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ABSTRACT

By considering an electron microscope to be an information
channel, it is shown that the correspondence between the object and
the image can be linked to the electron optical characteristics of the
instrument and to the statistical properties of the noise. A discus-
sion of the image formation of a cluster of atoms is introduced in
order to demonstrate the main contrast mechanisms that operate at the
atomic level. A direct extension of this analysis to more complex
specimens gives rise to a wave optical theory of image formation, which
is used to present the concept of the amplitude transfer function. This
formalism greatly simplifies in the case of weakly scattering objects,
where the total object wave is linearly related to both the projected
potential distribution of the specimen and the amplitude attenuation of
the incident beam. For this category of specimens, there exists a
linear relationship between the image intensity in bright-field and the
total object wave. Phase and amp]ifude contrast transfer functions
describe the perturbing influence of the objective lens aberrations on
the phase and the amplitude of the object wave, If spatial and chrom-
atic incoherence effects are included in this formalism, it is shown
that the linearity between image intensity and object is preserved.

The validity of the approximations of the wave optical theory
is first checked by studying the effect of defocusing on the transfer
conditions of the phase and amplitude contrast mechanisms. A medium
resolution experiment is conducted on a bright-field image of bovine

Tiver catalase. The results demonstrate a qualitative agreement
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between experiment and theory.

A reconstruction scheme is next implemented on a through-focus
series of a specimen of gold on carbon. This scheme is analyzed criti-
cally prior to a description of the experimental results. It 15
demonstrated that under certain conditions this technique is capable of
restoring the total object wave and simultaneously achieving a selective
contrast enhancement at heavy atom locations. This potential Z dis-
crimination is tested experimentally, and the difficulties encountered
during the proéessing are discussed. A qualitative estimate of all
contrast mechanisms that contribute to a high-resolution bright-field
micrograph can be inferrcd from this analysis. The problems which one
faces in a quantitative interpretation of micrographs at the atomic
level are also discussed, and possible ways to circumvent these prob-
lems are mentioned.

Next, image processing schemes for improving the signal-to-
noise ratio of an image are applied to micrographs of crystalline
specimens. The enhancement of lattice fringe images is demonstrated
for both silicon and gold specimens. Periodic images can be processed
in either real space or Fourier space and an analysis of these proces-
sing modes is presented.

By enhancing a weak-beam 1mage of a dissociated-dislocation
dipole in germanium, a quantitative comparison to a simulated image is
rendered possible. The resolving power of the weak-beam technique is
analyzed for this particular example. It is found that by selecting a

diffraction geometry so that the systematic reflections are dynamically
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interacting, four dislocation peaks are individually resolved. Prob-
lems associated with the contrast interpretation are discussed in
conjunction with a calculation of the image contrast. Finally, sug-
gestions for further study of the atomic structure of crystalline

defects by the weak-beam method are given.
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PREFACE

High-resolution electron microscopy is becoming a widely used
tool for investigating structures at the atomic level. Of primary
consideration to the microscopist is the interpretation of image in-
tensities and their relationship to the structure which is being
examined. The cumulative adverse effects of the lens aberrations on
image resolution, and of the system noise on image contrast, render a
visual interpretation of details of atomic dimension impractical.

Noise is introduced by the limited number of electrons that are col-
Tected during the image recovery, so that its magnitude is a function
of the resolution range at which one operates. Therefore the possi-
bility of interpreting image details in terms of the structure of the
object depends strongly on the information content of the specimen.

If the conditions of observation are defined with sufficient accuracy,
and if a manipulation of the recorded intensities by digital computing
methods is undertaken, it is possible to infer the structural properties
of the object from its electron microscope image.

This thesis describes the problems to which one is exposed
when a one to one correspondence between image and object is desired,
given the resolution capability of available instruments. We consider
first the problem of obtaining information about the atomic arrangement
of a weakly scattering specimen using micrographs taken in bright-field.
Then we investigate the potential use of an electron microscope for
studying the local arrangement of atomic planes in an imperfect crystal.

The methods that will be employed combine high-resolution electron
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microscopy in conjunction with subsequent image processing algorithms,
and theoretical image contrast analysis.

In order to illustrate how the microscope distorts the phase
relationship of the electrons as they propagate from the specimen plane
to the image plane, we describe in Chapter One the correspondence be-
tween object and image electron wave for a specimen that is a finite
assemblage of atoms. For a general specimen, we show that this rela-
tionship is characterized by the amplitude transfer function of the
instrument.

The next chapter presents a description of the processing al-
gorithms which are implemented in the remainder of this work. The
information loss suffered by the data during their conversion from a
continuous to a discrete distribution is analyzed; criteria for min-
imizing distortions associated to the conversion step are established.

In Chapter Three, we 1imit our considerations to cases where
a relatively simple relationship between image intensity and the pro-
jected potential of the object can be defined. A detailed analysis
of the underlying assumptions of the wave optical theory of image
formation is presented, and the domain of applicability of this theory
is checked by»an experimental study performed at medium resolution.
An image reconstruction scheme is next implemented, which restores the
phase and amplitude components of the object wave by combining bright-
field micrographs taken at different defocus. It is shown that this
resolution extending scheme also allows a selective enhancement of the

contrast from heavy atoms, if certain experimental conditions are



Tulfilled. The complicated procedures for the calculation of corre-
lation functions between the micrographs and for the accurate deter-
mination of the pupil function are examined. The problems which one
encounters in extending the present instrumental resolution to the
atomic range are discussed and suggestions are given in view of the
existing technology.

Electron statistics are often the Timiting influence when a
quantitative interpretation of image contrast is desired. In order to
circumvent. this problem, one performs a linear averaging of the data,
which attenuates the contribution of statistically random noise to the
signal. Chapter Four describes two examples of noise reduction
algorithms. In the first, the noise that is superimposed onto lattice
fringe images is eliminated by extracting the periodic information
content of the image. In the second example, the background noise in
a weak-beam micrograph of an imperfect crystal is partially removed by
multiple averaging of micrographs that have been collected sequen-
tially. The result of this averaging is then compared to a theoreti-
cal image simulation. This comparison serves as an illustration of
the difficulties which one faces when attempting to obtain a quantita-
tive agreement between experiment and theory. From these investiga-
tions, it appears that the weak-beam method could prove to be a
powerful means for investigating the strain fields of isolated de-
facts when the data necessary for image contrast analysis can be

measured.
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CHAPTER ONE
OBJECT-IMAGE RELATIONSHIPS

1.1 Introduction

An electron microscope can be viewed as an optical channel that
transmits information about the structural and scattering properties
of an object. The incident coherent electron beam is first coded by
the specimen, then undergoes various distortions from lens aberrations
in the transmission, and is finally recorded by image sensors. The
information flow undergoes a sequence of transformations involving in-
formation degradation, which prevents a quantitative interpretation of

the magnified 1mage]’2.

In general, these changes in the data stream
are caused by the interaction of the electron beam with the specimen,
processing of the electron beam by the microscope, and the receiver
that is used for image recovery. |

In electron microscopy, concepts from the field of Information
Theory can be used for image evaluation, prediction, restoration, and
enhancement. These concepts also provide useful tools for determining
the structural relationships that exist in the object. Viewing the
microscope as a transmission channel, we can specify for each input the
average mutual information of the channel outputs3. For instance, anal-
ytical estimates of the channel capacity of a cqntinuous coherent
channel have been derived for a weak phase object with additive white
Gaussian noise. These estimates yield criteria for assessing the

potential image quality. However, these criteria neglect incoherent

links in the imaging chain (e.g., photographic recording) that spread
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the information and introducg random noise2’4.

In this chapter we shall use the wave optical theory of image
formation to describe how an electron microscope transmits information
about an object which consists of a finite number of randomly arranged
atomss. We shall then introduce the concept of the amplitude transfer
function (ATF), in the isoplanatic approximation, for a continuous
object distr‘ibution.6 Finally, we shall analyze the optical noise that
is introduced into the image by the‘recording sensors and by the quantum

nature of the electron wave4.

1.2 Imaging of Atoms with the Electron Microscope

1.2.1 Theoretical Foundations

An electron microscope can be operated in either an imaging mode
or a diffraction mode. The optics of these two modes of operation are
illustrated in the ray diagrams shown in Fig. 1-1. A schematic diagram
showing the coordinate system of the object plane, the back focal plane,
and the image plane is given in Fig. 1-2 7.

The scattering of electrons by a weakly scattered object can be
described using the kinematical theory of electron diffraction. Accord-
ing to this theory, the scattered amplitude, ¥(g,n) at the aperture
plane is proportional to the Fourier transform of the scattering poten-
tial of the object. If we assume that a plane-wave beam of monochro-
matic electrons is incident on an object consisting df Na atoms
located at (xg,yg,zg), then the scattered wave is the sum of the waves

scattered by the individual atoms with attention to phase:
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Fig. 1-1. Ray diagram of the two basic modes of operation of an elec-

tron microscope. Selected area diffraction is obtained by
decreasing the focal length of the intermediate lens.
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in N exd + nyd
¥(gn) = = 10 If.(8)]explin (6) - 2nik(—4—21  (1.1)
0j=1 J 0

where AO is the amplitude of the incident electron beam, K = 1/)% is
the electron wave vector, and nj(e) is the anomalous phase shift of
the wave which is scattered by the jth atom. Since atoms act as phase
objects in the first Born approximation, the scattered electron wave
undergoes a phase shift of m/2 . According to the optical theorem,

an additional phase term, uj(e), must be introduced into the scattering
amplitudes in order to conserve the number of partic]esa. The magni-
tude of nj(e) increases with atomic number, 7 , and decreases with
increasing electron energy.

The propagation of the electrons from the aperture plane to the
image plane can be described by Huygens' principle, according to which
each point in the diffraction pattern emits wavelets. Those wavelets
that pass through the objective aperture recombine at the image plane,
after being phase shifted by the lens aberrations. In the general case.
the phase shift introduced by these aberrations depends not only on the
initial direction of the electron trajectory but also on the object
plane coordinatesg. If we assume that the imaging system is isoplanatic
(i.e., it produces an image disk of equal shape for whatever the object
point location), the resulting spatial invariance of the aberration
function greatly simplifies the analysis. Isoplanacy is violated if
such aberrations as distortion, third-order astigmatism, or coma are
significant. In practice the only resolution-limiting aberrations
originate from the objective lens, whose aberration function describes

the deviation of the wave front from the Gaussian reference sphere and
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Fig. 1-2. Perspective drawing of the coordinate systems
used in this work



is expressed as]O:*

AL
v(8,9) = - c.o” - % [az +—2 sin 2(6-0,)10° (1.2)

with the following list of definitions:

& = scattering angle
¢ = azimuthal angle at the back focal plane
CS = spherical aberration constant of the objective lens (in mm)
AL = defocus.vakue between the object and the conjugate object
plane (in A)
AZ, = focus difference of the axial astigmatism (in R)
¢0 = vypeference azimuthal angle of the axial astigmatism

By inspecting Fig. 1-2, we see that the coordinates (£,n) are linked to

the polar coordinates (6,¢) by the relationships

Y
il

L0 tan 6 cos ¢ = Loe cos ¢

3
H

L, tan 6 sin ¢ = L,8 sin ¢ ' (1.3)

We may thus write the kinematically scattered wave in the Fraunhofer ap-

proximation as

q)S(xi ,.)’1) = T_—]'x J f ‘F(«‘Zm) exp[-iY(G,¢)-2ﬂiK(£xi+ny.i)/Li]di dn
i
B.,.
obj (1.4)
where Bobj is the open area of the objective aperture.

In order to simplify the notation, we will assume that x; and
y; have been scaled to object-plane coordinates by dividing them

through by the magnification M , and inverting their sign in order to
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account for the image reversal by the lens system. If we replace

¥(g,n) in Eq. (1.4) by the analytical expression given in Eq. (1.1), we

obtain for the image wave amph‘tude”’]z’]3

A, Na ' '
belr) = LT, 15500 lemting(e) - 1vyte.0)

Bobj

+ 2miK(E (X)) +nly;y))/L 1 dEdn  (1.5)

where L, has been replaced hy MLQ, and yj(e,¢) denotes the aber-
ration phase shift of the wave scattered by the jth atom. Since the
displacement of the jth atom from the conjugate object plane is (AZ-+zg),
the phase term yj(6,¢) contains thé z coordinate of this atom and may

be expressed as
vj(650) = v(6,0) exp[-inzJ6’/2] (1.6)

Let us now introduce the reciprocal coordinate systlem defined by

_9 -
kx - "y cos ¢ = g/xLo
ky y %-sin ¢ = n/AL, (1.7)

where E = (kx’ky) is a Fourier transform variable. By changing the
variables (£,n) into (kx,ky) in Eq. (1.5), the elastically scattered

wave amplitude at the image plane is given by
{!
a

R
bs(ry) = —x BJ {jZ]

|;(0)| expLin; (8)+ inzd6%/ - 2mik - )]}
obj
. exp[-iy(g)-+2w1& 'Ei] dk (1.8)
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where r; = (x Y4 ), rJ = (x ,yo), and y(k) stands for +v(6,4).
An equivalent express1on for the scattered wave, ws(ri), is
found by using the Fourier transform operator, 7 , and by defining an

objective lens pupil function, P(E)
k

iy (k)
P(k) = b(g) e (1.9)

~

where b(k) 1is the objective aperture function with

1 for keB,, .
b(k) = ~~ ob]

0 elsewhere
The scattered wave can then be written as

1A A

by(ry) = == 71 {Fe(k)  P(K)} (1.10)
where Ff(g) is called the object Fresnel transform and is defined by]2
Na
Felk) = 21 |£5(0)|expLing(e) + inz)d e 2/ - 2mik -rJ] ' (1.11)
ST Jj=

We shall now investigate under what conditions an object may be
approximated by a planar arrangement of atoms, since this permits an
estimate of ws(ri) without a detailed knowledge of the atomic arrange-

ment of the object. Let us introduce F(k kz) as being the Fourier

y
transform, or "structure factor", of an aperiodic array of atoms. Then,

by analogy with its counterpart in periodic structures, we can define

this structure factor as]4
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. N_ in.(0) . . .
Flkyokyky) =.§? [£5(0)] e J exp[-2n1(kxxg-+kyyg+ k,z)1  (1.12)

Now we know that the wave vector of an elastically scattered wave lies
on the Ewald sphere. In Fig. 1-3 we illustrate the generation of this
dispersion surface by a wave vector which satisfies the conditions (cf.

Eq. 1.7):

k =

, %—(cose-l)z-9~=—l(ki+k) (1.13)

where the paraxial approximation has been employed. Then, by replacing
kZ in Eq. (1.12) by its value given by Eq. (1.13), we see that we re-
trieve Ff(E) from ?(kx,ky,kz). Therefore, for small angles 6 , the
three-dimensional object transform, when sampled by the Ewald-sphere
yields Ff(E) . Thus, the Fresnel transform can be thought of as the
projection of an array of atoms onto a curved surface.

For thin specimens we may neglect the curvature of the Ewéld
sphere; hence the Fresnel transform becomes the “"structure factor",
F(E) of a planar arrangement of atoms:

N in:(9) .

F(k) = jzj f5(e) e 7 exp(-2mik - 1)) (1.14)
where F(E) is derived from the three-dimensional array of atoms pro-
jected along the k, axis. The above approximation is valid as Tong
as the thickness dependence phase term, exp(iﬂzgeglk), remains negli-

15

gible ~. If we call ty the specimen thickness, this approximation re-

quires that
6%t /x << | (1.15)
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Xcose

~ EWALD
/i~ SPHERE

Fig. 1-3. Diagram of the Ewald sphere and its associated
coordinate system



; -12-
Let us introduce the diffraction-Timited instrument resolution, Ps >

~given by

Pg = A/eobj (1.16)
Then inequality (1.15) may be written as

t, << pg/A = t, (1.17)

where tM is a threshold value for the specimen thickness, beyond
which one cannot ignore the z dependence in the wave function. For
example, at a resolution of og = 3R, and for 100 keV electrons, a
planar representation of the object breaks down for thickness values
greater than: ty = 24OR .

We shall now derive an analytical expression for the wave scat-
tered by a single atom, in order to study the various contrast mechan-
isms that govern the formation of an atomic image. For a circularly
symmetric array of atoms, and when the azimuthal dependence of Y(k)
due to astigmatism can be ignored, the amplitude of the scattered wave

given by Eq. (1.8) simplifies to

0, .
o = 20 1 oteting o)+
Y_(p. =————J { f.(0)|exp[in.(0) +imz26%/A
s\ Mx 0 je1 0 d J ) (1.18)
- iy(8)1} JO(ZHepg/x)e do
where p. = frsl > p% = 121'234 »and J is the zero-order Bessel

function. 1In particular, the amplitude distribution of the wave scat-

tered by a single atom is given by
9 . -
i2nh, O _ -
vgy(og) = M J |£(6)]explin(e) - iv(6)] 9 (2m00;/2)6 do (1.19)
0
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From Eq. (1.19), we see that the image intensity, stllz, is just an

Airy disc modulated by the scattering factor term. Consequently, the
image of an assemb1age of atoms consists of overlapping Airy discs.

1.2.2 Imaging of a Single Atom

1.2.2.1 Contrast mechanisms

=4
&

Two mechanisms product contrast during the formation of a single
atom image. In the first, the contrast is due to the removal of elas-
tically scattered electrons from the optical system by an objective
aperture; this type of contrast is called diffraction or scattering
contrast. This form of contrast can also be obtained by allowing one
diffracted beam to pass down the optical axis of the microscope, and
this is referred to as the dark field mode of imaging. In the second
mechanism, several diffracted beams, including the transmitted beam,
are allowed to reach the image plane; the mutual interference of
these beams causes phase contrastls. We shall now evaluate the rela-
tive importance of both contrast mechanisms as a function of eobj by
linking the various contrast factors to their corresponding scattering
cross sections]G.

In the bright-field mode, the kinematically scattered wave
recombines with the primary wave, wo = AO/M; hence, the bright-field in-

tensity can be expressed as
B\P4 lpo ws] Py d

where wsl(pi) has been derived in Eq. (1.19). If we now expand
IB(pi) and collect the various factors of the expansion, we can write

IB(pi) as a sum of four terms
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IB(p'i) = IO+ ID(p'i) + IA(p'i‘) + IP(pi) (1.21)
where I = |y 12 is the transmitted beam intensity, I (p;) = |¥.q( )|2
o~ o Yo ipiey s1'P4

is the dark-field intensity, IA(pi) is given by

4 2 “obj
ﬂAO
(o) = - — J [£(6)| sinn (8) 9, (2160, /A)cos (6)0 do
AM
0 (1.22)

and IP(pi) by

4mh2 Zob

Ip(ey) = — J [f(8)] cos n(8) Jo(2m0p/2)sin y(0)o de
M2

(1.23)

Let us now examine those factors that govern phase and amplitude
contrast in the imaging process. If a very small objective aperture
half angle is selected, we expect that the phase contrast contribution
will vanish. Consequent]y, in the Timit where eobj tends toward

zero, we can make the approximations:

v(6) = v(0) = 0
(1.24)
[f(8)] sin n(e) = [£(0)] sin n(0) = Im[f(0)]
where the validity of these approximations relies on the fact that the
functions vy(6), |f(8)] and n(8) have zero slopes at the origin]7.
Equations (1.22) and (1.23) then yield

200
Iy(py) = - -E$9J-10 In[F(0)]31 (2105 0i/2) (1.25)

and



-15-

Ip(py) = 0 (1.26)

Therefore, the term I,(p.), which does not contribute to the
image for small objective apertures, must be responsible for phase con-
trast , while the amplitude term IA(pi) contributes to the scattering
contrast. We conclude that both phase and scattering contrasts are ac-
counted for, when we use complex atomié scattering factors]s.

Finally, it remains to be shown that the nonlinear dark-field
term can usually be neglected in comparison to IA(pi)‘ If this were
true, we could then establish a Tinear relationship between the re-
corded bright-field intensity and the scattering properties of an atom.
By summing the dark-field Ferm over the image plane we obtain the total
elastic scattering cross-section for scattering inside the objective

aperture: 6
© obj )

2m J ID(pi)pidpi = 2ml, J |f(0)]|“6 do = IOG
0 0

obj (1.27)

In a similar fashion, if we integrate the scattering term 'IA(pi),

approximated for small eobj in Eq. (1.25), we obtain

2m £ Ly(p;)o; doy = -1, 21 In(f(0)) (1.28)

18

By applying the optical theorem ° to Eq. (1.28) we can express this

result in terms of the total cross section for elastic scattering,

OE];
-1, 0gq = =1, 2\ In(f(0)) (1.29)
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where

Q

Oa1 = Zﬁf |f(e)|2 sin 6 de
0

Scattering contrast is therefore brought about by two terms, IA(pi) and

ID(pi)’ whose integral over the image plane

.)7 (1.30)

r [ [plog) + Tplog)Iog dog = ~Io(0gy- gy
0

yields the cross section for scattering outside the objective aperture.

1.2.2.2 Relative magnitude of phase and scattering contrast
In this section we shall consider the variations in phase and
amplitude contrast that occur as we gradually open up the objective
aperture, that is as we approach the high-resolution imaging range.
We shall show that at the atomic resolution level the contrast of an
16

atom reaches a maximum at specific electron microscope settings .

For small o , the phase contrast contribution to the bright-

obj
field image of an atom vanishes. At this medium resolution range,
where an atom is not resolved, let us compare the contributions to
scattering contrast from IA(pi) and ID(pi)' Now since eobj is
small, we can neglect the aberration term in the scattered wave func-
tion and make the approximation that f(8) = f(0). In these approxi-
mations Eq. (1.19) reduces to

ZJ](ZW 9 /X))

obj Pi

ws](pi) = IPS](O) (1.31)

We see from Eq. (1.31) that the image of an atom is an Airy pattern.
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Equation (1.22) can now be written as

0 . V_-(p:)
Ip(es) = - nxo(__gﬂ)z Og -w—s-l—mh) (1.32)

S

and the dark-field term can similarly be represented as

. "B . V_(ps)
- 1 (29bjy2 s1'P4
Ip(ey) = nly (=) <oy > (E—_(ET_) (1.33)
obj s
—i 2
where <Geobj> = weobjlf(o)l 1s an estimate for ag at small 8 ;.

obj
The ratio In/I, has therefore the same order of magnitude as

g /Gel‘ Since the ratio of these cross-sections is much less than

6, .
un?gi at medium resolution, the dark-field term, which is usually neg-
lected in contrast calculations, does not alter the image significantly.
At high resolutions phase contrast becomes the.dominant con-
trast mechanism in bright-field imaging. In order to estimate the
relative magnitude of the different contrast terms, we replace them by
Lheir upper buunds (e.g., sin y(6) = 1, cos y(6) = 1, and f(0) = f(0)).

Then in these approximations, we can convert Egs. (1.22), (1.23), and

(1.33) into
I Zg eﬁbJ In(£(0)) » I, (1.34a)
max 2m .2
IP x = eobJ Re(f(0)) - I0 (1.34b)
max “egb' 2 2
I = (07 IFO]° -1 (1.34¢)

where all contrast terms have been calculated at the origin Pj = 0

which corresponds to their peak value.
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The ratio of scattering contrast versus phase contrast is then

approximately equal to

| IA2%|/1p%% = Im(£(0))/Re(£(0)) = n(0) (1.35)

where n(0) 1is the anomalous phase-shift angle at the origin. Calcu-
lations of n(0) have led to a Tinear dependence of this quantity with
Z , the atomic numbers. For example, n(0) = 0.02 for a carbon atom,
whereas n(0) = 0.26 for a gold atom. The anomalous phase shift is
therefore significant for a specimen which is composed of heavy atoms.
This drastic dependence of the scattering contrast upon Z can, in
fact, be used to discriminate between atoms of different atomic numbers
(see Chapter Three).

We shall now compare the magnitude of the dark-field term to
the magnitude of the phase contrast term at high resolution. An esti-
mate of their ratio can be found from Eq. (1.34), which yields

2

™™, .
max ,  max obj
= y | T(0)|

A )

(1.36)
We notice that the contribution from ID(pi) increases with Z
(. [f(0)] = 21/3) 6, and with eobj' For a microscope operating at

100 keV with a resolution of p = 2R, the ratio ID%%/1T%%  takes

values of 0.065 for a carbon atom and 0.15 for a gold atom.
Currently, the resolving power of an electron microscope does

not exceed ZR; so that phase contrast is the main contrast mechanism

operating during the bright-field imaging of an atom. By combining

Egs. (1.21) and (1.23), we can approximate the overall atomic contrast,
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Ca(pi ) » to
[.-1 , ob

C,(p;) = BIo 9 égl J [ f(8)] cos n(s) J,(2m0p./2)sin y(8)e de

(1.37)

The problem of finding the optimum microscope conditions for imaging
a single atom reduces to one of maximizing Ca(pi)' This optimization
problem was first solved by Scherzer]O, who maximized the area under
the curve sin y(6) versus 6 , which is called the phase-contrast

transfer function (PCTF). The optimal choices for the objective aper-

ture and for the focus are found to be

4
eobj 1.41 A?Cs
A%t =TT AT, (1.38)

1.2.3 Imaging of Atom Clusters

The total scattered wave for an assembly of atoms is obtained
by adding, with regard to phase, the individual amplitudes arising at
that image point from each component atom]9 (cf. Eq. 1.8). Extensive
contrast calculations have been carried out, at various electron optic-
al settings, for simple atomic configurations such as linear chains and

11,15

small clusters Such a calculation does not give an analytical

expression for the image contrast in terms of the object structure and
the optical parameters. It only yields a single numerical solution
for a given set of experimental conditions. Therefore this procedure

is impractical for studying the more complex atomic arrangements
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usually found in real specimens. In the next section the influence of
lens imperfections on the transfer of information from the object to

the image plane is analyzed in a wave optical formalism.

1.3 Wave Theory of Image Formation

~1.3.1 Object Wave Function

1.3.1.1 Introduction

For potential fields and crystal thicknesses for which the in-
tensities of the diffracted electron beams are negligible compared
with the incident beam, Cowley and Moody5 have developed a wave opti-
cal approach, called the phase grating approximation, to describe the
scattering of electrons. In this model the phase and amplitude changes
of the wave function are determined for thin crystal slices perpendic-
ular to the electron beam, with Fresnel diffraction taking place
between these slices. If our specimen can be approximated by a single
slice, this wave-optical formalism describes the scattering properties
of the object by a transmission function. It can then be shown that
the resulting image contrast can be explained by the same contrast
mechanisms that were introduced in describing the image formation of an
atom. In the wave optical approximation, phase contrast is produced by
interference between the transmitted beam and waves that are elastic-
ally scattered within the objective aperture. Amplitude contrast arises

from elastic and inelastic scattering out of the objective aperture.

1.3.1.2 Transmission function
In the small angle approximation, the progress of an electron

wave through a thin slice may be represented by a convolution product
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of the incident wave function with a propagation function,followed by a

multiplication by the transmission function of the slice. Fast elec-
trons propagate in spherical waves, which may be approximated by
paraboidal waves, so that the phase change due to the propagation is
given by exp[—iwp%/kts], where o is the lateral dimension of an
object detail and tS is the slice thickness.

We shall now consider when we can neglect Fresnel diffraction,
as the electron wave traverses the slice. An equivalent way of approach-
ing the problem consists in evaluating the spread of the wave across the

slice. We may view the specimen as two-dimensional if this spread is

less than the minimum resolvable detail, Pg> that 1520
2
Pg
e()bj tS << ps == tS << T = tM (].39)

where p. s the diffraction-limited resolution. By comparing Eq.
(1.39) with Eq. (1.17) we see that we retrieve the same upper bound for
the specimen thickness as we obtained for neglecting the curvature of
the Ewald sphere.

If we neglect the effects of Fresnel diffraction, we can des-
cribe the.diffraction from a thin specimen using a single slice. We
shall now relate the scattering from this slice to the concept of com-
plex transmittance; so that we may draw analogies with known results
from the field of light optics. If we let U q} the electron acceler-
ating potential and V(xo,yo,zo) be the potential field describing the
distribution of charged particles in the specimen, then the wavelength

of the electron in the specimen is
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AMx Ly .z ) = h/{2me[U + V(X _,y_,z )J}”2
A ¢ R ¢ RN ¢ ] 00" Q

(1.40)
= ALl + Vixgsyy»25)/U]

where A(xo,yo,zo) is the electron wavelength at the point (xo,yo,zo)

in the object, and Ao = h/(ZmeU)]/2 is the vacuum electron wavelength.

After traversing a specimen of thickness t the phase of the elec-

0 2
tron wave will be changed relative to a wave in the absence of a field

by an amount

ty 1 1 2ﬂxome to
o(Xgs¥y) = 2m f (XT§;:§S:EE7-- X;)dzo = - 2 ‘f V(xgsYq924)dZ,
0 o
= Vmean" o
(1.41)
where ¢(ro) is the relative phase shift, and Vmean is the mean inner

potential. Consequently, we can conclude that the phase delay is pro-
portional to the projection in the beam direction of the potential dis-
tribution.

The preceding analysis allows us to describe the interaction of

the incident beam with a thin specimen by the object transmission func-

t10n5 (Ob.TF)
Ay(rgy) = explio(r)) - u(ry)] (1.42)

where “(fo) is an absorption function. This absorption term describes
the decrease in the intensity of the transmitted beam, as a function of
the number density of atoms in the specimen, projected onto the o
plane. The absorption of electrons by the object can be related to

scattering contrast. In our discussion of the formation of the image
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of a single atom, we showed that,in addition to the dark field term,
anomalous phase shift generated scattering contrast. Absorption can
then be described by the combined effects of the anomalous phase shift,
the removal of electrons by the objective aperture, and the beam atten-
uation due to inelastic scattering events.

If we assume that only small phase and amplitude changes in the
electron beam are induced by the specimen, then the transmission func-

tion given by Eq. (1.42) may be written a521’22

Ag(rg) = 1+ d0(r,) - ulry)  for |ulrg)] < [o(r)] << 1
(1.43)
where only the first-order terms of the exponential expansion have been
retained. For example, this approximation remains valid as long as
|¢(fo)| < 0.2; if we replace ¢(ro) by its expression in Eq. (1.41),

then this inequality becomes

B (1.44)

For 100 keV electrons, the upper bound is equal to Eﬁ = ZGOR for an

amorphous specimen composed of carbon atoms (V = 2 eV), while for

mean

gold atoms (V = 20 eV) this bound decreases down to Eﬁu = 262 .

mean
The specimens which we have just described are considered to be weak
phase and amplitude objects. In Chapter Three we will develop the
formalism associated with the contrast analysis of such objects.
Equation (1.43) will not be valid, due to neglecting higher-

order terms in both the phase and absorption functions, when the specimen
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Q
22,23 When the specimen thickness is a fraction

is thicker than “100A
of the mean-free path for elastic scattering, the phase shifts are
small and plural scattering events do not occur (cf. 3.2.3.2). Then
the higher order terms of Eq. (1.43), which describe the effects of
plural scattering, can be neglected.

1.3.1.3 Relationship between transmission function and scatter-

ing factor

We will now present an interpretation of the wave function in
terms of the scattering propertiés of the constituent atoms of the
specimen. For the sake of simplicity we shall assume that the specimen
is composed of similar atoms, and that it obeys the weak phase-object
approximation. By neglecting the absorption term, “(fo)’ the specimen

transmission function reduces to
Mop(rg) = 1+ do(r) (1.45)

The phase term can thenibe interpreted either as the phase shift suffered
by the electron in passing through the specimen, or as the amplitude of
the scattered wave.

Since we can view the specimen as a single slice, the total elec-
tron wave at its exit surface equals A0 Aph(fo) where AO is a
normalization constant equal to the amplitude of the incident beam. The
scattered electron wave W(E) at the back focal plane can be expressed
as

iA

¥(k) = x> e(k) (1.46)
0

where o(k) 1is the transform of the object phase distribution. This
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phase transform is calculated from ¢(r. ) by

-~

o(k) = J ¢(ro) exp(—Zni& -ro) dfo (1.47)

where the integration is performed over the finite area of the object,

Aobt‘

According to Egs. (1.1) and (1.14), the kinematically scattered
wave at the diffraction plane, produced by an assembly of like atoms,
can also be written as

iA N . iA
(k) = > f'(8) I exp(-2mik-rd) = .= F (k)  (1.48)
b .2 ~ o~ r'~
0 J=1 0
where f'(8) 1s the real atomic scattering amplitude, and Fr(E) is
the corresponding structure factor. Then, by comparing the two equi-
valent relations for ¥(k) 1in Egs. (1.46) and (1.48), we are led to

~

the identity:

| N . |
a(k) = AF (k) = Af'(6) [ exp(-2mik+ rd) (1.49)
- - 3=1 v~

Now, in order to relate the phase distribution ¢(fo) to the
atomic arrangement within the specimen, we shall introduce the object
density function T(ro), which is defined as the density of atoms pro-
jected along the incident beam direction. This density function is

expressed in atoms per unit area and specified by the relationship:
Na ) i . ’
jz] exp(-2mik 'fo) = J T(ro)exp(-2ﬂ15- fo)dfo = f{r(to)}(l.SO)
Aobt
- Thus, by combining Eqs. (1.49) and(1.50), we obtain
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o(k) = Af'(e) ?{T(ro)} (1.51)

or equivalently,

8(rg) = A T(r) * ¥ (6)) (1.52)

The phase distribution is therefore proportional to a convolution
product of the object density function with the transform of the atomic
scattering amplitude. If the atoms in the object are considered to be
point scatterers, then f'(6) 1is a constant and ¢(ro) is directly

proportional to the object density function.

1.3.2 Amplitude Transfer Function

1.3.2.1 Definition

In Sec. 1.2.1 we have described the propagation of the electrons
from the object to the image plane by means of a pupil function, which
modifies the object spectrum. This analysis relies upon the assumption
that the i]]uminatihg beam is coherent, and that the distortions of the
wave front by lens aberrations are consistent with the isoplanatic con-
dition.

In the general case, the wave function in the image plane is
related to the object wave function by a linear integral transform.

The corresponding Green function of this transform describes the imag-
ing properties of the system, and is therefore called the impulse
response of the system. If K denotes the wave vector of the incident
electron beam, then the Green function, G(E’fo’fi)’ depends on the
modulus of the wave vector if the illumination is not monochromatic,

and on (Kx’Ky) if the electron wave vectors have an angular
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distribution. Let ys now limit our discussion to an isoplanatic sys-

tem, for which the Green function is spatially invariantG.

G(Ksroary) = G(KaTy= ) (1.53)

We shall now consider a perfectly coherent imaging system, in order to
define the amplitude transmission function (ATF).

We showed in Sec. 1.2.1 that the imaging process could be
visualized as a sequence of two successive Fourier transformations. The
amplitude distribution of the ane at the diffraction plane is the
Fourier transform of the wave function, q’ob(fo)’ at the exit surface of

the specimen; hence

21 1
Yeor(K) = E;X';{wob(fo)} = [;X'So(

2R

) (1.54)

where Wtot(E) is the wave at the back focal plane, and So(k) is the

~

object spectrum. The image wave is then the inverse transform of

Ttot(E)’ which has been modified by the pupil function, so that we can

write
LA

W) = [t P expleniker) dk (1.55)
where w([i) is the total image wave function. If we insert Eq. (1.54)

into (1.55), we then obtain
W) = [ vaplrgddngl i [ PU) explemike(ryr) okt (1.56)
Aobt

It then follows from Eq. (1.56) that the system impulse response can be

described by
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21 ' _— )
G(ri- 1) = M‘f P(k) exp[2mik - (r;- r,)] dk (1.57)
It is now useful to introduce the concept of the ATF, T(k),
which is defined as the Fourier transform of G(ri,o). The convolution

theorem allows us to simplify Eq. (1.56) by expressing its transform as

53(k) = 54(k) T(K) (1.58)

where Si(k) is the transform of w(ri), or equivalenlly Lhe image

spectrum and

T(K) = ¥(6(r;,0)} = § P(k) = ko) e V(K] (1.59)

We see that the imaging system acts as a linear spatially-invariant fil-
ter on the input data characterized by T(&) .

Although the above analysis does not impose any conditions on
the nature of the specimen, its practicality is limited for general ob-
jects. The reason for this Timitation is that wave amplitudes are not
observable quantities. However, we shall show in Chapter Three that a
simple relationship exists between the object wave function and image
intensity of weakly scattering objects. We shall also show that the co-
herence properties of the electron wave have a significant impact on
the achievable resolution. Therefore, we shall give, in the next sec-
tion, a brief summary of the effects of partial coherence on the imaging
process.

1.3.2.2 Effect of partial coherence and chromatic aberration

A) Spatial incoherence

The angular spread of the electrons emitted from the gun can be
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described as waves impinging upon the specimen at an angle to the optic
axis. Since these electrons do not bear any phase relationships with
each other, the image intensity is an incoherent superposition of elas-
tically scattered waves with different wave vector components. In the
first stage of the analysis, we shall assume that the incident beam is
monochromatic, so that its incoherence can be described by an angular
distribution. If we call Q(EO) the angular distribution of the beam

on the specimen, where K, = (Kx,Ky), the image intensity can then be

expressed as??

lo(r)]? = f [p(Kysri) 12 QLK dK, (1.60)

where w(go,ri) is the image wave function corresponding to a given 50.

Let us now examine what factors determine the angular spread
of the electron beam in an electron microscope. Since electron micro-
scopes use a double condenser lens system to focus the electron beam
onto the specimen, the second-condenser aperture can be considered to
be the exit pupil of the illumination system. We shall now show that
this aperture is the effective source of illumination of the optical
system.

We know, from the theory of partially coherent light, that an
incoherent quasi-monochromatic,uniform, circular source gives rise in
the exit pupil to a coherently illuminated area, whose radius is given
byg

deon = 0.0SA/eep (1.61)

where ee is the half angle subtended by the pupil at the source. If

p
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we apply the theorem to an electron microscope, with a second condenser
aperture of 50 pum in radius that subtends a half angle of about
7.5 x 10'4rad, we obtain -a_ . =4 um << 50 um . Since the coherently
illuminated area is much smaller than the size of the aperture, the
aperture acts as a distribﬁtion of independent sources. We can then
consider the second condenser aperture to be incoherently illuminated.

Before proceeding with the analysis, we shall introduce a system

of polar coordinates in the condenser aperture plane, similar to that
used at the objective aperture plane. The polar coordinates in the

condenser aperture plane are:
2 2
C >‘\/Kx+Ky

-1
tan (Ky/Kx) (1.62)

D
1

o

where ec is the angle that the incident beam makes with the specimen
normal and ¢c is the azimuth angle.

Since the electron gun is a point source that emits electrons
isotropically (i.e., without dependence on ¢C), the impulse response
of a microscope is not a fuhction of Eo for monochromatic radiation
If we call wob(go,ro) the electron wave function at the object-exit
surface for a given wave vector orientation, the corresponding image

wave can be written as

v(Kys 1) = J Vop (Ko2Tg) Glry-ry) dr

~-i-~0 ) (‘I -63)
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We will now restrict our analysis to thin specimens that obey
the single slice model of the phase-grating theory. Now, provided that

ecto < pg the oblique illumination just produces a phase shift in the

object wave, given by
wob(Eo’fo) - Ao At(fo) exp(2ri Eo“fo) v (1.64)
By introducing the object spectrum, in this case defined by

So(k) = FIA A (r )}

and substituting Eq. (1.64) into Eq. (1.63), the image wave can be writ-

ten as

WEgory) = [ explamigorodary { ] 5,00 explemiker)TK")

Aobt

. exp[Zﬂik‘-(ri—ro)]dk dk'}

-{f exp[2mir (Kt k-k')] dr } (1.65)

where the object wave and the system impulse response have been substi-

tuted by their transforms. Finally, we can simplify Eq. (1.65) into

the form24

W) = [ sk - ) T explartiory) dk (1.66)

and Eq. (1.60) for the image intensity into the form
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]2 .

eI = [[] 5y KISatE = 1) 100 T enplent (k') ]

» Q(K,) dk dk' dK_ (1.67)

This integration over K, represents a convolution of the object power
spectrum ISO(Is)I2 with Q(EO) . If the second-condenser-aperture half
angle is small, the microscope is very nearly spatially coherent; so

that Q(Eo) = 6(50) , and the image intensity becomes a coherent super-

position of electron waves expressed as

(e 12 = 1 [ 5500 T0) expleniier;) a|® (1.68)

B) Chromatic incoherence

In this section we shall describe how the distribution in electron
beam energies affect image intensities for a spatially coherent illumin-
ation. The chromatic incoherence caused by the thermal energy spread
of the source and by time-dependent fluctuations in accelerating voltage

and objective lens current will also be examined.

i) Energy spread
Since electrons with different energies are assumed to be inco-
herent with respect to phase, the image intensity is then a superposi-
tion of monochromatic partial-wave intensities. The object wave
function is independent of the energy spread for elastic scattering
events, hence the image wave amplitude for a given electron energy can
be written as

06Uy = [ ugylng) BleU,rg-r,)dr, (1.69)
Aobt
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where QU 1is the energy spread about a mean value of U . If we ex-
press this convolution integral in terms of the system ATF, then an

equivalgnt expression for w(au,ri) can be written:

¢(5U’fi) = f SO(E) T(GU,E) exp(2wigori) dk (1.70)

‘where the ATF, T(6U,5), now includes a chromatic aberration term. By

calling CC the third-order chromatic-aberration constant of the ob-

jective lens, we can represent T(sU,k) by (cf. Egs. 1.2, 1.59)%:2%;

1

. 2
b(k) exp[- I- (2¢, o%-aze?+ ¢ 8481 ()

T(8U,k) = 0

=|

where A(8U) has been approximated by a constant wavelength for the
high-energy electrons,and the axial astigmatism has been neglected.
For a given electron-gun geometry, the energy distribution,
Ne(éu), of the incident beam can be determined experimentallyZS. The
image intensity, which is a weighted incoherent superposition of mono-

chromatic partia]—ane intensities, can then be evaluated from Eq.

(1.70):

~

(e - L No(ou)d(s){ [[ 8,005 (K IT(8UKIT" (s0,K")

. exp[2ni(5—5')-ri]d5 dE' (1.72)

In order to characterize the effects of chromatic aberration on the
image, we extract from Eq. (1.72) the factors which depend on &U .

We then consider the integral



-34-

j N (8U) T(8U k) T'(8U,K') d(sb)
0

which, by excluding terms independent of &U, yields the quantity

Likk') = | expl- T 8 (6%-0'2)] NGeu) d(s) (1.73)
where the limits of integration have been extended to (-«,») without
introducing any appreciable errors. Thus, we reach the conclusion that
the quantity L(k,k'), which governs the overlapping of the partial-
wave intensities at the image plane, is just equa] to the Fourier trans-

form of the energy-spread distribution24. By writing Eq. (1.72) as

e 12 = [ sy00s506) TEOT (k') Llkk')
. exp[Zﬂi(E—E')°ri]dE dE' (1.74)

and then looking at the spatial-frequency dependence of L(g,g') in
Eq. (1.73), we see that the energy-spread attenuates the high spatial
frequencies of the image spectrum. Since the phase shift which was
introduced by the chromatic aberration has the same angular dependence
as the defocusing term, the attenuation of high-resolution detail can

be partially cancelled by an appropriate underfocusing of the objec-

tive lens.
i1) Time-dependent fluctuations
Fluctuations in the accelerating voltage and the current power

supply of the objective Tens, produce an incoherent superposition of
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the image intensities over the photographic exposure time t. - There-
fore, by analogy with Eq. (1.72), we can write the recorded image

intensity as

t
r
e )12 = [ att [[ s (K)SS (K TLAUCE') a1 () ,k]
1 <] 0 %
0
+ TLAU(E'),a1,(t') k'] expl2mi (kk')-r Jdk dk'  (1.75)

where AU(t') is the fluctuation in accelerating voltage, and

Aigﬂt') is the fluctuation in objective lens current. The instantane-

ous transfer function, T[AU(t'),Aiz(t'),E], can then be linked to the
24

chromatic aberration constant by the following expression™':

b(k) .
TLAU( )o0d 4(t') k] = 5= exp {- 2 [C0*- 24767
. INRE
+ zccez(AUl(Jt )2 1i )1} (1.76)

where 12 is a time average value for the objective lens current. By

inspecting Eq. (1.76), we conclude that these fluctuations have the
same effect on the transfer function as a time fluctuating focus param-

eter, which would be specified by

81, (t")
+—7 (1.77)

AZ(t')= A7 + CC[AUL(Jt') -2 -

A time average of these fluctuations is normally evaluated. In high-
resolution microscopes, these time averages have been reduced to about
2 parts 1in 106 over an exposure time of two minutes. Hence, the chro-

matic incoherence caused by these fluctuations is usually negligible
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in comparison to the thermal energy spread.

C) Spatial and chromatic incoherence

When both the spatial and the chromatic incoherence of the
incident beam are taken into consideration, we can still view the
image as an incoherent superposition of appropriately weighted partial
waves. Since electrons with different 50 and &U are assumed to be
mutually uncorrelated, this distribution in both angular and energy
sprecad, Q(BO,SU), is a scparable function of 50 and d8U 3 so that
it can be expressed as: Q(EO,GU) = Q(EO)NE(SU). If we ignore time-
dependent chromatic-aberration factors, the image intensity can then

be computed from the expression (cf. Eqs. (1.66), (1.74)):

wep1? = [ TI0T K LGk explzm (k-k')or, ]

[ sylk- KISyl K Jalky) Ak} dk ek 1.78)

where we have assumed that the specimen can be viewed as a transmission

function.

1.4 Image Recording

A transmission electron micrograph can be thought of as a two-
dimensional field of information, in which each element is proportional
to the number of electrons that impinge upon it during a finite period
of time. The mechanical conversion of a flux of electrons into an op-
tical density distribution can be achieved in various ways, such as:
electron photogfaphy, electron-to-photon conversion via fluorescent

materials, and charge transport devices. We shall Timit the following



-37-

discussion to the photographic recording process4.

1.4.1 Electron Statistics

The quantum nature of the electron wave ‘represents the main con-
tribution to the noise during the image recording. The electrons
arriving at a finite area in the image plane obey Poisson statistics,
which also are used to describe quantum noise. Let us denote by Ne
the average number of electrons that have been recorded on an area A
of the image per recording time. Since the corresponding standard
deviation is VN;} the signal-to-noise ratio varies as the square root
of the electron intensity. Hence, the relative quantum or shot noise
has a 1/ /N;' dependence. We shall now evaluate the magnitude of this
noise as a function of experimentally known parameters4.

The electron beam current density je’ the operating magnifica-

tion M , and the incident electron flux Ne , are linked by the iden-

tity:

N = —> (1.79)

where e 1is the charge of the electron. Consequently, the amount of
noise decreases as either the exposure time or the beam current density
are increased. Since je is fixed by the electron gun geometry and

the source brightness, and t. cannot exceed a certain threshold beyond
which contamination and radiation damage modify the specimen structure,
the noise cannot be reduced below a certain level. For example, con-
sider the case where Je=0.0] Amp/mm2 (i.e., for a hairpin tungsten
filament), M = 500,000X, and A = 50 x50 un’; then, in order to limit

statistical electron noise to about 3%, we need Ne = 1100 electrons
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and an exposure time of t =1.8 éec.

When the microscope operates at high resolution, an upper bound
for the tolerable level of quantum noise is a function of the achievable

image contrast. Let us define the image contrast, Ci’ as

'l S SR U S (1.80)

Then, contrast variations, AI, are only detectable in quantum noise if
they exceed the random noise fluctuation by a given amount, that is,
AL > f N (1.81)

where fc is a factor which depends on the experimental conditions®.

By recalling that Ne is the average intensity, we can express the

image contrast as

c, A, ¢ N> € (1.82)

TN, T AT e“4c§

For example, in order to detect a contrast of 8%, we need a minimum of
1100 electrons, if we use the detection criterion fc =5,

Finally, we shall consider the critical parameters for visuali-
zation of an atom if the micrograph is recorded on an emulsion that
requires Pe electrons per umz to give an optical density of one
(e.qg., Pe is about unity for a moderately fine grain emulsion); then
the number of electrons available for the imaging of an atom can be

written as

-2 2y . 10~8
N, = ™y M Pe 10

e (1.83)
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where s is the atomic radius in Angstroms. By combining Egs. (1.82)

and (1.83), we reach the conclusion that
4
fc 10

M>—S&——
Zra Ci VNPe

(1.84)
For instance, the minimum instrumental magnification necessary to re-
solve an atom of ry = 1&, with a contrast of 8% above the background,
is 200,000X.

In the high-resolution range, we have therefore shown that the
properties of the emulsion, radiation damage and source brightness
must be evaluated in order to obtain atomic resolution. Consequently,

the operating conditions must be carefully chosen, in order to achieve

a given resolution at a reasonable contrast level.

1.4.2 Photographic Graininess

Photographic graininess can be trcated as the product of two
statistically random processes: one is the electron noise which has
just been described, the other is the photographic noise. It has been
shown that the emulsion is an almost perfect noiseless detector when
exposed to high-energy e]ectrons4. Thus, random fluctuations in op-
tical density (i.e., graininess) are nearly accounted for by electron
noise. An explanation of this phenomenon is that the electron beam is
sufficiently ionizing to ensure that the exposure of an emulsion to
electrons is a single hit process. As a result, the optical density is

directly proportional to the exposure to within 5% for densities up to

about 1.5.
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Since the response of an emulsion to electrons is linear, the
theory is greatly simplified and yields the following expression for

the granu]arity4

)1/2

(1 (1.85)
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Ngg
where 9y is the variance of the optical density distribution, d is
the mean of the optical density distribution, and ﬁ;g is the average
number of silver grains produced by a single electron. Equation (1.85)
shows that the electron statistical noise is amplified by the photo-
graphic process by a factor (]4-2/5;9)]/2. This factor is less than two
for ordinary electron emulsions, since the mean number of developed
grains is larger thah one. Since graininess is mostly caused by quan-
tum noise, the fine detafT recorded above the graininess is determined
by the number of electrons that pass through the specimen during the
time of exposure.

The statistical properties of granularity can be measured from
the transform of a micrograph recorded in the absence of specimen. An
estimate of the noise correlation between adjacent areas in the image,
and of the variance of the noise density distribution can be obtained
from this transform. The Information Theory techniques presented in
Chapter Two will assume that this random noise can be dealt with as a
superposition of Gaussian-distributed independent sources, which are

additive to the input signa]zﬁ.



-41-
CHAPTER TWO
IMAGE PROCESSING

Introduction

2.2 The Digitization Process

2.2.1
2.2.2

o
N

2.3

Overview
Sampling

2.2.2.1 Data collection by the integrator
2.2.2.2 Scanning on a grid
2.2.2.3 Boundary artifacts

2.2.2.4 Reconstruction of the continuous distribution
from the discrete distribution

Quantization

Digital Processing Techniques

~o

.1
.3.2

N e
w W

.3.3

2.3.4

Contrast Manipulations
Geometrical Operations
Noise Removal

2.3.3.1 Periodic noise removal
2.3.3.2 Snow removal
2.3.3.3 Random noise removal

A) Averaging of multiple copies
B) Bandpass spatial-frequency filtering
C) Wiener filtering

Matched Filtering and Correlation Analysis

2.3.4.1 Matched filtering
2.3.4.2 Correlation analysis
A) Definition of correlation functions
B) Determination of matching parameters
i) Translation parameters
ii) Width of the correlation peak

43
43
43
45

45
49
50
52

53

54
54
58
59

59
60
60

60
61
62

64

64
67
67

67
67
69



2.3.5 Spatial Frequency Filtering and Fourier Transforms

2.3.6

-42-

ii1) Possible artifacts

C) Discrete estimate of the correlation integrals

i) Fourier method
ii) Direct summation method

iii) Differences between calculated and real

correlation functions

D) Correlation peak determination
E) Subtraction of images

2.3.5.1 Design of 1inear non-recursive filters

A) Definition

B) Discrete Fourier transforms

2.3.5.2 Spatial filtering applications

A) Low pass filters
B) High pass filters
C) Restoration filters
i) Introduction
ii) Noise-free systems
iii) Wiener optimum filter
iv) Modified inverse filter

‘D) Feature selective filters
i) Directional derivatives
ii) Gradient operator
iii) Laplacian operator

Image Evaluation

2.3.6.1 Mean-square-error criterion
2.3.6.2 Linfoot's figures of merit
2.3.6.3 Signal-to-noise ratio

69

72
72
73
74

75
78

80
80

80
81

84

84
85
86
86
87
88
90

94
94
94
95

95

96
96
98



-43-

CHAPTER TWO
IMAGE PROCESSING

2.1 Introduction

The electron microscopist often needs to further process his
data when a quantitative interpretation of high-resolution micrographs
is desired. This processing (e.g., image enhancement and the extrac-
tion of selective features) is best implemented by digital computer,
which is more versatile in handling complex nonlinear problems than a
coherent optical processor. In this chapter we shall discuss the
preparation of images for computer analysis (i.e., the conversion of
analog video data to and from digital form and the resulting image
degradation and its impact on resolution. Finally, we shall discuss

the processing algorithms that are used in this work.

2.2 The Digitization Process

2.2.1 QOverview

The optical information from an electron micrograph is con-
verted into digits by a film recorder/scanner (see Fig. 2-1)27’28.
First a flying-spot video film converter (VFC) scans the transparency,
and the transmittance is measured continuously during the scan by a
photomultiplier tube. Part of the 1ight produced by the cathode ray
tube (CRT) 1is diverted by a beam splitter to monitor a feedback loop.
A converter then divides the scan into incremental spatial elements and
transforms the photographic measurements into digital form. The picture

elements, or pixels as they are called, are quantized to 6 bits ac-

curacy and recorded on a magnetic tape. The scanning is monitored by
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an operator who uses video displays to adjust the gain control in order
to ensure that the dynamical range of optical densities is.fully cov-

ered. A schematic diagram of. the processing system is shown in Fig. 2-2.

2.2.2 Sampling

After digital transformation, the picture is represented as a
discrete array of optical densities. In this section we shall examine
the ensuing information loss during the conversion of the image from
optical to binary form. We shall also discuss the relationship between

the discrete and the continuous optical density distributions.

2.2.2.1 Data collection by the integrator
If d(r) is the continuous density distribution of the micro-
graph, the light intensity falling inside the photometer spot (i.e.,

the integrator in Fig. 2-1) is proportional to the film transmittance:

I(r) = 1,t(r) = 1 e 2-34(r) (2.1)

where I0 is the uniform illumination intensity incident upon the film,
and t(f) is the transmittance of the film. The scanning aperture,
which is defined by the CRT, dwells on a given element (i,j) of the

CRT raster grid, while the transmitted signal is integrated in order

to attenuate the noise fluctuations. The output of this process is

s oL
.85 = 1 f Iiy(r) dr (2.2)
P
p
where %ij is the transmittance at the point (i,j) and Ap is the

area of the scanning aperture. The integrator read out is just a
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the video film conversion steps between the original pic-
ture and its processed version
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convolution of t(r) with the CRT scanning-spot aperture function

s(r):

~

t(r) = t(r)  s(r) (2.3)

The spot is projected by an objective lens onto the film; so that
s(r) 1is a convolution of the impulse response of the objective lens
with the illumination function from the CRT, which is Gaussian. We

may approximate s(r) by the Gaussian distribution

~

-2.4r2/a2

s(r) = e (2.4)

where a 1is the half-amplitude diameter of the projected spot and is
approximately equal to the spot size. The signal from the photomulti-
plier tube undergoes a logarithmic transformation, which yields an
analog representation of the optical density along the path of the

scanning spot:

~ _ A _ ']
dij = ~10910%;5 = ~109y5la-

j -2.3d; (Y‘)
e
1] p A

W dr] (2.5)
P
where Eij is the analog representation of the optical density at the
position (i,j).

Let us now consider how 3(5) is related to the continuous
film density d(r). The mean optical density H%j over the spot
Tocated at the (i,j) pixel of the grid is defined as:

T5 = a | dizo ar (2.6)
P A
p
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where the integration is performed over the aperture centered at (i,j).
If the spot is small enough, the local variations in density within

the spot are negligible, so that

dij(f) = dij + Adij(f)' (2.7)
where |Ad1j(f)l << H}j . In this approximation Eq. (2.5) becomes
. -2.3d. . Ad; . (r)
dij o -1og]0[7\— J e 1J(1 + _;ifu—) d[‘]
p A ..
p Y
= djy - ]Oglo[ﬂ—‘fdf * :l"'é'r Ad]J(r)dr] N H}J
P A d'lJ P A
p P (2.8)
=1 =0
and therefore
A - ~ - -I_
p

In a general formulation, the scanner output is a convolution
of the original density distribution, d(r), with the CRT spot impulse

response, s(r) :

d(r) = d(r) * s(r) (2.10)

For a small CRT spot we find that by taking the logarithm of the meas-
ured transmittances we retrieve the same values that would be recorded
by a photometer reading densities instead of transmittances. However,

due to the finite size of the spot, the weighted averaging over the
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aperture acts as a low-pass filter on the original picture. Thus, the
Nyquist frequéncy of the data determines the projected spot size re-

quired to avoid any information loss.
2.2.2.2 Scanning on a grid

In practice a sample and hold device, which is driven by the
horizontal sweep circuits ddes the actual samp]in927. The digitizing
time over which the signal is integrated is about 130 usec, and the
dead time between pulses for spot motion and digital read out is around
20 psec.. (A typical flying-spot scanning rate would be 6700 pixels per
second.) Let us now consider the way in which sampling over an array
of discrete points distorts the information content of the micrograph.

The sampling function, comb (r), is a regular square grid of

delta functions spaced at intervals of A and is writtenzg'

B~

comb(r/a) =} E 6(%-- n, %-— m) (2.11)

N=-co q=-co

where n and m are integers. We will first ignore the finite area
of the picture and assume that it extends infinitely in both direc-

tions; then the discrete sampled density distribution is given by

d'(r) = comb(r/a) - d(r) = comb(r/a) « (d*s) (2.12)

The transform of the sampled function, D'(E), is a convolution of the
transform of the continuous function with a square grid of points

spaced at 1/A

D' (k) = A-comb(A~5) * [D(K) +s(K)] (2.13)
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where 5 is the Fourier transform variable. Now if we assume that

the original density distribution d(r) is band limited to |k <k

then the Whittaker-Shannon sampling theorem30

states that the original
spectrum can be recovered from the discrete spectrum without introduc-
ing aliasing errors if

1
A< H— , (2.14)
2km

Then if M 1is the magnification of the microscope and Pg is the

smallest resolvable detail, we have

=
i

= T/MpS (2.15a)

and

B>
1

= Mps/2 (2.15b)

For example, ~ when M = 400,000X and og = 3R , then Am = 60p .
Another consideration in the choice of the sampling frequency
is the correlation analysis, which is used to determine the transla-
tional and rotational positions of two pictures. Since the accuracy
of the correlation analysis is proportional to the fineness of the mesh
over which it is performed, we are forced to select a finer mesh for
the sampling grid than would be prescribed by the sampling theorem.
Therefore, in order to retrieve the full information and to avoid cor-
relation between successive measurements, the sampling mesh size should

be equal to the flying-spot diameter.
2.2.2.3 Boundary artifacts

The array densitometered for computation can be considered as

the product of an infinite density array, d(r), with a box function,
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I(r) :

dg(r) = d(r)- n(33) (2.16)
where the parameters X and Y are the lateral dimensions of the
input picture, and

1 if li

6 -
0 elsewhere

Consequently, when masking off an area, points lying outside of the

box are assigned an optical density of zero. This results in bound-

aries with large fluctuations in density.

The truncation by H(r) destroys the band 1imitedness of the
distribution. This is because the effect of H(r) is to convolve the
infinite array transform, D(E), with the transform of the area, that
is,

sin(ﬂka) sin(nYk )

D (k) = D(k)x [~ o ] (2.17)

The result of the Cdnvolution is to produce strgng amplitude spikes
running out from the transform origin. When these discontinuities are
significant (i.e., for large values of the optical density around the
perimeter of the box), apodization becomes necessary. (Usually, one
smooths the boundary fluctuations with a Gaussian fall-off.) The ex-
tent to which image points near the edges are altered depends on the
image-spread function of the microscope (e.g., the most favorable con-

ditions occur at the Scherzer defocus for weak phase objects).
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2.2.2.4 Reconstruction of the Continuous Distribution from the
Discrete Distribution

Since the original signal d(r) is truncated, convolved with

the spot window function, and sampled over a grid, the discrete image

dc(r), is given by

d_(

¢(r) = comb(r/a) - [s(r)x(n(g:y) + d(r))] (2.18)

The result of Fourier transforming the array of optical densities de-
fined by Eq. (2.18) is
sinCWka) sin(myk, )

Do(k) = - comd(ak) « {S(K)[(———2) (———) 1= D(K)} (2.19)
X Y ~

where Dc(g) is the computed transform, and D(E) the transform of the
continuous distribution.

In order to reconstruct the signal, we must interpolate between
the sampled points; this amounts to convolving dc(f) with an inter-

polation function TI(r) :

-~

dipe(r) = d (r)«(r) = {conb(r/a)[s(r)*(n(5¥) - d(r)) I (r)

(2.20)
In the Oth order the interpolation function is
= (XX
ro(r) = I(55ssy) (2.21)

so that the interpolation has a smoothing effect that tends to band
limit the density spectrum. If the signal were perfectly band limited,

which truncation prevents it from being, the sampling theorem states
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that exact recovery could be obtained from the sampled array by inject-

~

ing at each sample point the first-order interpolation function F](r)

where x .
sin(7y) sin(jgd

r]([) = = m (2.22)

A practical rule for digitizing images is to employ a spot size with a
diameter a < A , and a sampling frequency such that A 5_1/2km .

Application of this criterion results in very little loss of informa-

tion.

2.2.3 Quantization

The voltage stored in the integrator shown in Fig. 2-1 is con-

verted into binary form by an analog to digital conveirter27

(the output
being formatted and written on magnetic tape as the scan proceeds.)
During this conversion process, photometric nonlinearities bias the
optical density measurements at both ends of the density range. These
nonlinearities originate from the lens system, the photomultipliers, and
the analog electronics. To compensate for these distortions, calibra-
tion measurements are taken during the scan in order to determine the

scanning transfer functions of the input density versus output grey

level. These transfer functions then enable one to make photometric

corrections.
The quantizing accuracy is 6 bits, yielding 64 grey 1eve1527.
The transmittance at the first step away from zero is t1 = N;] where

Ng is the number of grey levels. This means that the peak optical den-

sity that can be recorded is T1og Ng , 1f the original optical densities

are on the linear portion of the Hurter-Driffield curve. In order to
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preserve information, some precautions must be taken to reduce the
peak density of the film to 1.8 or less. One must also consider the
noise performance of the image processing system, since noise inter-
acts with the visual appearance of the picture and perturbs the sub-
sequent digital processing.

Sources of noise during scanning of the film include the scan-
ning light, the detector, the amplifier system, and the analog to
digital converter. In the presence of noise, it is the signal plus
noise which is quantized. Consequently, in order to ensure that there
is no ambiguity in the designation of a particular signal Tevel as a
certain digital number (DN), the root-mean-square noise shou]d be kept

within one-third of the digital step size?’.

2.3 Digital Processing Techniques

After the micrographs are digitized, corrections are performed
by computer in order to overcome limitations imposed by the noise, the
signal distortions, and the transfer function of the microscope3]’32’33.
These techniques are used to improve the signal-to-noise ratio and the
image resolution, thereby rendering a quantitative image analysis trac-
table. In this section we describe the information retrieval tech-

niques that will be encountered in the processing schemes used in

Chapters Three and Four.

2.3.1 Contrast Manipulations

In pattern recognition problems, statistical analysis is often
used to determine such parameters as the mean density, the variance of

the density distribution, the area, and the perimeter of an image



-55-

feature. These parameters can be derived from the first-order probabi-
lity density function or histogram. The histogram, H(D), of the grey
level distribution values is computed from the input picture. It
yields the parameters used for generating a transfer function on the
domain of intensity values (pixels are eight bits long, their levels
vary from 0 to 255), and statistical information about the image. For

instance, the area A of a picture can be expressed as

255
DZO H(D) = NL x NS = A (2.23)

where NL 1is the number of lines and NS - is the number of samples in
the picture. The mean picture density, D, is expressed in terms of the
histogram as

, 255 B
~x L DxH(D) =D (2.24)
D=0

The histograms of input micrographs that contain 1ittle visible
detail show a large concentration of pixels in a narrow portion of the
grey scale. The image can be enhanced by expanding the grey scale. By
analogy to the distribution transform in statistics, an expansion of
the grey levels amounts to modifying the shape of the histogram. This
process is called contrast stretching.

After digitizing, one stretches the grey scale over the full
dynamic range (0 to 255) by applying an intensity transfer function to

the input densities, yielding

B = (D) | (2.25)
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where D is the stretched density, f 1is the transfer function, and
D 1is the input density. In this process one allows for a saturation

of the histogram of L% at 0 DN and H% at 255 DN. Then the tails,

Dmin and Dmax’ of the histogram shown in Fig. 2-3 are defined by
1 Dm1'n
K Z H(D) = L%
D=0
(2.26)
1 2395
K Y H(D) = H%
D=D
max

Thus, the function f maps [D ] onto [0,255]. For eXample, a

min’Dmax

linear contrast enhancement would be:

5=O D<D

— “min
- D-D .
D=265 —N - TR p. <D<D (2.27)
max -min mn - max
D = 255 D Z'Dmax

where o and B are parameters which define the transformation.

After the stretching operation, the histogram is transformed
26

into
R(D) = H(D)/(df/dD) = H(f | (D))/(df/dD) (2.28)
For instance, in the case of a linear stretch, Eq. (2.28) becomes

~ L~ _ l - ’

H(D) == H(~7§—J (2.29)

In Eq. (2.29) we see that enhancing the contrast (i.e.,a > 1) flattens
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the DN frequency distribution. This selective contrast stretching of
fine detail is equivalent to a high spatial frequency enhancement.

Contrast manipulation techniques are also used to remove shad-
ing effects and perform photometric corrections on non~-uniformly 11-
luminated pictures. Shading effects can be removed by finding a
polynomial surface that fits the trending in the picture, and then
removing the trend pixel by pixel by Tinear interpolation. Another
procedure for the removal of large-scale slow variations in picture
dala numbers applies a Gaussian DC notch filter to the Fourier trans-
form of the input data set34. The removal of trends in a picture with
fairly uniform shading is a'critical step in both correlation and

spectral analysis.

2.3.2 Geometrical Operations

Adjustments in the translation, rotation, and magnification of
a picture require a geometric distortion of the original sampling grid.
The relationship between the desired image d(x,y) and the original

image d(x,y) is given by
d(x,y) = dla(x,y),b(x,y)] (2.30)

where a(x,y) and b(x,y) define the transformed coordinates. For
instance, a rotation of the picture through an angle 6 , is specified
by

a(x,y) = x cos 6 - y sin o

b(x,y) = x sin 8 + y cos 6
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We shall now consider the way that a geometric transformation
is implemented on a disérete set of data points. If we are given the
sample values d(iAx,jay) of d(x,y) (where i=1,2,---,N; j=1,2,---,M,
Ax and Ay are the spacings of the input grid) then we can determine
the samples a(kAx',sz') (where k=1,2,--,N' and £=1,2,---,M',
Ax" and Ay' define the output grid spacings) by bilinear interpola-
tion. To see this let (K,L) be two fixed integers and (I,J) be two

integers such that

dy | = d(Kax',LAy') = d(x,y) = d((I+a)Ax,(J+8)ay)  (2.31)

for 0<a <1 and 0<B <1 . Then a bilinear interpolation yie]ds33

d | = dp j(1=0)(1-8) + dy 547 (1-a)B+dyyy 5 0(1-B)+ dpyy j4q08
(2.32)

More elaborate interpolation procedures may be developed by using

higher order polynomials: for interpolating functions.

2.3.3 Noise Removal

Errors in the recorded signal can be caused by random noise
additions or multiplications from various sources. If we assume that
both the signal and the noise are additive and mutually independent,

then we are able to perform a statistical analysis.

2.3.3.1 Periodic noise removal

A visual examination of the micrograph may disclose a systematic

frequency superimposed upon the original image. This noise can
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ofiginate during the scanning of the film and appears in the transform
as a series of frequencies located at right angles to the direction of
the scan. This noise can be removed by employing a noise-removal
algorithm which Tocates noise spikes in the spectrum and interpolates

across them35.

2.3.3.2 Snow removal

Random points of bad data cause substantial changes in the sig-
nal levels, which saturate pixel intensities and give rise to the
appearance of "snow". This "salt and pepper" noise can be removed

36. For example, pixels whose intensity

using majority logic techniques
deviations exceed a certain threshold difference, §, are replaced with

their local average.
When an edge is present in the picture, this averaging must be

restricted to a direction along the edge. A simple algorithm for this

processing employs a unidirectional nearest-neighbor average.

d, .+d

d i-1,57 44,5 di+1,5)

1. ~ 1
If 3 l2d; 5 - d | 26— d;.=3(d

i-1,37 41,3 i

1
If 3 l2d; 5 - d d

i by Gy gl <8 = dyy = g (2.33)

J 15

" This nonlinear process produces a net improvement in image quality for
moderate noise Tevels.

2.3.3.3 Random noise removal

A) Averaging of multiple copies

If the signal has been degraded by quantum electron noise,

photographic granularity, and quantization noise introduced during the
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processing; then these noise sources can be assumed to be independent
and additive with respect to the signal. (This approximation holds
well in bright-field imaging where electron fluctuations and scat-
tered-wave oscillations are small compared to the transmitted beam.)
The additive noise n(x,y) 1is assumed to be normally distributed with
mean 0 and variance 02 . Then if N copies of the picture are
made in such a way that the’noise samples in these copies are all in-
dependent, an averaging of the set results in a variénce of the
average picture-noise distribution equal to GZ/N 35. Consequently,
one improves the signal-to-noise ratio by /N , when N pictures
with overlapping areas are superimposed. Similarly, the image of a
periodic structure can be enhanced by translating the image by an
amount equal to the repeat distance, and then superimposing the image
upon itself.
B) Bandpass spatial frequency filtering

~ Another way to smooth a picture is to attenuate the high-
spatial-frequency content of the signal by applying mathematical aper-
tures to its Fourier transform. This Tow-pass-spatial filtering re-
duces the film noise and the noise due to electron intensity fluctua-
tions in the micrograph. In order to determine the optihum aperture,
one must estimate the highest frequencies that carry information about
the object (e.g., when imaging weak phase objects, one uses the
Fourier resolution test). After the signal spectrum has been deter-
mined, one may then delete a selected band of spatial frequencies

corresponding to random and quasi-periodic noise35’37’38.
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C) Miener filtering

When both the signal and noise spectra overlap, a filter theory
developed by Wiener gives a solution to the problem of separating the

39,40

signal from the noise We assume that the received image, drec(x,y),

results from a Tinear superposition process

drec(r) = d(r) + n(r) (2.34)

where d(r) is the object density distribution and n(r) is a spati-
a]]y—stétionary additive noise. The Wiener filter is designed in such
a way as to minimizevthe mean-square discrepancy between the actual
output, drec(f)’ and the desired output, d(r) . Because the signal
distributions are stationary, the mean-square-error integral, En s
which normally is computed over an infinite domain, may be approximated
by
Eq ~ AJ [dpec(r) - d(f)]z dr (2.35)
: A
This minimization problem introduces the concept of the cross-correla-
tion function (CCF) between the density distributions d(r) and
drec(f) . If the image area A over which the CCF is computed is

large enough, then we may write

iodaelD) ~ | GUDT) dlr’) dr (2.36)

where 4.4 (r) 1is the CCF. Then, if we call 4.4 (k) the CCF
>“rec ~ *“rec ”

Fourier transform, the Wiener restoration filter is found to be39



H (k) = rec - (2.37)

rec’drec

If the input signal and the noise are assumed to be uncorre-

Tated (i.e., g n(r-) = 0), then we may write

~

(r) = 44 4(r)

¢ (r) = o4 (r)+¢ (r) (2.38)
drec’drec ~ d,d’~ n,n~

where ¢ d(f) is the autocorrelation function (ACF) of the input
signal and o, n(‘r~') is the ACF of the noise. Then in this approxima-
tion, the Wiener restoration filter becomes

(k) ID(k)|2

) %4,d
Ho(K) = ,d '~ =
W'~ @d,d(‘f) + @n’n(g) |D(E)I2+ IN(E)|2

(2.39)

where |N(k)|2 is the power spectrum of the noise and o d(k) =
2
|D(K)|

tain the power spectra }D(k)}2 and [N(k)}2 . If the noise is white

by the Wiener-Khintchine theorem. The problem now is to ob-

(i.e., |N(k)| = |N(km)] = constant Nwh) and if the signal-to-noise
ratio can be assumed to be zero at the highest frequency, km , carry-
ing information, then the signal and the noise spectra can be esti-

mated from

1D pec k)1 = [0k

(k)| - |0

2 _
|D(E)J - ’Drec ~ rec

(k)| (2.40)
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Another approach is to derive the optimum filter from an
a priori knowledge of the statistics of the object and the assumption
of a certain probability distribution for the signal power spectrum4].
This - filtering is only valid when both the random noise and the signal
are uncorrelated and additive. In electron microscopy this condition

is often not met in dark-field imaging, since both the quantum noise

and the signal are comparable in magnitude.

2.3.4 Matched Filtering and Correlation Analysis

It is often necessary to find a part of one picture that
matches a similar part in another picture. This can be achieved by
the method of cross-correlation, which allows us to determine whether
or not portions of two pictures are identical (except for translation
and multiplication by a constant). An explanation of this technique is
best made within the framework of signal detection theory and matched

filtering ana]ysis30’42’43.

2.3.4.17 Matched filtering

When a known signal is embedded in a noise background, the
problem of detecting this signal in the measured optical density dis-
tribution often arises. A class of filters, called energy matched
filters, is used as a pattern recognition device. This filter, HMF(E)’
is optimum in maximizing the signal-to-noise ratio for detection pur-
poses. A simple derivation of the analytical expression for this
filter will now be presented for the case where the input signal,

d(r), is to be detected in the presence of stationary noise, n(r).
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The result of applying this filter to the received signal,

drec(r), is to alter the input-noise power spectrum, IN(k)IZ, to40

()12 = NG |2 [Hye (i) 12 | (2.41)

where INMF(k)I2 is the noise spectrum of the filtered image. Accord-

ing to Parseval's theorem, we know that the energy of the output noise,

PN , may be expressed as

- 2 -
Py = J [y (k) |2 dk (2.42)
A similar argument holds for the transformation of the input signal.
After the filtering operation, the signal energy becomes

oo |

Pe = Inyeedl? = | | Hyp(k) D06 exp(anik - r)a

-C0

2 (2.43)

where hMF(r) is the filter point-spread function. Therefore, by con-

~

volving the density distribution, drec([), with a matched filter,

hMF(f)’ one modifies the original signal-to-noise ratio into
7 2
| [ o) Hyetk) exparik - 1) ok

R
L e (2.44)

N
J IN(k)lz IHMF(~k)I2 dk

- 00

According to the Schwartz inequality an upper bound for Eq.

(2.44) 1is given by

[++]

< =
T = "max J

-0

dk (2.45)

~

D(pl?
NTKY
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with the equality holding for

(k) - D*(k) exp(-2mi(k, & + kyn)) (2.46)

H
(k) |2

where £ and n are real space coordinates of a point in the filtered

image. The energy matched filter impulse response is then

hyp(ay) = & (5= %, n-y) % F{IN(K) |2} (2.47)

In the case of white noise the filter is a rotated and conjugated ver-

sion of the signal to be detected:
hyp( xsy) = —— d* (5~ x, n- y) (2.48)

The operation of the matched filter is then equivalent to a cross-

correlation of the measured signal, d__ (x,y), with the real signal

rec
d(x,y), so that -
1 .
de(g,n) = —— Tim J d_ {x,y) d(x-g,y-n)dr
f N2 As o rec ~
wh A
]
= —— (-€,-n) (2.49)
Nih drec’d

where df(g,n) is the convolution product drec* hMF . The energy
matched filter in the presence of white noise is therefore a correla-
tor; that is, a detection device for determining all possible trans-

lations of a given input signal.
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2.3.4.2 Correlation analysis

A) Definition of correlation functions

The problem of maximizing the signal-to-noise ratio of a re-
cejved signal drec(f) = d(f) + n([) which is submerged in white
Gaussian noise, has led us to the concept of the correlation filter.

By applying a maximum 1ikelihood analysis we can also describe the
correlator as an inférence estimator. For instance, suppose the output
of an information channel, drec(r), is the sum of an input signal,
do(f+f')’ and an independent zero-mean-Gaussian noise distribution,

n(r). Given the output, d. (r), and assuming that the channel inputs

rec

are equally probable, the conditional probability density that

do(r+r') is being sent reaches its highest value at the maximum of42’43

1
o (r') = —J d (r+r') d_ (r') dr' (2.50)
do’drec ~ A A o'~ ~ rec'~ ~

(i.e., at the peak of the cross-correlation between the two real density
distributions). The value of this integral is a check of the validity
of the assumption that drec(f) is a superposition of do(r) with ad-
ditive white Gaussian noise. Equation (2.50) measures the statistical
dependence between neighboring areas of two distributions, and should

be evaluated in the 1limit, A-+« . In practice fhe integration domain

is chosen large enough for this approximation to hold.

B) Determination of matching parameters
i) Translation parameters
In image processing one often encounters the problem of match-

ing two pictures that are noisy versions of the same pattern, do([),
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translated by the amounts B] and 52 . These pictures can be ex-

pressed by

i) = dy(r-Ry) + 1 (r)

(2.51)
dp(r) = dy(r-Ry) + ny(r)

The noise distributions n](r) and nz(r) in Egs. (2.51) are assumed

to be zero-mean white Gaussian; hence they are spatially stationary

and we may write

dy(r) = dy(r + Ry= Ry) + ny(r) - ny(r) (2.52)

Consequently we may consider one of the noisy images, d](r), as the
input signal and the other image, dz(f)’ as being derived from the
first in a two-fold noise process with an intermediate state, do(f)'
The convolution theorem on probability densities tells us that the

noise distribution,[nz([) - n]([)], is Gaussian with a variance

g (2.53)

We also see in Eq. (2.52) that the peak of the CCF,¢d p (r), is
1727

located at

R, (2.54)

The point 1) yields the relative translational displacements of the
two pictures. The angular orientation can be determined prior to the
correlation analysis, by visual matching, using well defined image

features as markers.
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ii) Width of the correlation peak
The accuracy to which the matching parameters are determined
depends upon the sharpness of the correlation peak. If we assume that
the images are nondistorted representations of the same object struc-
ture, do([), and are contaminated by uncorrelated additive noise, then

®d,.d, ~ % _.d *‘S(C‘ED)"‘”do,nz * 5(3"‘51)+¢d0,n

2°71 0’0 1

* §(r-R,) + ¢n],n2 (2.55)

In Eq. (2.55) the noise terms all vanish, since they are statistically

independent of the signal, so that

¢d2,d] = ¢d0’d0 * G(E'f ) (2.56)
For an object consisting of point-l1ike atoms, ¢do’do in Eq.
(2.56) is a delta function. However, a more realistic description
would take the shape of the atomic-scattering factors into account
(e.g., for carbon atoms the result is a peak with 1R ha]fwidth), as
well as the contribution of the point-spread function of the micro-
scope. We shall show in Chapter Three that there is also a direct
correspondence between the Wiener spectrum of the object and the width

of its correlation peak.

ii1) Possible artifacts
The correlation peak may be obscured when the pictures have

either steep traverse density gradients, or if there exist sharp image
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features running in a preferentia] direction. In the latter case, one
correlates selected regions in both pictures which show a large amount
of uniformly spread detail. The transformation function that deter-
mines the mutual displacement of the two pictures is estimated from a
polynomial surface fit, which is applied to the set of translation
vectors of all the correlated regions.

If the pictures show a fairly uniform traverse shading, then
the CCF peak may no longer correspond to the absolute CCF maximum. To
illustrate how the gradient shows up in the ACF, Tet us consider the

shading function given by

v(x,y) = tx
- (2.57)

Ix| <x/2 ., yl <v/2 L
where v(x,y) is the shading function and ¢ 1is the slope of the
shading. The array that is densitometered is a truncated superposi-
tion of the continuous trend function, v(x,y), and the statistical

image distribution, d(x,y):

4" (x,y) = [d(x.y) + v06y)1 « 1A (2.58)

If the correlation area is large enough, we can neglect the effect of
the truncation window on the sampled picture, so that Eq. (2.58) be-
comes

d" (x,y) = d(x,y) *+ v(x.y) LY (2.59)

Since the input image and the trend function are uncokre]ated,
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Pyt gt T Pdod T (2.60)

where

3 3
o (o¥) = (V- 1¥1) Gz - ¥I' I l‘%" ¥ 1(zx37) (2.61)

|\I\(

For small |x| the ACF fallsoff Tinearly with x from its peak value
¢vﬂ,vH(0’O) = chz/]Z . Depending on the shading parameter, ¢ , the
shading ACF may completely obliterate the signal ACF. Correspondingly,
the correlation peak of two signals will be obscured by the CCF peak
of their respective trend functions. Then the Wiener spectrum of the
picture is modified by strong spikes along the k, axis, given by

2,3

2
@vﬂ,vn(ﬁ) = E‘?E"ST“C (

Yk ) sinc?(xk_/3) (2.62)
y X
In order to avoid artifacts in the cross-correlation step, one
may remove the density gradient, v(x,y) = zx + yy , in the raw pictures
in two different ways. In the first method one sets the Fourier coef-

ficients to zero along ka- tk, = 0, or one replaces them by a

y
neighbor averaging with statistically random phase. In the second
method one subtracts the trend from the raw pictures by a least-squares
fitting process (see 2.3.1). The parameters z and vy are found at

the minimum of the integral

1 [d(x,y) - ¢x - yy - @1

where d 1is the mean optical density of the input picture.
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C) Discrete_estimate of the correlation integrals

Let us represent two pictures by their pixel matrices (ak’z)
and (bk,z)‘ Then the correlation integral between two areas of these

pictures can be approximated by the summation

(ab) K-1 L= 1

o 7 a by s ... (2.63)
ij KL kZO oo 2kan Pkt at

where K and L define the size of the over]appihg area in pixels,
and [i=0,1,--.1-1; j=0,1,---,J=-1] with I and J being the corre-
lation matrix dimensions. There exist two methods for computing Eq.
(2.63), one in Fourier space and the other in real space. We shall

now consider their relative advantages and domains of applicability.

i) Fourier method

From the convolution theorem, we know that
- *
6% = 71 (A" (k) B(K)} (2.64)

where ¢(ab) is the CCF between two pictures whose Fourier spectra
are A(g) and B(E) . The fast Fourier transform a1gor1thm44 (FFT)
is a very efficient method for computing the discrete transform pair

of a series of data samples:

K=1 L-1
L . omk . ng
A =% 1 1 a  exp[-2mi(% + 9]
m.n K2, 420 k,2 K T
K-1 L=1 4
comk . ng
T fy L man ooz (¢ (2.65)

Then by converting Eq. (2.64) into its discrete equivalent we obtain
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2 K=T L-1 . .
b 1 * .
¢$?j) B EﬁmZO nZO Am,an,n exp[2n1(%}-+ %%QJ ‘ (2.66)
(ab)

The correlation matrix, ¢ , is calculated for two infinite layer

45 (

1,]
lattices with the finite images being unit cells see Sec. 2.3.5.1-B).
Consequently, the picture size; [(K-1)A,(L-1)A], must be chosen large
enough to avoid aliasing errors. Furthermore, the FFT algorithm re-
stricts K and L to powers of two. This technique, although faster
than the direct summation method, is not f]exib]e.and may introduce
errors for small input areas or if the CCF peak lies near an edge of
the correlation matrix. However, by using Fourier relations it is easy
to spatial filter the pictures during the cross-correlation step. For
instance, density gradients across the pictures can be removed in the

transform domain by setting to zero the Fourier coefficients along the

gradient direction.

ii) Direct summation method

The discrele evaluation of Lhe correlation integral given by
Eq. (2.63), may be performed directly by multiplying the matrix arrays
of data numbers at the point (i,j). A correlation program computes
¢§gb) (this is done using the computer-linked IBM 2937 Multiplier-
Summation processor), and then searches for the peak value of the cor-
relation matrix. Prior to this operation, both input data sets must
be fi]tered,_in order to attenuate the background noise and to remove
picture trends, which could obscure the peak location. The peak may be

negative when correlating two images of a through-focus series (see

Chapter Three). An indication of such a peak is an ill-defined
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maximum, or the fact that features in its neighborhood do not show
approximate centrosymmetry. The Fourier method is then preferable to
the direct summation method, since inverse filtering can be performed
during the correlation step.

To protect against negative correlation peaks, one calculates
the sum of the squares of the differences between a rectangle in the
primary input picture and a set of rectangles in the secondary input
picture . The mutual displacement is found at the minimum of

(ab) _ K1 L3 ¥

Ly Lo Cron ™ Puriong (2.67)

The rectangle size, [(K-1)a,(L-1)a], must exceed a threshold value v
which is consistent with the assumption that the noise is additive and
uncorrelated to the signal.
iii) Differences between calculated and real correlation
functions

‘ The sequence of operations involved in sampling a picture
modifies the statistics of the optical density distribution as follows.
First the scanning aperture, which acts as a low pass filter, smooths
the film granularity. If the sampling step is chosen to be larger than
the halfwidth of the noise ACF, whi]ebsti11 satisfying the Nyquist
criterion, then a signal-to-noise ratio enhancement appears in the pic-
ture. Finally, by truncating the picture to a finite size, one may
introduce boundary errors if the area over which the CCF is computed
is not large enough. Thus, the computed correlation functions are only

estimates, within the framework of the theory of a stationary process,
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of the correlation integrals. The deviations are kept to a minimum by

choosing a very fine sampling grid.

D) Correlation peak determination

The accuracy of the match between two pictures is estimated by
correlating different areas and then observing the spread in the dis-
placement values D - The correlation program finds the peak position
to within one sampling unit. The actual maximum, however, might be
somewhere between the sampling points of the correlation matrix. If the
average spread in peak positions is less than a sampling-grid spacing,
a more accurate estimate of its location may be found by either of the
two processing schemes which we will now describe.

The first method?® relies upon the fact that the ACF of a real
optical-density distribution is centrosymmetric about its peak. Then
accordingvto Eq. (2.56), we see that the CCF of two pictures, which
differ from each other by uncorrelated additive noise, will be centro-
symmetric. The peak position will then coincide with the center of
gravity of the correlation surface, ¢d],d2(f)’ given b& the weighted

average of CCF values:

Z r- ¢d d (r)
Ep - p;ak 1 (2) (2.68)
) r
peak d]’dz -

rp is the coordinate of the peak in fractions of a pixel, and the sum-

mation extends over the width. 2HpA , of the peak. The coordinates of

the CCF peak, (xp,yp), for discrete data samples, are given by
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P (dq,d,)

1272
X Z q)_i . X. .
s _ o .~ sd 1,1
,J—-HP .
Mo (4, ,d,)

1272
'=-.H ‘:-H q).i’j

p J%Fp

L}

T (dhdy)
L, %5 Vi

.i=-HP j="HP
Yp = ¥ v (2.69)
P P (d],dz)
b L i,.d
i HP J HP

The technique that we have just described relies on the assumption of
centrosymmetry; therefore it is invalid if sharp features or density
gradients exist in the original image.

In the second‘methbd one cbmputes the coordinates of the CCF
peak from a bilinear interpolation of the CCF values near the peak.
In practice, a 3 x 3 matrix of CCF values in the neighborhood of the
peak (see Fig. 2.4) is used to determine the peak coordinates. Analy-

tically, we can express these coordinates as

. _gg (1.3 0
2 481 204 27 by 17 94,3

3 bg = Oy 4 :
- _ A 3. "1,]
Yp =75 ) (2 - ) (2.70)
PR %257 0,5 93,
Both of these algorithms output the peak positions in fractions
of pixels, since the pictures are sampled on a two-dimensional grid.

It is therefore necessary to shift one of the sampling grids by an
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4)“ 4)|2 4)13
bal P20 brs
X = ~—  CORRELATION
PEAK
4)3' ¢32 ¢33
v
y

Fig. 2-4 Diagram of the CCF matrix used to determine the
coordinates of the co-relation peak
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amount equal to the fractional peak displacements, (xP,yP). This re-
quires one to calculate the pixel values at intermediate grid positions
by interpolation. If we let o = XP/A and B = Yp/A , then Eq. (2.32)
yields the transformation formula for the case of a bilinear interpola-
tion.

E) Subtraction of images

A statistical analysis of the difference picture between two
images provides additfona] information on the correctness of the regis-
tration. For example, let d](x,y) and d2(x,y) be two noisy repre-
sentations of the same object, do(x,y), which is assumed to have white
Gaussian noise with zero mean. In order to simplify the analysis, we
will assume that a contrast stretch has been performed on the input
data sets to equalize their mean values. Then, if these pictures are
slightly mismatched with respect to each other in the x—direction, we

may represent them by

dy(x.y) = dy(x,y) + ny(x,y)

dy(x5y) = dy(xtax,y) + n,(x,y) (2.71)

where Ax is the mismatch parameter. By forming the difference image,

ds(x,y), we obtain

ds(xs.Y) = CIZ(X,.Y) - d’,(":.Y) = 06X d(l)(x’.Y) + n(x,y) (2.72)

where dé(x,y) is the derivative object picture and n(x,y) 1is an un-

correlated Gaussian noise distribution with variance\/o$ + og . We

will now examine how the parameter Ax is Tinked to the histogram
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,Hds(ds) of the differenée image.
It can be shown that the probability density of a summation

signal is equal to the convolution product of the probability densi-

ties of its component signals, when the component signals are mutually

uncorre]ated26. The histogram can then be obtained from Eq. (2.72)

and is given by
H, (d.) = l——-H (Eé) * H (n) (2.73)
dS 3 AX dé Ax ni\h :

where Hd.(dé) is the histogram of the derivatidn picture, and Hn(n) is
0

the histogram of the noise distribution. Most derivative pictures

have a symmetrical Gaussian histogram centered at the origin, so that

we may write

Hys (03) = expl-d%/203]
Ho(n) = exp[-n?/2(c% + o5)] (2.79)

where Yo

Eq. (2.73) we see that Hy (ds) is a Gaussian histogram with half-
s
width

is a characteristic of the object. Consequently, from

og = [0f + &5 + (o, ax)27'/2 (2.75)

Equation (2.75) implies that the narrower the histogram of the differ-
ence picture, the better the registration.

We have discussed correlation techniques in some detail; since
they are an essential step in the image processing schemes described

later in this work, and if carelessly applied they can introduce
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systematic errors into the processed pictures.

2.3.5 Spatial Frequency Filtering and Fourier Transforms

The purpose of a variety of picture processing operations is to
extract the information content of an image in the presence of degrad-

ation47’48’49.

Digital filtering is a computer enhancement technique
that brings out selected features of an image by: suppression of random

noise and background shading, amplification of fine detail, and image

restoration.

2.3.5.1 Design of linear non-recursive filters

A) Definition

A linear non-recursive filter is a position-invariant operator
whose output is a weighted superposition of input image points33. We
can also describe the output by a convolution product between the

filter impulse response h(r) and the input picture d(r):

df(g) =h=*d (2.76)
A discrete approximation for this convolution integral is
-1
£ 2 2
dk,z = ¥ . ) o hi,j dk-i,Q-j (2.77)
i=- J':-. AL
Z 2

where the convolution kernel, (h.i J.), is defined by an IxJ matrix.

The matrix (h, .) is a correct representation of the continuous filter

1,J
response when sampling artifacts are minimized. We must therefore
select a sampling step which does not destroy the band-1imitedness of

the input data. In order to reduce the ringing phenomenon introduced
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by the filter, we can smooth the edge discontinuities at the trunca-
tion by multiplying h(r) with a window function w(r) . Often the
two-dimensional window is chosen to be a circularly symmetric Gaussian
fall-off described by
1 ‘ if r<rg
w(r) = (2.78)
exp[—(r-rG)z/Zcé] if rG~<r'<Min(Xf,Yf)

where e and oG are adjustable parameters for the window, Xf and
Yf are the lateral dimensions of the truncation box.

Linear filtering can also be implemented in Fourier space.
Filtering in this domain amounts to multiplying the Fourier transforms

of the image, D(k), by the filter, H(k):

~ ~

D(k) = H(K) - D(k) (2.79)

where Df(k) is the filtered transform. The processed output is then

obtained by inverse transforming Eq. (2.79).

B) Discrete Fourier transform (DFT)

The advent of the FFT algorithm enables us to perform numerical
operations, such as DFT of data samples, in a reasonable amount of |
time44. When this algorithm is used to evaluate Fourier integrals, it
is advisable to examine the relationship of the continuous integral
transform to the DFT45.

In order to demonstrate the relationship between the integral
transform and the DFT, let d(x,y) be a continuous density distribution

and dk,g = d(kA,2A) be the
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Then if

d(r) and D(E) are a Fourier integral transform pair, it can be shown

that dﬁ oo [k=0,1,---

n=0,1,...,L-1], are a

K-15 220,1,-+-,L-1], and DD, [m=0,1,---,K-1;
DFT pair given by Eq. (2.65), with

(K-1)a = 1/8k, = X
(L-1)a = 1/6k, = ¥
&P, = dP(kaga) = T T d(ka+iX,0845Y)
? =~ J=-o
Dg,n = 0P(m 8k, ondk,) = i=2m j=2m D(m Sk, 1/8,n8k +3/8)

The periodic function, dp([), is formed by the superposition of d(r)

shifted by all multipl
If we suppose that A

es of the fundamental period in x and y .

is chosen so that the aliasing involved in con-

structing Dp(g) is negligible (i.e.. [D(k)| =0 for [k| >k =

1/2A), then the continuous transform may be evaluated from the follow-

ing identity:

= nPrrr 1!
D(kx,ky) D (kx’ky) (2.80)
where
ki if 0 5_k; 5_km
kx _ y y
y k; - 2km if km g‘k; 5_2km
y y

Consequently, the error in approximating D(5) by DP(E) in the range

[k, | s k, and |ky| < k. results from the overlapping of adjacent fre-

quency spectra. The truncation of d(r) to a finite input size allows
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the infinite summation involved in obtaining dp(r) to be computed. This
truncation introduces side Tobes in the estimated spectrum because the
box transform is convolved with DP(E) . Consequently, the DFT show
streaks, which can be removed by apodizing the sampled input with a
window function that vanishes at the picture boundaries (i.e., a
Gaussian fall-off).

Once the sampling step A has been chosen so as to satisfy the
Nyquist criterion, the picture size to be transformed is then selected
(K and L are restricted to be powers of two by the FFT algorithm). The
sampling step determines the intervals dkx and éky, at which one
samples Dp(g). Then with these choices of K and L , we form the
aliased sequence dg,l’ and apply the algorithm.

Most properties of the DFT are in agreement with the correspond-

ing properties of the Fourier integral transform; one such property is

the convolution relationship;

I-1 J-1
2 2
pf_ p p
dk,/Q/ . Z I-1 . z J"‘] hi sj dk"‘i .Q‘j
150 = = 5
which becomes
pf_p .pP
Dm’n Hm,n Dm’n (2.81)

Equations (2.81) are valid everywhere, except at the picture boundaries
where they introduce a wrap-around error. However, their validity is

preserved if the following identities are correct:

d =dk+K,5L for Oikg—l%]— and K-e=—<k<K

K,2

1}

dk,l = dk,£+L for 0<% £ and L ->-<AslL
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If the above conditions are met, then the filter output is
.k L
Qoo =T L 1 W 0P expleni (i + 0] (2.82)

2.3.5.2 Spatial filtering applications

A) Low-pass filters
Los-pass filters are used to reduce the effect of random picture
noise, which can obscure large low-contrast features, and to remove un-

34,35,50

wanted high-frequency structures such as sharp edges These

filters smooth the pictuke by replacing each image point with a weighted
neighbor average. In the case of a box filter, these weights are

equal to

LP _ 1 ‘
hi,j T Ixd ‘ (2.83)

and the corresponding fitter transfer function is given by

sin[na(I-1)k_] sin[mA(Jd-1)k ]
HP (K, k) = T &y Y (2.84)

This kernel generates undesirable sidelobes in the discrete filter
transform for lkxl > ka(K—l)/(I-l) and for ]kyl > 6ky(L—1)/(J-]) :
(see Eq. (2.84)). In order to reduce the ringing effect caused by
sharp discontinuities in weight values at the truncation, one can smooth
the boundary by applying a polynomial fit to the truncated sequence of
the weights.

Low-pass filters can also be implemented in Fourier space,

where high-spatial frequencies corresponding to noise can be attenuated.
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Here a selective enhancement of the signal-to-noise ratio is achieved
by filtering out the frequencies beyond the Nyquist frequency of the
input data. For example, a Tow-pass isotropic filter can be expressed
as:

expl-([k| - k%2621 if Jk| >k
HP (k) = (2.85)
1 it k| <k

So far we have restricted our discussion to linear filters. We
note that an example of a nonlinear low-pass filter was described in
Section 2.3.3.2. This filter applies a Tlocal averaging, with threshold-

ing, in order to suppress "salt and pepper" noise.

B) High-pass filters

A major use for high-pass fi]ters'is to reveal small Tlow-contrast
features that are superimposed on uniform backgrounds34’35_ These fil-
ters suppress undesirable large-scale intensity variations that are
composed mostly of Tow-spatial-frequency components., A high-pass filter

can be specified in terms of its low-pass equivalent by writing

WP ) = 1 - WP (2.86)

If the desired high-pass filter is the complement of a known low-pass
filter, an obvious way to construct such a filter is to build its
sequence of weights by letting

WP _ _Lp
N3 = 84,5 " 05

where h? is the low-pass kernel matrix.

»J
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A filter which partially suppresses the lower frequencies while
enhancing the higher frequencies is called a high-emphasis filter. It

can be formed from a high-pass filter by multiplying every value of

HHP(E) by a constant, cHE, and then shifting the DC component:
HE () = M WP k) + 1 (2.87)
HE . HP X . . .
where ¢~ > 1 . Consequently, if (h3 j) is a high-pass-filter matrix,

_then we can build a high-emphasis filter by letting

hiE. = ME Py

i, §

i,j i,J

This filter creates dark bands surrounding the sharper high-contrast-
ratio edges in an image (i.e., it overemphasizes the edges thereby

reinforcing the Mack phenomenon40).

C) Restoration filters

i) Introduction

Imaging systems degrade the information content of an object by
distorting phase, amplitude, and by superimposing noise onto its re-
corded image. For an incoherently illuminated imaging system that
obeys the isoplanatic approximation, the'image formation process may
be described by a Tinear mapping of the object distribution, do(f)’

onto an image, di(f) :

d;(r) =t  * d_+n(r) (2.88)

where ts([) is the incoherent point-spread function, and n(r) is

~
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additive noise. An indication of the performance of the system is
provided by the optical transfer function (OTF), which assesses the
frequency response of an imaging device. When weakly scattering ob-
Jects are observed with an electron microscope (assuming partially
coherent illumination and the isoplanatic approximation), the image
properties can be described by an OTF called the contrast transfer
function.

If the OTF is known (e.g., by calibration measurements, or
analytically as a function of such parameters as defocusing, astig-
matism, and image motion), it is possible to restore the object spec-
trum by image processing techniques.

We shall now examine the procedures used to extract the o hject
information from an image which is formed by a noise-free system. Then,
we shall describe image restoration schemes for systems which contain

random noise that cannot be separated from the image47’48’49’5]-

i1) Noise-free systems
Let us call dNF(f) the degraded image; then, assuming that the

noise is negligible, we may describe the imaging process by
dNF(f) =t *d, (2.89)

An equivalent description can be obtained by Fourier transforming Eq.
(2.89): \
Dyp(k) = T (k) - D (k) (2.90)

where TS(E) is the imaging OTF.
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An obvious compensating filter far this system is
Hyp(k) = 1/T(K) (2.91)

which results in a restored image, h & dNF = do(f)’ that is an exact
representation of the object. ’

In practice, the transfer fuﬁction may have zeros in the fre-
quency ranges that are of interest. At the spatial frequencies where
TS(E) vanishes, the restored object spectrum is undetermined and the
fi]ter’HNF(E)’ would take infinite values. In the design of the com-
pensating filter we must also consider the noise, which always degrades
an image. By using an inverse filter such as HNF(E), we would amplify
the noise in the restored image at the zeros of the transfer function,
and destroy the validity of the restoration.

We shall now describe two alternate restoration procedures that

can be implemented in the case of noisy systems.

iii) Wiener optimum filter

Consider a signal di(f) that is the superposition of a noise-
free degraded image dNF(r) with some statistically uncorrelated
noise. We know from Section 2.3.3.3C that an optimum filter minimizing
the meén-square error,
En = ;\TJ [4¢(r) - dye(r)1° dr

A

where df(r) is the filtered image, has the frequency response
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L0 T (k)% = D, (k) 2
Hatk) = 2 z " 2 2 7 (2.92)
| Dy (k)" [N(K) [T (k) = [D (k)| + [N(K)]
NF*'= ~ s'2 o'~ ~
We can express the filtered image df(f) as
df(f) = hw * di = hw * (ts* do) + hw *n (2.93)

Now since, dNF(E) = tgx d, the optimum filter HWD(E) yielding the

least mean-square discrepancy between the restored image and the object,

is derived from H, (k) by dividing by TS(E); that 1is,

k) + [0y (k)|

H(k)  THK) -
(K) = Ty =
SN AOLE

H

|2 (2.94)

~

Dy (k)1 7* [N(K)

The quality of this restoration scheme may be assessed by computing the

resulting minimum of the mean-square error,

(2.95)

x| —

1D, (k)| IN(Kk)| 2
A

dk
3 1T () - o (k) [+ IN(K)[Z ™

where B is the spatial-frequency domain over which the restoration
is performed.
Practical imp]ementatioh of the optimum filter requires a

priori knowledge of the noise statistics and the object structure52.

Electron micrographs have, for instance, been restored by assuming a
white Gaussian noise and a Gaussian probability distribution for the

object spectrum4].
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iv) Modified inverse filter
We saw in Sec. 2.3.5.2C.11 that noise amplification at the zeroes
of TS(E) Jjeopardize the restoration efficiency of the inverse filter
HNF(E)47. In order to avoid these artifacts, we can modify this fi]—
ter by a weight function, g(E), having the same zeroes as TS(E) s

that the modified filter

g(k)

remains finite. We can determine the correct weight function by study-
ing the signal-to-noise ratio before and after restoration.
According to Parseval's theorem, the variance of the filtered

noise distribution n'(r) = hm. * n , can be written as

1

ogr = & | 100012 k= E I 002N 12k (2.97)
B B

'

where B describes the frequency range of the filter, and N'(E) is

the noise spectrum in the filtered image. Since the filter and the

noise power spectra are uncorrelated, we may approximate Eq. (2.97) by:

K1 dk (2.98)

~

ot = | Vg 00120+ [ NG Pk = 0 - [
B B

The noise amplification factor

_ ] 2
f=opilop = EL I (k)12 d (2.99)

is a critical parameter in the design of a filter. An esimate of fn
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as a function of both B and g(g), provides a useful guide for the
determination of an adequate inverse filter. For instance, in Eq.
(2.99) we see that fn will blow up at the zeroes of TS(E) if we
set Hmi(E) = l/Ts(g) .

We will now consider the changes in the variance of the noise-
free degraded image, dNF(f)’ that were introduced during the restora-
tion process. The variance of dNF(r) before the reconstruction can

be expressed by

| 1 2
0y, = %" -B-J 1T, (k)12 di (2.100)
B .

where the variance of the original object distribution is given by

1 2
5% = § | 10(K)12 &
B

After filtering, 04 is converted into
NF

: 1 2 2
o =co-§j T )12 11 ()12 ok (2.101)
NF B _
where oa measures the variance of the degraded object distribution,
NF

which has been altered by the reconstruction process. Finally, let
us define a quantity fd that correlates the variances of signal dis-
tributions before and after filtering. This parameter, which is

called the relative structural content, is defined by
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BT 10017 a
fd = 0& /od = (2.102)
B

A comparison of GaNF with % prbvides a quality measure for
the restoration. When these parameters are approximately equal, a
correlation between the object and the restored image is assured. Nor-
mally, 94 is less than o

NF
struction is provided by fd . This parameter should be larger than

o » hence a figure of merit for the recon-

unity, if an improvement in the signal is attained.

Another parameter to consider before filtering an image is T
the estimate of the quotient fd/fn . This parameter is an estimate
of the improvement in the signal-to-noise ratio when the filter is ap-

plied to an image. We can write T, as

1 ' 2. 2
. i‘ﬁ‘“’ji;g_ B BJ [Hyg () [T (k)| ek
. r Od G | .‘
NE ! n %BJ'Hmi(E)lsz']gf lTs(E)lsz

(2.103)

The quantities Ty fn and fd are critical parameters in the choice

of an appropriate weight function g(E). For instance, by using Eq.

(2.96), we may evaluate 1, for a particular weight function, from the
r .
identity:
1 2
L REISTRRT
= B (2.104)
' lj glk) 2 2
B l l d E'L |Ts (k)| dk
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A simple heuristic method for constructing a modified compensat-
ing filter is demonstrated in the following discussion. One prevents
the inverse filter from exceeding a given threshold, 1/8, by using the
weight function

1 for [T (k)| > &
alk) = (2.105)
ITS(E)I otherwise

where & is an empirically chosen truncation factor. The initial
signal-to-noise ratio, 7 , of the picture to be processed determines
the optimum value for § . If 1 assumes values close to unity in
certain regions, one should select a threshold value large enough to
minimize the noise amplification resulting from the filtering.

For instance, in order to illustrate the design of a filter, let
us call Bs the subset of B where ITS(E)I exceeds a lower bound
8’(85 may be disjoint for an oscillating transfer function). By using
this notation the noise and signal amplification factors that are given

by Eqs. (2.99) and (2.102) become

| B
1 1 -8
h L_ PR e
- Tk
B_
£y - 1 2+l J T, (K)]2 k] (2.106b)
%f |7, (k) 1% ak B85
LTS (] dk

For an electron microscope fn and fd can be plotted against the ob-
jective aperture angle (i.e., the Fourier domain B), and against the

threshold § . Linfoot's image evaluation criteria can also be
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computed for the filter, since they give a quantitative assessment of

the validity of the reconstruction (see Sec. 2.3.6.2).

D) Feature—seiective filters

Edges’or Tines in a particular direction can be emphasized
by applying feature-selective filters to an image35. Some practical
operators, which selectively enhance image features, will now be pre-
sented.

i) Directional derivatives

Differential operators extract edges by cross-correlating the
picture with a matrix of weights that geometrically resembles the
features to be enhanced. For example, in order to extract lines at a
slope v in the image, one can convolve the picture with a template
having a positive ridge centered on the line y = vX » with a nega-
tive valley on each side of the riqges. The spatial invariance of the
filter requires the weight values to be chosen in such a way that

their summation over the template vanishes.

i) Gradient operator

Une can deblur a picture in every angular orientation by taking
the derivative at each point in the direction that the grey level
changes the fastest. This nonlinear operator extracts edges by calling
any point an edge point, if the local gradient exceeds a given threshold.

An approximate representation of an isotropic gradient filter,
for discrete data, is given by the finite differences expression for a

squared gradient:
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vdl§ 5 = (d d. )%+ (d )2

die1,541 " 4,5 (2.107)

it1,j” di,j+1
This expression is not symmetrical, and therefore partially destroys
the rotational invariance of the operator. More symmetrical expres-
siuns for the gradient operator can be devised when the input data re-
quire their use.

ii1) Laplacian operator

The Laplacian operator is a matched filter that detects objects
on an edge criterion, since it outputs peaks at image points where the
second derivative is non-zero. For a digital picture, we can approxi-

mate the Laplacian by:

2 ~
(Vd)y 5 = (digq 5% Ay guq® dioy 5% & jo) - 445 5 (2.108)

The Laplacian operator is therefore equivalent to a convolution filter

kernel whose matrix is

0 1 0
-4 1
0 1 0

Tne output of this operator is proportional to the difference between
the grey level at a point and the average grey level in an annulus cen-

tered at the point.

2.3.6 Image Evaluation

The information capacity of an image has limited use since its

assessment depends on an a priori knowledge of the noise and signal

43

statistics However, various criteria have been proposed, based on
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linear filtering theory to evaluate the quality of optical imaging

53,54,55,56

systems In this section we will assume that the image,

di(r), may be related to the object by

~

di(r) =t xd + n(r)

where ts(r) is the system impuise response, and n{r) is signal-

~

independent additive noise.

2.3.6.1 Mean square error criterion
The mean square error criterion measures the deviation of a
channel output from its corresponding input signal. It yields a

statistical estimate of the variance of the difference distribution

1 i 2
£ = k[ [43(0) - (o) er
A
where A 1is the area of the image. The mean-square error can also be

expressed in terms of the signal and the noise power spectra:

E = -H [10,(k)1% - (IT (k) [ 1)+ NG [T ak  (2.109)
B

Minimization of this error is an often used criterion for decoding a

received signal, and it generates a family of optimum filters.

2.3.6.2 Linfoot's figures of merit

It is often desirable to characterize an imaging system in a
manner that is independent of its noise properties. Criteria have
therefore been generated in order to describe the properties of the

image point-spread function of the optical system when the noise spectrum
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is unknownss. These criteria, called Linfoot's figures of merit, in-
dicate how the image formation process alters the resemblance befween
an object and its corresponding noise-free image.

By analogy with the mean-square error criterion, we may intro-
duce a parameter which measures the closeness of the correspondence
between an object and its noise-free image. The only deviations which
are taken into consideration originate from the system transfer func-
tion. These deviations are specified by the normalized mean-square

discrepancy, called the fidelity, which is defined by

[dNF r) - d (r)] dr

o =1 - A
L NERGIRE
A

r

fl (01 2+L27 () - 17,0012 de

- _B (2.110)

5[ 1012
B

o~

We have shown in Sec. 2.3.4.2 that the CCF of two density
distributions could be regarded as an inference estimator. The CCF
integral may therefore yield a correlation measure between object and
image. For a noise-free system, the normalized CCF is named the cor-
relation quality, and is expressed as:

%i dyp(r) dy(r)dr %’J IDO(E)IZ Ts(k) dk
v, = . = £ | (2.111)
lldo(g)l dr ]B_L (01

=] —
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Final]y,_we can describe how the imaging device blurs the ob-
Jject contrast by damping the intensity fluctuations in the object

distribution. This contrast attenuation can be described by

H e ae § In0012 17,0012
5, - A - _B (2.112)
¥ 1eni? 5[ 10,0017 &
A B

where En is called the relative structural constant. This parameter
measures the image power relative to the object power and is linked to

¢, and ¥, by the relationship:

2.3.6.3 Signal-to-noise ratio

The signal-to-noise ratio is a measure of the detectability of
a signal that has been contaminated by additive noise. In the general
case where the system transfer function distorts the object represen-

tation, the signal-to-noise ratio, T , is defined by:

[ e e § [ 100017 112 6
= (2.113)
In(r)|2 dr L RIOTE
B

D |—
(ve)

An evaluation of T from the recorded image provides an indication of
the quality of the image. However, the most popular indicator for

image quality, when designing optical systems, is the mean square error
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criterion. It agrees reasonably well with subjective evaluation in
many cases and gives a quantitative assessment of an image restoration

procedure.
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CHAPTER THREE
FOURIER PROCESSING OF BRIGHT-FIELD ELECTRON
MICROGRAPHS OF WEAKLY SCATTERING OBJECTS

3.1 Introduction

An electron microscope can theoretically operate as a diffractom-
eter that is capable of performing structure analysis at atomic resolu-
tion. However, due to objective Tens aberrations which distort the
phases of the diffracted waves, the ultimate resolution of the instru-
ment is limited. It is possible to perform a posteriori corrections
to electron micrographs in order to regain lost resolution if the amp-
Titudes and phases of the scattered electron waves are known. The phase
information can be retrieved, as in holography, by using a reference
wave. In electron microscopy, bright-field images of weakly scattering
specimens can be viewed as in Tine ho]ography]4’2].

A theory of image formation has been developed for weak phase and
amplitude objects viewed in bright field; in this theory the image inten-
sity is Tinearly related to the object phase and amplitude modulations.
As in the formation of a single-atom image (see Sec. 1.2.2), eontrast
transfer functions govern the contrast mechanisms and the ultimate
resolution of the instrument. Various reconstruction schemes, based on
image filtering theory, have been devised to retrieve the complex object
transmittance and to enhance the resolution by correcting the pupil
function. One method recombines micrographs, taken at different de-

57

focusing values by computer processing Another scheme uses
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cpmp]ementary semicircular apertures (cf. single side-band holography)
and processes the picture optica11y58. Using these techniques it is
possible to make both a full object restoration and a heavy/light atom
discrimination at the same time.

In this chapter we shall present the formalism of the linear
theory of image formation for weakly scattering objects. Then we shall
describe the preliminary analysis of optical diffractograms which yields
the experimental parameters used in the image restoration programs des-
cribed in this chapter. A heavy/light atom discrimination technique is
then discussed, and its potential is then examined experimenta]]ysg.
Next, the validity of using linear transfer theory to interpret the con-
trast from periodic objectg, such as bovine liver catalase, is consid-

60

ered A plot of the overall transfer function is obtained from a

through-focus series of catalase, and then a partial image reconstruc-

tion is performedel. Finally, a study of the effectiveness of the
selective contrast enhancement method for heavy atoms is presented, and

side-effect contributions are discussed.

3.2 Linear Theory of Image Formation for Weak-Phase and Amplitude
Objects

In Eq. (1.56) we have seen that the image wave amplitude is linked

to the object wave function at the exit surface of the specimen by a con-
volution integral. When the specimen obeys the single slice approxi-
mation, we can write this equation as

vlry) = A J Ag(rg) Gry-ry) dry (3.1)

Aobt

where G(r) is the microscope impulse response for coherent illumination
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in the isoplanatic case. The central problem of electron microscopy

is to invert this equation in order to recover information that is con-
tained in At(ro) about the specimen structure. Experimentally, we
measure the image intensity, |W(fi)lz’ so that only |w(r1)| is known.
For weakly scattering specimens we know that the transmission function

is given by Eq. (1.43), so that we can write
M(eg) = 1+ i(ry) - ulr,)

for |u(ry)| < [o(ry) << 1 (3.2)

We shall now show that it is possible to evaluate At(fo) from
|[p(r;)|. In order to reconstruct the phase distribution, ¢(r,), and the
amplitude distribution, “(fo)’ we shall assume in the following analysis
that the object transmission function satisfies Eq. (3.2) to first
arder.

3.2.1 Contrast Transfer Function of the Microscope

3.2.1.1 Basic equations
We obtain the object spectrum by transforming Eq. (3.2):
So(k) = F{A M (r )} = AJ[S(K) + io(k) - M(k)] (3.3)

The image wave function is then given by the inverse transform of

50(5) phase shifted by the pupil function P(k):

bry) = 5 F{PEK) S (k)] (3.4)

We will assume that the microscope operates in the bright-field mode



-106-
with the objective aperture axially centered on the optic axis, so that

the objective aperture function satisfies the symmetry rule:

1 within the aperture
b(k) = b(~k) = (3.5)
- ¥ 0 outside
Combining Eq. (3.3) and Eq. (3.4) leads to the fo]]owing expres-

sions for the image function:

Ao Ay , .
TR | [18(K) - M0 bKJexp[~iy(K) + 2rikr;] dk

wir;)
Ay

=Wt Yaise(ng) (3.6)

where wdiff(fi) is the elastically scattered wave at the image plane.

The recorded image intensity can then be expressed as

2 R 2 2
e )" = =+ == ReLig ()T + Thgyee(ry)] (3.7)

=

where Wdiff(fi”z is called the dark field temm. In the first-
order treatment, the dark field term is assumed to be negligible in
comparison with the linear terms (we will later examine the impact of
this assumption on our restoration schemes, and how one may compensate
for it by iteration proceduresGZ). Expanding Eg. (3.7) yields

2

(e 1% = 3 {1+ [ Tie(k) - MO)Ib(K) expl-iy(K) +2rik-r, Jdk
- ker;Jdk

=

+ [ [-10%(6) = MR I (Jexpliy(k) - 2nik-r, Tak}
(3.8)
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Now, since ¢(ro) and u(ro) are real valued functions, we can write

2*(k) = o(-k)

M*(k) = M(-k) (3.9)

In conventional bright-field microscopy, the aberration phase shift
v(k) has two-fold symmetry; so that if the assumption of isoplanacy

is fulfilled® we have
v(k) = v(-k) (3.10)

Substituting Eq. (3.9) and Eq. (3.10) into the second integral
of Eq. (3.8), replacing k by -k , and then reversing the Timits of
integration, the image intensity reduces to:

2

eI = 3 11+ [ 12 sin v() o) - 2 cos () MDD b(K)

=

- exp(2mik-rs)dk} (3.11)

If we now define the contrast in the bright-field image as

2

2 2
[w(ry)° - A/M® 2
Con(r;) = —p——2— = Lo fyr 1% - 1 (3.12)
¥ AO/M A0

then the image transform will be defined as the Fourier transform of

the image contrastso:

j(k) = F{Con(r,)} = [2 sin y(k)e(k)- 2 cos v(kIM(k)Ib(k)
(3.13)

The interpretation of the image in terms of its transform is most

easily understood by considering the simpler cases of either a pure
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phase object or an amplitude object.

3.2.1.2 Phase contrast transfer function

A) Definition

The phase contrast transfer function describes the response of
the instrument at various freque;cies when examining a weak-phase ob-
Ject. Thin biological specimens or amorphous specimens, such as thin
carbon films, are almost pure weak-phase objects. In considering these
specimens, we shall ignore the inelastic scattering events that con-

63,64

tribute to the image intensity In this approximation, the image

transform given by Eq. (3.13) becomes
Gpn(k) = 2b(k) sin v(k) e(k) = Ph(k) o(k) (3.14)

where Ph(k) = 2 sin y(k) b(k), and is called the PCTF. Equation
(3.14) defines then a linear relationship between image contrast and

object-phase distribution:
Con(r;) = ¢(ry) = 7 {Ph(K)} (3.15)

The image transform is thus identical to an object transform that has
been modulated by the transfer function Ph(&) . The latter function
reduces the amplitudes of the Fourier components by 2 sin y(E) .
Consequently an aberration-free lens would give no contrast at any

spatial frequency (this statement is only true if we neglect the cur-

14

vature of the Ewald sphere ', see 3.2.3.1). The physical significance

of the PCTF is best illustrated with reference to Figure 3-1 showing

graphs of 2 sin y(k) = 2 Si"(gi'cse4 - g-AZez) versus 6 at various

~
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defocusing values AZ . At Gaussian focus (i.e., AZ = 0) low-resolu-
tion components of the object transform are obliterated, since
sin y(k) is solely determined by the spherical aberration'term which
becomes significant at higher spatial frequencies. Contrast reversals
occur where the transfer function goes through zero and changes sign;
thus indicating a phase change of 180° for the corresponding spectral
components. These phase changes 1imit the resolution to a value
defined by the first zero crossing of sin Y(&) . Beyond this Timit,
object details are imaged with rapidly alternating contrast as a func-
tion of spatial frequency. The optimum defocusing, Azopt’ is attained
when the image distribution is a faithful representation of the object
structure; that is, when the transfer function is close to its maximum
amplitude over a broad range of spatial frequencies. The conditions
for optimum phase contrast are given by Eq. (1.38), and they correspond
to a phase shift at the optimal objective aperture half-angle of
y(egE§ = —0.7]ﬁ)10. For example, the optimum defocusing is AZ0pt =
8608 for a microscope operating at 100 keV with CS = 1.4 mm,

In Fig. 3.1 the curve corresponding to AZOpt = 8GOR shows that
the image and object transforms are identical over the range
0.0828°1 < |k| < 0.20 R71, where details are being imaged with "true"
phase contrast. At larger AZ values, the range of normal phase con-
trast shrinks down and moves to lower |k| values (i.e., at
a7 = 50008 the range 0.03281 < |k| < 0.0658"" s imaged with en-
hanced phase contrast). Selective contrast enhancement of object
details can thus be achieved with an appropriate setting of the defocus-

65

ing parameter. Thon has developed a useful method™™ for determining
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the defocusing dependence of the PCTF on AZ , by plotting the phase-

contrast characteristic curves.

B) Phase transfer characteristics
Maximum contrast in weak-phase objects occurs for phase shifts

which are odd multiples of =/2 :

2
v(8) = %X'Cse4 - %-AZG = (2n-1) %- (3.16)

Thus, for any given dcfocus, thc objcct details which are transmitted

with maximum phase contrast are:

2 - -
b= /e = il & [(8)7 & Lncliagl/2ynl/E (3.17)
S S S

For example, one can read from the characteristic curves shown in Fig.
3-2 which spatial frequencies are transferred at a given defocus AZ.
The characteristic curves shown in Fig. 3-2 can be determined
experimentally by{taking a through focus series of a thin carbon film
which has an almost white frequency spectrum, For such an object

|e(k)] =1, so that
[3pn (k)| = 2b(K)[sin v(K)| (3.18)

The Fourier transforms of these micrographs show ring patterns corres-
ponding to the transmitted frequency bands, so that the defocusing and
axia1 astigmatism can be measured (see Sec. 3.3.3.2).

3.2.1.3 Amplitude contrast transfer function

A pure weak-amplitude object has a transmission function that is

given by2]
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Bamp(Tp) = 1 = u(ry) for lu(r )| << 1 (3.19)

Using Eq. (3.13) we can write the image transform of a weak-amplitude

object as

Jamp(K) = 2b(k) cos y(k) M(k) = -Amp(k) M(k) (3.20)

where Amp(k) = 2b(k) cos v(k) and is called the amplitude contrast
transfer function (ACTF). For an aberration-free lens, the ACTF is
constant within the oben region of the aperture; hence all frequencies
within this range are imaged with the same contrast as the object.
Figure 3-3 shows plots of Amp(E) for various defocusing values, and
it illustrates the fact that only low frequencies in amplitude modula-
tion are transferred to the image. |

Amplitude modulation is always coupled with some phase modula-
tion, and it arises in different ways for real specimens. The amplitude
of the primary wave can be modulated by the combined effects of the
absorption of electrons by the specimen, removal of elastically scat-
tered electrons from the image forming beam by the objective aperture,
contributions from the imaginary part of the scattering amplitudes, and
inelastic scattering events. In the section on single atom imaging, a
phenomenological equivalence between some of these contrast mechanisms
was demonstrated. We showed that the electron loss resulting from
scattering outside the objective aperture amounts to an absorption of
the electron wave by the object. For an extended cluster of atoms,
however, we must also investigate the effects of plural elastic scat-

tering events on the intensity of the electron wave66. If the specimen
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exhibits local lattice periodicities, the sizeable Bragg diffracted
beams will also affect the validity of our first-order expansion of
‘ At . In order to account for these additional scattering phenomena,
second-order terms in the expansion of the phase transmittance,
exp[i¢(§0)], must then be retained in the analysis (see Sec. 3.2.3.2).
These diffraction effects are in fact negligible in the case of thin
amorphous structures.

Inelastic scattering introduces a Tow-resolution amplitude term
in the object wave, due to chromatic aberration. In the bright-field
mode, these mutually incoherent electrons yield a blurred image for
small AZ , so that their contribution to the image can be considered
to be noise. It was shown, however, that the inelastic image cannot
be neglected at larger defocusing va]ues67 (see 3.2.3.3).

Amplitude contrast, although it plays a minor role in high-
resolution bright-field microscopy. provides a means of discriminating
between atoms of differeht atomic number. Image processing schemes,
which reconstruct the imaginary part of the structure factor, have
indéed demonstrated a selective contrast enhancement59 (see 3.3.4).

In these schemes it is necessary to maximize the amplitude modulation
in the image. The appropriate defocusing values can be read directly
from the amplitude transfer characteristics, which indicate the object
details that are transmitted with maximum amplitude contrast. Maximum
contrast for weak amplitude objects is achieved when the phase shifts
are multiples of 1 :

v(e) = I co* - Taze? = nr (3.21)

so that the characteristic curves are described by
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A= { + [(AZ 2 22231/2} 1/2 (3.22)
In Fig. 3-4, characteristic curves have been plotted for various values
of n . These curves clearly show that the range of AZ near Gaussian -
focus transfers the high spatial frequencies with optimal amplitude
contrast.

3.2.1.4 Combined phase and amplitude contrast transfer function

In the first-order treatment the dark field contrast and plural
scattering are ignored; so the image transform of a weak phase and

amplitude object is, by virtue of Eq. (3.13), equal to
j(k) = @(k) Ph(k) - M(k) Amp (k) (3.23)

We have established, in our analysis of the imaging of a single atom,
that the relative contribution of scattering contrast versus phase
contrast has the same order of magnitude as the anomalous phase shift

angle, so that

M(k)

15()] = |- gy = tan n(e) << 1 (3.24)

3]

A similar result holds for a weakly scattering specimen, if the
scattering properties of the object can be described by a complex struc-

ture factor, previously defined in Eq. (1.14) as

N : .
F(k) = T2 |£.(0)] exp(in:(0) - 2wiker?)
~ j=1 J J ~ ~0

In this relationship we have neglected thickness effects and assumed
that the potential field of the atom is not appreciably altered by

molecular binding. In these approximations the ratio of amplitude
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contrast to phase contrast is approximately proportional to n(®),
and therefore increases linearly with the atomic number Z . Conse-
quently, the image transform of a thin amorphous specimen, or of a
stained biological molecule, can be written as

3(k) = 2b(k) @(k)[sin v(k) + (k) cos y(k)] (3.25)

-~

where |2(k)| << 1 . The overall instrument contrast transfer function

i1s then defined by61

N |
C(E) = o5 V(K) ST"[Y(E) + V(E)] (3.26)

where

v(k) = tan™! E(k)

and 1/cos v(k) 1is a normalizing factor close to unity, since
|z2(k)] << 1 . We see that the effect of a small fraction of amplitude
contrast is to introduce an additional phase shift, v(&), in the PCTF.
The modified PCTF, 2b(5) sin[y(E) + v(g)], yields s]fght]y different
optimal contrast conditions in comparison to the case of a pure weak
phase object. The discrepancy between the two optimal microscope
settings varies as a function of the imaged atomic species.

The dependence of E(E) on Z provides a useful tool for
element discrimination. A separation of the superimposed images of
heavy and 1ight atoms can be achieved by combining the transforms of
two or more micrographs taken under different transfer conditions (see
Sec. 3.3). If the restoration procedure compensates directly for the

spatial frequency distortions induced by C(E), an experimental
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determination of 5(5) becomes necessary. A theoretical evaluation
of E(k) 1is difficult in practice since real specimens are built from
atoms with different atomic numbers. An example of this experimental
determination of C(k) 1is shown in the Fourier analysis of a through-

~

focus series of uranium stained cata]aseﬁl (see Sec. 3.4).

3.2.2 Effects of Spatial Incoherence and Chromatic Aberration on
the Contrast Transfer Function

Spatial incoherence and energy spread were shown in Sec. 1.3.2.2
to destroy the linearity between object and image wave amp]itudeses.
Provided that the object contrast is small, we shall prove that the
Tinear transfer theory of image formation remains valid for spatially
and chromatically incoherent illumination. In this case, the phase
and amplitude transfer functions can be represented as a product of
an enyelope function and of the corresponding coherent contrast trans-

fer function69’70’71.

Therefore, including partial coherence in the
analysis still allows us to restore the complex object wave function

from the microscope image.

3.2.2.1 Spatial incoherence
The imaging characteristics of an electron microscope are those of

a nearly coherent system, since the illumination angle is much smaller

than the objective apertﬁre angle. We have previéﬁ§1y come to the
conclusion that the second condenser aperture can be considered the
effective source of illumination and is characterized by the angular
distribution Q(Eo). For weakly scattering objects, the effects of

partial coherence are accounted for by replacing exp[-iy(k)] in the
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formalism by the integral (see Appendix AI)

f exp{-i[y(k)+K ) - v(K )I}Q(K,)dK, (3.27)

BCOI‘I

where Bcon is the open area of the condenser aperture and

0, .
- _obj
l.'SO' + !El < km— I

If we restrict our analysis to high spatial frequencies satisfy-
ing |k| >> |Kj| , the above substitution amounts to multiplying the
constant transfer functions for coherent illumination by an envelope
function Esi(5)71 For a uniformly illuminated circular source, this

envelope function can then be written in analytical form (cf. Eq.(A.21))

as
3
i 2J1[2"9con(cse - AZ8)/A] {;
si(0) = 3 (3.28) |
ZHGCOH(CSG - AB)/A |
where ®con is the condenser aperture half angle and axial astigmatism

is assumed to be negligible. By inspecting Eq. (3.28), we notice that
the envelope function contains a section around 6 = ¢ZT7E;’ where
Esi(e) leaves the coherent transfer functions unchanged at underfocus-
ing. This section is clearly visible in the plot of Esi(e) shown in
Fig. 3-5.

The corresponding PCTF, corrected for partial coherence, is
plotted in Fig. 3-6d. This figure reveals a decrease in the effective
resolution, caused by a sharp attenuation of the high spatial frequen-

cies.
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6(rad) ?
(a) © } + t i

0.006

8(rad) ]
(b) t + 1

&(rad) /
0 } t t 1
(e) o 0.003 0.006 0.008 Al//// 0.0

(d)

In this figure the corrected phase contrast transfer func-
tions, 2 sin y(8) E(8), are shown as solid lines. The PCTF
has been corrected for spatial incoherence and chromatic
aberration. The envelope functions, E(8), are shown as dashed:
lines and have been p]otted for identical electron optical
parameters as were used in Fig. 3-5: (a) E(6) = Egj(6)Eqg(6)

(6) (b) E(o) = Exlo)s (c) E(0) = Eq(0);

i 86 |
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3.2.2.2 Chromatic incoherence
A) Energy spread

If Ne(du) is the energy distribution of the incident electron
beam about the mean, we have seen in Sec. 1.3.2.2B that the Fourier

transform of Ne(au)
., 6U 2
L(k,0) = exp(-miA o CCIEI ) Ne(dU) d(su)

completely defines the effect of chromatic aberration on the image.

If Ne(GU) is symmetrical about its mean value, an energy spread can

70

be characterized by an envelope function Ees(e) (see Appendix A2).

Experimental measurements have led to the conclusion that Ne(GU)

satisfies a Maxwellian distribution which may, in practice, be

25

approximated by a Gaussian of the same halfwidth™ (i.e., 6U

es)‘

In the assumption that the object scatters weakly, the effects
of energy spread on the contrast transfer functions can be described
by the envelope function (cf. Eq. (A.36)):

]‘ZZKBTfi]C 2

- C 7o
Ees(e) - eXP["( U -;\"”/2_

) (3.29)

where Tfi] is the tungsten filament temperature, kB the Boltzmann
constant, and CC the chromatic aberration constant. A plot of

Ees(e) is given in Figure 3-5 for Tfﬂ = 2800°K (i.e., a hairpin
filament), and for CC = 1.4 mm. Figure 3-6¢ illustrates hdw the
attenuation term Ees(e) mainly affects the high-resolution frequencies

of the PCTF corrected for energy-spread effects.
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B) Time fluctuations

Fluctuations in the objective lens current and in the accel-
erating potential introduce an additional phase shift in the aberra-
tion function (cf. Eq. (1.77)):

: AT, (t')
T AU(t') [} 2 _m '\l
-ch[ U -2 T 16 —7\-AZ(t )6

which can be interpreted as a time-dependent defocusing error term.
Provided that the distribution Hz(az) of &z values is symmetrical

about their mean during the exposure time, the random fluctuations

multiply the contrast transfer functions by an envelope function70

(see Appendix A2):

5]

£eg(0) = [ explori 620°2) W, (62) d(s2) (3.30)

GO

For instance, a Gaussian distributed H,(8z) with a halfwidth

given by
op = L + (2?212>)2]]/2 (3.31)
leads to an envelope function
£4g(0) = expl-(£E 2 08)") (3.32)

In a modern high-resolution microscope. lens and current supplies are
regulated in such a way that their average values lie in the range
(<aU>/U) < 2 x 10"8/min and (<ai>/i,) < 2 x 10°%/min. Therefore,

the magnitude of the defocus standard deviation is Opf = 65R. The
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corresponding envelope function is plotted in Fig. 3-5 and its asso-
ciated PCTF, corrected for chromatic incoherence due to time fluctua-
tions, is shown in Fig. 3-6b. An examination of Fig. 3-5 reveals that
these fluctuations result in a loss of contrast at high spatial
frequencies where the width of a contrast zone becomes comparable to
the width Orf of the range of defocus fluctuations. Consequently,
these instabilities place a limit on the point resolution of the micro-
scope. |

3.2.2.3 Combined effects

The properties of the electron microscope contrast functions
for partially coherent illumination, both spatially and chromatically,
have been examined in detail in the case of weakly scattering objects.
We have reached the result that the Tinear theory of image formation
still holds, as long as the object contrast is small. Contrast
transfer functions can then be represénted as a product of an ideal
transfer function for coherent illumination and an envelope function,
E(E), resulting from the combined action of the resolution limiting

s

effects Therefore, we can define the partially coherent transfer

functions as:

TP(k) = 2b(k) sin y(k) E(k) = 2b(k) sin y(k)E; (K)E, (K)E,¢(K)
(3.33)
and
TA(K) = 2b(K) cos y(k) E(K) = 2b(k) cos ¥(K)Eg; (K)Eqq (K)Eq(K)

(3.34)
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‘where TE(E) is the modified PCTF and TQ(E) is the modified ACTF.

A plot of TE(E) with the same electron optical parameters as in the

previous examples, is given in Fig. 3-6a.

3.2.3 Applicability of the Linear Theory of Image Formation

For weakly scattering specimens, the output signal of a micros-
cope, (i.e., the recorded image intensity) can be regarded as a linear
superposition of elementary images derived from weighted object points.
The microscope imaging properties are then described in a simple way
by its phase and amplitude contrast transfer functions. Image recon-
struction schemes, which correct for the phase errors from the pupil
function, can be implemented according to the theorems of linear fil-
tering theory.

Various approximations were made in Sec. 3.2.1.1, which enabled
us to write the image transform, j(k), as a Tinear combination of
@(5) and M(&) (cf. Eq. (3.13)). The validity of these approximations
will now be discussed, assuming the illumination to be perfectly co-

herent.

3.2.3.1 Influence of specimen thickness
The elastic scattering of electrons has been described by a
single slice model, where the phase and amplitude changes of the elec-
tron wave are considered to be localized in a plane perpendicular to
the electron beam. We have seen that, for this approximation to hold,
the effects of Fresnel diffractibn within the specimen must be negli-
2

gible (i.e., Oobjto/A = At/pi << 1). An upper bound for thickness
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values, above which Fresnel diffraction cannot be neglected, has been

calculated for bright-field imaging to be20

= 0.5 62 (3.35)

For instance, at a resolution of P = 3K, the upper bound for 100 keV
electrons . is bf 1203

We shall now examine how thickness alters the phase and the
amplitude components of the complex structure factor. It can be shown
that even in the first Born approximation, phase contrast is not the‘
only contrast mechanism in the bright-field imaging of atomsm’62 (see
Appendix B). If we neglect the anomalous phase shift contribution,

the transform of the object phase modulation then becomes (cf. Eq.

(B.10))

Na -2n1k~rg wzgez
o(k) =) f&(e) e 77 cos(——) (3.36)
~ A |
or, equivalently,
H _]‘ P ZJ 2
#(rg) = A 321 {f5(8)} % 8(r -ro)+ 7 {cos( )}(3.37)

Now for the sake of simplicity, we will assume that our specimen con-
sists of identical atoms. Then, in this approximation Eq. (3.37) can
be written

1 N, aneZ .
o(r ) = A F '{f'(8)}x [Z §(r, r * ¥ {cos( )11 (3.38)

~0

Equation (3.38) can be compared to Eq. (1.49) that was derived under
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the assumption that the specimen could be assumed to be two-dimensional:

N .
¢2d(ro) = A ;“]{f'(e)}* Z? G(Eo'fg)
: -

From this comparison we conclude that atomic resolution is impaired by
the overlapping effect of atomic layers. This resolution loss is
caused by the blurring function, }"]{cos(wzgez/k)}, which is injected
at each point of the projected structure.

When anomalous scattering is taken into account, the relation-
ship between ¢(r0) and the projected density function becomes ex-
tremely complex. The phase modulation term may be expressed, using
Eq. (B.10), as

N 1TZ‘].62
o(r,) = A jz‘]“ [,’f“]{fj(e)}* 7 cos ( =)}

-1 1. nZgOZ s
- F M) F {sin(——) ]+ 8(ry-rd) | (3.39)

Consequently, both the real and imaginary parts of the atomic scatter-
ing amplitudes contribute simultaneously to both the phase and the
amplitude contrast images. This phenomenon obviously counteracts the
heavy/light atom disecrimination effect, which relies on the 7 depend-

ence of the anomalous phase shiftﬁz.

3.2.3.2 Effects of plural scattering and contribution from
the dark-field term

The object wave function at the exit surface of a thin specimen,
assuming a coherent incident beam, can be described by the transmission
function, At(fo)’ given by Eq. (].42).' For weakly scattering objects

we showed that the exponential in Eq. (1.42) can be replaced by a series
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taken to first-order terms (see Eq. 3.2). If the crystal exceeds the
threshold thickness defined by Eq. (1.44), then the first-order theory
must be corrected.

In order to correct the first-order theory,we can retain higher-
order terms in the exponential expansionof Eq. (1.42). These higher-
order terms describe plural scattering events60, and to second-order

Eq. (3.2) becomes

My(ry) = 1+ia(ry) -3 6°(r.) = u(r,)
for [u(rg)| < lo(ry)] <1 (3.40)

An additional amplitude contrast term arises from the interaction of the
objective aperture with second-order term -0.5 ¢2(fo)‘
By analogy with the derivation of Eq. (3.4), the wave amplitude

at the image plane, modified by second-order terms, can be expressed as
Ao [ 1
w(fi) = M-J So (&)b(g) exp[—iy(g)-+2n15~ri]dg (3.41)

The modified object spectrum, SéI(E) is now given by

s Tik) = a(k) + 1o(k) - 3 o't (k) - M(K) (3.42)
where @I[(k) is the Fourier transform of ¢2(f0) and can be defined
by

(DII(!&) = J'(I)(E‘) (I)*(E-El)dkl - @II*("Ei) (3’43)

The image transform can then be computed from
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3(k) = F{con(r;)} = f selik )i (k' k) b(K") b(Kk'-k)

-

+ exp{-1[y(k') - y(k'~k) ]} dk' (3.44)

After substituting Eq. (3.42) into the expression for j(k), we shall neg-
lect terms of higher order than two. In Eq.(3.43) we notice that the ob-

ject spectrum still obeys the symmetry rule Sgl(k) = SéI*(—k). Hence,
a derivation exactly similar to the one given in the first-order treat-

ment (see Sec. 3.2.1.1) will yield for the image transform:

iKY = 26(k) sin y(k) 2(k) - 25(k) cos (k)

-

c IMk) + 3 0 ()T + De(k) (3.45)

N —

Here, Df(k) is the transform of the dark-field image and is approxi-

mately equal to

De(k) = [o(k') o(k-k')b(k'Ib(k'-k)exp{~i[y(k') - v(k'-k)I}dk*

(3.46)

g§+——8

The second-order theory of image formation introduces two additional
terms: a dark-field term, Df(k), and a term stemming from double scat-
tering within the specimen, Dds(k)’ which is equal to

o2}

D4s(K) = -b(k) cos v(K) [ o(k)e*(k-k') k! (3.47)

-00
This latter term can be separated into two parts; the first is a con-

tribution from k' values falling outside the objective aperture, and
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the second part consists of a second-order correction to the phase
contrast imageﬁo.

Second-order effects will be important near the zeros of the
first-order PCTF. In the case of a crystal, these additional contrast
terms can be attributed to the mutual interaction between two of the
strongly diffracted beams and also to the existence of a significant
dark-field term. It follows that their contribution to the image must

be evaluated for each particular case, whenever resolution extending

schemes are imp]emented61.

3.2.3.3 Contribution from inelastic scattering

The overall effects of inelastically scattered electrons are
to reduce image contrast, thermally heat the specimen, and to cause
radiation damage. These combined effects will limit the information
content of a microscope image. We know that for weakly scattering
objects, plasmon excitation is the predominant inelastic scattering
processﬁ3.

If we call dEp the plasmon energy loss, we can show that the
inelastic angular distribution decreases as (62+ eg)'], where
ee = GEp/ZU. Typical values of a single plasmon loss are a few eV,

so that the distribution is sharply peaked in the incident beam direc-

tion. The total inelastic cross section, o.

inel? for this process has

been computed by Lenz, who used a Thomas Fermi model for the atom in
« 21/3‘]7
4/3

order to demonstrate that o,

inel In contrast to this, the

elastic cross section, Tays varies as Z We see, therefore, that

inelastic scattering predominates at low Z , and that the linear
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on the atomic number could be used to dis-

criminate between heavy and light atoms72.

dependence of Ue1/cinel

In conventional electron microscopy the image formed with ine-
lastically scattered electrons is blurred by the chromatic aberration
of the objective lens. Contrast calculations have been made as a
function of defocusing, which indicate that in the normally used de-
focus range (i.e., 0< |AZ| 5,10008) chromatic aberration Timits the
inelastic image resolution to about 203.67 However, the inelastic
image displays a much higher resolution at very large underfocus
values. In this range of AZ it becomes comparable in intensity to
the elastic term and consequently cannot be ignored in the analysis.
The effect of inelastic scatfering is to modulate the amplitude of the
primary wave, thus appearing as an additional contribution to u(fo) .
In our treatment, inelastic scattering will be neglected (although it
is particularly strong for carbon) and assumed to yield an unstruc-

tured background image blurred by chromatic aberration.

3.3 Image Restoration Methods

3.3.1 Principles

If the interaction between the object and the illuminating
beam is weak, we have shown in the previous section that the electron
current distribution in the bright-field image is linearly related to
both the phase shift and the amplitude reduction of the electron beam.
This relationship remains linear even under conditions of partial co-

herence.
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In Eq. (3.13) the formation of the final image is described as
a product of two separate entitiés: the scattering properties of the
specimen, and the transfer properties of the imaging system. If the
transfer functions are known, it should then be possible to unambigu-
Ously reconstruct the object from at least two micrographs taken under
different imaging conditions. These two micrographs are taken so as
to fill the information gap corresponding to the zeros of the transfer
functions. In order to obtain this information the micrographs can be
recorded at either different AZ, different conditions of illumination,

73,74

or using different apertures In these latter cases, however, the

image transform is no longer expressed by Eq. (3.13), since b(k) # b(-k).

Single side-band‘holography is one of the methods which has
been implemented optically to compensate for the effects of the oscil-
lating transfer function. This method consists of taking bright-field
images of the same object with two complementary semi-circular aper-
tures and then extracting separately the phase and amplitude components
of the micrograph by an a posteriori optical reconstruction. However,
the charge build-up on the apertures introduceJ$purious phase shifts,
which must be compensated for, and 1imit the practicability of this
resolution extending schemess.

The image reconstruction process used in our research combines
micrographs with different defocusing in order to correct the informa-
tion reduction and to retrieve the phase and amplitude contrast con-

tm‘butions59

. This scheme requires for its correct execution, an ac-
curate determination of the pupil function and the ability to perform

a perfect registration between the micrographs of a defocus series. It
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then calculates the object Fourier transform from a weighted sum of
the transforms of the micrographs. The complexity of the procedure
necessitates the use of a digital computer to perform these operations.
A preliminary analysis of the optical transforms is, however, neces-
sary in order to judge the quality of the input series with regard to
épecimen drift and objective lens astigmatism, since these effects
limit the performance of the restoration. Optical transforms and their

interpretation will now be discussed.

3.3.2 Analysis of Optical Diffractograms

3.3.2.1 Optical bench set-up

The optical diffractometer used in this work is illustrated
schematically in Fig. 3-7. It consists of a Spectra Physics 5 mW He-Ne
laser, a beam expanding lens with a 12 uym pinhole that removes the
stray light, a collimating lens forminé a parallel beam incident on the
‘micrograph, a diffraction lens of long focal length, a magnifying lens
enlarging the diffraction pattern by a factor df Mp, and a camera re-
cordiné the power spectrum of the transparency. For a given spatial
frequency in the object, 1/A , the radius ry at which the diffraction
spot appears in the transform plane of the optical diffractometer is
given by

r, = e | (3.48)

where Ag is the wavelength of the laser light. The diffractometer is
calibrated using a diffraction grating of known spacing. This calibra-
tion yields the quantity, A f Mp, in Eq. (3.48).

The optical diffraction pattern formed from an electron micro-

graph is directly related to the structural detail recorded on the
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plate. If the image contains periodic detail, discrete diffraction
spots will be observed in the optical diffractogram. If a periodic
specimen is supported by an amorphous substrate the diffractogram will
consist of diffraction spots superimposed with a diffuse noise spectrum.
The noise spectrum is from the substrate and it is altered in a char-
acteristic fashion by such imaging defects as astigmatism, specimen

drift, and out of focus effect565.

A quantitative analysis of the
noise speclrum is possible in the case of bright-field images of thin
Substrates.

3.3.2.2 Evaluation of defocusing and astigmatism

In bright-field microscopy, phase contrast yields the strongest
contribution to high-resolution image structure. Thin biological spec-
imens rarely exhibit diffraction maxima at the atomic resolution level
because of local distortions in their periodicity. However, they are
often supported by a thin amorphous film, which allows one to make a
determination of the electron microscope paramecters necessary for image
processing. In the high spatial-frequency range, these optical trans-
forms correspond to the power spectrum of a weak-phase object, which

according to Eq. (3.14) is proportional to
. 2 _ . 2
|3pn (1% = 126(k) sin (k) o(K)]

in the case of a coherent illumination. In this frequency range the
PCTF, 2 sin y(E), is wildly oscillating and transmits only certain fre-
quency bands to the image. Consequently, a diffractogram will show the
transferred frequency bands as bright rings when the corresponding

frequencies are present in the specimen phase modulation. A thin layer
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of amorphous carbon constitutes an ideal specimen for checking the
transfer conditions of a microscope. The frequency spectrum of amor-
phous carbon is approximately white, since the carbon grains vary in
size from very small (a few angstroms) to quite large (several nano-
meters). This wide frequency spectrum accounts for the speckled, un-
informative appearance seen in a bright-field micrograph of such a
specimen.

In general, the optical transform of a high-resolution bright-
field micrograph will yield a map of sinzy(E), and therefore allow an
evaluation of the defocusing and the‘axia1 astigmatism. As an example
of such a determination, consider Fig. 3-8, which illustrates the
process of extracting AZ, AZa and g from an optical transform.

Since the outermost ring corresponds to phase contrast we can write
A 2 . 2.T 4 7 5.2
IJ(E)I « sin (EX'CSB - X—AZG ) (3.49)

where AZ = AZ + 0.5 AZasin 2(¢—¢0) is the effective defocusing at the

~

position k . An examination of the elliptical pattern yields by
the reference angle of the axial astigmatism, and the radiij Fmax and
Pmin that correspond to the intensity maxima along the principal axes

of the ellipse. We can then calculate Min and A from Eq. (3.48).
These A values are then read into the phase contrast transfer charac-
teristics (plotted for the appropriate spherical aberration constant)
from which one can determine the defocus values Azmin and Azmax cor-
responding to the transferred frequency band. If the measured A values
fall on either the n =0 or the n =1 characteristic curves, the

edges of the visible contrast zone are defined by:



Fig. 3-8, Optical transform of micrograph (a) of the catalase series
shown in Fig. 3-20. This transform illustrates how one
determines AZ, &Z., and ¢, from the principal radii, r in
and P s of the outermost elliptical ring. This Duter‘mus?
ring corresponds to phase contrast.
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y = [(2n-1)7/2 + 0.37] 65 Therefore, a measurement of the observed
zone bandwidth will provide an alternative way of estimating AZ and
AZa, which can be a more accurate value than can be determined by
measuring the peak location if the peak is not easily discerned. For
example, by using this procedure, we have analyzed Fig. 3-8 and
determined the following parameters: Aimin > ~8253, AZmax ~ -475R,
AL = -6508, and AZa = 3503. In this case the amplitude contrast that
is transferred is clearly visible in the innermost ellipse shown in
Fig. 3-8. The optical transform is then proportional to

. 2 . 2m_~ 4T 5.2
[3(k)| C°S~(21 Cg6 LAY ) (3.50)

which allows an evaluation of AZ, AZa and % from the amplitude
contrast transfer characteristics (this determination is less accurate

since re = 1/4).

3.3.2.3 Detection of specimen drift

The impinging electron beam induces local thermal gradients in
the specimen, which cause specimen motion during the photographic re-
cording of the image. The recorded'imagevis therefore an incoherent

superposition of partial intensities:
t

- |
[bgelri) % = %;j |w<r1-)|2 *8[r.- D (t')]dt*  °  (3.51)
0

where Qr(t') is a time dependent function describing the image motion.
The image motion cén also be described as a convolution of the ideal

image with a blurring function, bd(fi)’ given by
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t
[ N7 gt
bylr;) = E;-j o[r; - D.(t')] dt (3.52)
0

If motion has occurred during image recording, we see from Eq. (1.51)
that the resulting image will be multiplied by an image motion OTF,

Bd(E)’ defined by
tY‘
B4(k) = F{by(r;)} = %;-J exp[-2mik+D,(t')] dt (3.53)
0

Consequently, the observed intensity distribution in the optical dif-
fractogram becomes proportional to IJ(E) Bd(E)IZ-

The transform will show fringes if image motion has occurred
during the recording75. These fringes correspond to a modulation of
the contrast transfer function by the image motion modulation trans-
fer function, IBd(E)I .. For example, if the specimen drift has a

constant velocity, Vq the modulation function is expressed as

s1n(wtr5~!d)

|B4(K)]| = (3.54)

Tt Kevy
This drift will show up in the transform as a fringe pattern overlaid
upon the phase contrast zones; the resulting fringes are equidistant
and their spacing is inversely proportional to the drift velocity.

It is possible to design an image restoration filter to deblur
an image that has undergone motion during the recording, if the speci-
men drift function Dr(t') is known. However, it is more practical to
re-record the image if the optical transforms indicate that specimen

motion has taken place.
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3.3.3 Restoration by Deconvolution

The oscillations of the contrast transfer functions and the
limited band of spatial frequencies that are imaged with nearly maximum
contrast bound the valid resolution of the instrument. Therefore, only
a single broadened frequency band of optimal contrast can be obtained
at an appropriate defocus. This would be sufficient if one were imag-
ing periodic objects, but very few high-resolution specimens contain
Just one frequency component. Thus, for a general object, artifacts
that are produced by image reversals and by missing frequencies at the
zeros of the transfer functions make the image interpretation difficult.
Therefore. an increase in the resolution of an electron microscope can
be gained by an a posteriori compensation for its lens aberrations.

In the following diécussion, we shall assume that one deals
with a weak phase object (i.e., M(E) = 0) that is imaged under partially
coherent illumination. According to Eq. (3.33), the image degradation
can then be considered as the convolution product of an ideal image with
a point spread function tz(fi)’ superimposed onto a noise background
“(Ei)' (The noisg originates from photographic graininess and from
inelastic scattering blurred by chromatic aberrations). - We can then

write the image contrast as

fi"fo) o(r )dr0+ n(r:) (3.55)

~0" '~ ~1

con(ry) = | £

If we neglect diffraction effects caused by the objective aper-

ture, then the point spread function can be written
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€(r;) = ¥ {2b(k) sin v(k) E(K)} = 77142 sin y(k) E(k)}(3.56)

The design of an inverse filter that will partially restore the
projected object phase distribution from its associated image contrast
function has been discussed in Section 2.3.5.2C. The practical imple-
mentation of an inverse filter requires a knowledge of tZ(ri); there-
fore electron optical parameters must be accurately determined before
the restoration procedure. Determination of these electron microscope
parameters can be achieved by the Teast-squares fit procedure pre-
sented in the next section. We shall then derive criteria for the
validity of a reconstruction, and we shall illustrate the practical

Timitations of this method76’77.

3.3.3.1 Determination of the electron optical parameters

A) Principles

Optical diffractograms yield values for defocusing and axial
astigmatism that are subject to a significant experimental error.
However, the transfer function rz(g) and the position of its zeros
must be known very accurately for the design of an inverse filter.
In order to improve the determination of AZ and Aza, a least
squares procedure can be used which fits the transform of an amorphous
film with the function, gh(e)lsin v(6,¢)], where g9,.(8) represents
the radial dependence of the spatial frequency spectrum bf the fi1m77.

A carbon support film is ideal for this procedure, since it
has an almost white frequency spectrum. In this procedure a portion
of the image containing this film is Fourier transformed digitally.

The electron microscope parameters are then found at the wminimum of
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the least-squares sum

N
Bem = 1;? [9,.(65) sin v(6;,0;,AZ,0Z,,0,)] - ch(ei,¢i)|]2 (3.57)

where ch(ei’¢1), is the amplitude of the carbon film Fourier coef-
ficient at 51 . The sum in Eq. (3.57) is evaluated over an annulus-
shaped frequency band containing Np pixels that is designed in such a
way as to exclude the amplitude transferred central zone.

Optical diffractograms of bright field images of amorphous car-
bon show that the power spectrum has a radial dependence of 1/92 78.

Consequently, we can express the function gr(e) as

AY‘

g (8) = = (3.58)
)

where Ar is a constant to be determined. This radially dependent
weight-function accounts for .the shape of the atomic scattering ampli-
tude and for partial coherence effects that attenuate high-spatial
frequencies.

B) Computer algorithm

The autocorrelation integral, ¢d,d(fi)’ of an area of a micro-
graph that shows only the carbon substrate is first calculated by the

relation

6g,alry) = ¥ {DLK) D*(K)}

where D(g) denotes the discrete transform of a selected carbon area
(refer to Sec. 2.3.4.2C). A central portion of the ACF, 94 d(ri)’ is

then cut out and multiplied by a radial function w(r), where
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1 if r<rg
w(r) = . (3.59)
2,, 2 .
eXP['(Y"'Y‘G) /20'(1'] if r > I"G

in order to smooth the discontinuities of the window boundaries. The
multiplication of the ACE by a window function amounts to convolving
the power spectrum with the function F{w(r)} . Such an apodization

will provide a smoothed power spectrum, described by
13 (k)% = Fog 4(ry) wirp)} (3.60)

Minimizing the least squares sum given by Eq. (3.57) yields

four equations for the parameters Ar’ AZ, AZa, and ¢y

N |sin vy.| A

'Ep ———§7—~1—-[5¥'|51" Yii - chilj =0 (3.61)
i=1 i i

N 1 3|sin Yil Ar . _

.21 5. g La, 510 vyl - [3gyld = 0, ne1,2,3 (3.62)
i=1 Vi n i ‘

where a, stands for either AZ, AZa, or ¢, - A matrix inversion of
Eq. (3.61) will yield the parameter A. . The other equations, how-
ever, are nonlinear in ap, and must be solved by Newton's method.‘The
starting values for the parameters q, are obtained from the optical
diffractograms. These values are then fed into the least-squares pfo-
gram which re-eva]uates\the electron microscope parameters by iteration
until a convergence criterion is satisfied. With the least-squares

fit, the electron microscope parameters can be determined to an accuracy

of 5%. The main advantage of this technique is to furnish the best



-145-
possible representation for the function lsin‘yl; thereby allowing a

match of the inverse filter with the input data.

3.3.3.2 Inverse filter design

A) Overview

The electron microscope transfers information about the struc-
ture of a weak-phase object that is band limited by the function
sin Y(E) E(E). At the Scherzer focusing conditions this transfer ex-
hibits an almost perfect behavior over a wide ranye of spatial fre-
quencies (see Fig. 3-6a). We therefore expect to achieve neariy
optimal contrast at A%, The strong attenuation of low frequency
and high frequency components in the image at AZOpt can be partially
compensated for by inverse filtering. In addition, we can also extend
the valid resolution of the microscope by correcting for the phase
reversals and for the amplitude attenuation of Fourier components lying
beyond the Scherzer domain (but within the instrument Eeso]ution 1imit).

In order to assess the validity of an object reconstruction by
deconvolution, we have introduced in Sec. 2.3.5.2C such criteria as the
noise and signal amplification factors,and the relative structural
content. We shall now apply this analysis to the case of the modified

filter given by

g(k)
H(k) = (3.63)
~ siny(k) E(K)

where g(k) is designed in such a way as to prevent noise amplifica-

~

tion at the zeros of sin y(k) in the restored image. We must also

~

ensure that the noise spectrum does not become amplified, at a certain

spatial frequency, beyond a given threshold Qn . This requires that
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the following inequality be fulfilled (cf. Eq. 2.99):

2 _ 9(5) |2

Linfoot's image evaluation criteria provide a quantitative
assessment of the success of a restoration. These criteria were in-
troduced in Sec. 2.3.6.2 in order to evaluate the similitude between
an object and its noisy degraded image. If we assume that the specimen
exhibits a white power spectrum (i.e., |®(E)| = 1), and if we neglect
axial astigmatism, we can then express Linfoot's criteria in the fol-

Towing analytical form (cf. Eqs. 2.110, 2.111, 2.112):

eobj
-2 :
Y = = [ o) sin y(e)o do (3.65)
obj 0

eobj

E. = _?g__ J Ez(e) sinzy(e)e de (3.66)

%bj 0
0. = 2¥, - E (3.67)

We shall calculate these figures of merit as a function of eobj'
in order to estimate the gain in mutual information between the object
and the restored image. In this case we want to compare ¢(fo) with

the output of the restoration conf(ri) which can be expressed as
Co“f(fi) = h * Con (3.68)

where Con(ri) is described by Eq. (3.55). Linfoot's criteria then

become:



%0bj
Wres _22__ J g(8)e de (3.69)
Obj 0
eobj
EreS - —%——- J g%(8)6 do (3.70)
Obj 0
res _ ,,res _ .res
o, =2, £ (3.71)

B) Practical implementation
In order to illustrate the problems which one faces in implement-
ing inverse filters we shall choose a weight function specified by

(cf. Eq. 2.105)

1 for |sin y(8)E(8)| > &

|sin y(e) E(8)] otherwise

(3.72)

where 8§ is a threshold value that is related to the noise-amplifica-

-1/2

tion threshold by ¢ = Qn

This particular inverse filter will be
applied to one picture of a through focus series of gold on carbon, so
that we shall study the behavior of this filter for the corresponding
electron microscope parameters of the picture to be processed. We now
want to examine the effects of H(k) on noise propagation andbon image
quality assuming that axial astigmatism can be ignored.

The PCTF corrected for partially coherent illumination. the
inverse filter, and its weight function are plotted against eobj in
Fig. 3-9. MWe observe sharp discontinuities in the inverse filter pro-

file when |[H(k)| = & ; these discontinuities could have been smoothed



Fig. 3-9

-148-

00025 0005 00075 \ 0.0l
6(rad) \

TRANSFER & FILTER FUNCTIONS
o)
t
i
It
HE
I
b
!u
3

Plots of the phase contrast transfer function corrected for
partial coherence,of the inverse filter,and of its asso-

ciated weight function. The electron microscope parameters
used are identical to those employed in Fig. 3-6a and

8§ =0.5. The PCTF, 2 sin y(6)E(®), is shown as a dashed
curve, the filter H(g) as a solid curve, and the weight
g(e) as a dotted curve. ‘
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by a more judicious choice for the weight funétion 77 (e.g.,
g(e) = exp[arndr/lsin v(6)]]. We also see that the PCTF only trans-
mits valid information in a narrow frequency band, 3.8x.10"3rad5;eg_
8.9 x 10'3rad; outside this band phase reversals occur. The effects
of the restoration on the transfer of spatial frequencies is best il-
lustrated by examining plots of Linfoot's criteria before and after
the filtering (see Fig. 3.10a,b). Before the reconstruction, the
correlation quality is negative at low spatial frequencies, indicating
a contrast reversal; we also notice a sharp fall-off in L beyond
the second zero crossing of the PCTF. After filtering, this parameter
remains positive and assumes larger values without reaching a value of
one which corresponds to an ideal reconstruction. Most of the gain in

3rad. In this

resolution occurs at high frequencies beyond 8.5 x 10~
spectral range correlation quality and image fidelity remain approxi-
mately constant in the filtered image, in contrast to their steep
fall-off in the original image. By selecting a threshold value of
S = 0.5, we have set a limit to the achievable improvement in resolu-
tion. A smaller & would improve the resolution at the expense of
amplifying the noise at certain frequencies, since § and Qn obey
inverse relationships. Consequently, one must find a compromise be-
tween noise propagation and quality of the reconstruction76.

Another consideration that enters into the design of an inverse
filter is the influence of the filter on the signal and the noise
spectra. In order to study this influence, the signal and the noise

amplification factors, as well as the relative signal-to-noise ratio,

were calculated at different eobj‘ Analytical expressions for fn,
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Linfoot's image evaluation criteria are plotted against ¢
for AZ = 860A and §=0.5 in (a) the original picture,
(b) the reconstructed picture. V¥, is shown as a dotted line,
£p as a dashed line, and ¢, as a solid line. The signal and
noise amplification factors are plotted against Oobj in~(c):
fo is shown as a dotted line, fy as a dashed line, and 7, as
a solid Tine. Inspection of T, reveals that a gain in con-
trast has been obtained in a narrow band of frequencies,
which is caused by the large threshold 3.

obj



-151-

fd, and T. were previously derived for a general filter (see Sec.
2.3.5.2C). Now for a circularly symmetric filter, we can convert

these expressions into

8 ,.
b
Fo=-2_ P o do (3.73)
-2 7 ) .
n eobj 0 sin“y(8) E“(8)

0 . .

[ ¢?(e)e do

fg= 3— (3.74)
%53 5inZy(8) E2(0)6 do

To= fd/ fn (3.75)

These three quantities have been plotted in Fig. 3.10c as a function of

] An examination of these plots reveals that T increases

obj*
markedly in a narrow frequency band near 6.6 x 10'3rad, where the
PCTF does not reach its maximum. At higher frequencies, %r then
tapers off gradually; a fact which indicates that no significant gqain
in contrast is achieved. Consequently, an increase in %r in
selected ranges of frequencies is governed by the threshold § used
in the restoration.

The success of an object reconstruction will depend mostly on
the choice of an appropriate value for § . This choice will depend
on the noise Tevel when the transferred signal is hardly detectable

above background. If our weak-phase object assumption is valid, an

inverse filter will then extend the instrumental resolution.
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3.3.3.3 Computer algorithm

The block diagram in Fig. 3-11 shows the computer algorithm
used in inverse filtering. First, the brightness levels of the row
data are spread over the full dynamic range by applying a linear
stretch to the original gray scale (see Sec. 2.3.1). Then, in order
to determine the contrast of the specimen with respect to the substrate
background, such statistical properties as the mean and the variance
are listed locally. For instance, for the gold on carbon specimen the

signal-to-noise ratio, SNRi, of the ith cluster can be defined as
2 -2
o, * 4

o (3.76)
Isub ¥ sub

where d_i is the intensity of the ith cluster and d is the inten-

sub
sity of the substrate. Next, the area of the picture where the
substrate is imaged is Fourier transformed,and its frequency components
are then fitted to |[sin Y(E)l (see Sec. 3.3.3.1). If this area con-
tains periodic information, spikes in the spectrum will alter the con-
vergence of the iteration Toop during the least squares fit. In order
to remove these spurious spikes, we can interpolate the Fourier compan-
ents across the spikes in such a way as to suppress the periodic
pattern (this procedure can be compared to the coherent noise removal
algorithm of Sec. 2.3.3.1). Finally, by changing the amount of smooth-
ing on the raw spectrum and the size of the frequency domain over which
the fit is ca]cu]ated,‘one determines the optimum electron optical
parameters. The optimum electron optical parameters are subsequently

fed into the program that calculates the inverse filter - function.
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Fig. 3-11  Block diagram illustrating the sequence of processing steps
involved in restoring a weak-phase object
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Multiplication of the original picture transform by H(k), followed by
an inverse transformation then yields a reconstructed picture. In
order to evaluate the resulting gain in information in a quantitative
fashion, the SNR's of various regions in the original picture are com-
pared to their equivalent in the processed picture.

The inverse filtering scheme we have just presented suffers
from many Timitations in practice. For instance the object phase dis-
tribution can only be reconstructed over a frequency band whose 1imits
are a function of the noise background and of the e1ectron microscope
parameters. Therefore, parts of the transform which lie near the zeros
of the transfer function will be missing in the processed image. This
procedure also neglects the amplitude modulation terms; therefore, it
1s 1nvalid for specimens that contain heavy atoms. In such specimens,
amp]itude contrast mechanisms contribute significantly to the overall
contrast. Consequently, to obtain a complete description of a weakly
scattering specimen, its complex structure factor should be retrieved
over the complete resolution range. We shall now present a technique
which combines electron micrographs recorded at various defocus values,
in order to overcome the above limitations. By separating the phase
and the amplitude contrast, this technique also allows one to dis-

criminate between heavy and light elements.

3.3.4 Heavy/Light Atom Discrimination Technique

3.3.4.1 Theory
A) Introduction
The problem of restoring the complex object transmission.func-

tion amounts to extracting @(5) and M(E) from the transform of a



-155-

bright-field image (cf. Eq.(3.3)). A minimum of two micrographs that
have been taken under different conditions are required to solve the
two unknowns of this problem. A processing scheme, invented by P.
Schiskesl restores the sine- and the cosine-transferred part of the
object transform by combining the transforms of N bright-field pic-
tures taken under different defocus conditions. In this formalism the
specimen is described using complex scattering factors and the spatial
locations of its constituent atoms. Within certain approximations
@(5) is found to be linearly related to the real part, and M(k) to the
imaginary part of the scattering factor. The imaginary part of the
scattering factor is often referred to as the anomalous scattering. The
anomalous scattering exhibits a strong dependence on atomic number, and
thus can be used as an atom discrimination tool. In the following dis-
cussion we shall derive an explicit expression for the image transform
in terms of fj(e) and rg . Next we shall describe the a]gorifhm
that calculates the complex structure factor.

B) General formalism

The diffracted wave which has undergone a single elastic scat-
tering event in a three-dimensional structure has been derived in Eq.
(1.8). In the bright-field image this wave is recombined at the image
plane with the primary beam that has been attenuated by both elastic
and inelastic scattering as it propagates through the specimen, and
with an inelastic scattered wave, wfnel(fi) . Plural scattering
events which intrdduce second-order terms will be neglected in this
discussion. We therefore assume that the specimen thickness does not

exceed the mean-free path for a single elastic scattering event. Let
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us now examine the various factors that describe the image wave func-
tion.
The incident wave is spatially modulated by scattering events,

so that we can write wé(ro) at the exit surface of the specimen as

Bo(ng) = Aol = qulrg)t 172 = A D - 5 ¢ a(r )] (3.77)

where qg(go) is the total cross section for elastic and inelastic
events. Aberrations in the objective lens then modify the modulated
primary beam, which at .the image plane becomes

A
bolry) = g2 01 = t, [ BRI, (K)exp(~iv(k) + 2riker)dk]  (3.78)

where QG(E) denotes the Fourier transform of qc(ro) . In this
fashion we can account for the occurrence of slight deviations from
purely kinematical scattering, as long as siﬁg]e scattering remains
the dominant mechanism.

It is interesting to note that spatial modulations in the in-
cident beam, caused by inelastic collisions, are transferred to the
image plane even in the case where inelastically scattered electrons
are filtered odt by an energy ana1yzer62. Since 1,

inel
incoherent with respect to ws(fi) and is blurred by chromatic aber-

(r;) s

ration, we shall ignore winel(fi) in the ensuing analysis. The wave

function at the image plane can then be written as

wlry) = volry) + g(ry) (3.79)
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so that the recorded bright-field intensity is now expressed as

2 Ag Na
[wiepl? = -3 [0+ n0) i bl
J:

. .t
+ exp(ing(8) - inz26/a - 2mikerd) - 52 Q (k)]

(0)

2
- exp(-iv(k) + 2ﬂi§~ri)d5} (3.80)

The derivation of the image transform is analogous to that presented

in Appendix B, and leads to the result

LA —Zwik-rg
00 = 20(0) EQD 17 [F5(0)e = ™ sinly(6.6) - ny(o)
J=

. t
- vz T - (k) cos ()] (3.81)

where the dark-field contribution to image contrast is neglected. This
term is a quadratic function of @(5) and M(E); therefore it destroys
the linearity of j(E). When the dark-field intensity is not negli-
gible, an iteration procedure presented in Sec. 2.3.3.4 can be used to
evaluate its magnitude with respect to the other contrast terms.

If we now group the factors in Eq. (3.81) that describe the

phase and the amplitude contrast, we are led to the following identi-

ties j
3 N iz ~2mikerd
3(k) = A .Z]Ifj(e)[ cos[n;(8) +nzg"/ale  ~ " (3.82a)
J:
) N . -2mikerd t
M(k) = A JZ: |£5(8)] sin[nj(e)’rﬂz.gez/}\]e =02 (k)

(3.82b)
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The above expressions can be compared to the complex structure factor
defined by Eq. (1.14). We shall show in the next section that

AF(k) 1is approximately equal to &(k) + ifi(k) . Therefore, by re-
constructing the complex object transmission function we also attain

selective contrast enhancement.

C) Discrimination effect

i) Principles

Let us now assume that dynamic effects responsible for'the in-
cident beam amplitude modulation are negligible. We shall also assumé
that the specimen thickness is such that the phase shifts, nzgez/x,
due to the deviations of the jth atom from the mean defocus, can be

ignored. Then we can approximate 5(5) and ﬁ(g) by

N, -Zwik'r‘g
o(k) = x )% |f.(6)] cos n.(8)e ~ Y = AF_(k) (3.83)
and .
N —?nik-rg
M(k) = A )% |[f.(6)|sinn.,(6) e ~ ~P =xF,(k) (3.84)
< =1 J J ‘2

The phase and amplitude object modulations can now be envisioned as
being a convolution of a set of delta functions representing the pro-
jected locations of the atoms with the atomic image functions due to

the real or to the anomalous scattering:

(r)) =2 2 s(ro-rd) = 571{f(0)) (3.85)
oro jzl ~0 ~0 J :

(ry) = N ( 3y« 77 1f(e) (3.86)
urg) = A jzl Sro-ro) * ¥ { j\@ } .
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Consequently, the restoration will produce two images of the same two-
dimensional structure, whose differing contrast dependence on the
atomic number can be used tu separate the images of heavy atoms from
light atoms.

We shall now estimate the relative contributions of the real
and the imaginary image (i.e., ¢(fo) and “(fo)).t° the overall con-
trast of a single atom. The predicted contrast will be based upon
available calculations of the atomic scattering amplitudes for an
isolated atom. Since we shall ignore the alterations of the atomic
inner potential by molecular binding, these contrast estimates provide
only an approximate measure of the potential discrimination effect

that can be expected in the restored image.

ii) Discrimination effect for single atoms

We have shown that ¢(fo) is imaged with optimum contrast
when the aberration phase shift is an odd multiple of =/2 . The
atomic contrast is then entirely due to the real part of the scatter-

ing amplitude and so can be described by (cf. Eq. (1.37))

%obj
Alog) =2r [ Fi(@)exp(anior;)dk =
’ %obj
-1 f £1(6) J,(2mep;/A) sin 6 do
0

Correspondingly, we have already mentioned that, when vy(k) is an
integer multiple of = , the observed image contrast is a direct map
of the amplitude modulation term and can be represented by (cf. Eq. -

(1.22)):
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Al y 2 o ) .
Ca(pi) = 2\ [ fj(e) exp(2mik ri)dg
~ Bobj
- %E_OJ fg(o) JO(ZﬂGpi/A)sine do

It is apparent that the Z dependence of both contrast mechanisms is
governed simultaneously by !fj(e)l and by nj(e) . In the first

Born approximation, calculations have led to a 24/3 dependence of the
elastic scattering cross section. The elastically scattered wave
appears linearly in the image contrast and therefore obeys only a

7¢/3 dependence (i.e., Ifj(e)l « 7/3). In order to determine the
variations in anomalous phase shift angle with atomic number, poly-

nomial expressions for Ifj(e)l and nj(e) were fitted to Thomas-Fermi-

Dirac calculations of the complex atomic scattering amp]itudes79. The
resulting polynomials are
A PR
|fj(e)| = exp{izo ai,j[if'51"(e/2)] } (3.87a)
and
3 + 4 . i
nj(e) = ¥ B; ; [X—-s1n(e/2)] - (3.87b)
i=0

t
1,J
for atomic numbers ranging from 6 to 92. These calculations indicate

where the coefficients o and B: j have been tabulated by Haase
a Z" (2/3 < n < 1) relationship for the sine of the anomalous phase
shift angle. Consequently, we can expect a Zn+2/3 increase in the
anomalous scattering contribution with increasing atomic number (this
can be compared to a Z discrimination in scanning transmission micros-

copy that is achieved by imaging separately the elastic and the
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. . 72 4/3 . . R
inelastic waves'“, and to a Z separation effect in conventional

dark-field microscopy).

In order to illustrate the dependence of f1(6) and f;(e)
on atomic number, we shall plot these quantities and their relative
ratio against © for atoms of gold and carbon. The polynomial ex-
pressions of Eq. (3.87a,b) were employed to calculate the curves shown
in Fig. 3-12. . However, a more realistic estimate of the separation

effect can be achieved by comparing, as a function of eob » the maxima

J
of Cz(pi), C?(pi), and the image contrast that is observed. By neg-

lecting axial astigmatism, the latter can be evaluated from:

Oobi

Clpy) = 32 0[ [£3(8)sin v(8) - £3(8) cos v(6)]
. E(e)J](Zﬂepi/A)sinéide

(3.88)

We then calculate the integrals defining C:, CQ, and CZ, at the

atomic image center for various objective aperture half-angles. The
resulting curves are shown in Fig. 3-13 for gold and carbon. The ratio
of the integrals calculated for gold to those calculated for carbon
gives the Z sensitivity of the respective images. For instance, at

2

the amplitude image, as compared to 7.5:1 in the original image. These

rad, one finds a ratio of 5:1 for the phase image, 43:1 for

numbers are only estimates of a potential discrimination that can
ideally be achieved in a specimen composed of bound atoms. In addi-
tion, the restoration procedure imposes practical limitations to the
selective enhancement of different atomic species. We have previously

listed the various contributions to the cosine-transferred part of the
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transform (cf. Eq. (3.82b)), and shown that the partial breakdown of
the kinematic approximation introduces an additional amplitude con-
trast term. This contribution contains low resolution information
that can be filtered out durihg the processing. We will now investi-
gate the way in which the specimen thickness affects the atomic

discrimination technique.

ii1) Effect of the curvature of the Ewald sphere

It can be shown that the curvature of the Ewald sphere intro-
duces a thickness dependent phase angle, nzgez/x, in addition to the
anomalous phase angle (see Appendix B). This is because the real part
and the imaginary part of the scattering amplitudes are scrambled up
in the amplitude contrast term, which now transfers information on an

62 (

effective anomalous scattering amplitude given by cf. Eq. (B.13)):

T opl0) = F1(6)cos(nzJ6%/n) +£1(0)sin(nzlo?/n)  (3.89)

The additive term in Eq. (3.89) that depends on fj(e) will then
counteract the effectiveness of the method, since f;/fj varies as

" where 2/3 <n<1 . Moreover, this additional contribution is
highest at the top and at the bottom layers of the specimen, where
lzgl = t,/2 . Inorder to illustrate how the imaginary part of the
scattering amplitude is affected, the original and the effective
anomalous scattering terms are plotted in Fig. 3-14 as a function of
scattering angle © . An examination of Fig. 3-14 reveals that at an

aperture half-angle of 10'2rad, the contribution from the Ewald sphere

(i.e., = fj(e)sin(nzgez/k) exceeds the anomalous term fg(e) by a
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factor of 5 fqr carbon and a factor of 0.34 for gold. It is therefore
imperative to work with ultra-thin support films in order to achieve
selective constrast enhancement at very high resolutions. (In Sec.
3.5.1.1 a technique will be described for preparing carbon support
films approximately 158 thick.)

On several occasions we have stated that specimen thickness
Timits the ultimate resolution of a microscopic image; at the same
time it attenuates the selective enhanccment of different atomic
species. In order to overcome this limitation, a reconstruction method
has been proposed by Hoppe, where the primary beam is tilted through a
series of angles and the micrographs are combined in order to obtain a

73. Such three-

restoration that is free of Ewald sphere artifacts
dimensional reconstruction schemes have been successfully implemented
at the medium resolution range for amplitude objects. Their extension
to the atomic resolution level is feasible, although the complexity in
the data analysis and specimen contamination represent major obstacles

to such processing.

3.3.4.2 Schiske restoration method

A) Principle

We shall now describe an algorithm that restores both the phase
and the amplitude of the transmission function of a weakly scattering
object. In order to simplify the notation, we shall describe the

object by a complex abject function, o([o); defined as

olry) = 9(rg) + iu(ry) (3.90)
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The object spectrum can then be written as
Solk) = (k) + i 0(k) = 8(k) + i[o(k) +iM(k)] (3.91)

so that the image transform is now expressed as

iv, (k

g (k) 0*(_5);\%( )

- K
54(K) = ib(k) E(K)O(K)e ~1 (3.92)

It is clear from the above equation that both 0(k) and 0*(-k) can be
determined if more than one measurement of [ja(5)’Y1(E)] is made for
different YQ(E) . In practice, these measurements require a spatial
registration of micrographs taken under different conditions, and an
evaluation of the operating electron optical parameters. Cross-
correlation methods will therefore be examined in the next section,
because they are subject to various anomalies in the case of bright-
field images. The determination of the phase functions has already
been examined in Sec. 3.3.3.1, where a computer least-squares filtering
procedure was described. In the following discussion we shall analyze
a reconstruction scheme thaf was first proposed by Schiske and combines
micrographs taken at different defocusin9557.

In the Schiske restoration method, a set of data [jg(g),yz(g)],
(2=1,2,---,N), is recorded as a focus series, and then combined by a
least-squares method that solves the overdetermined system of Eq. (3.92)
for the two unknowns, 0(5) and 0*(-5). In order to introduce certain
prob]ems associated with this restoration scheme, we shall first
consider the case where only two pictures are combined.

Two pictures taken at different defocus are sufficient, in

theory, to solve the system given by Eq. (3.92) for the complex object
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transform. Solving Eq. (3.92) for 0(k) yields

J](is) e - jz('ﬁ) e
0(k) = (3.93)
~ 2E(0) sinly;(k) - v,(k)]

for 6 < eobj

reconstructed picture when the denominator of Eq. (3.93) vanishes,

and Yo # Yy tmm . A singularity will occur in the

that is, at

n_ 172

Oing = (azpy) - Ml (3.94)

where Azst is the defocus step between the two pictures (we are
assuming that AZa and ¢y are nearly identical in the two pictures).
The first discontinuity (i.e., m=1) does not appear in the spatial fre-
quency range of interest for small enough AZcy. For example, in the

region © 5_10"2

rad, this singularity will only occur if AZ 4 3_3703.
It therefore suffices to select smaller defocus step than this critical
value. In practice, however, a restoration with only two pictures
creates overwhelming noise artifacts near the zeros of the combined
contrast transfer function.

When radiation damage to the specimen is not a critical param-
eter, it is advantageous to record a large number of pictures for use
in the reconstruction, in order to reduce the noise amplification. A

least squares procedure is then used to solve the over-determined sys-

tem of equations for O0(k) . By writing Eq. (3.92) as

~
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iy, (k)

: . w217 (K)
e 3o (k) = [iE(k) 0(k)]- [1E(k)0"(-k)]e

(3.95)
where (g=1,2,+:+,N), we have converted our system into a form:
Yy = R+B X, for which the Teast-squares technique can easily be

implemented. The least-squares criterion determines A and E at the

minimum of

by setting in turn the partial derivatives of Age with respect to
A* and B* to zero. We than obtain two normal equatioms in the
two unknowns A and B that yield for A the following expression:

Y 0T v - ¢ T ox)(1 <)
. 221 o Yol TR L Y

A= N

N
2 2
N X - X
L% - 1Ll

(3.96)

After replacing the values R, Xy s and 2 by their equivalent values
in Eq. (3.95), we can transform Eq. (3.96) into Schiske's formula for

the complex object transform:

N iy, (k N 2i k)-v,(k
e (k) ' il (01,00,
- - 'l - m:
0(k) = - £79) ? P (3.97)
e

2=1

For N=2 one retrieves, as expected, the formula shown in Eq. (3.93).
When the curvature of the Ewald sphere and plural scattering
events are neglected, the above restoration scheme yields the complex

structure factor, since
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N .

0(k) = AF(k) = ALF (k) + 1F; (k)] = A J* |f;(0)|exp(in;(6) - 2nik-r))

~ . ~ ~ ~ : j=1 J ~ ~0
(3.98)

By inverse transforming 0(5), we retrieve the complex image:

o) = ¥ (k) 0K)} (3.99)

whose imaginary part is the anomalous scattering image that should dis-
play selective contrast enhancement at heavy -atom Tocations.

We have already examined the effect of specimen thickness and
of the partial breakdown of the kinematical approximation on the
restoration. We shall now analyze the effects of experimental errors
on the evaluation of Schiske's formula, and the impact of these errors

on the contrast interpretation of the restored image.

B) Evaluation of Schiske's formula

Prior to the retrieval of 0(5), as computed in Eq. (3.97), the
mutual positions of the pictures in the through-focus series and the
réspective phase factors YQ(E) must be found. We shall now investi-
~gate the sensitivity of the calculated object transform to errors in

positioning the images and in evaluating y2(5).

i) Cross-correlation step

The mutual translational positions of two micrographs are de-
termined by calculating the cross-correlation matrices between two
areas of the input pictures. The location of the correlation peak,
however, is subject to uncertainties which will be discussed in Sec.
3.3.4.3. These uncertainties result in the picture being shifted from

its true matching position by an amount rp 5 SO that according to the
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shift theorem, the corresponding image transform will undergo a phase

shift

exp(—ZniE-rD) = exp[- ggl-erle cos(¢ - ¢D)] (3.100)

where ¢p is the azimuthal angle of the translation vector D - We
see from Eq. (3.100) that high spatial frequencies in the restored
image will be significantly distorted if r, is not kept to a minimum.
In order to minimize this spurious artifact, a very fine scanning step
size is chosen in the early stages of the processing, when the pictures

are being spatially registered.

ii) Determination of the phase factors

If the specimen is supported by a carbon substrate, a least-
squares fit, between the power spectrum of the substrate and sinzyz(g)
weighted by a radial function, allows us to determine the phase factors
of each picture of the series (see Sec. 3.3.3.1). The least-squares
program finds the optimal electron microscope parameters. (AZz.AZax.
¢o£) for each image, over an annulus-shaped frequency band of the dif-
fractogram, whose radii can be varied at will. By using different
radii and different starting parameter values, the dispersion in the
fitting process has been evaluated to be Op7 = 6OR for pictures of a
through focus series. A decrease in this dispersion can be achieved,
once the absolute defocus value of one micrograph has been determined
(the focus steps are calibrated to a high accuracy in an electron
mickoscope). For instance, in our experimental work on gold clusters
supported by a carbon film, the estimated dispersion was only

Opz = BOR.
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We shall next analyze the sensitivity of the restoration scheme

to an error in the determination of the phase factorssg. Since the
defocus difference between successive pictures is a known parameter,
we suppose that all phase factor estimates, ?2(5), deviate from their

true values by the same error, Ay(6), that is,

2
Y -Y = ay(k) = o770 /A

. 2=1,2,+++,N (3.101)

b

These experimental uncertainties in the phase factors affect the
validity of the restoration, since the calculated object transform,
5(&), now deviates from its true value, 0(5), by a phase error term.
The correspondence between 6(&) and O(E) is easily established if we

express Eq. (3.97) in the following way:

N i(¥,-v¢) N 2i(Y -Y,)
- . L "V eyl v m 'y
. i ) 221 i (k) e [N mZ] e ]
(k) = - gy © Z.[§ Amp
- e
o4 ’ (3.102)

According to our previous assumption, the phase differences are not sub-
ject to an experimental error (i.e., Ym— ?2 = Yo Yg)w so that we can
" write
. iay(k) ‘
0(k) = e ~ 0(k) (3.103)
Consequently, the phase error term exp[iAy(E)] redistributes the phase

and amplitude contributions as

B(k) = 3L0(K) +0%(=K)1 = a(k) cos ay(k) - M(K)sin ay(k) (3.104)

and
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fi(k) =

|\r)_L‘._:

0(k) - 0"(-k)] = e(K)sin ay(k) + M(k) cos ay(k) (3.105)

If we assume that anomalous scattering is the only contribution
to the cosine transferred parvt of the transform, the restoration scheme
therefore calculates an imaginary image transform given by (cf. Eq.

(3.80)) i
~-2miker

2 f5(0)] sin[nj(e) + ay(e)le =~ (3.106)

1

W=

Fi(k) = ;

where the effective imaginary part of the scattering amplitude has

become

~3 er£(8) = F3(8) cos ay(6) + Fi(e)sin ay(e) (3.107)

By comparing Eq. (3.107) with Eq. (3.89), we see that a phase error
ay(e) has the same adverse effects on the discrimination efficiency
as the curvature of the Ewald sphere. The higher-order spatial fre-
quency components in the restored anomalous-scattering image will aiso

be sensitive to an incorrect measurement of the absolute focus values

AZR' -
jii) Singularities in Schiske's formula
When the denominator of Eq. (3.97) vanishes, artifacts are in-

troduced in the restoration of the complex object functionsg.

These

artifacts occur either in the vicinity of © = 0 , or if the focus step
s 2 .

assumes a critical value equal to Azcrit A/eobj (see Appendix C). In

the Tatter case, the singularity takes place when the difference be-

tween the phase factors of two consecutive pictures of the series is
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‘equal to m . We have already pointed out this singularity in Eq.
(3.94) when the restoration procedufe combined only two micrographs.
In order to avoid this singularity. it suffices to select a small
enough focus step such that AZSt never reaches the critical value

AL within the object spectrum. For instance, in our experimental

crit
analysis we did not encounter this diffﬁcu]ty during the processing,
since the focus step size was only SOK.

When 6 approaches zero, it can be shown that M(k) remains
finite, whereas @(5) is discontinuous at the origin and goes to in-

finity as 1/62.

Hence, in restoring the phase contrast image, we must
remove the Tow-frequency artifacts in the calculated phase transform.
This can be achieved by applying a high-pass filter to o(k), and then

inverse transforming to obtain ¢(fo) .

3.3.4.3 Cross-correlation analysis

A) Mutual translational positioning of a focus series

Restoring the object wave function from micrographs taken at
different focus conditions requires that the pictures be spatially
matched to a high accuracy. In order to find the mutual positions of
the pictures of the series, we shall now examine the problems that one
encounters in implementing the correlation techniques developed in Sec.
2.3.4.2 for the case of bright-field micrographs. We shall see that
the correlation method can Tead to false CCF maxima, that are predicted
by the Tinear transfer theory of image formation®®. In order to sim-

plify the analysis, we shall assume that the specimen structure remains

unaltered during successive exposures, and that it only modulates the

phase distribution of the incident beam.
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i) Theory
Under the above assumptions we are faced with the problem of
matching two pictures which are noisy versions of the same weak-phase
object, imaged at different transfer conditions. It is also assumed
that the noise is additive and uncorrelated to the signal, so that we

can describe the image contrast of two pictures of the series by

dy(r) =t * ¢+ n (r) (3.108)
and
dy(r) = (tZQ * o) * 8(r-rp) + ny(r) (3.109)

where r, s the relalive translational displacement, tg](r) and
tzz(r) are the instrument point-spread functions. The transforms of

the point-spread functions are (cf. Eq. (3.56))

TPy (k) = 2 sin yq(k) E; (k) | (3.110)
and
TP, (k) = 2 sin Yo (k) Ey(K) (3.111)

If we denote by D1(5) and DZ(E) the two image transforms, then
according to the convolution theoremthe CCF of the two image distribu-
tions can be expressed as ‘

04,0, (0) = ¥ {0y(6) D3(K)}

Transforming Eq. (3.108) and Eq. (3.109), and then inserting the trans-

forms into the above expression for ¢4 dz(r), we obtain
1°72 ~
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-2miker

Hog 4,01 = 1906 T () + M (005500 Tgl0e — ~ >+ 15(6)]
. -2mike
1oy (012 TPk TRk e T P ent) (3.112)

The noise transform NT(k) 1in Eq. (3.112) consists of three terms

~

whose phases are randomly distributed over the frequency domain B.
Provided that B extends far enough so that ?—]{Nf(g)} averages out
to zero, we can neglect the influence of the noisy background in the

digital evaluation of ¢ (r). Discrete Fourier transform algorithms,

'l’
however, restrict the usable size of B so that noise artifacts can

impede the detection of the CCF peak.
If we neglect the noise factor NT(k) and inverse transform

Eq. (3.112), the expression for the CCF reduces to

(ri) = ) * 8(ri-r

¢ ¢ * ¢ ) (3.113)
d]’dz - %92% 7 ts]’tsz ~1.-D

where ¢¢ is the autocorrelation function of the object. There-
0

T
fore, the CCF of the micrographs is a convolution product of the
(ry) 80.

t o ~i
s1°~s2
We can estimate the half-width of an object ACF by looking at the case

object ACF with the CCF of the point-spread functions, ¢t

of a single atom, for which the ACF becomes
eobj
2 .
L) =2 f'7(0) J_(2m8p./A)sin 6 d6 3.114
0 g 1) = 21 [ 1260 9y temooy )st (3.114)

Carbon atoms, for instance, possess a very narrow ACF peak (1R in

half-width), since their Wiener spectrum is almost white. In general,
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the half-width of a specimen ACF is much narrower than the half-width

of ¢t ([i), so that the latter determines the accuracy of the

s1°s2
registration. For a non-astigmatic lens, ¢t t (ri) is defined by
sl’"s2 ~
eobj
ot (Py) = 27 [ 4 sin vy (0)sin v5(0)E; (0)E,(0)3, (2m00 /)
sl’”s
0

+ sin6 do (3.115)

This integral was calculated for the AZQ combinations, measured ex-
perimentally in the through-focus series of gold on carbon, after
having been normalized with respect to

eobj

0p 4 (0)-2r [ 4 (0)sinodo ~ 4ol (3.116)
0’0 0
which is the maximum value of the ACF of an aberration-free transfer

function. Figure 3-15 shows plots of Ot (pi) against 05 for

.t
several picture pairs. We observe variatigls ?ﬁ the half-widths of
the CCF with the defocus step size between two AZQ . Sign reversals,
that transform the peak into a minimum at the origin, occur when the
micrographs that are cross-correlated lie on opposite sides of Gaussian
focus.

We conclude then that the peak of ¢d],d2(fi) can be very
broad or even negative for certain combinations of AZ, . The occur-
rences of possible artifacts in the CCF peak determin&tion must be
investigated, especially in the case where no conspicuous image

features exist that could be used to confirm the matching positions

found by the correlation program. Practical methods to check the
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Fig. 3-15 Cross-correlation function between successive pairs of
micrographs of the gold on carbon specimen. This figure
was determined using Eq. (3.139) and the different AZ
combinations are indicated.
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validity of a picture registration will now be discussed.

ii) Digital implementation

Before cross-correlating two miﬁrographs, a pre]iminary measure-
ment of their respective phase factors has told us whether or not to
expect a sign reversal in their CCF. The discrete evaluation of the
correlation integrals can be performed either in real space or in
Fourier space, and we shall present the procedufes employed to charac-
terize a negative peak in both spaces.

In the direct summation method, maximum correlation is achieved

at the peak of (see Eq. (2.63))

(dy,4,) VKT 4y o
by TR Ly L dGR ke

One then searches for a minimum peak when it is known that

ot .t (ri) takes negative values for a given objective aperture
s1’"s2 ~

half-angle.

The Fourier method allows us to optimize the detectability of
the CCF peak. The spatial frequency zones whose Tz1(5) TEZ(E) is
negative, pull the CCF peak down towards the negative side. Once we
know both transfer functions, these zones can be eliminated from the
correlation integral. A simple procedure consists in reversing the
sign of D](E) 05(5) in these zones. This amounts to computing an

estimate of the CCF equal to

2wike (r-ry)
(0) = § [ 15012 1T I~ - 0
B

dk  (3.117)

~

¢
d] ,dz
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The technique mgntioned above qffers two advantages; it prevents sign
reversals of the CCF and narrows down the half-width of the CCF peak.
However, the finite size of the discrete transform domain can induce
aliasing errors and transform artifacts. If the transform domain over
which ¢d1,d2(ri) is computed is too small, the contribution from the
noise terms to the CCF integral will not cancel out and will obscure

the detection of the CCF peak. Unfortunately, the algorithm which we
used to compute
(d-l ,dz) - ]7 KE] L”] (])*

(2) Lmioni
1,J m=0 nZO Dm,n On.n expl2mi (G + 7]

¢

required that the complete transform arrays‘ Dél% and Déf% be stored
in the core. In our work the core avaiiabi]ity Timited the size of

the input arrays to 64 x 64, so that transform artifacts could not be
totally eliminated. In order to check the accuracy of the method, the
peak is determined from all possible pairs of pictures in the focus

series.

B) Fourier resolution test

The transform of a micrograph indicates which spatial frequen-
cies have been transferred by the instrument to the image plane. Since
high-frequency noise components areé superimposed upon the signal, it is
often difficult to determine the highest resolved detail that has been
transmitted to the image. By modulating the signal transform, we are
able to overcome inaccuracies in determining k . This determina-

~max
tion is achieved in practice on an area of the specimen which behaves
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as a weak-phase object (e.g., a carbon substrate). In this assumption, a
simple analysis of the pbserved modulations in the transform becomes
possible.

Let us now study the ACF of the specimen. The half-width of an
ACF is a measure of the ultimate instrument resolution, once phase re-
versals of the transfer function are corrected. Accordiﬁg to Eq. (3.112)
|2

we can express the power spectrum ID](E) as

10,012 = 1o (T AITE 013+ 1Ny (k) 5+ 2Relog (K)TE (KON (k)] (3.118)

If we invoke the Wiener-Khinchine theorem, we can retrieve the ACF of
the substrate by inverse transforming Eq. (3.118). Because noise and
signal are uncorrelated, the last term of this equation averages

out to zero in the back transformation, so that

(r:) = ¢, . *9 + ¢ (rs) (3.119)
Py 0 P28y Lspatgp Mpany A

We see from Eq. (3.119) that the half-width of the overall ACF is

~1
modified by this noise contribution. The noise background will mask

broadened by a noise ACF, and that the peak value of 4. .d (r.) 1is
1°71

the outer contrast zones of the diffractogram. These contrast zones
1ie near the resolution 1imit set by such instrumental instabilities
as mechanical and chromatic aberration.

It is therefore advantageous to modulate the image transform,
in order to determine the extension of the Fourier domain that is
transferred by the microscope. This modulation is easily achieved by

superimposing two pictures, displaced from one another by a vector
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rp Wwhose magnitude is larger than the minimum resolvable detail®l,

The picture sum is subsequently transformed, either optically or
digitally. A system of equidistant fringes which modulate the image
transform will then appear in the diffractogram ID](E) + DZ(E)IZ.
Using Eq. (3.118), we can describe this modulated transform by

D (k) + D,(k)|% = ¥

4.}

¢ +¢ +t¢ t ¢

2!

= Jag (k) AL T0 (k) 12+ T8, (k) |24 21P

b1 () Tep (K)cos (2nk-ry)]

+ Ny ()54 10, (k) |2 (3.120)

where uncorrelated noise terms have been neglected in the derivation.
We notice from Eq. (3.120) that the modulation only affects the CCF
transform, ?{¢d]’d2} » and leaves the noise spectrum unaltered. The
fringe pattern runs perpendicular to the displacement vector r
Its spatial extent gives a measure of the CCF half-width, and therefore
the resolution of the instrument.

This resolution test can also be used to determine the relative
phases of the contrast zones in the transforms of bright-field micro-

graphs taken at different defocussl.

We see from Eq. (3.120) that the
fringe system is shifted by half a period whenever the phase contrast
transfer functions sin y](g) and sin YZ(E) have opposite signs; The
accurrence of the phase shift in the fringe pattern is seen as a re-
versal of the fringe contrast in the corresponding zone of the diffract-

ogram. In the normal position, the fringes exhibit a cosine maximum at

the origin of the transform. As we shall demonstrate, a shift in the
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innermqst contrast zone indicates that the two micrographs have defocus
values on either side of the Gaussian setting. In this contrast zone
we can ignore the spherical aberration.term, which is only significant
for 1akge scattering angles, and we can eliminate the influence of axial
astigmatism by choosing \ID perpendicular to the reference angle % *

Under these conditions, the following relationship holds:
sign{sin v;(k)} = -sign{aZ,} , i=1,2 (3.121)

Therefore, a shift of the fringes will be observed in the innermost
zone for sign(AZ]) = —sign(AZZ). This modulation technique provides
a means of visualizing phase reversals directly from a diffractogram.
Figure 3-16 shows the superposition transform of pairs of
micrographs from the focué series of gold clusters on carbon. The
streaking on the axes of the digital transforms is caused by boundary -
discontinuities which could be eliminated by apodization. In Fig. 3-16a
the spatial extent of the modulations can be measured without ambiguity,
since the fringes display a much higher contrast than the noise back-
ground. No shift of the fringe patterns appears in the diffractogram,
a fact which one would expect, since the defocusing values are
AZ] = 953 and AZ2 = 158 . The azimuthal dependence of the fringes
shown in Fig. 3-16b is responsible for their poor visibility. In this
example, AZ] = 95&, AZ, = —533, and AZ, = 1458; so that contrast re-
versals will occur when

AL, Az,
sign{aZ;+ —— sin 2(¢—¢0)} = -sign{A22+ —— sin 2(¢-¢0)} (3.122)

For the above electron optical parameters, Eq. (3.122) is satisfied at
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Fourier resolution test using two images of the focus series
of gold on carbon. _The pair of micrographs have the defocus
values: (a) AZ;= 95R, 4Z,= 158, and (b) aZ,= 95R, aZ,= -53h
The modulation fringes have a periodicity of 1er, where

rp is the relative displacement between the two pictur?? and
is equal to " 233. The modulation extends to G.E5R y in-
dicating a point resolution of 4H,
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various zones of the diffractogram. The multiplicity of the resulting
fringe contrast reversals is responsible for the observed blurring of
the fringe visibility.

The excellent agreement reached between experiment and theory
confirms the validity of the Tinear transfer theory. This theory has
enabled us to spatially register high-resolution bright-field micro-
graphs, where defocusingveffects have destroyed all visual similarities.

We are now capable of implementing the restoration scheme that combines

bright-field micrographs of a focus series.

3.3.4.4 Computer processing

We shall now present an outline of the processing algorithm
that restores the object wave function by combining pictures of a focus
series. The details of its implementation will be discussed in the
experimental study of Sec. 3.5. In the following analysis, we assume
that anomalous scattering is the main amplitude contrast mechanism;
so that the object transform and the complex structure factor are
equal within a multiplication constant (i.e., O(k) = AF(k)).

The block diagram of the processing scheme, shown in Fig. 3-17,
serves as a guideline for the procedure. The main tasks of the program
are threefold: matching the positions of the focus series pictures,
evaluating the electron optical parameters for every picture, and com-
puting the complex object structure factor F(g). We shall now describe
how these tasks are implemented by computer.

Once scanning with video film converter is completed, a linear
stretch of the brightness levels is applied so that they cover the fu11

dynamic range from 0O to 255. An area of the picture showing conspicuous
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Fig. 3-17 Block diagram of the computer system used in the restoration
of the structure factor, F(k), from a defocus series. The
least-squares fitting, which yields the electron microscope
parameters, was performed on an area containing 128x128
pixels. The cross-correlation matrix was calculated over a
portion of the image containing 64x64 pixels.
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details is then selected for cross-correlation purposes, after having

been adjusted for angular orientation. The resulting matching dis-
placement vectors are then fed into a program which calculates pixel
values at intermediate positions of the sampling grid, by bilinear
interpolation (see Sec. 2.3.4.2). This latter procedure is repeated
for each picture of the series, which is now spatially registered.

The phase factors of every picture are found by an iteration
process based on a least-squares fit between sin|y (k)| and the
transform of an area of the substrate ]jlc(g)] . Starting values for
the electron microscope parameters AZZ, Azg‘g, and ¢g!?, are estimated
from a preliminary analysis of the optical diffractograms. By apply-
ing the Fourier resolution test, one measures the highest spatial
frequency, kmax’ that carries information about the object structure.
The phase factors y2(5) are now determined from an optimal least-
squares fit computed within the frequency band K] < Knax *

Next, the Fourier transforms of the images, jz(E)’ are cal-
culated with the FFT algorithm. Scanning noise may be apparent on
the transform axes, in which case the Fourier coefficients along the
axes are set to zero. (This does not cause an appreciable information
loss because we are dealing with aperiodic objects). One then applies
a bandpass filter to all image transforms of the series. The low-pass
component of the filter alternates high frequency noise beyond the
resolution limit Kpax: Since ihe]astic scattering is mainly confined
to low frequencies, the high-pass component will boost up the anomalous
contribution to the cosine transferred part of the transform. The

desired filter, hN(k), is defined as:
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exp[~( - lkl /20m]nJ for 0 < [k < kein
hy(k) = 1 for knin < 1Kl < Kpax
exp[-(iE[ - kmax) /zcﬁax] for max —-lkl
(3.123)

where %min® “max

of the bandpass. The transforms jz(5) are modified by this spatial

are the Gaussian fall-off half-widths at both ends

filter to
JI2'<E) = hN(E) jl('kv) > 2=1 :23""N (3.]24)

An inverse Fourier transformation of j'z(E) yields the noise-filtered
series, Ii » which serves as a reference set for subsequent processing
transformations. In order to evaluate the signal-to-noise ratios in
various areas of the picture I, , mean and standard deviation are
listed (cf. Eq. (3.76)).

Finally, the phase factors YQ(E) and the modified transforms
J'Q(E) of every picture of the focus series are combined by the pro-
gram "Schiske", which outputs the complex object transform F(k) . The
images of the series are in turn calculated by multiplying F(k) with

-1y, (k)
ie Z. » inverse transform1ng, and then taking twice the real part of

the result (cf. kq. (1.8) Eq. (3.98)):
- v, (K)
i, = 2Re(7 e T8 F(K)}) = 2Re[y{*)(r)] (3.125)

A comparison of these images with the original pictures I}/ provides a

check of the validity of the reconstruction. For this purpose, the
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difference pictures, (fi - fz), are computed, displayed, and their
histograms are listed. The average variance, O » 9ives a reliabil-
ity measure of the whole scheme; this procedure is analogous to a
similar procedure used in X-ray crystallography (see Appendix D). If
the match between the reference series and the reconstructed series is
satisfactory, one proceeds to compute the inverse transform of F(k),

which yields the complex object function
olry) = o(ry) + tu(ry)

The imaginary part, “(fo)’ can be disp]ayed directly, since its trans-
form, Fi(g), is not singular at 6 = 0 . In this anomalous scattering
image one should observe selective contrast enhancement, at heavy atom
locations since
Na J -1
pirg) = 2 jz] S(ryrg) » ¥ {f5(0)}
As for the phase term, ¢(ro), it was previously pointed out

that &(k) is discontinuous at the origin 6 = 0 . This singularity

~

can be removed by high-pass filtering of Fr(E) with the Gaussian

function
P exp[-(|k| - kHP)z/ZcﬁPJ ~for Jk| < Kyp
h"™ (k) = - ’ (3.126)
1 elsewhere
where the halfwidth, Thps is chosen in such a way as to avoid ringing
effects. | |
An improvement in the restoration scheme can be achieved if one

takes the dark field term Iwgz)(r)lz into account (see Appendix D).
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The restored object transform F(E) gives a first estimate of
%
i )12

-y, (k)
Iw(l)(r)lz =|;'—]{ie 1Y,Q, ~

. F(k)}lz (3.127)

The above estimate of the dark field term is subsequently subtracted
from the corresponding images of the input series. In practice, one

iteration is sufficient to eliminate the perturbing influence of this

quadratic term in the discrimination program.

3.4 Analysis of a Through-Focus Series of Catalase

3.4.1 Infroduction

If the specimen is weakly scattering, we have shown that the com-
plete object wave function can be determined from two micrographs taken
under different conditions. The linear theory of image formation in-
volves, however, two important assumptions which limit its applicabil-
ity. It js assumed in this theory that the specimen is sufficiently
thin to be treated as a two-dimensional distribution of atoms, and that
the phase shift of the electrons does not vary by more than about w/4
within a coherently imaged region. Several restoratibn schemes, based
on the Tinear relationship between object transmittance and image con-
trast, have been devised in order to compensate for defocusing effects
and for contrast artifacts caused by aberrations in the objective lens.
The extension of these schemes to thin crystalline specimens will fail
if second order effects become dominant at the zeros of the phase con-

trast transfer function. These effects introduce a nonlinear
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re]ationship bgtween imagg intensity and projected potential, and their
strength depends on the crystallinity of the specimen and on the atomic
number of its constituent atoms.

In order to analyze how this theory of image formation applies
to thin crystalline specimens, we conducted an experimental study of
the variations in the image transform that are induced by changing the
phase factors. A negatively stained specimen of bovine liver catalase
was selected for this study (its morphology is essehtial]y two-
dimensional and it is not overly sensitive to radiation damage). It
was found that the variations in image transform with AZ could be
61

described reasonably well if one represented the transform by

Eq. (3.25)):

(cf.

3(k) = 2b(k) o(k)[sin v(k) *+ £(k) cos v(K)]

where E(E) is the ratio of scattering versus phase contrast at a
spatial frequency k . Unfortunately, specimen preparation technique
limits the meaningful structural information to about ZOR resolution,
when one observes ordered protein crystals in the dry stategz. As a
result, defocusing effects were the predominant influence in this
medium resolution experiment. In the following discussion, we shall
investigate the effects of AZ on the phase and the amplitude of the

diffracted beams for each micrograph of the catalase focus series.

Finally, we shall present an image restoration scheme.
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3.4.2 Experimental Procedure

3.4.2.1 Specimen preparation

A suspension of bovine liver catalase crystals., fixed in
glutaraldehyde, was obtained from Ladd Research Industries. In order
to support the catalase specimens, a hethod for preparing microgrids
containing extremely fine holes (0.5 um in diameter) was developed.
In this method, one deposits a thin plastic film (biodene, 0.5% wt/vol
in methyl acetate) upon a previously cooled glass slide. Tempefatdre
gradients existing during condensation produce a cloud of ultra-fine
water particles, which pierce holes through the plastic film. The film
is lifted from the water using a 400 mesh copper grid, and then coated
with a thin carbon layer (= ZOOR). In order to dissolve any plastic
remaining on the film, iﬁ is steamed in methyl acetate vapor. Finally,
drops of the catalase suspension were deposited on these grids. Then,
just before the suspension dries, a drop of negative stain (1% uranyl

acetate) is added, blotted, and allowed to dry83.

3.4.2.2 Electron microscopy

Bright-field micrographs of catalase were taken on a JEOL 100B
operating at 100 keV and a magnification of 75,000 X , using a 200 um
second condenser aperture and a 120 um objectiVe aperture. The prepar-
ation technique produces large and very thin platelets, some of which
run across microholes. The area of interest was chosen and a through

focus series of twelve pictures, with focus steps of AZS = 4OOK was

t
then recorded.
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3.4.2.3 Optical transforms

The electron optical parameters were determined for each micro-
graph from their optical diffractograms shown in Fig. 3-18. The
absence of streaks and of fringe systems in these diffractograms indi-
cates that no specimen drift has occurred during the exposure. In
addition to the noisy background, the diffractograms showed diffraction
spots that corresponded to the catalase crystals. The defocusing and
astigmatism were then obtained by measuring the radii of the outermost
rings, which correspond to phase contrast, in the diffractogram. Next,
inserting these values into the phase contrast characteristics of the
instrument, we directly read the parameters AZl and AZag; The rela-
tive focus difference between two successive pictures is known from
Azst' An absolute estimate‘of the defocus values is then achieved by
finding the best fit for the sequence of AZ2 . As an additional check,
we can also estimate AZ, and AZ,, from an analysis of the innermost
elliptical zone. This zone corresponds to amplitude contrast transfer.
The measured values of Azz are listed in Table 3-1 and are accurate
to within 1003. The average-axial-astigmatism focus difference and
the reference angle were found to be: AZa = 3803 and %o = -62°.

A qualitative understanding of the effects of defocusing on the
diffraction pattefn can be.obtainéd by examining the intensity spikes
in each transform. Near Gaussian focus, phase contrast vanishes in
the resolution range of interest;‘the image is due mainly to amplitude
contrast and exhibits low frequency details. Most of the high-resolution
components are missing, so that the corresponding micrographs show

Tittle morphological information and weak contrast. At higher defocusing
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Fig. 3-18 Optical diffractograms of the through-focus series of bright-
field micrographs of uranium-stained ox-liver catalase. Dif-
fraction spots can be seen in the amplitude transferred
central contrast zone. The outermost phase contrast zones

are used to evaluate the electron optical parameters
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Table 3-1 Estimates of the defocusing values for the micrographs
of catalase shown in Fig. (3-20). The defocusing values were
obtained from the optical transforms shown in Fig. (3-18). The
axial astigmatism of the micrographs is described by AZa o 3803
and ¢, = -62°.

Micrograph AZQ(R)
a -650
b -250
c | 150
d 550
e 950
f 1350
g 1750
h 2150
i 2550
J 2950
k . 3350

1 3750
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enhancement in phase contrast brings oﬁt the higher-order diffraction
spots, which were previously hidden in the noise background of the
diffractogram. The specimen contains no visible diffraction spot
beyond 0.03488']; so that the smallest visible structural detail in
these underfocused micrographs is 293. Underfocus contrast enhance-
ment yields a sharp and pleasing image for AZ = 375OX (see Fig.
3-20%). Here Tittle attenuation of the high frequency components takes

place. These visual observations are indeed confirmed by a quantita-

tive analysis of the numerical transforms.

3.4.3 Quantitative Analysis of the Transforms

3.4.3.1 Video input-output

The bright-field micrographs of the catalase series were copied
from the electron microscope plates onto fine grain film. An area of
12.8 x 12.8 mm corresponding to 1700 x 17OOR on the object scale was
scanned with a VFC at a sampling density of A = 25 um for each
micrograph of the series. The equivalent scanning distance is 3.38 at
75,000X magnification, and thus does not impair the resolution. This
very fine step size was chosen in order to ensure proper alignment of
the pictures during the early stage of the processing. During the
processing the cé]cu]ated images were displayed at a reso]utidn of
50 um by the VFC. In the case of the Fourier transforms, the amplitudes
]D(E)[ were displayed Togarithmically, since their range of values
spans several orders of magnitude,’ This representation yields the same
intensity distribution as an optical diffractogram, because of the

logarithmic response of a film emulsion to light.
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3.4.3.2 Processing algorithm

The block diagram shown in Fig. 3-19 illustrates the various
stages of the processing. An area, 512 x 512 pixels,was scanned at a
sampling density of A = 25 pym for each micrograph of the series. The
histograms were saturated to 1% on either tail by linearly stretching
the pixels about the mean. A box holding five principal lattice lines
was cut out and converted into a square area. During this process local
lattice distortions and angular mis-orientations were compensated for
by applying a geometrical operator. The resulting pictgres‘were then
matched translationally by cross-correlating over an area equal to
128 x 128 pixels. We have previously mentioned that artifacts can ob-
scure the correlation peak of bright—ffeld electron micrographs taken
at various defocusing. In our work, the peak halfwidth was strongly
dependent upon the respective AZ, of the picture pairs. and reached
its minimum for consecutive pictures of the series. The correlation
peak was then found by bilinear interpolation; the matching displace-
ments that we obtained proved to be accurate to within half a pixel
despite the lack of conspicuous details in certain pictures of the
series.

After completion of the correlation step, the sampling step
size was doubled to A = 50 um (equivalent to 6.73 on the object
scale) without causing any aliasing error, since the objeﬁt resolution
is limited to ZQR, A box, 128 x 128 pixels, Was cut out for further
processing. This box contained 5 horizontal principal-lattice lines,
each separated by 1723; each line consisted of 13 unit cel]é (each cell

is 678 wide). Figure 3-20 shows this area after geometrical alignment
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Fig. 3-19 Block diagram of the computer system used to experimentally
determine the variations of the catalase transform with
changes inivthe defocusing. The cross-correlation matrix was
computed over an area equal to 64x64 pixels, and the Fourier
transform over an area 128x128 pixels. Next the amplitudes
Al and the phases al of the diffraction spots are listed.
The scaled amplitudes yield an experimental transfer function
that is used to reconstruct an image free from defocusing
artifacts.
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Fig. 3-20 Micrographs of the catalase focus series after contrast
stretching and mutual positioning by crnss-curre1at1un The
apparent lattice spacings in the micrographs are 678 1in the
horizontal and Eﬁi in the vertical direction. The defocus-
ing values corresponding to each picture are listed in Table
3-1.
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for each picture of the focus series. The molecules along any one row
alternate in orientation, so that the repeat distance is twice the
intermolecular separation along this direction (i.e., 2 x SGR). The
observed morpho]ogicai unit of the crystal agrees well with the proposed

83’84. The structure

structure of four subunits with 222 symmetry
of catalase in the dry state is orthorhombic with
pseudo-hexagonal axes lying across the rectangles in the direction of
the rows of mo1ecu1e585.

The periodicity in the image is apparent in the computed Fourier
transform. This transform yields the phase, as well as the amplitude,
of the diffraction spots; thus it allows us to make a quantitative
analysis of the effects of defocusing on the image transform. Boundary
artifacts were minimized in the discrete transform by setting the
average optical density‘around the perimeter of the input array to zero.
This procedure prevented possible truncation spikes from interfering
with the diffraction spots. A digital transform of a catalase picture,
shown in Fig. 3-21, demonstrates the absence of these spikes on both
axes of the transform; we also notice the close resemblance between

this discrete transform and the corresponding continuous optical

transform shown in Fig. 3-18%.

3.4.3.3 Analysis of the transforms

In computing these transforms, the phase origin was chosen to
be approximately at the intersection of the glide axis and the mirror
Tine of the catalase unit cell.. Local bending in the periodic array
manifest itself as an asymmetry with respect to the meridian line.

This twisting of the lattice can be seen in Fig. 3-22, which is a



Fig. 3-21
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Digital transform of Fig., 3-202 of the catalase focus seriesy
computed over an area of 128x128 pixels. Granularity in the
transform is caused by the small size of the input array. No
transform artifacts, induced by the truncation, are visible.
In order to show the diffuse ring corresponding to phase con-
trast, this transform is displayed in a logarithmic represen-
tation.
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plot of the Fourier amplitude, A’ , along the Tine h =2 . In this
plot we also observe rapid oscillations of the accompanying phase
angle. Since the numerical transform is discretely sampled on a grid,
the amplitude maxima and the respective phases of every diffracted beam
were determined by bilinear interpolation across a grid spacing.

As theoretically predicted, we did not detect sizeable varia-
tions in the phases of the diffracted beams in the range of AZQ
selected. The observed fluctuations of the phase angles (less than
15 degrees) of the beams are mainly caused by the limited accuracy of
the translational matching. Abre]ative displacement of r will
introduce a phase shift of exp(—Znig-gD) in the transform; this
spurious phase term affects mostly the higher order Fourier components.
The phase angles were therefore extrapolated to multiples of /2
because of the known plane group symmetry of the crystal. The amount
by which the phase origin is displaced from its ideal location can be
determined by examining the relative phases of the symmetrically
placed Fourier coefficientng.

The amplitudes of the diffraction spots, after interpolating
between sampled points to obtain the true peak values, are listed in
Table 3-2. The numerical change in the amplitudes reflects closely
the gradual degradation of image contrast as one approaches Gaussian
focus. Despite the fact that these Fourier components did not reach
their maximum amplitudes at any of the AZ, values, we shall demon-
strate that these observations agree with predictions from the Tinear
theory of image formation. In Fig. 3-23 we have sketched the diffrac-

61,87

tion pattern, corrected for lattice distortions The observed
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Fig. 3-23 Diffraction pattern of a catalase crystal reconstructed from
the computed transforms of a focal series. Compensations have
been made for asymmetries in the input transforms. Phase
angles have been approximated to their nearest integer mul-
tiples of w/2, from their preliminary estimates shown in

The direction of the arrow indicates the phase

angle and the number gives the maximum amplitude, observed in

the focal series, of the diffraction spot relative to the zero
order component. Back transformation of this pattern yields

the reconstructed image shown in Fig. 3-25.

Fig. 3-22.
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amplitude maxima of the beams, and their associated phase angles, are

indicated in this figure.

We shall now consider certain problems associated with the
normalization of the amplitudes of the diffracted beams with respect
to the DC term. The zero order Fourier component, [DQ(O)I, is propor-
tional to the mean optical density, <d2>, of any picture 2 . If one
calls ag(r) the picture obtained from dg(f) by a linear contrast
enhancement which saturates the tails of the histogram to a fixed per-

centage, the following relationships hold

and

D, (k)

(k) = oy D (k) + B 8(k) (3.128b)

The normalization process is thus strongly dependent upon this prelim-

inary contrast manipulation, which converts Dz(k)/Dz(o) into

By (k) Dy(k)

for |k| #0 (3.129)

Since the exposure times of each micrograph were nearly identical, the
total electron flux impinging upon each plate is a constant. One
therefore expects the mean optical density of the pictures that have

undergone a contrast stretch to be similar (i.e., <32> ~ constant).

3.4.3.4 Combined transfer function
If the predictions of the linear transfer theory are valid,

then the scaled amplitudes of the diffraction spots in each micrograph
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of the series give a pointwise determination of the combined transfer

function,
c(k) = [1 - £ ()17 sin y(k)+ 5(k)cos y(K) (3.130)

where E(E) = ~M(&)/®(&) is the relative contribution of amplitude
contrast over phase contrast. The relative amount of amplitude con-
trast depends on the spatial frequency 6/X , on the objective aperture
half-angle, and on the atomic composition of the specimen (i.c., on the
staining process for a biological specimen). In the case of negatively
stained catalase, IE(E)I has been measured experimental]yﬁl and found
to decrease linearly from 0.4 at very low spatial frequencies to 0.1

at e/x = 0.048_], In our experiment, this a priori knowledge of
|2(k)| provided a guideline for scaling the diffracted beam amplitudes.
The amplitude maxima were not observed in the experimental range of AZ,
thus they were estimated by matching the experimental data with C(E).
The scaled amplitudes were then plotted for the complete focal series
(see Fig. 3-24) as a function of the reduced variable :

u = sign{aZ} 6 /[AZ[/)x where AZ stands for the focus parameter
modified by axial astigmatism. Table 3-3 Tists the azimuth angles ¢i
and the frequencies ei/k of the various diffraction spots (AZ can
then be computed locally at each diffraction spot). We see from Fig.
3-24 that most of the experimental points lie near a curve that is

described by
C(u) = -[1 - Ez(e)]]/zsin wkuz+ %(0)cos wkuz (3.131)
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Table 3.3 Reciprocal lattice spacings and azimuthal angles associ-
ated with each diffracted beam of the catalase transform shown

in Fig. 3-18. The azimuthal angles, ¢1, have been corrected for
lattice distortions.

Diffracted ei/x (in R—]) ¢1 in degrees

beam

(001) 0.0058 90
(002) 0.0116 90
(004) 0.0232 90
(006) 0.0348 90
(100) 0.0149 0
(101) 0.0160 - 23
(10T) 0.0160 -23
(102) 0.0189 44
(102) 0.0189 ~44
(200) 0.0298 0
(201) 0.0304 11
(207) 0.0304 -1
(202) 0.0320 23
(207) 0.0320 -23
(203) 0.0345 32

(203) 0.0345 -32
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Although the agreement with the theory is only qualitative, the
theoretical transfer functions for each individual reflection describe
the obServed contrast variations with defocusing. The variations of amp-
litude contrast with 6 , however, cannot bte included in a single trans-
fer functionG]. A complete restoration scheme would therefore combine

two or more micrographs at different focus to separate the two contrast

mechanisms.

3.4.3.5 Partial reconstruction

An image transform that is partially compensated for defocusing
effects is reconstructed by assigning to each diffraction spot its
~maximum experimental amplitude and its phase corrected for lattice dis-
tortions (see Fig. 3-23). In order to eliminate random noise that is
superimposed on the image, we only include discrete diffraction spots
in the image transform. Inverse transforming this diffraction pattern
yields an image which is derived from the unprocessed image by a two-
fold operation. First, amplitude attenuation of the spots due to the
contrast transfer function are partially compensated, then the unit
cell is averaged over all the repeat unit cells by superposition.
The reconstructed image is shown in Fig. 3-25c, and it displays the
same morphological units as the highly underfocused original pictures
(2) of the series (see Fig. 3-25a). To accentuate the comparison, the
latter image was noise filtered by inserting square Fourier windows
(0.00]23’1 a side) around the diffraction spots, and subsequently in-
verse transforming. The result of this filtering, shown in Fig. 3-25b,
gives a pleasing image where one easily discerns the warping of the
lattice. Figure 3-26 is a magnified version of Fig. 3-25, displaying

two vertical subunits of the catalase. Little resolution has been



Fig. 3-25

212-

Comparison of the most underfocused micrograph, Fig. 3-204,
of the catalase series with noise-filtered images recon-
structed from the catalase transforms. The images pre-
sented show (a) Fig. 3-20% of the series after contrast
stretching, (b) Fig. 3-202 after noise filtering, and
averaging by insertion of Fourier windows around its dif-
fraction spots, and (c) the reconstructed image partially
corrected for defocusing artifacts.
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gained along the processing because of the lattice distortions of
the specimen that were introduced during the drying stage of the crys-
tallization. ‘
In the resolution range of interest, 0.00588" < 8/x 5_0.0348A']
the overall contrast transfer function C(u) will be maximized at a

certain defocus AZ, Since C(u) is bordered on one side by the

b
pure phase contrast function -sin nxuz, and on the other side by the
40% amplitude contrast function =-0.915 sin mAu®- 0.4 cos nAu® -

2

~sin(mAu“+ 0.41), the optimum AZ0 lies between the optimal settings

p

AZé;) and Azég) corresponding to these two transfer functions. The

highest frequency 6/A = 0.03483, is thus transferred without attenua-

2)

tion between AZé;) = 111003 and AZ(()p = 82008, so that an optimal

focus for this catalase specimen would be around Azop = 95002. At
this choice of AZ , we expect the underfocus enhancement to yield a
high-contrast image.

An analysis of the optical diffractogram will determine the
spatial-frequency spectrum of the specimen. If the amplitude contrast
contribution is approximately known, we can adjust the defocusing to
the range of spatial frequencies in the object so as to achieve optimal

contrast. Artifacts occuring beyond the first zero of the transfer

function can easily be detected by inspection of the diffractogram.

3.4.4 Conclusion

The Tinear theory of image formation, which relates the image
transform to the object structure, gives a valid interpretation of the
contributing contrast mechanisms at the medium resolution level.

Provided that one deals with a weakly scattering object, this theory



-215-
also offers the possibility of compensating for the effects of spheri-
cal aberration and partial coherence in order to extend the resolution
of the electron microscope.

At optimum conditions, the microscope is capable of achieving
a valid resolution of about 4.52, because the main high-resolution mech-
anism is phase contrast (see Eq. (1.38)). Resolution extehding schemes
will then be useful whenever the specimen contains meaningful structural
information at this Tevel. These schemes are current'ly limited by
instrumental instabilities and radiation damage of the specimen.

Several solutions to overcome the above 1imitations seem promis-
ing. For instance, by observing protein crystals in environmental wet
cells, one can preserve the intimate morphological structure and allow
the imaging of its fine detailsgz. Radiation damage can be minimized
by cooling the specimen to very low temperatures; such temperatures
also reduce the specimen contamination rate88. The total exposure time
can be minimized by means of image intensifying devices, and by apply-
ing image processing techniques to retrieve the data from statistically
noisy imagessg.

Under carefully controlled experimental conditions, such com-
pensating schemes as the Schiske method, which restores the complex
object function, might open the way to the visualization of atoms. We
have examined in Sec. 3.3 the processing scheme and the various factors
which must be considered in the inlerpretation of the restored image.

We shall now present an experimental study to check the validity of the

approximations upon which the processing algorithm is based.
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3.5 Study of the Z Discrimination Effect on Gold Clusters Lying on a
‘Carbon Substrate

3.5.1 Experimental Procedure

3.5.1.1 Specimen preparation

The need for ultra-thin support films to attain the ultimate in
high~-resoiution electron microscppy has witnessed the development of
several techniques for producing films thinner than 208 0 e have
developed an efficlent method Tor producing thin carbon films that
exhibit excellent thermal stability under the electron beamgl.

In our technidue, a thin layer of carbon is evaporated upon the
surface of a parlodion film(pyroxilin., cellulose nitrate 1% solution
in amyl acetate) lying on a copper grid, placed on top of a rotating
disc (See Fig. 3-27) to achieve a better thickness uniformity. Carbon
is simultaneously depbsited upon a glass-slide indicator, with a thin
wire (4 mils) across the slide. This control slide is later examined
under an optical interferometer, using thallium radiation of 53708,
which yields a thickness measurement accurate to within 302. Two
pyrex tubes, lightly smeared with silicone grease, enclose the indica-
tor system and the target grids. The diameters of both tubes and the
distance between grids, carbon rods, and glass slide are determined so
as to ensure that the vaporation of carbon obeys an inverse square law.
Carbon atoms that are partially reflected by the tubes hit the sub-
strate and the slide at random angles of incidence, thereby improving
the nondirectionality of the structure. A microcontact was incorporated

in the electric circuit of the evaporator to permit short-pulsed

evaporations. In general, two or three pulses were sufficient to obtain
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Fig. 3-27 Diagram of the evaporation system used to prepare ultra-
thin carbon support films. The glass indicator is shown

in perspective.
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about 1508 of carbon on the glass slide. The calculated fraction of car-
bon deposited on the grid, in this geometry, is 10% of‘ that deposited on
the indicator slide.

After the evaporation the grids are placed on a screen suspended
above a solution of isoamyl acetate, whose vapor dissolves the parlodion
film. The grids should only be exposed to this vapor for about two
hours at room temperature; if this time is exceeded copper carbonate
builds up and contaminates the film. In order to ensure that the par-
lodion film has been completely dissolved by the isoamyl acetate vapor,
control grids covered with a 2% parlodion film and no carbon are placed
in the vapor and periodically examined with the electron microscope.

The gold on carbon specimen is prepared by first spraying the
surface of the support film with carbon-black spheres, followed by the
deposition of gold by shallow-angle evaporation. This specimen was se-
lected since its chemical composition is well defined and it is insen-
sitive to radiation damage. The sample was examined at the tail of the
shadow and revealed gold clusters with a wide range of sizes.

3.5.1.2 Electron microscopy

A through-focus series of the gold on carbon specimen was taken
with a JEOL 100B microscope operating at 100 keV with an electron opti-
cal magnification of 400,000X. The objective lens astigmatism was cor-
rected prior to the recording of a focus series, and the specimen con-
tamination rate was minimized by using a liquid-nitrogen cold finger.
Once thermal drift of the specimen had settled to a tolerable level,

the electron micrographs were rapidly recorded.

Despite all these precautions, several trials were necessary

to minimize the effects of axial astigmatism. This astigmatism is most
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strikingly displayed as e]liptica] rings in the optical diffractograms.
Specimen drift was minimal during the exposure, since no fringe system
was visible in the optical transform. The best focus series was then
selected for further processing. The operational characteristics of
the instrument are listed in Table 3.4, and Table 3.5 Tists the op-

tically determined electron microscope parameters of the series.

3.5.2 Computer processing steps

3.5.2.1 Video input-output

The bright-field micrographs of the focus series were copied
onto fine grain film, without any appreciable loss in resolution within
the spatial frequency range of interest. An area of 15 x 15 mm, cor-
responding to 375 x 375% on the object scale, was scanned with the VFC
at a sampling density of A = 25 um. The equivalent scanning distance
is 0.62BR at 400,000X magnification (this value is much smaller than
the inverse of the Nyquist frequency for these data). The picture
elements were then saturated to 1% on both sides of the gray scale, by
stretching the histogram to achieve a full dynamic range of the data
between 0 and 255.

3.5.3.2 Processing algorithm

A detailed account of the processing algorithm has already been
presented in Sec. 3.3.4.4 and a block diagram of the procedure shown in
Fig. 3-17. We shall discuss in this section the problems which were
encountered during the processing of the gold on carbon series, and the
accuracy of the restoration.

The first step of the processing consists in finding the mutual

positions of all pictures in the series. Since the defocusing values
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Table 3.4 Operating characteristics of the JEOL TQ0B transmission
electron microscope, during the recarding of the micrographs of
gold on carbon shown in Fig. 3-30.

Specifications of the JEOL 100B TEM

4

Second condenser aperture 100 ym in dia. => econ= 7.5 x 10" 'rad
Focal length: F=1.6mm

Objective Lens Spherical aberration: CS = 1.4 min
Chromatic aberration: CC = 1.4 min

Objective aperture 60 um in dia. = eobj = 1.9 x 10'2rad

High-voltage supply: <AU>/U <2 x]O'G/min
Instrument stability
Objective Tlens current: <Aig>/12§_2x 10"6/m1n

Focus step of the series AZst = 808

Contamination of the .
specimen Less than 0.1R/min
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Table 3.5 Estimates of the defocusing values for the micrographs
of gold on carbon shown in Fig. 3-30. These defocusing values
were obtained from the optical transforms of the micrographs.
The axial astigmatism of the micrographs is described by
Az, ~ 1658 and ¢, = 45°.

Micrograph AZZ(R)
a ~-245
b -175
c - 80
d 15
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' AZz are lying on either side of the Gaussian position (see Table 3.5)

we expect the occurrence of artifacts in evaluating the correlation peaks
of two pictures with AZQ of opposite signs. When a negative peak is
predicted by the calculated CCF of the corresponding transfer functions,
the pictures must be complemented prior to the correlation step in

order to avoid errors in the peak determination (the program searches

for the maximum of the correlation matrix). The sums:

(d-l ,dz) _ -I K"‘] L-]

YLl T R L L dlgl,gv dlgnz,wj
and
¢!(§1,d2)= K-1 L-1 (d(1) ) d(z) .)2
i, k20 920 @ Kok k+4,8+]

were computed in various overlapping portions 88 x 88 pixels of the
pictures. Prior to the computation, the angular orientation was ad-
justed by matching conspicuous image features. We observed a strong
dependence of the CCF peak halfwidth on the particular correlation
pair. An example of the peak definition with'respect to its neighbor-
hood is shown in Fig. 3-28. The symmetry of the peak indicates that
picture gradients are minimal and that artifacts caused by the discrete
evaluation of the correlation integral are negligible. A subsequent

(d;,d,)
fit about the peak value of the correlation surface ¢1 j ¢

with a
quadratic surface yields the mutual displacement vectors to within a
fraction of a pixel accuracy. Errors in the registration of the pic-
tures are negligible if i11-defined peaks or trending artifacts are

eliminated. A better registratian would, however, be obtained by
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Fig. 3-28 Cross-correlation function between two micrographs, Fig.
3-30d and e, of the through-focus series of gold on carbon.
In order to avoid the accurrence of subsidiary maxima in
the CCF, density gradients in the original pictures were
removed. The peak is well defined from its neighborhood;
therefore the two corresponding pictures can be spatially
registered to high accuracy.
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computing the correlation matrices by the Fourier method. Phase re-

versals due to the contrast transfer function, which pull the CCF peak
down towards the negative side, can then be filtered out (see Sec.
3.3.4.3). Truncation errors introduced by the limited size of the
input arrays (the size of the input array is governed by core storage
requirements) have overthrown the advantages of this method. The focus
series, after contrast stretching and positioning, is illustrated in
Fig. 3-29.

In the second step of the processing, the sampling density was
halved by averaging over four pixels in sequence. The Nyquist frequency
corresponding to the new scanning step (A = 50 ym = km = 0.4&“1) is
still smaller than the resolution of the instrument. In order to deter-
mine the highest frequency that carries information, a Fourier resolu-
tion test was performed. In this test, the superposition transform of
two micrographs of the series is computed. The superposition transform
shown in Fig. 3-16a exhibits modulation fringes which extend up to
0.253'1, and therefore indicate an instrumental resolution of 4R. Thus
a slightly larger value, kmax = 0.288'], was chosen as the aperture
radius of the noise-filter function hN(E) (see Eq. 3-123)). We then
selected in each picture of the series a 160 x ]608 area of carbon film,
and determined the autocorrelation matrix using the Wiener-Khinchine
relationship. An 80 x 802 central portion of the ACF array was then cut
out and multiplied by the radial function w(_r:) (see Eq. (3.59)) in
order to smooth fluctuations in the carbon-film pawer spectrum. Values
for the cutoff radius and the Gaussian fall-off halfwidth were chosen

to be g = 22.53 and oG = 6.25& respectively. The optimal phase



-22h-

Fig. 3-29 Focus series of gold on carbon after contrast stretching
and positioning. The enclosed box in Fig. e, 320x320A,
shows the area used in the subsequent processing.
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factors vy(k) were determined by a least-squares fit between ljc(E)|
and g, (0) |sin v(k)| within the range k. /4 < [kl< kpag- A measure
of the divergence in the successive iteration runs is obtained by vary-
ing the parameters: re: 9g° kmax’ and the starting electron microscope
values. It could be ascertained that the output electron microscope
parameters furnished the best possible representation for the function
sin y(g), since fluctuations in their measurements were negligible. The
results of the fitting program are listed in Table 3-6; they match re-
markably well with the preliminary estimates.

The object transform is computed from the transforms of the
micrographs using Schiske's formula. An area, 128 x 128 pixels, in
which severé] gold clusters could be observed, was then cut out of each
frame (the small area was chosen in order to reduce the total amount of
computer time). The focus series used in the reconstruction is shown in
Fig. 3-30 and the associated numerical transforms are shown in Fig. 3-31.
Since no transform artifacts, due to either scanning noise or edge dis-
continuities, were visible in Fig. 3-31, the noise filter function
hN(E) did not éet the Fourier components along the principal axes to
zero. The bandwidth of the filter was determined by kmax and by the

largest hole radius, k_: , which would not cause ringing around the

min
clusters. The filter parameters were chosen as follows (see Eq.(3.123)):

0
koo 0.0258°1,

- 0.288""
m x » 0

_ 1 . -1
nin = 0.01258°1, and Oy = 0.03128°1.

ma
By combining the modified Fourier coefficients, the complex

structure factor, F(k), was determined according to Eq. (3.97). The

effects of partial coherence were ignored in this processing, although

they are quite significant under these data recording conditions. (These
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Table 3.6 Estimates of the defocusing values for the micrographs
of gold on carbon shown in Fig. 3-30. These defocusing values
were computed from a Teast-squares fit between Ijg(E)l and
gr(e)lsin YZ(E)I in each micrograph of the through-focus series.

The axial astigmatism of the micrographs was determined to be
Az, = 1558 and ¢, = 46°.

Micrograph AZl(R)
a -196

b -115

o - 53

d 15
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rig. 3-31 Numerical transforms of the focus series shown 1in Fig. 3-30
computed over an area containing 128x128 pixels. The small
gsize of the input array accounts for the observed granularity.
Scanning noise and truncation box artifacts are not visible,
so that apodization is not necessary at the picture bound-
aries. The transforms are displayed in a logarithmic repre-
sentation.
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conditions are the same as those for which the envelope functions were
plotted in Fig. 3-5.) Various numbers of pictures were used in the
restoration procedure and as expected the noise is quite amplified near
the zeros of the contrast transfer function when only two pictures are
used. The noise perturbation ceases to be a limiting factor when the
number of pictures in the least-squares combination is sufficiently
large. The real part of F(g) exhibits a discontinuity near the
origin which caﬁ be removed by high-pass filtering. The imaginary part,
on the contrary, can be displayed directly, and its selective contrast
enhancement is brought out progressively as the noise amplification is
reducéd. The whole reconstruction is then assessed according to an
algorithm presented in Appendix D.

If the reconstructed images match closely enough with the ori-
ginals, the various dark field terms lwél)(r)lz are evaluated and
subtracted from the original series. One iteration is generally suf-
ficient to minimize the influence of this quadratic term on the
restored complex-object wave. The results of this procedure are now

discussed.

3.5.3 Results of the Restoration

3.5.3.1 Input images

The interesting features of the changes in cluster contrast
with defocus are seen in the original focus series shown in Fig. 3-29.
In the overfocus region, only detai]s of medium size are apparent, the
smaller clusters being almost hidden by the speckle-like structure of
the carbon background. As one reaches underfocus conditions finer

details are enhanced, and simultaneously the contrast of the gold
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clusters against the substrate is improved.

A study of the behavior of the phase and amplitude contrast
transfer functions, modified for partial coherence, confirms this
visual assessment. Figures 3-32 and 3-33 illustrate these functions,
calculated for the various electron microscope parameters that were
obtained by the least-squares fitting procedure. The coarse variations
in the background contrast with AZy is easily interpreted, since we
know that a carbon film behaves as a pure weak-phase object with an
almost white power spectrum. The smaller gold clusters exhibit a
decrease in their diameter as one crosses from overfocus to underfocus,
a fact which is accounted for by an inspection of the scattering con-
trast transfer curves shown in Fig. 3-33. The larger attenuation of
Tow-frequency components at AZ = -1968 results in a correspondingly
broader impulse response in this range of resolution. It is important,
however, to be sure that the anomalous-scattering contrast transfer
does not change significantly within this small focus range, since this
ensures that the frequency gaps, near the zero crossing of each trans-
fer function, are filled in the restored complex-object wave. On the
other hand, the high-resolution details within the clusters are ex-
tremely sensitive to the changes in the transfer conditions with AZZ .

Although not intentional, the carbon substrate was shadowed
with gold in such a way that the average cluster size exceeded SOR even
at the rim of the shadow. As a consequence, most clusters exhibited
very pronounced contrast features which led to a saturation of the op-
tical densities at their sites during the scan. This proved to be one

of the 1imiting factors of the success of the whole restoration,
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because the original pictures displayed a high signal-to-noise ratio.

Furthermore, at the gold sites, the kinematical scattering approxima-
tion is only partially valid, since the mean free path for single
scattering in gold is 252. Another experimental deficiency lay in the
amount of axial astigmatism (AZa = ]558) which riddles the micrographs
and causes an angular variation of information transfer far more sig-
nificant than the variations within a single focus step.

In spite of all these difficulties, the restoration scheme was
implemented on an area of the input images where low contrast gold
clusters were visible. A box containing 128 x 128 pixel elements was
cut out and noise filtered in the five micrographs, which had been pre-
viously brought into mutual alignment by cross correlation. These pic-
tures are shown in Fig. 3-30 and their associated diffractograms are
shown in Fig. 3-31. In the diffractograms the innermost elliptical zone
corresponds to amplitude transfer, where the predominant contribution
stems from carbon's large cross-section for inelastic scattering at
small angles. The inelastic scattering in the original pictures can be
reduced with high-pass filtering.

A check of the performance of a pure phase-contrast inverse
filter (the design of this filter has been studied in Sec. 3.3.3.2) was
examined on a picture of the series. Two different threshold values
were used to obtain the final reconstructed images shown in Fig. 3-34;
we notice that no information gain has been achieved. On the contrary.
one expects a few artifacts in the restored image around the gold sites
where anomalous scattering becomes sizeable. A more quantitative
evaluation of the reconstruction is given by the relative signal-to-

noise ratio (SNRi), at the cluster locations, before and after applying
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Fig. 3-34 Comparison of an underfocused image of the series of gold on
carbon with its inverse filtered versions. The above pic-
tures correspond to (a) Fig. 3-30e, (b) inverse filtered
version of (a) with & = 0.5, (c} inverse filtered version
of (a) with § = 0.2. Figure c shows the appearance of

noise artifacts.
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the fi]ter. The resu]ts listed in Table 3-7 prove the inefficiency of
an inverse filter algorithm to restore the complex-object wave func-
tion.

3.5.3.2 The anomalous scattering image

The amplitude contrast image, ¥"]{F1(5)} » is illustrated in
Fig. 3-35 where N = 2,3,4 and 5 pictures of the series are used in
the restoration. As the number of pictures increases, a gradual im-
provement in the discrimination effect 1s brought out; this phenomenon
is expected if the noise propagation is taken into account. Some
features can be discerned in the image of the smaller gold clusters,
which are related to their structure, although these features are
obscured by the adjacent noise pattern.

The selective contrast enhancement yields an imaginary image,
“(fo)’ with sTightly better contrast at the heavy atom sites than the
best input image of the series (Fig. 3~30e). 1In Sec. 3.3.4.1, the
atomic image contrast integrals were calculated for both phase and
amplitude contrast, as well as for the electron microscope conditions
Under which Fig. 3-30e was recorded. The expected improvement ip the
separation effect, going from the original to the anomalous scattering
image, was. found to be about 7. These results were derived for iso-
lated atoms, thus neglecting the influence of bonding on the atomic
scattering potential. We have emphasized that specimen thickness
limits the potential of the discrimination technique, by shuffling the
real and the imaginary parts of the scattering amplitudes. This effect
becomes all the more degrading as one proceeds to extend the resolution

of the microscope. Inaccuracies in the measurement of the phase
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Fig. 3-35 Anomalous scattering image, -,.{T:D‘,I, calculated by the Schiske
restoration procedure from (a) N=2, (b) N=3, (c) N=4, and
(d) H=5 pictures of the series of gold on carbon. Noise con-
tributions near the zeros of the transfer function create
artifacts, if N is too small, that reduce the selective con-
trast enhancement.
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factors were shown (see Eq. (3.107)) to lead to similar adverse effects.
A1l in all, these perturbations set major obstacles to the success of
this technique, which only reaches its full potential at very high
resolution. In our case, the gold clusters were visualized as very
strong scattering centers, a fact which reflects itself clearly in the
numerical estimates of the SNR of the input images (see Table 3-7; in
Fig. 3-20e the SNR range from 1.4 to 1.9). A contrast enhancement was
therefore difficult to demonstrate, although the restored complex image
is a more valid representation of the object, and displays a broader
frequency band.

By studying the Fourier transform of “(fo) (see Fig. 3-36a),
one notices an increase in lFi(E)l within the frequency band, a fact
which one expects from the radial dependence of f;(e) with the scat-
tering angle. This transform exhibits a gap in the spatial frequency
spectrum,where structural information has not been transferred in any‘
pictures of the series. The restoration covers a spectral range cor-
responding to a superposition of the input spectra. As a consequence,
the defocus step should be chosen in such a way that the Fourier spec-
trum, after reconstruction, is fully covered by the series. An
inspection of the transform F1(5) shows Tittle gain in bandwidth, when
compared to the original pictures. The defocus step that was selected
is too small to enable a detectable resolution enhancement, since the
contrast zones in the original pictures overlap quite significantly.
Another difficulty lay in the residual axial astigmatism of the objec-
tive lens. Some resolution gain, however, is visible in the anomalous

contrast image (see Fig. 3-35d) at the location of the small gold
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clusters (labeled 1=1,2,6). Unfortunately, the low-order Fourier co-
efficients came out very strong and obliterated the ﬁigh-frequency
details contained in the amplitude-contrast contribution of the object.
A similar high-frequency zone is visible in the transform F.(&) of an
isolated carbon area; this indicates a contribution from the real scat-
tering factors through the curvature of the Ewald sphere. Thus, we
conclude that specimen preparation and examination techniques set very
stringent limits to the reso]ufion and contrast enhancement of the
Schiske scieme. Thelmost restricting experimental factors, in our study,
were the large spatial extent of the gold clusters (see Table 3-8) and
their thickness, which accounted for their initial high contrast on the
substrate background.

The phase contrast image ?']{Fr(%)} shows the predominance of
low resolution details, due to its analytical singularity near the
origin (see Appendix C). The cloudy intensity distribution shown 1in
Fig. 3-37b can be visualized as a pictorial representation of the vari-
ations in specimen thickness, thus confirming the sizeable thickness
of the large gold clusters. A high-pass filter makes the real image
appear granular (seé Fig. 3-37a), without any discernible structural
details. When the low frequencies that image the outlines of the clus-
ters are suppressed, the real images of the gold atoms are totally
obscured by the carbon film. A theoretical contrast ratio of 5:71 was
calculated for the phase image of isolated atoms, when all scattering
angles are included in the image formation. The fact that no selec-
tive contrast is visible may be attributed to the low-resolution con-

tent of these clusters that was previously mentioned.
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Table 3.8 Size of the gold clusters indicated in the micrographs
of Fig. (3-30).

Gold cluster Average diameter
number (R)
1 12
2 17
3 22
4 32
5 25



A 5
=f dhy=

Fig. 3-37 (a) Phase contrast image ;[rdj, after high-pass filtering.
(b) Unfiltered phase contrast image representing the con-
tributions due to the real part of the scattering amplitude,
to the curvature of the Ewald sphere, and to inelastic scat-

tering. {c) High-pass filter h”F{k} used to remove low-

frequency artifacts.
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To check the validity of the reconstruction, the focus series
Was calculated form the compiex structure factor by choosing the elec-
tron microscope parameters equal to their values found by the least-
squares fit (see Fig. 3-38). Normalization prbb]ems associated with
‘the comparison of these pictures with the original series are examined
in Appendix U. An excél]ent agreement was found between the respective
images; this agreement could be measured quantitatively by the average
least-squares deviations of the difference pictures. Such a figure of
merit, defined by Eq. (D.5), was evaluated to be GI'_i = 19.5 on a
scale of 0 to 255, as opposed to an average distribution halfwidth in
the original pictures of a;, = 44.7. Figure 3-39b illustrates the
intensity distribution of a difference picture after contrast stretch-
ing; this difference picture exhibits almost no 5tructura1-information.
This lack of structural detail indicates that the dark-field term plays
a minor role in the overall reconstruction scheme. To confirm this the
quadratic term |¢£2)(r)[2 was evaluated for every phase factor from Eg.
(D.6). Such a dark-field image, shown in Fig. 3-39a, illustrates the
minor contribution to the bright-field image played by !¢£z)(f)|2-
These dark-field images were then subtracted frbm the original series,
and the restoration was implemented on this new focal series. The
results of this iteration (see Table 3-7), indicate that the iterated
amplitude-contrast image yields no improvement in the discrimination

effect when compared to the first iteration loop.

3.5.4 Conclusion
By assuming a wave-optical theory of image formation, we have

reached a quantitative understanding of the various contrast



Fig. 3-38 Focus series of gold on carbon reconstructed from the com-
plex structure factor. A comparison of this figure with

Fig. 3-30 confirms the validity of the restoration.



'.""—:I'_'i'

ELr

b

A

.i-.‘ '~ - l.l_l Jf
r...! ._...__ .“-_h‘ - ”..-_d f&‘—

o .-iﬁr .xu‘jLﬂﬂ
.u hjhmrﬂﬂw- -

Lie B wi's Lol hi ¥ g ™
W..n?.... N A TR

=]

complex structur

calculated

ge
el
(b) Difference

ima

1d

ters as Fig.

DA rame

sdame

factor, a

WO COPres-

i

mage .

i

3-2%e;

he reconstructed focus

al and

W

series.

i age

before bein



-249-

contributions to the image of a weakly scattering object. Criteria
have been used, at various stages of the processing, to ensure that the
procedure yields the correct object function. Inadequacies in the
specimen preparation and in the data recording, however, were shown to
have significant effects on the success of the restoration. Moreover,
the algorithm was implemented under the assumption that the incident
illumination dis coherent and monochromatic. Consequently, we ignored
the high-frequency fall-off due to the partial coherence of the source.
The correctness in the determination of the phase factors was checked
by retrieving the input pictures from the computed structure factor,
and comparing with the original series. This test does not provide,
however, an absolute guarantee thaf the YQ(E) are correct, because
the algorithm is designed in such a way that an optimal solution to a
given set of YQ(E) and input pictures is always found. In addition,
the restored imaginary image is relatively insensitive, within a cer-
tain range, to the absolute focus values.

Currently, there does not exist a method for checking the
validity of the contrast assumptions upon which the whole reconstruc-
tion scheme is based. It is very likely that in our restoration, the
kinematical scattering approximation broke down at the heavy atom
locations. The resulting modulation of the primary wave would appear
in the cosine-transferred part of the transformvand thus further at-
tenuate the selective enhancement effect. One can only claim the
existence of such perturbations to interpret the experimental results.
Their assessment requires additional experimental evidence, showing

the relative strength of all sources of high-resolution contrast in a
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particular defocus range.

Better results would have been achieved if the clusters had
contained only a few atomic layers of gold. An improved high vacuum
in the evaporator and a shallower shadowing angle would result in a
deposition of very fine gold particles near the edges of the shadow.
We would expect a twofold improvement in the reconstruction, with a
decrease in the size of the clusters.

On the one hand, the predominance of lTow-resolution detail,
which prevented a visible resolution enhancement, would be attenu-
ated. The high spatial frequency content of the image, which was
obscured by Tow resolution detail in our work, would show a noticeable
gain in resolution after completion of the scheme. It would also
permit a reduction of the inelastic scattering term by high-pass fil-
tering. On the other hand, by starting from small clusters which are
hardly visible on a granulated background, the selective enhancement
would prove its efficiency by bringing up strong peaks at heavy atom
sites. The thickness dependence of the discrimination method would
play a minor role and thus the imaging conditions would more closely
meet the required assumptions of the existing theories.

What is needed is a calculated model with which to check the
restoration program and appraise the various contrast sources. The
importance of inelastic scattering, radiation damage, quantum electron
effects, inaccuracies due to the density measurement, and errors in
the determination of the electron optical parameters should be

assessed.
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As a conclusion, we point out that object restoration methods
may misrepresent the input data, if a careful experimental verifica-
tion of the underlying theoretical assumptions is lacking. The Z
discrimination technique will only show its potential when adequate
specimen preparation techniques are evolved. Instrumental instabi-
lities and specimen damage make electron microscopy at the atomic
“resolution range very unreliable. Ultra-high vacuums, superconduct-
ing objective lenses, ultra-sensitive recording sensors, in conjunction
with restoration schemes, certainly will open new avenues of research
in the pursuit of atomic resolution. It is therefore not inconceivable
that energy filtering microscopes, such as the scanning transmission

electron microscope72

, equipped with the latest advances in technology,
will be capable of visualizing molecules at the atomic level. The
tolerable radiation damage threshold will govern the maximum exposure
time and hence the initial image contrast for a particular imaging

mode. At present it would seem that a scanning transmission electron
microscope, with energy filtering, would yield the best solution to

the radiation damage problem. This is because the scanning transmission
mode submits the specimen to less radiation exposure, since electron
detectors and amplifiers are used to record the image.

This chapter has stressed the problems involved in extending
the existing microscope resolution by image processing techniques. In
the next chapter, we shall concern ourselves with the numerical extrac-
tion of a signal from a noisy background. As the examples will

demonstrate, the processed images allow a quantitative contrast analy-

sis when observing an imperfect crystal at high resolution.
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CHAPTER FOUR

APPLICATION OF COMPUTER TECHNIQUES FOR NOISE REMOVAL TO THE
QUANTITATIVEC INTCRPRETATION OF HIGH-RESOLUTION MICROGRAPHS

4.1 Introduction

Various sources of noise limit the amount of structural in-
formation that can be extracted from an electron micrograph. These
sources of noise include: statistically random noise originating from
the quantum nature of the signal and from the'granu1ar1ty of the film,
"snow" that is introduced during the VFC scan, and spurious periodic
noise. In the following analysis we shall consider only random noise
since the other noise sources can be eliminated in the preprocessing
stage. |

In order to simplify the analysis, we shall assume that this
statistically randOm noise is additive and uncorrelated to the signal.
These conditions are experimentally fulfilled when the contrast varia-
tions in the image have the same order of magnitude as noise fluctuations.
The detectability of a weak signal embedded in a noise background has
been discussed in Sec. 1.4.1, where a relationship between the number
of electrons impinging upon a given area of the recording sensor and
the contrast level C; was derived.

Let us now consider two image points (d] and dz) whose relative
intensities differ by the detection threshold: dy-d, = zati, where d
is the picture mean. Then, according to Eq. (1.82), the ratio of their

respective noise fluctuations equals



f
_ /[ . c
— = [ = T4C = 1+ —— (4.1)

Consequently in the case when the illumination level d is high and
the signal modulation is comparable to the noise background, the noise
statistics are spatially invariant and are approximately independent of
the signal. These assumptions are valid when the number of electrons
recorded d.ur'ing the exposure is large enough, and when the image does
not exhibit sharp contrast variations. These assumptions are not
likely to hold when the microscope is operated in the dark-field mode,
unless long exposure times are employed. In this case, specimen stabi-
lity and contamination rates become the limiting resolution factors.
The above analysis has led us to the conclusion that the noise
is reasonably uncorrelated to the signal. If we now assume that the
noise obeys white-Gaussian statistics, we can expect an increase in the
signal-to-noise ratio of /N by superimposing :N . separate micrographs
of the same object. The computer is employed to carry out the regis-
tration (translation and rotation) of the micrographs, before performing
a Tinear averaging. This averaging is a useful method for increasing
the visibility of detail in electron micrographs that contain regular
arrays of like units. After this processing we obtain an enhanced ver-
sion of the avérage object, since the variability in the appearance of
individual image units has been attenuated. We shall now present
specific examples of the enhancement of lattice images by computer

processing.
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4.2 Digital Filtering of Periodic Images

4.2.1 Processing Algorithm

Although high-resolution lattice images are often partially ob-
scured by artifactual detail, filtering procedures have been evolved
which allow a precise determinétion of the repeat spacing. This is
accomplished by attenuating random perturbations, which are brought
about by local specimen buckling or by statistical noise. By filtering
one can then convertban image that is quite lacking in apparent
periodicity into an image that contains a regularly fepeat1ng struc-
tur‘e.92 |

Two a]ternative'processing schemes for enhancing a periodic
signal in the presence of noise are available. One method, carried
out in real space, is tﬁe computer analogue of a photographic inte-

gration technique93.

The other method, which can also be performed
optically, consists of selectively masking the image transform so that
-only certain Fourier components contribute to the final reconstruc-
tion94. The relationship between these two methods, when they are
digitally implemented, is presented in Appendix E. We shall now dis-
cuss the relative merits of each technique.

4.2.1.1 Fourier filtering

The Fourier transform of a micrograph can be used to detect
periodicities that would be invisible to visual inspection. A periodic
image transform shows}maxima, which can be separated from the transform
of the noise by using windows of variable size. The portion of the

transform which lies outside the window is then set to zero, and the
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periodic image is obtained by inverse transformation.

Several remarks, regarding possible transform artifacts, are
worth making. Firstly, if the number of fringes in the box is not an
integer, the various orders of the discrete Fourier decomposition of
the fringe pattern will not fall on the sampling grid. One must
therefore look for the maxima by interpolation across a sampling mesh,
and assign the correct phase angles to the maxima. This problem is
not critical. however, when one is dealing with a Tattice image that
is mostly sinusoidal and thus contains only one strong first-order
maximum in its transform. Another reason for including, as nearly as
possible, an integer number of fringes in the processed image, is to
avoid edge discontinuities in the discrete transform. These discon-
tinuities at the truncation of the image bring up spikes on the trans-
form axes that could overlap the diffraction spots. Lastly, one should
remove strong optical denéity gradients running across the picture,
since these gradients induce spikes in the transform in a direction
perpendicular to the gradient.

Once the picture has been scanned and has undergone a contrast
stretch, one proceeds to geometrically align the translational unit
vectors in the periodic image with the picture boundaries. A box con-
taining an integer number of repeat units is then cut out (the number
of repeat units is determined by visual inspection if the periodicity
is visible, or by an a priori knowledge of the selected signal). The
dimensions of the box are then modified so that the number of pixels
along one edge is a multiple of two; this requirement is imposed by

the FFT algorithm. The Fourier transform is then multiplied by a
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template that is transparent to the detectable periodic signal and in-

verted,’thus yielding an enhanced lattice image. One advantage of
this method in comparison to the real space processing scheme is that
it permits a variable number of components to enter into the recon-
struction. This proves to be very valuable when one deals with nearly
periodic images, since Tocal lattice distortions can be preserved by
merely opening the Fourier windows. If the filter windows ére chosen
to be one pixé] wide, the analysis presented in Appendix E tells us
that the two processing schemes are equivalent. The fact that this
equivalence js only part1a11y true is a cbnsequenﬁe of the numerous

artifacts that can be introduced during the computation.

4.2.1.2 Convolution averaging

Convolution averaging is'particu1arly useful for the enhance-
ment of periodic images that contain random noise. If we assume that
the noise is statistically random and additive to the signal, a signal-
to-noise ratio increase of /N 1is obtained by translating the image
by the amount of the periodicity and then superimposing the image N
times upon 1tse1f26. This method, however, is restricted to process-
ing lattice images from perfect crystals, since any variation in
lattice periodicity will cause a phase error in the final image.

When implementing this technique one follows the same prelim-
inary steps as in the previous method for aligning the input area and
determining the spatial extent of the repeat unit. In the average
picture, any ill-defined periodicity will appear as sharp discontinu~
ities at the boundaries of the repeat unit. This scheme fails en-

tirely if strong picture trending obscures the periodic features.
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4.2.2 Enhancement of Lattice Images Embedded into Noise

4.2.2.1 Silicon
A) Specimen preparation and data collection
A [111] crystal wafer of silicon was subjected to an oxidiz-

ing atmosphere at 1050°C, producing the following reaction:

351 + X02 + Si+ ZSiOx

This reabtioh produce must be considered to be 1essbthah desirable for
1attice imaging experiments. Electron transparent specimen§ of the
reaction product were obtained by chemical thinning in a 90% HNO3~ 10%
HF solution. These specimens'were then examined in a JEOL 100B electron
microscope operating at 100 keV.

In general, the selected-area-diffraction patterns obtained
from these specimens were typical of an amorphous medium, but in one
case evidence of weak Bragg maxima was found (see Fig. 4-1b). These
weak maxima were used to obtain a laftice image from the remnant Si
crystal. The lattice image was obtained byvéllowing the weak +220
méxima to’interfeke with the transmitted beam in the final-image plane
(see Fig. 4-1a); the working magnification of the electron microscope
was 415,000X.

In Fig. 4-1a we see a very faint fringe pattern superimposed
upon a structureless background. We shall now discuss the recovery

and enhancement of this weak periodic signa]gs.

B) Detection of the periodic information

The electron micrograph containing the weak Si fringes was
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first copied onto fine-grain film at a magnification of 5X in order to

improve the fringe visibility with respect to the substrate. This
photographic enhancemeht was necessary, because the CRT scanner was
not designed for low-contrast input pictures. Next, the optical den-
sities of Fig. 4-1a were measured and encoded at a sampling step size
of A = 25um. This step size corresponds to O.1ZR on the object scale.
A visual appraisal of the angular orientation of the fringes indicated
that they were running at a slight tilt.

A box containing m = 17 fringes was subsequently cut from
Fig. 4-la for further processing. The number of fringes in this box
was first estimated visually; this estimation was later improved by an
examination of the discrete Fourier fransform. One expects the first-
order diffraction maximum to be m'pixels away from the DC term if m
fringes have been selected (see Appendix E). If the maximum falls on
a sampled point of the transform, the number‘bf fringes included in
the box is an integer, Otherwise, the dimensions of the box must be
altered until m becomes an integer. |

An examination of the discrete transform shown in Fig. 4-2b
reveals the presence of vertical spikes. These spikes are caused by
the sharp picture trending in the area that was selected for process-
ing. Since these spike artifacts did not interfere with the diffrac-
tion spots, the spat1a1-frequency filter which séparétes the desired
periodic image from the random background led to a reconstructed lat-
tice image in which picture trending has been suppressed.

The effect or progressively opening the‘Fourier windows is

illustrated in Fig. 4-2. By gradually allowing local lattice
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q-2.

tffects of varying the size of the Fourier windows on the
reconstruction of the silicon Tatiice image. The pictures
presented show (a) the 32.0 x32.64 box of Fig. 4-1a after
contrast stretching, (b) the Fourier transform of the digi-
tized area where the vertical streak is caused by density
gradients visible in the input. The remaining picture pairs
show the spatial-frequency filter on the right column and
the corresponding three-beam reconstructed image on the lef
column. The lateral size of ; Fourier window is: (d) 0.098A
(f) 0.2288°', and (h) 0.49R By opening the window, we
clearly destroy the periodicity of the fringe pattern by
superimposing noise from diffusc scattering.

¥

1
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irregularities to contribute to the reconstruction, we can evaluate
the amount of distortions that exists in the original image (e.g.,if
AX s the lattice periodicity in A and w the size of the Fourier
window in R"], then it can be shown that the periodicities that are
transmitted by the window Tie between (1/aX + w/2)™! and (1/aX -w/2)7).
In the filtered image the (220) atomic planes in silicon can easily be
resolved95.

The convolution averaging method cannot be applied with much
success to the Si lattice image (see Fig. 4-3). In contrast to the
preceding technique where density gradients are automatically removed
by the filtering step, one observes distortions in the averaged pic-
ture, which are due to the nonuniform grey level in the input picture.
The artifacts which are induced by this picture trending destroy the
c]afity of the processed image. Furthermore, this averaging method
proves its inapplicability by significantly amplifying the lattice dis-
tortions in the output image. '

4.2.2.2 Llattice images of gold

A) Experimental procedure

Electron-transparent gold films with <001> orientétion were
prepared by vacuum deposition onto a cleaved NaCl crystal. The films
were removed by dissolving the sodium chloride; they were then mounted
on a 400 mesh microscope grid. These specimens'were observed with a
JEOL 100B operating at 100 keV and a magnification of 400,000X. The
electron gun was mechanically tilted (to reduce the effect of objective
lens aberrations) so that several operating reflections fell onto a

circle centered at the optic ax1596.



b

Fig. 4-3. Convolution averaging of a weak periodic signal that is ob-
scured by overlappipg density gradients. The pictures show
(a) the 32.6 x 32.6A box of Fig. 4-la after contrast stretch-
ing. (b) the result of superimposing the 17 unit cells and
taking the linear average. Artifacts in the reconstruction
are induced by the non-uniform contrast of the input image,
low signal-to-noise ratio, and by the fact that the original
fringe system is distorted.
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Lattice images were obtained from the gold fi]m by allowing
the transmitted beam and the (200), (020), and (220) diffracted beams
to pass through a 120 um objective aperture and interfere in the final
image plane. The resulting electron micrograph showed crossed-lattice
planes carresponding to the (200) and the (020) atomic planes (see
Fig. 4-4). The absence of the (220) lattice planes in the final image
was due to thermal bending, which Tocally tilted the (220) maxima away
from the Bragg condition. Consequently, the interference image formed
With the strong transmitted beam and the very weak (220) beam could
not be recognized in the micrograph.  Since the intensity of the dif-
fraction maxima are extremely sensitive to crystal thickness and
orientation, we expect a lattice image to vary accordingly throughout
the specimen.

B) Results of the filtering step

An electron micrograph showing the (200) and (020) atomic
planes in gold was copied onto film at a magnification of 4X . It
was then digitized every 50 um; this samp1ihg step corresponds to
0.314R on the object scale. Next, a 44.8 x 24.88 box was cut from
the digitized micrograph shown in Fig. 4-4. The dimensions of the
box were chosen so as to include an integer number of fringes (i.e.,
m=n = 22).

After noise filtering Fig. 4-4, a more clear picture ofbthe
intersecting lattice pTéneS was obtained (see Fig. 4-5). Since areas
with good lattice periodicity were visible from the start, convolution
averaging was performed on a 12.2 x 12.2R area of Fig. 4-4. The re-

sult of this processing is shown in Fig. 4-6, where atom locations are
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Computer displayed crossed-lattice image of the (200)
planes in a single crystal of gold and its associated
histogram of optical densities. The area selected for
further processing is enclosed in a 44.8 x 44,84 box.
This area contains 22 crossed-lattice fringes.




Fig 4-5. Effects of varying the size of the Fourier windows on the re-

construction of the crossed-lattice image of gold. The pictures
presented show (a) the GG.G.xiﬂ,Bﬁ box of Fig. 4-4 after con-
trast stretching, (b) the Fourier transform of the digitized
area where the streaks near the origin are caused by the large
scale density gradients that are visible in the input picture.
The remaining picture pairs show the spatial-freguency filter
on the right column and the corresponding three-beam recon-
structed image on the left column. The ]SLTrfﬂ size of the, ,
Fourier window is successively (d) 0.0758°', and (f) 0.3738!
By opening the window we allow local lattice distortions to
contribute to the reconstructed image.
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Fig. 4-g. Convolution averaging of a crossed-lattice image of gold.
The pictures show (a) a portion of Fig. 4-5a that contains
6 lattice fringes both horizontally and vertically; the box
in the upper left-hand corner represents a single atom of
gold. (b) the result of superimpnsigg 6x6 unit cells and
taking the linear average. The 2.04A spacing of the (200)
planes in gold can now be seen.
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now becoming visible. By comparing Fig. 4-5 to Fig. 4-6 we see that
Tocal lattice distortions that are averaged out by the convolution
averaging scheme can be maintained in the Fourier reconstruction scheme
by enlarging the wfndows97.

A promising area of application for these processing schemes is
in the study of the influence that crystal defects have on lattice
images. By subtracting the perfect periodicity from the 6r1g1na1
micrograph, local fringe bending and terminations will be revealed.
Unfortunately there does not exist a one-to-one correspondence be-
tween a fringe pattern and the atomic planes because of the sensiti-

vity of the image to the diffraction geometrygs.

Lattice imaging
experiments conducted under known diffracting conditions, coupled
with both image processing and theoretical contrast analysis, should
provide a powerful means for investigating crystalline defects.

We shall now present an analysis of lattice image contrast
based on the many-beam dynamical theory of electron djffraction96’98-
This analysis will serve as an introduction to the more difficult
subject of contrast interpretation of images of crystal imperfections.

4.2.3 Interpretation of Filtered Lattice Images; Dynamical
Theory for Perfect Crystals

4.2.3.1 Outline of the theory of high-energy-electron
diffraction from perfect crystals

In the elastic scattering approximation, the propagation of a
fast electron in a crystal can be described using the time-independent

Schrodinger equation:
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2 2mg
voy(r) + =z [E+V(r)] w(r) =0 (4.2)

where E 1s the energy of the fast electron, Mg is the relativis-
tically corrected electron mass, and V(f) is the potential energy
of the electron in the crystal. We can expand V(r) in a Fourier
series as

2
fi .
V(r) = U, exp(2mig-r 4.3
(r) = 7 ] Ug exp(emiger) (4.3)

~

where g 1is the reciprocal lattice vector corresponding to the atomic

planes (hke). The Fourier coefficient of Eq. (4.3) can be written as

Mg e 9 ‘ )
Uy oS § f;(6) exp(-2migr;) (4.4)

where L is the rest mass of the electron, Mg is the Debye-Waller
factor which takes account of the thermal vibrations of the crystal,
@ s the volume of the unit cell, the summation is over the j atoms
of the unit cell, fj(e) is the atomic scattering factor for elec-
trons calculated on the first Born approximation, and rs is a vector
from the origin of the unit cell to the jth atom of the unit cell.

If we assume for the moment that we are dealing with the
propagation of a fast electron in an infinite crystal, then our wave
function can be written in the Bloch. representation as

¥(r) = 1 I Cg(3) expl2nik (3)er] = [ B(r) (4.5)
J g ’ J
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where the summation over j accounts for the Bloch-wave degeneracy

in energy and 5 (j) = &j tg. In the case of a semi-infinite crys-

g
tal the Bloch wave function can be written as

wr) =71 o Cg(d) expl2miky(§)-r] = ] 0; Bj(r) (4.6)
J g - d
where the excitation coefficients ‘Gj are determined by wave match-
ing at the entrance surface of the crystal.
Substituting Eqs. (4.5) and (4.3) into Eq. (4.2) and Fourier

transforminvg, we obtain the infinite set of equations
- 2T c @ +3 ve,  (G)=0 (47
~9 g h h g-h

2 - X2+ Ug » X is the vacuum wave vector of the incident

where K
monochromatic beam of electrons, and the prime on the summation indi-
cates that the summation over h = 0 1is omitted.

If we now assume that we are in the Laue diffraction geometry
(z is the coordinate parallel to the zone axis of the diffracting

planes), and we assume that only reflections on the zeroth Laue zone

are excited, then Eq. (4.7) can be written in matrix form as

A €(3) = v(3) c@d) 0 (4.8)

~ ~

where A is an- NxN matrix (in the N beam approximation with ele-
ments

sg for g =nh

g Ug~h/2K for g#nh
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sg is a parameter which describes the angular deviation of the inci-
dent beam from the classical Bragg angle for the reflections g, C(j)
is a column vector with elements Cg(j), and  v(j) = k(i) - K, .

By setting the secular determinant equal to zero:
det[A - y(j) 11 = 0

where 1 1s the identity matrix, we obtain a formula, called the dis-
persion equation,'that relates the possible wave vectors E(j) that
can be excited in the crystal to the total electron energy. The solu-
tions to the dispersion equation map in reciprocal space as dispersion
surfaces. In the I/V\ beam approximation there are l,\l\ of these sur-
faces, which correspond to the ﬁ different kinetic energy stateé,
ﬁzkz(j)/Zme, of an electron of fixed total energy. Figure 4-7 shows
a six-beam dispersion surface with its associated Ewald sphere con-
struction.

The remaining unknowns of the theory are the Bloch-wave excita-
tion coefficients ej . By wave matching at the-entrance surface of

the crystal, and noting that in the high-energy approximation the

amplitudes of elastically reflected waves are negligible, we can write
ceo = 9(0) (4.9)

where C is a matrix whose columns are the eigenvectors C(j) ,
© 1is a column vector with elements e'j » and ¢(0) 1is a column

vector with elements @Q(O) =§_ . In the case of a centrosymmetric

go
crystal we know _£=g =1, so that Eq. (4.9) can be written

o

0= ¢ 2(0) ‘ (4.10)
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4 0 (face normal)

|
- BRILLOUIN
ZONE BOUNDARY

Fig. 4-7. Diagram (not to scale) of the dispersion surface and the
associated Ewald sphere construction for diffracting condi-
tions in which six systematic reflections are excited. Note
that the dispersion surface has six branches since six beams
are excited. This diagram also shows the deviation param-
eter Sp4, Which is negative since the 4g beam 1ies outside
the Ewal% sphere. The eigenvalue vy(6) and its associated
eigenvector 5(6) are also shown.
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Now, in order to obtain the wave function at the exit sur-
face of the crystal, we shall first rewrite y(r) 1in the Darwin rep-

resentation:
p(r) = g dg(r) Dg(r) = g 6g(r) exp(2mik -r) (4.11)

where D (r) is a plane wave traveling in the k, direction. Then,

g
equating Eq. (4.6) and Eq. (4.11) we obtain

0a(r) =7 . C,(3) exp{2mi[k(j) - KI-r}

i 39 -

=) 0. Cg(d) exp[2miv(])z] . (4.12)
i 4

In matrix form we can write Eq. (4.12) as

flooe

2(z) =CEQ = CEC2(0) (4.13)

/
{

where E is a diagonal matrix with elements

Eij = {exp[2miy(§)z]} ‘Sij
By differentiating Eq. (4.13) with respect to 2z, and combining

the result with Fq. (4.8) we obtain
iz 2(z) = 2mi A ¢(2) , (4.14)

which has the formal solution

2ri Az
o(z) = e ¢ (0) ‘ (4.15)

Equation (4.15) defines the amplitudes of the various waves at the
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exit surface of the crystal.
4.2.3.2 Absorption
In high-energy-electron diffraction absorption is considered to
be the effect of inelastic scattering on the elastic scattering.

Yoshioka has shown that the equation which describes this process (i.e.,

the damping of elastically scattered Bloch waves) can be wm’ttenm0
[- —ﬁE-VZ + V(r) + iV'(r)] B;(r) = E B.(r) (4.16)
Zme ~ ~ Jt~ 0 j'~ :

~

where V'(r) has lattice periodicity and is the interaction term which
describes the effect of inelastic scattering on the elastically scat-
tered wave. The damped Bloch waves are given by

B,(r) = ] €4(3) exp{2nilk(j) + ik'(j) + gl-r} (4.17)
g

where the imaginary part of the wave vector is an amplitude absorption
coefficient and the Cg(j)‘ are always complex. In the Laue diffrac-
tion geometry the direction of current flow is along the z axis; hence
the inelastic scattering is peaked in this direction and we can write

for Eq. (4.17):

By(r) = T expl-2 k;(3)2] Cy3) explznt (d)-r] (4.18)

The unknowns of Eq. (4.18) are the ké(j) and the complex Cg(j).

These quantities can be calculated using perturbation theory10]. In

particular, if there is no multiplicity in E(j) we can write,

i

ki(d) =

~N)

m g E C5(d) cr@) ug_p (4.19)
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(3).

Finally, if V'(E) << V(f) we can neglect the imaginary part of Cg

4.2.3.3 Computation scheme

In the Bloch formalism, the determination of the various ampli-
tude functions, ¢g(z), reduces to a matrix inversion problem. Since
absorption may be treated as a perturbation, the common procedure is to
solve the eigenvalue equation (see Eq. (4.8)) by first neglecting
inelastic scattering effects. Altorithms for finding the eigenvectors
and eigenvalues of a hermitian matrix are very efficient in comparison
to the general non-hermitian case. One then obtains the imaginary part
of the complex eigenvalue from Eq. (4.19). The various beams are
finally computed at the desired depth z by inserting the computed

values for eigenvalues and eigenvectors into Eq. (4.12).

4.2.3.4 Lattice image formation
The wave function at the point ro, on the exit surface of a

crystal of thickness to may be written as

viry) = §¢g(to) exp(2ni koer ) (4.20)

In lattice imaging, one selects appropriate diffracted beams, ¢g , with
an objéctive aperture and lets them recombine at the image plane to
form an interference pattern. The wave function, ¢i(ri), in the image
plane is related to w(to) by the instrument point spread function,

or equivalently by the amplitude transfer function exp[-iy(0,9)I/M,
where M is the magnification and v(6,4) arises from the lens
aberrations and focal conditions (see Eq. (1.59)). 1If one designates

by ;g(to) the phase angle of the gth Darwin coefficient (i.e.,
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¢ (to) = ]¢g(to)lexp[icg(to)]), the image wave in reduced coordinates

~

v(rs) = g exp(2miker.) g |0g(ty) lexplil2nger, +z (t ) - v}
(4.21)

th reflection.

where yg is the aberration phase shift suffered by the g
If only the transmitted beam and one diffracted beam (i.e.,
g=0 and g =1) are allowed to recombine at the image plane, then

the intensity distribution in the image is given by

1 2 2
906012 = T 1a1%¢ 1415 2l8g] 471 coslamg xit &= 2- Yo+ ]

_ (4.22)
where the coordinate X; is chosen parallel to g . The relative phase
(;]-go) of the beams is a function of both the foil thickness and the
deviation pafameter; this accounts for the observed fringe bending in
the images of both wedge shaped and bent crystals. |

The computer enhancement of experimental fringe patterns re-
vealed local deviations from perfect periodicity, which are now seen
to stem from spatial variations of the relative phases of the beams
(i.e., gg- ;h) due to a buckling of the specimen.

To extend this analysis to deformed crystéls, the amplitudes
¢g(to) must be determined from the dynamical theory of electron dif-
fraction from imperfect crystals. Recent calculations have shown that
the fringe images are sensitive to both focus and variations in the

98

diffraction geometry Consequently, lattice imaging seems to be a

powerful tool for investigating dislocation structure since the fringes
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display good contrast where the fringe bending is large. The va]idity
of mapping the Tattice distribution onto the observed fringe dis-
tribution must be questioned, since diffraction effects can produce
fringe artifacts.

The weak-beam method of electron microscopy has proven to be

]02,103. In

a powerful technidue for investigating lattice defects
the next section a systematic analysis of a complex defect geometry
is carried out with this observation technique. By enhancing the
weak-beam images, a quantitative comparison with theoretical calcu-
lations can be achieved. This example will be used to illustrate the
problems encountered in the interpretation of high-resolution elec-

tron micrographs from crystals containing defects.

4.3 Analysis of Weak-Beam Images of a Dissociated Dislocation Dipole

4.3.1 The Theory of the Weak-Beam Method

4.3.1.1 Introduction

ATthough the underlying principle of the weak~beam imaging
technique 1is rather simple, a detailed contrast analysis requires a
critical evaluation of the various approximations generally assumed
in the formalism. In this technique an increase in the reso]ution of
closely spaced defects is obtained from a narrowing of the individual
defect image widths. This narrowing of the image width also permits
a more accurate determination of the defect position. Schematically,
this effect arises because weakly excited beams are brought into
Bragg condition by large local tilts of the atomic planes near the

defect. The relationship between the defect image and the defect
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geometry depends on the localization of the strain field, the diffrac-
tion geometry, and structural parameters such as the foil thickness
and the depth of the'defect]03. In this work a dissociated dipole was
selected for study. This defect was chosen for two reasons. Firstly,
this defect had not been analyzed previously, and therefore we hoped to
reach a quantitativé agreement between image simulations and computer
enhanced experimental data. Secondly, such an experiment could test
the applicability of this method for investigating.the atomic structure
of defects.

4.3.1.2 Dynamical theory of high-energy-electron diffraction
from imperfect crystals

The potential field of an imperfect crystal may be written as a

modified Fourier series of the form

) Ug(f) exp(2mig-r) (4.23)
e g

where the potential coefficient Ug(r) account for the quasi-periodic
nature of the Tattice. In the deformable ion approximation, the

Fourier coefficients of potential can be written96

Ug(r) = Ug exp(—Znig-g) (4.24)

where R is a vector function that describes the local atomic displace-
ments in the imperfect crystal.

By substituting the Darwin wave function, Eq. (4.14), and the
imperfect crystal potential into the time—independent Schrddinger equa-

tion, we obtain102
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. 9,(r)  K+g 23 (r) Kt g, 3¢ (r)
-1 2 g'~ X X “'g'~ y Jy Vgl
+ +
Z {Kﬂ(Kngzi v ¢g(r) 0z Kzf g, oxX ¥ K+ g oy
z 7z

2 2
X lE"'g' -h¢h(r)
- 1W(W) g ~ -7 Z K T gz EXP[ 21T1( h) B]}

. exp[2ni(§+g)-r] = 0 (4.25)

If we now assume that ¢g(f) and Ug(r) are slowly varying over the
dimensions of a unit cell, such that the Fourier transform of the prod-
uct term Ug-h(f)¢g(f) has support in the first Brillouin zone, we may
separate Eq. (4.25) into a set of algebraic equations. This orthogon-
ality condition breaks down when the deformation of the crystal varies
very rapidly with positionloz. |

We shall further restrict our discussion to diffraction from
crystals with only x-z dependence: this condition is met experimentally
by tilting the specimen so that only one row of systematic reflections
is excited. The g vectors are assumed to lie along the x direction

of the x-y plane (i.e., the zeroth Laue zone) in reciprocal space. In

these restrictions the separated equations become

a2 42 304(r) K *g 3¢ (r) K- |K+g|?
-1 . 49 ) g~ X g'~ . ~ 2
(== + =)o, (r) + + - im ¢ (r)
4nK 322 axz g'~ 9z K, X KZ g~
-im .
7 ) Ugp on(r) exp[-2mi(g-h)-R] = 0 (4.26)
KZ h;g g-h "h'~ 2 22

Since the z direction is approximately the direction of current flow in
the crystal, we expect that the variations in the ¢g(x,z) can become

rapid along the x axis but not in the direction of the current flow, so
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that we may neglect the term involving 32¢g/az2 in Eq. (4.26). Using

this approximation and the following identities:

KZ = K cos 8 = K

K- |k + g|? = 2K s (4.27)

9

which were obtained using the geometry of the dispersion surface shown
in Fig. 4-7 , Eq. (4.26) becomes the following second-order parabolic

system

’QJ

[-iC &5+ -+ B &7 a(x,2) - 2ni Alx,2) o(x,2) (4.28)

Q>

X

where the various matrices are defined as

8(x.2) = [8g(7)(%s2)se o iy (6,27

N

sg for g=nh
[A]gh = .

Ug-h exp[—2n1(g-h)-5]/2K for g #h
[Blgn = LK 91 6 /K
[C]gh = Gg,h/4"K

Ordinarily one drops the second-order derivative in this last
equation to yield a first-order hyperbolic system. This is a reason-
able approximation because the elements of & are normally slowly
varying for near-perfect crystals and the elements of C are small in
high-energy-electron diffraction. However, it has been reported that

these second-order terms are of importance when the displacement field
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R(x,z) exhibits rapid x—dependent variations over a distance of a

few angstroms104

(higher order reflections are more sensitive to
this perturbation.) We therefore retained these terms in our calcu-
lations of weak-beam images. The numerical scheme used to solve Eq.
(4.28) is given in Appendix F.

We can gain valuable information about the physical behavior of
the solutions to Eq. (4.28) by neglecting the Laplacian term. One can

then transform the partial differential equation into an ordinary dif-

ferential equation by introducing the directional derivative operators
3/ang = 3/8z *+ [(K, + g)/K,] 3/ax (4.29)

which differentiate the variables ¢g(r) along the N characteristic

directions. Equation (4.28) is then converted into

n 8(x,z) = 2ni A(x,z) #(x,z) (4.30)

where n 1is a diagonal matrix with elements [n]g h = (a/ang)ag e

Given the solution ¢(0) at the entrance surface of the crystal, the
solution at any point of the exit surface can be constructed by
iterated integration of Eq. (4.30) on a triangular mesh defined by the

ﬁ characteristics. As Takagi has pointed out,]05

these characteris-
tics provide a theoretical basis for the column approximation in which

one neglects all x derivatives in Eq. (4.28). This assumption amounts
to ignoring the triangular area sampled by the transmitted and dif-

fracted beams: for a crystal of thickness to and for two-beam dif-

fraction, the base of the triangular mesh is toeg . It is therefore

99
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invalid when calculating image intensities for higher-order reflections
in thick crystals, particularly near regions of strong localized dis-
order such as a dislocation core.

Despite the stringent requirements imposed by the column ap-
proximation, it has been consistently used in the analysis of weak-

103

beam images Certain criteria were subsequently derived for

optimizing the resolution of weak-beam images. In this approximation

scattering processes can be described by
& 0(x,2) = 2mi A(x,2) 8(x,2) (4.31)

If we now make the phase transformation

$g([) = 0g(r) exp[2mig-R]

we can express Eq. (4.31) as

3—,§(X,Z) = 2mi A(x,z) &(x,2) (4.32)
where
. sg + %E-[gog] for g=h
[A]g’h =
Ug_h for g#nh

Equation (4.32) is the most straightforward of the column approxima-
tion equations in terms of computational ease, since all that must be
done is to locally vary the diagonal elements of the A: matrix as
one numerically integrates along the z direction.

The various diffraction approximations are most easily dis-

cussed in terms of a perturbation treatment of high-energy-electron
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diffraction from imperfect crysta]sgg. The wave function in this

theory is written in a modified Bloch wave representation:

¥(r) = JZ 0;(r) B(r) (4.33)
The excitation coefficients are changed from the constants of the perfect
crystal case into slowly varying functions of position, 0:(r), in the

'~
imperfect crystal. At the entrance surface of the foil perfect crystal

Bloch states are excited, and as these Bloch waves propagate through
the crystal, scattering transitions to new Bloch states occur. These
transitions are controlled by the magnitude of the perturbing poten-
tial, Vd(f)’ which is the difference between the perfect and the imper-
fect crystal potentials. An insight into the resulting image contrast
is obtained by looking at the transitions from one state to another.
The transition rate is controlled by the sum Z (Bj’vdBj)’ which bears
a close relation to the Fourier transform of Vd(z). Therefore defects
with highly localized strain fields will induce a large lateral redis-
tribution of the excited Bloch states, thus rendering the column approx-
imation invalid. The Bloch formalism offers a physical picture of how
the defect redistributes the excited states. It also allows a numeri-
cal estimate of the transition probability amplitudes for the column
approximation. Unfortunately, the column approximation can only be
used reliably in regions where the strain field is weak. However, it
has proved to be useful in suggesting contrast experiments, such as

studying defects with weak beams]OB.
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4.3.1.3 The wéak-beam technique

It has been found experimentally that beams which are weak in
regions of perfect crystal because of their large deviation parameters
could attain an appreciable magnitude near regions where a strain
field is large. In the vicinity of dislocation lines, for instance,
the weak-beam intensity maxima have a very narrow halfwidth (=15A). This
technique thus allows an accurate determination of the dislocation
position and of the strain field interactions.

Several weak-beam diffraction geometries may be selected; the
optimal geometry is a function of both the defect geometry and the re-
quired resolution. For example, one may excite the low-order reflec-
tion g and form the image with the weak-systematic -g , or excite a
higher-order reflection 1ike 3g and use the weak-beam g , or finally
tilt the crystal so that no zeroth-order Laue reflections are strongly
excited and image with g . This latter situation will be analyzed
since it lends itself to a simple analysis of the potential of this
imaging method.

We can predict the shapes and positions of weak-beam peaks.us-
ing Eq. (4.32) where only two beams are considered. Then the relation-
ship between the amplitudes ¢g of the diffracted beam and ¢0 of

the transmitted beam is

Do i,

dz Eg 9

o .

7= B ogt 2nilsy + & (gR)] (4.34)
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where Eg = K/Ug is the extinction distance. The coupling between

% and ¢g will be greatest when

] g? (g-R) = 0 (4.35)

which is the condition that the local displacement R twists the
atomic planes into the Bragg condition. Consequently, one expects a
weak-beam peak at a turning point of dR(z)/dz . The peaks have nar-
row halfwidth, their position is relatively thickness independent and
Ties close to the position predicted by Eq. (4.35). The above criterion
yields the displacement between the observed image peak and the crystal
defect: 1ts'accuracy has been confirmed by many-beam calculations for
simple defect geometries]OG.

The image halfwidth Ax can be estimated from the kinematical
theory in the 1imit |sg| -~ o : for a single edge dislocation an ap-

proximate value for the image halfwidth 1596

AX = ?%?— [1+ 2—('-]—1;)-] ' (4.36)
where v is Poisson's ratio. For a weak-beam image of an edge dis-
location, in which detail on the order of 258 is desired, a minimum
value of lsg] is 0.028° 1. The advantages of operating with ]sgl
as large as possible are twofold. Firstly, 6ne can make a reasonably
accurate determination of the dislocation position without knowing
the dislocation depth and the foil thickness. Secondly, this diffrac-
tion geometry ensures that the weak beam only interacts strongly with

the primary beam in regions of large strain, resulting in an image
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which gives a qualitative picture of the defect geometry.

If the Ewald sphere passes close to any reciprocal point, the
image becomes dependent on the defect depth and the foil thickness.
Our experimental study indicates that such effects are advantageous
when the weak-beam method is extended to studies of dislocation detail
approaching atomic dimensions. Dynamical scattering from the weak
beam to the strongly excited waves are then equally important in deter-
mining the contrast, which is now thickness dependent. When defect
detail below ZSR is to be investigated, the column approximation cannot
be invoked since the variations in the displacement field R are not
negligible over a q1stance toeg . Our calculations indicate that this
requirement becomes all the more stringent as one excites higher order
reflections. In the following study, we shall attempt to match the
positions as well as the magnitudes of the weak-beam peaks to computer
simulated profiles; the difficulties encountered in interpreting the
observed contrast at this high-resolution range, and the inadequacies
of the existing theories to predict the contrast behavior, will be

discussed.

4.3.2 Geometrical Analysis of a Weak-Beam Image

4.3.2.1 Experimental procedure

The specimen used in this experiment was a high-purity germanium
'sing]e crystal (specific resistivity to 6Q-cm) doped with arsenic to a
concentration of 8 x 1014 atoms/cm3. The single crystal was deformed
in compression for 75 sec at GOOOC, by a static load of 1.5 kg/mm2
along the <123> axis. The crystal was air cooled, and then sliced

parallel to the (111) glide plane. Electron microscope specimens, 3 mm
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in diameter were then ultrasonically cut from these (111) slices.
Electron transparent specimens were prepared by: chemically polishing
the 3 mm disks in a rotating bath of 90% HNO3 -10% HF, and then final
polishing with an ion mil1l using 6 keV argon ions. ‘

The microscopy was performed with a 200 keV JEOL electron
microscope operating at a magnification of 88,500X. In order to photo-
graphically record the weak-beam images, exposure times of 10 to 20
sec were required. Electron micrographs of a dislocation dipole were
recorded at the diffracting conditions listed in Table 4-1. These
diffracting conditions were selected in order to identify the dipole
and study the sensitivity of the weak-beam method. The depth of the
dipole was determined by stereoscopy.

4.3.2.2 Determination of the dislocation dipole geometry

A dislocation dipole can be identified by first taking a two-
beam bright-field image using +g and then =g, holding sg constant
in both cases. If we suspect that our image represents a dipole, then
for one g the dislocation images will be separated and for the other

~

g they will collapse (see Fig. 4-8a,b), since the bright-field image
is strongly antisymmetric about a dislocation 1ine. The dipole segment
AB will be the subject of the remaining analysis.

In order to determine the Burgers vectors of the dipole seg-
ment AB we must correlate the observed dark-field images with their
respective reflections. For a general dislocation, R can be written

according to isotropic elasticity theory, as]O7
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Fig. 4-8 Two-beam bright-field images of dislocations in germanium:

(a) In this picture the operating reflection is g = [220]
with s,=0. HNote that the Targe dipole exhibits outside
contrast. (b) In this picture the operating reflection is

2 = [220] with s =0 . Here the dipole exhibits inside con-

rast. The di pu'la segment AB will be the subject of the
remaining analysis.
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R(r) = 1 L {bo + b %_U.ey+ b x u[—(—1og v ]+ E(’ﬁy (4.37)

where Ee is the Burgers vector of the edge component of the disloca-
tion, 6 1is an angular coordinate in the plane normal to the disloca-
tion line measured from the slip plane, and u is a unit vector along
the dislocation line. In Eq. (4.37) the vector b x u 1is approximately
parallel to the incident beam (the incident beam is approximately
parallel to <111> and the ylide dislocalions have %—<110> Burgers
vectors). In this case the contrast term g°R of Eq. (4.34) is ap-
proximately proportional to g-b . The Burgers vectors can thus be
determined by finding the reflection for which the dark-field image
of the dipole disappears. This invisibility criterion is illustrated
in Fig. 4-9a where the operating reflection (202) causes only the seg-
ment AB of the dipole to vanish. This contrast behavior provides
experimental evidence that the dipole is dissociated into Shockley
partial dislocation with Byrgers vectors of the type %-<112>.

According to Eg. (4.35) the image of a dislocation line lies gn
the side of the dis]ocation where g«R is of opposite sign to sg .
Consequently, by 1ook1|g at the inside-outside contrast of the dipole
OA in Fig. 4-8 it was found that the unit vector of the left disloca-
tion is wu; = [10T]//2, and the unit vector of the right dislocation
is u, = [T011//2 . _

In Fig. 4-9a we see that the dipole segment OA is not pure
edge since it does not vanish when imaged with the (202) reflection.

The Burgers vectors for this dipole segment can thys be oriented at

integer multiples of 30° with respect to the dislocation line. By
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b

4-9 Weak-beam micrographs corresponding to the case where dif-
ferent rows of systematics are excited. (a) The reflection
[202] extinguishes the partial dislocations whereas the
undissociated segment of the dipole is still visible. This
phenomenon allows one to determine the Burgers vectors of
the partials. (b) The reflection [022] resolves the partials
although the two innermost peaks are almost overlapping
which suggests that g'bg for the partials take different
values. i
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inspecting the weak-beam images shown in Figs. 4-9 and 4-10 where the
(202), (022) and (220) reflections are successively operating, the
non-vanishing contrast of the undissociated dipole segment OA reduces
the possible orientation angles for (b,u) to 60 and 120 degrees. If
one now considers the decomposition of b into partials, Bp, and
notices that the (220) reflection resolves the dipole splitting with
higher contrast than the (022) reflection, an analysis of the products

g»bp (see Table 4-2) is consistent with a dissociated 120° dipole, for

which
bV = b8 + b8 = 1 [T10] = L 7211 + L [211]
(4.38)
b*) = bp + bb = J (1701 = L 1217 + L [27T)

There seems to be some discrepancy between this model and the weak-
beam image of Fig. 4-9a. Here the products gabp assume values of

0 and 1 and an empirical rule tells us that partials are effec-

tively invisible for g-gpl 5_%— when the g«Qp xu term is unim-

portant96. However, the fact that the partial dislocations are com-
pletely extinguished by the (202) beam is due to the vanishing of
gxu and gegg . The Tatter term is quite significant for the (025)
case; since it accounts for the presence of the fringes seen in Figq.

4-9b.
The Burgers vectors of the partial dislocations can be deter-

mined if the nature of their associated stacking faults is known. The

108

first results for silicon have been reported by Ray =, who observed

a large number of dislocation segments dissociated into Shockley
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b

Fig. 4-10(a) Weak-beam image using g = [220]. Note that the segment
AB of the dipole is dissociated into four partial dislo-
cations which are well resolved on the background.

(b} Selected area diffraction pattern of (a).
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Table 4-2

List of the edge components be’ of the cross products b x Uy s and of
the products g-b for the undissociated Burgers vector b{1) and its

~ ~

two associated partial Burgers vectors. The g-b terms are calculated
for all reflections used experimentally, both for the total b and for

its edge component Ee .

Burgers vector b E(])= %—[—10] g? = %—[T?T] 95 = %-[*71]
Edge component Ee %—[~2T] %—[—?T] %ﬁ{—ﬁT]
1 ] 1
b X u - 111] - 111] - 111]
~ A 2? 3 6v2
b . (220) 2 1 ]
E * (202) 1 0 1
b - (022) -1 -1 0
= 3 1
Qee (220) E' ] —3'
by* (202) 0 0 0
= 3 1
b+ (022) "7 -1 -7
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partials bounding an intrinsic stacking fault. In this 1ight we shall
tentatively select the partial dislocation geometry to be that given
in Fig. 4-11 ]07. The angle between the dislocation 1ines of the
dipole was determined by stereoscopy.
The last q#;tion to be answered about the dipole geometry is
whether it is a Vacancy or an interstitial type. The dislocation

109

dipole may be approximated to a prismatic loop ~~, whose black-white

image in dark-field can be used to determine whether it is an inter-

stitial or vacancy loop. The Ashby -Brown criterion‘lo

predicts an
interstitial defect if the black side of the black-white image of the
defect is towards the direction of the imaged g (as long as the
defect Ties at a depth larger than one-half extinction distance from
either foil surface). Since stereoséopy indicated that the defect was

close to the foil center, we conclude from Fig. 4-12 that the dipole

sketched in Fig. 4-11 is of interstitial type.

4.3.2.3 Determination of the foil thickness

In order to make contrast calculations, the thickness of the
specimen must be known. In this section we shall present a new mefhod
for determining the specimen thickness.

The intensities of diffracted beams can be calculated to a
high accuracy if the Fourier coefficients of potential (cofrected for
absorption) are known. The calculation of accurate intensities also
requires a precise knowledge of the experimental diffracting condi-
tions. If an accurate calculation of the intensity of the diffracted

beams can be made, then the specimen thickness can be estimated by

.
R
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Diagram showing the configuration of the dissociated inter-
stitial dipole used in this work. The notation used to
number the partial dislocations is consistent with Fig.

4-17, which shows the dislocation geometry in the (172)
plane.
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b

Fig. 4-12 (a) Dark-field micrograph using g = [220]
(b) Selected area diffraction pattern of (a)
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comparing the thickness profiles to the intensities of each reflection
in the diffraction pattern.

For example, consider the diffraction pattern shown in Fig.
4-10b. The thickness profile of each reflection in this pattern was

calculated using Eq. (4.8). (The U_ were calculated using Eq. (4.4)

g
for 200 keV electrons and a specimen temperature of 300°K. Values of
Ué were obtained from the theoretical estimates of Humphrey and
Hirsch]]].) The resulting thickness profiles are shown in Fig. 4-13.
The thickness of the specimen was obtained by comparing the thickness
profiles of the g and 3g reflections. Since the intensity of
these reflections is similar we conclude that their intensities are
consistent with a thickness threshold of ty 3 3500&.

It is obvious that this method is vefy sensitive to the mag-
nitude of the elements of the A matrix. Therefore, we suggest a

systematic study of such effécts as specimen orientation and absorp-

tion on the thickness profiles.

4.3.3 Computer Enhancement of Weak-Beam Images

The appearance of well defined maxima in Fig. 4-10 is a con-
sequence of a significant decrease in the dislocation image halfwidth.
However, this reduction in image width is accompanied by a decrease
in the signal-to-noise ratio, which renders a .quantitative image-
contrast analysis impractical. We shall now present the computer
processing algorithm that was implemented on the weak-beam micrograph

shown in Fig. 4-10, in order to enhance the fringe visibility! 12
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Fig. 4-13. Theoretical profiles of thickness fringes for a crystal of
germanium. The calculations were made far 200 keV electrons
and six operating reflections (220...880; with the intersec-
tion of the Ewald sphere at = 3.016g). Comparing the
profiles for |yq|¢ and |1p3g|2 to Fig. 4-10b yields a lower
bound of about BgOOR for the foil thickness.
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4.3.3.1 Processing aTgorithm_

Three weak-beam images of the same area were recorded in suc-
cession using the same electron miéroscope conditions. These micro-
graphs were then copied onto fine-grain film, and digitized at a high
sampling density (A = 25 ym). Figure 4-14 shows the rectangular area
that was selected for further processing. The optical densities were
then spread Tinearly over the full dynamic range by saturating both
tails of the histogram to 1%. Thc main tasks of the processing algo-
rithm were: preprocessing the images, spatia] registration of the
images, linear averaging of the images, and Fourier smoothing the
optica]_density profiles.

The long exposure times required in weak-beam imaging are
responsible for a contamination of the micrograph by islands of bad
data (i.e., salt and pepper noise). An algorithm described by Eq.
(2.33) replaces a datum if its local average exceeds a given thresh-
old value § . Since there is a preferential orientation of the image
features in the vertical direction, this algorithm was implemented on
a vertical box centered on each pixel in the image. Using a box con-
taining 3 x1 pixels we were able to eliminate most of the noise arti-
facts (typical values for & were &6 =15 on a scale 0 to 255).

The translational and rotational regfstration of eachbpicture
was found by cross-correlating 113 x 254R areas at/various locations
of the input images. During this process the CCF peak could only be
determined to within one pixel because the image features exhibit an
almost uniformly high contrast along the vertical direction. Recalling

also that the CCF is an inference estimator only when the noise is
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additive and uncorre]ated to the signal; we must question the validity
of this latter condition. It was mentioned in Sec. 4.1 that the noise
is approximately independent of the signal only if the number of elec-
trons that reach the image plane is sufficiently large. In weak-beam
microscopy we might expect this condition to be only partially ful-
filled (d fact which explains the difficulties we encountered during
the matching process).

After achieving spatial registration, three pictures were super-
imposed and their average calculated. This averaging should attenuate
the statistically random noise by a factor of about v3 . An accurate
estimate of the gain in the signal-to-noise ratio cannot be made, sfnce
the validity of our assumption that the noise is uncorrelated to the
signal is questionable.

In order to better visualize the contrast enhancement obtained
by this processing, optical density profiles were recorded and subse-
quently smoothed by a finite Fourier series expansion. (It can be
shown that the best least-squares trigonometric approximation of
order n to a periodic function is a Fourier series of order n). Dis-
continuities at both ends of the density profile induce overshoot
effects in the Fourier transform which can be minimized by equalizing
their density values. The technique we used amounted to rotating the
profile about one of its ends, until both ends became equal. The dis-
crete Fourier coefficients were then computed and the continuous
trigonometric sum plotted for the cofresponding coefficients. The

implementation of the whole scheme is now presented.
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4,3.3.2 Intensity profiles

A picture of the original series is shown in Fig. 4-15a after
it has undergone contrast stretching. We notice the appearance of
snow and the presence of 1ight‘c1usters spread randomly over the input
array. Line profiles across this image were taken at five positions
and are shown in Fig. 4-16a. The large fluctuations in intensity level
obscure completely the general features of the image. We note that
the visual clarity of the total image is due to the integrating property
of human vision.

Figure 4-15b is the result of averaging three identical pictures
by superposition, after a partial elimination of their snow pattern.
In this figure we clearly see the four intensity maxima of the disso-
ciated dipole. These maxima are strikingly displayed in the intensity
profiles shown in Fig. 4-16b,c. We see that the relative spacing of
each peak remains identical in contrast to sharp variations in the peak
amplitudes. The spacing of the two innermost peaks is ZA?bS = GSR
and the spacing of the two outermost peaks is. 2Agbs = 1558.

In order to further attenuate spurious high-frequency details,
a low-pass box filter was applied to the average image (cf. Eq. (2.83)).
The kernel matrix of this filter was ten pixels long and one pixel wide.
The discontinuities at the boundaries of this filter produced the
artifactual image shown in Fig. 4-15c¢ (Note that vertical streaks are
clearly vfsib1e). The corresponding image profiles shown in Fig. 4-16d
do not exhibit any improvement in contrast with respect to the unfil-
tered image. We conclude then, that by using data averaging and majority

Togic techniques in conjunction with Fourier smoothing, we have obtained
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4-15 (a) A 395 x BQSR portion of the dissociated-dipole image of
Fig. 4-14 after positioning and linear contrast stretch.
(b) Averaged picture resulting from the superposition of
three micrographs in which “"snow" noise was partially re-
moved. (c) Low-pass box filtered version of (b). The arti-
facts that appear in the vertical direction are induced by
the oxcessive vertical size of the kernel. The vertical
striations that are visible in all the pictures are produced

by the VFC output raster.
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4-16 Intensity profiles of Fig. 4-15 taken every 7OR from the
top of the picture: (a) profiles across Fig. 4-15a; (b) pro-
files across the averaged picture of Fig. 4-15b; (c) Fourier
smoothed version of (b); (d) Fourier smoothed profiles of
Fig. 4-15c.
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profiles that are suitable for comparison to theoretical image simu-

Tations.

4.3.4 Calculation of the Weak-Beam Contrast

4.3.4.1 Preliminary investigation of the weak-beam contrast
from a dissociated edge dislocation

In order to check the performance of the computer program
given in Appendix F and the sensitivity of the computed images to such
parametérs as the depth of the defect in thevfoﬂ , the diffraction
geometry,and the strain field of the defect, we conducted a preliminary
study on a defect for which theoretical intensity profiles had been
published. We shall first derive analytical relationships for the pre-
dicted image contrast, and then discuss the applicability of these
relationships to more complex strain fields.

A) Survey of previous work

The theory of Sec. 4.3.1.3 has established that weak-beam
images of dislocation Tines show single intensity peaks when kinemat-
jcal scattering conditions are satisfied. These peaks have very
narrow halfwidths, and they identify the position of the dislocation
line. The displacement of the image peak of the dislocation can be

computed from (cf. Eq. (4.35)):]03
d L -
Sg"'a‘z'(gE) 0

QEE_( R) 0 (4.39)
gs = .
dz= ~ ©

In this section the validity of the above criteria for determining the

separation of partial dislocations from the experimental observations
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is discussed. The accuracy of the method will be verified by compari-
son with computed many-beam images.
Consider a dissociated edge dislocation (u = [172]1//6) in a

[111] germanium crystal where

If the operating reflection is g = 220 there is no stacking-fault

~

contrast, since g lies in the fault plane. In this case we have

~

gagq = g-gg = 1 for both partials. A kinematical estimate of the
positions of the image peaks can then be found by applying Eq. (4.39).

The predicted separation of the two weak-beam peaks is then]06
2 1/2
_ 1.2 , 167 .hPy2 1
Min = {87+ 5 (9°07)7 11+ 11y} (4.40)
g

Many-beam calculations were performed for this geometry for the sys-
tematic reflections(220---880) in germanium and 200 keV electrons.
The parameters which define the defect geometry are similar to those
given in Fig. 4-17. We shall now examine how the image contrast varies
with crystal thickhess and with the operating beam. Then we shall
compare the results of a dynamical calculation to the‘kinematical pre-
dictions for the spacing of the peaks.
B) Calculated weak-beam image of a dissociated edge dislocation
The image contrast calculations for a dissociated edge disloca-
tion were carried out using the dynamical equations. The results are
shown in Figs. 4-18 to 4-20 (Table 3-3 describes the operating condi-

tions in each case). In general, one partial is imaged with higher



-309-

wedfelp ay3 40 sueld syl

-U0J ade aunbiy SLyy uL pajedtpul sudjauweded ay]

[2L1] st
‘4 Xipuaddy up pajsi| weaboad ayl uL pasn 3IsoYl YlLM 1ULSLS
*9]0dLp [BLILISADJUL POILLIOSSLD 3yl

40 8bewt ayy Buijeindjed ul pasn ausm ey sda=33weded Ord3swoesb ayy Buimoys weabelq

z
4 |
30v44NS WOLIO8 |
7 7 M,
\\\\\ mu mmwmmmm m
°v HIOM \\\\ W
Q4 < W
e _nq Hmmmww
(] rntlwmll'. \
NOI93M oY e
SIHL NI AN \Y
SaIOH 4 AN HL
o L, \
Z j=>d 240 664,
\\ //J /// €g \
| LT ore \
4

30v4yNns 4ol

,.N_-e ‘614



-310-

TH=84254
o5} .
.
=
@ ol .
=
1]
f
Z
005 i
o) . - ¥ A VTt s !
~90 ( A)
(a)
| . 5
TH=125754
e
G Q.05
=
(]
’._
z
0

Fig. 4-18 Calculated weak-beam intensity profiles for a dissociated

edge dislocation in germanium. The weakly excited beams
resolve two dislocation peaks, whose relative magnitude

varies when the specimen thickness changes from (a) tO =

842.58 to (b) t, = 1257.58 . 1In Table 4-3 a quantita-

tive assessment of the peak spacings is given.
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Fig. 4-19 Calculated weak-beam intensity profiles for a dissociated
edge dislocation in germanium. The conditions are identical
to the ones in Fig. 4-18, but the splitting of the par-
tials is now A = 120R. Note that two dislocation peaks
are resolved by the semi-weak beam lu’Zglz
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Fig. 4-20 calculated ;ure‘ei‘!;-beéni %"ﬁté’hgﬁ'%&y' profiles for a dissociated
edge dislocation in germanium with 3g at the Bragg con-
dition. Note the marked improvement i; resolution when
compared to Fig. 4-18. As expected, the beams with the
largest deviation parameter produce an image peak with
narrowest halfwidth.
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Table 4-3

Summary of the diffracting conditions used in the calculation of the

profiles in Figs. 4-18 to 4-20.

systematic reflections.

A1l calculations were made using 6

. Foil
Oy DILITICHION raging Poraneter & fkin ay Ihick
Figure (R)  (FBRAGG Beam &Y & @) & ™R
4-18 510 1.0 -2g -0.0188 60 67 15 8i2.5
- g -0.0063 60 107
2g -0.0063 60 167 62’ 1257.5
3g -0.0188 60 67 3 52
419 510 1.0 -2g -0.0188 120 123.5 155 53
- g -0.0063 120 149
2g -0.0063 120 149 149 835
3g -0.0188 120 123.5 > 5%
4-20 510 3.0 -2g -0.0314 60 62.5 & 8123
- g -0.0125 60 745 o 842
g 0.0063 60 107 g0 Se2-3
2 0.0063 60 107
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intensity than the other, due to the asymmetric strain field inside and
outside of the extended dislocation. On changing the sign of g-R
we therefore expect that the stronger image will shift from one par-
tial dislocation to the other; this effect is clearly visible in the
contrast curves which we shall now describe in detail.

In Fig. 4-18a,b, the computed profiles are plotted for two-
foil thicknesses, and g at the Bragg position. The dislocation
line is positioned at a depth DP2 = 51oR which nearly corresponds
to a minimum in the intensity of lwglz in perfect crystal (see Fig.
4-13). The interaction between the weak beam, the strongly diffract-
ing beam ¢ , and the incident beam accounts for the variations in
intensity with thickness. Since dynamical Scattering is very strong
the weak-beam images exhibit spurious side peaks which‘are thickness
and depth dependent. An inspection of Table 4-3 reveals that the
kinematical approach is invalid in predicting the spacing of the par-
tials. However, the kinematical approach provides a qualitative
understanding of the observation that the peak halfwidth is inversely
proportional to the deviation parameter of the operating beam. 'We
notice that the two dislocation peaks are best resolved by imaging the
kinematical beams -2g or 3g . The contrast from these beams shows
that thickness dependence only affects the position and the amplitude
of the peaks, but not their mutual spacing. On the other hand, it was
observed that the strong beams resolve the two peaks at certain crys-
tal thicknesses. Since the deviation parameters of these beams is so

small, the perturbing influence of the defect is only seen at discrete

thickness intervals, approximately equal to their extinction distance.
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These beams produce rather broad peaks, when compared to the peaks

obtained with very weak beams.

The effect of separating the two partial dislocations was next
investigated and the results are shown in Fig. 4-19. Observations
similar to those made in the previous case,can be made about the sensi-
tivity of the contrast to foil thickness. We also notice in Table 4-3
that a better agreement is obtained between the kinematical and the
dynamical predictions. We attribute this to the fact that the strain
field of each partial can be considered independently. Indeed, we
shall show in the next section that a highly localized defect is best
visualized under dynamical scattering conditions.

We shall now study a weak diffraction geometry in which 39 is
at the Bragg position. One does not expect the column approximation
to hold in this case, because the large curvature in the dispersion
surface delocalizes the excitation points. Since the intensity of 3g
in the crystal is MUch smaller than that of g (the reason for this
~is the larger extinction distance 539 > gg combined with an absorp-
tion of the waves in the crystal), the weak beams at the defect loca-
tion will be mostly coupled with the incident beam. Consequently, one
expects a disappearance of the spuriovus peaks, caused by multiple wave
coupling in the weak-beam profiles. The computed image préfi]es shown
in Fig. 4-20 confirm these predictions. We conclude that for a given
defect configuration, a set of characteristic dynamical conditions
must be selected in order to achieve an optimum weak-beam image con-

trast.
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The weak-beam technique is easily interpreted when the main
scattering comes from the incident beam into the weak diffracted beam.
It-is sometimes advantageous to excite many strong Bloch waves when
the defect is very localized, as we shali demonstrate. However, con-
trast interpretation becomes challenging in these conditions, since
the weak-beam image now depends on the diffraction geometry, on the
depth of the defect, and on the foil thickness. By examining a sim-
pler configuration, we have reached certain conclusions which will
serve as guidelines in the following discussion.

4.3.4.2 Computer simulation of a dissociated-dipole weak-
beam image

A series of calculations were undertaken to simulate the weak-
beam contrast of the dissociated dipole studied in Sec. 4.3.3.2. e
aimed at achieving a match between the profile of the computer
processed micrograph shown in Fig. 4-16¢c and a theoretical image
profile. The column approximation could not be used for this parti-
cular defect because of its localization. We know that the lateral
spread of the wave points that are excited during the scattering
process depends on the Fourier transform of the perturbing potential.
This lateral spreading will be éizeab]e for defects with localized
strain fields. Indeed, our calculations indicated an attenuation of
the peaks, or even their complete disappearance, when the column ap-
proximation was made.

The computed image profiles were plotted for all the diffract-
ing conditions for which experimental evidence was available (see

Table 4-1). We found that the resolution capability of the weak-beam
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method depended on a multiplicity of interacting factors. For in-
stance, in kinematical conditions (i.e., when no systematic reflection
lies on the Ewald sphere) only two image peaks could be detected. We
can obtain a qualitative understanding of this phenomenon by plotting
Bé = gi-(gng) at various spatial positions, as a function of depth

z (see Fig. 4-21). By applying the criterion of Eq. (4.39), we expect
an image peak when Bé + sg = 0. An inspection of Fig. 4-21 reveals
that this latter condition is fulfilled at only two positions: when
5q 0.00638“], predicted peak locations are at é distance of = +458

from the center of the dipole. This conclusion is demonstrated in

Fig. 4-22a.

In dynamical conditions four peaks could only be observed
distinctly if 3g was moderately excited and a semi-weak beam used for
the imaging. By semi-weak beam, we mean a weakly excited beam that
does not deviate too far from the Bragg condition (e.g., we imaged
Fig. 4-10 with s = 0.00638°1).  Furthermore, the splitting of the
edge dislocations into partial components is only visible in a narrow
range of 2z values occurring in multiples of gg . This range never
exceeded 4OR for the geometry under which Fig. 4-10 was recorded, and
corresponded to a minimum of the average beam intensity.

The depth of the defect proved to be the most critical param-
eter in our ability to resolve four beaks. We have indicated that
once the weak beam has gained intensity in the region of the defect,

it does not lose this information while passing through the remainder

of the foil. Consequently, the imaging beam will be able to resolve
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the structure only if it interacts strongly with the strain field of
the defect; this implies that its magnitude should reach a minimum in
a corresponding depth of perfect crystal in order to maximize the in-
teraction. We have verified this depth dependent "resolving power" of
a beam by varying the depth of the defect about a minimum of its
intensity vs. thickness profile (see Fig. 4-13). If we refer to a
sketch of the defect geometry shown in Fig. 4-17, the sensitivity of
the imaging technique to such parameters as DP1 and DP2 was ana]yzed.
When the two components of the dipole lay nearly symmetrical with
respeét to a minimum of the rocking curve, we achieved the best reso-
lution. Otherwise, one defect interacted with the imaging beam at
the expense of the other defect which exhibited only one image peak
throughout the foil.

Lastly, the imaging mode for which the best resolution could be
attained was investigated. I{ has been demoﬁstrafed theoretica]]y
that by exciting 3g and by imaging either the g or 2g reflections,
weak-beam peaks are obtained for each partial dislocation at periodic
depth intervals. Calculations have also shown that only three peaks
can be resolved by exciting -g and imaging with g ; this is exper-
imentally verified in Fig. 4-23.

Despite the sensitivity of this imaging mode to depth, dif-
fraction geometry, and foil thickness, a comparison of the experimen-
tal profile of Fig. 4-16¢c with a simulated profile was possible. The
image was calculated for the following dipole parameters (cf. Fig. 4-17):
by = oy = 18R, b, =8, =45k, by = 1943f, 0p, = 1997, TH = 3412.58,
and A = 0.02518 . Both the theoretical and the experimental profiles
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Fig. 4-23 Weak-beam images corresponding to: (a) s__ <0 ;

(b) s;g <0 ,and (c) s__g <0,
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shown in Fig. 4-24 exhibit similar behaviors. However, due to the

rapid fluctuations in peak magnitude with thickness level, a one to
one correspondence could not be achieved. A comparison of the mutual
peak spacings will yield values for the splitting of the partials if

we rely on the validity of a continuum elasticity model. By measur-

ing the separation of the peaks, we bbtained values: A%h o Agh = 3OR,
(o]
Agh 2 Azh ~ 56A, which were approximately thickness independent. If

we recall from Sec. 4.3.3.2 that a%°S = 32.5% and a"S = 77.5f, we

may conclude that the dipole parameters that were selected are too
small. An estimate of their real values may be found by linear inter-
polation and leads to the result: Ay = Ag = 178 s By = Ay = GZR .

‘The sensitivity of the calculated image to varfous parameters
(e.g.., dislocation depth, foil thickness) renders a quantitative
analysis at this high-resolution range difficult. A direct correspond-
ence between image and structure will be reached when all the experi-
mental and the theoretical uncertainties are analyzed. Further in-
vestigations are thus needed to predict the experimental conditions
that would yield the best resolution for a giveh defect. For instance,
in order to investigate a core structure, one might perform a high-
resolution weak-beam experiment whose operational characteristics
would have been suggested by the theory. A contrast analysis at the
atomic level would require the use of a discrete atomic model for a

dislocation core]]B.
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Fig. 4-24 (a) Theoretical profile of the dissociated edge dipole in
germanium; (b) Experimental profile from the top of Fig.
4-16c. ' :
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4.4 Conclusion

Provided that the underlying assumptions concerning the statis-
tical independence and additiveness of the noise to the signal are
valid, an improvement in the signal-to-noise ratio can be attained by
using image processing techniques. In periodic images this improve-
ment is obtained by either translating the repeat unit and superim-
posing the image upon itself, or by filtering out the non-periodic
information using Fourier masks. This latter method offers the pos-
sibility of extracting a signal which differs from the perfect
periodicity. Consequently, crystal imperfections such as dislocation
arrangements cén be readily detected in a near-periodic lattice image;

Another application of image processing techniques lies in their
capability of processing the raw data in such a way as to permit a
quantitative comparisonwith the predictions of image formation theories.
An example of this potential was given in the analysis of weak-beam
1mages of a dissociated dislocation dipole. The weak-beam imaging
technique yields a micrograph containing high-resolution details which
are embedded in a background noise. By processing the micrograph, we
were able to compare a theoretical image to the enhanced image.

The variety of problems to which an electron microscopist is ex-
posed during the interpretation of micrographs would be greatly alle-
viated by interfacing the microscope with a computer. Such tasks as
identifyinyg defects ur processing the signal would be perfurmed auto-
matically, and open the way to a better understanding of the structure

of imperfect specimens at the atomic Jevel.
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APPENDIX A

Effacts of Partial Cohérence on the Contrast Transfer Functions

A-1 Spatial Incoherence

We start with the expression for the image intensity, calculated
from an incoherent superposition of elastically scattered waves with
different Kd , obtained in Sec. 1.3.2.2A

IZ =

190012 = [[] st )s (K, TRIT (i expler (k) o

Q(K,) dk dk'dK (A1)

where Q(5o) is the angular distribution of the incident beam at the
effective source plane.
Let us now consider a weakly scattering object, whose Fourier

transform is

so(k) = 8(k) + 1a(k) - M(k) (A.2)

Quadratic terms in the integral lw(ri)lz “involving [i¢(5'56) -
M(k-K,)] [~i®*(§'~§0) - M*(E'-Eo)] will be neglected in this analysis
since they represent dark field image contrast which makes a minor con-
tribution to the overall contrast. We then obtain, from Lq. (A.1), the

following equation for the image inténsity:

-
~

Tt 12 = [[[stek otk TUOT (k) explent (k') -r, (K, ek dk'a,
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[ ot stk - 197 st TTOT )

 expl2mi (k-k*)+r;] Q(K )dk dk'dk

] ek o) + 4 (-t Do ke T ()

-+ exp[2mi(k-k')+r;] Q(K,)dk dk'dk (A.3)

After substituting the expression

—iy(k)
ye ' (A.4)

~

T(k) =

~

=|—-
o

into Eq. (A.3), we shall examine the resulting three integrals

For the first term of Eq. (A.3) we can write

= [ m? e, = L (A.5)

=

because the distribution Q(Eo) is normalized and the effective source
aperture is smaller than the exit pupil (i.e., b(E) =1 1in the area of
integration). This term is the primary wave and contributes to the
background intensity.

The second term in Eq. (A.3) is responsible for phase contrast

and can be expressed as
12) < 5 [ (kK )TOO)TT(K) expl2ni (k-K_)or:] Q(K)dk dK
si o ONRT 20/ AR D SXP 700/ Ed N JeK dhy

1 [[ 8"tk ) TOR T () expLent (ky-K)+r,] QUK ek dk (A.6)

The pupil function, the effective source, and the phase transform obey

the following symmetry properties:
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(k) = 8(-k)
QlK,) = Q(-K,)
b(k) = b(-k)
y(k) = v(-k) A (A.7)

Observing these symmetry rules and making the change of variables,

k' = 5—50, in Eq. (A.6) Teads to a simplified phase contrast term:

: =Ly (kK ) - v(K )]
-3 [ w0

’ exp(2n15'-ri)0(50)d5‘d50

N
ff Q(El)b(ﬁo)b(5o+5')e1[Y(~ +)- v(K;)]

1
=4

+exp(2mik’ory)Q(K, )dk ' d (A.8)

The phase contrast transfer function for partially coherent illumina-

tion is then represented by:

Phs () =2 [ bk Dbl )sinly(kH)) -v(K)IA(K )k (A.9)

BCO"

The highest spatial frequency transmitted by the objective aperture,

or exit pupil, 1is

kn = Oopi/A (A.10)

The effective area of integration in Eq. (A.9) is the overlapping area
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of the source and exit pupil; this remains the full source area only
if

[kl + K] < Ky | (A.11)

This condition is satisfied in conventional electron microscopy, so
that the terms b(KO) and b(E+Ko) can be omitted for small source

~

apertures. In this approximation, the phase transfer function reduces

to

Phos(k) =2 [ sinly(kec) - v(K)IQ(K DK, (A.12)

~

BCOﬂ

A similar analysis for the third term, Ié?), reveals. that the
amplitude contrast transfer function for partially coherent illumina-

tion is described by:

Amp; (k) = 2 f cos[y(k+Ky) = v(K;)IQ(K, ) dK (A.13)
Bcon
Now let us expand Y(E+5o), in the neighborhood of k , to the first
7]. This approximation is valid for the small condenser

~

order 1in K0
apertures currently used at high resolution, where the spatial fre-

quencies of interest are restricted to |k| >> IEOI and yields:
v(ktK)) = (k) + K - Vy(k) (A.14)

where Vy(g) is the gradient of the objective lens aberration function.
Neglecting 50 terms of high order allows us to omit y(fo), since it
does not contain terms of lower order than two. Within these approxi-

mations, Eq. (A.12) may be written
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Phe; () = 2 sin v(0)1] cosT Y (O TRk, ek,

+ 2 cos YK | stnlkgvy (0100, ek, (A.15)

and since the source distribution Q(Eo) is symmetric the second
integral vanishes. The transfer function is a product of the transfer

function for coherent illumination with an envelope function:

Phay (k) = Ph(k) Eg; (k) | (A.6)
where
iK_evy(k)
by (k) = J cos[K - vy(K)JQ(K,)dK = f QK )e ~° e dK
(A.17)

and the envelope function is the Fourier transform of the effective

source distribution, estimated at Vy(k)/2m.

~

Consider, for example, a disk source with rotational symmetry:

2, .2 .
A /weCon if ]501 < econ/x
Q(EO) =

0 elsewhere (A.18)

where econ is condenser aperture half angle. The resulting envelope

function has the form

JiL1vv (k)8 /2]
[oy (k)| o

(A.19)
con’?

The above expression can be further simplified by assuming axial astig-

matism to be negligible. The magnitude of the gradient of v(k)

~
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becqmes
vy(k)] = A ’ig%l' = 2n(c,63- az0) (A.20)

The specific envelope function for a disk-shaped source is then69’7],

J][ZWG

3
Con(cse - AZB)/A]V

3
znecon(cse - AZ8)/A

Esﬁ(e) =2 (A.21)
An analogous treatment for the amplitude transfer function
yields an identical product representation, with the same envelope
function Esi(E)' ~This representation has proven to be adequate in
the range of illumination apertures used in high-resolution experi-
ments. The approximations used have been checked by comparing exact
and approximate computations of the phase transfer functions given by

(A.12) and (A.16).

A-2 Chromatic Incoherence

Chromatic aberration arises if there is an energy spread in the
incident beam or when time fluctuations of the objective lens current
and of the accelerating voltage are taken into account. In Sec.

1.3.2.2B an expression for the resulting image intensity was shown to
be
el % = ] 0085 0TIOT (LKLY expl2rd (k-k' ) or Tk d

| | (A.22)

For the term L(E,E') in Eq. (A.22), when the energy spread is con-

sidered, we can write
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Loglkok') = f éxp[—iﬁACc(kz—k'z) 897 n(sv) d(su) (A.23)

When time fluctuations in lens current and voltage are considered,

L(g,k ) becomes

Ty .
-
crlkok') f expl-imic, (kK=k %) (UL _ A1§( et (a2
) L

P

where Aiz(t') is the time fluctuation in lens current and AU(t') is
the time fluctuation in accelerating voltage.

For a weakly scattering object, we shall prove that the image
transform and the object spectrum obey a linear relationship. We shall
also derive the contrast transfer functions when the illumination is
not chromatically coherent. The object transform is

Solk) = 8(k) + ia(k) - M(k) (A.25)

~

: *
and, as in the previous section, quadratic terms [i@(g) - M(E)][ni@ (E')

- W(K')] in the expansion of S_(k) S-(K') will be ignored. The image

intensity given by Eq. (A.22) becomes
Iw(ri)lz = IT(O)IZ L(0,0) + i{f @(B)T(E)T*(O)L(E,0)exp(2ﬂi§°zi)d§

- [ ot 0TOT (WL (0, K exp (-2riker, ek |

- [ M()T(K)T* )L (K,0)exp(2nik-r. ) dk

~ ’V] ~

+ T (0,k) exp(-zriker;)dk | (A.26)
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Now making use of thevfollowing symmetry properties
T(k) = T(-k)
L*(0,-k) = L*(k,0) (A.27)

we can further simplify Eq. (A.26):

~

~iy(k) .
Iw(gi)lz = l§-+ 1—-[ e(k)[e e L(k,0) - e1Y(E)L*(E,O)Jexp(zniEeE1)dE

-1y (k) iy(k) &
L(k,0)+e "L (E,O)]exp(Zwi&*fi)dg

(A.28)

o1
L [ mre

It follows that the phase and amplitude contrast transfer functions may

be written in the form

Phey(k) = 2 sin y(k) Re{L(k,0)} - 2 cos v(k) Im{L(k.0)}  (A.29)

and

Ampi (k) = 2 cos v(k) RefL(k,0)} + 2 sin y(k) ImiL(k,0)} (A.30)

By treating independently the finite energy width of the electrons, and

the time fluctuations, one obtains in both cases
Im{L(E,O)} = 0 (A.31)

for most practical purposes. Conseqhent1y, the transfer functions may
be represented by a product of the ideal transfer function for chromati-

cally coherent illumination and an envelope function given by

Ec; (k) = L(k,0) (A.32)
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The energy spread, when measured experimentally at various

filament bias voltages and emitter temperatures Teyp 1s found to fit

a Maxwellian distribution25’70:
8U +kpTeiy ,
kgTfit)

where U Z—'ZkBTfi1' The Maxwellian distribution has a halfwidth

6Ues = 1.22 kBTf11 ' (A.34)

This distribution shows little asymmetry about its peak value and may
be approximated by a Gaussian of the same halfwidth

N (8U)d(8U) = exp[-6U2/26U§S] (A.35)

SU, v2m

Inserting Eq. (A.35) into Eq. (A.23), we note that Im{Les(g,O)}
vanishes, so that we obtain for the energy-spread envelope function

su.. C
Fos (0) = Log(k0) = expl-(p™2 € 2 6%)7] (.36)

Time-dependent fluctuations in lens current and accelerating
voltage are responsible for the random rippling of the effective de-

focusing about its mean value, AZ, (cf. Eq. (1.77)):

ai (th)
3 ] (A.37)
2

1 o= AU(t'
8Z(t') = Cc[ 6 ). 2

One may characterize 6Z(t') by the probability density function

HZ(aZ) that, at a given time t' less than the exposure time t. s
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8Z takes values between &Z and 6Z + d(8Z). The time integration

in Eq. (A.24) is substituted by a spatial integration

Ler(k0) = [ exp(-minks7) H,(s2) d(s2) (A.38)

-

Now, assuming HZ(GZ) to be a Gaussian distribution with halfwidth

Opes yields

o 2
Lep(k.0) = exp[—(%\‘f— %)21 (A.39)

Let us define AU as the standard deviation in accelerating voltage
and Aiz as the standard deviation in objective lens current. Since
8Z(t') is a sum of two Gaussian distributed variables, we have the

identity:

271
o = C LY E + (£HYA (.40)

The resulting envelope function can be written

2A1 C
Eye(8) = exp{- [(%F)]/z + (_q_ﬁg]/z) Xg

T_ o292 A.41
. L )
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APPENDIX B

Influence of Specimen Thickness on the Lineaf Theory of Image Formation

The three-dimensional "structure factor" of an aperiodic array of

atoms, sampled by the Ewald sphere, yields the object Fresnel transform

N . .
Felk) = I I£5(0)] ewling(o) + inzde?/n - 2nikerd]  (a)

for kinematically scattered electrons. Treating the specimen as a two-
dimensional density distribution is equivalent to neglecting the curva-
ture of the Ewald sphere. By approximating the sphere by its tangent
plane, one may characterize the specimen by its plane structure factor
N .

F(k) = Jz? (F5(0) + £3(6))exp(-2mik-r]) (B.2)
where fj(e) and f;(e) are the real and imaginary parts, respectively,
of the atomic scattering amplitudes. According to Eq. (1.8), the elas-

tically scattered wave at the image plane can be written as

~

~iy(k) N
e (12 164(6) exliny (o)

. . 2miker,
+inzde?/n - mikerdlle < A (8.3)
If we neglect the dark field contribution, the bright field image con-
trast is expressed as:
2 2,2
[¥g (ry) + A/M™ - A/

Con(r;) = =2 M pe v (rs) (B.4)
o Ag/Mz K;' { g'ai }
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This equation can be further simplified if we apply the symmetry rela-

tions

b(k) = b(-k)
¥(k) = y(-k) (8.5)

when combining Egs. (B.3) and (B.4), so that

C-iy(k) N . i
con(r,) = 1A f [e - jg‘ 1fj(e)]exp[igj(e)+iwzgez/x-zw15.rg]
iv(k) N , A . 2mik-r,
me T )T If5(0) lexplng(6) - imzde?/n - 2mik-riqib(k)e” - 7T ak
=1 ~ ~ ~
(B.6)

The image transform, previously defined in Eq. (3.13) as being the
Fourier transform of the image contrast Con(ri), is by virtue of Eq.

(B.6)

N, ~2mikerd -,
k) = 2ab(k) FIfy(e)le ™ sin[y(k)-n;(0) - mz36°/2]

J=1
(B.7)

Several interesting properties of the contrast mechanisms can
be inferred from Eq. (B.7) when it is compared to the image transform

of a weakly scattering object:
(k) = b(k)[2 sin v(k) o(k) - 2 cos y(k) M(k)] (B.8)

We notice that a three-dimensional arrangement of atoms produces an
amplitude contrast image, even when anomalous scattering is neg]ectedﬁz.

Letting nj(e) =0 1in Eq. (B.7) yields



-337-

N, —Zﬁikerg -
J(k) = b(k){2 sin y(k)[2 ,Z] IT5(0)le ™ ™ cos(nz36/1)]
J:

N 2mikerd .
- 2 cos y(k)[x _z? [f50)e = ™ sin(nzle?/2)]
J:
(B.9)

The spurious amplitude contrast term vanishes only if the object is
centrosymmetric, or equivalently, if the structure factor sampled by the
Ewald sphere obeys Friedel's 1aw]4- |
Friedel's law is always violated when the anomalous phase shift,
nj(e), is taken into account. The Fourier transforms of the object

phase and amplitude modulation functions are

N, L, =emikerd
o(k) = r ¥ ,fj(e)]cos[nj(e) +Trz‘(])6 /\]e -
K i
N, -2mik-r?d
= A .21 fj ofs(0) e (B.10)
J:
and .
N, - -Zﬂik'rg
M(k) = x ,Z] Ifj(e)lsin[nj(e)-+ﬁzge /A\]le T 7
J:
N, -2wik-rg
) fg eff(e)e s (B.11)

J=1

We can define the effective real part of the atomic scattering ampli-

tudes as
5 eps(e) = F3(0) cos(wzgez/x)»— 1(0) sin(nzgezlk) (B.12)

and the imaginary part a562
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3 () = F1(0) cos(mzle?/a) + f1(6) sin(rzle?/r) (B.13)

The purpose of object reconstruction schemes is to retrieve the informa-
tion contained in &(k) and M(k). If thickness effects are included,
the simple relationship between these quantities and the complex atomic
scattering amplitudes is lost; therefore it is necessary to keep speci-

mens as thin as possible in order to gain full advantage of the

restoration technique.
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APPENDIX C

Singularities in Schiske's Formula

Singularities occur when the denominator of Eq. (3;97) vanishes,

that is, when59

N 2iy
) e 2]2 =0 (C.1)
Two separate cases will be considered where this happens in practice.
As both numerator and denominator go simultaneously to zero, Taylor
expansions are used to remove the indeterminacy.

The first singularity occurs near 6 = 0, where the phase fac-

tors yz(e,¢) approach zero. If we approximate the exponentials by:

'iYQI(ea(p) . , .
e =1+ 1y£(6,¢), then Eq. (3.97) for the complex object trans-
form is expressed as
N
_ Zadkﬂ+rmHN-Z[1+m Yo~Yg) 1}
0(k) = - sy 2 (c.2)

0 - 'z§1 (1 + 2iy,)|?

We notice the following simplifications

- = - =0
QZ] mZ (YY) m§1 zg (Yg=Yy,)
Y ey = e ) ) v Y L) (©3)
1 = 1 - .
%=1 Ye P Y Al

=0

that reduce Eq. (C.2) to
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N N
QZ] g (k)(1 + in)[mZ] (¥, )]

09) = - oy I (c.4)
Z(Zgl Yy)

The phase and amplitude contrast transform may now be written, in the

Timit where 6 - 0, as

N N
Eodg(k) I (vymv,)
2(k) = {0(k) +0%(-k)] = - glgy Tl 1] (C.5)
2( § Yz)z
2=1
and N N
Lo 3pK)vy T (vpmyy)
Mk) = ZT0(k) - 0%(-k)] = - oy £ m=1 (C.6)
2( ) vy)*
2=1
It is therefore apparent that o&(k) diverges as 1/82 when 6. >0 ,

~

whereas the cosine transferred part, M(g), containing the anomalous
scattering contribution, remains finite. The computer program "Schiske"
actually sets the DC component of 0(k) equal to the DC component of
one of the input pictures, to avoid this artifact.

The second singularity occurs when the difference between suc-

cessive Yz(E) approaches m :

Yo 5 + (2-1)m + € (c.7)

where lezl << 1. A first-order expansion of the exponentials,
TER ‘
e = ] +i€z’ yields the following identities:
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2) N
: = N+ 21 Zl(emmeg) = N+2ie

2i(e_-¢
o m

(]
[} ns =-d

and

e = N+ 4¢

| ! Zivm_lz - | VAt 2,0 (c.8)

m=1 m=1

Substituting these equations into the expression for the complex object

transform, Eq. (3.97) leads to
N ) 1Y2
Y od (k) e
0k) = -~ &1 L (c.9)
<5 E(o) 2¢

Equation (C.9) blows up in the frequency zone around the singularity

k

s fortunately this artifact can be avoided by choosing a focus step

smaller than the critical value where Eq. (C.7) is satisfied:

2
AL < }\/Gobj

o < (c.10)
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APPENDIX D

Quantitative Assessment of the Schiske Restoration

A quantitative assessment of the reliability of the object
reconstruction is obtained by calculating, from the complex object
function, O(k), images with corresponding electron microscope param-
eters, and then comparing them to the original micrographs. In the
first iteration, the Fourier transforms of the successive focus series

are expressed as

2
A 2A
2 2
AZ
0l .
= 5 L8(k) + 3, (k) Iny (k) (0.1)

where the dark field contribution is ignored and Aoé denotes the
primary beam intensity of the Zth‘micrograph. Since the exposures are
approximately equal, on varies little with 2 . During contrast
stretching of the preliminary pictufes, the mean value of the respec-
tive input images are equalized, so that [Aoz = AO; 2=1,2,-+-,N].
The Schiske program then outputs a complex object transform which may
be written as
A2
0(k) = =5 [8(k) + 0(k)] hy (k) (D.2)
2 M ~ ~ =

where hN(E) is the noise filter defined by Eq. (3.125).

From Eq. (B.3), we know that the elastically scattered wave is

given by

3>

- -1y (k)
p ) = 277 gie E T 0(ky (k) | (0.3)
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Thus, the reconstructed focus series, calculated from the structure
factor, is simply obtained by computing
~(g 1,58 1, 3 (k)
0 () = FTRE0) = rer L2t 2 (0, (6) - s )/2)1)
' ’ (D.4)

for all phase factors YQ(E) - An inverse fast Fourier transform pro-
gram takes the real part of the inverse in one of its operating modes,
then it converts the data from complex numbers ihto bytes without
scaling the output during the conversion. A direct comparison of the
output from Eq. (D.4) with the original pictures, $"]{D§2)(5)}, is
therefore possible.

The difference pictures, ?"]{Déz)(g) - Béz)(E)} , are subse-
quently formed and displayed. If the reconstruction is valid, a
Tisting of the histograms yields narrow Gaussian-1like distributions,
whose mean square-deviations, OAZQ » give a reliability measure for
each defocusing. The whole reconstruction may therefore be Judged by

evaluatinng

N ~
om =W L, % (D.5)

The display of the diffekence picture is a nice way to see how the
deviations from the linear theory are distributed over the whole field
of view. We might expect large contributions to the difference image
from places where the dark field term, or plural scattering effects,
become significant.

In order to calculate the quadratic term, the following rela-

tionship is used
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2 -1y, (k)
w2 = 0 T e 0t - s )
0

=

In practice the complex inverse transform is computed, and its intensity
is later computed after appropriate scaling. One must therefore correct
for possible scaling distortions before subtracting the result from the
original series, f“]{Déz)(E)} . The same procedure, repeated to two
iterations, should yield a better agreement in the reliability test.

As an aside, a method of checking the magnitude of the respective
dark-field terms is now presented. We know from Eq. (3.46) that the
dark-field transform takes a value at the origin equal to

0 (0) = [ 0tk) 0(-k) (k) ok (0.7)

which is independent of v, (k) . Consequently. the various dark-field

pictures should possess an identical mean optical density.
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APPENDLX E

Relation between Fourier Filtering and Convolution Averaging

E.1 Introduction

For every image processing method in reciprocal space there is a
counterpart in real space; however, the methods differ to a large ex-
tent in the practicability of their imp]ementation, We shall now show
that there is an exact relationship between convolution averaging (or
linear integration by trané]ationa] superposition of a repeat unit) and
window filtering on the diffraction pattern. The derivation will be
carried out on sampled data, where the scanning step has been chosen fine
enough not to introduce aliasing errors.

Let d(r) be the continuous optical density distribution with
m unit cells in the horizontal direction and n unit cells in the

vertical direction of the array; ’chen”4

m n .. :
dr) = 3§ a8 e inaxay - (5-1)av] ()
SRR
where
.. d(r) if 0<x<AX and 0 <y <AY
a{1:3) ¢y = ~ (E.2)
- 0 elsewhere

and d(i’j)(g) is the Tocal intensity function characterizing the (i,j)
unit cell with lateral dimensions AX énd AY . Local deviations from
exact periodicity and the superimposed noise background cause slight
variations from one d(i’j)(f) to another.

If the noise is additive to the signal, a linear average of the

members of the array will result in an increase in the signal-to-noise
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ratio of VN , where N is the number of superpositions or, equivalently,
the number of unit cells (N=mx n). The average unit ¢ell is described

by the intensity pattern

1 m

n ..
d(r)=m1§1 sz B (r) if 0<xcax and 0<y<ay
(E.3)

One can then define the deviation of the (i,j)th member of the

array from the mean as
et (r) = qlT3)(r) - () (£.4)
which satisfies the condition

E] E]e(i’j)(r) =0 (E.5)
i=1 j=

The two-dimensional array of unit cells has a density distribu-

tion given by

3 tye 75 &(1sd)
d(r) = d(r) * comb (r)+-.21 _z] e U x- (i-1)ax, y ~(3-1)ay]  (E.6)
, 1=t J=l

where combf(r) stands for a planar arrangement of delta functions

sampling the unit cells. We can write comb™ explicitly as
" m n _
comb (r) = _Z] .Z] sx - (i-1)ax, y - (3-1)ay] (E.7)
]: J:

Since one deals with discrete arrays on the computer, let us define the
following symbols:

A = sampling interval (assumed equal in both vertical and hori-
zontal directions)
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L = total number of pixels along one line or along one column
(one can always geometrically distort the input array into
a square in order to facilitate the Fourier transformation)

U = number of sampled points in a unit cell in the horizontal
direction

v = number of sampled points in a unit cell in the vertical direc-
tion.

From these definitions we can construct the relationships

L= mu = nv

i

AX = uA

VA (E.8)

AY

Before proceeding to demonstrate mathematically the picture manipula-
tions involved in both processing schemes, let us define the discrete

optical density distribution by the array:

d o = d(ka,24) | (E.9)

]

E.2 Convolution Averaging

Convolution averaging is exactly analogous to the photographic
integration method developed by Markham, where one repeatedly trans-
lates the electron micrograph in the unit vector directions, and then
makes a linear superposition of the resulting set. One obtains the
average unit cell from this operation. A convolution of this average
unit cell with the lattice distribution, combT(r), yields the average
picture

d(r) = dlr) * combT(r) | (E.10)
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The continuous distributions in Eq. (E.10), when transposed to their

discrete equivalents, take the values

. . dp,q if i=3=0 _—
Ko TpHiLqtiv elsewhere .
and
comb! =6, . . (E.12)
K,2 K-u,2-jv .
where the following inequalities hold
0<pxy-l ; 0<q<v-l
0<i<ml : 0<j<n-1 (E.13)

D.q is computed frqm the sampled array,

From Eq. (E.3), one sees that

dk,z » by the formula

1 m-1 n-1 m-1 n-1

d ¢lisd) o 1 d.. .
p.q mxn TZO JZO Psq mx’n 120 J‘—Z'O ptiu,qtjv

 (E.14)

Therefore, at a point (k,&) of the grid, such that k 1is congruent to
p(mod 1) and £ congruent to q (mod v), the average picture inten-

sity is expressed, according to Eq. (E.10), as

dA - I 1 &6 s a1 (E.15)

E.3 Fourier Filtering

The discrete Fourier transform was defined in Sec. 2.3.5.18. It

was shown that most properties (e.g., the convolution relationship) of
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the DFT are in agreement with the corresponding properties of the

Fourier integral transform.
1t 0°A(k), D(k), and comb™(k) designate the respective DFT's
of dCA(r), H(r), and combf(r), then Eq. (E.10) becomes

“A(k) = (k) Comb (k) (E.16)

Let us evaluate these transforms successively so as to be able to design
an appropriate Fourier window.

The discrete transform of the average unit cell is described by:

L-1 L-1
Z ) dk . exp[- 2v1(rk+-sz)/L] (E.17)

k 0 2=0
Then by referring to the properties of Hk . mentioned in Eq. (E.11),

we can write

_ 1 p=1 v-1
Ops =T L L ) o expl-2mi(rp + sq)/L] (E.18)

p=0 g=0
For instance, crossed Tattice images of atomic planes would be
visualized in the average picture as an almost perfect sinusoidal fringe

pattern defined in complex notation by

— - . R g_ .
dp,q exp[2w1(u + v)J (E.19)

Consequently, we have

p-1 v-1
Z exp[ - 2w1(—--1 E~]}{ Z exp[- 2ﬂ1(-~l)gﬂ}
=0 q=0

-~

-

w

l"’l-—'
F-—

p=
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]J\) _ L . (\"/m-] ) =
T mm T (s/n-1) =
0 elsewhere
L ) r=m
mn f s=n
0 elsewhere

(mod )
(mod V)

(mod L)
(mod L)

(E.20)

One therefore expects four diffraction peaks, corresponding to ﬁb o*

Dm,o’ Do,n’ Dm,n to appear in the transform.

In a similar fashion, the lattice transform may be written, from

Eq. (E.12), as

m-1 n-1

+ _1 § 1 exp[-2mi(riu + sjv)/L]
Comby. ¢ = T %0 j50
-1 n-1 . .
1 M .rio L s]
=1 exp[-2mi (5- + 337
oy jZO mon
mn . r=0 (mOd m)
—[— if
. s=0 (mod n)
0 elsewhere

cAh _ = T .
Thus Dr,s = Dr,s Combv,’S vanishes unless

(E.21)

(E.22)

It remains for us to prove that by selecting only the Fourier components

satisfying Eq. (E.22) in D(k), and subsequently inverse transforming,
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one indeed retrieves an image identical to dCA(r) .

The discrete image transform, D(k), is a sum of the average pic-
ture transform and of a term which accounts for: local deviations from
periodicity, thermal diffuse scattering, and superimposed background

noise. By converting Eq. (E.6) to the case of discrete data, one arrives

at
-1 n-1 . .
AL (1,3)
d ,=dS" + 7§ gt
k,SL k,R: .i___o j=0 k"]u,/Q/"J\)
_ A, (i,) _ A
where
k=p (mod 11) 0 <p<p-i
2=q (mod v) 0 <q<v-l

Since the local deviations of d(r) from the mean dCA(g) obey a
condition equivalent to Eq. (E.5), the fo]]owing relationship holds:

m-1 n-1

Zo Cprip,gtjv T O for all p.q (E.24)

i=0 j
Use will be made of this property during the computation of the discrete
transform of the image:
_ DCA : -I L""‘] L""l

= ¥ Y e , exp[-2mi(rk + s2)/L]
r,s r,s L K20 420 K>2

Lwr}
|

cA 1 M= on=1 usl v-l
= + - . .
rs 1T jzo pZO qu PHLaHY

- exp[-2mi(rp +sq + rip+sjv)/L] (E.25)
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It now suffices to invert the orders of the summation in Eq. (E.25)

to obtain

u-1 v-1 m-1 n-1

ZO qZO exp[~-2mi (rp+sq)/L1{ Z Z EP"‘T}J,Q*‘JV

- exp[- 2n1( + —Jﬁ]} (E.26)

A filter which Teaves DﬁAS unaltered is readily derived from

Ey. (E.22):
r o= um 0 <u < yu-l
1 if -
S = vn 0 <v<wvl
Hy,,S = (E.27)
0 elsewhere

By applying such a mask on the diffraction pattern, the transmitted

Fourier components simplify to

u-1 v-1
DEES =D Hr,s DCA ]f Z z exp[-2mi(rp+sq)/L]

m-1 n-1
Uik jzo p*‘“’q”“}

= D (E.28)

Consequently, an inverse transformation of the modified transform yields

the average picture

dk,z = %— ] 1D , H , exp[2mi(rk+s)/L] = diéz (E.29)

By multiplying the picture transform by a window selecting only
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successive diffraction maxima, one retrieves in the inverse trans-
formation the picture which would result from a linear superposition
of the unit cell intensity distribution.

The Fourier method has the advantage that one may allow per-
turbations of the periodic structure to contribute to the reconstruction
by enlarging the Fourier windows. In practice, one selects only the
diffraction spots which emerge from the noise spectrum in order to avoid

the occurrence of possible noise artifacts.
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APPENDIX F

Calculation of Weak-Beam Images from Imperfect Crystals

F.1 Analytical Foundations

The derivation of the equations describing electron diffrac-
tion from imperfect crystals was described in Sec. 4.3.1.2. Recall-
ing that the Darwin coefficient, ¢g(r), had to vary as slowly as

possible over a unit cell, in order to break the summation over the

reciprocal lattice vectors, we construct a slightly different wave

function102

v(r) = 1 og(r) expl2mi(K+g) + s0)-r] (F.1)
g

The set of equations obtained by substituting Eq. (F.1) into the
Schrédinger equation is, by analogy with Eq. (4.28):

[-ig\a—z& —3-—+_El el @' (x,2) = 2miA'(x.z) 8'(x.z) (F.2)

where the elements of the matrices are given by

[l-\']gh = Ug—h exp[-2wi(g~g)-g] exp[2w1(sh-sg)z]/2K

[Blgy = [Ktad 8y /K

[C]gh N Gg,h/4ﬂK (F.3)

The numerical values of the Ug were computed from the poly-

nomial expansions for the scattering amplitudes given by Smith and

Burge]]5 and were relativistically corrected for 200 keV electrons
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(cf. Eq.(4.4)). The effects of absorption were included by allowing
the potential field of the crystal to become complex; the imaginary
parts of the potential were obtained from the values of Im(Ug)/Re(Ug)
calculated for Tiquid nitrogen temperature by Humphreys and Hirschl11,
By deriving the displacements R from the isotropic elastic
continuum theory, the product g-R for the coordinate system shown in

Fig. 4-17 is given by

1 4 sin 261
g*R=o7 1._2_1[(9’*31‘)91" (9°be) g7T=9)1 (F.4)

where 91 is the Burger's vector of one of the partial dislocations
and v is Poisson's ratio. Equation (FQ4) is, however, not realistic
near the dislocation cores; thus the displacement fields inside a
cylinder of radius 2.SR were computed by Tinear interpolation across
the discontinuity. Surface effects were nat included, since they are
negligible for dislocations at depths larger than half an extinction

distance from the surface.

F.2 Numerical Scheme

In order to integrate the parabolic partial-differential equa-
tions, it was necessary to develop viable numerical methods for this
initial value problem. Initia]]y,‘a Crank-Nicholson finite~-difference
implicit scheme 110 was tried; howeVer, it was found to converge too
slowly for practical purposes. We came to the realization that terms
involving partial derivatives in x in Eq. (F.3) could be treated as

a perturbation to the corresponding column-approximation equations”7 .
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The column-approximation equations are:

%E-gf(x,z) = 2mi A'(x,2) @'(x,z) (F.5)

A combined multi-step algorithm was next developed which
proved to be quite practical. In this technique the integration is
carried out on a rectangular grid; using a modified Runge-Kutta
explicit a]gorithm”8 that determines the x derivatives of ¢é(x,z)
iteratively within a single step. At each z these derivatives are
evaluated for each column using a fifth-order interpolation formula
involving the neighboring columns. To prevent spurious oscillations
far away from the defect the two outermost columns are computed in
the co]umh approximation, which imposes a zero slope at the bound-
aries and thus induces a small edge discontinuity. The truncation
error is evé]uated by repeating the calculations with a different
number of columns and new values for Ax and Az .  In addition, the
validity of the whole numerical process is verified at selected levels

by estimating its convergence in a single Runge-Kutta stepllg.

The
analytical complexity of the scheme hindered any attempt to find an
upper bound for truncation and round-off errors, so that the appro-
priate step sizes must be matched to the strength of the displacement
field. In‘the vicinity of the defect, Ax and Az are halved to
ensure that the Tocal strain field is "seen" by the traveling electron
wave. ‘The phase, amplitude, and intensity distributions of the wave

function are listed at various intervals in order to observe the

image-contrast depth dependence in different diffracting geometries.
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A schematic of the integration procedure is now described for

a system of A equations, where the subscripts m and n designate

m m -

2

d J '

Qm,n > 9x 9m,lfl’ 3X2 Qm,n’ém,n’

Ax, and Az.

respectively the discrete variables x_ and =z

(1) Initialize the variables:

k) 2o s g PA
(2) Compute: 511,n = Az[iC " ggm,n B % gm,n+ 2mwi Am,n Qm,n]
(1) = 1 (1)
Sm,n+d En,n" 27 Kon
AI

—m,n.-l-? ax -m, +~i—
(4) compute: K@) = pofic o) ga ), 2mi A',e{1)
© o Am,n = 5x@ Mtk T = 3x —m,n+t = m,ntdem,nhg-
(2) _ 1 .(2)
gm,n+~2L <I—')m,n t2 5m,n
: 2
L eso. 9 (2) 3T (2)
(5) Interpolate the x derivatives: 5% 9m,n+§’ ax2 Qm,n%
(6) catcutate: K13) = aafig 2 6() g 3 o(2) oo, 2(2) 1
’ '—<m9n =0 —m,n+§ = 3x ~m,n+—§— =myntd —m,n+d

119
(7) Calculate the "Collatz estimator" at level n:



(8)

(9)

(10)

(11)

(3) _ (2)
5’“,“ l—(ﬂ],n
en = Max . 2 1
m:'l’... -
'i‘—'], . ':N '-(m,n l('|'|'I,Y’I
If 6, < e':"in AX €— 2AX
Az <— 2Az go to step (1)
M s— (M+1)/2
If 621" <0, < eﬂax proceed with the calculation

If o > gmaX AX < Ax/2

n n
Az <— Az/2 go to step (1)
M <s— (2M-1)
A (3) = : (3)
Compute: n+1 —m,n + K Ko.n
[}
A-m n+1l
Interpolate the x derivatives: §—-¢(3) QE—-®(3)
P : T 93X —m,nt] Bx2 “m,nt]
Calcutate: k(%) . Az[1C-a—2——®(3) -p & 43 + 2nipy
»N = 8x2 =m,n+1 = 3x —m,n+]
- (1) (2) (3) (4)
L A 1 AR SR SO
T 38
Interpolate the x derivatives: §§‘gm,n+]’ 5;?'9m,n+1

Go to step (1).



(3) _ (2)
_ Knun = Knn
en Max 2 ;
m:]’... M -
'i:]’...:ﬁ —lgu,n -,Sn’n
(8) If 8y < e'r']"'" AX ¢— 2Ax
Az <— 2Az go to step (1)
M s— (M+1)/2
If el:]n'n < en < e'r’:ax proceed with the calculation

If o> gmaX AX <— Ax/2
Az <— Az/2 go to step (1)
M<— (2M-1)

) I (3)
(9) Compute: Qm,nﬂ = %nn + T

A m,n+]
ivati 5(3) i ,(3)
(10) Interpolate the x derivatives: ax O 7 Snnt]
(11) caleulate: k) = az[ig 2 22 4(3) g3 0(3) v ariat o(3) ]
=m,n 2 —m,n+1 = 3x =m,n+] n+1—m n+l

- 1 (1)
Zm,n+1 =m,n 6 “=m,n

2

) a
(12) Interpolate the x derivatives: ax Zm.n+1 —7_"] n+1

(13) Go to step (1).
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F.3 Fortran Implementation

A 1ist of the program symbols and of their definitions is now
presented. The displacement field R(x,z) 1is calculated by the func-
tion RHO, which outputs the dot product 2ng-R at every point of the
mesh. It corresponds in this listing to a dissociated dipole geometry
(it suffices therefore to modify RHO in order to compute the con-
trast from other defects). The parameters defining the defect geom-

etry are illustrated in Fig. 4-17.

PROGRAM SYMBOLS DEFINITION
. 3 52
PHIO,PHIT1,DPHI ,DDPHI Matrices gm n,g)_m n+l? 5;9"1 n? ———Z-Qm n
] 2 2 ax 3
: (1) () (3) 4
K1,K2,K3,AA Matrices Em,n’ Em,n’ Em,n’ ém,n
G Reciprocal vector [g] = 1/dpy, Where dp. o

is the interplanar spacing

FBRAGG This determines in units of |[g| the inter-
section of the Ewald sphere with the row of
systematics (i.e., = 3 if 39 is excited.)

LAMBDA Electron wavelength in X
TH Foil thickness 1in R
DPTH Depth intervals in R elapsing between suc-

sive printings

0
WDTH Half the width in A of the entrance surface
(see Fig.4-17)

N Number of operating beams

M Number of columns into which the foil is divided



PROGRAM SYMBOLS

MIN

NOUT

MuPP

coL

PRINT

COLLATZ

BURG

POISS

DP1,DP2

COR(1),COR(2)

COR(3)---COR(6)

COR(7)---COR(10)

ZONEB,ZONEE
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DEFINITION

This determines in units of |g| the Towest
systematic excited (i.e., = -3 1if the lowest
systematic in the calculation is ~3g)

Number of steps between successive printings
of the intensities

Maximum number of columns allowed by the
matrix sizes

This logical flag indicates whether or not a
column approximation is used.

This logical flag controls the printing of en
at regular intervals

If this logical flag is true, en changes the
step sizes automatically

Complex Fourier potential coefficients Uo’

Ug’ LI ) ’U(ﬁ_])g

It equals |geb,| where b, s the partial dis-
location Burgers vector

Poisson's ratio of the crystal

Depths in X of the two pairs of partials (see
Fig. 4-17)

Equal respectively Al and A2 in R (see Fig.
4-17)

This indicates the sign of the 91 with res-
pect to x .

Products Q'Eei of the reciprocal vector g

with the edge components of the four partials.

Depths in R at which one successively halves and

doubles the step sizes to account for the rapid
strain variations around the defect
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PROGRAM SYMBOLS DEFINITION

VMAMX , VMAN Upper and lower bounds for en: eﬂax and
min
)
n

L11 Depth in R at which the Tisting starts,
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