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ABSTRACT

Experimental results are presented for a study of the effects
of time-dependent heating on Bénard convection, where the fluids were
5 centistéke (cs), 100cs and 500 cs viscosity grades of silicone oil,
Fluid layer depths were 0,00635m, 0,01270m and 0,01905m, For each
run the‘ heat flux at the lower surface was approximately constant,
which in dimensionless units was between 9.2 ><102 and 1.9 x107. The
study examined the effects of different heating rates on the onset of
convection, the change of the Rayleigh number with time and the
development of motion, Visual observations were made from shadow-
graph images, which were recorded photographically, |

A supplementary analytical analysis of the onset of motion
was performed., The results of the work support the trends of the
critical time data .found iﬁ the experim‘enf:s.

On the basis of the experimental results the conculsions are
that as the i‘xeat flux at the lower surface is increased, the i:emperature
difference required for the initiation of convection increases while the
time fo the ohset of motion decreases, For the higher heating rates
a '"new'' small closed cell pattern is observédl shortly after the onset
of motion, This pattern cioes not appear in the steady-stafe system,
Because of the ''large' (approximately greater than 100) Prandtl num-
ber, specifying the time and the heat flux at the lower surface is suffi-

cient to characterize the state of the fluid layer,
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I, INTRODUCTION

When a layer of fluid contained between two flat, horizontal
plates has the lower surface maintained at a hig’her temperature than
the upper surface, a number of interesting natural convection phenom-
ena can be observed, The fundamental observation is that if the tem-
perature difference is ’fsmaii enough'' no convection occurs; the heat
is transferred solely by conduction, This is because the viscous
forces and thermal diffusivity act to dissipate any motion generated by
the buoyancy of the system, As the temperature difference is raised,
a point is reached where the dissipative forces can no longer com-
pletely dampen out the motion generated by the buoyancy force, This
point is the first time that a balance can be maintained between these
two opposing forces, This boundary between no convection and convec-
tion can be givén, for the simple system of constant properties, solely
in terms of a single, dimensionless parameter, the Rayleigh number,
Ra,

Once motion occurs, it takes place in an yordered array, with
the normally seen pattern being '"vermiculated'" (randomly curved)
rolls, that is, a re.petiétive ?&%%ez‘ﬁ of hot rising bands of fluid adjacent
to cold descending ribbons of fluid, When attempting to describe this
motion, a basic characteristic measure of the flow is the horizontal
scale of the planform, which is normally given in terms of the total

wave number, a, Other parameters that are used to characterize the
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-ate of the fluid layer are the previously mentioned Rayleigh number,

Iy

ie Prandtl number and the Nusselt number,

As the Rayleigh number is increased, the roll pattern becomes

¢

nstable, The planform is replaced by a steady, thr‘ee-dimensional
_sotion. This, too, eventually becomes unstable and turns into a pat-
tern involving periodic disturbances of a single frequency, As“ the
Rayleigh number is further increased, another periodic disturbance
appears at twice the frequency, Higher order disturbances continue to
appear until the motion is so complicated as to be called "turbulent',
For transient heating of the fluid layer, starting from an

initially isothermal condition, the sequence of events has not been as
extensively explored and a number of pertinent questions may be asked,
The first is how long does it take for motion to occur and is this length
of time completely describable by only two parameters: the Rayleigh
number and a second number characteristic of the conduction problem?
This additional parameter could be based on the heat transfer rate at,
say, the lower surface, or on some average rate given in terms of a
thermal thickness'', Another question one could ask refers to the
planform of motion. Is the motion uniquely determined by the Rayleigh
number and (possibly) the Prandtl number, or are there other impor-
tant parameters? Once motion does occur, does the system succes-
sively assume all the states described above for the steady-state
system as the corresponding Rayleigh numbers are reached in a tran-

sient manner; or are some of the states bypassed as the system
Yy y



approaches a steady-state condition? As time progresses, what is the
heat transf‘er in the fluid layer?

The present investigation is directed towards answering these
questions through a series of experiments in which emphasis is laid
on the visual observation of the motion as well as on the quantitative
determir;ation of the temperatures and heat transfer rates of the sys-
tem as a function of time, A complementary, analytical study is also
carried out on ‘fhe stability boundary of infinitesimal disturbances and
the influence of the temperature profile shape on the initiation of

convection,



Previous work, both experimental and theoretical, published in
the literature on the steady-state phenomena associated with the fluid
layer heated from below affords a rather thorough understanding of the
physical processes involved in describing the system. This is particu-
larly true for the region between the onset of motion and the point at
which the pattern of motion becomes three-dimensional,

The first mention of this type of natural convection problem
was made by Thomson (1882), who studied the patterns associated with
the evaporative cooling of water, The first quantitative experiments
were carried out by Bénard (1900, 1901), Because of his pioneering
work, this natural convection phenomena is often called Bénard con-
vection and the flow pattern, Bénard cells, He used very thin layers of
highly viscous fluids and from visual observations found that the motion
normally occurre&/in a honeycomb pattern, that is, a repetition of hex-
agonal cells. In his experiments the upper surface was exposed to the
atmosphere, allowing the appearance of surface tension gradients.
Papers by Block (1956 and Pearson (1958) indicated that Bénard's
experiments were probably governed by surface tension gradients
instead of buoyancy forces, Subsequent investigations have indicated
that the honeycomb pattern was due to free surface effects and was not

the preferred pattern when the upper surface was a solid boundary.
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An excellent review of work involving evaporative convection and sur-
face tension effects is given by Berg, Acrivos and Boudart (1966).
In an attempt to determine the governing criteria for the onset

of convection, Lord Rayleigh {1916) presented an analytical investiga-

o

tion of the problem for the case of two stress free, but rigid bound-
aries (hereafter called "free'’ boundaries)., He found that the onset of
motion could be completely described by a single parameter, now
called the Rayleigh number, Ra., The other physical parameter that
appears in the analysis, the Prandtl number, Pr, did not enter into the
stability boundary calculations, Lord Rayleigh also showed that there
was a unique wave number associated with the critical Rayleigh num-
ber, but the linearized analysis was unable to determine the planform
of motion,

The work was extended to the case of two rigid, no slip bound-
aries (hereafter called "rigid' boundaries) by Jeffreys (1926, 1928) and
Low (1929)., The two authors also considered the case of the upper
surface free and the lower surface rigid., Their work was generalized
and extended by Pellew and Southwell (1940), who showed that it was
not necessary to specify the cell shape to carry out the analysis, but
only the total wavé number, The analysis also predicted that at the
critical Rayleigh number the motion would start as an aperiodic growth
of the initial disturbance, ,";'3 his result is now known as the ''principle
of exchange of stabilities'’,

These paﬁpers, along with others pertaining to meteorological

conditions, can be found in an anthology edited by Saltzman (1962a).



The definitive analytical determination of the critical values of
the Rayleigh number and the wave number was made for the various

boundary conditions, free-ir

4]

e, rigid-free and rigid-rigid, by Reid and
Harris {1958). These analytical results along with some of the experi-
mentally determined Rayleigh numbers are shown in Table 1,

To check out the early theoretical work, experiments were
carried out by Schmidt and Milverton (1935) to determine the onset of
convection. A subsequent study was done by Schmidt and Saunders
(1938) on the relation between heat transfer and the Rayleigh number

for values greater than the critical, This work included a determina-
tion of the wave number of the motion, using an optical system that
viewed the fluid layer from the side, Rarlier, Mull and Reiher (1930)
had carried out detailed experiments with air on Nusselt number versus
Rayleigh number over a wide range of Rayleigh numbers, Similar
experiments were conducted by de Graaf and van der Held (1953),
Malkus (1954 a) reported a series of experiments which indi-
cated that as the Rayleigh number was increased, there were discréte
changes in the slope of the heat flux versus Rayleigh number curve,
The transition points were checked by Willis and Deardorff (1967 D),
Both series of expériments made use of a '"quasi-steady' approach in
which a large temperature difference was initially imposed on-the sys-
termn, The apparatus was then insulated, and the temperature was
slowly allowed to decay towards an isothermal fluid layer. For ''slow
enough'' decay ra%:es the results should closely approximate a steady-

state system., Truly steady-state results were recently presented by



Krishnamurti (1968c¢, 1969, 1970&a, 1970b, 1970 c), who also showed
that the breaks in the curve were accompanied by changes in flow
pattern,

Very detailed experiments, utilizing optical studies over a wide
range of Rayleigh numbers and Prandtl numbers, were reported by
Silveston (1958) and Schmidt and Silveston (1959). These experiments
were the first systematically cataloguing the patterns of motion that
are observed at the various Rayleigh numbers,

Numerous experiments have been carried out that report criti-
cal Rayleigh number, heat transfer as a function of Rayleigh number,
detailed temperature profiles and, in a few instances, flow patterns,
Among these are Catton and Edwards (1967), Chen and Whitehead
(1968), Deardorif and Willis {1965, 1967a, 1967b), di Frederico and
Foraboschi (1966), Dropkin and Somerscales {1965), Gille (1967),
Globe and Dropkin (1959), Goldstein and Chu (1966, 1968, 1969),
Goldstein and Grahar (1969), Ingersoll (1966), Koschmieder (1966,
1967), Leontiev and Kirdyashkin (1968, 196’9}, Rossby (1966, 1969),
Somerscales and Dropkin (1966), Somerscales and Gazda (1968, 1969),
Thompson and Sogin (1966) and Willis and Deardorff (1967a, 19670,
1970, A coiiecﬁidn of some of the recommended heat transfer correla-
tions from the above sources is contained in Table 2. Also listed are
some of the theoretical predictions of Nusselt number versus Rayleigh
number,

The lineér analysis that is able to predict the onset of motion

cannot determine the type of flow pattern that will evolve, Because



the non-linear terms are neglected, the linear approximation cannot
predict temperature profiles and velocity fields, The inclusion of
the non-linear terms introduces some very formidable problems for
the theoretician.

The first one to attack the non-linear problem was Pillow
(1952), who assumed that the flow field consisted of a series of two-
dimensional rolls in which the motion was rapid enough to utilize
boundary layer approximations for the flow in the roll cell. Similar
analyses, using different boundary conditiops, different Prandtl num-
ber ranges, and improved mathematical techniques, have been carried
out by Robinson (1965, 1967b, 1969), Turcotte (1967), Turcotte and
Oxburgh (1967) and Wesseling (1969).

In an attempt to explain the observed changes in slope in the
heat flux versus Rayleigh number curve, Malkus (1954b, 1956, 1961,
1963) developed a theory of thermal turbulence. To make the problem
tractable, he introduced several assumptions, One of the important
assumptions introduced into the analysis was that the flow pattern that
was observed was the one that transported the maximum amount of
heat across the fluid layer., Using this basic assumption, Howard
(1963) and subseqﬁenay Busse (1969) examined the upper bounds that
can be placed on heat transfer from integrated forms of the equations
of motion.,

Malkus' theory of thermal turbulence did not make use of the
detailed flow pa‘t‘ﬁez‘ns, but only of the average quantities., The first

attempts to examine the region above the critical Rayleigh number in a



detailed fashion were done by Gor'kov (1958) and Malkus and Veronis
(1958).

Even with non-linear analyses the number of possible planforms
is infinite, and a method had to be devised to select which of the
motions would be observed in an experimental situation. Malkus and
Veronis chose the criterion of maximum heat transport as the possible
selection mechanism, with the result that two-dimensional rolls turned
out to be the ''preferred' pattern, Subsequent work by Schlliter, Lortz
and Busse (1965) used the criterion that the observed motion was the
one that was most stable to disturbances, The result was that three-
dimensional patterns were unstable and that two-dimensional rolls
were again the preferred patiern,

Busse (1967b) showed that for the case of infinite Prandtl
number and rigid boundaries, the two-dimensional solution became
unstable to three-dimensional disturbances at a Rayleigh number of
22,600, Busse (1970) recently discussed two of the instability mecha-~
nisms which make the two-dimensional flow unstable.

Heat transfer predictions based on single wave number flows
were made by Howard (1965), Roberts (1966) and Stewartson (1966),
using asymptotic e'xpansions of the governing equations for large
Rayleigh number,

Theoretical work designed to predict the salient features of
turbulent flow include, in addition to those already mentioned, the

works of Elder {3966, 1967), Herring (1966, 1969), Howard (1966),



Kraichnan (1962, 1964 a, 1964b), Ledoux, Schwarzchild and Spiegel
(1961), Spiegel (1962, 1966, 1967) and Townsend (1962).

The prediction of heat transfer, cell size, stability, flow in two
dimensions and preferred cell shape has been the goal of many of the
papers on Bénard convection, These works include those of Busse
(1962, 1967 a), Catton (1966), Chorin (1967), Deardorff (1964, 1965,
1968), Elder (1969), Foster (1969a), Fromm (1965), Gough (1969),
Herring (1963, 1964), Kuo (1961), Kuo and Platzman (1961), Leontiev
and Kirdyashkin (1965, 1966), Nakagawa (1960), Newell, Lange and
Aucoin (1970), Newell and Whitehead (1969), Platzman (1965), Plows
(1968), Saltzman (1962 b), Schneck and Veronis (1967), Segel (1962,
1963, 1964, 19654a, 1965b), Somerville (1970a, 1970b), Speigel (1970),
Stuart {(1964), Toomre (1969), Veronis (1966) and Wantland (1970).

Periodically, the field of thermal convection has been surveyed
and summarized, The most detailed summary, but one where the
analytical work was essentially restricted to linear analysis was the
monograph by Chandrasekhar (1961). One of the earliest surveys of
the field was performed by Stommel (1947). More recent surveys
include those of Brindley (1967), Ostrach (1957, 1964), Segel (1966)
and Stuart (1960). |

In all the analytical works discussed so far, the assumptions
have been made that the materials bounding the fluid layer were per-
fect conductors of heat; that there were no lateral boundaries; and
that the Boussine-sq (1903) approximation was permissible. In the

approximation all physical properties are assumed constant, except



for the density in the buovancy force term where the change with tem-
perature is taken into account. In most of the experiments that have
been mentioned, attempts have been made to meet these condi‘;ions by
using small temperature differences across the fluid depth, leading to
small property changes; using bounding materials, such as copper
and aluminum, that have high thermal conductivities and thermal dif-
fusivities compared to those of the fluids used (the notable exception
being mercury); and using small fluid layer depths compared to the
lateral dimensions of the fluid chamber,

Concerning the lateral boundary problem, there have been
several theoretical papers and some experimental works directed
towards predicting and establishing the effect of vertical sidewalls on
the initiation of convection, the size of the cellular structure, and the
change in the heat transfer once convection is established.

The first attempt at measuring lateral boundary effects was
made by Soberman (1958), The most systematic experimental study on
the effect of vertical sidewalls on heat transfer was carried out by
Catton and Edwards (1967). ther experimental papers that used
chambers where the lateral boundaries would have an effect on the
motion in the fluid‘iayer are those by Koschmieder (1966), Ostrach and
Pneuli (1963) and Sun aﬁd Edwards {(1970).

Among the important analytical papers concerned with predicting
the effect of lateral boundaries are those by Catton (1970), Charlson

and Sani (1970), i}avis (1967, 1968), Edwards (1969), Edwards and

Catton (1969), Liang, Vidal and Acrivos (1969), Pneuli (1964), Pneuli
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1id Iscovici (1968) and Segel (1969). One result indicated by these
aéers wasg that as the lateral boundaries wefe moved together, the
:¥itical Rayleigh number increased, |
If the motion in the fluid layer is in the form of hexagons, a
free parameter in the linear analysis is the direction of motion in the
center of the ceil. It was observed in some of the early experiments
that the direction of flow was different for gases and liquids, Graham
(1933) was the first to speculate that this fact was due to the opposite
vafiations of viscosity with temperature for the two groups of fluids,
This hypothesis was confirmed by von Tippelskirch (1956), who found
that the direction of flow in a layer of sulfur changed at about 153 C,
the point at which the temperature dependenc‘e of viscosity changed,
Analytical works which included studies on the effect of prop-
erty variation on the initiation of convection, the effect on the pre- -
ferred planform of cellular motion and the effect on the motion in a
hexagonal cell are those by Busse (1962, 1‘967 a), Davis and Segel
(1965, 1968), Jenésen (1963), Liang, Vidal and Acrivos (1969), Palm
(1960), Palm and Qiann (1964), Plam, Ellingsen and Gjevik (1967) and
Segel and Stuart (1962). |
Several exéerimental studies have appeared recently, One by
Liang, et al, was concerned with flow direction. Hoard, Roberts;)n
and Acrivos (1970) examined the effect of pJ'L'operty variation on the
~critical Rayleigh number, while the work of Somerscales and Dougherty
(1969, 1970) dete-rmined the critical Rayleigh number and examined the

flow direction problem,
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The last area to be considered is the effect of the properties of
the bounding materials on the response of a fluid layer to thermal
instability. The theoretical papers to date have considered two types
of thermal boundary conditions and tested their effect on the initiation
of convection, The first boundary condition assumed that the heat
transfer from the boundary could be characterized by a film coeffi-
cient, while the second assumed that the bounding materials were of
finite conductivity with the necessary match of temperature and heat
flux at the boundary.

The first paper to consider the boundary effect was that of
Sparrow, Goldstein and Jonsson (1964), who utilized the film coeffi-
cient approach, More recent papers by Hui'le, Jakeman and Pike
{(1967), Jakeman (1968) and Nield (1968) have assumed finite conduc~
tivity materials of various configurations, The main finding of these
papers is that the critical Rayleigh number and the critical wave num-
ber are decreased when the bounding materials are not perfect
conductors, |

The writer is aware of only one experimental paper in which
the problem of finite conductivity is considered.  This is the work of
Koschmieder (E?éé}, who confirmed the predicted change in the criti-
cal wave number,

In the works cited above, the conditions have been steady or at
least quasi-steady, There have, however, been some experiments and
analytical studieé concerned with the influence of time dependency on

the convection phenomena,
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o In some early experiments reported by Graham (1933), Chandra
(1938) and ‘Dassanayake (1950), the latter reported by Sutton (1950), it
- was found that it was possible to sustain convectioﬂ at Rayleigh num-
bers well below the critical value, particularly for thin fluid layers,
Graham, although presenting no numerical data, described the motion
as being columnar in nature, Sutton, in discussing the results of
Chandra and D.assanayake, speculated that the reduced critical Rayleigh
number was due to a non-linear temperature profile caused by transient
heating, in contrast to the linear profile when the conduction‘state was
steady. He advanced some qualitative arguments to substantiate his
Hypothesis. [Berg, Acrivos and Boudart (i966) have more recently .
speculated that the vanomalous stability results reported by Chandra
and Dassanayake were due to the smoke-gas’suspension used for
visualization, Berg, g:c_g_l.,’ theorized that the suspension had suffi-
ciently different properties to cause the irregular results,] In experi-
ments reported by de Graaf and van dér Held (1953), critical Rayleigh
numbers as low as 1400 were o’btained. The authors agreed with Sutton
that this lowering could be caused by transient effects,

‘ “The first experimental work specifically studying the effect of-
time dependency on the initiation of convection was that of Soberman -
(1959). His experiments approximated the case of constant heat flux at
the lower surface for an initially isothérmal system, He found fhat
- rapid heating did indeed affect the critical Rayleigh number. As the

heating rate, H, ‘was increased beyond that required to initiate steady-



state convection, the critical Rayleigh number was increased with the
data falling on the curve Racr = 90.71-:{‘394 .

Spangenberg and Rowland (1961) used a layer of water in which
the top surface was free to evaporate, They found that the upper sur-
face temperature decreased approximately linearly until convection
was initiated. The critical Rayleigh number was 1193 (compared to
1108), Similar experiments were carried out by Foster (1965b) over a
wider range of parameters, In some recent work Foster (1969b) used
deep layers (greater than 0,05m) of water and silicone oil to study the
lgngth of time required for the initiation of convection for the analogous
problem of linearly increasing lower surface temperature,

Several experimental works have been published using time-
dependent density gradients which were created by solute concentra-
tions instead of temperature differences., The works are generally
analogous to the case of a step increase of the lower surface tempera-
ture, These papers include those of Blair 'c;md Quinn (1969), Mahler
and Schechter (1970) and Plevan and Quinn (1966).

Onat and Grigull (1970) reported results for deep layers of
several different working fluids when the lower surface was subjected
to constant heat fiﬁx.

In a quite different form of heating, that of increasing or
decreasing the two surface temperatures at the same constant rates,
Krishnamurti (1967, 19681b) reported data on changes in the critical

Rayleigh num’oer; critical wave number, planform shape and heat

transfer,



he first theoretical paper to include the effect of time-
dependency in an explicit way was that of Morton (1957)., He assumed

£
that the temperature profile was not far from the linear one and found
that for this case the critical Rayleigh number was affected very little,

Goldstein (1959) described an approach in which the point of
instability was chosen as that point for which the growths of the veloc-
ity and temperature perturbations were stationary, He then chose a
particular conduction problem and found that for this case the critical
Rayleigh number and critical wave number could be increased over
their steady-state values by rapid heating,

Lick (1965) considered the case of rapid heating and examined
the growth rates of disturbances when the growth rates were much
larger than the time characteristic of changes in the temperature pro-
file, This approximation allowed him to introduce an approximate
temperature profile to study the general effects of rapid heatihg on
growths of disturbances as opposed to selecﬁng a few conduction pro-
files and ob‘taining more exact results,

Starting {rom an approach similar to that used by Goldstein
(1959), Foster (1965a) treated the time dependency as an initial-value
problem, In the rﬁe‘zhods developed by Morton, Goldstein and Lick,
time had been reduced to a parameter with the result that profile his-
tory was not important, while Foster's analysis was dependent on the
profile used., He chose two conduction problems, both with the free
boundary condi‘tiéns. "The first was thé profile generated by a step

increase in the temperature at the lower surface, while the second
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case was for a linear increase of temperature with time at the lower
surface,

Because of Foster's initial-value approach, no true critical
point can be defined, However, it is possible to determine the time it
takes for a disturbance to grow a certain amount from an initial state,
This leads to a correlation between the Rayleigh number, the wave
number, and the time for a certain growth to occur. In the ''quasi-
static'' approach where time is only a parameter, the results are inde-
pendent of Prandtl number. In Foster's method, however, with the
time dependency explicitly used, the Prandtl number does appear as a
parameter in the results.

Foster {1968) studied the effect of boundary conditions, thermal
and kinematic, on critical times in a semi-infinite layer of fluid, sub-
jec‘t to either a step change or linear increase with time of the lower
surface temperature,

Using methods similar to Foster's, Mahler, Schechter and
Wissler (1968) and Mahler and Schechter (1970) looked at the problem
of time-dependent density gradients caused by solute concentrations,

Following techniques developed by Lick (1965), Currie (1966,
1967) used the '"quasi-static'' assumption and a similar approximate
profile to examine the growth rates of disturbances in a semi-infinite
layer of fluid. He also calculated the stability boundary for the approx-
imate profile, Comparing his work with the experimental results of
Soberman (1959)Aand Spangenberg and Rowland (1961), he found rea-

sonable agreement. One important feature of the stability boundary
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was its minimal character, with the lowest critical Rayleigh number of
about 1340, The critical wave number, however, only increased with
rising heating rates.

Robinson (1967 a) discussed the validity of the '"quasi-static'
approximation near the point of instability using estimates of the time
scales involved, A deta‘;%eécompa?ison of the "quasi-static' approxi-
mation and the initial-value approach has recently been made by Gresho
and Sani (1971), who examined the problem of a step increase in tem-
perature at the lower surface,

Krishnamurti (1967, 1968a), utilizing perturbation expansion
techniques fashioned after Schiliter, Lortz and Busse (1965), ‘calculated
the response of a fluid layer when both surf’ace temperatures were
increased or decreased at equal and constant rates,

Several analytical papers have examined the effect of modula-
tion on the stability of the fluid layer, Gershuni and Zhukhovitshii
(1963) and Venezian {1968, 1969) investigated the stability problem
when the surface temperatures were subject to periodic variation, The
alternate case of gravity modulation has been examined in the more
recent papers of Davis (1970) and Gresho and Sani (1970),

The main t%rus‘a of the present work is to provide experimental
data that will be useful in predicting the behavior of a fluid layer in
response to time-dependent heating., The experimental results will
provide insight into the flow mechanisms involved to give the theore-

tician more information on which to develop his model,



A second aspect of the present work will be developed in the
next chapter, It is concerned with the effect of an assumed approxi-

mate temperature profile in the fluid on the stability boundary as

determined by the method of Goldstein (1959).
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III, THEORETICAL WORK

In determining the stability of a fluid layer subject to time-
dependent heating, the method first developed by Goldstein (1959) will

be followed, For completeness, the basic steps of the analysis will

be retraced here,
In making an analytical investigation of the response of a fluid
layer to heating from below, shown schematically in Figure 1, the

starting point is the equations of motion, In Cartesian notation the

equations are
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where the starred quantities are dimensional, %™ is the dissipation
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function and L =(0,0, 1). Along with the equations of motion, an equa-
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In tackling this problem, the use of the above equations would
lead to extremely difficult, if not intractable, analyses, In almost all
the work that is done in natural convection a simplified set of equations
is used, which is the lowest order approximation to the general equa-
tions, The simplified equations make use of the Boussinesq (1903)
approximation, which can be stated as follows: (a) all properties are
assumed constant, except in the body force term where the variation of
density with temperature is taken into account; and (b) the right hand
side of the energy equation (3) is neglected, except for the heat flux

diffusion term. A detailed derivation of the Boussinesq approximation

feh

s given by Mihaljan (1962), Cther derivations have been given by
Chandrasekhar (1961) [but see the note in the appendix of Thompson

- L 22 T PR AR ‘ 5 .
and Sogin (1966) ., Malkus (1969) and Spiegel and Veronis (1960)., The

resulting equations of motion and equation of state are given below:
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Before proceeding with the analysis, the pressure term is

' redefined as follows:
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Substituting (8) into (5), the momentum equation can be written as
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In making the stability analysis a rest state will be assumed to
exist: that is, no fluid motion. The response of this rest state to per-

turbations will then be examined, The '"static" state equations are
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where the bar denotes a rest state quantity,
¥
The following perturbation quantities are introduced, using a

prime to denote a perturbed quantity:

= B (13)
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Substituting the perturbation expressions, (13), into the
equations of motion, (4}, (9) and (6), and then subtracting out the rest

state equations, (10), (11) and (12}, the resulting expressions are
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bility of the system, the perturbation

o

In examining the st

quantities are assumed to be "infinitesimal'’, This means that the
squares of the quantities are very small in comparison to their abso-

iute values, Thus, the second terms on the left hand side of Egs, (15)

and (16) can be neglected, The linearized equations are
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The momentum equation can be cast into one involving only w

S s

and T™' by taking the curl of Equation (18) twice and using the z-

omponent of the result, The resulting equations of motion are
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Along with the above equations some boundary conditions must
be specified. In the problem to be analyzed the bounding surfaces are
assumed to be of infinite thermal conductivity and diffusivity, This
means that any small perturbation in temperature Would be instan-
taneously dispersed into the bounding material, This leads to the
thermal boundary condition that

T*’20, at the boundary,

For the velocity components, either the free (stress iree) or
the rigid (no slip) boundary condition is used in analytical work, In
both cases the boundary is assumed to be impermeable and nondeform-
able., Thus,

w*’=z 0, at the boundary.

The free boundary is one with zero shear, that is,
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Examining the continuity equation {17) shows that this zero shear con-
dition can be converted into the following boundary condition:
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=0, at the free boundary,
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For the rigid boundary there is zero slip, thatis, u Again,



Many of the analyses that have been carried out, particularly
the more difficult ones, have used the {ree-iree case because the
resulting solutions are much simpler and the results should bear quali-
tative similarity to the usual experimental setup of rigid-rigid bound-
aries, In the present analysis, however, the rigid-rigid case will be

examined., Thus, in summary, the boundary conditions to be used are

=0 at z¥=0,d% (22)

Equations (20) and (21), along with the boundary conditions (22),
have a solution in which the horizontal dependence can be characterized

by a singie wave number, That is, let
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For convenience cast (24) into dimensionless form by using the

following transformations:
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where AB" is some "'temperature'’ characteristic of the given conduc-
tion problem, Using (25), Equations (24) can be written in dimension-

less form as
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The thermal and kinematic boundary conditions are
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Before proceeding with the transient analysis, it should be
pointed out that Equations (26) are just the steady-state perturbation
equations when AG¥ is chosen as the actual temperature difference
AT* and - 0T /0z is replaced by its steady-state value of one,

Equations (26) form the starting point for three different

approaches to the problem of transient heating, Two use different



methods of attack, but are essentially the same, while the third
approach starts with an essential difference in philosophy,
The {irst method to be discussed was developed by Foster

B

(1965a), The main feature of this approach is the treatment of the
equations as an initial value problem, For a given conduction profile
[given -8T/oz (z,t)] and with a specified initial disturbance w(z, 0) and
5(z, 0), the time behavior of w and § is examined, As was pointed out
in the previous chapter, this approach leads to the time required for
the initial disturbance to reach a certain magnitude, The effects of
the form and rate of heating and fluid properties (the Prandtl number)

% 3

can be examined, This method seems the most appropriate one in

tackling transient convection in the Bénard problem. Difficulty arises
in comparing the results with experiments because the linear analysis
does not yvield the size of the disturbance which would be first noticed
by an observer, only the size relative to some initial, "infinitesimal”
perturbation, However, curves of constant growth rates can be plotted;
and a comparison can be made with the experimental data, A second
technical difficulty arises from the need to specify an initial distur-
bance, What is the best choice? TFoster, after some trial and error,
chose ""white noise'’ distribution as the one that generally yielded the
fastest growing disturbances and the one that seemed the most physi-
cally realistic,

The remaining two methods examine the behavior of the fluid
layer, but time only appears parametrically in the calculations. The

first of the two, the '"quasi-static approximation, was developed by
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Lick {(1965) and Currie {1966, 1967). The basic assumption is that the
growth rates of the disturbances in the rest state are very large in
comparison to the times characteristic of changes in the temperature
profile, Making an asymptotic expansion, such as that performed by
Lick, it is possible to show that to a first approximation, time deriva-
tives of w and ¢ do not appear in (26), Thus, time only appears para-
metrically in the term -97T /0%, Using this technique, the time and
space variables can be separated as in the steady-state case, This
separation is not strictly possible in (26). If the stability boundary
is to be determined, as was done by Currie, the growth rate is set
equal to zero; and the resulting eigenvalue equation is solved for the

Yy
N

Rayleigh number, This procedure, however, is in direct violation of
the '"quasi-static assumption on which the method is based, The hope
is that the growth rate will increase rapidly enough so that the results
will at least be qualitatively similar to the actual case,

The last method, and the one which will be used in the present

%

analysis, was developed by Goldstein (1959). The key to this method
iz the definition of criticality, Imitially, ar,}d for a certain time there-
after, any disturbance will decay because the temperature profile will
be stable, However, a time will be reached when the disturbance
becomes unstable and will start growing with time, Somewhere
between these two conditions is a stationary state for the disturbance,

This behavior can be seen in the plots in Foster's work (1965a), In

the definition of the stationary state used by Goldstein, both the
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temperature and velocity perturbations pass through the stationary

state at the same time. That is,

Q

S
t

dw
ot

=0, at the critical time, (28)

Q

Following Goldstein, Galerkin's method will be used to solve
Equations (26) approximately. A series expansion with time-dependent
coefficients is made for w(z,t) and 8(z,t) in the form

(00}

Wiz, t)= ) w_(HW_(2)
n=1

(29)
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8(z,t)= ) 8. (£)6,(2)
=1

The ®n(z) and Wn(z) are chosen to satisfy the boundary conditions (27).
Several sets of trial functions have been developed, Two of the more
commonly used ones were first proposed by Reid and Harris (1958),
Another set has been recently used by Gresho and Sani (1971). In the
present analysis a Fourievr series will be used similar to that devel-
éped by Reid and Harris., Following Goldstein, the highest order

spatial derivatives of w and © are expanded in sine series. Thus,
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Integrating Equations (30), the general solutions can be written as
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Applying the boundary conditions, the coefficients are
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In summary, the Fourier expansion terms are

W (z} = sinnnz - j;(; = [(1-z)sinhaz+zsinha(l-z)] (33)
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Substituting the expansions (29) into the governing equations (26),

the result is
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If (34) is multiplied by sinrwz and the resulting expressions integrated

over the depth of the fluid layer, the equations become
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From Goldstein's definition of criticality (28), the time-

dependent coefficients must satisfy the following conditions:
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The criticality condition (37) requires that
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Eliminating 8n{‘c ) from Equations (38) and rearranging slightly, the

equations at the critical time can be written as
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For a non-trivial solution of (39), the coefficients of the wn(tcr) must

satisfy the following condition:
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Equation (40) is the required stability condition, where the effect of

time~dependency is contained in E__{t__).
In principle, for a given conduction profile, a stability boundary
can be obtained for some characteristic Rayleigh number as a function

of, say, the critical time, However, because only the profile at t:tc

T
is of importance in Equaﬁtion {40}, it would be possible to construct

an approximate profile, parame‘c;ic in time, to determine the basic
qualitative features of the stability boundary.

The first problem is to determine what parameter "best”
‘characterizes a large group of conduction gjrofiles. The one used by
Lick (1965) and Currie (1966, 1967) is the '"thermal thickness'!, ¢,
which is defined as |

/ 2 rt e -
elt) = j (T(z,t)-T(1,t)]dz : (41)

T(,t)-T(1,t) 0
The thermal thickness is a measure of the energy content of the fluid
relative to the steady-state case and, hence, indicative of the rate of
heating, Fast heating rates imply that the heat has not had time to
penetrate very far, that the temperature profile is highly non-linear

¥l

and, correspondingly, that ¢ is small., Slow heating rates imply nearly

linear temperature profiles; and, thus, the thermal thickness
approaches one, .

An alternate parameter that could be used to characterize the

conduction problem is the heat flux at the lower surface, H, which is
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defined as
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where R is the characteristic Rayleigh number, This heat flux param-
eter shoula be important because, for the types of heating considered
in the present analysis, the profile is the steepest at the lower bound-
ary -and would, hence, be'the region where the fluid is least stable,
Large values of the heat flux, H, would co;‘respond to rapid heating,
while steady-state conduction heating would correspond to H=Ra.

Using an approximate temperature profile that depends in some
manner on the thefmal thickness or heat flux at the lower surface, a
stability boundary of the Rayleigh number as a function of the thickness
or heat flux can be determined from Equation (40). To make use of the
stability boundary fér an actual conduction problem, the Rayleigh num-
ber, Ra(t), and the thermal thickness, €(t), or the heat flux at the
lower surface, H(t), are determined as a function of time for the actual
case., The point of intersection of this functional relationship with the
stabili’cy boundary would determine the critical time, tcr‘ By varying
the characteristic Rayleigh number, R, of the problem, the dependence
of the critical tirne on the critical Rayleigh number can be determined,
If the thermal thickness is used as the ch(aracteristic measure, the

intersection of the Rayleigh number, Ra(t), as determined by the con-

duction problém, with the stability boundary corresponds to a matching



{ the energy contents of the fluid layers, If the heat {lux at the lower
urface is used, the match is between the slopes of the temperature

£

profiles at the lower boundary, The use of the heat flux gives a
detailed match of the two profiles, while use of the thermal thickness
requires an average match, |

The next problem is the selection of an approximate profile to
carry out the necessary calculations, - The only profile that has been
developed to date is the 'two-step'’ or "kink'' profile (see Figure 2),

which was used by Lick and later by Currie, The profile consists of

two straight line segments. Lick assumed the slope of the upper seg-

ment was a small fraction of the lower segment, which covered the
region of large temperature change, For his calculation Lick assumed

the upper slope was one tenth of the lower slope, Currie used the par-

ticular case of zero slope for the upper segment, Following Currie,

the approximate temperature profile is given by

Il
ji~%¥ 0<z<§

‘LG <zl
e{‘ccr}: 8 {43)
a7 Hiter) 4
“dz (O5ter)= Ra =%

where the characteristic temperature difference is chosen as

i

o =¥y e _ a* %%
AT =T*(0, t% ) - TH(@*, t¥ )

Using this profile and the "quasi-static' approximation, Currie

calculated the stability boundary of the critical Rayleigh number as a



function of the critical thermal thickness, Utilizing the method of
Goldstein, similar calculations were conducted with the two-step pro-
file, details of which are contained in Appendix B, The results of the
calculations are shown in Figures 3, 4, 5 and 6.

The results of the critical Rayleigh number versus the thermal

or versus the heat flux at the lower surface

P

thickness (Figure 3
(Figure 4) have a stationary character. The minimum critical Rayleigh
number is 1350, This minimum occurs at a thermal thickness of 0,69
and a heat flux of 1950, The results of the critical wave number,

shown in Figure 5 as a function of the thermal thickness and as a func-
tion of the heat flux in Figure 6, do not show a minimal character. In
the limit of zero 8, corresponding to an infinite rate of heating or an

1

infinitely deep layer of fluid, the calculations indicate that the critical
Rayleigh number and the critical wave number satisfy the relationships
Racrf)B =32 and a7 13. Similar results were found by Currie,

The existence of a minimum critical Rayleigh number indicates
that for a certain range of heating rates it would be possible to initiate
convection at temperature differences smaller than that required in the
steady-state case, As seen in Figure 4, the range of heating rates
over which lower than steady-state Rayleigh numbers can be obtained,
according to this analysis, is not very large, with the bulk of the
results showing Rayleigh numbers larger than the classical, steady-
state value of 1708,

A concep;cual difficulty with the two-step profile is the discon-

tinuity at z = 8. This, along with a desire to examine the effect of
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profile shape on the stability boundary, led to the development of an

alternate approximate profile which is shown below:

— -0z
'I‘a(z;tcr) =(1-z)e

e(tcr)=%(1-1’§-a> (44)

Withr (‘
AGF=T*(0, t¥ ) - TH(a*, £% )

The "exponential'' profile, seen in Figure 2, consists‘of the
steady-state linear profile multiplied by an exponential weighting func;.—
tion, As seen in Equations (44), the weighting faétor, a, can be
~ related to the thermal thickness and the heat flux at the lower surface,
with a=0 corr.es‘ponding to €=1 and H=Ra, while q¢=w is the same as
€=0 and H=co.

Details of the galcﬁlations using the exponential profile are
contained in Appendix B, The critical Rayleigh number is shown as a
: function of the the;'mal thickness in Figure 3 and as a function of the
heat flux at the lower surface in Figure 4. The critical wave number
is shown as a function of the thickness and heat flux in Figures 5 and
6 respectively. |

As was true with the two-step profil’e results, the critical wave
number is a monotonically increasing function with decreasing ther=

- mal thickness and increasing lower surface heat flux. However, this
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function of the critical Rayleigh number does not have a stationary
character, which is in contrast to the kink profile case, The critical
Rayleigh number simply increases monotonically with decreasing
thermal thickness and increasing heat flux.

For the exponential profile the limiting case of infinite ¢ yields
the results that the critical Rayleigh number Racr/a3 =1.3 aﬂd that the
critical wave number a .= 13, The limiting results for infinite heating

or infinite depth for the exponential and two-step profiles allows a

comparison to be made of the two cases, If the thermal thickness is

b

the matching quantity, the critical Rayleigh number predicted from the
two-step profile is three times the value obtained from the exponential
profile in the limit of infinite heating or infinite depth. If the heat flux
at the lower surface is used as the significant parameter, the ratio of
the critical Rayleigh numbers for the two profiles is twenty-{our,

A comparison of the results for the two-step and exponential
profiles shows 'éhat“ the predicted stability boundary is sensitive to the
chosen profile, The prediction of critical Rayleigh numbers with
valueésmaﬂer than the steady-state value of 1708 is dependent on the
shape of the temperature profile used in the calculations, Neverthe-
less, the qualitative trends of the two cases are very similar, Over
most of the heating range the critical Rayleigh number is larger than
1708, Also, the results for the two profiles indicate that rapid heating
wiii excite larger wave number (smaller wavelength) disturbances to
instability., Thus, except for a possibly small range of heating rates,

eating is to raise the temperature

Ty

the effect of time-dependent



difference at which instability will occur and to decrease the size of
motion that will be seen once the disturbance has grown suifficiently to

be observed,



IV. EXPERIMENTAL APPARATUS
A. Chamber Design

The experimen ed as part of this research were
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heating on Bénard convection. Important information to be deter-
mined included the temperatures of the two bounding surfaces, the
amount of heat conducted through the lower boundary into the fluid
layer, an optical éetermina‘tﬁ;on of the onset of coﬁvection and the
patterns of motion once convection was initiated.

A wide range of heating rates were to be examined. To
maximize the effectiveness of any heater system used, the heating
surface would have to be as close as possible to the lower surface of
the fluid layer and the surroundings of the {luid layer should have
relatively poor thermal characteriétics, The chamber design would
have to incorporate some independent means of measuring the heat
flux to determine that fraction of the total heat generated that was
transferred to the fluid.

t was decided to make the optical studies using the shadow-
graph technique from above, instead of the side. This required the
upper boundary of the fluid layer to be a transparent material.

Using these considerations, the final chamber design is
shown in cross-section in Figure 7. The bottom of the box was
formed by a piece of 0.2318 m (9 1/8") square by 0.0381 m (1 1/2m)

thick piece of a laminated phenolic plastic. Lying on this base was
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a 0.2286 m (9") square by 0. 00635 m (1/4") thick piece of No. 7740
Pyrex glass, manufactured by the Corning Glass Works. The upper
surface of the glass had a metallic oxide coating bonded to it. This
coating was used as the heater. The upper surface of the fluid layer
was formed by an identical piece of Pyrex glass in which the lower
surface had the special coating.

The fluid layer was formed by three phenolic plastic posts,
0.0127 m (1/2") in diameter. They rested on the lower glass sui'face
and were the support for the upper surface. Three heights of post
were used in the experimentsr, 0.00635 m (1/4'), 0.01270 m (1/2')
and 0. 01905 m (3/4'"). To minimize the effect of the posts on the flow
patterns, a guard ring of phenolic plastic Wé,s inserted between the
posts and the rest of the fluid layer. The riﬁg was slightly smaller
than the posts so that the upper glass surface did not rest on it. The
ring was approximately 0. 0032 m (1/8'") thick with inside dimensions
of 0.1968 m (7 3/4") square. | -

Sidewalls for the chamber were made of 0.0127 m (1/2") thick
pieces of phenolic plastic, which were epoxied to the sides of the base
piece._ The chamber was supported by three cap screws that were
attached to the chafnber base. The screws were used as leveling
devices for the apparatus. Further insulation was provided by an
insulating blanket of styrofoam. For thé sidewalls a 0. 0508 m (2'")
layer was used, while the bottom insulation was formed by a dead air
space approximai:ely 0. 00635 (1/4") thick followed by a 0. 0254 m (1")

thick piece of styrofoam.



L the metallic oxide coating on the lower glass plate.
The current was brought to the plate by two flexible mesh wires,
which were mechanically clamped to adjacent corners of the glass.
From these wires the current was evenly distributed by two '"busbars"
consisting of 0.00953 m (3/8") strips of Silver Print, a paint used to
patch printed circuit boards. The strips were run from the wires
along opposite sides of the surface. Similar electrical connections
were made on the coating of the upper glass plate.

To measure the net amount of heat being transferred through

the fluid, a heat {lux meter, Model CCH~1R, manufactured by Hy~Cal

9

ngineering, was located in a depression in the phenolic base just

£
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below the glass surface. The meter was situated in the middle of the
lower right quadrant of the chamber as seen in the photographs of
motion.

The temperatures of the bounding surfaces were determined by
measuring the change of resistance of the two glass coatings. The
change in resistance was converied to a change in temperature by a
calibration constant that had been determined f{rorm constant tempera-
ture bath measurements.,

Because of the intimate contact with electrical currents, the
choice of fluids was limited to electrical insulators. Iven distilled
water would have required the use of some sort of electrical insulation.
Also, because thé shadowgraph technique was selected for the optical

studies, a fluid was desired which had a large change in its index of



refraction with temperature, This ruled out gases and narrowed the

EA

consideration to organic liquids, particularly oils. The last criteria,

3 3

a desire to use a fluid which had a minimurn change of physical prop-
erties with temperature, narrowed the chéice to gilicone oil. The oil
was obtained from Dow Corning.

To increase the range of effective heating rates without
changing the physical apparatus drastically, three different viscosity
grades of the 200 series oils were chosen. The grades were 5
centistoke {cs), batch AA8198; 100 cs, batch AABL141; 500 c¢s, batch
AA8150. The other physical properties of the oil remained essentially

constant from viscosity grade to viscosity grade.
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B. Controls and Instrumentation

The,change in resistance with temperai:ure of the two glass
coatings was small. The values were 0. 00575 0 /°K and 0. 004360 /°K
for the upper and lower surfaces, respectively. To measure these
changes, the plates were made to form legs of separate Wheatstone
bridges. The remaining legs of the bridges- were constructed from
Manganin wire, which possesses an extremely small change of resist-
ance with temperature coefficient. Each leg was approximately one
meter in length to ensure a large heat transfer area to dissipate the
Joule heating. The wire was coiled to reduce the effective length of
the bridge leg and allow the wires to be immersed in a bath of trans-
former oil. These precautions were taken to minimize resistance
changes in the bridge legs, thus ensuring acéura.te measurements of
the change of resistance for the two plates. Further details of the
bridge setup are given in Appendix D.

For the upper plate a small véltage, 1. 000 V, was maintained
across the bridge‘using a Model VR-607 Secondary Standard Voltage
Ref_erenée Source, manufactured by Epsco. The voltage imbalance of
the bridge was measured using a Hewlett-Packard Model 412A DC
Vacuum Tube Voltfneter. The voltage source for the lower plate was
a 125 V direct current line available in the laboratc-)ry. Voltage across
the bridge was adjusted by use of three rheostaﬁs of maximum values
100 0, 250 and 25Q. ' To obtain initial imbalance readings, a small
voltage of approx;imately 0.8 V was used across the bridge. This low

voltage was obtained by adding two 1000} resistors in series with
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he rheostats. The voltage across the

oy

ridge was measured directly

ps

on a Brush Mark 220 Recorder, manufactured by Clevite. he voltage

o

mbalance of the lower surface bridge was measured with a Hewlett-

podn

Packard Model 425A DC Micro Volt-Ammeter. DBoth the upper and
lower surface bridge imbalances were amplified in the Hewlett-
Packard instruments before being recorded on the Brush recorders.
The heat flux meter signal was measured on a Hewlett-Packard Model
412A DC Vacuurn Tube Voltmeter., This signal was also amplified
before being recorded by the Brush.

Time was measured on the recorders by a built in timing
device that would automatically make tick marks on the sides of the

recording paper at one second intervals, An electric clock was used to

b

eep track of the time at which photographs were taken and the point
at which motion started.

Ambient temperature was measured with a thermometer that

was located near the apparatus,



1
I
Ut

i

C, Optical System

As mentioned previcusly, the {low was made visible by means

&

kS

of shadowgraph technicue., A schematic lavout of the svstem is shown
& s b4

.

e light source was an Osram 100 W mercury vapor arc lamp.
This was enclosed in a protective housing with the light passing through
a small hole approximately 0. 006 m in diameter. From the source the
light was reflected from a front surface mirror located above‘the
chamber through the fluid layer to a mirror which was located on the
backside of the lower glass surface. From this mirror the light was
again reflected through the fluid layer to the front surface mirror.
Because the light source was slightly off axis, an image was formed
on a screen of flashed opal glass located adjacent to the lamp.

No attempt was made to collimate the light because of the large
field of view desired. This resulted in a slight distortion of the verti-
cal length scale.as is seen in Figure 9, which is a drawing of the cham-~-

ber with 0, 02 m marks indicated to show the scale changes., All

measurements taken {rom the photographic results took into account

The shadowgraph method detects point to point differences in
b

the second derivative of the index of refraction, The light intensity at

a certain point on the screen will be inversely proportional to the

r%

ure of the index of refraction at the corresponding point in the
fluid layer. The warm bands that appear in the {low patterns would be

regions of larger curvature than the surrounding fluid and, hence,



would appear as dark regions on the screen. The brighter regions

ocler sections of the fluid laver.
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raph technique, as well as the

schlieren and interferometer methods, is given by Holder and North

{ime exposure.



V. EXPERIMENTAL PROCEDURE

A, Initial Preparation

When starting a series of experimental runs with a different
oil, the apparatus was completely disassembled. The phenolic box

was washed with benzene to remove any traces of the previous oil,
The glass surfaces, excluding the mirror and busbars, were also
washed with benzene. The entire apparatus was then given a light
covering of the new grade of oil to be used. This coating was wiped
off, and the unit was reassembled with the new o0il as the working
fluid. The heat flux meter and lower glass surface were replaced.
Then the posts and guard ring, which had also been cleaned, were
inserted. The oil was poured in the chamber to a level slightly higher
than the poé‘cs, The upper glass surface was then lowered into place
Finally, any excess oil was cleaned irom the upper surface using
benzene.

When changing {rom one depth to another for the same oil, the

£}

he phenolic posts and guard ring were

[

upper surface was lifted, and

g

H
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S
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ced. Additional oil was added as needed to reach the desired
level, and benzene was used for any cleanup work. Periodically, when
the upper.glass plate would become oily and dusty due to evaporation of

-

the silicone oil from the chamber, the surface was again cleaned with

ny disturbances had dissipated due to
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th, a day was allowed to pass before
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the new experimental series was started. The viscous time constant

- based on the inside chamber dimension and the 5 centistoke oil (the
worst case) was about 1x104 seconds, while the thermal time constant
based on the thickness of the phenolic base and using the thermal
properties of the plastic was about I?.xlO4 seconds. A twenty four hour
period would thus correspond to about four to eight characteristic
times.

The final check that was made before a new experimental series
was s‘tarted, was a measurement of the voltage imbalance of t;he two
bridges. Sometimes an imbalance would occur because of changes in
contact resistance during assembly of the apparatus. To compensate’
for this effect, the resistance of the remaining legs of the bridge would

be adjusted accordingly.



hour before the experiment was to
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rders were turned on to allow the units to warm up.
At this time the ambient temperature was recorded from the thermo-
meter located next to the apparatus, This reading was needed to
determine the values of the properties to be used in the calculations,
Immediately preceding the start of the experimental run, the
light source was turned on; and if photographs were to be taken, the
camera was set up. Initial voltage imbalance and voltage drops were
noted on the Brush recorders from the readings taken from the
Hewlett-Packard instruments. w

s
ES

he experimental run was started with the closing of a switch

in the lower plate electrical circuit. At the same time the electric
clock was started. The time of starting was indicated in the log book,

4

where pertinent information abou

o

the run, including the ambient

temperature, external resistance for the lower surface and starting

ok
2
2
o
O
XN

the run, was kept. When the shadowgraph image indicated that
the onset of motion had occurred, the time of onsel was noted in the log.
Whenever any pictures were taken, the time at which they occurred
was alsc recorded.

t the end of the run, which lasted between 500 s and 2000 s, the
current was shut off, Approximately twenty-four hours were allowed to
pass before the next run was undertaken. This was to allow the motion

i 1

and the heat that had soaked into the apparatus to dissipate.



Part of a typical chart record is shown in Figure 10, where

the total voltage drop

n

AV is the lower surface imbalance, V._ i

L i

=

across the lower surface bridge, _&VU is the upper surface imbalance
and HFM is the heat flux meter signal, The tick marks on the sides

of the charts are at one-second intervals,
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C. Data Reduction

With the completion of a run, the ma.joi' task of data reduction
was the conversion of the voltage information on the chart recordings
to temperature differences and heat fluxes., The first stage of data
reduction was accomplished with the use of a Benson & Lehner digitiz-
ing analyier. The chart record was taped to a table ( 2 099D Data-
reducer), and a cross hair system was located on the ink trace. From
a preset origin the machine (a Type 282E Telecordex) converted the
posifion to units of two-hundreths of an inch. These coordinates, the
x-axis being the time line and the y-axis the voltage reading, were
then transferred to. an IBM 029 Keypunch machine through a footpedal
device. Data were taken for the two voltage imbalances and the heat
flux met‘er signal at ten-second intervals forvthe length of the run,

The time interval was a compi‘omise between a desire to know as
accurately as possible the voltages as a function of time and a need to
keep the anﬁount of data to manageable levels, For a typical run of
1000 s, three hundred data points Wer'e needed.

Digital values of the instrument signals that had been noted on
the chart recordings were determined. These values were used to
evaluate the correction factors that should be applied to the data. The
total voltage across the lowér surface b_ridge was also noted. Because
of the small change in resistances involved in the‘ run, the experir%xents
were performed at constant voltage. Thus, a record of the trace of the
voltage drop was not needed. Actually, this reading was only used ‘as

a check. More accurate readings were obtained from a set of
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calibration experiments, where a Hewlett-Packard instrument was
3

used to determine the vo
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‘or the same external resistance,
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The punched cards, with the necessary scale factors and any

o

eeded corrections, were submitted with a computer program to
convert the voltage information to temperatures and heat fluxes as
well as the total heat generated at the lower surface due to Joule
heating. All data anaftysza was done on an IBM 360/75

The conduction problem of constant heat genefatiom at a surface
in a semi-infinite composite solid had previously been solved for the

~

various combinations of depths and fluids that had been used in the

o

xperiments, Details of the calculations are given in Appendix C,
This result was subtracted from the experimental values to indicate
more clearly the onset of motion, The results were then normalized
by the total rate of heat generation to make the data uniform, These
values were plotted and punched onto new cards. The plot served as a
very useful indication of when motion occurred,

The new cards, with any needed correction factors, were
included in a second computer program which first smoothed the data

=

ith order orthogonal polynomial fit by the least squares

using a fi g

technique. A comparison between the normalized temperatures and

"
o)

eat fluxes, along with the smoothed curves, is shown in Figure 11,
The vertical axis functions are DTL, the normalized difference of the
lower surface temperature and the conduction result; DTU, the nor-
malized temperature difference for the upper surface; and QHFM, the

normalized difference between the actual heat flux meter reading



Using the simple forward step finite difference scheme, the

a

various desired quantities were calculated as a function of time.
ability of the scheme required a one-second time interval to be used.

This time step was obtained by a quadratic interpolation of the temper-

ature and heat flux data. Two separate calculations were carried out

simultaneously. The first was for the conduction problem of the

lower glass plate. For this problem the given boundary conditions

"

were the temperature of the glass surface at the fluid layer boundar
$y s+

%

and the heat flux passing through the lower glass surface. For the

1,

second problem, the heat transfer through the fluid layer, it was
assumed that the layer was always conducting. Thus, in comparing
the results of the two calculations, which should be identical when the
fluid layer is conducting, any deviations in the results would indicate
the presence of motion. To carry out the fluid layer conduction
problem, the temperatures of the two bounding glass surfaces were
used as boundary conditions.

After adding the analytical conduction profile that had been
subtracted from the results in the first computer prog ram, the various .
quantities were listed as a function of time. The parameters included
the dimensionless time, the average temperature between the upper and
lower surface (the temperature at which the properties were evaluated),

-

the temperature difference, the therma

%1

thickness, the Rayleigh

Fot

1

numbers based on depth and thermal thickness, the dimensionless

b il

total heat generation rate, the dimensionless heat flux through the
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lower surface into the fluid-layer and the Prandtl number, To help
" determine the onset of motion, the ratio of the heat flux through the
lower surface determined by an assumed conducting fluid layer to that
determined from the glass conduction problem was also listed, These
data were then used to determine the values of the \;arious quantities
at the onset of motion as well as the transient heat transfer results
which are presented in the subsequent chapters,

A discussion of the physical properties used in the calculations

is contained in Appendix E,



D. Test Conditions

Seventy-five experimental runs, comprising eight different
series, were performed using three grades of silicone oil and three
fluid layer depths., FEach run was carried out at one of thirteen
different external resistance settings. These settings gave a range of
voltage drops across the lower surface Wheatstone bridge from 10.4V
to 55.8 V. The voltage drops corresponded to total rates of heat

. . - 2
generation at the lower surface ranging from 35.8 W/m™ to 1032.
W /.

Series A involved twelve separate runs and was performed with
100 cs oil, using the 0. 01905 m depth. A total of eight runs, compris-
ing series B, were performed with 100cs oil at 0.01270 m. The six
runs of series G used 100cs oil at 0.00635m, A 0,01905m layer of
500 cs oil was used for the nine runs of series I, Fourteen runs were
performed for series C, which utilized a 0. 00635 m layer of 5¢s oil.
The nine runs of series D were carried out with 5c¢s oil at a 0.01270 m
depth. Series H used the same oil and depth as series D and involved
five runs. Finally, the twelve runs of series E used a 0.01905 m

1%

layer of 5cs oil.

o

Experimental runs lasted from 500 to 2000 seconds, with the

L

The onset of motion occurred

bulk of the runs being 1000 s in length.

<3

EREI ]

in all the runs except GC, which operated in the conduction phase for
the entire monitoring time of 2000 s. For the other runs the time for
the onset of motion, as determined from visual observations, ranged

from 15 to 1800 seconds. In terms of dimensionless times, the range



sotion was 0.006 to 3,861,
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of critical times foxr tl
The heat flux at the lower surface, expressed in dimensionless

. . A T
ecades of values, from 9.2x107 to 1.9x10".
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form spanned four
Because the experiments started with an initially isothermal layer,
the minimum temperature difference and corresponding Rayleigh
number were zero. The range of values at the onset of motion was for
the temperature difference 0.3 K to 11.2K and for the Rayleigh
number 1. 4}{103 to 7. OXESS.

In addition to the heat transfer measurements, photographic
studies were performed for fifty-five of the runs. Of these photo-

sranhic runs forty were selected for presentation in this thesis., The
P

{ heating rates was the same as given above for the heat trans-
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A, General Considerations

The experimental results presented in this dissertation are
separated into three sections., The first of these sections presents the
heat transier data pertinent to the onset of motion as determined from
visual observations. The heat transfer data‘ relating to the transient
period, covering both the conduction and convection regimes, are
presented in the second section. The last part is devoted to the photo-
graphic results,

Figures 12 through 21 present the heat transfer results at the
time of onset of convection. The first four figures show the variables,
dimensionless critical time, Rayleigh number at the critical time,
dimensionless heat flux at the lower surface at the critical time and the
thermal thickness at the critical time, as functions of the dimensionless
total heat generation rate. Included on the plots are the least squares
correlations., In Figures 16 and 17 the Rayleigh number and the lower
surface heat flux are plotted as functions of the thermal thickness., The
next figure is a plot of the Rayleigh number versus the heat flux at the
lower surface, while the subsequent figure shows the Nusselt number
and the Rayleigh number plotied against each other. (The Nusselt
number in this work is defined as the lower surface heat {lux divided by
the Rayleigh number.) Figure 20 presents lower surface heat flux

versus Rayleigh number correlation with the correlation for the critical

time superimposed. The last figure of this series compares the present
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results with those of Soberman (1959).

The transient data are presented in Figures 22 to 40. All the
plots, except 37, 39 and 40 are in the {orm, of the Rayleigh number
versus the heat flux at the lower surface for the particular time in
question. The first three plots present the data when the dimensionless
time, T, is some fixed multiple of the critical time. The multiples
used were 2, 4 and 10. Figures 25 through 35 present the data for
constant dimensionless time where the {ollowing values were chosen:
0.01, 0.05, 0,10, 0.20, 0.40, 0.70, 1.00, 1.30, 1.60, 2.00 and 2.50.
Again the least squares correlations have been plotted on these figures.
These correlations are used in the composite plots of Figures 37, 39

and 40, where the Nusselt number is plotted as a function of the

iy
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ayleigh number to help distinguish the correlations more clearly.
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figure shows the results dimensionless times that are fixed

he
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irst {

multiples of the critical tirne, while the last two figures present the

h

data for constant dimensionless time, For clarity the results for

dimensionless times 1.30, 1.60, 2.00 and 2.50 are shown as one

)'h

correlation, 21.30. On the figures the correlation for the heat transfer
results at the critical time have been included for reference. Also
plotted on Figures 37 and 40, for comparison purposes, is the curve
recommended by Rossby (1966, 1969) for a layer of 20 centistoke
silicone oil operating in a steady-state. Figure 39 shows lines of
constant lower surface heat flux to indicate the trend of the results

with time.

The last series of figures (41 to 50) present the photographic



:lts, The experiments are grouped by depth, and within each

roup the runs are arranged in order of increasing total heat genera-
tion rate., FEach photograph is identified by the time at which the
picture was taken, in the form of dimensional time, dimensionless
time and fraction above the critical time, Also listed is the Rayleigh
number at the time the picture was taken, TFigures 41 and 42 are the
results for a 0,00635m layer of fluid (series G and C). The 0,01270m
depth (series B, D and H) results are presented in Figures 43 through
45, TFigures 46 through 49 are for a depth of 0,01905m (series F,

A and E)., TFigure 50 is a plot of the dimensionless wave number versus
the heat flux at the lower surface at the critical time, The wave num-
ber data were taken from the photograph taken nearest to the onset of

motion from which the pertinent information could be extracted,



As the heat flux at the lower surface is increased, the Rayleigh

- -

numbexr at which instability occurs increases. Thus, all things being

ot

he same, a larger temperature difference is required to initiate con-
vection for an increased heat flux. But as can be seen from Figure 18,
the necessary temperature difference does not increase in proportion
to changes in the heat flux at the lower boundary, but more nearly as
the 0. 65 power over the range of data gathered from the experiments.
Consequently, when comparing the critical time temperature difference
to the characteristic, steady-state temperature difference, Qd/k, the
ratio decreases with increasing heat flux at the lower surface, Q; or
inversely, the Nusselt number at the critical time, Qd/k&Tcr .
increases with increasing heat flux or co:rresponéimgly increasing
Rayleigh number, 'E?hié result is seen in Figure 19.

For very rapid heating the onset of motion should occur before

-

the heating has pe;yetra‘ted very far into the fluid layer. The system
for these large heat fluxes will behave as if it is infinitely deep. The
overall depth, d, will then lose its significance as a length scale of the
problem. Thus, ina correlation between the critical time Rayleigh
number and the critical tirme heat flux at the lower surface, the result
should be such that it is independent of depth. Since the Rayleigh
number is proportional to the depth cubed and the heat flux at the
lower surface goes as the fourth power of the depth, this requires the
Rayleigh number to be proportional to the 0.75 power of the heat flux,

: . 7 . . .
M. At a heat flux of H = 1x10 the experimental correlation yields a .
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sower of 0.67. Over the heat flux range of the experiments, 2x107 to
P g g

1x10", the exponent increases from 0.63 to 0.67. This power implies
that the temperature difference at the onset of motion is proportional
to the ~0. 4 power of the depth.

For the lowest of the heat fluxes (series () some of the critical

Rayleigh numbers were below the classical, steady-state value of 1708,

The smallest value was for run GE (heat flux at the lower boundary,

Hcr = }.74x103}, with a value of the critical Rayleigh number of
Ra_ . = 1. %3};103. Other sub steady-state values were 1. 50x103 for
run GD (H__ = 2.23x10%) and 1. 54x10° for run GB (H_, = 2. 12x10%).

All the other heating rates had Rayleigh numbers at the onset of con-

5

vection that were greater than the steady-state vaiue. The three sub
steady-state results were obtained for runs with the lowest values of
the total heat generation rate for which motion was observed,

An examination of Figure 20 shows that as the heat flux at the
lower surface is increased, the time required for instability to occur
decreases, This is also somewhat more dramaizicaliy seen in I'igure
12, where the dimensionless tirne for the onset of motion is plotted
against the total heat generation rate, This behavior of the critical
time is entirely co’nsisﬁeﬁt with the other resulis. As was pointed out
earlier, the Nusselt number at the onset of motion iz;creases with
increasing heat flux at the lower surface. This was also stated in
terms of the effective temperature difference, the inverse of the
Nusselt number, ’Which would decrease with increasing heat flux., Thus,

in dimensionless terms, it would take a shorter time to reach a
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smaller temperature difference, which is just the result that is
observed.

For very high heat fluxes, using the same arguments that were

o

used above, it would be expected that the dimensionless time at the
onset of motion be proportional to the -0.50 power oi the total heat
generation rate. The experimental power is -0.531,

For lower heat fluxes there will be some minimum heat flux
below which the system will always be stable. As this heat flux is
approached from above, longer and longer times will be required
before the initiation of convection, until at the minimum heat flux an
infinite time will be required. As can be seen from Figure 12, the
experiments bear out this trend. The least squares {if indicates that
- o e N > . . = 3 A3
the minirnum total heat generation rate is approximately 5, 09x1i07.
Substituting this value into the Rayleigh number correlation vields a

. " . 3
steady-state, critical Rayleigh number of 1.45x107.

At these lower heat fluxes very small changes produce major
changes in the time for the onset of motion. This is seen in Figure 20,

. . - 3
surface from 2,5x107 to

%,

where changing the heat flux at the

omt

owe

H

1. 8x103 changes the critical time from one unit to an infinite time,

The dimensionless thermal thickness is plotted against the
Rayleigh number and the heat flux at the lower surface in Figures 16
and 17, respectively. As can be seen, for decreasing thermal thick-
nesses the heating rate increases. The rate of increase also increases
with larger heat fluxes and Rayleigh numbers,

For the highest heating rates the thermal thickness goes as the



Very rapid heating or

-0. 193 power of the total heat generation rale.
very deep fluid layers would have a power relationship of -0.250.
t line, the value of the steady-

Using the same least squares i
corresponding to a thermal thickness



C. Transient Data

For any given time, whether measured in multiples of the time
required for the onset of motion or some fixed value, the Rayleigh
number increases as the heat flux at the lower boundary increases.
As was true for the relationship at the onset of motion, however, the
increase in Rayleigh number is not proportionate fo increases in the
heat flux, Thus as the Rayleigh number increases, the Nusselt number
also increases, This fact is seen in Figures 37, 39 and 40 Qhere the

east squares fit lines are plotted for various times in the form of

o

Nusselt number versus Ravleigh number,
&

iy

Also to be seen from the figures is the fact that for a given

reat flux at the lower surface, as time increases, the temperature

[

~

difference (which is proportional to the Rayleigh number) increases.
YL o s L i :
This temperature difference approaches an asymptotic value as time
increases, That is, the Rayleigh number increases more slowly at a
given heat flux as time increases, finally approaching some steady-
state value,
In Figure 37, where time is measured in multiples of the onset
of motion time, it is seen that for Rayleigh numbers greater than about
4 . s - ; - . v - .
1x107, the decrease in the Nussell number for each doubling of the time
? & g
is less as time increases. For example, considering a fixed Rayleigh
e 11 pD . . ;
number of 1x107, the Nusselt number decreases from 7.8 to 6.4 as
time increases from its onset of motion value to twice that much., This
is a decrease in 1.4 units or 18 percent. GCoing from two units to four

units of the critical time, the decrease is 1.1 units or a 14 percent



urther reduction., If the rate of decrease were constant over this
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time range, there would have been a 52 percent decrease. Iinally,

in going

iy

rom four units to ten units of the onset of motion time, the
decrease is 0, 6 units or a further 8 percent.

For a Rayleigh number less than about 6x3.03 the Nusselt
number is larger for times greater than the critical time, although
the value at four multiples of the time to onset of motion is less than
the value for two multiples.

When time is some fixed value, the qualitative behavio‘r‘ of the
Rayleigh number for a fixed heat flux at the lower boundary is the same
as the fixed multiples of the critical time results. As ﬁme increases,

1

s0 does the Rayleigh number but at ever decréasiag rates, The new
feature that can be seen here is that it takes longer times for an
asymptotic value of the Rayleigh number to be reached when heat fluxes
at the lower boundary is decreased. Although the data are sketchy, for
Rayleigh numbers greater than about 1}:105, a time of about 0.20 units
will give approximately steady-state ‘resuiis. That is, 0.20 units
corresponds roughly to infinite time as far as heat transier is con-
cerned for these Rayleigh numbers. For values of the Rayleigh number

. i 1 5 ; - .
less than the 1x107 value, steady-state heat transfer results are

approximately reached for times on the order of 0,70 to 1. 00 units.
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D. Photographic Results
o &
Before starting the description of the photographic results, a

brief discussion of the terms used to describe the various flow patterns
is needed, When looking down at the fluid layer, the motion is found to
occur in a relatively regular array, except possibly for the very large

7

Rayleigh number flows. In examining the photographs in Figures 41 to

[

49, distinct regions in which hot fluid rises from the lower surface
(shown as the dark bands in the photographs) are seen. Along with the
- cold descending bands of fluid, these flow structures for the lower
Rayleigh number range form various polygonal pa‘ctei‘ns when viewed
from above.

The term '"'closed cell' will refer to a flow pattern in which the
sides of the polygonal structure that outline the flow unit are all of
approximately the same size. The term "roll" or "roll-like' will be
applied to flows in which the polygons are approximately rectamguiar in
shape and the long sides are much greaaﬁer/in length than the width. In
the theoretical analyses the roll is supposed to be strictly two~-
dimensional, but in actual experimental situations the axis of the roll
will have a curvature. To characterize this feature, Avsec {1939)
described the paﬁte?n as ”Verrniculateé rolls' after its worm-like
appearance.

A cursory examination of the photographic results indicates that
at any given depth, as the total heal generation rate is increased, the
initial flow pat?:erﬁ consists of an increasing number of small closed

cells as opposed to rolls.
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In the 0.00635m depth series (Figures 41 and 42) runs GB, GA,
CK, CI, CH and CM display qualitatively similar pattern development.
Starting from a system of small wavelength, closed cell motion, the
pattern changes to a larger wavelength, predominantly roll-like pattern.
Runs GB and GA have planforms showing a strong orientation with the
boundary; this feature is less pronounced in the C runs. This transition
from a small closed cell to a roll pattern appears to occur in two
distinct ways. The first method is for adjacent cells to merge together
to form a single roll cell. This process is very clearlly seen in the
photographs of run GA. As the rolls continue to increase in wavelength,
some merging of rolls occurs to allow for the growth in the finite size
chamber. The second method of transition comes from the Mdestruc-
tion' of a small closed cell located between two existing rolls. This

phenomenon will be described more fully in the description of the

[e]

. 01270 m results.

Runs CC, CD and CA (Figure 42) exhibit a behavior that is’
qualitatively different from the previous runs. Starting from the closed
cells, the pattern changes toward a longer wavelength, roli-like
pattern, but with dark lines or hot bands running locally perpendicular
to the main warm cell boundaries. The pattern is again one of closed
cells, although for these photographs the first impression is that
motion is in a roll-like pattern. This superimposed or extra pattern
increases in intensity with increasing heat generation rate. The time
development of the motion for the three runs does not seem to pass

through the strictly roll-like stage that is characteristic of lower



heating rate runs. This observation somewhat depends on the interpre-

rraphs of run CC, particularly pictures 3 and 4.
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igures 43 through 45) the noticeable

new i the strong orientation of the motion with the boundaries.
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This is particularly true for the B series. With increasing heat
generation rates the B series shows increasing initial pattern disorgan-
ization with an increasing number of small closed cells. All of this
series, except run BA, evolves to a roll pattern as time progresses..
In run BA the final pattern contains a large fraction of ''modules"
superimposed on the dark bands with very faint connections between
opposiﬁg nodules in a manner very similar to run CC. Run BA also
does not appear to pass through the strictly roll-like pattern of the
lower heating rate runs.

As mentioned above, one method of pattern transition was the
elimination of a small closed cell surrounded by two rolls. This
phenomenon is clearly seen in the photographs of the B series. Ioxr
example, in the second picture of run BC (Figure 43}, two small
closed cells are seen in the middle of the photograph with a roll on
either side. The lower cell has made a ''connection' with the two
rolls in the form o>f hot rising fluid bands shown as the dark regions in
the photos. In the next picture the lower cell boundaries (bright lines)
have disappeared, and a connection has been made with the upper cell.
In picture 4 the lower cell connection has been broken and the boundary
between the two i@ils "patched. ' In the meantime, the upper cell has

had its boundaries ''destroyed.' Picture 5 shows the boundary between



the two rolls being patched up, with the horizontal dark band having

wat the original cells existed.

The remainder of the 0, 01270 m series, the D and H runs,
exhibit a much more disorganized pattern development. Two of the
runs, DB and DA, have quite anomalous behavior and will be discussed
separately with some anomalous runs in the E series. Runs DI and DG
were duplication runs which showed the more ''consistent’ initial
pattern.

The initial pattern consisted of smai{l closed cells, with a larger
number of cells appearing for an increasing heat generation rate. The
boundary orientation appears to be very strong, with the least’ influence
seen in run HE, which is a duplicate of run HA,

Runs DD and DC have a qualitatively similar pattern develop-
ment, Starting from a rectangular array, the pattern changes to a
closed cell motion in which the characteristic size of the motion 1s
larger than the initial pattern.

The remaining runs are also very three~dimensional, but with
an extra feature that cannot be seen from a still photograph., The best
example of the phénsmenon is seen in the last picture of run DB (Figure
443, ’ ’

n the photograph the large three-dimensional closed cells are

N

ol

seen along with hot blobs that are in various stages of connection with
the cell boundaries. These blobs would appear in a periodic fashion
%,

in the central recions of the cells and then drift to the cell boundaries,
-t

This periodic time dependence was different from the previous aperiodic
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time development of the overall pattern.
he last feature to be noted about the D and H series is the
appearance of a large boundary affected area surrounding the pattern
area. This zone of influence was not nearly as prevalent in the lower
heating rate runs.

For the final depth series of 0,01905 m (Figures 46 through 49)

1, —

the F series and run AJ exhibit very similar time development of the
patterns of motion, Here the initial pattern is predominantly a roll,
with any closed cells being eliminated as time progresses. The flow
patterns also show a strong boundary alignment. For these runs cell
elimination is only through the merger technique.

Runs AL and AH follow slightly different time development.
Both runs are still strongly orientated with the boundaries, but both
include the appearance of the "nodules' along with the interconnections
between them. Although somewhat difficult to determine, it does
appear that these two runs do not pass through the strictly roll-like
pattern in the same manner as the similar runs at the smaller depths.

In the E series there are two anomalous runs, El and EJ, which

1

be discussed separately.

3 %

or the other runs in the series the

trj

will
initial pattern is very similar to the patterns seen in series D and H,
with an increasing number of small closed cells with an increasing heat
generation rate. The strong boundary orientation is also apparent.

All of the runs appear to go through a similar initial time

development, except possibly run EA. Starting from a basically rec-

tangular planform, the pattern changes to one of isolated hot spots with
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s, The hot spots are then reconnected,
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some interconnecting dark ban
but with a more disorganized orientation of cell boundaries, With
higher heat generation rates this time development is followed with the
appearance of time dependent hot blobs in the interior of the cells in a
manner very similar to that described for run DB. The rather strong
region of boundary influence can alsoc be seen in these flow patterns,

For the highest heating rates used, runs EK and EA (Figure 49),
the entire pattern was highly time dependent, although an overall view
of the flow indicated a pattern that was cellular in character. The
bounéari’es of these cells would shift and move; but the general feature
was still cellular, as can be seen from an examination of the pictures.
The detailed flow was, however, highly energetic,

n the course of the experiments four runs were conducted in

Pt

which the initial patlern was quite different from the "normal’ beginning
motion. These were runs DA and DB and EI and EJ (Figures 44, 45,

48 and 49). As can be seen from the second letter of the run, the pairs
were performed on subsequent days, although they were for different

6 6
at generation rates, The four rates ranged from 1. 9x10° to 7. 6x10

by
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The characteristic feature of these anomalous runs was that the

P

initial pattern had a scale of motion that was substantially larger than

calie at the same heat generation rate. These anomalous
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would also appear at an earlier time than the normal pattern.
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As can clearly be seen from runs DB and EJ, the regular planform
would start appearing subsequent to the initial motion. The flow would

continue to develop until the patltern was st bs;am,lally similaxr to the



P
R
H

uplicate run at a comparable time. This is seen, for example, in a

j& N

comparison of picture 4 of run DA and picture 3 of the duplication run
DG, where the palterns are very similar,

An examination of Figure 50, a plot of the dimensionless wave
number versus the heat flux at the lower surface at the onset of motion,
shows that for increasing heat flux the wave number increases. This
means that the scale of motion gets smaller as the heating is increased,
a feature of the flow that was noted in the study of the photographs.

The data points were determined from the photographs by a
measurement of the width and length of the cells. DBecause of the
generally strong boundary orientation, the cells were at least locally
assumed to be rectangular in shape. This assumption allowed an easy
determination of the wave number. The wave number was then scaled

with the depth of the fluid layer to give the values plotted in the figure,

hj

or a given run four separate measurements were taken. An attempt
was made to choose several different cells that would give a range of
wave nurnber that was characteristic of that run.

Although the scatter of the wave number was relatively large
compared to the precision of the other results, the trend of the data
is very clearly an increase in wave number with increasing heat flux,
Also, the mean values of the wave number at the lower heating rates is

FE SN

er than the steady-state, theoretical result of 3,117,
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VI, COMPARISON AND DISCUSSION
OF THE RI’JS ULTS

A. General Comments,

All of the information presented in the figures described in the
previous chapter were in the form of plots between dimensionless
variables, The amount of scatter in the data was normally very small
for these figures. he least scatter is probably seen in Figure 14, a
plot of the dimensionless heat flux at the lower surface versus the total
heat generation rate. The largest amount of scatter is in the plot of
the wave number versus the heat flux at the lower surface, Figure 50,
though obvious, conclusion that can be

A sormewhat subtle

2
drawn from the fact that the data does exhibit very definite correlations

=

when plotted in dimensionless form is that the choice of dimensionless
variables was an appropriate one. In other words, the small scatter of
the data indicates that there are probably no other significant param-
eters than those used in the figures, Over the many different dimen-

sional conditions that determine the experiments, the resulting data

can be collapsed to simple relationships between the dimensionless
variable
All of the data appears to be expressible in terms of two

independent variables: the total heat generation rate and the dimen-

ionless time from the start of heating., TFor given times the various

U}

<

ariables, such as the Rayleigh number, the heat flux at the lower



surface, the Nusselt number and the thermal thickness, can be ex-
pressed in terms of the total heat generation rate alone, This fact
allows direct crossplotting of the dependent variables for a given time,
Two dimensionless variables which should be checked to see if
they are important correlating parameters in the problem are the
aspect ratio and the Prandtl number, The aspect ratio, which com-

horizontal length scale of the chamber (in this"

pares the characteristic
case the length of the side of the square guard ring) to the depth of the
fluid layer, does not have any noticeable effect on the heat transfier
results, nor on the wave number at the onset of motion, This ratio,
with values 10.3, 15.5 and 31,0, is a parameter in the detailed flow
pattern; and its effect will be discussed in the section dealing with the
photographic results,

The Prandtl number, which ranged from 45 to 8770, also
appears fo have an insignificant eifect on the heat transfer results,
For extremely large Prandtl numbers the effect on heat transfer
results should be negligible., In accord with other experimental inves~
tigations, the range of Prandtl numbers in the present experiments
are in the '"large' Prandtl number region, This would lead to the sup-
position that the ef;fecﬁ of this property parameter should be small, as
is the case. The only data which appear to show some slight syste-
matic Prandtl number dependence are the onset of motion times, A
discussion of this feature will be found in the subsequent section on

the onset of motion,



B, Onset of Motion Results,
In the present experimental research the critical time, the
time for the onset of motion, was that time at which motion was ob-

27

he shadowgraph image of the

rh
ot

served to occur from an examination o
fluid layer. An alternate definition that could have been used in the
experiments was that motion was occurring when there was a change in
the heat transfer rate from that predicted on the basis of pure conduc-
tion., This experimental technique has been used many times to deter-
mine the steady-state critical Rayleigh number. A check was made of
all the experimental results to determine if the second definition would
give different results for the critical time, It was found, essentially
uniformly, that the time determined from the heat transfer results was
slightly longer than the one determined from shadowgraph observa-
tions, All of the data presented in connection with the onset of motion
is based on the shorter of the two times, the optically determined one,
This choice was made because the visual indication was more sensitive
than the deviation of the heat transfer rate,

There remai§s the c;ueétion of how to compare this ex@eri—
mentally determined time to the ones calculated from the theoretical
results of Currie (1966, 1967), Currie carried out an analysis of a
constant heat flux problem to compare his analytical results to the
experimental ones of Soberman (1959), When a comparison is made
with the present experimental times and the times calculated by Currie
the obvious fea‘tu‘re is that the experimental times are much longer.

. ; " . 5
Using, for example, a critical Rayleigh number of 1X107, the
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experimental time is ten times longer than the theoretical one, This
apparently large discrepancy is explained by an examination of the
definitions of the ;réiicai times for the two cases, For the analytical
case the critical time is the time required for an initially decaying
disturbance to reach a stationary state and thereafter to grow in size,
This is to be contrasted with the experimental time, which is the time
required for this same disturbance to be seen, that is, to be of {inite
size, There will be some finite amount of time required for the dis-
‘turbance to grow from an infinitesimal size to one that can be seen,
The work of Foster (1965a), which treated the theory as an initial
value problem, indicates that the time required for a disturbance to
2T oW ‘abou’c one hundred times its original size is approximately an
order of magnitude larger than the time required to reach a stationary
state, This is certainly a qualitative verification of the growth factor
given above for the present experiments and the work of Currie.
Another question that can be raised about time to the onset of

motion is whether there is any systematic effect of the Prandtl number
on the time, a point noted in Section A of this chapter, A detailed
examination of the experimental results, particularly Figure 12, indi-
cates that the critical time is affected by the Prandtl number, but only
slightly., As mentioned in Section A, the results for the critical time
will become independent of the Prandtl number when the Prandtl num-
ber is large enough, The analytical work of Foster (1965 a) indicates
that ''large enough' is somewhere in the range of 100 to 1000, depend-

ing on the conduction problem considered. The experimental work of



Onat and Grigull (1970), which approximates the case of constant heat
flux at the lower surface of a semi-infinite medium, indicates that for
Prandtl numbers larger than 200 the time at the onset of motion is
independent of Prandtl number., Both works also indicate that the
smaller the Prandtl number, the larger the critical time, As applied
to the present experiments, the results for the 100 ¢s and 500 cs oils
should be the same, while the 5cs oil results should give slightly
longer times. The data shown in the plot of the critical time versus
the total heat generation rate, Figure 12, verifies this conclusion, An
examination of the region of overlap of the various oil data indicates
that the times to instability for the 5c¢s oil are approximately thirty to
forty percent longer than the corresponding izznes for the 100 c¢s oil and
500 cs oil. The results of Foster and Onat and Grigull would indicate

%

less of an increase in this time, The discrepancy, however, is within

the bounds explainable by the differences in the boundary conditions
and the experimental errors inherent in the experiments. In any case,
the effect of the Prandtl number on the critical time is small; and it
may be neglected in the relation between the heat generation rate and
the critical time. For engineering purposes certainly a single time
would be sufﬁciené in this Prandtl number range.

The experimental data also allow the computation of the thermal
thickness, a measure of the rapidity of the heating (see Equation (41)
for its definition); and this thickness, based on measurements, may
then be 'compare& to the present theoretical work as well as to the

work of Currie (1966, 1967). When this comparison is made, the
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exper‘im‘enAtal thicknesses are much larger than the theoretical ones,
The discrepancy is again resolved when it is remembered that the
experimental and theoretical results are based on different critical
times, With a longer time the Rayleigh number and the thermal thick-
ness will have a chance to increase over their values when the infini-
tesimal disturbance has reached a stationary state. This is .in agree-
ment with the findings.

One question raised by earlier research was whether certain -
types of transient heating could induce instabilities at Rayleigh num-
bers lower than the steady-state value of 1708, In the present series
of experiments three such cases were found, all occurring at the low
end of the heating rates studied (Figure 18). The number and accuracy
of data points, however, was not believed tolbe sufficient to determine
conclusively whether for this case of nearly constant heat flux there
are heating rates for which the critical Rayleigh number is lower than
the steady-étate value of 1708, |

The only e.xperiments which have been carried out to date which
cdver a similar range of heating rates and which approximate the case
- of cons‘gant heat fluﬁ were performed by Soberman (1959)., He used
mercury and 500 c s silicone oil to determine the relationship between
the Rayleigh number and the heat flux at the lower surface at the onset
of convection, A comparison Qf the present data’ and Soberman's
results is shown in Figure 21. As can be seen, there is a major dis-
agreement in the two series of data, which the following discussion

clarifies,



Currie {1966, 1967), who also studied Soberman's data for
comparison with his analytical wor}{, determined that discrepancies of
the results were probably due to the method of temperature measure-
ment used by Soberman, In his apparatus two thermopiles were located
at a distance of 0,00318m (1/8'") on each side of the centerline of the
fluid layer, which was either 0,0127m (1/2"') or 0,0254m (1'') deep.
Soberman claimed that the times required for the onset of convection
were not short compared to the thermal time scaie, dz/%. No times
were listed, but three figures give dimensionless times of 0,17, 0.29
and 2,6, If it is assumed that the times are not short, the temperature
profile will be '"close'’ to its steady-state configuration. The gradient
measured by the thermopiles can then be used for the overall gradient,
The temperature difference between the two surfaces at the onset of
convection is then just the measured temperature gradient multiplied
by the overall ‘depi:h, which was Soberman's procedure, Although the
times given by Soberman are not small, the critical times in the pres-
ent work, seen in Figure 20, are indeed small for the rapid heating
rates, It then could be that the times in Soberman's experiments were
artificially long because of a defect in the test apparatus and the method
of heating. A time lag, not present in the current experiments, was
involved because the energy from the heater had to pass through a
"small! air gap and a 0.00635m (1/4") thick piece of copper before
entering the fluid layer. Because the onset of motion times was

actually short, the heat flux at the lower surface would be larger than

predicted by the thermopiles; and hence, the temperature difference



would be larger than calculated, Consequently, the Rayleigh number at

the onset of convection would be underestimated, and the error would

increase as the heat flux at the lower surface is increased, This is in

agreement with the results shown in Figure 21,
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C, Time-Dependent Resuits,

The present experiments are concerned with the time-dependent
behavior of the Bénard convection system during the transient period
while the steady-state conditions are being established, The heat
transfer results of the experimental runs are effectively summarized
in Figures 39 and 40 in which the Nusselt number (based on the heat
transfer rate at the lower surface) is plotted as a function of the
Rayleigh number for several values of the dimensionless time, On
both of the plots the time required for the onset of motion to o;:cur is
shown as a dashed line, In Figure 39 lines of constant heat flux at the
lower surface are also marked, Kach of the experiments of the pres-
ent series essentially proceeds along one of these lines in the direc-
tion of increasing Rayleigh numbers, In Figure 40 a steady-state line
is plotted to show the limiting behavior of the iree convection layer,
The correiaﬁ:ién was taken from the experimental results of Rossby
(1966, 1969) for 20 cs silicone oil, The results of long duration in the
present experiments agree well with his steady-state findings, The
graphs (Figures 39 and 40) clearly indicate the following: (a) the
regions in which hgat is transferred solely by unsteady conduction;

(b) the time at which convection is initiated; {(c) the response of the
Nusselt number and the Rayleigh number in the region of transient
convection; and finally, (d) the times required for the Rayleigh number
to approach a steady-state value, The '"fifteen percent line' indicates

when the Rayleigh number is within fifteen percent of its steady-state



-82~

value for a given constant heat flux at the lower surface. The line also
represents the point at which the Nusselt numbér is within eighteen
percent (1/0,85 -1) of its steady-state value,

In Figure 37 the Nusselt number is plotted as a function of the
Rayleigh number for several different dimensionless times, using
time measured in mﬁltiples of the critical time, This figure shows
that the data for ten multiples are within fifteen percent of the steady-
state value for all Rayleigh numbers, If the Rayleigh numbers are less
than‘S X105, it requires only four multiples; for Rayleigh numbers less
than 1.5x104, only two multiples are needed, Finally, when the
Rayleigh numbers are less than 8 ><103, the fifteen percent limit is
reached at the onset of motion,

| Similarly, referring to Figure 40, for dimensionless time of
0.01 none of the results are within the fifteen precent limit over the
range of data presented, and this remains true for times up to about
0.05. For Rayleigh num‘bers greater than 3 x104 the results are within
~the fifteen percen£ line when the time is 0,10, At a time 0.20 tbe
results are within fifteen percent for a Rayleigh number greater than

) X103._ For times between 0,40 and 2,50 the results are within fifteen

pércent for Rayleigh numbers between 1.5 )(103

and 2.2 X10°, the higher
number corresponding to a shorter time, '

The apparatus used in thé experiments requires approximately
a day to reach truly steady-state conditions> in the heat tran;fer and the‘
flow patterns, - It~ was found, however, that it takes Fonly a compara=-

tively short time (normally less than one dimensionless unit) to reach



the steady-state temperature difference and, therefore, the steady-
state Rayleigh number, Once this Rayleigh number is reached, the
main change in the fluid layer is an increase in the mean temperature
of the oil, During this time the Rayleigh number changes only slightly,
mainly due to changing property values and small changes in the
amount of heat transferred., The mechanism involved appears to be
the following: once motion occurs, the fluid layer is able through
rapidly changing flow conditions to adjust the amount of heat trans-
ferred to an approximately steady value, The flow péttern adjusts
from an initial, generally small closed cell motion to a pattern that is
gualitatively similar to the final steady-state motion in a few dimen-
sionless times, With the heat transfer rate near the steady-state

value, only the temperature level changes gradually,
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D. Flow Conditions,

The photographic survey of the experimental runs presents
some striking patterns of motion, For each of the three depths the
lower heating rate runs have initial patterns that are predominantly
roll-like in character, The deeper the fluid layer, the more strongly
ﬂ"le rolls are aligned with the vertical boundaries,

This influence of the vertical boundaries in orienting the pattern
was first shown to exist by Koschmieder (1966), He used a square
‘fram;a with an aspect ratio of approximately 12, usiﬁg the side of the
square as the characteristic length; he also used a circular ring with
an aspect r‘atio of 20, in which the diameter of the ring is the charac-
teristic length. (The aspect ratio is defined as the characteristic hori-
zontal length of the chamber divided by the depth of the fluid layer.)
IFor the presen‘é experiments, in which only square frames were uséd,
the aspect ratios were 10,3, 15.5 and 31,0,

In confirmation of Koschmieder's work the present results also
indicate this bounciary influence, The largest aspect ratio experiments
(0.00635m depth) show the least orientation with the sidewalls., The
“influence does in;:rease as the heating rate is lowered, For runs GB,
GA, CK, CI, CH aﬁd CM in Figure 41, the effect of the boundaries
appears to increase as‘time progresses,

Even though the boundaries exert an influence on the orientation
of the pattern of motion, apparently they do not strongly influenée the
total wave numbér of the system, as Acan be seen in Figure 50, The

data does not show any systematic deviation of the dimensionless wave



number with depth., A similar observation can be made about the heat
transfer results., This independence of aspect ratio of the heat transfer
results had been anticipated because of the extensive experiments by
Catton and Edwards (1967) on the influence of sidewalls on steady
Bénard convection, Their results indicated that for aspect ratios
larger than about five the heat transfer would be essentially indepen-
dent of sidewall influence,

Returning to Figure 50, one of the o*bvious features of the graph
is the relatively large band spread of the wave number data as, for
example, compared to the heat transier resulis. In“ehe analytical work

1 T

of Foster (1965a) it was found that although there was a wave number
that was most unstable, there was a band of wave numbers a%gut this
fastest growing one that had only slightly smaller growth rates, This
means that as convection is initiated, there can easily be a range of
wave numbers that will be visible simultaneously,

Foster (1965%, 1969 1) reported experimental wave number
results for the case of constant increase of the lower surface tempera-
ture, using comparatively thick layers (greater than 0,02 m) of water,
His results give wave numbers ranging from 6 to 120, The present
data yield wave numbers between 3 and 17 over a generally lower heat-
ing range, No direct comparison can be made with his data due to the
different forms of heating, A check with the theoretical results of
Foster (1965 a) does indicate that the wave numbers at least follow the
expected trend of increasing with rising heating rates, A comparison

with the present theoretical results and those of Currie (1966, 1967)



does show a large discrepancy, however. For these analytical results
the wave nurmnber has a maximum value of approximately 13, which
corresponds to the fastest heating rate. This behavior is not confirmed
by the present experiments,

In Chapter I some questions were posed as to the nature of the
flow patterns, These included how the transient results compared to
the steady-state planforms of motion, Krishnamurti (1968c, 1969,
1970a, 1970b, 1970 c) has performed very complete experiments on the
forms of motion to be expected for steady-state heat transfer; compari-
sons will be made with her results,

Starting with a pattern of vermiculated rolls, Krishnamurti

found that there was a transition to a three-dimensional cross insta-

Chapter VI that
BA, AL and AH (Figures 42, 44 and 47). These runs exhibited this
flow pattern at Rayleigh numbers greater than the transition value.

Krishnamurti found that the next change in flow conditions

. . - o 4 .
occurred at a Rayleigh number of approximately 6Xx10°. The motion
changed from the steady three-dimensional flow to one exhibiting a
time periodic nature, This behavior was only noticed in the present

. P - ] 5

experiments for Rayleigh numbers larger than roughly 107 (see run DB,
picture 4 in Figure 44, for example). Above this approximate Rayleigh
number, periodic bursts of warm fluid could be observed.

The last major transition was to '"turbulence', which

Krishnamurti found to occur at a Rayleigh number of approximately
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EXEGé, Runs EX and EA (Figure 49) have Rayleigh numbers greater
than this value, A comparison with runs EJ and EC (Figure 49), indi-
cates that the flows with Rayleigh numbers above the turbulence transi-
tion value are at least qualitatively more ""chaotic' than the flows at
lower Rayleigh numbers, The flows were definitely not steady and
were subject to bursts of hot fluid from the lower surface,

An additional extra planform of motion that has not been
observed in the steady-state situation, but which has been observed in
the transient phases, is the small closed cell flow seen as the initial
pattern for many of the runs, The pattern can be seen in runs CC, CD
and CA of Figure 42, runs BA, DD, DC and DI of Figure 44, runs HE
HA and DG of Figure 45, runs EG, EF, EE and ED of Figure 48 and
runs £C, EX and EA of Figure 49, In making a linear analysis of the
stability problem, the flow pattern oaly appears as the total wave num-
ber, The actual form of motion cannot be determined, except in prin-
ciple through a full non-linear analysis, Apparently, the flow chooses
the small closed cell over, say, a series of closely packed rolls as
the most efficient means of transferring the heat from the lower sur-
face, As time progresses, the flow adjusts itself to optimize in some
manner the configuration at a given time, A similar ability to adjust
the flow and cell structure was found by Chen and Whitehead (1968),
who experimentally studied the time evolution of an initial, arbitrarily

sized, two-dimensional roll pattern for Rayleigh numbers somewhat

greater than critical,



The development of the fluid motion as a function of time for a
given heating rate can be described in terms of the basic planforms
cited above. A description of the time evolution of the patterns for
several different heating rates was given in Section D of Chapter VI,

Four runs, DB, DA, EI and EJ (Figures 44, 45, 48 and 49),
started with initial convection patterns that were substantially different
from the rest of the experiments, All the patterns had characteristic
sizes that were much larger than the "'normal' series, and the patterns
appeared at earlier times than the duplicate runs which exhibited the
“"regular'' pattern,

Two explanations of the abnormal form of motion are possible,
The first is that the pattern was due to an initial, finite amplitude
disturbance: that is, there was some residual motion in the chamber,
This disturbance could have been more unstable to the heating than the
infinitesimal disturbances that were normally excited., This view is
also supported by the fact that these patterns were not reproducible,
whereas the normal pattern was a reproducible one, Series I was
performed in an attempt to reproduce these anomalous patterns,

The second explanation is that the patterns were of the
streaming'' type described by Berg, Acrivos and Boudart (1966) in
their morphology of cellular patterns found in evaporative convection,
The pattern is characterized as one containing warm bands of rising
fluid with the cold fluid descending slowly downward in the regions
between the streamers. For the evaporative convection case the

streamers were observed for depths greater than 0.007m., In the



present experiments the anomalous runs had depths greater than this
value, and the flows appear at least qualitatively similar to the eva-
poration patterns,

As was pointed out in the description of the flow patterns, after
a sufficient time had elapsed, the planform of motion was essentially
independent of the initial motion, so that the anomalous patterns were
eventually ""washed" away, This characteristic points out another
major feature of the flow field: as the fluid layer proceeds towards a
steady-state system, the pattern of motion is not dependent on its

initial history.
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VIII. SUMMARY AND CONCLUSIONS

The subject matter of this thesis, heat transfer in a fluid layer
heated from below, is a classical one, Accordingly, a great number
of studies had been devoted to this subject, the principal results of
which were described and discussed in Chapter II. However, despite
the attention which many investigators have given to this problem,
several aspects could be clarified. Among these areas, the transient
phases of the problem are of importance. Of particular interest
would be an experimental study of the heat transfer and flow character-
istics during this phase.

For these reasons, a series of experiments has been performed
which study the effect of time-dependent heating on a horizontal fluid
layer heated from below. Three silicone oils of 5 centistoke {cs), 100
cs and 500 ¢s viscosities were the working fluids with fluid layer depths
ranging from 0. 00635 m to 0, 01905 m. Experiments were carried out
in which the heat flux at the lower surface was maintained approximately
constant for each run. The rates ranged from 9.2 x10% to 1.9 XIO7. The
effect of different heat transfer rates on the initiation of convection, the
increase of the Rayleigh number with time and the development of
motion were examined, Visual observations were made from shadow-
graph images, which were recorded photographically.

The primgry effect of increasing the heat flux at the lower
surface was fo decrease the time to ﬁ}xe onset of motion, to increase

the critical Rayleigh number, to decrease the scale of initial motion
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and to increase the Rayleigh number of the fluid layer for any specific
dimensionless time,

Although the boundaries influence the orientation of the pattern,
the principal feature of the larger heating rates is thé appearance of
small closed cell motion shortly after the initiation of convection. This
patlern, which is present only during the earliest transient sta;ges of
motion, evolves into a variely of steady-state patterns, depending on
the heating rate,

For the Prandil number range of the present experiments {45
to 8770) the condition of the fluid layer for a given dimensionless time
is effectively determined by the heat flux at the lower surface. The
orientation and "two-dimensionalily’ of the fluid motion are also influ-
enced by the vertical sidewalls; but the horizontal scale of motion, the
total wave number, is dependent only on the heat t{ransfer rate at a
given time.

The quantitative he{at transfer data during the transient phase
indicate that over most of the experimentally studied range of heating
rates essentially steady-state temperature differences (Rayleigh
numbers) are reached in dimensionless times less than approximately
one unit, This obsérva»ion is borne out by the photographic results,
which indicate that nearly steady-state fluid patterns are set up in a
comparable time period,

A supplementary analytical analysis of the onset of motion was
performed, The .resuh‘:s of this work support the trends of the critical

time data found in the experiments, although the guantitative agreement
T q



is not substantial, This disagreement of results is largely due to the
different definitions of critical time used in the two cases, which was
discussed in Section B of Chapter VIIL

Based on the experimental results, the conclusions about the
effect of time-dependent heating on Bénard convection can be summa-
rized as follows: (a) the temperature difference required for the
initiation of convection increases as the heat transfer rate is increased;
{(b) an increase in the heat flux at the lower surface leads to shorter
times to the onset of motion; (c) for the higher heating rates the
initiation of convection is accompanied with the appearance of a "new"
small closed cell motion that is not observed when the fluid layer is in
a steady-state condition; and (d} specifying the dimensionless time and
the heat flux at the lower surface is sufficient for 'large'' Prandtl

3

number flows to characterize the state of the fluid layer.

o

Future research using the present results as a reference point
could be carried out on at least three fronts., First, studies could be
performed on the effect of different initial temperature profiles on
Bénard convection., These studies would be useful in determining the
sensitivity of the onset of motion and the development of the ﬂuid
planform fo changés in the manner of heating. Second, the effects of
spatially non-uniform heating of the lower surface, and of heat
generation throughout the fluid have not been studied extensively and
may be of importance in several applications. Third, a challenge is
presented by the 4pro"aiem of free convection in a fluid which is subject

to large property variations, Such cases occur for fluids near their
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arge temperature dif-
ferences and for ""fluids'' of the type found in the mantle of the earth.

The results which have been presented, as well as the additional
studies which have been suggested, may contribute to the understanding
of many applied problems ranging from the spreading of fires, the

heating of food products in containers, the motion of the atmosphere

and even to the drift of the continents,
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APPENDIX A

TABLES AND FIGURES



CRITICAL RAYLEIGH NUMBERS

Analytical predictions - Reid and Harris (1958)

Boundary condition Ra |
Free-Free 657.511
Rigid-Free 1100, 65
Rigid-Rigid 1707, 762

Experimental results
Investigator Ra
© cr
a, Free-Free boundary condition

Goldstein and 596 & 57
Graham (1969)

b, Rigid-Rigid boundary condition

Schmidt and 1770 £ 170
Miiverton (1935)
Schmidt and 1700
Saunders (1938) 1800
Malkus (1954a) 1700 = 80
Silveston (1958) 1700 £ 51
Gille and Goody 1786 = 16
{1964)
Thompson and Sogin | 1793 = 80
(1966)
Rossby (1966, 1969) 1680
1760
1810
Goldstein and Chu 1783 = 60
(1966, 1968, 1969)
Willis and Deardorif 1750

(1967a)

cr

2.2214
2,682
3.117

Working fluid

10000 cs silicone
oil

water
water

water, acetone

water, ethylene
glycol, 3 cs and
350 cs silicone

air, argon,
carbon dioxide
mercury
water

20 c¢s silicone
oil

air

air
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Figure 50, Critical Wave Number versus Critical Lower
Surface Heat Flux .,
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APPENDIX B

DETAILS OF THE STABILITY BOUNDARY ANALYSIS

A, Introduction,

For any given conduction profile the stability of the fluid layer
is determined from the solution of the eigenvalue problem given by
Equation (40) of Chapter III, That is,

ZaZE
rn

1 1 ——
aet -—m"z*“"3~ "R 5rn =0 at t or
(az + rzw )

il

(B1)

The effect of the conduction profile is contained in the term Ern(tcr),

which is given by

¢ }}sin vz W,_(2) dz (B2)

For the rigid-rigid boundary conditions the vertical velocity compo-

nents, Wn(z), can be written as

. ("szrln}'_vmz‘j az (An- Enz) ~az
Wn(z):smnwz——-——-éf—-———-e t e (B3)
where
- a -a
A:(cn-dn),B:(c*o.) , E A +B e , F=zA+B e
c _anl[l-(-1)2] _nm[14+(-1)7]
n~ 2(sinha+a) ’ n~ 2(sinha-a)

In the following sections the Ern will be calculated for the
steady-state profile, the approximate two-step profile and the approxi-

mate exponential profile,
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B. Steady-State Profile,
The steady-state temperature profile and the corresponding
temperature gradient are given by

Tia)=(1-2) , -r(2)=1 (B4)

Using the temperature gradient, the Ern can be written as

1 1
2K :jl cos (r-njrzdz - f cos {r+n)rnz dz
o Jy 0

- j (An— }E‘mz)eaZ sinrwz dz
0
1 | (B3)

/e -az .
+ 1 {(A_~E z)e sinrwz dz
Jop m T

ZErn :—51.1— IZ" 13+ 14

The terms I I I, and I, are

1’ ‘2’ 3 4
11= 6rn
ier
(B6)

I =-—--—-—--—-{ A TotE fart )[1 T 1+ F rr(-1)Te? b
3 2 22 n J

a+r 7w a -rr T

_ 1 . Zarm - T _-a

14-—"‘“"‘-‘"‘"—2 7 2{<Anrﬁ-Enm>§_l*(—l ]+E 1 ( }'

a +r T a +r T

Using the definitions of A, E_and F, the E__ can be simplified to
n’ "n n rn

4 ..(-2 [1+(- 21'

E = ;’n__ =T {c (cosha-hl) [1-(1 +d (cosha-1) 1+(21 j}
o 2, 222
(a +r 7w )

(B7)



~171~

C., Two-Step Profile,
The Two-step approximate temperature profile and the corre-

sponding temperature gradient are given by

/o z 1
_ }1—5- Ogz<d dﬁg (E O<z<h
T (23t )={ , R (B8)
a = er Lo b<z<l dz io s<z<]

Using the temperature gradient, the Ern can be written as

e 5
r
28K =J’ cos (r-nyrzdz - f cos (r+n)rz dz
o Jy 0

6

LY
[ az

- (A _-F _zje sinrwzdz
uo n n

- -az .
(A -E =zje sinrwz dz

2<°>Erﬁ’=”EZL--,"LZ-I?)-Z-_"{‘gt

The terms II’ 12, 13 and 14 are

sin{r-nwd{1-6__)

rn (r-n)w rn

sin (r+n)w 8
1 ( ) Zarm ad
(Anrw tE 555 [1-cosrwbe™"] (B10a)

1 = —
3 a'?'-}-rzwzi a2+r21r2

+ Fnrfré cosrud eaé

E az-rzwz ad
+§(An-Fn6)a+Fn —~—2—-—-2-—;Z-J sinrnde
-
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abd

(
J

1 Zarm -
IémeAnZW-En m)[l—-cos rmbe ]
a +r W L a +r w
ab

+E_rmdcos robe” (B10b)

§r a2~r2—w2 | abd
+ [(An—Ené)a+Fn —-Z——T—z—-]sm rwde

a +r m
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D. E=xponential Profile,

The exponential approximate temperature profile and the corre=-

sponding temperature gradient are given by

dT ‘
O T 2 P Pt 4 T PR T IPVRE B ¢ -
Ta(z, °cr}“(} z)e s = L{l+a)-az je (B11)
Using the temperature gradient, the Ern can be written as
?1 L7
2E_ = [(1+%)-0z cos (r-n)nzdz
™
?1 v
- | [(1+a)-az Je cos {r+n)rz dz
0
ol (B12)
r 2 «{C-
- jo %&An(i-i-&) - [Anoc—% Fn(1+0.)]z+f‘naz je (6-a)z sinrwz dz
{'l { 21 -(ata)z
+,j fLAn(H—&) - [An&%- En(1+oc)]z+EnOLz }e sinrrzdz

0

ZErnEII—Iz-I3+I4

The terms Il’ IZ’ 13 and I4 are

. r 2 2_2\] X
I,=5 5 (1+a)a-o &2—__1_1::3’1_2_2_12_2_ [1-(-1)" e ™%
a +(r-n) w7 ;L a +{r-n) mw _J
+(:LZ(__l)r%-ne--c(,

(Bl3a)

D
"
v

{ 2 2 2

& +(r+n) w a +(rtn) w/

L

+a2(_1)r+ne- a



i

r

1

;
24

|

n

=

(0+a)

2+r2w2

f

+2F a
n

- f—(A Q+F Jro+2F «
L n n n

A

-

+2E «

-
~l-{A_Ct+E_jrw+2E
L n n n

1’1
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| .
! 14 - el
A _{1+a) {Anc;,+5‘n(1 o

T [3(&—&}2 -1‘21\'2

2 (Cg-a)r’r?

{o-a) +r272

%

[(a-a)2+r2w2}

C:,arw ](1

{0t~ a) +r T

(1+a)-[A o:+En(1+ca)]

T {B{Ci-%»a}z-r?“"r ]

2(Q+a)rm

(ca+a)2+r2w2

2]
L [1-(-1)e

2, 2 2+

n [a+a) +r"n" ]

2

|

2{a+ta)ry ";(_1)

2,2 2]

(G+a) +r

r -{0+a)

?Jfl (-1)Te(@-2)y

-(a-a)

]

r -(a+a
e

(B13b)

%
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E. Asymptotic Expansions for Infinite Heating Rate,

For the special cases of 6-»0 and g—~o00, which corresponds to an
infinite rate of heating or an infinitely deep fluid layer, the resulting
expressions, obtained from making asymptotic expansions of the Ern’
simplify to the same terms within a constant, In the limit of infinite

heating the Ern can be written as

83
N [1-(-1)2] (cosha+1'\ [1+(-1)™] (cosha-l Z
Ern® a(r“)(m)g 2 siohata ) © 2 sinha-a ] 6 (B14)
3
oA
The terms of the determinant (B1) are
2&3 II'TT}(I}TT) e - —}—'6 (BlS)
3 n R rn
, 2, 2 2 '
(a+r 7w )
where
, 53]
o = r{lo(ai}n} (cosha+1\+ Mi+(-1)1] (cosha«i)‘? 4
n~ L 2 sinh ata / 2 sinha-a \ 6

a?
. s 2,223 ) s
If row r is multiplied by (2a”+r % )" /rm and column n is multiplied by

1/nw, the terms become

2 223 2,223
3 1 (@™+r"n7) -5.3 1 (@™n"v")
2ate - R (x7)(nw) Sn=22e g nZWZ ben (B16)
223,22

Multiplying column n by (a2+n m ) /nw , the terms can be written as

3.2 2

Za"n"w 1
—-———-——-———-——-2 _— Ben"-ﬁérn (B17)
{(a™4n ")

The left-hand side of the terms are now functions of n only, By
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successive approximations, it is possible to show that for this special

case the solution of the determinant is given by

W
2 2 2
1 Za n

n=l {a74n"w)
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APPENDIX C

ANALYTICAL CONDUCTION PROFILE

In the determination of the response of the fluid layer to hea
from below, use was made of the analytical conduction solution, T
solution was used because the type of heating, a plane of constant h
generation, leads in its initial stages to the temperature at the planc
increasing as the square root of time. This behavior is difficult to
handle with the normal finite difference scheme used in numerical heat
transfer calculations, If the conduction solution is known,' the onset of
motion can be quickly determined by examining the deviation of the
experimental heat transfer data from the theoretical conduction results,
The conduction solution also represents a check of the data during times
when the fluid layer is known to be conducting,

The idealized conduction problem consisting of a semi-infinite
composite solid is shown in Figure 51, The fluid layer is bounded on
either side by equal thickness layers of identical matei‘iél (Pyrex glass),
The upper plane is assumed to be a surface of zero heat flux; in the
experiments the bounding fluid was air., Below the lower layer of glass
is a semi-infinite layer of another material (phenolic plastic),

The basic technique is to make a Laplace transform of the
governing equations, solve them in the transform plane and then take the
inverse transform to obtain the desired solution, The diffictult part of

the solution is that the equations lead to a series expansion, the terms
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of which must be determined one by one, The number of terms to be
calculated was determined by the material properties, the maximum
time for a run, 2000s, and the maximum error of the results, set at
+0,00001,

The starting place of the analysis is the heat conduction equation

which for the various layers can be written as

s 2 a2 2

8'1‘1:% 9 Ti 8'1‘2:% 5 ’I’2 “:3’1‘3:K 9 T3 8T4—;4, ] T4 )
ot 1 azfz ot 2 8z'2 ot 3 822 ot 4 8z2
The initial conditions for the problem are
L 7 v . _
TI(Z ,0) = Tz(z ,0) = TB(Z, 0) = Té(z, 0)=20 . (C2)
The boundary conditions can be stated as
Ti(ci,t) = Tz(d,t) R TZ(O,’C) = T3(O,t) . TS(JZ,t) = Té(ﬁ,t)
8T1 8T2 8T3 8T4
R R S Pl U IR O Pl SR i PR N (¢<)
o -l -
Té(oo, t) =0 s 1{1 'éET(d'i'ﬁ,t) = 0
8"1"‘2 0T3

-kZ -é?((), t) - k3 —a—é—-(o, t) = Q‘T
Take the Laplace transfor of Equations (Cl), (C2) and (C3).
Let a bar over the fempera’cure denote the transform quantity, That
is,

Tz = [ T, t)e~Ptat c4)
i\? Tl A ¢ (

The governing equations become
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&2%”1 2 dzzfé 2 ", 2— dz-'f:; 2

—7 41 =0 s T T =0 a3 =0 5 T, =0 (CF)
dz dz dz dz

where

1

The boundary conditions are transformed to

T @=T,@) , T0)=T0) , T=T,

3
d’i"l dT. dT. d’i‘“4
k) rldh=cky g (), sy gm0 = -k T ()
. (Ct
_ dT,
T,(00)=0 , -k, 57 (d+)=0
dTZ GT3 QT

The solutions to the governing equations (C5) can be written in

the form

_ q,(z'-d-0)  -q (z"-d-p)
TI(Z ) = Ae + Be

(CT7)

~Gu(z-0)  qu(z-0)
e

Té(Z) =G + He

Substituting the solutions (C7) into the boundary conditions (C6), the

coefficients must satisiy the relationships
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g, 4 q.4 . g,d -q,d
kg Ae |tk . 2 2

q q -q
“kq,Ee 7 +k,q,Fe =k

393

H=0 , -kjqA+kjqB=0

Qp

-k I ——
P

2qZC + quZD - K3q3E + k3q3F

For compactness of notation introduce the following quantities, making

use of the fact that layers 1 and 3 are identical materials

i

0, =k, Ik SayTay 03 =kglly /RITH, =1

R S U

2 2 2
§=(1+04)(1+c52) , g1=2(1-c72>/§ , g2=(1+04)(1-62) /é
| ) ) (C9)
Cy=(1-0,)(140y)7 /8, G, =(1-04)(1-0,)"/8
-2q.4 -2q.,d -2q,4-2q¢.,d -4q.4-2q.,d -4q. 12
o= gle 1 + gze 2 —gle 1 2 + (;36 ! 2 ~(;46 1

Using these quantities, the coefficients can be written as

-qlﬂ-qzd -quﬁ
Q 20,e (1+o, )+ (1-0,)e
Aepe T 2 4 4
~ 7T k9P g (1-o)
(Cl0a)
-Zqz’d{. ~2q1£ —4q1£
C—- QT e i'(H%)(l-‘crz)-Z(f:vé;%—f:rz}e‘ -(1-0’4)(1‘{‘0‘2}8 }

kyq;P §(1-0)
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Er -Zqiﬂ ’4(:114?}
. Qo i{1+64){1+32)~2(64—02)e -(1-0,)(1-0,)e ]
K194 P E(1-0)
Qr (-ge r -2q,4 -2q,d
*Ekap -9 (1F0,)-(1-0y)e  ~ -(1-0))e
-quf-‘Zqzd
+(1+0,)e }
QT (1-%-0‘4) {H -quﬁ -zqzd
FERE e T (1#9)-(1-0x)e = -(1-0p)e (C10b)
—qui-—Zqu
+(1+0‘2)e
Qr zenzqif (1 -2q,1 -2q,d
. E - - - -
G“qulp (i) L1F0)-(1-0y)e (1-0,)e
-2q,2-2q,d~
+(1+0,)e 1 2}

With the coefficients {(C10) the general solution (C7) can now in
principle be inverted to give the actual temperatures through the com-
posite medium as a function of time and spatial position. A direct
inverse transformation cannot be performed, however, because of the
presence of the term (l1-¢) in the denominator of the coefficients, This
difficulty is circumvented by making a series expansion of the term,
This procedure will yield solutions that are useful for short times,

The range of validity of the expansion will be increased by including

more terms of the expansion in the analysis, The term is expressed as
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O
1 T n
"""""”= ¢ Cill
n=0

When the expansion is performed, the resulting terms can be grouped
in matching powers of the exponent arguments. Symbolically, this

grouping can be written as

i © @ (i-1)q,2-2(j-1)q,d
Y=y Vege : (c12)
i=l

n=0 i=1

Juts
Cnin

In the present experiments a detailed spatial behavior of the
temperature and the heat flux in the composite medium was not
required, Instead, only the temperature and heat flux at selected
planes are needed, The quantities for which transformations had to be

obtained were

BTZ 8’5.’3
TZ {d; t) » TZ{Os t) » T3 (1?, ﬁ) » "kz a 7 (O t) » ‘k3 Sz (O, t)
8T4 X d (C13)
7 14
k4 52 e (1Y, a—jOTz(z ,t)dz

The integral expression was used in the calculation of the thermal

thickness. In the transformed plane the required quantities are

— q,d  -q,d — , —
T,(d)=Ce " +De , T,(0=C+D , T,(=G
d“’fz d"f3
-I, a;—;—(O):-kqu(C -D) , kg gz (0)=-kyq,(E-F) (C14)
dT, ‘ d -q
4, 1= ! 2
~k4§‘£~(ﬁ)-—k4q46 o, dj (z )z’ = ——-E<D C+Ce -D )

0 9z
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Using Equations (Cl4), the inverse transformation can be performed
term by term in the series expansion, For the heat flux quantities a

typical term with its transform would be
YP

ST Y .,
B S R S M. . g \\\
e erfc —i ) (C15)
P 2V xlt/

For the temperatures a typical term with its transform would be

SR .
= — A nlt jerfe [ —=l— (C16)
Py 2/t
For the integral a typical term would be
M9 L 5 .
< = 4n ti"erfc — (C17)
P4, 2 Vgt

In the above expressions erfc(x) is the complementary error function,
The other functions ieric(x) and izerfc (x) are the first and second inte-

grals of the complementary error function. They can be written as

2
ierfc(x) = -E—e * _xerfc (x)
J
: ) (C18)
izerfc(x) = é—i(l-ﬂxz}erfc(x)‘-}—xe—x ]
. [ \/TT

In the present experiments the various quantities (Cl13) were
calculated at ten second intervals over the span of two thousand se
seconds, This procedure was carried out for the three different oils
and three different depths., The results were punched on computer
cards, which then formed a data set that was part of the two data

reduction computer programs,
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APPENDIX D

WHEATSTONE BRIDGE CALCULATIONS

The temperatures of the two bounding glass surfaces were
determined by measuring the change in resistance of the two coatings
through the use of Wheatstone bridges. These resistance changes were
then converted to temperature changes by a calibration factor that had
been predetermined in a series of constant temperature bath experi~-
ments. For the lower surface the value of the calibration factor was
0.00436Q/K, while the upper surface value was 0. 005750/K.

The resistance change of the coating is determined from the
voltage imbalance of the bridge and the total voltage drop across the
bridge when the other three‘ leg resistances of the bridge are known.
Using the Wheatstone bridge shown in Figure 52 for notation, the analy-

sis begins with Kirkhoif's laws

(R1+RZ)1I: (R3+Ré;12, 11+12= I | (D1)
Solving for i, and ié,
+T +
iz (-—-——-—‘—-RB‘ 9\4\1 i -<~—-—-—-———R1 RZ)I (D2)
1"\Tzr /7 27U IR

where

TR=
R R1+RZ+R3+R4
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The total voltage drop can be written as

R 4 +1 ZF
v=llr+ . "@zi{ e e e Ul Rj (D3)
- H ) . . 35._
L }/(RETRZ)Tlf{RB-%*R%)., ZR
The voltage imbalance of the bridge is
R._ R -R_R
. . 1 3 2 4
- =AV= - i, ;—(M)
'VB VA A R312 Rzil AV R I
R.R-R_R
r 1 3 2 4 "
AV=| v . (D4)
+ z :
LRFR)(R 4R i R |
Introduce the following notation:
R_R
AV 24
=, R =R +AR +AR, R = , LR =R 4R _+R _+ D5
0=y RTRGT AR 0" TR, GRgRRSR, (D)

where ARO is the initial resistance "imbalance'' at temperature TO and
AR is the additional change in resistance due to heating to temperature

T. Using the notation in Equations (D5), the voltage imbalance

Equation (D4) can be rewritten as

(AR FAR)R,
5=
: + (R _+I TR 4
| (Rt AR FAR+R YR R, ) +r(IR +AR +AR)
(D6)
AR R

0 3
5 =
+AR _+R ‘ LR +
0 (R0 VAN 9 ZXRBTR4)+I'( 5 ARO)
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Solving for the change in resistance,

R AR 8L(RGR IR #R JTTIR o]
0 R, - 8(R R +7)
(R + +R )J+rZ
. 50L(RG Rz){R3 Ré) r RO] o
- - -+
0 R, 60(R3+R4 )

(5-50)33 [(R0+E%XR3+R4)+rZRO]

AR=
R 5 5(R3+R 4+r)] R . 8 O(R 3+R4+ r) ]

The change in resistance is converted to a change in temperature

through a calibration constant, CLR:

AT=—— ' (D8)

An aédiiional quantity that is needed in the calculations is the
total heat generation rate at the lower surface, QT. The heat
generation rate is per unit area, which means that the effective heat-
ing area of the glass surface, A, must be determined. From voltage
drop measurements across the plate the effective area was found to be
0. 04848 m2 (8.35"x 9.00"), Using the effective heating area, the
total heat generation rate is determined from Joule's law:

R3+ Ré >2R Y
1

] z
1+ RZ}(R3-:- R4)+r R

2

2o
Qpa=i R =R’ (D9)
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Eliminating R, the heat generation rate can be rewritten as
i .

4 2 -
R R +6R LR -R R +R +1)-v(R +R ) J| 2
o -c 073 T3 T2 0 s T 3 4 (D10)

Q 2 I A
- +
(-8 (R R ) [RYR R o)+ (R R,
W}lere

_ri 37y
Co"lR. RARXR IR )47IR
3 g ATy 0

R_+R Z

If r=0, the expression can be reduced to

R_R i *
O = 3 & + ...i_ 4) 8§ —= .Y_.. (D11)
T RZ(R3+R42 R RTR A

In the present experiments the resistances of the legs of the two

Wheatstone bridges were

Lower surface bridge Upper surface bridge
RZ: 15, 4340 Rzz 15.5210Q
R3= 15,5360 . R3= 15.579Q
R = 12. 8680 7 R = 15. 4680
r:O.ﬂOOOQ r=0.0180
Roz 12,7840 RO-: 15, 4100

Balancing resistors, ranging in value from 15000 to 400000, were used

in parallel with R

3 to correct any slight changes in resistance during

the course of the experiments.
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- APPENDIX E

PROPERTY VALUES

In calculating the response of the fluid layer to transient heating,
use is made of the physical properties of the fluid and the bounding
materials. For the bounding solids the thermal conductivity, density
and specific heat at constant pressure are required. For the fluid the
kinematic viscosity and the thermal coefficient of expansion are
needed in addition to the properties mentioned for the solids.

For silicone oils it is highly advisable to measure at least the
viscosity because the value quoted by the manufacturer is only nominal,
varying from batch to batch. ther physical properties seem to be less
affected by slight variations in actual viscosity. For the present
experiments both the density (hence, the thermal coefficient of expan-
sion) and the viscosity were measured as a function of temperature by
Mr. W.R. Hodson of Cal-Colonial Chemsolve. The densities of the
three grades of oil were measured with a pycnometer, using distilled
water as a standard. The viscosity of the 5 cs oil was measured with a

Uboldtype viscometer with amyl alcohol as the reference. The
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viscosities of the 100 ¢s and 500 c¢s oils were measured with a Brook-
field viscometer, where iso propyl alcohol was the standard. The
thermal coefficient of expansion was determined from the density data.
The remaining fluid properties, the thermal conductivity and the
specific heat, were obtained from various sources. The thermal
conductivity was obtained from Bates (1949), who from his experiments

recommended the following correlation:

2
4, 66+ \)25—. 000003\)25\
5 00Ty )(1-.000601t) - (E1l)

25

k=0, 1661(

where VZS is the nominal viscosity at 25 C in centistokes and t is the
temperature in C, The specific heat at constant pressure was chosen
after a thorough search of the available literature.

Of the properties used, the one subject to the largest error is
probably the specific heat. The large possible error arises because of
the differences in the reported values from various sources. The
temperature dependence of the specific heat is subject to even more
uncertainty. These discrepancies point up the need for detailed
measurements of the silicone oil properties, such as was carried out

by Bates, to determine the temperature dependence of the properties

and any possible batch variation,
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For use in the computer calculations correlations were fit to
the various properties, which are summarized in Table El. The
density, thermal conductivity and specific heat were {it to linear
relationships. The thermal coefficient of expansion was extracted
from the linear dependence of the density, The kinematic viscosity
was fit to the empirical Walther equation used for heavy oils, The
equation is of the form:

1ogm<1ogw(v+o. 8)>:A+Blong (E2)

. ‘ -6 2 -1
where the kinematic viscosity is measured in centistokes (10 m s )

and T is the absolute temperature in K.

For the bounding surfaces of Pyrexyglass a search was made of
the literature to find the values of the properties. The density and
specific heat data were taken from the recommended curves found in
Touloukian (1967), These books are compilations of properties from
various sources. The thermal conductivity data proved to be widely
scattered. The final choice was to use the results of Plummer,
Campbell and Comé’cock (1962), who made measurements of the
thermal diffusivity in a transient experiment. The various data were
fit to polynomial equations in temperature for use in the computer

calculations. The resulting equations are shown in Table El.
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In the analytical calculations of the conduction problem
(Appendix C) the properties of phenolic plastic were needed in addition
to those of Pyrex glass and silicone oil, The values used, shown in
Table E 1, were obtained from Muller (1966),

In choosing the values of the properties to be used for silicone
oil an extensive search was made of the literature, A listing of the
properties, used and suggested, has been made in Table E2, The
properties are given at 25C, unless otherwise noted, The properties
listed are the kinematic viscosity, \)(mzs_l), the density, plkg m-3),
the coefficient of thermal expansion, B(K"l), the thermal conductivity,

k(W m'lK-l), the specific heat, cp(Jkg"I

K_l), the thermal diffusivity,
%(mzs_l), the Prandtl number, Pr, and the viscosity temperature
coefficient, VITC [=1-v(50C)/v(25C)]. The viscosity temperature
coefficient is defined differently than the ménufacturer‘s coefficient,
which uses the temperatures 98,9 C and 37,8 C, The different tempera-
tures were chosen to cover the usual experimental range of mean
temperatures reported in the literature, Properties which were not
actually reported by the source, but could be calculated from the given
information, are enclosed in brackets, If extrapolations or interpola-
tions were required to evaluate the property at 25 C, least square
techniques were used. All viscosity corrections were done using the
Walther equation, unless another equation was recommended by the

source, A listing of the sources of the data and notes about any dif-

ferent temperatures are given at the end of the Table E2,



TABLE EIl

PROPERTY CORRELATIONS USED IN EXPERIMENTS

Silicone QOils:

Grade

5.0
100
500

Grade

5.0
160
500

logl()(log?io(\)'{' 0. 8)) = a + blOglOT
p=pg - Aot P=By/(1-Byt), k=ky- Okt

c_=c¢c .+ Ac_t, =k/pc , Pr=y/
p - "po p %o Vi

a b Po Ap 50x10
5.61086 -2,338 936, 2 0.902 0.9637
2,99679 -1, 089 985, 3 0. 858 0.8708
2,54713 -0, 854 992.3 0.928 0.9352

k(} Ak CpG Ac
0.1234 0. 742 1528, 0, 837
0, 1609 0,967 1453, 0. 837
0.1648 0.991 1511, - 0,837

Properties at 25 C:

Grade

5.0
100
500

wio® 8x10° K < %X10 Pr

3. 86 913.7 0.987 0, 1215 1549, 0. 858 45,0
100, 963.9 0.890 0.1585 1473, 1,116 896,
523, 969, 1 0.958 0, 1623 1532, 1.093 4770

Pyrex glass:

6 9.2

p=2221,(1 - 9,11x10" "t - 7.7x10""t") = 2221, at 25 C

¢, = 6814+ 1.76% - 0.00084t" = 724, 9 at 25 C
xx107 = 5.590 - 3.86x10™t + 9, 5x10"0t% = 5,50 at 25 C

k = xpcp:0.886 at 25 C

Phenolic plastics

-7
p=1330, k=0.29, c_ =1460, x=1.50x10""



Grade

5.0

10,

20,

50.

100

200

350

wX10
0.65
0.675%
1.0

1.5
1.60%

2.0
2.09]

[48.47

100

157,
100,

200
206,

350
423, ]
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TABLE EZ

1. VISCOSITY

6

Grade vXx10

Source

1,2,3 500 . 500
9 532,

1,2,3 223.

1000 1000
9717,

937.

1,2,3

1,2,3

17 10000

10000

Source

1,2,3,4
19
20

1,2,3,4
18
19

4

102457 7

1,2,3
15

1,2,3
20



Grade

0.65

10.

20,

50,
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TABLE EZ
2. DENSITY
Source Grade

1,2 100

200

350

500

3 1000

10000

Source

1,2,4
3

10

11

19

20

1,2,4
3
19
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TABLE EZ

3. THERMAL COEFFICIENT OF EXPANSION

Grade {SXROB Source Grade ;3><103 Source
0. 65 1.34% 2,3 200 0.900 19
1.598 5 350 0. 962 2,3
1.0 1.34% 2,3 0.97%
1.5 1.34% 2,3 0.966 5
N 0.9257 15
2.0 1.17% 2,3
1 247 500 0.96% 2,3
a 0.97% 4
3,0 rl.Oé 2,3 0,900 19
[1.08] 15 0.958 20
- a
5.0 105 2,3 1000 0.96% 2,3
0.987 20 0.97% 4
7.0 1.11% 4 0,963 5
10, 1.08% 2,3,4 0.936 18
0.964 19 10000 0.97% 4
20, 1.07% 2,3,4
1.025 5
50, 1.04% 2,3,4
0.96%
0,903 19
100 0.96% 2,3
0.97% 4
0.969 5
0.903 19
0.890 20
200 0.96% 2,3



Grade

<O
-

o~
[§;1

1.0

1.5

3.0

5,0

7.0

10,

20,

4.
k

0.100°
0,100°
[0.1007]
0.100°
0.100°
[0.103]
0.105°
0.108°

[0,1067]

0.109°
0. 1092
[0.1097
0,113°
0.113°
[0.114]
0. 1477
0,117
0.117°

0. 1227

0.128%

0.1277

0.134°
0. 134°
0.128%
[0.133]
0.142°
0. 142"
0,137
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TABLE E2

THERMAL CONDUCTIVITY

Source Grade
1,2 20,
3
5

50,

W

100

M W e

W e

Ui

1,2 200

350

O

! 500

;o W e

1000

B W e

k

[0.1441
0. 141

0.151°
0.151°
0.145%
[0. 1547
0.155%

0,155
0.155°
0. 1492
[0.159]
0.155%
0.155°
0.155°
0.151%

[0.1617

0.155%

0.159°

0.159
0. 152
[0.162]
[0.2017

'b .

a

0.159°
0. 159
0.152%
[0. 162 ]

0.159°
0.159°

Source
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TABLE EZ2
4., THERMAL CONDUCTIVITY
(CONTINUED)
Grade k Source

1000 0.152% 4
0.1637 5

10000 0.152% 4
[0.1597 5
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TABLE EZ

5., SPECIFIC HEAT

Grade CD . Source Grade Co Source
0.65 20507 3 350 1550 6
1.0 1821 14 [1502] 15
2.0 16207 500 1550 6
13522 s 1532 20
1683 14 1000 14612
3,0 1616 14 1550 6
(16227 15 1599 18
5.0 1549 14 |
1549 20
10, 17807
1507% 5
1409 14
20, 15207 3
1448 14
50, 1550 6
1470 8
100 1473 5
1550 6
1420 10
1470% 11
1402 14
1473 20
200 1550 6
1386° 12
350 13907
(14707

14232
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TABLE E2

6., THERMAL DIFFUSIVITY

Grade ;{X}OP{, Source Grade . axl()? Source
0.65 [0.7221* 9 500 0.958% 19
1.093 20
1.0 0,674 14

. 1000 1.18% 13

1.5 10.737] _ .
c 9 [1.049] 18
2.0 0.741 14 0.944% 19

[0.914] 17

3.0 0.780 14

[0.9857 15
5.0 0.88% 13
0.824 14
0.858 20
10. 0.98% 13
0.955 14
0.935% 19
20. 1,020 14

50,  [1.0957% 8
[0.9627 16
0.983% 19

100 1.137* 10
1.097% 11

1.16% 13

1.14 14

0.930% 19

1.116 20

200 1.1 12
0.983% 19

350  [1.368] 15
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TABLE E2

7. PRANDTL NUMBER

Grade Pr Source Grade Pr Source
0.65 9.35% 9 500 [55507% 19
1.0 14.8 14 4770 20
a
L5 21.72% o 1000 8500% 13
, (93101 18
.0 27 14
] [99301% 19
R2.9) 17
3.0 38.5 14
(29.5] 15
5,0 57% 13
61 14
45.0 20
10. 1022 13
105 14
riz17® 19
20, 187 14
50, r45771* 8
(5037 16
[5911%* 19
100 r8gs1® 10
[9177% 11
860% 13
877 14
r16887% 19
896 20

200 [18201% 12
r21007% 19

350 30907 15



Grade
0. 65
1.0
1.5

2.0

3.0

7.0

10.

20,

50,

100

200

350

500

8.
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TABLE E2

VISCOSITY TEMPERATURE COEFFICIENT

vTC

()

0.178]

0,213 ]
0.278]

[0.2901]
[0,315]
0.312]
0.315]

[0.343]
0.280

[0.332]
0.357]
0.217]
[0.370]
[0.395]
[0.363]
[0.352]
0.217]
0.368]

0,217
0,324

[0.382]
0.217]

0.3791]
[0.370]

0.377]
[0.217]

Source
1,2,3
1,2,3
1,2,3

1,2,3
17

1,2,3
15

1,2,3
20

1,2,3,4
19

1,2,3,4
14

1,2,3,4
16
19

1,2,3,4
19
20
1,2,3,4
19
1,2,3,4
15
1,2,3,4
19

Grade

500

1000

10000

VIC
0,341

[0.375]
[0. 364]
0.217]

[0.360]
[0.296]

Source
20

1,2,3,4
18
19

4
7
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TABLE EZ2

9. SOURCES AND NOTATIONS

Superscript notation:

Superscript Temperature
a none specified
b 23 C
c 50 C
d 24 C
e 20 C
f 40 C
Sources:
Number Source
1 Dow Corning (1952)
2 Dow Corning (1957)
3 Dow Corning (1967)
4 Union Carbide (1970)
5 Bates (1949)
6 Noll (1968)
7 Goldstein and Graham (1969)
8 Hoard, Robertson énd Acrivos (1970)
9 Ingersoll (1966)
10 Koschmieder (1966)
11 Koschmieder (1967, 1969)
12 Krishnamurti (1967, 1968b)
13 Krishnamurti (1968c¢c, 1970b)
14 Rossby (1966, 1969)
15 Silveston (1958)
16 Somerscales and Dropkin (1966)
17 Somerscales and Gazda (1968, 1969)
18 Somerscales and Dougherty (1969, 1970)
19 Sun and Edwards (1970)
20 Present experiments
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APPENDIX F

CALCULATIONS AND ERROR ANALYSIS

A. Measurement Precision
1. Temperature measurement
The temperatures of the two bounding surfaces were
measured with Wheatstone bridges. The legs of the bridges, ex-
cluding the glass plates, were constructed of Manganin wire. The
resistances of the wires were measured with a minimum accuracy
of £ 0.06%.

For the upper surface the total voltage drop across the bridge
was maintained at 1.000 V within = 0. 05%. For the lower surface
the initial total voltage drop ranged between 0.798 V and 0.856 V.
The maximum error in this measurement was £ 0.01 V, which
corresponds to a minimum accuracy of £ 1.3%. During a run the
total voltage drop across the lower surface bridge had a value between
10.4 V and 55.8 V. For voltages less than 30 V the accuracy of the
measurement was + 0.3 V. For voltages greater than 30 V the
accuracy of the measurement was £ 1. V. On a pércentage basis
the error ranged between + 1.0% and = 2. 9%.

The voltage imbalance for the upper surface bridge was
measured on either a 0.001 V or 0.0032 V full-scale meter reading.
The maximum voltage readings were less than 0.0013 V., The
minimum accuracy of the meter readings was + 1.% of the full-scale
reading. For the lower surface bridge the initial imbalance was

always less than 0. 001 V and could be measured to within + 0,00003 V,
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The voltage imbalance of the lower surface bridge was measured on
one of four full scale settings, 0.003 Vv, 0.010 VvV, 0.030 V or
0.100 V, depending on the total voltage drop across the bridge. The
accuracy of the readings were * 3.% of the full scale reading.

As seen in equation (D7) of Appendix D, the calculation of
the change in resistance involves the resistances of the bridge legs,
the voltage imbalance and the total voltage drop. Using the best
possible cases, the change in resistance for the upper surface could
be measured to within + 1. 3%; the lower surface change in resistance
could be measured to within +4.2%. This error obviously increased
for a decreasing change in resistance.

In computing the change in temperature of the surfaces one
additional quantity has to be considered, which is the change in

resistance with temperature, « This quantity was measured

R
experimentally, using a constant temperature bath; and its value was
determined within £1.0%. The absolute accuracy of the temperature
difference was set at = 0. 05K. Thus, including all these errors, the
minimum accuracy of the lower surface temperature difference was
* 0.05K or * 5. 2%, whichever was the largest. For the upper
surface temperature difference the numbers were + 0.05 K or
= 2, 3%. |

The ambient temperature, which was measured by a thermom-
eter located near the apparatus, was accurate to within *0.1K .
The minimum accuracy of the mean temperature, which is the

ambient temperature plus the average of the two surface

temperature differences, was + 0, 2K,
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2. Heat flux measurement

Two heat flux measurements were made during the course of
a run, the total rate of heat generation at the oil-glass interface
and the heat passing through the glass-phenolic plastic interface.

As seen from equation (D11) of Appendix D, the total heat
generation rate is a function of the resistances of the lower surface
Wheatstone bridge, the total voltage drop across the bridge, the
voltage imbalance of the bridge and the surface heating area. The
surface area was determined within = 0. 5%. Using the error bounds
cited in part 1, the total error on the heat generation rate at the lower
surface can be set at = 2.8%. Of all the heat transfer measure-
ments made in the experiments, this was the most accurately
determined.

The heat passing downward was measured with a heat flux

> W/mz/V, The

meter, which had a gauge constant of 1.58x10
manufacturer listed the accuracy at = 2%. The outi)ut of the meter
was read either ona 0.001 V or 0,0032 V scale with an accuracy of

£ 1.% of the full scale setting. Thus, for a 0.001 V output the
accuracy of the heat flux reading was * 3.%. Another source of error
arose because the heat flux meter measured only steady-state
heating. The size of the error depended on the rapidity of the

heating relative to the 'time constant' of the meter, which was

listed by the manufacturer as less than one second. The error was

greatest during the first thirty to forty seconds of the run and was

usually less than * 1%.
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These two heat flux measurements, along with the surface
temperatures, were used to calculate the amount of heat being
transferred upwards at the lower surface. The determination of
this heat flux also required a knowledge of the thicknesses of the
glass plate and the oil layer, and the physical properties of the two
media. The depths of the two media were accurate to within + 0. 2%.
The errors in the properties will be neglected in the present analysis.
Their accuracy will be discussed in Section B of this appendix. Using
an error of +5% for the measurement of the lower surface tempera-
ture, the accuracy of the heat flux at the lower surface can be set
at = 9%.

3. Property evaluation

In the present experiments the viscosity, the density and the
thermal coefficient of expansion were measured for the three grades
of silicone oil. All other physical properties were obtained from
various sources. The results have been summarized in
Appendix E. The table below summarizes the accuracy of the
property data. When the information was obtained from other sou‘rces,
use has been made of the accuracy set by the source. When none was

given, an "educated guess' was made as to the probable error.

Material Property
Y 0 B k Cp % Pr
Silicone oil £2%  £0.05%  x1% £ 2.5% £ 5% = 7%  +9,5%
Pyrex glass - £0.50% - £18.0% % 3%  x15% -
Phenolic | - +1,00% - +20,0% +15% £36%

plastic
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4, Dimensionless quantites measurement
There are two sources of error in the determination of the
various dimensionless quantities used in the presentation of the data:
the accuracy of the dimensional measurements and the error in the
property evaluation, The table below lists these two sources of error

for the various dimensionless quantities,

Dimensionless Error

Quantity Measurement Property
HT + 3,6% +13,0%
H + 9,8% +13,0%
Ra + 8,6% +11,5%
Nu +17.0% £ 2,5%
e +17.0% .
a +10, 0% -
T + 0.9% + 7.5%
T +15,0% % 7.5%
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B. Non-Ideality
In making a theoretical analysis the physical model is generally
an idealization of the situation that can be realized in the laboratory.
For Bénard convection the effects of some of these non-ideal conditions
have been examined (see Chapter III). For the present experiments
the effect and contribution of some non-ideal conditions is discussed
below,
1. Non-Boussinesq effects
The maximum temperature difference encountered in the
experiments was approximately 12 K. Because of the temperature
variation, there will be changes of the physical properties over the
depth of the fluid layer. The effect of property variation is partially
accounted for by evaluating the properties at the average temperature
of the fluid layer. For a temperature difference of 12 K the difference
of the physical properties between the top and bottom surfaces is for
the viscosity 17%, density 1. 1%, thermal coefficient of expansion 1. 2%,
thermal conductiv’ity 0. 7%, specific heat 0.7%, thermal diffusivity 1. 1%
and the Prandtl number 16%.
2. Lateral boundaries
The effects> of the lateral boundaries have been discussed in
Chapters VI and VIIL
3. The {inite conductivity of the horizontal boundaries
The glass boundaries are approximately five times better as
" conductors of heét than the silicone oil. As mentioned in Chapter III,

a non-infinitely conducting boundary will lead to a reduction of the
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critical Rayleigh number. Approximate calculations indicate that for
the glass boundaries the critical Rayleigh number would be reduced
about 9 percent. The effect of the finite conductivity boundaries on the
general behavior of the fluid layer has received little attention.
4. Constant heat flux at the lower surface

In the experiments the true thermal boundary condition at the
lower surface is that it is a plane of constant heat generation. In
dimensionless form the total rate of heat generation would increase
approximately ten percent because of increases in the mean tempera-
ture. For the heat flux at the lower surface increases in its dimension-
less value could be as much as one hundred percent during the course
of a run. Ten percent of the variation would again be due to property
changes. About twenty to thirty percent of the change was due to the
composite nature of the apparatus. The remaining and largest contri-
bution of the increase was due to the increased effectiveness of the
fluid layer to transfer heat once motion occurred. Because the lower
boundary was not heat flux controlled, this variation could amount to
a seventy to eighty percent increase in the lower surface heat flux.

5. Heat losses

The apparétus was constructed to minimize the loss of heat
through the sidewalls by using a layer of styrofoam. It is estimated
that the total loss of heat through the sidewalls as a fraction of the

total heat generation rate was at most ten percent.



