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Abstract 

 Modeling atmospheric aerosols containing a large organic fraction with unknown 

chemical composition and properties has been a constant challenge. The dissertation 

focuses on the theoretical treatment of the thermodynamic equilibrium of atmospheric 

aerosol involving organic species.  

 We present a vapor pressure estimation method, based on quantum chemistry 

methods, to predict the liquid vapor pressure, enthalpies of vaporization, and heats of 

sublimation of atmospheric organic compounds. Predictions are compared to literature 

data, and the overall accuracy is considered satisfactory given the simplicity of the 

equations. Quantum mechanical methods were also used to investigate the 

thermodynamic feasibility of various acid-catalyzed aerosol-phase heterogeneous 

chemical reactions. A stepwise procedure is presented to determine physical properties 

such as heats of formation, standard entropies, Gibbs free energies of formation, and 

solvation energies from quantum mechanics, for various short-chain aldehydes and 

ketones. Equilibrium constants of hydration reactions and aldol condensation are then 

reported; predictions are in qualitatively agreement with previous studies. We have 

shown that quantum methods can serve as useful tools for first approximation, especially 

for species with no available data, in determining the thermodynamic properties of 

multifunctional oxygenates.  

 We also present an atmospheric aerosol phase equilibrium model to determine the 

aerosol phase equilibrium of aqueous systems. Phase diagrams for a number of 

organic/water systems characteristics of both primary and secondary organic aerosols are 
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computed. Effects of organics on the deliquescence behavior of electrolytes are also 

shown in the inorganic/organic/water phase diagrams. 

 Finally, we evaluate the performance of four recent activity coefficient models 

developed for inorganic-organic-water mixtures typical of atmospheric aerosols. Based 

on the comparison on water activities, it is found that models that include ion-organic 

mixture parameters (referred to as coupled models) do not necessarily produce more 

accurate predictions than those models that utilizes additive approaches (referred to as 

decoupled models). Since the chemical composition and physical properties of the 

organic fraction is largely unknown, the additive approaches of the decoupled models are 

more feasible than the coupled models. 
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2 

Introduction 
 
 Organic species are ubiquitous constituents of atmospheric particular matter [1, 

2]. Organic aerosol is emitted directly from sources, or formed in the atmosphere from 

the gas-phase oxidation of volatile organic compounds (VOCs), oxidation products of 

VOCs usually have sufficiently low vapor pressures that they partition into the condensed 

phase, forming secondary organic aerosol (SOA). Atmospheric aerosols generally contain 

both inorganic components and an organic fraction comprising a wide range of organic 

compounds of diverse physical and chemical properties. Water and volatile species are 

distributed between the gas and aerosol phases, governed by thermodynamic equilibrium. 

The common form of the gas/particle (G/P) partitioning constant (Kp) for absorptive 

uptake into the particle phase is [3, 4]: 

  

! 

Kp,i =
(ng/µg)particle phase

(ng/m3)gas phase

=
Fi /TSP

Ai

=
760RTfom

106
MWom" i pL,i

0
  (1.1) 

where p0
L,i (torr) is the compound’s vapor pressure as a pure liquid (subcooled if 

necessary); ζi is the activity coefficient of species i in the particle phase; Ai (ng m-3) is the 

concentration of species i in the gas phase; Fi (ng m-3) is the concentration  in the aerosol 

phase; TSP (µg m-3) is the total suspended particulate matter (PM) concentration; R is the 

ideal gas constant (8.2 × 10-5 m3 atm mol-1 K-1); T (K) is temperature; fom is the weight 

fraction of the TSP that comprises the absorbing organic matter (OM) phase; MWom (g 

mol-1) is the number average molecular weight of the absorbing OM phase. The 

importance of p0
L,i and ζi in controlling G/P partitioning is evident in  equation 1.1.  

 Low vapor pressures values are extremely difficult to measure by experiments. 

Furthermore, many organic compounds are solids in their pure form at ambient 

temperature. Even if the vapor pressures can be measured, the solid vapor pressures, p0
S,i, 
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still need be adjusted to the corresponding subcooled p0
L values. As a result, the p0

L 

values of most atmospheric-relevant compounds are not known. 

 As an alternative to experimental measurements, interest is gaining in 

computational methods that predict p0
L based on multiparameter correlations between 

structure and p0
L, such as the UNIFAC-based method by Asher et al. [5]. In Chapter 2 a 

method based on quantum chemistry methods combined with the Clausius-Clapeyron 

equation to predict the liquid vapor pressure, enthalpies of vaporization, and heats of 

sublimation of atmospheric organic compounds, is presented. Vapor pressures of the five 

dicarboxylic acids, malonic, succinic, glutaric, adipic, and pimelic acids, are then 

predicted using the derived Clausius-Clapeyron equation.     

 Experimental studies have provided convincing evidence that aerosol-phase 

heterogeneous chemical reactions (possibly acid-catalyzed) are involved to some extent 

in the SOA formation. In Chapter 3 the quantum mechanics (QM) methods are used to 

determine physical properties such as heats of formation, standard entropies, Gibbs free 

energies of formation, and solvation energies, for various short-chain aldehydes and 

ketones. These QM results are then used to determine the equilibrium constants (reported 

as log K) of aerosol-phase chemical reactions, including hydration reactions and aldol 

condensation for formaldehyde, acetaldehyde, acetone, butanal, hexanal, and glyoxal. 

The results are potentially useful in determining the relative thermodynamic tendency for 

atmospheric aerosol-phase reactions. 

  Water, volatile inorganic and organic species are distributed between the gas and 

aerosol phases according to the gas/particle thermodynamic equilibrium. Liquid and solid 

phases can exist at equilibrium within an atmospheric particle. Models exist for 
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computation of phase equilibria for inorganic/water mixtures for atmospheric aerosols. 

When organic species are present, the phase equilibrium calculation within the aerosol 

phase is complicated by organic/water interactions as well as the potentially large number 

of organic species. Chapter 4 presents an atmospheric aerosol phase equilibrium model, 

an extension of the UHAERO inorganic thermodynamic model [6], to determine the 

phase equilibrium of organic-water systems. Phase diagrams for a number of model 

organic/water systems characteristic of both primary and secondary organic aerosols are 

computed. Also calculated are inorganic/organic/water phase diagrams that show the 

effect of organics on inorganic deliquescence behavior.  

 Activity coefficients are important in the calculation the gas/phase partitioning 

equilibrium and the phase equilibria within the particle phase. Hence, considerable effort 

has been devoted to develop activity coefficient models that can be applied to mixed 

organic-electrolyte-water mixtures. Several existing activity coefficient models are 

examined in Chapter 5. Calculated water activities are compared with experimental data 

for various organic and organic-electrolyte solutions. In addition, the strengths and 

weaknesses of each approach are discussed.  

 In Chapter 6 a summary is given for the results presented in the previous sections. 

The Appendix presents calculations of the entropy information for common amine 

systems using classical and quantum simulations.  
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