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ABSTRACT

Numerical computations are carried out for the core flow of
subsonic MFD generator channels with a large length-to-height ratio
and fine electrode segmentation. The working fluid is taken as po-
tassium seeded argon. Variable transport properties and radiation
effects are considered. It is shown that transverse variations in
fluid properties are very important in Faraday generators; a one-
dimensional analysis of the flow is not adequate. Axial currents in
non-equilibrium flows can be kept low if the right value ot the Hall
parameter can be obtained; this also depends critically on the Mach
number and load parameter. Mach numbers much less than one and
high load paramcters arc to be avoided. Attainment of very large

Hall parameters and fields cannot be expected.
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LIST OF SYMBOLS

pad

- a matrix operator, see page 61

X % . .
..C—- cross-section ratios
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total magnetic field

applied magnetic field
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- induced magnetic field

Planck function
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- specific heat at constant pressure

- speed of light

IR

- function defining a stream transformation, see page 20

- an electron thermal diffusion force, see page 61

- degree of ionization
- electric field
- electron charge (absolute value)

magnetic force

- function defining the channel cross-sectional area
-~ acceleration due to gravity

- Gaunt factor; degeneracy of an energy level

- electron heat conduction parameter, see page 6

= G/

Hartmann number
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— length defining cut~off frequencies Ve, see page 47

\}

channel height

s 1T

- enthalpy
IH’ - ionization energy of hydrogen
f’f - unit matrix
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specific radiation intensity
lowering of ionization potential
internal energy of the eléctron
ionization energy of the seed
magnet current
current density
transverse current density, see page 49
Jacobian of the stream transformation, page 19
Jacobian of a modified stream transformation, page 23

Jacobian of the stream transformation in the electrode
boundary layer

Jacobian of the stream transformation in the insulator
boundary layer

source function

load parameter

absorption cross~section per unit mass
Boltzmann's constant

thermal conductivity

channel length

vector of direclion cosines

velocity potential, page 41

vector defined on page 19

Mach number; weighting factor (with snbs’cript)
atomic mass

interaction parameter; number of streamlines (page
84); gquantum number

number density
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operators defined on page 24
pressure
electron stress tensor
Prandtl number
elastic energy exchange during collision
inelastic energy exchange during collision
net charge density
electron heat flux
radiative heat flux
total heat flux
a form of the Ilall parameter, page 31
radiative loss

gas constant; winding resistance; Rydberg constant;
function defined on page 19

magnetic Reynolds number

matrix defined on page 87

portion of the electron heat flux, see page 61
channel wall slope

indicates stream transformation

indicates modified stream transformation

indicates stream trans{ormalion in the electrode
boundary layer

indicates stream transformation in the insulator
boundary layer

a characteristic boundary layer thickness defined on
page 88

a characteristic induction transition thickness defined

on page 88
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electron temperature

gas temperature

gas velocity

vector of velocities and enthalpies defined on page 86

vector of forces and dis sipation defined on page 87

channel width

emission line half half-width in angular frequency units

line half half-width in A"

w2

diffusion velocity

axial coordinate

transverse coordinate

transverse coordinate

channel height to length ratio
ionization ratio

Planck mean absorption coefficient
Rosseland mean absorption coefficient
thermal diffusion ratio

absorption cross-section per unit volume
channel width to height ratio

ratio of specific heats

seed ratio

conductivity ratio, see page 18
parameter defined on page 61

parameter defined on page 61

thermal sub-layer thickness defined on page 18
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(Ha) :

electric permittivity

parameter defined on page 61
stream coordinate

parameter defined on page 61
electrode boundary-layer coordinate

square of ratio of characteristic fluid velocity to speed
of light

wave length of photon

Debye length

parameter defined on page 62

heat conductivity for electrons

magnetic permeability

dynamic viscosity

reduced mass

insulator boundary layer coordinate; circular frequency

parameter defined on page 61; circular frequency of
line center

cut-off frequency, see page 47
stream coordinate

mass density

electrical conductivity
Stefan-Boltzmann constant
viscous stress tensor
collision time

net collision time defined on page 60
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net collision time defined on page 61
optical depth

magnetic field potential

viscous dissipation

electric field potential

Hall parameter

solid angle

angular frequency

characteristic value of the Hall parameter
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INTRODUCTION
This thesis is concerned with the solution of the equations of
motion for a MFD (magneto-fluid-dynamic) gas flowing in a rectangu-
lar channel and subjected to crossed electric and magnetic fields.
Emphasis is placed on channels used as electric power generators;
some slight differences in the approach to the problem are required
for accelerators. The gas is assumed to consist of an inert parent
gas (such as argon) and an alkali seed material (such as potassium).
The equations to be solved are essentially the Navier-Stokes equa-
tions with terms added to account for electromagnetic effects. Ap-
pendix A gives Lthe forms of these additional terms and also discusses
implicit approximations in the set of equations used.
There have been many papers written on MFD channel flows.
In many,a one-dimensional analysis of the problem is employed. De-
tailed study of the transport properties is usually lacking. Even in
the cases of analysis in more than one dimension, there are simpli-
fying assumptions made such as the flow is incompressible or fully
developed, or some fluid property is constant, etc. It is the purpose
of this study to develop a sufficiently general set of equations allowing
all major effects to be examined without unduly restrictive assump-
tions and yet to have the equations tractable to numerical calculations.
In particular, it is desired to know the effects of compressibility,
variable transport properties (inciuding the Hall effect), and trans-
verse variations in fluid properties. A somewhat qualitative study of

the effects of radiation and an elevated electron temperature is also
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included. This will be discussed in a following section. Asymptotic
expansions in small parameters inherent to the problem are employed
to simplify the equations of motion.

A list of the equations to be solved is given below. In this
section, dimensional quantities will have a dagger (t). Superscript
numbers in brackets denote reference numbers. The symbols are
conventional. Unless otherwise noted, the MKS system of units is

used for dimensional quantities.

Continuity equation: \71- ef{_Li- O

Momentum equations: e.‘.U.* Aval ur + v’ F' V T +
+ (7, +Ge raHX B+ ge tE?

=

where %fz ;\+V¢. U*I +/{JVT a{%*u’f
21‘

/“y = shear viscosity

bulk viscosity

identity tensor

LU= vrat+ (rrut)

%j = net charge density

i

. + 1 .+ 2
Energy equation: efa)‘r T’-ﬁ TP tat [] )+
+ @f
where T + 72
P = vty
-—é
'y

= - 7(*:7 THe g0+ 7a

TAE
'—3
g
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7-( = thermal conductivity of the parent gas

—3
: = electron heat flux (Appendix A), not to be confused
with the electronic charge density
-
.f

radiation heat flux

oQ
>
I

Q
-+
I

electrical conductivity (Appendix A)

State equations: P*: P"’((Dt, Af)d l’l ? = A+ ({Ot T-r)

-> —
- - —> + . T+ +
Ohm's law: 7+ + ZTX wtT = O’+ (ET+u™x B )

—>
(T  is the Hall parameter, see Appendix A)
— —~> -
1
Maxwell's equations: /a+ (;J' + g; u?) = vix B
4 1ot TF
%c = £ V : E

v Bt= vtx Et= 0

It is to be noted that the above equations are based on a single
fluid model. Effects of pressure diffusion and thermal diffusion are
neglected; this is quite reasonable for low ionization ratios* and not
too great an electron temperature. See Appendix A for a furthexr
discussion of this point.

From the entrance conditions, a characteristic velocity U-*,
characteristic enthalpy ”1* , and characteristic density e* are

‘known. Also known are the magnitude of the applied induction 8*,

channel length L., channel height H , and channel width W, Other

reference quantities will be defined later.

" Defined as the ion mass density divided by the total mass density.
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I. FLOWS IN LOCAL EQUILIBRIUM

Nondimensional Equations

Let M denote a characteristic Mach number for the flow, K
a characteristic load parameter, and 6_5—’& a characteristic value of
the Hall parameter. M2$ {D*U*a/(rf’f(f_’*; h*)) , where J = specific
heat ratio; H ~ E*/((A*B*) for some E* . Then if wT e ME("K)2< Oﬂ),
the flow can be said to be in local equilibrium, i.e., Te.r“ Tf [18, 20]
(see also Appendix A). For this type of flow, the single fluid model is
especially applicable. A study is made of the flow with the following
assumptions:

1) To insure maximum efficiency. both the gas kinetic and
thermal energies are to be converted to electrical energy. If these
conversions are done more of less simultaneously, the Mach number
will not vary drastically. However, sufficient thermal energy is re-
quired to keep the level of ionization high enough to insure high elec-
trical conductivity. This suggests the Mach number is not large and
will be decreasing with axial distance. It is assumed that the flow is
entirely subsonic with a Mach number of order unity., (This includes
nearly incomp ressible conditions, say M = 0.3.) Thus, a shock is
avoided along with the attendant total pressure loss and other compli-
cations.

2) The load factor, K , always less than unity for the gen-
erator mode, does not vary drastically. A more precise statement
of this assumption will be given later.

3)‘ The channel cross-sectional area will be constant or mono-

tonically increasing.
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4) Except possibly at the channel entrance and exit, the ap-
plied induction varies weakly.

5) The gas is thermally perfect.

6} The Prandtl number, Pr -’-/“v’rcpf/wf , 18 constant.

7) The paramelers /u-" and 51' are constant and equal to
their values in free spéceo

8) The usual 'quasi-neutrality' approximation is made and
any net charge effects are neglected.

9) The flow is stable.

10) The electrodes are finely segmented.

¥

[ ST 1 R, - (4L
L i) means n

ressure
& ®* X
can be defined as F)*: CD* u* . Assumption 2) means E =u" B .

and a reference pr

Thus, ot < O) for equilibrium flows. From Ohm's law, a
reference current can be defined: j*:: o*E ¥ where 0'*:—— 0’*(9’3%"‘)
Also, /Uy*=/*‘vf(h*) . In correspondence with Faraday's law,

%c*= g:u*B*/(%‘-‘—’) where H,= HW . From Appendix A,
z‘*: O'*L(.*B*h#,é V(R+e+). It can be shown by one-dimensional
(1]

analysis that the conditions of assumptions 1) and 3) are consistent.
For accelerators, of course, assumptions 1) and 2) must be modified.

As an analytical simplification, the cross-sectional area will be char-

acterized by a single function of the axial variable.

The state equations are: | PT_-. e RTT B
hT(T? =fT,, C,,T(Tf) JdTT,

The equations will now be written in nondimensional form.
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Let the axial distance be given by X.'-, the electrode walls by
o + +
y*: =+ Hz- f(x*) , and the insulator walls by = % "g‘ o)

-F(O)“ l 'FI(Xf) z0 (see Figure 1, next page).

3

Nondimensional

variables and parameters are defined as follows:

X

()

XL, Y= yV(5e), 7= 21/ (4 J

+ - E
R W= UM, h= h/b] et

p
-
<
5
g

X = Ho/EL.J
ﬁ = WO/H¢ .
2
L =
_ o*LB
Interaction parameter, N = Fr— .
e«
_ -t H, B¥ /S o+
Hartmann number, H a T &€ = 2 Sy
, - ., F % Ho
Magnetic Reynolds number, Rm = Mo o« z -
¥
At o*B
Electron heat conduction parameter, § = e,\; e+ R .

Since N can be intcrpreted as indicative of the degree of
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completion of energy exchange between the fluid and the electromag-
netic fields in length L, et N=| . This parameter in effect
'defines' the generator length L
When stated in suitable nondimensional variables, assumption

8) simply means thal the problem is nonrelativistic:

— —

—5 (: - - -“)
the electromagnetic force, Fern P~ ] Xg + B zc (E+ uwuxB 2

> - >~ —>
and the total current, ]‘W = } + }M -; + ﬁ—; 3‘ u

) + 2 *\2 .
where ¢ ¥ EOT/UO u’ = (%—;) . € <<<& Rm |

hence, the electrostatic force and convection current are ignored.

The dimensionless equations are:

Continuity: >
vo( - P U= 0
3 32 2
where vo( z (ot 29X , IY¥Y . QZ')
Momentim: fx -lf V‘,‘ u + V°< P = « (;XB + & V:< '?)
= ~» = —> >
where T: A Vo('U—I"'/aV O(e{e( u’a

O{;Zx = V“E(»-l- (fV,(l?) :

- : 2 z
Energy: P?V«h = u~V«P + (7/0‘4'62&“4- 'PET_’Z/UVV,J,)'*'
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where @a( -’:‘—E ‘7&

(For equilibrium flows, oif course, the radiation term is not included, )

State: P = e T(h)

( TC) = ZTT, 11 for a calorically perfect gas, 3’ = con-
stant. )
— = - =
Ohm's law: ;4— ;Xw’t: o (E+Xx8)
-> -
Maxwell's equations: Rm ] = VX BJ

%8 =-VxE:o

Values of the Parameters

Physically, the following are reasonable values for some of

the variables in the problem[2-13]:

¥ = 10 to 100 mho/m ,

U¥ = 300 to 2000 m/sec,

L= l1m, He = 0.1 m,
B’\‘ = l1to3 web/m2 s
5’*% 0.1 kg/rn3 )

’Fz ].0--4 kg/m-sec .

These values, derived from the references cited, correspond to

—-4 -2 2
NS O“) . From them, it is found Fm=10 to /0o and Ha = 10 o
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It is assumed that the channel is long, that is, A £ <L l . Therefore,
asymptotic expansions in the small parameters Rm , € , and <
will be considered.

The expansion in the parameter o is the weakest in the
sense that it is the largest parameter. Only zeroth order terms in
the expansions in Rm and € need be considered, while it may be
desirable to give attention to first order terms in the expansion in .
Note that %R”m ~ ’0-10 to /0‘6

If m: is the atomic mass, then /£+ R 'I" . Thus, Q
is given by mgq to* B /(f € ) . Also, if nf and h: are the

electron and neutral atom number dencities,

+
+ e
o W'L'I
o'~ 2
+ +
and e’ = ma‘)“ n,t = e*“
h ne' (on
ence ~
G = Nat lwel,

that is, § is proportional to the Hall parameter and the ionization

ratio and can be expected to be quite small. Using the values given
on the prevlous page, with mq oo )»Aj and E = 1. 5X’0 Cﬂul
é x | O to /0 . It is expected that the electron heat conduc-
tion will have importance only in the electrode boundary layver where
‘the temperature gradient is large and aligned with the current density
vector. (The electron heat conduction vector behaves roughly as the

product of the electron temperature and current density; see Appen-

dix A.) Let g =& G where G< Q)
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Expansion in the Parameter Rm

A small value of R implies that the induction differs only
slightly from the applied magnetic field; this means that it may be re-
garded as known. The magnetic Reynolds number is one of the small~

er parameters, if not the smallest. Only one equation need be con-

sidered: Rm 7 = Vdrxg-‘

s - 3 —_ N
Let B= B +Rm b+ nigher order terms. Then j= VX b + higher
—> —
order terms, or Vd-] =0 ; also ‘Zyﬁ’-‘&)( g::O. The
—
applied induction is given by B = ng) where ¢ is a known har-
—>

monic potential. Vector B s replaced by E in Ohm's law and

the momentum equations.

Expansion in the Parameter & : Boundary Layers

The fact that the Hartmann number is large means that the
flow field can be split into two parts; an inviscid core region and
viscous boundary layer regions. This division is carried out next.

The zeroth order equations for the inviscid core flow are
formed by applying the limit € = O . If “;lé is the normal vector
to the rcha.nnel wall, then the boundary condition on E—Z is g ?‘-"@.
Formulation of the proper entrance conditions will be given later.
The walls are given by: Y = ‘i‘ f(X) and Z= i‘/é’ f(x) where
-F(O)-:,J 0= 'FI(X) <00 . Segmented electrodes are located at
Y = + fy) , insulator walls at Z= i’/g f(X). The applied induction

is assumed to be oriented mainly along the z-axis.

Next, consider the electrode boundary layer. Corresponding
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to Y= + £ » the boundary layer kfa.riable = (‘F:l:)’)/c" is intro-

duced, along with:

1]

ux Uxa uy = F (an"oi ‘FIE,\«)J Uz = a;.)

= 3 2 3
V= («x35%, 5%, 32)

-

Consider the transformation (XY, #) ‘?-F' (X7, Z) . Derivatives
e

transform as follows:

LA
7 — 24 f12
9% T, X e a7,
Iy TEe + € 2™,
>

—&"Ve( = u’Y_f,,(_.

The matching of the boundary layer to the core flow is given by the

usual limits:

As N —> o (€->0),

The transformed fluid equations are:

Continuity: =

“\Z(.eu =0

— J .
. Uy + < 5;-(E=°<(;X§)X+

Momentum: e

A [

b o 1o GFF] Sy Sra o F AR E), +

- 6&3'6"‘ (FG)]+ ex f'p 5'V&®+ O (< €5 o(z“Flf)J
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. 279 (L
U + 52 = o (f"g)z +ot [T+t 2 (£ ]55.4 g%‘?+

+0(xe < f'e)

mrergys pU-Viuh = XTp te ;%6 -6 («f 2o Aer),
/ JUyy2 U212
b o L1+ § [1+ 2607 ( 220)%0 (3%2)%3 +

J
bR [+RET] Sp F+ O (xS LBffe)

The state equation and Ohm's law remain the same. The boundary

conditions for the fluid equations are: iF = A Y Gioele = h (T é o3 ‘)
)

=

iL=0 @& 77=0,

Finally, Maxwell's equations are examined under the trans-

formation:

—i
V,"XE=O —7?
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Therefore, E;_ = Ez Ca&/)/-.-. £ +0 (6)

and O('F/E)/ .-_’:E,\/: (“‘FIEyiE\r)%/y:i_F-)— O(E)J

i.e., the electric field tangential to the boundary layer is given by the

core value, independent of 72 . The same holds for the induction.
-
Vi-B=0 —>
38,‘ 3@; = i —_ e

or B’ ‘F 58* +-@)« (“'F/@a\’ + @Y)Cm /y:i’rF + 0 (6).

The normal induction is also that given by the core and is also inde-
pendent of . Similarly, the normal current density is the core
value. Hence, the normal electric field must adjust through the
- >

boundary laver to make up for the loss of effective field (U X B )n as
U—=o0 (m-=a).

The same procedure is used for the insulator boundary layer.
The boundary layer variable is P = (ﬂ frz)/e . Let
Uy =Ty, Uy=ly, Uy= F (el - ~xg £/ @),
%ds (< ;%,‘ 5?7, 517)
Consider (X, Y, ) —ﬁ» x, X,?}) . JThc expressions from transforma-
tion TI are the same as those from TE except that

a) a 'bar' is replaced by a 'tilda' wherever it occurs;
P y

b) the symbol % is replaced by Y2
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c) the symbols ¥ and Z are interchanged;

d) the function £/ is multiplied by ,6 wherever it occurs.

Matching, boundary conditions, and results from Maxwell's'
equations are similar to those obtained previously. Due to boundary
conditions, the normal current is zero.

A combination of TE and 7;: is necessary for the channel
corners. The resulting equations are relevant only if no large cross-
flows exist in the boundary lavers. The corners occupy only a very
small portion of the flow field; they are neglected and the equations
for the corner flows will not be given. The zeroth order boundary
layer equations are obtained by the limit € — 0. Higher order ap-
proximations can be formed by use of the appropriate asymptotic

series. They will not be discussed.

Discussion of the Eguations

Before proceeding, an examination of the consequences of the
equations developed so far is in order. The main induction component

is Bz , main velocity is Uy , and main electric field and current are

Ey and 3y . Thus, Jy =0 (Ey-Ux Bg) = -0 Uy Bz (I~ K )

where KI is the local load parameter. It has been implicitly as-
sumed that both Kg and (I-4) are of O(1). If Ky is near unity,
large effects can be noticed. Let §=(I-K,)4</. Then the local inter-
-action parameter per unit length, Nj: 0(5) , also jy?— O(5). In the
insulator boundary layer ax~'> o Ey = Ey cota ; therefore,

j)’ = Q(1} . Since the boundary layer thicknéss is of O(&) , the total

boundary layer current [;'),/11 = O (€) while the total current in the
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core )
[;7 dz = O (s).

Thus, if & £ 0O(e) » a significant part of the current can be shorted

through the boundary layers[14’ 15].

It is even possible for almost
complete shorting to occur, in which case the channel no longer acts
as a generator. Due to the fact that the current density becomes
nearly aligned with the induction in the elecirode boundary layer, the
7 X force in this boundary layer drops off, resulting in a thick-
ening of the boundary layer (to (O (VE) for incompressible, fully

developed fl ow[ 14] ).

Of course, operation in this mode is undesir-~
able and would result from operating a channel of length greater than
that given by the interaction parameter and with nearly constant volt-
age drops between electrodes. Then, near the exit, the interaction
would be weak; little power would be available (operation would bve
near open circuit); and the flow would approach being fully developed.
(It is easy to show this implies the flow becomes nearly incompres-
sible. ) A longer than necessary magnet would result in greater ex-
citation power losses. This possibility need not be considered. It is
assumed that the electrode voltage drops decrease as the velocity in
such éLr manner that | —Kp >> € , i.e., "'Kg: O(1) and also
K,=0 (1) s Np= 0w0) . This gives the true meaning of
assumption 2). Los ses due to boundary layer shorting are thus as-
sumed small,

One may ask if it is reasonable to consider‘the parameter o4&
small. A short channel would give lower heat losses and would pos-

*

*
sibly require less excitation power.. For ), , U » @ fixed,
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x -
then since M': [ B ~ \/& and I~ &

2

I

. The excitation
power -~ IER where 1 is the excitation current and R is the
winding resistance; it is reasonable to expect BNI and R~ L .
Therefore, TR ~B%L ~ N . A decrease in length is compen-
sated by an increase in the induction necessary to give a complete
interaction; the excitation power should vary weakly with & . Since
boundary layer shorting is small, only heat transfer losses are sig-
nificantly reduced by having ©C not small. For practical {(not ex-
perimental) operation, the device would be large to produce high
power. (It is assumed that although the values of quantities given on
page @ are for contemporary experimental facilities, the parameters
Rm and Ha will be qualitatively the same for large devices.,)
As the total power output varies as the volume and the total heat loss
as the area, the relative heat loss decreases with size and is of less
importance. It is expected also that the best temperature-resistant
materials will be used, providing lowest possible heat loss. On the
other hand, end losses due to end shorting and induction drop-off are
more important for short channels. The electromagnetic force is
also larger (that is, the interaction parameter based on channel
height); this probably tends to make the flow unstable. There will be
no attempt to make an analytical justification of this in this study;
the reader is referred to papers on stability in channel flows[ 16—18].
In any case, many experimental facilities have a small height-to-
length ratio; hence, consideration of small & is of some importance.
In considering boundary layers on cold walls, it is possible

that the electrical conductivity, which is in general strongly tempera~-
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ture dependent, may have a value near the wall much smaller than
the corc valuc. This can cause charge buildup in the electrode bound-
ary layer to such an extent that charge effects become imp ortanttlg].
Faraday's and Ohm's laws give (neglecting the Hall effect):

- _ =z -> -
§c = Vi E = 7V (o) + (VuxT)X B,
Even considering large velocity gradients in the boundary layer, the

. — 4
second term gives charge effects of O(g,%;)SO(lo ) ; charge ef-
fects due to this term can be neglected. However, suppose
O ncdens 4 ct Th fe ity O
L A . en a reference quantity BL
based on the wall temperature needs to be introduced; let 4 =
O';L/O"" << [ . A thermal sub-layer forms; let the thickness be
51‘ (in units of Ho/a ). It is given by reference 19 :
_ 4 e
Sv= [nen] © €

thus, charge effects (= 0 (ST(AR»-) from above) are of Q1) if

VARRS O((Eﬁ";‘;‘) 2/3) . The charge buildup can also cause changes in
the tangential electric field across the boundary layer of () (AE4)
It can be seen that for the model flow discussed here, these effects
are important if and only if A £ O (/O—S) . Since, from a heat loss
standpoint, cold walls are not desirable, it will be assumed that this
effect can be neglected.

It is to be noted that supersonic flow can be had in an equi-
librium situation only if BX-S O(]O-I) web /2. This means J.
would be very large or the efficiency would be low; this situation can

not be considered practical.
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Transformation to Stream Coordinates

1. Core flow. It is more convenient for computation not to

use the rectangular Cartesian coordinate system, but rather stream
coordinates. The boundary condition on the velocity vector for the
core flqw can be incorporated into the stream coordinates and the re-
sulting fluid equations in the limit ©¢ —» ¢ have a simpler form.

See Figure 1, page 7 . Therefore, consider the transformation

—
(X.,)(,Z) ?D(X,Eaf) such that y’Va{ E=U. Vd,g-'? 0 . Obviously, the
5
functions § and & serve as stream functions for the flow. Define
, ~—im
a vector fE’ VEXV, e = Relu , then the Jacobian of
the transformation Jg = 3(5;’.)) = Ly , and R = :rs/(eUx) .
J

-3
Now VO('I.:O and vx.e'lf-:@ ; therefore, ?T'V,‘/?-“-‘O.
Thus, R= R(E, S') and is given by the entrance conditions. Continuity
is satisfied if R s E , and g are given.
=2 o =2 ‘
Let F E; X8 . TS gives the following fluid equations

for the core flow:

2
U 2k J

oy 3+ £, 3+ 5, 5 - «Fh
U ap

deu"’a'?”'?*'gaz-j}g*gzgse:“}:i‘
2h op , ;e

The boundary and entrance conditions for the stream functions are:

f=0 @ z=-pf, §=-le@ z=s 1,
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§==O@ U)’: “‘EJ gzl@ }/'—"*"‘FJ

f/X=<:| :“ZL(I“"%);
and ';-/X:a: ?‘ff‘ CI’L)’).

The Pfaffians for 6{)/ and Jdz are:

dy = Sr ax+ 5247 - Sz ¢,

< Uy J. Js
Uz , 5 Sy
alz = foxv i G/X - ...J_f;y Jf + 3‘15 C{S

These can be integrated using the wall boundary condition on the ve-

- >
locities, hn =0 , to give:

y= (25-1)fx)+ G (x, § %),

2= -g(er+) f +C2 (X 5 %)
VTS (-0 @ §=0l; Cz=0 e &= -0,

e
CT/’(=0 =05
T
and 9? - Uys 1-27
2 e =% oo * ¥ @ [ Jiapy).

rs AY
(Subscript T  indicates 'transverse'.)

~ 2. Boundary layer regions. Now consider Tg near the

electrode boundary layer ( y —» +§ ). There, T>0 or | and

%g — 0 , J’;—-—-}-SJ}, &2 and ,g:; # 0 . A transformation in

the boundary layer is defined: (X, n,2) = (X,%, £) with the Jaco-
. SE - _
bian J;-Ef- 5;, . The equation e Vi§ =0 implies U -V 5=0.

= —

2, - —— =
Therefore, {A'Vd"—;xu.xi?"‘uyg% and Vc‘-eu'-‘o R

dpig o — g
S e+ (7 r). 2628 - o,
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It has been assumed that the stream functions § , ¥ do not vary
drastically in the boundary layer region, i.e., 5,y = O(1) and
Sy=00) . Then § =5cnlyo2e+0(e) as Eq = O(€) . This
assumption of no large cross-flow velocities will be examined later.
It is now found that (Vi §)- 5%— e?'—- (§) e =
= o((iux [gyé% ( %)“52%(%]=-e< e Ux%,gn J;E +0 (e) near y= =+ -‘F
The boundary layer equations under 7—55 are:

Continuity: 20 &4 AN — 2
o( éfx—i‘ + 5%7 = Ao Uy 57,&‘ 3}5 + O(€)

where J-SE = -52- ““}y=t{+ OCG)J

Momentum: — ;}a’ é?u- 2p

23X + o f [T B~ & (£ )+

2

+ o« [1+ «% ('F’.,z_];n(/lv

—el 3% (F'i)] + o (e),

2
£ =008, . p= Pen +0(8),

XUy 3 —-(’f? +E Uy 5’,;2 +Tse %.E F_;+o<fl+o<z(f’)f]5%/v§—%’+

+ 0 (8,
Energy: 34

qﬁax % +(ou, 9,‘

= T3 )il + 5 [ TIRASE
+ o L1+ PE 0y § [1+23(597] (; G2, (52%)25— G (= §' 25=xs
+ gffLy) + 0 (e).

The independent variable § .u, is only a parameter in these equa-

tions. Note that TSE provides a source term in the continuity



e

equation.

A similar procedure is used in the insulator boundary layer
region:

Ky, v) —> (X,5,2)
Tsz ?

js_‘r-"*’ r.:)’ W/Z::t/ﬁ-{: “f’O(“-’)J
g ~ 2 . 77 2 %, r=0
WVa === ol Uy ox + Uz 5p o5 = 2
51
d AT 2 olyt 2ol 4 (o ER g
and G pl=o o YaxCHt Iyl H(T5).sp U0

A set of equations analogous to those on the previous page results;

¢ e is a parameter in these equations.

Expansion in the Parameter o<

1, Core flow. The last group of expansions to be considered

is in the parameter o . First, there will be given an examination
of the fluid equations in the core.

Let _
Uy 2 Ux, + o Ux, + xZ Uxp +

Uy = ox Uy, + «F Uy

Uz = o Uz, +xZUzz+ -

P = F°+°(Pt +o.

etc.
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In rectangular Cartesian coordinates, the zeroth order equations are:

2o | 36Uy, |, 3G U _

3 X QY 9z v
3 Ux U all,
f’ouXa _3—70+€°u7‘ Xo P"u?l o+ gé? = F;(o.;

- —
PO=F°(X)J VTXFT-O:O as FToszPlJ

"
oty T+ oo ty, Aoy gty S = U, TE 4 7070,

where Co =0 (F% ho)

and Po=CoT (hol .

The higher order equations are linear in the higher order
terms. Note that a constraint on .‘F—;a results. The next step is to
look at the equations in stream coordinates.

The stream functions are written as an asymptotic series:

§= 8 +x 5 +e®5.+ - = 5, +AF,

S= 5 +«& +... = 5, +4F,
Another transformation is made: (X.;g Q’) (X_, §;‘ é;) so that the
result of the transformation TSS,-— Ts 5, is 1ndependent of oC.

Note the following:

3(5,,5)_ -
I, =) Jost = F?o o Uxo ,
J(&,,5,) 2 (5, 5%)

(2 x) = R°€° u)’la Q(X)f) = R, P"MEIJ

-V 5= - UVa(a5)= O, TV & = OB,
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=) 3
and (axoa—x —fL(),, 57-;-(12'595)}?0:0.

-
Equating terms of like order, the convective derivative, U« V., trans-
forming as:

— 3 S 2
UVe == o Ux sz + (T V£)SF, + (T %&)3E,
Ss

ives: I 3 KA =
& Uy, 5% + Uy 5y +Ug 38) —> Ux, 5% = O

J
ss/

2 2
(U, 5% + Upa 57 + Uzp33) — Ux, %~ (0. §,)5E, +
ss/

- (0,5)5% = O,

2 2 2 3 b
(Ux, 5% + Uy 35 + Uzs 32) T W 5x - (0.5 +05)3%, +

=
~(0,%,+0, §)35, = Oz,

etc .

Thus the zeroth order fluid equations for the core are:

U d
u Xp >
€ o 537+ G =

QI; - do c 2
e, o = o, B 5

Po (x) = f’o T(ho),

R,= Ro (5, &),

a known function .
The functions .§:, and S, appear only as parameters in the above

The next set of equations is:

Os R +Ol RO:O,

eqgquations.
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60 (OOUXI+ 0‘ ux°)+ FI 0" ax" + 325/: F:YI)

eo (OOAI+OIhO) + P‘ Oo ha:: OOPI+O‘FO + 2 2.%:4};1 +

- Pt (2),
Po= e Tlha) + pohy 5F (he),

—> 2
Co o°aTr + Ve P2 = Fr

where Ve = (Vrfa)é%ﬂ + (Vrgo)é%, _,

22
Eoy = Jssi 3E ete,

J

Since O, operates on known functions, &, and §, are again
parameters. Notc that the above are linear with §, and ¥, un-
known. The Vi py term can be eliminated by taking the curl of
the corresponding equation. The result is a constraint on —Fi—‘ri
The boundary and entrance conditions on the f;, and $'_. are oh-
tained from Tg
5, =0 ez=—4f, 5,=-| @ 2= g f,
S.,=o @ y=—*, S.=1 @ y= 1,
Slves = -2 G+2p) ) S, = L (1+y),

U

§5.=0 @ y=2 £ (i»0),
§.:=0 @ z=-%pf (i=e)

/3:’/x=a: S::Ixza:O (.£>0).
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The transformation ng’ is given as follows:

y = (25,-1) Fx) +Cy, (x, 5, 5,),
2 = -g (85, +) Fx) +Cz, (X, 5,,5,)
where

(,yo:O@ra:o.)/J X=0 and ngf-‘- o @ g;zou'"lé X =0,

Comparing these expressions to those found for Ts , it is seen:

G, =-2f8 (izo) and Cg, =28 f5,

The Pfaffians for the transformation are;

— uyl §°J£‘ a,g’ — S‘q,z c{r
d)/ = uxa c/X + 3_551 0 3}5( o,
- U?l . -g,ouy 5,
dz = i d x £, d5 + —~J—Tss, ds,
Therefore,
= e |-2F
2| = ) e (J000)
ox 'Xx=o Uxo ' X=0 plU+2E)/ .

(£i>0).

This is simply the zeroth order part of the similar relation given on

page £(0. To get the higher order parts of this relation, the trans-

formation TS’ of the axial derivative is formed:

2. > 2 2 2
oX -1—51 5_)-(. - X (g'laX 950 + gl.u\’ 95.9) +

2 ) )
4 [5,, (5:,5,550 + 8.5 53—0)—"!1.,)((;1;505%04' Sﬂugoj%o)-;-

3 |
~ (5,35 + &,58)] +0 (L)
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Application of this yields:

Uxi 7 - Lo

gld)( - (uXQ)Z uT, ..VT fa - ma uTZ‘ VT 50‘1

Uix 3 f Tf .
Sl.a X = hadol 2 uTl s V.r S’a — uX¢ Ta VT .g -
0

From these are obtained 5"1_,,‘ /X=o and f,dx lk:g in terms of

(r, Juxy) [yey e U]y

2. Boundary layer regions. The ecffcct of the expansions in

the parameter ©{ on the boundary layer equations is now obtained.
The expansions of the Jacobian and variable in the transformation to
the stream coordinate in the electrode boundary layer region are:

J—-SE = J—SEO 1"°<I55‘ +aee '—'—"fodim/y;_t{"‘“-gl,im/y:i";+'“’

gcm = 5a%+o<§',w+... =50 caa A § e .
The transformation £, —1,-9 5o core is made. An arbitrary
I-13
smooth function S (,\/)71) g’%) is expanded in a Taylor series

about fo Lole S(XJ%JE;mi—Af%): S(X,ﬂ,fo%)“‘

9 e
“‘(ﬂgqﬁo) 5}:% S(Xqu_,f'o%) + émem)a 2.3 ()(_,QJ.S'; w’la.)""‘"

2§ o

Let this expansion be applied to each dependent variable. If there
are no large cross-flows, then in the boundary layer region
§,q = O(€)and therefore Vuf= 0O implies
« a), ;T;{{w + Uz- 5%;607-— =0,
or (Izo TSEa: o, (Iza-_-_- o , as expected, where
Uy = Uxo +ot Ux, +-.

er—

u’y = U),’—)- .. s ) etc.
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Combining these expansions, the first set of equations for the elec-

trode boundary layer is:

.. i = 1 T
Continuity: 595(- @o Ux, + In o Uy, = Ce Ux, 597( /Z‘ ‘TSEa

Y olpo
Momentum: Co Ux, 5— o+ u),, u,to Zﬁ Fxo t af;L/"va %’Xo

where Fa(X) = Po core, also Pi = Pi coa

Energyi FO aXo Q_%AD + FO (z;‘ a—%hoz (’TXO Zl‘xﬁo -+ 202/0_0 +
9 Uy,
+ My, ( x”) ﬂVa—;f‘L-iegng_%
State: Po = Eo T (A o)
since Uy 3% o + Uzlg%_f;w-:oJ

Uz,, is given simply by: L_{Z-, = - Ux, Ix & cau/nga
or Uz, = Uy, ( uf//u:xo)co—ze .
- The next set of equations is linear. Equations for the insula-~-

tor boundary layer region are had in a similar manner. One result

is:
3']/ F}’a = 0,
3. Maxwell's equations: field potentials. Next, Maxwell's
equations are examined in the limit of small @ . The electromag-

netic fields are given by the potentials (p B L[/
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and (//_; %a +OL%+"-‘

Induction B lies mainly in the z-direction; field drop-off at the en-
trance and exit results in fringing ( Ex and By not small). The
component 6970 = g)di‘@ is taken equal to zero, that is, B)« < O(O‘) .
Assuming that the tangential electric field is invariant across the
electrode boundary layer (A >0 (IOyal) , then E2.= §¥= O at

y:i‘F. The component Ez = 2%

= 37 is also taken to be zero; this

boundary condition is then automatically satisfied to O(oc) and the
crossed fields are perpendicular to O (<)
The potential ¢ is separated into two parts: ¢E ¢A (X, 2 00)+
+ @5 (X, »2) such that Pa= 'R F (X+ioz; ) where ¢F is an analy-
tic function and Lem ¢AJZ’ = 0 (1), Lo Vi ¢5 =0 , and
>0 A~>g
de ¢B =0 . The potential ¢9 is 'contained' within d)A and

¢B~°‘ for of small. The zeroth order induction is:

By, i Bz, = Lin F' X+ictz),

AP0
The function § is regarded as known, based on the physical situa-
tion of the problem at hand. If, ithhe physical situation, the induc-
‘tion at the entrance attains 0()) in an axial length of 0(04) (the
shortest possible entrance length for the field), then the zeroth order

field contains a Heaviside function. If, on the other hand, the induc-
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tion varies weakly with X throughout the channel, a smooth zeroth

order field results. The former is likely to represent most physical
problems.

As an example, let

¢ = L B (¥)ainsz d¥
A

:90‘ -,
o Cox S:E-*I’L&AS(‘%&:)

Gonsider the special case B = | with

£ m = it (Lt e el Srcy
A Coe 52 + coah SKix ’

I a-x
—Fa(XJZ)E /.L&M’l ( + e sz CMS(O‘ ))

a~X
oo sz + Coof 5 (BT S

then 25 ¢/+ = f - -, X <o

'Fa“‘ﬁ X = a

Taking derivatives:

i am S E

Qm 52
—— — e e e bt —
qj/’tu\’ T 2K | a5+ conh X cous 2+ couh 5 (85%) i
¢ g aind aind 5 (&%)
Az = 2 [m

-+ .
52+ ool X esz + cnd s (X)) 1 .

The limit o(~> 0 is now taken, giving:
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' |l am sz <
24 s = 7 x
ol Cous2tconh ) where & is the Dirac
delta function. C, By, = 2 [Sx)- § (a—x) ]

and similarly, BZ - -,L'? @ x=0,a,
[«]

For the case when B () ¢ !, ﬁ)(o = X2 B(X)[S(X)—- .S(G"XJ]

X <o d X=a
and Bz, = o an
B0 D <X <a
< Blo) X =0
3 B (a), X=a .

It is to be noted that, although Bka is arbitrarily large at X= o, a
the integrated effect of this singularity in the transverse momentum
equations on the pressure (assuming smooth, continuous streamlines)
is of (= . Field drop-off in channels with small &4 is not
very important.

4. Ohm's law. Finally, zeroth order equations for Ohm's

law are formed in the ol— expansion. If the Hall parameter is given

—> O:té’r O'g ) F +  +
by wt = —,g,F- = == (see Appendix A), then Z = € Ne .

b

Since ﬁrz # O , components of Ohm's law can be taken along the

—p = -
5 » Ax s and ZX BT directions:
- -
o B ’ E = 2/ ’ gd

. - —p
%‘— + 1%):( = Ex + (i, Uy, Br),
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—
("x; To ET) + F:’r + B (Mx 2—) Bx (‘x, ‘7‘,(5’7) +
+ By (- cBT)~ By (B Er) —oF (-%?z).
Let ?: bn -+ ,_,(bl +°(,ZZ+—,.-
Consider the case T < O(I) . In the sections of the

channel where the fields vary smoothly:

@Xo = 6}%: OJ ¢o = f 6820 (X),;
sl .
;To: (VTbXa)X;:?\’J E)’ozEya (Xd)/).! EZ’O:

;b)(o ak'\’o

=0, FYo=F% (2=

Therefore Z-za
and FXO = 2)’0 Bfo -

ot VX E mo imoties 2d%e .
The constraint Vv To =~ O implies =2 =0, }%= }X (X)),

Thus, Ohm's law in the zeroth order is given by:

an + 212 - Engx),

% 0O

%o‘ + (U, - Lﬁ)@z_o(x) E)fo .
If wt <01ix) , the limit ga—>oo is taken. Then ?',)‘a:: EXO:O
or %— = . This is not a likely situation.

If Heaviside functions occur in B-zo (with corresponding
Dirac delta functions in on ), appropriate matching across the
discontinuities must be done.

The assumption that the stream functions do not vary across
the boundary layers led to the following restrictions on the magnetic

body forces in the boundary layers:
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;%L Fzo = 5% F';o? o,
The force F;so = -"J'ya BXo and 5?762.7" =§% ﬁx, - g from Maxwell's
equations; hence the first restriction is satisfied. The force
F)’o:’ "';‘Xo Bz, ; also 9‘% Bz =0 . The restriction 5%‘ j'IXa =0 ,
e < O(x) means EXa=O at #Z= i/Q‘F or 99)7 Oy =© . Therefore,
at the channel entrance, large fringe electric fields produce large
cross-flow velocities in the boundary layers unless the temperature
is constant in the insulator layer. For W= 0(l) a similar situa-
tion can occur throughout the channel*. This effect will be discussed

next.

Effect of an Axial Electric Field in the Boundary Layers: Large

Cross-Flows

This section is devoted to the formulation of boundary layer
equations when the condition of a large axial electric field or a large
Hall parameter exists. Stream coordinates will not be used.

The insulator boundary layer is divided into two parts: an
'outer layer! in which the temperature and axial velocity are invariant
and in which there is no large cross-flow, and an 'inner layer' where
the temperature adjusts to the wall temperature in which a large
cross-flow is present. The inner layer thickness is given by

7

!
ScF = te , l.e., it is of 0(0(/4') of the boundary layer thickness.

oo
b

. T, :
O AR Ry g

2 - .
5?)- Exa = J7 E;Va = O ; thus, an varies with temperature and ux,,.,
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. e -1 -2 M 1. L
For physical situations, X=/0 to /O and "= 3 to F ; the cross-
flow exists in the lower half of the boundary layer. The outer vari-
i la
able is 7 , the inner variable is ¥ = A"~ % | The inner depend-

ent variables will be distinguished from the outer dependent variables

by a prime ('). For the outer layer:

R

x = Ux, + Uy, +<° a;2+

~ el 2~
y = °’<uy,+'0€ U)(z‘l“
U, = o(/* UZ%4— o(/q-uz,},z‘_ﬁ"

I
z

p

h
e

fl

Potx) oot Pt
= he + 04}11“‘"’

(’a+°(€l+

a4y . dha _ 9‘\;(0_. aﬁga/ -
Terms of (e )glve 37 - 3% 55 4 = O
Terms of 0(°<) give:
30, Ux, 4 3€aly _
o X + ¥ =0,

~ 9l ~ Uy el
6 Uxo 55 + o0y, Sy° + 322 = Fuo,

3f .
-a—$': Fyo: "‘;Xo 6£9J

—~ o ; v d Y
e lin S0+, By, 357 = Uy TR+ 706,

Y
Let the subscript “c"  denote core values at = 1'/9 'F Then, since

/
Uz = :1‘/94: Uxo ¢ and % yv“ ;.X) ——/9';3:’: oy the above
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equations merely state uxa = uxoc s uy, = uyzc s ho = /10,_., s

. . a 13 .
€o:€06 , ;Yv:]/\’ac » ctc., and 53 ‘42‘3;/4.’—‘0 » i.e., the out-
er layer is core flow. Cross-flow boundary layers are slightly thin-
ner than layers without cross-flow; mass is effectively bled from the

layer. Higher order terms (up to O (&) ) give the same resnlt: =0

O
N\

-

Next, the inner layer is considered. Transforming from

/ > V4 2
to ¥ 3—% =4 +§‘7;/ . The following expansions are used:

~ 7 ~ /J/ sy ~
X uXo'f—o{qu}/z"_e(qu"—“'

1

Nl-‘. /2~/ A
U, = « u),yz+ duy'-;-o(/ y% Foa
—_— _ % /4~(

p = /%(X)-J—dp,
h'= h, +°(2ll/é+0<;1

e = e+l el

The matching is obvious: L, (7/ = /énu Ux, , etc.; for the

Y'—>ec0 Xo

~
'prime' variables of 0(—2—) where h  is odd: jlm ux/-—- , etc.

Viso0
(these are the 'cross-flow variables'). The following sets of equa-

tions are formed:

From O(O(Jé) .

2 /) 2 ot
5y €o u)"/a""a'y"f’o U23/4—O
~ o~ f o~/
17 aux / dUxe . 2 / 3(1)6
&' Oy 572+ 6 Uzgy G508 = 5504 37,
It Jho! /77! 9/;4,’ A 2 . /3hy Dle
Co'lyyy 3y + 6 U234 53¢ =5, E Tvr T Ave a'w )
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From O(d):
. oy
l~y Qu,vl |~ Qu'yl _EI / . / a(/(yl/
G Oy 5577+ €' Uz, 537 + (55 Fr =5 S

(This equation and the state equation complete a set of equations; the

. )
cross~flow velocity is of O(e(./z). )

D A 2 !~ ( el 2 rdd Y-
5% € Ux, +35y (o' Uy, + o) Uyy)+55.(0 Uzgyatey, Upgy) =

o/ Ty 3%+ &’ Uy, 53+ T 35 + 00/ Doy 5 e
+ (’o’a’zl% ‘?55:;;”? F}iz (a;}’z %_)“:(_x:+az'_‘% ;g_{;)_,_ %’(’o -
= Fxo + + 55 v 9“’*{/2 5%’/%:'2 ;5“5‘/{2 s

e i B+ 0 Y
+ o' Uegy 3:‘:3/ Fok (By 334 T, 35)= 0, Z20

Z < ¢ 3hy, 2 ¢ !
* Fo/o0 5 v S50 + 527'/“V/25f7"‘/ .

To complete the second set, the y-momentum equation from O (< 2)

is needed:
gu)’I -t

~f
I Uy t pe¢ dUyy, Y Qu},/a 107!
* o Yy 3y

/. /! y
(JO aJXa > g +fo Uy,; oy +f’o sz;/@_ 397

+ arl QLT/ 4 Dal;y ~rd Qﬁl
(o' Uz g, 971' €/z( )'/a Jy *+ Uzgy 59 2)

t

-— 3 / auy' / Qal
~ 3 M Fyi +97 Ay 517,}1!2.
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It is to be noted that both sets are necessary for matching to the first
set of equations for the outer layer (core). The sets are solved
sequentially. Higher order equations will not be discussed. A simi-
lar procedure can be used for the electrode boundary layer.
Next, attention is given to the turning of a cross-flow at a
corner. The flow deflection is accomplished by large pressure

gradients; it is essentially nonmagnetic. If equations are written in

-V ~-iu =/
terms of inner varlables, 7/’ =XV and % ~ ot with Ux= Uy
=2 G - - (& | B ) .

Uy = $(b(y — oy ) , Ugz -l—(uz "973": Ux ; using the
following expansions:

o / o~ / Vy ==z

Uy = Uy, + <™ Uy, +

s Y =2 o=/

uy - c( uy}az +°( uy‘ LTS

o/ Y o<+ o«

P/ P04 % o5+

=
-

/ 1 /
= }'\a + c(./zl'L Yo s

‘ _ / Y, s
C' T ot PPl

there is obtained the following lowest order set of equations:

S =zt > /
é‘i/ ea U.),,/a +5:IJ-I €0 uz}/z = OJ

1 =7 e =/ ;] = ) ot/ ap /
Co Uy o Yysp + Qo' Uz 55 Uy + 55 = 0,
w2 i P2 R Jp_

b Uyl 57 Uz + 60/ Uz B Usy, + 30 =0,

(a-)’)’z v “2/ :,w/) Ux., ( u)’/z aozf + “z;/ av')h o,
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Po(X)‘—: Poc = fo/T(ho/).

These equations are inviscid. Since the entrance flow to the corner
has a boundary layer profile ( a/; =0 @ V=0 ), it is obvious that
separation occurs. This, of course, is nol unexpected, The above
equations can be valid only far away from the resulting separation
streamline and circulation region. A solution to this problem does
not seem to be feasible; no further examination of boundary layer

regions will be carried out.

Formulation of Proper Entrance Conditions

The statement of the problem is now completed with the pre-
scription of permissible entrance conditions. The entrance is taken
at X =0 ; this point is sufficiently upstream of the electrodes and
pole pieces of the magnet so that the fields are small. Thus, it is
assumed that the zeroth order flow is nearly nonmagnetic near the
entrance. All dependent variables are assumed analytic in X and a
Taylor series in X for each variable is used. A calorically perflect

gas will be considered. The fluid equations in stream coordinates are:
| 2 Ux, d o
€o Ux, 3x. bt gx = O

pox) = L 00 b,

The solution is:
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ho"'—a—L qu = 74 (go) S’O) = Ao (o) + “QL(UXO(O))ZJ

Uxo = Uxo(@) {1+ 2 (I/;Z;,,((oj)a [1- (P°‘°’ L}']g%

o*—,')(O) (P“’) 5

eo = € (o) (P (0)> '/I

uXo (0)

Let Jé)f ol0) W(;,S} EMO(O): ——————
e P J o .) /“-"—'—"—(r__’)how) .

The functions ﬁ , % , and P are known. The Mach number is
2 4

ML = ) - f%) 7 — ]
° 771 (f J’- (

J st is given by: 3 (&, 5) - o Uy, R, = Lo Ux,
S (y,2) 4‘/9 & (0) Uy, (p)

given by:

| _ L (P’ 4727
o Te= g5 (B)T S0 g [1- (29T}

3_551’ is also given by: -l _ 2 (y,2)

() 3 (5, 3.)

where

y = (ZS'~I)7C(X)+XF,Y(£,)S)+ ,:2)(4..,.J

P-4
z2=-@(285+) fo) +x Fiz (£, 5) + X Fat. -,
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Foy=0@ 520,15 Fiy=00 &= 0,
fox) = 1 +ax + 22 x2,,.
The pressure is expanded in a Taylor series:
e iy boxe B xtee

The transverse entrance velocities satis{y the relation:
— -
Uy, (0) - -2 5,
Uit = Fir— & .
Xo (0) A 1+2 &)
Equating like powers of X in the two expressions for 75_,/ :

by I-m> _ QF',y ?Fa
46 ¥ 5z =28 35~ 55 ) + 8%,

by 1~m*® b - m? _ 2 (Fy, Fiz)
4/5 “7)‘? o & + 48 (,r') [3 T F “"""”yj'z (5. %) +

2h . 3 F:
+ 4a, (,3 5—5":'{— 5;".7;’““[—3}) +2 (/5 sz- :;2_?:2)4.(9#@,24-6!3))

etc.

The first equation reduces to:

25, /9 35, *

1o s, ds,
A continuous solution requires 24a, = b: [ fo [ —'4}7:'2"" —/] J

this corresponds to the relation: A (x) = 4-/:’ -F ff O{)r 6/2

o ds,ds, 1 (! oTﬂd
- f 3—551 - Fa fo | F?a "R, Ux, J; O/I
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The pressure and channel area are related functions. F,T is given

by the potential F

' o 6{3'
Foo= J X 25 220 _ (44, 4 by 'y
VTP 35, tT Lng,,i) (42, +2 ¥) 5,

]

2 ¥
Fiz 3%,

where F is arbitrary except that 55': o & §5,= 0,~1, So=0;

- KoY S dEdE
f/s‘o':l - %éb‘ [5; (l+2)’bl) +[fa f7) GI%Z J.

The main conclusion to be drawn is that the transverse velocities at
the entrance cannot be specified; the potential i must be specified
instead. In considering the next terms in the series, a constraint

given by the transverse momentum equations must be obeyed:

Ve X (F?‘VA L?'r): O .
Combining this cénstraint with the equation of second order terms of
3;5{ there is obtained an elliptic partial differential equation for a
potential related to ;:T ; it can be thought of as a 'streamline
curvature potential'. Again, a continuous solution (equivalent to
the requirement that no singularities or sources exist in the region)
gives a relation between Az and b?_—— relating pressure change

to area change.
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II. NONEQUILIBRIUM FLOWS

Discussion of the Problem

In this section, flows with elevated electron temperatures are
examined. Inlet Mach numbers cannot be expected to be very large
considering the minimum temperature necessary for operation of a
channel; only large power facilities could produce flows with
M? = O(10) . As an example, if He=05m, [af =1latm, T7T =
2000°K , and M= 2 , the power input is of O (105 kw) . Since
large conductivities are possible, the interaction length for the super-
sonic section of such a channel would tend to be short and the meth-
ods used in this study would probably not apply. Slightly supersonic
entrance conditions will invariably lead to a shock and subsonic flow
thereafter; the larger the local interaction parameter or the smaller
the inlet Mach number, the sooner this will occur. The tendency to
these conditions being mutually exclusive, the length of the slightly
supersonic section of the channel could be expected to be relatively
short. Thus, it is not unrealistic to consider totally subsonic flow
(for up to moderately large power outputs); this is done here. This
assumption certainly produces analytical simplification,and yet effects
of radiation and a large Hall parameter can be studied. As pointed
out in Appendix A, a limitation imposed by ion slip means attention
can be rcstricted to valucs of wr of O(IO) or less.

- While radiation plays a negligible role in equilibrium flows at
low glectron temperatures, it is important in the examination of non-

[18, 21].

equilibrium flows The model energy equation must be altered

to include the radiation loss as a negative source term in its right
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hand side. An electron energy equation (which also involves the radi-
ation loss) must be used to calculate T—ef ; it may also be necessary
to include an ion energy equation in order to specify -}-;_‘f‘ {see Ap-

pendix A).

Ohm's Law
The zeroth order expressions from Ohm's law can be written

as follows:

, A
ixo = Trocmp L Ex® +wve (o8- £y,)]

. Ob
7re = Tetwer [ Eyo - tne ey + W Exo (0]

The condition I}Xa/ < O(I;'ya}) implies lExol = 0(l) . Take

. ) . T, ._0/_3 = ,___-‘Z"
the limit wt,—> @ ; then 2),0-—96—”-,& Ex, where 752 Bz,
and j)’a = %%’ . Allowing for arbitracy bXn and integraling:

Z
by, —> (Eg): [ana/z‘+ < (X))
° P

Boundary conditions on }Za yield:

. st
=0, gxo g;ﬁi” dz —>0
2o ’ﬂf

EXp ;_Zo

- -~ () , that is,
Bz, ¥

If it is required that 2'2.0 =0 , then

‘the electron number density and electron temperature are required to
be nearly unilorm,or the axial electric field may nol be large,or both.
It is therefore concluded that inhomogeneities in the transverse di-

rection do not permit buildup of large axial Hall fields. It is also
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impossible to avoid axial Hall currents. Not only is it practically
difficult to produce large Hall parameters (greater than 2,3 ), it is
not especially desirable. If the Hall parameter is not too large, and
if the electron temperature is fairly uniform, the magnitude of the
Hall current can be kept to within reasonable bounds. Joule dissipa-
tion and radiative losses tend to make the temperature uniform; upon
the effectiveness of these processes depends the value of the Hall
parameter that can be achieved, keeping 2'.)(0 small., This is one of
the more important effects of transverse variations in the fluid
properties.

st
>R

Radiative Transfcr

In this section, an approximate method for the solution of the
equation of radiative transfer is discussed. The following notations

are emploved:

ID — specific radiation intensity, the energy flux per unit area

pecr unit time per unit frecquency per unit solid angle,

—
g - vector of the direction cosines (referring to the above),

YV - frequency,

) - solid angle,

> .

zR - radiant energy flux vector,

jb - source function (per unit mass),

kw-— a form of the absorption coefficient, the absorption cross-

section per unit mass, -

o, - another form of the same, the effective cross-section per

unit volume,

e

All quantities in this section are dimensional.
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Ty — optical depth,
B‘V - Planck function,
0:55 ~ Stefan-Boltzmann constant.

Consider radiation traveling along a path whose differential
length is JV , then if ¥=0 ie the source point, the optical depth
at a point ¥ 1is given by Ty (¥) = Lrolu dr , A large optical depth
at point ¥~ impiies most of the radiation flux has been absorbed,
and conversely. These are the optically thick and thin limits, re-
spectively; for these, the transport equation can be solved and the
energy loss calculated without reference to the particular geometry of
the situation. On the other hand, if Ty = O (1) » the geometry plays
an important role in the solution. The solutions in the limit cases
are given by Chapter XI of reference 22.

The equation of transfer is ﬁ vi, = (0(]’2/" kVe IU) . The
left hand side is the convective derivative; the right hand side con-
sists of sourcc and sink tcrms. Thc cffcctive absorption coefficient,
kye = ]{y (/ ~-exp (“f’%j ) ; the added factor is a correction due
to induced emission. It is assumed that the distribution of quantum
states is given by the Boltzmann equilibrium distribution (Appendix
A); hence the source function is given by Kirchhoff's law. Let
Xy = fkvc ; then f VI,=Xy (BV ”Iv)- -

-

The radiation flux vector is ¢gr = fo L

The radiation loss, QR = V?R = 5:” £47rd7, (By "I-p) An oh).

TP dn Jv.

For the frequency range where the gas is thin, I, «< By  and

QR = 47T£/ oy, B, dv = 4<>‘P Uzg Te where <>1p is the Planck
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- oo
mean absorption coefficient: D(P = fv Xy B—pa/V/L By dv =

LY 3
=48 [ o (32) Lo GE)-1T" o (22).

For the thick case, ZR - 136 0'58 7;2 V7:e where °(R is
e{ ¢

the Rosseland mean absorption coefficient:

- _L ds, AB _
X = ), < JTe ‘h’/f e =

= 4_774— o(z, (;@Te) [exf’ (&773)] [e*"f’ (jz?é /.] 0[ (,m:g)

The approximation to be employed here is to assume
QR = 4odp Usg 7:34' OBBV V e,
a sum of terms corresponding to the two limit cases. There remains
the task of deciding what ranges of frequency are to be used in de-
fining o(P and g ; this provides an opportunity to include geometric
effects in the above simplified model. It is first to be noted that °<P

is linear in o and that the entire radiation continuum is thin; thus

- o @
0(,9 = O<PC + O<P£ where QCPC :L O<VC ByG/V/L By,&/ﬂ) O<VC

is the continuum absorption coefficient, and <py refers to line
radiation. Nearly all of the line radiation is contained in the reso-
nance lines; only these are considered. The core of the resonance
lines is quite thick; only in the very far wings do the lines become
‘thin (this is true except at the very edge of the gas near the walls).
Since .the effect of Doppler hroadening decays rapidly away from the
line center, it is important mainly in the line core, while the wings

are governed by the Lorentz (dispersion) profile. The line profile is
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separated into two parts: the inner or core part, and the outer or
wing parl; the division defined by use of cut-off frequencies e such
that oty (22) He = | for some characteristic dimension He, <y
having the disp’ersion form. The inner partis used to calculate Xg ,
the outer for °<P,€ . The length I is defined as the reciprocal of
the average reciprocal distances from the point in question to the

walls (entrance and exit taken to be at infinity):

PR ]
He = 6 [Hoé—y ety Twi-z T owetz J-
It is sufficient to consider H¢ as given on a streamline by letting

. . / =/
Zh=0: Hc~6/af-+offx)[m%‘m].

This is nearly true close to the walls where F. varies strongly with
position; away from the walls H¢ is only a weak function of posi-
tion. Consider the portion of the line profile defined by the frequency
ranges such that O.] € oy He £10.0 ; this portion occupies a

}7::;21 )

fraction of O ( (see Appendix C) of the total. Almost
all of the radiant energy lies in the regimes of the two limit cases.
The approximation can only be considered valid if the result, QR ,

is insensitive to the value of ¢ ; this suggests that this is so. As

the walls are approached, the line becomes thin closer to the

* Close to the walls (§—=o, | ; §—> ©,~1), this definition must be
modified to account for the boundary layer. It must also be modified
in the zeroth order problem when a step in the induction occurs. See

Appendix C. Note that Hez 1/(t),, . -
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ale
3R

core ; the geometrical effect is qualitatively correct. The quantity
°<R_‘ is formed by summing integrals over line cores. Formulas

for the absorption coefficients are given in Appendix B. The emis-

sivity and reflectivity of the walls are neglected. The system of

equations for nonequilibrium flows is now complete.

The Doppler core is thick through most of the boundary layer up to
a distance of (0 (IO~6 crn) from the wall.
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III. FORMULATION OF A PROBLEM IN TWO INDEPENDENT

VARIABLES, RESULTS AND CONCLUSIONS

Zeroth Order Core Flow in Two Independent Variables

For purposes of numerical computation, a simplified problem

is taken with

9_3._2 = 3¢, = '®) (Vexcept for bXa ),
on = Z—J-(Y)J
Ra = Ra (;a.))

y = (2 So -1 x) + Cyo (x, %),

2= —@ (2E, +) fx).

For this problem, the constraint VT X —l“:::a»'-'— 0 is automatically
satisfied and no potential & is tobe specified. For the general
problem, this constraint and the expression relating the Jacobian of
the stream transformation to the fluid properties are used to calculate

the transformation; the latter with the above conditions yields:

T (ha

O:Z'F(X)f [AROP"L(X”‘)_] 0{3—-;

and )

, T (ho)

_ L dz,
Po )= Av) ) RoUx, '

_ .2 ’ 2
The Joule dissipation 20/03 = [ .’_%“.’.fi)]ja+ O;Ex02~2 wt, JEx, .
o
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The functions J and EXo need to be fixed. An average
load parameter, given as a function of the axial distance, is used to

define the transverse current:
I ‘
T) == Bz, 00 [1- K] [ O, Uy ol & .
Q

The axial Hall current is to be kept as small as possible; by requiring
ils average values to be zero, an expression for the axial electric

field is found:

{
Ex, (X)) = ~Bz (x) [1- K&x)] fo Wty Uy A3,

The specific numerical techniques used on this problem are

roblem in the

digrirgsed in Appendix C. This problem is an inverse

w3

sense that the transverse current is specified and the voltages on the

electrodes result from the calculation, rather than vice versa.

Results

1. Accuracy of calculations. A one-dimensional flow whose

analytical solution was known was used to check the accuracy of the
integration and matrix inversion subroutines (Appendix C). The local
truncation error was held to within 10_7 ; results had an uncertainty
of 5;‘ | 10"8 near the exit point.

The approximation of a finite number ( N ) of sireamlines

(Appendix C) was checked by two calculations. An equilibrium calcu-

lation for N=16, (EZ =0. 6 web/® and W=0.6 for 0.0mE£XS|.04m,

ste
b

All numerical calculations were performed assuming an argon
parent gas with potassium seed. The function &) was taken as
1.0 + SX . The subscript ‘0" is omitted, and the subscript 'in'
refers to entrance conditions.
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ﬁ = .5, §7 0.3 , initial pressure Pin =4.0 atm , Ux;, =
= 1.8+0.65(1-5) $2 . hin=7+450-5) knfsel, and ¥, =0.0] .
The result was used as a standard; another calculation with N=10
was made. The deviation from the standard near the exit wé.s of
O (.01%) . Similarly, calculations with N=&and /0 were made for
6{-'—' 0.7 weL%‘é" 5=0.2 , pin =3.0 atm , Uxu= |+ sin®(2T ¥)

kmfec, hin= 5.5+ 2 sin () k”'?/secg , with the other parame-
ters being as above. Note that for this second comparison, the varia-
tion of the entrance conditions with § is more pronounced. The devi-
ations were found to be of O (I %) (the largest being 4.6%0). From
these calculations it was concluded that use of the value N= 10 is suf-
ficient and should result in an accuracy of < O(,/ %),

Lastly, the elfects of changing the parameters He, “Au1 , and
°1'3 (Appendix C) are given in Table 1, page 90. It is seen that the re-
sults of the calculations do not depend strongly on these parameters;
hence, their use is acceptable. The value of 7:; is the most criti-
cal and affects mostly the end streamlines (s=0 ‘).

2. Typical results. Some results of numerical calculation

are given on pages 9/ through 105, The units for the fluid and elec-
tromagnetic properties are: velocity = km/sec, enthalpy = kmz/secz,
pressure = atm, temperature = 103 °K, electrical conductivity =
mho/cm, induction = web/m.z, current density = abamp/cmz, electric
field = kv/m, and potential drops = kv.

IFor IIall parameters of order unity, for both equilibrium and
nonequilibrium flows, the electron temperature, Hall parameter, and

conductivity tend to be uniform. One example of this is given by an



-52-
equilibrium calculation for B;_,= 0.8 web/m and K = 0.6 (0.02 m 5)(»
gloam ), @ =15 5 =0.2 & =0.01, Pix  =3.0atm, Uy, =
L5[1+1.55(1-8)km/sec, and hp = 5[1+25(1-§)1km%/sec’. At
X
(o2

0.04m, h ranges from 5.54t07.64,w?T =3,83 to 1.16, and

1}

I

O',45 to 2. 82*. At X =0.72 m, the local interaction parameter
per unit length integrated to the point in question = 0, 46, h ranges
from 6.60 to 7. 42, WT = 2.09 to 1.33, and & = 1. 54 to 2. 80; the ra-
tio of enthalpies dropped from 1.38 to 1. 12, the Hall parameter ratio
dropped from 3. 30 to 1. 57 and the conductivity ratio 6. 27 to 1. 82.
Another equilibrium calculation is given by Graphs 1 to 3, pages 9l

to 94; the same ratios drop 1.30 to 1. 17, 2.92 to 1. 77, and 4.42 to

2. 21, respectively. If elevated electron temperatures are considered,
then this elfect can be much more pronounced, as Tables 2 to 12 show.
In the case of a Hall parameter of £ or less, however, the ratios tend
to remain constant. In one test calculation, the initial conditions

'spike! in h at one streamline; at the

were uniform except for a 33%
exit the ratio was 32%0, the integrated interaction parameter was 0. 63.
Finally, examine Tables 2 to 12, pages 95 to 105?;* It is seen
immediately that the ratio of maximum axial current to transverse
current can actually be reduced by increasing the Hall pa rameter; the
radiative transport acts to 'smooth out' profiles. Tables 5 to 7 and
Table 9 show that there is an optimum value of the Hall parameter
that gives this ratio it lowest value. In general, this optimum value is

strongly dependent on other properties such as the load parameter,

Mach number, and pressure, as is the value of the ratio obtained. A
* In thc units listced above.

*% For arbitrary X with certain properties specified.
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lower ratio is obtained for the 1owér value of the load parameter. It
is to be noted that the Hall parameter is not linearly related to the
magnetic field strength, but rather varies more weakly with the field.

It may appear that a high ratio of axial current at an end
strearnline to transverse current (Table 7, euntry 3, for examnple) is
due to the value of a]’b; selected. To check on this, a computation
was made for this particular situation with oy changed from 2. 0
to 6. 0; the current ratio changed from 0. 62 to 0. 45. For such cases,
the value of Abl is important; however, qualitatively the results are
correct.

Comparing the entries in Table 10, entry 1 in Table 7 with
Table 11, and entry 3 in Table 8 to Table 12, it appears that the cur-
rent ratio increases as the Mach number decreases. This is not al-
ways so: if again the situation pertaining to entry 3, Table 7 is
changed by lowering the velocity by a factor of 0.7, the current ratio
drops from 0. 62 to 0. 55 while the maximum value of the Hall parame-
ter increases from 2. 06 to 2. 46.

The current ratio maximum stayed constant ( = 0, 26) for
the nonequilibrium flow depicted in the graphs; the Mach number
varied more weakly than in the equilibrium flow. The voltage drop

also remained constant at a value AY =.12 kv. within 2% .

Summary and Conclusions

Numerical computations have been carried out for subsonic
MFD generator channels with a large length~to-height ratio and fine

electrode segmentation. The working gas was taken as potassium
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seeded argon.) Variable trahsport properties and radiation effects
were considered. It has been shown that transverse variations in
fluid properties a/re very important in Faraday generators. Axial
currents in nonequilibrium flows can be kept low if the right value of
the Hall parameter can be obtained; this also depends critically on
the Mach number and load parameter. Attainment of large Hall pa-
rameters and fields cannot be expected. It is better to employ load
parameters near 1/2 rather than the use of higher values, say 3/4.
On the whole, it seems desirable to avoid Mach numbers much less
than one. The inclusion of radiative transfer is necessary in calcu-
lations for wT =0(i).

The desirability of low load parameters and relatively high
Mach numbers (high velocities) can be explained simply. The
'smoothing' effect of radiative transport is dependent on the attain-
ment of high electron temperatures; this requires rather large dissi-
pa.tio‘n. If the load parameter is relatively large or the velocity low,
the effective electric field and resultant current density are low,
yielding low dissipation.

The question of optimum flow conditions in a supersonic sec-
tion of a generator channel is left open. It seems likely that there
exists an optimum value of the Hall parameter as in the subsonic
case.

The boundary layer regions in nonequilibrium generators are
guite complicated; this is especially true at the electrode walls if
they are cold. In general, boundary laver flows do not seem to be

amenable to direct solution in cases of interest; perhaps integral
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techniques could be uséd to obtain qualitative results. No attempts
were made to make an analysis of these regions.
If one-dimensiénal analysis were to apply at all, it would
have to be for equilibrium flows at a small value of WT. For these
flows, the assumption that the velocity and temperature (enthalpy)

profiles are similar to the entrance profiles may be better.
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APPENDIX A

Formulation of Model Equations

The dynamical equations for the components of an ionized gas
have been generated from the Boltzmann equations for the components

by the 13-moment method[23’ 24 25]. In this section, these equations

1o of,

sle ola
SRR

are developed into a flow model for use in channel flows .
The following notations are used:
k-—- Boltzmann's constant
—> . . .th .
‘Lu:j—- drift velocity of the j° specie
I - ionization potential of the seed gas

Q,ﬁ— exchange energy gained by the jth specie by elastic col-
lisions

€ - electron charge (absolute value)
O;,w$~exchange energy gained by inelastic collisions

QF? -~ radiant energy loss of the gas

4e - internal energy of the electrons

ni- -~ number density of the jth specie
.th .

ma- — molecular mass of the j spccie

subscripts "j, k' - denote a specie
subscript "e' - denotes electrons
subscript '"i" - denotes ions
subscript o' - denotes seed neutrals

subscript '"p'" - denotes parent gas (neutrals)

All quantities are dimensional.

sl ste
R

It is to be noted that the references cited developed the equations
for the components for limiting cases; these have been generalized
in a consistent manner to include a more general case.
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subscript "a' - denotes all neutrals

By definition:

W= U+ 1w
J P

o + FPJ

= < Cn;,—ne)J

€a
g
Z,,
¢

—
= e (mw: - ne @),
2 Wy = L 'a’_%»kf’p

Combining the continuity equations for the electrons and ions:
= ) =
V(3 +gtf) =0
¢ -6
As shown on page 8, net charge effects are of o, (ﬁ;) < Olio )J

therefore, this equation simplifies to . = . This means also
4 ¢

N:= Nne . Ohm's law results from combining the momentum equa-
tions for the electrons and ions:

J 4-;‘){503'%—‘5 (?Xwe'%))(éz—:&-da/*'jz O',,{E+
+ WxB +en Vpe oty BA-VTe + iTerem, [ZVp —Viperpa +

- z'% :S;Z: Rej Xwet;?
nY _
where. ) [271 ( A)J 2(”46 5';*) !

is the mean time between collisions of a particle of specie j with

particles of specie k, and qjk is a suitably averaged diffusion cross-

section,
o\ | -~ -
(T = (Tea) ™+ (Te)!
— e —
We = g O,
S __g% Te is a form of the thermal diffusion ratio,
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o = €,;/€J

Ao = ot Vo Te,

-_— -4 (2753 .
So= (- Tea _ 2 Lia _ _
T e T, , twice the ratio of the

ion to electron Hall parameters, or the ion slip parameter,

()'= 2 A“ + E[(1- 2288/ v + (1 82 Bed) /ea],

Y, = 5;1/%4: + 'g.eu./fea.J

X
. 6
Se= £y,
¥ x ¥ . )
A;'.k,, B;ﬁ , C;;’k are cross-section ratios (see references),
E = 2 fle me T:

he m: Tea v

— eane’f?
0, = £l
me

—
For an arbitrary vector W

= ’ — ——y —
AW = Tt [ W+ (ot - W) ot + WX W ]
—é

Rg— *ng'De,
_ 5 JQ'C’c
Ae= 3 5=

De = VTe~—otr 2 } 5'£Pe R (E+UXE-7 )
Pe is the electron stress tensor,
and ¢ is the acceleration of gravity.
In the above equation, it is assumed [ Zen | <<l . Even if this
were not so, the additional terms that would be present can bec nc-
Jpp— ~ 2 | . .
glected if S (we to) £ < , which is the case here. The factor

A, results from the second approximation to the diffusion coeffi-
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(see references 25, 26).

Ve
%)a The

cients; it reduces to Ae,; as Tea —> O

It has also been assumed that Te -;gf L L 7} << Te

cross-sectional ratios are:
X -1

A€e= l—'(af&\.Aea) J

Yo - (2 Ne),

Ae. =
* X
Be, = l, Ce; = _3‘(
where
T; T
4T £, 14
A;k = ez ;lv/“;'k [3'& (77!% ¥ "Ve)],)
/”;‘ﬂ - r,ETZ;Tr;"%_ , the reduces mass ,
/

& kT A
Ap= [eane U+T:/Te) , the Debye length,

and by linear extrapolation from the tables given in reference 27, if

the parent gas is A,
Cep = 1.7~ 0.025 (Te/10® ox ),

» 2
Bep = 2.083[1 = 54" (1.4 +0.075 (Te/ic> k) ] .
(Thesé values reflect the Ramsauer effect; otherwise the ratios are
1 - N =
near unity. ) Note that Pe =/U(p,T;VD’+enJl;T;Z (?+ﬁ’/\’lﬁ‘%"’?)) + Pe I;

where 4  denotes an operator whose I»&/ = OUL

I =® -7
i = ~@ne + (- Y,

where
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— -

vty 3 == |-Z =2 — Re

Vit rr [aie j + ane jAwelen —Sea ] +
+ 2 Tia

(i1+g) @i [; VF_' VCPC"'PJ)J for [8:a ] << ,J

—>
W= (I-3) V;

v

—1 —
and Wy, = ‘&7’;:_;\/*.

P .
The equation for the electron energy is: F (ne J-e) FNete V- U +

+V'§Z‘"(’e%-ﬁ;+ﬁ;“vﬁz OMe —negn*%‘k (Te"'TA)

where ?: = 7Ne ,f,ée-#A'T;) 'C-Lze + ?«e

is the electron heat flux vector,
Fo=5- 98- & (F+TxE),
Veh = 34 7% (na Ten)”)
he = 24T+ eTs.

Combining the equations for all species gives essentially the

fluid equations given on pages 2 and 3. The density, heat flux, pres-

sure, and stress tensor are summed over all components, the tem-
perature averaged with number density weighting factors, and the
velocities averaged with mass density weighting factors so that

— A . R . ~
= e Wr = O . This will be discussed further later.
R )

Next, the order of magnitude of terms in Ohm's law and the
electron energy equation are compared in order to simplify these

complicated expressions. The following are assumed:
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Fip = 10 en,
Ge: = 10 emf,
<~ 225000),
(wel))® 5 0(10°),

Me < “*
(7% hese 0o,

m,{':'mo = m,:)

Mo v 2 00 ),
np

The discussion is restricted to use of a monatomic alkali seed gas in
an inert parent gas; hence, inelastic energy exchange between elec-

trons and seed neutrals is given by the radiant energy loss and change

(287,

of electron number density
dn
mele = - Qr- lie+tATe) ZF.

Model Equations for Ohm's Law

The Hall parameter WY, =~ weTe= 0 (W¥) . First, consid-
er the magnitude of the third term on the L. H. S. (left hand side) of
-2y
Ohm's law as compared to the first term, ; . The ratio of the

2 e Ty ——2 .
terms = §,WT zayn‘f % w?® . The expression T, can be re-

mp\ Vi

placed by T}p , Tea by ’L’ep . The ratio /’tt? = —__I]:g Me) z
° Ve
assuming TR T, = T, = Tp . Therefore, §, @Tls e =-'r-‘g ';":'j;g .

— -2
If WEZ O(1), then the ratio of the terms is < O(10°) and the third
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term is < O(€) and can be neglected. If @T 2 O(o) , the term
should be kept in the model. For any W% , 1;\ | £00) . The
ratio of the fourth term on the L. H.S. to the first term = A, . But
A, = (Y %)2 and S‘e‘-‘—‘f—'d Sep £ | . Substituting: Vo= Sep - 1o*

Tep °
% (1ot D) L o A% (Bap 465 (1416%2)5 D0 200D . n many

circumstances, AQ may be small, but the fourth term and hence the
entire L. H. S. of Ohm's law is kept. The R.H. S. (right hand side)

may be simplified however. Note that p, =n; ,,QT = We& T: £ pe

and | JVFI x /V(]’la*n)/ /V[’e I . It will be shown that the
largest terms in De are = f;&; if VYTe 1is not great.

pol< &Tc 7 ne geaq L Me 3‘34.?
Thus,”?elfv —é—/yl and mIEReI,\,?IE;] . Also
->
note I; Izé O, U 6 . Compare the pressure terms in the last ex~
pression on the R. H. S. to the é—?‘—l.e VPe term; the ratio is £ & we,
For wt X< O(l) these pressure terms can be neglected as being

£ 0(€) ; in any case, under the assumptions used, the ratio < O(l).

- h'? - @ -_é
Compare the term involv1ng Re in the last expression with U X B ;
the ratio is £ S,w T -ge ,6 S, wt and the same conclu-

sion can be drawn. The expression - éﬁ-VTél £ % [vTel., m

!
turn, v-§ Iviel = & IVPel . Since the load parameter is
near unity, i?' = | WXxBl . The remaining comparison is that
— —
f ene | VPel to IL?XCBI or é |vTel to [ExB1 . As-

suming the scales of the electron and ordinary temperature gradients
. 2

_are nearly the same, f& |VTel = o 'T IVPl and ‘VPI = LU B

The ratio of thesc tcrms is thus o e le/r ae O; B = ehe WeTs |

This ratio at most is O (104) ; under most conditions it will be

<0 (107%)
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Now the model equation can be formulated. For an equilibri-
um situation, wt < O(I) » an adequate model good to at least 0(€)
e ;+ZX Wt ~Ao/_‘\;'7= Os (E~ —(ijéj
Since ;’ is perpendicular to E to O(ot) , and since a simple
model is desirable, the second term in the operator z will be ne-
glected. The final result is:

j"_’_ ;’XQT%_—_ o'(?+&>x§>),

where 3 —
w = We,

T =1 [+ wete)?+ 22 8. ] [1+ (weTe)*~4, ]

and 7 = 0o [1+ (wele)*=4,]" LI+ (wete) ],

For 7T >0(1) , the basic equation simplifies to:

= = —p

7 +?x el — 8o (;’xw?"c;))( Wefo = B, A" =

= 0, (ExTxB) -8 (A7) xweTo,

where  § = 2oty 5o LF %’:& <O (VIe).
ea

<

Comp#ring the L. H.S. of the above equation to the R. H. 5., the term
involving 6‘ can be neglected. It is to be noted that if large gradi~-
ents of the electron temperature exist, say, near the electrode sur-
face, a more complete model should be employed. The L.H.S. can

be written:
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_;,
/ [1+ & (weo)® - /+(wewa] +j xwet, [1+%2 1+(weu) =]+

—_ (3 . (,uc’C’o) C(Je’C'o [5 + ( )+(w 'C'e)]

The ratio of the third expression to the first is of () , to the sec-
ond of 0(%‘%) . It is neglected. @ The model equation is:

a2 — -

T+ixwt= 0 (E+¥xE)

where —s —_—
we g,

T = To [1+ 8 (wetol]”
and O = Co [1+ & (we ’(,’o)aj“’.
This model is qualitatively the same as the previous one,and thus a
single model equation describes Ohm's law. The restrictions as to
its validity are to be carefully noted and comparison made with final
resulté. The parameter §, accounts for ion slip, o+ ~thermal
diffusion, and A, - the second approximation. The general forms

gt

for T and O in the model equation for any W are:

2
2 (. 2
— = ——t
U =7 D Ly ,+cwe?e)?’] [l + g‘? (weTo) — /+(we?.'¢) .]

A o —j
|+ (w.,'ce)zj .

O =06 [1+ 6 (wet)?

Model Equation for Elcctron Encrgy

- For the purpose of this discussion, B =~ 1 web. /m. 2, We ==

Oll/sec. , and U £ lO'zrn° /sec. The ratio of the first term in

s 4 . - < -2 :
Fe tothelastis [|g)/fuwe £ [0 ; the ratio of the second to the
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-7 z -2 —p ~p >
lastis UfweS [0 as 157(;{_(?/ = ‘% . Thus, Fe = -—ﬁe-g (E-HAXB’).
The viscous part of | )Sel s ‘}_3__;’ = Te Pe Va"f( ?"'?Xa?)l ~

3 [4
Te (pe 17T -0WPB") % Te (pe £ -8%) as ZEB2|. But pul=~ M°p |
therefore, the mechanical term in lPel is of O(M aP") 0(04)

smaller than the electromagnetic part, giving lPeIA-neMeu wx "'fewgz.

Since 1 ,m, uE(E:E/Pe ~ M w?:a m"’* £ O(o )J

—
The terms in Fe are now compared:

e|VTel +lot] '%Ielfl + 3’2' i&ea @q

Ol
i
s
ol

Tei=2) ~ ~-2 eA . .
where ?‘[ ’~ UPpewT = x (B . The ratio of the first term to

the others ~ 1 I Wt < OCIO"’) for [VTel= Te. -11;—&, ,
A

}Vp} & O U o . This term is small unless large electron

temperature gradients and Hall parameter exist., It is assumecd

R, = kI, [«rj-%= 0, (E+TxB)],

-
It will be shown later that Re is of small importance. Next, the

"RA’ | ~*
expression for _\Z is simplified. First, Sea -P—E < ene @
and £ weTtea™ & WT & ;s . Thus,
—> % L 7 [vp]
{\/‘"I~€Ne12)+g° ne1;1+ta e *
— —
The terms proportional to J and H. are negligible compared to
- le ; the terms involving pressure gradients are of O(X) com-
eNe 2’ g g

3 . - - -9 _9
pared to the other terms. Since interestis in We  and not V/_

- 2 —=> —>

directly, it is sufficient to say VY, = g_;n';})( w; Tia and
—_ ] - —P ——>

We =—zn, (3' - g"i X We'C'o).

=

-~ - —_—p
The simplified expressions for Fe , Pe , Re , and We

-
can now be substituted into the energy equation. Note that —-— OOOJ
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The expression Pe VU = pe V-U ;&{ = v . The
energy equation now is:

(7 - 67 xwe)  (E+TxB) = 732 + Qg +

Me Te-T,
+m§ iz 3R =2 4 WV eie) 4+ (iet ATe) V- (1 T) .

Tek
[2 —>
The L.H.S. & }/ryr = U-Vp . The last two terms on the R. H. S.
~ = i%) ~ 0(€) compared to the L. H. S. and can be ne-

RT.
glected. The heat flux term is of O (e’—l.'&—% = 0(6) compared to

the L. H. S.; it may also be neglected. Perhaps in the electrode

boundary layer the flux terms should be considered. Combining with
- A
)

—
the model Olun's law and neglecting (J v weTh

cowmpared to

J'Z (wets)? (the ratio = O (%) ):

. -l - Me
5 (14 6 (et ] 2 Qr+me 2 3p T

The a.b’ove model equation is accurate to near O (€) except in
regions of very large electron temperature gradients. Assuming that
_‘I;Q =T and g = Ma and neglecting the radiation term, an ap-
proximate upper bound on the electron heating for large Wt 1is ob-
tained:

—_ —_— -2
1?—-5-'!) = (1I-K)* M wt® = (1-0*ME T [ 45, T ] |

Since the parameter 50 does not vary significantly, the effect of
ion slip is to limit the electron temperature elevation for large wt
For M fixed, the maximum of the R. H.S. is for W7 =8 = 10 or 1o H

hence, the restriction given on page 64. It is unlikely that such a

large, or larger, value of the Hall parameter can be obtained in a



-70-
physical situation due to operating restrictions of high pressure and

limited field strength.

Comments on the Combined Fluid Equalions

As noted in the previous section, ’—5: = pe I . The ion
stress will be of the same form; the ratio of these stresses to the
atom stress is of O (&) ; hence, the pressure and viscous stress
tensor for the fluid is essentially that for the atoms alone. The same
applies to the density and temperature. The effects of the seed neu-
trals are of (O (f’o/(ap) £ 10—2 and thus the fluid equations are nearly
the equations for the parent gas alone with added electromagnetic
terms -- the multicomponent gas equations degenerate into single
fluid equations. The model equations for Ohm's law and the electron
energy (i.e., Te ) serve as constitutive relations.

Next, examination is given to the problem of calculating T; ,

To s Tp , & , and the seed ratio.

Calculation of Temperature and Number Densities

The elastic energy exchange of species 3, is approximately

given by:

L m; m g 3/@(7;—7}4)
ety 2 -5 2 nirm)® T,k

Here, the effects of drift velocities have been ignored; this is a good

[

; I
approximation if )-LTJ-Z l << ( Bﬂn)/a
M p

o . . Ly e gz?
This criterion for ions gives [>>F M &, @w?¥ ; for electrons,
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—2

—_ 4
I 2 L e T . | > J—Mzgzc?(z wt
l>>g M T, 5 ; and for atoms, > 3

The last two are easily met, but for large (T the effect of ion

slip should be included. This correction is not unduly important,
however, and the above expression is used, but for ordering only.

In any case, it is to be noted that the above equation is valid only for
monatomic species and that the collision integral has been evaluated
only approximately except for the case of species of equal mass inter-
acting under a Maxwellian potentiai. 'LI'hen the above expression is

: .2
exact if 1;, is replaced by 7; + )-"-‘}371?- , and similarly for

Ta %0,

The momentum exchange is given approximately by:

[j} = - n. 25'4525 (iﬁ?-iIZZ).

7 } R Gk
Consider the cases [ # @ . Besides the term Qd;. , the
other significant terms in the energy equations are = PJ V-—l:t‘9 =
= Vl}' 467; V-“(? for the atoms, and a like term plus the term
0T (E+TxB) = 6. TF % ~ 5. 0% p V.0
for the ions. The latter mentioned term is important only if
o GESP/p, & Sa@TY2 T 0O0).
The ratio of Q&% to these terms must be less than or equal to

O(l) ; this criterion gives limits on possible temperature differences.

. . o 4 ) -
The comparison is made assuming 73 ~ 10° °Kto 10”7 °K, V-wz

.103/sec. » cross-sections g}k are eguivalent to those given on page

1
64, and the number densities are in the following ranges: Me = 10 Zlcc

to 1015/(;(:, o =< 1014/cc to 1016/cc s Ylp 2 1018/cc, The results
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are To=Tp =T to OU0*), Te=T it ne>> 103/cc

_ -5 —2
or L >>I0 " S0 W

T , and Te=T. if ne°7->>’0“5‘ouj%z/cc

It can be said that T: =T if T is not too large, but as W& —> 8 2
this can be only so for a restricted range of the ionization ratio of
0(10-4) ( wt and Te cannot be large for larger values of ¥ ).
If necessary, the ion energy equation can be included in the model;
here, it is assumed I: =TT .

A comparison is now made to estimate the relative valucs of
u"'?, and -TI:’J;, . For neutrals, the momentum equations of the
species[241 give the criterion l[:[}/ < IVF('? l ; this must hold for
every AR . Consider (; =0, k= P . then I%Z«u'},’,lélo-slVglz
1 cm.sec. The maximum flow time 2 lm-/l Da ;"}g 2 10—2 sec,,
giving a maximum diffusion distance of seed neutrals in the parent gas
of about 10—2 cm. Ths can be neglected; the only possible cause of a
change of the seed ratio on a streamline is consequently due to —\_/: .
For wtT £0(1), this can also be ignored. For large WT , the
transverse diffusion velocity = & wt u* . But since large Wt can
occur only at low to moderate electron and ion number densities, i.e.,
at a relatively low degree of ionization, again diffusion effects are
small and the seed ratio can be regarded as a constant on a stream-
line.

Since only the two temperatures | and Te are required,
then Ne and the excited state populations given as functions of the
seed ratio, p T , and Te closes the system of equations. If

the electron quantum states are in equilibrium with each other at the

electron temperature, then Ne 1is given by the Saha equation and the
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population of levels by the Boltzmann distribution.

The free electrons will have a Maxwellian velocily distribution
for & 2 /0—.6 ; it is assumed this holds[lgj. Since the collisional
excitation and de-excitation cross-sections for the upper energy levels
of an atom are large, they are usually in equilibrium with the free
electrons. For an optically thin gas, singly ionized, a level with
principal quantum number N isin L.T.E. (local thermodynamic

8 13 7
equilibrium) with higher levels if p, 2 7x/ol‘ N 7% (—’%) z/cc

where Iy =13.6ev.(see reference 29, Ch. 6, p. 148). This gives

N

min I?—Lz Ne with Ne in per cc. The lower levels may have

an equilibrium population without L. T. E. if the corresponding absorp-

tion lines are oplically thick; resonance lines are thick at the core if
N, Ho 2 4X qu (‘&T/”‘o IH)'/Z/('Fa ;\o)

where ‘Fa is the absorption oscillator strength, Ao is the wave-

length in cm, Ho is in cm, and nNo is in per cec. (See refer-

ence 29, Ch. 6, p. 152.) This means Npo Z lOlz/cc for K, =

10 cm; this criterion is easily satisfied. For a thin plasma, the

Al

thermal energy level limit reaches the ground state if

Ne 2 6x10" (Is/l’;‘p)3 (JeTe/I,_,)y”/ca

1014/cc for alkali seed[30] ). Since the resonance lines (princi-

(=
pal series, 2P3/a, Y 2 Sn/a. ) are optically thick and transitions
(first of the sharp and diffuse series) involving the first excited state

( EP%J Qa ) have large absorption oscillator strengths, the above

" A thermal level is one in which the radiative depopulation rate is
much smaller than the collisiounal depopulation rate.
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mentioned limits on Ne are too stringent and can be relaxed by one
or two orders of magnitude. Here, it is assumed that the electron
states are in equilibrium with each other. A further discussion on
this point is given by Kerrebrock[ 181

The continuum radiation is thin as sccen from the following
criteria given by Wilson[?’O]:

1) Photo-ionization absorption is negligible if Ho 1o £
IO'6I53 N(')/Oe where Ho is in cm., "o ::Ln per cc,
Is inev, 9 is the Gaunt factor =~ 0.8, N () * is the quantum

number of the ground state, and Ug is the number of optical elec-
trons.

2) Free-free transition absorption is negligible if o nea
= 4.){1037 (.&Te)z/2 where &Te isinev, Ho incm, and ne in
per cc.

3) Electron scattering effects (based on the Thomson coeffi-
cient) are negligible if ko Ne < "5-){1084 where o is in cm and
Ng in per cc.

All three conditions are satisfied. Essentially the same con-
clusions on the optical depths of the various transitions are given in

reference 31.

The electron number density is given by Saha's equation:

3
ne” = ET,? no (2mme £Te /8Z)72 exp (- (Ts-a1)/ 4Te),

where the b} are partition functions, 11 is Planck's constant, and

Superscript numbers refer to term energy levels: (1) for the
ground state, (2) for the first excited state, etc. See, for example,
Herzberg, reference 35, p. 72, for Ki.
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AT is the lowering of the ionization potential due to the presence of

No+n; n
neighboring particles. Let the seed ratio be Js= =3 = "etle
g gPp np ip

— P —— Ne mo
where HNp= AR o Then o= Vip (‘hp‘ba.'gblo) . Let the degree

of ionization ”e/(c)’snp) =d ; then

d*/-d) = 2% (’*f’-.___f_)’ﬁz(arrmekTe/h‘)a/g exp (- (Ts-8T/4Te),
o 5

The lowering of the ionization potential is given by[zgj
2
AT = e”/(41€20).

Since the excitation energy of the first excited state of the ion,

E:;(z) = (1o cr) » the ion partition function approximately equals the

)
degeneracy of the ion ground state 15, D b= 94-“): (2L:+1)(2 5;“21,)): [,

where Lim and S, " are the total angular momentum and spin
quantum numbers. In calculating the atomic partition function, it is
assumed that the levels for n 2n’  are nearly continuous and the
excitation energies E‘,(M - are known for all configurations with
angular momentum quantum numbers 0% ,p,,(")Sn ‘2, n<n!

Then|:29:j

_ “mu-x (‘N) ) .
b°:,,,2=, 9. EXP(—'E, AQ’IE) =

n’l TIn 3/2
= 9. exp(-E"m) + 5 9.0 (F2) 7 exp (- (Te-aTVAT).

n=|

The atomic alkali ground state is 2 51/2 » giving 90(": 2=~ by -
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APPENDIX B

Absorption Coefficients

1. Resonance Lines. The profile of an alkali resonance ab-

sorption line is the result of six mechanisms: Stark broadening,
natural broadening, Doppler broadening, resonance broadening, Van
der Waals broadening, and Zeeman splitting. Of the diverse broad-

ening mechanisms, all but the Doppler effect give a dispersion pro-

skesk

file; their net effect is had by simply adding the half-widths of each.
The resultant overall Lorentz profile is enfolded with the Gaussiah
Doppler profile by a convolution integral of the two profiles; this pro-
cedure must be done for each Zeeman component in each direction
(aligned and perpendicular to the induction). It is to be noted that al-
though the oscillator strengths of the various components are aniso-
tropic, the net oscillator strength is isotropic, i.e., the total absorp-
tion is the same for every direction. This applies separately to the
R, - ®Sy, and Py, - ®S); transitions. The amount of Zeeman
splitting is of the order of the electron cyclotron frequency: We =
10" /sec. for B = 1 web. /m.%. Since the line frequency =
1015/sec. . this gives Zeeman splitting of O(/Aa) . Broadening gives
a half-width of O( IO_ZAD) to O (IDF‘I Ao) . The Zeeman components
can be considered as independent lines. Since interest here is in an
integrated net absorption coefficient and since the radiative transport

is given only approximately, the effect of Zeeman splitting is ignored.

A
b

All quantities are dimensional.

ale als
3

"o 3 - - . - - -
This is equivalent to adding collision frequencies based on optical
cross-sections. :
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The expressions for the various half half-widths are taken from
Griem, reference 29, Ch. 4.

Stark broadening results from the fluctuating electric micro-
fields produced by ions and electrons. Broadening calculations are
usnally made by the use of one of two limit cases: the static limit or
the impéct limit. Consider a characteristic collision time for the
perturber: an impact distance divided by the average perturber ve-
locity. If this time is much larger than the radiative lifetirne*, tile
perturber may be regarded as stationary; this is the static limit. If
the converse is true, then the perturber interrupts the wave train;
this is the impact limit. The impact limit gives the Lorentz profile.
Under the conditions in a MFD generator plasma, the impact approxi-
mation holds for the electrons, while neither limit holds for the ions.
However, calculations show that the ionic Stark broadening is at least
an order of magnitude below that of the electron impact broadening,
which in turn is relatively small except for the larger electron num-
ber densities. At these densities, Te tends to ] and radiative
effects become less important. The ion effects can be ignored. Let
dimensionless, reduced electron temperature and number density be

defined by the following:
— 3 — \ 1€
T. = Te/UO°K), hne= ne/(10' %) .

If W3 denotes the half half-width in Ao » then Table 4-5 of ref-

‘erence 29 listing the Stark profile factors is approximated within

e

If another perturber is acting in the impact limit, this time should
be considered as the reciprocal of the impact half-width in frequency
units, i.e., the time between ‘'optical impact collisions.®



about 2 per cent { 2.5 < T, < 10 ) by the following expres-
sions:
. -3 — 0.30
for Lil, Wj;= 6.08XI0  He Te
-3 . — 0.30
for Nal, Wy= 6.93 X0 ne Te .
-2 - 030
for KI, Wy 2./8 Xio Te N
-2 — 0.945
and for CslI, wWa= 5oo Xjo hele .

If induced transitions are ignored, the full half-width for
natural broadening in angular frequency units is given by the Einstein
spontancous cmission coefficient. In this approximation, the half

half-widths in A° units for Lil, Wy = 4.5X10™° ; for Nal

.

Wy s 55X)07° ; for KI, w3 5.9X 10 ° ; and for Csl,
wys 72 X 10_5 - It can be seen that natural broadening can be
neglected.

If Ao denotes the wavelength in A “  of the resonance

akT«ZnZ) Ao,

line, then wy in A® for the Doppler effect is ( o c2

Let 'F denote the absorption oscillator strength of the
resonance line and Wo the angular frequency of the line:
Wo Ao = 2T C - The half half-width in angular frequency units,

W , for resonance broadening is ‘given by:

% e* f
= 377 (.900,/30{2)) : (411‘50 me Wo )
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in the impact approximation. It is valid if

%% 24
{ 2 2 47 E; meg Wo
No << 377 (3) (9, /30"’) ( e:‘Fe

1%)%

AT V2
where Up =4 (7}‘;,,’;) This is easily satisfied.
. The mean square radius of the first excited level of the emit-

ter in units of Bohr radii,
TS (2) @)
(R (2)) "2" E(a) [5 E(a] "Bfo (’& +))j'

The Van der Waals impact half half-width in angular frequency units
is given by:
% [ 9r%k® (R,“)°

l6 meB (Ep ‘ZJ)Z

w = Tl np Uola

g AT
(7

this need not be considered. If an impact parameter bm:n is de~-

72
) . A line shift equal to —% 1w is also had;

where 'USP =

fined by
TTTENE
b 91T ¥ 5 (RO(E))
min ~ @21z
- -l
the impact approximation requires Np << bm,.‘ ) . This is

easily satisfied. It is also required that the emitter-perturber col-
.. . .. : ) .

lision be elastic; this is so 1f #up/b,,,;,, £<L EP . This is also
easily satisfied. Typically, b, , = O(l0A®). This means the im-
pact parameter is hardly any greater than the sum of the atomic

‘radii of the interacting atoms. In the theoretical discussion leading

to the above formula, the interaction potential was approximated by
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the first term of a multipole expansion of the same. The small im-
pact parameter indicates higher order terms should probably be con-
sidered (see Griem). The above expression is deemed adequate for
the purpose of this study.

2. Continuum radiation. In order to determine the continuum

absorption coefficient, the oscillator strengths as a function of fre-
quency for free-bound and free-free transitions must be calculated;
this in turn requires knowledge of the atomic radial wave functions.
For atoms with LS coupling, the quantum defect method of Seaton and

[32,33]

Burgess seems to give good results. However, it has been

[21]

shown by Lutz that the total continuum radiation is a fraction of
the line radiation. Use of hydrogenic wave functions with effective
quantum numbers is adopted here; the error in the use of this simpli-
fication should be small. For lighter elements it will tend to over-
estimate the radiation loss;‘ on the other hand, neglect of line radia-
tion from the higher excited levels will tend to compensate for this
error. For heavier elements it may tend to have the opposite effect,
but still this method gives results good to within a factor of two[33].

/

~ As before, it is assumed that for N 2 n » the atomic energy

levels are nearly continuous. The effective quantum number for a

i i () , Y
level N is defined as No = (h R/ (Is-F, an)) ,

: 15 /
where R is the Rydberg constant, R = 3.29X/0 /.sec . Let No =

("IJ 1__\ (Is - E°l!l’)) 7 2 . . . Q‘
N, ,V's 5 = R (N,)°. The absorption coefficient, v (V) ,
[34]

is given by
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( V is circular frequency)
- - 3 )& )
for V>V,  oqm)= (47 B,) " (52) 6755 nod Ter

- h¥/kTe =

2hR 9+ _hR _
- e exp ( (Is‘AI)/ATe) ; é (N2 P (ﬁ'fe (No,,,,)a) *
n

+ 54 [ (7 ) -1+ 5 3 ,

b
where B = fine structure constant, iz7 3 n® is the number of
(n*)
the highest level to which transition can occur, i.e., No 2 (A;) s
.y -
and 9¢, 5 Y945 » 94¢ are various Gaunt factors.

The Gaunt factors are[36]:

- n -4
9pp = I-0.1728 (N,™) 72 -0, 0496 (N,"™) 7> i N"=00),

9.H,=' |- 01728 (‘ﬁ') [W(N""JZ"] if Nom>>l

g5 = [+0.1728 (R) $1+ 2&72[, hw ' (1- e "”/Z‘re)*l]}

s

— 7
9¢r = 1 + o.1728 (%)3(14- iA,,Tc).

/ . .
It ')/S'V (n*7/ n’) , then the sum term in o, disappears and

hy
the second term in the brackets becomes 345 (6 VhTe ]) where

hy ’/
S‘H:: 3_“ ,'V’='2) . As ]a:e-—-ao s 945—*%[+00864 ("")
The average Gaunt factor for free-free transitions, 3 7 gives the
effect of Bremsstrahlung.
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APPENDIX C

Numerical Procedure

1. Approximations in the formulation of the continuum radia-

tion loss. The continuum absorption coefficient times the Planck
function is integrated over all frequencies; the seed is taken Lo be KI

i5
with n'= 4, v'=206X10 /sec . The result is:

fo"“’c By dv = ;& (2¥) 0’ e noATe ep (- (1-an e -

v'1//§q.11+ 1‘4’(72} 'f——)%[é(,kreds)*

r20-3%) 6 (#5-8)13

where @
-X
G (H;m)= e’)z f x"e TdX,
7

Necessary accuracy (to within 7 per cent) is achieved by replacing the

expression in the braces by the factor 10; the continuum radiation loss

as used in the numerical calculations is:
Qr. = 10 (%= )93 = nokTe” “exp (- (Is- A1) J4Te)

. 2. Approximations in the formulation of the mean absorption

coefficients. The dispersion profile is of the form:

? 4‘77'Eo meC Ne (v_v°)2+%3 -7 (v-2a) %+ w:la

wa
xR

All quantities are dimensional.



“83-
Wa' - T

where Z 357 v = o7 . The cut-off frequencies are given
l
by: Ye-2Vp =2 (°<y He Vo wy ‘.w,a)ya + (073, He, w,)(z‘. A non-
Y
dimensional parameter is now defined: § = hV/ﬁTe with ga"' :.,-: s
)
E‘W':A%/JkTe , and fc.: }hﬁ“(;‘;HC%VP)/a Then
fa'f 3-’ - .
15 < 3
py = 18 51,([ (e™1) £°dx
- ce (5-5)% + §.°
@ 5 -1 _3
+ : [E _I) '.E Jf )
5. (§-5)2+8.° /o
and St
-] 15' 2 2.4 5, §F -2
= B EEET | e s2lse e e,
;o"gc
Note that §, >> 5. >> fw . Hand c\alculations employing certain

asymptotic representations for parts of the integrals in the expression
<§ £7
for p, were made for the ranges of parameters 3= ~ s
2 < 5 £ | , F'w-' LLL £ . For these ranges, the re-

sults can be expressed approximately by:

Xpy = 5, 25,5, 87 [2.59+.01(5-D+.062 (£-9) (£-3)7]
“[l.o +.22(f-6)(5-0.1)] 3.

-2
If §.< 10 , the above formula with £ = .0/ expresses part
of the sum of integrals; for the part corresponding to integrations
from .5"0—.01 to .fa*fc and $o +£. to £,+.0 | , the fol-

lowing is added to the expression in the braces:

2£° l

== [t () - g (£ 21

e



-84
(the integrations being performed with the numerator of the integrand
evaluated at § = &, ).

The integral in the expression for g was evaluated
using the approximation € 5 e";(e 5_’):: efa" € Tg) = eia_.l
(the error is roughly (5. %) ). The result was expanded in
powers of fcp ; it was found that the first two terms of the expan-

sion gave sufficient numerical accuracy for £c £ | . Thus,

2 4 _3

E‘, >
2 fn (B 58, e T [F6067 4 $ 8 (5reXsr0087 ]

3. Use of a finite number of streamlines. For computational

purposes, the flow field is approximated by a finite number of
streamlines. Let this number be N , with §; = KEI-, for i= IJN .
The variation of an arbitrary fluid property, F , with the trans-
verse variable is assumed to be given by a finite Fourier series in

the following manner:

N-2
F(S)= F+ (Fy-F)§+ ;an(XJm nm 8,

where

F.tx)= F(3),

1 C;KEFMH*P-I"[.V{T_(F;[_FI) for m=1, N-2 ;

N-2 N2

Z A Ain (nm‘ﬂ‘) —_

~
¥
il
H
Q
5
@
¥
x

Inverting:



The average value of F ata given axial position,
F=f Fds= 4 (Fi+Fy) + = by Ch,

where bm-__: 2’ ._2__8 e

and ng(E)c/E4 F. t+ 4 (F —F)§a+§ Co . (%)
R - [} F] N / ' mm m J

~]
(l~coe nTT5)
Z nm
" nIT

where —Frn =

let N-2 | N-e
L‘Eg‘ b | Lezmg'mbm3

Mz z=Li+le, Myzz-Lo Mis by Gi=2N-);

_ N
then F = Z M., Fn .
’ n=t

Since averaging corresponds to an integration, the error in
assuming a finite Fourier series tends to be reduced. The weighting
factors, M; » give roughly equél weight to the interior stream-
lines and half as large a weight to the two 'end' streamlines ( §;=0,/).

The method can be checked numerically by picking different values of
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N fora given problem and noting differences in the outcomes.
For a calorically perfect gas, T(’l) = 7:', h , this pro-

cedure gives for the pressure:

|
1 TdE = Yl s Mnh
PX=F ) Rux m? Rn Uxn

(Zeroth order terms are had by placing a subscript ''o'" on each vari-

able.) The pressure gradient is thus:

5/an
jx , Z En T Z Hn Q.)
where A M a
E-h - ﬁ Rh u’(u J
—_ 3’~ Mn‘lu
Hh - IA Rn ((I‘Xn)a
_ 1 JdA Mn hn
wi QT s 2 R

Applying this relation to the zeroth order core equations:

o Wron dUx,, dho; dux,
Tg‘-%' y,'):h z{/xx +ZEJJ£ ,ZH 37 = T Bz, + @,

Ypo Uxon dhoy Aho; Jax,
5'-:7 hon dX Uxm Z E ;/7; u‘x"‘h ZH’; dx Don @o u-Yon_,

where

Dcn = (J.OZ/DE),;‘ -

rd
Defining the vectors \ and W

—>
v = Luxo|JUxOZJ-~',Ux,,~3 "lau “'JLIDU —-’)
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— ﬁ
w= L7 ;°+G?0J ey T Bz tEs; Doy - @, Uxoy, "',DoN'Qo-uXox.l,

and the matrix [R] :

. b yo uXa* - |
s T GGt o ek Ao

13

E"A-N’ ‘ ‘For ;’: LN and A=N+,2 N;

t

uXo;-_N Hak 'for Z";NH‘,EM and k= I', N';

L}
Q(
o

L)
I~
o
an
13
on
-
!
=

N Ea*_,\g for 2’=N+},2IV ard A= N+, 2N,

dV_ w2
The fluid equations are given by the matrix equation [R] ax = w,

JV_ :'l——>
or 77 = [R] w,

This equation is first order and quasi-linear, yielding an initial value
problem. The averaging proccdurc is applicd to calculate P" , 3,
and Exo

4. Inclusion of the electron energy equation. For nonequilib-

rium flows, the electron energy equation must be included in the
above scheme. In the limit « —» o , the axial derivatives in the
radiative diffusion term drop, leaving only the transverse deriva-
tives. After a transformation Yy —> Ss , the equation can be written
in finij:e difference form with mesh points corresponding to the chosen
set of streamlines. At each derivative evaluation taken from the
given matrix equation during computation, the electron energy equa-

tion must be solved by iteration for the vector electron temperature
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distribution, the functions J  and E"Fo being redefined at each
iterative step.
It can be shown that the ratio of the radiative diffusion term to
the other term arising from the line radiation (corresponding to the

5 N
optically thin limit) =~ ( 2}—-'!-:6> . At the end streamlines, %—-’?: O(é);

hence the diffusion term can be neglected and the resulting algebraic
equations solved for Te . These values serve as boundary values
for the interior finite difference equation.

At the points §o =0, | , the value of H¢ must be defined
differently than that given on page 47 ; let H¢ = 5X/0’3<7b_l m  where
the boundary layer thickness is A )(lom3 m . The quantity

Tbi is known only within an order of magnitude; numerical cal-
culations show Lhat the results are quite insensitive to its precise
value.

Similarly, at the singular points where the induction changes
from a null value to a value of (J(I) , the gas may make a transition
from an equilibrium situation to a non-equilibrium situation and He¢

2
must be redefined., The inverse distance 'g." (He""}"a ) is added to

ot |
the definition of He ; the thickness of the transition is taken as

! T . .
=) Ho1g . Again, results are insensitive to the precise value of
l
g . For f;%; =0 , the value $,% —Z is used in Hc ;

as noted on page 47, Hc¢ is a weak function of the stream variables
away from the walls and the use of this value is a fairly good approx-
irnation for most of the [luid core,

5. Numerical method. Numerical computations were carried

out on an IBM 7094 digital computer at the C.I. T. Booth Computer



-89~

Center. Library subroutines available at the Center were used for
matrix inversion and for integration of the matrix equation. Matrix
inversions were done in double precision. The differential equation
integration subroutine uses the method of Runge-Kutta-Gill for its
starting procedures, Adams-Moulton predictor-corrector formulae.
otherwise. The subroutine features an automatic control of truncation
error; the starting procedure is used whenever the error control
changes the step size. Round-off errors are controlled by use of

double precision in parts of the subroutine.
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GRAPHS 1 TO 3"
Transverse Va,ria,ti‘ons of fluid properties for successive axial
positions. Comparison of equilibrium and nonequilibrium calculations.

The calculations were performed for the following conditions:

He

0.2m, Tgi =2.0,Tg =1.0,B8z = 0.7 web/m? K =o0.6,
B = 1.5, wall slope = 0.2, Pin = 3.0, Js = 0.01, Uy, =
|+ am2(2m) > hin = 5.65+2.0aim (W) .

Dotted lines indicate the equilibrium calculation, solid lines
the nonequilibrium calculation.

ale ot
Y

Note the following values:

X= Ole X=0.n X= o5e X=0.5n X=l.oe Xz100n

J= -0.791  -1.339  -0.784 -1.201  -0.736 -1,088
Ey= -0.612  -0.358  -0.508 -0.358  -0.476  =0.373
p= 2. 995 2. 959 2. 959 2. 782 2.814 2. 447
M= 0. 501 0. 505 0. 419 0. 448 0. 368 0. 416
LP. = 0.054 0. 093 0. 300 0. 487 0. 655 1. 024

(e = equilibrium, n - nonequilibrium, L P. is the local interaction

parameter per unit length integrated to the point in question. )

*® . . . .
Subscript 'o' is omitted. Subscript 'in' refers to entrance condi-

tions. -

R

The pressure, velocity, enthalpy, current, and electric field are

in nondimensional form. Reference values are [0* = 1 atm,

. ¥ . .
u* - 103 ml/sec, h = 106 rnz'/secz s 2* = 105 a111p/1112 , and
E¥ =103 v/m.
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TABLES 2 TO 12
Transverse variations in fluid properties for an arbitrary

axial position with specified pressure, velocity, enthalpy, seed ratio,

induction, and load parameter in a nonequilibrium situation.

Calculations were performed for H = 0.2 m, IQ =1,5, and
Dbl =2.0. Units are the same as those used for the graphs; see
the preceding pages. T* = 103 °k . A(// is the transverse

voltage drop across the channel in kv. Truncation error was held

to 10"4.
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TABLE 2

K=o0.86, p= 5.0 0 =0006 Ux= |.5+0.5unT8 h=55+ 1.5 smn &

Property r=01 s=%, % =27 5=X%%3 5= %,%
(1) B;=0.8 T=-1.5284 Fx=-0.44¢0, AV=0.1704, [#%] < 0.8
wT 0. 8062 0. 7864 0. 7706 0. 7548 0. 7447
g 2. 1467 2.3750 2. 5884 2. 7773 2. 8926
Te 2. 9567 3.0133 3. 0632 3. 1056 3. 1308
X 0. 2746 0. 1426 0.0232  -0.0851  -0.1520
E)/ 0. 3849 0. 6461 0. 8597 1. 0192 1. 1047

(2) B,=1.0, T=-2.2029, E=-06199, A¥=0.2142, [%]< 0.17

wT 0. 8743 0. 8648 0. 8560 0. 8453 0. 8379

o 2.5331 2.7702 2.9921 3. 1845 3. 3002
Te 3. 0586 3.1114 3. 1586 3. 1981 3, 2214
7x 0. 3556 0. 1879 0. 0310 -0.1118 -0. 2000
Ey 0.5075 0.8171 1. 0763 1. 2709 1. 3757
(3) B.=12, T=-2.9758, Ex=-0.8112, AW=0.2576 [jx/z] < 0.16
wt 0.9412 0. 9366 0. 9326 0. 9256 0.9199
o 2. 8891 3, 1440 2. 3752 3. 5715 3. 6886
Te 3. 1442 3. 1969 3. 2426 3. 2804 3. 3026
7x 0. 4574 0. 2369 0.0373  -0.1427  -0.2545
Ey 0.6210 0. 9881 1. 2937 1. 5234 1. 6476

(4)  B=1.6, T=-4.7624, Ex=-1.238¢, AY=0.3463, [jx5|<0.15

wt 0.9399 1. 0701 1. 0759 1. 0889 1. 0609
o 4.1990 3. 8077 4. 0334 4, 1511 4, 4057
Te 3. 4130 3. 3364 3. 3772 3.3977 3. 4435
5‘3‘ -0, 7070 0. 4007 0. 1486 0. 0649 -0, 3844

E,V _ 1.4193 1. 3050 1, 6889 1, 9237 2. 1949
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TABLE 3

,<=0.6) p=50 ¥s=0009, Ux=I[§5+0.5amn TS, h=5.54+.50 58

Property geol  g:h%  5-%%h  S%%  ¢-%%
(1) B:=0.7, J=~1.2705, Ex=-03504, A¥=0.14490, |ix5] < 0.20
wt 0. 7427 0. 7136 0.6923 0. 6725 0. 6603
o 1. 9802 2. 2244 2. 4512 2. 6566 2.7841
Te 2. 8527 2.9144 2. 9677 3.0136 3.0411
Fx 0. 2498 0.1273 0.0208 -0. 0763 -0. 1366
Ey 0. 3147 0. 5577 0. 7508 0. 8942 0. 9707
(2)  Ba=1.0,T=-2.2567,Ex=-0.5976, A ¥= 0.2149, |jx5] £ 0.17
wt 0. 8471 0.8357 0. 8256 0. 8136 0. 8054
o 2. 5704 2. 8237 3.0610 3. 2693 3. 3957
Te 3. 0053 3. 0590 3. 1068 3. 1473 3.1712
#x 0.3754 0.1983 0.0336  -0.1178  -0.2120
E, 0. 4986 0.8133 1. 0752 1. 2722 1. 3782

(3) B;=1.3, J=-3.4632, Ex=-06833, AY-0.2787, |#v5]< 017

wt 0. 9505 0. 9422 0. 9391 0. 9270 0.9244
o 3. 0778 3.3707 3.6166 3. 8567 3. 9658
Te 3.1195 3. 1756 3. 2205 3. 2633 3, 2822
jx 0.5732 0. 2858 0.0577  -0.1962  -0.3016
E, 0. 6478 1, 0650 1. 3952 1. 6621 1.7872
(4)  B,= 1.6, T=-4.8635, Ex=-1.2002, AY= 03459, |jx4] < 0.08
wt 0. 9497 1.0374 1. 0414 1. 0453 1. 0263
o 4, 0320 3. 8700 4, 1079 4, 2764 4. 4909
Te 3. 3056 3. 2737 3.3143 3. 3425 3.3785
Ix -0. 2205 0. 4008 0.1348  -0.0486  -0.3984
'Ey | 1. 2457 1. 3095 1. 6961 1. 9674 2. 1959
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TABLE 4

K=0.6, p=3.0, §52 0006 Uy=1.5+0.56in7SE, h=55+15anm¢

Property  e.g S=h%  t=%% 5k r=%Y%
(1) B;=0.7, T=~1.6123, Ex=-0.4414, AY=0.1499, | /5] < 0.1 6
wT 0. 8854 0.8782 0.8711 0. 8612 0. 8539
4 2. 6483 2. 8971 3.1279 3.3282 3. 4488
Te 3. 0408 3. 0936 3. 1404 3. 1800 3. 2033
Fx 0. 2587 0. 1372 0.0239  -0.0806  -0.1455
Ey 0. 3547 0.5716 0. 7529 0. 8895 0. 9621

(2)  Bz=1.0, T=-2.8694, Ex=-0.7494, L¥=0.2149, [J35]< O.15

wt 1. 0339 1. 0336 1. 0336 1. 0292 1. 2048
o 3. 3852 3.6668 3.9119 4, 1166 4. 2374
Te 3..2062 3. 2593 3. 3040 3. 3406 3.3620
;x 0. 4296 0.2178 0.034z2 -0.1319 -0. 2350
E}, 0. 5211 0, 8271 1. 0788 1. 2690 1.3721

(3)  Bz=1.3, T=-4387, Ex=-.0978, Ay=0.2800, | #4]X 0.2

wt 1. 1472 1. 1614 1. 1623 1. 1642 1. 1600
o 4, 0967 4, 3481 4, 6187 4.8074 4, 9364
Te 3. 3501 3. 3942 3. 4411 3. 4734 3. 4953
Jx 0. 5354 0. 3221 0.0290  -0.1699  -0.3299
E, 0.7292 1. 0773 1. 4107 1. 6415 1.7789

(4)  B,=1.6,T=-6.1381, Ex=-1.4757, AV=03448 |jx4) < O.12

wt 1. 2523 1. 2676 1. 2681 1. 2702 1. 2708
c 4.7001 4. 9691 5. 2615 5. 4605 5.5671
Te 3. 4653 3.5114 3. 5610 3. 5944 3.6123
jx _ 0.7513 0. 4477 0.0193 -0. 2609 -0. 4145

0. 8939 1.3241 1. 7430 2.0294 2. 1799
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TABLE 5

N=0.8, p=40, ¥,=0.009, Uy = |.5+0.54nT8, h=55+.54mn5

Property  g.p S=%,% $=%,% §=%,% $=%,%
(1) B,=0.7, T=-0.4898, Ex=-0.2634, AV'=0.198], |}/5] < 0.47
wt 1.2185 1. 1162 1, 0453 0. 9820 0. 9445

o 1. 4050 1. 6468 1. 8696 2. 0882 2.2318
Te 2. 6545 2, 7305 2. 7943 2. 8529 2. 8895
Ix 0., 2268 0. 1129 0. 0195 -0. 0691 -0, 1253

Ey 0. 5047 0. 7957 1. 0021 1. 1510 1. 2282
(2)  By=1. 0, T=-0.8414, Ex=-04533, AW=02846, |434]|<039
wt 1. 3656 1. 3085 1. 2602 1. 2099 1. 1771

o 1.8183 2, 0438 2. 2601 2. 4702 2. 6083

Te 2. 7880 2. 8478 2.9018 2. 9520 2, 9837

Ix 0. 3247 0. 1745 0.0358  -0.1017  -0.1919

E, ‘ 0. 7934 1. 1476 1. 4292 1. 6422 1. 7564
(3)  Ba=1.3, J=-1.2625, Ey=-0.6722, AW=0.3711, |I*/5|< 0.35
wr 1. 5066 1, 4714 1. 4360 1. 3943 1, 3651

o 2. 1818 2. 4043 2. 6196 2. 8254 2, 9603
Te 2. 8899 2. 9429 2..921 3, 0375 3. 0665
Jx 0. 4355 0. 2415 0.0521  -0,1389  -0.2664
Ey 1. 0706 1. 4994 1, 8573 2. 1346 2, 2865

(4)  By=1.6,T=-1.7459, E;=-0.9135, AY=04575 |735]|< 032

wr 1. 6339 1. 6115 1. 5842 1. 5483 1.5218
o 2. 5135 2. 7358 2. 9513 3. 1542 3. 2866
Te 2.9774 3. 0242 3.0706 3. 1131 3.1402
Fx 0. 5564 0. 3142 10,0698  -0.1782  -0.3454
' Ey 1. 3437 1. 8504 2, 2852 2. 6268 2. 8166




-100-

TABLE 6

K=0.6, p=3.0, ¥520009, Uy=|.5+0.5.0mTE, h=55+].5auTE

Droerty  §=0l 5=k %  F=%%4  £=4%  &=%%
(1) B,=1.0,T=-2.9147, Ex=-0.7267, AY=0.2145, |x4]< 0.16
wr 1. 0074 1. 0051 1. 0029 0. 9963 0. 9906

log 3. 4165 3.7108  3.9700 4. 1892 4.3198

Te 3. 1440 3. 1967 3, 2416 3. 2788 3.3006

Ix 0. 4535 0. 2331 0. 0383 -0.1402  -0.2518

Ey 0.5131 0.8224 1. 0775 1. 2706 1. 3754
(2)  B.=13, T=-44040, Ex=-1,0722, AW= 02797, |#x5| < 0.12
wt 1. 1186 1. 1316 1. 1581 1. 1286 1. 1257

c 4,1271 4,3824 4. 5093 4. 8726 4. 9942

Te 3. 2806 3.3231 3. 3437 3. 4029 3. 4224

ix 0. 5010 0. 2849 0. 2653 -0. 2541 -0.3974

E 0.7471 1. 0938 1. 3230 1. 6679 1. 7979

(3) Bz=1.6, T=-62606, Ex=-1.4230, AY=0.3440, |Ix/5]| £ O0.16
wt 1. 2248 1. 2318 1. 2068 1. 2210 1. 2285

o 4, 7085 5.0179 5. 4667 5. 5888 5. 6491

Te 3.3862 3. 4363 3. 5068 3. 5264 3. 5362

Ix 0. 9676 0.5714  -0.2358  -0.3087 ~0. 3471

E)« 0. 8187 1. 2857 1. 8184 2. 0401 2. 1551
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TABLE 7

K= 0.75, p=%40,/5=0.009, Ux=1.540.52inT8, h=55+.5smyc

Property e.o,l t=W%  S=%% %% %%
(1) B,=2.0, T=-3.5334, Ex=-1.41 84 AWY=05374 Jik |< 025

wT 1. 5893 1.5823  1.5652 1. 5511 1. 5342
o 3. 3470 3. 6005 3. 8547 4, 0498 4. 1885
Te 3. 1635 3.2128 3. 2609 3. 2970 3,3221
#x 0. 8684 0. 4842 0.0630  -0.2633  -0.5197
Ey 1. 5319 2. 1479 2. 7006 3. 0944 3.3316

(2)  B,=2.5,T=-5.0143, Ex=-].9508, AY=0.6624 || <037

WY 1. 8040 1.7829 1.7118 1. 6577 1. 6892
o 3. 6820 3. 9751 4, 4014 4. 7552 4,7193
Te 3. 2366 3. 2929 3.3714 3. 4335 3. 4281
Ix © 1.8631 1.1853  -0.0030  -0.9642  -0.7363
Ey 1. 4775 2. 3845 3. 4154 4. 1142 4, 1820

(3)  B,=3.0, J--6.6628, Ex=-2.5127, AY=07914, |#/5]<0.62

wr 2. 0615 1. 8564 1. 8126 1, 8149 1. 8185
o 3.8120 4. 5940 4. 9648 5. 1166 5.1854
Te 3. 2686 3. 4146 3. 4804 3. 5079 3. 5205
Fx 4. 1569 0.8254  -0.3935  -0.7645  -0.9128

_E} 0. 5041 3.2292 4, 2676 4. 7681 5.0124
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TABLE 8

K=075, p= 2.5, ¥5=0.009, Ux= |.5+0.50n 75, h=5.5+|.56a7 5

Property  geol  SW %% 4%  c-%%
(1) Ba=2.0,7=-4,2387, Ex=-l.6424, AY=0.5364, l#4] £0.36
wt 1. 8938 1. 8107 1. 8086 1. 8025 1. 7788

g 3. 9586 4. 4315 4. 6409 4. 8062 4, 9688

Te 3. 2607 3.3489 3. 3881 3. 4186 3. 4471

I 1.5257  0.3969  0.0405  -0.2533  -0.6209

E, 1. 1993 2. 2233 2.7123 3.0791 3, 3540

(2)  Bz=2.5, T=-6.1004, Ex=-2.1769, AW=0.6768, |#1/5] < 0.32

wt 1. 7146 1. 9610 1. 8968 1. 9393 1. 9205
o 5. 6936 4.9873 5. 4276 5. 4101 5. 5584
Te 3. 5693 3. 4636 3. 5408 3. 5423 3. 5683
#x -1. 9346 1.1059 -0, 2444 0.0535  -0.3842
E, 3, 2612 2.5195 3.5149 3. 6858 4, 0162

(3)  B;=3.0,T=-7.8033, Ex=-2.8246, AV=0.8/04, |#/4]|<0.13

wt 2, 0562 2.0873 2.0799 2. 0685 2. 0548
o 5.3237 5. 4583 5.6811 5. 8634 5. 9904
Te 3. 5315 3. 5616 3. 6047 3. 6393 3. 6622
x 1. 0082 0. 8708 0. 1837 -0. 4201 -0. 8861

E}, 2. 6448 3.2504 - 4,0234 4,6164 4. 9785
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TABLE 9

K=0.6,p=40 );=0.009 Ux=|.5%0.5nTS h=55.5amnrmrs

Property w=o| - E=W% %% Sk _ S-%%
(1) Bz=2.0, T=-7.8189, Ex=-1.7895, AV=04284 |#4]<0.26
wr 1. 2779 1.2184 1. 2270 1. 2293 1. 2316
o 4. 4508 5.1222 5.3773 5. 5827 5. 6818
Te 3. 3682 3. 4775 3. 5177 3. 5498 3. 5652
7x 2. 0268 0.3604  -0.0288  -0.3782  -0.5376
Ey 0.6614  1.7298 2. 1953 2. 5488 2.7252

(2) 62'52.5,, J=-]l.

134, Ex=-2.4596, AY=05400, |#/75]<0.10

wt 1.3281
o 5. 5532
Te 3, 5542
;‘x 1.1279
Ey 1. 4753

1. 3453
5. 8365
3. 5991
0. 6228

2.1264

1. 3570
6. 0832
3.6381
0. 1462

2.6906

1. 3614
6. 2813
3. 6691
-0. 2916

3,1232

1. 3546
6. 4464
3. 6941
-0, 7742

3. 4166

(3)  B2=3.0, J=-I5.709, Ex=-3.0594, AV=0.6394, |#345]<0.19

wv 1.4128
o 6.3312
Te 3. 6801
x 2. 8236

Ey 1. 3887

1. 4210
6. 6896
3.7358
1. 8571

2. 2702

1. 4042
7. 1596
3. 8056
0. 1548

- 3.2397

1. 3479
7. 8764
3. 9054
-2.9236

4. 3049

1. 4339
T.3023
3.8316
0. 1873

3. 7897
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TABLE 10
K=0.6, p=#.0, £5=0.009, Bz=2.5

Property s=0,1 gz%% ;:%’7/4 $‘=’/3,2/3 L= 4/9,%
0 Ur=Ui, T=-]1.134, Ex= -2.4596 AV= 05400 |#44] < 0.]0

wt  1.3282 1. 3453 1. 3570 1.3614 1. 3546
=4 5. 5528 5. 8365 6. 0832 6. 2812 6. 4464
Te 3,5541  3.5991  3.6381  3.6691 3,694l
F% 1. 1297 0. 6227 0.1461  -0.2918  -0.7743
Ey 1, 4747 2. 1264 2. 6907 3.1233 3. 4166

(2)  Uy=Up , T=-6.1737, Ex=-2.03068, AY= 0.3719, |7/ ]<0.29

wT 1. 6479 1. 6065 1. 5730 1. 5881 1.5961

o 4, 1257 4, 5496 4,9298 5. 0420 5. 0978

Te 3, 3202 3.3958 3, 4611 3. 4809 3, 4908

Ix 1. 7952 0.6783  -0.3003  -0.4352 -0, 4990

Ey 0. 4115 1,3278 2.0309 2.2954 2. 4319
Z 1.5+ 0.5a0nT§

u,

Uz

11}

.05+ 0.35 4n1r ¢

hz 5.54+1L5an 77t
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TABLE 11

K=0.75, p=4.0, §s=0.009, Uyx=1|.05% 035475, h=5.5+1.50imT§

Property  gio0 gk W% sk 5%
(1) B,=2.0, T=-1.9998, Ex=-1182], AY=0.3717, livyy | <0.35

wt 1. 9246 1,9049  1.8758 1. 8335 1. 8003

o 2. 6728 2.8848  3.0919  3.2907  3.4248

Te 3.0148  3.0614  3.1059 3.1478  3.1754

Jx 0. 6893 0.3994  0.0964  -0,2231 -0, 4481

Ey 0. 8555 1.3824  1.8447  2.2228  2.4410
TABLE 12

K=o, 75, p= 2.5, Js= 0.009, Uy =1.0510.350im w8, h=5.5+1.56nTT X

Property £=0,/ §=/4,% $=52.,%  5=4,% =%, %
(1) Bz=3.0, T=-44616, Ex=-2.3248, AY= 05492, |}35)<042
wr - 2.2625 2. 5965 2. 4806 2.3060 2. 4187

o 4. 7117 4. 1840 4, 5485 5. 0793 4, 8431

Te 3. 4281 3. 3362 3. 4108 3. 5104 3.4713

Ix -0, 8598 1. 8573 0.4928  -1,5202  -0.4682

Ey 2. 6160 1. 2902 2. 5753 3.8711  3.4967




