

ABSTRACT

In the present thesis study, we combined molecular dynamics (MD) simulations and experiments to systematically investigate the Debye-Grüneisen thermal expansion effect and configurational potential energy dependence of elastic properties for glassy states of amorphous metals, and utilized the correlation between elastic properties and fragility as a guiding tool to design and to develop novel bulk metallic glasses.

It is extremely important to create appropriate interatomic potentials, generate glassy configurations, and study the local structures of the system before moving to the next step. An effective tight-bonding, RGL-type, n-body force field for the binary Cu-Zr alloy system was constructed and employed in MD simulations. Partial radial distribution functions, coordination numbers, and Honeycutt Andersen (HA) indices have been calculated to analyze the local structures of Cu₄₆Zr₅₄ metallic glass.

We report the strong dependence of elastic properties on configurational changes in a Cu-Zr binary metallic glass assessed by molecular dynamics simulations. By directly evaluating the temperature dependence and configurational potential energy dependence of elastic constants, we show that the shear modulus dependence on the specific configurational inherent state of metallic glasses is much stronger than the dependence on Debye-Grüneisen thermal expansion.

We present the isothermal equation of state (EOS) in a wide range of temperatures and pressures by carrying out molecular dynamics simulations on a simple binary model metallic glass. A universal form of EOS proposed by Vinet et al. is utilized to fit the data,

assuming no phase transitions. Pressure-induced cavitation was observed in glassy states and liquids from our simulations. The thermodynamic limit of instability and kinetic limit of instability of the cavitation behavior were analyzed. Negative pressure is critical to trigger the cavitation. The cavitation barrier height was estimated using the classical nucleation theory. The intrinsic origin of why and how Poisson's ratio or the ratio of G/B is involved in the deformation and fracture behavior of glasses is discussed.

The compositional dependence of thermal and elastic properties of Cu-Zr-Be ternary bulk-metallic-glass-forming alloys was systematically studied. There exists a linear relationship between the glass transition temperature, T_g , and the total Zr concentration. Shear modulus G decreases linearly with increasing Zr concentration as well. The results also show that T_g , G, and Poisson's ratio, ν , are very sensitive to changes in compositions. Low T_g , low G, and relatively high ν can be achieved with high Zr and Ti concentration.

Lightweight Ti-based bulk amorphous structural metals with more than double the specific strength of conventional titanium alloys have been discovered. Thermal, elastic, and mechanical properties of these metallic glasses were studied and are presented. These amorphous alloys exhibit good glass-forming ability, exceptional thermal stability, and high strength. The research results have important implications for designing and developing low-density bulk metallic glasses. The technological potential of this class of lightweight Ti-based glassy alloys as structural metals is very promising.

The exceptional processability and large supercooled liquid region of bulk amorphous metals makes them highly promising candidates for thermoplastic processing. We report a

lightweight ($\rho = 5.4$ g/cc) quaternary glass-forming alloy, $Zr_{35}Ti_{30}Cu_{8.25}Be_{26.75}$, having the largest supercooled liquid region, ($\Delta T = 159$ K at 20 K/min heating rate) of any known bulk-glass-forming alloy. The alloy can be cast into fully amorphous rods of diameter ~ 1.5 cm. The undercooled liquid exhibits an unexpectedly high Angell Fragility of $m = 65.6$. Based on these features, it is demonstrated that this alloy exhibits “benchmark” characteristics for thermoplastic processing. We report results of mechanical, thermal, rheological, and crystallization (TTT-diagrams) studies on this new material. The alloy exhibits high yield strength and excellent fracture toughness, and a relatively high Poisson ratio compared with other Zr- or Ti-based glasses. Simple micro-replication experiments carried out in open air using relatively low applied pressures demonstrate superior thermoplastic processability for engineering applications.

Starting from the two binary bulk-glass formers in the Cu-Zr system, we systematically investigated the compositional dependence of glass formation, and thermal, elastic and mechanical properties in the Cu-Zr-Ag ternary alloys. Both the $Cu_{(50-x)}Zr_{50}Ag_x$ and $Cu_{(64-x)}Zr_{36}Ag_x$ series alloys show a good combination of high glass-forming ability and high Poisson’s ratio.

TABLE OF CONTENTS

Acknowledgements	iv
Abstract	vii
Table of Contents.....	x
List of Tables	xiii
List of Figures	xv
Chapter 1: Overview, Motivations, and Key Contributions.....	1
1.1 Historical Background.....	1
1.2 Mechanical and Rheological Aspects of BMGs.....	6
1.3 Potential Energy Landscape Theory and Cooperative Shear Model ..	16
1.4 Motivations and Key Contributions.....	20
References.....	22
Chapter 2: Molecular Dynamics Study of a Binary Cu-Zr Metallic Glass:	
Glass Formation and Atomic-level Structure	31
2.1 Introduction	31
2.2 MD Simulation Details	34
2.2.1 Force Field Parameters.....	34
2.2.2 Molecular Dynamics	35
2.3 Results and Discussions	39
2.3.1 Glass Transition.....	39
2.3.2 Radial Distribution Function.....	43
2.3.3 Coordination Numbers	52
2.3.4 Honeycut-Anderson Analysis	54
2.4 Chapter Concluding Remarks	58
References.....	59
Chapter 3: Strong Configurational Dependence of Elastic Properties of a Cu-Zr Binary Model Metallic Glass	62
3.1 Introduction	62

3.2 MD Simulations	63
3.3 Debye-Gruneisen Thermal Expansion Effect.....	65
3.4 Configurational Dependence.....	70
3.5 Chapter Concluding Remarks	74
References.....	74
Chapter 4: Equation of State and Pressure-Induced Cavitation of a Cu-Zr	
Binary Model Metallic Glass and Liquid.....	76
4.1 Introduction	76
4.2 MD Simulations	79
4.3 Results and Discussions	80
4.4 Chapter Concluding Remarks	91
References.....	91
Chapter 5: Thermal and Elastic Properties of Cu-Zr-Be Bulk-Metallic-	
Glass-Forming Alloys	93
5.1 Introduction	93
5.2 Experimental.....	95
5.3 Results and Discussions	96
5.4 Chapter Concluding Remarks	104
References.....	104
Chapter 6: Lightweight Ti-based Bulk Glassy Alloys Excluding Late	
Transition Metals.....	106
6.1 Introduction	106
6.2 Experimental.....	108
6.3 Results and Discussions	109
6.4 Chapter Concluding Remarks	116
References.....	116
Chapter 7: Bulk Metallic Glasses with Benchmark Thermoplastic	
Processability	118
7.1 Introduction	119
7.2 Experimental.....	121

7.3 Results and Discussions	122
7.4 Chapter Concluding Remarks	135
References.....	135
Chapter 8: Formation and Properties of Cu-Zr-Ag Bulk Metallic Glasses ...	138
8.1 Introduction	138
8.2 Experimental.....	140
8.3 Results and Discussions	141
8.4 Chapter Concluding Remarks	154
References.....	155

LIST OF TABLES

<i>Number</i>	<i>Page</i>
Table 1.1 Summaries of bulk metallic glass alloys with critical size ≥ 10 mm.....	4
Table 1.2 Expected qualitative correlations of values of selected properties with the kinetically strong or fragile behavior of the supercooled liquid in bulk-metallic-glass-forming systems.....	10
Table 2.1 Rosato-Guilpo-Legrand (RGL)-type force field parameters ..	37
Table 2.2 A comparison between RGL-type force field and QM results for Zr.....	37
Table 2.3 A comparison between RGL-type force field and QM results for Cu.....	38
Table 2.4 A comparison between RGL-type force field and QM results for Cu-Zr system	38
Table 2.5 First peak positions from different techniques for amorphous Cu-Zr alloys.....	45
Table 2.6 The numbers of near-neighbour correlations obtained from different techniques	52
Table 5.1 Thermal and elastic properties of representative Cu-Zr-Be and Vitreloy-type glassy alloys.....	98
Table 6.1 Density, thermal, and elastic properties of representative lightweight Ti-Zr-Be and Vitreloy-type glassy alloys	111

Table 7.1 Thermal, mechanical, and rheological properties of various BMG-forming alloys	127
---	-----

Table 8.1 Thermal and elastic properties of representative $\text{Cu}_{(50-x)}\text{Zr}_{50}\text{Ag}_x$ bulk glassy alloys	143
Table 8.2 Thermal and elastic properties of representative $\text{Cu}_{(64-x)}\text{Zr}_{36}\text{Ag}_x$ bulk glassy alloys	143

LIST OF FIGURES

<i>Number</i>	<i>Page</i>
Figure 1.1 Record-size bulk metallic glasses developed in various alloy systems and the year of their discovery	5
Figure 1.2 Elastic limit plotted against Young's modulus for bulk metallic glasses and over 1500 conventional materials.....	8
Figure 1.3 Experimental shear stress at yielding vs. shear modulus at room temperature for 30 bulk metallic glasses.....	11
Figure 1.4 Angell plot comparing the viscosities of different types of glass-forming liquids.....	12
Figure 1.5 Correlation between fragility of liquids and the ratio of instantaneous bulk to shear modulus of respective glasses.....	13
Figure 1.6 The correlation between m and B/G for metallic glasses	14
Figure 1.7 The correlation of fracture energy with Poisson's ratio for all the collected data on metallic glasses	15
Figure 1.8 Potential energy density function in the vicinity of an inherent state.....	19
Figure 2.1 Volume as a function of temperature of $\text{Cu}_{46}\text{Zr}_{54}$ during heating and cooling at a rate of 5 K/ps	41
Figure 2.2 Volume vs. temperature curves for $\text{Cu}_{46}\text{Zr}_{54}$ obtained from three different quenching rates.....	42
Figure 2.3 Partial radial distribution function of $\text{Cu}_{46}\text{Zr}_{54}$ for different bond pairs at 400 K during the heating process (5 K/ps)	46
Figure 2.4 Partial radial distribution function of $\text{Cu}_{46}\text{Zr}_{54}$ for different bond pairs at 2000 K during heating and cooling cycles	47
Figure 2.5 Partial radial distribution function of $\text{Cu}_{46}\text{Zr}_{54}$ for different	

bond pairs at 400 K during the cooling process (5 K/ps).....	48
Figure 2.6 PRDF of Cu ₄₆ Zr ₅₄ for different bond pairs during the cooling cycle (5 K/ps), Cu-Cu pair	49
Figure 2.7 PRDF of Cu ₄₆ Zr ₅₄ for different bond pairs during the cooling cycle (5 K/ps), Zr-Zr pair	50
Figure 2.8 PRDF of Cu ₄₆ Zr ₅₄ for different bond pairs during the cooling cycle (5 K/ps), Cu-Zr pair	51
Figure 2.9 Partial, total, and average coordination numbers of Cu ₄₆ Zr ₅₄ calculated for the cooling cycle (5 K/ps).....	53
Figure 2.10 Variation of the fractions of Honeycutt-Andersen indices....	57
Figure 3.1 Temperature dependence of shear modulus G for the Cu ₄₆ Zr ₅₄ metallic glass prepared at two different cooling rates	67
Figure 3.2 Temperature dependence of bulk modulus B for the Cu ₄₆ Zr ₅₄ metallic glass prepared at two different cooling rates	68
Figure 3.3 Volume dependence of B and G for the Cu ₄₆ Zr ₅₄ metallic glass prepared at a cooling rate of 2.5 K/ps.....	69
Figure 3.4 Strong configurational potential energy dependence of shear modulus G for the Cu ₄₆ Zr ₅₄ metallic glass when varying the cooling rates to obtain different configurations	72
Figure 3.5 The shear and bulk Modulii of Vit-4 as measured in-situ from -78 to 298 K and measured from samples quenched from the equilibrium liquid around T _g	73
Figure 4.1 Pressure change with atomic volume at different temperatures of the Cu ₄₆ Zr ₅₄ binary model metallic glass and liquid	82
Figure 4.2 Pressure evolution vs. time at 300 K during the whole simulation process	86
Figure 4.3 Cavitation pressure and spinodal pressure as a function	

of temperature.....	87
Figure 4.4 Cavitation time vs. pressure at T=1200 K and the fitting curve obtained from classical nucleation theory	88
Figure 5.1 Bulk metallic glass formation map in the Cu-Zr-Be ternary alloy system	97
Figure 5.2 Glass transition temperature as a function of the total Zr and Ti content in Cu-Zr-Be ternary and Vitreloy-type bulk metallic glasses.....	101
Figure 5.3 Shear modulus G vs. the total concentration of Zr and Ti in Cu-Zr-Be ternary and Vitreloy-type bulk metallic glasses .	102
Figure 5.4 Poisson's ratio vs. the total Zr and Ti concentration in Cu-Zr-Be ternary glassy alloys and Vitreloy-type glasses.....	103
Figure 6.1 Pictures of bulk amorphous samples of lightweight Ti-based bulk metallic glasses.....	113
Figure 6.2 XRD patterns verifying the amorphous nature of the corresponding samples: amorphous 6 mm diameter rod of $Ti_{45}Zr_{20}Be_{35}$ (S1), 7 mm diameter rod of $Ti_{45}Zr_{20}Be_{30}Cr_5$ (S2), and 8 mm diameter rod of $Ti_{40}Zr_{25}Be_{30}Cr_5$ (S3).....	114
Figure 6.3 DSC scans of the amorphous $Ti_{45}Zr_{20}Be_{35}$ (S1), $Ti_{45}Zr_{20}Be_{30}Cr_5$ (S2), and $Ti_{40}Zr_{25}Be_{30}Cr_5$ (S3) alloys at a constant heating rate of 0.33 K/s.....	115
Figure 7.1 DSC scans of three typical metallic glasses with excellent glass-forming ability and extremely high thermal stability	123
Figure 7.2 A closer view of the glass transition temperatures of the three bulk metallic glasses from DSC curves.....	124

Figure 7.3 Temperature dependence of equilibrium viscosity of several metallic-glass-forming liquids	128
Figure 7.4 Angell fragility plot of several bulk-metallic-glass-forming liquids.....	129
Figure 7.5 TTT diagrams for several amorphous alloys	132
Figure 7.6 Demonstration of the strong thermoplastic processability of the $Zr_{35}Ti_{30}Cu_{8.25}Be_{26.75}$ metallic glass	133
Figure 7.7 Demonstration of the strong thermoplastic processability of the $Zr_{35}Ti_{30}Cu_{8.25}Be_{26.75}$ metallic glass	134
Figure 8.1 X-ray patterns of amorphous 4 mm rod of $Cu_{45}Zr_{50}Ag_5$, 4 mm rod of $Cu_{43}Zr_{50}Ag_7$, 5 mm rod of $Cu_{40}Zr_{50}Ag_{10}$, and 7 mm rod of $Cu_{43}Zr_{40}Ag_7Ti_{10}$ prepared by the copper-mold casting method	144
Figure 8.2 DSC scans of the amorphous $Cu_{45}Zr_{50}Ag_5$, $Cu_{43}Zr_{50}Ag_7$, $Cu_{40}Zr_{50}Ag_{10}$, and $Cu_{43}Zr_{40}Ag_7-Ti_{10}$ alloys at a constant heating rate of 0.33 K/s	145
Figure 8.3 X-ray patterns of 3 mm cast rod of $Cu_{60}Zr_{36}Ag_4$, 4 mm glassy rod of $Cu_{57}Zr_{36}Ag_7$, 6 mm glassy rod of $Cu_{54}Zr_{36}Ag_{10}$, 7 mm cast rod of $Cu_{52}Zr_{36}Ag_{12}$, and 8 mm rod of $Cu_{49}Zr_{36}Ag_{10}Ti_5$	147
Figure 8.4 DSC scans of the amorphous $Cu_{57}Zr_{36}Ag_7$, $Cu_{54}Zr_{36}Ag_{10}$, and $Cu_{49}Zr_{36}Ag_{10}Ti_5$ alloys at a constant heating rate of 0.33 K/s	148
Figure 8.5 Poisson's ratio, ν , as a function of the Ag concentration for both $Cu_{(50-x)}Zr_{50}Ag_x$ and $Cu_{(64-x)}Zr_{36}Ag_x$ series	149
Figure 8.6 Compressive stress-strain curves of 2 mm amorphous rods for $Cu_{(50-x)}Zr_{50}Ag_x$ series alloys. (a), $Cu_{46}Zr_{54}$; (b), $Cu_{48}Zr_{50}Ag_2$; (c), $Cu_{43}Zr_{50}Ag_7$; (d), $Cu_{40}Zr_{50}Ag_{10}$; (e), $Cu_{38}Zr_{50}Ag_{12}$; and (f), $Cu_{43}Zr_{43}Ag_7Ti_7$	150

Figure 8.7 Compressive stress-strain curves of 2 mm amorphous rods for
 $\text{Cu}_{(64-x)}\text{Zr}_{36}\text{Ag}_x$ series alloys. (a), $\text{Cu}_{64}\text{Zr}_{36}$; (b), $\text{Cu}_{57}\text{Zr}_{36}\text{Ag}_7$;
(c), $\text{Cu}_{54}\text{Zr}_{36}\text{Ag}_{10}$; and (d), $\text{Cu}_{40}\text{Zr}_{45}\text{Ag}_{10}\text{Ti}_5$ 151