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ABSTRACT

An analysis is made of the dispersive properties of layered
|anisotropic media, emphasis being placed on the geophysically im-
portant case of transverse isotropy. Period equations are derived
for Rayleigh, Stoneley and L.ove type waves. A correspondence is
established, in certain cases, with ray theoretical and plane stress
solutions.

The general anisotropic problem (orthorhombic symmetry)
is considered briefly for certain propagation directions and is used
to derive the two-dimensional theory of seismic modeling.

The single layer solutions are generalized to the n-layer
problem by use of Thomson-Haskell matrices. The results are used
to interpret long period surface wave data. It is found that an aniso-

.tropy of approximately 8% in the low velocity zone removes the dis-

crepency between Love and Rayleigh waves.
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I. INTRODUCTION

The earth is generaily assumed in both theory and practical
application to be isotropic, or, at most, to be composed of plane
parall.el isotropic layers. While this assumption is made for mathe-
matical convenience it probably holds true, at least approximately,
for lérg.e portions of the earth. Certain discrepancies are being un-
covered, however, by the continually increasing accuracy and range
of our observations which indicate a need for a more general theory.
The nature of some of these discrepancies suggests that they may be
due to anisotropy. In addition to this indirect evidence, sufficiently
detailed studies often demonstrate directly the presence of anisotropy.
See, for example, White and Sengbush (1953), Jolly (1956), Uhrig and
Van Melle (1955) and Layat et al. (1961). These results can usually
be attributed to the presence of finely layered material, such as shale.
Gassman (1951) has presented theoretical arguments for the existence
of anisotropy in granular material. Non-uniform stress fields also
generate directional elastic properties.

The direct manifestation of anisotropy is the directional de-
pendence of wave 'véldcity. Appropriate experiments can easily
be performed in the lab but require a major effort in the field. In
general we are limited to indirect evidence.

Some of the indirect manifestations of anisotropy are:

a) introduction of additional body phases

.b) 'components of particle displacement non-orthogonal to the

azmuthal coordinate system
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c) coupling of body phases
-d) displacement and distortion of surface wave dispersion
curves

e) disagreement between Love and Rayleigh wave stfuctures,

computed on the basis of isotropic theory

f) distortion and tilting of surface wave particle motion orbits

g) coupling of Love and Rayleigh waves

h) splitting of resonance peaks

i) non-parallel directions of group and phase velocity

j) existence of cusps on wave-fronts.

The existence and degree of these phenomena depend on the nature of
the anisotropy and the relation between the elastic constants.

Anisotropy is exhibited in its purest form in single crystals but
can also occur in a collection of crystals or minerals which has crys-
tallized or has been deposited with a preferred orientation, or has

-been subjected to non-uniform forces after formation. Layered media by
their very nature areanisotropic in the large but the individual layers
may also be anisotropic in a manner which cannot be handled by a
further subdivision into finer layers., Heterogeneous media with ran-
dom grain orientation tend to be isotropic.

Theoretical studies of anisotropy to date have dealt with limiting
cases such as infinite wave léngth (Helbig, 1958; Postma, 1955; White
and Angona, 1955) or infinite frequency (Stoneley, 1949). The former
authors consider, without proof, anisotropy to be the limiting case of

a laminated solid as the thickness of the layers becomes infinitesimal,
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and Stoneley considers surface wave propagation along the surface of
a half-space.

Surface wave studies on bounded, lavered or inhomogeneous
media are more complicated and because of the introductioﬁ of dimen-
sions or characteristic lengths demand frequency information that is
not available in the study of limiting cases.

We solve exactly the complete boundary value problem for sur-
face wave propagation in layered anisotropic media and, in certain
cases, demonstrate the degree of approximation involved in previous
studies.

We will first consider materials that pussess an axis of sym-
metry in the sense that all rays at right angles to this axis are equiva-
lent. Such media are called "transversely isotropic" and wave propa-
gation in infinité or semi-infinite media with this symmetry has
been discussed by Love,{1944), Satd (1950), Musgrave (1959), and
Stoneley (1949) with a convenient summary in Mason (1958) and Ewing ‘
et al. (1957). Transverse isotropy results in the same set of elastic
constants as that for hexagonal symmetry and hence is exhibited in
all metals or minerals crystallizing in the hexagonal system. This
symmetry can also be expected in sediments, planar igneous bodies,
floating ice sheets and rolled or extruded metal and plastic sheets.
This latter material is often used in two-dimensional model experi-
ments.

An'isotropic solid is governed by two elastic constants and the

characteristic equation has three roots, one corresponding to a com-



b

pressional wave and a double root corresponding to the two polariza-
tions of the distortional wave. These velocities are independent of
direction. A transversely isotropic solid is governed by five elastic
constants, and the separation into two waves, ohe for which‘the curl
of the displacement vanishes and one for which the divergence of the
displacement vanishes does not in general occur. Corresponding

to any assigned wave normal there are three velocities of elastic
wave propagation and only in special cases do these degenerate to

purely shear and purely compressional motion.
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II. GENERALIZED HOOKE'S LAW AND THE EQUATIONS OF MOTION

Ignoring body forces the equations of smiall motion are three of

the form,
2 ap ap ap
97 u _ XX X XZ
p_a_t_z_ = g _5_37‘[ o (1)

The stresses pij are derived from the strain energy function

W by
- 9w _ oW
P T Be_ . v Py TBe_- ct (2)

where (Love, 1944)

- 2 2 2
2W = Cll(exx+ ew) tc3ze + 2c13(exx+ eyy)ezz

2 2 ‘u 2, 2
YY+ 044(Cyz+ ezx) + (—2 )exy {3)

+ chzcxxc
for media with hexagonal or transverse isotropic symmetry. Five
independent elastic constants are required to specify. chmpletély the

elastic behavior of such material.

The stresses are, accordingly

= t clzeyy * €382z

-
L

vy " C12%xx t clleyy t C13%22

Ppz = Cl&‘»(e}s:::{J~ eyy) t €33%,,

(2a)
- - (‘311‘ “12 o
Pyx = Pxy 2 xy
Pay = Pyz = €44%yz

1}

c44exz
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From the symmetry of the above equations it is obvious that z has
been taken as the unique axis.
The matrix of the elastic constants for media with hexagonal

or transverse isotropic symmetry is therefore

1 °12 °13 0 0 0
€12 ‘1 €13 0 0 0
€13 °13 33 0 0 0
0 0 0 cuy O 0
0 0 0 0 Chs 0
0 0 0 0 o U ;12

For an isotropic body,

Cyq= C
- = X N e -
€ = C33 % Mt 2 ¢33 F N — =Cgq =M
The equations of motion become,
. p%u _ . 8% +<C11‘C12\azu+c az 2%y 82w
—atz"' /a 2 44az zﬁ’"éy €139%0z
( ‘u1z, 0 2 9w
axay * 44 Px0z
o 2% :[Cll'clz}[azu N v} peo v, b, dhw ek
Y z oxby ' 5z |t 2y 2t iy 2t Cl2Bamy a2
80w [82w+82v , 0w au1 [a?‘u LO5 T, 8w
9t2 44l 52 Oyb= ay 9xd 13| 9x9z " Byoz | © 33 922

wliere u, v, w are the displacements in the x,y,z directions. There

is no advantage in introducing potentials since the equations of motion

are still not separable,
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III. PLANE WAVES IN AN INFINITE MEDIUM

The theory of plane. wave propagation in the interi.or of an in-
finite anisotropic body is well developed {see for instance Love [ 1944]
or Mason 1958]). We begin with a brief review of this theory to
establish the setting for the following sections.

‘For plane waves propagated in a direcction specified by direction

cosines {#,m,n) we take
{a, v, w) = (U, V, W)eiwte'ik(;-x +my +nz)

Substitution into the equations of motion gives,

i F - pc2 : !m(cllzclz) _ ri!(c13+ c44) ) —U-
ﬂm(f-l—l—;-c—lz) g - pc:2 mn(c13+ c44) VI|=0 (5
i ni{x:13+ c44) mn(c13+ c44) H pc2 11 W..;
where
F=ale+ mz(_—_—_cu; 2, ne,,
gsﬁz(f-l-l—;—fl—z-) +m2c11 +n2c44 (6)

2 A 2
//z(.! +m )c&4-+n Ca,

By setting the determinant of thc cocfficicents equal to zero, we

obtain the velocity equation, Two special cases may be dealt with im-

mediately:

.a.) For transmission along the unique axis, nz1l, m={ =0,

cz = c33/p and c2 = c44/p are solutions. The first corresponds to a
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vertical_ly travelling purely compressional wave {PV) and the second
is a double root corresponding to a vertically travelling shear wave
with horizontal particle motion. The degeneracy is caused by the SV
and SH waves becoming indistinguishable.

b.) For trau'sulission along the x or y direclion or any other

direction perpendicular to the z-axis, n = 0 the solutions are:

compressional, PH

2 ‘n
c = —
P

€ B shear, SV

2 11 712

c = Zp

shear, SH

Therefore measurement along these two directions will determine 4 of
the 5 elastic constants. To determine the fifth we need a measurement
at some intermediate angle. In particular we can set £ =n = ﬁl, m=0
and from the velocity equation obtain

. . . el 2
Jlope2 pnt “33" Faa \2 | Cu” C33 2
13 ‘,(“PC } ) } Z | TC44

giving 3 in terms of the velocity of the fastest wave travelling at 45°

to the z-axis. Solving the velocity equation for arbitrary L, m, n we
can determine the directional dependence of the wave velocities.

In the following we will use the designations:

(o4
33 2 S un_ 2
—5— = O.Z . (PV) ’ ""F;"' = 0'1 (PH)
(7)
C C,,~C

2 2 _.2
=By (SH SV, SV —5=0 =p5 (SH)




For an isotropic body

The wave and velocity surfaces obtained from 5 will not in
general be spheres, unlike the isotropic case. The wave surface can
be a multi-valued function of direction, depending on the elastic con-

stants, for certain angles of propagation.
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- 1IV. SURFACE WAVES IN AN ANISOTROPIC LAYER

Consider .now a layer of thickness ZH‘ with the above symmetry
overlying a fluid halfspace with constants p,, X,. Take z. increasing
downward from the center of the layer. This configuration will permit
us to study the effect of anisotropy in a relatively simple system for

hy L

5 PR T PR s ta wwrell Aavelone = Py 2 S TE T er
which the isotropic theory is well developed and hich t

or which experimental
data are available. Also, with this general case in hand we can easily
study as special cases the effect of anisotropy on Rayleigh'and Stoneley
waves, and on propagation in a free plate. Later we will discuss.the
general n-layer anisotropic problem and point out how anisotropy will
introduce apparent discrepancies bétween Love and Rayleigh wave data
and also give erroneous results for Love or Rayleigh data used
alone. Since we will be interested in applying the results of our present
restricted problem to a high speed layer overlying a low speed iluid
halfspace (the floating ice sheet problem) we have the additional problem
of leakage for all modes with phase velocities greater than the fluid
velocity but this is resolved by prugramming our resultant period
equation in complex algebra, permitting the location of complex roots.
This, however, introduces no additional difficulties in our present
analysis.

Rest'ricting ourselves to motion in two dimensions (x, z) we put

9/8y = 0, Cyy 0, L. =-0, Sy = 0.

For surface waves we seek solutions of the type

Claw) = | U.(2), W.(2)] e Hot-lx) (8)
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Substitution into the equations of motion yields,

-pw’U(z) = -cllkZU(z) - il{c; 5+ ¢, )W (2) 4 c44U"(z)
n (9)
: -plmZW(z) = c33W (2) - iklc 4t ¢, )U'(2) - k2c44W(z)

where the primes denote 8/8z. These equations are coupled; by
differentiating each equation twice the system may be separated, and

we obtain the fourth order equations

. 3V 2.2 ¥ ¥, ¥
Ui¥(2) [ o k°GT _441 "2y + 220y = o0
€44 ©3344 €33 . €33%44
(10)
. W 2.2 ¥, - .. ¥
Wivig) - [ 44 x°¢~  “n JW"(Z) et > SR
€33 ©44%33 44 €44°33
where
G = €13 + €44

— 1.2 2
Ty = logk - op)
To find solutions for 10 we first consider the factored equation

2 2
9 2 9 2
(-———2 +v1)(———2+v2)x= 0 (10a)
0z oz
When expanded this product of one-dimensional Helmholtz operators

can be shown to be equivalent to equation 10 with

2 2 ¥y 2G2 Yyu
Y1 + V2 =- c t C 5 4aC T
44 3344 33
’ (11)
22 Yuvas
1v2
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The solution of a factored differential equation such as 10a is
equal to the sum of the solutions for each factor. Therefore the solu-

tions are

— vz T v,z
U(z) = Z Ue ", W(z)= Z W.e i=12 (12)
i i
where, from 11,
2 2 2 2 2 2 2 2.2
(c44vm— Cllk tpyw )(c33v - k Caqt PI® ) +»k v, G =0 {(13)

The explicit values of vz from this are,

M M

viz = 72c - ul 2c = (14)
3344 3344

where
M, = [M?2 - 4M,c,.c ]1/2
3 1 2733744
_ 2 2 2 2 2.2
Ml = c33(p1w - cllk Y + c44(plw - 0441: )y + kG

<
n

2 2 2 2
2 = ey - ok Np o™= ey k")

Note that v, can become complex for real w and k, a possi-
bility that does not exist for isotropic media. This means that waves
that die off exponentially from the interface do not exist for all possible

values of the elastic constants. This phenomenon will be discussed in

Chapter IX.

For an isotropic body equation 14 becomes

vlz = (k2- w?/a), vg = (k%- w?/B%), %= v2w)/e.  BP= w/e
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so that v reduces to the form associated with a pure compressional

wave and ¥, reduces to that for a pure distortional wave,
For a given v, the displacement ratios in the solid are,

2 2 2

kviG (033vi -k Cuy + Py 1
2 = | —
kv.G Y3

(%) =~

R )
i (C44vi- ekt P )

Wi=v;U;
For isotropic media Y, = vl/k, Yo * k/vz. We therefore take as our

solutions:

U=T shvlz_ + Uzchvlz + U3shvzz + U4chlfzz

1
{16a)
W= ilelchvlz + ilezshwlz + iy2U3chv2z + iy2U4shv2z
in the solid, and
w t
U =Uee
' {16b)

1 ¥
% iv -¥ =
W m-— U e
k o

" in the liquid, where

1 2 A,
vzz(kzu-m—*z); ¥% = =
o 2
The boundary conditions are
oW au oU L oW
Py ®C33%z TC3%x 0 PuTCylpzta) =0 z=-H
(1
* - %
P =0 Poz * Pyy W=W , z=H

23

Substituting equations 16 into equations 17 givés,
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U].[ -Yl\’l C33+ C13k] sh VlH + Uz[ Y1V1C33‘ Cl3k] ch le

+ U3[ -y ZYZC33+ c13k] sh vZH + U4{v2Y2C33- c13k] ch VZH =0

Ul{ vt kyl] ch le + UZ[ -vy- kyll sh le + U3[ vyt sz] ch vzH

+ Uyl -vy- voklshv,H=0

Ul[ Y¥C33" c13k] sh v, H + UZ[ Ca3YVy- c13k] chv,H

+ Uglv,eq37,- c13k] sh v, H + U4[c33v2y2 - ci3klchv,H

A ' (18)

1 -
+U 2K e H o
Ul[-ylk] ch v;H + U kyjsh v H + Uzky,chv,H + U ky,shv,H

-
‘I'UOVQvH:O

Uyl kylchvH+ Ulv+ kylshv H+ Uslv,+ ky,Jchv,H
+ U4[v2+ kyZ] shv,H =0
The condition that the determinant of the coefficients vanish is,

ngzsh vl(ﬂll‘zeh vychv, - I, chv,sh vl)
+ Ayl ysh v (1,0 sh vich v,~ I;T,s8h v,ch vl)
+ Hlﬂlch vl(l'Ill"Zch vzsh V- HZrlSh v,ch vl)

+ AlHZ(_:h vz(l’lzl"lsh v,ch v, - lezsh vich vz) =0 (19)
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where
I"l,= [ - ylvlc33 + cl3k] Hl = [vl + I(Yl]
r,s= { ~V,Y,C55 cl3k] I, = [uz + kyz]

A

'" sh Aoy (k% - v %) ch
g =v Ty shvy 3 h,y(k™ - v ") chv

1

ot , 2 12 (20)
AZ-V Flchvl+ )\zyl(k -y )shv1

2 '2
2 =v.I', shv +K2\{2(k —vl)chv

1 172 2 2

. 2 2
522~V 1"2 ch vyt )\Zyz(k -V ) sh v,

In this equation we have taken the thickness of the'plate as unity.
This introduces no loss of generality since the thickness is the only
dimension in the problem. For an isotropic layer this yields the period
equation given by Press and Ewing (1951).

The asymptotic form of equation 19 for short wavelengths is:

. \ 1 2 2.,
(I, T, - nzrl)[v (I, T 5= M,I) + Ay(k"- v "N, v,- nz,yl)] =0 (19a)

It will later be shown that the first factor is the Rayleigh factor
for an anisotropic medium and the second factor is the Stoneley factor

for the interface between an anisotropic solid and a fluid.
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V. FREE PLATE

By setting Py = 0 the period equation factors into:

+1 :
tanh v H i [ vitky ]l v,y e55-c 5Kl i I -
tanh vZH | { \(lvlc33—c13k_| 1 v2+yzk_J - rlHZ

the upper sign corresponding to antisymmetrical waves and the lower
sign corresponding to symmetrical waves in a free plate.

In the long wave length limit this hecomes:

+1
2 PP

For symmetrical waves this gives
2,2 2
033(pw /k%) - (011033-c13) =0 (22a)
We can also derive the long wave length limit for symmetrical waves
from plane stress theory. Taking as before the xy plane parallel to

the surface of the plane and propagation in the x~direction we have

PP 2%
ox 31:2

Eliminating Bw/az from the first and third of equations 3,

2
_ (c13¢33- ©13) 5y

P (23a)
XX C33 x
Therefore
: 2
2 €11C22~C 2
9 u _, 11733 713 ,8"u
Py =(— ) 25, (23b)
at 33 9x
and the plate velocity N is:
Ci1€349= C 2
2o 133 13 (24)

P PC33

in agreement with 22a.
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This will serve as a check on the low frequency limit of our
ensuing calculations. Note that the.plate velocity does not depend only
on the horizontal compressional and SV velocities as we may have
suspected for the long wave limit but involves the constantsv in the verti-
cal and intermediate directions as well, In particular this can lead to
plate velocities which are outside the range possible for an isotropic
solid and this holds true also for the rest of the dispersion curve,

This is related to the fact that directional Poisson's ratios in an
anisotropic solid can exceed 0.5,
For waves short compared to the layei' thickness the hyperbolic

tangents can be replaced by unity giving

T, - I, =0 (25)

for both symmetrical and antisymmetrical motion.

This is, again, the Rayleigh equation for anisotropic media.
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V. RAYLEIGH AND STONELEY WAVES

Consider an anisotropic halfspace with the above properties.
Assume solutions that decrease exponentially with depth (z is positive

downward and the solid lies in the top half space):

(26)
Waiye ! U +iy.e 2 U
.~v1y1e 1 tivpe
The v, and y; are the same as derived previously for the general
case. Applying the condition of a traction free surface we obtain the

period equation:
R = -I‘lﬂz +I’2H1 =0 (27)
This is the Rayleigh equation for transversely isotropic media and was

first derived by Stoneley [1949]. It reduces in the case of isotropy to:

2 2,2 2
R.-.-.[v2+k] - 4vv, k" = 0 (28)

For Stoneley waves we assume motion dying off into both the

fluid and the solid. Assume equation 26 for motion in the solid, and,

for the fluid:

(4b)

Applying the conditions uf a stress free interface and continuity

of vertical displacement we obtain the Stoneley period equation:
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2 12
Xz(k -v ) . lez' 112].“l (29)
)
v il Yol
For isotropy this goes into
R+6=0 (30)
where
*2
P2% V1 2 2.2
6=———-T——,—(v2-k)(v - k%) (31)
P1P v

This is the form of the Stoneley equation given by Press and
Ewing (1951). When py =0 we obtain the Rayleigh equation in both
the isotropic and anj.sotropic case, Thus, as we indicated earlier
the high frequency limit of the fundamental symmetric and antisym-
metric modes of a free plate is the Rayleigh velocity. A floating plate
has two branches of the fundamental mode, one corresponding to the

Rayleigh velocity and the other to.the Stoneley velocity.
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VII. LOVE WAVES

Imr layei'ed transversely isotropic media Love waves exist
independently of Rayleigh waves, that is, there is no coupling hetween
Rayléigh type and Love type motion for waves propagating in a plane
perpendicular to the unique axis. This is the..lowest symmetry for
which this coupling does not, in general, exist.

Considering a free layer and taking the axes as before the
9

equations of motion can be satisfied by putting u=z w= 0, e Q.

For waves of the Loove type we take

v = V(z)ei(wt—kx) =(vlsht},'z + vzchf,z)ei(wt-kx) (32)
and obtain the reduéed wave equation
§év_ = ELE (N-tc)y (33)
ot
so that
2= K v pedy (34)

2
where N = {c,- clz)/Z, L=cy,. When L =N=p=pp” we have

isotropy and
2

2 2 w
" = (k7 - —)
8

The boundary conditions are
=LY 20 at z=zH
Czy Bz -
These conditions lead to the period equation,

2 1/2
tanthH(ﬁ‘L_pf_.) z 0 (35)
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If pc:2 < N no roots of the above equation exist. Therefore
we must have pcz 2 N, or c2 = p;. The period equation can there-

fore be written

tan ZkH(N/L)l/Z[(CZ/p;f) ¥z o (36)

Equation 36 is satisfied if

ZkH(N/L)l/Z[(cz/ﬁg) 102 - hx where n=0,1,2....  (37)

which is the Love period equation for a free anisotropic plate.

This differs by a factor of (N/L)]‘/2 from the isotropic Love
wave period equation. The above derivation also holds for an aniso-
tropic layer in contact with a fluid layer on one or both sides.

As Stoneley {1949) has pointed out, it is the modulus ¢ that

44
resembles the isotropic rigidity for Rayleigh wave motion, whereas
the corresponding modulus for Love wave motion is (cu- clz)/Z.

This holds true for layered anisotropic media in general and will
make the velocity structure as determined for Rayleigh wave data
inconsistent with Love wave information uniess the anisotropy is taken

into account.

For an anisotropic layer of thickness 2H with constants Ll’
-Nl, and 62 over an anisotropic halfspace with constants LZ’ 2

*
and f we obtain for Love waves

2 1/2 N i/z LN, /2 ., , 2,.%2 , 1/2
wn 2w (SG -1) () =(Ex) (B
ﬁz 1 1 c /‘32 -1
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In the corresponding isotropic case N = L = p and we recover
the Love equation in familiar form. Stoneley's (1949) derivation of
the anisotropic Love equation is in error.

The general case of Love wave propagation in multi-llayered
media will be considered in Chapter IX.

It can be shown that the period equation expresses the condition
of constvructive interference between multi-reflected plane SH waves.

This condition may be written, for the free plate
4H cos 6 = ng (38)

where © is the angle the ray makes with the vertical and £ is the
wavelength measured along the ray. The velocity of SH waves satisfies

the equation

pB%(0) = £°N + n°L (39)

With the substitutions B(8)/c = sin 6, k = 27sin 9/10,

ﬂi‘ =L/p and [3; = N/p we can write for equations 38 and 39

nr = 2O L1 - (o) ) V2 (38a)
2 L 2 c* L,
!3(9)=Nc(—2-1+ T\—T) {39a)
P2
Substitution of equation 39a into equation 38a gives the period
equation,
1/2
218N/ L)Y 2 [ (2 /p2) - 11Y/2 = (40)

in agreement with 37.
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VIII., NUMERICAL RESULTS

The general period equation 19 was programmed for the Cal
Tech Computing Center's Burroughs ?.20 electronic digital computer,
using a complex root finding technique sub-routine developed by
Phinney (1961). Modifications were built into the program making it
possible to solve for the symmetrical and antisymmetrical modes in
a free plate and to evaluate the Rayleigh and Stoneley equations.

We have calculated the dispersion of Rayleigh type waves in
plates for three solids which exhibit hexagonal symmetry: a) beryl,
b) ice, and c¢) a laruinated soulid. These resulls, of course, apply also
to any anisotropic solid having the same relationship between the
elastic constants as one of the above examples,

Beryl was chosen in order to extend Stoneley's results to a
free plate. Ice was chosen as an example of a solid which exhibits a
rather strong anisotropy and because lake ice commonly forms with
a vertical c-axis (the unique axis) orientation. The other axes are
randomly oriented but since the single crystal has elastic rotational sym-
metry about the c-axis the result is a large plate having the properties of
a single crystal. Sea ice and some lake ice form with a c-axis horizontal
orientation. Here again we have a 1arge plate with transverse isotropy
but the effective elastic constants are not the same as for a single crystal,
A laxﬁinated solid is transversely isotropic about the normal to the lami-
nations for long wave lengths; the effective elastic constants must obey
certain ordering rules which restricts the extent to which anisotropy
may be approximated by layering. Table 1 gives the elastic constants

used in computing these three cases.
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To show more clearly the effect of anisotropy we have also
calculated the dispersion for equivalent isotropic ice, that is a = a)
B ='£31, and for some intermediate cases.

For convenience we introduce the following "anisotropy

factors"
_©33 . 2 2
= Cll 1. €, 0.2 = (pal
C,.~C
et s ¥ 2 2
O 2Cyy
ll —
€13

Isotropic media havegp =€ =1 =L

Figure 1 shows the effect on M,, of increasing all of the
anisotropy factors from below 1 to the values attained by anisotropic
ice. For this kind of anisotropy, i.e. ¢, £ andyincredsing,the dié-
persion curve migrates uniformly toward higher phase velocity. The

low frequency limit of Mll for an isotropic plate saiisfies

2 2
5 = )
B e

Therefore (CP/B) < 2. For “a.n anisotropic plate with the constants of
ice equation 24 gives (cp/ﬁl) = 2, 045. This agrees with the numerical
evaluation of the gener'é.l period equation,

Stoneley (1949) has previously noted that the Rayleigh velocity

for an anisotropic solid can be higher than that for a Poisson solid;
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we note, in addition, that it can be higher than is theoretically possible
for an isotropic solid. This is true in particular for solids with the
constants of beryl and ice. Therefore both ends of Mll are greater
than the theoretical maximum under the assumption of isotropy.

To pursue this point further we plotted in fig. 2 the variation
of the four lowest modes of an isotropic plate as Poilason's Ratio
changed from 0. 25 to 0. 5, the latter case indicating incompressibility.
The data is from Sato (1951). It is of interest to note that Poisson's
Ratio has a much greater effect on the symmetrical modes than on the
antisymmetrical ones. 'T'his is to be expected since we have effectively
held B constant while changing a, and the Ml modes are chiefly
compressional in nature while the M, rﬁodes tend to couple with an
ideal free shear mode (Tolstoy, 1957)., Plotted for comparison are
the four lowest modes for ice and M11 for beryl. All the modes except
M21 (the flexural mode} which is not drawn, and the low frequency end
of Mli fd?_ beryl, are well outside the theoretical limit of isotropic
plates. MZl for ice deviates slightly from the theoretical range

at both ends.

In fig. 3 are the complete results for ice, for M,; thru M,,.
Note the negative group velocity tail on MlZ' This phenomenon has
been discussed by Tolstoy( 1957), who attributes it to a negative
phase velocity rather than an actual backward propagation of energy.
Figure 4 gives the results for a laminated plate consisting of

'alternating layers of sandstone and limestone in the ratio 3 to 1l The

effective elastic constants for infinite wave length in this medinm-have
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been computed by Postma (1955) and are listed in table 1. The ani-
sotropy factors are @ =0.733, £ =1,450 and n = 2. 0576, making the
anisotropy of this material quite different from beryl or ice. Note
the pulling down of tfle group velocity minimum, and in particular,
the accentuated negative group velocity "tail. "

~ The Stoneley wave equation\was evaluated numerically for
pz/p1 =1, 12 (the water to ice density ratio) and several u,*/ﬁl ratios.
As in the isotropic case the Stoneley velocity is always a fraction of
fhe slower of a*,. Bl but, for the constants tested, is a larger fraction
than for the corresponding isotropic case. For example when (1*/[3l
takes on the values 0. 79, 0.9, 1.0, 1.1 and L. 2 the Stoneley velocity
cST/B1 is 0. 70, 0.74, 0.76, 0.78, and 0. 79 for the anisotropic case

and 0, 67, 0.71, 0.72, 0.74 and 0. 75 for the isotropic case.



IX. MATRIX FORMULATION OF THE GENERAL
LAYERED PROBLEM

Rayleigh Waves

- Following Haskell (1953) we now show how the solution of the
wave propagation problem in a single anisotropic layer leads naturally

to the n~layer problem. The normalized velocities and stresses

i{wt-kx)

in the mth layer can be written, (understanding an e factor)

olc.

=[ikshv1 zU; + kichv; zU, +ikshv, U, +ikchv, zU, ]
. m m m m m m m m

W | i
?~[ kylmchvl zU; -kylmshvl 2U, kyzmchvz 2U,

m m m m m m

—kyz shv2 zU4 ]
m m m
(42)
pzz-"-'i(\(1 vy Cm-ka)shvl zU1 +i(Cmyl vy —ka)chvl zU,
m “m m ‘m m “m m m

~|~1(\/2 v, Cm-ka)sth ZU3 +1(\(2 v, Cm-ka)Cth ZU4
m “m m m m m m m

2

Py, L(v1 +kylm)chv1 zU1 +Lm(v1m+k\/lm)shvlsz .

m m m

+L_v, +Y, k)chv, =zU, +L (v, +V2 K)shv, zU,

m m m m m m m m

2

where C, L and F are.the elastic constants C33s Cyy and 3¢ The
boundary conditions to be met at each solid-solid interface are that
these four quantities be continuous. The geometry under consideration

and the numbering of the layers and interfaces is shown in figure 5.
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Taking z =0 at the (m--l)th interface the linear relationship
between the motion stress vector and the displacement coefficients can

be written

(ﬁrﬁ~1/c’ "’Vm_]/ca pzzm..l’ p ) = Em(Um' Vms Wm’ Zm) (43)

X7
me]

where

m

and where Em is the matrix

0 ik 0 ik
-kylm 0 -kyzm 0
E =
m ‘
0 1(Cm\(l vy -ka) 0 1(Cmv2 Y -ka)
m “m , m m
Lm(vl tkyy ) 0 Lm(vz tky, ) 0
m m m m
(44)
Setting = = dm we can write the relationship between the
motion stress vector of the mth interface and the Ui N
m
(u_/cow /e Paz_*Px rn) =D (U ,V W _,Z ) (45)

where D'm is the matrix



~30=

-

m&

oI

wr

’ T
Ays(y

p Sayo(x g-

wx

p Z

P

wr

w
A4y4s N\(M..

A YD T

wm

wr
(43 N;EOV

I W ™

P Cayo(y

wr

p Cays(q &

wr
o9y

p

N>+ 4

A US T

a)

(46)

SE w T
o N;:m

I
P Ca o N>.M1

I

w
P

fou s

wx

wm

oI

P

wr

P

T

w
T, Us( ;M

w

p layo(y™a-

A Yd NI

wr_
+H\L

oI

a

w
Ta ys H\ST

;Eozwmﬁ

mx

L

™

P

I

P

™

I

AYqs 1

™t

wr
A o ;M,n

oI

p lays(r a-"o Ta W)




-31 -

The coefficients Ui may be eliminated between equations 43
and 46 giving a linear relationship between the motion stress vector

at the bottom and the top of the mth layer,

(u m/c’ ;vm/c’pzz * Py, )
m m

-l o o
= DmEm(u m.“l/C, Wm‘-l/C}o_zz 2 o ) (47)
m-~1 mw1

The inverse of Em is given by
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Applying equation 47 recursively we may carry our solution
down through a stack of n=~layers, just as in the isotropic case.

See Harkrider and Anderson (1962) for details concerning the
programming of equation 47,

The most se?ious problem in computing dispersion on multi-
v layered media is the possibility of v, becoming complex. When this
occurs the displacement does not die off as a pure exponential into
the half-space and Rayleigh waves, in the classic sense, do not exist.

The condition that vi?‘ be real is

M2~4Mc

1 2633644 > 0

This relation has been evaluated for four different Poisson type

relatidons between the elastic constants. The area below the appropriate
curve in figure 6 is forbidden to Rayleigh waves. Note that only iso-
tropic media, i.e. ¢ =1, can always support Rayleigh waves, Even

a slight departure from isotropy can put us in a forbidden region for
sufficiently small phase velocity. This illustrates in a striking fashion

the unique position of isotropy in the theory of elastic wave propagation.

Love Waves

The extension of the Love wave theory to multi~layered media
is somewhat simpler and will be developed in detail.

Consider plane waves of angular frequency w propagated in
the positive- x-direction with phase velocity ¢ in a semi~infinite
medium c‘omposed of n parallel homogeneous transversely isotropic

layers. The 'nth layer is an anisotropic half-space. The geometry
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under consideration and the numbering of the layers and interfaces
is the same as in figure 5, The follbwing technique is similar to that
developed by Haskell (1951) for isotropic layers.
Associated with the mth layer are its density, Pm? thickness,
dm’ and directional rigidities, N_ and Lm. The equation of Love
type motion in the mth layer is
2

avm 0 ]

7 =N 5% ®xy ¥ T B2 Oy {49)

Pm

ot

where
N __( ‘n- c12) = (pp?)
m N2 /_ =~ ‘PPaim
m .
L =(c ) =(pBl)
m 44'm - ‘PP1'm
[31 = vertical SH velocity
B, = horizontal SH wvelocity
v = horizontal transverse displacement
The velocity of SH waves satisfies the equation (Stoneley,

1949)

2

pp” = 4°N + n’L (50)

where ¢ and n are the direction cosines from the x and z axes.
"For isotropic media L =N = p and" pﬁz = u since 12' + n2 =1L
Figure 7 shows schematically the velocity surface of a wave
sa£isfying this équation.
The strains are

L ov . ov
exy = 5% and | eyz * 5% (51)
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from which we obtain

+ L m (52)

This is the displacement equation of motion for SH type motion
in transversely isotropic material satisfied in each layer.

The plane wave solution of equation 52 for an anisotropic layer

is

u=w=(
v = {Vle-ik§z+ Vzélkéz]ei(wt-kx) (53)
where V1 and V2 are constants.
Substitution into the eguation of motion yields,
pw? = NKZ + Lk%¢? (54)

or

/2, 2 1/2
c=(z) (-
2

The boundary conditions to be satisfied are that the transverse

component of displacement, v, and the transverse shear stress, P.._s

YZ
be continuous at each interface,

The transverse shear stress is

oy OV _ . . -ikyz ik{z) _i(wt-kx)
Pyy = Lz = kgLl -V.e™ 5% Ve e (55)

Following Haskell we will relate the displacement:stress vectors

at the bottom and top of each layer. This relation plus the interface and



-36-

infinity conditions are sufficient to determine motion at depth in terms
of the surface conditions.
Taking the origin of z at the (m-—l)th interface we have, at

this intexrface

(v/c)m_‘l = ik(V+ Vz)m

(56)
(p,.)

zy'm~1 = ikngm(-V1+V

Z)m

where ¢ = w/k is the phase velocity and is the same for all layers.

th

At the m™ interface
. kg d kg d
(V/C)m = ik(Vle + Vze )
(57)
~iky_d iky d
(pzy)m = iLmkz;m(-Vle momy Vze m m)

By eliminating V, and V, between equations 56 and 57 we

obtain

(\'r/c) -(v/c jcos kg d 4 T .Z, (p ZY)m-ISin kg od

(58)

(p .) =iLL mbm (v/c) Slnkg d +(p

cos kg _d
zy'm m m

zyml

This is a relation between the stress-displacement vectors at

the top and bottom of the m layer and can be written

(59)

(v/c, Pyy!) m = a_ (v/c, Pry)m-1

where a . is the matrix
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a, =cosky d (60)

iL_ ¢ tank{ _d 1
m-m m m

By repeated application we have

(v/€s Py dy1® 3y 1By - - 20V/Cap, )

(61)
= A(v/e,p, ),
or
(v/e) = Aplv/e), + Apalp,
| (62)
(Prylng = Ap(v/e) + Agylp, ),

where Aij are the elements of the matrix A.
The conditions that must be satisfied for free surface waves

with no sources at z = o0 are (sz)o =0 and V, =0. This gives
R n

Agl F-Lpbyfy - (83)

This is the Love wave dispersion equation for layered aniso-

tropic media.

In the two layer case A = ay and equation 63 reduces to

L,¢
L)
tankt_’,ldl—-i—L—-——-

(64)
151

as determined directly in Chapter VII. This in turn reduces to the

familiar isotropic form when N =L = p,
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Discu.ssion of Love Wave Solution

Although Love waves arc surface waves eguation 63 contains
body wave information. The only SH body wave information we have
discarded in arriving at our solution is the wave leaving the last layer
in the direction of positive in,.finity and for surface measurements this
does not concern us.

In the long wave limit each a  becomes

ca = m=1,2,¢o-,n"l

Therefore

n-1. 1 0

A=ﬂam

it

and the period equation becomes

L

or

Therefore as kdm —+0, m=L2,..0,0n=1, c — Bn, the shear
velocity in the half-space.

*
For the short wave limit put { = igm
x (N 1/2 (1 .2\ 12
e 0 5)"
m

Then -
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* |
™ tanh ¢ _kd
1 m  m
Lt
_ % m>m
a,, = cosh ht_:,mdm (65)
*
-ngmtanh kg d. 1
As d__ — 0, m=2,3,...,n=l
m
1 0
a.
0 1
) . ]
and tanh ¢ kd
1 -—— 9% ©
Lot
" 0”0 ”
A = cosh hgodo (66)
%
-L g tanh kg d 1

giving the period equation

1]

tan kg d (67)

e
as ¢ =B, { — 0, and k{ d_=0, 7/2,3%/2,... Therefore as

do — 00, kgodo remains finite and there are an infinite number of modes,
or branches, with ¢ — [30 as kdO — 00,

Real roots of the general period equation 63 exist only in the
range 51%2 ¢ <P, and for Lm+l/Lm = 0 (a free heterogeneous plate).
Complex roots might be expected outside of these regions and would
correspond to leaky or non-perfect constructive interference.

In field refraction studies using SH waves the slopes of travel

time plots would give ﬁz but the intercepts would correspond to the
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vertically travelling wave or B,.

Solutions Recast Into Isotropic Form

For convenience we introduce the following anisoliropy:factor

03

-
- ——

b1

U
i
=z

which is unity when there is no anisottropy. Then

§=€1/2(%-1)1/2

= £¥/27

in terms of isotropic constants and the anisotropy factor.
Throughout our development ¢ appears only in the combination
L¢ and ¢d. In the isotropic case the corresponding terms are p.Z
and .Zd. We can therefore have complete equivalence if we define a
pseudo-rigidity and a pseudo-thickness.
o= Lg% = (/2
(68)

d = Y24 = (n/LY 2
for each layer. The pseudo-rigidity in the equivalent isotropic case
is the geometric mean of the directional rigidities of the anisotropic
problem,

The use of these pseudo-parameters makes it possible to use
pl;evious Love dispersion numerical data to determine dispersion in

layered anisotropic media. For example the convenient curves,
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nomograms and tables of Dorman (1959), Sato (1953), Kanai (1951), and
Ewing et al. (1957) can be applied to the anisotropic problem, Like-
wise, computer programs, such as described by Press et al. (1961)

for calculation of Love wave dispersion curves in layered iéotropic
media can be adapted by use of the pseudo-parameters instead of the
isotropic parameters to calculate dispersion in layered anisotropic
material. Most of the theory developed for isotropic SH and Love
wave propagation, including source and amplitude studies can therefore
be applied directly to the anisotropic problem.

A further simplification results from the fact that Love wave
dispersion is remarkably insensitive to reasonable changes in the
rigidity or rigidity gradient which means, if the velocity is unchanged,
a lack of sensitivity to density or density gradient. If the rigidity of a
whole éection is multiplied by a constant factor, such as §-l/2, the
dispersion is unchanged since rigidities occur only in ratios, The
effect of a uniform anisotropy, then, is to telescope the whole section,
which is the same as telescoping the T (period) axis of the dispersion
curve. For non~uniform anisotropies the section is telescoped non-
uniformly - but the additional effect on rigidities can usually be ignored.
Physically, this procedure may be interpreted as changing the travel
time in the vertical direction and, therefore, changing the vertical
velocity relative to the horizontal which is just the type of anisotropy
we have introduced,

Figure 8 shows the effect of uniform anisotropy on Love waves

in a simple layered structure. Note that the frequency is proportional
‘to g'l/z.'



w4 2w

Transverse Isotropy As the Limit Of a Layered Solid

Postma (1955) and White and Angona (1955) have shown that, in
situations of plane stress or infinite wavelength, a formation consisting
of alternating plane parallel isotropic layers of different pr;)perties can
be regarded as a homogeneous transversely isotropic system. One
would expect this correspondence to hold for wavelengths long compared
to the iﬁdividual layer thicknesses. The resulting anisotropy is not as
general as that developed in this paper since the inequality N > L. must
hold for a laminated body, and, of course, the long wavelength restric-
tion can be quite severe, To investigate the range of validity of the
above co\rrespondence we will carry out a more general analysis,

Consider a laminated medium made up of alternating layers ‘of
two different isotropic materials. A section of the material is then
composed of doublets, not necessarily identical in component or total
thicknesses, The matrix relating conditions at the top and bottom of

each doublet is
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.Consider now wavelengths long compared to any doublet

thickness, Then

N
d d
1 e (24 2o >
: Pm  Pm-l ‘
bm = {70}
. ~2 ~2
11((”m-l‘grn--ld‘m-'l+ “mémdm 1 i

to order kZd. The first neglected term is of order (kZd)2¢

To the same order, for a single anisotropic layer

id_
1 .
a, = (71)
kiNmZ :‘n a_ 1

The matrices a_ and bm are equal, independent of phase

velocity if,

}‘Lm-ldm-l + I'Lmd’m

N = 3
PP
L= e (72)
Fm-1"m " *m%m-1

Therefore a doublet or a series of doublets may be replaced
by a single anisotropic layer with the above directional properties.
These relations are identical with those given by Postma (1955) from
purely static considerations. This analysis may be extended in an
obvious way to layered media with more than two components, For
long wavelengths the whole near surface section may be replaced by

an equivalent anisotropic layer, This considerably reduces computa-~
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tional labor for surface wave studies on multi-layered media.

- For a 1ayeré.d solid the directional rigidities L and N are,
respectively, the harmonic and arithmetic means of the component
rigidities, The effective density is the arithmetic mean of the indi-
vidual densities, This procedure replaces a layered isulrupic
structure with a single anisotropic layer, These two structures are
equivalent for long wavelengths, If we now form the geometric mean
of the directional rigidities and change the thickness of the layer as
shown in the previous section we can replace the single anisotropic
layer by an equivalent single isotropic layer,

This analysis shows the correct way to average properties
when several isotropic layers are replaced by one, Instead of averag-
ing velocities, as has been common practice, we must form the geo-
metric mean of the arithmetic and harmonic means of the rigidities
and modify the thickness,

For a material composed of N laminations, each of different
rigidity, Hyo and thickneés, di’ the equivalent single isotropic layer

has the following properties
N N . 1/2
¢ TTeM Z d,p;)

‘_le ]. 1 (73)




- N N N ~1/2
( Z ding) ) 4 CTT wy)
1 1 1
ar = J#1 (74)
N
(1T 1)
L 1 -~
for N
kz d, <1
1
1

To illustrate the range of validity of the laminated solid approxi-
malion and as an independent check on the theory develuped in this paper
several numerical examples were computed on the Love wave disper-
sion program described by Press et al, (1961},

In the first example phase velocities were computed for Iove
type motion of a laminated (10 layer) plate and for the equivalent homo-
geneous anisotropic plate, The parameters are taken from Postma
- {1955) and are tabulated in Tables 2 and 3 under Postma Solid I, The
results are shown in Table 4, The difference in period is about
2—1/2”70 at a wavelength corresponding ;co about 10 times the thickness
of the largest individual layer. The difference gets more pronounced
for shorter Wavelengthé and would get smaller if the laminations were
thinner.

In the second example a three layer half-space was constructed
as shown in figure 9 corresponding to a layer of Postma Solid I over
a layer of Postma Solid II over an isotropic half—spéce. Dispersion

was computed for each surface layer split into 20 laminations and then
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Table 2

Parameters for Postma solids (I and II) in arbitrary

consistent units

dy/d2
8 P B P
113 3 2.5 3. 04 2.7
2 1 1 0.6 1. 62 2.3

Table 3
Parameters for equivalent anisotropic solids
D D N L b By B, p 3
I 1 1. 21 1. 08 0,74 0. 895 1. 76 2.12 2.4 1. 46
111 1 1. 20 2.03 1. 40 1. 684 2. 32 2. 79 2,6 1. 45

Table 4

Phase Velocity and Period for the fundamental Love mode in anisotropic

plate (Tl) and laminated plate (TZ)

C T1 TZ

5.0 1. 032 1. 029
4. 6 1. 011 1. 009
4, 2 0. 983 0. 981
3.8 0. 946 0.943
3.4 0. 892 0. 888
3.0 0. 806 0. 804
2.6 0. 660 0. 659
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into 40 laminations, and also for the equivalent anisotropic layers.
As the number of laminatipns incréases the dispersion converges to
the anisotropic case, as shown in figure 9,

Figure 10 shows the displacements as a function of depth for
cases A and B, for three values of the phase velocity. The dis-
placements are normalized to the surface Valué. The effect of the
laminations is to keep the particle motion from dying off so rapidly,
The‘displacernents for the laminated case diverge more from the
anisotropic case as the Wavelength gets smaller,

Although theoretical studies of laminated media, viewed as an
approximation to an anisotropic solid, have proved useful in shedding
light on anisotropic wave propagation problems, the present results
can be used the other way around; i.e. replacing complicated layered
structures by simple equivalent anisotropic structures. To illustrate,
we have constructed a medium consisting of 20 layers having the
composite properties of Postma Solid I, overlying an isotropic half- |
space. The resulting Rayleigh wave dispersion for the first two
modes is- shown as the solid line in figure 11, The 20 layers can be
replaced by a single anisotropic layer, with a large decrease in com-
puting time, which gives the dispersion shown by dashes, There is
good agreement over the entire range of the computations. The dotted

line is the best single layer isotropic fit to the data.

Comparison With Field Data

Jblly (1956) in a fundamental field study of shear waves demon-

strated the existence of transverse isotropy in a near surface section
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of shale. He obtained refraction data for SH, SV and P waves and
alsv some lL.ove wave data. There was good evidence to indicate that

the horizontal SH velocity was approximately twice the vertical velocity.
Figure 12 .gives Jolly's experimental results and two theoretical curves.
The dashed curve is the predicted dispersion using fiecld rcfraction and
reflection data and assuming isotropy, The anisotropic results are

given by the solid curves. Structure paramefers are given in the table
on figure 12; the isotropic curve has § =1 throughout the section, It

is obvious that the assumption of isotropy is not warranted, An in-
crease in anisotropy with depth seems to be indicated although the

structure determined is not unique,
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X. THE GENERAL ANISOTROPIC CASE

We will now derive the equations of motion for an infinite
medium with three orthogonal planes of symmetry, This symmetry
is géneral enough to allow specialization to cubic, orthorhombic,
tetragonal, trigonal and hexagonal symmetries. A possible appli-
cation is the propagation of surface waves over a medium acted on
by non-isotrapic horizontal stresses.

Consider a material which possesses at each point three
planes.of symmetry at right angles to each other and take these
planes as the coordinates x,y and z, This symmetry corresponds
to an orthorhombic crystal and has a strain energy funétion W,

given by (Love, 1944),

2 2 2

2W = €118 T CZZeyy+ Caze,, 1 2¢

lzexxeyy

e e + 2c 2

t 2(:13 XX ZZ 23eyyezz * C44eyz

2 2 :
! CSSeZXI c6éexy (75)

where eij are the strains and cij are the nine elastic constants re-
guired to describe the material,
The stress equations of motion are three of the following form,

involving the displacements u, v, w and the stresses pij’

where
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P = 5 (77)

1)

We obtain the displacement equations of motion by substituting

77 into 76. This yields the following three equations,

2 2 2
.o b u 8 u 8 u 0%“w
PU = cy =5 Y55 —7 T ¢4 =3 T {C137F <55) 3535
0x oz oy
( ) BZV
127 766’ dxoy
ot s 8%y . 9%y, 82y Fley )8211
66 —Z T 22721 s ““Z 12! 3x5y
ox oy
; (78)

W
tleast cud) 3yaz

52 2 2 ' 2
b = Yoy 8 W, 0 w + {c ) 9 u
33 Z 44 Z 55 2 55 €13’ %oz

tleast Cuydozny

Thesc are the equations of motion for an infinite orthorhombic
medium. We will confine ourselves temporarily to the case where motion
. : . IR
takes place in the two dimensions x, z sothat vz =—=2e ze =e =

, 8y vy xy yz
0. The equations 78 hecome,

. 8% 8%u 82w
U te 55572 +(C13+C55)8xaz

. (79)
. azw Bzw 82

PW = S337 LTy iz Fleggt o) s
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For an isotropic body €y ¥ €y, FC33 =M + 2y, Cip S Cy3 FMy Cuy =
Cgg = Cpp = B and the above equations reduce to the familiar form,
For waves propagated in a direction given by the direction cosines
(£,0,m) assume u,w to vary as exp {ik(fx + nz - ct)}. Sﬁbstitution

of these forms into 79 and setting the determinate equal to zero gives

the wave velocity equation,

2 2 2 2 2 2 2 2
(cllﬁ toeggnt- pe )(0551 +cy3n”- pe ) = (ne) (c13+ 055) =0 (80)
A wave travelling in the x-direction has f =1, n= 0 and the

solutions to the velocity equation are

2 ‘n 55
C =-—p—-', T (81)

For an isotropic material these correspond respectively to
the compressional and shear velocities, Particle motion has been
constrained to the xz plane, therefore the shear velocity corresponds:
to SV motion,

In the =z-~direction, £ =0, n=1 and

(o C
2 33 55
= =2, 22 82
c 5 o (82)

The compressional motion is now controlled by the elastic
constant C33e Therefore P-waves in the x- and z-directions travel
at different velocities but the SV waves travel at the same velocity.
At intermecdiate direction.s we still have two solutions to 80 but neither
is purely compres sional or purely shear type motion. Information

about the elastic constant €3 must be obtained from an intermediate
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angle in the xz-plane.

For Rayleigh type waves we consider

(a, w) = [ U (2), W ()] 15

Substitution into the equations of motion gives

—prU(z) = -cllsz(z) - ik(c13+c55)W'(z) + c55U"(z)
(83)
—prW(z) = c35W"(z) - ik(c55+c13)U'(z) - kZCSSW(z)

This.is identical to the equations derived for Rayleigh wave
propagation along the x-direction in transversely isotropic media with
Crr replacing Cyqr From the form of the ahove equations it is clear
that a similar correspondence holds for the z- and y-directions so
that for these directions the theory developed in previous sections applies
directly. We are therefore in a position to treat surface waves propé.—
gating alqng, or perpendicular to, directions of principle stress or

¥regional grain. "
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XIl. TWO-DIMENSIONAL MODEL SEISMOLOGY WITH
DIRECTIONAL VELOCITIES

Introduction

" The use of two-dimensional seismic models has played an
importént role in the study of wave propagation problems since its
introduction in 1954, Oliver et al. {1954) demonstrated by use of
Love's concept of "generalized plane stréss" (Love, 1944) that the
two-dimensional isotropic equaﬁions of motion are exactly equivalent
to the three-dirﬁensional equations when the body velocities are re-
placed by the correépondin.g plate velocities, Therefore since the
boundary conditions are also of the same [orm any three-dimensional
problem involving body or surface wave propagation énd particle
~motion in a single plane in infinite, semi-infinite, or layered iso;
tropic solid media can be modeled exactly in two-dimensions., Healy
and Press {1960} extended the theory to include continuous velocity
depth and density functions and described the fabri¢ation of appropriate
models.

This section generalizes the theory to anisotropic media, .

Plate Theory

Consider a free plate in the xz plane, with the y axis perpen-
dicular to it, The stresses pyy vanish throughout the plate and the

tangential stresses p P vanish on the faces, The equations of

yz’ . YX
motion are now
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ap dp

XX ZX s
Bx ox = Pu
(84)
apzx + apzz ool
Bx 5z~ PV
For waves long compared to the plate thickness we set pyy =0 in
equation 77 and obtain
- 1 dw ou
Cov T <5 (ca33z TC2mm (85)

With this substitution in P, P,, Of equation77we obtain for

the plate equations of motion, for an orthorhombic plate,

c..C -c2 2 2 c__¢C + 2
1122712, 9%u 8%u 55°227%12%23713%2 | 84w .
(— )= tegg—7 * c ) 555 = Pu
22 ox 9z 22
(86)
Cc,.,C -c2 2 2 C..C..tc..c..-c..C 2
3322723, 8°%w 8%w 55°227°13227°23% 2, 8%u .
( c ) 2+C55 2+( c )axaz=PW
22 bz 8% 22

This is of the same form as equation 79 with the following

replacements,
C.y - c2
‘2" %2
11 5o

C

2
_.©33%227 “23
33 °22

C

. €55¢221 €13C22" €232
(ci,tco) —
137 €55 .

C55 7 Csp
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Using techniques similar to those employed in the preceding

sections we may show that the plate velocities, Cp’ in the x-direction

are
Cc,..C C2 C
2 227 "12
2. ‘U zc 12 pss (87)
P 22
and in the z-direction are
2 ©33%227 €23 55 -
C = P 3 p . (88)
p 22

Note that the plate shear velocities are the same as the infinite media
shear velocities,

Consider now a thin orthorhombic plate which occupies the xz
plane from z =0 to z = +oo.

At the free edge we will have "edge" waves, which correspond

to the surface waves over a half-space, by requiring

=p =0 at z =0

p ZZ

XZ

These conditions may be written,

ou |, Ow, _
sl gz Tox) =0 (89)
C C C2
23%12 | Bu 23 | dw _
‘BT, Vo (3T, e <O (90)

Choosc plane wave solutions of the form
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. vV.-2z
- Ue1(wt-kx) e L

(91)
. V.z
w = Wel(wt-kx)e i
Substitution into the equations of motion gives
—prU = -cC kZU +c vZU - (c,t co)ikv. W
11 221 13" 755 i
(92)

2. 2 2 :
-pw W = CroV W - c55k W - (c55+ c13)1kviU

Consistency requires

2 2 20, 2 2 2, 2.2 2
(pw™ - Cllk +c55vi)(pw - c55k +c33vi) +k vi(c13+ c55) =0 (93)

This is a quadratic in s and is identical in form to the ex-

pression derived earlier {Equation 13) ‘for vi2 in a transversely iso-

tropic layer with Cgp replacing C44°

Applying the edge conditions we get the period equation

HIPZ - I‘lﬂz =0 194)
where

II) = vt ky, I, = vyt ky,

§ ! 1 1

Ty = cjgk =yyviey5 T = ek - voy,cq,
and

o e ©13227 “23%12

13 R CZZ

2
v ©33%227 23
33 Cyy

C




-58-

This is the period equation of Rayleigh waves propagated along
the edge of an orthorhombic plate, |

This is identical with the equation for Rayleigh waves along
the surface of a transversely isotropic solid {Anderson, 196i) with
the exceptioﬁ that the plate elastic constants replace the regular
constants. Similar correspondence holds in more complicated prob-
lems,

‘Thus, anisotropic problems can be modelled two-dimension-
ally. By replacing all directional body velocities by the corresponding
directional plate velocities the general anisotropic theory can be
applicd to two—dimensi§na1 models,

With the ‘help of M. Nafi Toksoz a model experiment was per-
formed on an aluminum plate which was grooved in order to make it
anisotropic. The measured diréctional plate and Rayleigh velocities .
are tabulated in Table 5. The Rayleigh velocities computed on the
basis of equation 94 are also tabulated., They agree, within experi-
mental error, with those measured., Alsc the horizontal and vertical

shear velocities are the same, as predicted by theory.
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Table 5

MEASURED AND COMPUTED DIRECTIONAL VELOCITIES
ON GROOVED ALUMINUM PLATE

Measured Computed
(in./psec.) (in./psec.)
0° 0,208
ap( )
0° 0.173
o.p(9 )
0° 0.106
ﬁp( )
B(90°) 0.107
P
CR(OO) 0.1017 0.0993

cR(90°) 0,100 0.0982
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XII. EVIDENCE FROM LONG PERIOD SURFACE WAVES

Introduction

Long period surface waves have proved invaluable for providing
information about average crustal and mantle structures over the entire
path,tzlaversed. In particular they can be used to determine structure
in areas ‘ina;ccessible to standard body wave analyses such as ocean
basins, The recent advent of high speed computiné techniques and the
introduction of long-period seismographs have made this method even
more valuable for determining structures over paths of oceanic and
continental dimensions, While these advances have made it possible,
among other things, to verify the existence of Gutenberg's low velocity
channel,an-inconsistency has been uncovered which is outside the
limits of error of the present high precision of the method.

Figure 13 gives observed Love and Rayleigh dispersion for both
group and phase velocity over oceanic paths., The theoretical curves
were computed on the IBM 7090 with a program described by Press
et al, (1961). The structure 8099 was found by Dorman et al, {1960)
to give a good fit to the observed Rayleigh wave data and at the same
time was consistent with body wave data, When we compute the Love
wave dispersion, however, we note a large disagreement between
theory and data, The flat portion of the group velocity curve fails to
attain the G-wave velocity of 4.4 km/sec.

For such long wa\)clcuths curvalure of the earth and gravity

cannot be ignored. Bolt and Dorman (1961), and Pekeris et al. (1961)
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have computed the free modes of a spherical gravitating earth for
sevefal‘ earth models. To estimate the correction necessary to calcu-
lations based bn flat lying layers we have cpmputed the dispersion

for the plane layer equivalent models for the spherical modéls of the
.above authors and derived a velocity correction as a function of
peri‘od. This correction is then assumed to be approximately the same
for other similar models of the earth.

The results are shown as dashed lines in figure 13, The effect
is in the right direction to give better agreement at long periods for
Rayleigh group velocities., The Rayleigh phase velocity curve, how-
ever, fits the data less well now than previously for the plane layer
approximation. This means that the actual structure must have lower
velocities than assumed, at least to explain the Rayleigh data. The
éffe_ct on Love wave group velocities is slight. The velocities appear
to be too low to explain the Love wave data. Thus, curvature and
gravity alone do not seem capable of resolving the discrepancy.

Figure 14 shows data from continental paths and the theoretical
curves computed on the basis of body wave velocities determined by
Lehmann (Dorman et al., 1960). The Rayleigh curvc is above the data
while the Love curve is quite a bit below the corresponding data.
Velocities determined by Gutenberg give similar results. The structures
of both Gutenberg and Lehmann include a low-velocity zone in the upper
mantle.

Landisman and Sato (Dorman et al., 1960) propose a structure

called 38-XII which they claim gives a good fit to continental Love data.
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Théii’ actual numerical results were never published so we have com-
puted Love dispersion for this model., Figure 15 shows the results
and the corresponding Rayleigh dispersion computed by Dorman et al.
This model fits Love data fairly well and the Rayleigh data not at all.

With the earth modelé proposed to date it seems we cannot
éimultaneously satisfy body, Ravleigh and Love wave data.

One thir,lg is unsatisfactory about all of the preceding theoreti-
cal results. The density distribution that has been used, namely
Bullen A, is based on Jeffrey's velocity structure and is therefore
inconsistent with the actual velocities used. It might be assumed
that the density distribution will affect L.ove and Rayleigh dispersion
differently and therefore, with proper densities, the discrepancy
may be removed.

Figure 16 shows five density distributions that have been pro-
posed by various authors, All of these are based, to some extent,
on seismic velocities, Bullen A has been used in most previous
investigations., Bullen B an& Bullard are similar and probably repre-
sent an upper bound on possible densities in the upper mantle, Al-
though these density distributions have been shown by Birch (1961a)
to be internally inconsistent we have computed dispersion based on
them to -g'et-an idea of the effect of an extreme density variation.

The curve labelled Gutenberg-Birch was computed by Birch (1961) on
the basis of Gutenberg's velocities, Miki's (1956) results are very
close to the Gutenberg-Birch valués. Instead of using a universal

depth-density distribution we use the velocity-density relation com-
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puted by Birch to convert compressional velocities to densities. The
Birch models therefore have densities consistent with the velocities
used to determine them. It turns out that the Birch densities give dis-
persion that for all practical purposes is the same as Bullen A.

The effect of density on dispersion of Rayleigh waves is shown
in figure 17. Clearly the Bullen B and Bullard densities are unsatis-
factoryav This conclusion has already been reached by MacDonald and
Ness (1961) on the basis of free oscillation data and Birch (1961) on
other grounds. The Gutenberg-Birch values give dispersion indis-
tinguishable on this scale from that of Bullen A. In figure 18 are shown
the results for both Love and Rayleigh for density distributions of
- Bullen A and Bullard. The velocity structure is Gutenberg's through—
but. While we have destro'yed the good Rayleigh fit we have hardly
affected Love dispersion. Therefore, the density assumptions do not
seem to be re.sponsible for the Love Rayleigh disagreement.

Another alternative is anisotropy. Since SH velocities con-.
trol Love wave dispersion and SV velocities control Rayleigh wave
dispersion we would not expect a single shear velocity structure to
explain both types of waves if the earth is anisotropic.

Starting with model 8099 we perturbed the horizontal SH
velocity to obtain the best fit to both Love phase and group velocity
data.. The final structure so determined is shown in figure 19 as
CIT 2. 8099 then gives the horizontal SV wvelocity and CIT 2 gives
the horizontal SH wvelocity.

The fundamental and first higher Love modes are shown in

figure 20. The group velocity is relatively flat from 30 to 250 secs.
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as we know it should be from the pulse nature of the G-wave, The
fundamental has a maximum of 4. 38.km. /sec. at a period of about

50 seconds~--this is the G-wave velocity determined from world
circling waves, It has a minifnum of 4.35 km. /sec. at a pelriod of
about 190 secs, All the energy in a G-wave in the period band 15-250
seconds arrives in the velocity range 4,35 - 4,38 km. /sec, thereby
giving the G-wave its pulse-like character. Although still not perfect
‘tlhlis is ;che best tit to date. The shear vél'ocity anisotropy is about
5% in the low velocity zone. A somewhat higher anisotropy is indi-
cated for a better fit to the data.

The first higher Love mode is plotted as a dashed line, The
group velocity shows a plateau at 4.4 km., /sec. in the period range
15-30 seconds, The Sa phase has just these properties, Therefore
the same SH structure explains both the G and Sa waves as similz'a,r
phenomena associated with different modes,

In figure 21 we show the effect of an anisotropic low velocity
zone on the dispersion of Rayleigh waves. ¢ = 0.8 corresponds to a
compressional wave anisotropy of about 9% throughout the low-velocity
zone, If we now apply the spherical earth correction we obtain an
excellent fit to both phase and group velocity, Therefore an 8-10%
anisotropic low-velocity zone removes the discrepency between Love
and Ra}yleigh waves, explains the Sa phase and improves the previously
good fit to the Rayleigh data.

An additional bit of evidence should be quoted here,

Vvedenskaya and Balakina (1959) found anomalous values for amplitudes
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of SH waves compared to SV and P waves for rays penetrating to the
depths of 250-500, 900-1000, 1200-1300, 1800 and 2200 kilometers,

They attribute this to a polarization of the transverse waves during
double refraction in anisotropic layers of the earth mantle cbrre-
sponding to the above depths, This presumed anisotropy is particularly

pronounced at the depth of the low velocity zone in the upper mantle.

Possible Explanations of Anisotropy

It is well known that non-hydrostatic stresses. will-cause initially
isotropic solids'tobecome anisotropic, The fact that we have earth-
quakes down to 700 km. seems to imply that non-uniform stresses are
being built up and released at least to this depth, The magnitude of
this effect can be computed with the help of equations developed by
Biot (194>0). He showed that a transversal plane wave propagating in
the horizontal direction in a material under an initial horizontal stress

‘0'11 will propagate at a velocity

)1/2 /pl/Z

1
By = by T3loy- o5,
The vertically travelling wave will have the velocity
_ 1 1/2, ,1/2
p]_ = (MO = ’2'(0-11' 0-22) )/P

where Fo is the rigidity of the unstressed material, Therefore

- 1
gtz oy 0y))

e
u
=2

-

1
Mo~ zlog - op5)
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If we take By = 7x 1011 cly/crn2 as the rigidity in the low velocity zone

10

then we require a stress difference of about 7 x 10 dy/grnz to give

us a 5% velocity anisotropy. This far exceeds the strength of rocks

9 dy/tmz.

at this depth which is usually taken as not more than 10

A non-uniform stress field in itself, therefore, cannot be
responsible for an anisotropy as high as 10% unless the strength of
rocks at the depth of the low velocity zone is greater than presently
thought.,

Non-hydrostatic stresses, however, can have a more subtle
indirect effect, They can cause reorientation and alignment of crystals
by recrystallation, plastic flow, énd mechanical rotation., These pro-
cesses would be particularly effective at the high temperatures thought
to exist in the low velocity zone., A crystalline material that has been
exposed to non-hydrostatic stresses for a sufﬁcient-period of time
will have the constituent minerals aligned, The minerals must them-
selves be anisotropic if the alignment is to lead to overall anisotropy. |
Therefore existence of anisotropy at depth requires both non-hydro-
static stresses and the presence of strongly anisotropic minerals.

Thus anisotropy gives evidence both for the nature of the stresses and
the composition in a given zone of the earth,

Table 6 gives the average minimum anisotrépy of several com-~
mon roﬁks under 10 kb, confining pressure as given by Birch (1961).
The anisotropies measured represent lower bounds since the samples
were oriented at random, The appreciable anisotropy found for dunites
is in striking contrast to igneous rocks in general, A similar conclu-

sion can be drawn from work of S, Katz (personal communication), It
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is interesting to note thatvthe ratio of the highest compressional velocity
to that of the lowest found on single Specirﬁens of dunite is almost ex-
actly that found by Verma (1960) on single crystals of olivine, the pri-
mary constituent of dunite, This suggests that there is almost 100%
Orientation of the crystals in dunite. That there is a preferred orienta-
tion of crystals in most dunites can be demonstrated by the usual optical
methodsl. | In fact the theory and applications of this paper form a crude
seismic analogy to the methods used in optical petrology.

If the upper mantle does indeed prove to be about 8-10% aniso-
tropic upon more detailed examination, then this is a strong argument
"~ with oﬁr pr_eéent knowledge of rock anisotropies for a dunitic composi-
tion, More rocks must be tested in the laboratory before other compo-
sitions can be ruled out. In any event, the presence or absence of
anisotropy is a powerful new tool for defining the properties of rocks
at depth,

In addition to non-un'iform stresses, convection currents and

directional heat flow could also cause orientated crystal growth and

reorientation,
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Table 6
s Number of
" Rock (10 kb. ) Anisotropy (d)min) Samples
Pyroxenites 0,94 4
Dunites 0,86 7
Serpentinites 0.89 3
Quartzite 0.94 1
Gneisses 0,93 3

* Birch (1961)
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LIST OF CAPTIONS

Effect of anisotropy on M11 in a transversely isotropic plate.

Range of existence of M,, through M,, for 1/4<o<1/2 in
isotropic plates and location of corresuonding modes for aniso-

tropic plates.

Dispersion in a free anisotropic plate with the properties of ice.

Dispersion in a laminated plate.
Geometry of the layered situation under investigation.

Existence diagram for Rayleigh waves in multilayered anisotropic
media for different Poisson type assumptions., In region I

Ci3 ®C33 - 2044. In region II C13 ®Cqpp - 2c44. The area below
the pertinent curve is forbidden to Rayleigh waves.

Velocity surface of SH waves in a transversely isotropic medium.

The effect of a uniform anisotropy on Love wave dispersion in

a simple layered structure.

Dispersion of Liove waves in a system composed of two anisolropic

surface layers overlying an isotropic half-space, and comparison

with the laminated case.

Horizontal displacements versus depth for cases A (anisotropic)
and B (laminated).

Dispersion of Rayleigh waves in a system composed of a single
layer of Postma Solid I overlying an isotropic half-space for

modes Mll and M?.l’

Isotropic and anisotropic dispersion data compared with field
results of Jolly (1956). The structure parameters in the table

closely approximate refraction results.

Experimental and theoretical group and phase velocity determina-
tions for long period Love and Rayleigh waves, Large circles are
Love data; small circles are Rayleigh data. Data for this and

following figures are from starred entries in References,



Figure

14,

15.

16.

17.

18,

19.

20.

2L

Group velocity data and theory for Love and Rayleigh waves over
continental paths. The theoretical curve is for the structure

determined by Lehmann (Dorman et al., 1960) from body waves.

Continental L.ove and Ravyleigh data compared with theoretical
curves determined on the basis of model 38-XII of Landisman and
Sato (Dorman et al., 1960).

Density distributions due to various authors. See Birch (1961),
Miki (1956) and Gutenberg (1960).

Effect of density on group velocity of long period Rayleigh waves,
The spherical earth theoretical computations are due to Bolt and
Dorman (1961).

Effect of density on dispersion of Love and Rayleigh waves.

Shear velocity structure giving best fit for both Rayleigh and Love

dispersion. 8099 gives SV wvelocities; CIT 2 gives horizontal
SH velocities,

Love wave dispersion for first two modes for structure of CIT 2,

Effect of an anisotropic low velocity zone on dispersion of long
period Rayleigh waves. The effect of a spherical carth is to
move the phase velocity curve for ¢ = 0, 8 onto the data and
improve slightly the fit of the ¢ = 0.8 group velocity curve to
the data (see Fig, 13).
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