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ABSTRACT

This work examines three related topics in aerosol science. First,
a continuous stirred tank reactor (CSTR) for studying the dynamics of
chemically reacting aerosol systems is described. This apparatus is de-
signed to allow aerosols to react under conditions of controlled tempera-
ture and relative humidity and is applied to the study of growth of
aqueous manganese sulfate aerosols in a humid atmosphere containing sul-
fur dioxide. From experimental data the rate of conversion of sulfur
dioxide to sulfuric acid in manganese sulfate aerosols is deduced.

Second, a new algorithm for inversion of aerosol size distribution
data is presented. This algorithm is well suited to the i11-posed nature
of the data inversion problem and is shown to give results superior to
those obtained using conventional methods. This inversion technique is
applied to the analysis of aerosol growth data.

Finally, the general steady state coagulation equations with particle
sources and sinks are examined and shown to admit physically unrealistic
solutions in some cases. General conditions are then given which insure
the existence of physically acceptable solutions and these solutions are

shown to have large particle tails that decay exponentially.
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CHAPTER 1

INTRODUCTION



INTRODUCTION

An understanding of the chemical and physical interactions which lead
to evolution of particle size distributions in aerosol systems would have
a strong impact on environment and possibly industrial applications. Un-
fortunately, at present there exists a lack of fundamental information con-
cerning many of the processes occurring in such systems, as well as tech-
niques to obtain such information.

Much of the interest in the evolution of chemically reacting aerosol
systems has centered on predicting characteristics of plumes from coal-
fired boilers. In such a plume, an aerosol may consist of aqueous drops
containing heavy metal ions, oxides, alkali salts, and more or less insolu-
ble matter, surrounded by an atmosphere containing sulfur dioxide. Because
of the catalytic effect of the heavy metals (Bassett and Parker, 1951) sul-
fur dioxide is oxidized to sulfate in the aerosol phase. Much research
has focussed on the rate and extent of this reaction (Haury, et al. 1978).
In addition coagulation, particle deposition, and homogeneous gas phase
reactions occur simultaneously, making such systems extremely complex.

Despite the complexity, some progress can be made by studying simpler
aerosol systems containing only a few chemical components. In this way
some of the features of plume behavior have been modeled (Bassett, et al.
1981, Freiberg, 1978). However, little has been done to study chemically
reacting aerosols in a controlled environment where both chemical and
physical behavior may be observed. Such studies are necessary to assess
our understanding of the basic phenomenon and to fully integrate theories

describing the various processes occurring in aerosol systems.



In Chapter 2 we describe such a system - a continuous stirred tank
reactor (CSTR) for aerosol studies. In Chapter 3 we present some theo-
retical results on effluent size distributions from the CSTR resulting
from the combined effects of coagulation, particle growth, and formation
of new particles by homogeneous nucleation. Chapters 4 and 5 give theo-
retical results on wall loss rates in the CSTR, and in Chapters 10 and 11
we describe some theoretical and experimental results on particle growth
due to oxidation of sulfur dioxide in manganese sulfate aerosols, conclud-
ing with a rate expression for the oxidation reaction based on the size
distribution data.

Measurement technigues for aerosol size distributions are as yet only
partly successful. Many of the techniques available yield data that are
difficult to interpret in terms of size distributions. One of the advances
that has occurred in the last few years is the realization that the mathe-
matical problems involved in inversion of aerosol size distribution
data are ill-posed (Twomey, 1975), and conseguently are not amen-
able to solution by conventional techniques. Improved data inversion tech-
niques, based on methods specifically adopted to il1-posed problems may
be expected not only to improve data analysis of present measuring tech-
niques, but also to enable a wide variety of techniques to be employed.

In Chapters 6 and 7 we present new algorithms for the inversion of
aerosol size distribution data based on fundamental mathematical work of
Tikhonov and Arsenin (1977) and Wahba (1977). 1In Chapter 8 we obtain cali-
bration data for an optical particle sizing instrument enabling us to use
these new methods to study size distribution changes during particle

growth.



An area of aerosol science which has remained virtually untouched is
that of mathematical analysis of the basic equations of aerosol dynamics.
Although this area is never likely to be at the forefront of the aerosol
dynamics field, it is important in the sense that rigorous mathematical
results provide a means to assess the validity of numerical results on
complex mathematical models. Moreover, questions of existence and unique-
ness of solutions, although perhaps not intrinsically interesting, assume
practical significance when they are answered negatively.

One of the first general existence results was given by McCleod (1962)
for the unsteady discrete coagulation equation. Later, White (1980) proved
a general global existence and uniqueness result for these equations under
more restrictive conditions, and also showed that the number distributions
resulting from solution of the equations must decay exponentially fast
for large particle sizes. Later, White (1982) gave a proof of the exponen-
tial decay of the large particle tails for steady state source reinforced
coagulating aerosols. In Chapter 9 we present an extension of this result,
and show existence of solutions and exponential decay of the tails under
more general conditions than those cited by White (1982). We also discuss

the possible significance of physically unrealistic solutions.
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DESIGN OF CSTR SYSTEM



DESIGN OF CSTR SYSTEM

INTRODUCTION

This chapter presents a design and layout of a continuous stirred
tank for aerosol studies. The goal in designing such a system was to
allow studies of aerosol growth due to oxidation of sulfur dioxide to be
carried out under controlled conditions of temperature, sulfur dioxide
concentration, relative humidity, and particle size and concentration. At
the same time, however, it was desired to keep the design flexible to allow

for possible future work on other aerosol systems.

DESCRIPTION OF APPARATUS

Figure 1 shows a schematic of the apparatus. Aerosol is generated
by atomization of an aqueous solution or dispersion in a device similar
to that described by Liu and Lee (1975). Figure 2 shows a sketch of the
atomizer. The aerosol generator is fed by a syringe pump and the feed
solution is atomized by a stream of compressed air at 36 psig passing
through a 0.0145" diameter orifice. By operating the syringe pump at a
flow of 0.2 cm3/min. nearly five hours of steady operation can be obtained
using 60 ml syringes. Nearly steady operation can be maintained indefi-
nitely by changing the syringe, which requires less than a minute.

From the atomizer the aerosol stream passes through a Kr-85 charge
neutralizer, which reduces the charges on the aerosol to a bipolar Boltz-
mann equilibrium distribution, and then the gas passes to a 10-1iter
holding vessel to smooth fluctuations in particle concentrations.

Provision is made for dilution of the aerosol in this vessel by

metered addition of air, and aerosol can also be removed to decrease flow
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rate as the gas exists the holding vessel by means of a connection to a
vacuum system through a filter and flowmeter.

The vacuum system is maintained at fifteen inches of mercury absolute
pressure using a vacuum regulator. A1l connections to vacuum are to the
same system.

Aerosol leaving the holding vessel is dried by passage through a three-
foot tube surrounded by a concentric shell of Drierite. After drying, the
aerosol may be further diluted by addition of air through the flowmeter.

In experiments in which a monodisperse aerosol is used, a TSI model 3071
Electrical Mobility Classifier and a Kr-85 Charge neutralizer are attached
to the system at this point, the monodisperse aerosol then passing to a
one-liter mixing vessel where sulfur dioxide from a cylinder may be added.

From the mixing vessel the aerosol-gas mixture passes through a humidi-
fier. This device consists of a pool of water maintained at a constant
temperature by passage of temperature regulated water through about 40 feet
of immersed copper coil. A sketch of the device is shown in Figure 3, and
Appendix A details some design criteria. Aerosol-containing gas flowing
over the water pool is humidified to saturation before passing through a
heat exchanger, consisting of a water-jacketed tube through which tempera-
ture-regulated water passes.

The gas leaving the heat exchanger passes through a y-branch either
to the reactor or directly to measuring instruments for measuring feed
aerosol characteristics.

The reactor consists of a roughly spherical glass vessel of nominal
100 liters capacity. It is fitted with ports for entrance and exit of

gas and temperature measurement. The entire vessel is supported in a
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plywood frame, which completely encloses the upper half of the reactor,
and which contains copper coils fed by water from the heat exchanger.
The bottom of the reactor is insulated with glass wool.

Aerosol, either leaving the reactor or directly from the y-branch,
is diluted, if necessary, and sampled for dewpoint using an EG&6 model
911 DEW-ALL digital humidity analyzer. This device also gives a reactor
temperature readout from a thermocouple inserted in the reactor.

Sulfur dioxide concentration is measured by bubbling a known volume
of gas through a solution of hydrogen peroxide and titrating the sulfuric
acid formed with 0.0IN sodijum hydroxide.

The flowmeters, numbered 1-8 in Figure 1, are all rotameters obtained
from Matheson Gas Products. The black dots on the flowmeters shown in
Figure 1 show the locations of the flowmeter valves. Calibration was done
at the pressure downstream of the valve if the valve is at the bottom and

upstream if the valve is at the top.

TRACER EXPERIMENTS

The CSTR has no mechanical stirring apparatus, but depends on convec-
tive mixing due to the flow through the vessel to provide mixing. This
offers the advantage that no extraneous surfaces are present which might
interact with aerosol.

In order to assess the validity of the ideal mixing assumption,
several tracer experiments using oxygen were carried out.

In such an experiment, nitrogen was first fed into the reactor at a
flow of 2.09 1/min. and the decay in oxygen concentration was followed

using a Beckman 755 oxygen analyzer. When the oxygen concentration had
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fallen to approximately 10 percent of its ambient concentration, the meas-
urements were stopped, and the nitrogen flow was increased to purge the
vessel of oxygen. When the oxygen concentration became negligible (0.1%),
air was admitted to the CSTR at 2.09 1/min., and again the oxygen con-
centration was monitored as a function of time.

Data from experiments in which nitrogen was fed to the reactor are
plotted in Figure 4 as the logarithm of oxygen concentration versus time
in minutes. Note that these points fall nearly on a straight 1ine. Data
from the experiments in which oxygen was fed into the reactor are plotted
in Figure 5 as In(1-¢/20.9) versus time, where c is oxygen concentration
in percent.

The vessel volume can then be calculated from the residence time
determined from the slope of these plots and the known flowrates. Volumes
given by the two kinds of experiments described above average 118 liters
and differ by about 6 percent from each other. The value 118 Titers
obtained in these experiments is to be compared with a value of 115 liters
obtained by estimates made from external measurements of the vessel.

Had there occurred significant channeling due to poor mixing in the
vessel, a smaller effective volume would be expected to result from the
tracer experimental data. Since this was not the case, it was concluded
that the mixing was rapid enough relative to the residence time to be

considered 1ideal.
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APPENDIX

DESIGN OF AEROSOL HUMIDIFIER

Two important criteria determine the design of an aerosol humidifier.
They are the efficient humidification of the gas and minimum loss of par-
ticles. That these objectives are compatible is suggested by the fact
that particle Brownian diffusivities are several orders of magnitude
smaller than gas diffusivities.

To treat the humidification problem, we assume fully developed Tami-
nar flow in the vapor space above the water pool and ignore the effect of
the edge. Under these assumptions the following equation results if we

ignore diffusion along the flow

2 2\
3 C y QL_) 3¢
0 —= = 4y ( L - o (1)
ay2 o\ h h2 9z
where D is the water vapor diffusivity, c is water vapor concentration,
h is thickness of the vapor space, y is distance measured from the water

surface, and z distance downstream from the gas inlet.

The boundary conditions corresponding to the situation described are

c(0,z) = <, (2a)
g-; (h,z) = 0 (2b)
c(y,0) =0 (2c)

In dimensionless form (1) and (2) assume the forms

2

2 4h"v

3 u 0 2, au
—5 = = (£-87) == (3)
952 DL 3s

u(0,s) = 1 (4a)
du _
5 (1,s) = 0 (4b)



u(g,0) =0 (4c)
where

u = c/cO (5a)
g =y/h (5b)
s = z/L (5¢)

The solution u is of the form 5

DLA"s

_ n

A 4h2v0
u(g,s) =1+ Z] c b, (E) e (6)

n:

where An and wn satisfy the eigenvalue problem

T M s AR (7a)

3,(0) = 0 (70)

41) =0 )
and

c, = - Of](a—az)wn(a)dg/ Uf1(g~a2>w§(a)da (8)

The quantity of interest here is the cup-mixed average concentration at

the outlet, given by
- M2 1
i= [ (e-29ule)de S (-5%) de (9)
0 0

Numerical solution of (7) gives

_2.a3( DLWy _23.5( DLW

i=1- 0.899 hG “_ 0.0607e hQ (10)

where w is the vapor space width and Q the volume flow rate of gas.
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The third term in (10) is negligible under conditions of near com-
plete saturation, so can be omitted. To achieve humidification to within
a fraction r of saturation, we require

-2.43( %‘é—w

0.899%e

or equivalently

DLW (1n(0.899)-Tnr) _  (0.106+1nr)
hQ 3_ - T (11)

2.43 2.43
To treat particle loss one must account for both diffusional loss and

gravitational sedimentation. As a first approximation, we assume these
are independent and deal with sedimentation alone first.

Particles entering at height Yo above the water surface follow tra-
jectories given by the following differential equations, provided they

follow the flow in the horizontal direction

2
dx _ y _ Y
ey 4v0 (ﬁ- hz) (12a)
dy .
at = - V' (12b)

where v is the settling velocity of the particle. At t = 0 the particle

positions satisfy

1]
(&)

x(0)
y(0)

(13a)
(13b)

1
~<

Since trajectories cannot cross, we need only determine the critical
trajectory, (xc(t), yc(t)), for which xc(t) = L and yc(t) = 0 for some t.
Solving (12) with (13) for (x(t), y(t)) and setting

x(t)
y(t)

L (14a)
0 (14b)
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for the critical trajectory gives the relation
2 3
Yo Yo _ VW (15)
2 .37 8q
2h 3h
This defines Yo for the critical trajectory. So all particles entering
above Y, escape, and those entering below are caught. The fraction enter-

ing below Yo is given by:

Yo 2 ] 2
[P -5 )a/f (2 5)e
g (yg _ o ) VWL
on® 30 C

Hence, to remove fewer than a fraction r of the particlies requires that

— < 7 (16)

The Toss by particle diffusion is expected to be small due to small
particle diffusivities. The Equation (3) may be written

82u

—£§'= @(5‘52) %% (17)
3

any

where o = i © > > 1. The boundary conditions in this case are

u(0,s) = u(l,s) =0, u(g,0) =1 (18)

We expect a concentration boundary layer, but little change in the bulk
concentration, so we solve (17) and (18) near one wall using the approxi-

mate equation

2%y

u ou
= Qf == (19)
aE;Z 3s
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with boundary conditions

u(0,s) = 0, Tim u(&g,s) = 1, u(g,0) =1 (20)
g~>00
This can be solved by a similarity substitution and by applying it to both
walls we obtain the cup-mixed average concentration at the outlet as

62
1 r<33—>(°‘)

2/3 2/3

=1 -2.24(2) (21)

e lw

Hence for the loss fraction to be less than r we require

D_LW
L < 0.2rl? (22)

Using the values

L =60 cm
h=1cacm
w =10 cm

humidification to within one percent of saturation will occur if, accord-
ing to inequality 11
Q < 4.9 &/min (23)

Hence essentially complete humidification is obtained up to nearly 5 &/min.
flow. At 2 2/min. saturation is achieved to within 0.002 percent. Under
these conditions inequality (16) predicts that 5.4 percent of particles
1 uym in diameter will be Tost by gravitational sedimentation, and 13 per-
cent of 0.01 um particles will be Tost by diffusion.

The estimates can be expected to hold as long as flow remains laminar.

At a flow of 5 2/min. the Reynolds number for this system is given by
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Re = phv/u = 53

Consequently, laminar flow is expected.
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CHAPTER 3

AEROSOL BEHAVIOR IN THE CONTINUOUS
STIRRED TANK REACTOR

Published in AIChE Journal 26, 616 (1980).
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Aerosol Behavior in The Continuous Stirred

Tank Reactor

The basic features of aeroso! behavior in the CSTR are examined. Solutions

JAMES G. CRUMP
and
JOMHN H. SEINFELD

are obtained for the steady state aerosol size distribution during simultaneous

coagulation, particle growth by vapor condensation and new particle formation by
ions are shown for the case of 8 monodisperse feed

Jeation. Explicit distrib

aerosol.

Department of Chomical Enginsering
California institute of Techrology
Pusadena, Colifornio 91125

SCOPE

Studies of particle formation and evolution in combustion
systems and in laboratory simulations of atmospheric chemis-
try sometimes involve the use of a CSTR. The interpretation of
aerosol size distributions in a CSTR requires the development
and solution of the general population balance equation appli-
cable to that system. The phenomena that must be considered
include coagulation, particle growth by vapor condensation

0001-1541-80-3904-0610-§00.75. ®The Americen Institute of Chemical Engineers,
1880

July, 1980

and new particle formation by vapor nucleation. B the
generel problem of serosol behavior in the CSTR does not
appear to have been studied previously, an examination of the
qualitative features of the steady state size distributions that
may be achieved is deemed an appropriate first step to a more
in depth analysis. Of particular interest is the elucidation of the
effects of varying residence time and the characteristic times
for coagulation and growth by condensation on the size distri-
butions attained.

AICHE Joumal (Vol. 26, No. 4)
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CONCLUSIONS AND SIGNIFICANCE

A general solution for the steady state aerosol size distribu-
tion in a CSTR is obtained for an arbitrary feed aerosol size
distribution and for kinetic coagulation coefficient and particle
growth rate that are independent of particle size. The object of
the analysis is to demonstrate the qualitative features of the
size distribution, and, consequently, the simplified functional
forms of the coagulation and growth coefficients were chosen so
as to enable exact solution of the governing equations. The
solution is explicitly illustrated for a monodisperse feed
serosol. Although the assumption of a constant coagulation
coefficient is valid in certain instances, that of a size indep

tion to the constant growth case to determine the qualitative
effect of the size dependent growth rate. Although simulation
of a specific system will generally require numerical solution of
the aerosol balance equation employing the proper detailed
expressions for the coagulation and growth coefficients, the
solutions presented here provide an indication of the expected
behavior of the size distribution as residence time and other
physical parameters are varied. In addition, the dimensionless
groups governing aerosol behavior in a CSTR are defined. The
groups indicate that for any system of this type, the relative

itudes of the characteristic times for growth, coagulation

dent growth rate is not. Thus, the case of growth rate linearly
proportional te particle volume is investigated as a perturba-

and reactor residence will strongly influence the expected size
distribution.

Understanding the processes associated with particle forma-
tion and evolution in combustion systems and in laboratory
simulations of atmospheric chemistry requires consideration of
aerosol behavior in typical chemical reactor configurations, par-
ticularly the continuous stirred tank reactor (CSTR) and the
tubular flow reactor. The object of this work is to elucidate the
basic features of aerosol behavior in the CSTR.

A variety of physical and chemical phenomena influence the
size distribution of aerosols. including coagulation, growth by
condensation of gases on the particles and formation of fresh
particles by nucleation. In this work, we consider a general
situation in which an aerosol of known size distribution is intro-
duced into a CSTR together with a vapor species capable of
transferring to the aerosol by condensation or of nucleating to
form new particles. Thus, simultaneous coagulation, growth and
new particle formation may occur in the reactor.

The equations governing the steady state aerosol size distri-
bution and vapor concentration are presented and nondimen-
sionalized A general solution of these equations is then ob-
tained for the case in which the kinetic coefficient of coagulation
is independent of the sizes of the two particles and in which the
rate of growth of an individual particle by condensation is inde-
pendent of the size of the particle. The solution is explicitly
illustrated for a monodisperse feed aerosol. Although the as-
sumption of a constant coagulation coefficient is valid in certain
instances, that of a size independent growth rate is generally
not. Thus, the case of growth rate linearly proportional to parti-
cle volume and a monodisperse feed aerosol is then investigated
to determine the effect of size dependent growth rate on the
steady state aerosol size distribution.

EQUATIONS DESCRIBING GAS-AEROSOL BEHAVIOR I A CSTR

Consider a CSTR operated at steady state in which an aerosol
of known size distribution is fed into the reactor together with a
gas. which condenses on the aerosol. The aerosol is charac-
terized by its size distribution function n(t), where n(v)dv repre-
sents the number density of particles having volumes between v
and ¢ + dv. The molar concentration of the gas is denoted by ¢.
Gas at concentration cq is continuously introduced into the
reactor at volume flow rate g together with an aerosol of size
distribution ny(t). The gas-aerosol system undergoes the follow-
ing processes: condensation of the gas on the aerosol particles,
homogeneous nucleation of the gas to produce new particles of a
given volume v, and coagulation or coalescence of aerosol parti-
cles to form larger particles.

Let S¢(c) be the rate of formation of particles by nucleation and
I{v) = cfir) be the growth rate of a particle of volume v by
condensation. The form ¢fit) assumes that condensation is ir-
reversible, a good assumption for low vapor pressure gaseous
species. Conservation of mass for aerosol and gas gives

AICKE Journal (Vol. 26, Ne. )

Veoen' (o) =

glco— ¢) = 1071 (ﬁ) Ve L}{u)n(u)du
+ 10" (T‘;—) VeoSole) (1)

glng(t) — n(r)] + VSy(c)8(t — vg) ~ Vc—;; [floin(e)]

+ oy [ B - & O - amidic
— V(e . N =
n(v) j:B(t, On(ddE =0 (2)

We note that the factors of 10~ '* appear because particle volume
is expressed in um® whereas density has units of g em~%. It has
been assumed that the total aerosol volume is small compared to
that of the gas, so that the total volumetric flow rate for the
mixture of gas and aerosol may be replaced by that of the gas
alone, q. Unless the density of aerosol particles is extremely
high, the right-hand side of Equation (1) will be negligible, and
the gas concentration ¢ will be the same as the feed gas concen-
tration co. In any case, we will henceforth suppose that c is
known and deal only with the aerosol balance, Equation (2). The
boundary condition on (2) is

n(0) =0 (3)
All realistic distributions will also satisfy the condition n(v) = Oas

O - %,

Because of the complex dependence of the coagulation
coefficient S(v, ©) and the condensation function flv) on the
particle volume ¢, (2) must generally be solved numerically. In
the present study, however, we are interested in elucidating the
qualitative features of the solutions to (2) and for this reason will
consider constant coagulation coefficient B(v, ©) = B8 and size
independent condensation rate fiv) = o,. The validity of these
assumptions has been discussed elsewhere (Ramabhadran et al.,
1976). We note, in particular, that the assumption of constant 8
is physically realistic in the initial stages of Brownian coagulation
of a monodisperse aerosol. However, the assumption of size
independent growth is not in general obeyed. Usually, f(v) can
be expressed as flv) = 0,07, 0 < y =< 1 (Ramabhadran et al.,
1976).

With the above assumptions, (2) becomes

1

5 VAn*n(v) — VBn(v) | n(D)dE
L]

+ glnglv) — n(v)] + V5,8 — 1)  (4)
where

July, 1980 .
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n*n(v) = /rn(v - fm(D) do
L]

and S, = So(c).
We introduce the total number and volume densities of the
aeroso}

N = f:n(v) do No= ‘L:n,(v) dv

V= L:m(o) dv V,= fo‘;n,,(u) dv

and the following dimensionless groups, & = 8caNy/V,, « =
BON, w = 85¢/N, where the mean residence time 8 = V/g. a, x
and w are ratios of residence time to characteristic condensation,
coagulation and nucleation times, respectively.

Dimensionless particle volume and aerosol size distribution
are defined as

z = N.v/Vo
W (Vs
D) = wx " ('Tv'.,’)
Then, (4) becomes

ag'ls) = - kegls) = (1 + g)

+ golx) + @bz ~ za) (5)

Note that the feed distribution ge(x) and the nucleation term
wd(x — xo) play equivalent roles in (5); so, for simplicity, we
combine them, setting g,(x) = go(z) + wd(x ~ x,).

It is necessary to evaluate the steady state number density N.
By integration of (4) from 0 to © amf solution of the resulting
quadratic equation for N, one obtains

~=_;§[\/mm7:m-n ®)

Subsequently we shall be interested in a monodisperse feed
distribution ng{v) = NoB(v — ©y). Using (6), we find that

() = (1 +%«— u)a(x - ™

S R+ Y20 = (k + DIRUL = (k + D0 teibe e

STEADY STATE SOLUTIONS

In this section we examine solutions of the material balance
(5). First we consider special cases in which one or more of the
physical processes is unimportant.

#o Congulation; x =@

In the absence of coagulation, the aerosol fed to the reactor
grows by condensation, and fresh aerosol forms by nucleation.
There is no particle-particle interaction. Equation (5) can be
easily solved to yield

g(x) = __la_{ j:e‘ilﬂgo(x — y) dy Y WU(X - xg)e""‘"’”"} (8)

where U is the unit step function

0 =0

For a monodisperse feed, g, is given by (7). and
£) = {1 — W)Ul = De™*=Me 4 WUz = zp)e™s-0%)

©)

Figure 1 shows g(x) for 0 < x, < 1. Physically, we note that the
size distribution g{x) exhibits two peaks corresponding to the
sizes of the feed aerosol (x = 1) and that freshly formed by
nucleation (x = x,). The distribution spreads toward larger
sizes because of the condensation growth. The peak at x = 1 is
higher than it would be in the absence of nucleation because
some of the smaller particles have grown by condensation to
sizes = ! and augment the feed aerosol. The degree of spreading
of the distribution is controlled by the dimensionless parameter
a, which depends upon the residence time 6.

Ho MNuclestion; w = @
When nucleation may be neglected, (5) becomes

ag'(x) = -—;— xgg(x) ~ (1 + x)glx) + golx)  (10)
Equation (10) can be solved by Laplace transformation (see

eppendix) to yield the general solution for the aerosol size distri-
bution

_ - xt[¢k‘gg(k+l)] (I)
€ = 3 TR + DT an
where
$ulz) = -1+ wzia 12)

and gz* denotes the k fold convolution of gy defined by
gi*(x) = gigd . . - *gol®)

Again, if the aerosol in the feed is monodisperse, so that go(z) =
(1 + 1/2x)8(x ~— 1}, then

i+ 1), ] ot
g* = (1+0x) -G+ )

and

1 k+1
g™ty = (1 4.?) [x =+ DJ*x
Uls = (k + Dl veessmie (1)

The resulting distribution is thus

(15)

g = 3
=
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Figure 2. Dimensioniess size distribution g{x) for monodisperse feed and

ao nuclegtion; x = Tand 2, a = 0.25, w = 0.

To observe the physical significance of this solution, let us
examine the case in which e << 1, thatis, when the characteris-
tic time for condensation is large relative to the residence time.
For small &, the function

U[x - (k + 1)] [x - (}C + 1)]ne-n+rlx—(hmra‘/aﬁ+ H

which appears in the k™ term of the series for g(x) is sharply
peaked near x = k + 1. The area beneath the peak is (2k)l/(1 +
)%+ 5o that the above function behaves like (2k)!1&x ~ (k +
DY} + )+ 1t then follows that the distribution behaves like
the solution of (5} when a = w = 0:

_ w K0+ Y2k - (k + D] (2k)!
g = 3 FE T DR + o
In fact, this solution consists simply of a series of spikesatx = 1,
2, 3. . . . Physically, this is plausible because coagulation is the
only process by which the distribution evolves. Since the di-
mensionless feed distribution consists only of particles of size x
= 1, only integer multiples of this size will result. If ais nonzero
but still small, roughly the same distribution will be obtained.
that is, peaked at the positive integers, but with some spreading
toward larger sizes due to condensation. i ris sufficiently small,
the peaks will be sharp and will not significantly overlap. Con-
sequently, the distribution can be constructed by taking each
term in the series individually. Thus, the peaks occur at approx-
imately 1 = (k + 1) + 2ka/(1 + &), k= 0,1, 2 ... The
increased shift of the peaks at larger particle sizes results be-
cause, on the average, the larger particles have remained in the
reactor longer and thus have had a longer time during which to
grow. Figure 2 shows the distributions corresponding to a =
0.25 and x = ] and 2.

(16)

Guners! Solution

Now consider the case in which all processes occur. The
general solution of (5) is given by (11), with goreplaced by g, = g,
+ wdlx — xo):

L o H{dtlg + @blx — )P ix)
ew= 3 PR + Die® an
Once again, consider the monodisperse feed distribution (7), in
which case the size distribution in the CSTR is

- o B k4]
8 = 2:; R+ )T 2( j )"

(1+ % x—w)jw’”"" XU {x—[j+ (k+1-j)xgl} X

- i+ ;
o i L e
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Figure 3. Dimensionless size distribution g(x) for monodisperse feed,
including effects of coogulation, condensation and nuclegtion: x = 2, o =
005 w=1,x =02

As before, for small @ (small condensation rate), the distribution
approaches a sequence of delta functions

- *(2K)!
g = X ._2., ST F BT

k';l ) (l+ % x—w)"w'“ =38 {x—[j+ (k+1~j)xo]}

{19)

The peaks in the distribution (19) occur at all points
JHk+1-fxg. k=0.1,2, . . ., j=0,1.2, . . ., k+1. These points
corresfpond to all possible sizes that can be formed by coagula-
tion of particles initially of sizes 1 and xo. For each value of k, the
peaks at j+ (k+1—7)z, represent the possible ways in which k+1
particles in a mixture of sizes 1 and x, may combine.

If a#0, the peaks are spread somewhat and shifted owing to
condensation. Under the assumption that & is small enough so
that the peaks do not overlap substantially, the peak at
x=j+(k+1~j)x is shifted to the right by 2ka/(1+x).

¥ T
gix)

1.0 -
0.8 -
0.61- .
0.4} §
0.2 o

1
o 2 3
X
# 4. D ionless size distribution g(x) for disp feed,
acluding effects of foti d ion and aucleation: k = 2, a =

Y025, w=1,x = 0.2.
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It is interesting to note that for each k, the k+1 peaks at
jH{k+1=jxy for j=0,1, . . ., k+1 are distributed binominally.
This is precisely the distribution one would expect from random
combination of particles of sizes 1 and x, originally in the ratio
No/8Se = {1 + 1/2 x—w)/w. This phenomenon is illustrated in
Figure 3, in which Ny/6S,=1, and the peaks at 0.4, 1.2 and 2.0,
corresponding to the three possible two-particle combinations,
have the magnitude ratios 1:2:1. Similarly, the peaks near 0.7,
1.5, 2.3and 3, corresponding to all three-particle combinations,
have the ratios 1:3.3:1.

As o increases, eventually the peaks overlap, as shown in
Figure 4. Only the peaks at xo and 1 retain their distinctiveness.

AMNALYSIS FOR SIZE DEPENDENT GROWTH RATE

In the previous section, it was assumed that the condensation
growth rate of a particle was independent of its size; that is, I(v)
= gyc. Although this assumption enabled us to elucidate the
general features of the CSTR size distribution, particle growth
rates are, in general, a function of particle size. For a
monodisperse feed distribution we have seen that the effect of
condensation with a size independent growth rate is to spread
and shift to the right the peaks in the size distribution resulting
from coagulation. The greater spreading of the distribution at
larger sizes was seen to be due to the longer residence time of
the larger particles. With a size dependent growth rate of the
form I(t) = coyr”, 0 < y = 1, we expect an even greater
spreading of the distribution at larger sizes, but without a qual-
itative change in the nature of the distribution. In this section we
consider the growth rate I(v) = coye, which represents the
maximum growth rate possible. The physical basis for such a
growth rate has been discussed by Gelbard and Seinfeld (1979).
In short, one obtains this expression when particle growth is
chemical reaction controlled.

The aeroso! material balance is

coyon’(v) + conlr) = -—;— Bn*n(r) — Bn(r) | n(f)dE
o

+ = [nole) = nle)] 20
where we have now dropped the nucleation term because of the
equivalence of feed and nucleation sources demonstrated previ-
ously.

The equation is nondimensionalized as before with the excep-
tion that the condensation parameter a is now defined as

a= fcoy

In dimensionless form, (20) is
1 .
axg'(x) + aglx) = 3 wg*glx) — (1 + x)g(x) + golx) (21)

Equation (21) is not amenable to solution by Laplace trans-
formation. Therefore we will explore the behavior of g for small
@ The important qualitative features of the solution will emerge
in this case. We consider the monodisperse feed distribution
&(x) = (1 + 1/2 x)8(x—1).

When a=0, the solution is, as we know, entirely discrete. For
small a>0, there will be some spreading introduced into the
distribution, the spreading increasing with particle size. Be-
cause of the fundamental change in the character of the solutions
from a=0 to a#0, the analysis of the case of small a leads to a
singular perturbation problem. This behavior is also reflected in
the fact that the perturbing term axg’(x) is not small when 1 is
near a natural number, since there g'(x) is very large.

Since nonzero values of g are expected to occur in small
regions about each natural number k, we replace the term
axg'(x) in (21) by akg’(x) for x near k. To begin, let us obtain an
expression for the size distribution of the first peak, x=1. Let
¥,(x) represent this function. Note that no particles which have
undergone coagulation will be in the size range of the first peak.
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Consequently, to obtain ¢, we may drop the term 1/2 g*g(x) in
(21). The term xg’(x) is replaced by g'(x) since s=1, and we drop
the term ag(x) since it is negligible compared to (1+x)g(x).
Hence, ¢, is governed by

W) = — Q%) + (L + -1 w8e-]) @

Equation (22) may be solved to yield

1
(l+ —2—'() _Gi4m

W) =2 LT

p Ulx—1) (23)

The function ¢, of (23), describing a sharp peak at x=1. is, in
fact, identical to the first term in the series (15), Thisis physically
plausible, since near x=1 the constant and linear growth terms
are nearly the same.

I, however, we choose not to replace xg'(x) by g'(x), the
equation governing ¥, is

anfi(x) = — 1+ (x) + (1 + -;—K)S(x— 1) (24)
the solution of which is

(l + —l-x) _ U+x)

2
lh(x)=——;—-—~x * Ux~-1) (25)

The function in (23) is, however, an asymptotic approximation to
this function, for if 0 =x—12Ve, then x ¥ ~e™ "~/ g5 e
0*. Outside this asymptotic region, both functions are essen-
tially zero. For the sake of simplicity, however, (23) is the
preferred expression, so we shall employ it in subsequent calcu-
lations.

We now turn to the calculation of i, which is the distribution
near the peak at x=2 We set x=2 in the coefficient of the first
term. in (21). Now we must retain the coagulation term, because
coagulation is the principal mode by which particles of size x =2
are formed. Nevertheless, this term can be simplified since the
full term 1/2 x(¥,+y,)*(d,+ ;) may be approximated by
122k *¢; near x=2 Hence, the governing equation for ¢, is

Bai(x) = i y(x) = (14 Kha) (26)
the solution of which is

2
K(l + lx) ICLLI
Yalx) = U(I—2){We =
l 2
K(l +—2'K> Sl )
T Tt €
] 2
“(1 +?‘) el e
- T e } @7

The calculation of ; and subsequent functions proceeds in an
analogous manner. In the case of ¥, the coagulation term con-
tains only the convolution products of i, and s, since only these
contribute significantly to the peak near x=3. The equation for
¥ is

Bay(x) = my*elx) — (1+x)s(1) (28)

the solution of which is

1 3
27::’(14— -é-x) (1+1)

e {3 =3}

o) = V-9
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Figure 5. Comparison of di less size distributions resulting from
and linear cond ion rates, f(v) = o, and f(v) = oy, respec-

tively, and monodisperse feed: x = 1, @ = 0.05 in both coses.
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The sum ¥, + ¢y + ¥4 represents the solution to (21) for the
first three peaks in the distribution. The only limitation in this
analysis is that the peaks must be sharp and the distributions
about each peak must not overlap. As i increases, the peaks of
the y; tend to broaden, so that at a certain point this approach is
no longer valid. Nevertheless, the first few peaks in the distribu-
tion provide an indication of the differences between the cases of
size independent and size dependent particle growth rates.
Figure 5 shows the distributions in these two cases. We see, as
expected, that the effect of a linear size dependent growth rate is
an acceleration of the broadening and a shift to the right of the
peaks.

CONCLUSIONS

The qualitative features of aerosol formation and growth in a
CSTR have been studied. Exact analytical solutions have been
obtained to the aerosol balance equation in the case in which the
kdnetic coagulation coefficient and the particle growth rate by
vapor condensation are independent of particle size. A pertur-
bation solution has also been obtained for the case of linear
volume dependent particle growth and a monodisperse feed
serosol.

The assumptions required to obtain these solutions are sim-
plified, but they may nevertheless be useful in understanding
the qualitative features of real systems, and in the case in which
the feed is monodisperse and Brownian coagulation is occurring
in the reactor, these solutions may, in fact, be reasonable ap-
proximations to the actual size distributions.

AICKE Journal (Vol. 26, No. §)

In addition, the important dimensionless groups governing
aerosol behavior in a CSTR have been elucidated. These groups
are ratios of characteristic times for coagulation, condensation
and nucleation to the mean residence time and can be expected
to play an important role in aerosol systems even when the
simplifying assumptions employed here do not apply.
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APPENDIX: SOLUTION OF EQUATION (10)
The aerosol balance equation is
1
ag'(x) = T xg*g(z) = (1+x)glx) + golx) (A1)

Application of the Laplace transform to (Al) gives

asC(s) = % kGYs) — (1+&)G(s) + Gyls) (A2)

where

o
G(s) = fe‘"g(x)dx
o
Equation (A2) may be readily solved for G(s}, and we obtain
G(s) = (£ = VE -2xGols))x (A3)
where £ = (as+1+x). Taylor expansion of G(s) in powers of Go(s) gives

_ Gl9) @k+1)! &
Gl = —2 Z SGET EETOC W ()
If we denote by ¢ the function defined by
LT
hlz) ma™e (A5)
then we see that
= (2h)Ipg ™" (A6)
where
e
do(x)me (A7)

and ¢g* denotes the k fold convolution of ¢, Since under the Laplace
transform, ¢ — a/£, we see that

aﬁ#a

fﬁ-Q-l

“1243_’

or, equivalently, that

b 1
g

Thus, termwise inversion of (A4) gives

1 o #lergt™ ko)
glx) - (2" do)(z) + th
- @ l‘[#&?'“”](l)
2 F e WY
HNOTATION
¢ = vapor concentration, g-mole cm™?

Co = vapor concentration in feed, g-mole cm™?

Ro) = volume function appearing in I(v), 0,07, um ' (g-
mole cm™ %!

glx) = dimensionless size distribution function
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I(v) = rate of change of the volume of a particle by vapor
condensation, um?%~!

M = molecular weight of the gas. g mole™’

n(v] = size distribution function gm=3 cm~

no(t) = size distribution function of feed aerosol, um~3cm

N = total aerasol number concentration, cm™?

No = total aerosol number concentration in feed, cm”

q = volumetric flow rate through CSTR, em%!

Se = rate of formation of particies by nucleation. em™

Ulx) = unit step function

v = particle volume, um?

vy = volume of feed aerosol, pm®

©o = volume of particles formed by nucleation, um?®

\% = CSTR volume, cm®

\4 = total aerosol volume concentration, pm®wm™

\'A = total aerosol volume concentration in feed. pm®m™

x = dimensionless particle volume, Nov/V,

%o = Nt/ Vs

Groek Letters

a = BcoOoNo/ V, or bcy0,

B(v,6) = coagulation coefficient, em® ~!

30

Y = exponent in growth rate expression

8v) = Dirac delta function

8ix) = VeB(o)N,

= Vig

« = 86N

P = liquid density of aeroso! particles, g em™?

oy = constant in expression for flv), um> s~Yg-mole
em™ %!

¥(x) = size distribution around i peak in the size distribu-
tion

© = 854N

* = convolution operator
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Abstract—A general formula for the rate of aerosol deposition due to turbulent diffusion, Brownian
diffusion, and gravitational sedimentation in a turbulently mixed, enclosed vessel of arbitrary shape is
derived. It is shown to reduce to the formula of Corner and Pendlebury Proc. Phys. Soc. B64, 645
(1951) for a cubical vessel. The result is essentially independent of the form of the eddy diffusivity near
the wall and demonstrates that for vessels with non-vertical walls, sedimentation and diffusion are
intimately coupled in determining the total deposition rate. The effect of inertia is estimated and used
to assess the range of particle sizes for which the analysis is applicable.

INTRODUCTION

We consider the problem of predicting the rate of wall deposition of an aerosol in a
turbulently mixed, enclosed vessel of arbitrary shape. Such predictions are of importance in
understanding the losses of aerosol that occur in chemical reactors and other chambers.
Losses of aerosol in an enclosed vessel result from deposition due to Brownian diffusion and
turbulent transport to the walls and from gravitational settling. The classical result for this
problem is that of Corner and Pendlebury (1951) who derived a formula for the aerosol
deposition rate in a rectangular box.* In this work we consider the problem for a vessel of
arbitrary shape. It will be shown that the result of Corner and Pendlebury is simply a special
case of that obtained here. Because of the practical relevance of a spherical vessel, we first
solve that problem completely before presenting the solution for the arbitrarily shaped
enclosure. Both the spherical and rectangular cases, of course, fall out as special cases of the
general result. The effect of vessel shape has not generally been accounted for in estimating
aerosol deposition rates, and we will show that the vessel shape affects the coupling between
Brownian and turbulent diffusion and sedimentation. Of particular interest is clarification of
the assumptions on which the analysis rests.

The total aerosol deposition rate (particles s " ') is computed from the product of the local
deposition flux and the internal surface area of the vessel. The deposition coefficient per unit
volume of the vessel, f, is then defined as the ratio of the deposition rate to the total number of
particles in the vessel. It is frequently suggested that the deposition coefficient per unit volume
should have the form

v SD
b= h + Vo
where v is the terminal particle settling velocity, h is the vessel height, S and V the surface area
and volume of the vessel, D the particle Brownian diffusivity, and ¢ the diffusion boundary
layer thickness at the vessel wall. We show later that under certain circumstances § may be
shown to reduce to this expression, but that in general the above simple expression for f is
inadequate.

* The total loss rate, which results from both Brownian and turbulent transport and gravitational settling, is usually
referred to simply as the deposition rate. In this context, therefore, the deposition rate will be taken as synonymous
with the total wall loss rate. When discussing that contribution to the deposition rate arising from Brownian and
turbulent transport, we will be careful to delineate such.
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In the next section we consider the problem of deposition in a spherical vessel. In the
section following we then generalize to a vessel of arbitrary shape.

TURBULENT DEPOSITION AND GRAVITATIONAL SEDIMENTATION
OF AN AEROSOL IN A SPHERICAL VESSEL

We begin by considering the case of a sphere. The result for an arbitrary vessel is obtained
by essentially the same reasoning, and is presented subsequently. The aerosol is assumed to be
perfectly mixed in a turbulent core of the sphere, and only in a small (turbulent) boundary
layer do gradients in concentration occur. These gradients give rise to deposition by both
turbulent and Brownian diffusion. In addition, gravity imposes an overall downward drift on
the aerosol particles. Jeading to enhanced deposition on the bottom of the vessel.

Let R denote the radius of the sphere, 6 the polar angle, and suppose the turbulent
boundary layer has thickness é. It will turn out that the exact value of J is of no consequence,
but we must make two assumptions concerning it. The first is that §/R < 1. This is plausible
since we assume at the outset that there is turbulent mixing in the vessel.

In the boundary layer we assume there exist three modes of transport of particles—
turbulent diffusion, Brownian diffusion, and gravitational sedimentation. The flux due to
molecular diffusion is given by — DVc, where ¢ is particle concentration and D is the
Brownian diffusivity. That for turbulent diffusion is assumed to be represented by — D, Vc,
where D, is an eddy diffusivity, which depends on position, as well as, possibly, particle size.
We assume the average gas velocity near the walls is negligible. Then the effect of
gravitational sedimentation is accounted for by the term vk - Ve, where v is the terminal
settling velocity and k the unit normal vector in the vertical direction.

We assume a quasi-steady state in the boundary layer. That is, we take the concentration in
the turbulent core to be constant. Under these assumptions the aerosol concentration in the
boundary layer is governed by

V- [(D+D)Vc]}-vk-Vc =0 N
for R — & < r < R. The boundary conditions on equation (1) are

c=0 r=R

c=cq r=R-9 (2)

where ¢, is the bulk concentration. For the eddy diffusivity, we use Prandtl’s mixing length
expression near a wall, (Corner and Pendlebury, 1951) D, = k,x?, where x denotes distance
from the wall, and k, may be evaluated from the turbulent energy dissipation rate. The eddy
diffusivity for aerosol particles should also depend upon particle size, since larger particles do
not exactly follow the flow. However, Hinze (1959}, following Tchen (1947), has solved the
equation of motion for a particle moving in a homogeneous turbulent flow field, and has
shown that in the long time limit particle and fluid eddy diffusivities are equal. Experiments
carried out by Kalinske and Pien (1943) and by Rouse (1939) for eddy diffusion and settling
of sand in water indicate little variation of eddy diffusivity with particle size. An explanation
for this phenomenon, advanced by Fuchs (1964, p. 263), is that although larger particles do
not follow the fluid motion as closely as small particles, their motion is more persistent due to
their larger mass. This effect tends to equalize the average distance moved by both large and
small particles over sufficiently long times. Nevertheless, we anticipate inertial effects to
become important for large particles or strong turbulence, and the magnitude of these are
estimated later to assess the validity of the above theory.

We begin the analysis by making the assumption that D < k.62 This assumption is merely
the statement that at the outer edge of the boundary layer turbulent diffusion dominates
Brownian diffusion.

In polar coordinates equation (1) becomes

0 D+D,y¢ [ . cc ¢c vsinf ée
20 +D) L)+ OE2) C(Gng S ) s reost S -0 0
(r( * ")6r T sing 26 Sma@() +L00595r r o6 )

Y

1
2

i3]

r
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Setting x = R —r, equation (3) assumes the form

1 ¢ 2 oc (D+D,) ¢
(R—-x)zg)?<( —"(D+De) ) (R—x)?sin6 66

dc vsin8 oc

ae
1 T e § 4
(Sm666> LCOSBax R %) 26 0 )

Now we introduce dimensionless variables by setting z = x./k./D and u = ¢/c,, giving

1 I3} D \? 5 Cu D (1+:z% a
) 25[(1—2 —keR‘—2> (l’f‘a )"g;:]+keR2 D 3 55
<1—z i RZ) (l——z X R2> sin 6
. u ) du v sin 6 du
(1 z ~——keR2)

. —— | D
Now, in the boundary layer x <4, so z <6 ./k./D, and hence :z iR < (6. /k./D)

| D | D . . . o
iR ———= = /R < 1,50 we may ignore z L RZ I comparison to 1, leaving the simplified

equation
el cu D (1+:z%) ¢ ou\ vcosh du vsinfdu
—la+z3)= - ) -—— — = 0. 6
Ezl_( * %;]*kem 5in 0 ce<sm ae) %D 0z Rk, a0 (6)
du .
At z=0, u=0, and at z—é\/kg/D u=1, so -a—;~— D/k,. Since at z=10 and
z= /k ./D, u is constant, we expect 55 < O(1). Thus, the second term of equation (6)

has order D/k,R? = (D/k,6%)(8/R)? < 1, so is completely negligible. The third term has
order <L/J@) ((1—3 /D/ke>= v/6k,, while the fourth has order v/Rk,. The ratio of the

fourth to the third terms is of order (v/Rk,)/(v/dk,) = 8/R < 1. Hence we drop the fourth
term of equation (6) in favor of the third, leaving

f—[(1+z2)6:‘1]—9—‘59539‘1=0 ™
oz oz k,D ¢z

together with the boundary conditions
u(0,6)=0
u(d./k,/D,0)=1.

®)
The solution of equations (7) and (8) is

[ucos@ - :'
exp tan” 'z |—1
Jk.D
vcos 6
ex ﬁ_mtan"(&/ke/D)]—
p[\/k D

4

u(z, 0) = )

Recalling that 62k,/D > 1, it follows that 6 \/k,/D » 1, so that tan™' (6 \/k./D) ~ n/2.
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Thus, we have

e [v Cosetan“z] 1

x _

PLJkD

u(z,0) = (10)

[ necos o }
exp -1
2. k.D

The deposition flux at the surface is given by

? : -cos
p¥|l —cp Col €05 (11)
xli=0 é

Xleoo [nrcos@]
exp -1
2 /k.D
and the total deposition rate is
22R? J” corcosfsinfdo

0 expl:m C?L]—— 1
2/k.D

The deposition coefficient per unit volume is

f = 3 J" vcos §sin 6df

2R |, [m'cosﬂ] '
€Xp e | ]
2 /k.D

Setting x = —— equation (13) becomes
AV e
3 VZ:B 2 (% rdt 1
=—0— "] 77715 4
B 7R [xLe'—l+2x] (14)

where we have used the fact that

L [(* tde 1 [% tdi +1x
xJol—e"' xJoe—1 27

Therefore, we may write the deposition coefficient § as

3./k,D 1
B=""12D(x)+=x (15)
7R 2
where D, denotes the Debye function (Abramowitz and Stegun, 1964),
1% tde
Dy(x)=— j - (16)
X (¢} C —']
Figure 1 shows fnR/3 /k.D as a function of x. Note that § divides into two terms
6./k.D n v
= D e . 17
p 7R ‘(2 \/‘keD)+4R,/3 n

The second term in equation (17) corresponds to the gravitational sedimentation term in the
formula f = t/h+ SD/Va, since for a sphere 4R /3 is the average height. Note that the first
term, however, also depends on t, so is not a purely diffusive contribution. If x » 1, since

D,(x)~ % for large x, we have

2k,D v

- 1 18
Re Tarj3 X7 18

B~
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5 [3 7 8 9 [¢]
x=mv/2 /kD

Fig. 1. Dimensionless deposition coefficient.

On the other hand, Corner and Pendlebury’s result for a cube of side L,

1{8./k.D
B=—| M 4 ycothZ (19)
L n 2
has the property that for x » 1,
8. /k.D v
~ 20
P~—aL 'L (20

As can be seen in equation (20), the sedimentation and diffusion terms actually are separate
if x > 1 for an aerosol in a box. In this case the Fuchs formula holds provided we choose

o = (3n/4) \/'D/ k,. Hence, the diffusion boundary layer thickness must depend on particle
size, as Harrison (1979) has shown experimentally.

In the case of a sphere equation (18) shows that diffusion and sedimentation terms do not
separate for x > 1. Because of the inclined surface of the sphere, sedimentation is always
coupled to the diffusion process, whereas this is not the case in a vessel having only vertical
and horizontal sides.

The coefficient § depends on particle size, and in Fig. 2, f is shown as a function of particle

Blsec”)

d{pm)

Fig. 2. Deposition coefficient as a function of particle size for k, = 365!, R = 30cm, and a water
aerosol in air at room temperature.

size. In this figure k, has been taken as 36 s ™!, corresponding to a value encountered in some
of the experiments of Okuyama er al. (1977), in which a cylindrical stirred vessel was used.
Also R = 30cm, and all other properties correspond to a water aerosol in air at room
temperature. Note the minimum in f. Larger particles sediment rapidly, while smaller
particles diffuse more rapidly. This does not, however, result in a cancellation of the size
dependence of § since these two counteracting effects operate in distinct size regimes. In
Figure 3 a hypothetical diffusion boundary layer thickness defined by the Fuchs formula is

AS 12:5-8
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100+
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Fig. 3. Hypothetical Brownian diffusion boundary layer thickness calculated from the Fuchs
formula and deposition coefficient of Fig. 2.

shown. Note that it exhibits behavior similar to that of §. Figure 4 shows the dependence of 8
on k,.

d{pm)

Fig. 4. Deposition coefficient as a function of particle size for various values of eddy diffusivity and
same conditions as in Fig. 2.

EFFECT OF PARTICLE INERTIA

If the particles are large enough so that the average stopping distance s exceeds the
turbulent boundary layer thickness, then the particles essentially coast through the boundary
layer to the wall. In the foregoing analysis we have assumed that the principal mode of
transport through the boundary layer is turbulent and Brownian diffusion. We can account
for inertial effects by considering a model in which particles are essentially captured within a
distance s of the wall, and transport of particles up to this point is accomplished by turbulent
and Brownian diffusion. This model is crude, but will allow us to assess the validity of the
non-inertial theory.

So, let s < 8. We solve the transport equations as before but with the new boundary
condition

c(s,0)=0 (21)
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that gives the dimensionless concentration distribution,

vcosf vcos§
ex tan"'z | —ex tan~ (s /k, D))
o) = p<,/keD ) p(v/keD G/

7t cos 8 vcos6
X —ex tan“(s,/kg/D))
p<2,/k‘,D> p(../k,_,D

The flux is now given by

coucosf)exp(vcosg tan~ (s /k,/D ))

(D4 kes?) % o nv cos ¢ \/E?cos 6 ' @2)
x=s exp<m,_e~—5~) - exp(\/@ tan™! (sM))
This becomes equal to (11) provided the following conditions hold:
s<b (23a)
ﬂv:ﬁ tan~ (s /k,/D) < 1. (23b)

In general the particle size range over which the theory presented previously will hold
depends on the degree of turbulence. As an example, we estimate the above quantities for two
sets of conditions in a spherical vessel of radius 30 cm stirred by a six blade impeller, of blade
length 10cm and width 2cm. For such a vessel Bates er al. (1966) give the power correlation

p = 4pn3d> (24)

where p = fluid density, n = rotational speed of stirrer, and d = blade length. If we assume
complete turbulent dissipation, we obtain the turbulent dissipation rate ¢ as

¢ =4n3dS)V (25)

where V' = total vessel volume.

Following Okuyama et al. (1977), we set k, = 0.4(2¢/16v)''? where v is the kinematic
viscosity of fluid. We estimate the stopping distance of particles using the Stokes drag with
Cunningham correction and the velocity

U= 30(9-3) = 30(2¢/15v)!/2, (26)
dx
That is, we take the size of the vessel as an upper bound on the characteristic length scale of
the turbulence.
For the case of particles of 0.1 um radius, unit density (g/cm?), and a stirring speed of
500 r.p.m., the above equations yield

s /k/D = 0.17 27)
Y tan~ (s /k./D)=14x10"3 (28)

Jk.D

Now, we know that 6 \/k./D » 1, so (27) shows that s < 6. Equation (28) shows that the
other condition (23b) holds. In fact, since for particles of 0.1 um radius we have
v

vk.D
until s . /k,/D becomes significantly larger than one. Since s \/k./D = 1 atarotational speed
of 1100r.p.m., inertial effects are insignificant until the stirrer speed greatly exceeds

1100 r.p.m.

=812x10"%and tan"'x < ZZE for all x, inertia does not play an important role
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At lower levels of turbulence, the analysis is valid for larger particles. For example, at
100 r.p.m. with 0.5 um diameter particles we obtain

sk D =017 (29)

v —
——tan" ! (s /k,/D)=0.18 (30)
Jk.D N

TURBULENT DEPOSITION AND GRAVITATIONAL SEDIMENTATION OF
AN AEROSOL IN A VESSEL OF ARBITRARY SHAPE

We have just considered deposition and sedimentation in a sphere. However, the same
analysis applies to any vessel, provided the boundary layer thickness d is small relative to a

characteristic dimension of the surface, and relative to the sum <rL + ;L) where r, and r, are
1 2

the principal radii of curvature at a point; and again, provided D <k, In this case, by
choosing the x-coordinate to lie along the inward unit normal to the surface, and the other
two coordinates to be tangent to the surface we obtain the same equations for the
concentration in the boundary layer with the x variable chosen as given above. The term cos
for the case of the sphere is replaced by n(y) -k, where k is the unit vector in the vertical
direction, n(y} is the unit outward normal to the surface. The details of this calculation are
shown in the Appendix. The result is that § is given by

(31

ﬁzl.[ vn(x)-kdA(x)

v [m'n(.\‘)-k—l
EXPi — === | — 1
2 kD |

z

where ¥ denotes the surface and ¥ the volume of the vessel, and d A (x) is the differential area
element on Z. If n(x) -k = 0, the integrand is to be interpreted as the limit as n(x) -k — 0,
which is easily seen to be 2 v’ﬁ/’n.

The above formula is actually a generalization of the formula obtained by Corner and
Pendlebury (1951) for a cube of side L. To see this, note that on the vertical sides of the cube,

n(x) k = 0, so the integrand is 2 \,/m/n, and the integral over the four vertical sides is
812 V keD /n.Onthetop,n(x) -k = 1,so the integral is vL?/[exp(nr/2 /k,D)—1]. Onthe

bottom n(x)-k = —1, and the integral is thus, —vL?/[exp (nv/2./k.D)—1]. The total
integral over the surface of the cube is then

8 /k.D nr
L2 ~—y—~—e—-+vcoth< __._>]
[ T 4./k,D

Hence, dividing by the volume, L3, of the cube gives

i{8 V/ﬁ v
= 25T | coth 2
A L[ x U (4¢hb)] 2

the formula of Corner and Pendlebury (1951).

The result may be expected to hold provided first that our approximation of homogeneous
turbulence is adequate, and second, if the turbulence is sufficient to insure that the
concentration is uniform except in a boundary layer whose size is small compared to the
dimensions and radii of curvature of the vessel. The inequality D < k6% then follows,
because in order for the concentration to remain fixed at the edge of the boundary layer,
turbulence must intercede, since aerosol diffusion coefficients are usually quite small. Finally,
we require that the inequalities (23a) and (23b) hold.

It is also worth noting that the particular form of D, chosen is not too important. If we
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choose D, = kx> as suggested by Friedlander (1977) and assume D < k,6° then similar

analysis leads to
[(1-{-2)3] vcosf exp{ vcos @ [tan"zx—l +n]} )
(1+:3)J6(k.D?? /3 (kDY 36

3 6 =
utz, 6) l: 2nvcos f ] 33
exp| —————— | —1
3 3 (keD 2)1 /3
where z = x(k,/D)'"?. Then the surface flux is given by
veosf (34)
[ 2nvcos 0 ]
exp| —————= | —1
33 (kD7
which is very similar to our previous expression.
In fact, if we assume D, = k,x", the surface flux is given by
0
v Ccos (39)
[ nv cos 6 :l
exp
(n sin%)&'keD"‘ !
and the loss coefficient, B, is given by
3nsin =k D" |
= D = 6
B R [z 10+ 2x] (36)
where
x=—— it . (37)
(nsin ;)V"/keD" -t
For vessels of arbitrary shape,
1 -kdA
1 J wn(x) kdA(x) a8)

b= v [ non(x) k :l '
T €Xp -1
(nsinznt—)J’/keD"'1

CONCLUSIONS

We have derived a formula for the rate of aerosol deposition on the walls of a turbulently
mixed, enclosed vessel of arbitrary shape under the assumption of homogeneous turbulence
near the walls. The result is shown to reduce to the previously obtained results of Corner and
Pendlebury (1951) and Fuchs (1964) under appropriate conditions. We have also noted that
the result is essentially independent of functional form of the eddy diffusivity near the wall. In
vessels with non-vertical sides, sedimentation and diffusion are intimately coupled, and the
simple formula § = v/h+ SD/Vo is inadequate. Finally, we have given conditions on the
particle stopping distance under which the analysis can be expected to hold.
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APPENDIX. DERIVATION OF EQUATION (21)

Let y = (¥, 2, ¥3) be (not necessarily orthogonal) curvilinear coordinates. Then the differential expression

é cu
)
T éx, éx;

in rectangular coordinates becomes
where g = {det(g¥)|, and

In our case we assume we have a surface given by x” = (x}, x, X3} = Rf ()3, y3), where y, and y, are dimensionless
parameters and R is a charactenistic length. We define curvilinear coordinates (y,, ¥, ¥3) by

(x7. x5, x3) = R[ (32, ¥3) = yyn(y,. ¥3)]

where n(y;. ¥;) is the unit normal to the surface. Let (x,.x,, x3) = (x} /R, x3/R, x3/R). Then the differential
equation we are to solve is

1 vk
7V L +D)Vu] - = Vu=0 (A1)

where D, = k,(y, R)*. The boundary conditions are

u=0 ¥y, =0 A2
u=1 ¥y =6/R -2

The coordinate transformation we have chosen has the properties g'' = 1, g"/ = 0 for j # 1, and

of én of én
nef - Yig =X\~ i
€y2 €2 Y3 €3
Hence, in the y-coordinates we have:

i & fu - D +k,R*y? 1 é/éu . -
(‘D“‘Rz )5—), v/9)+(—M" Y = (—., g”\/g)
£a)

Ve=

R? /g én R? WF1 /g E¥i\dy,
fu éy;
Py M9 (A3)
éy, R,,lc}l &x,
k. R?
Now we set 2 = y, o Eiving
e ~ D 1 ¢ /fou .. -~
— {1 +z? )+ (1+2%) __:A_(.._ i )
\/g (( ) k,R? i,;gl\/g &y, 8ng \/g
v cu v fu by,
——=u8() k—— — = (A4)
o e TR G, o

e

where n(y) = n(),, y) is the unit normal on the surface, and k is the unit vector in the vertical {x3) direction. Now,

making the assumption that R < land k6 » D, as before, we find that the second sum above is negligible, as is the
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fourth compared to the third, leaving

1 ¢

S fu - v cu
-\ 1+ Vg |- —==8() k= =0
v € ¢z ke éz
Now,

(A.5)

<

1 ¢ fu - ; 3 w1 A9
—/~.i(<1+z2)~»‘j“ w>=~f ((1+;z,-i”)+<;+-z,1_ el
\//g o cZ CZ CcZ

6:\/’; &z
and
fu 1 r(\g)' 411 &/9)|
&z g €z R‘\/; &y, ‘
B () (2 ()
oy \/; Ey2  €ys ¥y s Cy:  €ys

1 . . .
— 4+ —) ,where r, and r, are the (dimensionless) principal
Fpoo
radii of curvature. Thus,

511 @) _(5 . 5)

R \"; ¢y, | \Rr, Rr
and Rr, and Rr, are the (dimensional) principal radii of curvature. We assume that ¢ is small compared with these
and the resulting simplified equation is

¢ ‘u r u
T((1+:2)t‘)—" ——n(}) k— =0
&z é kD ¢z

Vv e
Now everything follows as before, and the formula for the total deposition rate is

L . 1
near the surface. This is just twice the mean curvature or (

L eXp

rn(y) k
AAAAAAAAAAAAA — dA(y).
C()J. [m*n(y)-k:' 1 (‘)

2 kD
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PARTICLE WALL LOSS RATES IN VESSELS
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PARTICLE WALL LOSS RATES IN VESSELS
James G. Crump, Richard C. Flagan* and John H. Seinfeld
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ABSTRACT
Aerosol particle wall loss rates were determined experimentally in a

spherical continuous stirred tank reactor. The particle size and mixing
rate dependences are shown to agree with the theoretical result of Crump
and Seinfeld (1981), in which the particle loss coefficient g is related
to particie diffusivity D, particle settling velocity v, the coefficient

of the eddy diffusivity ke and vessel radius R by

v

12k D J/'zJEeD tet v

B=R'nv < IR

ot IR/3

)

For the vessel used in these experiments, ke was found to be proportional to
the 3/2 power of the volumetric flow rate, in accordance with theoretical
expectations. Results of a similar nature may be expected to hold in vessels

of arbitrary shape.

*Environmental Engineering Science
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INTRODUCTION

Loss of particles to vessel walls occurs in all experimental situa-
tions involving aerosols, and in some cases can be an important factor in
altering shapes of particle size distributions. The loss rate to the
walls depends in general on vessel size and shape, mixing characteristics,
and particle size. Consequently, for loss rate determinations to be use-
ful in size distribution studies these dependences must be known.

In this paper we describe experiments designed to measure particle
loss rates in a continuous stirred tank reactor and show that the size
and mixing dependence agree with the theoretical result of Crump and Sein-
feld (1981).

Wall loss rates are generally expressed through the wall Toss coeffi-

cient B, defined by the equation
.....=..Bn (1)

where n(d,t) is the particle size distribution function in the vessel.
This equation holds provided the aerosol in the vessel is well-mixed, ex-
cept possibly in a small boundary layer near the wall, whose total volume
is negligible compared to that of the vessel.

Most investigators have assumed the loss rate coefficient to be rela-

ted to particle and vessel characteristics by

v, S
5" +VU (2)

o<

where v is.particle sedimentation velocity, h is vessel height, S is

vessel surface area, D is particle diffusivity, V is vessel volume, and o
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is a diffusion boundary layer thickness. This expression is based on the
assumption of complete convective mixing in the vessel except in a small
layer near the wall where Brownian motion is the only diffusional transport
mechanism. Gravitational sedimentation is assumed to be independent of diffu-
sion, and the loss rates due to sedimentation and diffusion are summed to give
the total loss rate in Eg. (2).

A flaw in this model is the evident inconsistency of the assumptions
of complete convective mixing outside the boundary layer and complete absence
of convection within the boundary layer. As a result, the quantity o is
really a hypothetical variable defined by Eq. (2), and dependent in general
on particle size, vessel characteristics, and degree of mixing.

Several previous studies of particle wall loss in closed vessels have
been carried out are are summarized in Table 1. The work of Van de Vate
and that of Harrison merit some explanation, since they represent the only
attempts to address the particle size dependence of the loss coefficient.

Using polystyrene latex spheres with diameters ranging from 0.09 um to
1.3 um, Van de Vate obtained excellent agreement of his experimental values
of the loss coefficient with Eq. (2) by taking ¢ to be 0.85 mm, independent
of particle diameter. However, he also assumed the density of polystyrene
latex spheres to be 0.95 g/cm3 instead of the accepted value of 1.05 g/cm3.
Moreover, Van de Vate asserted that the value he obtained for ¢ should hold
universally in closed vessels since loss rate is only a weak function of
the degree of convective mixing in the vessel.

Harrison, also using polystyrene latex spheres, determined the bound-

ary layer thickness as a function of particle diameter to be of the form

o =3.7¢°%7 (3)
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where both ¢ and d are in um. This result is, however, doubtful since it
predicts increasing diffusional contributions to the loss rate with increas-
ing particle diameter, despite the fact that the diffusivity decreases with
particle size,and diffusion due to mild convection is not expected to be
size dependent. Possibly, charge effects contributed to Harrison's results.

In any case, in no previous work were the effects of vessel shape or
degree of convective mixing quantitatively accounted for. In addition,
quantitative loss rate data have typically been reported in terms of the
hypothetical boundary layer thickness o, whose dependence on these factors

is unknown.

DEPENDENCE OF WALL LOSS RATE ON GEOMETRY AND
CONVECTIVE MIXING
Crump and Seinfeld (1981) obtained an expression for the wall loss
coefficient in a vessel of arbitrary shape as a surface integral of the

form

- 1[vr3(x)-gdA(x)
v [ﬂvam.;z] )
exp e I |
2 e

where Q(x) is the unit outward normal to the surface, and Q is the unit
vector in the vertical direction. For a spherical vessel, such as that

used in the experiments to be described, Eq. (4) reduces to

v

)

6vk D
ul(
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where R is the sphere radius, k. is the coefficient of the turbulent eddy

e
diffusivity in the wall layer defined by

D =k_ vy (6)

in which y is distance from the wall, and D1 is the Debye function given

by

t
1 X te
D.(x) = = dt (7)
1 X Bf et-l

The only unknown parameter in the expression for B is the coefficient

of the eddy diffusivity k. 'Okuyama et al. (1977) suggest that
k. = (/)2 (8)

where € is the turbulent energy dissipation rate and v is the kinematic vis-
cosity of the fluid. This expression is essentially the Prandtl mixing

iength formula, where (e/\))l/2

is proportional to the rms velocity gradient
in the boundary layer.

Using Eq. (8) and assuming a constant fraction of the incoming kinetic
energy is dissipated in turbulence we obtain, for a vessel through which

a volumetric flow rate Q exists,
kg = Q%72 (9)

Convection due to thermal gradients has been ignored and can be expected to

be important only at very low flow rates.
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DESCRIPTION OF EXPERIMENTS

A continuous stirred tank reactor (CSTR) was used to measure particle
loss rates in two sets of experiments conducted at two flow rates. The CSTR
is a glass vessel, roughly spherical in shape, of approximately 118 liters
capacity, fitted with inlets and outlets. Stirring was accomplished by means
of convection due to flow through the vessel, and in several tracer experi-
ments using oxygen, mixing was shown to be nearly ideal. In most of the
experiments sodium chloride particles were used, but polystyrene latex par-
ticles were used in two.

The aerosol was produced by atomization of sodium chloride solutions or
dilute suspensions of polystyrene latex, followed by passage through a Kr-85
charge neutralizer and diffusion drying tube. In the case of sodium chloride
aerosols, the aerosol was passed through a TSI model 3071 electrostatic class-
ifier to separate out a monodisperse fraction of desired size. The system
was allowed five to six residence times to reach steady state, after which
several measurements were made of both the CSTR output and the feed. Par-
ticle concentrations were measured using either a TSI model 3030 electrical
aerosol analyzer for particles smaller than 0.2 ym diameter, or a Royco
model 226 laser optical particle counter for larger particles.

Current readings from the electrical aerosol analyzer were converted to
particle concentrations using the monodisperse sensitivities of Liu and Pui

(Kapadia, 1980) according to
c = l/S(d)ZAIJ. (10)
J

where Ij is the current reading in channel j, and j ranges over all channels
in which parfic]es register a response,S(d) is the electrometer sensitivity

of the instrument.
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The loss coefficient B can be determined from the experimental data as
follows. Consider a monodisperse distribution of particles of number con-
centration Ce fed to the reactor at a volumetric flow rate Q. The steady
state balance on the number concentration ¢ of particles of the feed size
in the vessl is

0 = Qlce-c) - gV - Kuc? (11)
where K is one-half the value of the monodisperse coagulation coefficient
for the feed size particle.

The standard deviation Og in the loss coefficient based on the measure-
ments of ¢ and Ce Was approximated by

2 2 1/2
_[(ee) 2, (28 ) 2
°8 [(3‘3) OC+(3°f) ch] (e
where o and o. are standard deviations of the output and feed particle
v
concentrations, respectively. The values of g and Og for the two sets of

experimental conditions are shown in Tables 2 and 3.

DISCUSSION OF RESULTS

Figures 1 and 2 show the experimentally determined values of B as a
function of particle diameter, together with the theoretical expression
given by Eq. (5) with values of ke chosen by least squares fitting of the data.

The data from the experiment in Table 2, for a flow rate of 3.8 &/min,
are shown in Figure 1. The value of ke that produced the best fit of theory
and experiment is 0.028 sec'1. The data for 0.14 um particles are not plotted
since these were taken using the optical particle counter, which was subse-
quently found to be extremely insensitive to particles this small.

Figure 2 shows the predicted and observed values of g for the experi-

ment in Table 3. The best fit value of ke was found to be 0.068 sec—],
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and the flow rate through the CSTR for these experiments was 2.1 &/min. Not
shown is the data point for 0.34 um particles, since 1f was considered un-
reliable having been obtained from optical particle counter measurements of
aerosol which should have consisted of 0.51 um particles. The points at 0.312
and 0.784 um were obtained using polystyrene latex and correcting approximately
for the density difference between polystyrene latex and sodium chloride.

These points show good agreement with the theoretical curve.

The ratio of the two best fit values of ke for the two sets of experi-
ments is 0.068/0.028 = 2.43, and the ratio of the corresponding flowrates to
the 3/2 power is (3.8/2.])3/2 = 2.43, giving exact agreement with Eq. (9).
One obtains the following relation between the cofficient ke and the volu-

metric flow rate through the vessel,

kg = 0.00918 Q32 (13)

where k, is given in sec”]

if Q is expressed in 2/min.

The scatter in the data is more than can be accounted for by measure-
ment error, and probably indicates some uncontrolled factor affecting depo-
sition rate, possibly electrical charge effects. In any case, due to the
scatter, the best that can be said concerning the validity of (5) and (9) is
that they are consistent with the data, but not necessarily proved.

It is worth noting that the eddy diffusivity in Eq. (6) is not the only
definition possible. Crump and Seinfeld (1981) consider an alternative form
in which the eddy diffusivity near the wall is proportional to the cube of
the distance from the wall. Although the cubic functionality results in a
stronger size dependence of B for small particles than the square function-
ality, and pbssib1y a better fit of the second set of data, scatter in the

data prohibits any conclusive choice, so we have used the more classical form

of Eq. (6).
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In general, application of Eq. (4) to an arbitrary closed vessel will
reauire experimental determination of the eddy diffusivity coefficient ke
unless this can be calcu1ated‘glggigii. Because Eq. (4) contains the par-
ticle size dependence of the loss rate, the determination of ke need only
be carried out for a limited particle size range, however. In addition, if
the turbulent energy dissipation rate can be expressed as a function of
easily measured system variables, as was done here, the loss rate dependence
on mixing will also be accounted for by Eq. (4) through the dependence of k3
on the turbulent dissipation rate given by Eq. (8).

CONCLUSIONS

Experimental results have been presented on particle loss rates in a
continuous stirred tank reactor. The particle size and mixing rate depend-
ence of the loss rate coefficient has been shown to agree with the theoreti-
cal formula of Crump and Seinfeld. Although the results presented here apply
to a spherical vessel, similar results may be expected to hold in a vessel
of arbitrary shape provided the more general expression for the wall loss
coefficient is used. The results presented here demonstrate the utility of
the theory in correlating aerosol wall loss data in experimental apparatus.
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Table 1. Previous Studies on Aerosol Wall Loss in Vessels
Investigator Particles Used Diffusion Bound- Comments
ary Layer Thick- and Conclusions
nesS g e o
Langstroth and polydisperse Showed dependence of
Gillespie NH4C1 Toss on mixing rate
(1947)
Lieberman and polydisperse Demonstrated . strong
Rosinski zinc-cadmium effect of particle
(1962) sulfide charging on loss rate
Van de Vate monodisperse 0=0.085 cm for Used 0.95 g/cm3 as
(1972) polystyrene particle diam- PSL density instead
Jatex (PSL) eters between of acceptgd value
0.09 um and 1.05 g/cm
1.3 pm.
Okuyama, et al. tobacco smoke Measured loss and
(1977) coagulation as func-
tion of stirring rate.
Harrison monodisperse 0=3.7d""-7 for
(1979) polystyrene 0.234 um < d <
latex 2.02 ym (o in-um)
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Table 2. Experimentally Determined Values of the Wall Loss
Coefficient B and Estimated Standard Deviations.
Residence Time in Vessel = 58 min..

Particle diameter (um) 8(sec'1) os(sec'1)
0.14 4.8x1070 5x107°
0.34 2.2x107° 2.8x107°
0.075 4.7x107° 6.0x107°
0.042 7.2x107° 1.5x107°
0.024 1.0x1074 1.0x107°
0.34 3.6x107° 5.0x107°
0.51 6.8x107° 3.9x107°
0.13 1.7x1072 2.6x107°
0.21 2.0x107° 2.5x107°
0.21 2.6x107° 3.0x107°
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Table 3.. Experimentally Determined Values of the Wall
Loss Coefficient B and Estimated Standard
Deviations. Residence Time in Vessel = 31 min.

Particle diameter (um) B(sec']) os(sec'])
0.024 1.8x107% 5.0x107°
0.042 8.4x107° 1.4x107°
0.075 3.8x107° 3.0x107°
0.13 2.8x107° 1.0x107°
0.34 1.5x107° 3.8x107°
0.51 4.8x107° 4.6x107°
0.794 (PSL)* 6.1x107° 5x107°
0.794 (PSL)* 1.26x10’4(corrected) 1x107°
0.312 (PSL)* 1.8x107° 4.3x107°
0.312 (PSL)* 2.9x10"°(corrected)  6.8x107°

*

In the second set of measurements two values of B were obtained using
polystyrene latex and were corrected to the density of sodium chloride
by the factor

(2D (x;) + 5 x,)/(20; (x,) + % x,)

where Xg = nvi/Z/EeD and D] is the Debye function.
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Figure 1.

Loss coefficient values from data of Table II
(points). Curve is the theoretical prediction
of Crump and Seinfeld (1981) for the best fit
value of ke= 0.028 sec 1.
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Loss coefficient values from data of Table III
(points). The curve is the theoretical prediction

of Crump and Seinfeld (1?81) for the best fit
value of ke = 0.068 sec™!.
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CHAPTER 6

A NEW ALGORITHM FOR INVERSION
OF AEROSOL SIZE DISTRIBUTION DATA
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A New Algorithm for Inversion
of Aerosol Size Distribution Data

James G. Crump and John H. Seinfeld

Department of Chemical Engineering, California Institute of Technology, Pasadena, CA 91125

The determination of an aerosol size distribution from
conventional data is an ill-posed problem. The general
characteristics of the aerosol size distribution inversion
problem are discussed, and several existing methods are
assessed. A new algorithm, in the spirit of Twomey’s
constrained linear inversion algorithm, employing the
concept of generalized cross validation is developed.

Extensive numerical tests on simulated data from a
Marple impactor show superior performance of the
method. Different versions of the algorithm are
available based on different choices of the function
spaces in which the assumed distributions lie. The new
algorithm offers promise as the most accurate now
available for inversion of aerosol data.

INTRODUCTION

The treatment of data obtained from aerosol
size distribution measurements has long been a
source of controversy. and, at present, several
different techniques are in use for reconstructing
size distributions from experimental data. Each
of these techniques has certain deficiencies.and
indeed, 1t is doubtful that any method can fulfill
the ideal of perfect reconstruction of a size
distribution from a limited set of data.

However, it seems a good deal can be done to
improve data analysis. It is the purpose of this
paper first to discuss the general characteristics
of the problem and then to present a new
method based on Wahba's generalized cross-
validation approach. We compare this method
theoretically and numerically with some other
methods presently in use.

STATEMENT AND NATURE OF
THE PROBLEM

For a number of aerosol size measurement
instruments the instrument response varies
linearly with the size distribution being
measured. This is true, for example, of diffusion

Aerosol Science and Technology 1:15-34 (1982)
© 1982 Elsevier Science Publishing Co., Inc.

batteries, mobility measuring devices, inertial
impactors, and optical measturement systems.
Such a device can. at least in principle, be
calibrated so that the response is a known linear
function of the size distribution. The data
inversion problem then amounts to determining
which distribution caused a given measured
response in an instrument the linear response
curve of which is known. Typically. one
measures a finite number of instrument re-
sponses. so that the problem can be stated as
follows:
Find the size distribution J such that

Lif=y. i=1,2,...n (1)

where f'is the unknown size distribution, y; the
ith datum, and L, the ith instrument response
linear functional.

Strictly speaking, the data y, are known only
approximately. since they are the results of
experimental measurements, and it will turn out
that this is part of the difficulty associated with
the solution of problem (1).

Problem (1) can also be expressed in the more
general form

Tf=y, (2)

0278-6826/82/010015-20%02.75



60

where T is the linear map defined on some vector
space of functions by Tf=(L,f ..., L f). At this
point it is worthwhile to make some general
comments on the terminology and properties of
the general linear inverse problem (2).

For the moment suppose 7T is a linear map
between normed vector spaces X and Y. We
assume that y is known and f'is to be found.

Problem (2) is well posed if it is uniquely
solvable for every vy and the solution f varies
continuously with the data y. Well-posedness is
often characterized by the following three
conditions:

a. For every y there is a solution /.
b. The solution J'is unique.
¢. The solution f1s stable.

Condition ¢ requires explanation. The solution

is said to be stable if. for any sequence of
perturbations in y tending to zero, the cor-
responding sequence of perturbations in the
solution [ also tends to zero. In analogy to the
terminology used in systems of linear equations,
we sav Eq. (2) is overconstrained if a fails and
underdetermined if b fails.

In our case we are given a finite set of data and
must determine a function {from infinitely many
possibilities. Hence the problem is underdeter-
mined. We shall also see shortly that it is
unstable.

Before continuing, however, another term
deserves mention. In solving (2) numerically we
would end up with an equation of form of (2), in
which T is a matrix and f and y vectors. Even if
a-— hold for this system, it may happen that
small perturbations in the data y cause relatively
large disturbances in the solution f. In this case
the problem is called ill conditioned. This man-
ifests itself in an extreme insensitivity of the data
to large perturbations in the solutions.

In general, the linear functionals L, are linear
integral operators of the Fredholm type; that is,

Lif= [K;(-\')j(.\') dx. (3)
The vexing nature of the inverse problem can be
seen by adding to some solution f of (1) the
function A sin wx. If A4 is large enough, then fis
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completely dominated by large amplitude oscil-
lations. Then by choosing v large enough. and
from the fact that

lim (‘K,-(,\‘) sin wx dx =0,

=y

it can be seen that this wildly oscillating function
is also a solution to the problem, within any
degree of accuracy with which we can measure
the data. This behavior is not limited to the sine
function but clearly holds for any trigonometric
polynomial of high frequency. and consequently
for any rapidly oscillating functions that are. in
some sense, limits of high frequency trigonmetric
polynomials. Consequently. almost any func-
tion that oscillates rapidly enough can be added
to a solution of (1) without aflecting the vahdity
of (1). From this discussion it can be concluded
that Eq. (1) itself is not sufficient to afford a
solution of the inversion problem, but some
additional information, more or less qualitative
in nature, will need to be used in order to obtain
acceptable solutions. This is a general charac-
terisitc of ill-posed problems, and investigation
of such problems has long focused on what
criteria should be used (Tihonov, 1963a. b).

FUNCTIONALS USED FOR SIMULATION
OF SIZE DISTRIBUTION INVERSION

Numerical simulations described in this paper
were based on the Marple impactor {(Marple
and Liu, 1974). This is a particularly convenient
device because, by using different flow rates,
several sets of data can be obtained, thereby
increasing the resolution obtainable from the
data.

Typically, in impactor calibration the collec-
tion efficiency of each stage is measured as a
function of some size parameter, often the
Stokes number N,,. yielding efficiency curves
E{x), from which the kernel functions K, are
obtained by

K (x)=E(x),
Kix)= E(x)1—E,_ x))- {1—E,(x))
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In the simulations given here. six stages with
round jets of diameters 0.8, 0.6. 0.4. 0.25, 0.15.
and 0.1 cm are used. The efficiency curves E{x)
were calculated from a universal efficiency curve
as a function of Stokes number. Marple’s nu-
merical work shows that for Ny > ~ 500, all the
stage efficiency curves fall approximately on the
same universal curve when plotted as a function
of Stokes number. We have thus an analytic
approximation to this curve, which is shown in
Figure 1. Figure 2 shows the kernel functions K|
plotted as a function of dimensionless size for a

04 05 06 07 08 09 10
~/STK

FIGURE 1. Analytical approximation to Marple’s
efficiency curve vs Stokes number.

flow rate of 5 liter min through the impactor.
The particle density was assumed to be | g
cm ™3, and all other properties were taken to be
those of air at room temperature and pressure.

FIGURE 2. Kemel functions K, (x) vs dimen-
sionless particle size x = In(did |)/In(d/d ;) where
d; =C.6pumandd; = 30 pum.

0.6 0.7 08 0.9 1.0
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REVIEW OF AEROSOL DATA
INVERSION METHODS

In this section we discuss some of the methods of
solving the inversion problem that have been
proposed in the past. We concentrate especially
on the Twomey nonlinear algorithm (Twomey.
1975) since this method seems to have gained
wide popularity.

Histogram Method

The histogram method is one of the simplest
and, for this reason alone. one of the better
techniques for handling aerosol data. It consists
simply of assuming a histogram distribution
with a number of size ranges or channels equal
to the number of measurements made. Thisis a
natural approach for instruments such as the
inertial impactor and the electrical mobility
analyzer, since these instruments are designed to
achieve fairly sharp size cutoffs. and therefore
provide natural channel boundaries.

The disadvantage of the histogram method is
that it provides no indication of the shape of the
distribution within the channe! boundaries and
moreover does not produce a smooth
distribution—a fact which is significant if the
derivative of the size distribution is desired. In
addition. even for well-designed impactors. or
mobility analyzers, the channel cutoffs are not
perfect, By using the histogram method. one
must ignore detailed calibration data that may
be available. Such data should be used whenever
possible.

Constrained Linear Inversion

Constrained linear inversion was introduced
into the aerosol measurement field by Twomey
in 1965 to infer derosol size distributions from
nucleopore filter measurements taken at dif-
ferent flow rates, although it had previously been
employed in other contexts (Phillips. 1962
Twomey. 1963). It is actually a version of the
regularization method described by Tihonov
{1963a, b).

The idea of the method was to choose a
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solution of f to problem (1) that is the smooth-
est in some sense, such as having the smallest
derivative or second derivative. In order to take
error into account in the data, Twomey relaxed
the requirement that the distribution f actually
be a solution to (1), requiring instead that it
merely be “close™ to a solution. More specifi-
cally. the method consisted of first assigning the
size variable discrete values for m sections and
letting f; be the value of fin the ith section. Then
the kernel functions K{x) are similarly made
discrete, so that K ; is the value of K in the jth
section. Then in matrix notation problem (1)
assumes the form

Kf=y. (5

In general. m > n, so that (5) has many solutions.
In addition, due to error in the data, the real
solution f more correctly ought to satisfy

IKf-yli<e (6)

where € is some smail positive number. Hence,
Twomey reasoned that f should be the “smooth-
est” vector satisfying (6), with € chosen a priori.
The smooth criteria suggested by Twomey were
typically of the form of minimizing first or
second differences of the vector f, or its variance.
The difficulty was that there really was no a
priori method to choose the parameter e
The new method that we shall present shortly
bears resemblance to Twomey's constrained
linear inversion method. The use of generalized
cross validation provides a means to choose the
smoothing parameter € from the data.

Nonlinear Inversion

In 1975 Twomey introduced the nonlinear
inversion algorithm as a substitute for the linear
version, which appeared to give poor results for
certain types of distributions that Twomey
believed to be fairly typical of those encountered
in the atmosphere (Twomey, 1973). It is difficult
to determine from Twomey’s paper why the
linear method failed, since he does not give
details of the numerical routines used.

In any event, the proposed nonlinear method
seeks to find a reasonable solution to (1) by an
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iterative scheme. Approximate solutions are
defined by

L=+ = DK )L, ().
"A":)'l/‘ K (x)/,"(x) dx,

K=+ = DR T )
():2. vy ”).

(7)

g

r! =_y,./J K{(x)/," " Mx) dx
(k=1.2.3. ...

Basically, the idea of the method 1s to start with
an initial guess distribution, and then to correct
repeatedly until the functions converge within
some specified degree. One begins by correcting
the distribution to improve the fit at the first
data point. and then proceeds through the entire
set. Then this process is repeated. It is clear from
the formulas that the corrections will be in the
right direction: i.e.. if one of the iterates gives too
large a value of y,, then on the next pass through
the iteration scheme it will be changed to

decrease this value. Other than this. however.
there is really no theoretical basis for using this
iterative method to solve the inversion problem.

The main difficulty of the nonlinear inversion
method is that it does not really address the
problem of ill-posedness inherent in the solution
of (1). It can be proved theoretically. and shown
numerically. that the solution obtained by this
method depends upon the initial guess. Figure 3
shows both a bimodal lognormal distribution
and the results of applving Twomey's nonlinear
inversion algorithm to data obtained by apply-
ing the kernel functions for the Marple impactor
to the distribution. In one plot the initial guess 1s
a constant distribution having value I, while in
the other a constant distribution of value 0.1 is
used. Note the difference in the resulting distri-
butions. Both were iterated until the error

FIGURE 3. Size distributions obtained by in-
version of simulated impactor data. Curve 1 ( )
is the true bimodal lognormal distribution. Curve 2
(—-+—) is the corresponding inverted distribution
obtained by Twomey nonlinear algorithm with initial
guess fix) = 1. Curve 3 (---) is the Twomey inverted
distribution with initial guess fix) = 0.1.

fx)




64

criterion.

n
Z UA"(XJ‘)‘./AI(-\'J‘)]Z<10'b~ (8)
i=1
was satisfied. In the numerical computations
m=280: ie., the size variable was assigned dis-
crete values for 80 sections to carry out the
quadratures. Figure 4 shows an extreme case in
which the initial guess was a rapidly oscillating
function taking on values that varied periodi-
cally from 1 to 0.1. Note that the oscillation has
remained in the solution. Figure 5 shows a
lognormal distribution having mean size 5 ym
and geometric standard deviation 1.5, and the
result of applying the nonlinear inversion algor-
ithm to this distribution. An error criterion of
10" was used in this case. In all of these results.
two sets of simulated impactor data were used,
taken at 5 and 10 liter,/min.

Note the presence of spurious lumps in the
Twomey inverted distributions. This behavior 1s

FIGURE 4. Size distribution obtained by Twomey
nonlinear method for the bimodal lognormal dis-
tribution of Figure 3 using oscillator initial guess.
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partly due to the fact that the algorithm corrects
each guess by multiplying it by something that
looks like the kernel functions. A glance at
Figure 2 should convince the reader that these
functions are not particularly smooth. thus
producing near discontinuities in the final
distributions.

It should also be noted that if the Twomey
iterates actually do converge. they converge to a
solution of the system (1), which. as we have seen,
1s underdetermined. In this case. we would be far
better off simply to solve the linear equations
obtained by discretizing (1) subject to the con-
straint that the solution be positive. (This con-
straint is implicit in the Twomey nonlinear
algorithm.) However. we are still left with the
difficulty of choosing one out of the infinitely
many possible solutions to this problem. In
actual practice the iterates do not seem to
converge, or at least they do so extremely slowly.
Hence, the resulting distribution is only an
approximate solution to the system (1)
Unfortunately, not much else can be said about
this solution. There are in general many func-
tions that approximately satisfy (1) but that bear
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little resemblance to one another. For example.
the solutions shown in Figures 3 and 4 are all
approximate solutions to (1) for the case of the
Marple impactor.

In short, the Twomey nonlinear algorithm
does not confront the main problem associated
with inversion of aerosol size distribution data.
which is the ill-posed nature of the linear inverse
problem.

Nonlinear Programming with
Physical Constraints

Cooper and Spielman (1976) proposed non-
linear programming with physical constraints as
a replacement to the constrained linear inver-
sion method of Twomey. Their alternative was
to replace problem (1) by the following optimiz-
ation problem with constraints:

Z (Llj - .)-i)2

i=1

Find / to minimize

subject to the constraints f(x}=0,

fj'(,\') dx=1. (9)

In the usual aerosol applications the integral
constraint is not appropriate, but even including
it sull leaves the problem badly underdeter-
mined. To see this, let T be the linear operator
from a vector space of reasonable functions into

FIGURE 5. Size distributions obtained by inversion
of simulated impactor data. Curve 1 ( ) is the
true lognormal distribution, and curve 2 (---) is
the corresponding distribution obtained by Twomey
nonlinear algorithm with initial guess f(x) = 1.

R"" ! defined by

(71 =L.J. i=1,2....,mn,

(10)
(T]),,- P = J‘t(\‘) dx.

Then T has an infinite-dimensional kernel, ker 7.
Suppose we have a strictly positive solution f to
{9). Then, by adding any element of ker T'to /, we
still have a solution satisfying (9). except possibly
for the positivity constraint. However, since f'is
strictly positive, we can multiply this element of
ker T by a suitable small constant if necessary so
that the new function is still nonnegative. (We
are assuming continuity of these functions,
which is permissible, since size distributions are
usually subject to this requirement.) By increas-
ing the magnitude of this constant until the sum
of f'and this function achieves a zero, we see that
there is always a solution to (9) having a zero.
Hence, the ill-posedness of (9) can be very severe.

Hence, the nonlinear programming method
suffers from the same defect as Twomey’s non-
linear algorithm, in that it does not choose
rationally among many possible solutions.
QOther data inversion methods are used based on
fitting bimodal and trimodal lognormal distri-
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butions to the data. Since these procedures
necessarily use a small number of parameters in
fiting the data, they produce nice looking
results but with a sacrifice of information con-
tent. Except in cases in which the distributions
are known a priori to have certain form these
methods are not suggested.

DATA INVERSION USING GENERALIZED
CROSS VALIDATION

In this section we describe a new method for
aerosol size distribution data inversion. As
mentioned, the basic method is in the spirit of
Twomey's linear inversion algorithm, and gene-
ralized cross validation is used to determine an
appropriate value of the smoothing parameter
from the data.

We assume for the moment that there are no
errors in the data of problem (1) and that the
problem is to find a distribution f that fits the
data. Even though. as we have seen. f 1s not
uniquely determined. the data do. of course. say
something about /. Following Backus and
Gilbert (1967, 1968). we ask which linear fun-
ctionals L have the property that Lf is un-
ambiguously determined from the data. The
motivation for this inquiry is the fact that for any
fixed x, in the domain of the size variable, the
mapping ¢, defined by ¢, (f)=f(x,) is a linear
functional. Hence, it may turn out that e\o(f) can
be determined or at least well approximated
from the data. In this way we could obtain
values of f(x) for certain values of x.

In fact. it turns out that the only linear
functionals L for which L/ is unambiguously
determined from the data are of the form

L= z el (1
i=1
It 1s clear from (11) that if L is such a functional
then L/ is determined from the data by the
equations
Ly= Z ceLif= Z ¥ (12)
i=1 i=1
Backus and Gilbert reasoned that among all
possible linear combinations of the L, there
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might be some that closely approximate ¢, for
some values of x,. Equivalently. there may exist
certain linear combinations of the kernel func-
tions K, that resemble a delta function at x,,.
Instead of looking for sharply peaked linear
combinations of the K, as did Backus and
Gilbert, we shall take a slightly different ap-
proach. Backus and Gilbert used an optimiz-
ation technique to find the most “deltalike™
linear combinations of the kernels. One criterion
was to choose constants ¢,. ... ¢, to minimize

"1 " 2
J (X —x¢)° [Z c,-K,«(x)} dx
0

i=1

for some fixed x,,

The disadvantages of this method are that it is
not computationally easy and does not guaran-
tee that the inverted distribution will be close to
the solution. We shall use another approach in
which we define distances between linear func-
tionals. The idea advanced here is that given x,,
we seek the linear functional L in the span of the
L; thatis closest to the functional ¢, in the space
of hinear functionals. This can be done fairly
easily if we choose the space of acceptable
distributions to be a Hilbert space with an inner
product and norm related by

A=) (13)

If L 1s a continuous linear functional on H,
then the norm of L can be defined naturally as

ILl|=sup|Lf],  lifii<1 (14)

Hence it follows that |Lf|<|[L{| |lf]| for all fe
H.

Now, from elementary Hilbert space theory
(Rudin, 1973) it follows that every continuous
linear functional on H can be represented in the
sense that there is a function g in H such that

L |gll=IL] and
2. for every f'in H, Lf=(g, f). (15)

Using (15) we can now easily solve the mini-
mization problem:

Find L in the span of the L,

to minimize ||L—e,||. (16)
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Todo this let g, be the function representing L, 1n
the sense of (15), and let g represent the unknown
L. and g the evaluation functional ¢, . Then by
the fact that norms are preserved (and hence
inner products) by replacing functionals by their
representing functions. problem (16) is equiva-
lent to the following:

Find g in the span of the g,

to minimize |[g~g.|l. (17

This minimization is accomplished precisely
when g is chosen so that g — g is orthogonal to
the span of the g, Hence if we let g be given by

"

g= Y cg. (18)

(=1
we find g by setting
((',gfwg\“.g‘)=0. i=1.... 1 (19}

or equivalently.
Z (g. g)c;=(g o g)=8i{x,) (20)
=1
In matrix form. 4dc=g,. where g, is the vector
with ith component gix,). Clearly A4 is self-
adjoint and positive. so its eigenvalues are all
positive. This will be important later.

Solving Eq. (20) gives us the approximate
value for f{x,)

Through some algebraic manipulation it i1s
readily seen that

n

V= 2 (A7 y)gilxg)|

i=]
<tllg. )P —c4e) 2|11 (22)

The factor multiplying {l/]] 15 the relative
resolution error €(x,). which is shown for the
Marple impactor and two flow rates in Figure 6.
The Hilbert space used in this case was H, 10 1).
which will be discussed later.

Note that the error is proportional to ||/}
which is a priori unknown. It 1s in assuming that
this quantity is not too large that we are
restricting the solutions to the problem (1. It
turns out that in these Hilbert spaces for which
the functionals ¢, are all continuous, the norm
tends to measure 1n some sense the smoothness
of solutions. Hence. by assuming the norm of 115
not large we are in a sense assuming f to be
reasonably smooth.

We have not yet been specific about the
choice of function space for this problem. The
only requirement is that it be a Hilbert space for
which the evaluation functionals are all continu-
ous. One possibility. as we mentioned pre-
viously. is the Sobolev space H,,'(0. 1).consisting
of all absolutely continuous functions f on the
interval (0. 1) that are square integrable. whose

Jixg) = Z (A7 y)gdxg). (21)  FIGURE 6. Square of the error function €.
i=1
ooz 1 1 1 l l 1 | I |
;\ - ot
~ 0.0l
@
0.0 ] | ] ] | ! | | |

0.0 3] 0.2 03

04 05 06 07 o8 0.9 1.0
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derivatives are square integrable, and that sat-
isfy f10)=f(1)=0 (Adams, 1975). The inner
product on this space is given by

i

(f g)= J f(x)g'(x) dx. (23)

0

The evaluation functional e, | is represented in
this space by the function g, defined by

x(1 —x,).
g.,= { !

Xol1 = x),

0<sx<x,<1,
0<x,<x<1

Hence for every

1

fe Ho'(0. 1), fixg)= J g, () (x) dx.

o
The functions g, corresponding to the linear
functionals L, where

1

Lif)= [ K(x)f(x) dx, (24)

JO

are defined by

X 1
gix)= J tK (1) dt+x J K1) dt
0 X

1
—X J tK (1) dr. (25)
o]

Another possibility is the space H,'(0, 1},
which is similar to the preceding except it has a
zero boundary condition only at x=0. In this
case the functions g, are given by

X 1
gix)= j tK(t) dr + x J K1) dr. (26)
o X

Both these spaces contain boundary con-
ditions that may not always be appropriate. We
shall discuss the more general case in a later
section.

It turns out that if the inversion problem is
solved in either one of these spaces. then it is
equivalent to finding the distribution f of smali-
est norm that fits the data: that is, of all
functions f'such that L,f=y,, i=1, ..., n, let the
solution be the one that minimizes ||f}|.

Since in this particular case the norm of f'is
given by (23), the solution is actually the smooth-

J.G. Crump and J. H. Seinfeld

est. Hence. we have been led in a more or less
natural way to the idea of smoothing the data, as
Twomey originally suggested.

In the next section we discuss the use of cross
validation to invert data when errors are
present.

Cross Validation and Errors

We have not yet considered the effect of errors
on the inversion procedure. These effects tend to
become more pronounced as the matrix 4 of
inner products of representing functions be-
comes larger, since 4 tends to become ill
conditioned. Then the direct inversion of A
becomes difficult, and even when it can be
accomplished, the results tend to amplify small
errors in the data.

One way to avoid the difficuities associated
with ill-conditioning of the matrix 4 is to
determine the coefficient vector ¢ by the formula
c=(A+nil) ly (27)
for some positive 4. Since, as we have seen, the
eigenvalues of 4 are all positive, this has the
effect of washing out the smallest eigenvalues,
thereby eliminating the worst effects of ill-
conditioning. At the same time, however, we
would like to choose 4 small enough that (27)
gives a solution reasonably faithful to the data.

It can be shown that the function
f=ZX,_,"cg, where the coefficients are deter-
mined from (27) and the g; are the representing
functions for the functionals L, as before, is also
the solution to the following problem:

Find fin the Hilbert space H

to minimize  (1/n) Z (LS =y P+ 7101
=t (28)

This is exactly the idea that Twomey’s linear
inversion was based on. The difficulty of de-
termining an appropriate value of /. is overcome
by generalized cross validation {Craven and
Wahba, 1979; Golub et al,, 1979, Wahba 1975,
1977).

The rationale behind cross validation is that if
/ is a good value of the smoothing parameter,
then by omitting one data point y, and solving
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the resulting problem, using the value 2 to
obtain a solution f, ,, this solution should allow
us to predict what the unused datum should be;
ie, L, f,; should be close to y,. Hence we
choose that value of 7 which makes, on the
average, |L.f, ;—y,| smallest. Specifically, we
choose /. to minimize the function

Viy=(1n) Y (Lo fi;— i wids). (29)
k=1
The weights w(+) are chosen so that }{~) has
the same minimizing value of / as

Ti2)=(l/n) Z (Lf=Lf,),

i=1
where f is the actual solution and f; is the
solution of (28) in the limit of large n.

Wahba (1977) shows under certain conditions
that as the number of data points increases the
cross-validation solution f; tends to fin the sense
that

ELf=1:11;-0 (30)

where E denotes the expectation operator. In
this analysis it is assumed that the errors in the
data are normally distributed with mean zero
and equal variance.

For computational purposes the formula
given for ¥{(s) is unwieldy. It can be shown
{Craven and Wahba, 1979; Golub et al,, 1979)
that this formula is equivalent to

(I (A+nid) tyif?
[(Anytr (A+nid) ']

V)= (31)
From (31) it is evident that F{/) is invariant
under rotations of the matrix 4 and the data
vector y. In actual numerical work the most
convenient method to evaluate (31) is to make
use of the spectral decomposition of the matrix
A. If ¥, denotes the component of y in the
direction of the ith normalized eigenvector and
+; denotes the ith eigenvalue, then the formula
for 1{/) can be written in the equivalent form

W)= —_ ?
H=n ':Z] (/ +n/ 7[; 4 J—rz/] - G2

Once the spectral decomposition of 4 is known,
the 7, can be evaluated. Then (32) can be easily

evaluated in a minimum location routine with-
out the need of any more algebra on the matrix
A.

Numerical Tests
of the Cross-Validation Algorithm

Numerical tests of the cross-validation algor-
ithm were carried out both with and without
simulated error added to the data. Log-normal
distributions were used to produce simulated
data using the kernel functions for the Marple
impactor, and Simpson's rule for quadrature on
a grid of 80 points over the size range was used.
The representing functions were calculated
using Eqgs. (25) or (26) or equivalent ones in other
Hilbert spaces. Table 1 summarizes the function
spaces and representing functions considered. 4
was diagonalized by a Jacobi rotation method
to give the spectral decomposition, and this was
used in evaluating the cross-validation function
to determine the proper value of /. by a global
search technique. Once - was determined the
coefficients ¢; were evaluated, and these coef-
ficients muluplied by the appropriate represent-
ing functions were summed to give the final
solution. Forty values of the distribution, evenly
spaced over the size interval of interest, were
calculated. Computationally, this method of
solving the problem seems somewhat better
than that used by Twomey in his linear inver-
sion routine, since discrete values are assumed
only for quadrature. All matrix algebra is done
on relatively small systems whose dimension 1s
equal to the number of data points. It is of
interest to note that when no error was added to
the data the cross-validation procedure always
chose 7. =0, so the distributions were those that
would have been obtained by the method
discussed in the previous section.

Figures 7-13 show some of the results of the
cross-validation inversion. Figures 7 and 8 give
the results of inverting a unimodal and bimodal
log-normal distribution, respectively. Also
shown are the corresponding histograms ob-
tained by assuming ideal impactor behavior.
One set of impactor data was used, and no error
was added.
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TABLE 1. Function Spaces and Representing Functions Used in Inversion Algorithm

Function space

Representing functions

Comments

Hyl(0, 1) with norm
1
nfuzs= / )2 dx
0
and inner product

1
(f, 8= f f(x)g'(x)dx
0

X
gi(x)=[ tKi(r) dt
0

Zero boundary conditions on solution

at both ends of size interval. Solutions
are continuous but derivatives need
not be. Solution approximates actual
distribution pointwise and derivative
approximates derivative of actual
distribution in mean square sense.

H2(0, 1) with norm

1
nrn2 =/ f1(x)2 dx
0

and inner product

1
(f.g) = [ f(x)g" (x) dx
0

1
+x/ Kir)ydt
X
1
—x / tK (0 dr,
0
1
g,-'(x)=/ Ki(t)ydr
X
1
—[ tK(ry dt
0
X
g,-(x)=/ (x - g"() dt,
0
X
&' (x)= / (x ~ DK ) dt
1

Zero boundary conditions on solution

and its derivative at one end of size
interval. Solution and derivative are
continuous, and both are pointwise
approximations to actual distribution
and its derivative approximates second
derivative of actual distribution in
mean square sense.

Hg¥(0, 1) with norm

1
nfi2= f f(x)2 dx
0

and inner product

1
(f.e)= /f’(x)g’(x)dx
[4]

X
gi(x) = / tK(1)dt
0

1
+x/ K1) dt,
x

1
g'x)= / Kyn)dt
X

Zero boundary condition on solution at

one end of size interval. Otherwise
similar to Ho1(0, 1).

H(0, 1) with norm

1
U2 = (02 + / f(x)2dx
(1]

and inner product

1
(f. &) = f(0)(0) + / f(x)g' (x)dx

0

X
g,-(x)=/ tKi(r)dt
0

1
+x j K0 dt

X

1
+ / K{(t)dt,
0

1
gi'(x)= / Kinydr
X

No boundary conditions, Otherwise

similar to Hg1(0, 1).
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Figures 9 and 10 show the same original
distributions as Figures 7 and 8. but two sets of
data were used in the inversion. Note the
dramatic improvement in agreement with the
data. It is interesting to note the negative values
of the recovered distributions near the ends.
which appears to occur because the impactor
provides no information about the behavior of
the distribution at the ends.

The second inverted distribution in Figure 10
shows the effect of adding error to the data.
Uniformly distributed random error was added

0.4 05 06 07 08 0.9 1.0
X

FIGURE 7. Size distribution obtained by inversion
of simulated impactor data. Curve 1 ¢( ) is the
true lognormal distribution, and curve 2 (— - —) is
the corresponding inverted distribution from cross
validation in H'(0,1). Also shown is the histogram
from 50% cutoffs.

FIGURE 8. Size distributions obtained by inversion
of simulated impactor data. Curve 1 ( ) is the
true bimodal lognormal distribution, and curve 2
(—-—) is the corresponding inverted distribution
from cross validation in Hy'(0,1). Histogram from
50% cutoffs is also shown.
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FIGURE 9. Size distributions obtained by inversion
of simulated impactor data. Curve 1 ( ) is the
true lognormal distribution, and curve 2 (—«—) is
the inverted distribution obtained by cross validation
using two sets of data.

FIGURE 10. Size distributions obtained by inver-
sion of simulated impactor data. Curve 1 { ) is
the true bimodal lognormal distribution. Curve 2
(—+—) is the inverted distribution from cross vali-
dation. Curve 3 (- — —) is the distribution obtained by
cross validation with error added to data (two data
sets used).

to the data corresponding to a maximum of
3.39, of the maximum value of the data. Note
that although the details of the recovered distri-
bution change slightly. the agreement is stil]
quite good.

Figures 11 and 12 show results of inversion in
the space H,*0.1] using two sets of data. This
space is similar to H,'(0. 1] but satisfies the
boundary conditions f(0)=/"(0)=0. and the
norm is defined using the second derivative
instead of the first. Note the Gibbs phenomenon
in Figure 12. The distribution 1s really too
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narrow for the instrument 1o Tneasure
‘accurately.

Figure 13 shows an inversion done in H,'(0.

17].

Hilbert Spaces Without
Boundary Conditions

Up until now we have shown results only for
spaces with certain boundary conditions. This s,
in fact, overly restrictive, since there are many
cases in which such conditions need not hold.

We could apply cross validation with no
change to a space such as H'(0, 1), consisting of
all absolutely continuous square integrable fun-

0.4 05 06 07 0.8 09 1.0

FIGURE 11. Size distributions obtained by inver-
sion of simulated impactor data. Curve 1 ( )is
the true lognormal distribution, and curve 2 (— - —)
is the inverted distribution from cross validation in
H2(0,1) using two sets of data.

ctions on {0, 1) whose derivatives are square
integrable. The norm on this space is defined by

W= J f(x) dx + J S(x)? dx. (33)
6] 4]

FIGURE 12. Size distributions obtained by inver-
sion of simulated impactor data. Curve 1 ( ) is
the true lognormal distribution, and curve 2 (—-: —)
is the inverted distribution by cross validation in
Ho?(0,1) using two data sets.
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FIGURE 13. Size distributions obtained by inver-
sion of simulated impactor data. Curve 1 ( ) is
the true lognormal distribution, and curve 2 (—- —)
is the inveried distribution from cross validation in
H'(0,1). using two data sets.

H'(0. 1) is a Hilbert space. so every continu-
ous linear functional has a unique representing
function. In this case the representing function
for the functional L defined by

1
Lif)= J K(x)f{x) dx (34)
4]

is the solution g of the boundary value problem
g0)=¢g'(1)=0. (35)

For the impactor these representing functions
are flat near the ends of the dimensionless size
interval and tend to peak gently somewhere in
the middle near the 50°, cutoff of the cor-
responding stage. The shape of these functions
causes the matrix of inner products to be
extremely ill conditioned. This happens because
the functions are essentially equal to nonzero
constants throughout a large part of the do-
main. As a result, the significant part of the inner
product. the part containing the derivatives. is
largely overshadowed by the other term. which
plays no role in smoothing the function.

One way to alleviate this problem would be to
subtract an appropriate constant from each
representing function so that they would be
normalized about zero in some sense. It turns

g —g=—K(x)

out that this method works and is equivalent to

a different approach, which we now outline.
Consider the space H'(0, 1) with the new

norm

* 1

1E =10 + J SO dx (36)

0

and the corresponding inner product. If we

denote the old norm (33) by || {|*, then it can be

shown that these two norms are equivalent in

the sense that there exist strictly positive num-

bers k, and k, such that. for every fin H*(0, 1),

K< i <k s (37)

Because of this equivalence good approxima-
tions in one norm are also good in the other.
Instead of finding f to solve (28). we seek the
function f; that minimizes

n 1
(I/n) Y (Lf—y) +7 J f(x)? dx. (38)
i=1 0
Note that we do not use the norm of f in the
second term as in (28}, because that would imply
a restriction on the value of / at x=0, which we
do not wish to make.
Problem (38) can be reformulated in a way
that makes it easy to solve by defining the
operator P on H'(0, 1) as

Pf=f—f(0). (39)

It is easy to show that P is sell-adjoint and
satisfies P? = P, so Pis an orthogonal projection.
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Hence (38) can be written as the following
problem:
Find f

to minimize (1:n) 3 (Lf—1)
i=1

+4N PAI%. (40)
The solution to this problem is the solution to
the equation
T*Tf+niP*Pf=T*y. (41)
where * denotes the adjoint of an operator. and
T is an operator from H'(0. 1) into E" defined by
Tf{=(L,f.--.L,f). Thesolutionto(41)is givenin
the Appendix, and we merely state it here:
f=10)+ Z g
i=1
where the g, are the representing functions given
in Table 1,
(g(0). (B+nsl)"'y)
(g0). (B+nzl) " 'g0))

(42)

J0)=

and g(0) is the vector with ith component g(0)
and the ¢, are determined from

c=(B+n:1) 'y —f(OXB+nil) 'g0) (43)
where B is the matrix whose ijth entry is
1
B,= j g/(x)g,(x) dx. 44)
0

Note that this matrix will in general be better
conditioned than the matrix of inner products of
the g. with the inner product given by (36).

We have vet to determine the value of /. to be
used in this inversion. This will be done by
generahized cross validation. In general the
cross-validation function (Golub et al.. 1979) is
defined by

nl|[1—=F )y i?

where F(+) is the matrix that maps the data
vector y onto the vector (L. f.. ... L,f,). and f;
is the solution obtained using the parameter
value «.

To determine this matrix, first note that

L fo L f)
={g,- f)) ... (g 1)

+ <§: (8- 8)Ch o S (g gﬂq,)
ji=1

=1
=1,(0)g(0)+ Ac =y — n/c. (46)

The latter equality follows from the fact that f,
satisfies {41). Thus. it follows that F(z)y=y
—nse, 50 that [I—F(~)]y=nsc.

Let ', and g(0) be the components of y and
g(0). respectively. in the direction of the ith
normalized eigenvector of B. Then we can write
K(+) as (47), see below, where the 4, are the
eigenvalues of B.

Note that the matrix of inner products 4 is
not used in the calculation of I, but the better-
conditioned B is used instead.

Actually, there i1s no reason why the par-
ticular norm chosen must be used. We could
have taken the usual normon H'(0 1) given by
(33). and used the orthogonal projection oper-
ator P defined by

1
Pf=f— J Jxydx (48)
0
and carried out analogous reasoning to arrive at
another expression for a cross-validation
function.

Figure 14 shows the inverted distribution of
the lognormal distribution shown in Figure 5.
The result can be compared with that of the
Twomey algorithm in Figure 5. No error was

”/:)-': T TS 45
i [I=-F)];° ) added to the data in either case.
" & & LY ‘._ n 5 (0) 2
- [ oA (g gﬁ_’)]
Vi) = =i p At R AN R A A 8 ‘ (47)

S sitns i)

[ n 1 é'(O)Z n

if@i]z

4 ns.
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FIGURE 14. Size distributions obtained by inver-
sion of simulated impactor data. Curve | ( ) is
the true lognormal distribution, and curve 2 (
is the inverted distribution from cross validation in
H'0,1) using two data sets.
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Figure 15 shows the inversion done in H'(0. 1)
of the bimodal distribution shown in Figure 3.
This inversion can be compared with those

FIGURE 15. Size distributions obtained by inver-
sion of simulated impactor data. Curve 1 ( ) is
the true bimodal lognormal distribution. Curve 2
(—-+—) 15 the inverted distribution with no error
added to data. Curves 3 (— - —) and 4 ¢( )
are inverted distributions with error added to data.
Two sets of data were used in all areas.

0.6 07 0.8 03 1.0

obtained by Twomey's nonlinear method
shown in Figures 3 and 4.

Figure 15 also shows the cross-validation
inversion of the same data but with uniformly
distributed random error added to the data.
corresponding to a maximum error of 3.5°, of
the maximum value of the data. It is of import-
ance that the errors in the recovered distribution
are roughly of the same order of magnitude as

the errors in the data.

Remarks

In the generalized cross validation as we have
presented it here. the errors in the data are
assumed to have equal variance. This need not
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be assumed, however, and following Wahba and
Wendelberger (1980) we can replace the datum
y, in the cross-validation function by ), ¢, and
the representing function g; by g, 0,. where o, is
proportional to the standard deviation of the ith
measurement. We often know the relative ac-
curacy of the data but less often can estimate the
absolute accuracy.

SUMMARY OF THE
INVERSION ALGORITHM

Here we present a synopsis of the steps in the
algorithm developed in the preceding sections.

1. Choose an appropriate function space. Table

1 lists those we have used in the construction

of numerical examples and gives some prop-

erties of approximations in those spaces.

{a) For spaces with boundary conditions.
evaluate the representing functions and
the symmetric matrix A of inner products.
See Table 1 for formulas of representing
functions and definitions of inner products.

(b)For H'(0. 1) (no boundary conditions).
calculate representing functions g; and the
matrix B of inner products of the functions
g—g{0).

B, =(g,—£40). g;—gi(0)

o

1
= J , &/(xX)g/(x) dx.
0

3. Caleulate the eigenvalues and eigenvectors of
A or B. Check to make sure the eigenvalues
are all positive,

4. Using the spectral decomposition obtained

in step 3. evaluate and minimize the cross-

validation function ¥(/) given by (32) for
spaces with boundary conditions or (47} for

H'(0. 1.

{a) For spaces with boundary conditions,
determine the coefficient vector ¢ by (27).
Then the solution f is given by

wh

n

/= z (-2

i=1
(b) For H'(0. 1). the solution f is given by (42)
and (43).

CONCLUSIONS

We have presented a general discussion of the
problem of inversion of aerosol size distribution
data and shown the shortcomings of presently
available techniques. We have suggested the
method of generalized cross validation as an
alternative. This method is seen to be especially
well suited to the ill-posed nature of the inver-
sion problem and to perform better in numerical
examples than the Twomey nonlinear inversion
method.

APPENDIX
SOLUTION OF EQ. 41)

Equation (41) is

T*T{+n,P*Pf=T*y (A1)

where
Ti=W, /. ... L) =Ug. ). .. (gD
Now, the adjoint T= is defined by (7f. ¥)=(/.

T*y). where this is to hold for all feH'(0. 1),
and all yelR". Thus

(T y)= Y (g.yi= (Z vig. ! )
i=1

= i=1
=/ T*y).

where the latter inner product is taken in H'(0.
1). Hence T*y =X/, v,g. Next we have

T*Tf= Y (g.])g.

i=1

Hence Eq. (A.1) may be written

Z (g-/)g;+n.Pf= z Vi€

i=1 i=1

where we have used the fact that P is an
orthogonal projection. Applying P to [ gives

Y (g Ngi+nif—nifil0)= Y vg.

i=1 i=1

From this equation it follows that f—f(0) lies
in the linear span of the g, We may therefore
write

(A.2)

J=/0)+ Z g

i=1



/8

Substituting into Eq. (A.2) gives

n n

Z Z (g:g)c;8

i=1 j=1

n

+n. Y cgi+f0) Y g0k,

i=1 i=1

n

=Y re.

i=1

{A.3)

Let g(0) be the n-dimensional vector whose ith
component is g(0). and A the nxn matrix with
ijth entry (g.. g;). Then Eq. (A.3) becomes

(A+nixe=y—f(0)g0). (A4)
Hence
c=(A+n0) 'y —f(ONA+nil) 'g0). (AS5)

f10) is unknown, but by taking the inner
product (in IR") of (A.5) with g(0) we find

n

S g l0)=(gl0). (A+nid)"'y)

i=1
— f{ONg(0). (A +nil) g0y

But since

H

=10= Y cg.

i=1
we have

n

0=/10)—110)= 3 cgl0)

i=1
so 1t follows that

(g0). (A+nil)y)

0= - .
J (gL0). (A +nil) g0y

Finally, note that. if B is the matrix whose ijth
entry is (g,—g{0). g;—g(0)). then using

H

Y ¢gl0)=0

i=
it 1s easily shown that

Ac = Be. (A.6)

10)=

J.G. Crump and J. H. Seinfeld

Hence. the métrix A can be replaced by the
better-behaved matrix B in the above calcu-
lations to give

(gl0). (B+nil)~'y)
(g(0). (B+nil) 'g0)

c=(B+nil)y 'y ~f(ONB+n.0)" 'g(0).

=10+ 3 cag.

i=1
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FURTHER RESULTS ON INVERSION OF AEROSOL SIZE DISTRIBUTION DATA -
HIGHER ORDER SOBOLEV SPACES AND CONSTRAINTS

James G. Crump and John H. Seinfeld

Department of Chemical Engineering

California Institute of Technology
Pasadena, California 91125

ABSTRACT
The aeroscl size distribution inversion algorithm of Crump and Seinfeld
(1982), based on the concept of regularization with generalized cross-valida-
tion, is extended to Sobolev spaces of order m. The use of the cross-vali-
dation function for choice of an appropriate value of m in a particular appli-
cation is discussed. An inversion algorithm that constrains the size distri-

bution to be non-negative is introduced and shown to be of value for sharply

peaked distributions.
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INTRODUCTION
The aerosol size distribution inversion problem can be expressed as deter-

mining the size distribution function f(x) to satisfy

£LF o=y, i=1,2,...,n (1)

where Ai are known linear functionals and y; are the measured data. Equation

(1) usually has the concrete representation,

1
J K (0F(x) dx =y, i=1,2,...,n (2)
0

where the ki are kernel functions for the particular instrument. The size

variable x has been taken to be dimensionless and normalized so that 0 < x < 1.
Crump and Seinfeld (1982) presented an algorithm for inversion of aerosol

size distribution data. In particular, they showed that if f is assumed to

1ie in a Hilbert space H, then f(x) can be approximated as
n
f(x) = .Zlc]-qbi(X) (3)
i=

where the ¢i(x) are representing functions for the functionals Ai’ and the

coefficient vector ¢ is determined by
_ -1
c=(A+ )y (4)

where A is the nxn matrix with ijth entry (¢i’¢j)’ the parentheses denoting
the inner product in H. The positive parameter A is determined by minimizing
the cross-validation function V(X), defined by

n

V0D = 2N - yyl® w0) (5)



where fi denotes the solution of the same problem with the parameter value X

omitting the kth datum, and w ()) are weights chosen to make the approximate

i
solution converge to the actual solution under certain conditions (Golub et
al., 1979).

The inversion algorithm of Crump and Seinfeld (1982) is based on the con-
cept of regularization (to be explained shortly) and cross-validation and was
shown to give superior performance when compared to other available inversion
algorithms. In that work inversion formulas in the first-order Sobolev space
H1(0,1) were presented. To achieve greater flexibility in fitting size dis-
tribution data it is useful to develop results for inversion in higher order
Sobolev spaces H"(0,1), where m > 1. The properties of the inversion formu-
las in Hm(Oﬁl) depend on m, and, in particular, certain sets of data can be
fit better by different choices of the order m. In this paper we develop
inversion algorithms for the general Sobolev space Hm(O,l), and discuss the
choice of m for a particular application. Finally, although aerosol size
distribution functions are inherently non-negative quantities, most inversion
algorithms do not explicitly include a non-negative constraint. In some appli-
cations involving sharply peaked distributions it is useful to incorporate a

non-negativity constraint into the inversion algorithm. Consequently, we pre-

sent here an algorithm for constrained inversion and illustrate its use.
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DATA INVERSION IN THE SOBOLEV SPACES Hm(O,l)

The space Hm(O,l), for m a positive integer, is defined to be the collec-
tion of all real functions on the interval (0,1) having square integrable weak
derivatives through order m (Adams, 1975). It may be shown that these func-
tions have continuous derivatives through order (m-1), and that a norm may be
defined on this space by

112 = z 00y + 1M () 20x (6)
0

where the superscripts denote the order of differentiation. The inner product

of two functions f and g is defined as

(f,9) = z £ (0)g{8) (0 + ff ™ (x) dx (7)
0

The general data inversion problem in H"(0,1) may now be stated as fol-

Tows. Find a function f in Hm(O,l) minimizing
1 @ m)
Hiz._.:“-y!"-wf (x)*dx (8)

where A is to be determined by generalized cross-validation. The concept of
adding the second term in (8) to the customary squared deviation first term
is called regularization, in that the second termattempts to insure a degree
of smoothness or regularity in the solution.

This problem can be conveniently treated by defining an orthogonal pro-

jection operator P on H"(0,1) by
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-1
pr = £ -3 ke )k (9)
k=0

Now if T denotes the linear map from Hm(O,l) to gen given by

TF = (Igf,..., A F) (10)

The minimization functional (8) becomes

-% ITF=y )2 + 2P (11)

where |« refers to the usual norm on 3?” in the first term, and to the norm
defined by (6) on H™(0,1) in the second term.

Minimization of (11) is equivalent to solving the following equation

for T,

T*T + nAP*Pf = Ty (12)

where * denotes the operator adjoint. Since P is an orthogonal projection,

P* = P, and P*P = P2

P. The adjoint of T is defined by
(Tf,y) = (f,T*y) (13)

for all f € H"(0,1) and all yezse”. It should be noted that the parentheses
on the left in (13) refer to the inner product in &", while those on the
right refer to the inner product on H"(0,1). Since T is an operator from
Hm(O,l) to gen, T* is an operator from 32” to Hm(O,l). It is well known that
T* is uniquely defined (Rudin, 1573).

Let Ppseees O be the representing functions for the Tinear functionals

A1,..., Ay respectively. Thus, for every function f € Hm(O,l)

Aif = (‘i’isf} i=1,2,..., n (14)
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Equation (14) uniquely defines the representing functions (Rudin, 1973). The

adjoint T* may be shown to be given by
n
T*y = Zyi(bi (15)
i=1

by substitution of this expression into (13).

Substituting (15) into (12) gives

n k) n
2. (0;F)¢, + nx[ 2_“, (0) /k'] Z (16)

i=1
Equation (16) implies that

-1
Fo3 &K 0y
k=0

lies in the Tinear span of the representing functions. Hence, there exist

constants Cysevns Cp such that

£ z: (k) (0)/k! = E: c, (17)
k=0

Substituting (17) into (16) and assuming linear independence of the ¢

which is equivalent to linear independence of the Ai’ yields, in matrix form,
(n+mc=y- 3 £ 0600 (18)

where A_ij = (¢1’¢j)’ and ¢(k)(0) is the n-vector with jth component ¢§k)(0).
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Evaluating (17) and its derivatives through order m-1 at x = 0 gives

6t (0) = k=0,1,..., m-1 (19)

n
Z;c
Multiplying (18) by (A + nkI)"1 yields

= (A + w7y - §: £k 0y (a + ma)~te(K) (o) (20)

Now, taking inner products in R of (20) with ¢(j)(0) for j = 0,1,..., m-1

gives, after using (19),

0 = (68)0),(a + mn)7y)- ); ©{60(0),(a + mn)6M (o) (21)

If we let & be the mxn matrix with ijth element ¢§1)(O), then we have

from (21)
(0
:( ) = [o(a + ma) tet 1 le(a + ma)ly (22)
#(m1) (o)
and
= (A + nkI)_ly - (A + nI) Lot a(A + mI) Lot ] la(a + nAI)'ly (23)

To determine the cross-validation function V()), we note that if ¢ =

F(\)y for some matrix F()), then (Crump and Seinfeld, 1982)

V() = nilF()yn? (24)
(trF(r))2
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Hence, V() is given by (24) with
FO) = (A+mD)™L - (a+ mD) oTe(a + m1) et oA + mn)t (25)

By substitution into (14) and integration by parts, it may be verified

that the representing functions ¢ are given by

x .t t
05(x) = (D" ST 78 Pty dt,. .. dt
o O 0

m-1 1
Y DNE S W (t)dt/ke (26)
k=0 0
where
e (x) = ks (x)
X
00 = STk et (27)

and the ki(x) are the instrument kernel functions from (2).

Special Case of H?(0,1)

In the special case of m = 2, the inverted distribution f(x) is obtained

from

f(x) = f(0) + xf'(0) + §5c1¢1(x) (28)
i=1

where

¢ = M+ mI)7H y-£(0)8(0) - £(0)e'(0)) (29)
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M is the nxn matrix with

rl i i
Mi5 = 6’ 93 ()83 (x) dx (30)
and
w3 X «2 X w X
p:(x) = %= [k (t)dt - 3= f tig(t)dt + 5 f 7k, (t)dt
0 0 0o
1 X x 3 1
-3 Joktde + (1 -5 [kt
0 0
x? 1
£ (x + Z—)Of tk, (t)dt (31)
X X 1
60(x) = x [ ki(t)dt - [tk (t)d + [tk (t)dt
0 0 ) 0 '
1
- xafki(t)dt (32)
with ) ) R R
(0)y. L (0)y.
£(0) = {B Zn: (be+ xYJ - ¢ 4% - xyj }/E 32
=1 AT =T
n &ﬂ(O)&. n &.(O);.
£1(0) = {Aj}:jl -—-———ij ¢ Jz=:1 _”——”xj.mx J}/E (34)

~

The kj are the eigenvalues of M. ¢j(0), ¢3(0), and yj are the components of

the n-vectors, ¢(0), ¢'(0) and y, respectively, in the direction of the jth

eigenvector of M and
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n, 4(0)2
A= 2 T (35)
J=1 7
n %'.(O)2
B = Z >\J.+n)\ (36)
j=1 "]
n $.(0)4:(0)
=T
with E = AB-C2.

Finally, the scalar ) is determined by minimizing the cross-validation

function

~ ~ ~ 2
n [ vi o 9;(0)f(0) ¢;<o>f'<o>]

A4nA T L+ni T XL N
i i i

A 2 A Al Al 2 2
ﬁ[x L ( 6;(0)°8  20;(0)o(0)C fi(om )/E]
1.

(x1.+nx)2 (xi+nx)2
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CHOICE OF SPACE FOR INVERSION

We have developed above general results for data inversion in the Sobolev
space Hm(O,l). In solving a specific problem it is necessary to select the
order m of the space to be used. In this section we discuss the factors in-
volved in that choice. In short, the effect of choosing a larger value of m,
i.e. higher Sobolev space, for inversion of data is to produce smoother inver-
ted distributions.

To see this, consider a simple example. Let
ki(x) = /2 sin wix (39)
Writing f(x) as a sine series,

[eed

f(x) = 2 Ci/? sin mix (40)
i=1

the inversion problem assumes the form c; = Yis i=1,2,..., n. Since the data

¥; inevitably contain noise, the simple solution of substituting Y; for Cs in

(40) 1is unsatisfactory because some high frequency components will have larger
amplitudes than they ought to. By using the foregoing theory for inversion

in Hm(O,l) for even m, we obtain the alternative expression,

Yy o
S N i=1,2,...,n (41)

c. =
(1+n2i 2™

i

If A is small enough, the coefficients . behave Tike Y; for small i. However,

2m_ Hence, high frequencies are removed from the in-

for large 1, C; v yi/nki
verted solution. Note that as m increases, the cutoff of high frequency com-

ponents becomes sharper.
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As a result of this discussion, we see that if a smooth inverted dis-
tribution is expected, a higher order Sobolev space is appropriate for inver-
sion. On the other hand, a sharply peaked distribution is 1ikely to be better
inverted in a Tower order space.

One way to choose the proper order m without resorting to purely intui-
tive criteria is to use the cross-validation function. Since, at its minimum,

V(2) is an approximation to

b B [

n
(M - Af*)2 + 2 (42)
f=1 ! !

where f* is the true solution, f is the inverted distribution, and o is the
standard deviation of the data (Golub et al., 1979), a good choice of m is
that which gives the minimum value of V(X).

Our experience indicates that the inverted distribution is not too sensi-
tive to the space used in inversion, although in higher order spaces the in-
version tends to be more ill-conditioned. That is, the increased smoothness
of the representing functions causes these functions to become more nearly
linearly dependent, and hence increases the condition number of the Gram
matrix A of Equation (20).

Figure 1 shows the results of inverting some data from the low pressure
impactor in H(0,1) and H?(0,1). Also shown is the histogram based on the
50 percent cutoffs. Note that the two solutions agree well within the size
range where the impactor is most sensitive. The deviation below the lowest
50 percent cutoff is due to the different ways in which data are extrapolated
in the two spaces. In this case the Tower value of the cross-validation func-

tion V(A) occurred in H?(0,1), so this solution is expected to be better.
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CONSTRAINED INVERSION

Since aerosol size distributions are necessarily nonnegative quantities,
inversion with positivity constraints can be expected to yield better results
in some cases than unconstrained inversion. This fact turns out to be par-
ticularly important when the inverted distribution is sharply peaked. In the
unconstrained case, attempting to recover the peak often leads to the so-called
Gibbs phenomenon, i.e. high frequency oscillations at the base of the peak.
These oscillations appear to be suppressed when a positivity constraint is
applied. In this section we describe an algorithm for constrained inversion
of aerosol size distribution data.

The inversion problem is formulated as in (8), but with the added con-
straint, f(x) > 0. We reduce the problem to a finite-dimensional one by defin-

ing discrete approximations, fj = f(xj), where xj = (§=1)/m, j = 1,2,..., ml.

Furthermore, we define a kernel matrix K, the elements of which are K1J =

ki(xj)’ i=1,2,...,n,3=1,2,..., m#l. Now the problem can be expressed as

follows. Find a vector f > 0 in 3?m+1 minimizing
n | mtl 2 m+]1
2| 2K fveeys o+ }: (DF)Zv; (43)
=1 =1 i3 373 -

where the vj are coefficients for quadrature using Simpson's rule,

_ 21
Y17 V1l T 3m
_ 4 .
v21 = 3 i 1,2,..., m/2 (44)
—2 - .:: [
Voirl T3 i 1,25..., m/2-1

and D is a difference operator approximating a differential operator. For

example, in H*(0,1), D is defined as
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Dlj = Dm+1,j =0 J=1,2,..., m+l
Dii = - 2m? i=2,3,...,Mm (45)
= = 2 i =
D1’1_1 D1.,1.+1 m i=2,3,...,m
Dij =0 otherwise
And in H(0,1),
Di,i+1 =m i=1,2,..., m
1-1="m i=1,2,...,m
Dij =0 otherwise (46)

Letting Kij = Kijvj’ i=1,2,....n3 J=1,2,..., mtl, and Dij = Dijvi’

i=1,2,..., ml; j = 1,2,..., m1, the problem becomes: Find f > 0 in ™"

to minimize
(£, 0%+ ') ) - (F,2KYy) + a2 (47)

This is a quadratic programming problem that can be solved by standard pro-

cedures (Duffin et al., 1967). Using the Kuhn-Tucker theorem, the problem

m+1

reduces to: Find f >0 in & such that,

Nf - d (48)

H
(o]

where g > 0 and (f,g) = 0, and where N = K'"K + na0'D' and d = K+y.

Figure 2 shows the result of constrained and unconstrained inversion of
data produced from a narrow log normal distribution simulated for an eight-
stage Tow pressure impactor. Note that the constrained inversion gives much
better results in this case. Both inversions were done in H?(0,1). In carry-
ing out the constrained inversion, the problem was solved using an algorithm

given by Ravindran (1972) based on theory of Lemke (1965).
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Unlike the unconstrained case, cross-validation is not applicable in the
constrained inversion, so the parameter A must be chosen by an alternate
method. One such method is the method of the discrepancy (Tikhonov and
Arsenin, 1977), by which f is obtained by solving (48) and A is determined

iteratively by the requirement that
IK'f -yl = g (49)

where § is a measure of the error in the data,

1

2

§ = ( 5& o%) (50)
=1

where op is the standard deviation of s+



97

CONCLUSIONS

Formulas for applying the method of regularization with generalized cross-
validation to aerosol size distribution data inversion problems have been
given for Sobolev spaces of order m. The use of the cross-validation func-
tion for choice of appropriate value of m has been noted, and the advantages
of using a constrained inversion algorithm have been shown when the distribu-
tion is sharply peaked.

The inversion algorithms developed by Crump and Seinfeld (1982) as well
as those given in the present paper have been incorporated into the two compu-
ter programs INVERSE and CINVERSE. These programs were reported by Crump
(1982) in the computer program section of the journal and are available from

the authors.
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CALIBRATION OF OPTICAL PARTICLE COUNTER
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CALIBRATION OF OPTICAL PARTICLE COUNTER

INTRODUCTION

The size measuring instrument used in the aerosol growth studies was a
Royco LAC 226 laser aerosol particle counter (OPC) having 15 channel resolu-
tion between 0.12 um and 6.1 um particle diameter and a channel for oversize
particles.

Size resolution of the instrument is imperfect, and experimentally it
is found that monodisperse aerosols typically give significant responses in
several channels. Consequently, in order to obtain good size distribution
measurements, calibration of the instrument and an appropriate data inversion
technique are necessary.

In the following sections we describe the method of calibration, present
the data obtained from experimental calibrations, and discuss the application
of the data to inversion of measured size distribution data using the methods

of Crump and Seinfeld (1982a, 1982b).

CALIBRATION METHOD

The goal of calibration is to determine kernel functions ki for the
ith channel, defined such that if f is the number distribution of particles
entering the instrument, and Y; is the number concentration counted in the

ith channel, then f, ki’ and y; are related by

1
S K (X)F(x)dx = y. (1)

i
0

where x is a dimensionless size variable. By using a monodisperse distribu-

tion, values of the kernel functions can be obtained experimentally, for if
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(3)

Consequently, if the total number concentration N and the measured response
y; are known for a monodisperse aerosol of dimensionless size Xo then the
values of the kernel function ki at the same particle size can be found from
Equation (3).

By repeating the same measurements for several particle sizes over the
size range of interest, the values of the kernel functions over the particle

size range may be obtained by interpolation.

EXPERIMENTAL PROCEDURE

Monodisperse particles of polystyrene latex (PSL) and sodium chloride
ranging in diameter from 0.1 ym to 1.01 um were used to calibrate the Royco
instrument. Sodium chloride particles were used for smaller particles and
PSL for larger sizes.

In the PSL experiments dilute suspensions of the monodisperse spheres
were atomized in the device previously described, and the resulting aerosol
was passed through a Kr-85 charge neutralizer before entering the particle
counter. For each size measured, five separate measurements were taken, each
lasting one minute. The channel responses were then averaged. The diameters
of PSL particles used in these experiments were 0.126 um, 0.234 um, 0.312 um,
0.357 um, 0.500 pym, 0.600 ym, 0.721 pm, 0.792 pym, and 1.01 pum.

Several measurements of particle concentrations were also made simul-

taneously with a TSI model 3030 Electrical Aerosol Analyzer (EAA). These
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measurements agree roughly with the OPC measurements for 0.357 um particles,
but in the case of 0.126 um particles, the OPC yielded concentrations smaller
than those of the EAA by a factor of between 40 and 60. This, likely, is

due to the low signal to noise level of the OPC at this small particle size.
For this particle size (0.126 um diameter) it was assumed that that the EAA
gave the correct concentration, and the data from the OPC were normalized by
dividing by this value (see Equation (3)). For the other (larger) particle
sizes, it was assumed that the OPC gave the correct number concentration. The
results of these experiments are tabulated in Tab]e I as the values of the
kernel functions for the first six channels of the OPC at the particle sizes
used in the experiments.

Several experiments were also done using monodisperse sodium chloride
particles in order to obtain more values of the kernel functions near the
lower end of the size range. The particle diameters used ranged from 0.10 um
to 0.13 um.

In these experiments aerosol was generated by atomizing a dilute solution
of sodium chloride. A monodisperse fraction of the desired size was then
separated out by passing the aerosol through a TSI model 3071 Electrical
Mobility Classifier. The resulting monodisperse aerosol was then passed
through a Kr-85 charge neutralizer before making size measurements. Both OPC
and EAA measurements were made, the latter being used to obtain values of the
total concentration. As in the previous experiments, five separate measure-
ments were made for each particle size used, and the resulting OPC responses
and EAA measurements averaged. The values of the kernel functions for the

first six channels obtained from these experiments are shown in Table II.
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Table 1. OPC Calibration data for PSL

diameter (um) k] k2 k k k k

3 4 5 6
0.126 0.022 0.001 0.000 0.000 0.000 0.000
0.234 0.153 0.844 0.003 0.000 0.000 0.000
0.312 0.0317 0.204 0.763 0.001 0.000 0.000
0.357 0.030 0.140 0.827 0.003 0.000 0.000
0.500 0.035 0.012 0.289 0.661 0.003 0.002
0.600 0.029 0.008 0.190 0.766 0.006 0.000
0.721 0.035 0.016 0.012 0.271 0.655 0.010
0.792 0.025 0.016 0.017 0.176 0.725 0.038
1.01 0.024 0.014 0.013 0.036 0.331 0.577

Table II. OPC Calibration Data for NaCl

diameter (um) k] k2 k3 k4 k5 k6

0.10 0.063 0.010 0.000 0.000 0.000 0.000
0.11 0.092 0.016 0.001 0.000 0.000 0.000
0.12 0.114 0.024 0.001 0.000 0.000 0.000
0.13 0.135 0.045 0.002 0.000 0.000 0.000
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DISCUSSION

The values of the kernel functions obtained for 0.126 um PSL tend to
disagree with the values obtained for NaCl with diameters 0.12 um and
0.13 um. This is probably due to shape irregularities of the NaCl particles
and the difference in refractive indices of the two materials.

For the small particles, the NaCl measurements were chosen to be used in
calibration since they appear very similar to measurements made with MnSO4,
the material used in growth experiments.

Ideally, the instrument should be calibrated with particles having the
same light scattering characteristics as those to be measured, but the diffi-
culty of producing monodisperse particles of the proper size and composition
precludes this.

The values of the kernel functions obtained as described in the last
section, omitting the results of 0.126 um PSL, were interpolated at 41 equally
logarithmically spaced diameters from 0.1 um to 1.0 um,* and these interpolated
values were incorporated into the data inversion program CINVERSE (Crump and

Seinfeld, 1982b, Crump 1982).

S —
The kernel function data were interpolated since the experimental data pro-
vided only a small number of points across the diameter interval 0.1 m to
1.0 m.

The technique used was to find a smooth interpolating function k*(x) for
each kernel function ki(x), such that for each particle size xj(j= yeonsh)

and each ki minimizes the functional
]*11
._[.k. (x)dx
g 1
Here the variable x is defined by
= ] d +1
X og b

and x varies between 0 and 1.
The algorithm used to carry out the interpolation was a modification of
CINVERSE.
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Figure 1 shows a plot of the six kernel functions together with the ideal
rectangle kernel functions obtained from the channel size cutoffs supplied
by the manufacturer. It can be seen from this figure that there is consider-

able deviation between the ideal curves and the experimental curves.
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ABSTRACT

This work examines the general steady state coagulation equations with
sources and sinks. These equations are shown to admit physically unaccept-
able solutions in some cases, and it is hypothesized that in such a case
a gelation or precipitation phenomenon occurs. General conditions on the
coagulation and loss coefficients are given that insure the existence of
physically realistic solutions. The physically realistic solutions have

tails that decay faster than any power of particle size.
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1. INTRODUCTION
White (1) has considered certain properties of the steady state solutions
of the population balance equation including sources, coagulation, and removal,

i.e.

1
0=a +5 2:
k 2 43

1 - Xk%;bijj - CX [1]

) bijxixj
The two nonlinear terms describe the rate of change of concentration by binary
agglomeration, ay is the rate of introduction of particles of size k, and -C Xk
accounts for removal of particles of size k, such as by convection, sedimenta-
tion, or diffusion to the walls of the system.

For systems of physical interest the coefficients bij and c, are unbounded,
and this fact makes it difficult to analyze the behavior of solutions to Eq. [1].
In addition, as White has shown, it also gives rise to physically unrealistic
solutions in some cases.

A solution to Eq. [1] is simply any nonnegative sequence Xk satisfying
Eq. [1]. The existence of a solution implies that all the sums appearing in
the equations are finite. However, the existence of a solution does not imply,
contrary to widespread belief, that the solution conserves mass, that is,that

the following equality holds
E% ke, X, =%§ ka, [2]

This equality may be "derived" by multiplying the kth equation in Eq. [1] by k
and summing over all k. However, the rearrangements of the infinite sums re-
quired to obtain Eq. [2] are only valid provided 2:.1bijxixj < »; for then, all
series appearing in the equations are absolutely géﬂvergent. We will see later,

nevertheless, that the inequality
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by
%kckxk _<J‘_<, ka, [3]

always holds regardless of bij so that even if mass is not strictly conserved
as in Eq. [2] mass is always finite for any solution of Eq. [1].
Another property that solutions to Eq. [1] may possess is that of having

finite moments of all orders, that is

Y k%, < w vy =0,1,2,... [4]
k=1 K

We will see in a later section that solutions need not have this property.

A physically acceptable solution to Eq. [1] must have the mass conservation
property. The fact that Eq. [1] may have solutions which do not obey Eq. [2]
was demonstrated by White (1), who proved the following:

1) If all ¢, =0, j.e., there is no sink for particles, then solutions

k
to Eq. [1] may or may not exist depending on the form of the bij'
Solutions which do exist do not conserve mass.

2) If all Cp = 0, and Eq. [1] has a solution, then some moment of the
solution must be infinite.

3) If the removal and coagulation coefficients satisfy the relations,

B 8.8

c. > c¢j” and bij < bi"j%,with ¢ # 0, then any solution of Eq. [1] has

J
finite moments of all orders.
The assertion above that mass is not conserved in the absence of removal
is hardly surprising. What is surprising is the existence of solutions to the
steady state equations under such conditions. These solutions are not physically
acceptable, and the second statement shows that one characteristic of such solu-

tions of that some moment of them is always infinite. The third result states

a condition under which this situation will not occur, which, roughly speaking,
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is that the removal mechanism be at least as fstrongﬂ as the coagulation
mechanism.

From these results White concluded that physically acceptable solutions
of Eq. [1] cannot have power law tails, i.e., the solutions cannot have asymp-
totic forms Xy ~v k7T for large k, since in such a case, some moment would be
infinite, contradicting the third result above.

However, White's results Jeave several questions unanswered:

1) How "strong" must the removal mechanism be relative to the coagulation
mechanism in order that physically acceptable solutions to Eq. [1]
exist?

2) Do solutions to Eq. [1] actually exist under general conditions when
the coefficients bij and ¢, are unbounded?

3) What is the significance of "unphysical" solutions to Eq. [1]?

As an example of the type of case not answered by White's work, consider

Brownian coagulation of an aerosol in a vessel with removal occurring only by

flow out of the vessel (convection). Then b1.j §_b11/3j]/3

and C T 1. The
results of White do not include this case, but we will see that solutions to
this system exist, conserve mass, and have finite moments of all orders.

White showed that in the absence of removal physically acceptable solutions
do not exist. However, even when removal is present, physically acceptable solu-
tions may fail to exist, as the following example of branched chain polymeriza-
tion in a continuous stirred tank reactor indicates. In this case the kinetic
coefficients bij are proportional to (i+2)(j+2) (2), and the removal, by con-

vection, is constant.

Hence, if we assume only monomer is entering the reactor, Egs. [1] take

the form
,1k—1 %g
X, = A8y * §-;é% bk~j,jxk-jxj - X j:ﬁ bijj [5]
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where X\ is a dimensionless feed concentration of monomer, and the coefficients

1J
Then the mass conservation equation holds, i.e.

b.. = (1+2)(j+2). Suppose that a mass conserving solution to Eq. [5] exists.

kak = [6]

Summation of Eq. [5] over k gives

=5 _ 1
%;Xk A ;; bijxixj [7]
1,
= 2 %— S (i42) (5+2)x.x.
i3 n

and from Eq. [7], we have, using Eq. [6],
1
Lx SA -5 [8]

It follows immediately from Eq. [8] that if A > 2, z:xk < 0, so no physically
acceptable solution exists. ‘

Physically, this tells us that gelation has occurred in the reactor. That
is, some amount of infinite polymer has formed. In fact, this does actually
occur in cross-linked polymerizations, and the above coagu]étion kernel has
been used to model the polymerization up to the gel point, and to estimate the
time for gelation (2). Whether or not a phenomenon similar to gelation exists
in aerosol systems seems to be unknown at the present time, although Smoluchowski
(3) reports an experiment carried out by Paine in which colloidal particles

being stirred coagulated negligibly during an induction period, then suddenly

produced Targe clusters. This may have been due to gelation.
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These last comments suggest that in some cases at least, the nonexistence

of physically acceptable solutions to Eq. [1] may be an indication that pre-
cipitation similar to gelation in polymer systems has occurred in the system,
and hence, although the solutions themselves do not have physical significance,

they indicate a real physical phenomenon.

2. STATEMENT OF RESULTS

In the next sections we prove two results in answer to the questions raised
by White. These two results give conditions under which well-behaved solutions
to Eq. [1] exist. Then we also discuss the behavior of solutions which do not
satisfy these conditions, and in so doing show what situations might give rise
to gelation phenomena. We assume that E: kYak < o for all vy.

We will give a partial answer to the first question raised by proving the
following assertion:

Assertion 1.

If the removal coefficients C; and the coagulation coefficients bij
> ciB for some ¢ > 0, 8 > 0, and b, . < bia+Bja+8,

_ ]j_
where a <-%, then if solutions to Eq. [1] exist, they have finite moments

satisfy the relations c;

of all orders, and consequently conserve mass.

It should be noted that the existence of a solution to Eq. [1] is not
asserted here, but merely that if a solution exists, its moments are all finite
under the given conditions. There are some indications that the exponent %~1s
the largest possible here, and we will give some arguments to this effect later.
Nevertheless, proof is still lacking. Assertion 1 tells us that under the
given conditions if solutions to Eq. [1] exist no gelation phenomena will occur,
and thus, the assertion gives some indication of the conditions needed to observe

such a phenomenon. It also should serve as a warning to those who solve Eq. [1]
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numerically that if the above conditions are not met, the solutions obtained
may not be meaningful.*

The second question will be answered under fairly general conditions,
applicable to most aerosol systems, and it is given in the following assertion:

Assertion 2.

If the coefficients C. and b1.j satisfy the same conditions given in Asser-

tion 1 , except that we merely require that o < 1, then there exists a non-

negative solution to Eq. [1] having finite mass.

Assertion 2 is especially interesting in light of the fact that it guaran-
tees the existence of solutions to Eq. [1], which do not satisfy the conditions
of Assertion 1, and consequently may be unphysical. These solutions are those
for which « 5-%. No such solutions, however, have ever been found, to the knowl-
edge of the authors. Nevertheless, we will present arguments which suggest
that such solutions do indeed exist.

Before proving Assertions 1 and 2, we note that the substitution xé = C Xy

reduces Egs. [1] to

1
0=a  ++ 9. bl.x!x\-x Yob!oxt - x! [9]
k 2 i+3=k ijmivg k 3 ki3 k
where b%j = bij/cicj' From now on we omit the primes in Eq. [9] and deal only

with this equation. Clearly if either Assertion 1 or 2 holds for Eq. [9], it
also holds for Eq. [1]. Moreover, by the hypothesis of the two assertions, we
may assume that the bij of Eq. [9] satisfy the relations bij f‘biaj&, where

o <<% for proving Assertion 1 and o < 1 for proving Assertion 2.

—
Similar comments, may be expected to hold for continous, or mixed discrete-
continuous forms of Eq. [1].
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Proof of Assertion 1
Assertion 1 is basically an extension of White's result, and its proof is
nearly identical to that of White. We make use of the following inequalities
proved in Appendix A:
For r > 2, there is a number Cr such that for all a,b > 1
r-1,r-1

(a+b)” <a” +b" +Ca b [10]

For 1 <r <2 andall a, b>1

(a+b)" i_ar + b7+ 2a

Then we obtain the following generalizations of the inequality proved by White:

If {xk} is a solution to Eg. [9], then

C
> kPx f_Elkpa + —%322 §:1p']jp']b..x.x. (p > 2) [12a]
K k K k 255 137173

C
Zk:kpxk 52;, Pa, + PETiPE P20 xxy (epe2) [12b]

11

kak <Zkak [12¢]
Kk Tk

where Cp is a constant depending only on p.

The proof of these inequalities is obtained by letting N tend to infinity

in the following inequalities (where Cp is chosen according to Eq. [10] if p > 2,

Eq. [11] if 1 < p < 2, and Cp =0p=1landr=p-1fForp>2andp/2 for
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=
™
g

(i+3)P b. x.x. - 2. E:kpb 5 K
2 keN i¥3=k [ ST

<'% >oor (PP 4 ciTh b1 XX, - 2 2 kPb K
TS kN i+i=k P RN

C
= 7? E: i 3 b, XX, 2: E: iPbh. x.x. 2: E:kpka KX ;

k<N i+j=k i " kN itk 9T kN
=.EE 2 ", xx. - Y kPbx x.
2 kN i+3=k R A= T Ve B
< “ 2 iiTh,xx. .
=2 k<N i+3=k 137173

To prove Assertion 1, we show first that existence of a finite second
moment implies that all moments are finite, under the hypothesis that bij E_biaja
witha< 1. Let §=1-a>0. Set Y = 2 + 8. Since Yy > 2, ineguality [12a]

may be invoked to give

% Y bCy vota-1 2
Sk 1xk-}:k1ak<-—2—l(21 1 x.)
K ~ i !

Hence, the (2+8)-th moment is finite. Now setting Y, = 2+n¢, and proceeding
inductively, we see that all moments are finite.

Now assume o < %n By what we just saw, it is only necessary to prove that
the second moment is finite to prove that all moments are finite. This is shown

by using the inequality [12b]

bC., | Ry
Zkx, - Zk Zak i‘?‘z“(z"lw"i)

k k i
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Thus, the second moment is finite if the (l+a)-th moment is. Now, repeating
this argument shows that this moment is finite if thek(% + o + %~a)—th moment

is finite, and after n repetitions, we have that the second moment is finite
n

if the moment of order o Y 2K 4
k=0

this quantity is less than 1. Since any solution to Eq. [9] has a finite first

2™ js finite. Since a <-%, for some finite

moment (by [12c]), this proves that the second, and consequently all, moments
are finite. Then, since convergence of all the sums is guaranteed, mass con-

servation holds by elementary manipulation of Eq. [9]. This proves Assertion 1.

Proof of Assertion 2
To show existence of solutions to Eq. [9], we will assume bij f_biuju
with o < 1. We sketch the proof here, leaving technical details to Appendix B.
The main idea is to examine truncated sets of Egs. [9] containing only a finite
number of variables and show that a sequence of solutions can be found that con-
verges toa solution of the full problem.

The truncation is chosen to be mass conserving, and the Nth truncation is

1 k-1 N-k
0=a -x * ﬁ'éé%bk-j,jxk-jxj = Xy ;E% bijj [13]
k =1,2,..., N

N
If {xk}ﬁ_1 is a solution to Egq. [13], it is easy to show that 2 kx, =
N w "t k=1
Y ka, < > ka,.
k1 k—gar K
Using a degree theoretic argument given in Appendix B it can be shown that

for every N there is a solution {XE}E=] of Eq. [13]. If we extend the defini-

tion of the sequence xN = {XE}E=] to XE = 0 for k > N, then

oo N o
2 kx, = 2. ka, < 2 ka, = M,
k=1 k=1 k=1

n,
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so the approx1mate solutions 1ie in the set of nonnegative sequences {x }

=]
such that 2: 1x1 < M. This set is compact* in the set 2] of sequences {x } -1
i=1 '
such that 2: [x | <, so there is a sequence {xk}k -1 such that
i=1
N
Tim 2: k* lx = X | = 0, where N. is a subsequence of integers, and N, »
J—)oo k=1 J J J
N, N
as jJ - =, Letting x and x J denote {x }k -1 and {x }k -1 respectively, and if
T denotes the operator on the right side of Eq. [9] and ™ the corresponding
operator on the right of Eq. [13], then we have
™N = 0 for a11 N [14]
since N is a solution to Eq. [13]. If we norm sequences y = {y1}1-1
iyl = 2 ka[ykjand byl = 2 iyk{, then we have for the sequence x defined
k=1 =
above,
N, N NN,
1T = I1Tx = Tx ¥+ Tx ¥ = T Ix Ji
N. N. N. N,
<ATx = Tx 0+ umx d -1 I i [15]
N.
Since lIx-x Juu ~ 0, and T is continuous, by an argument in Appendix B, the
N.
first term tends to zero. Then, since T J uniformly approximates T on compact

N.
subsets of Q?, and the x 9 all lie in such a set, the latter term tends to zero.

This proves IITxll = 0, and hence Tx = 0, or equivalently Eq. [9] is satisfied

by x. Therefore x is a solution of Eq. [9].

*A compact set is one such that every sequence of points in the set has a con-
vergent subsequence whose 1limit is also in the set. See (4) p. 269.
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3. DISCUSSION

Combining the results of Assertions 1 and 2 we obtain

Assertion 3

If the coefficients of Egqs. [1] satisfy the relations c, i_ciB

j , ¢ >0,
+8. ot
o BJd 3

g > 0, and bij < bi , wWhere o <-%, then Eq. [1] has a nonnegative

solution with finite moments of every order, and which conserves mass.

From this result we see that well-behaved steady state size distributions

exist for an aerosol undergoing Brownian coagulation (bij §_b11/3j1/3)

2/3

and
gravitational sedimentation(ck > ck™ %), or Brownian coagulation and convective
removal (ck =c).

By examining the proof of White's inequality [12c] we can see that if mass
conservation fails, then ‘22 ibﬁ;jx]'xj = o, which implies that the (o+1)-th moment
of the size distribution };Jinfinite, and consequently, as White noted, the
size distribution behaves asymptotically like a power law distribution.

To see this more concretely, set p = 1 in the proof of the inequalities
[12(a,b,c)]. Then if mass is not conserved,

Tim 2. 2 kb X X. = C .
Moo k<N 3oN-k  KI KT

If bkj « k*j%, and we suppose Xj v j’s for some s > 0, we find

. N = T+a-s.0-s _
im Y . Dk 3 =c .

Approximating these sums by integrals gives

N-1 @ - N-1
X1+OL—X f ju dedX Y f X]+O¢—S(N__x)]+(x-$ dx
N-x+1 1

/
1
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T+o-
= X s,

(assuming 1 + a - s < 0). Let f(x) Then this last integral is roughly

f*f(N), where * denotes convolution, and lim f*f(N) = c. By the final value
Noo

~

theorem, this means 1im £2(z) = c, where f is the Laplace transform of f. Hence

~ z-0

f(z) %.ZE for small z. Now this means that f(x) « x'l/2
vZ 3

for large x, so the

=0
exponent s = %»+ o, SO xj o 2 . It should be noted that the exact solu-

tions given by White in the absence of removal for bij = i%%, have exactly this
asymptotic behavior. For this power law distribution to be consistent with the
fact that solutions to Eq. [1] have finite first moments, we must require that
o >-%. This is precisely the requirement that Assertion 1 not hold, and conse-
quently is very suggestive that the exponent %fin that assertion is the best
possible one.

Ziff (5) gives several solutions of the dynamic coagulation equation which

a, with o > 1, solutions exhibit

support his belief that for bij such that bii >
gelation. This corresponds to our case in which « >-%, and hence tends to sup-
port the observations we made above. In aerosol systems it appears from these
results that gelation phenomena would be rare, since gravitational sedimenta-

tion acts as a strong sink to counteract all of the usual coagulation mechanisms.

4. CONCLUSIONS

We have shown that if the particle removal coefficients satisfy C; 3_c1'B
for ¢ > 0, 2 > 0, and the coagulation kernel bij satisfies b1j§b1a+6ja+6 with
o <-%, then solutions to the steady state population balance exist, have finite
moments of all orders, and conserve mass. It follows that such distributions
cannot have power law tails. We have given evidence that the exponent %~1s
the largest possible, and that for o >-%, solutions have a power law behavior,
do not conserve mass, and possibly indicate some behavior similar to gelation

in polymerization systems.
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APPENDIX A

(1) If r > 2, there is a number C, such that for all a, b > 1

(a+b)r < ar + br + Cr ar—lbr-l

Proof:

Let n be the smallest integer > r. Then n > 2, and

(a+b)" = a" + b" + 2: ( ) kpn-k
n-2
= a"+ b" + nab™ e na"lp Y (1) afp" [A.1]
k=2
Dividing by (a+b)™" gives
n-2 k, n-k
(a+b)" < a" + b" + nab™ ! & na™lp 7 (2) E_Q”—FTF [A.2]
- k=2 (a+b)
Since r > 2, nab"~} f»nar'lbr_l, and na""2b fvnar'lbr'l, and akpn- k/(a+b)n'r
a" L Thus (a+b)" < < a” +b" + C, a'" 1br-l, where
n-1
= (M=2"-02 [A.3]
k=1 )
(2) Ifl<rc<2
(a+b)r'§ am + b+ 2ar/Zbr/Z
for a, b > 1.
Proof:
(a+b)'2 = a2 + b2 + 2ab
Dijviding by (a+b)2'r gives
2 2
(a+b)r < : 2-r * . 2-r t2 al—lr b1 ir
~ (atb) (a+b) (atb)™ =" (atb)” *

<a" + b+ 22 bR [A.5]
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APPENDIX B
Let %; = the set of sequences {Xi}?=1 such that x = 2:|x1] < o, and
i=1
Tet 2? equal the set of sequences such that Hxnu = E:iuixil < e, Define an
i=1

operator T mapping 2? into Ql by

.

.t 5 b. . .X: :X. [B.1]
i 2 in1 i-3,371-3"3 i =1

(Tx)i = a; - X bijxj

Here x denotes the sequence {Xi}?=1' If b1.j f_biaja, it is clear that the

sequence Tx = {(Tx)i}?=1 is in % if x is 1in Q?. By elementary manipulations

of Eq. [B.1], we obtain for x and y in 2%

1

ITx - Tyl < Ix=yli, + %—b(llxllOé + Hynu)(nx - yna) [B.2]

Eq. [B.2] shows that T is continuous. In fact, it shows T is uniformly continu-
ous on bounded sets in Q?.
Next define a map TNon 3?N by
1 i-1 N-1
(TNX)i =a; =Xty 2;b1-j,jxi—jxj - %y 2; bijxj [B.3]
Jj=1 j=1
TN can also be considered a map from Q? into R] by defining (TNX)i =0 for i > N.

Now,

[ee]

(Tx - TNX)'i = .‘Z. b'ijx'ixj for i < N
J=N-1i+1 [B.4]
= (Tx); for i > N.
Hence we obtain
ITx = Tyxll < 2blixi 25 %] + 2 [(Tx),] [B.5]
j>/2 JU 5N !
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It can be shown that compact sets in 2? are those that are closed, bounded,

and have the property that for any positive e there is N such that every sequence x
in the set satisfies .z: 1a1x1] < g¢. From this, and the fact that images of com-
pact sets under contigzgus functions are compact, it follows that IITx - TNxH may
be made arbitrarily small on compact sets in 2? by choosing N large enough .

Incidentally, the above characterization of compact sets shows that the set

of nonnegative sequences x = {xi}c;.o=1 such that 2: 1Xi < M is compact in 2? if

i=1
a < 1. To see this, note that the set is closed and bounded, and since o < 1,
given € we can choose N large enough so that MNO"1 < g . Thus
L0 _ o-1 . a-1 . o-1
2 i Ixi = 2 ix, < N 3 iX; < MN < g [B.6]

i>N i>N i>N

for all seguences x in the set.

Finally we must show that each of the truncated sets of eqguations can be
solved to yield a nonnegative solution.

Let D = {x € Q?N: 0 < x; < M for 1 < i < N} where M = gia kak. Now, view-

N

ing TN as a map from & into 3?N we define a homotopy Ht by

i-1 o
- 1 -
Ho(x); = a; - x5+t [2 }g&bi—j,jxi—jxj X, 52% bijxj]

for x €D and 0 < t < 1.

Note that HO = a - X and H1 = TN' For the moment suppose a, > 0 for all k. We
will use the fact that the topological degree at 0 of Ht is independent of t pro-
vided no zeroes of Ht cross the boundary of D. That is, if HO has a zero in D,
and by varying t no zeroes cross the boundary of D, then” the parity of the

number of zeroes of Ht cannot change, i.e., zeroes can appear and disappear only

in pairs. The one-dimensional case illustrates this fact well.
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So we need only show that Ht(x) # 0 if x is a boundary point of D. If x is
a boundary point, then either X5 = 0 for some i or X5 = M for some i. If
X; = 0, then

i-1
= T
(Htx). =a; + 5 ;E%bi—j,jxi—jxj > 0, [B.7]

S0 Htx # 0. If Xi = M for some i, and Htx = 0, then by what we just proved

X5 > 0 for all j. By mass conservation, which is satisfied by any zero of Ht’

N
M=x, < D Jx: [B.8]

a contradiction. Hence, no zeroes of Ht cross the boundary of 0, and since
HO has 1 zero in D, TN has an odd number, so has at least one.

If some 3 = 0, then the result follows by approximating a by a sequence
of nonzero numbers tending to zero and by a 1imiting argument a zero of TN is

obtained again.
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CHAPTER 10

MANGANESE SULFATE AEROSOL GROWTH DUE TO
CATALYTIC OXIDATION OF SULFUR DIOXIDE
IN THE CSTR
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MANGANESE SULFATE AEROSOL GROWTH DUE TO
CATALYTIC OXIDATION OF SULFUR DIOXIDE IN THE CSTR

INTRODUCTION

In this section we predict the steady state aerosol size and composition
in a CSTR in which sulfur dioxide is being absorbed by aqueous manganese sul-
fate aerosol and oxidized to sulfuric acid. The prediction considers the
feed distribution, the sulfur dioxide concentration, the relative humidity,
and the mean residence time.

In the last part we present an algorithm which allows computation of
the new size distribution resulting from a change in relative humidity. This
is important in making comparisons between model predictions and experimental
data. Although the analysis is presented for manganese sulfate aerosol, it
is applicable in principle to the catalytic oxidation of SO2 in aerosol par-

ticles of other species.

STEADY STATE SIZE DISTRIBUTION IN A CSTR
We begin by discussing the case of a monodisperse feed aerosol to the
CSTR. In this case the steady state output size distribution n(xo,x) obeys

the equation
0 = QN 8(x-x/) - Qn(x,.x) - VB(x,o(xO,X)) n(x,»x)
-V %;—(I(xo,x)n(xo,x)) (1)

where x 1is a dimensionless size-related variable, Xo is the size of the
feed aerosol, p(xo,x) is the particle density, and I(xo,x) is the particle

growth rate~%% and B(x,p) is the wall loss coefficient. We have included
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explicitly the dependence on X0 of the various quantities, since this depend-
ence is important when the feed is polydisperse. Note that coagulation effects
are ignored here. In general the growth rate I(xo,x) can be expected to be
composition as well as size dependent. However, in the case of a monodisperse
feed of aerosol in which all particles have identical composition, the compo-
sition of particles becomes a unique function of size, hence the solution of
equation (1) directly yields both size and composition.

The solution (1) is

x 1/t+8(t,0(x _,t))
n(xo,x) = No/ (TI(XO,X) )eXp I:_ f T I(Xp,t()) dt] (2)
0

where 1 is the mean residence time of the CSTR.

In the case of a polydisperse feed, the feed distribution can be approxi-
mated as a linear combination of monodisperse feeds, and (1) solved for each.
Then by linearity of (1), the solution is a linear combination of solutions
for each feed size. Hence we need only consider the case of a monodisperse
feed, for which (1) and (2) hold.

It follows from Equation (2) that to compute the distribution requires
only that we know I(xo,x) given XgsXs and a kinetic rate expression for for-
mation of sulfuric acid. The wall loss coefficient g requires, inaddition,
the particle density. In the next section we describe the procedure for

obtaining these quantities.
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CALCULATION OF THE GROWTH RATE I(xo,x)

Let us define x as

X = Tn(dp/d1)/1n(d2/d]) (3)

where d] and d2 are lower and upper particle diameter limits, and dp is par-
ticle diameter. We shall take d] = 0.1 um and d2 = 1.0 um in subsequent

analysis. From (3) and our choice of d] and d2 we obtain

dv
~dx_ 1 " p
Hxyx) = 4 3TnTOv, (4)

where Vo is particle volume, which is to be calculated from the role of pro-
duction of sulfuric acid and the requirement of thermodynamic equilibrium.
This latter requirement can be shown to be a very good approximation due to
the small size of the particles of interest (See Appendix). In general the
particles in the CSTR will consist of aqueous solutions of manganese sulfate,
sulfuric acid, and sulfur dioxide along with the various jons in equilibrium
with it. The concentration of sulfur dioxide and other reduced sulfur ijons
is governed by equilibrium between the gas and liquid phase, and in the pres-
ence of sulfuric acid is so small that its effect on the water activity of
the mixture is negligible. Thus, the water activity can be expressed in terms
of the concentrations of the manganese sulfate and sulfuric acid alone. Let
Ca and C denote the acid and manganese salt concentrations, respectively.

Equilibrium between the particles and the gas can be expressed in terms of

that for water alone. The condition is
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where 2, is the water activity of the mixture as a function of the concentra-
tions, and RH denotes the ambient relative humidity. Given Xo and x, Equa-

tion (3) gives the corresponding volumes vp o and vp, and since feed particles

contain only manganese sulfate the feed concentration ¢ o is obtained by

£

solving (5) with ¢, = 0. Then mass conservation of the manganese gives

/

c_ = c
m Vp,o m,0

Yy (6)

Then solution of (5) yields c,-
Letting R(ca,cm) be the rate of acid formation as a function of the acid
and manganese concentrations, we have, by definition of R
dc c._ dv
=1 d -_a, .3
R(ca,cm) = qr v, © )

a! Ta v at
Vp p Vp

t (7)
Differentiation of (5) with respect to t gives

aaw dca . aaw dcm - ()
aca dt acm dt

But we also have

dc C v dv
_m_ _ _mo0 p,0 p
dt (9)

Substituting (9) into (8), and using (7) gives

dv Ja 3a
1 E _ ' W
V—p dt R(Ca:Cm)/[Cm("'—acm/——aca)‘* Ca] (10)

And then I(x _,x) is obtained from (4).

X
0
Hence, the problem is essentially reduced to one of determining the water

activity a, as a function of the concentrations of sulfuric acid and manganese

sulfates <, and Ce The solution of this problem is discussed in the following

section.
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EVALUATION OF WATER ACTIVITY OF HZSO4-MnSO4 MIXTURES

Since water activity data on mixtures of H,S0,4 and MnSC, in water are
not available, the mixing rules devised by Kusik and Meissner (1978) have
been used here to obtain 2, Kusik and Meissner present a formula for the
activity coefficients of jonic mixtures as functions of the activity coeffi-
cients of all pure ionic salts which enter into the mixture. For a solution
of MnSO4 and H2504, these are the only two pure ionic compounds needed. The
Kusik and Meissner formula for the water activity of mixtures is, however,

incorrect. Thus, the Gibbs-Duhem equation was used to obtain the following

formula, consistent with the mixing rules of Kusik and Meissner,

91 I _ 41 I _
H' 505 Mt 505
- Tog a, = 5 1og(aw)a + 5 109(aw)m (11)
21 I
T T
+r
where
91 |1 _ I _1I
H' S0, 50, M
r = 0.0156 7 + i
T T
- 0.0156 (I , + 0.25 T _ + 0.25I ) (12)
H* 50, Mn**
. + ++ =
where 1 + I 42 I _, and IT are the ionic strengths of H', Mn 504, and
H Mn SO4

the total ionic strength, respectively, assuming complete dissociation. In

Equation (11) (a )

wa and (aw)m are the water activities of pure sulfuric acid

solution and manganese sulfate solution, respectively, evaluated at the total
jonic strength of the mixture. In the evaluation of (11), data on water

activity from Robinson and Stokes (1965) were used. As a result, the mixture
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water activity is determined as a function of the acid and manganese molali-

ties. Since the solutions in the aerosol are fairly concentrated, the molar

concentrations differ appreciably from the molal concentrations, and the den-
sity must be known as a function of concentration to convert from one measure
to another.

Figures 1 and 2 show density-concentration data for pure sulfuric acid
and pure manganese sulfate so1utionsf The partial mass volume is seen to be
fairly constant over the entire region covered by the graphs, and the values
taken from these were assumed to hold in mixed solutions as well. If Vi is
the partial mass volume of the ith species (cm3/g), Mi its molecular weight
(g/mole), and c its molar concentration (mole/liter), then we obtain the

relation

1000 =Z\71.M1.c1. (13)
i

For the case of sulfuric acid, manganese sulfate, and water, (13) becomes

1000 = VaMaca + VmMmcm + VWMWCW (14)

we also have the relation that density in g/cm3 is related to molar con-

centrations by

1 '
® 7 71000 (Maca Myt chw) (15)

Using (14) to eliminate ¢, from (15) and the values of Va and Vm obtained

from Figures 1 and 2, we obtain

_ 1 YERYY Y
o =1+ 1555 [(1 - T, + (1 vm)Mmcm] (16)

*CRC Handbook and International Critical Tables.
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Figure 1. Density of aqueous sulfuric acid as function
of weight fraction acid, together with linear
approximation.

0.4
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Figure 2.

0.4

Density of aqueous manganese sulfate as function
of weight fraction MnSO4, together with linear
approximation.
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where Va = 0.401 cm3/g and Vm = 0.106 cm3/g. Knowing p, then concentrations

and molalities are related by

m; = Ci/(p - Mic1/1000) (17)
CHANGE OF SIZE DISTRIBUTION CAUSED BY CHANGE
IN RELATIVE HUMIDITY

The size distributions in the CSTR are not necessarily the same as those
seen by measuring instruments. This is due to the fact that relative humidity
is a strong function of temperature, so that instruments operating above or
below ambient temperature will measure at different relative humidities.

Thus, to compare predicted size distributions with data one must be able
to convert to the conditions under which the measurement was made.

To do this one needs the size and composition distribution. Given a
dimensioness size x, and acid and manganese concentrations, , and Co

respectively, the factor A by which drop volume will change at a new relative

humidity is given by
RH = aw(kca, Acm) (18)

where RH is the new relative humidity. This equation holds provided no man-
ganese sulfate precipitates. The absence of a solid phase can be checked
by comparing the activity product to the solubility product. That is, it

must be true that

a_a a < SP (19)
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The activities are evaluated from Kusik and Meissner's activity coefficient

for the mixture

. (IMn+ISO or
log v~ =

4 ) H
——— ] log v +(-————) Tog v (20)
I MnSO4 ZIT H250

T 4

where YMnSO4 and YHZSO4 are the pure solution manganese sulfate and sulfuric
acid activity coefficients, respectively, and are evaluated at the total ionic
strength of the mixture.

The water activity is included in (19) based on the assumption that the
solid phase in equilibrium would be the monohydrate, which is the case in

aqueous solutions of pure manganese sulfate above 27°C.

The solubility product, defined by

SP = a a (21)

a
W oy o=
Mn 504

for saturated solutions of pure manganese sulfate was calculated from solu-
bility data given in the International Critical Tables. Figure 3 shows a
plot of InSP versus 1/T and from it one obtains the approximation

Tnsp = 1220 _ 8,155 (22)

This equation was used subsequently.
In case (19) fails, the value of ) obtained is incorrect due to precipi-

tation of MnSO4, and the new concentrations in the drop are determined by

aw(cé,c$) = RH (23)

aw(cé,c$)a ++(cé,c$)a - (cé,c&) = SP (24)
Mn 504
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-3.14

-3.181

-3.22

-3.26

In SP

-3.30

-3.34 -

-3.38
| |

i
0.0030 0.003I 0.0032 0.0033 0.0034
1/T (°K)

Figure 3. 1n SP plotted as function of 1/T. Curve is
plot of linear approximation of data.
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These equations are solved for cé and c%. Then mass conservation of mangan-

ese and acid gives
ve_ = v c' + vspm/Mm (25)
vc, = v,c! (26)

In these equations v is the original drop volume, P the density of the solid
phase (which is supposed to be MnSO4-H20), and Mm the molecular weight of

the solid phase. Vg is the volume of the liquid phase after the change in
humidity, and Vg 1s the corresponding solid phase volume. Finally the total

volume v' of the drop after the change in humidity js the sum of 1liquid and

solid phase volumes
= v, +V (27)
Now A is obtained by the relation

A= v/v! (28)

Having obtained X by either solving (18) or from (28), the size distri-

bution n' is obtained from the original distribution by the transformation

d

o 109 Mx)) (29)

of -

n'(xo,x - %-109 xx)) = n(xo,x)/(1 -

This result holds for a monodisperse feed. If the feed is polydisperse, the
separate size distributions corresponding to each size in the feed are trans-
formed according to (29) and the resulting distributions are summed to give

the final transformed distribution.
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APPENDIX
EQUILIBRATION TIME FOR AEROSOL PARTICLES

We make an estimate for the time to reach thermodynamic equilibrium of
aerosol particles of diameter less than 1 um.
We assume the particles are large enough for continuum analysis to hold.

Then the flux of water vaporto the particle surface is (Friedlander, 1977)
2ﬂdpD(p-pd)/RT mole/sec (A1)

where
D = Diffusivity of water vapor in air = O.24(cm2/sec)
dp = drop diamter (cm)

p = water partial pressure (atm.)

Pd = drop water vapor pressure (atm.)
T = absolute temperature (°K)
R = gas constant = 82.05 atm. cm3/mo1 °K

The above flux must equal the guantity

pv

W (A2)
where vp = particle volume (cm3)
o = density of water (1.0 g/cm3)
M = molecular weight of water = 18 g/mol

where we have assumed no volume change on mixing. This assumption is adequate
for the purpose of estimation. Setting vp = wdg/6, and equating the flux

expression (Al) to the growth expression (A2) yields the equation
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d _ 2
aE»1ndp = 4MD(p—pd)/pRT dp (A3)

Now, p-py = pg(RH—aw) where

pg = vapor pressure of water (atm.)(=0.0313 atm. at 25°C)
RH = relative humidity
a, = water activity of drop
Then
& Tnd_ = 4MDpY(RH-a )/oRT d° (A4)
p 0 W p

We now consider the longest possible time for equilibrium to be established
within one percent fora drop of diameter less than 1 um. Before equilibrium

is reached within one percent, we have
[RH - aw[ > 0.01 (A5)

So, from (A5) and substitution of appropriate values into Equation (A4), we

obtain

d
I a€-1ndpl > 22 (A6)
Typically drop diameters will not change by more than a factor of two when

relative humidity changes, so using (A6), this gives, upon integration

1n2 > 22t (A7)
or

t < 0.03 sec (A8)
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CHAPTER 11

OXIDATION OF SULFUR DIOXIDE IN AQUEOUS
MANGANESE SULFATE AEROSOLS
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OXIDATION OF SULFUR DIOXIDE IN AQUEOUS MANGANESE SULFATE AEROSOLS
INTRODUCTION

The phenomenon of aerosol growth due to oxidation of sulfur dioxide
has received considerable attention in recent years (Bassett et al., 1981;
Freiberg, 1978; Cains and Carabine, 1978; Wadden et al., 1974), particu-
larly in reference to plumes from coal-fired boilers. A central question
in such studies concerns the role of heterogeneous 1liquid phase oxidation
of sulfur dioxide, catalyzed by dissolved ash from the coal combustion
aerosol, and its consequent effect on evolution of the aerosol size dis-
tribution.

To begin to understand these processes, simpler systems, containing a
single metal salt, have been employed, notably manganese salts, which are
known to be active catalysts for 502 oxidation (Bassett and Parker, 1951)
and to occur in fly ash from coal combustion facilities (Haury, et al.
1978).

Much of the research on oxidation of 502 in Mn-catalyzed systems has
been done in bulk solutions with the object of determining the kinetics
of the reaction. In such experiments manganese concentrations are typi-
cally less than 10'3 M. Some work has also been done on aerosol systems,
but in such systems one must distinguish between two very different situa-
tions. One is that of fog or rain droplets, which typically contain only
traces of heavy metal contaminants (Hoffmann and Jacob, 1982), and the
other is that of deliquesced metal salt particles in humid air, which fre-
quently contain metal salts in concentrations of 1 Mor higher. This latter
situation appears more representatiVe of plume aerosol, and in one study

(Haury, et al., 1978) manganese sulfate aerosols were even shown to give
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oxidation rates similar to those observed on fly ash aerosols. Perhaps

the most important reason for studying oxidation of 502 in aerosol sys-
tems to assess our understanding of the interaction of physical and chemi-
cal processes fundamental to the design of plume models by comparing re-
sults of theoretical calculations with experimental observations made under
controlled conditions.

A promising technique for studying aerosol growth is the continuous
stirred tank reactor (CSTR). 1In a CSTR long residence times necessary to
observe significant growth of aerosol are more easily achieved than in
tubular reactors due to the excessive lengths required of the latter. In
addition the CSTR operates at steady state, making possible the use of
measurement techniques requiring long times, such as, perhaps, inertial
jmpactors. This type of measurement would be necessary for composition
distribution determination. 1In addition, a batch reactor for aerosol stud-
jes must be quite large in order to use conventional measurement technigues
for particle size analysis, and the large size makes careful temperature
control, and hence good control of relative humidity, difficult. Perhaps
the most serious drawback of the CSTR is the distribution of residence
times which results in polydisperse effluents even when the feed is mono-
disperse. However, the simplicity of modeling the CSTR compensates for
this disadvantage to some extent since there is, in principle, no real
difficulty in accounting for this polydispersity.

In the next section we discuss some of the more salient studies of
the kinetics of oxidation of 802 in aqueous MnSO4 solutions, and, based
on the available data suggest a rate expression appropriate for aerosol

systems. In the following section we discuss experiments using a CSTR
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to measure particle growth rates and deduce a kinetic coefficient for the

802 oxidation based on the data.

PREVIOUS WORK ON OXIDATION OF SO, IN AQUEQOUS MnS0, SOLUTIONS

The kinetics of oxidation of sulfur dioxide in aqueous solutions of
manganese sulfate have been studied by numerous techniques, both in bulk
liquid and in aerosol systems. Table I summarizes some of the work done
to date.

Generally speaking catalyst concentrations in the previous studies are
typically less than 10'3 M in bulk solution studies, and range upwards of
1 M in studies of aerosols, in which concentration is determined by thermo-
dynamic equilibrium of water. This large difference no doubt accounts for
considerable variance in the reported rates of reaction.

The most accurate kinetic data appear to have been obtained from bulk
solutions, where variables can be accurately measured and controlled. Aero-
sol studies, on the other hand, have tended to be less fruitful in terms
of yielding rate expressions. Several of the studies cited in Table I merit
further comment.

The most complete and reliable kinetic data appear to be those of Mar-
tin (1982) and Coughanowr and Krause (1965), both of which indicate a
second order dependence of the rate of SO2 consumption on the manganese
concentration and a zero order dependence on SO2 concentration. Moreover,
if the pH of the experiments of Coughanowr and Krause is taken as three,

a reasonable estimate given the reported liquid phase SO2 concentration of
].9x10_3 M, their results agree with the rate expression of Martin.

Coughanowr and Krause also report a weak dependence of the SO2 consumption
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rate on manganese concentration when the latter exceeds 3x10_3 M up to the
maximum concentration used in their experiments 01’47x'IO_2 M.

In an aerosol, the concentrations of manganese sulfate are much higher
than this value. Based on osmotic coefficient data from Robinson and
Stokes (1965) and solubility data from the International Critical Tables
(1928), the MnSO4 concentration of a drop suspended in an atmosphere at
98 percent relative humidity is 1.13 M. There does not appear to be any
quantitative data on the rate of 502 oxidation in aqueous solutions at such
high concentrations of MnSO4, but the data of Coughanowr and Krause suggest
a zero order rate dependence on MnSO4 concentration at high concentrations.

Kaplan and Himmelblau (1981) present results from a flow reactor study
in which aerosols, largely of deliquesced ammonium sulfate doped with smaller
amounts of manganese sulfate were passed through a laminar flow reactor with
a humidified atmosphere containing 502. The results are difficult to inter-
pret in terms of the rate of 502 oxidation both because of scatter in the
data and the complicating presence of ammonium sulfate.

One of the more widely cited contributions is that of Matteson, et al.
(1969), which has become the basis of more recent work (Wadden et al. (1974),
Cains and Carabine (1978)). However, the rate expression of Matteson et al.
does not predict the second-order dependence of the 502 oxidation rate on
[Mn2+] at low manganese concentration, contrary to claims of its authors.
(See Appendix.)

In addition, based on data obtained in this work, the Matteson et al.
expression substantailly underpredicts particle growth rates.

The work of Wadden et al. (1974) is included in Table I despite the

fact that it does not represent primary experimental data, because it gives
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a rate expression for oxidation of sulfur dioxide in manganese sulfate
solutions which was specifically chosen for aerosol systems of the type
considered in this work. This rate expression is based on the Matteson
et al. mechanism, but uses data from Coughanowr (1956). Wadden et al. do
not state how the rate coefficients were chosen, but the resulting expres-
sion is nearly identical to that of Cains and Carabine (1978), which, as
is stated below, is incorrect on theoretical grounds. As a result, con-
siderable doubt is thrown on the correctness of the rate expression of
Wadden, et al. Moreover, comparison of predictions based on this rate
law with data from the present work shows that the rate of Wadden, et al.
predicts much larger growth rates than are observed.

Cains and Carabine (1978) performed experiments in which a polydis-
perse submicron aerosol was passed through a tubular reactor together
with 502 and humidfied air, for residence times of up to twenty minutes.
Particle sizes were then measured by a light scattering technique. Due
to high particle concentrations (v 10° cm'3) coagulation also occurred,
precluding any more than a qualitative comparison of the datawith calcu-
lations based on a theoretical rate expression. Again, the rate expres-
sion used was based on the mechanism of Matteson et al., but the rate con-
stants were evaluated from other data. In fact, the data of Johnstone and
Coughanowr (1958), in which the rate of oxidation of SO2 showed a second
order dependence on manganese concentration, was used to evaluate one con-
stant, two were taken from Wadden et al., and the last was from Matteson
et al. The use of the results of Johnstone and Coughanowr depends on the

assertion of Matteson, et al. that the second order rate dependence is

predicted by their mechanism. Since this assertion is incorrect, it is
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unlikely that the expression of Cains and Carabine is correct. The expres-
sion, as was stated previously, is similar to that of Wadden, et al. and
hence can be expected to predict much more rapid growth than was observed
in the present work. Nevertheless, Cains and Carabine assert that calcu-
lations based on their rate expression are roughly in agreement with their
experimental observations of the growth rate. This seems unlikely since
the experimental growth rates obtained by them appear comparable to those
obtained here. The calculations carried out by Cains and Carabine may be
in error, as they state that the relative humidity of deliquescence of MnSO4
is 94.3 percent, whereas, the correct value, according to osmotic coeffi-
cient (Robinson and Stokes, 1965) and solubility data (International Critical
Tables, 1928) is near 84 percent.

Based on the foregoing discussion several conclusions on the rate of
oxidation of SO2 in aqueous solutions of MnSO4 may tentatively be drawn:

3 4

(1) For [M**] <1073 M, 107* M < [S(1V)] < 107> M, the rate dependence

on [Mn++] is second order.

(2) The presence of acid inhibits the reaction (Coughanowr and Krause
(1965), Matteson, et al. (1969), Martin (1982)). The dependence on
[H+] may be inverse as Martin has shown.

3

(3) For 107% M < [S(1V)] < 107> M, the rate is zero order in [S(IV)].

This corresponds to about 80-800 ppm 502 in the gas phase for an acid
solution, or 5-50 ppm over a solution of pH 3.

(4) For [S(IV)] 5_10’6 M, the rate is first order in both [S(IV)] and

++
1.

[Mn This corresponds to less than 1 ppm 502 in the gas phase

over an acid solution and 0.05 ppm oVer a solution of pH 3.
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3 M, the rate is probably zero order in [Mn++],

(5) For [Mn™*] > ~ 3x10°
based on extrapolation of data of Coughanowr and Krause (1965).

From these conclusions a reasonable rate expression for an aerosol sys-

tem containing in excess of 10 ppm 502 in the gas phase and [Mn2+] >N

3

3x10"° M might be

R = K/[H']

although at the Tower 502 concentrations there may be a weak dependence
on [502] as well. Using conclusion (5), we can estimate by means of

Martin's kinetic expression that

5 2 -1

3)2 M~ sec

K~ 4.7x(3x10°7 = 4.2x10°

This value can only be considered an order of magnitude estimate, however,
due to the uncertainties involved in pinpointing a concentration of MnSO4

at which the reaction becomes zero order in [MnSO4].
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AEROSOL GROWTH EXPERIMENTS

Experimental Procedure

Before beginning an experimental run 1000 ppm SO2 in air from a cyl-
inder was bubbled through the water to be used in the humidifier until its
802 concentration reached a level in equilibrium with the desired gas phase
concentration. The 502 concentration in solution was determined by oxidiz-
ing an aliquot with hydrogen peroxide and titrating the sulfuric acid with
0.01 N sodium hydroxide.

During the experiments at 97 percent relative humidity it was discov-
ered that the 502 concentration to the feed was diminished by absorption
in the humidifier, due apparently to reaction with the copper heat exchange
coils. Nevertheless, the 302 concentration remained constant through most
of the experiment. To control 502 concentration in subsequent runs, the
aerosol was humidified before being mixed with the SO>. This procedure
resulted in lower humidities, but better control over the 502 concentration.

Before introducing aerosol into the system the sulfur dioxide-air mix-
ture at the proper relative humidity was passed through the reactor for
approximately three hours. After this time the aerosol flow was initiated
by starting the atomizer syringe pump and the classifier was started, and
after allowing time for the flows to stabilize, the reactor valve was
opened and aerosol began flowing through the reactor. The system was
allowed approximately five hours to reach steady state. In all experiments
the mean reactor residence time was about an hour.

During this time measurements of the sulfur dioxide concentration were
made periodically by drawing reactor effluent through an absorber contain-

ing a dilute solution (approximately 10 percent) of hydrogen peroxide at
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a known flow rate for 20 minutes. The absorbing solution was then titra-
ted for sulfuric acid using 0.01 N sodium hydroxide and neutralized
bromthymol blue as an indicator, and the SO2 concentration was then deter-
mined from the known gas volume and sulfur content, making corrections

for the relative humidity of the gas.

Dewpoint measurements of the reactor effluent were made periodically
by opening a valve to the dewpoint meter. No filter was used in the line
to the meter since it was found that filters interfered with the dewpoint
measurement by absorbing water. Because of the absence of the filter, the
mirrored dew collecting surface of the meter was cleaned periodically by
wiping with acetone. These cleanings did not appear to affect the results.

Two hours before measurements were to be made, the optical particle
counter (OPC) was turned on to allow the sample chamber to reach a steady
temperature. This temperature was somewhat higher than the reactor tempera-
ture, and the resulting change in relative humidity had a strong influence
on measured particle sizes. Consequently, it was important for this temp-
erature to remain constant during measurements.

Approximately one-half hour before measurements were made the OPC was
connected to the reactor effluent stream to allow equilibration of the
instrument sheath air. During this time the measured particle sizes ap-
peared to increase as the relative humidity of the sheath air increased.
After 15 to 20 minutes, the size distribution appeared constant.

Several measurements were then made of the reactor effluent aerosol,
and simultaneous measurements of dewpoint and SO2 concentration were carried
out. Then the reactor bypass valve was opened and size measurements of

the feed aerosol were made together with a dewpoint measurement.
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It was not possible to measure directly the re]ative humidity within
the sample chamber of the particle counter, but a temperature measurement
was made by attaching a thermocouple junction to a brass fitting carrying
the sheath air to the sample chamber. These measurements gave a tempera-
ture of 26.7°C, or roughly three degrees higher than the reactor temperature.
Assuming no moisture is lost within the instrument, due to hygroscopicity
of filters, for example, this temperature change corresponds to a drop in
relative humidity of approximately 15 percent. Thus, the importance of
correcting for changes in relative humidity occurring in the optical par-
ticle counter is evident.

The conditions for each of the experiments are tabulated in Table II,

and actual averaged data are shown in Table III.

Data Inversion

The size distribution data for the experiments listed in Table II were
determined using the constrained inversion algorithm of Crump and Seinfeld
(1982). In carrying out this inversion it was found that the data from
the first channel did not agree with the previous calibration data obtained
using polystyrene latex spheres. The latter data indicated a peak response
of the first channel to particles near 0.2 um diameter, and although the
experimental feed and effluent aerosol peaked near this size, only negligible
response in the first channel was seen. This may have been due to a differ-
ence 1in refractive index of the manganese sulfate particles as compared to
polystyrene latex, or it may have been due a sensitivity of the first chan-
nel response to changes in laser power output of the instrument, which had
been noted during the course of calibration. To avoid interference by first

channel data, a large standard deviation was used in inverting these data.
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Table II. Summary of Experimental Conditions and Best Fit Rate
Constants for Aerosol Growth Experiments

Weighted RMS
Rate constant dev. of OPC

S0, conc. Residence k and Simulated
Experiment (%pm) RH(%)  Time (min) (M2 sec—]) Data
1 50 97 61 7.6x107° 0.228
2 22 97 59 5.1x107° 0.194
3 14 95 60 8.4x107° 0.248
4 38 95 58 1.21x107% 0.222
5 0 94 58 - -

6 92 91 58 -- --




Experiment 1

Res. time 61 min.
CSTR temp. 24.2°C
CSTR dewpt. 23.7°C
Feed dewpt. 23.8°C
502 conc. 50 ppm

Experiment 2

Res. time 59 min.
CSTR temp. 24.0°C
CSTR dewpt. 23.5°C
Feed dewpt. 23.5°C
SO2 conc. 22 ppm

Experiment 3

Res. time 60 min.
CSTR temp. 24.2°C
CSTR dewpt. 23.4°C
Feed dewpt. 23.5°C
SO2 conc. 14 ppm

Experiment 4

Res. time 58 min.
CSTR temp. 24.1°C
CSTR dewpt. 23.3°C
Feed dewpt. 23.3°C
802 conc. 38 ppm

Experiment 5

Res. time 58 min.
CSTR temp. 23.9°C
CSTR dewpt. 22.8°C
Feed dewpt.

302 conc. O ppm

Ch.

Ch.

Ch.

Ch.

Ch.

YOI WP YOl B W YO W= O O1 2 W

YO LW
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Table III. Experimental Data
CSTR(cm'S) o Feed (cm'3) o
9.86 0.64 20.3 0.7
17.5 5.3 24.9 2.9
61.6 5.3 24.3 2.4
5.3 0.34 4.3 0.16
2.9 0.1 3.1 0.2
0.75 0.06 0.65 0.08
9.05 0.62 14.9 1.0
177 3.4 230 4.9
76.9 3.1 62.5 4.3
6.0 0.24 6.3 0.16
3.1 0.1 3.9 0.21
0.66 0.05 0.68 0.08
10.2 0.44 14.5 1.1
172 4.6 216 5.0
65.1 3.9 61.0 6.0
4.9 0.41 6.0 0.29
2.9 0.11 3.3 0.22
0.65 0.13 0.55 0.06
4.38 0.26 7.9 0.27
125 2.51 178 2.25
98.2 2.27 89.9 1.74
7.7 0.33 7.5 0.13
3.4 0.06 4.1 0.11
0.76 0.04 0.91 0.06
7.02 0.28 10.1 0.26
171 2.3 205 1.6
93.9 2.0 94.7 0.9
7.2 0.23 7.4 0.17
3.8 0.1 4.2 0.13
0.91 0.05 0.93 0.06



Table III.

Experiment 6

Res. time 58 min.
CSTR temp. 24.0°C
CSTR dewpt. 22.4°C
Feed dewpt. 22.6°C
502 conc. 92 ppm

Ch.

Y O B W PO =
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Experimental Data (Continued
-3 -3
CSTR{cm ~) o Feed (cm ) o
5.48 0.71 7.9 0.43
136 7.5 167 4.0
65.8 6.8 60.9 3.6
5.0 0.5 4.42 0.16
2.0 0.22 2.32 0.15
0.24 0.04 0.26 0.04
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Discussion of Results

The inverted feed and CSTR effluent number distributions correspond-
ing to experiments 1-6 of Table II are shown in Figures 1-6, respectively.

The distributions of Figures 1-6 were measured at a relative humidity
which could not be directly determined, as has been previously stated.
However, temperature measurements on the sheath air inlet to the sample
cell indicate, and the assumption that filters in the instrument do not
affect the humidity lead to relative humidity estimates within the sample
cell of between 82 percent and 84 percent. Osmotic coefficient data for
manganese sulfate (Robinson and Stokes, 1965) along with solubility data
(International Critical Tables, 1928) indicate that the relative humidity
of deliquescence of manganese sulfate is between 83 percent and 84 percent
at room temperature. The electrical mobility classifier was operated so
as to produce dry particles of approximately 0.2 um diameter. Since the
measured feed and effluent distributions peak near this size, it was at
first assumed that the particles in the OPC sample chamber were dry. To
test this assumption a calculation was carried out.

Based on the assumption that relative humidity is 83 percent, corre-
sponding to dry feed particles, data from experiment one were used to

attempt to determine a constant k in the rate expression for 302 oxidation,
+
R = k/[H ]. (1)

To do this, the feed distribution, assumed to be composed of dry particles,
was converted to 97 percent RH, and this feed distribution was used in
the steady state general dynamic equation for the aerosol size distribution

in the CSTR to predict effluent size distributions. The latter were then
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reduced to 83 percent RH using the second algorithm discussed in the pre-

vious chapter. The resulting distribution for k = 107 M2 s

ec”! is given
in Figure 7 together with the measured inverted effluent distribution.

The rate used in this simulation corresponds to a manganese sulfate con-
centration of approximately 1.5x10'4 M according to the result of Martin,
and this value is well within the range of experimental values used by
Martin. However, the MnSO4 concentration of experiment one was close to
1.5 M, or some 104 times larger than concentration which gives the same
rate in Martin's kinetic expression. This observation throws doubt on the
validity of the rate used in this simulation, especially when one considers
that when the relative humidity is assumed to be 84 percent, a value of k

5 1 s obtained. This rate corresponds to a con-

of close to 8x107° M2 sec
centration of 4.2x10—3 M in Martin's expression, which is well above the
range of concentrations he studied. This latter result suggests that the
particles observed are actually wet. In order to investigate this further,
measurements of dry aerosol were made under the same conditions as those
used in experiments 1-6. The Royco Optical Particle Counter and an Environ-
ment One Condensation Nuclei Counter were used to analyze the particies.

The optical particle counter indicated a smaller size than when the
aerosol was humidified, most of the particles falling in channel 1 of the
instrument. The total number concentration indicated by the optical par-
ticle counter was approximately 100 cm'3, and the condensation nuclei
counter gave a reading between 80 and 100 cm'3.

This result tends to confirm the assumption that the humidified par-

ticles are wet during measurement in the OPC. The explanation of the
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extremely small rate constant obtained under the assumption of a dry aero-
sol can be seen from Fig. 8, which shows a plot of the logarithm of the
factor by which particles shrink when the relative humidity is changed
from 97 percent to either 83 percent or 84 percent as a function of the
Togarithm of the ratio of particle diameter to feed particle diameter to
the CSTR. The two curves are extremely similar except at the smallest
sizes, corresponding to the smallest acid concentrations. In this region
the 83 percent curve rises rapidly with decreasing particle size because
even minute amounts of acid are enough to prevent the particles from com-
pletely drying out. This phenomenon is further illustrated in Figure 9,
which shows a lognormal distribution at both 83 percent and 84 percent
relative humidity together with the output of the CSTR corresponding to
the same feed distributions at 97 percent RH, one hour residence time,

50 ppm SOo, and a rate of

1

R = 107%/[HT] M sec” (2)

Note the similarity of the two output distributions at 83 percent and
84 percent RH contrasted with the large difference between the input
distributions at the two relative humidities.

From the foregoing discussion it can be concluded that the aerosol
observed in the OPC was wet. Its relative humidity was probably in the
range 82-84 percent. There is a possibility that supersaturation occurred,
but it could not have occurred to a great degree given the above range of
relative humidities possible and it appears that, provided the aerosol
is not dry, small identical changes in the relative humidity of both feed

and output should have a negligible effect on growth rate estimates.
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Consequently, in estimating reaction rates from the data, it was as-
sumed that the aerosol in the OPC sample chamber had a relative humidity
of 84 percent. The procedure used was then to convert the input distri-
butions from 84 percent to the appropriate relative humidity for the
experiment being modelled,and calculated output distributions for condi-
tions of the experiment using the rate expression (1) for several values
of the parameter k. These distributions were then reduced to 84 percent RH,
and simulated values of the counts of channels 2, 3, and 4 of the OPC were
computed using the kernel functions obtained by calibration. Finally, the
value of k was chosen by a weighted least squares fit of the simulated OPC
data to the measured data, where the weights were chosen to be proportional
to the vaiues of the measured data. This fitting was done for experiments
1-4. Experiment 5 exhibited negligible growth, since no 502 was present,
and the growth in experiment 6 was very small due to the low relative
humidity, so the results of these two experiments were not used in the evalu-
ation of the rate constant. The results of the rate coefficient determina-

-5 42 s -1

tion are shown in Table II. The mean value of k is 8.3x10 * M~ sec  with

a standard deviation of 2.5x10'5 M2 sec']. There does not appear to be any
dependence of k on the 502 concentration, although scatter in the data,
precludes making any stronger assertions. Figures 10-14 show simulated
distributions corresponding to feed data of experiments 1-4, and 6, respec-
tively using the mean value of k given above. Note that the location at
the peak in the distribution is fairly accurately given by these distribu-

tions. In contrast, Figures 15 and 16 show distributions resulting from

other kinetic expressions. Figure 15 shows the result of using the
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expression of Wadden et al. (1974) on the data of experiment 1. Note

that the peak is much larger than either the experimental value, also shown,
or the simulated value of Figure 10. Figure 16 shows the result of a simi-
lar calculation using the expression of Matteson et al. The input in this
example is a lognormal distribution at 97 percent RH and an 502 concentra-
tion of 50 ppm. Note that practically no growth occurs. This is because

at 50 ppm 302 the Matteson expression predicts a maximum H2504 concentration
of 0.062 M, corresponding to a diameter increase of about two percent in
Figure 17.

One important feature predicted by the rate expression of Equation (1)
is the dependence of growth on relative humidity. Since higher relative
humidities lead to more dilute particies and hence lower [H+} predicts
more rapid growth at higher humidities. This is, in fact, observed in
these experiments, as can be seen from Figures 1-6.

The range of concentrations for which the rate expression (1) holds
is difficult to assess based on these experiments. Based on the assertion
of Coughanowr and Krause (1965) that the manganese dependence of the rate
is very weak above a concentration of approximately 3x10'3 M, a conserva-
tive estimate for validity of (1) might be at concentrations of manganese
sulfate greater than 10'2 M. The range of gaseous SO2 concentrations over
which (1) holds is probably for 502 greater than 10 ppm as concluded

previously.
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CONCLUSIONS

Experiments in a continuous stirred tank reactor to measure growth
rates of aqueous aerosols containing manganese sulfate in a humid atmo-
sphere containing sulfur dioxide have been described. The results are con-
sistent with the rate expression for oxidation of SO2 in solutions of man-

ganese sulfate

R = (8.3 = 2.5)x10"°/[H'] M sec”!

This expression is estimated to hold for 0.01 5_[Mn++] and 10 ppm 5_[502].

Because of the small amount of growth relative to the resolution of
the optical particle counter used in measuring particle size distributions,
these results must be considered somewhat tentative. In addition, the
necessity to transform the size distribution due to differences in relative
humidity in the measuring instrument and the reaction vessel introduces yet
another element of uncertainty into the analysis.

In spite of these difficulties, however, the results were reasonably

consistent and encourage further investigation.
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APPENDIX
The mechanism of Matteson, et al. for the manganese catalyzed liquid

phase oxijdation of 502 is given in the following reaction sequence:

K
1
S0, + Mt = Mn-so;+ (A1)
ko
2Mn-50Ft + 0 3 [(Mn $0%%)..0.] (A2)
n=sts 2 3= LUIN SUs Joels
<
2 2Mneso5’ (A3)
kg
k
MneSO3" + H0 2 Mn™F 4 HsO, + HY (A4)
K
7

The following variables are defined:

_ ++

BO = [Mn ]O

R = [502]

J = [Hs0p] = [H*]

D = [Mn-SOZ+]

E = 2[(Mn-SO++) «0,] (Matteson, et al. incorrectly give l{(Mn-SO++) *0,])
2 12°Y2 ’ . y give s 2 12"V

Fo= [(Mn-503)++]

X =D+E+F

B =[Mn'F] = B, - X

Using the above reaction sequence and the steady state approximation for

the complexes gives the equations:

_dbD _ 2 2

0= a k]R(BO-X) - k2D - 2k3[02]D + 2k4E (A5)
_dE _ 2 2 2 el

0= T 2k3[02]D - 2k4E - 2k5E + 2k5F (A6)
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E

2 2 2

0 = g = 2kgE™ - k[H,0F - 2kiF + 2k, (B -X)J (A7)
Adding Equations (A5), (A6), and (A7) gives
0 =3 - | R(B -X) - k,D - K. [H,0IF + 2k (B_-X)J? (R8)
T~ 1"\ 2 6-"2 7*%0

We make the further assumptions, following Matteson, et al. that the

ratios D/X, E/X, and F/X are constant and write

kgLH,0TF = k(X (R9)

k2D = kéX (A10)

Introducing these into Equation (A8) yields:

2

0= k1R(BO-X) - kéX - kéX + 2k7(BO-X)J (A11)
By stoichiometry, at constant total sulfur we have

R = RO -X-4d (A12)
Substitution of this into (All) gives

0= k1(RO-X—J)(BO-X) - kéx - kéX + 2k7(BO—X)J2 (A13)

Finally, we consider the initial stages at reaction where J ~ 0, and have

the equation

0= k1(Ro-X)(Bo - X) - k2X - k6X (A14)

Solving for X, ignoring the X2 term gives
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kiR B R B
X = R KT " R | (A15)
1o 170 "2 76 0 0 'S

where kS = (ké + ké)/k]. The loss rate of 502 is given by

= - k(R -X)(B-X) + kX
2 :
_ q(BgrkgB)(RX) KRBy 6)
R VB 7Kg R VB Tk

If we assume that BO<<RO, and that RO is large enough so that ks<<Ro’
Equation (A16) assumes the form

2

= = - k1Bo - (ks + k')BO + kB

2 6 270

= _ r.p? ! A17
kiBg = kB, (A17)

Then, empirically ké << k], so provided BO is not too small, we have

a =~ 1% (A18)

This is the derivation of Matteson, et al. and based on this, Cains
and Carabine determined k1 by fitting (A18) to data of Johnstone and
Coughanowr. However, when the assumption that BO<<R0 is made, the solution
of Equation (A14) is no longer valid, for the X2 term is not small rela-
tive to the other terms. This can be seen by solving (A14) exactly, and

noting that the solution is

2
. - RO+BO+kS -\/(R0+Bo+ks) -4ROBO
2

(A19)
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Ignoring kS relative to R0 gives

CRgtB, (R#B) 4R B,
X = - 1-—290
(

? ? ?
RO+BO)
R +B R +B ( 2R B )
- -9 0y 0°0
? ? 2
(RO+BO)
ROBO
v " B, (A21)
0 8]

Hence X = Bo’ so the X2 term is of the same magnitude as the BOX term, so

cannot be ignored. Now, using (A14), and the Tloss rate expression for

502
AR _ k(R =X)(B -X) + kX (A22)
dt 1Yo 0 2
we see that
dR _ ty i
i k6X = . k6Bo (A23)

This expression also follows directly from the solution of Equation (A11l)
by ignoring the J2 term. This then gives

RB

_ 0
X = RH (A24)

and



dr

And if kS <<

dR

dt
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- k]R(BO—X) + kéX

klksRBo . k2RBO
R+kS R+kS

‘kGRBo

R+kS

R, we have

- k6Bo

(A25)

(A26)

Hence, no second-order dependence follows from the mechanism of Matteson,

et al. and because of this fact, one must doubt the validity of the kinetic

expression, and certainly the rederivation of rate coefficients by Cara-

bine and Cains.
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CHAPTER 12

RECOMMENDATIONS FOR FUTURE RESEARCH
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RECOMMENDATIONS FOR FUTURE RESEARCH

The results obtained from the aerosol growth studies offer encourage-
ment for the use of the CSTR in studying aerosol dynamics. It still
appears that the best chemical kinetic data can be obtained by bulk stud-
ies, but the CSTR provides a useful technique by which these data can be
evaluated in aerosol systems.

There are two principal difficulties in carrying out aerosol experi-
ments, however; one is the control of temperature and relative humidity.
The reaction vessel used in these experiments is insulated, and an attempt
was made to control the temperature by placing heat exchange coils in the
enclosure housing the vessel. This was successful in minimizing tempera-
ture variations during the very long experiments. Temperature variations
seldom exceeded 0.2°C during a run. However, humidities above 97 percent
are difficult to produce. Such humidities would have increased the rate
of growth enabling more accurate measurement of the growth rate.

The second difficulty is in size distribution measurement. Although
several techniques for size measurement are available, most are not suit-
able for aerosols which are sensitive to changes in relative humidity. The
optical particle counter appeared to be the best suited, although it, too,
was not entirely satisfactory, due to changes in relative humidity caused
by its operating temperature. Although this problem can be corrected in
principle, as was done in this work, it would be preferable to make direct
measurements of the size distribution. This suggests the development of

in situ optical measurement techniques. Although such techniques generally

have Targer lower size limits and poorer resolution, it seems that this
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might be compensated by use of more sophisticated data inversion algorithms,
such as those described in this work, together with larger data sets.

With regard to experimental systems worth investigating, an interest-
ing one might be the manganese-iron (III) catalyzed oxidation of SO,, since
this is known to exhibit synergism (Martin, 1982) with higher rates of
oxidation than either manganese or jron data alone account for. Hence,
even with the optical particle counter available now, better resolution
could be expected as a result of larger growth. Such a system is naturally
more complicated, but should be amenable to the same kind of thermodynamic

analysis employed here.
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APPENDIX

MANUAL FOR AEROSOL SIZE DISTRIBUTION
DATA INVERSION PROGRAMS INVERSE AND CINVERSE
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INTRODUCTION

The programs INVERSE and CINVERSE are designed to implement the size
distribution data inversion algorithms presented by Crump and Seinfeld (1982a,
1982b) on an interactive computer system. In this manual we discuss the
structure of the programs to familjarize the user with their features. The
use of the programs will be illustrated by some sample calculations.
DESCRIPTION OF ALGORITHMS

Both INVERSE and CINVERSE are based on regularization algorithms (Tik-
honov and Arsenin, 1977). The general data inversion problem has the follow-

ing equivalent forms (Crump and Seinfeld, 1982a)

where the Ai are linear functionals determined by instrument calibration, f
is the unknown size distribution, and the y; are measured data. The kernel
functions ki are determined by the functionals Ai' The above system of
equations comprises an ill-posed mathematical problem, and consequently
special methods are needed to solve it. INVERSE utilizes the regularization
algorithm discussed by Crump and Seinfeld (1982a) to find the distribution f
minimizing

1 &

= 2 (A F-y. )2/52 + AIfI2 (2)

n & i

n—l

where the o; are measured standard deviations in the data, and Il is a

seminorm of the form
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hfnz = .fﬂf'(x)zdx or |ifli? = “flf”(x)zdx (3)
0 0
The positive parameter A, called the smoothing or regularization parameter,
is chosen by minimizing the cross-validation function V(1) (Crump and Sein-
feld, 1982a).

CINVERSE uses the same minimization functional of (2), but with the addi-
tional constraint on the distribution f that it be positive. Because of the
constraint, the algorithm used is different, and the value of the regulariza-
tion parameter ) must be chosen in a different way. CINVERSE uses the method

of the discrepancy (Tikhonov and Arsenin, 1977) by which A is chosen so that
n 1/2
1 —v.)2/q2 - 4
[n 12:?1(/\1.1“ vs) /01} 1 (4)

The values of 0? used in CINVERSE are defined to include errors in calibra-
tion data, and the Tatter are assumed accurate to within 10 percent. Thus

o? is given as

0? = 0%2 + 0.01y§ (5)

where c% is the actual measurement standard deviation and the second term
accounts for calibration error.

Both INVERSE and CINVERSE allow the regularization parameter to be cho-
sen arbitrarily if desired, and if standard deviations are not known, all
data are weighted equally (Gi =1 for all i).

LIMITATIONS
Because they are ill-posed, aerosol size distribution data inversion

problems suffer from inherent limitations of the accuracy within which
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solutions can be determined. Contrary to frequently expressed opinion, more
powerful algorithms cannot overcome this difficulty. Consequently, some
problems may be difficult to solve regardless of the algorithm.

Having made this caveat, we mention several sources of error which can
interfere with the solution of ill-posed problems. Quadrature errors are im-
portant if aerosol size distributions show very sharp peaks. INVERSE and
CINVERSE use Simpson's rule on a grid of up to 100 and 50 points, respectively.
This is adequate in most cases, but can occasionally be a significant source
of error. Calibration error is 1ikely to be the most important source of
error. Aerosol sizing instruments are difficult to calibrate accurately, and
influences of particle shape, surface irregularities, etc. are almost always
neglected. Conseguently, calibration accuracy probably seldom exceeds 10 per-
cent. Finally, the data themselves are imperfect, and this reduces somewhat
the degree to which the solution can be determined.

PROGRAM INPUTS

The main inputs required by INVERSE and CINVERSE are calibration data

for size measuring instruments. Data for the Low Pressure Impactor (Hering,
et al., 1979) and the Electrical Aerosol Analyzer (Kapadia, 1980) are sup-
plied in the form of subroutines CAL1 and CAL2. Dummy subroutines CAL3,
CAL4, and CAL5 are provided and referenced in the main program. These are
intended to be replaced by procedures to calculate the values of the kernel
functions at discrete points of a size range selected by the user when the
program is run.

To illustrate the use of these subroutines we consider a hypothetical
six-channel optical particle counter. We suppose that measurements of instru-

ment response have been made for 25 particle diameters. The diameters at



196

which the measurements have been made will be stored as the vector DIAM,
and the responses in the six channels will be stored as the 6X25 array OPC.
We will incorporate these data into the subroutine CAL3. The first three
statements of the subroutine will be

SUBROUTINE CAL3(NS,L,FK,D1,D2)

DOUBLE PRECISION FK,D1,D2

DIMENSION FK(25,100),DIAM(25),0PC(6,25)
In CINVERSE the dimensions for the array FK should be 50 X 50 jnstead of
25 X 100. The subroutine CAL3 1is to evaluate the kernel functions ki at L
equally logarithmically spaced diameters, beginning at D1 and ending at D2.
The value of the ith kernel function at the jth diameter is to be assigned
the name FK(NS+I,J). Finally, the value of NS is to be incremented by 6,

the number of channels of the instrument. Therefore, following the above

statements we have

DATA DIAM/ it i e e et /
DATA OPC/ teii i i i it e ittt cee i /
DO 40 J=1,L

X=(J-1.)/(L-1.)
D=D2%*X/D1**(X-1.)
DO 40 I=1,6
IF(D.LT.DIAM(1)) GO TO 10
GO TO 20

10 Z=0PC(I,1)
GO TO 40

20 CONTINUE
IF(D.GT.DIAM(25)) GO TO 30
GO TO 35

30 Z=0PC(I,25)

35 CALL INTPLT(D,OPC,DIA,Z,I)

40 FK (I+NS,J)=Z
NS=NS+6
RETURN
END
SUBROUTINE INTPLT(D,OPC,DIA,Z,I)
DIMENSION OPC(6,25),DIA(25)
DO 20 K=1,50
IF(D-DIAM(K))10,20,20

10 KP=K-1

20 CONTINUE
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30 Z=0PC(1,KP)+(ALOG(D/DIAM(KP)))*(0PC(I,KP+1)-0PC(I,KP))/
C ALOG(DIAM(KP+1)/DIAM(KP))
RETURN
END

The DATA statements could, of course, be replaced by statements to read
the data from a file. The subroutine INTPLT is a linear interpolation
procedure.

In addition to the above, some minor changes in the main program are
necessary. The DATA statement following the DIMENSION statement at the begin-
ning of the program must be changed to include the number of channels in the
new instrument. In this case it would now read

DATA ND/9,8,6,0,0,0,0,0,0,0/
Also the FORMAT statement 10 should be augmented to include the new instru-
ment name.

Other inputs required include the number of intervals for quadrature,

upper and lower diameter limits, and several convergence criteria, all of

which are entered during execution following prompts.

USER INSTRUCTIONS FOR RUNNING PROGRAMS AND PROGRAM DESCRIPTIONS
INVERSE

Table I lists the important variables in this program, and Table II
summarizes the subroutines used.

To illustrate the use of the program we go through an example. We
suppose we have low pressure impactor data for the 8 stages of the impactor.
The following is what would be seen on a terminal during execution of the
program INVERSE. Lines marked # indicate user responses to prompts, and

an asterisk indicates a comment.
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TABLE 1
Variable Name Type Meaning
APHI 25x25 DBLE Gram matrix
PREC ARRAY
APHIS 25x25 DBLE APHIS(I,J)=APHI(I,J)/SIGMA(I)/SIGM(J)
PREC ARRY
D1 DBLE PREC Lower diameter 1imit in microns
D2 DBLE PREC Upper diameter 1imit in microns
E 25x1 DBLE Eigenvalues of Gram matrix
PREC ARRAY
F 25x1 DBLE Solution distribution
PREC ARRAY
FK 25x100 DBLE Kernel functions at equally logarithmically
PREC ARRAY spaced points from D1 to D2
FKS 25x100 DBLE Normalized kernel functions
PREC ARRAY FKS(I,d)=FK(1,J)/SIGMA(I)
L INTEGER Number of points at which kernel functions
are evaluated L = 2*M+1
M INTEGER Number of interval for quadrature of
representing functions
M1 INTEGER Number of points at which representing
functions are evaluated M]=M+]
NDP INTEGER Number of data values
PHI 25x50 DBLE Representing functions at equally logarith-
PREC ARRAY mically spaced points from D1 to D2
SIGMA 25x1 DBLE Standard deviations of data
PREC ARRAY
U 25x25 DBLE Rows of U are eigenvectors of
PREC ARRAY Gram matrix
v 25x1 DBLE V(1) = Stk (t)dt
PREC ARRAY 1
VS 25x1 DBLE Normalized V
PREC ARRAY VS(1)=V(I)/SIGMA(I)
Y 25x1 DBLE Data
PREC ARRAY
YS 25x1 DBLE Normalized data
PREC ARRAY YS(I)=Y(I)/SIGMA(I)
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$RUN INVERSE

THE FOLLOWING INSTRUMENTS MAY BE USED FOR DATA INVERSION
ENTER DESIRED NUMBERS

1 EAA

2 LPI

ENTER NUMBER OF INSTRUMENT

2

ENTER NUMBER OF INSTRUMENT

Note that nothing was entered here, since only the LPI is
being used. A carriage return was executed, the blank being
interpreted as a 0.

ENTER NUMBER OF INTERVALS FOR QUADRATURE

(MUST BE EVEN AND LESS THAN 50)

40

ENTER LOWER DIAMETER IN MICRONS IN F FORMAT

0.5

ENTER UPPER DIAMETER IN MICRONS IN F FORMAT

5.0

THIS SUBROUTINE CALCULATES KERNEL FUNCTIONS

FOR THE LOW PRESSURE IMPACTOR

ENTER PARTICLE DENSITY IN G/CC

1.0

ENTER 1 TO INVERT IN FIRST ORDER SOBOLEV SPACE

ENTER 2 TO INVERT IN SECOND ORDER SPACE

2

The choice of Sobolev space is discussed by Crump and
Seinfeld (1982b). The results are generally not very different
in the two spaces.

ENTER T IF YOU INTEND TO ENTER RELATIVE
STANDARD DEVIATIONS OF DATA; OTHERWISE HIT RETURN

If no standard deviations are entered, as is the case here,
they are all set equal to 1. In either case, the data and
kernel functions are all normalized by dividing by the
standard deviations.

ENTER ERROR TOLERANCE FOR DIAGONALIZATION

OF GRAM MATRIX IN D FORMAT

0.1D-16

The prompt is requesting a convergence criterion for the
matrix diagonalization, done by a subroutine called SPECTR.
Generally 10-17 s a good choice, but occasionally it causes
underflow, in which case a larger value is needed.

THE EIGENVALUES OF THE GRAM MATRIX
E(1)=0.3774946382269633D-06
E(2)=0.1021145290821161D-01
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E(3)=0.2257521983729988D-04
E(4)=0.8265088024713232D-06
E(5)=0.2341875256301490D-03
E(6)=0.4259721967781903D-05
E(7)=0.1046034223045154D-06
E(8)=0.2371007196315154D-08

IF YOU WISH TO ALTER AN EIGENVALUE, ENTER
CORRESPONDING NUMBER: OTHERWISE HIT RETURN

The purpose of the Tast message is to prevent problems later,
since occasionally one of the smallest eigenvalues is nega-
tive. This is due to rounding error, and in such a case

the negative value should be replaced by a small positive
number. This has practically no effect on the data inversion,
since the highest frequencies, corresponding to the smallest
eigenvalues, are excluded from the solution.

ENTER DATUM Y(1)
0.026D00

ENTER DATUM Y(2)
0.506D00

ENTER DATUM Y(3)
0.3D01

ENTER DATUM Y(4)
0.606D01

ENTER DATUM Y(5)
0.685D01

ENTER DATUM Y(6)
0.391D01

ENTER DATUM Y(7)
0.104D01

ENTER DATUM Y(8)
0.216D00

The data here are simulated from a lognormal distribution.
They are, therefore, extremely accurate, havingonly quad-
rature errors.

IF YOU WISH TO SPECIFY CROSS VALIDATION PARAMETER

ENTER O; OTHERWISE ENTER 1.

1

We can either let the cross-validation algorithm choose the
regularization parameter, or we can choose it arbitrarily. In
this case we allow the algorithm to choose it.

ENTER TOLERANCE FOR SMOOTHING PARAMETER IN D FORMAT
0.1D-07

This is a tolerance for accuracy of determination of the
smoothing parameter. The appropriate value depends on the
magnitude of the parameter, and hence on the problem being
solved.
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ENTER VALUE OF STEP SIZE IN D FORMAT

# 0.1D-01

* This parameter gives the initial step size for the search
routine used to find the minimum in the cross-validation
function

X=0.0000000D+00  V(X)=0.1705829D-02

INPUT DATA CALCULATED DATA
0.260D-01 0.260D-01
0.506D+00 0.506D+00
0.300D+01 0.300D+01
0.606D+01 0.606D+01
0.685D+01 0.685D+01
0.391D+01 0.391D+01
0.104b+01 0.104D401
0.216D+00 0.216D+00

TO ENTER NEW DATA FOR INVERSION USING SAME
STANDARD DEVIATIONS HIT RETURN;
TO ENTER NEW STANDARD DEVIATIONS AS WELL, ENTER 1;
TO TERMINATE ENTER 2

# 2
FORTRAN STOP
$

The output shown here is, first, the value of the cross-validation
parameter, which in this case is 0. Also given is the minimum value of the
cross-validation function V. In addition, the input data are reproduced
along with corresponding data calculated from the recovered distribution.
The program then prompts the user for more data, either using the same
standard deviations, or with new ones, as the user wishes. Otherwise the
run terminates.

The final size distribution in this case has been written into a file,
and is reproduced in Table III. The values of the distribution are values
of dM/d]ogdp, where M is mass, and dp is particle diameter in microns. Note
that the first value of the distribution is negative, although negligibly so.
This frequently occurs near the ends of distributions, and is more severe

in the case of a sharply peaked distribution. Figure 1 shows a plot of the
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TABLE III

SIZE DIST. DIAM(MICRONS) -
0.211D-01 0.050
0.195D+00 0.056
0.417D+00 0.063
0.659D+00 0.071
0.951D+00 0.079
0.134D+01 0.089
0.189D+01 0.100
0.267D+01 0.112
0.377D+01 0.126
0.524D+01 0.141
0.712D+01 0.158
0.9390+01 0.177
0.120D+02 0.199
0.148D+02 0.223
0.177D+02 0.251
0.206D+02 0.281
0.232D+02 0.315
0.254D+02 0.354
0.271D+02 0.397
0.281D+02 0.446
0.285D+02 0.500
0.281D+02 0.561
0.271D+02 0.629
0.254D+02 0.706
0.232D+02 0.792
0.206D+02 0.889
0.177D+02 0.998
0.148D+02 1.119
0.120D+02 1.256
0.938D+01 1.409
0.714D+01 1.581
0.528D+01 1.774
0.3820+01 1.991
0.271D+01 2.233
0.190D+01 2.506
0.132D+01 2.812
0.909D+00 3.155
0.613D+00 3.540
0.386D+00 3.972
0.192D+00 4.456
0.806D-02 5.00
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output distribution along with the histogram obtained by assuming ideal size

cuts at the 50 percent cutoff particle diameter for each state.

CINVERSE
This program is structured in a similar way to INVERSE. Table IV 1ists
the main variables and Table V gives the subroutines used in this program.
The use of the program is illustrated by means of an example. Here
we use some actual data for ambient sulfur obtained with the Low Pressure
Impactor. We assume the data are accurate within 10 percent.

$RUN CINVERSE
THE FOLLOWING INSTRUMENTS MAY BE USED FOR DATA INVERSION
ENTER DESIRED NUMBERS
1 EAA
2 LIP
ENTER NUMBER OF INSTRUMENT
# 2
ENTER NUMBER OF INSTRUMENT

ENTER NUMBER OF INTERVALS FOR QUADRATURE
(MUST BE EVEN AND LESS THAN 50)
# 40
ENTER LOWER DIAMETER IN MICRONS IN F FORMAT
# 0.05
ENTER UPPER DIAMETER IN MICRONS IN F FORMAT
# 5.0
THIS SUBROUTINE CALCULATES KERNEL FUNCTIONS
FOR THE LOW PRESSURE IMPACTOR
ENTER PARTICLE DENSITY IN G/CC
# 1.0

* In this case the actual density of the aerosol is unknown.
However, for the impactor, the calibration is in terms of the
aerodynamic diameter, and a conversion is done to Stokes
diameter. Since these two are the same for unit density,
the effect of entering unity for the density is to give the
output distribution in terms of aerodynamic rather than
Stokes diameter.

ENTER 1 to INVERT IN FIRST ORDER SOBOLEV SPACE
ENTER 2 to INVERT IN SECOND ORDER SPACE

# 2
ENTER 1 IF YOU INTEND TO ENTER STANDARD
DEVIATIONS OF DATA; OTHERWISE HIT RETURN.

# 1
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TABLE 1V
Variable name Type . Meaning
D 50x50 DBLE Difference operator approximation to
PREC ARRAY first or second order differential
operator
OP 50x50 DBLE Weighted product of difference operator
PREC ARRAY with itself. DP(I,J)= & D(K,I)*V(K)*D(K,J)
D1 DBLE PREC Lower diameter limit ih microns
D2 DBLE PREC Upper diameter 1imit in microns
F 50x1 DBLE Solution distribution
PREC ARRAY
FK 50x50 DBLE Kernel functions at equally spaced
PREC ARRAY logarithmic intervals from D1 to D2.
Also weighted version of same, with
w?i§hts of vector V. FK(I,J) = FK(I,J)*
V(J
FKS 50x50 DBLE Normalized weighted kernel functions
PREC ARRAY FKS(I,Jd)=FK(1,J)/S(1)
FM 50x50 DBLE FM(I,Jd)= Z FKS(K,I)*FKS(K,J)
PREC ARRAY K
M INTEGER Number of intervals for quadrature
M1 INTEGER Number of points at which kernel func-
tions are evaluated. Ml=M+]
NDP INTEGER Number of data values N
S 50x1 DBLE S(I)=(SIGMA(I)**2+0.01*Y(I)**2)?
PREC ARRAY
SIGMA 50x1 DBLE Standard deviations of data
PREC ARRAY
) 50x1 DBLE Weights for quadrature by Simpson's
PREC ARRAY rule
Y 50x1 DBLE Data
PREC ARRAY
YS 50x1 DBLE Normalized data.
PREC ARRAY YS(1)=Y(1)/S(1)
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ENTER SIGMA(1)
1.D00

ENTER SIGMA(2)
1.D00

ENTER SIGMA(3)
1.7D00

ENTER SIGMA(4)
6.3D

ENTER SIGMA(5)
1.2D01

ENTER SIGMA(6)
1.0D01

ENTER SIGMA(7)
4.4D00

ENTER SIGMA(8)
1.7D00

ENTER DATUM Y(1
0.0D00

ENTER DATUM Y(2
1.1D01

ENTER DATUM Y(3
1.7D01

ENTER DATUM Y(4
6.3D01

ENTER DATUM Y(5)

1.21D02

ENTER DATUM Y(6)

1.01D02

ENTER DATUM Y(7)

4.4D01

ENTER DATUM Y(8)

1.7D01

ENTER SMOOTHING PARAMETER IN D FORMAT

0.1D-03

COMPLEMENTARY SOLUTION

ITERATION No. 48

XL0=0.1000000D-03 Y0=0.21197590D+01

TO CONTINUE FINDING SMOOTHING PARAMETER HIT RETURN;
OTHERWISE ENTER 1

)
)
)
)

ENTER SMOOTHING PARAMETER IN D FORMAT

0.1D-04

COMPLEMENTARY SOLUTION

ITERATION No. 60

XL0=0.1000000D-04  Y0=0.2040625D+01

TO CONTINUE FINDING SMOOTHING PARAMETER HIT RETURN;
OTHERWISE ENTER 1

THE NEW VALUE OF THE SMOOTHING PARAMETER IS
0.1669745D-30

IF THIS IS SATISFACTORY, HIT RETURN; OTHERWISE TO
ENTER ANOTHER VALUE HIT 1.
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1

ENTER VALUE OF SMOOTHING PARAMETER IN D FORMAT
0.1D-07

COMPLEMENTARY SOLUTION

ITERATION NO. 41

XLO=0.1000000D-07  Y0=-0.508077D+00

TO CONTINUE FINDING SMOOTHING PARAMETER HIT RETURN;
OTHERWISE ENTER 1.

THE NEW VALUE OF THE SMOOTHING PARAMETER IS
0.1608610D-07

IF THIS IS SATISFACTORY, HIT RETURN; OTHERWISE TO
ENTER ANOTHER VALUE HIT 1.

COMPLEMENTARY SOLUTION

ITERATION No. 41

XL0=0.1608610D-07 Y0=0.1800260D-01

TO CONTINUE FINDING SMOOTHING PARAMETER HIT RETURN;
OTHERWISE ENTER 1.

THE NEW VALUE OF THE SMOOTHING PARAMETER IS
0.1529093D-07

IF THIS IS SATISFACTORY HIT RETURN; OTHERWISE
TO ENTER ANOTHER VALUE HIT 1.

COMPLEMENTARY SOLUTION

ITERATION No. 41

XL0=0.1529093D-07 Y0=0.1760074D-02

TO CONTINUE FINDING SMOOTHING PARAMETER HIT RETURN;
OTHERWISE ENTER 1.

1

INPUT DATA CALCULATED DATA
0.000D+00 0.109D+01
0.110D+02 0.993D+01
0.170D+02 0.195D+02
0.630D+02 0.530D+02
0.121D+03 0.905D+02
0.101D+03 0.919D+02
0.440D+02 0.473D+02
0.170D+02 0.171D+02

TO ENTER NEW DATA FOR INVERSION USING SAME
STANDARD DEVIATIONS HIT RETURN;
TO ENTER NEW STANDARD DEVIATIONS AS WELL, ENTER 1;
TO TERMINATE ENTER 2

2

FORTRAN STOP
$
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After the last data value has been entered control transfers to the
subroutine LEMKE, which contains a quadratic programming routine (Ravindran,
1972) as well as a user-interactive iterative routine for choosing the
smoothing parameter so as to satisfy Equation (4). In this case the initial
guess was chosen to be 0.1 X 10'3. LEMKE then indicates a solution has been
found after 48 iterations. It then repeats the value of the smoothing param-
eter used in find the solution, as XLO, along with the value of YO, which is
the difference between the left and right sides of Equation (4). The value
of YO, therefore, is 0 when the smoothing parameter is chosen correctly.

In this case it is not, so we proceed by entering another guess. Since the
difference YO was positive, we need to use a smaller value of the smoothing

parameter, so 0.1 X 10'4

is entered. This gives a value of YO which is only
slightly smaller than the previous one, so we suspect that a much smaller
value of the parameter is needed. After a carriage return LEMKE gives us a
corrected guess for the smoothing parameter, found by a secant method from
the previous two values. Because our first two guesses were poor, the cor-
rected value is very small, so we choose to attempt a better guess and enter

0.1 x 1077,

This gives a negative value of Y0, but it is close to 0, so we
now simply hit carriage returns until the value of YO becomes negligible.

As in INVERSE the final solution is used to compute values of the data,
and these are displayed together with the actual data. The resulting output
is shown in Table VI. Figure 2 shows a plot of this distribution together

with the histogram from the 50 percent stage cutoffs.
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TABLE VI

SIZE DIST DIAM(MICRONS)
0.713D+01 0.050
0.384D+02 0.056
0.696D+02 0.063
0.101D+03 0.071
0.132D+03 0.07%
0.162D+03 0.089
0.192D+03 0.100
0.220D+03 0.112
0.247D+03 0.126
0.272D+03 0.141
0.295D+03 0.158
0.313D+03 0.177
0.330D+03 0.199
0.341D+03 0.223
0.349D+03 0.251
0.350D+03 0.281
0.348D+03 0.315
0.340D+03 0.354
0.328D+03 0.397
0.310D+03 0.446
0.289D+03 0.500
0.263D+03 0.561
0.236D+03 0.629
0.205D+03 0.706
0.174D+03 0.792
0.143D+03 0.889
0.114D+03 0.998
0.896D+02 1.119
0.685D+02 1.256
0.548D+02 1.409
0.449D+02 1.581
0.413D+02 1.774
0.398D+02 1.991
0.401D+02 2.233
0.401D+02 2.506
0.373D+02 2.812
0.328D+02 3.155
0.252D+02 3.540
0.167D+02 3.972
0.811D+01 4.456
0.000D+00 5.00
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