., U,, = maNmUy + AnmNm (I-5)

Nn and Nm are the population densities (in cm ?) of the ground state

n and excited state m, respectively, and UV ig the energy deﬁsity in
the interval between v and ¥ + dv in (ergs cm ) sec. The term on the
left in I-5 is the absorption rate, while the terms on the right are the
induced emission rate and the spontanecous emission ratc, in that ordcr.

Since thermal equilibrium has been assumed,

gn " Ermn
e kT (I-6a)
Nn 9n

-
2.) Uv = 81@” (e kT - I) (I-6b)

1.)

The insertion of equations I-6 into I-5 yields two important relations

between the Einstein A and B coefficients:

t) Im an = 9n an (t-7a)
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2.) (I-7b)

3
Anm = ﬂch;,mn 'gi an

where g is the statistical weight of the state. IEquations I-7 show that
emission and absorption both depend on the same parameter.
This parameter can be found by considering the rate at which energy

is absorbed from an isotropic beam of intensity 4'rrIV = CUV . From I-1,

this rate is seen to be
oo oo
47Tf Iv/ky dy = C Uv f kll dV (1-8)
+) ]

while equation I-5 gives a rate of

hvfmm an Nh Uz}mh | - (1-9)

In I-8, UV wag removed from the integration under the assumption

that it varied very little over the line. Iquating I-6 and I-9, one has

[kydv =bg'm”anNn (1-10)

The corresponding classical result is given by Unsold [ 8] as

o©
2
TE ]
»o/k”d” = mc o

where 1) is the density of classical oscillators. 7 can be found by

considering the definition [ 9] of the oscillator strength for absorption,

fmn: the number of classical oscillators whose absorbing action equals

that uf a single atom in the given line. Clearly, 7= fmnNn. A compari-

son of I-10 and I-11 now yields the desired relation between the absorption
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coefficient and the oscillator strength:

(-]
2
[ hydv = IE NS, iz
(+]

and

B .Te
mn " mhvmn (I-12b)

I-12b can be combined with I-7b to give

1’ vi, [ 9n
Ahm = 8 =3 mn ( 9’”) fm (1-13)

Equations I-12b and I13 together demonstrate what has previously been

stated; namely, that the strength of both emission and absorption depends
on one and the same parameter fmno The oscillator strength for

emission f is given by
nm

ﬁum = 5_; {mn {1-14)

Up to now, the oscillator strength has been given only a classical
interpretation, whereas it does possess an equally ¥mportant quantum
mechanical one. To arrive at the quantum mechanical interpretation,
one must first express the transition probability Anrn in terms of the
matrix elements for the transition m—n. Bethe and Salpeter [ 10] give
this relationship: |

A - 8Ty, 4ﬂmvmnzj<“Jnm|ﬂme m>l
nm

mc3 + | (I-15)
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where <nj m ' Ir |mj m > are the matrix elements of the
n n m m
dipole operator I' . These matrix elements were obtained through
the use of the dipole approximation, and represent the expectation
value of the dipole moment of the radiating atom. A comparison of I-15

with I-13 now shows that

h ’<an mn r .m mm
i_fmn _ ]Cnm 4T MYim Z || m >

2

Im 'mn 3h o 2+

In the dipole approximation, fherefore, the oscillator strength is deter-

(I-16)

mined by the square of the charge distribution of the radiating atom.
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II. THEORY
The foregoing section has dealt with the basic theoretical and
experimental parameters, and in particular with the quantity of funda-
mental importance to this investigation, the oscillator strength. This
section will briefly outline those aspects of the theory of line forma-
tion pertinent to this work. The theoretical considerations presented
here will ‘demonstrate how the oscillator strength enters into the equa-
tion for the absorption coefficient through the various modes of line
broadening. Although the primary concern here is with resonance self-
broadening, other forms of line broadening will also be considered.
Their inclusion here is justified because a spectral line is usually formed
under the simultaneous action of all three mechanisms of broadening —
Doppler, radiation damping, and collisions, Xach of these modes of
broadening introduces its own characteristic parameters into the absorp-
tion coefficient. In any experimental situation, the capability of distin-
guishing the dominant broadening mechanism and the parameters it intro-
duces is of considerable importance, Consequently, a complete theory
of line formation is indispensable for properly evaluating experimental

data,

Doppler Broadening

Of the three forms of line broadening, perhaps the best understood
is Doppler broadening. Doppler broadening results from the uncer-~
tainty in the frequency introduced by the thermal motions of the absorb-
ing atoms. According to Doppler's Principle, the shift AV in the normal

frequency v o? due to the thermal motion of the atoms, is given by
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AV = V"(%) (Ir-1)

where v is the velocity of the absorbing atom along the observer's
line of sight. Since thermal equilibrium is one of the conditions of
this experiment, one can assume a Maxwell-Boltzmann distribution

for the absorber velocity v:

1
2
P(v) = ('72—%47?1‘_) e 2RT (I1-2)

where M is the mass (in grams) of the absorbing atom; T is the
temperature in °K of the isothermal cavity enclosing the absorbing
atoms; and R 1is the universal gas constant. P{(v) is, of course, the
normalized probability of finding the atom with a velocity between v
and v + dv. The insertion of II-1 into II-2 leads at once to the proba-

bility distribution of frequencies in the line

c{ M V\ M (v-1,
Pu) = £ (ar) exp(-4528)  w

Aside from a normalization factor, P(v) is completely equivalent to
the absorption coefficient kV » previously defined. From I-12a, this

2
normalization factor is found to be — N _f Setting
mc - nmn

AV, = %(2—&1)% (11-4)
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and using the normalization condition I-12a, the absorption coefficient
for pure Doppler broadening becomes

L 2 - (_A_U)z
k = T2€ Nafnn o7 \8%
v Ay ,mc

(11-5)

The absorption coefficient is thus seen to be a Gaussian distribution

characterized by the Doppler width parameter AV In this experi-

D
ment, typical values for A}\D (the Doppler width in wavelength units)

AtTe:

1.) CdIa326l: T 2.89 X 107 ''cm.

]
475.8°K, AAD

2.) Agla328l: T = 1002.0°K, AXxp 4,30 X 10 ' cm. (11-6)

3.) AgIx3383: T 4.43 X 107 1 cm.

i
1

1002.0°K, A?&D

These typical values are listed here for a later comparison with the
radiation damping widths and collision broadening widths of these same

lines.

Radiation Damping

In any actual experiment, Doppler broadening is almost invariably
present, even at room temperatures. To diminish its effect, a number
of experimental techniques are often employed. For instance, the lamp
emitting the spectral line can be operated at cryogenic temperatures to
take advantage of the N'T dependence of the Doppler width, Another
method, ;';Lpplicable to absorption lines, is to irradiate a highly~collimated
atomic beam at right angles, The very small velocity component of the

atom along the direction of the light beam reduces the Doppler width
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considerably. Even when such techniques are employed, the resulting
spectral line is still observed to have a residual finite width. This
width can be attributed to the damping action of the emission or absorp-

tion process, and is properly called the radiation damping width or

natural width.

On a purely classical basis, the electromagnetic field theory of
Lorentz and Maxwell can provide an explanation of radiation damping.
In the following treatment, two important assumptions will be made.
The radiating charge is assumed to be a harmonically-bound oscillating
dipole [P = e . Secondly, the velocity of the dipole oscillator is
assumed to he small enough to permit the neglect of all relativistic cor-
rections. With these assumptions, one can write the radiation reaction

force on an accelerated charge as [ ll]

2e d 26
=35 wP=35r (11-7)

The equation for the total force acting on the oscillating charge then

becomes

[} hAd ]

PO S 2¢”
mir=-mw,l + 3?30‘ (11-8)

where m. and w, are the mass and angular frequency of the dipole,
respectively. Since the motion of the charge was assumed to be har-

monic,

r=-~rw, (I1-9)



-15=

Zezwoa
~ 3 , one obtains the equa-

as a first approximation. Setting )l = 3
mc

tion of a damped harmonic oscillator:

-+ Yﬂ" + w r=0 (I1-10)

The amplitude of oscillation is, therefore, given by

’ i
l(.d,t - ‘5‘Yt
rt) =0, € (I1-11)
A Fourier analysis of this amplitude now yields a dispersion relation

for the probability distribution of anguliar frequencies in the line:

-1

2
P(w) U’ﬂiw) ='2l,". (w"“-‘o)z + (%) (I1-12)

where P(w) has been normalized to unity, Clearly, classical physics
does predict a dispersion of the spectral line due to radiation damping.
The constant ‘r is the radiation damping width previously referred to.
It also has one added significance here. By definition, the full range

of angular frequencies over which P(w)» 0. 5 is the half-value width

Awl , and is seen to exactly equal Y . In wavelength units,
2

A)\.é. y = 4;i 1 17 10 em. (11-13)

Z‘H'C

A comparison of AX3 with the Doppler widths A)\D observed in this
z
investigation (Equations 1I-6) reveals that in most experimental situa-

tions, r can be neglected in comparison with AwD .
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Equation II-13 indicates that the classical radiation damping
width, expressed in wavelength units, is a constant independent of
the particular optical transition. This prediction completely disagrees
with the quantum theory of radiation damping proposed by Weisskopi
and Wigner [ 12] and by Hoyt [ 13] . This theory predicts that the
radiation damping width should vary with the oscillator strength. For-
tunately, experiments have completely resolved this disagreement.

The subsequent work of many investigators and also this investigation
have verified the correctness of the quantum mechanical prediction.
Consequently, the usefulness of the classical theory of radiation is
severely limited. The classical theory correctly predicts a dispersion
relation for the line profile, but the damping widths it predicts can be
too large by several orders of magnitude. For quantitative work, one
must resort to the quantum mechanical theory.

Since the quantum theory of radiation damping is firmly established,
both theoretically and experimentally, this section need present only
those portions of it pertinent to this investigation. For a complete theo-
retical exposition, references [ 12, 13] should be _consulted. Like its
classical counterpart, the quantum theory of radiation damping predicts
a dispersion equation for the line profile. Normalized to unity, this

relation takes the form

. 2 2 ..1
Pw) =57‘ (w-w.) + (%) o)

where 7 is the radiation damping width. In equation II-14, Yy is to

be found from the quantum mechanically derived expression:
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(I1-15)

) . 2
8rietva, 41rmvm ZK“Jn mnlﬂ”lmemm>l
Y= mc3 2, t1

My Mm
Comparison of equation II-15 with I-16 shows that the expression in
braces is (2j_ + 1)f__/(2j__ + 1) where f is the oscillator strength
n mn m mn
for the absorption of radiation from the ground state n to the excited
state m. Consequently, the quantum mechanically derived radiation

damping width becomes

2 2 2

')/ = Anm = 8N € Unn j" ‘an (I1-16)

mc? Im

a result identical with that found previously in I-13. Equation II-16
clearly demonstrates that the radiation damping width is independent of
the atomic density, N. This result is quite important since it perfnits

a separation of the radiation damping width from the collision broadening
width which does depend on the atomic density. Also II-16, contrary to
the classical prediction, shows that the radiation damping width does de-
pend on the particular optical transition through the oscillator strength
and the statistical weights of the participating atomic levels. This latter
result is also of some value to this investigation because it allows one

to measure the oscillator strength of a strong line even if the resonance

self-broadening cross section is unknown,
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Collision Droadening

As the density of atoms increases, collisions begin to have a
greater effect on the line shape than radiation damping. For resonance
self-broadening, the current theories claim to yield only the correct
order of magnitude for the collision cross section. However, there
now appears to be at least one theory, due to Einar Lindholm [ 4] s
capable of giving quantitative results. His theory is quite general in

that it treats the collision broadening due to an interaction potential

v = _C.ﬁ (IT-17)
RP

at all atpmic densities, The constant Cp is the force constant for the
broadening interaction, and R is the separation between the colliding
atoms. The exponent p = 3 for resonance self-broadening, andp = 6
for Van der Waals broadening. The one serious drawback to using
Lindholm's theory is the need for either a calculated or measured value
of the force constant Cp' Later in this section, a value for Cp will be
found from a theory recently proposed by H, M. Foley [ 2] .

The treatment of Lindholm's theory presented here centers around
the Correlation Function for an oscillator [ 14] . One begins by assum-
ing the interaction potential in II-17. For convenience, the classical
path approximation is also assumed. That is, each collision will be
characterized by a collision parameter P which is the distance of
closest approach in a collision, With these assumptions, the phase shift

caused by a collision is:

2P = &

C. dt
2 3 2 L7 —aLQ;—-i |
-“[70 +V (t-t,)} 2 'thJ (IT-18)
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In II-18, v is the average relative velocity between the colliding atoms,

and

_ w1
Up = T If(-;)—) (I1-19)

Under the action of time-~-varying forces, the amplitude of the oscillator
whose natural angular frequency is w, will be given by

.b [ /
i wt)dt iwgt +i7(t)
'F(t) = € = 8 (11-20)

N (t) is the sum of all the phase shifts in the time interval from 0 to t

and can be expressed as

20t) = f [w(t') - LOQ] dt (II-21)

One can now introduce the Correlation Function ¢(s):

'w,,s
¢(5) = e' lm T/ ]C*%t) 'F(t-FS)d(t) (1I-222)

I
2
which by using II-20 becomes

¢(s),=l_im _1,:/'5 ei["p(t+s)-—’z(t)]d_t C e22m)
-X

T o0
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The normalization ¢(0) = 1 has been chosen in both equations., ¢(s)
represents the degree of correlation in the oscillatox's phase before
and after a collision. In extremely strong collisions, ¢(s) is very
small, indicating a severe disruption in the oscillator's phase, whereas
a large value of (‘j)(s) implies a weak collision that merely produces a
small phase shift. The importance of ¢) s) to this problem lies in the
fact that the Fourier transform of e ¢(s) yields I{(w), the line profile.
This relationship can readily be demonstrated:

' L7 (W — )
| im & | s el

S (I1-23)

T/2
\ I * o jwb (t+s)
Lim Lim P [r/ e [, flers)é™ gt
S~ 00 Tepwo =2

In I1-23, the inner integral on the right-hand side cannot depend on t
because only the zero-point of the time scale is affected by t. Such a
zero-point is meaningless for an infinite time interxf_al. Therefore,
changing the integration variable s to t in the right-hand side of I1-23,
one has

L 2

§—o 2'” -$/2

/2 .
dis) el @3 e = [(w)

(I1-24)

B = f Flne“tdt | fe™ dt
—T/Z

T =» 00
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The right-hand side of II-24 can now be identified as the definition of
the line profile I (w).
To simplify the notation, the quantity 1 (t + s) - 7 (t), occurring

in I1-22b, will be shortened to

2(t,s) = 72(t+s) - () (11-252)

(II-25b)

and —
f?(ts} i,
¢(5)-L1m T/ - e )

T 00

in(t, s) in(t, s)

The bar over e signifies the time average of e over the
radiation process. If one considers a collision during a time interval
ds, then the phase shift 17 'due to the collision can be found from the

relation:

ei’((t, s+ds)~ ei%(t,s) _ eib(t,S)(ei’I _1)

(I1-26)

Taking the time average of II-26 and using II-25b, one has

e 2(t) (g7 )

¢(3+d5) - ¢(s) = dcﬁ(s) = (I1-27)
By definition, 7)' is the phase shift in the time interval t + s and

t+ s + ds, while n(t, s) is the sum of the phase shifts during the inter-
val t and t+ s. The randomness of the collision process would lead

one to expect that 7' and 7(t, s) are independent of each other. Making
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this assumption permits one to replace the time average of the product
in II-27 by the product of the respcective time averages. Mizushima
[ 15] has investigated this approximation and found that it does not
affect the validity of the final result. The decomposition of II-27 into
the product of time averages yields the differential equation linking

n' to ¢(s):

c‘¢(5) = ¢(5)(e”1" 1) (I1-28)

Mathematically, it would be very convenient if the rather intractable
time average in II-28 could be replaced by a suitable average over all
possible collision parameters f This replacement can be justified
as follows [ 16] .

From equations II-21 and II-26, 7' can be explicitly evaluated as:

t+ds

?' = [ wlt) - (.d.,] CH.'., (I1-29)
+ |

s !
Thus, the time average e -1 becomes:

0 t+ds ,
| 2 i Tewt) - welds
e?7-1 =Lim T e

T~>oc0

T

(IT-30)
~T/2

2y !

Clearly, the right-hand side of II-30 is really the sum of e -1 over
all intervals ds in which a collision produces a non-zero phase shift
7n'. Assuming that there are M such intervals ds, one can associate
with each interval a collision parameter ,P that characterizes the colli-

sion in that interval. The random nature of the collision process now
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assures the complete randomness in the distribution of collision param-

eters f obtained in this manner for a single oscillator. If one now

assumes that there are M independent identical oscillators, each of

which suffcrs a collision during the single interval ds, then the random

distribution of collision parameters P obtained in this second way should
be the same as that obtained for the single oscillator. This, of course,
implics that the distribution of phase shifts 17'(?) is the same in both
cases, Therefore, one is justified in replacing the time average in 1I1-28
by the weighted average over the collision parameter 1: The weight
function, needed here, is simply the number of atoms per cm.> that in
the time interval ds suffer a collision with a collision parameter between
P and P + dp. From the kinetic theory of gases [ 17] , the proper weight

G (.,o;ds) - 21r70d30- Nvds s

where N is the atomic density, and v is the relative velocity between

the colliding atoms. Using II-31, onc finally obtains:
s (2P )
e"_1 = Nvds - 271'[ (e 1A 1)7Dd70
= -Nvds (o, - io;) (1-32)

where the prime has been dropped from 77(?). The cross sections o

and o, arc given by the integral:

0= Op~ iO’, -.:—21!’[”(6;%79)— I)Pd}o (I1-33)
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Inserting the result II-32 into 11-28, one obtains

~Nv(c,.~ia;)s

4)(8) =€ (II-34)

which by II-24 leads to the line profile

1

I(w)'= N_’\’/TO'_;: (w-w,,-Nvor;)z-'» (Nva,.)z (1L-35)

Thus, the real part of the total cross section 0 is O the cross section
for line broadening, while the imaginary part o, is the cross section for
shifting the central wavelength of the line profile. Equation I1-35 shows
that in the impact approximation, collision broadening leads to a disper-
sion relation for the line profile with a half-value width ¥ ¢ = ZNvor,
Also the maximum of the line profile has been shifted from W, by an
amount ch = NvUi. Experimentally, it has been shown that resonance
self-broadening does not yield a shift in the maximum of line profile,
whereas Van der Waals broadening results in a shift whose sign depends
on the foreign gas present.

Now that the line profile for collision broadening has been obtained,
it would be advantageous to calculate o.. from some theory in order to
compare it later with experimentally-measured values. Such a deriva-
tion will be made here from a theory on resonance self-broadening
introducéd by H. M. Foley [ 2] . Foley's theory is based also on the
impact approximation, andis divided into two limiting cases, depending

on the magnitude of the oscillator strength. For large oscillator
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strengths, Foley begins with the operator T satisfying the equation

ih T = [ U.l(t,te) H. (f,t)U(t, to)]T (II-36)

where U(t,to) is the time development operator corresponding to the
Hamiltonian operator Ho for the unperturbed system, and Hc(p, t) is
the Hamiltonian for a single collision wilh impact parameter p. Taking

matrix elements of II-36,

ih{ml TIn) = e%(E’"-E")t(mlH;(fﬂ)ln}(hlﬂm}

(I1-37)
In the impact approximation, the collision duration is short compared

with the radiation lifetime. Thus, the oscillatory factor in II-37 equals

unity, and formally

x
T = eXP. -%" Hc(ﬂt)dt (II-38)
- 00
where Hc(p,t) is now to be considered as a matrix over the magnetic
sublevels of the system; i.e., a (2J +1) X (2J+ 1) matrix.
For a dipole-dipole interaction, the Hamiltonian, Hc(p,f)takes the

form

P)ar- :
Hc(xp,.t)= (p r\zgw R) - L%T" . (11-39)

where the Latin letters refer to one atom and the Greek letters to the

other atom, and U: and TT are the electric dipole moments of the
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two atoms. Decomposing equation 1I- 39 into cartesian coordinates,

one obtains: (refer to Appendix II for a sketch of the coordinate system)
He(pt) = 3P =P M) 0" 3(RT. - RT,)pvi
¢\ 2 242\ T 2 ,242)%
(p* + vt % (p* + v2t2)%

o N ~ ottt
LRy = Fllg =N ) (1I-40)

Inserting equation II-40 into II-38 and integrating, the first term yields

4/3p2v, the second term vanishes, and the third term gives Z/pzv. Hence,

T= exp|- ﬁ P (Pvr RT,) .

The matrix T must now be evaluated using eigenfunctions symmetric
(or anti-symmetric) in the two atoms. To simplify the calculation, the
ground state ¢Z and the upper state ¢r:;1 will be assumed to have J =0
and J = 1, respectively. This assumption limits the rank of the matrix

to be diagonalized to rank three. Thus,

M _2|_< ¢, §7(a) + demgyle)

| R T~ R, ‘ﬁ; 0 ‘f’: @)+ 4):(') ¢; €21)1>-42

where the numbers 1 and 2 refer to the spatial coordinates of atoms 1

and 2, respectively. Equation II-42 reduces to

MM = B0 B, | 470 Y B0 | | gy ey
R OUAACLIRALIO)

(I1-43)
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Evaluating II-43 in terms of reduced matrix elements [ 18] R

-

- 0' K3
mm' 2| 2 2
M, = l(ﬂ”ﬂ’"@l o | 0 (11-44)
where m and m' decrease from the upper left corner., Hence
-1l 0 L]
_ 2] 2 2 2
T = EXP. ﬁ—v_z <9"ﬂ>”€>| o I 0 (IL-45a)
P 1 g -1
2 2‘
a 0 ¢
T=expAllo b o
c 0 a (I1-45b)

where a = a/p?, b= -2a/p®, c= -a/p?, and a :|<3“P"e>l%v

The matrix in equation II-45b can be diagonalized by a matrix S, given

by
b 0O 0 o Wz %z|'[a 0 cl[o Wz Uz
of@+c) o =1 0 0 °obojt o (11-46)
0 0 @9 0 Wz -Wz| |c o a|| 0kz-'N2
Using the matrix S, T becomes
- -
| et 0 0
i(a+C) -1
T=3S 0 C'( 0 S (11-47)
0 0 ei(a-c)
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The cross section for resonance self-broadening can now be evaluated

using the relation:

- - Realr - [ -4 ( ot gf@rel ei(a-c))] P d 3

A (I1~-48)

Inserting the definitions of a, b, and ¢, yields the integral

eo. .
o = —8310 sin (%,)fdf 1-49)

No angular average of the integral in II-49 over the Euler angles will
be needed because of the isotropy of space. The indicated integration

is readily performed to yield

- ﬂr;C)\fe

-— (II-50)
r 6v

where A and fe refer to the resonant transition to the ground state.
Thus, fe is an oscillator strength for emission. Since oscillator
strengths for absorption are used exclusively throughout this investi-

gation, equation II-50 can be rewritten:

6. = -1—?—2!%2\— (%)T; - (11-51)

where g and g, are the statistical weights of the lower and upper
levels, respectively. Equation II-51 will later be compared with experi-

mentally measured cross sections. To facilitate such a comparison,
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equation II-51 can be refactored into the form:

2 9u -3
€ = —%— = %T-f;c = 885 x 10 cm.z/sec. (II-52)

where r, is the classical electron radius and c is the velocity of light.
The reduced cross section € will actually be the quantity later com-
pared with the experimental measurements of this investigation.

For oscillator strengths much less than 0.1, equation II-50 no
longer correctly describes the resonance sclf—broa‘dening cross scction.
As the oscillator strength decreases, the first order matrix elements
of the Hamiltonian HC(p,t) become very small. If as Foley predicts,
thc sccond order contribution from I—Ic(p, t) does not depend on the
oscillator strength, then conceivably for sufficiently small oscillator
strengths, the second order terms could exceed the first order contribu-
tion from Hc(p,t). In that event, the perturber would act more like a
foreign gas atom. One would expect that in the impact approximation,
the collision damping width would be linearly proportional to the atomic
density and would have a velocity dependence, Un.fo‘;'tunately, it is not
clear from Foley's article whether his predictions of the self-broadening
cross sections for the zinc and cadmium intersystem lines are directly
coxngarable to the measurements reported here. Measurements obtained
in this investigation were made in the absence of an external magﬁetic
field (<10 gauss) and represent the average self-broadening seen by all
the magnetic sublevels of the upper state. Foley's predictions, on the

other hand, were meant to be applied to the self-broadening of the
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m = 0 - m = 1 transition of the upper state in the presence of an
external inagnetic field. For this reason no direct comparison will
be made between the cadmium and zinc cross sections measured here

and the corresponding predictions in Foley's article.

The Effect of Line Broadening on the Equivalent Width

Previous discussion of line broadening has centered around its
effect on the line profile and the closely-related quantity, the absorp-
tion coefficient. Equation I-4 shows that the equivalent width WV '
depends on the absorption coefficient. Since the equivalent width W,
was the quantity measured in the experiments reported here, the effect
of line broadening on WU should be investigated. To determine this
effect, the form of the absorption coefficient kv must be known when
more than one type of line broadening is present. If a spectral line
is being broadened by both radiation damping and collisions, the result-
ing line profile I(w) is given by the convolution integral of II-14 and
II-35:

oo

= WY 1 [ 1 /
ltw) 4m? _,,[(w’-wo)z + (Yc/z)’]l(w’w-%)T *(W/2 )‘}dw (1-53)

Carrying out the integration in II-53 gives:

I(w) =%—T (60 -wo)2 + ('Y/z)2 (I1- 54a)

where y = yN+ Vo and
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If Van der Waals broadening is also present, then its Lorentzian line

profile must be folded with that in Equation II-54a. The resulting convo-

lution integral yields a dispersion relation with ¥ = N + Y. + Yw Tw

being the Van der Waals damping width. Xquation II-54b was obtained

by multiplying II-54a by the normalization wrocNf and converting to pure

frequency units. Thus, the simultaneous presence of radiation damping

and collision broadening leads to the dispersion relation in 11-54b for

the absorption coefficient kv' To include the effect of Doppler broadening

on the absorption coefficient, the convolution integral of II-3 and II-54b

is needed: "2
) _ ( 4av )

k. = ke Nf ( b ) e ‘" dlav) , WS

- i
v T2 \4TAY, [ o (21—14,-4\2/')‘z + (Y/Mr)

The normalization in II-55 corresponds to that given in I-12a. Equation
II-55 with ¥ = N + Yw + ¥. represents the absorption coefficient of a
line simultaneously broadened by the Doppler Effect, radiation damping,
and collisions.

Of special significance is the quantity a = y/4 A yD occurring
in II-55. This quantity is called the damping ratio, and its magnitude
determines the shape of the curve of growth. For large values of the
damping ratio (a » 1). and for equivalent widths W?\ exceeding ten times
the Doppler_width A}\D, the spectral line may be considered strong, and
the absorption coefficient in II-55 reduces to II-54b with an error not

exceeding 5 per cent. The equivalent width W, for a strong line can be

A
found by substituting II-54b into I-4 and integrating:



W, = %':Wv = \/(%E)Nf;y =} FNfaY (11-56)

where W?\ is the equivalent width in wavelength ﬁnits, £ is the path
length, r is the classical electron radius, and )»o is the central wave-
length of the unperturbed transition. For very small values of the

damping ratio (0 <a <0.01) and for equivalent widths W, not exceeding

A
twice the Doppler width A?\D , the spectral line may be considered weak,

and the absorption coefficient in II-55 reduces to II-5 with an error not

exceeding a few per cent. The equivalent width W}\ for a weak line can-

not be evaluated in closed form. However, W, can be developed in a

A
series [19} :

= n-{ -
W;\ = 1T'/2A>\D C Z ﬂ)'—Ch | (I1-57a)

where AAD is the Doppler width in wavelength units, and

C = ( ﬂ-'/zn >\2° ) N?";j (I1-57b)

al,

Equations II-56, II-57a, and II-57b are the expressions that were used
to calculate the oscillator strength fa and the half-value width ¢ from

measurements of the atomic density N in atoms /cm?

, the temperature
T in OK, and the equivalent width W?x in cm.
For weak lines, equations II-57 were used to compute the oscillator

strength fa' For strong lines, a different procedure was followed.
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First, published vapor pressure data and equation II-56 were used to
compute fa'y at a series of different temperatures from equivalent
widths of strong lines. The resulting values of fa_'y = fa('yN + Yw + 'yc)
were then fitted to an equation of the form, 'y_fa = A + BN, by the method
of least squares. Upon obtaining the two constants A and B, the reduced

cross section for self-broadening € could be found from the relation

B = ‘f;(fe)\G) (11-58)

and in the absence of Van der Waals broadening YW = 0, the oscillator

strength fa could be gotten from the relation

2

_ TR _
A- 'F&YN = _8__?!‘_‘_6(%% fa (I1-59)
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III, APPARATUS AND EXPERIMENTAIL PROCEDURES

Preparation of Absorption Cells

Fused quartz is an ideal material for cells used in ultra-violet
absorption spectroscopy. Because fused quartz is amorphous, it can
be readily fabricated into complex shapes by standard glass-blowing
techniques. Also fused quartz is transparent throughout the ultra-
violet and can withstand prolonged use at temperatures up to 1300° C,
For these reasons, the absorption cells used in this investigation were
made from fused quartz. Absorption cells were fabricated by cutting
one inch O.D. quartz tubing into 1. 6 inch long sections, Quartz windows
were fused to both ends of a section to contain the vapor and transmit
the incident radiation. The resulting cylindrical chamber had a four
inch long side-arm fused to the middle of its side. This side-arm
consisted of a 1/4 inch glass tube with a quartz-to-pyrex graded seal
that permitted fusing the cell to an all-glass vacuum system.

Before fusing a cell to the vacuum system, its interior was
cleansed with aqua regia (3HNO3 + HCI) and thoroughly rinsed with
triply distilled water. After pumping the cell to dryness, the metallic
sample was inserted into a quartz distillation bulb attached to the cell.
The cell was then fused to the vacuum system. The vacuum system
consisted of a forepump, an all-glass water-cooled mercury diffusion
pump (50 liters/sec pumping speed), three cold traps, and a glass
manifold. To prevent condensation of mercury in the manifold, two
ligquid nitrogen cold traps were located between the manifold and the

diffusion pump. The diffusion of forepump o0il through the system was
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blocked by placing a cold trap immediately after the forepump. These
precautions effectively kept all contaminating vapors from the absorp-
tion cell. To monitor the pressure, an RCA 1949 glass ionization gauge
wa's fused to the glass manifold.

When the system had pumped down to a pressure of about 1075 mm
of Hg., the metallic charge in the distillation bulb was vaporized to
remove any adsorbed gases. The cell itself was baked at a 1000° C
for at least eight hours to remove any volatile contaminants. Also,
the entire vacuum manifold was vigorously heated with an air-gas torch
to improve the vacuum. Upon reaching its ultimate vacuum of 1077 mm
of Hg., the system was allowed to cool, and the metallic charge in the
distillation bulb was distilled directly into the cell. While still under
vacuumn, the cell was fused shut with an oxyhydrogen torch and pulled
free from the glass vacuum manifold. The evacuated cell with its metallic

sample was inserted into a furnace and heated to vaporize the metal.

The Vacuum Furnace

This investigation nsed a furnace made of brass with a cylindrical
working space eighteen inches long and eight inches in diameter. A
flange on either rim of the cylinder provided space for an O-ring groove
and a circle of six bolts. By means of these bolts, a brass end-plate
could be bolted to each end of the furnace, thus providing a vacuum-
tight seal. To cool the furnace during operation, the cylindrical shell
of the furnace and both end-plates were provided with double walls so
that tap water could flow through them. The double walls of the furnace

were pierced in two places. One opening provided a vacuum outlet to



-36-
the forepump. The other opening allowed a Pirani gauge to monitor
the pressure in the furnace. To permit radiation to pass through the
furnace, each end-plate had a circular aperture at its center with a
2.5 inch diameter. These apertures were covered by three inch quartz
discs pressing against O-ring seals. One of the end-plates had six
additional openings drilled in it. Three of these held vacuum-tight power
leads for the furnace, and the other three holes admitted three thermo-
couples into the furnace through vacuum-tight neoprene glands.

On the same end-plate with the thermocouple glands and power
leads, there were fastened three fifteen inch long brass rods. These
rods, spaced 120° apart, provided a frame for supporting the furnace
elements without allowing them to touch the furnace walls. This arrange-
ment minimized heat conduction to the furnace walls, while the vacuum
in the furnace eliminated heat losses through convection. Alundum
spacers separated the furnace elements concentrically from each other.
Beginning with the outermost element, the parts of the furnace were:

a thin-walled nickel radiation shield (6' I.D.), a thick-walled alundum
radiation shield (3.75" O.D., 3" I.D.), and two altipdum heating coils
one inside the other. The outer heating coil had a two inch diameter

and was wound one-third of the way from each end with 0. 020 inch
molybdenum wire. The inner heating coil had a 1. 75 inch diameter and
was wound along its entire ten inch length with the same type of wire,
The purpose for this particular arrangement of the heating coils is as
follows: by heating both ends of the outer coil, the temperature gradient

inside the inner coil could be kept uniform over a distance of 2.5 inches
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about the center. Moreover, the temperature gradient at the center
of the furnace could be regulated independently of the current heating
the inner coil. Before an experiment, the absorption cell was inserted
into the center of the furnace. Two alundum discs with 5/8 inch square
apertures were placed on either side of the cell, and two more such
discs were used to cap the ends of the inner coil. These four discs
were notched at three points spaced 120° apart on their rims to permit
the insertion and removal of thermocouple tubes.

With the cell in position, the furnace was heated by passing an
electric current through the heating coils. The source of power was
a 3 KVA Sola constant voltage transformer with a 220 VAC tap and a
110 VAC tap. The inner heating coil was operated through a variac
connected to the 220 VAC tap on the Sola transformer. With this arrange-
ment, the current heating the inner coil could be varied continuously from
zero to eight amperes, permitting steady state temperatures up to 1450° C.
Both ends of the outer heating coil were operated in series through a
second variac connected to the 110 VAC tap on the Sola transformer.
Generally, it was possible to adjust both variacs ux}til the temperature
gradient at the center of the furnace was less than 1°C. Also, each coil

had an ammeter in series with it to measure its current.

Temperature Measurements:

Of the measurements taken in this investigation, the temperature
measurement was the most critical. Vapor pressures of metals require
an accurate knowledge of the temperature because of their steep ex-

ponential dependence on temperature. All temperatures were, therefore,
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measured with Pt-Pt, 10% Rh thermocouples whose calibration was
certified by the National Bureau of Standards or with chromel-alumel
thermocouples that had been calibrated against a certified Pt-Pt, 10%
Rh thermocouple. With the certified Pt-Pt, 10% Rh thermocouples,
an accuracy of at least 1OC was attained, while the calibrated chromel-
alumel thermocouples gave an accuracy of about 2°C. To protect the
calibration of the thermocouples, the wires of each thermocouple were
encased in alundum thermocouple tubes. This arrangement provided
stress-free support for the termocouples while still allowing them to
be accurately positioned within the inner heating coil. By using two
notched alundum discs (refer to the section on the vacuum furnace),
the three thermocouples could be spaced 120° apart on a circle con-
centric with the absorption cell, Omne thermocouple measured the
temperature at the center of the cell, and the other two thermocouples
measured the temperatures at the ends of the cell. After passing out
of the furnace through neoprene glands, the thermocouple wires were
immersed in an ice bath to provide a reference junction at 0°C. The
ice bath consisted of six glass tubes partly filled wiich mercury and
submerged to within an inch of their tops in melting ice. One thermo-
couple wire and one copper extension wire were inserted into the cold
mercury in each glass tube to complete the electrical path to the
measuring circuit. This arrangement eliminated any temperature
gradient between the two wires that might generate a parasitic thermal
e.m.f.

To preserve the full accuracy of the thermocouples, the measuring

circuit must possess a comparable precision. A number of precautions
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were, therefore, taken to insure the maximum possible precision in

the measuring circuit. First, all metallic circuit components were of
pure copper to minimize any parasitic thermal e.m.f. Secondly, a
lead storage battery of 120 ampere-hour capacity was used as the

D.C. voltage source because the voltage of ordinary dry cells drifted
with use., Thirdly, all voltages were standardized with a Weston
Standard Cell certified by the National Bureau of Standards. The
circuit also had to be sensitive enough to measure the thermocouple
e.m.f. to the nearest microvolt, when the Pt-Pt, 10% Rh thermocouples
were being used. A Rubicon potentiometer with a least count of 0. 5uv
was, therefore, employed along with an undamped galvanometer
(0.15uv/ mm voltage sensitivity) as the null point indicator. Finally,
considerable care had to be exercised when taking temperature readings.
The lead storage battery had to be standardized before and after a set
of readings to check for any voltage drift that may have occurred. Also
the galvanometer zero had to be checked periodically for drift. In

this regard, the system proved to be very stable because these drifts
were never great enough to cause more than a 0. 2°¢ uncertainty in the

temperature.

The Optical System:

The experiments reported in this investigation were performed with
the following optical system. For the source of continuous radiation,
a high pressure mercury arc lamp was used. This lamp consisted of
a quartz water jacket enclosing a quartz capillary with tungsten elec-

trodes at either end. The capillary contained a few droplets of
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mercury and argon gas at 2 mm. of Hg pressure. When operating,

the lamp produced a brilliant pseudo-continuum of pressure broadened
mercury lines. Although the pseudo-continuum displayed some residual
line structure, none of this structure interfered with any of the measure-
ments reported here. The lamp with its ballast resistance was normally
operated at 1 to 1.5 amperes and 500 to 1200 volts D.C. provided
directly from a D,C. generator.

Light emitted by the lamp was gathered by a 20 cm. focal length
lithium fluoride-quartz achromat and was rendered parallel. After
passing through a quartz furnace window and two square apertures
(5/8" x 5/ 8'"), the parallel beam entered the absorption cell. From
there, it proceeded through two more square apertures (5/8'" x 5/ 8')
which passed only the light that had traversed the cell. The parallel
beam emerged from the furnace through a second quartz window and
was rendered convergent by a 40 cm. focal length lithium fluoride-
quartz achromat. A mirror then intercepted the beam and deflected it
toward a third lens above the spectrograph slit. This lens was a 20 cm.
focal length lithium fluoride-quartz achromat mounted on a micrometer
screw. The lens focused a line image of the capillary on the plane of
the slit, and the adjustment of the micrometer screw aligned this line
image exactly along the slit. Light from an iron arc could be sent into
the spectrograph by rotating a mirror into position behind the 40 cm.
lens.

The spectrograph used in this investigation was the Rowland mount
instrument located in room one of Bridge Laboratory on the California

Institute of Technology campus. The instrument was mounted vertically
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over a deep pit in the ground that provided adequate insulation for the
grating against thermal disturbances and vibration. Essentially, the
instrument consisted of a stationary slit, .a grating holder capable of
rotation and translation, and a movable camera mounted on rails.

The motions of the camera and grating holder were coupled together so
as to keep the slit, camera, and grating on the Rowland circle. Change
of spectral region was accomplished by cranking the camera to the
required position. Dispersion was provided by a concave Bausch and

Lomb replica grating with the following specifications:

number of grooves per mm. = 600/ mm.
width of ruling = 5,5 in.
length of rulings = 2.0 in.

21 feet 10 in,
o
6000 A.

concave radius

blaze wavelength (first order)
Used with this spectrograph, the grating gave a first order dispersion
of 2.504 Z/ mm. Since the spectrograph was always used in the second
order, the actual linear dispersion realized in this investigation was
1.252 ?X/ mm. Tests showed that 30y was the proper slit width for this
dispersion, and this was the slit width used. ZFinally, the band pass

admitted into the spectrograph was limited by using a Corning red

purple corex A filter (#7-54).

Photographic Photometry:

All the data reported here were photographed on Ilford N. 50 half-
tone plates. These plates have very fine grain but only moderate

speed. Typical exposure times were about 16 seconds. The fine grain
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of this emulsion was a considerablc advantage when wecak lines were
being scanned. Also these plates possessed sufficient contrast for
the task of measuring weak lines. On the linear part of the characteristic
curve, a change of 0.010 in the log intensity led to a 1% change in
blackening. Since the Ilford plates possessed adequate contrast and
speed as well as the fine grain, they were adopted for the photography
in this investigation.

To be able to directly compare plates developed at different times,
the photographic development process was rigidly standardized. All
plates were developed for exactly four minutes in unused D-19 developer
at 20°C. After development, the plates were fixed in hypo for 15 minutes,
and then rinsed in tap water for two hours. Finally, the plates were
rinsed in distilled water and then in alcohol. All handling of the plates
was done with rubber gloves to prevent the oil on one's hands from stain-
ing the plates. When this procedure was faithfully followed, the plates
always turned out very well — free of all dust, stains, and scratches.

All the plates taken in this investigation were calibrated with a
step slit. The light from the high pressure mercury arc was used for
the calibration plates since the tungsten ribbon lamp, normally used,
was too slow. Although the mercury arc lamp did have occasional
intensity fluctuations, the average length of these fluctuations was
short compared with the exposizre time. It was felt, therecifore, that
these fluctuations would average out during an exposure of 16 seconds.
To make a calibration plate, the optical system was defocused until
a one square inch area on the step slit was uniformly illuminated.

The uniformity was checked by photographing the full astigmatic
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image of one of the steps on the step slit. When this image was
scanned on the microphotometer, the resulting trace on the chart
showed that the middle third of the image was uniform to within 2%.
Only this part of the image was used in making calibration plates.
The calibration spectra were photographed through a step slit having
twelve steps whose widths were accurately known. Since the intensity
passing through such a step is proportional to the step width, Alogl
was known for each step. In every case, the exposure time for a
calibration plate was exactly equal to that of the plates being calibrated.
After the calibration plates wecre devecloped, they were scanncd on the
microphotometer. The microphotometer results were then plotted
against Alog I for the twelve steps to give the characteristic curve
for the emulsion at the wavelength where it was used.

All the calibration curves obtained in this manner were plotted on
a single large graph, and the values of log I were read off for every
value of the transmission T > 0.06. The transmission is one minus
the percent blackening. The resulting log I's were converted to
intensities I on a relative scale. A graph was then plotted with I as
the ordinate and T as the abscissa, and the resulting curve was traced
over with silver conducting ink. Three such curves were drawn, one
each for 3261 Z, 3281 Z and 3383 ?‘“

The photographic plates of spectral lines and the curves drawn in
conducting ink were then taken to the photoelectric microphotometer
in Robinson Laboratory. The plates were scanned in the normal way

on the microphotometer. For weak lines, the plates were scanned

twice to reduce the scatter due to photographic grain. Depending on
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what line was being scanned, the proper curve drawn in conducting ink
was inserted into a Moseley Autograf x-y recorder. While a plate was
being scanned, the output of the microphotometer, which is proportional
to the transmission T, was being fed into the input of the x-y recorder.
This recorder had a curve follower, a small shuttle capable of two-
dimensional motion anywhere in a plane. The curve follower would
magnetically seek out the curve drawn in conducting ink and follow it.
Since the input to the -y recorder was proportional to T, the curve
follower would automatically take up a position with the abscissa T.

The output of the x-y recorder was proportional to the ordinate I of

the curve follower. When the microphotometer was recording the
transmission T, the x-y recorder would be producing an output pro-
portional to I(T), the relative intensity corresponding to T. The
output I(T) was then fed into a Leeds and Northrup Speedomax recorder.
Thus, the recorder chart resulted in a plot of intensity I versus wave-
length M. For weak lines, the slowest speeds were used on both the
recorder and microphotometer to give a wavelength scale factor of
3.65x 1072 .OA. (second order) per inch of chart. Once the weak lines
were recorded on the chart, their areas were measured by the triangle
approximation, and were then multiplied by the wavelength scale factor
to give the corresponding equivalent width.

For strong lines measured in runs 1-CD, 2-CD, 1-AGL and 2-AGL,
a somewhat different procedure was employed. The necessary emulsion
calibration curves were first converted into potentiometer settings for
the analog curve generator located in the microphotometer room of

Robinson Laboratory. Essentially, the analog curve generator performed
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the same function as the Moseley Autograf curve follower previously
described: it electronically converted the transmission reading to an
intensity reading so that an intensity versus wavelength plot resulted
on the recorder chart. The resulting curves were then planimetered,
and the areas obtained were multiplied by a wavelength scale factor
to give the equivalent width. Depending on the magnitude of the spectral
line, the wavelength scale factor was varied from 0.2193 Z (second
order) per inch of chart to 3. 50842 (second order) per inch of chart
to give a convenient scale on the chart.

For strong lines measured in runs 1-AGR, 2-AGR, 1-PB, l-IN,
1-TLR, and 1-TLL, yet a third procedure was used. The necessary
emulsion calibration curves were first put onto punched IBM computer
cards in the form of a table of transmission versus log intensity.

Next the photographic plates were scanned in the transmission mode
on a microphotometer located at Wright-Patterson Air Force Base,
Ohio. The resulting transmission versus wavelength curves were then
converted into punched IBM cards by a Benson-Lehner Oscar Model F
chart reader. On the card were recorded the transmission y, the
wavelength coordinate x, and the spectral line identification. A
computer program for an IBM 1620 was then written which performed
the following functions First, the transmission of the base line was
computed and then converted to the intensity I[,. Next, the transmission
yv(x) was converted by the computer program to the intensity I{x).
Finally, the quantity (IO—I)/ I, was computed for the same value of the

wavelength coordinate x. The computer then found the area under the

curve by simply adding up all the {Ig-I)/ I, values for every increment
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Ax in the wavelength. The resulting areas were then multiplied by
o
wavelength scale factors varying from 0.1253 A (second order) per

o)
inch of chart to 6.265 A (second order) per inch of chart to give the

corresponding equivalent width.
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IvVv. RESULTS AND CONCLUSIONS

In this section, the experimental results obtained in this investi-
gation will be presented and compared with those of other investigators.
Also the accuracy of the measurements will be discussed to establish
an upper limit for the total experimental error. Finally, all the conclu-

sione reached in this investigation will be presented here.

Estimation of Experimental Errors

This section will discuss the over-all precision in the data reported
here. Generally, the precision attained will depend on the errors in the
photographic photometry, the temperature measurements, and the pub-
lished vapor pressures used to calculate the atomic density. Results
obtained by photographic photometry can usually be relied upon to about
ten per cent. Photometric errors result from grain noise in the emul-
sion or from uncertainties in the measurement of the transmission. For
weak lines exposed on the linear portion of the emulsion calibration
curve, grain noise is by far the dominant source of error. Its effect
may be seen in the scatter shown in tables I, V, and VIII. In practice,
a photometric accuracy for weak lines of about ten per cent has been
routinely achieved as shown in the data for weak lines of Cd I h32611§.
On the other hand, the equivalent widths of strong lines rarely suffer
from grain noise. Photometric ﬁncertainties in strong lines generally
arise froi'n the difficulty in measuring transmissions less than 15% or
greater than 85%. In almost all cases, a small part of the equivalent
width came from outside the region of 15% to 85% transmission, and

gave rise to some scatter in the data. However, inspection of the
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equivalent widths reported here for strong lines indicates that this
scatter did not exceed ten per cent in any case.

As stated previously, the experiments reported here are particu-
larly vulnerable to errors in temperature measurement. Accordingly,
every effort was made to exact the maximum accuracy from the tempera-
ture measurement. The entire temperature measuring circuit was con-
structed of copper to minimize parasitic thermal voltages, and its
scnsitivity was adjusted so that one microvolt (0.1° C) was clearly
resolvable on the potentiometer. Also the thermocouples themselves
were carefully calibrated against a standard thermocouple from the
National Bureau of Standards. This calibration was carried out over
the entire range of temperatures covered in this investigation. As a
result of these precautions, it was possible to make thermocouple read-
ings with an uncertainty not exceeding 1° C. An error of this magnitude
in the temperature would cause only a 5% error in the atomic density for
a weak line and only a 2% error in the atomic density for a strong line.

As in the case of the temperature measurements, an effort was made
to secure reliable vapor pressure data from which to calculate atomic
densities. Since the self-broadening cross sections depend on the square
of the atomic density, it was important to select for study only those ele-
ments with accurately known vapor pressures. For this reason,
Hultgren's [ 20] estimates of the uncertainties in the heats of vaporiza-
tion of Ag, Cd, Pb, and Zn were used to verify that these elements
possessed well-established vapor pressure curves. In each case, the

maximum uncertainty in the heat of vaporization would yield an error
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not exceeding 15%. For the element thallium, the vapor pressure
measurements of Nesmeyanov were selected [21]. Using the latest
state of the art techniques, Nesmeyanov and his co-workers measured
the vapor pressure curve of thallium by both the Knudsen Eifusion
Method and the Langmuir Method, and obtained good agreement between
both methods. Such agreement indicates that thallium also possesses
a vapor pressure curve sulficiently well-established for use in cross

section measurements,

Cd I, 23261

The cadmium line A 3261 arises from the intersystem transition
between the ground state 1So and the state 3P1 O, 3.78 e.v. above
it. Vapor pressures for cadmium were obtained from a special com-
pendium of thermodynamical properties of metals compiled by the Min-
erals Research Laboratory, University of California at Berkeley [20].
The table of cadmium vapor pressures in that book was calculated assum-
ing that the heat of vaporization of cadmium at 298 °K was AH = 26, 770
(z 150) cal/mole. This value represents the weighted average of the
results of fourteen different investigators. Therefere, cadmium vapor
pressures from this source can be considered among the most reliable
values available at this time. The uncertainty in AH of 150 cal/mole
would lead to a maximum error of 12% in the atomic density for the range
of 'témperatures used. Equivaient widths WA were measured over a
temperature range, 475.8 °K to 939.0° K, corresponding to a range of
atomic densities, 7.93 X 10t ? atoms/cm? to 2.23 X 10'8 atoms/cm?3.

The equivalent widths ranged from 4. 24 X 107 cm. to 4.35 X 10°% cm.
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For weak lines, fifty measurements of the equivalent width were
averaged together at one temperature to give a final average: W?x =
4,24x 10°'! cm. Table I gives the information needed to calculate f,
The W, reported in table I is the average of the five measurements

A

taken from the same plate. Before using table I to obtain f, one must

Table I: Cd I, XA326l: Data for Weak Lines

T = 475.8°K N = 7.93 x10' % atoms/ cm?
AAp = 2.885x107'! em. A= 4.30 cm.

Run WA x10'! (cm.) Run W)\ x 10! (cm.)
CD-4A 4,76 CD-6B 4,38
CD-4B 4,37 CD-7A 4,12
CD-5A 4,26 CD-7B 3.87
CD-5B 4,34 CD-8A 4.16
CD-6A 3.86 CD-8B 4,31
Average W, = 4.24x107!'' cm.

A

consider the fine structure of Cd I, A3261. The unresolved line
recorded on the photographic plate contains all the components of the
fine structure pattern. If the separation between the components is
greater than the Doppler width A)\D, then the observed equivalent
width should be treated as the sum of the equivalent widths of each
unresolved fine structure component. For cadmium the number of
components can be quite large since cadmium has eight stable isotopes.

(See table II), Brix and Steudel [ 22] have measured the fine structure

pattern of Cd I, A326l. According to them, the hyperfine structure
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Table II: The Stable Isotopes of Cadmium

Isotope: 1,06 1.08 110 111 112 113 114 116

% Abundance: 1.22 0.88 12.39 12.75 24.21 12,26 28.86 7.58

pattern consists of three groups of components with the intensity ratios
2:9:1. The middle group contains the components due to the even isotopes
10, 112, and 114. The isotope effect splits this group into a band, 29.5
cm ™ (3.13x107'! cm.) wide. Thus, most of the contribution to the
equivalent width will come from this middle group. The Cd I, A 3261

line may, therefore, be treated as single. Using the data in table I

in equations II-57a and II-57b gives the average value:

CdIN3261: f

1,94x 1073 (IV-la)

4,03 x 10° (ang. sec.) ! (IV -1b)

YN

For strong lines, the equivalent width was measured at eighteen
different temperatures in two separate runs, 1-CD and 2-CD. These
two cadmium runs can be considered independent in that two different
sets of thermocouples and two different absorption cells were nsed to
obtain the data. Each value of W}L reported in tables I and IV repre-
sents the average of fourteen measurements made at the same tempera-
turc. The procedurc described at the very end of section II was used
to reduce the data. It is interesting to note that the constant A came
out to be éero in both runs, thus indicating that both runs were not

contaminated to any measurable extent by a foreign gas.
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Ag I, )\3383:

The silver line A 3383 arises from the electric dipole transition

between the ground state 281 and the state 3plo , 3.65e.v. above it.
& > Zz

Vapor pressures for silver were taken from the same source as for
cadmium [ 2.0] . In this source, the vapor pressure Lables [or silver
were based on the heat of vaporization at 2980K, AH = 68,100 + 300
cal/ mole. This value is the weighted average of nine different inves-
tigations. Hence, the vapor pressures obtained from this source may
be regarded as very reliable. The uncertainty in AH of 300 cal/ mole
could lead to an error in the atomic density of at most 12% over the
temperature range used. Equivalent widths for this Lransition were
measured over the temperature range, 1002.0°K to 1599.0°K, corres-

3 to

ponding to a range in atomic densities, 4.65 x 10} % atoms/ cm
5.66 x 10'® atoms/ cm?®. The equivalent widths ranged in value from
4.64 x 107" cm. to 0.706 x107™® cm.

For weak lines, the equivalent widths from 42 measurements
at a single temperature were averaged together to gi%re a final average:
W, = 4,64 x107'! cm. Each WA reported in table.V is the average of
the seven measurements taken on the same plate. Before using table V
to calculate f, the effect of fine structure on W)t musl be coasidered,
Silver has two stable isotopes, Ag!% (51.4%)and Ag' % (48.6%).
Jackson and Kuhn [ 23 ] have measured the fine structure pattern for
both silve.r resonance lines. According to them, the hyperfine splitting

due to nuclear spin predominates over the isotope effect. The total

fine structure pattern is given in the following diagram:



T

D
Run

AG-1L
AG-2L

AG-3L

average

Ae I

A 3383:
A3281:

-57-

Table V: Ag I, A3383: Data for Weak Lines

1002, 09K N = 4,65 x 100 atoms/ cm?
= 4,434 x 107! cm, A= 4.40 cm.
W?\ x 10! (cm.) Run W?t % 10'! (cm.)
4,17 AG-41, 4,97
4,20 AG-5L 4.79
5.13 AG-6L 4,57
W, = 4,64 x10-'! cm.
109 107 —A- = ..B_ = .‘3-
a b i
B
A o7 109
b a
0.000 -0.013 ~0,058 -0.084 cm™'
0.000 ~0.013 -0,052 -0077 ¢cm™!

-

The diagram for Ag I, A 3281 is also given here for later reference.

While the isotope splitting is small, the nuclear hyperfine splitting is

quite large, and actually exceeds 1.4 times the Doppler width AAD,

Thus, the equivalent width was divided into two parts in the ratio 3:1,

and the value of C was separately computed for each part using II-57a.

The resulting values of C were added together to form a new C which

was inserted into II-57b to obtain f.

The result was
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Ag 1 A3383: £f= 0.283 (IV-2a)

YN T 1.65x 10® (ang. sec.)™! (IV-2Db)

For strong lines, the equivalent width was measured at eighteen
different temperatures in two separate runs, 1-AGL and 2-AGL. The
letter L after the symbol for silver denotes the silver transition AG I
A 3383 zodx . FEach value of W>\ in tables VI and VII is the average of
fourteen measurements taken at the same temperature. In analyzing
the data in these two tables, the procedure described at the end of
section II was employed. It is interesting to note from the data that
run 2-AGL was contaminated by a small quantity of foreign gas, while
run 1-AGL was free of any measurable contamination. Since the values
of the constant B in both runs are in good agreement with one another,
one may conclude that a small amount of foreign gas in the cell does
not prevent a valid measurement of the self-broadening cross section.
Also the absence of any Van der Waals broadening in run 1-AGL made
it possible to get an independent measurement of the oscillator strength

fa by inserting the constant A into equation II-59:

A = fa'yN = 0.47964 x 10® (ang sec)™! (IV-3a)
82 r, ¢ 31
Ag I 13383: T\ &) £, ° 1.672x%10% (IV-3b)
22 Qu a

fa = 0.287 (IV-3c)

Comparison between equations IV-2 and equations IV-3 shows that
very good agreement exists between the results obtained from weak

lines and those from strong lines.
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Ag I, A3281:

The silver line A 3281 arises from an electric dipule Lransilion

from the ground state aS_l_ to the state ZP__:,_O, 3.76 e.v. above it.
2 2

Since the data for the two silver resonance lines was taken simul-
taneously, the same range of atomic densities and temperatures will
prevail here as for the other silver line., For weak lines, thirty-five
measurements of the equivalent width, taken at the same temperature,
were averaged together to obtain the final average: W)\ = 7.22x 101!
cm. Table VIII gives the pertinent data needed to calculate f. The

Table VIII: Ag I, A328l: Data for Weak Lines

T = 1002. 09K N = 4,65 x10' % atoms/ cm?
ANy = 4.301x107!1 cm. A= 1.04 cm.

Run W?& x 10'! (cm.) Run W?\ x 10'! (em.)
AG-1R - AG-4R 7.40
AG-2R 7.03 AG-5R 7.14
AG-3R 7.15 AG-6R 7.39
average WA = 7.22x 107! em.

fine structure pattern for this line was also measured by Jackson and
Kuhn [ 23] . Their results are shown in the diagram in the preceding
section. As before, the isptope splitting can be neglected, while the
nuclear spin interaction separafes the two components (A + B) and
(a+ b) by about 1.5 Doppler widths A}\D, Hence, the same method

of calculating f must be used as for Ag I, A 3383; that is, the constant

C must be found separately for each component. The resulting values
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of C must then be added together to obtain f from II-57b. When the

calculation is performed this way, the resull is:
Ag T A3281: f= 0.524 (IV-4a)

YN 1,63 x 10® (ang. sec. y L (IV-41)

For strong lines, the equivalent width was measured at eighteen
different temperatures in two separate runs, 1-AGR and 2-AGR.
The letter R after the symbol for silver denotes the silver transition

o
AGIA3281 A, IEach value of W, in tables IX and X is the average

A
of seven measurements taken at the same temperature. The range

of equivalent widths was from 8.16 x 10™'° cm to 1.03 x10™® cm, In
analyzing the data in tables IX and X, the procedure described at the
end of section II was employed. It is interesting to note from the data
that run 2-AGR was contaminated by a small quantity of foreign gas,
while run 1-AGR was free of any measurable contamination. Since the
values of the constant B are in good agreement with one another, one
may conclude that a small amount of foreign gas in the cell does not
prevent one from validly measuring the self-broadéning cross section,
Also the absence of any Van der Waals broadening in run 1-AGR per-

mitted an independent measurement of the oscillator strength fa. The

constant A was inserted into equation II-59 with the result:

A= fa'yN = 0.99244 x 10® (ang sec™!) (IV-5a)

. 2
Ag I a328l: YN = Brtry © 2{ £, = l.(5¢x10°  (IV-5b)
A2 Ju
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£ = 0.566 (IV -5¢)

Comparison between equations IV-4 and IV-5 shows that very good
agreement exists between the results obtained from weak lines and

those from strong lines.,

Zn I, A3076:

The zinc line X3076 arises from the intersystem transition between
the ground state 180 and the state °I’,°, 4,03 e.v. above it, Vapor
pressures for zinc were taken from Hultgren's tables [ 20] . In this
source, the vapor pressure tables for zinc were based on the heat of
vaporization at 298°K, AH = 31, 245 + 50 cal./molc. This valuc is
the weighted average of a number of different investigations and may
be considered the most reliable value presently available. - The un-
certainty in AH of 50 cal./ mole could lead to an error in the atomic
density of at most 5% over the temperature range used. Equivalent
widths for this transition were measured over the temperature range
856, 5°K and 1163. 1°K, corresponding to a range of atomic densities,
8.99 x 10! ¢ atoms/ cm?® to 5.12 x 10'® atoms/ cm?®. The equivalent
widths ranged in value from 3,63 x 107'% cm to 2.00 x 107® cm. Each
equivalent width reported in table XI is the average of seven measure-
ments taken at the same temperature. In analyzing the data from
table XI, the procedure described at the end of section Il was employed.
The reduction of the data was carried out nsing the oscillator strength

obtained by the lifetime measurement of M. Dumont [ 24] .

Zn1, 23076 f, = 1.33x107* : (IV-6)
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The results in table XI show that Van der Waals broadening is absent.
However, the radiation damping width for this zinc transition is
several orders of magnitude smaller than the self-broadening damping
width at the lowest temperature measured, It was not possible, there-
fore, to measure the oscillator strength for this transition as was the

case for silver.

Pb I, A2833:

The l_ead line A 2833 arises from the electric dipole transition
between the ground state 3PO and the state >P;°, 4.38 e.v. above it.
Vapor pressures for lead were taken from Hultgren's tables [ 20] .

In this source, the vapor pressure tables for lead were based on the
heat of vaporization at 298°K, AH = 46, 000 + 300 cal. / rno.le. This
value represents the weighted average a number of different investiga-
tions, and is probably the most reliable value presently available. The
uncertainty in AH of 300 cal./ mole could lead to an error in the atomic
density of at most 15% over the temperature range used. Equivalent
widths for this transition were measured over thé temperature range,
982.4°K to 1473.8°K, corresponding to a range in atomic densities,
8,38 x 10'* atoms/ cm?® to 9.74 x 10'® atoms/cm?®. The equivalent
widths ranged in value from 4.29 x 107} 0cm to 3,18 x 10°% ¢m. Each
equivalent width reported in table XII is the average of seven measure-
ments taken at the same temperature. In analyzing the data from table
XII, the procedure described at the end of section II was employed.

The reduction of the data was carried out using the oscillator strength
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obtained by the atomic beam method by G. D, Bell and R. B. King
[25] :

Pbl, 12833 f = 0.23 (LV -7)

A Tesla coil revealed the presence of a small quantity of gas in the
lead cell. Thus, no attempt was made to calculate the oscillator

strength from the constant A.

T1 I, A3776:

The thallium line X\ 3776 arises from the electric dipole transition

between the ground state 2P1_0 and the state ?‘Sl_, 3.28 e.v. above it.
2

Vapor pressures for thallium were taken fromzthe tables of A. N.
Nesmeyanov [ 21 ] ., and were based on the heat of vaporization at
2980K, AH = 42,970 cal./ mole. Nesmeyanov and his co-workers
measured the thallium vapor pressure curve by two independent and
well-established methods: the Liangmuir Method and the Knudsen
Effusion Method. They obtained good agreement between the results
of both methods, thus indicating that their vapor pressure measure-
ments are of good quality. There is additional support to believe that
Nesmeyanov's vapor pressure curve is the most reliable one presently
available. The oscillator strength for the thallium transition A 3776
is a well-established value. It was measured by Demtroder [ 26 |
whose lifetime measurement gave fa = 0,128, by J, K, Link [ 27]
who got £, = 0.127 by the atomic beam method, and by G. S. Kvater

[ 28] who obtained f; = 0.125 by the hook method. Kvater's value

was obtained from measurements of the quantity Nf; which the hook
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method is able to measure with a precision of about 4%. Later after
Kvater's death, L. V., Gurvich [ 28] published Kvater's data, and
reduced it to the absolute scale by using Nesmeyanov's vapor pressure
curve. Gurvich obtained the value f; = 0.125 + 0,004, quoted above,
and thus showed that Nesmeyanov's vapor pressure curve was consistent
with the oscillator strengths measured by Demtroder and Link. Since
the latter two investigations did not use vapor pressure curves to

obtain their oscillator strengths, the agreement of Gurvich's and
Kvater's measurements with theirs establishes the reliability of
Nesmeyanov's thallium vapor pressure curve. On the other hand, when
IIultgren's [ 20] thallium vapor pressure curve is used along with
Kvater's Nf_ values, the resulting oscillator strength is some 30%
higher than those of Demtroder and Link. For these reasons there-
fore, Nesmeyanov's vapor pressures were chosen over those of
Hultgren.

Equivalent widths for the thallium transition A 3776 were measured
over the temperature range, 975.2%K to 1330.1°K, corresponding to a
range in atomic densities of 9.09 x 10'* atoms/ cm?® to 1.81 x 10!
atoms/ cm?®. The equivalent widths ranged in value from 1.72 x 107°
cm. to 8.69 x 1078 cm. Each equivalent width reported in table XIII
is the average of seven measurements taken at the same temperature.
In analyzing the data from table XIII, the procedure described at the
end of seétion’ II was employed. The reduction of the data was carried
out using the oscillator strength obtained by the hook method by G, S.

Kvater and L. V. Gurvich [ 28 ] :
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T11I, A3776 £, = 0. 125 (IV-8)

A Tesla coil revealed the presence of a small quantity of gas in the
thallium cell. Thus no attempt was made to calculate the oscillator
strength from the constant A. Also this thallium transition spans

an unusually large fine structure interval [ 29] which was yet
discernible in points 1-TLL-1A and 1-TLL—ZA. These points were,
therefore, not used in the least squares analysis to obtain the constants
A and B. It should be pointed out also that the letter L after the

symbol for thallium denotes the thallium transition A 3776.

1l L, A2768:

The thallium line A 2768 arises from the electric dipole transition
between the ground state aPlz_o and the state 2D3_, 4,48 e.v. above it.
Vapor pressures for thallium were taken from ?\Tesmeyanov's tables
[ 21 ] as explained earlier. Since both thallium experiments utilized
the same cell, the same range of temperatures and atomic densities
prevailed as for the A 3776 transition. The equivalent widths ranged
in value from 1.27 x 10" ? cm to 8.52 x 10"® c¢m. Each equivalent width
reported in table XIV is the average of seven measurements taken at
the same temperature. In analyzing the data from table XIV, the
procedure described at the end of section II was employed. The

reduction of the data was carried out using the oscillator strength

obtained By the hook method by G. 5. Kvater and L. V. Gurvich [ 28 ] 3

T1I, 22768 fa: 0.272 (IV-9)
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As stated earlier, gas was found in the thallium cell and thus the
oscillator strength could not be calculated from the constant A. Also
this transition in thallium spans a considerable fine structure interval
which was yet discernible in points 1-TLR-1A and 1-TLR-2A. These
points were, therefore, not used in Lhe least squares analysis to
obtain the constants A and B. It should be pointed out also that the
letter R after the symbol for thallium denotes the thallium transition

A2T768.

Van der Waals Data:

As part of this investigation, the Van der Waals cross sections
for cadmium and silver were also measured. These measurements
were made to check if the presence of Van der Waals broadening
affected in any way the measurement of the self-broadenixig cross
sections reported here. In each case the foreign gas density was
determined by admitting a known pressure of either COz or Hz0
vapor at 20°C. All the data needed to find the Van der Waals cross
sections is given in table XV. For the cadmium data, each equivalent
width represents the average of eighteen measurements taken at the
same temperature, while for the silver data, each equivalent width
is the average of seven measurements taken at the same temperature.
In analyzing the data in table XV, equation II-56 was first squared,
and Hultgren's vapor pressures [ 20] were used to obtain the total
damping width y = YN + YW + Ve The Van der Waals damping
width Yy Was then found by subtracting the radiation damping width

and the small resonance self-broadening width. The cross section
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for Van der Waals broadening was then found by using the relation:

yw = 2NVO (IV-10)

where ¥ is the thermal relative velocity in cm/ sec., N is the foreign

gas density in molecules/ cm?®, and ¢ is the Van der Waals cross section

s 2
in ¢m .

Conclusions:

Of all oscillator strengths, perhaps the best established is the
value for Cd I, A 3261 Z . Several independent determinations of this
oscillator strength have been made by a number of methods as indicated
in table XVI [ 30| . From the agreement shown in table XVI, one may
conclude that the oscillator strength reported here has an experimental
uncertainty of approximately ten per cent and that any systématic
errors present in the method of total absorption are probably below the
detection limit. Table XVII shows that the oscillator strengths for
the silver resonance lines were obtained in two independent experiments:
from weak lines on the linear part of the curve of growth and also from
strong lines on the square root portion of the curve of growth. In the
first instance, the oscillator strength was obtained from equation II-57b
where the dependence on N is linear, while in the latter case, the
oscillator strength was obtained from equation II-56 when the resonance
self-broadening term was negli;‘gible° In this latter case, the dependence
on N was only as the square root. The agreement in table XVII, in
view of the two different dependences on atomic density, implies that

the silver vapor pressures used were highly accurate. Also table
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XVII compares the relative oscillator strengths of both silver resonance

lines measured by Filippov and Islamov [ 31 ] with those obtained in

this investigation. Apparently, the results of both methods agree with

one another when due allowance is made for the quoted experimental

uncertainties,

o]
Table XVI: Comparison of f-valucs for Cd I A 3261 A [ 30 ]

Investigator Method fx103
Kuhn magneto-rotation 1.9 +0.2
Solcillcet mapgnetic depolarization 2.4

Ellett magnetic depolarization 2,08
Filippov hook™ 1.8 +0.1
Koenig and Ellett lifetime 1.9 +0.2
Soleillet lifetime 1.95

King and Stockbarger total absorption 2.3 +0.2
Webb and Messenger lifetime 2.23140.07
Matland lifetime 2.33+40.06
Geneux and Wanders-Vincenz lifetime 2.19+0.07
Barrat and Butaux magnetic resonance 2.1240.06
Byron and McDermott mecthod not given 1.96
Lurio and Novick method not given 1.96

This investigation [ 30} total absorption 1.9 +0.2
mean value £ = 2,07x 1073 standard deviation g = 0.18 x 10-3
*Filippov, using the hook method, obtained %%g—i%é))' = 1.5x107°+4%

This relative f-value can be reduced to an absolute scale by using f{2288)

= 1.20 + 0,05 measured by Kuhn and also by Zemansky.
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Table XVII: Oscillator Strengths of the Silver Resonance Lines

Method £(3281) £(3383) £(3281)/£(3383)
total absorption (weak lines) 0.524 0. 283 1,85+ 0.19
total absorption (strong lines) 0.566 0. 287 1.97 + 0. 20
hook [ 31 ] 2.03 1 0.06

For strong lines, further measurements were made to obtain
cross sections for resonance self-broadening and for the Van der
Waals broadening of the cadmium and silver lines. The Van der
Waals measurements reported herc werc made primarily to test the
validity of self-broadening cross sections obtained from cells con-
taminated by a small quantity (~ one mm. of Hg) of foreign gases.
Independent mass spectrographic determinations revealed that thesc
residual foreign gaées were CO2 and Hz20O in the ratio of 2.45 (CO3)
to 1.00 (H20) at a total pressure of about one mm. of Hg. Reference
to table XIX will show that the cross sections for self-broadening
from runs 1AGR, 1AGL and 2AGR, 2AGL are in good agreement
even though runs 2AGR, 2AGL were contaminated by foreign gases
while runs 1AGR, l1AGL were uncontaminated. One may conclude
therefore that the presence of a small amount of foreign gases will not
affect the self-broadening cross sections measured in contaminated
cells. The Van der Waals cross sections for the cadmium and silver
lines are summarized in table XVIII. These cross sections, it can be
seen, are sufficiently large to account for the additional broadening
observed in runs 2AGR, 2AGL if a pressure of about one mm. of Hg

is assumed. For this reason, no attempt was made to measure the
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Table XVIII: Van der Waals Cross Sections for Cd and Ag

(o]
Transition Foreign T (°K) Cross Section p=Ng (A)
Gas g (cm. ?) T
Cd IA3261 CO. 668.1 3.81 =x10-1% 11.02
H.0 693, 1 1.52 x10-1% 6.97
Ag 1328l coz 1327.2  8.14 x=10-1* 16.09
H,O 1330.2 1.29 x10-'% 6. 40
Ag 123383 CO. 1327.2  4.60 x107!* 12,10
H20 1330.2 1.70 x10-'% 7.37
Hg Ia2537[32]" CO. 1.25 x10-'4
: H,0 0.685x 10714

"Included in this table for sake of comparison.

radiation damping widths in any run where a Tesla coil revealed the
presence of gas in the cell.

As mentioned earlier, the primary purpose of this investigation
was to measure resonance self-broadening cross sections and to compare
them with the theoretical predictions of equation II-52Z, Table XIX
summarizes all the cross sections and the necessary data to analyze
them. It is easily seen that the results reported here for f3 > 0.1
agree quite well with Foley's prediction when due allowance is made
for the 20% precision of these measurements. Of particular importance
is the scope of this test of Foley's theory. Five completely different
spectral transitions were tested over a range of four in oscillator
strengths and over a wave leng.th range of 1, 5. Also the range of
thermal x}elocities in these measurements was almost a factor of two.
Since all these ranges are well outside the 20% experimental uncertainty,

it can be claimed that the resonance self-broadening cross section for
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f, > 0.1 depends linearly on the wavelength and the oscillator strength
and is independent of the thermal velocity. Also the measurements
reported here were made over a large range of atomic densities:
over one order of magnitude for thallium extending to over three
orders ol maguitude fur lead. Hence the results reported here do
prove conclusively that the damping width for resonance self~-broadening
does depend linearly on the atomic density. In view of the scope of
this test of Foley's predictions, it is felt that his theory of resonance
self-broadening for transitions with oscillator strengths of order 1/ lOth—
has been substantially verified.

For spectral transitions with oscillator strengths much less than
one, Foley predicts that self-broadening cross section should no
longer depend linearly on the oscillator strength. The measurements
for the cadmium and zinc transitions support this prediction since their
cross sections differ by a factor of two whereas their oscillator
strengths differ by almost a factor of sixteen (see table XIX). Such a
large discrepancy is completely outsidc the 20% precision of the
measurements. Foley's theory also predicts that in the impact
approximation, the zinc and cadmium self-broadening damping widths
should be linearly proportional to the atomic densgity and should have a
velocity dependence of Vo's . The large range of atomic densities
covered in the zinc and cadmium runs clearly indicates that even in
the limit of small oscillator strengths, the self-broadening damping
width is linearly dependent on N. Unfortunately, the range of

temperatures covered within the zinc and cadmium runs was too small
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to accurately confirm the Vo',s velocity dependence in the damping
widths.

Lastly, it should be pointed out that the particular form of the
method of total absorption used in this investigation possesses
certain advantages for the measurement of poscillator strengths. As
shown in the silver runs 1AGR and 1AGL, the quantity A in equation
II-59 provides a measure of fa2 in the absence of any Van der Waals

broadening, 0. Obtaining oscillator strengths from II-59

Yw ™
has the following advantages not possessed by the method of total
absorption applied to weak lines. First, the equivalent widths are

quite large and are thus easier to measure with good precision and

with almost complete freedom from the grain noise of the emulsion.
Secondly, the temperatures required for strong lines are a good deal
higher thaﬁ those required for weak lines., Since the vapor pressures

of all elements vary much more steeply, the lower the temperature,
accuracy in measuring the temperature for strong lines is not nearly

as critical as it is for weak lines. Thirdly, if the self-broadening
damping is yet small compared with the radiation damping, the oscillator
strength f; depends on the square root of the atomic density N, and thus
vapor pressure errors are reduced by at least a factor of two over the
weak line case. Furthermore, now that Foley's theory of self-broadening
has been verified for large oscill_ator strengths, it should be possible

lo measure [ directly [rom resonance self-broadening cross sections.
Such measurements would be far simpler to make than the corresponding

weak line measurements although the precision would not be as good
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due to the W’A2 dependence of the cross sections. Finally, it should

be pointed oul that oscillator strength measurements gotten from strong

lines do not suffer normally from the uncertainty introduced by unresolved

fine structure in weak lines.
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Appendix I: The Validity of the Impact Approximation

In calculating the line shape for collision broadening, the impact
or phase shift approximation was used. Essentially, this approximation
assurmres that the collisions are binary and that the duration of the
collisions is very short compared with the lifetime of the absorption
process [33] . The latter condition is particularly important since it
permits replacing the collision integral 1I-21 with the sum of Lhe
individual phase shifts occurring in the time interval from 0 to t.

Also the vanishingly small collision duration enables II-18 to be used

in calculating the individual phase shilt. However, the contour of a
resonance self-broadened line could be equally well calculated using

the statistical or static approximation. In this approximation, the
collsion duration is assumed to be long compared with the liftime

of the absorption process and/or the collisions are no longef binary.
Either condition allows one to replace the effect of the collisions with

an average portential acting over an entire radiation lifetime. Therefore,
some justification should be given for employing the impact approxi-
mation in deriving the collision broadened line shape.

Essentially, the problem consists in selecting a suitable criterion
for determining which approximation is applicable. If the parameters
measured in the experiments are substituted into this criterion, then
the proper approximation can be selected. From the foregoing
discussion, the two approximatiohs apparently differ from each other in
their assumption about the duration of a collision compared with the

radiation lifetime. Therefore, it seems reasonable to select as the
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proper criterion the ratio of the collision duration T3 to the radiation

lifetime T [ 33] ; that is,

If x<< 1, then the impact approximation is valid; and conversely for
X >> 1, the statistical approximation is valid.

The duration of a collision can be found by noting that the resonance
seli-broadening interaction falls to 1/ 8th of its maximum value when

the distance between colliding atoms doubles. Thus,

where ¥ = 2N 2RT is the mean velocity of the atoms and p is the
™M
distance of closest approach in a collision. A value for p can be

obtained from the measured value of the resonance self-broadening

width Yo by using the relation:

Y. = 2NV (mp?),

where N is (he known atomic density. For the radiation lifetime, the
values measured in the experiments reported here will be used. Hence,
the ratio X can be completely evaluated from experimentally measured
quantities, Table XX shows the pertinent data needed to calculate X .
The values of X shown in table XX are the maximum values attained in
the experiments reported here. One may therefore conclude that the
impact approximation is valid for the range of velocities and collision

parameters encountered in this investigation.
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Appendix II: Coordinate System for a Typical Atomic Collision
In Figure III, ¥ is the velocity of atom 2, and the y and 71 axes

are chosen to be parallel to this velocity. Similarly, the z and { axes

and the x and ¢ axes are parallel to one another. The parameter ?G is

the distance of closest approach in the collision.

Figure IIT: Coordinate System for an Atomic Collision
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