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Abstract

Modeling atmospheric aerosols containing a large organic fraction with unknown
chemical composition and properties has been a constant challenge. The dissertation
focuses on the theoretical treatment of the thermodynamic equilibrium of atmospheric
aerosol involving organic species.

We present a vapor pressure estimation method, based on quantum chemistry
methods, to predict the liquid vapor pressure, enthalpies of vaporization, and heats of
sublimation of atmospheric organic compounds. Predictions are compared to literature
data, and the overall accuracy is considered satisfactory given the simplicity of the
equations. Quantum mechanical methods were also used to investigate the
thermodynamic feasibility of wvarious acid-catalyzed aerosol-phase heterogeneous
chemical reactions. A stepwise procedure is presented to determine physical properties
such as heats of formation, standard entropies, Gibbs free energies of formation, and
solvation energies from quantum mechanics, for various short-chain aldehydes and
ketones. Equilibrium constants of hydration reactions and aldol condensation are then
reported; predictions are in qualitatively agreement with previous studies. We have
shown that quantum methods can serve as useful tools for first approximation, especially
for species with no available data, in determining the thermodynamic properties of
multifunctional oxygenates.

We also present an atmospheric aerosol phase equilibrium model to determine the
aerosol phase equilibrium of aqueous systems. Phase diagrams for a number of

organic/water systems characteristics of both primary and secondary organic aerosols are
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computed. Effects of organics on the deliquescence behavior of electrolytes are also
shown in the inorganic/organic/water phase diagrams.

Finally, we evaluate the performance of four recent activity coefficient models
developed for inorganic-organic-water mixtures typical of atmospheric aerosols. Based
on the comparison on water activities, it is found that models that include ion-organic
mixture parameters (referred to as coupled models) do not necessarily produce more
accurate predictions than those models that utilizes additive approaches (referred to as
decoupled models). Since the chemical composition and physical properties of the
organic fraction is largely unknown, the additive approaches of the decoupled models are

more feasible than the coupled models.
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(NH,),SO, at mole ratio of acid : salt = 1:1. Experimental data are the evaporation
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Figure 5.9: (a) Long-range, mid-range, and the short-range contributions are illustrated
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Figure 5.10: Water activities (a,,) calculated using X-UNIFAC, CSB model, Ming and
Russell model, and ADDEM for aqueous solution of M5 (malic + malonic + maleic
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Introduction

Organic species are ubiquitous constituents of atmospheric particular matter [1,
2]. Organic aerosol is emitted directly from sources, or formed in the atmosphere from
the gas-phase oxidation of volatile organic compounds (VOCs), oxidation products of
VOC:s usually have sufficiently low vapor pressures that they partition into the condensed
phase, forming secondary organic aerosol (SOA). Atmospheric aerosols generally contain
both inorganic components and an organic fraction comprising a wide range of organic
compounds of diverse physical and chemical properties. Water and volatile species are
distributed between the gas and aerosol phases, governed by thermodynamic equilibrium.
The common form of the gas/particle (G/P) partitioning constant (K,) for absorptive
uptake into the particle phase is [3, 4]:

_ (ng/tug)particle phase E /TSP _ 760RTfom
P (ng/m3 )gas phase Ai 106 MWomCip?,,i

(1.1)

where p’,; (torr) is the compound’s vapor pressure as a pure liquid (subcooled if
necessary); &; is the activity coefficient of species i in the particle phase; 4; (ng m™) is the
concentration of species i in the gas phase; F; (ng m™) is the concentration in the aerosol
phase; TSP (ug m™) is the total suspended particulate matter (PM) concentration; R is the
ideal gas constant (8.2 x 10° m® atm mol™ K™); T (K) is temperature; f,,, is the weight
fraction of the TSP that comprises the absorbing organic matter (OM) phase; MW, (g
mol™) is the number average molecular weight of the absorbing OM phase. The
importance of p’;; and & in controlling G/P partitioning is evident in equation 1.1.

Low vapor pressures values are extremely difficult to measure by experiments.
Furthermore, many organic compounds are solids in their pure form at ambient

temperature. Even if the vapor pressures can be measured, the solid vapor pressures, p’s;,



still need be adjusted to the corresponding subcooled p’; values. As a result, the p’;
values of most atmospheric-relevant compounds are not known.

As an alternative to experimental measurements, interest is gaining in
computational methods that predict p’; based on multiparameter correlations between
structure and p”;, such as the UNIFAC-based method by Asher et al. [5]. In Chapter 2 a
method based on quantum chemistry methods combined with the Clausius-Clapeyron
equation to predict the liquid vapor pressure, enthalpies of vaporization, and heats of
sublimation of atmospheric organic compounds, is presented. Vapor pressures of the five
dicarboxylic acids, malonic, succinic, glutaric, adipic, and pimelic acids, are then
predicted using the derived Clausius-Clapeyron equation.

Experimental studies have provided convincing evidence that aerosol-phase
heterogeneous chemical reactions (possibly acid-catalyzed) are involved to some extent
in the SOA formation. In Chapter 3 the quantum mechanics (QM) methods are used to
determine physical properties such as heats of formation, standard entropies, Gibbs free
energies of formation, and solvation energies, for various short-chain aldehydes and
ketones. These QM results are then used to determine the equilibrium constants (reported
as log K) of aerosol-phase chemical reactions, including hydration reactions and aldol
condensation for formaldehyde, acetaldehyde, acetone, butanal, hexanal, and glyoxal.
The results are potentially useful in determining the relative thermodynamic tendency for
atmospheric aerosol-phase reactions.

Water, volatile inorganic and organic species are distributed between the gas and
aerosol phases according to the gas/particle thermodynamic equilibrium. Liquid and solid

phases can exist at equilibrium within an atmospheric particle. Models exist for



computation of phase equilibria for inorganic/water mixtures for atmospheric aerosols.
When organic species are present, the phase equilibrium calculation within the aerosol
phase is complicated by organic/water interactions as well as the potentially large number
of organic species. Chapter 4 presents an atmospheric aerosol phase equilibrium model,
an extension of the UHAERO inorganic thermodynamic model [6], to determine the
phase equilibrium of organic-water systems. Phase diagrams for a number of model
organic/water systems characteristic of both primary and secondary organic aerosols are
computed. Also calculated are inorganic/organic/water phase diagrams that show the
effect of organics on inorganic deliquescence behavior.

Activity coefficients are important in the calculation the gas/phase partitioning
equilibrium and the phase equilibria within the particle phase. Hence, considerable effort
has been devoted to develop activity coefficient models that can be applied to mixed
organic-electrolyte-water mixtures. Several existing activity coefficient models are
examined in Chapter 5. Calculated water activities are compared with experimental data
for various organic and organic-electrolyte solutions. In addition, the strengths and
weaknesses of each approach are discussed.

In Chapter 6 a summary is given for the results presented in the previous sections.
The Appendix presents calculations of the entropy information for common amine

systems using classical and quantum simulations.
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