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Abstract

This thesis addresses several key issues in mechanics and automated planning
of workpiece fixturing and robotic grasping, including accurate and efficient
modelling of compliance, well-defined and practically useful quality measures,
and well-defined kinematic metric functions for rigid bodies.

The accurate and efficient modelling of compliant fixtures and grasps is
considered. A stiffness matrix formula is derived using the overlap compliance
representation for quasi-rigid bodies. In contrast to existing approaches using
the linear contact model, this formula is well-suited to automated planning
algorithms since it can incorporate realistic nonlinear contact models (e.g.,
the classical Hertz model), and can be directly computed from CAD data on
basic geometric and material properties of the bodies. The formula is then
used as a basis for a systematic analysis of local curvature effects on fixture
stability. This analysis shows that destabilizing effects of local curvatures
are practically negligible, and that curvature effects can be used to stabilize,
sometimes significantly, an otherwise unstable fixture. The stiffness matrix

formula is also used to show that stability analysis in general depends on the



choice of contact models, which offers additional evidence for the importance
of using realistic contact models.

The stiffness and deflection quality measures are defined for compliant fix-
tures and grasps, and are applied to optimal planning. Unlike existing quality
measures that rely on heuristic rules or depend on reference frame choices,
the stiffness and deflection quality measures are theoretically sound. Equally
important is that these quality measures accurately characterize functional
performances which are important to practical fixturing applications, such as
fixture stiffness and workpiece deflections. The stiffness and deflection qual-
ity measures are applied to optimal fixture and grasp planning, resulting in
maximum-stiffness and minimum-deflection fixtures and grasps. The quali-
tative properties of optimal fixtures are characterized with respect to each
quality measure, and efficient techniques are developed for finding such opti-
mal fixtures.

The final key issue is concerned with formal well-definedness conditions
and practical development methods for rigid body kinematic metric functions,
such as norms, inner products, and distance metrics. Based on an intrinsic
definition of the configuration space of a rigid body, the notion of objectivity
is proposed to formalize the natural requirement that metric measurements
be indifferent to the observers who perform the measurements. This notion
is then used to clarify the fundamental physical implications of left, right
and bi-invariant functions on SE(3), and is further shown to be equivalent to
the notion of frame-invariance. Based on these clarifications, several frame-
invariant norms of rigid body velocities and wrenches, which have interesting

physical interpretations, are defined.
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Chapter 1

Introduction

1.1 Motivation

With vast advances in computer technology, flexible manufacturing has be-
come an important trend in the manufacturing industries. A flexible man-
ufacturing system consists of computer numerical-controlled (CNC) machine
tools linked by a material-handling system, and operates as an integrated
system under fully programmable control. Such systems are capable of man-
ufacturing a wide variety of high-quality products at a low cost, and quickly
adapting to changes in design, demand and product mix.

Fixturing is an essential part of flexible manufacturing systems. A fizture
is a device that locates and holds a workpiece using a set of firture elements.
The fixture elements, or fizels, usually consist of clamps, locators and sup-
ports. The clamps actively apply forces on the workpiece, while the locators
and supports, which apply reaction forces, are used to accurately locate the
workpiece. While CNC machining and many computer-controlled material
handling processes are highly automated and possess excellent adaptability,
fixturing has remained one of the least automated manufacturing processes
and often fails to accommodate the wide variety of part geometries to be pro-

cessed. It is still common to see manufacturing systems with computerized



machining and inspection tools in which fixtures are designed and constructed
by humans. The lack of automation makes workpiece fixturing rather costly
and inefficient. According to an estimate [152], the cost of fixture design and
fabrication for a flexible manufacturing system can amount to 10-20% of the
total system cost. Given the huge expenditure on flexible manufacturing sys-
tems, it is evident that the automation of fixturing will result in enormous
economic benefits.

To enable automated fixturing, it is crucial to automate the design of fix-
tures, which involves both hardware design and fixture planning. In the fixture
planning process, a set of fixture elements is chosen for a given workpiece, and
a plan is generated to position the fixture elements on the workpiece’s surface.
The foremost requirement of such a fixture plan is the complete restraint of
the workpiece from undesirable motions. According to the nature of the man-
ufacturing process for which the fixture is designed, the fixture plan must meet
several other functional requirements, such as adequate stability and strength,
sufficiently small deformation, accuracy and repeatability of workpiece loca-
tion, freedom from interference between fixels and moving tools, and ease in
fixture assembly and disassembly. Upon its generation, the fixture plan is ver-
ified by finite element methods and tested on prototype parts. If the plan is
found to be invalid, the fixture planning process must be repeated.

Considerable progresses have been made in the innovation of fixture hard-
ware. For example, flexible fixtures, such as modular fixtures, conformable
fixtures and programmable clamps, have been introduced and are gaining pop-
ularity. However, fixture planning, a computationally intensive process that
determines the deployment of hardware, has seriously lacked automation. A
human designer is still commonly needed to select the fixture elements and
come up with a fixture plan according to heuristic rules obtained from his or

others’ experience. Because of the lack of formal analysis, such an experience-



based plan often fails to meet the typically competing fixture requirements.
Thus, many costly and time-consuming iterations are usually required to ob-
tain a valid design. This is particularly true for complex workpieces since the
fixturing of such workpieces typically requires prototyping, which is expen-
sive. While attempts have been made at automated fixture planning based
on analysis rather than human experience, the analysis methods are usually
over-simplified and inaccurate. As a result, automated planning algorithms
that are based on such inaccurate analysis methods are valid only in a lim-
ited number of applications. An automated fixture planning approach that is
based on adequate analytical methods is thus clearly warranted.

Closely related to workpiece fixturing is the problem of robotic grasping, in
which robotic fingers are placed on an object in order to achieve a firm grip of
the workpiece. In particular, grasp planning, in which a plan is generated for
finger placement, is dual to fixture planning in the sense that in both processes
a set of contacts is sought that prevent undesirable motions of the grasped or
fixtured object. The primary difference between fixturing and grasping is that
strength, deformation and accuracy requirements are demanding for fixtures,

while dexterity of manipulation is often important for grasps.

1.2 Objectives

The general objective of this thesis is to develop analytical and algorithmic
tools that will eventually lead to automated planning systems for workpiece
fixturing and robotic grasping which are based on adequate and efficient physi-
cal modelling. Compared with approaches that are based on experience-based
heuristic rules or inaccurate analysis techniques, such planning systems use
accurate physical models to evaluate the validity of fixture and grasp plans.

In addition, the physical models are derived from first principles and can be



computed from CAD data of the workpiece and fixture elements. These fea-
tures of the approach that is based on accurate and efficient modelling reduce
the number of design iterations, and alleviate the need for trial-and-error ex-
perimentation in each design iteration. Therefore, the approach is amenable
to automation and can generate better and more robust plans in a shorter
time and at a lower cost. The following issues in the mechanics and planning

of fixtures and grasps will be addressed in the thesis:
(1) Accurate and efficient modelling of compliance in fixtures and grasps.

(2) Well-defined quality measures for compliant fixtures and grasps which
accurately characterize performance requirements determined from given

manufacturing operations.

(3) Formal conditions and practical development methods for well-defined
rigid-body kinematic metric functions, and their application to the devel-

opment of frame-invariant norms of rigid body velocities and wrenches.

1.3 Contributions

This thesis first makes a contribution to accurate and efficient physical mod-
elling by addressing the computation and analysis of compliance in fixturing
and grasping. An accurate formula is derived for the fixture stiffness matrix
that incorporates realistic contact models, such as the classical Hertz model.
This formula is in contrast to existing formulas that are based on the linear-
spring contact model, which is not supported by elasticity theory or experi-
mental data. The stiffness matrix is expressed in closed-form in terms of basic
geometric and material properties of the contacting bodies in a fixture, and
can hence be directly computed from CAD data, including dimensional and

shape specifications as well as elasticity constants. Thus, the stiffness matrix



formula is well-suited to automated fixture and grasp planning systems.

The stiffness matrix formula is used as a basis to systematically analyze
how the stability of a fixture is influenced by the local curvature of the con-
tacting bodies at the contacts. The thesis shows that destabilizing effects of
local curvature are practically negligible, and that curvature effects can be
used to stabilize, sometimes significantly, an otherwise unstable fixture. It is
also shown that fixture stability analysis is generally affected by the choice
of contact models, which further indicates the importance of using realistic
contact models for compliance computation and analysis. 7

The second contribution of this thesis is the development of well-defined fix-
ture quality measures and the application of these quality measures to optimal
planning algorithms. The stiffness quality measure is defined as the worst-case
characteristic stiffness of a fixture, and the deflection quality measure as the
worst-case deflection of a fixtured workpiece in response to wrenches lying in
a subset of the wrench space, called a task wrench set. While existing quality
measures for grasps consisting of rigid bodies depend on the choice of refer-
ence frames, the stiffness and deflection quality measures explicitly address
compliance and are frame-invariant. In addition, these quality measures are
valid for general compliance models, and apply to two- and three-dimensional
workpieces fixtured by any number of fingers. To allow efficient computation
of the deflection quality measure, a practical approach is proposed to model a
task wrench set, which represents a set of manufacturing operations, in terms
of several types of primitive wrench sets that are easily computable.

The stiffness and deflection quality measures are applied to optimal fixture
and grasp planning, resulting in maximum-stiffness and minimum-deflection
fixtures and grasps. Focusing on three- and four-finger frictionless fixtures of
polygonal objects, the qualitative properties of optimal finger arrangements

are characterized, and practical algorithms are developed for finding glob-



ally optimal finger arrangements with respect to each quality measure. The
maximum-stiffness and minimum-deflection fixtures as given in several ex-
amples are intuitively effective, thereby demonstrating that the stiffness and
deflection quality measures can be practically useful.

In the third contribution, this thesis introduces and investigates the notion
of objective kinematic metric functions for rigid bodies. Based on an intrinsic
definition of the configuration space of a rigid body, the notion of objectivity
is introduced to formalize the natural requirement that well-defined metric
functions be indifferent to observers who perform metric measurements. The
physical implications of invariance properties in SE(3), the conventional con-
figuration space of a rigid body, are then clarified in terms of the objectivity
notion. It is shown that an objective kinematic function corresponds to a
family of left-invariant metric functions on SE(3), and that left invariance is
necessary but not sufficient for objectivity. These observations indicate that
bi-invariance is sufficient but not necessary for objectivity, and that right in-
variant functions in general do not satisfy the objectivity condition and should
therefore be avoided.

Practical applications of objectivity are made convenient in terms of frame-
invariance in the conventional configuration space where reference frames are
used to describe rigid body motions. The thesis accurately clarifies the mean-
ing of frame-invariance, and shows that frame-invariance is necessary and suf-
ficient for ensuring objectivity. This in turn clarifies the relationship between
frame-invariance and bi-invariance: bi-invariance is sufficient, but not neces-
sary, for frame-invariance. In other words, bi-invariant functions only form a
subset of frame-invariant functions.

Finally, supported by the equivalence between frame-invariance and objec-
tivity, frame-invariant norms and pseudo-norms of rigid body velocities and

wrenches are developed. These norms formalize the notion of “lengths” of



rigid body velocities and wrenches, and to the knowledge of this author, are
the first frame-invariant methods for “length” measurement. The thesis gives
norms that are induced from inner products, as well as norms that are not in-
ducible from inner products. In both cases, the norms have interesting physical
interpretations and are therefore practically useful, as demonstrated by their

application to minimum-deflection fixtures and grasps.

1.4 Overview

This thesis uses the term fiztures to represent both fixtures and grasps, and
the term fingers to represent both fixture elements and robotic fingers.

Chapter 2 reviews related research in automated planning of rigid fixtures
and grasps, compliance modelling for fixturing and grasping, fixture and grasp
quality measures and their application to optimal planning, and rigid body
kinematic functions. '~

Following Chapter 3, which briefly reviews SE(3) (the conventional con-
figuration space of a rigid body), Chapter 4 addresses accurate and efficient
modelling of compliance. Section 4.2 introduces several basic assumptions.
Section 4.3 considers the modelling of compliant contacts, based on which
Section 4.4 derives a closed-form fixture stiffness matrix formula that incor-
porates realistic contact models. The formula is then used to systematically
analyze how fixture stability is influenced by the local curvature of the con-
tacting bodies in Section 4.5, and how stability analysis is affected by the
choice of contact model in Section 4.6.

Chapter 5 considers maximum-stiffness fixtures. Section 5.2 defines the
principal rotational and translational stiffness parameters, and discusses their
frame-invariance and physical interpretations. By meaningfully comparing

the rotational and translational stiffnesses, Section 5.3 defines the stiffness



quality measure. Sections 5.4 and 5.5 finally use this quality measure to seek
maximum-stiffness three- and four-finger fixtures of polygonal objects.

Chapter 6 addresses minimum-deflection fixtures. Section 6.2 defines the
deflection quality measure in terms of frame-invariant velocity and wrench
norms. Section 6.3 models task wrench sets by primitive wrench sets, and com-
putes the deflection quality measure in the framework of this modelling scheme.
The chapter concludes with section 6.4, which seeks minimum-deflection three-
and four-finger fixtures of polygonal objects.

Chapter 7 introduces and investigates the notion of objectivity. Section 7.2
briefly reviews metric functions on manifolds. Section 7.3 gives an intrinsic
definition to C, the configuration space of a rigid body, while Section 7.4
represents C by SFE(3). Section 7.5 then defines the notion of objectivity in
Euclidean space E3 and motivates Section 7.6, which defines the notion of
objectivity in C. Physical implications of invariance properties in SE(3) are
discussed in Section 7.7, followed by a discussion in Section 7.8 on the relations
of objectivity to frame-invariance.

Chapter 8 develops several frame-invariant rigid body velocity and wrench
norms. Following Section 8.3, which proves that there are no bi-invariant ve-
locity and wrench norms, Section 8.4 proposes frame-invariant velocity norms,
while Section 8.5 considers frame-invariant wrench norms that are induced
from inner products. The chapter ends with Section 8.6, which presents an
algorithm for computing the average wrench norm for planar bodies.

Finally, Chapter 9 summarizes the results of the thesis, discusses problems
that remain open for future work, and indicates potential applications of the

work reported in the thesis.



Chapter 2

Related Research

Fixturing automation plays an essential role in flexible manufacturing systems
[5,152,161]. Research on fixturing automation has involved innovative hard-
ware design, as well as automated fixture planning and the dual problem of

automated grasp planning.

2.1 Hardware Innovation

While flexible fixturing devices such as computer-controlled vises [147] and nu-
merically controlled clamps [161] have been proposed, fixturing hardware in-
novation has primarily involved conformable fixturing and modular fixturing.
The conformable fizturing approach [18, 32,46, 123], which utilizes fixture ele-
ments that are specially designed and fabricated to be capable of conforming to
irregular workpiece shapes, can accommodate a wide variety of complex parts.
Modular fixturing [60] is presently the most prominent flexible workholding
approach. A modular fizture consists of a set of standard components including
bases, locating and supporting pins, and clamping devices. These standard
parts can be assembled as building blocks to form fixtures that are capa-
ble of holding a wide variety of part sizes and shapes. As widely recognized

[2,45,47,94,171,172], the use of modular fixtures can speed up the design and
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construction of fixtures for batch manufacturing, which is typical of flexible
manufacturing. Since modular fixtures can be disassembled and reused, their
use can also reduce fixture storage and retrieval costs. These features make
modular fixtures well-suited to flexible manufacturing systems. Modular fix-
turing systems have been commercially available from several manufacturers
such as Bluco, Carr Lane and Jergens, and there are numerous research modu-
lar fixture kits, for example, [4, 10, 16,17, 82,143, 149, 155]. Research efforts on
automated planning of modular fixtures will be reviewed below. The fixture
modelling and planning methodologies proposed in this thesis are well-suited
to modular fixturing, but they can also be applicable to dedicated fixtures

that are used in large-volume manufacturing.

2.2 Automated Design or Planning Systems

Automated fixture design (or planning) systems can be knowledge-based or
analysis-based. Knowledge-based fixture design expert systems [22, 37,42, 91,
98,111, 116, 144] rely on the knowledge of human experts and artificial intelli-
gence techniques to select fixture elements, determine their positioning on the
workpiece, and choose the clamping forces. Likewise, human knowledge and
artificial intelligence are used in robotic grasping expert systems [13, 39, 165] to
determine finger locations and devise a manipulation process. The knowledge-
based approach attempts to mimic the decision process of a human expert, but
does not address the fundamental physical principles based on which such de-
cisions are made. Since this approach depends on human experience instead
of first principles of science and engineering, the resulting fixture designs or
grasp strategies are highly subjective and are not justified by physical laws.
Consequently, these designs may not adequately meet given functional require-

ments.
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Analysis-based automated design is built upon analytical modelling of fix-
tures and grasps. When adequate analytical models are used, the resulting
designs will meet desired functional requirements. Along this line, a number
of works (for example, [16, 26,62, 76,95, 170]) have been devoted to developing
automated fixture design systems. Typically in these works, the 3-2-1 guide-
line [60] is used to determine the placement of the locating and support fixture
elements, while geometric and kinematic methods are employed to ensure that
the workpiece is completely restrained, has good workpiece location accuracy,

and is free from interference between fixture elements and moving tools.

2.3 Methods for Automated Planning of Rigid
Fixtures and Grasps

Automated fixture planning lies at the core of automated fixturing. A com-
mon approach to automated fixture planning, as well as the dual problem of
automated grasp planning, treats workpieces and fixture elements (or robotic
fingers) as rigid bodies. Fixtures and grasps consisting of such rigid bodies
are said to be rigid. The planning of rigid fixtures and grasps can be based
on kinematic or force constraint analysis. We review force-based methods in
Sections 2.3.1 through 2.3.3, and review kinematic methods in Sections 2.3.4

through 2.3.6.

2.3.1 Force-Closure and Its Characterization

The notion of force-closure uses force constraint analysis to characterize the |
ability of a grasp to resist external disturbances. This notion was first intro-
duced at the end of the nineteenth century by Reuleaux [132] in his work on
mechanism kinematics, and has been widely used in grasp planning since the

Ph.D. work of Salisbury [141]. Force-closure grasps are reviewed below.
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It is well-known that any system of forces acting on a rigid object is equiv-
alent to a generalized force, which is called a wrench and consists of a pure
force and a torque. The set of all wrenches is called the wrench space. In a co-
ordinate frame, a wrench can be written as a column vector w = (f, 7), where
f and 7 are the force and torque components, respectively. A grasp is said to
be force-closure if it can resist any wrench acting on the grasped object [109].
In other words, given any wrench applied to a force-closure grasp, each finger
can apply a force at the contact such that the workpiece is in equilibrium.

The characterization of force-closure is well-developed for grasps where
the contacts between the object and fingers are modelled as frictionless or
frictional point contacts, or soft-finger contacts. In a frictionless point contact,
the finger tip can only apply a force in the inward normal direction to the
object’s surface, while in a frictional point contact the finger force Iies in a cone
symmetric about the contact normal line. The soft-finger model [30] is similar
to frictional point contact, but a torque about the contact normal can also be
applied. Note that these primitive contact types can be used to describe, either
precisely or approximately, more complex contacts. The characterization of
force-closure can be given in terms of generating wrenches reviewed below. A
generating wrench is a wrench due to a finger that applies, as appropriate, a
unit force along the associated contact normal, or a unit force along one of
two mutually orthogonal directions in the plane perpendicular to the contact
normal, or a unit torque about the contact normal. Let the generating-wrench
matriz, denoted W, be the matrix whose columns consist of the generating
wrenches, expressed in a common coordinate frame, corresponding to all the
fingers. Then a set of finger force magnitudes, denoted f, induces a wrench

W f. Given any external wrench w.,; acting on an object held in force-closure,
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there exists f to satisfy the following equilibrium condition:

Wf + Wept = 0. (21)

It follows that a grasp is force-closure if and only if its generating-wrench
matrix, regarded as a map from the set of all possible magnitudes of finger
force and torque components into the wrench space, is surjective [109]. Note
that the elements of f are signed for frictional and force components, and
are non-negative for force components normal to the object’s surface. When
all the contacts are frictionless, a grasp is force-closure if and only if the full
collection of generating wrenches positively span the wrench space [142], or
the origin lies in the interior of the convex hull of the generatihg wrenches
[107]. The frictionless-contact conditions can be extended to planar grasps
with frictionless point contacts [109]. Alternative force-closure tests have also
been developed (12,69, 113,127,128, 157).

The bounds on the number of fingers needed to achieve a force-closure grasp
have been studies in the robotics literature. While it is well-known that four or
seven frictionless point fingers are necessary to form a force-closure grasp of a
two- or three-dimensional object without rotational symmetries [83, 132, 148],
Mishra, Schwartz and Sharir [107] showed that six and twelve frictionless point
fingers are sufficient. These bounds were tightened by Markenscoff, Ni, and
Papadimitriou [96], who showed that four and seven frictionless point fingers
are sufficient to form a force-closure grasp, respectively, of a bounded non-
circular planar object whose boundary is piecewise smooth, and of a class of

rather general three-dimensional objects, including all polyhedra.
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2.3.2 Planning for Force-Closure

A majority of research on force-closure grasp planning has focused on frictional
point fingers. Nguyen [113] proposed a geometric method for computing max-
imal regions of polygons where two fingers can be placed independently to
achieve force-closure. This approach was extended by Faverjon and Ponce
[40] to two-finger grasps of curved planar objects. Also addressing two-finger
grasps of curved planar objects, Chen and Burdick [23] computed antipodal
finger arrangements while Blake and Taylor considered more general finger po-
sitions that do not depend on the friction coefficient. Ponce and Faverjon [127]
computed the sets of three-finger polygonal force-closure grasps, while Ponce
et al. [128] computed three- and four-finger force-closure grasps of polyhedral
objects. Park and Starr [121] considered synthesis of three-finger force-closure
grasps of polygonal objects, while Mirtich and Canny [105] addressed optimal
force-closure grasps of both two- and three-dimensional objects.

While frictional force-closure has been widely used in robotic grasping,
it is not as often used in workpiece fixturing except for certain light-duty
applications. Most robotic grasps are subjected to relatively light work loads.
External forces due to such work loads are quite small and céLn hence be
balanced by friction forces. On the other hand, manufacturing operations such
as machining induce forces of magnitude as high as 20 KN (5000 Ibf) [53]. Due
to the large force magnitude, fixtures that are designed for such manufacturing
operations usually do not rely on friction to achieve force-closure except for
the special case of mechanical vises and chucks [27]. However, this does not
preclude friction from being used to enhance fixtures that are force-closure
without consideration of friction.

Frictionless force-closure has been used in both grasping and fixturing. Be-
cause of the large number (four or more) of fingers involved, research on the

planning of frictionless force-closure is relatively sparse. Mishra, Schwartz and
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Sharir [107] proposed algorithms for computing at least one force-closure fin-
ger arrangement for frictionless polyhedral objects, while Coelho and Grupen
[29] cast frictionless force-closure planning as a control composition problem.
Nguyen [113] computed maximal regions of polygons such that four fingers can
be independently placed in each of these regions to form a frictionless force-
closure grasp. Research efforts on planning frictionless force-closure fixtures
have been reported in [9,15,27,95, 166, 174, 175], and will be reviewed in Sec-
tion 2.3.5 since frictionless force-closure is in fact equivalent to the kinematic

notion of form-closure.

2.3.3 Force Analysis and Gravitational Stability

It is often necessary to determine the finger forces that are needed to balance
an external wrench applied to a force-closure grasp. There is a rich volume
of literature in such force analysis for robotic grasping, for example, [11,19,
25,70,75,164]. As pointed out by Trinkle [157], force-closure fixtures and
grasps are typically statically indeterminate, i.e., given an applied wrench,
the equilibrium equations are not sufficient to determine the finger forces.
Since robotic fingers are actively controlled and always apply known forces,
static indeterminacy is not a major problem for grasping. However, static
indeterminacy makes fixture force analysis quite difficult since fixture elements,
except for active clamps, only apply unknown reaction forces. Thus, additional
assumptions, some of which may be unrealistic, are usually needed in fixture
force analysis [15-17,24,57,67,76,78,87]. To resolve this problem, workpiece
and fixel deformations must be considered.

A problem related to force-closure is the fixturing of multiple rigid bod-
ies, which are constrained by fixture elements and subjected to gravity, in a
gravitationally stable state. That is, any instantaneous motion that is allowed

by the contact constraints will increase the gravitational potential energy of
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the system. Research in this direction has been pursued by Trinkle and his
coworkers [158,159,169]. Baraff, Mattikalli and Khosla [7] proved that the
complexity of finding the smallest set of fixels to fixture a given collection
of rigid bodies is NP-hard. A problem related to gravitational stability was
studied by Mason, Rimon and Burdick [101,102].

2.3.4 Form-Closure and Its Characterization

We now review kinematic methods for analysis and synthesis of rigid grasps
and fixtures, which are commonly based on the notion of form-closure. A
fixture or grasp is said to be form-closure if the kinematic constraints of the
fingers completely prevent any instantaneous motion of the fixtured object. A
form-closure fixture or grasp is also said to be immobilizing [137,138], or to
achieve total restraint [3].

Screw theory [109,119] has been commonly used to analyze form-closure
fixtures and grasps. Fixels or fingers are assumed to be in point contact with
fixtured objects. In screw theory, the kinematic constraint on a workpiece by a
contacting finger can be represented in terms of the generating wrench, denoted
7, corresponding to a unit finger force that is normal to the workpiece’s surface
and points into the workpiece. Any instantaneous motion, denoted by ¢, is
resisted by the contact if 77¢ < 0, and is allowed by the contact if "¢ > 0.
In other words, a contact prevents any motion of the workpiece on which the
generating wrench associated with the contact does negative virtual work. It
follows that a fixture is form-closure if there exists some contact at which
n7¢ < 0 for any instantaneous motion ¢ [108], or equivalently, the set of
inequalities W7¢ > 0 admits no nontrivial solution, where W is the matrix of
generating wrenches [3].

In their investigation of immobilizing grasps [135,137,138], Rimon and

Burdick discovered that the above screw-theory based conditions only iden-
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tify a subset of form-closure grasps, which they called first-order form-closure
grasps. Using a configuration space approach, they developed a theory, called
second-order mobility theory, for the class of essential equilibrium grasps. An
essential equilibrium grasp is a grasp in which the object is held in equilib-
rium, without the action of any external wrench, in such a way that all fingers
must apply nonzero force to maintain equilibrium. In their theory, an integer
index, called second-order mobility indez, is used to account for the effects
of curvature of the contacting bodies at the contact points. Given an essen-
tial equilibrium grasp that is not first-order form-closure, if the second-order
mobility index is zero, then the grasp is form-closure. Such grasps whose
form-closure is determined from the second-order mobility theory are called
second-order form-closure grasps.

Rimon and Burdick [134, 137] also showed that a grasp s frictionless force-
closure if and only if it is first-order form-closure. Due to this equivalence,
the characterization of frictionless force-closure can be used to characterize
form-closure. In particular, the bounds on the number of fingers needed to
achieve a frictionless force-closure grasp (Section 2.3.1) also apply to first-
order form-closure grasps. According to these bounds, four and seven fingers
are respectively needed to hold a two- or three-dimensional object in first-order
form-closure. Based on their second-order mobility theory, Rimon and Burdick
improved these bounds for planar objects [134]. They showed that generic
planar objects can be held in (first- or second-order) form-closure with three
convex fingers that have sufficiently flat curvature. Further, if the curvature
of the fingers can be chosen to be suitably concave, then form-closure can be

achieved for generic planar objects with two fingers.
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2.3.5 Planning for Form-Closure

Since frictionless force-closure and first-order form-closure are equivalent, meth-
ods for finding frictionless force-closure grasps (e.g., [29,107,113] as reviewed
in Section 2.3.2) also lead to first-order form-closure grasps. This section
primarily focuses on kinematically based methods for planning form-closure
fixtures and grasps.

Mani and Wilson [95] presented a kinematic fixture synthesis method by
examining the kinematic constraints provided by the combinations of triplets
of contact lines. Bausch and Youcef-Toumi [9] defined the notion of “motion
stops” associated with screw motions. As a measure of the fixture’s geometric
resistance to the screw motion, they characterize a first-order form-closure
fixture by the condition that positive and negative motion stops exist for each
screw motion that is reciprocal to five linearly independent lines of contact.
In consequence, the fixture synthesis problem becomes one of finding a fixture
that satisfies the motion stop criterion. Based on the frictionless force-closure
characterization associated with Equation (2.1), Chou, Chandru and Barash
[27] gave a first-order form-closure test for three-dimensional fixtures that
requires solving a system of strict inequalities, and proposed a scheme for
successively choosing clamps from a candidate set to achieve first-order form-
closure in the horizontal plane. When the form-closure principle is applied to
modular fixture planning, there are only a finite number of fixel arrangements
since the fixels can only be located on a regular lattice structure. Brost and
Goldberg [15], and Wallack and Canny [166] exploited this fact to develop
algorithms for finding the entire collection of first-order form-closure modular
fixtures of polygons. Zhuang, Goldberg and Wong [175] considered whether
there exists a form-closure fixture plan for a given workpiece and modular
fixture kit. Zhuang and Goldberg [174] addressed multiple-purpose fixtures—

a multiple-purpose fixture is an arrangement of fixture elements which can
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hold more than one part in first-order form-closure, and extended the notion
to robust fixture design.

The planning of second-order form-closure grasps were considered by Ponce,
Burdick and Rimon [126]. They showed that for planar objects whose bound-
ary is described by polynomial splines, two-finger second-order form-closure
grasps form a discrete set, while three-finger second-order form-closure grasps
form a two-dimensional set. The set of three-finger second-order form-closure
grasps were then computed using exact cell decomposition and homotopy con-

tinuation techniques.

2.3.6 Other Kinematic Considerations

In addition to immobilization of workpiece, other kinematic considerations
have been given to fixture planning. In an approach related to second-order
form-closure, Rimon and Blake [133] considered the “caging” problem, in
which the object has some freedom to move but cannot escape the “cage”
formed by the fingers. Addressing kinematic properties of fixture loading and
unloading, Asada and By [3] proposed the notions of deterministic positioning,
accessibility, detachability and formulated inequality tests for these notions.
The notion of deterministic positioning, which is concerned with the accurate
locating of the workpiece before the clamps are loaded, requires the workpiece
to be at a unique location when in contact with all the locators. The notions of
accessibility and detachability concern the ease of fixture loading and unload-
ing. A workpiece is said to be accessible and detachable from a fixture if prior
to clamping there exists at least one trajectory between the desired workpiece
location in the fixture and an outside location, in which the workpiece motion
does not conflict with geometrical constraints. Equivalent or alternative tests
for these notions have been given by Chou, Chandru and Barash [27], King
and Hutter [77], Bicchi [12], and Cai, Hu and Yuan [21].
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The 3-2-1 rule for workpiece locating [60] is an experience-based kinematic
guideline for the placement of locators on workpieces with plane surfaces. This
rule states that a three-dimensional workpiece is located by six points on three
planes. The first plane, which usually has the largest surface area, establishes
the primary locating plane and is located by three supporting locators. The
next largest surface establishes the secondary locating plane and is located
with two locators. The final locator is placed on the tertiary plane to complete
the location of the workpiece. Fixtures formed according to this rule usually
involve more fixture elements (locators and clamps) than necessary, i.e., more
than seven fixels are used to form a three-dimensional first-order form-closure
fixture. In addition, the rule obviously applies only to workpieces with three
suitable flat surfaces. Cai, Hu and Yuan [20] noted that three primary datum
points are inadequate for fixturing deformable sheet metal products and pro-
posed an “N-2-1” locating principle in which N (N > 3) contacts are used for

primary locating.

2.4 Modelling of Compliance in Fixturing and
Grasping

Automated planning of fixtures and grasps has primarily been based on the
assumption of rigid bodies, as reviewed in Section 2.3. While rigid-body based
fixture and grasp planning is acceptable in certain applications, it is inadequate
in many fixturing applications. In particular, fixtures for machining operations
are subjected to very high cutting forces. Workpieces in such fixtures usually
experience deformations that are not negligible, as has been experimentally
verified by Hockenberger and De Meter [56,57]. These deformations must be
examined to ensure machining accuracy [145], and the strength of workpieces

must be analyzed to avoid any structural damage. While the rigid-body as-
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sumption does not allow the computation of deformations, it also causes the
problem of static indeterminacy. As discussed in Section 2.3.3, static indeter-
minacy makes the computation of reaction forces and evaluation of material
strength very difficult.

Hence, compliance can play a significant or even dominant role in in-
fluencing fixture performance and must be carefully modelled to guarantee
the fulfillment of fixturing functions. Three-dimensional finite element mod-
elling has been used to analyze workpiece deformations and stresses in fixtures
[28, 86,103, 129, 149, 156]. Approaches that are based on ideas similar to finite
elements have also been suggested (for example, Sinha and Abel [146], and
Howard and Kumar [63] discretized the contact regions into a number of small
elements). Compared with analytical methods, such discretization-based com-
pliance modelling approaches are accurate, but are computationally expensive
and in general do not offer insight into qualitative compliance behaviors of
fixtures. Therefore, such methods are appropriate to be used as a verification
method for final fixture designs, but not as well-suited for automated fixture
planning, in particular for early planning stages.

Closed-form, analytical compliance models are efficient and well-suited to
automated fixture planning. The simplest analytical compliance model is
based on the linear-spring contact model, which represents a compliant con-
tact as a linear spring attached to the grasped object that is assumed to
be rigid. This approach has been widely used to analyze compiiant grasps.
Among the first to study compliant grasps, Hanafusa and Asada [52] pre-
sented a two-dimensional analysis in which a potential function, based on the
shape of the object, is used to determine stable positions for a three-finger
robot hand. The frictionless fingers were loaded with linear springs and were
angularly even-spaced at 120°. Baker, Fortune and Grosse [6] extended the

work of Hanafusa and Asada by allowing the angular spacing between the
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fingers to vary, and showed that when there is no friction and the fingers’
angular spacings are fixed, generally no stable grasping can be achieved for
polygonal objects. In these two works, local curvature effects were implicitly
included so that stability was achieved by three frictionless fingers. Cutkosky
and Wright [33] considered different compliant finger-tip models, and studied
the effects of these models on grasp stability. They indicated that stability
depends on finger-tip models, initial finger forces as well as local curvatures of
finger tips. Kerr and Sanger [74] considered grasps with frictional point fin-
gers whose compliant properties are modelled by linear springs. Nguyen [114]
addressed the stiffness and stability of planar and three-dimensional objects
grasped by frictional or frictionless fingers modelled by “virtual springs”, and
showed that a force-closure grasp can be made stable by appropriately choosing
“virtual springs”. He also demonstrated that the stiffness matrix depends on
local curvature as well as whether the fingers stick or slide on the object. Also
modelling the fingers by linear springs, Howard and Kumar [64] considered sta-
bility of planar grasps, while Donoghue, Howard and Kumar [35] investigated
stable workpiece fixturing. Both studies developed stiffness matrix formulas
that include the dependence on local contact geometry. However, the authors
did not address how to compute the elastic coefficients of the linear springs.
In related work, Whitney [168] proposed the notion of remote center of
compliance, which indicates that a mating operation has the best chance of
success if the compliance matrix associated with the grasped part is diagonal
at the point where the part first touches a mating component. Cutkosky
and Kao [31] addressed computing grasp stiffness matrices by including the
contributions of the hand and finger mechanisms in addition to the finger
tips, and also considered the synthesis problem of specifying servo gains at the
joints to achieve a desired stiffness matrix. Howard, Zefran and Kumar [65],

and Zefran and Kumar [173] considered the differential geometric properties of
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stiffness matrices for mechanical systems that are not in an equilibrium state,
but did not consider the modelling of contact compliance. Loncaric [93], and
Patterson and Lipkin [122] investigated structures of stiffness and compliance
matrices of a robotic manipulator modeled as an elastically supported rigid
body. In this work, we derive via a more general approach the characteristic
compliance parameters considered by Patterson and Lipkin, and use them to
define a fixture quality measure.

While the linear spring compliance model has been widely used in the
robotics community, it is not supported by elasticity theory or experimental
data. No systematic procedures have been proposed to position the linear
spring elements that model contact compliance. Further, the linear spring
stiffness coefficients must be determined from experiments, as there are no
theoretical models to compute these coefficients from first principles. For
automated fixture planning algorithms that would accurately compute fixture
arrangements, fixture geometries, fixture reaction forces, and fixtured object
deflections from CAD models, these shortcomings of the linear spring model
are significant.

A compliance model that is more accurate and more systematically deploy-
able than the linear spring model is clearly needed. This model should afford
a closed-form formula that is amenable to analysis and efficient computation.
This thesis uses overlap functions [48,136] to model compliant contacts and
derive a closed-form stiffness matrix that incorporates realistic contact mod-
els, such as the classical Hertz model. As indicated by Hockenberger and De
Meter [58,59, 104], spherical-tipped locators and clamps are often used to re-
strain workpieces during machining, and contact region deformation is one of
the predominant modes of workpiece displacement for structurally rigid work-
pieces. These circumstances can be accurately addressed by the Hertz model,

and thus offer evidence that the incorporation of the Hertz model in the fixture
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stiffness matrix formula is of great practical interest.

2.5 Fixture and Grasp Quality Measures

Quality measures are scalar-valued functions that quantify the effectiveness
of grasps and fixtures. In fixture and grasp planning, it is necessary to use
quality measures to identify optimal fixel or finger arrangements. To generate
fixture and grasp plans that optimally meet given functional requirements,
quality measures must faithfully characterize these requirements.

Prior work on quality measures has mostly focused on rigid robotic grasps.
Li and Sastry [90] suggested several quality measures for force-closure grasps
which are either based on the smallest singular value of the generating-wrench
matrix (Section 2.3.1), or ellipsoids in the wrench space modelling manipula-
tion tasks. The quality measure for frictionless force-closure grasps proposed
by Kirkpatrick, Mishra, and Yap [79] is defined to be the radius of the maxi-
mal ball inscribed in the convex hull of the generating wrenches. This quality
measure was extended by Ferrari and Canny [41] to frictional force-closure
grasps. While above generating-wrench based quality measures have interest-
ing physical and geometrical properties, they suffer from a major deficiency
in their dependence on the choice of reference frames used to express the
generating-wrench matrix. When evaluated using these quality ineasures, a
grasp that is optimal under one choice of reference frame may fail to be optimal
under another. Several authors have devised schemes to avoid this problem.
Markenscoff and Papadimitriou [97] minimized the worst-case finger forces
needed to balance any external unit force acting at a specified point in the ob-
ject. The approach proposed by Mirtich and Canny [105] first computes the
grasps that best counteract pure forces, and then selects among these grasps

the one which best resists pure torques. Teichmann [151] modified the quality
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measure of Kirkpatrick, Mishra, and Yap [79] to the radius of the largest ball
inscribed in the convex hull of the generating wrenches with réspect to all
choices of coordinate frames, but did not discuss the physical interpretation
of the approach.

While the above quality measures characterize the overall effectiveness of
grasps in withstanding work loads, one may alternatively focus on the margin
by which grasp contact constraints are satisfied. Ji and Roth [70] minimized
the dependence on friction of the equilibrium finger forces, while Trinkle [157]
considered the smallest of the (normalized) equilibrium finger forces. Other
quality measures along this line include those proposed by Kerr and Roth [75],
Chen, Walker and Cheatham [24], Bicchi [12], and Varma and Tasch [162]. A
general discussion of desired properties of grasp quality measures, and a review
of several existing quality measures and their application in optimal planning
were presented by Mishra [106].

The potentially important role played by compliance in many grasping
and fixturing operations calls for the development of quality measures that
take these effects into consideration. However, quality measures for compliant
grasps and fixtures are rather scarce. While the quality measure proposed
by Ponce, Burdick and Rimon [126] applies to three-finger immobilizing rigid
grasps, it offers insight into the rotational stiffness of such grasps when com-
pliance is introduced. Prattichizzo, Salisbury and Bicchi [131] defined robust-
ness measures that quantify a compliant grasp’s sensitivity to perturbations
of a given work load. Cutkosky and Kao [31] pointed out that the eigen-
values of the grasp stiffness matrix provides information on grasp stability.
Donoghue, Howard and Kumar [35] proposed using a weighted square sum of
the displacement components of a fixtured object induced by a given applied
wrench. However, both stiffness matrix eigenvalues and the square sum of the

displacement components are dependent upon the choice of reference frames.
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This thesis builds upon prior work and presents two quality measures for
compliant fixtures and grasps. These quality measures are frame-invariant,
and have interesting physical properties that make them well-suited for fix-
ture and grasp planning. The stiffness quality measure focuses on the structure
of stiffness matrices. Rather than using the eigenvalues of stiffness matrices,
the quality measure is defined based on the frame-invariant principal stiffness
parameters of Patterson and Lipkin [122] which we derive in a more general
framework. On the other hand, the deflection quality measure characterizes
deformations of fixtured or grasped objects that are subjected to general dis-
turbances or well-understood work loads. While the deflection quality measure
characterizes workpiece deformations, they are based on the quasi-rigid body
representation of compliance (Section 4.2), rather than general finite element
methods as used in other minimum-deformation fixture planning approaches
[103,129]. Thus, the deflection quality measure can be efficiently evaluated

and is well-suited to automated fixture and grasp planning.

2.6 Rigid Body Kinematic Metric Functions

Kinematic metric functions for rigid bodies are frequently needed to develop
quality measures for fixtures, grasps and other manipulation procedures. It
may be desired to measure the “distance” between two locations of a rigid
body. There may be a need to measure the “length” of a rigid body ve-
locity or wrench, and/or the “angle” between two rigid body velocities or
wrenches. These are all examples of kinematic metric functions, which are
real-valued functions of rigid body locations, velocities, and wrenches. Since
the practical needs for kinematic metric functions frequently arise, it is impor-
tant to consider fundamental conditions and practical development methods

for well-defined metric functions. Central to well-definedness is the issue of
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frame-invariance—the invariance of metric functions to the choice of reference
frames.

In the recent years, the effects of choices of coordinate frames on rigid body
kinematic metric functions have received much attention from researchers in
robotics and other related engineering disciplines. The efforts in develop-
ing frame-invariant distance metrics, which form a subset of general metric
functions addressed in this thesis, have been relatively successful. Latombe
[85, Chapter 2] used the standard distance metric of R* to induce two dis-
tance metrics on the c-space. Let B € R? be the region occupied by a rigid
body with respect to some body-fixed frame. Given two locations g; and
go of the body frame relative to a world frame, their distance is defined by
p(g1, 92) = max,eg||g1(r) — g2(r)||, which is frame-invariant. Latombe also em-
ployed the Hausdorff distance [50] to define a different distance metric. Kaze-
rounian and Rastegar [73] presented a similar approach by defining a distance
metric to be a weighted average of ||g1(r) — g2(r)|| over the entire region B.
Martinez and Duffy [100] studied these metrics in more detail, and proposed an
alternative one that applies to the special case of planar motions. Larochelle
and McCarthy [84] considered an approximately bi-invariant distance metric of
planar motions which are approximated by pure three-dimensional rotations.
This work was extended to spatial displacements by Etzel and McCarthy (38].

A distance metric can also be defined by use of a Riemannian metric.
As an inner product of tangent vectors, a Riemannian metric allows one to
measure the “length” of a curve in the c-space. Then, the distance between
two configurations is defined to be the length of the shortest curve connecting
them. Park [120] systematically investigated this approach, while Tchon and
Duleba [150] presented a similar investigation. By the lack of bi-invariant
Riemannian metrics, Park proved that there exist no differentiable bi-invariant

distance metrics on SFE(3). He then defined a left (or right) invariant distance
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metric using a left (or right) invariant Riemannian metric, which is essentially
the Euclidean inner product of two tangent vectors represented as vectors in
Ré. In addition, explicit formulas were derived for these distances by use of
Riemannian manifold theory. He observed that the left invariant distance
is invariant to change of world frame, while the right invariant distance is
not influenced by change of body frame. However, he did not indicate well-
definedness or applicability conditions for these distances, only remarking that
if one frame can be somewhat naturally chosen, then one should use a distance
that is not affected by the choice of the other frame.

Several issues pertaining to inner products of rigid body velocities and
wrenches have been identified, either directly or indirectly. Duffy [36] showed
the fallacy of the definition of two instantaneous motions or wrenches being
orthogonal as their representations as vectors in R® being orthogonal. He
pointed out that this notion of orthogonality depends on the choice of frames
as well as the length scale used to compare translations and rotations. Li [88]
showed that several manipulability measures based on the grasp Jacobian are
frame-dependent and are hence not “well-posed”. Note that the use of a Jaco-
bian for this purpose implicitly assumes an inner product structure discussed
by Duffy [36]. A similar frame-dependence problem was identified in works on
quality measures, for example, Ferrari and Canny [41], Kirkpatrick et al. [79].
In these works, the radii of wrench balls, which are used to define quality
measures, depend on frame choices because of the use of the frame-dependent
Euclidean wrench norm.

This thesis considers frame-invariant solutions to the practical problems
mentioned above. The approach is based on a fundamental understanding
of well-definedness, and in particular frame-invariance, of kinerhatic metric
functions afforded by the general principle of objectivity [99]. The physical

implications of the invariance properties in SE(3) are clarified and their re-
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lations to objectivity and frame-invariance are investigated. Frame-invariant
norms, which may or may not be induced from inner products, of velocities and
wrenches are proposed. Because of their interesting physical interpretations,

these norms can be potentially useful in practical applications.
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Chapter 3

Conventional Configuration Space

Representation

This chapter introduces notation, and reviews the conventional representation
of rigid body kinematics. Some basic results in manifold theory are first re-
viewed as follows, since the discussion of the configuration space representation

makes extensive use of these results.

3.1 Smooth Manifolds

Manifolds are the generalization of curves and surfaces in R3. This section
reviews smooth manifolds, and their tangent and cotangent bundles. Other
relevant notions on manifolds will be reviewed in the subsequent chapters when
specifically needed. Detailed exposition of manifold theory can be found in
References [1, 14].

Let M be a set, which is not necessarily a subset of R* (k > 0 is an integer).
A chart on M is a pair (¢, U) where ¢ is a bijection from a subset U C M
to an open subset of R®. Two overlapping charts (¢,U) and (v, V') are said
to be C™-related if 91 o¢ is a diffeomorphism where it is defined. Recall

that a diffeomorphism between two open subsets of R” is a smooth (i.e., C*°-
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differentiable) bijection whose inverse is also smooth. An atlas is a collection
of C*-related charts {(¢;, U;)} such that M = U;U;. The set M is said to be
a smooth manifold of dimension n if it admits a smooth atlas {(¢;, U;)} such
that V; = ¢;(U;) are open subsets of R*. The map #;* or the pair (¢;*,V;) is
also called a parametrization of the subset U; € M.

Let M be a smooth manifold of dimension n. A smooth curve at x € M is
a smooth function ¢: (—¢,€) — M, with € > 0, such that ¢(0) = z. Two curves
¢1 and co in M at z are said to be tangent if %|t:0¢ocl t) = g—t|t=0¢oc2(t) for
some chart (¢,U) around z. It can be shown that the notion of tangency is
independent of the choice of chart. Tangency at z is an equivalence relation
among curves at z. A tangent vector v to M at z is an equivalence class of
curves at z; the curves in the equivalence class are said to be along v or have
velocity v. If ¢ is a curve with velocity v, then %] o®oc(t) € R is called the
coordinates of v induced from the chart (¢, U) or parametrization (¢, ¢(U)).
These coordinates are customarily written as a column vector. Note that if
M is a subset of R¥, then ¢(0) = % .o is the same for all curves c in an
equivalence class. Thus a tangent vector v can be naturally identified with
¢(0), where c is any curve along v. One hence recovers the usual notion of
tangent vectors to a surface in R¥. A tangent vector will be denoted by ¢(0)
even if M is not a subset of R,

The tangent space, denoted T, M, to M at z, is the set of all tangent
vectors at . The tangent space has a vector space structure induced from
R™. The tangent bundle of M is a manifold of dimension 2n defined by TM =
Uzem T M. The cotangent space, denoted Ty M, to M at z, is by definition
the dual of the tangent space T, M. That is, a cotangent vector (or covector)
o € Ty M is a real-valued linear functional on T, M. The cotangent bundle is
a manifold of dimension 2n defined by T*M = UzepT ;M. The coordinates,

denoted & and written as a column vector, of a covector o € T} M are given
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by the equation &% = a(v) for all v € T, M, where ¥ is the coordinates of v.

3.2 Conventional Rigid Body Kinematic Rep-
resentation

Reference frames have been conventionally used to describe rigid body mo-
tions. This approach, while not intrinsic, is convenient for practical calcula-
tions and will be used in this thesis. An exception will be made in Chapter 7,
where the objectivity notion entails intrinsic description of rigid body kine-

matics.

3.2.1 Conventional Configuration Space

This section reviews the conventional configuration space representation [109].
Let B denote a rigid body, whose configuration is conventionally specified in
terms of two reference frames. The world frame, denoted Fy, is a stationary
reference frame. The body frame, denoted Fg, is a reference frame fixed to
B. The location, g = (§9), of Fp relative to Fy specifies B’s configuration.
Here d € R? is the position of Fg’s origin, and R is a 3 X 3 proper orthogo-
nal matrix whose columns are unit vectors along Fp’s coordinate axes. The
set of all possible locations of Fp relative to Fyy is called the (conventional)
configuration space, or c-space of B and is denoted by SE(3).

Given a configuration go = (%0 %) € SE(3), the c-space can be parametrized

around go using hybrid coordinates ¢ = (d,0) € R® x R® by

©(q) = R(()e) f € SE(3), (3.1)
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where R(0) = exp(8) Ry and the operator {) maps 8 € R? to a skew-symmetric
matrix 8 such that 8v = 8 x v for all v € R3. In this parametrization, go
has coordinates go = (dp, 0). Note that if 6 # 0, then exp(f) is a rotation, of
magnitude ||6]|, about a line that is aligned along 6 and passes through Fw’s
origin.

It can be shown that hybrid parametrizations around a collection of points
in SE(3) can be inverted to form an atlas of C*-related charts. Therefore,
SE(3) is a smooth manifold of dimension six. Note that the conventional
c-space representation depends on the choice of reference frames, and that dif-
ferent frame choices induce different hybrid coordinates. Suppose that Fp and
Fw are chosen as body and world frames, respectively, where the location of

Fg is g = (%8 98) with respect to Fg, and that of Fy is gw = (B %) with

(6) d

0 9) (Fg's location relative to Fy) transforms

respect to Fw. Then, g = (¥

to g (Fg’s location relative to Fy) so that the same location of the body is

represented. It can be shown that § = (Rgé) 9), where

d= RTW<d —dw + R(6)dB), and (3 2)
R(6) = exp(8) (R%, RoRp) = Rl R(0)Ra. |

This introduces a change of parametrization: ¢ = f(g), where § = (d,0) €
R3 x R3.

3.2.2 Tangent and Cotangent Bundles of SE(3)

Since SE(3) is a six-dimensional smooth manifold, tangent and cotangent
spaces to SE(3) are six-dimensional vector spaces. The unions of all tangent
spaces and cotangent spaces are the tangent and cotangent bundles of SE(3),

respectively. Given gy € SE(3), a tangent vector v € Ty SE(3) is a velocity,
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or instantaneous displacement, of B. Such a tangent vector can also be used to
approximate a displacement of B which is finite but is sufficiently small. This
approximation approach will be used throughout this thesis for the displace-
ment of a fixtured workpiece due to a given manufacturing operation. Dually,
the cotangent space, T SE(3), is comprised of covectors to SE(3) at go. A
covector o € T SE(3) is a generalized force, or wrench, acting on the object.
In the following various representations of tangent vectors and covectors are

reviewed, including hybrid, body, spatial, and screw coordinates.

Hybrid Velocities and Wrenches

The hybrid parametrization of SE(3) around go = (% %), as given in Equa-
tion (3.1), induces the following representation of tangent vectors: each g =
(v, wn) € R x R, called a hybrid velocity, maps to (“#fo %) € T, SE(3). The
vectors vy, and wy, have familiar interpretations. Both specified in Fw, vy is
the velocity of the origin of Fg, and wy, is the angular velocity of Fp. With
tangent vectors represented by hybrid velocities, a covector e € T SE (3) is
represented by a hybrid wrench, denoted wy, = (fn, ) € R® x R3, such that
wign = a(v) for all v € T, SE(3). Corresponding to the physical interpre-
tation of hybrid velocities, f5 and 7, both viewed in Fy, are a force and a
torque at the origin of Fp, respectively.

Hybrid velocities and wrenches depend on choices of reference frames. Sup-
pose that the frames Fz and Fyy are used as world and body frames. Then
corresponding to the change of parametrization ¢ = f(q) determined by Equa-

tions (3.2), hybrid velocities and wrenches are transformed to

Gn = Df(G0)gy, and Wy = Df"(Go)wn, (3.3)
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where the Jacobian of f at o = f~!(qo) is given by

_ Ry @RW
Df(q) = . (3.4)
0 Ry

Observe that since dy and Rp do not appear in the Jacobian, a translation

of Fw or a rotation of Fg does not affect the transformation.

Body Velocities and Wrenches

Hybrid velocities and wrenches are an intuitive representation of tangent and
cotangent vectors. Among other representations that can be convenient are the
body and spatial representations. First consider body velocities and wrenches.

Recall that given a hybrid velocity ¢, = (v, wp) and hybrid wrench wj, =
(fn, Tn), the vectors vy, wp, fr, and 7, are given coordinates in Fyy. If these
coordinates are given in Fpg, then they become a body velocity, denoted ¢y =
(vp,wp), and a body wrench, denoted wy, = (fp, ). The body and hybrid

representations are related by
gn =Tengy and wp =Tpwy, (3.5)
where
Ty, = diag(Ro, Ro) (3.6)

is a block-diagonal matrix. When F5 and Fyy are chosen as reference frames,



36

body velocities and wrenches transform according to

QG = Ang (.jb and W, = Ang Wy, (3.7)

where Adg, is the adjoint map associated with gp given by

Rz dpRp
9B — . (3.8)
0 Rp

Ad

Body velocities and wrenches have the following formal intrerpretation.
Given a tangent vector v € T,,SE(3), the tangent vector g;'v € T.SE(3),
where e € SE(3) is the identity rigid transformation, takes the form gy'v =

5’03 13’), where vy, wp € R3. It can be shown that ¢, = (vs,ws) is precisely
the body velocity corresponding to v. The body wrench corresponding to
o € T, SE(3) is then determined by wj ¢, = a(v) for all v € T,;SE(3). Note

that unlike the hybrid representation, body velocities and wrenches cannot be

induced from a parametrization of SE(3).

Spatial Velocities and Wrenches

Dual to the body representation, tangent vectors and covectors can be rep-
resented by spatial velocities and spatial wrenches. A tangent vector v €
T,,SE(3) can be represented by vgy ' = (% %) € T.SE(3) for some vy, w, € R
The spatial velocity corresponding to v is given by ¢s = (vs,ws). It can be
shown that while w; is the angular velocity of Fp as specified in Fy, vs is the
velocity, specified in Fy, of a point in B that coincides with the origin of Fy/
at the time of instantaneous motion. The spatial wrench, denoted w, = (fs, 75)
and corresponding to o € T, SE(3), is determined by wl¢s = a(v) for all
v € T,,SE(3). Note that f; and 7 can be interpreted as a force and torque
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specified with respect to Fy and acting at the origin of Fy. The spatial and

body representations are related by
(js = Adgo qb, and Wy = Ad;o Ws. (39)

where the adjoint Ady, can be computed from the formula (3.8).

Similar to the body representation, the spatial representation cannot be
induced from a parametrization of SE(3). Unlike the hybrid and body repre-
sentations, spatial velocities and wrenches will not be used extensively in this
thesis. However, their suitability for use in rigid body metric functions will be

examined in Chapter 7.

Screw Coordinates of Velocities and Wrenches

Tangent vectors and covectors afford geometric interpretations in terms of
screw coordinates. The screw description can be given either in the body frame
or spatial frame, based on body or spatial coordinates. The screw coordinates
associated with a body or spatial velocity ¢ = (v,w) consist of a screw azis
I, a pitch h, and a screw magnitude 6. The velocity can be described as an
instantaneous rotation by an amount 6 about [, followed by an instantaneous
translation along [ by an amount 6h. If w # 0, the screw coordinates are given
by | = {wxv/||w||*+aw : a € R}, h = w™v/||w||? and 6 = ||w]|. Therefore, the
screw axis is a line directed along w and passing through the point w x v/|jw||>.
If w=0, then [ = {0+ av : a € R} and 6 = ||v||, while h is said to be infinite.

Dually, the screw coordinates of a body or spatial wrench w = (f, 7) also
consist of a screw axis I, a pitch h, and a screw magnitude F. The wrench
is equivalent to a force of magnitude F' along the directed line [ and a torque
of magnitude Fh about I. If f # 0, then I = {f x 7/||fl? + af : a € R},
h = f27/||f]|?, and F = || f||. The screw axis is hence a line directed along f
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and passing through the point f x 7/||f]|?. If f =0, then ! = {0+a7 : a € R},
F =||7||, and h is infinite.

3.2.3 Representation of Planar Motions

In the special case that the object is restricted to move in a plane, choose the
z-axes of the world and body frames to be perpendicular to the plane. Then
the configuration space, now denoted SE(2), is a three-dimensional manifold.
The body’s configuration is given by g = (E9) € SE(2), where d € R? and
R is a 2 x 2 proper orthogonal matrix. In the hybrid parametrization (3.1),

qg=(d,0) € R? X R, and R(0) = exp(—6J), where

J = (0 1) . (3.10)
-1 0

In the hybrid, body and spatial representations, linear velocities and force
components become vectors in R?, while angular velocities and torques become
scalars. The transformation rules and representation relationships as given in
Equations (3.3), (3.5), (3.7) and (3.9) remain to hold. However, the Jacobian

Df(@) and transformation matrix Ty, now become

Df (@) = (ROW JR;’dB) and Ty, = diag(Ro, 1), (3.11)

while the adjoint matrix associated with gg = (% 9¢) € SE(2) takes the form

Rp Jd
Adg, = 2 7P, (3.12)
0 1
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The following notational convention concludes the review of conventional
c-space representation. For convenience, elements of SE(3) or SE(2) will be
referred to by their hybrid coordinates. Likewise, tangent vectors or covectors
will also be referred to by their hybrid or body representations. Therefore,
notations such as ¢ = (d,0) € SE(3), ¢ = (v,w) € T[wSE(3), and w =

(f,7) € Tz SE(3) will be conveniently used when there is no risk of confusion.
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Chapter 4

Accurate Modelling of Compliant

Fixtures and Grasps

4.1 Introduction

As indicated in Chapter 2 (Section 2.4), compliance modelling that is based
on linear-spring models is not supported by experiments or elasticity theory,
and there is a strong need for a compliance model which is mére accurate
and more systematically deployable than the linear-spring models. Such a
model should offer a closed-form formula amenable to analysis and efficient
computation, and be supported by experimental data and results from elastic-
ity theory. This chapter develops a general compliance model that possesses
such desired features using overlap functions. The use of overlap functions
has been proposed by Gesley [48] and by Rimon and Burdick [136], and this
chapter extends their work. Realistic nonlinear contact models (such as the
Hertz model) are formulated using overlap functions, and then applied to the
computation and analysis of the fixture stiffness matrix. The resulting stiff-
ness matrix formula admits nonlinear as well as linear contact models. When
applied to the linear-spring model, the formula agrees with the prior results

of Nguyen [114]. When applied to the experimentally verified and theoreti-
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cally justified Hertz contact model [54], the stiffness matrix offers a realistic
description of fixture compliance.

Since the Hertzian stiffness matrix can be calculated from first principles,
it can be automatically determined from the material and geometrical prop-
erties of the contacting bodies. This is in contrast with the linear-spring
stiffness coefficients, which are determined in an ad-hoc way. Further, the
Hertzian stiffness matrix is used to investigate the significance of surface cur-
vature effects to overall fixture stiffness. Curvature effects have recently been
suggested .as a means for reducing the number of fingers needed to fixture an
object [34,134], and these effects have been deployed by Ponce for fixturing
polyhedral objects [125]. The analysis in this chapter supports the use of
these effects in certain circumstances. It will be shown that destabilizing cur-
vature effects are practically negligible, while stabilizing curvature effects may
desirably be quite significant. This chapter also study the influence of differ-
ent choices of contact models on the qualitative stability of a fixture. It will
be demonstrated that while stability analyses according to the linear-spring
model and the more realistic Hertz model can be qualitatively similar, the two
models may in general lead to qualitatively different stability results.

This chapter needs a parametrization of the configuration space of a rigid
body. The hybrid parametrization as given in Equation (3.1) will be con-
veniently used. Accordingly, hybrid velocities and wrenches are used, which
are induced from the hybrid parametrization, to represent tangent vectors
and covectors. This chapter is organized as follows. Section 4.2 introduces
some basic assumptions on compliant fixtures. Section 4.3 then discusses the
modelling of compliant contacts with overlap functions, and reviews the Hertz
theory in the context of overlap functions. Section 4.4 derives a closed-form
formula for the stiffness matrix using overlap functions. The formula is used

in Section 4.5 to analyze the effects of local curvature on the stability of a
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fixture, and in Section 4.6 to analyze the impact of different choices of contact

model on the stability of a fixture.

4.2 Basic Assumptions

This section introduces a few basic assumptions on compliant fixtures. A
fixture or grasp consists of an object, denoted B, contacted by m fingers
Ai, ..., An. It is assumed that the contacts are frictionless, that in the ab-
sence of deformations the each finger touches the object at an isolated point,
and that boundaries of the bodies near the contact points are smooth. In
addition, we make the key assumption that the bodies are quasi-rigid, i.e., de-
formations due to compliance effects are assumed to be localized to the vicinity
of the contact points, so that the overall motion of B relative to the fingers
can be described using rigid body kinematics. The quasi-rigidness assumption
holds with reasonable accuracy provided that the bodies do not possess slender
structures. It is also assumed that the quasi-rigid fingers A; are stationary.
This allows one to focus on the overall motion of the quasi-rigid body B in
terms of B’s configuration space. Recall from Section 3.2.1 that a configura-
tion of B, regarded as a rigid body, is a location of a body-fixed frame Fp
relative to a stationary world frame Fy,. The final assumption is that the
object is held in an equilibrium fixture, as reviewed below.

As a fixtured object B is in frictionless contact with the fingers, the i*®
finger applies a force F;N;, where F; is the magnitude of the force, and N; is
the unit normal at the i*" contact pointing into B. This force applies a wrench,
given by F;n, with respect to the origin of Fp, where n; = ( Rrﬁj Nz‘)’ called the
generating wrench at the i*® contact, is the wrench due to a unit finger force.
In this formula, 7; is the position of the i** contact point in Fg, while R is the

orientation of Fp relative to Fy. The fixture is called an equilibrium fizture
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if in the absence of a disturbing wrench, the finger forces satisfy the following

equilibrium condition:
Fny + -+ By, = 0. (4.1)

Let v; = F;/ Z;nzl F; be the normalized force magnitudes. Then it follows
that an arrangement of the fingers forms an equilibrium fixture if and only if

there exist scalars v; such that
vim—+ -+ Uy, =0, 0<1y <1 and Zy,-=1. (4.2)
i=1

In words, if the zero wrench can be expressed as a convex combination of
the generating wrenches, there exist suitable finger force magnitudes which

generate an equilibrium fixture.

4.3 Modeling Contact Compliance

This section introduces a general approach to modelling a compliant contact
based on the notion of overlap, and reviews the classical Hertz theory in the
context of the overlap approach. We focus on a particular contact and omit

the subscript ¢ as appropriate.

4.3.1 The Overlap Representation

Let an object B be in point contact with a stationary finger .4. When B is
displaced towards A, the surfaces of the two bodies deform in the vicinity of the
contacts. One wishes to ignore the details of surface deformation, and model

the resultant contact force as a function of the displacement of B. Such a model
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Figure 4.1: (a) An initial point contact. (b) After a relative approach of 4.

is based on overlap functions [136] as follows. Let B(q) denote the subset of R®
occupied by the undeformed shape of B, when B is at a configuration g. Let the
boundaries of B(g) and the undeformed shape of A be denoted 9B(q) and 0.A.
Rather than solve for the surface deformation, imagine that the rigid shape
of B freely penetrates the rigid shape of A. The overlap between B(q) and
A, denoted (g), is defined as the minimum amount of translation that would
separate B from .A. At the initial contact configuration B(g) and A intersect at
an isolated point, and d(g) = 0. Similarly, §(q) is zero at configurations where
B(q) is disjoint from .A. When B(q) overlaps the finger A, there exists a unique
overlap segment® with endpoints z € 8B(q) and y € A, such that § = ||z —y||
(Figure 4.1). Moreover, the normals to 0B(q) and 0.A at z and y are collinear
with the overlap segment. The overlap §(q) is generally a nonlinear function
of ¢, and is smooth at points ¢ where d(g) > 0. 7

The overlap § is known in the contact mechanics literature as the relative
approach of the two bodies [49,72]. Also in agreement with the contact
mechanics literature, the contact force is assumed to act along the overlap
segment Zgy. The force’s magnitude, denoted F', is assumed to depend on the

overlap in terms of a function f,

F = f(5). | (4.3)

1The overlap segment is unique for all sufficiently small overlaps & [136].
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Figure 4.2: Linear spring model.

The function f is required to be differentiable, zero when its argument is zero,
and positive when its argument is positive. (In particular, the derivative f'(4)
is positive at 6 = 0.) To summarize, the contact force has magnitude F' = f(4)
and direction N(z), where N(z) is the inward-pointing unit normal to B at
the endpoint z of the overlap segment (Figure 4.1).

Linear spring example. To provide a sense of continuity with the existing
literature [52, 114, 125], consider the case of an object held by m linear springs.
As illustrated in Figure 4.2, each spring is assumed to act along a fized direction
which is aligned with B’s surface normal at the contact. At the equilibrium,
the overlap 8(go) is the net compression of the i*® spring, and the magnitude
of the spring force is F' = kd(qo), where k is the spring stiffness. Thus in the
linear-spring case f is simply linear in 6. However, our focus is oh modelling
the naturally occurring compliance in contacting bodies, for which the Hertz

contact model is more suitable.

4.3.2 The Hertz Contact Model

The Hertz contact model (1882) describes the elastic interactions between two
contacting quasi-rigid bodies [54, 72|, and has been experimentally verified by
several investigators [43]. This section summarizes the Hertz model, showing

that it corresponds to a particular choice of the compliance function (4.3) in



46

terms of the overlap.

The Hertz theory addresses the non-conforming contact problem. When
the non-conforming bodies B and A are brought into contact, they touch
initially at a single point or a line, depending on their initial shapes. Under the
action of the load, they deform and touch over a finite area (termed the contact
area) surrounding the point or line of first contact, while the undeformed
shapes of B and A have an overlap . The interactive normal tractions in the
contact area are called the contact pressure, and the integral of the contact
pressure gives the magnitude of the net contact force.

First consider the point contact case, where the bodies initially contact at a
point. Let N(z) be the inward unit normal to the surface of B at x, and N(y)
the outward unit normal to the surface of A at y. The curvature matrices (or
Weingarten maps [153]) of B and A at the initial contact point, zo = yo, are
given by

Ly = —DN(z)| and Ly = DN(y)|

z=2¢ y=yo’

respectively. Recall that the curvature matrix at some point of a surface,
when acting upon a tangent vector, measures the rate of change of the unit
outward normal to the surface along the tangent vector. The reciprocals of the
eigenvalues of the curvature matrix restricted to the tangent space are called
the principal radii of curvature of the surface. The relative curvature matriz
of the surfaces of B and A at z¢o = yp is defined by L, = L4 + L. The
reciprocals of the eigenvalues of L, (again restricted to the tangent space),
denoted by 71 and Treig (Tret1 2 Trer2), are called the principal radii of relative
curvature. It is assumed that L, is positive definite, which guarantees that
the bodies initially contact at a single point.

In the Hertz theory, the boundary of the contact area is assumed to be an
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ellipse with principal semi-axes a and b (a > b). For non-conforming contact,
a and b are very small when compared with the characteristic dimension of
the bodies, the magnitude of the bodies’ principal radii of curvature, as well
as the magnitude of the principal radii of relative curvature. The eccentricity
ratio of the contact area, defined by e = (1 — 52/a?)3, is determined from the
equation

(1—€?)'E(e) —K(e) _ Tran

R —Be) e (44)

where K(e) and E(e) are complete elliptic integrals.
The contact force magnitude, the maximum pressure pmax over the contact
area and ¢ = v/ ab, which together with e determines a and b, are given as

follows in terms of the overlap 4.

£(8) = (4/3)Bs(e) B* r3 8, (4.5)
Pmax = (2/7)Ba(€) E*(6/70)?3, (4.6)
c = Bale)(re )2, (4.7)

where 7. = (Tye1Trer2)/?. In these formulas, E* is determined from basic

material properties as follows.

1 _1-v4 1-4

- 9

E* E, Ep

where Eg and E4 are Young’s moduli, and v4 and vp are Poisson’s ratios of
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B and A. The coefficients §;, which approach 1 as e — 0, are given by

Bi(e) = m)@z(e)a
Ble) = etk
Bae) = \/ﬁ(l —e?)? 1(6),

Observe that the compliance function (4.5) is of the form f(0) = c6*2,
which implies that the Hertz contact model corresponds to a particular choice
of the function f(8) in the overlap model (4.3). It is also practically important
to note that, this compliance function, along with the formulas (4.6) and (4.7),
are fully specified in terms of the relative curvature and material properties at
the contact.

In deriving Equation (4.5), the local deformations near the contact point
are calculated by regarding each body as an elastic half space loaded over
a small elliptical region of its plane surface. This treatment, which can be
justified by the smallness of the contact area, allows one to ignore the detailed
shape of the body outside the local contact region. A local displacement field
computed this way decays with distance p from the contact point as 1/p.
Thus, with the natural assumption that the elastic half space is “fixed at
infinity”, i.e., the displacement approaches zero as p — 0o, one finds the local
deformations (in particular, the displacement of the contact point) of each
surface.

Now consider the line contact problem. The elastic properties of planar
objects can be approximately modelled by cylinders whose cross section is the

desired planar shape. Such cylinders will contact along a line, and the loading
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per unit length of the contact will be taken as a model for planar contact.
For simplicity, neglect the effects of the bodies’ finite length . Instead of the
overlap 9, it is more convenient to use the resultant contact force F' (per unit
length) as the independent variable. Then the maximum pressure py.. and
the half-width a of the contact area, which is a narrow strip along the initial

contact line, are given by

1
max — —2-7 4.8
pose = (2 (18)
wE* 1
0= (), (@9)

where the relative radius of curvature r,; is determined by 1/r,.; = 1/75+1/7.4,
with rg and 74 the radii of B and A at the contact (positive if convex).

To determine the compliance relationship, i.e., the dependence of & on
F', one may again regard each body as an elastic half space loaded over an
infinitely long narrow strip. Unfortunately, a major difficulty arises from the
limitations of two-dimensional elasticity theory. The displacement field now
decays with the distance p from the contact point as In p, and the assumption of
the half-space being “fixed at infinity” leads to an infinitely large displacement
at the contact point. Therefore, to obtain finite local deformations, one must
choose a datum point which is at a finite distance from the contact point. For
instance, choose a datum point for each body such that it lies on the inward
contact normal at a distance £ (or £4) from the contact point. Then one can

show that the overlap § is given by

(-, mE% VB (1-1v3%),. wE*0% Va
5—F{ mEg (ln4FTml 1—1/B)+ wE4 (ln4F7‘rel l—VA)}'
(4.10)
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As noted by Johnson [71] and Poritsky [130], the logarithmic dependence on £5
and ¢4 makes the compliance relationship reasonably insensitive to the choice
of datum points.

The compliance relationships given by (4.5) and (4.10) are all nonlinear
in terms of the overlap 6. While the linear spring model is generally not ap-
propriate, there are special circumstances where a linear relationship can be
approximately used. For a circular cylinder of finite length in non-conforming
contact with a pair of diametrically opposed bodies, Nikpur and Gohar [115]
review approximate formulas including linear or nearly linear spring relation-
ships. In the context of fixturing or grasping, if contacts resemble this struc-
ture, the linear spring model can be used with reasonable accuracy. Otherwise,
the linear spring model is generally not justified.

When the bodies are conforming, the Hertzian conditions are no longer
satisfied. It is no longer adequate to consider only local deformations, and
the overall deformation of at least one of the bodies must be considered. The
determination of the functional relationship (4.3) becomes very difficult. In
general this function is no longer in closed form and must be found numerically
or experimentally. A special type of conforming contact was invéstigated by
Goodman and Keer [49]. They investigated the problem of an elastic sphere
indenting an elastic spherical cavity, whose radius is only slightly larger than
the sphere’s. Their numerical results showed a moderately harder load-overlap
relationship than predicted by the Hertz model. Since the Hertz model will
predict a moderately softer contact than actually prevails, it may be possible
to treat contacts of this type by the Hertz theory and obtain a conservative
estimate of contact compliance.

It is important to note that the overlap representation (4.3) is valid under
more general circumstances than those assumed by Hertz theory. For example,

the surfaces do not have to be smooth at the contact, and the size of the
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contact area does not have to be always small compared with the size of the
bodies, although in the former case §(¢) may fail to be differentiable. So
long as the contacts are frictionless and the relative approach of the elastic
bodies is reasonably well-defined and small, the resultant contact force can
be expressed as a function of the overlap. This understanding is key to the
ensuing discussion of geometric effects in fixture stability.

Finally, notice that realistic modelling of contact compliance, for instance
using the Hertz model, is still desirable even if one wishes to use a linear
model. Since linear models are in general not theoretically supported, they
often have to be determined experimentally. Obviously, the dependence on
experimental data is a serious limiting factor on automated fixture or grasp
planning algorithms. Thus as an alternative to the experimental approach, a
linear model may be determined from a realistic model. Specifically, let F' =
f(6) be a nonlinear model that can be computed from first principles. Choose
an overlap value &y, at which value the fixture is expected to be preloaded.
Then a linear model, F' = kJ, can be obtained by setting k& = f’(do), which is
called a tangent modulus, or k = f(d)/do, which is called a secant modulus.

The use of a secant modulus will be illustrated in Example 4.6.1.

4.4 Computation of the Stiffness Matrix

We have thus far developed a contact modelling scheme in which the direction
and magnitude of the i*® finger force depend on the object’s configuration via
the overlap 6;(¢). Based on this scheme, this section derives a formula for
the stiffness matrix of an equilibrium fixture in terms of the overlap functions
and their derivatives. Then the computation of the terms which appear in the

stiffness matrix formula will be discussed.
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4.4.1 A Formula for the Stiffness Matrix

First, it will be useful to express the elastic potential of an m-finger fixture
as a function of the overlap functions ;(q). Recall that F; = f;(é;) is the
magnitude of the " finger force associated with a given compliance model
(such as the Hertz model). Then the elastic potential energy of the system
consisting of an object B fixtured by fingers A, ..., Ay, is

m di(q)
=3 [ fo)de (@.11)

i=1

Since f; is assumed differentiable and §;(g) is smooth at points ¢ where 6;(¢q) >
0, the potential IT is differentiable at configurations where all the contacts are
loaded.

Suppose that in the absence of any external wrench, B is held in an equi-
librium fixture under the action of nonzero force by each finger. The nonzero
finger forces are called preloading forces. The condition for equilibrium is that
B’s configuration, denoted qq, be a critical point of the elastic potential. That
is, the gradient? of II must vanish at go. Taking the derivative of II gives the

following condition for an equilibrium fixture:

m

VIL(go) = Y fi(8i(a0)) Véi(go) = 0. (4.12)

=1

As discussed in detail below, each summand in (4.12) is the wrench generated
by a finger force corresponding to an overlap d;(qo)-

The stiffness matriz of an equilibrium fixture is defined as the Hessian,

2For the purposes of this thesis, it suffices to understand the gradient of g: M — R (M
is a manifold) as Vg where § = g o for a chart ¢ on M, and the Hessian of g as D?g (this
actually defines a Hessian independent of charts at a point where Vg vanishes). For brevity
g and g will be notationally identified.
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K = D?MI(qp), of the elastic potential energy II(g) at go. Since VII{(go) = 0 at
an equilibrium fixture, the behavior of IT in the vicinity of g is determined by
K. If K is positive definite, then ¢ is a local minimum point of II, and the
fixture is stable [136]. While there exist stable fixtures whose stiffness matrix is
only positive semi-definite, such fixtures are not generic and cannot adequately
resist external disturbances. Therefore, we only consider stable equilibrium
fixtures with positive definite stiffness matrices, and refer to them simply as
stable fiztures. The stiffness matrix also specifies the load-overlap relationship
as follows. A sufficiently small displacement of B can be approximated by a
tangent vector (or rigid body velocity) ¢. Corresponding to the displacement
g, the fingers react with a restoring wrench which is approximately given by

= K¢. Thus K is a linear mapping from Ty, SE(3) to Ty SE(3), which
specifies for a given displacement ¢ of B the fingers’ wrench w.

To compute the stiffness matrix, VII(g) can be differentiated to obtain the

following formula.

Lemma 4.4.1. Let B be held in an m-finger equilibrium fixture at a con-
figuration qo, such that the i* finger applies a mon-zero force of magnitude
F; = f(6:(qo)), where &;(qo) is the overlap at the i contact. Then the stiff-

ness matriz of the fixture is

K=K +K,= Zf i(90))Vi(90) V6; (q0) +Zfz :(90)) D8:(qo),

=1

(4.13)

where f] = df;(6;)/db;.

In the formula, K; and K, depend on the initial overlaps d;(go). Moreover,
it will be seen that both summands depend on the contact point locations

and contact normal directions. But K, additionally depends on the surface
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A; moves along
the normal direction

Figure 4.3: During normal loading both z; and N; remain unchanged.

curvature at the contacts. We say that K accounts for first-order geometrical
effects, while K, accounts for second-order, or surface curvature, effects. If
K, alone is positive definite, the fixture is said to be stable to first-order.
Otherwise, if the entire matrix K is positive definite, the fixture is said to be
stable to second-order. Note that K is at least positive semidefinite, since by
construction f;(6;(go)) > 0. Note, as well, that according to the equilibrium
condition (4.12) the gradients Vd;(qo) are linearly dependent at go. Hence
for K, to be positive definite (and the fixture first-order stable), the number
of contacts must be at least four in two dimensions and at least seven in
three dimensions. Any stable fixture with a smaller number of contacts must
involve curvature effects and be stable to second-order. We now turn to the
computation of the terms &;(qo), Vd;(qo) and D?¢;(go) which appear in the

stiffness matrix formula.

4.4.2 Computation of the Overlaps 6;(qo)

In the computation of the preloading overlaps 8;(qo), the following two assump-
tions are made. Recall that z; is the endpoint of the overlap segment on the
boundary of B, and that N; is the inward-pointing unit normal at z;. It is as-
sumed that starting from known initial contact points, the loaded contacts are
achieved by pressing the fingers along the contact normals. As illustrated in
Figure 4.3, the location of z; and the direction of IV; remain unchanged during

such a process. The quantities z; and N; for the loaded fixture are therefore
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assumed to be known. Second, we restrict our attention to the following class
of essential equilibrium fiztures. By definition, an equilibrium fixture is es-
sential if all the fingers are necessary for maintaining the equilibrium. That
is, in an essential fixture all the fingers must apply nonzero force in order to
guarantee a zero net wrench on B. The essential fixtures constitute a large
class of fixtures: almost all two-dimensional fixtures by up to four fingers and
three-dimensional fixtures by up to seven fingers are essential [135].

Essential fixtures afford an equivalent characterization that can be used
for the computation of preloading finger forces and overlaps. Suppose that
in an equilibrium fixture, the preloading finger forces are f;(d;(qo)), where
6:(qo) are preloading overlaps. Define the total preload of the fixture to be
fr = >y fi(6i(g)). Then the normalized preloading finger forces v; =
£:(0:(q0))/ fr satisfy the equilibrium condition (4.2), i.e., >_i*, vm; = 0, where
7, are the generating wrenches at the contacts. The following lemma charac-

terizes essential fixtures in terms of v;.

Lemma 4.4.2 ([135]). A fizture is essential if and only if the normalized

preloading finger forces v; are nonzero and unique.

According to this lemma, if a fixture is essential, then the normalized
preloading finger forces can be computed, which then determine the magnitude
of the preloading finger forces by the relationship F; = v;fr, where the total
preload fr is yet to be determined. The overlaps 6;(qo) are thén found by

inverting the compliance functions f;, d;(qo) = f; " (F).

Example 4.4.1. For two-dimensional or three-dimensional fixtures involving
two and three fingers, the normalized finger-force magnitudes can be deter-
mined as follows. For two fingers the equilibrium condition v;1m; + 191, = 0
directly implies that v; = vy = 1/2. For three fingers the equilibrium condition

is 111y + vaMy + 13M3 = 0. It can be verified by direct substitution that the
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solution is v; = Ny;1 X N;yo for i = 1,2,3, where index addition is performed
modulo 3. In this expression, N; is the inward unit normal at the i** contact,

and the cross-product for vectors vy, vs € R? is taken as det([v1, vs)).

It remains to determine the total preload fr for a given fixture. One needs
to choose a suitable preloading level so that under work load, the contacts
between the object and fingers are maintained and the material strength re-
quirements of the contacting bodies are satisfied. First we briefly review some
relevant notions from material strength theory [154]. The stress at a point
in a body is the force per unit area over some differential cross-sectional area
containing this point. Two important types of stress are normal and shear
stresses. Normal stress arises from forces perpendicular to a cross-sectional
area, while shear stress arises from forces lying in the plane of a cross-sectional
area. The maximum value of the shear stress over all cross-sectional areas at
all points of a body is called the mazimum shear stress and is denoted 7qz-
To ensure that no permanent deformation or plastic yield occurs in a material
such as steel or aluminum, 7,,,; must not exceed the yield stress of the mate-
rial. Much like Young’s modulus and Poisson’s ratio, the yield stress, denoted
Oyield, 1S & basic material property.

Hertz theory relates the maximum shear stress, Tmez, to the maximum
pressure in the contact area, ppax, by the formula 7.y = (Pmax Where ¢ = 0.31
for a point contact and ¢ = 0.3 for a line contact [72]. For an m-finger fixture,

the allowable pressure can be determined by the condition

12113\351 Cpma.xi = 7Y Oyield (414)
where 0 < v < 1 is called the preloading factor. This parameter is used to
ensure that the maximum shear stress is below oyeq, so that the material

remains elastic under work load. For this reason v should be sufficiently less



Figure 4.4: A three-finger fixture of a triangular object (the supporting plane
is not shown).

than unity. On the other hand, ~ should be considerably greater than zero
to make the fixture stiffer, and to prevent contact breakage under work load.
The condition (4.14) determines the preloading level as follows. According
to formula (4.6), Pmax; = di(Sil/ ? where d; is listed below. Substituting for
Pmax; 10 (4.14) leads to the expression: maxlggm{gdiéil / 2} = YOyield- Using
formula (4.5), each finger-force magnitude is given by F;, = ciéf 2=y, fr,
where c; is listed below and the v;’s are the normalized finger force magnitudes
which have been already computed. Substituting 6,/% = (fru;/c;)/? gives:
(ma,xlg,;gm{Cdi(Vi/ci)l/ 3}) fri/? = YOyield, i Which fr is the only unknown.

Solving for fr gives the formula:

(o)
fT - 1212% I/Z(Cdz)3 ’ (415)

where ¢; = 20:(e)E* re/* and d; = 208, (e)E*re Y2 The resulting formula
determines the total preloading level in terms of material properties, first-
order geometrical quantities (which determine »;), and relative curvature at

the m contacts.

Example 4.4.2. Figure 4.4 shows an essential three-finger fixture of a tri-
angular object made of a thick plate. Assuming that the base edge of the

triangle makes an angle of 75° with the other edges, the normalized finger
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forces for this fixture are v; = v = 0.4 and v3 = 0.2. The object and fin-
gers are made of an aluminum alloy with Young’s modulus £ = 73 X 10° Pa,
Poisson’s ratio v = 0.33, and yield stress oyseq = 345 X 10 Pa. Then E* =
41 x 10° Pa. If the fingers have identical spherical tips of radius 2 cm, then
Trell = Tretz = 2 cm and B; = 1 for j = 1,2,3. Thus, ¢; = 7.72 x 10° Pa x cm!/?
and d; = 184 x 10?Pa x cm~Y?2 for all contacts. Choosing the preloading
factor as ¢ = 0.7, one obtains fr = 1466 N from (4.15). Then the formula
F; = v;fr gives the individual preloading finger forces F; = F; = 582 N and
F; = 302 N. Using the relation d;(qo) = (F3/c;)*®, one finds the preloading

overlaps 0;(qo) = d2(qo) = 17.9 micro meters and d3(go) = 11.5 micro meters.

4.4.3 Computation of the Overlap Gradients V§;(qo)

The following lemma gives the formula for the overlap gradient Vé;(go). In
anticipation of the derivation of D?;(qp), we explicitly write the dependence

of the various terms in the formula on B’s configuration gq.

Lemma 4.4.3 ([135]). Let B(q) have an overlap of 6;(q) > 0 with A;. Let
7;(q) be the endpoint of the overlap segment on the boundary of B, and let
N(z;(q)) be the inward-pointing unit normal to the boundary of B at z;. Then
the gradient of &; at g = (d,0) is:

— ( N(z4(q)) | wis)
R(O)ri(q) x N(zi(9))

where 7;(q) 1s the point x;(q) expressed in the body frame Fg, and R(0) is the

orientation of Fg relative to the world frame Fy .

We are now in a position to further explain the meaning of Equation (4.12),

S fi(6:)VE; = 0. Tt follows from (4.16) that —Vd;(q) is the wrench gen-
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erated by a unit finger-force, acting on B at the point z; along the direction
N (z;). Since the finger-force magnitude due to an overlap of §; is F; = f;(8;),
the vector f;(6;)V4; is the wrench generated by the i® finger due to an overlap
of 8;. Thus, condition (4.12) matches the standard equilibrium condition (4.1),
that in the absence of external wrenches the net wrench exerted by the fingers

must vanish.

4.4.4 Computation of the Overlap Hessians D?;(qqo)

The last term in the stiffness matrix for which one needs a formula is the Hes-
sian D?6;(qo). Here the derivation of the formula is summarized with details
provided in the appendix. Let ¢(t) be a c-space curve such that ¢(0) = go and
¢(0) = ¢, where ¢ is a general tangent vector in Ty, SE(3). To derive a formula
for D26;(qo), consider the quadratic form: ¢7D%8;(qo) ¢ = ¢"%|,_,Vdi(q(t)).
To simplify the derivation, decompose the tangent space into the direct sum
of two subspaces, T,,SE(3) = Vi @ Va. The subspace V; is tangent to the
level-set S; = {q : 6;(q) = 6i(qo)}, and is given by Vi = {¢ : V] (go) ¢ = 0}.
This subspace is the set of instantaneous motions of B that keep J; unchanged.
The subspace V; is tangent to the line denoted [;, which passes through ¢¢ in
the direction (N;,0), where N; = N(z;(go)). This line corresponds to a pure
translational motion of B along the direction N;. The subspace V; is given
by Vo = {¢ : ¢ = a(N;,0), @ € R}, and is spanned by instantaneous pure
translations of B along the direction N;.

The key observation is that V4§; remains constant during pure translation of
BB along an interval of the line I; centered at qo. As illustrated in Figure 4.5(a),
in physical space this translation corresponds to a penetration of B along the
overlap segment. The direction N; of the overlap segment, which is also the
direction of the unit normal to B at z; = x;(qo), remains unchanged during this

penetration. Similarly, the location of r;, B’s endpoint of the overlap segment
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B moves along

the normal direction /4/{/
v

N[ [0
Xy
(a)
Figure 4.5: (a) During normal penetration both z; and NV; remain unchanged.
(b) The imaginary finger A; obtained by uniformly compressing A; by d;(qo)-

expressed in Fp, and the orientation matrix R of B, also remain unchanged
during this motion. Thus V§; given in (4.16) remains constant during this
motion, and consequently D25;(qo) vanishes along the subspace V3. Thus one
only needs to compute D%5;(qo) along V4.

To compute the derivative of Vd;(q) along Vi, let ¢(t) be a c-space curve
in S;, such that ¢(0) = ¢o and ¢(0) = ¢ € Vi. To evaluate %itIOV&-(q(t)),
imagine that the physical finger A4; is replaced with a rigid finger A;, obtained
by uniformly compressing .A; by the amount &;(g) (Figure 4.5(b)). Then
B(qo), which originally overlaps A;, is in point contact with A;. Further, since
the trajectory ¢(t) lies in S;, B moves along ¢(t) while maintaining contact
with A;. Such a motion is called a roll-slide motion of B along the surface of
A;. Since S; is a level-set of §;(q), Vd;(q) is a normal vector field for S;. Hence
QT%V&(q(t)) is a scalar multiple of the curvature of S; along ¢. A formula, for
the curvature of S; is known, since S; can be interpreted as the boundary of

the c-space obstacle?® corresponding to A;. Using the formula for the curvature
% p

of such a boundary [139], one obtains: ¢™% o V0i(q(t)) = ¢"Qig, with the

3The c-space obstacle corresponding to a stationary body A is the collection of configu-
rations g such that B(q) intersects the body A.
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6 x 6 matrix (); given by

o [T B (Ladis LI (1 -B) (o o
Tl ® Lily I ) \o B) \o ()

where by definition (A); = 3(A” + A). In this formula, the following notation
is used: z; = z;(qo), s = 7i(qo), Ni = N(zi(qo)), and p; = Ror;. Also, Lp, is
the curvature matrix of B at x;, Ls, is the curvature matrix of A; at z;, and
Lyei; = Lp, + Ly, is the relative curvature of B and A; at z;.

To extend the derivative of V;(¢q) from V; to the entire tangent space
T, SE(3), we construct in the appendix a projection matrix F;. This matrix
maps a tangent vector ¢ € T, SE(3) to its unique component ¢ € Vi, corre-
sponding to the direct-sum decomposition Ty, SE(3) = Vi @ Va. The following
proposition gives the formula for P; and provides the resulting formula for

D?6;(qo).

Proposition 4.4.4. Let B(qo) have an overlap of 6;(qo) > 0 with A;. Us-
ing the hybrid parametrization (3.1), the 6 x 6 Hessian matriz of the overlap

function 6; is:

9 , I — N;NF N;N[p;
D?6;(q0) = PFQ;P; where P; = 0 . , (4.18)

and Q; is given in (4.17).

The proposition is proved in the appendix. Under a normal loading process,
the quantities N; and p; = Ror; are identical to the respective quantities prior

to the loading process. Similarly, the curvature matrix Lp, is identical to the
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curvature matrix of B at the original contact point z;. As for the curvature
matrix Ly, it can be shown that Lz, = [L3'(y;) — 6:(go)I]™", where L4(;)
is the curvature of the undeformed finger at the endpoint y; of the overlap
segment. In a normal loading process y; is identical to the point of 4; which
was in contact with B prior to the loading process (Figure 4.3), hence L(y;)
is known. Thus all the terms in (4.18) are computable from the corresponding
geometrical quantities prior to the loading process.

For planar fixtures the Hessian formula has the following simpler form. Let
5, and r,, denote the radius of curvature of the planar bodies B and A; at
their original contact point z;. Then the radius of curvature of the imaginary
finger A; is ra, = 74, — 8;(qo), and Proposition 4.4.4 simplifies to the following
formula for D%6;(qo).

Corollary 4.4.5. For a planar fizture, the 3 x 3 Hessian matriz of the overlap

function 6; takes the form:

N;Nf -1 . — pi)JN;
D¥6iq0) = —— =N )
T4 T8 \ (15, — ) (JN)T (ra, + pi)(Ts, — pi)

where Tz, =14, — 0;(q0), pi = —(Rors) X N, and J = (4 ¢).

The stiffness matrix of a linear-spring system. As an example, the
stiffness matrix will be computed for m linear springs holding an object in
equilibrium. Assume that each spring has a “point finger” at its tip, and that
B’s radius of curvature at the i" contact is r5, (Figure 4.2). Using formula
(4.13), one has to compute the matrix K = >, f/(8:(q0)) V8:i(q0)Vi(go)” +
S fi(6:(q0)) D%6;(go). As discussed in Section 4.3.1, f;(0:(q0)) = kidi(qo)
and f/(d;(qo)) = k; for a linear spring. Using formula (4.16) for the gradient
of &;, Vb;(qgo) = (N;, 7:), where 7; = Ror; X N; € R. Since the tips of the

springs are point fingers, 7z, = 0 can be substituted in (4.19). Since the sum
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of the finger forces vanishes at an equilibrium fixture, one can also substitute

S ki6i(go)N; = 0 in (4.19). These substitutions give the formula:

m  [N;NT %N

_ i ( = ki6i(qo)
K=)k |- P e

=1 Ny T =1 B pi(JN:)™ pilpi —78,)

The resulting formula for K agrees with the stiffness matrix formula derived
by Nguyen for the same linear-spring system [114]. Further, by a similar
substitution process one can obtain the stiffness matrix formula derived by
Ponce for linear springs with spherical tips holding a polyhedral object [125].

To summarize, closed-form formulas have been found for 6;(qo), Vdi(qo),
and D?3;(qo). Substituting these formulas into Formula (4.13) gives a closed-
form expression for the stiffness matrix. The resulting expression explicitly
depends on the geometry of the contacts (i.e. the contact points, contact nor-
mals, and relative curvatures), and allows the use of any particular overlap
model. When applied to the realistic nonlinear Hertz contact model, the stiff-
ness matrix formula provides an accurate description of fixture compliance in
terms of basic material properties of the object and fingers. When applied to
the linear-spring model, the stiffness matrix formula admits arbitrary piece-
wise smooth object and linear-spring tips, and it agrees with the specialized

formulas derived by Nguyen [114] and Ponce [125].

4.5 Effects of Contact Geometry

This section compares the contribution of first and second-order geometrical
effects to fixture stiffness and stability. After a preliminary scaling operation
of the stiffness matrix, we characterize the conditions under which second-

order effects provide stiffness comparable to the stiffness provided by first-
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order effects. Then the relative contribution of curvature to fixture stability
is analyzed, and several examples are given to illustrate the results. The
following spectral matriz norm will be used to compare order of magnitude of
matrices. The spectral norm of a matrix A is defined by ||A|| = A2 (AT A),
where Apay (AT A) is the largest eigenvalue of the matrix A" A. If A is symmetric
then || A|| = max{|\;(A)|} over the eigenvalues A;(A) of A. Given a symmetric
matrix A, we write A > 0 when A is positive definite, and A > 0 when A is

positive semidefinite.

4.5.1 Significance of Curvature Effects

The stiffness matrix of an equilibrium fixture is given in Equation (4.13) as
K = K; + K, where K; depends only on first-order geometrical quantities
while K, additionally depends on the bodies’ curvature. In order to derive the
conditions under which K is comparable with K3, it is convenient to scale
the stiffness matrix into a dimensionless matrix denoted K. We construct a
scaling matrix S, such that the matrix K =STKS = STK 1S+ STK3S has the
property that ||STK1S|| is of the order-of-magnitude of unity. To that end, we
define two characteristic parameters. First recall that fr, the total preload, is
given by fr = > 1o fi(6i(g0)). The first parameter, called the characteristic
contact stiffness ko, is a constant of the order-of-magnitude of the derivatives
11(6:(qo)). We also define an auxiliary parameter, called the characteristic
preloading overlap &y, as the quotient &y = fr/ko. Note that § has the same
order of magnitude as the preloading overlaps d;(qp). The second parameter,
denoted [, is a characteristic length of B.

Choosing a 6 x 6 scaling matrix S = ﬁ diag(I, 1), the nondimensional-

ized stiffness matrix is K = STKS = [?1 + I?Q. The dimensionless first- and
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second-order terms, I?l STK;S and K2 STK,S, take the form

I?l = GDG"T and I?z = Zl/i\pi, (420)

g=1

where v; = are the normalized preloading finger force magnitudes,

G = diag(Z, 1) [Véi(go), -+ » Vom(q0)], D = diag (AC0)  [nCmlo)),
and U; = &y diag(l, ;1) D*6;(qo) diag(l, ;). Note that v; are in general not
unique unless the fixture is essential.

From now on we focus on the i** contact and omit the subscript 7 where
appropriate. Let W1y, Wq9, and sy be the block-entries of ¥. Then evaluation
of formula (4.18) for D?5;(qo) gives the following expressions for the block-

entries of W:

0
Uy = _60£ALrel£ Vg = ToﬁALrel(ﬁBp + N)
L (4.21)
\1122 = 'l'g‘ {NTL;;%N —p ‘C rel‘CBp + (NLrel(‘C ‘CB)]?)S} !

where £; = (I — NNT)Lz; (I — NN7) and L5 = (I — NNT)Lg (I — NNT7).
Recall that N is the unit contact normal, that Lz and Ly are the curvature
matrices of A and B(go) at the contact, and that L,o; = Lz + Lg is the relative
curvature matrix.

It can be observed that || K:|| = ||GDGT| is of the order-of-magnitude of
unity. Consequently, the second-order effects are much smaller than the first-
order effects when the condition ||¥|| < 1 holds true, or equivalently, when
| W]l <« 1 for j,l = 1,2. These conditions are characterized in the following
proposition. We write z = O(1) if either |z| < 1 or |z]| ~ 1.

Proposition 4.5.1. The second-order effects satisfy || V| < 1 for 7,1 =1,2,

when the following two conditions hold.
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(1) (50||L;;H < 1 and (50”LBH < 1.

(2) IlLall _ O(1), ILsll _ O(1), and IQH‘TIL:ZLHI = 0(1).

The proposition is proved in the appendix. To gain a more intuitive un-
derstanding of the conditions, the proposition is applied to planar fixtures to

obtain.

Corollary 4.5.2. For a contact in a planar fixture, let vz and r5 be the radii
of curvature of A and B, and let 7oy = (1/rz + 1/r5)"t. The second-order
effects are much smaller than the first-order effects when the following two

conditions hold.
(1) 0p K |T‘,§| and 6y K |’I’B|.
(2) FrefTs = O(1), Fra/rs = O(1), and 7re/l = O(1).

Observe that condition (1), dy < |rz| and & < |rs| (or &l La]] < 1 and
do||Ls|| < 1), is not restrictive at all. This condition requires that the bodies’
radii of curvature at the contact be much larger than &y, which is satisfied
by all practical contacts. Condition (2) imposes an upper bound on 7. (a
lower bound on ||L,¢||). Since 7, increases as the surfaces at the contact
approach a closer match, condition (2) asserts that as long as the surfaces do
not match too closely, second-order effects are relatively small in their order
of magnitude. On the other hand, when condition (2) is violated, one may

possibly have significant second-order effects, and this case is discussed below.

4.5.2 Effects of Local Curvature on Fixture Stability

Recall that the positive definiteness of the stiffness matrix K implies fixture
stability. Since K = STKS where S is non-singular, the positive definiteness
of K also implies fixture stability. The matrix K consists of two summands,

K=K +I?2, such that K; = GDGT with D = diag (ﬁ%‘gq")), cee f’l"(‘s—,’c';(q"—)l).
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Since by construction f/(d;(go)) > 0, the matrix D is positive definite and con-
sequently K is positive semidefinite. Thus, the first-order effects are always
stabilizing. To investigate the influence of 1?2 = 3" v, on fixture stabil-
ity, we continue to focus on the i*" contact and drop the index i for brevity.
The matrix ¥ associated with the contact can be decomposed into the sum
U = U, + ¥,, such that ¥, > 0 while ¥} is indefinite but very small. The de-

composition is given in the following lemma, which is proved in the appendix.

Lemma 4.5.3. Let L = Lzp+ N. Then the matriz U given in (4.21) can be

written as:
U =y,+7,
50/“'{[_/;6%[:;1 %Q,C;j/;éﬁs L —00La 0
%EST'E;ell‘C/_’ (;_S‘CSTE;B%‘CS 0 Eli%( - ﬁT Bﬁ+ (ﬁﬁ)s)

(4.22)

In this decomposition, W, is positive semidefinite, and provided that do|| Lz|| <
1 and &||Ls|| < 1, the matriz ¥, satisfies | Up|| < 1.

The lemma implies that ¥, is always stabilizing, while any possibly desta-
bilizing curvature effects must come from ¥,. To discuss the influence of W,
on fixture stability, let us first consider fixtures which are stable to first-order.
In such fixtures the possibly destabilizing effects of ¥}, are usually too small

to destabilize the fixture, as made precise in the following proposition.

Proposition 4.5.4. Let a fizture be first-order stable (i.e. K1 > 0). Then the
fizture is stable (ie. K = K; + Ky > 0), when the following condition holds

true:

(65 5
O',Zmn(G) min M > 112%)51 {5OHLM”750HLBi”>TO , (423)

1<i<m ko
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where G = diag(I, 11)[Vé1(q0), -+ , Vom(90)] and opmin(G) is the smallest sin-

gular value of G.

The proof appearing in the appendix shows that )\min(I? 1) is bounded from
below by the left side of (4.23), while ||¥;|| is bounded from above by the
right side of (4.23). Thus )\min(IA{' 1) > ||¥s]| and K is consequently positive
definite. Note that condition (4.23) is usually not restrictive, for the fol-
lowing reason. At a first-order stable equilibrium fixture, the convex hull of
the normalized finger wrenches contains the origin in its interior (Equation
(4.12)). As long as the volume of the wrenches’ convex hull is not too small
(i.e., as long as the wrenches do not approximately lie on a lower dimensional
subspace of wrench space), o pmin(G) is of the order of unity. Further, in practi-
cal fixtures the derivatives f/(;(qo)) are of the same order-of-magnitude, and
minigicm{f{(6i(qo))} is therefore of the order of ko. The left side of (4.23)
is thus of the order of unity, while the factor §, on the right side of (4.23)
always satisfies §g < 1. Thus under usual circumstances (4.23) holds true,
and first-order stability typically implies stability. On the other hand, when
condition (4.23) is violated, a fixture which is stable to first-order can actu-
ally be unstable due to curvature effects. An example of this phenomenon is
provided in Figure 4.6 below.

Next consider the relative influence of curvature effects in second-order
stable fixtures. In such fixtures K; > 0, and curvature effects supply the
stabilizing forces along the kernel of K. one wishes to characterize the con-
dition under which the forces produced by K, are comparable to the forces
produced by K;. The following proposition describes this condition, and its

proof appears in the appendix.

Proposition 4.5.5. Let a firture be second-order stable, such that §o||La|| <« 1
and &||Ls|| < 1. Then the stabilizing curvature effects are comparable to

the stabilizing first-order effects when || Lyell/(5) = O(1), since-in this case
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ol ~ 1 while | T3 < 1.

The proposition implies that the stabilizing second-order effects become
more pronounced as ||L,¢|| decreases (as the contacting surfaces achieve a
better match). In particular, when the two surfaces fit sufficiently closely,
the stabilizing second-order effects can become comparable with the first-order
effects. Such significant stabilizing second-order effects are illustrated below.
The result has a practical implication for fixture design. It has been shown
that curvature effects can reduce the number of fixtures needed to immobilize
an object [34,134]. But up until now it has not been clear how much force can
be produced by curvature effects, compared to forces generated by first-order
effects. The above analysis indicates that by proper selection of the fixtures’
curvature, fixtures that exploit curvature effects can be as stiff as fixtures that
exploit only first-order effects. However, in many applications the usually
softer curvature-effects may be adequate, and such close curvature matching
is not necessary.

Finally, the proposition yields the following corollary when applied to pla-

nar fixtures.

Corollary 4.5.6. For a contact in a planar fizture, if o < |r4| and 6 <
|rs|, any possibly destabilizing curvature effects are very small. On the other
hand, let k = 18,/1% for non-concave surfaces and x = ()2(22), where r =
min{|r,|, |rs|}, and Ar = ||rg| — |ra|l| <« r. Then the stabilizing curvature

effects are significant if 1/x = O(1).

As will be illustrated by Example 4.5.3, the scalar function x predicts
whether second-order effects are significant. For this reason it is called the

curvature effect indicator.
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4.5.3 Examples of Local Curvature Effects

This section illustrates the computation of the Hertzian stiffness matrix, and
discuss the influence of curvature effects in several examples. The first example
illustrates that second-order effects can destabilize a fixture which is neutrally
stable to first-order. (Second-order effects, recall, typically do not destabilize
a fixture which is first-order stable.) The second example shows that second-
order effects can stabilize a fixture which is neutrally stable to first-order.
The last example illustrates that with an appropriate contact geometry, the
stabilizing curvature effects can be made quite significant. The following is a
list of assumptions and formulas for the examples.

In all the examples the fingers are assumed to be identical and have a spher-
ical tip. The objects are made of a thick plate and lie on a supporting plane.
Hence one can compute the 3 x 3 stiffness matrix corresponding to motions of
the objects on the supporting plane. The Hertz contact model (Equations (4.5-
4.7)) will be used to compute the dimensionless stiffness matrix and compare
first- and second-order effects. According to Section 4.3.2, the maximum shear
stress in a body is given by Tmee = 0.31pmax. The finger placements in the
examples possess geometric symmetry, and form essential fixtures. Therefore,
the compliance functions are the same at the contacts: f;(d;) = f(é;). In addi-
tion, the normalized preloading finger forces are uniquely given by v; = 1/m,
where m is the number of fingers. The total preload can then be determined

from formula (4.15) as follows:

TYOyield

0315,(e) 5" (4:24)

m
fr= g,ugﬁl(e)E*rz where p, =

Recall that in the formula r, = (rrelmeu)l/ 2 where r,¢; are the principal

radii of relative curvature at each contact. The preloading finger forces are
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then given by f(6;(q)) = fr/m, which gives the preloading overlaps ;(go) =
12re, and the preloading contact stiffnesses f'(d;(go)) = ppBi(€e) E*re. In each
example, set kg = % f/(6:(qo)) and 9 = fr/ko. Therefore,

m N 1
ko = gupﬂl(e)E re and &g= g,uf,re. (4.25)
y y
I'A Al
MAPT B A2 : B
(b)

Figure 4.6: (a) Top view of an object fixtured by two spherical fingers. (b)
The same object fixtured by four fingers in a way which may become unstable.

Example 4.5.1. Figure 4.6(a) shows a symmetric object B made of a thick
plate and fixtured by two spherical fingers of radius r,. The origin-of the body
frame Fpg is chosen at the center of the object, with orientation aligned with
the world frame. The object has a radius of curvature 7z > 0 in the horizontal
direction, and being flat in the vertical direction, has an infinite radius of
curvature in the vertical direction. Thus, 7 = (1/74 + 1/00)™! = 7, and
Tretz = (1/74 4+ 1/r5)~", from which 7, = 7,(rs/(r4 + r5))"/2. Substituting
this formula and m = 2 into Equations (4.24) and (4.25) determines the total
preload fr and scaling parameters ky and ég. By choosing [ = 2p, where
p > 0 is the distance from Fg’s origin to the contacts, one can find the
dimensionless stiffness matrix Kk = STKS, where K is computed according
to Lemma 4.4.1, with the terms V6;(qo) and D?8;(qo) computed from Lemma
4.4.3 and Corollary 4.4.5. The resulting first- and second-order summands of
K are given by K; = diag(2,0,0) and K, = 8, diag(0, —1/(r4 +75), (15 —
p)(ra + p)/4p*(rs + 75)). The dimensionless stiffness matrix thus takes the
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form:

b Go(rs —p)(rTa+ p))
Ta+71s  4p*(ra+7T5) ’

K = diag (2, —
Since K; = diag(2,0,0), the first-order effects are neutral with respect to
translations of B along the y-axis and rotations of B about the origin. The
second-order effects, while small, destabilize the fixture with respect to y-
translations of B. These effects destabilize (if 75 < p) or stabilize (if 75 > p)
the fixture with respect to rotations of B about the origin. This example
explains why a coin fixtured by two frictionless fingers tends to slip away from
the fingers [30, 114].

Finally, Figure 4.6(b) shows the same object fixtured by four “point fin-
gers.” Assuming a fixed positive preload fr, the four finger wrenches positively
span the origin, and the fixture is stable to first-order. However, the fingers
contact the object at points which are close to the contact points of the two-
finger fixture of Figure 4.6(a), for which curvature effects introduce instability
along y-translations. Since K 1 and K, vary continuously with the geometrical
parameters, there is a small neighborhood about the original contact points
in which the destabilizing effects of K still dominate the stabilizing effects of
K. Figure 4.6(b) illustrates such a contact arrangement, in which the fixture
is still unstable, even though the fixture is stable to first-order. Inspection of
K, further reveals that as fr increases, the destabilizing effect of K, increases,

which also agrees with [30,114].

Example 4.5.2. Figure 4.7 shows an equilateral triangular object fixtured by
three spherical fingers of radius r,. The origin of F5 is chosen at the center of
the object. For this fixture, 7peq = Tres = (1/7,+1/00)~! = r,, which implies

that r, = r4, and B;(e) = 1 for j = 1,2. Substituting these formulas along



Figure 4.7: Fixturing an equilateral triangle by three spherical fingers (the
supporting plane is not shown).

with m = 3 into Equations (4.24) and (4.25) determines the total preload fr
and scaling parameters kg and §;. Also for nondimensionalization, choose a
characteristic object length to be [ = 2p, where p > 0 is the distance of Fp’s
origin from the contacts. Using Lemmas 4.4.1 and 4.4.3 along with Corollary

4.4.5 to compute the dimensionless stiffness matrix K = STK S, one obtains

50(p + TA))
4p? '

K = diag(1,1,0) and K, = diag (0, 0,
While the fixture is not stable by considering only the first-order effects, it is
stable after the second-order effects are included, since K=K +K,is pos-
itive definite. As r, increases, the stabilizing influence of K, becomes more
pronounced. This is consistent with the fact that the nonlinear spring rela-
tionship becomes harder as r, grows. While the second-order effects are less
significant than the first-order effects, they may provide adequate stabilization

for many applications.

Example 4.5.3. This example illustrates how local curvature effects can be
used to significantly stabilize an otherwise unstable fixture. Figure 4.8 shows
a top view of an object B made of a thick plate. The boundary of B consists
of three circular arcs cut from the plate, each of radius 75 = —r where r = 3l.

The body frame Fg is chosen at the center of the object, with orientation
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Figure 4.8: Top view of a curved triangular object fixtured by three similarly
curved fingers.

aligned with the world frame. The parameter p, the distance of the body
frame origin from the contacts, is given by p = %(m —2r+1) =
0.372l. The object is fixtured by three fingers with spherical tips of radius
ry =1 — Ar, where 0 < Ar <« r. The contact normals are oriented along
the object’s lines of symmetry, which are 120° apart. Letting € = %f and
neglecting small quantities when appropriate, the relative radii of curvature
are rreyp = (1/ra+1/r5)"t = 7/€ and Tpey = (1/74 +1/00)~! = r, from which
re = r/+/€. Thus, noting that m = 3, one can determine the total preload fr
and scaling parameters kg and dy from Equations (4.24) and (4.25). Lemmas

4.4.1 and 4.4.3, and Corollary 4.4.5 can be used to compute the dimensionless

stiffness matrix K = STKS:

I?l = dlag(l, 1, O) and I?Q = dlag (fT, &.Ta 'gR)7

2 2 4 2 + 2 . ~
where &7 = 3(46%@)- and g = g(%. The terms &7 and £g in Ky mea-

sure the contribution of second-order effects to the translational and rotational
stiffness of the fixture. Since the contacting surfaces tend to match perfectly
when the value of Ar is very small, one needs to check if a, the length of the

contact area’s major semi-axis, is small compared with the radii of curvature
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of the surfaces and the object’s characteristic dimension. From Formula (4.7)
one can find a/r = Bs(e)pp/2+/€(1—€?)i. Further, the ratio §o/Ar = Lu2e3/2
can be computed, from which the curvature effect indicator (Corollary 4.5.6)
is given by k = (r/1)?(do/ Ar).

For concreteness, suppose that the fingers are rigid and the object is made
of an aluminum alloy with E = 73 GPa, v = 0.33, and 014 = 345 MPa. Thus,
E* = E/(1 —v?) = 81.9 GPa. Let v = 0.7, i.e., the fixture is preloaded to
70% of the material capacity. Then the parameters &7 and &g, along with the
curvature effect indicator , and the ratios dy/Ar, a/r and a/l, are computed
for different values of € in Table 4.1. The small values of a/r and a/! as listed
in the table indicate that the Hertz model applies with reasonable accuracy.
Moreover, when ¢ is sufficiently small, or the bodies’ curvature achieves a close
match, & is of the order of unity even though dy/Ar < 1. By Corollary 4.5.6,
the second-order stabilizing effects are significant. Indeed, this is confirmed by
the values of £g, which are in the order of unity for small values of €. Thus, as
the fingers’ curvature approaches the object’s curvature, the forces generated
by second-order effects become comparable with the forces generated by first-

order effects.

Table 4.1: Compliant behaviors of the fixture for various values of e.

€ K &r €r a/r a/l | oo/ AT
0.01 | 0.927 | 0.048 | 1.087 | 0.081 | 0.242 | 0.103
0.02 | 0.418 | 0.022 | 0.510 | 0.066 | 0.197 | 0.046
0.03 | 0.260 | 0.014 | 0.322 | 0.058 | 0.173 | 0.029
0.04 | 0.185| 0.010 | 0.230 | 0.053 | 0.158 | 0.021
0.05 | 0.142 | 0.008 | 0.177 | 0.049 | 0.147 | 0.016
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4.6 Impact of the Choice of Contact Model on
Stability Analysis

This section considers the impact of the choice of contact models on qualita-
tive stability analysis results. We are interested in determining whether the
prediction of fixture stability is model-dependent, i.e., the prediction of fixture
stability or instability depends the choice of contact models. It will be shown
that while the stability of some fixtures propagates within a class of contact
models, fizture stability analysis is in general model-dependent. Even for those
fixtures that behave qualitatively the same with respect to different contact
models, their stability may differ significantly in a quantitative way.

Recall from Section 4.5.1 that the dimensionless stiffness matrix takes the
form K = K, + K,, where K; = GDGT, and K, = S v Accord-
ing to Lemma 4.5.3, the second-order term can be further decomposed into
K, = U+ V, where U = S v, and V = 37 ;0. In this decom-
position, U is positive semidefinite and always stabilizing, while V' accounts
for the possibly destabilizing curvature effects. Our analysis of fixtures whose
stability is insensitive to contact model choices will be based on the following
key observation. The matrix G, and for essential fixtures the matrix K,, are
model-independent, i.e., they are determined solely by the contact geometry
and remain the same for all contact models.

First consider the stability of first-order stable fixtures under different con-
tact models. Note that first-order stability, i.e., K, = GDGT > 0, is a model-
independent notion since G is model-independent and D, provided 6;(go) > 0,
is positive definite for all contact models. By Proposition 4.5.4, if the condi-
tion (4.23) is satisfied with respect to a contact model, then K=K +K; >0,
and in this case first-order stability implies stability. This immediately leads

to the following corollary.
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Corollary 4.6.1. Suppose that a fizture is first-order stable. Then the fizture

is stable for all contact models that satisfy the following condition:

. [ )
72l @) min LD s e (501, Bl Lo, 0.

1<ig<m ko

Now consider the impact of contact model choices on second-order stable
fixtures. Recall that second-order stability means that K 1+ I~(2 > 0 while the
first-order term K is only positive semidefinite. We first consider the special
case where there are no destabilizing curvature effects. Decompose the second-
order term into Ky = U+V, where U = S vV, and V =30 1 Wy, with
U,, and U, given by Lemma 4.5.3. Since U > 0, any destabilizing curvature
effects are accounted for by V.. Moreover, V' is model-independent for essential

fixtures. We thus immediately arrive at

Lemma 4.6.2. Let a fixture be essential. If V = 0, then the stability of fixture

is independent of the choice of contact models.

This scenario is often possible in practice when there is symmetry in both
the bodies’ geometry and the finger positions. This is illustrated by the fixtures
in Examples 4.5.2 and 4.5.3, where destabilizing curvatures effects are indeed
absent. |

When destabilizing curvature effects are present, we consider the case
where curvature effects are insignificant as discussed in Proposition 4.5.1. The
following proposition, which is proved in the appendix, gives a condition under

which second-order stable fixtures remain stable for a class of contact models.

Proposition 4.6.3. Consider an essential fizture that satisfies the geometric
L
conditions ””LA ”” 0(1), “”fBl HII O(1), and —”—Iﬂ = O(1) at each contact.

T e
Suppose that the fixture is second-order stable wzth respect to a giwen contact
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model such that the following inequality holds:

A0 5
o3(G) min FOOD o o (5oLl S0l Lo, 23,

1<i<m ko

where 0o(G) is the smallest nonzero singular value of G. Then the fizture is

stable for all contact models under which the above inequality remains to hold.

This proposition does not address the situation where there exist significant
curvature effects. Since significant curvature effects are practically always
stabilizing, it is conjectured that the stability of fixtures with such effects are
insensitive to the choice of contact models. This conjecture is currently still
under investigation.

We have thus far shown that under certain conditions the stability of essen-
tial fixtures as well as first-order stable fixtures are qualitatively insensitive to
the particular contact model that is chosen for stability analysis. But it should
be realized that such fixtures in general behave quite differently with respect
to different contact models. Therefore, for accurate modelling in automated
planning algorithms, an appropriately chosen contact model must be used. In
particular, the Hertz model, which is theoretically sound and experimentally
verified, is in general more appropriate than the linear model. The following

example shows the quantitative differences between the two models.

Example 4.6.1. Again consider the fixture in Example 4.5.2 (Figure 4.7)
with a preloading overlap 8;(go) = 0. The translational and rotational stiff-

nesses of this fixture with respect to the concurrency point are given by

kT — ?.f’(&), k'R = W’

respectively. Let §5 be the allowable preloading overlap, i.e., the corresponding
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maximum shear stress in the bodies equals the yield stress oyeq. Consider
a linear model whose spring constant is defined as a secant modulus: k£ =

f(85)/6s = 3E*\/rd;. Then the translational and rotational stiffnesses with

respect to the linear model are

_ 3 _ 3(p+r)ké
kT - §k) kR - l2 k]

respectively. The following ratios can hence be computed.

()5 =Gt

Therefore, the behavior of the fixture is quite different as ¢ is significantly
different from d,. We also see that even if one wishes to use a linear model,

the spring constant can often be derived from the Hertz model.

If a fixture is neither essential nor first-order stable, its stability may even

be qualitatively different, as shown by the following example.

Figure 4.9: A four-finger fixture whose stability analysis is model-dependent.
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Example 4.6.2. Consider a fixture of an object as shown in Figﬁre 4.9. For
simplicity assume that the contacting surfaces are all spherical. The object has
identical local geometry at the contacts, with radius of curvature r. There are
a pair of identical convex fingers with radius ar and a pair of concave fingers
with radius —8r, where « and § are both positive constants with § > 1. Using
the Hertz model, the compliance relationships corresponding to the convex and

concave fingers can be written as

4 .5 4 Or
3 a—|—1E5 and f2(5)—3 5

f1(8) = 1E*5%,
respectively. Using a linear model and assuming an identical spring constant

k for all contacts, the compliance relationships are

f1(8) = f2(6) = kd.

Let the preloading overlaps be §; and J, for the two types of contacts, respec-
tively. Write the stiffness matrix corresponding to the Hertz model, while the
formula corresponding to the linear model can be obtained by replacing f; and

fo with fi and f, respectively.

K(l) 0 K(2) 0
K _ 11 + 11 \ :
0 0 0o K

where K{} = diag(2f{(81), 2/5(82)), IKD|| < |KD |, and K3 = f1(61) (p—



81

T‘)§R with

_p/r=Bf(%) p/rta

é-R ﬂ—l fl((sl) Oz+1 )

Choose p > r. Then the fixture is stable if £ > 0, or unstable if £ < 0. Note

that for the Hertz model and the linear model, we have

fa(d2) _ 02

_ (& f2(82) _ &
fi(6) &

3
5) d 3 — T
Jhoed T T 6

respectively. As shown in Table 4.2, as the relevant parameters assume dif-
ferent values, £r and &, where £ is computed from the same formula as
£g except that f; and f, are used instead of f; and f,, can have opposite
signs. That is, while the fixture is stable with respect to one model, it may be

unstable with respect to the other.

Table 4.2: Qualitative differences in stability.

a| B | p/r| b/ §r §r
211545 035 | -0.0667 | 0.4688

311595 s} 0.075 | -0.2628

Summary:

This chapter used the overlap representation to formulate the theoretically and
experimentally justified Hertz model, and derived a closed-form formula for
the fixture stiffness matrix. This formula allows for direct computation of the
stiffness matrix from geometric and material properties of the fixture, and can
incorporate the Hertz model and other realistic contact models. The closed

form of the stiffness matrix formula also allowed a systematic analysis of the
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effects of local curvature on fixture stability. It was shown that while curvature
effects may destabilize first-order stable fixtures, these destabilizing effects
are practically very small. On the other hand, curvature effects can provide
significant stabilizing effects, as illustrated by an example. This chapter also
analyzed the impact of contact model choices on fixture stability. I was shown
that under certain conditions, first-order fixtures, as well as second-order stable
essential fixtures, are insensitive to certain classes of contact models. However,
in general, stability analysis is model-dependent, and this fact was illustrated
by Example 4.6.2. The practical utility of the stiffness matrix formula will
be demonstrated in the next two chapters, where the formula is applied to

computing the fixture stiffness matrix in planning optimal fixtures.
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Chapter 5

Maximum-Stiffness Fixtures and

Grasps

5.1 Introduction

Chapter 2 indicated that quality measures for compliant fixtures have been
lacking, and that most previous works on quality measures for rigid bodies
suffer the fundamental deficiency of dependence on reference frame choices.
These problems are addressed in this and next chapters, which develop frame-
invariant, physically meaningful quality measures for compliant fixtures, and
apply them to optimal fixture planning.

This chapter focuses on optimal fixtures and grasps that exhibit mazimal
stiffness. We are interested in such fixtures and grasps since the stiffness, or
rigidity, of a candidate fixture or grasp is often a suitable measure of effec-
tiveness. The compliant behaviors of fixtures are represented by their stiffness
matrices, and it is therefore natural to define quality measures by exploring
the structure of stiffness matrices. Since the eigenvalues of the fixture stiffness
matrix depend on choices of reference frames, other stiffness parameters that
are frame-invariant should be sought.

The approach described in this chapter is based on six invariant scalars
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called the principal translational and rotational stiffnesses. These parameters
were first identified by Patterson and Lipkin [122] using screw theory. The
same parameters can be derived using a different approach that is described
in this chapter. The relation between the two approaches will be discussed,
and a novel geometrical interpretation will be given to the principal stiffnesses.
To allow meaningful comparison of the stiffness parameters, the rotational
stiffnesses is converted into equivalent translational stiffnesses according to
considerations of the object’s maximal displacement and equivalence of elastic
energy. Based on the resulting set of comparable parameters, the stiffness
quality measure is defined, and applied to planning mazimum-stiffness fixtures
and grasps of polygonal objects by three and four fingers. In both cases
practical methods are developed for computing the globally optimal finger
arrangement, and provide examples which show that the resulting optimal
fixtures are indeed intuitively effective fixtures.

As indicated in Chapter 3, tangent vectors and covectors to SE(3) can
be represented in different ways. For convenience, body velocities and body
wrenches (specified in a body frame Fg) will be used in this chapter as well
as the following chapters. The fixture stiffness matrix, denoted K, will also be
specified with respect to body coordinates. That is, the relationship w = K¢
holds, where ¢ is a body velocity and w a body wrench. Using (3.5), the
ensuing results in body coordinates can be expressed in terms of hybrid coor-
dinates. In particular, quantities that are frame-invariant in bodyz coordinates

remain frame-invariant in hybrid coordinates!.

'We do not use spatial coordinates in frame-invariance considerations, since as will be
shown in Chapter 7, spatial coordinates are inappropriate for these purposes.
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5.2 Principal Stiffness Parameters

This section identifies several frame-invariant parameters of compliant fixtures,
which will be used to define the stiffness quality measure in the next section.
From the wrench-displacement relationship w = K¢ and the change-of-frame
formulas (3.7) for body coordinates, the fixture stiffness matrix can be shown

to obey the following transformation rule:
K = Adj, K Ad, (5.1)

where K is the stiffness matrix specified with respect to a new body frame
Fp located at gg € SE(3) relative to Fp, Ad,, is the adjoint map associated
with gp given by (3.8) or (3.12). It follows that the eigenvalues of K, which
could provide insight into the stiffness matrix, are frame-dependent since Ad,,
is in general not orthogonal. To find frame-invariant stiffness parameters, we
partition K, and C = K1, called the compliance matriz of the fixture, along

translational and rotational motions.

K1 K Cy C
o [Bn B and C= |9 “2) (5.2)
Ki, Ko Cly Cx

where the entries K;; are 3 x 3 matrices in the 3D case. In the 2D case, the
dimensions of Ki;, K3 and Ky become 2 x 2, 2 x 1 and 1 X 1, respectively.
We will focus on stable fiztures whose stiffness matrices are positive definite,
since other fixtures are considered ineffective.

Given any tangent vector ¢ = (v,w), the notation (K¢); = K11v + Kjpw
and (Kq)s = Kiyv + Kyw will be used for convenience. Similarly, we write

(Cw); = Craf + Coo7 and (Cw)s = CT, f + Coa7 for any wrench w = (f,7).
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5.2.1 Definition of the Principal Stiffness Parameters

The first set of stiffness parameters is defined on a tangent subspace on which

the stiffness matrix has a frame-invariant structure. This subspace is given by
V={¢eT,SE@) : f=(K¢1=0},

where qq is the equilibrium fixture configuration of B. In words, the subspace
V consists of small displacements of B which cause the fingers to react in such
a way as to generate a pure net torque on the body. Using the partition of
K yields V = {(v,w) : v = —K;* K1sw}, from which it follows that V can be

parametrized in terms of w € R® as?

KK
V={4=Puw:weR) where P= S (5.3)
I .

Let Ky denote the restriction of the stiffness matrix K to the subspace V.
We now derive an expression for Ky. The stiffness matrix K is a linear
operator from Ty, SE(3) to Ty SE(3), and ¢" K¢ is consequently a symmetric
bilinear operator on T,,SE(3). Since the vectors in V are parametrized by
w, (5.3) implies that w"Kyw = w"PTKPw for arbitrary w. Thus Ky has
the representation Ky = PTKP = Ky — KL K;'Kis. In addition, the pure
torque corresponding to ¢ € V is given by (K¢): = Ky w.

Under the body representation, Ky is not affected by choice of world frame.
Consider now a new body frame Fg, and use overbars to denote objects asso-

ciated with this frame. The linear operator Ky has the following invariance

property.

2K, is invertible since, in general, the principal sub-matrices of a positive definite matrix
are positive definite and therefore invertible.
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Proposition 5.2.1. Let V and V be the subspaces parametrized by (5.3) with
respect to the old and new body frames. Let Ky and Ky be the restriction
of the respective stiffness matriz to V. and V. Then Ky and Ky obey the
orthogonal transformation Ky = R5KyRp, where Ry is the rotation matriz

from Fg to Fg. Hence, the eigenvalues of Ky are frame-invariant.

Proof. Using the stiffness matrix transformation rule (5.1) and formula (3.8)
for Adg,, the components of the stiffness matrix K are: K3 = R5K11Rp,
Kis = RE(K12+K113;)RB, and Ky = RE(K22+K5267;—35K12“671\3K113;)RB-
Substituting these expressions into Ky = Ky — KLK{'Kia gives Ky =

RLKyRg. O

The second set of stiffness parameters is defined from the dual consideration
of a subspace of wrenches on which the compliance matrix C' has a frame-

invariant structure. This subspace is given by:
W= {weT:SEB):w=(Cw);=0}.

The subspace W thus consists of external wrenches whose action on B causes
it to move with pure translation. The subspace W can be parametrized in

terms of f € R? as

W={w=Qf:f€[R3} where @ = ! : (5.4)
—C'Ch

According to this parametrization, the pure translation induced by a wrench
w € W takes the form v = (Cw); = Cw f, where Cy is the restriction of C
to the subspace W given by Cy = Q7CQ = Cyy — C12C5y CF,. To express Cy

in terms of the stiffness matrix, the inversion formula of a partitioned matrix
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can used to write
-1

Cll 012 C‘zfl —CﬁlclgA-I
CZ, Ca _Alenopt A

where A = Coy — CLC*Cha. Since C~! = K, the uniqueness of a matrix

inverse implies that
Cw = Ki7". (5.5)

With respect to a new body frame Fp, the submatrix K;; transforms to
Ky = Rp K 1Rp. We therefore immediately arrive at the following invari-

ance property of Cy:

Proposition 5.2.2. Let W and W be the subspaces parametrized by (5.4) with
respect to the old and new body frames. Let Cy and Cyw be the restriction of
the respective compliance matriz to W and W. Then Cyw and Cy obey the
orthogonal transformation Cy = R5CwRp, where Rp is the rotation matriz

from Fg to Fp. Hence, the eigenvalues of Cy are frame-invariant.

Propositions 5.2.1 and 5.2.2 lead to the following observations. The be-
havior of K on the tangent subspace V characterizes the rotatz'ondl stiffness of
the fixture. In response to an instantaneous displacement in V', the reaction
wrench is a pure torque. In addition, the reaction torque varies by at most
a pure rotation corresponding to different choices of frames. Similarly, the
behavior of C on the wrench subspace W characterizes the translational com-
pliance of the fixture. A wrench in W generates a pure translation of B, which
is the same up to a rotation with respect to different frames. Based on these

observations, the following frame-invariant principal parameters of K can be
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defined.

Definition 5.2.1 (Principal Stiffnesses). Let K be the fixture stiffness ma-
trix, and C = K~! the compliance matrix. Let Ky and Cy be the restriction of
K and C to the subspaces V and W. Then the principal rotational stiffnesses
of the fixture are the eigenvalues y; (1 = 1,2,3) of Ky = Koy — K{QKfllKlg,
and the principal translational stiffnesses of the fixture are the eigenvalues o;

(1 =1,2,3) of C;} = Ki;.

For planar fixtures the principal stiffness parameters have the following
physical interpretation. It can be shown that every planar fixture has a unique

location of an object frame origin, given by

dg = JK7 Kis, (5.6)

such that when F3 is placed at this location, K takes the block-diagonal form
K = diag(R5K11Rp, ). That is, for planar fixtures the translational and
rotational effects are decoupled about this special point, called the center of
compliance of the fixture [114]. The principal translational and rotational
stiffnesses of a planar fixture are physically the translational and rotational
stiffnesses about the center of compliance. For 3D fixtures, there is generally
no such center of compliance, and the stiffness matrix in general cannot be
made block-diagonal. However, it is important to note that the principal

stiffness parameters are still well-defined and frame-invariant in the 3D case.

5.2.2 Screw Coordinates Interpretation

While searching for a 3D analog of the center of compliance, Patterson and

Lipkin [122] were the first to recognize the existence of the principal stiffness
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parameters. They used screw coordinates, and we now show that our principal
parameters are equivalent to the ones derived by Patterson and Lipkin.
Consider a tangent vector ¢; = Pw; € V, where w; is a unit eigenvector
of Ky associated with the eigenvalue p;. Correspondingly, one has a pure
torque given by 7 = (K¢;)2 = pw;. From the review of screw coordinates
in 3.2.2, the tangent vector ¢; induces a pure-torque wrench of magnitude p;
about the screw azis of ¢;. On the other hand, for w; = Qf; € W where

! we have

f; is a unit eigenvector of Cy, associated with the eigenvalue o;
v = (Cw;); = o;'f;. Hence, the wrench w; generates a pure-translation
displacement of magnitude ;" along the screw azis of w;. The principal
stiffness parameters can now be interpreted in terms of screw coordinates.
Every stiffness matrix K has six frame-invariant screw axes. A displacement
of B along the first three axes results in a pure torque which acts on B along
the same axis of magnitude which is determined by the rotational stiffness u;
(i =1,2,3). A wrench applied to B along the other three axes results in a pure

translation of B along the same axis, and the magnitude of the translation is

determined by the translational stiffness o; (i = 1,2, 3).

5.2.3 Geometric Interpretation

We now interpret the principal stiffness parameters in terms of the geometry
of two level-sets. The first is a level-set in the tangent space, defined by
S ={GeTKSE3) : ®(q) = 1}, where ®&(¢) = 3¢"K¢. The second is a level-
set in the wrench space, defined by T = {w € T SE(3) : ¥(w) = 1}, where
U(w) = sw"Cw. These level sets consist of tangent vectors or wrenches
that induce unit elastic energy, and geometrically represent a five-dimensional
ellipsoidal surface in the six-dimensional tangent or wrench space. The shape
of these ellipsoidal surfaces varies as different coordinate frames are used.

However, these surfaces possess frame-invariant features which correspond to
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the principal stiffness parameters.

First consider the level-set S. For each fixed w, the subset of & with
this particular value of w is denoted S,. Each subset S, is a level-set of the
function ®,(v) £ ®(v,w), in which w is a fixed parameter and only v is a

variable. Rewriting ®(v,w) as a function of v only gives:

1 1
(I)w(’v) = 5(’0 + KﬂlKHW)TKH(’U -+ Kl_llKlguJ) -+ §wTKVw.

Hence for each fixed w, the level-set S, = {v : ®,(v)= 1} is a two-dimensional
ellipsoidal surface with principal semi-axes of lengths ((2 — w™Ky w)/0;)'/?
(i = 1,2,3). Since the quadratic form w” Ky w is frame-invariant, these lengths
are frame-invariant. In particular, when w=0, these lengths are simply given
by \/5/_07- (i = 1,2,3). In other words, the principal translational stiffnesses
0; determine the frame-invariant shape of the intersection of S with the pure-
translation subspace given by w=0. This feature can be easily visualized in
2D fixtures as will be described shortly.

The level-set S possesses another frame-invariant geometrical feature. Con-
sider the projection, denoted S,—g, of the set S onto the pure-rotation sub-
space given by v = 0. It can be verified that the boundary of Sy—o (called
the silhouette of S along the direction of projection) is the projéction of the
points on S at which the vector normal to S has zero v-components. The
latter set is denoted S,. Since S is a level-set of the function ®(v,w), S,
is determined by the condition (V®(¢)); = 0. This condition implies that
S, ={(v,w) €S:v=—-KjKpw}={(v,w) €S : 3w"Kyw = 1}. Thus, the

projection of the set S onto the subspace v = 0 is given by

Sp=0 = {(v,w) : v=0 and %wTKvw < 1}
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The projection set is a three-dimensional ellipsoid with principal semi-axes of
length \/m, where p; (i = 1,2, 3) are the frame-invariant eigenvalues of Ky .
In other words, the principal rotational stiffness parameters are precisely the
semi-axis lengths of the ellipsoid formed by projecting S onto the pure-rotation

subspace given by v = 0.

(a) Four-finger fixture of a rectangle (b) Elastic energy ellipsoids

Figure 5.1: The elastic energy ellipsoids in T, SE(3) of a fixture.

We now describe, in terms of planar fixtures, the above frame-invariant
features of the level set S, which becomes a two-dimensional ellipsoidal surface
in R®. Figure 5.1(b) shows two such ellipsoids for the 4-finger fixture of a
rectangle shown in Figure 5.1(a). The upright ellipsoid corresponds to the
frame Fp, while the slanted ellipsoid corresponds to the frame Fg. As can
be observed from the figure, the lengths of the principal semi-axes of each
horizontal cross section of S are frame-invariant. Similarly, the projection of
S onto the w-axis is bounded by two points, whose w-coordinates are i\/2/_,u.
These two points are frame-invariant, and S is always bounded by the two
horizontal planes w = £4/2/u. ‘

The frame-invariant features of the level set 7', which is a five-dimensional
ellipsoidal surface in the six-dimensional wrench space, can be analogously

identified and are summarized as follows. Each subset of 7 with a fixed value
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of f, denoted 7, is a two-dimensional ellipsoidal surface whose principal semi-
axes are equal to (u;(2 — fTK7'f)Y? (i = 1,2,3) and are frame-invariant.
In particular, when f = 0 the principal semi-axes of 7; are given by /2u;
for i = 1,2,3. The projection of 7 onto the wrench subspace determined by

7 =0 is given by

1
Treo = {(f,7): 7= 0 and Sf"KG'f <1},

which is a three-dimensional ellipsoid whose principal semi-axes have frame-

invariant lengths of /20; (i = 1,2, 3).
T

f1
(a) T intersects the 7-axis at the (b) 7 is inscribed in the same
same points: h, = 24/2u elliptic cylinder

Figure 5.2: The elastic energy ellipsoid in T SE(3).-

For planar fixtures 7 is a two-dimensional ellipsoidal surface in R3. For
the fixture given in Figure 5.1(a), the frame-invariant features of 7 are shown
in Figure 5.2, where the upright and slanted ellipsoids again correspond to the
frames Fp and Fg, respectively. It can be seen that the ellipsoid 7 intersects
the 7-axis, which is chosen to be the vertical axis, at two points whose 7-
coordinates are ++/2u, as shown in Figure 5.2(a). In addition, fégardless of
frame choices, the horizontal projection of 7 is the planar ellipse % fFEIf <

1. Hence, with respect to arbitrarily chosen coordinate frames, 7 is always
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inscribed in the vertical cylinder whose base set is this ellipse, as shown in
Figure 5.2(b).

Also note that the volume of the ellipsoids is frame-invariant, since the
volume is determined by det(K) which is frame-invariant [90]. However, no

use is made of the volume in the stiffness quality measure.

5.3 The Stiffness Quality Measure

This section defines a frame-invariant quality measure for compliant fixtures
based on the principal stiffness parameters. First we must find a way to
meaningfully compare the translational and rotational stiffnesses of a fixture.
Our approach is based on the object’s maximal displacement and the elastic
energy associated with this maximal displacement. _

Let ¢ = a(v,w) be an infinitesimal displacement of B, Wheré oa>0isa
scalar, |w|| =1 if w# 0, and ||v|]| = 1 if w = 0. The maximal displacement of
any point in B will be simply called the mazimal displacement of B. Clearly,
such a maximal displacement is a measure of the object’s deflection resulting
from elastic deformations. Moreover, since B has bounded dimension, this
maximal displacement always exists and is independent of frame choice. If
w = 0, the maximal displacement of B is simply a. If w # 0, let pmax(q) be the
greatest distance from the instantaneous screw axis associated with ¢ to B’s
boundary points. Then B’s maximal displacement is o(pmex(4)? + (v-w)?)/2,
where v-w is the pitch of ¢. In the case of planar fixtures the vector w is
perpendicular to v, and the maximal displacement of B is apmax(qd), where
Pmax(g) is the maximal distance from B’s instantaneous center of rotation to
B’s boundary points. We now convert the rotational stiffnesses to equivalent
translational stiffnesses using the object’s maximal displacement.

First consider planar fixtures, where there is only a single principal rota-
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tional stiffness parameter, denoted by p. To compare p with the translational
stiffness parameters o, 09, we define a parameter which has the units of trans-
lational stiffness and whose equivalence with the principal rotational stiffness
p is determined as follows. As discussed in Section 5.2, u is associated with
rotations of B about the fixture’s center of compliance. Corresponding to a
rotation of B with magnitude o about the center of compliance, B’s maximal
displacement is given by apmay, and the amount of elastic energy induced by
the maximal displacement is % uc®. Suppose that B undergoes a translation
of 0pmax, Which obviously results in the same maximal displacement. As this
translation occurs, it may be imagined that B, instead of being fixtured by
the fingers, is attached to a linear spring aligned with the direction of trans-
lation. We define the constant of this spring, denoted pi.q, 8s equivalent to
the principal rotational stiffness y, if the elastic energy of the linear spring

2. Thus, the equation

resulting from the (imaginary) translation equals —é—ua
L feq(pmaxc)? = 0 leads to the following expression for the equivalent stiff-

NesS [leg:

fen = 5 (5.7)
The parameter p., has the same units as the translational stiffnesses o; and
its equivalence is also based on the physically meaningful principle of elastic
energy. The three parameters can now be meaningfully compared, and the
quality measure can be defined to be: Qsifr = min{oi, 0a, fieq}-

Next the quality measure will be defined for 3D fixtures. Like the planar
case, we define stiffness parameters which are equivalent to the principal rota-
tional stiffnesses y;. Let w; be a unit-magnitude eigenvector of K{/ associated
with y;, and let o > 0 be a scalar. Then the displacement of B represented by

the vector ow; is ¢; = aPw;. Using formula (5.3) for P, we write ¢; = a(v;, w;)
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where v; = —KﬂlKlgwi. When B is subjected to the displacement ¢;, the
amount of induced elastic energy is given by % pic?, and the maximal displace-
ment of B is given by a(pmax: + (vi-w;)?)?, where pmax; = Pmax(d;). Now
imagine the situation where the object, while attached to a linear spring, un-
dergoes a pure translation by the amount of this maximal displacement in
the direction of the spring. The stiffness coefficient of the linear spring, de-
noted fieg;, is defined as equivalent to the principal rotational stiffness p;, if

the elastic energy of the spring due to the translation equals % pia?. Hence, by

requiring that peq; (@/pmaxs + (v,-wui)?)2 = 1p;0°%, we obtain the following

formula for ey,

Hi .
Heas = lomau(7,2 =+ (Ui'wi)2 fore=1,2,3 (58)

As in the 2D case, the equivalent stiffness parameters have the same units as
the translational stiffnesses. Therefore, the quality measure is defined for 2D

and 3D fixtures as follows.

min{oy, 02, eq} (2D case)
Qstifr = (5.9)
Min{Omin, fegy,} (3D case)

where o = min{oy, 09,03} and peg, . = Min{ e, Hegys teqs )

As discussed in Section 5.2.1, the principal stiffness parameters charac-
terize the stiffness of a given fixture, and Q.;yrs, called the stiffness quality
measure, characterizes the worst-case stiffness of the fixture. The worst-case
stiffness is determined by a trade-off between the worst-case translational and
rotational stiffnesses. The worst-case translational stiffness is characterized by

the smallest principal translational stiffness o, and the worst-case rotational
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stiffness by the smallest equivalent rotational stiffness fieq .. (Or fieq in the 2D
case). In characterizing the worst-case rotational stiffness by fieq,;, (0F feg),
the principal rotational stiffness parameters are meaningfully compared with
the translational stiffness parameters by considering equivalence of elastic en-
ergy based on the object’s maximal displacement. Note that (g;ss has the
following properties. First, Qq;ss is valid for fixtures of 2D and 3D objects
by any number of fingers. Second, the fixtures can be modeled by any com-
pliance model, since Q47 depends only on the stiffness matrix of the fixture.
Third, Qstif5 is invariant with respect to change of world and object reference
frames. Last, the optimal fixture of an object is the mazimum-stiffness fizture,

i.e., Qstifs is mazimized to allow the highest worst-case stiffness.

5.4 Three- and Four-Finger Fixtures of Polyg-
onal Objects: A Characterization

The stiffness quality measure, and the deflection quality measure that will be
developed in the next chapter, will be applied to optimal fixturing of polygonal
objects. This section is to lay the necessary foundation for these applications.
While the quality measures can be used with stiffness matrices computed from
any contact model with or without inclusion of friction and other effects, the
overlap-based compliance model as developed in Chapter 4 will be used for
stiffness matrix computation.

To apply optimization algorithms for finding the optimal fixture of a given
object, we need to parametrize the set of all possible finger arrangements,
which is called the contact configuration space. For a planar fixture, it may
be natural to parametrize each finger location by its scalar distance from a
reference point along the object’s boundary. However, three- and four-finger

equilibrium fixtures of polygons can be parametrized in a more convenient
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form. Based on a parametrization of the contact c-space, the stiffness matrix,
and hence the quality measure, become parametrized. Optimization algo-
rithms can then be developed to find the parameter values corresponding to

the optimal fixture.

5.4.1 Three-Finger Stable Equilibrium Fixtures

When a polygonal object is fixtured by three frictionless fingers, each finger
must lie on a different edge of the object. Therefore, we can consider triplets
of edges. A triplet of edges is said to be admissible if the inward-pointing
normals to these edges positively span the plane. We need only consider
admissible edge-triplets because of the following properties that characterize
equilibrium fiztures by three frictionless fingers. The contact normals must
positively span the origin, and the lines collinear with the contact normals
must be concurrent, i.e., intersect at a common point. We discard three-finger
fixtures where a finger is placed at a vertex and simultaneously contacts two
edges, since such fixtures are weak in strength and cannot be modelled by the
Hertz model and other realistic contact models.

We now invoke the computation method as described in Chapter 4 to com-
pute the stiffness matrix of three-finger equilibrium fixtures. In the following
lemma which is proved in Appendix B.2.1, N; denotes the unit normal to an
edge of B at the i*" contact, pointing into B and specified in Fg. Further,
k; = fl(6;(qo)) where the compliance function f; corresponds to a general
(linear or nonlinear) contact model. Also recall that the circumsérz’bing circle
of a triangle is the circle which passes through the triangle’s vertices (Figure

5.3).

Lemma 5.4.1. Let three disc fingers of radius r hold a polygonal object B on
an edge-triplet in a frictionless equilibrium fixture. Choose the origin of the

body frame Fp at the concurrency point of the lines of the contact normals.
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. circumscribing circle
.. ofradiusa
i edgeof B™

X

______________________

Figure 5.3: Three fingers on an triplet of edges.

Then for a general contact model, the fixture is stable and its stiffness matriz

is given by

3
K =diag(> kNN, u) where = fr(2a{ +7). (5.10)

i=1

In the expression for u, fr is the total preload, given by fr = Z?;l fi(6:(q0));

3 s .
a is the radius of the triangle’s circumscribing circle; and { = %flmﬂ is

5=18in oy

determined from the triangle’s three interior angles, denoted o; (1 =1,2,3).

It follows from this lemma that the collection of stable equilibrium fiztures
associated with a given admissible edge-triplet can be parametrized by the posi-
tion of the concurrency point of the contact normals. Such concurrency point
positions form a bounded convez polygonal region, denoted S, which can be
obtained by intersecting three strips orthogonal to the edges, as shown in Fig-
ure 5.3. Moreover, the lemma asserts that K is block-diagonal when Fg’s
origin is at the concurrency point of the contact normals. Since this property
uniquely characterizes the center of compliance (Equation (5.6)), the concur-

rency point is at the fixture’s center of compliance. Thus, the two eigenvalues
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of the 2 x 2 matrix Ki; = Zle k;N;N{" are the translational stiffnesses 04,09,
and y is the rotational stiffness of the fixture.

The parameters oy,09, and p must be positive so that K is positive def-
inite. In the parameter y = fr(2a{ + r), a and r are positive constants,
while ¢ is a positive constant in compressive fixtures where the fingers push
towards the concurrency point®. Assuming the usual case of a compressive
fixture, p is positive when fr is strictly positive. The condition f7 >0 implies
that the fixture must be preloaded for stability. We therefore assume that fr,
and hence f;(6;(qo)), have specified positive values for all possible finger place-
ments. This is a reasonable assumption, since in practice one often wishes to
compare different fixtures corresponding to a common preloading level deter-
mined by the task specifications and material strength requirements. Under
this assumption, p is a positive constant on a given admissible edge-triplet.

We finally perform an order-of-magnitude analysis of y by comparing the
ratio u/I? with o;, where [ is B’s characteristic dimension. First degenerate
edge-triplets are excluded in which the three edges are almost parallel to each
other. Typical edge-triplets are non-degenerate, and inspection of the matrix
K, reveals that its eigenvalues o; and oy are of the same order of magnitude
as the stiffness coefficients k; = f;(d;(go)). This condition can be written as
0; ~ kj. According to (5.10), u/l* = fr(2a¢ + r)/1?, where fr ~ k;6;(qo).
Thus, (1/12)/0; ~ p/k;I? ~ 8;(q)(2a¢ + 7)/1%. Since { < 1/4, a/l ~ 1 and
8;(q0)/l < 1, we have (u/1%)/o; ~ §;(q0)/l < 1. Therefore,

l% <o (5.11)

This relationship is true for a general contact model, and will be useful in com-

3¢ is negative in expansive fixtures where the fingers push away from the concurrency
point.
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puting the stiffness and deflection quality measures for three-finger fixtures.

5.4.2 Four-Finger Stable Equilibrium Fixtures

Having characterized three-finger fixtures, four-finger fixtures of polygons will
now be considered. Since a four-finger fixture of a polygonal object involves
three or four edges, we can consider all four-finger placements on triplets and
quadruplets of edges. The following parametrization of four-finger fixtures on
a particular edge combination will prove convenient to be used in optimization
algorithms. Let O be the origin of F5 and let e; be the edge containing the i
contact. Then the i** contact is parametrized by the signed distance, denoted
54, from O to the line containing the i*" contact normal. In other words, s; is
the moment of the unit normal N;, specified in a body frame Fp, with respect
to O. A point s = (s1, 82, S3, S4) specifies a particular placement of four fingers,
and the collection of all four-finger fixtures on a given edge combination is a
bounded convex polytope, denoted P, in R4

If a fixture in P is an equilibrium fixture, its stiffness matrix can be com-
puted from Formula (4.13), which is expressed in terms of body-coordinates
in Appendix B.1. Depending on whether the first-order term in the stiffness
matrix is positive definite, the fixture may be first- or second-order stable. It
can be shown that for a polygon fixtured by four disc fingers, the second-order
effects are small compared with the first-order effects. This implies that the
optimal fixture is expected to be first-order stable. Thus, optimal fixture plan-
ning can focus on the set of first-order stable fixtures in P. Thislsubset of P
is characterized in the following lemma, which is proved in Appendix B.2.2.
In the lemma, h; = (N;,s;) is the wrench generated by N;, which can be
interpreted as a unit force, and d;(s) = det([hs+1, hita, hiys]) (mod 4).

Lemma 5.4.2. An arrangement s € P of four fingers on a polygon B forms

a first-order stable equilibrium fizture if and only if di(s), —da(s), ds(s) and
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—d4(8) are all nonzero and have the same sign. To the first order, the stiffness

matriz in this case approzimately takes the form

S kiNiNF S kisilN;
S kisiNF S kis?

K= (5.12)

where N is the inward unit normal at the i contact, k; = f](6;(q0), and the

function f; represents a general (linear or nonlinear) contact model.

The lemma implies that the collection of (first-order) stable equilibrium

fixtures is the union D = D; U Dy, where

Dy =PN{s€R": di(s), —da(s),ds(s), —da(s) <0}, (5.13)
P N {S € R4 d1( ) —dg(S),dg(S), —d4(8) > 0} . (514)

We observe that each function d; is linear in s. Hence, each D; is a bounded
convez polytope in R*. For a given edge combination we may separately search
the convex polytopes D; and Ds for the optimal finger arrangement.

Finally, consider the computation of the principal stiffnesses. By defi-
nition, the translational stiffnesses o; are the eigenvalues of the submatrix
Ky = E?zl kis;NF, where K1; has been computed from (5.12). The rotational
stiffness is given by pu = Ky — K, K T'Ky5. Substitution of the Submatrices
K; given in (5.12) yields

st — stlNT ZkNNT stz (5.15)

Unlike the case of three-finger fixtures, y, along with o; for a four-finger fixture
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is a complex function of s when a nonlinear contact model is used. This is
because in that case k; = f/(0;(go)) will generally depend on s. To simplify
the optimization problems to follow, we will assume, for four-finger fixtures of
polygons employing a given edge combination, each contact is represented via
a compliance function that is linear in the overlap: f;(d;) = k;d;, where each
elasticity constant k; is constant on a given edge. Under this assumption, the
translational stiffness parameters o; become constants for all stable equilibrium
fixtures on the given edge combination. In the mean time, it can be shown
that u(s) is a non-negative quadratic function of s. That is, the quadratic

part of p(s) is positive semidefinite.

5.5 Maximum-Stiffness Fixtures of Polygons

Having properly characterized three- and four-finger stable equilibrium fix-
tures, we are now in a position to consider maximum-stiffness fixtures, i.e.,
fixtures that maximize the stiffness quality measure. While our optimization
procedure is based on overlap-based compliance computation, it is important
to note that the stiffness quality measure is valid with stiffness matrices com-
puted from general contact models, which may or may not take into consider-

ation friction effects and possibly non-local deformations.

5.5.1 Maximum-Stiffness Three-Finger Fixtures

As characterized in 5.4.1, three-finger equilibrium fixtures on a give admissible
triplet of edges of a polygonal object can be parametrized by the concurrency
point of the contact normals. Moreover, when the total preload fr is specified,
the rotational stiffness u is a constant regardless of the position of the concur-

rency point. According to (5.11), u/I* < o; for a non-degenerate edge-triplet.
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Since pmax/l ~ 1, the equivalent stiffness p., as defined in (5.7) satisfies

_ P _ (HyPmax\2 .
Hea =" (R () <o

It follows that min{oy, 02, fteg} = Heq, and therefore

2a( +r

2
Pmax

Qstisf = fr : (5.16)

The quality measured is dominated by the equivalent rotational stiffness in the
case of three-fingered fixtures because such fixtures are highly “translationally”
stiff about the concurrency point.

In (5.16), the numerator is constant for a given admissible edge-triplet.
Hence Qgtify is maximized when pZ . is minimized. It is important to note
that this observation holds for general contact models since formula (5.16) is
based on general contact models. This observation also agrees with intuition,
since the fixture with the smallest ppn,, generates the smallest deflection of B
due to a unit torque, which means that the fixture has the largest equivalent
rotational stiffness about the concurrency point. To compute the fixture which
minimizes p2 . on a given edge-triplet, we parametrize the equilibrium fixtures
on the edge-triplet by the coordinates of the concurrency point, denoted p. The
domain of p is a convex polygonal region S as shown in Figure 5.3. Thus for
each p € S there exist finger placements such that p is the concurrency point of
the contact normals. Let ppmax(p) be the distance from p to the farthest vertex
of B. Then p2,.(p) = max{|lv; — p||*} over the vertices vy, ..., v, of B. It can
be verified the p2, (p) is a convex function. Since the region S is convex, the
minimization of p2, (p) over S is a standard convexr minimization problem,

which can be solved by efficient e-approximate algorithms in O(nloge) steps
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[112].

Example 5.5.1. When B is a triangular object, the minimizer of p2 ,, over S,
and hence the maximum-stiffness fixture, can be determined graphically. First
find the smallest disc which contains the triangle. Let py denote the center
of this disc. As shown in Figure 5.4(a), if the region S contains the point po,
then the optimal concurrency point is at py. Otherwise, py lies outside S. It
can be shown that in this case B is necessarily an obtuse triangle, and py is at
the midpoint of the triangle’s longest edge. The region S is a parallelogram
determined by the other two edges, and the optimal concurrency point is at
the center of the smallest disc which contains B, such that the disc’s center lies
in S. It can be shown that this is the point where the half-line which starts
at po along the perpendicular bisector of the longest edge first intersects the

region S. This scenario is shown in Figure 5.4(b).

Figure 5.4: Maximum-stiffness three-finger fixtures of two triangular objects,
in which the geometric center lies (a) inside S and (b) outside S.

To compute the globally maximum-stiffness fixture, we have to evaluate
(5.16) on the admissible edge-triplets of B. Inspection of (5.16) reveals the
following characteristics of the globally optimal fixture. In (5.16), while the
total preload fr is taken to be the same for all edge triplets, the quanti-
ties a and ( are different for different edge triplets. Therefore, whether the
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maximum-stiffness fixture on a given edge-triplet is the global optimum over
all edge-triplets depends on the distance ppax, as well as the shape (charac-
terized by ¢) and the size (characterized by a) of the triangle determined by
the given edge triplet. For the quality measure to assume a large value, pmax
is preferred to be small, while a and ( are preferred to be large. A large value
of a generally means that the fingers spread apart in the fixture. It can be
verified that the shape parameter ¢ is bounded by ¢ < 1/4, with equality
holding for an equilateral triangle. Thus, the edges in the triplet are preferred
to be oriented evenly. In the ideal case, the edges form an equilateral. It is
important to note that the parameters pmax, a, and ¢ combine to determine
the fixture quality; a single parameter alone is not sufficient for this purpose.
These observations will be illustrated in two examples. In the examples, the
limiting case of zero finger radii is assumed for simplicity. Further, the center
of the smallest disc containing B is called the geometric center of B, and the

radius of the disc is called the radius po of B.

ometric .
b

. center /

A

Figure 5.5: Maximum-stiffness three-finger fixtures of an polygon.

Example 5.5.2. Consider the maximum-stiffness three-finger fixturing of the
polygonal object whose convex hull is a regular hexagon. The geometric center
and radius of the polygon are given by the center and radius of the hexagon’s
circumscribing circle. Hence, py = b. We consider two edge-triplets (es, €3, €3)

and (eq4,es,€5). These two edge combinations determine two congruent tri-
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angles, for which the combined effect on Q¢ of shape and size is given by
al = —‘;/1_—3-6. The optimal concurrency point of the triplet (eg, ez, e3) coincides
with the geometric center. Thus, pmax = po and Qstify = %g(ibz) for this fix-
ture. On the other hand, the optimal concurrency point of (es, €4, e5) lies on
the line of symmetry of B, at a distance %gb from the geometry center. For this
finger arrangement, it can be shown that p2,, = $36% and Quupr = %(%ﬂ)
We see that while the triangles associated with the two edge-triplets have the
same shape and size, the different distance of the optimal concurrency point

from the farthest vertices of B lead to different quality measure values. Con-

sequently, the optimal fixture on (ey, e, €3) is better than the optimal fixture

on (eq, es, €g).

L €3

tric ¢

enter

Figure 5.6: Maximum-stiffness three-finger fixtures of a quadrilateral.

Example 5.5.3. Consider the maximum-stiffness three-finger fixture of the
quadrilateral shown in Figure 5.6. The vertices of the quadrilateral have coor-
dinates (0, 0), (b,0), (0.7b,0.6b) and (0.15b,0.45b) with respect to the frame
shown in the figure. The radius of the quadrilateral is pg = 0.5154b, and
the geometric center is located at (0.55,0.125b). For the admissible edge-
triplets (e1, e2,e3) and (ey, eq, €4), the maximum-stiffness finger locations are
shown in the figure. The concurrency points of these fixtures both coincide
with the geometric center. However, the combined effect of shape and size is

al = 0.1376b for (ey, e, e3), and al = 0.1664b for (e, ez, e4). Consequently,
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these fixtures have different quality measure values. For the maximum-stiffness
fixture on (e1, eg, €3) we have Qgipp = 1.0359 fr/b, while for the optimal fixture
on (e, e, e4) we have Qqirp = 1.2526 fr/b. The optimal finger arrangement

on (ey, e, e4) gives the global maximum-stiffness fixture of this object.

5.5.2 Formulating the Maximum-Stiffness Four-Finger

Fixture Problem

We now turn to maximum-stiffness four-finger fixtures of polygons. The opti-
mization problem is formulated in this section, which is followed by a technique
for solving the optimization problem and then by several examples.

In considering maximum-stiffness four-finger fixtures, k; = const is as-
sumed, while stiffness parameters o; and p are parametrized in Section 5.4.2.
Therefore, for a particular edge combination, o; are constant regardless of the
contact parameters s;, while p(s) is a non-negative quadratic function. To
compute the stiffness quality measure, we also need a formula for the equiva-
lent stiffness e, = 11/ P2 ax, Where prmay is the distance from the fixture’s center
of compliance to the farthest vertex of B. Let p denote the fixture’s center
of compliance. Then according to (5.6), p = JKi;' K13. Substituting for Kj;
given by Lemma 5.4.2 yields:

4 4
p(s) = JO kNN kisiN;,
i=1 i1

which is linear in s. Now, p2_. (p(s)) = max{|lv; — p(s)||*} where vy, ..., v,
are the vertices of B’s convex hull. Since p(s) is linear in s, 2, (p(s)) is the

maximum of n positive definite quadratic functions in s. The maximum value
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of the quality measure Qq;yy is given on a particular edge combination by

Qstiffzmin{al’@» max {ﬂm}}’

s€D1UD2 P (P

where D; and D, are given by (5.13) and (5.14), respectively.

Before presenting an optimization procedure, we mention some character-
istics of the maximum-stiffness four-finger fixture on a given edge combination.
First, Omin = min{o1,0,} is constant on a given edge combination, and the
formula Q55 = min{oy, 0y, teq} indicates that Qsiifr < Omin ON & given edge
combination. Hence, if in the course of maximizing pe,(s) some s* is found such
that f1eg(8*) > Omin, this s* is necessarily the optimal finger arrangement on the
given edge combination. Second, oy is the smallest eigenvalue of the matrix
Ki = 4 kiN;N7. Hence Quuifs < Omin < & tr(Xi; kiNiNF) = § Y11 ki,
where tr(-) is the trace operator. To improve this bound, the contact nor-
mals N; are preferred to be evenly oriented. In particular, if the material
constants are uniform with k; = k, then omin < 2k, and equality holds
when the contact normals are 90 ° apart, namely, the edge combination forms
a rectangle. Next we discuss the parameters that influence pe(s). Since
peg(8) = p(8)/p2ax(p(s)), the parameter ppmqx is desired to be small while p
is preferred to be large. But u is the fixture’s rotational stiffness about the
center of compliance, and is given by p = Zle k;52, where 3; is the i*" con-
tact’s moment about the center of compliance. Thus, for x4 to assume a large
value, each |3;| is desired to be large. This indicates that the fingers should
spread apart as much as possible with respect to the center of compliance. To
summarize, for a fixture to have good stiffness quality, it is preferred that the
edges be evenly oriented to make oy, large; that the fingers spread apart with
respect to the center of compliance to make u large; and that the distance from

the fixture’s center of compliance to B’ farthest vertex be small to make pmax
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small. These parameters combine to determine the maximum-stiffness fixture.

5.5.3 Computation of Global Maximum-Stiffness Four-

Finger Fixtures

Section 5.5.2 formulated the problem of optimal four-finger fixturing of a polyg-
onal object in terms of a collection of subproblems in which pey(s) = % is
maximized over D, where 1 and f are positive semidefinite quadratic func-
tions with f(s) > 0 whenever s € D, and the domain D is a convex polyhedral
subset of R%.

We are interested in finding the global maximum of pe.(s) over D. While
Ueq is @ nonconvex and strongly nonlinear function whose global maximum
may in general be very difficult to find, there is a technique that guarantees to
find the global optimum. The technique is presented as follows, and is proved

in Appendix B.3. Define a scalar function ¢: R — R by

P(t) = Igleag #(t, s),

where ¢(t,s) = u(s) — tf(s). The following lemma indicates that the maxi-
mization of y(s) over D is equivalent to the computation of the unique zero

of this scalar function.

Proposition 5.5.1. The scalar function (t) is strictly monotonic decreasing
and has a unique positive zero. In addition, mazimizing peg(s) over D is
equivalent to finding the zero of ¢ in the following sense. A positive number
t* > 0 satisfies Y(t*) = 0 if and only if t* = maxsep feg(s). In this case, a
contact configuration s* € D mazimizes ¢(t*, s), regarded as a function of s,

over D if and only if it mazimizes peq(s) over D.

It follows from this proposition that the maximization of fe(s) over D
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is equivalent to solving for the unique root of the scalar equation ¥(t) =
0. Note that to evaluate 1) at some t, we need to maximize a quadratic
function of s, which is in general indefinite, i.e., the matrix associated with
the quadratic term in this function has positive and negative eigenvalues.
Indefinite quadratic programming (IQP) is unfortunately NP-hard, and the
known algorithms are exponential in the number of variables. For example,
References [44,163] describe an indefinite quadratic minimization algorithm
which takes O(! (ﬂi—'}:—l))p) steps, where m is the number of variables and p
the number of negative eigenvalues of the quadratic objective function. In
this bound, [ is the time it takes to solve a convex quadratic optimization
problem of the same size, which is O(nloge) where n is the number of linear
constraints in the polytope D. Since in our case m = 4 and p < 4,‘the number
of steps is linear in the number of constraints, with a somewhat large constant
determined by the dimension m = 4. Thus, given m being small, our approach
provides a practical procedure which guarantees to find the global optimum at
a reasonable computational cost despite the strongly nonlinear and nonconvex

nature of the stiffness quality measure.

5.5.4 Examples of Maximum-Stiffness Four-Finger Fix-

tures

In the following examples point fingers with uniform elasticity constants k; = k

are assumed for simplicity.

Example 5.5.4. Figure 5.7 shows a rectangular object B of size 2a<2b. When
B is fixtured by four fingers, each finger must contact a different edge of B. The
contact normals are 90° apart, and o, achieves its upper bound: omin = 2k
for all finger arrangements. Now consider the equivalent rotational stiffness,

feg = i/ Phax- Given any equilibrium fixture of B, the lines of the contact
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Figure 5.7: Four-finger fixtures of a rectangular object, with the maximum-
stiffness fixture shown in solid circles.

normals form a rectangle, which is called the fizture rectangle to distinguish
it from the rectangular object. It can be verified that the fixture’s center of
compliance is located at the center of the fixture rectangle [114]. Moreover,
the rotational stiffness is given by u = 2k(5? + 33), where 5; and 35, are the
half-length and half-width of the fixture rectangle. Clearly, when the fingers
are placed at the ends of the object’s edges with 5, = a and 5 = b as shown
in the figure, p achieves its maximum value: p = 2k(a® + b?). Indeed, this
fixture obeys the rule that the fingers should spread apart with respect to the
center of compliance. Also, the center of compliance for this fixture coincides
with B’s center of symmetry, and the distance from the center of compliance
to B’s farthest vertex is minimized: pPpax = Va2 + 2. This indicates that
the same finger placement also maximizes the equivalent rotational stiffness:
leq = 1/ Phax = 2k. It follows that the finger arrangement shown with solid

circles is the globally optimal fixture, with maximal value of Qgry = 2k.

Example 5.5.5. Figure 5.8 shows an isosceles triangle whose base edge is of
length 2b and whose legs form an angle 2. We focus on the placement of two
fingers on the base edge (called base fingers), and one finger on each side edge
(called side fingers). Using Lemma 5.4.2, oin = 2k cos o?, which is constant
for all the equilibrium fixtures on this edge combination. We now discuss the
maximization of p., = p/p%. It can be shown that for any placement of a

base finger at an interior point of the base edge, there exists an alternative



Figure 5.8: Four-finger fixtures of an isosceles triangle.

placement of a higher y., value, such that both base fingers are located at the
base’s endpoints. Thus we may restrict our attention to finger arrangements
where the base fingers are at the endpoints of the base edge.

Let A be the intersection point of the side fingers’ force lines. By symmetry,
we need only consider finger arrangements in which the point A lies in the right
half-plane bounded by the line of symmetry ¢, (Figure 5.8). Let z denote
the distance between A and ¢,. With the stiffness matrix computed from
Lemma 5.4.2, it can be shown that u/k = 24 + 222 sin? /(1 + sin’ ), and
that the center of compliance is located on the same horizontal line as the point
A, at a distance z sin? a/(1+sin? o) from ¢ (Figure 5.8). Now consider a fized
value of z, i.e., the side fingers move in a way such that the point A, along
with the center of compliance, is at a fixed distance to the line £,. Then fi, is
maximized as the center of compliance moves onto the bisector of the left side
edge, since with y a constant, this minimizes pmax for the given z. Thus, we can
focus on the following one-parameter family of fixtures: the intersection A lies

on the ray £,, which originates from the center of the triangle’s circumscribing

sin? o tan o )

circle and is oriented relative to the base edge at an angle 8 = tan™!( Cw

(Figure 5.8). As z increases, u(z) and pmax(z), both increasing, compete to
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determine the variation of e, (z) = w(z)/p% (). It can be shown that when
a < 27.5°, pe,(z) is maximized at © = 0 with e, (0) = 2k sin® 2a; otherwise,
Peq(z) is maximized at x = b. The fixture given by = 0 is intuitively good:
the leg fingers are symmetric and the corresponding contact normals intersect
at the center of the circumscribing circle. The fixture with = = b is discarded
because it does not form an equilibrium fixture*. While p.4 is not maximized
at £ = 0 when o < 27.5°, it can be shown that peq(0)/pe () = 0.95 for all
0° < a < 90°. Hence, the intuitively good fixture given by x = 0 precisely or
approximately maximizes p., for all values of o. To summarize, since fi¢,(0) =
2ksin®2a > omin a8 @ > 30°, the intuitive fixture with x = 0 is optimal as
a > 27.5°, with Quisr = 2kcos’a for a > 30° and Quusr = 2ksin® 2o for
27.5° < a < 30°. The fixture with x = 0 is approximately optimal with
Qstips = 2k sin® 2a when a < 27.5°.

/.. geometric center,
center of compliance

b e |
SN L
e e :
S it E
~ -

b
Figure 5.9: Global maximum-stiffness fixture of a quadrilateral.

Example 5.5.6. In the previous examples, the symmetry of the objects al-
lowed analytical analysis of the optimal finger arrangement. For a general
polygonal object it is necessary to use the numerical procedure" outlined in
Proposition 5.5.1. This example considers the maximum-stiffness four-finger
fixturing of the quadrilateral used in Example 5.5.3 for the three-finger case.

Recall that the vertices of this quadrilateral have coordinates (0,0), (b,0),

4Note that the positivity of the principal stiffness quality measure does not imply that
the fixture is in equilibrium, since the positive definiteness of the stiffness matrix can be
formally computed even for a non-equilibrium fixture and may still be positive definite.
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(0.7b,0.6b) and (0.15b,0.45b), and that the geometric center has coordinates
(0.5b,0.125b). By considering all feasible edge combinations we can find the
maximum-stiffness fixture associated with each combination, and further de-
termine the globally optimal fixture, which is shown in Figure 5.9. For this
fixture, omin = 1.684k and p., = 1.882k, hence Qgry = 1.684k. In addition,
the center of compliance of this fixture coincides with the geometric center
of the object. Therefore, the optimal finger arrangement maximizes p, by
minimizing pmax, and by spreading apart the two fingers on the base edge to

allow p to assume a large value.

Summary:

This chapter described the principal translational and rotational stiffnesses of
compliant fixtures and grasps, and used them to define the frame-invariant
stiffness quality measure. The quality measure is defined as the smallest of
these parameters, where the rotational stiffnesses are made comparable with
the translational stiffnesses based on the equivalence of elastic energy and the
fixtured object’s maximal displacement. This quality measure applies to both
two- and three-dimensional compliant fixtures modelled by general compliance
models and employing any number of fingers. The stiffness quality measure
was applied to maximum-stiffness fixtures of polygonal objects by three and
four fingers. In each case the qualitative properties of the optimal fixture
were characterized, and efficient algorithms were developed for graphically or
numerically finding the optimal fixture. The examples of maximum-stifiness
fixtures were intuitively effective, which indicates that the quality measure is
potentially useful in practical applications. While the stiffness quality measure
uses the object’s maximal displacement to scale the principal rotational stiff-
nesses, it does not directly assess the object’s deflection. Such assessment may
be desirable in practice since workpiece deflections often have a direct impact

on manufacturing tolerances. The deflection quality measure addresses this
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issue and will be discussed in the next chapter.
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Chapter 6

Minimum-Deflection Fixtures and

Grasps

6.1 Introduction

In the stiffness quality measure, the maximal displacement of a fixtured object
was used for the comparison of rotational and translational stiffnesses. How-
ever, the stiffness quality measure does not directly characterize the object’s
deflection in response to work loads. This chapter addresses the evaluation
of fixture effectiveness directly based on object deflections. This considera-
tion has strong practical relevance, since it has been theoretically (Shawki and
Abdel-aal [145]) and experimentally (Hockenberger De Meter [56,57]) shown
that workpiece deflections are a major source of geometric error in machining
operations, and that proper choice of fixel geometry and layout- can signifi-
cantly reduce such deflections.

Menassa and DeVries [103], and Pong, Barton, Cohen [129] considered op-
timal fixturing by minimizing workpiece deformations computed from three-
dimensional finite element analysis. This approach offers excellent accuracy,
but is very time-consuming and expensive. More efficient methods for minimum-

deflection fixture planning are therefore preferred, especially in early planning
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stages when workpiece designs and process plans are frequently modified. To
address this need, a fixture quality measure is defined that characterizes de-
flections of quasi-rigid workpieces.

The deflection quality measure is defined as the norm of the object’s worst-
case displacement due to an external wrench lying in a subset of wrench space,
called task wrench set, which models a set of manufacturing operations. While
it is natural to use the notion of norms to characterize the magnitude of instan-
taneous rigid body velocities and wrenches, the Euclidean velocity and wrench
norms that have been traditionally used vary with choices of reference frames.
Quality measures that are based on Euclidean norms are frame-dependent and
therefore lead to inconsistency in identifying optimal fixtures. We have devel-
oped frame-invariant, physically meaningful velocity and wrench norms based
on the notion of objectivity (Chapter 7). Some of these norms are used in this
chapter, and will be discussed in more detail in Chapter 8.

Two types of task wrench sets will be considered. The first type is rele-
vant to fixturing applications where external wrenches can be applied in all
directions at various magnitudes. In this case, the task wrench set is given in
terms of the unit wrench ball, which consists of wrenches whose norms are less
than or equal to unity. Kirkpatrick, Mishra and Yap [79], Ferrari and Canny
[41], and Teichmann [151] have used wrench norms to define quality measures
for rigid grasps. However, the Euclidean wrench norm used in these works
depend on reference frame location, whereas we use frame-invariant wrench
and rigid body velocity norms. The deflection quality measure defined with
respect to the unit wrench ball can be easily computed, and will be applied to
minimum-deflection three- and four-finger fixtures of polygonal objects.

Task wrench sets of the second type are those that model specific manufac-
turing operations. Since fixtures are often designed for specific manufacturing

operations, work loads that arise from these operations are well-specified. In
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this case, the task wrench sets should model specific manufacturing opera-
tions in an accurate and efficient manner. The deflection quality measure be-
comes task-dependent when applied to such task wrench sets. Task-dependent
quantification of fixture effectiveness has been relatively scarce. Brost and
Peters [16] proposed a quality criterion that is based on the fixels’ maximal
reaction force with respect to specified tasks. Li and Sastry [89] considered a
task-dependent approach to robotic grasping. Modelling tasks by ellipsoids in
the wrench space, they defined a quality measure which is the radius of the
largest task ellipsoid that can be embedded in the set of wrenches resistible
by finger forces up to a given magnitude. While their approach is geomet-
rically interesting and may be appropriate in certain grasping applications,
wrenches that arise from practical manufacturing operations such as metal
cutting generally do not form an ellipsoidal set.

A scheme will be developed for modelling task wrench sets for manufactur-
ing operations. A collection of primitive task wrench sets will first be proposed,
which can be used to model such basic machining operations as 'drilling and
milling. These primitives are then used as building blocks to model more
complex manufacturing operations. This approach offers an accurate and ef-
ficient means to task-dependent minimum-deflection fixturing. In particular,
efficient computation can be performed, without exhaustive consideration of
sample points resulting from discretization techniques, for cutting forces that

move along a family of continuous paths and vary in a range of directions.

6.2 The Deflection Quality Measure

While the stiffness quality measure uses the maximal displacement of a fixtured
object for comparing rotational and translational stiffnesses, the deflection

quality measure defined in this section directly assesses the object’s deflection.
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We first introduce several velocity and wrench norms and pseudo-norms.

6.2.1 Velocity and Wrench Norms and Pseudo-Norms

Characterization of deflections of quasi-rigid bodies entails the use of norms
or pseudo-norms of rigid body velocities and wrenches. While such notions
will be considered in a fundamental and systematic manner in Chapters 7 and
8, for the sake of deflection characterization we introduce a few specific norms
and pseudo-norms that are frame-invariant and have interesting physical in-
terpretations.

Norms or pseudo-norms formalize the notion of length, or magnitude of
vectors in a vector space. A pseudo-norm on a vector space V is a real-valued
function on V that is non-negative, homogeneous and satisfies the triangle
inequality. A norm is a positive definite pseudo-norm. While widely used, the
Euclidean norms of velocities and wrenches, defined by ||d|| = (§7¢)*/? and
lw| = (wTw)?, respectively, unfortunately depend on choices -of reference
frames. Since this drawback will inevitably lead to inconsistent results, we

need to use velocity and wrench norms and pseudo-norms that are frame-

invariant.

The RMS and Maximum Velocity Norms and Pseudo-Norms

Given a body velocity ¢ = (v,w), define a real-valued function by

1dlloms = (/Bz/(r)l'u +wx rfdV)3, (6.1)

where B also denotes the region of R® occupied by the object with respect to
Fg, r represents the location of points in B, v(r) > 0 is a weighting function

satisfying [, v(r)dV =1, and |z| = (z"z)"? for all z € R3. As will be shown
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in 84, ||4|| is a frame-invariant pseudo-norm on the tangent space. Since
|v +w X 7| is the velocity magnitude of the point r, ||¢|| is the root-mean-
square' (rms) of the velocities of B’s points with respect to the weighting
function v(r). Therefore, ||¢|| will be called the rms velocity pseudo-norm. For
example, choose v(r) = > 7, v;0(r — r;), where r; represent a collection of
B’s feature points that are important for manufacturing accuracy, v; > 0 and
Ele v; = 1, and § denotes the Dirac delta function. Then, the rms pseudo-

norm gives the root-mean-square of the velocities of these feature points.

The rms velocity pseudo-norm can be computed from

llrms = (§"M¢)2 where M = /Bv(r) (L5)dv (6.2)

is the weighting matriz. As will be shown in Chapter 8 (Section 8.4), when the
weighting function v satisfies a positive definiteness condition, ||¢|| becomes a
norm, which is called the velocity rms-norm.

The reason for which a pseudo-norm, rather than a norm, ié in general
allowed is that during the execution of manufacturing operations we may need
to monitor the displacements of only a small number of points. For example,
during a drilling operation we may be only interested in the displacement of
the point at which a hole is to be drilled. In this case, certain displacements of
B cause no displacement of the feature point, and are therefore unimportant to
manufacturing accuracy. A pseudo-norm which filters out such displacements
would then be justified.

Now consider a velocity pseudo-norm that gives the maximal displacement
of a set of feature points. Given body velocity ¢ = (v,w), the following is a

frame-invariant pseudo-norm (see 8.4), called the mazimum velocity pseudo-

1When v(r) is the mass density of B, ||¢||2,,, is proportional to B’ kinetic energy. How-
ever, this interpretation will not be used in this chapter.
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norm:
19llmax = max v +w x 7], (63)

where Qg C B is a set of feature points of the object. This pseudo-norm has
an attractive physical interpretation: ||q||max gives the mazimal velocity, or
mazimal instantaneous displacement, of B’s feature points as B has velocity ¢.
When Qp contains at least three non-collinear points, ||¢||max becomes a norm
and will be called the mazimum velocity norm.

The computation of the maximum velocity pseudo-norm is discussed in 8.4
for general objects, and is considered below for an object B where the convex
hull of its feature-point set 2p is a polyhedron. Let Iy be an index set for the
polyhedron’s vertices. For a body velocity ¢ = (v,w), the velocity of a vertex
1 € Iy with body coordinates r; is u; = v — Fw. Hence, ]uz|2 = ¢TA;Gq where

A; = [I3 —7]"[I3 —T7i], and
141120 = max §* Ag. (6.4)
iely

In most applications, the displacements of the points in the fixtured object
B are very small. Thus, a displacement of B can be approximated by a tan-
gent vector ¢. The pseudo-norm ||¢|| then indicates the size, or length, of the
displacement, and measures how far B is displaced from its original location.
Motivated by this observation, we define ||g|| as the deflection of B correspond-
ing to the displacement ¢. In particular, ||¢||.ms is called the rms-deflection,

and ||¢||max the maz-deflection of B.
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The RMS Wrench Norm

We now introduce an interesting wrench norm which is discussed in 8.4 in more
detail. Let the weighting function v satisfy the positive definiteness condition
of Definition 8.4.1. Then the weighting matrix M, as given by (6.2), is positive
definite and ||¢||ms becomes the rms velocity norm. A frame-invariant wrench
norm, called the wrench rms-norm, can be induced from this velocity norm by
[w™

wigl e TqOSE(3)} = (w” M~ w)V2. (6.5)

1Glrms

Ik, = sup{

The rms-norm of a body wrench w = (f, 7) acting on B has the following
physical interpretation that explains the name of the norm. Imagine that
w is generated by a distributed pure force, denoted f(r) where r € B, with
respect to the given weighting function v. That is, f = [pv(r)f(r)dV and
7 = [pv(r)r x f(r)dV. Denote by D, the set of such distributed forces such
that for each f in D2, the integral [, v(r)|f(r)|?dV is finite. Then

fwl... = mf{/ Pifr)Pav)t: fe D),

Therefore, ||w],,,, is, with respect to the weighting function v, the greatest

rms
lower bound for the root-mean-square of the magnitudes of distributed forces

that generate w.

6.2.2 The Deflection Quality Measure

Based on frame-invariant velocity and wrench norms as well as the notion of
object deflection, this section presents a frame-invariant fixture quality mea-
sure that characterizes the worst-case deflection of the object in response to

work loads. Similar to the stiffness quality measure, we focus on stable fiztures
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with positive definite stiffness matrices.

To consider the deflection of a candidate fixture of a workpiece BB, assume
that the wrench acting on B belongs to a compact subset of the wrench space
Tx SE(3). This subset of the wrench space, denoted W, is called the task
wrench set for the fixture. The forces generated by a given set of manufacturing
operations, such as machining, assembly and inspection, can be modelled by
a task wrench set. The assumption that task wrench sets are compact is
justified since practical manufacturing forces always have finite magnitude.
In the simplest case, task wrench sets can consist of only a small number of
wrenches. For example, in a perfectly performed drilling operation, the task
wrench set contains a single wrench consisting of a torque and a thrust force.
However, task wrench sets are in general much more complex, and typically
contain an infinite number of wrenches. Section 6.3 considers constructing
task wrench sets in terms of building blocks that can be efficiently computed.

When a wrench w € W is applied to a fixtured object B, an infinitesimal
displacement of B is generated according to the relationship ¢ = Cw, where
C = K! is the fixture’s compliance matrix. The deflection corresponding to
this displacement is ||g||, determined from a velocity pseudo-norm described
above. The effectiveness of the fixture can be quantified by the following

quality measure:
Aw = sup |Cw||. (6.6)
weW

This quality measure, called the deflection quality measure, characterizes the
worst-case deflection of the workpiece under the action of any wrench that lies
in the given task wrench set. Clearly, since deflections are desired to be small,
a fixture that has a small value of Ay is considered effective.

Suppose that in a fixturing application a tolerance ¢ is given, i.e., the de-
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flection of the object, when measured in terms of a velocity pseudo-norm |||,
must not exceed €. The deflection quality measure Ay has three interesting
applications corresponding to this specified tolerance. First, if a set of man-
ufacturing operations is modelled by a task wrench set W, then the quality
measure can be used for design verification: the candidate fixture is valid if
Aw < €. Second, the quality measure can be used to determine the load ca-
pacity of a given fixture. Suppose that a set of manufacturing applications can
be modelled as W = {aw : w € Wy, 0 < @ < Qmax}, where W, is a nominal
task wrench set and ap.x represents the load capacity. Then the tolerance

requirement implies that

a sup [|Cwl| <,
weWy

which determines the maximal capacity of work loads that can be safely ap-

plied to the fixture:

€
~ SUPyew, |Cwl

amax

The third application of the quality measure is optimal fixturing. Suppose that
a set of fixtures is parameterized by a vector s € P. Thus, the compliance
matrix takes the parametrized form C(s), and the optimal fixture can be found

among the given set of candidates and verify its validity:

min sup |C(s) w| < e
$€EP weWw

The computation of the deflection quality measure for general task wrench

sets will be discussed in 6.3. Here we consider the case where the task wrench
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set is taken to be the unit wrench ball: W = {w € T; SE(3) : |w| < 1},
where ||-|| is a wrench norm. Assume that in (6.6) a velocity norm, rather than
a pseudo-norm, is used. Then the deflection quality measure can be written

as

A = sup{lCw] s w € T, SE®), lwl <1} = sup {I5l - w € T3,5m(3)

Since C = K~! where K is the fixture stiffness matrix, using change of vari-

ables w = K¢ in the above formula leads to Ay = 1/Qge; Where

Quen = mi{IKal - 4 € T5E®), il < 1 =int {124l g e TsB@)

(6.7)

Because of the simple relationship between Qgesi and Aw, Qqepr Will also be
called the deflection quality measure, as suggested by the notation. Clearly,
an effective fixture is expected to have a large value of Qgef;. Provided that
frame-invariant norms are used, they are both frame-invariant.

While Ay, with W taken to be the unit wrench ball, characterizes the
worst-case deflection of the object under the action of wrenches lying in the
unit wrench ball, Qg is the worst-case magnitude of the restoring wrench
corresponding to all displacements lying in the unit displacement ball. How-
ever, it is important to note that the velocity and wrench balls are in general
not Euclidean spheres in R®. Corresponding to frame-invariant norms, these
balls are frame-invariant in the sense that regardless of choices of reference
frames, the boundary points on these balls always have unit norm. This is to
be distinguished from previous works (e.g., [41, 79, 151]) on quality measures

for rigid grasps, where frame-dependent wrench balls were used.
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In practice, one first computes the stiffness matrix K, and then obtains
the compliance matrix C by inverting K. Therefore, when W is taken to be
the unit wrench ball and deflections are computed in terms of a velocity norm,
the deflection quality measure formulation (6.7), which defines Q4 in terms
of the unit velocity ball, is more convenient. In the remainder of this section
we compute Qg using the velocity and wrench norms introduced in 6.2.1.

First consider the computation with the rms velocity and wrench norms,
in which case Qges; characterizes the worst-case rms-deflection of B over the
rms-norm unit wrench ball. Denote the smallest eigenvalue of a symmetric
matrix A by Amin(A). From (6.2) and (6.5) we have ||¢|lyms = ¢"M¢, and
1Kl = FEM1Kq. Letting z = M'/2§, we can rewrite (6.7) as

s . (KQTMY(Kg) . . aTK%
Qdeﬂ“qlenﬂ?fﬁ 4T Mg _xlgufﬁ Tz

where K = M~Y2KM~1/? is called the scaled stiffness matriz. Thus, for the
rms velocity and wrench norms, the quality measure is given by the smallest

eigenvalue of the scaled stiffness matrix K:

Qdefl = Amin(K). (6.8)

Next compute Qg.s; With respect to the maximum velocity norm and
wrench rms-norm. The use of the maximum velocity norm allows the quality
measure to indicate B’s worst-case max-deflection, which is just the maximal
displacement of B’s body points. While computing Qg.s; with the maximum
velocity norm is complicated for general objects, the formula (6.4) allows effi-

cient computation for objects with polyhedral convex hulls. Using this formula
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and the wrench rms-norm formula (6.5) yields

Qfl 1= inf 4 : :
T er® maxyer, T A ielv geR®  GTAiG

Introducing the change of variables y = M~Y2K¢ yields

1

Quest = (max Amax(MEK L ALK~ M7)) 2.
iely

Thus, Qqges: can be efficiently computed from a collection of eigenvalue prob-

lems for 6 X 6 symmetric matrices.

6.3 Representation of Task Wrench Sets

To plan optimal fixtures for manufacturing operations, forces that arise from
manufacturing operations must be modelled in an accurate and efficient fash-
ion. A natural approach is to use appropriate subsets of the wrench space
to represent such manufacturing forces. This section proposes several primi-
tive task wrench sets which accurately represent manufacturing forces while
possessing reasonably simple geometry to allow efficient computétion. Using
these primitive wrench sets as building blocks, we will be able to represent

more complex manufacturing operations.

6.3.1 Primitive Task Wrench Sets

We now consider the building blocks for task representation: primitive task
wrench sets. In developing such wrench sets, one needs to bear in mind that
the forces arising from a manufacturing operation typically vary in both mag-

nitude and direction during the manufacturing process, and that it is usually
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difficult to precisely determine these forces. For example, in the milling op-
eration illustrated in Figure 6.1, the cutter exerts a force on the workpiece.
While the magnitude of the cutting force can be estimated from machining
power, the direction of the force is difficult to determine. Thus, the force may
be assumed to lie in the sector (shown in the figure), which moves along the
cutting path with the cutter. To study the effects of machining operations on
the fixture, it is in general necessary to consider all conceivable positions and
directions of the cutting force. While a discrete set of positions and directions
can be considered [16], this approach can be computationally costly, in par-
ticular for three-dimensional fixtures. Therefore, it is desirable to develop a
procedure for conveniently modelling task wrench sets. The modelling of tasks
for robotic grasping was considered by Li and Sastry [89] using ellipsoids in
the wrench space. We propose using different types of primitive wrench sets

whose adequacy for workpiece fixturing is based on the following observations.

cutter

part

Figure 6.1: Cutting force in a milling operation.

First consider assembly fixtures, which are also known as assembly pallets.
As a fixtured part hits a motion stop during its transfer from station to station,
it will be quickly decelerated. Due to this deceleration, the part is subjected
to an inertial force acting at the center of mass. Thus the task wrench set is
simply a collection of known pure forces.

Next consider fixtures for machining purposes. As shown in the milling

example given above, machining operations exerts a wrench, which in general
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consists of a force and a torque, on the workpiece. Due to uncertainties,
the wrench may not be completely known, and in general varies as the cutter
moves. However, the force component of the wrench can often be considered to
be in a given range of directions, with known magnitude along each direction.
That is, the force component lies in a given compact set independent of the
wrench’s position. Such a compact set may be conservatively used even when
the magnitude or direction range of the force component changes during the
machining operation. Since the force domain is fixed, the task wrench set is
a subset of the cylinder (interior points included) in the wrench space based
on the fixed force component set. For instance consider the milling operation
shown in Figure 6.1. As shown in Figure 6.2(a), with respect to the frame
Fg, the force domain is a sector given by F' = {(fcos¢, fsing) : ~F < ¢ <
%, 0< f < ps}. The task wrench set is a subset of the cylinder based on F

and is shown in Figure 6.2(b).

Figure 6.2: Task primitive for milling operation.

These observations suggest that we model task wrench sets as subsets of
cylinders in the wrench space, whose base sets are compact sets in the space
of force components. First consider two types of primitive force domains. Let
F5 be a body frame. With respect to this frame, let n be a unit vector,
S ={feR: f7f < p?} asphere, and H = {f ¢ R®: n"f < p.} 2

half-space with boundary normal to n, where p; > 0, p, € R and o € [0, 7] are
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constants. A force domain F is said to be of Type I-8D if FF = SNT, and of
Type II-8D if F = HNT, where ' = {f € R®: n"f > |f|cosa} is a circular
cone which is symmetric about n. When n = (0,0,1), i.e., F' is symmetric
about the f,-axis (Figure 6.3), F' is said to be in canonical form. In body
coordinates, F' is independent of the choice of world frame. Since any change
of body frame may only result in a rigid rotation of F, the shape of F' remains

the same for all frame choices.

(a) Type I-3D (b) Type 1I-3D

Figure 6.3: Canonical forms of force domain.

Now consider a general form for primitive wrench sets using body wrenches
in the body frame Fg. A primitive wrench set is a subset of the wrench space

of the form

W={(f, (@) x f+Uf +m) € TLSEB): f€F, £€P},

where ® and VU are appropriately dimensioned constant matrices, 7 is a con-
stant vector and £ € P is a parameter vector. The parameter domain P is
taken as a compact polygonal set. Note that we assume P C R? since cutting
forces can only be applied on the workpiece’s boundary, and that we do not

make any assumptions on the convexity of P.
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Observe that the torque component of a primitive wrench in general con-
sists of three terms. The first term accounts for the contribution of a moving
pure force (P& gives the position of f), the second term gives a torque that
is related to the force component in some specified manner, and the third
term is a constant torque. Specific examples of these terms can be found in
Examples 6.3.1-6.3.4.

Geometrically, a primitive wrench set is a parametrized subset of a solid
cylinder in the wrench space whose base set is /' and whose generators are or-
thogonal to F. This is illustrated in Figure 6.2(b), which shows the primitive
wrench set for the milling operation of Figure 6.1. The following two exam-
ples give some practically useful primitive wrench sets for three-dimensional

workpiece fixturing.

Example 6.3.1. In Figure 6.4 are shown two force cones that move over a
polygonal region in space. The cones are both in canonical form with respect
to the body frame Fp. The parameter domain is a planar region, specified
with coordinate axes &; and &. Then this primitive wrench set is given by
W ={(f, (®&) x f) € Tz SE(3): f € F, £ € P}, where ® = [e1, €] with &

and ey being unit vectors, specified in Fg, along the &; and &, axes.

Example 6.3.2. Figure 6.5 shows a model of drilling operations. In this
model a force of constant magnitude p, and a torque of constant magnitude
p, are aligned along a line £, which lies in a cone as shown. It is seen that the

base set F' is of Type I-3D, and that W = {(f, (o-/p;)f) € T4 SE(3): f € F}.

Now consider the special case of planar fixtures. The wrench space is 3-
dimensional with scalar torque components. The parameter domain P for
primitive wrench sets is now a line segment. The Type I-3D force domain
reduces to Type I-2D (the intersection of a disc with a planar cone), and

Type 1I-3D reduces to Type II-2D (the intersection of a half-plane with a
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Figure 6.5: A model for drilling operations.
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planar cone). Choose canonical forms of F' such that it is symmetric with

respect to the f,-axis, as shown in Figure 6.6.

Jy

— Wb

Pn
(b) Type II-2D

(a) Type I-2D

Figure 6.6: Canonical forms of two-dimensional force domain.

Example 6.3.3. As shown in Figure 6.7, two task primitives are given where
a force sector and a force cone, both in canonical forms, move along a line
segment P, respectively. Then in the frame Fp, the primitive wrench sets are

of the form W = {(f, ée x f) € R®: f € F, £ € P}, where e is a unit vector

(b)

Figure 6.7: Planar force cones moving along a line segmént.

along P.

Example 6.3.4. Figure 6.8 shows a model of drilling operations for planar

fixtures. This primitive wrench set takes the form W = {(f,7a) € R®: |f] <

Pr}-



135

Figure 6.8: A model for drilling operation in planar case.

We have thus far defined a collection of primitive task wrench sets that can
be used to model basic manufacturing operations. The following subsections
use the primitive task wrench sets to compute the deflection quality measure
as applied to given manufacturing operations. These primitive sets will also be
used to verify whether under work loads the workpiece and fingers in a fixture

can maintain proper contact and satisfy material strength requirements.

6.3.2 Deflection Quality Measure and Contact Main-
tainability Condition

Section 6.2.2 defined the deflection quality measure (Equation (6.6)), where
workpiece deflections were represented in terms of pseudo-norms of rigid body
velocities. The maximum velocity pseudo-norm defined in Equation (6.3) gives
the maximal displacement of the workpiece’s feature points. This physical
meaning is very attractive in practical fixturing applications, and will therefore
be used in the task-model based deflection computation.

The deflection quality measure will now be reformulated with respect to
the maximum velocity pseudo-norm in a form more convenient for task-model
based computation. Corresponding to a rigid displacement ¢ = (v,w), the
displacement of a point r € Qp, where Qg is B’s feature-point set, can be
written as 4, = v+ w X r = D,q, where D, = [-7, I]. Thus, in response to a

task wrench w € W, the displacement of r is u,(w) = D,Cw, where C is the
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fixture compliance matrix. The deflection quality measure (Equation (6.6))

can thus be written as

Aw = max max fu,(w)| = max max |u, (w)].

Assume that Qp, the feature-point set of B, contains only a finite number
of points in the object. This is a reasonable assumption since in practice
manufacturing accuracy can usually be monitored in terms of a finite number
of feature points. Under this assumption, we can for each r € {lp focus on
maxypew |Ur (w)|, which is the maximal displacement of r with respect to all
wrenches in the task wrench set W.

During a manufacturing process, we also need to ensure that the workpiece
and fingers maintain proper contact. In terms of overlap-based compliance
modelling, the overlaps must remain non-negative, and must not be excessively
large so as to satisfy material strength requirements. From theory of strength
of materials [154], for a material to remain elastic, the mazimum shear stress
in the material must not exceed the material’s yield stress. From Chapter 4,
the maximum shear stress in the contacting bodies can be expressed as a
function of the overlap. It follows that the allowable overlap, which is the
maximal overlap allowed by material strength, can be determined from the
contact geometry and material properties.

Now consider the approximation of the overlap at each contact when the
fixture is under work loads. When the object undergoes a small displacement
¢ away from an equilibrium configuration go, the change of the overlap at the
i*h contact is approximately V&7 (go)g. Note that when ¢ is given in body co-
ordinates, V;(qo), which can be interpreted as a wrench, should also be given
in body coordinates. In response to a task wrench w, the overlap at the ith

contact is approximately 8;(qo) + Ad;(w), where 6;(qo) is the preloading over-
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lap (when w is not applied), and Ad;(w) = V7 (go)Cw. For the object and
fingers to maintain proper contact and satisfy material strength requirements,

the following condition must hold:
0 < 5@'((]0) + Aé,(w) < 5mam’ (69)

where 0,,42; is the allowable overlap for the contact.

6.3.3 Formulation Using Primitive Wrench Sets

In order to allow efficient computation of the deflection quality measure and
contact maintainability condition with respect to given manufacturing opera-
tions, efficient representation of manufacturing forces is needed. This can be
achieved by modelling the task wrench set in terms of primitive wrench sets.

Let W be a given task wrench set, and let W71, ... ,W,, be primitive wrench

sets
Wi = {(fi, (®:&) x fi + Uifi +70,) € TR SE@3) : f; € F;, & € P},

expressed in the intermediate body frames Fgy, ... ,Fan, displaced from Fg
by ¢1, ... .gm, respectively. We say that W is modelled by W; if for each
w € W, there exist w; € W; such that

w=>Y_ Ad ", (6.10)
i=1

where the transformation rule (3.7) has been used to express w; with respect

to the body frame Fp. Thus, the task wrench set is given by a primitive
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wrench set, or the Minkowski sum of several primitive wrench sets.

To compute the deflection quality measure, we can focus on computing
maXyew |u,(w)|, or equivalently, maxyew |u,(w)|?, where u,(w) = D,Cw,
for a particular point r € 25. Let w be given in terms of primitive wrenches
by (6.10), where each w; is determined by its force component f; € F;
and parameter vector § € P;. The displacement u,(w) depends on f =
(fi,..., fm) € F=F x---x Fyand (&,...,6n) E P=P x--- x Py,. By
using the structure of primitive wrench sets, u,(w) can be rewritten in the

form
ur(£,6) =D Ail&) fi +b(6) =D Zi(f;) &+ y(f),
=1 i=1

where A;(&), b(€), Zi(fi), and y(f) are matrix- or vector-valued functions.
It follows that |u,|* is a convex function when either f or £ is fixed. Since
the maximum of a convex function is achieved at an extreme point of the
convez hull of its domain, |u,(f,&)|” achieves its maximum at an extreme
point of the convex hull of P when f is fixed. Now, maxyew [ur(w)|> =
max e maxeep |ur(f, €)[*. Thus, the global maximum of |u,|* can be obtained
by finding its maxima with respect to f for each of the vertices of the convex
hull of P. Let &, denote such a vertex, and consider ¢(f) £ u,(f, &). Dropping
for brevity the argument & from A; and b;, which are now constant, we can

focus on maxser |(f)|?, where
- ZAi fi +o. (6.11)
i=1

Now consider the computational verification of the contact maintainability

condition (6.9) with respect to all wrenches in the task wrench set. For this
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purpose we need to determine whether the following inequalities hold at each

contact:
d(qo) + min AS(w) >0 and 6(q) + max AS(w) < Smaz,

where the contact-indexing subscript have been dropped for simplicity. Recall
that Ad(w) = n"Cw, with n = V§(qo), is the overlap change at the 5" contact.
Therefore, we need to find the maximum and minimum of the overlap variation
Ad(w) over the task wrench set.

When the task wrench set is modelled by the primitive wrench sets W,
... ,Wp, according to (6.10), we have Ad(w) = 37, n"C Ad,” w;, ie., Ad is
linear in w;. This fact allows the use of a formulation similar to that of the
deflection quality measure. We can again focus on a particular vertex & of the

convex hull of the composite parameter domain P, and maximize or minimize

Y(f) £ AS(f, &) given by
W(f) =D _hfi+e (6.12)
=1

where h; and c are determined by &p.

Since ¢(f) is convex quadratic and ¢(f) is affine, the maximizers of ¢(f), as
well as the maximizers and minimizers of ¥(f), belong to ext(F) = ext(Fy) x
.+ x ext(Fy,), where ext(F) and ext(F;) are the set of extreme points of F
and F;, respectively. Each ext(F;) can be partitioned in the form ext(F;) =
F,u E, where F; is a discrete set and E a continuous set. Suppose that fi,
is an element of F;. Then for maximizing ¢(f) over {fi,} x E X eee X ﬁm,
the function may be recast as ¢(fa, ..., fm) = Do Ai fi + (A1 f1, + b). By

reasoning along this line, we can ignore the discrete sets F; without loss of
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generality and focus on maximizing ¢(f), or maximizing and minimizing ¥(f),
over Fvl X e X f’m. Now, consider the typical form of the sets 1?'z Let F; be a
primitive force domain described in Section 6.3.1. Then F} is either a circular
arc or a spherical patch with a circular boundary, and is determined by the

following two constraints:

fifi=ps, and nif; > pscosay, (6.13)

where all the quantities except f; are constant.

6.3.4 Extreme Overlap Variations

To find extreme overlap variations, we need to find the maximum and mini-
mum of the function ¢ defined in (6.12). Since % is an affine function of f,
and the constraints f; € }NQ and f; € E are independent when ¢ # j, the
maximization or minimization of 1 can be carried out by maximizing or min-
imizing each component linear function t;(f;) = hYf; over F;, whose typical
form is given by (6.13).

The solution can be found in a straightforward way. Note that the maxi-
mizer or minimizer of v;(f;) subject to the constraint that fi f; = p?i is given
by fi = £(ps;/|hil)hi. If f} satisfies the inequality in (6.13), then it is the
solution over Fj, with the optimal value of 9; given by ¥i(f¥) = £p,|hil.
On the other hand, if f; does not satisfy the inequality constraint, then the
maximizer or minimizer of 1; must occur on the boundary of ﬁ’i, which is
a circle (for three-dimensional force domains) or consists of two points (for

two-dimensional domains), and can be easily found.
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6.3.5 Maximal Particle Displacements

To find the maximal displacement of a particle of B with respect to a given
task wrench set, we need to find the maximum of the function ¢(fi,..., fm),
as defined in Equation (6.11), over F} X - - X Foy.

Since ¢ is a convex quadratic function, whose maximum over F, deter-
mined by the constraints (6.13) remains maximal over the region determined
by fffi < ,012. ;and nf f; > p;; cos ;. Thus, we need to solve a convex quadratic
mazimization problem subjected to multiple convex quadratic constraints. Sev-
eral algorithms have been developed for such optimization problems (e.g., [8]),
and can be used to find the global maximum of ¢(f).

We now discuss the following important special case where the task wrench
set is modelled by a single task primitive. In this case, we wish to maximize
#(f) = |Af + b|* over F which is given by the constraints that f7f = p? and
n*f = p;cosa.

The maximization problem affords a particularly simple solution when the
force domain is planar (f € R%). The constraints in this case can be param-
eterized by f = (cos@,sin )T, where 6 € [—a, a]. For maximizing ¢(f), it is

necessary that (Af +b)T2(Af +b) =0, ie.,

(—a7 sinf + a3 cos 6)(a; cosf + agsinf + b) = 0,

where A = [a1, ay]. Substituting sin @ = (1—¢2)/(1+¢*) and cos§ = 2t/(1+¢?)
yields a quartic equation in ¢, which can be solved to find the maximizer of ¢.

Now consider the case where f € R3. If the maximizer of ¢ lies on the
boundary of ﬁ, i.e., the inequality constraint for F holds as an equality, then
the technique for the two-dimensional case can be invoked since F’s boundary

is a circle. Thus, it remains to consider the case where ¢ is maximized at
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an interior point of F and the inequality constraint is inactive. Omitting the
constant term, ¢ can be rewritten as ¢(f) = % fTGf +d* f, where G = 2ATA
and d = 2A7b. The global maximizer of ¢ over F is a local (but not necessarily
global) maximizer of ¢ over the sphere f7f = p?. These local maximizers can

be determined by the following stationarity conditions:

(G—pl)f+d=0 and f7f=p3

where 1 > 0 is an undetermined Lagrange multiplier. Let U be an orthogonal
matrix such that D = UAUT, where A is a diagonal matrix whose diagonal
entries are the eigenvalues of D. Introducing change of variables x = U” f and

letting ¢ = —U"d lead to

(A—pl)z=c and z"z=pl _ (6.14)

The solution of these equations is discussed in the following three possible
cases for the value of . Without loss of generality, ¢ # 0 is assumed.
Case 1: p is not an eigenvalue of D. Since A — ul is invertible, we

have z = (A — pI)~!c. Thus,

(A — pI) e = p?, (6.15)

which is a 6% order polynomial equation and can be easily solved.
Case 2: p is a distinct eigenvalue of D. Suppose that u = \; where

A; is a distinct eigenvalue of D. Note that this is possible only if ¢; = 0. In



143

this case, z; = ¢;/(Aj — A;) for all j # i. It follows that

which determines z; provided that

2

cs
2
Z O\ _J/\Z.)2 S Py

i

Case 3: p is an eigenvalue of D with multiplicity k¥ > 2. Without
loss of generality, assume that g = A; = --- = A;. This is only possible if
c1 = --- = ¢ = 0. In this case, z; = ¢;/(\; — A1) for all j > k+ 1. We split =
into the form z = (y”, §7)%, where § contains the 3 — k known components.
Let us write n™f = nU z = r"y + . Provided that §7§ < p?, we may seek
y € RF such that

yy=p>—4"9 and rTy+v20. (6.16)
This is equivalent to the following convex quadratic minimization problem:
o =min{y"y: "y +~ = 0}.

It is easily verified that the problem (6.16) admits a solution if o < p%, and

has no solution if o > p2.

Example 6.3.5. We illustrate our approach by a planar fixture. Figure 6.9(a)
shows a planar part of thickness 1/4 inches fixtured by four fingers. The part
is made of AISI 1040 steel, with E = 200 x 10°Pa, o, = 413 x 105Pa and
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Figure 6.9: Task primitive for milling operation.

v = 0.3. The machining tasks involve removing 1/8 of an inch using a side
mill along the edges AB, CD and GH so that AB is accurately parallel to
CD and GH. The cutting force is estimated at 341 Newtons [118], lying in a
sector which moves along the edge being machined. The fingers have spherical
tips of uniform radius 2 inches, and are placed on the edges AC, BH, and EF
(each of EF’s endpoints contact a finger). For demonstration we focus on the
milling force acting on the edge AB, and consider the variation of the deflection
quality measure Ay as the fingers F and F5, aligned vertically, move along the
edges AC and BH. Preload the fixture, for all finger arrangements, such that
the maximum shear stress near the contacts is 70% of the steel’s yield stress.
Using the Hertz contact model to compute the stiffness matrix (Chapter 4),
we found that the fixture satisfies the contact maintainability condition for
all cutting force positions and directions if the fingers F; and Fy are placed
such that £ < 3.68 inches. As shown in Figure 6.9(b), when x decreases
from this value, the deflection quality measure, defined using the vertices A
and B as feature points, assumes a monotonically decreasing value, indicating

improvement of fixture quality. Thus, of the fixtures we consider, the best one
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is given by placing the fingers F; and F; at A and B, respectively, with Ay =
2.4 micro meters. This agrees with the intuition that the fixture arrangement

best restrains the displacement of the edge AB.

6.4 Minimum-Deflection Fixtures of Polygons

This section applies the deflection quality measure to minimum-deflection fix-
turing of polygonal objects by three and four frictionless fingers. For simplic-
ity we use the quality measure Qg as defined with respect to the velocity
rms-norm and wrench rms-norm. The overlap-based compliance computation
scheme, as applied to three- and four-finger polygonal fixtures in Section 5.4.1,
will be used. But it should be noted that the deflection quality measure, for-
mulated either in terms of Ay or Qgefi, is valid for all well-defined norms
or pseudo-norms, and for fixtures by any number of fingers with compliance
represented by any contact model that is based on the quasi-rigid body as-
sumption.

With respect to the rms velocity and wrench norms, the quality mea-
sure Qs characterizes B’s worst-case rms-deflection due to a unit rms-norm
ball of wrenches, and can be computed from Qes1 = )\min(f{' ), where K =
M-Y2KM~/2 is the scaled stiffness matrix. Given any weighting function
v(r) for a planar object, there exists a unique point, called the centroid of the
object, such that when the body frame is based at this point, the 3 x 3 weight-
ing matrix is diagonal: M = diag(1, 1, p2), where p, = ([gv(r)|r|*dV)¥?,
called B’s radius of gyration, is a purely kinematic quantity.

Recall that a planar fixture has a unique center of compliance, about which
there are two translational stiffnesses o; < o9 and a rotational stiffness .
The parameters were computed for three- and four-finger polygonal fixtures in

Sections 5.4.1 and 5.4.2. Since Qges: is frame-invariant, we can conveniently
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choose a body frame Fp that simplifies the computation of Qgesi. Let Fp's
origin coincide with B’s centroid. Let p, = (§,7) be the coordinates in Fp of
the fixture’s center of compliance. With a proper choice of Fp’s orientation,

the scaled stiffness matrix can be cast in the following form:

o1 0 —on
f? === 0 09 o'2g , (6.17)
—o1 oof A4 02€% + 0177

where £ = £ /pe, T =1/ pe, and @t = p/p?. With this formulation of the stiffness
matrix, we can proceed to consider minimum-deflection three- and four-finger

fixtures.

6.4.1 Minimum-Deflection Three-Finger Fixtures

Recall from 5.4.1 that when a polygonal object is fixtured by three frictionless
fingers, each finger must lie on a different edge of the object. Therefore, triplets
of edges can be considered. Hereafter we focus on a particular admissible edge-
triplet. Let the body frame Fp be chosen such that the scaled stiffness takes
the form (6.17). Since the contact normals have constant directions for the
edge-triplet, the scaled stiffness matrix K of all fixtures on the edge triplet can
be written as (6.17) in the same frame Fp. Using this formula, the deflection

quality measure can be computed from the following lemma.

Lemma 6.4.1. For three-finger stable equilibrium fixtures modelled by a gen-
eral contact model, the deflection quality measure with respect to the rms ve-

locity and wrench norms is approximately given by

_ Y
Qaet = 2t
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where p = (€2 + n?)Y/? is the distance between the concurrency point and B’s

centroid.

Proof. Decompose the scaled stiffness matrix into the form K = I?l + I?z,

where

g1 0 —Ulﬁ

K, = 0 09 0o ,

—o7] 09€ 09E% + 01T

and K, = diag(0,0,7). Recall from (5.11) that u/I*> < ;. Since po/l ~ 1,
we have I = u/p? < 0;. Therefore, K, can be viewed as a small perturba-
tion to Ki. Now, K is positive semidefinite with 0 as a distinct eigenvalue
and (7, —£, 1) a corresponding eigenvector. Using Lemma A.3.1 (which com-
putes perturbations to matrix eigenvalues), 11/ (E2+72+1) = p/(0 + p?) is
approximately an eigenvalue of K.

Now, it can be shown that regardless of the values of E and 7, the nonzero
eigenvalues of K 1 are no less than oy, the smaller translational stiffness. Ac-
cording to Lemma A.3.1, these eigenvalues are also perturbed to give the
remaining two eigenvalues of KX, and the perturbations are bounded by || Ka]|,
which is much smaller than o;. It follows that p/(p? + p?) is actually the

smallest eigenvalue of K. Cl

Now consider minimum-deflection three-finger fixtures on a particular triplet
of edges. Recall that the set of three-finger equilibrium fixtures can be para-
metrized by the concurrency point of the contact normals. The concurrency
point, denoted p, lies inside a convex polygonal region, denoted .S, formed by
intersecting three strips whose bounding lines are perpendicular to an edge
and pass through the edge’s endpoints (Figure 5.3). For a general contact

model, u is a constant regardless of the concurrency point position as long as
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fixtures with different positions of p have the same specified total preload fr.
In addition, p,. is also constant after a weighting function is chosen. Therefore,
in the quality measure formula given in Lemma 6.4.1, p is the only variable
that changes with p. It follows that Qg.s is maximized for the edge triplet
when p(p), the distance between the concurrency point and B’s centroid, is
minimized.

The problem of finding minimum-deflection fixture on a given edge-triplet
reduces to minimization of p?(p) for all p € S. Thus, in the optimal finger
arrangement, the concurrency point is as close to the object’s centroid as
possible. It follows that the optimal finger arrangement can be identified
graphically. First, find the region S as shown in Figure 5.3. Second, find
the centroid of the object with respect to a given weighting function v. If
the centroid lies in S, then it is the optimal concurrency point. Otherwise
the centroid lies outside S. Since S is a polygonal region, we can efficiently
compute the closest point in S to the centroid. This point either lies on an

edge of S or is a vertex of S.

Example 6.4.1. The minimum-deflection fixture of a triangle can be deter-
mined graphically, as shown in Figure 6.10 by solid circles. The region S,
which is the set of concurrency point positions that form equilibrium fixtures,
can first be determined. When the centroid lies inside this region, the opti-
mal concurrency point coincides with the centroid as shown in Figure 6.10(a).
When the centroid falls outside S, a perpendicular line can be drawn through
the centroid to the closest boundary edge of S. The resulting intersection gives
the optimal concurrency point, as shown in Figure 6.10(b). For comparison
the maximum-stiffness fixtures in Example 5.5.1 are also shown in the fig-
ures by regular circles. While p is minimized for minimum-deflection, pmax is
minimized for maximum-stiffness. This explains why the minimum-deflection

fixtures are determined by the location of B’s centroid, and the maximum-
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stiffness fixtures by that of B’s geometric center.
— > geometric
center

Figure 6.10: Minimum-deflection three-finger fixtures of two triangular ob-
jects, for which the centroid lies (a) inside S and (b) outside S.

We now discuss the characteristics of the global minimum-deflection fixture
over all admissible edge-triplets of a polygon. While 4 is a constant for a par-
ticular edge-triplet, it varies with different triplets. When fr is specified, u is
influenced by the shape and size of the triangle determined by each edge triplet.
Thus, the distance p is desired to be small for minimum-deflection, which is
in contrast to pmax being preferred to be small for maximum-stiffness fixtures
(Section 5.5.1). In addition, as is similar to maximum-stiffness fixtures, both
the size parameter a, which is the radius of the triangle’s circumscribing circle,
and the shape parameter ¢, which is determined from the triangle’s interior
angles, are preferred to be large for achieving minimum-deflection. Therefore,
in the globally optimal finger arrangement, the fingers spread apart, and the
edges in the triplet are oriented evenly, while the concurrency point is as close
to B’s centroid as possible. The parameters p, a, and ¢ combine to determine
the fixture quality; a single parameter alone is not sufficient for global optimal-
ity. The following two examples will be used to illustrate these observations.

Again, the limiting case of zero finger radii will be taken.

Example 6.4.2. Consider the minimum-deflection three-finger fixturing of

the polygonal object of Example 5.5.2. Choose a weighting function v(r) =



Figure 6.11: Minimum-deflection three-finger fixtures of a polygon.

§0(r — r;) where r; are vertices of B’s regular hexagonal convex hull. Then
the centroid coincides with the center of symmetry of the hexagon, and the
radius of gyration is p, = b. We focus on the edge combinations (e, ez, e3)
and (eq, €5, €5), which determine two congruent triangles with a{ = ‘/Tgb. The
optimal concurrency point of the triplet (e, ez, e3) coincides with the centroid.
Hence, p = 0, and for this fixture we obtain Qg1 = @(J;l) For (e, e4, €5), the
optimal concurrency point lies on the line of symmetry of B at a distance p =
?b from the centroid. Therefore, it can be computed that Qus = %(‘%)
Thus, while the triangles associated with the two edge-triplets have the same
shape and size, the different distance of the optimal concurrency point from
B’s centroid makes the optimal fixture on (es, e, e3) better than the optimal

fixture on (ey, s, €5).

Example 6.4.3. Consider the minimum-deflection three-finger fixture of the
quadrilateral shown in Figure 6.12(a), which was also used in Example 5.5.2.
Choose a weighting function v(r) = (1/4)6(r — r;) where 7; are the ob-
ject’s vertices. Then p. = 0.4857b, with the centroid having coordinates
(0.4625b, 0.2625b). For the admissible edge-triplets (ey, e, €3) and (e1,€9,€4),
the minimum-deflection finger locations are shown in the figure. The concur-
rency points of these fixtures both coincide with the centroid. However, the

edge triplets have different geometry and size. For the fixture on (ey, es, €3),
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Figure 6.12: (a) Minimum-deflection three-finger fixtures of a quadrilateral,
and (b) comparison of global minimum-deflection and maximum-stiffness fix-
tures.

al = 0.1376b, and therefore Qges; = 1.1665f7/b. For the fixture on (e, ez, e4),
a¢ = 0.1664b, and Qges; = 1.4105fr/b. It is concluded that the optimal fin-
ger arrangement on (ey, €g, e4) is the global minimum-deflection fixture. For
comparison the global minimum-deflection and maximum-stiffness fixtures are

shown in Figure 6.12(b) in solid and regular circles, respectively.

6.4.2 Formulating the Minimum-Deflection Four-Finger

Fixture Problem

Now consider minimum-deflection four-finger fixtures of polygons. Similar to
the maximum-stiffness case, we first formulate the optimization problem, and
then describe a technique for finding globally optimal fixtures. Finally, several
examples will be presented for demonstration.

As discussed in Section 5.4.2, finding the optimal fixture of a polygon can
be performed over all four-finger placements on triplets and quadruplets of
edges. On a particular edge combination, the set of stable equilibrium fixtures
is parametrized by the parameter vector s consisting of the moments of the
unit contact normals about Fg’s origin, and is characterized by Lemma 5.4.2.
For simplicity k; = const is assumed when Lemma 5.4.2 is used to compute the

fixture stiffness matrix. Then, the stiffness parameters oy < o2 are constant
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for all finger placements s on the edge combination. Consequently, with Fg
based at the object’s centroid and properly oriented, the scaled stiffness takes
the form (6.17), in which f, ¢ and 7 depend on s. The deflection quality
measure is given by Qe = Amin(K (5)).

It is instructive to make some qualitative observations on the characteristics
of the optimal fixture associated with a given edge combination. We first

introduce the following lemma.

Lemma 6.4.2. On a given edge combination, the stiffness quality measure

has the following upper bound:

Quaefi(s) < min {o7, ;%%S)—Q},

1/2

where p, is B’s radius of gyration and p = (£2 + n?)'/2 the distance between

the firture’s center of compliance and B’s centroid.

Proof. For any z = (1, s, 73) € R3, we have oK = o1(x1 — 733)? + 09 (T2 +

€x3)? + fiz2, and

Taking z = (7, ~¢, 1) and z = (1,1,0), and using the formulas £ = £/ pe,
7 =mn/p. and i = p/p? complete the proof. O

Based on this lemma, we can first observe that (g5 can never exceed the
constant o;. Since o; is the smaller eigenvalue of Kj; = Z?;l k;N;NT, the
contact normals are preferred to be evenly oriented to increase o;. In par-
ticular, if the stiffness constants are uniform, i.e., k; = k, then o1 < 2k, and

o1 = 2k precisely when the contact normals are 90° apart. Second, recall
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that p(s) = Zle k;3:(s)%, where 3;(s) is the moment of N; about the center
of compliance. Thus, u, and hence the bound in Lemma 6.4.2 increase mono-
tonically with |3;|. This indicates that the fingers should spread apart with
respect to the center of compliance, so as to make |5;| large. Finally, as p, the
distance between the fixture’s center of compliance and B’s centroid, increases,
the upper bound decreases monotonically. Thus, p should necessarily be as
small as possible, and most desirably, should be zero. The optimal fixture is

therefore determined by the trade-off among these three factors.

6.4.3 Computation of Global Minimum-Deflection Four-

Finger Fixtures

From the characterization of four-finger stable equilibrium fixtures, the max-
imization of Qges(s) can be performed over a collection of bounded, convex
polytopes. Let D be one of such polytopes. Then, each s € D represents
a stable equilibrium fixture. We now present a procedure for maximizing
Qaefi(s) = Amin(K(s)) over D. For a parameter t € (0,1) define the following

scalar function:

»(t) = max((t, s) — (1~ t)oy,
where ((t,8) = n(s) + (1 — T_—oﬁ)azé@(s) + (1 = 1o17?(s). The follow-
ing proposition, which is proved in Appendix B.4, indicates that the scalar

function 9 can be used to characterize the global maximum of Amin (K (5)).

Proposition 6.4.3. The scalar function v is strictly monotonic increasing in
the interval (0,1). Moreover, mazimizing Amin(K) is equivalent to finding the

zero of ¥, if any. Specifically, either of the following two cases must be true.
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(1) There exists a unique scalar t* € (0,1) such that ¢ (t*) = 0 if and only if
#* satisfies the condition maxeep Amin(K(s)) = (1 —t*)o1. In this case,
s* € D mazimizes ((t*, s), regarded as a function of s, if and only if it

mazimizes Amin(K(3)).

(2) for the function v in the interval (0, 1) if and only if maXsep Amin(K(5)) =
o1. In this case, for any fized t € (0,1), any global mazimizer s* of
C(t,s) satisfies the condition (1 —t)o1 < )\min(k(s*)) < oy. Hence, a

global mazimizer of Amin(K (s)) can be found by letting t — 0.

Thus, to find the optimal finger arrangement over the region D, we may
equivalently seek the zero of the scalar function . This function is evaluated
at a given value of ¢ by maximizing the function ((t,s) over all s € D. Since
£l (s), 7i(s) are linear and [i(s) is quadratic, the function ((t, s) for a fixed ¢ is
a generally indefinite quadratic function. Thus, to find its maximum we need
to solve an indefinite quadratic program. As discussed in Section 5.5.3, while
indefinite quadratic programming is difficult for problems of large size, it can
be efficiently solved for the current fixture optimization problem since there
are only four independent variables. The significance of this approach is that
it guarantees to find the global maximum of Amin(K (), a non-convex and

non-differentiable function of s, at a reasonable computational cost.

6.4.4 Examples of Minimum-Deflection Four-Finger Fix-

tures

A few examples will now be presented for demonstration. For simplicity, it
is assumed that the fingers have zero radii and the elasticity coefficients are

uniform constants: k; = k.

Example 6.4.4. Consider a rectangle shown in Figure 6.13. Choose a weight-

ing function v(r) = (1/4)é(r —;), where r; are the rectangle’s vertices. Con-
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sider a family of symmetric finger placements where the fingers on the vertical
edges are above or below the z-axis by a distance s;, and the fingers on the
horizontal edges are at a distance s; from the y-axis. Corresponding to such
a symmetric finger arrangement, the fixture’s center of compliance coincides
with B’s centroid, which for the choice of v is precisely B’s center of symmetry.
The scaled stiffness matrix takes the form K = 2k diag(1, 1, (s3+s2)/(a®+b?)).
Hence, as s; = a and s, = b, the quality measure is maximized at Qz.5 = 2k.
In this optimal fixture, the fingers spread apart and are placed at the end-
points of the edges. Comparing with Example 5.5.4, we see that the global
minimum-deflection and maximum-stiffness fixtures are given by the same fin-

ger arrangement.

Figure 6.13: Four-finger minimum-deflection fixtures of a rectangle.

Example 6.4.5. This example considers four-finger minimum-deflection fix-
tures of an isosceles triangle as shown in Figure 6.14. Choose a weighting
function v(r) = (1/3)6(r — r;) where 7; are the triangle’s vertices. Then
p% = 20(3 + cot? ) /9, and the object’s centroid with respect to v is at the
geometric centroid of the triangle, which lies on the line of symmetry at a
height bcot @/3 above the base edge. Choosing a body frame as shown in
the figure, we consider the following family of symmetric finger arrangements.
The fingers on the base edge are at a distance s from the y-axis. The fingers
on the triangle’s two sides are symmetric about the y-axis, and their corre-

sponding contact normals intersect at the centroid. The center of compliance



156

of the resulting fixture coincides with the centroid, and the stiffness matrix is
diagonal: K = k diag(2 cos® a, 2(1 + sin® @), 2s?). The scaled stiffness matrix
hence takes the diagonal form K = diag(2k cos? &, 2k (1+sin® @), 7i(s) ), where
ii(s) = 9ks%/(3b? + b* cot? o). The parameter i achieves maximum at s = b
with 7i(b) = 9k/(3 + cot? @), i.e., the fingers contact the base edge at the end-
points. It follows that when 7 > 2cos®a, or @ > 30°, this finger placement
is optimal, with Qg1 = /\min(}? ) = 2k cos? a. Again, it is seen that the grasp

quality improves as s increases, i.e., the fingers spread apart.

Figure 6.14: Four-finger minimum-deflection fixtures of an isosceles triangle.

Example 6.4.6. This example demonstrates fixturing applications where no
symmetry of objects is available to allow a closed-form optimization analysis
and therefore the numerical procedure outlined in Proposition 6.4.3 must be
invoked. For the quadrilateral that was used in Example 6.4.3, when choosing
again a weighting function v(r) = (1/4)6(r — r;) where r; are the B’s vertices,
the centroid is located at (0.4625b, 0.2625b) with p, = 0.4857b. According to
Proposition 6.4.3, the optimal finger arrangement can be numerically found for
each edge combination. The globally optimal fixture thus determined is shown
in Figure 6.15 in solid circles, and can be compared with the global maximum-

stiffness fixture obtained in Example 5.5.6 shown with regular circles. For this
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minimum-deflection fixture, oy = 1.6838k and oy = 2.3162k, and Qges1 =
1.6838k. It follows that (Q4es; achieves the upper bound given in Lemma 6.4.2.

center of compliance
~, (min-deflection fixture)

_ centroid

geometric center and

center of compliance

(max-stiffness fixture)

Figure 6.15: Four-finger minimum-deflection fixtures of a quadrilateral.

Summary:

This chapter defined the deflection quality measure as the worst-case deflection
of a fixtured workpiece induced by any wrench that lies in a task wrench set.
The deflection quality measure has the following properties. First, the quality
measure, defined in terms of frame-invariant rigid body velocity and wrench
norms, is frame-invariant. Second, the quality measure applies to two- and
three-dimensional compliant fixtures modelled by general compliance models
and employing any number of fingers. Finally, the quality measure directly
characterizes workpiece deflections, and is therefore practically useful in moni-
toring manufacturing tolerances. To allow efficient computation of the quality
measure and verification of contact maintainability, task wrench sets were
modelled in terms of a collection of simple primitive wrench sets that rep-
resent basic manufacturing operations. The utility of the deflection quality
measure was illustrated by its application to minimum-deflection fixtures of
polygonal objects by three and four fingers. In each case the qualitative prop-
erties of the optimal fixture were characterized, and efficient algorithms devel-
oped for graphically or numerically finding the optimal fixture. The promise
of the deflection quality measure is demonstrated by the intuitively effective

minimum-deflection fixtures in the examples. It was also observed that the
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definition of the deflection quality measure makes extensive use of velocity and
wrench norms, which are special cases of kinematic metric functions. In the
next two chapters the well-definedness of metric functions will be addressed,

and frame-invariant norms will be developed.
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Chapter 7

Objective and Frame-Invariant
Kinematic Metric Functions for Rigid
Bodies

7.1 Introduction

This chapter addresses the frame-invariance issue by considering objective
rigid body kinematic metric functions. As discussed by Marsden and Hughes
[99], objectivity is a general principle in mechanics. In particular, this principle
has been used to characterize well-defined constitutive laws [51, 80,99, 140, 160,
167]. The application of the objectivity principle in the context of rigid body
kinematic metric functions allows accurate characterization of well-definedness
conditions for such functions, and offers physical insight into left-, right- and

bi-invariant functions on the space SE(3).

7.1.1 A Motivating Example

To motivate the investigation of kinematic metric functions, and to observe
the undesirable consequences of lack of frame-invariance, consider the follow-

ing example where two candidate fixtures are to be compared. As shown in
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Figure 7.1, a planar object of right triangular shape is compliantly fixtured
by two candidate fixtures, and is subjected to a pure torque due to a drilling
operation. The overall displacement caused by this torque is small and can be
approximated by an instantaneous rigid displacement (or rigid body velocity).
In each candidate fixture, the displacement is approximately an instantaneous
rotation, which is of magnitude 0 < § < 1 and centered at the common inter-
section point of the normal lines to the triangle’s edges at the contacts. We

wish to choose the fixture that allows the smaller displacement.

(b)

Figure 7.1: Two candidate fixtures: (a) Fixture I, and (b) Fixture II.

A notion of “lengths” is needed for comparison of two instantaneous dis-
placements, . Using a body reference frame, a planar rigid body velocity can
be written as a vector § = (v, vy, #), where (v;,v,) is the velocity of the ori-
gin, and # the angular velocity, relative to some stationary reference frame. A

commonly used “length” formula is given by

ldll = 4/v3 + w2 + (60)%, (7.1)

where [ is a characteristic object length that is used to make the rotational
and translational velocities comparable.

Two candidate choices of body frame, Fgz and Fg, are shown in the figure.
With respect to Fg, the body velocities for the two fixtures are given by
g1 = (0,0, 60) with “length” ||¢1]| = 6I, and ¢ = (0, a, §) with “length” ||¢s|| =
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6+/1% + a2, respectively. Since ||g1]| < [|¢z]|, one would conclude that Fixture I
is better.

However, with respect to Fp, the two instantaneous displacements are
represented as ¢, = (0, —0a,6) and g, = (0,0,6), respectively. Now, ||q| =
612 + a? and ||@,|| = 01. Thus ||G,|| > ||@, ||, which indicates that Fixture II is
better! Formula (7.1) is therefore not well-defined: its dependence on choice
of reference frame leads to conflicting conclusions.

To illustrate well-defined measurement of “lengths”, consider the following

“length” formula:

gl = max{y/ (v — 8y)? + (v, + 62)? : (z,y) € B}, (7.2)

where B also denotes the region of R? occupied by the body with respect to
the given body frame. This formula can be interpreted as the maximal dis-
placement of any particle in the body during an infinitesimal motion. Clearly,
llg]|, as the maximal velocity of the body’s particles, is frame-invariant. Ap-
plying this formula to compare the two instantaneous displacements yields
ldill = @]l = 6a and ||g2|| = ||@;]l = 20a. Therefore, with respect to ei-
ther frame, one arrives at the following consistent conclusion: Fixture I allows
a smaller maximum displacement and should hence be considered a better

design. This indicates that Formula (7.2) is well-defined.

7.1.2 Kinematic Metric Functions

The above motivating example considered “lengths” of instantaneous rigid
body displacements. Such lengths can be formalized as one of several types
of kinematic metric functions, whose objectivity (or frame-invariance) is the

main focus of this chapter.
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A kinematic metric function is a real-valued function of configurations,
tangent vectors or covectors; or more formally, it is a real-valued function on
the configuration space or its vector (i.e., tangent and cotangent) bundles.
The following types of metric functions are of practical interest. A distance
metric on the c-space, formalizing the “distance” between two rigid body
locations, is a positive definite function that maps two configurations to a
real number. A norm or inner product on the tangent bundle or cotangent
bundle assigns a norm or inner product to the tangent or cotangent space at
each configuration. It is well-known that tangent vectors formalize rigid body
velocities or instantaneous motions, and covectors formalize generalized forces
or wrenches. Thus, a norm on the tangent or cotangent bundle formalizes the
“lengths”, and an inner product formalizes the “lengths” as well as “angles”
of rigid body velocities or wrenches. While our focus will be on these types of
kinematic metric functions, our formulation applies to functions that are not
distances, norms or inner products. For example, the magnitude and pitch (in
the screw coordinates) of a velocity or wrench may be regarded as kinematic

metric functions as well.

7.1.3 Objectivity Illustrated

As illustrated by the motivating example, kinematic metric functions must be
well-defined so as to give consistent results. When frames are used to describe
rigid body kinematics, the well-definedness condition is manifested in terms
of frame-invariance. However, there is a more fundamental interpretation of
this condition, which is characterized by the notion of objectivity.

The idea of objectivity can be illustrated using norms on the tangent bun-
dle of the c-space. Consider the two instantaneous motions of a triangular
object shown in Figure 7.2. These motions are congruent in the sense that

they can be made coincident by a rigid transformation, and may also be in-
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terpreted as the same instantaneous motion as it appears to the observers
shown in Figure 7.3. Since these two motions should clearly have the same
size, a well-defined tangent vector norm should have the same value for these
two motions. Two tangent vectors, such as these two instantaneous motions,
are said to be equivalent if they can be brought into coincidence by making
their base configurations coincide. A tangent vector norm is objective if it
evaluates to the same value at equivalent tangent vectors. It follows that the
notion of objectivity formalizes the natural requirement that kinematic met-
ric measurement be observer-indifferent. It will be shown in Section 7.8 that
the frame-invariant formula (7.2) is indeed an objective tangent vector norm,

while the frame dependent formula (7.1) is not.

frame #1
velocity: 6(0,0,1) velocity: 0(-a,a, 1)
(@) (@)

Figure 7.2: Two equivalent instantaneous motions.

observer #1

Figure 7.3: Two observers seeing the same motion.
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7.1.4 Overview of the Approach and Resulting Findings

To facilitate the understanding of the formal notions developed in this chapter,
we present an overview of our approach and the resulting findings. The ap-
proach is based on the intrinsically defined configuration space of a rigid body,
which is addressed in Section 7.3 following a brief review of metric functions
in Section 7.2. Key to the intrinsic c-space definition is the differentiation be-
tween three-dimensional Euclidean space, denoted [E3, of axiomatically defined
points, and three-dimensional Cartesian space, denoted R?, of triples of real
numbers. The distinctions between E® and R?® are discussed in Section 7.3.2,
where it is noted that E2 is defined by axioms and involves no use of coordinate
frames. However, as an extra structure, a coordinate frame can be embedded
in E3 to give each point in E* a set of coordinates (Section 7.4.1), and thus
represent F3 by R3. Based on the axiomatic Euclidean space definition, Sec-
tion 7.3.2 defines the configuration of a rigid body, denoted B, as a map that
places B in E3, and the configuration space, denoted C, as the collection of
such maps. This c-space definition is intrinsic in that it involves no coordi-
nate frames. It is also unambiguous in that a given physical location of B
corresponds to a unique configuration. In other words, there is only a single
configuration space for a given rigid body.

While C is different from SE(3), the conventional representation of the
c-space of a rigid body, it can be represented by SE(3) using a reference con-
figuration and a coordinate frame embedded in E®. This representation is
addressed in Section 7.4. The middle ground between C and SE(3) is the set
of rigid transformations on E3, which is denoted §E’(3) and is introduced in
Section 7.3.2. Based on the representation of E* by R? via an embedded frame,
SE(3) can be represented by SE(3) (Section 7.4.2). Since C can be represented
by §E(3) using a reference configuration (Section 7.4.3), one can eventually

represent C by SE(3), as discussed in Section 7.4.4. While the conventional
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representation of C by SE(3) using body and world frames (Section 7.8.1)
offers convenience in practical applications, the representation scheme devel-
oped in this chapter allows conceptual clarity in dealing with objective metric
functions. The diagram shown in Figure 7.4 illustrates how the sets involved

in Section 7.3 are inter-related.

Reference Configuration & Embedded Frame / World & Body Frames

Reference m
C Configuration SE (3 ) Embedded Frame S E(S)

|
1
i
!
\J

______________

| Rigid Rigid

' Transformation Transformation
AT 9 Embedded F
’ *  Configuration ma m rame
LB - E° R®

Figure 7.4: C-space definition and representation diagram.

The notion of objectivity is introduced in Section 7.6 based on the in-
trinsic c-space definition. While C is the configuration space of a rigid body,
Euclidean space E* can be regarded as the “configuration space” of a particle.
This simple analogy suggests that we first consider the notion of objectivity
in E3 (Section 7.5), and then use this case to motivate the notion of objec-
tivity in C. In both cases, the notions of equivalent curves, tangent vectors
and covectors are used to define the notion of objectivity, which formalizes
the natural requirement that metric functions be indifferent to observers who
perform metric measurements (Sections 7.5.1 and 7.6.3).

A metric functions on C (or E®) can be represented as a family of metric
functions on SE(3) (or R?), which are generally different with respect to differ-
ent choices of reference configuration and embedded frame. This is addressed

in Section 7.7 (or 7.5), and is illustrated in Figure 7.5, which visualizes metric
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functions as “rulers”. The “rulers” on SE(3) (or R®) have certain properties
when the “ruler” on C (or E2) is objective. Section 7.5 shows that if a metric
function on E3 is objective, then its representations, or the “rulers” in Fig-
ure 7.5, on R?® are identical. On the other hand, when a metric function on
C is objective, the corresponding metric functions, or the “rulers” shown in
Figure 7.5, on SE(3) are left invariant, and are inter-related via pull-backs by
right translations. These inter-related left invariant functions are in general
not right invariant. However, when they are indeed right invariant, these gen-
erally different functions become a unique bi-invariant function regardless of
choices of reference configuration and embedded frame. That is, the “rulers”
on SE(3), as shown in Figure 7.5, are identical if they are bi-invariant. But
it is important to note that bi-invariance is sufficient, but not necessary, for

objectivity.

-ﬁll ““““““ Metric function on C [on E’]

...~ Different choices of ref. configuration &
embedded frame / world & body frames
[Different choices of embedded frame]

AY
* Metric functions on SE(3) [on R?]

Figure 7.5: A metric function on C (or E3) represented by metric functions on
SE(3) (or R%).

To facilitate practical applications of the objectivity notion, Section 7.8
considers objective functions in the framework of the conventional approach
where the rigid body’s configuration is specified in terms of the location of
a body frame relative to a world frame. The notion of frame-invariance is
clarified by giving it an accurate definition, and show that an objective function
is represented by metric functions on SE(3) which are inter-related precisely

by the frame-invariance condition. In other words, frame-invariant “rulers” on
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SE(3) in Figure 7.5 are equivalent to an objective “ruler” on C.

7.2 Metric Functions on Manifolds

This section briefly reviews the notion of metric functions on manifolds. Recall
from Section 3.1 that a smooth manifold is a generalization of smooth curves
and surfaces in R3, on which tangent and cotangent bundles are also defined.
We begin with the notion of diffeomorphisms on manifolds.

Let f: M — N be a map between smooth manifolds M and N, and let
(¢,U) and (3, V) be charts for M and N, respectively. The local expression of
f with respect to the two charts is the map fi,c = o fod™t: ¢(U) — »(U).
By definition f is smooth if all of its local expressions are smooth. f is said
to be a diffeomorphism if it is a smooth bijection with a smooth inverse.

Let f: M — N be smooth. The tangent map of f at x € M is a map
Tof: TuM — Ty N given by T, f(¢(0)) = (fec)'(0) for any tangent vector
¢(0) € T,M. The tangent map of f is a map Tf: TM — TN that is given
by T, f when restricted to T, M for each x € M. By definition of the tangent
map, if (4, U) is a chart around z, the coordinates of ¢(0) € T, M are given
by T'¢(¢(0)). For smooth functions f and g, the chain rule holds: T(go f) =
TgoTf. Therefore, if f is a diffeomorphism, then T'f is bijective and (T'f)™* =
().

Given a smooth map f: M — N, the transpose of the tangent map T, f,
where z € M, is a linear map (15 f)*: TN — T3 M defined by (TL/)*(6) =
BoT,f. When f is a diffeomorphism, the cotangent of f is defined as a map
T*f: T*N — T*M whose restriction to T; N is given by T f = (T f)*
Thus one can simply write T*f(8) = foTf for any 8 € T*N. Clearly, T*f is
bijective and (T*f)~! = T*(f~'). Moreover, it can be shown that T*(ge f) =
T*foT*q where g: N — P is smooth. If (¢,U) is a chart around z, the
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coordinates of a € T*M are given by T*¢~!(a) = aoT¢™!, a linear functional
on R™.

The following definition introduces the important notion of metric func-
tions on a manifold. In the definition the superscripts s, k and [ denote

Cartesian products of sets.

Definition 7.2.1 (Metric functions on a manifold). Let M be a smooth
manifold. A metric function on M is a real-valued function © on M of the
form ©: M* — R, or a real-valued function ® on the vector (i.e., tangent and
cotangent) bundles of M: for each x € M, ® assigns a function ®, of the
form ®,: (T,M)* x (T:M)" — R. In particular, if ®, is linear in each of its

arguments for each z, ® is called a multilinear function.

In the following we review pull-backs and push-forwards of the above two
types of metric functions, as well as pull-backs and push-forwards of smooth
functions that map a manifold into itself. In Definitions 7.2.2 and 7.2.3, M
and N are assumed to be smooth manifolds, and f: M — N and g: N - M

are assumed to be diffeomorphisms!.

Definition 7.2.2 (Pull-backs and push-forwards of metric functions).
Let © and ® be metric functions defined in Definition 7.2.1. The pull-back of
the function © by g is a real-valued function on N defined by ¢*0(y1, ... ,¥s) =
O(g(y1),-..,9(ys)) for (y1,...,ys) € N°. The push-forward of © by f is a
map f,©: N° — R given by f.© = (f~1)*©. The pull-back of ® by g, denoted

by ¢*®, is a real-valued function on the vector bundles of N defined, for each

1A diffeomorphism is actually not required to define the pull-back of a real-valued func-
tion on a manifold or its tangent bundle. However, only pull-backs defined by a diffeomor-
phism will be considered in this chapter.
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y € N, by

g*q)y(lll, fee 7uk):317 s 713l>
= @44 (Tg(ws), ..., Tg(ug), T*g(By), .., T*¢(B))

where (uy,...,u;) € (T,N)* and (By,...,8;) € (T;N)". The push-forward
of ® by f is defined by f.® = (f1)*®.

In addition to metric functions, the pull-back and push-forward maps can

be defined for a smooth function that maps a manifold into itself.

Definition 7.2.3 (Another Type of pull-backs and push-forwards).
The pull-back of a smooth function ¢: M — M by g is a map g*¢: N — N
defined by g*¢ = g 1 opog. The push-forward of ¢ by f is amap fup: N - N
given by fup = ()" = fopof".

By the definitions of pull-back and push-forward maps, the following lemma

can be easily proved.

Lemma 7.2.1. Let f: M — N and g: N — P be diffeomorphisms between
manifolds. Let U be a metric function on M or a smooth function mapping

M into itself, and let ¥ be a similar function whose domain is associated with

P. Then,
(gof)"V = f*¢*¥ and (gof)¥ = g.f. 0.

Remark 7.2.1. Pull-back or push-forward maps can be used as representa-
tions of functions. Let f: M — N be a diffeomorphism, where M is an
abstract manifold and N a subset of R". While M is not a subset of R” and

a function defined on M may be difficult for direct calculations, the push-
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forward by f of the function can be more manipulable. This is illustrated by

the metric functions in the following simple example.

X
f i X T
o—.‘_’.—.—o

M

Figure 7.6: A diffeomorphism f: M — N.

Example 7.2.1. Figure 7.6 shows a manifold M, which is a unit circle with its
south pole removed. Let s be a non-negative function such that s(pi, ps) is the
length of the arc between the points p; and py in M. Define ©: M x M — R by
O(p1,p2) = 5(p1,p2), and define &: TM — R by ®,(¢(0)) = 1%|t=03(l” ()l
for a tangent vector ¢(0) € T, M which is the velocity of a curve c(t) such that
¢(0) = p. As can be shown, O is a distance on M, and ® a norm on TM,
respectively. Now consider the representation of these metric functions on
the open interval N = (—=, 7) via the diffeomorphism f: M — N defined by
f(p) = z, where z is the signed arc length, positive if clockwise, from the north
pole to p. Let © = f,0 and ® = £,®, which are defined on N and T'N. For
z,21,22 € N and v € TN = R, one has O(x;,73) = O(f1(z1), fHzz)) =
lz1 — T2/, and @, (v) = Pp-1()(TfHw)) = o).

Using the notion of pull-back maps, we can introduce a notion of invariance

of metric functions characterized by the following definition and lemma.

Definition 7.2.4 (f-invariance). Let M be a smooth manifold and f: M —
M be a smooth function. A metric function ¥ on M, of the types given in

Definition 7.2.1, is said to be f-invariant if f*¥ = W.



171

Lemma 7.2.2. Let f: M — M be a smooth function and g: M — N a
diffeomorphism, where M and N are smooth manifolds. A metric function ¥
is f-invariant if and only if ¢V, a metric function on N, is g.f-invariant.

That is, f*U = W if and only if (g.f)*(9:¥) = ¢. V.

We will be particularly interested in invariant functions on Lie groups,
which are briefly reviewed here. A Lie group is a group G (with identity
element denoted by e) which is also a smooth manifold and for which the
group operations (g,h) — gh and g — ¢! are smooth. For every g € G,
define L,: G — G, called a left translation, and Ry: G — G, a right transla-
tion, by Ly(h) = gh and Ry(h) = hg for h € G, respectively. Note that L,
and R, are both diffeomorphisms, with inverses given by (Ly)™' = L1 and
(Ry)™* = Ry-1, respectively. Moreover, left and right translations commute:
Lo Ry = RpoLy,. Define the inner automorphism of G associated with g, de-
noted I,: G — G, by Iy = LyoRy-1 = Ry-10L,. The tangent map Ady, = TeIy,

an isomorphism on T.G, is called the adjoint associated with g.

Definition 7.2.5 (Invariance on a Lie group). A metric function ¥ on a
Lie group G is said to be left invariant if ¥ is L,-invariant, i.e., L;¥ = W, for
all g € G. It is right invariant if R;V =V for all g € G. If ¥ is both left and

right invariant, it is said to be bi-invariant.

It is well-known that the space SE(3) is a Lie group. Therefore, the notions
of left and right invariance are relevant. It is one of the goals of this chapter
to seek physical implications of these invariance properties, and clarify their

relationship to well-defined requirements of kinematic metric functions.

7.3 Configuration Space of a Rigid Body

This section defines the configuration space (c-space) of a rigid body in an

intrinsic, frame-free manner and considers its representation as SE(3). For
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this purpose, a motivational discussion on such an intrinsic c-space definition

is of interest.

7.3.1 Motivation for an Intrinsic Definition

Traditionally, the configuration of a rigid body is specified as the location of a
body frame relative to a stationary world frame, and the configuration space is
defined as the set of all possible body frame locations. This c-space definition,
while convenient for practical calculations, suffers from a major ambiguity.
The ambiguity lies in the frame dependence of configuration specification.
With respect to different choices of reference frames, a given physical loca-
tion of the body corresponds to different relative body frame locations, and
a rigid body velocity or wrench corresponds to different tangent vectors or
covectors associated with the frame choices. Thus, there are infinitely many
copies of “configuration spaces”. This ambiguity causes much confusion when
one considers, for example, the “distance” between the body’s locations, or
the “length” of rigid body velocities or wrenches. The common approach
that uses a single distance metric or norm for all “c-space” copies leads to
inconsistent results, as demonstrated by formula (7.1). To obtain consistent
results, different distance metrics or norms associated with the different “c-
space” copies must be used. Then, how should one choose these metrics or
norms? One may choose a particular distance metric or norm associated with
a particular copy of “configuration space”, and determine distance metrics or
norms associated with other “c-space” copies in such a way that the results
are consistent. However, which “c-space” copy should one start from? Since
there is no natural way of choosing reference frames, there is no natural way
of choosing this preferred copy of “configuration space”! In such a situation,
it becomes very difficult to gain a clear understanding of the conditions that

guarantee well-defined notions of “distances” and “lengths”.
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Fortunately, the ambiguity in the conventional c-space definition can be
eliminated by using an intrinsic c-space definition considered in the remainder
of this section. According to such an intrinsic definition, there is a unique
copy of configuration space associated with a given rigid body. That is, each
physical location of the body corresponds to a single configuration, and each
instantaneous motion or wrench corresponds to a single tangent or cotangent

vector.

7.3.2 The Configuration Space of a Rigid Body: An

Intrinsic Definition

This subsection considers an intrinsic definition of the configuration space of a
rigid body. This definition, involving no reference frames, explores the distinc-
tion between Euclidean space and Cartesian space. Frame-free definitions of
Euclidean space have been used in continuum mechanics theory, for example,
by Noll [117).

Three-dimensional Euclidean space, denoted by E3, is a geometric model
for the physical space. It is defined in terms of three systems of geometric
objects: points, (straight) lines and planes which are related by the axioms
of incidence, order, congruence, and parallels as summarized in Appendix C.
For the purposes of this chapter, it suffices to recognize that the axiomatic
definition of Euclidean space does not involve any coordinate frames, and in
consequence Euclidean space E® must be distinguished from Cartesian space
R3. For example, a point in E3 is not a triple of real numbers, and a straight
line in E3 is not a linear algebraic equation. As remarked by Boothby [14],
Euclid and other great geometers before the seventeenth century defined and
studied Fuclidean space only axiomatically; without the tool of analytical
geometry, which was yet to be invented by Fermat and Descartes, they clearly

did not think of E3 as triples of real numbers. While each point of E* can be
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assigned a set of coordinates as discussed in Section 7.4.1, this representation
of E3 by R? is only achieved by embedding a coordinate frame in E3 and is
hence unnatural.

In addition to distinguishing E3 from R3, one also needs to distinguish
SE(3), the set of rigid transformations on E® defined as follows, from SE(3),

the set of rigid transformations on R3.

Definition 7.3.1 (Rigid transformations of E3). Let U C E? contain at
least four points not in a plane?. A map §: U — E3 is called a rigid transfor-
mation of U if it preserves distance and orientation®. If U = E®, then § is said
to be a rigid transformation of E3. The set of all rigid transformations on [E3

is denoted by SE(3).

It can be shown that a rigid transformation of a subset of E? containing at
least four non-coplanar points can be uniquely extended to a rigid transforma-
tion of E3. Thus, one can naturally identify these two rigid transformations,
and thereby naturally identify the set of all rigid transformations of a subset
of E3 with SE(3). |

The spaces E3 and SE (3) can be used to define the configuration space of
a rigid body as follows.

Definition 7.3.2 (Rigid bodies and their configuration spaces). A set
B consisting of at least four elements is said to be a rigid body if there is a

nonempty set of mappings, denoted C, with the following properties.

(1) Each map x € C is a bijection from B onto a closed subset of E* such

that x(B) is not contained in a plane;

2 A set of three non-collinear points of E2 is not sufficient to determine whether a distance-
preserving transformation is orientation-preserving or orientation-reversing. But if this
transformation is known to be orientation-preserving, then it can be uniquely determined
by the three-point set.

31t suffices to understand the distance and orientation in the context of elementary solid
geometry. These notions, along with distance- and orientation-preserving maps, are formally
defined in Appendix C. '
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(2) Given any x1,x2 € C, the transition map x20x7"': x1(B) — x2(B) is a
rigid transformation of x;(B) C E3, i.e., x2ox7' € SE(3).

The elements of B are called particles or points. Each map x € C is called a

configuration of the body, and C is called the configuration space of B.

Remark 7.3.1. Intuitively, a configuration x € C may be thought of as a
placement of the rigid body at some location in E3, and a transition map
x2°X1' € SE (3), where x1, x2 € C, may be regarded as a (Tigid) displacement
of the body, as shown in Figure 7.7. Thus, a rigid body is a set of particles

that move in E3 in such a way that distance and orientation are preserved.

Figure 7.7: Placement and displacement of a rigid body.

Definition 7.3.2 is intrinsic in that it does mot involve any coordinate
frames. A rigid body and its configuration space are defined using maps involv-
ing an abstract set B and Euclidean space E3, which is axiomatically defined
and involves no coordinate frames. Also, note that this definition does not use
any reference configuration*; in this sense all configurations are of equal sig-
nificance. Given a rigid body, there is one and only one copy of configuration
space (a set of mappings), which will allow an unambiguous understanding of

rigid body kinematics.

4 As will be discussed in Section 7.4.3, an arbitrary reference configuration can be chosen
so that any configuration may be identified with the displacement (Remark 7.3.1) from the
reference configuration to that configuration.
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7.4 Representation of the Configuration Space

The configuration space, defined in Definition 7.3.2 in an intrinsic and frame-
free fashion, affords conceptual clarity and will later allow the clarification
of the notion of objectivity (Section 7.6). However, this abstract entity is
obviously not amenable to practical calculations. Fortunately, C can be rep-
resented by SE(3), the set of rigid transformations of R3, and hence matrix
algebra can be used for symbolic and numerical calculations.

The representation of C by SE(3) is the subject of this section. The idea
is to use SFE(3), the set of rigid transformations of E3, as an intermediate set
bridging C and SE(3). It will be shown that while 5’75’(3) can be represented
by SE(3), the set C can be represented by SE (3). Thus, concatenating the
two representations allows the representation of C by SE(3). We start with
the representation of E* by R3, which will lead to that of SE (3) by SE(3).

7.4.1 Representation of E3 by R?

Euclidean space E® can be represented by Cartesian space R® in terms of a co-
ordinate frame embedded in E3. Because there are many choices of embedded

frames, the following notational convention is introduced.

Notational Convention. Choose a nominal embedded frame and denote it
by Fx. An arbitrary embedded frame is denoted by F%, where the superscript
b always means that F% is displaced from Fx by b € SE(3).

Note that F§ = Fx, where ¢ is the identity element of SE(3). Since each
point in E2 has a unique set of coordinates with respect to an embedded frame,

a corresponding map from E2 to R3 can be defined as follows.

Definition 7.4.1 (Coordinate maps). The coordinate map associated with

an embedded frame FY is a bijection X°: E* — R3, such that the coordinates
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of each p € E® in F% are given by X°(p) € R®. In particular, the notation
X £ X° will be used for the coordinate map associated with the nominal

embedded frame Fx.

Remark 7.4.1. Because the map X’ gives a one-to-one correspondence be-
tween the elements of E* and R3, Euclidean space E3 is trivially a smooth

manifold with a global chart (X° E?), and X? is a diffeomorphism by design.

Remark 7.4.2. E3 and R® may be identified via the map X?, and for this
reason, R? is sometimes simply referred to as the “Euclidean space”. However,
this identification involves an embedded frame, whose choice is arbitrary and
cannot be naturally given. To avoid confusion, this unnatural identification

will not be used.

Now consider the relationship between the coordinate maps X° and X.
Suppose that z € R® is the coordinates of some point p € E? with respect to
the nominal frame Fx, then the coordinates of p in the frame F % are given

by X0 X~!(x) = b'z. The arbitrariness of z yields

Lemma 7.4.1. The coordinate maps X and X®, which are associated with the

embedded frames Fx and F%, are related by XP o X1 = b1, or X o(X®)™ =b.

7.4.2 Representation of Sf’\]:](?)) by SE(3)

There is a close relationship between the rigid transformation groups SE (3)
and SE(3), which will allow the use of SE(3) to represent the c-space C.
Given an embedded frame F%, the associated coordinate map X° is a
diffeomorphism of E3 onto R3. For any rigid transformation § € SE(3), the
push-forward X%G, as defined in Definition 7.2.3, maps R3 into itself. Moreover,
it can be shown that X% is actually a rigid transformation of R®. Hence X%

can be regarded as a representation of g and the following definition can be

given.
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Definition 7.4.2 (Rigid transformation representation maps).  The
rigid transformation representation map corresponding to the embedded frame
Fb isamapping F*: SE(3) — SE(3) defined by F*(§) = X% = X®ogo(X?)™
for § € SE(3). The notation F £ F* will be used.

Remark 7.4.3. The sets SE(3) and SE(3) may be identified via the map
Fb. In fact, SE(3) is often simply referred to as the special Euclidean group.
However, similar to the case of E2 and R3, this identification is unnatural since
it involves an arbitrary choice of embedded frame. Each choice of embedded
frame leads to a different copy of SE(3), and there is no natural way of

choosing a particular copy and identifying it with SE (3).

The rigid transformation representation map F? can be interpreted as
follows. Consider g € @(3), which corresponds to g = F°(g) € SE(3).
The coordinates of any p € E° are given by X%(p), and those of §(p) by
X®(G(p)), in the embedded frame F%. These coordinates are related by
Xb(g(p)) = (XPogo(X®)™)(X%(p)) = g(X°(p)). Therefore, as illustrated in
Figure 7.8, g is the displacement of F% if F% moves along with £ according

to g.

Figure 7.8: Geometric interpretation of g = X?0go(X®)~1.

Rigid transformation representation maps corresponding to different choices
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of embedded frame are related by the following lemma.

Lemma 7.4.2. The rigid transformation representation maps F' and F® cor-
responding to the embedded frames Fx and Fy have the following relationship:

FooF-1=1I"1 or FoF" ' = I,, where I, = Lyo Ry1.

Proof. Lemms 7.4.1, which relates the maps X and X, implies that for
any g € SE(3), FloF1(g) = FO(X logoX) = X0 X logoXo(X?)™ =
b~1gb = I, *(g). Using the arbitrariness of g completes the proof. O

Similar to SE(3), it can be shown that §E(3) is a Lie group, on which
two systems of diffeomorphisms—Ileft translations and right translations—
naturally arise. The following lemma relates such maps to left and right

translations on SE(3).

Lemma 7.4.3. Given an embedded frame FY, left and right translations on
§E‘(3) are represented by left and right translations on SE(3), respectively.
Specifically, for § € SE(3), we have F?Lz = Lps(g) and F’R; = Rpvgg).

Proof. For any h € SE(3), Definition 7.4.2 implies that

FL3(h) = FboLzo (F*)7'(h) = F*(Lg((X*) " oho X)) |
= FY(Go (X% ohoX?) = XPoGo(X®) "t oh = F*(§)h = L) (h).

The case of right translation is similar. The arbitrariness of 4 and Lemma 7.4.2

lead to the desired conclusion. O

7.4.3 Representation of C by SE(3)

The representation of C by SE (3) is achieved by use of a reference configura-
tion: any configuration can be represented by a rigid displacement (i.e., the

transition map) from the reference configuration to that configuration. Since



180

there are an infinite number of reference configurations, we introduce a nota-

tional convention, which is followed by the definition of maps representing C

by SE(3).

Notational Convention. Choose a nominal reference configuration xo €
C. Denote by xz an arbitrary reference configuration, where the subscript a
always indicates that xz is determined by yzexp ' = a € SE (3). That is, xa
is displaced from xq by a.

Definition 7.4.3 (Intermediate c-space representation maps). Corre-
sponding to an arbitrary reference configuration xz € C, the intermediate
c-space representation map is a mapping J%: C — §E(3) defined by J%(x) =
X°Xz ! for any x € C. In particular, we write J £ J€ which corresponds to

Xo-

In other words, J%(x), a rigid transformation of E3, is the displacement
of the rigid body B from xz(B) to x(B). Since the map J? is bijective and
establishes a one-to-one relationship between the sets C and SE (3), the c-space
C can be represented by §E(3) However, it is important to note that this
representation depends on the choice of reference configuration. Therefore, C
and SE (3) cannot be naturally identified. The effect of choices of reference

configuration is given by the following lemma.

Lemma 7.4.4. The intermediate c-space representation maps corresponding
to different reference configurations are related by JooJ 1= ﬁﬁ' LorJo(J%)?
_ B

Proof. For any g € S/TE(?)), we have

~

JEe J7HG) = J4(Goxo) = GoxooXz . = goa ' = R;(9),
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where Rz is a right translation on SE (3) by a. Since g is arbitrary, the desired

relationship follows. O

7.4.4 Representation of C by SE(3)

We have derived the representation of C by SE(3), and that of SE(3) by
SE(3). By concatenating the two representations, C can be represented by
SE(3) as follows. This approach, illustrated by the diagram shown in Fig-
ure 7.9, clarifies all of the assumptions regarding embedded frames and refer-

ence configurations.

Definition 7.4.4 (C-space representation maps). The c-space represen-
tation map corresponding to a reference configuration xz and an embedded
frame F% is a map ['®®: C — SE(3) defined by I'*® = F®0oJ%, where J% and
F?® are defined in Definitions 7.4.2 and 7.4.3. In particular, I £ I'®¢ = FoJ
corresponds to the nominal reference configuration xo and embedded frame

Fx.

Remark 7.4.4. A c-space representation map establishes a one-to-one corres-
pondence® between C and SFE(3), which can be used to identify the two sets.
However, this identification is unnatural in that it involves an arbitrary choice
of reference configuration and embedded frame. Thus, if used without caution

it may hamper the clarification of objective functions.

The one-to-one correspondence between C and SE(3) implies that C is a
smooth manifold. Therefore, the notions of tangent vectors and covectors to C
are well-defined, which can be used to formalize the intuitive notions of rigid

body velocities and wrenches. The following lemma characterizes the effect of

5While a one-to-one correspondence between C and SE(3) can be equivalently established
using world and body frames (Section 7.8), the use of a reference configuration and an
embedded frame is more conducive to clarifying the notion of objectivity.
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Figure 7.9: C-space definition and representation diagram.

choices of reference configuration and embedded frame on the representation

of C by SE(3).

Lemma 7.4.5. The relationship between the c-space representation maps rab

and T 1s gz’ven by Fa’bOF—l = Lb~1 OR(F(E))—lb = R(F(‘(‘i))—lbOLb—l.

Proof. By Lemmas 7.4.2, 7.4.3 and 7.4.4,

F’d,bor—l — FbOJEOJ—loF—l — FbORgloF_l
— (F*F Y o(FoRz o F ™) = I;* o (F.R7") = I, " o Rpfyy.

Using I = Ly Ry-1 completes the proof. O

This lemma indicates that if a physical location of B is represented by
g € SE(3) with respect to the reference configuration xo and embgdded frame
Fx, then it is represented by b~1ga~'b € SFE(3) with respect to the reference
configuration yz and embedded frame F%, where a = F(a) is the representa-

tion of @ € S/’\E(B) via the embedded frame Fx.
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7.5 Objective Metric Functions on [°

This section discusses the notion of objectivity in Euclidean space E3. While
this will lead to some well-known facts in R?, it motivates the consideration of
objective metric functions on C, the intrinsically defined configuration space

of a rigid body, in an analogous manner.

7.5.1 Formal Definition of Objectivity in E3

Euclidean space E? can be regarded as the “configuration space” of a particle.
A point in £3 can be thought of as the position of the particle; a tangent vector
to E3 can be considered as the velocity of the particle; a covector is a force

acting on the particle. First consider the notion of equivalent curves in E3.

Definition 7.5.1 (Equivalent curves in E®). Let ¥; and 7, be two curves
in Euclidean space E® parametrized by the same parameter ¢ € I, where [ is
an open interval (—¢,€) (¢ > 0) or closed interval [0, 1]. If there exists a rigid
transformation § € SE(3) such that 5(t) = §(71(£)) for all ¢ € I, then 7, is

said to be equivalent to 7, with respect to g.

Clearly, equivalence of curves is an equivalence relation, which has some
interesting interpretations. Two equivalent curves can be thought of as the
congruent trajectories of two moving particles; that is, the trajectories can be
made coincident by a rigid transformation. Alternatively, the two equivalent
curves can be interpreted as the trajectory of one particle as viewed by different
observers whose locations differ by a rigid displacement. This is illustrated by
the equivalent curves shown in Figure 7.10.

Given a pair of points in E2, one can always find a curve with these points
as endpoints. This observation and the notion of equivalent curves lead to the

definition of equivalent pairs of points, which is illustrated in Figure 7.10(a).
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Definition 7.5.2 (Equivalent pairs of points in E*). Two pairs of points
p1,q1 € E2 and p, g, € E? are said to be equivalent if there are two equivalent

curves 71,7 [0, 1] — E3 such that %;(0) = p;, ¥i(1) = ¢; for i = 1,2.

q2
q, Yo
b g E?

(b) Equivalent tangent and cotangent

(a) Equivalent pairs of points
vectors

Figure 7.10: Equivalent relations in E3.

Based on equivalence of curves one can also define equivalent tangent and

cotangent vectors to 3, as illustrated in Figure 7.10(b).

Definition 7.5.3 (Equivalent tangent vectors to E®). A tangent vector
%y € T,,E3 is equivalent to another tangent vector Uy € T, E® with respect
to g € SE (3) if there are two curves ¥1,%2: (—¢, €) — E3, where 7, is equiva-

lent to 7; with respect to g, such that ¥;(0) = p; and '72(0) = ;.

Definition 7.5.4 (Equivalent covectors to E®). A covector oy € T B is
equivalent to another covector & € T E® if there exists § € §E‘(3), with
G(p1) = pa, such that @y(vy) = @1(?1) whenever U € T,,E? is equivalent to

% € Tp, B3 with respect to g.

Two equivalent pairs of points can be thought of as the positions, as they
appear to different observers, of a moving particle at two time instants. Simi-
larly, two equivalent tangent or cotangent vectors can be viewed as the velocity
of a particle, or a force acting on the particle, recorded by two different ob-

servers whose locations differ by a rigid displacement. When a metric function
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is evaluated at two equivalent quantities, it is expected to yield the same value.

This idea leads to the following definition.

Definition 7.5.5 (Objective metric functions on F?). A real-valued func-
tion © on E3 x --- x E® (s copies) is said to be objective if O(py, ... ,ps) =
O(qu, ... ,qs) whenever p;, p; € E* and ¢;, ¢; € E® are equivalent pairs of points
for all 1 < 4,5 < s. A real-valued function ® on the vector bundles of E?
is objective if 5,,(51, e U, Oy, 0q) = éq(ﬂl, ... ,ﬁk,ﬁl, e ,ﬁl) whenever
% € T,B° and 4; € T,E®% and &; € T;E® and B; € T*E® are equivalent,

respectively, for all 1 <i< kand 1 <5< 1.

The notion of objectivity is a natural requirement; a well-defined metric
function on E3 must be observer-indifferent. To characterize an objective met-
ric function, the following lemmas will be needed which characterize equivalent

quantities relevant to E3. The proofs are omitted.

Lemma 7.5.1. Two pairs of points p1,q1 € E° and py, qa € B are equivalent
if and only if there is a rigid transformation g € Sf’\E(3) such that py = g(p1)
and ¢z = §(q1)-

Lemma 7.5.2. A tangent vector Uy € T,,E? is equivalent to another tangent
vector U1 € Tp, B> with respect to g € §E‘(3) if and only if p» = g(p1) and
Uy = Ty, 3(T1). Two covectors &y € T E® and &, € T,,E® are equivalent if and

only if there exists g € 5‘@(3) such that py = g(p1) and &y = T, g~ (a1).

Lemmas 7.5.1 and 7.5.2 can used to show the following necessary and

sufficient condition for objectivity.

Proposition 7.5.3. A metric function U on E3 is objective if and only if it

is invariant to all rigid transformations. That is, FU =" foralge §E(3)

Proof. Let g € S’TE(Z’;) be arbitrary. First suppose that ¥ is a real-valued
function on E3. By Definition 7.5.5 and Lemma 7.5.1, T is objective if and
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only if

U(py,...,ps) = V(G(p1)s---,9(ps)) = TU(py, ... ,ps)

for all py,...,ps € E3. Hence, ﬁ*\ff = .
Now suppose that U is a real-valued function on the vector bundles of E3.

Definition 7.5.5 and Lemma 7.5.2 imply that

U, (1, .., 0, 01, ... ,00)
= Uy (TG@), - ., TG(O), TG (@), ... , TG (@)
=G0, , T, -, G)
for all p € E3, 9; € T,E® and &; € T;E°. This again leads to 70 = 0. O

7.5.2 Objectivity in E? versus Frame-Invariance in R?

Objective functions on E3 can be represented by metric functions on R? by
seeking an interpretation of Proposition 7.5.3, when E? is represented by R
via an embedded frame. Let X and X® be the coordinate maps associated
with the embedded frames Fx and F%, respectively. Let ¥ be an objective
metric function on E® as defined in Definition 7.5.5. Then, ¥ = X*\i and
Wb = X", the push-forwards by X and X® of ¥, are metric functions on R?

with the following properties.

Proposition 7.5.4. The function T is objective if and only if ¢.¥ = VU for all
g € SE(3), i.e., U is invariant to all rigid transformations of R3. Moreover,
Ut = U for all b € SE(3), and hence the objective function U corresponds to

a unique metric function on R® regardless of the choice of embedded frame.
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Proof. First consider the function ¥. Given any § € SE(3), Lemma 7.2.2 in-
dicates that U is g-invariant if and only if U is invariant to X,§ = F(g), a rigid
transformation on R3. Since F, the rigid transformation representation map
associated with Fy, is a bijection, U is invariant to all rigid transformations
on E3 if and only if ¥ is so to all rigid transformations on R3.

By Lemmas 7.2.1 and 7.4.1, the function U° is related to ¥ as follows.
P = (XPo X 1) (X,T) = (b)), 0 =V,

where we have used the fact that W is invariant to all rigid transformations on

R3. U

It is instructive to consider the relationship between objectivity in E* and
bi-invariance in R®. For this purpose, recall that R® is an additive commutative
Lie group. Given any z € R3, left and right translations by z aré defined by
Ly(y) = Ry(y) = x +y for y € R%. The set of all pure translations of R® is
a subset of SE(3). Hence if a metric function on R? is invariant to all rigid
transformations, it is necessarily pure-translation invariant, i.e., bi-invariant.

Since the converse is not true, the following remark can be made.

Remark 7.5.1. The bi-invariance of a metric function on R? is necessary, but

not sufficient to determine an objective metric function on E3.

The notion of objectivity in E3 can be illustrated by two examples. For a
function © on R3 and a function ® on the vector bundles of R, invariance to

rigid transformations can be written as

O(zy, ... ,xs) = O(g(z1), ... ,9(xs)),

@m(vl, oo y U, 01y 00 ,Oq) = (I)g(m)(R’Ul,... ,R’Uk,ROq, ,Ral)
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for z1,...,2s € R3, vy,... v € TyR3, ay,...,00 € TYR3, and g = (d,R) €
SE(3). In the examples ®, = ®, is taken for all z,y € R3, since tangent and
cotangent spaces to different points of R® can all be naturally identified with
R3.

Example 7.5.1. The standard distance metric on R® defined by

where © = (1,22, 23) € R® and y = (y1,92,¥3) € R?, is invariant to all rigid
transformations, and hence represents an objective function on E3 given by

d = (X*)*d. In fact it can be shown that d is a distance metric on E2.

Example 7.5.2. The standard norm and inner product on TR? are defined

by
3
lv| = V/(v,v) and (u,v)= Zuivi
i=1

for v = (v1,vy,v3) € TuR® and u = (uy, us,us) € T,R3. Since they are rigid-
transformation invariant, |- |z = (X®)*|-| and (-, -)g = (X®)* (-, -) are objective,
which as can be shown are an objective norm and an objective inner product
on TE3, respectively. On the other hand, the following norm on TR® defined
by

= max |v;|

IUI‘X’ i=1,2,3

is invariant to all pure translations and is hence bi-invariant. However, since

this norm is not rotation invariant, (X°)*| - |, is not objective.
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7.6 Objective Metric Functions on the Con-
figuration Space of a Rigid Body

Using objectivity in E® as a motivation, and based on the intrinsic c-space
definition, we are now in a position to consider the notion of objectivity for
the configuration space of a rigid body. It will be seen that objectivity in
C, which is conceptually analogous to objectivity in E3, offers deep physical
insight into left invariance, right invariance and bi-invariance in SFE(3). Similar
to the case of E3, we first consider the notion of equivalent curves, which are

defined in terms of c-space repositionings.

7.6.1 C-Space Repositionings

In defining equivalence of curves in E3, one curve was said to be equivalent to
another if they could be brought into coincidence by a rigid transformation
of E3. In the case of the c-space of a rigid body, this role will be played by

c-space repositionings defined as follows.

Definition 7.6.1 (C-space repositionings). Given any g € 5’7*7(3), the c-
space repositioning by g is a map Tj: C — C defined by T3(x) = gox for
x €C. ‘

The term “repositioning” is motivated by the interpretation of a configura-
tion x as a placement of the body in E3, since T5(x) just places B at a different
location by rigidly displacing B from x by g. Clearly, a c-space repositioning
is a diffeomorphism, whose inverse is given by T3 1= T5-1.

In Definition 7.4.4, a c-space representation map I'**: C — SE(3) was
defined corresponding to a reference configuration xz and an embedded frame
F%. Via the map ['®?, a c-space repositioning T3 induces a map (ra9),13,

which maps SE(3) onto itself and can be calculated using the following lemma.
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Lemma 7.6.1. By use of the c-space representation map T%®, a c-space repo-
sitioning Yz induces a left translation on SE(3). Specifically, (%), Y5 =
Lpvgg), where F? s the rigid transformation representation map associated

with F%.

Proof. First consider (J%),Y;: SE(3) — SE(3), where J%: C — SE(3) is the
intermediate rigid transformation representation map associated with xz. For

any h € @(3),

~

(J9),X5(h) = J2oT50(J9) L (h) = J2 o T5(hoxa)
= J%(Gohoxz) = goh = Lz(h),

which implies that (J%),Ts = Lz. Since I%*® = F®0J% Lemma 7.2.1 gives
(T%), Y5 = (FboJ%). Y5 = F(J%),T5 = F!L;.

By Lemma 7.4.3, FfZg = Lps(g), which completes the proof. O

Since @ does not appear in the right side of the formula in Lemma 7.6.1

and F? is a bijection, the following observation can be made.

Remark 7.6.1. A c-space repositioning of the body induces a left translation
on SE(3), and vice versa. Moreover, there is a one-to-one correspondence be-
tween the set of c-space repositionings and the set of left translations on SE(3).
This correspondence is not influenced by the choice of reference configuration

but does depend on the choice of embedded frame.
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7.6.2 Equivalence Relations Relevant to the C-Space

While a curve in E2 can be thought of as the motion of a particle, a curve in
C can be interpreted as a rigid body motion. When acting on a curve in E?, a
rigid transformation of 3 rigidly displaces the curve. Analogously, a c-space
repositioning can play the role of “rigidly displacing” a c-space curve. These
simple analogous features of the two spaces motivate the notion of equivalent

c-space curves defined as follows.

Definition 7.6.2 (Equivalent curves in C). Let¢;: I - Cand ¢: I —C,
where I is an open interval (—e¢,€) (¢ > 0) or closed interval [0, 1], be two
c-space curves. If there exists some g € SE(3) such that ¢(t) = T3(@(t) =
goei(t) for all ¢ € I, then ¢, is said to be equivalent to ¢; with respect to the

c-space repositioning by g.

Figure 7.11: Equivalent curves in c-space.

Equivalence of c-space curves is clearly an equivalence relation. From a
geometric viewpoint, two equivalent curves can be interpreted as being con-
gruent; that is, the two curves can be brought into coincidence by a rigid
displacement, as shown in Figure 7.11. Hence, these two equivalent curves
can be thought of as the motions, which differ only by a rigid displacement, of
two identical rigid bodies; or alternatively, the two curves can be regarded as

the motion of one rigid body viewed by two observers whose locations differ by
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a rigid displacement. These interpretations motivate us to define the following

equivalence relations.

Definition 7.6.3 (Equivalent configuration pairs). Two pairs of config-
urations x1, %51 € C and Ys, kg € C are said to be equivalent if there are two

equivalent curves ¢1,¢: [0,1] — C such that ¢;(0) = x;, &;(1) = ks for i = 1, 2.

Two equivalent pairs of configurations can be considered either as the initial
and terminal configurations of some motion of a rigid body when viewed by
different observers, or as the respective initial and terminal configurations of

two rigid body motions that differ only by a rigid displacement.

Definition 7.6.4 (Equivalent tangent vectors to C). Given tangent vec-
tors V; € T,C and ¥, € T,,C, we say that ¥V, is equivalent to V1 with respect
to G € SE(3) if there are two curves ;,%: (—¢, €) — C, where ¢, is equivalent
to ¢; with respect to g, such that ¢, (0) = x; and ¢1(0) = vy, and %2(0) = x2

and &,(0) = ¥V,.

A tangent vector to C represents an instantaneous motion of the rigid body.
Therefore, two tangent vectors being equivalent means two instantaneous mo-
tions that differ only by a rigid displacement. Alternatively, two equivalent
tangent vectors can be interpreted as some instantaneous motion of the rigid
body recorded by two observers. Figure 7.12(a) shows two equivalent planar

motions with instantaneous centers of rotation at p and g(p), respectively.

Definition 7.6.5 (Equivalent covectors to C). A covector @z € T7.C is
said to be equivalent to another covector @ € Ty, C with respect to a c-space
repositioning by g € @(3), if x2 = T3(x1) and @a(¥2) = @1(V1) whenever

v, € T},,C is equivalent to V; € T),C with respect to g.

The physical intuition for equivalent covectors is illustrated in Figure 7.12(b).

Recall that a covector can be interpreted as a wrench that consists of a force
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(a) Equivalent tangent vectors (b) Equivalent covectors

Figure 7.12: Equivalent tangent and cotangent vectors.

and a torque. Consider two covectors @; € Ty,C and @, € T%,C, which de-
termine two wrenches physically acting on the body. If & is equivalent to
o; with respect to g, then as the body undergoes the rigid displacement g,
the two wrenches become coincident. Clearly, these two wrenches do the same
amount of work when acting on two equivalent rigid body velocities that can
be brought into coincidence by the rigid displacement g.

We conclude this discussion by giving two lemmas that characterize equiv-

alent configurations as well as equivalent tangent and cotangent vectors.

Lemma 7.6.2. Two pairs of configurations x1,k1 € C and x2,k2 € C are
equivalent if and only if there is a c-space repositioning Yz with g € SE (3)
such that x2 = T5(x1) and ke = Tz(k1).

Proof. The condition is obviously necessary. To show its sufficiency, consider
G € SE(3) such that xo = Y;(x1) and ky = Yy(k;). Using the c-space
representation map I' (Definition 7.4.4) gives g; = I'(x;) € SE(3) and h; =
I'(k;) € SE(3). Invoking Lemma 7.6.1 with b = e leads to

g2 =T0oT5(x1) = Lo Tz-I )T (x1)) = LY5(C(x1)) = Lrg)(91)-

Similarly, it can be shown that hy = Lp)(hi). Let 1, cz: [0,1] — SE(3)
be two curves in SE(3) such that ¢;(0) = ¢; and ¢;(1) = hi, and c3(t) =
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Lp (ci(t)). Then c3(0) = go and cy(1) = hy. Define two c-space curves by
¢ = I'1(c;(t)). Then,

&) =T a@®) =T (Leg(a))
= (T e Lp@g o) (I (er(t))) = TLrg (@(t) = Tg(@ ().

Therefore ¢; and &, are equivalent curves with ¢;(0) = x; and ¢;(1) = ;. O

Lemma 7.6.3. Given two tangent vectors ¥, € Ty,C and vy € T,,C, we have
Vy equivalent to Vi with respect to g € 5’73’(3) if and only if Y5(x1) = x2 and
Vo = T, T5(¥1). Two covectors @ € Ty,C and @ € Ty,C are equivalent if

and only if there is g € §E(3) such that x2 = T4(x1) and Gy = T;ng‘l('d“l).

Proof. We only show the sufficiency of the condition for equivalent tangent
vectors (the covector equivalence condition immediately follows from this).
Suppose that § € SE(3) is such that T5(x1) = x2 and ¥ = T}, T3(¥1).
Let ¢y, co: (—¢,€) — SE(3) be curves in SE(3) such that ¢;(0) = I'(x1) and
¢1(0) = TT(¥y), and ¢5(t) = Lp@)(ci(t)). Then, |

TT(V,) = TT(TY5(¥1)) = T(T o YgoI ™) (TT(¥1)))
= T(T.Y5)(¢1(0)) = TLr@)(é1(0)) = 62(0),

where Lemma 7.6.1 has been invoked. Therefore, ¢;(t) = I'"(c;(t)) are the

desired equivalent curves. O

7.6.3 Formal Definition of Objectivity in C

The notion of objectivity in Euclidean space E3 can now be extended to the
configuration space C of a rigid body. Analogous to the case of E3, the key role

in c-space objectivity is played by the equivalence relations of configurations,
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tangent vectors and covectors. Two equivalent pairs of configurations can be
interpreted as the initial and final configurations, as they appear to different
observers, of a rigid body motion. T'wo equivalent tangent or cotangent vectors
can be thought of as an instantaneous motion of the rigid body, or a wrench
acting on the body, as viewed by different observers. Clearly, for a metric
function on C to be well-defined, it should yield the same value when evaluated

at these equivalent quantities. This leads to the following definition.

Definition 7.6.6 (Objective metric functions on the c-space). A real-
valued function © on Cx- - -xC (s copies) is said to be objective if O(x1, .- . , Xs)
= O(k1,...,ks) whenever x;,x; € C and k;,k; € C are equivalent pairs of
configurations for all 1 < 4,7 < s. Meanwhile, a real-valued function ® on
the vector bundles of C is said to be objective if ®,(V1,...,Vk, 01,... ,00)

=&, (Ty,...,0, By, ,0;) whenever V; € T,C and T; € T,,C are equivalent

for all 1 <4 <k, and @; € T;C and Ej € T*C are equivalent for all 1 < j < [.

Remark 7.6.2. Because of its importance, the essence of objectivity is re-
iterated: a well-defined kinematic metric function should give measurement
results that are indifferent to observers. That is, different observers should

make consistent measurements.

The characterizations of the c-space equivalence relations given in Sec-

tion 7.6.2 can be used to characterize objective metric functions as follows.

Proposition 7.6.4. A kinematic metric function U of the types given in Def-
inition 7.6.6 is objective if and only if it is invariant to all c-space reposition-

ings. That is, Y50 = U for all G € SE(3).
g

Proof. Suppose that W is a real-valued function on C. By Lemma 7.6.2, U is

objective if and only if

Tx1s- -0 xs) = U(Tg(x1)s- - » Ta(xs)) = T3 (xa, -+ 5 Xs)
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for all x1,...,xs € C. If ¥ is a real-valued function on the vector bundles of

C, then Lemma 7.6.3 implies that

U, (Vi .., Vi, Oy, .., O)
= \_Ijrg(p) (TT@(Vl), - ,TTg(Vk), T*T?]Tl(”oil), e ,T*T;l(al))

Iy (o —_ e
= Tg\lfp(vl,... sy Ve, O, ... ,al)

for all x € C, V; € T}C and @; € T;C. It follows that in either case W is
objective if and only if T;TI; =T for all § € SE(3). O

Example 7.6.1. For demonstration, consider the following objective function
on the tangent bundle of C. Let a c-space curve ¢(¢) determine a tangent vector
¢(0) € T,C. The corresponding trajectory of a particle p € B is given by a
curve ¥,(t) £ &(p) in E3, where the notation ¢, = ¢(t) is used. Define a
map K,: TC — TE® by K,(¢(0)) = ﬁp(O) = %It:OEt(p)’ which gives the
corresponding velocity of p. Define a real-valued function ® on the tangent

bundle of C by
(e(0)) = max | Ko(e(0))]

where | - | is the standard norm on TE?® (Example 7.5.2). Intuitively, ®,(¢(0))
is the maximal speed of B’s particles. We now show that ® is objective. For

any § € SE (3), the definition of the map K, implies that

4
dt

Ko(TYE0) = 5| Gotle) =T5 (5| @) = 19 (Ka(E(0)).

t=0
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Hence, the objectivity of the norm | - |z on TE® yields

ST, (£(0)) = B0 (TT(2(0)) = ma | TG, (E(0)))] = masx | K, ((0)].
It follows that Tg@ = &, and that ® is indeed objective. Both the function
® and Formula (7.2), which applies to planar instantaneous motions, give
the maximum magnitude of the instantaneous displacements of B’s particles.
Therefore, this example is a (complicated) generalization of Formula (7.2) to

the three-dimensional case.

While the notion of objectivity captures the fundamental requirement for
kinematic metric functions to be well-defined, this example shows that the
direct manipulation of objective functions is cumbersome and inconvenient for
practical applications. It is therefore highly desirable to develop a practical
method for defining objective functions. The fact that the function ® in this
example and the frame-invariant formula (7.2) have the same physical meaning
suggests a strong relationship between objectivity and frame-invariance. This
relationship, when clarified in Section 7.8 in the context of the conventional
rigid body kinematic description, will lead to a practical treatment of objective

functions.

7.7 Objectivity in C versus Invariance in SE(3)

This section considers the relationship of objectivity in C to invariance in
SE(3). This allows the clarification of some long-standing confusion about
invariance properties relevant to SE(3), and is crucial for the clarification of
frame-invariance in Section 7.8.

Let ¥ be an objective metric function on C. This function induces Yob =

(%), ¥, a metric function on SE(3). Recall that I%*: C — SE(3) is the
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c-space representation map (Definition 7.4.4) corresponding to the choice of
reference configuration xz and embedded frame F%. The notation ¥ £ ¥&¢ =
I,V is used, where the map I' = I'®¢ corresponds to the nominal reference con-
figuration xo and embedded frame Fx. The following proposition characterizes

the invariance properties of ¥%? and how these functions are inter-related.

Proposition 7.7.1. A metric function U on the c-space C is objective if and
only if U%b = (T3 W, a metric function on SE(3), is left invariant. The

induced function W can be characterized as follows.
(1) WP 4s left invariant but need not be right invariant.

(2) ¥ = R}, ra¥- That is, Vb s in general different for different
choices of reference configuration and embedded frame (i.e., different

@€ SE(3) and b € SE(3)).

(8) If Wt s right invariant for any @ and b, then it is a unique bi-invariant

function independent of a and b.

Proof. By Proposition 7.6.4, ¥ is objective if and only if T(¥ = ¥ for all
g€ §E(3) By Lemma 7.2.2, this is equivalent to the condition that

(1), T)" (T%)),T = (I%).F,
N e N e e !

LFb(§) pa,b ya,b

i.e., using Lemma 7.6.1 yields L;b@\lﬁ’b = U%  Since F® is bijective, ¥ is
objective if and only U%? is a left invariant metric function on SE(3). However,
as is not implied by the objectivity of ¥, the function U%® is not necessarily
right invariant.

To find the relationship between W% and ¥, we use Lemmas 7.2.1, 7.4.2,



199

and 7.4.5 to obtain

\I,E,b — ((Fﬁ,bor—l) OF)*W — ( FE,bol-\—l )* F*ﬁ
—_—
Br@y-1°L-1 ¥

= (R(F(a’))-lb)*(Lb—l)*\Il == Rz"lF('d)\II’

where the final equation resulted from the left invariance of W. If ¥ is fur-
ther right invariant and hence bi-invariant, then this equation implies that
U%b = ¥, Thus, the objective function ¥ corresponds to a unique bi-invariant

function. O

Remark 7.7.1. An objective function U thus corresponds to a family of gen-
erally distinct left invariant functions, which can be indexed by the choices
of embedded frame and reference configuration, and which are not necessarily
right invariant. Hence, bi-invariance is sufficient, but not necessary for objec-
tivity in C. This compares interestingly with the necessity and insufficiency of

bi-invariance for objectivity in E* (Remark 7.5.1).

Remark 7.7.2. While left invariant functions are often used in the litera-
ture (e.g., [150]), little justification has been given to the preference of left
invariance over right invariance. Proposition 7.7.1 convincingly justiﬁes this
preference: left invariance represents the fundamental requirement of objectiv-
ity. Therefore, a function that is right invariant but not left invariant should

actually be avoided.

The representation of an objective function on C by left invariant functions
on SE(3) offers a practical means for working with the abstract notions of
configuration space and objectivity. Since a metric function oﬁ C can be
recovered from its representation corresponding to a given choice of reference
configuration and embedded frame via the relationship ¥ = (I'%*)*U%® one

can focus on the representation functions ¥®®. As long as these functions
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are left invariant and are inter-related by U = Ry, F(&)‘I” Proposition 7.7.1
ensures that W is objective. Section 7.8 will interpret such representation
metric functions on SE(3) in the framework of the conventional rigid body
kinematics approach which uses world and body frames. It will be seen that
the notion of frame-invariance resulting from the discussion allows one to write

abstract objective functions in terms of intuitive frame-invariant functions.

7.8 Frame-Invariant Metric Functions

Objective metric functions on C accurately characterize the natural require-
ment of observer-indifference, and can be represented as a family of left invari-
ant functions on SE(3). To facilitate practical kinematic metric calculations,
these left invariant functions will now be considered in the framework of the
conventional approach that specifies the location of a rigid body in terms a
world frame and a body frame. The goal of this section is to develop a repre-
sentation of objective functions in this framework and understand the influence

of frame changes on such a representation.

7.8.1 Representation of the C-Space Based on the Con-

ventional Approach

Section 7.4 represented C by SE(3) in terms of a reference configuration and
embedded frame. This approach is conducive to relating objectivity to invari-
ance properties in SE(3), but is not convenient for practical use. To provide a
practical tool for developing objective metric functions, it is useful to consider
the c-space in terms of the conventional approach, which represents B’s config-
uration as the location of a body frame relative to a world frame. Recall that
a world frame is a stationary coordinate frame in E3, and a body frame is a

coordinate frame fixed to the rigid body in the sense that a particle p € B has
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the same coordinates in this frame for all configurations of 5. Since the choice
of world and body frames is not unique, the following notational convention

will be convenient.

Notational Convention. Choose a nominal world frame, denoted by Fy
and a nominal body frame, denoted by Fg. Denote an arbitrary world frame
by F%, and an arbitrary body frame by F%, where the superscripts always
indicate that 9, is displaced frame fw by b € SE(3), and that F% is displaced
from Fp by a € SE(3).

For a given choice of world and body frames, one wishes to represent an ob-
jective function by an appropriate left invariant function. In addition, when
the world and body frames are changed, the left invariant function should
transform accordingly. For this purpose, one needs to interpret locations of a
body frame relative to a world frame in terms of the formal approach given in
Section 7.4.4, where C was represented by SE(3) using a reference configura-
tion and an embedded frame.

As shown in Figure 7.13, choose the nominal embedded frame Fx to be
coincident with the nominal world frame Fy, and choose the nominal reference
configuration xg such that Fp and Fyw coincide when B’s configuration is .
It follows from Sections 7.4.2 and 7.4.4 that corresponding to a configuration
X € C, the location of Fp relative to Fy is given by I'(x), where I': C — SE(3)
is the c-space representation map associated with xo and Fx.

When different world and body frames are used, a given configuration of B
corresponds to different relative frame locations. With respect to the frames
F§, and F%, suppose that we choose a reference configuration y; € C given
by xzox5" = h € SE(3) and an embedded frame F¢ displaced from Fx by
c € SE(3). Let [he: ¢ — SE(3) be the corresponding c-space representation
map. It is desired to choose T and ¢ in such a way that FE’C(X) is the location

of F¢ relative to Ff, when B’s configuration is x.
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Figure 7.13: A configuration in terms of the location of Fp relative to Fy .

It can be verified that the desired reference configuration and embedded
frame are given by the following proposition, as illustrated in Figure 7.14,
where it is assumed that either the world or the body frame remains un-
changed. There is no loss of generality in this assumption, since any change
of both frames can be considered, for example, as a change of world frame

followed by a change of body frame.

Proposition 7.8.1. Given the nominal frames Fw and Fp with correspond-
ing nominal reference configuration xo and embedded frame Fx, consider chang-
ing the world frame to FY,, or the body frame to F%, respectively. The reference
configuration x; and embedded frame F% should be chosen as follows so that
I‘ﬁ’c(x) is exactly the location of the body frame relative to the world frame as

B’s configuration is x.

(1) World frame changes to £, with body frame F5 unchanged: h = F~1(b)
and ¢ = b. The corresponding c-space representation maps are related by

Fh’b OF-1 — L;l.

2) Body frame changes to F§ with world frame Fy unchanged: h =
B
F~Ya™') and ¢ = e. The corresponding c-space representation maps

are related by T™¢ o1 = R,.
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(a) Change of world frame (b) Change of body frame

(b= F~(b)) (@=F(a))
Figure 7.14: Change of world or body frame.

Remark 7.8.1. By Proposition 7.8.1, the embedded frame is always chosen
to coincide with the given world frame. However, even though an embedded
frame and a world frame are both stationary in E3, they play different roles.
This is highlighted by the fact that a change of world frame usually involves

changes in both embedded frame and reference configuration.

Let g € SE(3), and v € TSE(3) and o« € T*SE(3) represent a config-
uration in C, and a tangent vector and a covector to C with respect to the
nominal frames Fyy and Fp. As the frames are changed to FY, and F%, these
quantities transform to ¢g{®@ v{®e} and af®*¥, which can be obtained from

Proposition 7.8.1 as follows.

Corollary 7.8.2. As the world frame changes from Fy to F§, while Fg re-
mains the body frame, g, v, and o transform to g = L;7Y(g), v =
TL;'(v), and a'®t = T*Ly(ax), respectively. As Fw remains to be the world
frame while Fg changes to F%, the quantities transform to gt*® = Ry(g),
vied = TR, (v), and ol*% = T*R; Y a).

7.8.2 Frame-Invariance in SE(3)

According to Proposition 7.8.1, each choice of world and body frames corre-

sponds to a c-space representation map relating C to SE(3). Consequently,
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an objective metric function on C induces a left invariant metric function on
SE(3) corresponding to the given choice of frames. By examining the depen-
dence of such left invariant functions on frame choices, we introduce the notion
of frame-invariance, and show that frame-invariance is an equivalent condition
for objectivity.

Corresponding to the world frame F3, and body frame F&, let Ut} be a
metric function on SE(3). For convenience denote (¢} by U. Hence, there
is a family of metric functions on SE(3), each of which corresponds to a par-
ticular frame choice. The following lemma characterizes the condition under
which these functions determine an objective function by U = (FTL’C)*\I!{”’“},
where '™ is the c-space representation map corresponding to Ff, and Fg,

with % and ¢ determined from Proposition 7.8.1.

Lemma 7.8.3. The function U® determines an objective function on C
if and only if it satisfies the condition W% = R, U. In words, U®a} s
independent of the choice of world frame, which implies that the function is
left invariant, and transforms by a right translation in response to change of

body frame.

Proof. First suppose that ¥ = I'*U is objective. Thus, ¥ is left invari-
ant. When the world frame is changed to F9, while Fp remains the same,
Uidel = (1), ¥ = U by Proposition 7.8.1. When the body frame changes to

% with the world frame Fy kept unchanged, using Proposition 7.8.1 yields
Uleal — R W. The necessity of the condition is proved by combining these
two cases. Conversely, suppose that (% = R, W. The arbitrariness of b and
the relation U} = (L71),¥ = ¥ imply that U, and hence Tibal are left
invariant. Moreover, since a is arbitrary, ¥{»%} gives a family of left invariant
functions inter-related by arbitrary right translations. Hence, it follows from

Proposition 7.7.1 that ¥ is objective. O

Note that in this lemma the left invariance of each function ¥{%4} is not a
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prerequisite condition, but a consequence that follows from the more general
condition U{te} = R, .. The lemma along with Corollary 7.8.2 suggests the

introduction of the following notion of frame-invariance.

Definition 7.8.1 (Frame-invariance). Corresponding to the world and body
frames F35, and F%, let ©>a} be a family of real-valued functions on SE(3),
and &4} a family of real-valued functions on the vector bundles of SE(3). Let
arbitrary configurations in C, tangent vectors and covectors to C be correspond-

{0} {ba) {t.a)

ingly represented by g{®% or ¢g!**, v and ;" respectively. The func-
tions ©10:a} and &4} are said to be weakly frame-invariant if they satisfy the
conditions ©1be} (gi{b’a}, . ,gib’a}) =0O(g1,...,9s) and @;lzfg} (vib’a}, e ,V,Eb’a},
a%b’a}, e ,al{b’a}) = ®,(vy,..., Vi, @,...,0q), where the superscript {e,e}
is dropped for brevity. The functions 01 and dbal are said to be frame-
invariant if they are weakly frame-invariant and satisfy the conditions ofbal —
Ofedt and @bt = dleat je., the functions are independent of the choice of

world frame.

The notion of weak frame-invariance allows ¥{%} to determine a metric
function on C, which may or may not be objective, in a consistent manner.
The weakly frame-invariant function U{®%} determines the same metric func-
tion on C for different b and a, i.e., different choices of frames. In other words,
if Wibat is not weakly frame-invariant, it will determine different functions on
C corresponding to different frame choices and lead to a contradiction. The
notion of frame-invariance guarantees not only the consistent determination of
a metric function on C, but also the objectivity of the function. This is estab-
lished in the following proposition, which can be verified from Corollary 7.8.2

and Lemma 7.8.3.

Proposition 7.8.4. Let 4% be g real-valued function on SE(3) or its vector

bundles corresponding to arbitrary world and body frames Fg, and F&. Then
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e} determines an objective metric function U = (The)*T®a} on C if and

only if it is frame-invariant.

Thus, frame-invariance is equivalent to objectivity, and can be interpreted
as follows. A frame-invariant metric function on SE(3) must be independent
of the choice of world frame. This is equivalent to saying that the function
is left invariant and is implied by the observer-indifference condition in the
objectivity notion. The frame-invariant metric function must also consistently
depend on the choice of body frame in such a way that it evaluates to the
same value when the representations of configurations, tangent vectors and
covectors are appropriately transformed in accordance with the frame change.
The consistent dependence condition ensures the consistent determination of
the metric function on C, as mentioned in the previous discussion of weak
frame invariance.

Objective metric functions are most conveniently written in terms of frame-
invariant functions. While frame-invariant functions are merely a convenient
representation of objective functions and do not actually define objective
functions®, the notion of frame-invariance offers considerable intuition and
convenience in developing well-defined, physically meaningful kinematic met-
ric functions.

We now present some examples of frame-invariant distance metrics. More
examples on frame-invariant norms and inner products (Riemannian metrics)
can be found in Chapter 8. Recall that given a set S, a function p: S xS — R
is said to be a distance (metric) if it satisfies: p(z,y) = p(y,z) (symmetry);
p(z,y) = 0 and p(z,y) = 0 if and only if z = y (positive definiteness); and
p(z,y) < p(z, 2) + p(z,y) (triangle inequality) for all z,y,z € S. A distance

5We carefully avoid saying that an objective function is defined as the pull-back of a
frame-invariant function ¥ by a diffeomorphism from C onto SE(3), since such a definition
generally depends on the choice of diffeomorphism. This is similar to the situation where a
metric function on a manifold in general cannot be defined, in a parametrization-invariant
manner, based on some parametrization of the manifold.
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metric on SE(3) allows us to measure the distance between two configurations,
and its frame-invariance ensures that the measurement is made in a well-
defined manner. Some frame-invariant distances have been proposed in the
robotics literature, however, the notion of objectivity clarifies the fundamental

implication of frame-invariance.

Example 7.8.1 (Frame-Invariant Distance Metrics). The real-valued

function [85] p: SE(3) x SE(3) — R given by

P91, g2) = max|gir — gor|

is a frame-invariant distance metric, where | - | is the standard norm on R3.
This distance can be interpreted as the mazimum of the distances between the
corresponding positions of B’s particles. Alternatively, instead of the maximal
distance, one may consider the average of the distances between the corre-

sponding positions of B’s particles [73]:

P(91792)=/B|917'_92T|dva

This is again a frame-invariant distance metric. Other approaches to defining

distance metrics will be discussed in Chapter 8.

7.8.3 Representing Frame-Invariance in Body Coordi-

nates

There is a simple representation of frame-invariance in terms of body coor-
dinates. This representation can be used as a practical tool for developing

frame-invariant, and hence objective, functions of rigid body velocities and
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wrenches.

In the world and body frames Fw and Fg, let x € C, v € T,C and
@ € T;C be represented by g € SE(3), v € T,SE(3) and @ € T;SE(3),
respectively. Recall from Section 3.2.1 that the tangent vector v € T,SE(3)
can be further represented as a body velocity ¢ = T Ly-1(v) =g 'veT.SE(3)
with coordinates ¢ = (§)¥ = (2) € RS. Here the “vee” operator has been used,
which maps (8 %) € T.SE(3) to (2) € RS, and the “hat” operator, which is the
inverse of the “vee”. Meanwhile, the covector a can be further represented
as a body wrench w = T*L;_ll(a) = T*L,(av) € T}SE(3) with coordinates
w = (@)Y = ({) € R8. Note that given o € T}SE(3), the “vee” operator for
covectors is defined by &(v) = a(v) for all v € T,SE(3). The covector “hat”
operator is the inverse of the covector “vee” operator.

Also recall from Section 3.2.1 that body velocities and wrenches depend
on the choice of body frame but are not affected by the choice of world frame.
With respect to the world and body frames F3, and F&, v € T,C corresponds
to a body velocity ¢* and @ € T,C to a body wrench w®. The transformation

formulas, as given in (3.7), are reproduced here for convenience:
¢*=Ad;'¢ and w®=Adw. ) (7.3)

We now use body coordinates to represent frame-invariant metric func-
tions of tangent vectors and covectors. With respect to the world frame Fyy
and body frame Fp, a frame-invariant metric function ® on SE(3) can be
represented by a function ¢: RS — R using body velocities and wrenches as

follows:

Qy(vi, ..., Vi, ..., 0q) = @(Gr, - Gy W, - .., W),
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where ¢; and w; are body coordinates corresponding to tangent vectors v; €
T,SE(3) and o; € T, SE(3) with respect to Fy and Fp. With respect to the
world frame FY, and body frame Fg, the frame-invariant function & trans-
forms to ®tb2} = dleat which is independent of the choice of world frame. To

represent the same tangent vectors and covectors to C, v; and «; transform

to vi®* and a}b’a}, which correspond to body velocities and wrenches ¢¢ and
w$, respectively, as given in (7.3). Since ®{0a} and the body coordinates are
both independent of world frame choices, ¢ transforms to ¢, which depends

only on the choice of world frame and satisfies
b, b, b, b, . .
®§b’a}(v§ a}"" ’VIE a}7ai a}"" 7al{ a}) =¢a(q%"" aQI?nw(lL)'-' ’wla)'

The above equations involving ¢ and ¢* lead to the following necessary and

sufficient condition for frame-invariance:

Proposition 7.8.5. With respect to Fy and Fp, let ¢ be a real-valued func-
tion of body velocities and wrenches. With respect to the body frame F3%, if
the function ¢ obeys the change-of-frame formula ¢*(¢%, ... ,¢%, we, ... ,w}) =
¢(G1, - - 5 Gr, w1, - .., wy), where ¢¢ = Ad;'q; and w} = Adjwj;, then it defines

a frame-invariant function.

This proposition provides a simple and practical representation of frame-
invariant functions on the vector bundles of SFE(3), which in turn define objec-
tive functions on the vector bundles of C. While body coordinates have been
used, it is interesting to consider whether the dual representation by spatial
coordinates is appropriate to be used to represent frame-invariant functions.
From Section 3.2.2, a tangent vector v € T,SE(3) can be represented as
vg 1, called the spatial velocity, and a covector can be represented as a spatial

wrench. A function defined in terms of spatial velocities and wrenches are au-
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tomatically right invariant. However, since right invariant functions in general
do not lead to objective functions, the following important observation can

readily be made.

Remark 7.8.2. The spatial representations of tangent and cotangent vectors
are in general not appropriate to be used to define a well-defined, physically
meaningful real-valued function. Unless the function is bi-invariant, it is not

frame-invariant, and does not determine an objective function.

Summary:

This chapter introduced the notion of objectivity using an intrinsic definition
of the configuration space of a rigid body. This notion formalizes the natu-
ral requirement of metric functions that metric measurements be made in a
way indifferent to observers. Based on the notion of objectivity, the invari-
ance properties in SE(3) have been clarified. An objective function on C or
its vector bundles corresponds to a family of left invariant functions, which
are inter-related via pull-backs by right translations, on SE(3) or its vector
bundles. It was clarified that left invariance is necessary but not sufficient, bi-
invariance is sufficient but not necessary, while frame-invarianceis sufficient
and necessary for objectivity. The equivalence between objectivity and frame-
invariance can be used as a general framework for developing well-defined
metric functions. Chapter 8 uses this framework to develop frame-invariant
norms of rigid body velocities and wrenches. It will be shown that while there
is a lack of bi-invariance in SE(3), there are frame-invariant norms that have
interesting physical interpretations and can be attractive to practical applica-

tions.
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Chapter 8

Frame-Invariant Norms and
Pseudo-Norms of Rigid Body

Velocities and Wrenches

8.1 Introduction

It is of great practical interest to define norms and inner products of tangent
vectors and covectors to the configuration space of a rigid body. A tangent
vector norm allows to measure the “length” of rigid body velocities, or in-
stantaneous displacements that approximate small rigid body displacements.
The notion of velocity “lengths” is needed in many practical applications. For
example, it can be used to indicate how far a fixtured quasi-rigid workpiece
is displaced from its initial location due to a manufacturing operation, and is
hence a measure of the workpiece’s deflection. This interpretation of velocity
norm was the basis for the minimum-deflection fixturing approach in Chap-
ter 6. Dual to velocity norms, wrench norms are used to measure the “length”
of wrenches. Such a notion is necessary for determining the size of a work load
applied to a rigid or quasi-rigid object. It also allows for the definition of balls

in the wrench space, whose usefulness for defining quality measures was also
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demonstrated in Chapter 6.

While they are practically important, well-defined velocity and wrench
norms have not been available to engineers. Traditionally, the Euclidean norm
on R® has been employed to define velocity and wrench norms. For example,
the Euclidean wrench norm has been widely used in defining quality measures
for rigid grasps, for example, by Kirkpatrick, Mishra and Yap [79], Ferrari
and Canny [41], and Teichmann [151]. Whether there exist frame-invariant
velocity and wrench norms has largely been an open problem.

The frame-dependence problem can partially be attributed to the lack of
bi-invariance in SE(3). It is well-known that there exist no bi-invariant Rie-
mannian metrics on SE(3) [92]. Because of this fact, it was perceived that
there are no frame-invariant Riemannian metrics. Since norms are commonly
induced from Riemannian metrics, it was also perceived that there are no
frame-invariant norms of rigid body velocities and wrenches.

Fortunately, as has been shown in Chapter 7, bi-invariance is not a neces-
sary condition for velocity and wrench norms to be well-defined. As has been
clarified, bi-invariance is sufficient, but not necessary, for frame-invariance.
Therefore, despite the lack of bi-invariance on SE(3), frame-invariant norms
of tangent vectors and covectors can exist. Seeking such norms is the subject
of this chapter.

Body velocities and wrenches will be conveniently used in this chapter,
which is organized as follows. Following Section 8.2, which briefly reviews
the notion of norms, Section 8.3 shows that there indeed exist no bi-invariant
velocity and wrench norms. Thus, well-defined velocity and wrench norms are
expected to be frame-invariant but not bi-invariant. Section 8.4 proposes sev-
eral frame-invariant velocity norms with interesting physical meanings. The
root-mean-square velocity norm, which was used in Chapter 6, can be induced

from a Riemannian metric as in common practice, but the other norms pre-
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sented in the section are not inducible from Riemannian metrics. Sections
8.5 and 8.6 consider frame-invariant wrench norms. These norms are defined
based on frame-invariant velocity norms, and have interesting physical in-
terpretations. In addition, closed-form formulas or efficient algorithms will be
provided for the root-mean-square norm in the general three-dimensional case,

and the average wrench norm in the case of polygonal objects.

8.2 Norms and Inner Products on Linear Vec-
tor Spaces and Vector Bundles

This section briefly reviews the notions of distance metrics on sets, as well as
norms and inner products on vector spaces and vector bundles. Let V be a real
vector space. A mapping ||-||: V — R is said to be a pseudo-norm if it satisfies
the following properties for all z,y € V and a € R: ||z|| = 0 (non-negativity);
llaz|| = |a|||z|| (homogeneity); and ||z + y|| < ||z|| + ||yl (triangle inequality).
If in addition ||z|| = O implies that z = 0 (nonsingularity), ||-|[: V. — R is said
to be a norm. A pseudo inner product is a mapping (-,-) : V XV — R with the
following properties for all z,y,2z € V and a,b € R: (z,z) > 0 (positive semi-
definiteness); (z,y) = (y,z) (symmetry); (az + by, z) = a(z,z) +b(y, 2) and
(z,ay + bz) = a(zx,y) + b(z,2) (bilinearity). If in addition (z,z) = 0 implies
that z = 0 (nonsingularity), then (-,:) : V x V — R is an inner product. Note
that a (pseudo) inner product induces a (pseudo) norm by ||z|| = (z, )2,
The notions of norms and inner products can be easily extended to the
tangent and cotangent bundles of a manifold M. A norm (or pseudo-norm)
on TM (or T*M) is a real-valued map ||-|| that assigns a norm (or pseudo-
norm) ||-|| (the subscript “z” is usually omitted for brevity) for each tangent

space T, M (or each cotangent space TM). Similarly, an inner product (or

pseudo-inner product) on the tangent (or cotangent) bundle assigns an inner
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product (or pseudo-inner product) to each tangent (or cotangent) space. Note
that an inner product on T'M, which is called a Riemannian metric for the
manifold M, allows the measurement of the “length” of a curve in M.

It can be verified that given a diffeomorphism f: N — M between smooth
manifolds, and a real-valued function ¥ on M (or TM or T*M) with an ap-
propriate number of arguments, ¥ is a norm or inner product (or pseudo-norm
or pseudo inner product) on TM or T*M if and only if f*¥ is a norm or inner
product (or pseudo-norm or pseudo inner product) on TN or T*N. Thus, a
frame-invariant norm on T'SE(3) is necessary and sufficient to determine an
objective norm on C, and this is also true for pseudo-norms, pseudo inner prod-
ucts and inner products. Thus we will focus on frame-invariance to ultimately

guarantee objectivity.

8.3 Lack of Bi-Invariant Norms

Section 7.8 indicated that if a velocity norm is bi-invariant, it will be frame-
invariant. Since there are no bi-invariant Riemannian metrics on SE(3), there
are no bi-invariant norms that can be induced from a Riemannian metric. It is
then interesting to know whether there are bi-invariant norms that cannot be
induced from Riemannian metrics. The following proposition indicates that

such norms do not exist.

Proposition 8.3.1. There exist no bi-invariant norms on TSE(3), inducible

or not inducible from a Riemannian metric.

Proof. Consider a left invariant norm ®, which is determined by ®. by &, =

L, &, for any g € SE(3). Let
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for ¢ € T,SE(3) where ¢ = (%) € RS. Now suppose that ® is also right
invariant. Then for any a = (d, R) € SE(3),

e(q) = Ri®e(q) = ®a(da) = Pe(a™'qa).

In coordinate form, this can be written as ¢(4) = ¢(Ad;'¢). Using (8.1) to
expand the right-hand side of this equation yields

¢(v,w) = $(R"(v+w x d), R'w)

for all d € R® and 3 x 3 proper orthogonal matrices R. If w = 0, ¢(v,0) must
be a norm of v € R, hence ¢(v,0) = |v|. When w # 0, choosing d = wxv/|w|?

yields v +w x d = (w™v)w/|w|>. Hence

wTv

o) = ool () (R 2), 1ol (R7125) ) = ot folu)

o |l

where h = "‘—f—i% is the pitch associated with ¢, and u € R? is an arbitrary unit
vector since R is arbitrary. It follows that if w # 0, the function ¢ depends
only on the magnitude of the angular velocity and the pitch h. There must be

some function f: R x Ry — R such that

lv| ifw=0,

flhy |wl) i w # 0.

¢(va LU) =
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The homogeneity of a norm implies that for ¢ € R,

f(h> lcwl) = lC]f(h, Iw])a

where the fact that ¢ and cg have the same pitch h has been used. Therefore,
f must be positively linear in its second argument. This requirement implies

that f must take the form

f(hy |w]) = o ()],

for some positive function o. Choose ¢; = (i!) and ¢» = (¢3) such that

v; = v9 = v and w; = —wy = w, where v and w are nonzero and are related by
wTv = 0. Since h; = v7wi/|w;|’ = 0 and w; + wy = 0, the triangle inequality

P, (51 +Gy) < ®(qy) + Pe(q,) implies that
[v] < o (0)]w].

Since |w| can be arbitrarily small while ||v|| is fixed, this inequality is not
always satisfied, a contradiction. This implies that there are no bi-invariant

norms on T'SE(3). | O

The proposition yields the following corollary on the lack of bi-invariant

wrench norms.

Corollary 8.3.2. There ezist no bi-invariant norms or inner products on

T*SE(3).

Proof. The tangent space T,SE(3) and cotangent space T, SE(3) at any g €
SE(3) are finite dimensional vector spaces, and T;SE(3) is the dual space
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of T,SE(3). Let T;*SE(3) be the dual space of T;/SE(3). Then since the
spaces are finite dimensional, any A € T,*SE(3) can be identified with a
unique tangent vector v € T,SE(3) by the relationship A(a) = a(v) for any
a € T;SE(3). Suppose that ® is a bi-invariant norm on T*SE(3). Then @
induces a norm, denoted ¥, on T;*SE(3) by

V,(A) = sup{ /\(z) o€ Tg*SE(3)}.

With T;*SE(3) identified with T,SE(3), ¥ is a norm on T'SE(3). It can be
verified that the function © on TSE(3) xT*SE(3) defined by ©,4(v, &) = a(v)
is bi-invariant. Now @ is bi-invariant by assumption. It can be shown that
U, defined via two bi-invariant functions, is also bi-invariant. Thus, there is a
bi-invariant norm on T'SE(3), a contradiction to Proposition 8.3.1. Therefore,
there are no bi-invariant norms on T*SE(3). Now suppose that there is a
bi-invariant inner product on T*SE(3). Then this inner product induces a bi-
invariant norm on T*SE(3), a contradiction. Hence, there are no bi-invariant

inner products on T*SE(3). O

The fact that there are no bi-invariant norms on T'SE(3) and T*SE(3) im-
plies that no objective tangent vector or covector norms can be represented on
TSE(3) or T*SE(3) as a single function. In other words, with respect to dif-
ferent choices of reference frames, the norms on TSE(3) and T*SE(3) need to
transform according the frame-invariance conditions given in Definition 7.8.1

or Proposition 7.8.5 in terms of body coordinates.

8.4 Frame-Invariant Velocity Norms

Section 8.3 showed that there exist no bi-invariant norms of rigid body veloc-

ities and wrenches. Therefore, well-defined norms are expected to be frame-
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invariant but not bi-invariant. According to Chapter 7, so long as the norms
are frame-invariant, the “length” measurements of rigid body velocities and
wrenches can still be performed in a observer-indifferent manner and are there-
fore well-defined.

For convenience in verifying the frame-invariance of the norms that will be
proposed, expand the body velocity transformation formula (3.7) as follows.
In a new body frame Fp displaced by a = (§ 9) from the original body frame

Fg, a body velocity ¢ = (v,w) transforms to § = (9,®) = Ad;" ¢, ..,

7=R'(v+wxd) and &= Rw. (8.1)

Meanwhile, the coordinates of a point in the object in the new and old body

frames are related by (]) = a™* (7), or

7= R'(r — d). (8.2)

It follows that the region in R® occupied by B with respect to the frame Fpg,
also denoted B, transforms to B = {R”(r — d) : r € B}.

Weighting functions defined on B will be used extensively. For the purposes
of this chapter, the following class of weighting functions will be used. In the

following definition, § denotes the Dirac delta function.

Definition 8.4.1 (Weighting Functions). A function v: B — R is said to
be a weighting function if it is of the form v = v, + v} (explained below), is
normalized such that [,v(r)dV = 1, and is frame-invariant, i.e., in a new
body frame Fp, v transforms to 7 such that v(r) = () while r transforms to
7. The function v,: U — R is piecewise continuous and non-negative, where

U C B has non-zero volume. The function v5: B — R is of the discrete form
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vp(r) =30 wid(r —r;) where w; > 0and r; € Bforalli=1,...,p. We say
that v = v, + v, is positive definite if [, va(r)dV > 0, or v, is nonzero at no

less than three non-collinear points.

First consider a velocity norm that is induced from a Riemannian metric.
For arbitrary body velocities ¢; = (&) specified in Fp, define a real-valued

function by the following weighted average

(G, ds) = /B V(r) (0 + wn X 7Y (v + wp X 1)V, (8.3)

where v: B — R is a weighting function. The properties of this function are

characterized as follows.

Proposition 8.4.1. The function (g, ¢2) is frame-invariant. If v is positive
definite, then (41,¢2) is a Riemannian metric on SE(3). Otherwise it is a
pseudo-Riemannian metric on SE(3). In either case, it can be computed from
the gquadratic form <ql;q2> = ¢TMdgy, where M = [,v(r) (£ _}Z) dV is the

weighting matriz associated with v.

Proof. According to formulas (8.1) and (8.2), with respect to a new body frame

Fg, U +@; x = RT(U; +&; X r). Since U(7) = v(r), this implies that

/ V(r) (01 + wn X 7Y (53 +ws X 7)dV = / 5(7) (B + @1 x F)7 (3 + @p x F)T,
B B

and frame-invariance follows. It is trivial to observe that (¢, do) is a symmet-
ric and non-negative bilinear function, and is therefore a pseudo-Riemannian
metric. If v is positive definite, then (¢, ¢) = 0 implies that the velocities of
three non-collinear points are zero, which in turn implies that ¢ = 0. The
computation formula is proved by noting that v +wr = [I, —7] (?), and that

g; are independent of r € B. 0
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This Riemannian metric immediately induces a norm of rigid body veloci-

ties, given by

N

dllems = (4, 4)2 = (" M4)?, (8.4)

for a body velocity ¢ = (v,w). Since (¢, §) is frame-invariant, this norm is also
frame-invariant. Note that this defines a pseudo-norm if (¢, ¢) is a pseudo-
Riemannian metric.

There are two interesting interpretations of this Riemannian metric and
its induced norm. If v is interpreted as the mass density of B, then 1 (¢, q)
is the kinetic energy of the body with velocity ¢. On the other hand, one
can alternatively interpret this Riemannian metric from a purely kinematic
point of view. By interpreting v as a weighting function on contributions from
individual particles of B, the metric can be viewed as a weighted average, and
the norm is the root-mean-square (rms) of the velocities of B’s points. For
this reason, (¢, q) is called the weighted-average Riemannian metric, and as
the notation suggests, ||¢||rms is termed the rms velocity norm. The weighting
function can be chosen to encode certain manufacturing requirements. For
example, if one uses uniform weighting by choosing v(r) = (f;dV)~!, then
the points of B are considered equally important. On the other hand, using

discrete weighting v(r) = Y°F

i1 Vi0(r — 1;), where v; are constants such that

Zle v; = 1, the contributions of only a finite number of points in the object
are included. These points can be chosen as feature points that have the most
influence on manufacturing accuracy.

While Riemannian metrics can be used to induce velocity norms, it is im-
portant to note that norms in general need not be inducible from a Riemannian

inner product. We now present two such norms that have interesting physical
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interpretations. For a body velocity ¢ = (v,w), define
|dllmax = max |w x r +v|, and ||¢|lavg = / v(ir)lw x r+ov|dV  (8.5)
reQp B

where (g C B is a set of feature points of the object, and v is a non-negative

weighting function satisfying the condition [, v(r)dV = 1.

Proposition 8.4.2. The functions ||§||me: and ||]|avg are frame-invariant. If
Qg contains at least three non-coplanar points and v is nonzero at no less than
three non-coplanar points, ||G||mes and ||G]|ag are norms on TSE(3). Otherwise

they are pseudo-norms.

Proof. The frame-invariance of these functions can be proved in a manner
similar to the weighted-average Riemannian metric. We only prove that ||§||max
is a norm, since a similar proof can be given to ||¢|lave. Write [|¢|lmax =
max,cqy |Ur(¢)|, where u,(¢) = v+ w x r is the velocity of the point r. The
function ||¢|/max is obviously non-negative, and its homogeneity follows directly

from the linearity of u.(¢) in ¢. It also satisfies the triangle inequality:

ldr + G2llmex = max |u (1 + ¢2)| = max |u,(¢1) + ur(42)]
reQp reQdp

< max |up(dy)] + max fur(¢2)] = [11llmax + lldallmax,

since the norm | - | on R® satisfies the triangle inequality. Therefore ||q||max
is a pseudo-norm. If 2p contains at least three non-coplanar points, then
llg|lmex = O implies that the velocities of these three points are zero. Hence

g = 0 and ||¢|lmax becomes a norm. O

We call ||§|lmax the mazimum velocity norm, and ||¢||avg the average ve-

locity norm since they have the following interesting physical interpretations.
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llg||max is the mazimal velocity or instantaneous displacement of the points in
Qp, a feature-point set of B. In fact, this norm actually corresponds to the
objective norm in Example 7.6.1, and includes the planar case, formula (7.2),
as a special case. On the other hand, ||d||avg is the weighted-average velocity
or instantaneous displacement of the points in B. Note that these physical
interpretations make the two norms very attractive to practical applications,
such as fixturing, where workpiece displacements are a major concern in the
design process. While the average norm can be computed in terms of closed-
form or numerical integration, the maximum norm can be computed from the
following formula that is based on the physical meaning of the norm. Given a

velocity ¢ = (v, w),

. |v] if w=0,
4llmax = . (8.6)
|wl (P +1*)7 i w #0

where in the case of w # 0, h = %@ is the pitch associated with ¢, and pmax
is the maximal distance from the screw axis of ¢ (Section 3.2.2), given by

{vxw+aw: o€ R}, toany point of B.

Yo

~2bh0

Figure 8.1: An instantaneous rotation of an equilateral triangle.

Example 8.4.1. Suppose that an equilateral triangle whose edges are of length
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2b undergoes an instantaneous rotation, of magnitude 0 < # < 1, about one
of its vertices. We compute the “length” of this velocity using the average,
root-mean-square and maximum norms. As shown in Figure 8.1, choose a
body frame whose origin is at the triangle’s center of symmetry. In this frame,
the velocity is given by ¢ = (#a,0,0), where a = %b is the distance from
the origin to the triangle’s vertices. To compute the average and rms norms,
we use a discrete weighting function v(r) = ¥0_ $6(r — r;), where 7; are the
triangle’s vertices. Denote by u,,(¢) the velocity of ; due to B’s velocity ¢. By
(8.5), the average norm is given by [|d|lag = > oy uy,| = 30b. Now consider
the rms norm. It can be shown that the weighting matrix associated with v is
M = diag(1,1,a2), which gives ||llvms = (¢M)} = 280, Finally, Q5 = B
is taken for the maximum norm. The fact that the maximal velocity of B’s
points due to ¢ occurs at a bottom vertex, as shown in the figure, implies that

||d|lmax = 26 b. Note that ¢l max > ldllrms > H‘j”avg'

8.5 Frame-Invariant Wrench Norms Induced
From Inner Products

Having considered frame-invariant velocity norms, we now turn to frame-
invariant wrench norms. First consider a norm that is induced from a wrench
inner product.

A wrench inner product can be defined from a Riemannian metric as fol-
lows. By the Riez representation theorem in functional analysis [110], every
covector, which is a real-valued linear map on the tangent space, corresponds
to a unique tangent vector determined by the Riemannian metric. Specifically,
let {41, g2) be a Riemannian metric, expressed in terms of body velocities. Then

each body wrench w corresponds to a unique body velocity, denoted by w?,
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determined from
<'w”, q) =w"q (8.7)

for all body velocities ¢. It follows that an induced inner product of wrenches

can be induced by

(s, wa)) = (wh,wh) 8.9)

for body wrenches w;. Provided the Riemannian metric (-, -) is frame-invariant,
the induced wrench product is also frame-invariant. We now compute the
wrench inner product. Every Riemannian metric can be written in the form
{41, G2) = GF M s, where M is a positive definite matrix. For example, for the
weighted-average Riemannian metric, M is the weighting matrix correspond-
ing to a given weighting function. According to Equation (8.7), the velocity
corresponding to a wrench w is given by w* = M~'w. It follows from (8.8)
that the induced wrench inner product can be computed from the following

formula:
(w1, ws)) = wT M w,. (8.9)
The wrench inner product further induces a wrench norm by the formula
fwll = (w,w)? = @ M w): (8.10)

Again, this norm is invariant to change of coordinate frames if the Riemannian
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metric is frame-invariant.

Recall that a covector is a real-valued linear functional on the tangent
space based at the same point. From an elementary result in functional anal-
ysis [110], a tangent vector norm induces a covector norm. Specifically, let ||-||
be a tangent vector norm expressed in terms of body velocities. Let w be a

body wrench. Then the norm of w induced from the velocity norm is given

by

|[w™]
4]

lwll = sup{ t ¢ € T, SE@)}. (8.11)

This wrench norm is frame-invariant provided that the tangent vector norm

is frame-invariant.

Proposition 8.5.1. Let {(-,-)) be the wrench inner product induced from a
Riemannian metric (-,-). Let ||-||2 and ||-||, be the velocity and wrench norms
induced from (-,-) and (-,-), respectively. Denote by |||, the wrench norm
induced from the velocity norm ||-|| according to (8.11). Then |Jw| = |lw|' for

any wrench w.

Proof. It follows from (8.11) that

T :\2 T T - - M"'l‘ TM-l
ol = sup 70 _ g TWW_ TR wwTM e
gero 4" gero 4TMG oewo o7z

Therefore, [||'w|||'22 is the largest eigenvalue: Amax(M~2ww™M~2). Since
(M 3ww™ M) (M~ 3w) = (w" M w)(M 3w),

: . _1 1. _1 _1
wT M ~'w is the only nonzero eigenvalue of M~ 2ww™ M2, since M~ 2ww M2
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has rank 1. Therefore, Apax( _%w'wTM'%) = wTMw. This proves the

assertion, since ||Jwl|> = w”M~'w. O

Let us now focus on the wrench norm induced from the weighted-average
Riemannian metric (8.3). In this case, the matrix M in the wrench norm
formula (8.10) is the weighting matrix given by Proposition 8.4.1. To seek a
physical interpretation, imagine that a wrench is generated by a distributed

force as follows. Define a set of distributed forces by

Dﬁ,:{fzs.-»ue% /V(T)DT( r)dV = w/ ) If(r) |dV<oo}
B

(8.12)

where D(r) = [I, —7]. Note that [, v(r) D"(r)f(r )dV — w is the matrix
form of the conditions [, v(r)f(r)dV = f and [yv(r)r x f(r)dV = 7. A dis-
tributed force f € D2, is said to generate w. Using this collection of generating

distributed forces leads to the following proposition.

Proposition 8.5.2. Consider an arbitrary body wrench w. Let the wrench
norm induced from the weighted-average inner product be denoted by ||w)|

Then |w]|

rms’

= (W™M~'w)3, where M = [,v(r) D"(r)D(r)dV, and is re-

rms

lated to the distributed forces that generate w by

([ iorav)*

fwll s = ( /B () fo(r)* aV)* = inf

w

where fo(r) = D(r) M~w € DL.

Proof. The formula ||w]|.,., = (w™M ~Lay)3 is given by (8.10). We consider the

rms

relation of the wrench norm to distributed forces. For any velocity ¢ = (v,w),
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it can be shown that if f € D2, then w(g) = [, f(r
wrench w = (f, 7). Thus,

- (v 4w x r)dV for any

lw(@)] 1 2 )2
(0l o I e+ xnlav < (/Blfw dV)

By Equation (8.11), this implies that

ol < int ([ v0) ) V)%

We now show that |wl,,,, achieves this upper bound at the distributed force

fo(r) = D(r)M~'w. First we verify that fy generates w. Substituting fy for f
verifies the first condition of Equation (8.12):

/By( yD rydV = / D(rYMwdV = w,

where we have used the fact that M = [, v(r) D"(r)D(r)dV. Thus, f, € D2,

Now compute

/ o(r) [fo(r) 2 dV = / r)M=Ya0)"(D(r) M~ w) dV

_ /Bu(m w” M~ D(r)D*(r) M 'wdV = w" M 'w = fjw]?,,.

Therefore, ||w|,,,, achieves the upper bound at fy, which completes the proof.

d

It follows from Proposition 8.5.2 that the wrench norm |w| . . is the

greatest lower bound on the root-mean-square of the magnitude of any dis-

rms

tributed force that generates w. For this reason, this norm is called the rms



228

wrench norm, which explains the notation. Since the rms norm has an in-
teresting physical interpretation and affords efficient computation, it can be
very attractive in practical applications. Its use has been demonstrated in the
minimum-deflection fixturing approach, where it provided well-defined wrench
balls. Such wrench balls, as is clear from formula (8.10), are ellipsoids in the

wrench space.

Figure 8.2: The rms norm of wrenches acting on an equilateral triangle is the
root mean square of three forces at the vertices.

Example 8.5.1. Consider an equilateral triangle whose edges are of length
2b, and whose center of symmetry is at a distance a = \—%b from the vertices.
Choose a body frame as shown in Figure 8.2, and choose a Weighﬁing function
v(r) = 30, 30(r — r;), where r; are the triangle’s vertices. The weighting
matrix is then given by M = diag(1,1,a?). Consider a family of wrenches
w = (f,0,7) where f > 0 is fixed and 7 > 0 can vary. By proposition 8.5.2,
lwll,me = (WM~ w)? = f/1+ 372, where 7 = 75 From the same propo-
sition, the norm is the root mean square of a distributed force fo(r), given
by fo(r) = f(§) + ‘/7§'7' f (_cz;r(lg”(’g;)), where (r) is the angle made by r with
the z axis. By examining Equation (8.12) and Proposition 8.5.2, we see that
the rms norm is in fact the root mean square of three concentrated forces,
which are statically equivalent to w, acting at the triangle’s vertices. These

concentrated forces are also shown in the figure.
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8.6 The Average Norm of Wrenches Acting
on Planar Bodies

The rms wrench norm considered in the preceding section is induced from a
wrench inner product. However, similar to velocity norms, there are wrench
norms that are not induced from wrench inner products. The maximum and
average velocity norms (Section 8.4) can be used to induce wrench norms (via
the definition of (8.11)) that are not inducible from any wrench inner products.

Unlike the rms wrench norm, the computation of the wrench norms induced
from maximum and average velocity norms is very difficult and largely remains
open. However, for planar objects, the wrench norm that is induced from the
maximum velocity norm has an interesting physical interpretation, which in
turn yields an efficient computation algorithm. This section summarizes the
main results, while detailed proofs are given in Appendix D.

Recall that the maximum velocity norm is defined by Equation (8.5):
ldllmax = Maxyeqy |w X 7 + v|, where ¢ = (v,w) is a body velocity. With-
out loss of generality, assume that Qg = B, since a given feature-point set {2
can be regarded as an “object” for the purpose of norm computation. The
norm of a wrench w induced from the maximum velocity norm is given by
(8.11): Jwl,, = sup{ﬁ% ¢ € T,SE3)}. In a way similar to (8.12),
define the following set of distributed forces:

D), = {f:5 R /BDT(T) f(r) dV = w, /B {4V < oo}, (8.13)

This allows us to introduce the following upper bound on [Jw]|,,, which holds

for general three-dimensional bodies.

Lemma 8.6.1. Consider an arbitrary wrench w acting on an object B. For
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any distributed force f € Dy, we have the inequality |wl,,, < n(w), where

n(w) = infeepy, [ |f(r)] dV.

Proof. For any velocity ¢ and distributed force f € D},

| 1 /
- = flr)- (v+wxr)dV
Tl nqnlmax (r)- )
< max|v+wxr|/]f ) dv = /|f ()| dV,

where ||¢|lmax = max,qcp|v + w x r| has been used. Taking supremum and

infimum as appropriate proves the assertion. O

It is seen that [|w]| ., called the average wrench norm, is a lower bound

avg’
on the average magnitude of distributed forces that generate w. While it is
conjectured that the equality in the lemma is achieved for three-dimensional
object, we now show that this is indeed true for planar objects. To simplify
the notation, the wrench space is hereafter denoted by W = T SE(3). We
start with the simplest polygons—triangles.

The three vertices of any triangle lie on the triangle’s circumscribing circle.
As shown in Figure 8.3(a), specify wrenches with respect to a frame based at
O, the center of the circumscribing circle. The triangle’s vertices, denoted 7,
and edges, denoted e;, are ordered counterclockwise, with e; directing from r;
to r;x1 (mod 3). Let o; be the angle subtended by e;, and a the radius of the
circumscribing circle. Then the length of e; is 2¢; = 2asina;. A wrench w =
(f,7), which is specified in a frame based at O, will transform to w = (f,m)

if specified in a frame that is based at r;. Let f; denote the projection of f

onto e;. Then f; and 7; are given by

fi=f-€& and T,=7-—1;Xf, (8.14)
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where &; denotes a unit-magnitude vector aligned with edge e;, and 7; x f £

det([r;, f]) with r; the position vector of vertex 7;.

Proposition 8.6.2. Let w = (f,7) € W be a wrench acting on a trian-
gle. Then Jwll,,, = n(w), where n(w) = infeepy [5|f(r)|dV. Moreover, the

wrench space can be decomposed as W = Wy U Wi U Wy U W35 UW,, where

W; = W UW; are mutually disjoint wrench subsets given as follows.

Wi={weW: 720, and 7; <0 for any j},

WH={weW: 7>0, 7, >0Vj, and f; > %sinaicosai} (i=1,2,3),
Wi ={weW: 7>0, 7; >0, and f; < z;sinajcosaj, Vit
J

and Wy = {w e W : —we W} (=0,....,4), where f; and 7; are

computed using (8.14). The norm of w is given by

(

| f] if we W,

llwll oy = < \/(%)2 — 2(2—j)fi cota; + flescto; HfweW, (i=1,2,3),
Il

if w € W4.

\

The proof of this proposition (Appendix D.2) shows that there exists a dis-
tributed force f(r) = Z:;l f;0(r —r;) (i.e., f(r) vanishes except at the triangle’s
vertices) such that [|w]l,,, = [z |f(r)|dV = 53 |fi]- A distributed force with
this property is said to be critical. A wrench w € W is statically equivalent
to a pure force f acting at some point in the triangle, and in this case the
components f; of the critical distributed force are all aligned with f. A wrench
w € W; (i = 1, 2,3) is not statically equivalent to a pure force acting on B, and

the critical distributed force is nonzero only at edge e;’s endpoints. Finally, a
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Figure 8.3: Computing the norm of a wrench acting on a (a) triangle and (b)
polygon.

wrench w € W is also not statically equivalent to a pure force acting on B,
and the components f; of the critical distributed force are nonzero at all the
vertices of B. Note that W, are subsets rather than subspaces of wrenches,
and every wrench in W is contained in one of these subsets.

The methodology for triangles can be extended to general polygons as
follows. Let B be an arbitrary polygon, whose convex hull is denoted B. As
shown in Figure 8.3(b), B can be contained in a circle such that three vertices,
denoted r;, are on the circle. Let r; be ordered counterclockwise with respect
to the triangle, denoted A, formed by these vertices. Denote the triangle by
A and denote its edges by e;, where each e; is directed from 7; to 7541 (mod

3), and cuts a convex polygon, denoted P;, from B. For clarity we write

B

avg 1S computed with

B :
g = llwlleyg and n(w) = ns(w), meaning that [jw]]
w regarded as a wrench acting on B , and ng(w) with respect to a force that is
distributed over B. Similar notation apples to A and P;. For example, ||w|| ﬁ,g

and na(w) are interpreted in the obvious way.

Proposition 8.6.3. Let w = (f,7) € W be a wrench acting on a polygon B.
Then ﬂ]wmsvg = np(w), where ng(w) = infrepy [, [f(r)|dV. Let B be contained
in a circle with vertices r; (i=1,2,8) on the circle. Then B = AUP,UP,UPs,
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as shown in Figure 8.3(b). By applying Proposition 8.6.2 to the triangle A,

the norm can be computed as follows.

(1) Ifw € Wi, i = 0,4, then [lw|3, = |lwl,

avg avg’

(2) IfweW,, i=1,2,3, and e; is an edge of B, then lwlZ,, = [w]2

avg ~ avg”

(3) IfweW,, i=1,2,3, and e; is not an edge of B, then |w]||>, = |lw|:

avg avg’

By applying this proposition in a recursive manner, the problem is reduced
to polygons of successively less edges. The problem can eventually be solved
by considering a triangle. Clearly, this scheme can be used for approximately
computing the average norm of wrenches acting on a curved planar object B
by discretizing the boundary of B and approximate B by a polygon with n
edges. Moreover, letting n — oo, the approximation polygon approaches B

and we have the following general conclusion.

Corollary 8.6.4. Let w = (f,7) € W be a wrench acting on an arbitrary
object B. Then ||w||%, = ns(w), where ns(w) = infrepy [4 |f(r)| dV.

avg

It follows that the average norm of a wrench acting on a planar object is
the greatest lower bound on the average magnitude of distributed forces that
generate the wrench. Because of this physical interpretation and the efficient
computational scheme outlined in Proposition 8.6.3 for polygonal objects, the

average wrench norm can be potentially useful in practical applications.

Example 8.6.1. We compute the average norm of the family of wrenches

considered in Example 8.5.1. Proposition 8.6.2 can be used to obtain
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Figure 8.4: The average norm of wrenches acting on an equilateral triangle.

where 7 = 7. In all the three cases given above, lwll,,, = n(w) holds

at distributed forces which vanish except at the triangle’s vertices. When
T < %, w is statically equivalent to a pure force acting on the triangle. In
this case the norm simply equals f. When % <7< %, the norm equals the
sum of the magnitudes of forces acting at the two lower vertices, as shown in
Figure 8.4(a). If 7 > %, then the norm is the sum of the magnitudes of forces
acting at all the three vertices, also shown in Figure 8.4(a). A comparison of
the average and rms norms of these wrenches is given in Figure 8.4(b), which

shows that ||w||ave < ||w]||rms for the choice of feature-point set Qp = B (for

computing ||w||ayvg) and weighting function v (for computing ||w||rms).

Summary:

This chapter built upon the equivalence between the notions of objectivity and
frame-invariance, as discussed in Chapter 7, to develop well-defined norms
of rigid body velocities and wrenches. These norms include the root-mean-
square, maximum and average velocity norms as well as the root-mean-square
and average wrench norms. These norms are frame-invariant, have interesting

physical meanings, and in many cases can be efficiently computed. There-



235

fore, these norms can potentially be applied to practical engineering problems,
as demonstrated by the minimum-deflection fixturing approach discussed in

Chapter 6.
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Chapter 9

Discussion and Future Work

This thesis presented an approach, based on accurate and efficient physical
modelling, to automated planning of workpiece fixturing and robotic grasp-
ing, a problem that has remained a major challenge facing manufacturing
automation. Several key issues in mechanics and planning of fixtures and
grasps were addressed, including the accurate and efficient modelling of com-
pliance, well-defined and practically useful quality measures, and well-defined
kinematic metric functions for rigid bodies.

The accurate and efficient modelling of compliance in fixturing and grasp-
ing is the foundation for automated fixture and grasp planning systems. In
a contribution to this foundation, a closed-form stiffness matrix formula was
developed which employs realistic and nonlinear contact models. In particu-
lar, the formula incorporates the classical Hertz contact model, which is both
theoretically justified and experimentally verified. This is in contrast to the
commonly used linear-spring contact model, which is not supported by experi-
mental data or elasticity theory. The stiffness matrix formula is in closed form
and can be directly computed from the fixture geometry and basic material
properties of the contacting bodies. Consequently, the formula affords both
accuracy and efficiency, and is therefore highly desirable for automated fixture

and grasp planning systems.
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The stiffness matrix formula was used as a basis for a systematib analysis of
the role played by first and second-order geometrical effects in the stiffness and
stability of a fixture. The effects of the local curvature of the contacting bodies
at the contacts on the stability of a fixture were investigated. It was shown
that destabilizing effects of local curvatures are practically negligible, and
that curvature effects can be used to stabilize, sometimes quite significantly,
an otherwise unstable fixture. The investigation of the impact of the choice of
contact models showed that stability analysis is in general model-dependent.
This model-dependency offers additional evidence that realistic contact models
should be preferred in assessing stiffness and stability of fixtures and grasps.

The second issue addressed in this thesis is concerned with theoretically
sound and physically meaningful fixture and grasp quality measures and their
application to optimal planning algorithms. Recognizing that existing qual-
ity measures are limited to rigid grasps and mostly depend on the choice of
reference frames, we developed the stiffness and deflection quality measures
which are appropriate to compliant fixtures and grasps. These quality mea-
sures are frame-invariant, are valid for general compliance models, and apply
to two- and three-dimensional workpieces fixtured by any number of fingers.
The stiffness quality measure is defined as the worst-case characteristic stiff-
ness of a fixture in terms of the principal translational and rotational stiffness
parameters, which are frame-invariant and possess interesting physical and ge-
ometrical interpretations. On the other hand, the deflection quality measure
is defined, based on frame-invariant norms and pseudo-norms of rigid body
velocities and wrenches, as the worst-case deflection of a fixtured workpiece
under the action of any wrench in a subset of the wrench space. This subset,
which is called the task wrench set and represents a set of manufacturing op-
erations, has been modelled either by the unit wrench ball, or by a class of

primitive wrench sets representing basic manufacturing operations.
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The stiffness and deflection quality measures were applied to optimal plan-
ning, resulting in maximum-stiffness and minimum-deflection fixtures and
grasps. Using the stiffness matrix formula mentioned above to analyze three-
and four-finger frictionless fixtures of polygonal objects, the qualitative proper-
ties of the optimal finger arrangement for such fixtures were characterized. For
three-finger fixtures of a polygon modelled by a general contact model, simple
graphical and analytical techniques were developed for finding the globally op-
timal finger arrangement with respect to each quality measure. For four-finger
fixtures of a polygon modelled by the linear-spring contact model, a global
optimization algorithm was devised with respect to each quality measure in
terms of indefinite quadratic programs. Since there are only four independent
variables in these indefinite quadratic programs, they can be solved at a rea-
sonable computational cost even though no efficient algorithms are available
for large-scale indefinite quadratic programming problems. The usefulness
of the stiffness and deflection quality measures was demonstrated by several
examples of optimal fixtures that are intuitively effective.

The final issue addressed in this thesis centers on formal conditions as well
as practical development methods for well-defined metric functions for rigid
body kinematics. Based on an intrinsic, frame-free definition of C, the configu-
ration space of a rigid body, the notion of objectivity was introduced to formal-
ize the natural and fundamental requirement that a well-defined metric func-
tion be indifferent to the observers that perform metric measurements. The
objectivity notion allowed to clarify the relationship between well-definedness
in C and invariance in SE(3). It was shown that an objective metric function
on C corresponds to a family of left invariant metric functions on SE(3) that
are not necessarily right invariant. The necessity of left invariance indicated
that bi-invariance on SE(3) is sufficient, but not necessary, for a metric func-

tion on C to be well-defined, and that metric functions on SE(3) that are
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merely right invariant in general do not lead to well-defined functions. To fa-
cilitate practical development of well-defined metric functions, an accurately
defined notion of frame-invariance was also introduced, which was shown to
be a necessary and sufficient condition for objectivity. Thus, one may conve-
niently focus on frame-invariant metric functions on SE(3).

In the framework of objectivity and frame-invariance, this thesis developed
well-defined norms and pseudo-norms of rigid body velocities and wrenches.
In addition to the well-known fact that there are no bi-invariant Riemannian
metrics on SE(3), it was shown that there are no bi-invariant norms on SE(3)
as well. Thus, it is expected that well-defined norms are frame-invariant,
but not bi-invariant. The thesis further proceeded to actually define several
frame-invariant norms and pseudo-norms of rigid body velocities and wrenches.
These norms and pseudo-norms have interesting physical interpretations, and
are hence practically attractive. The utility of these norms was demonstrated
by their application to the deflection quality measure, which allows for the
planning of minimum-deflection fixtures and grasps.

The results from this thesis are a step forward toward a fixture and grasp
planning paradigm that is based on accurate and efficient physical modelling.
However, further research needs to be pursued to enable the development of
practical planning systems. In particular, more work is needed on compliance
modelling and planning algorithm development.

The open problems in compliance modelling include realistic contact mod-
els that augment the Hertz model, more realistic preloading analysis, and
incorporation of friction and global deformations. The classical Hertz model
offers an accurate compliance relationship, f = cd%/?, for the contact of two
compliant bodies that initially touch at a single point. However, when the com-
pliant bodies initially touch along a line, the Hertz model involves a choice of

datum points (Equation (4.10)), and may hence cause significant inaccuracy
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to compliance analysis. Since line contacts are quite common in workpiece
fixturing, we need to develop compliance models that are appropriate for such
contacts. The second open problem involves realistic preloading analysis. The
current methodology is restricted to essential fixtures, which are assumed to
be preloaded in such a way that the finger forces are normal to the work-
piece’s surface at known positions and are in constant ratios determined by
the normalized finger force magnitudes (Section 4.4.2). As a consequence of
this assumption, the workpiece is at the same configuration at the start and
end of preloading. However, this assumption may be violated by a practical
preloading process, in which some finger forces may not be actively controlled
and the workpiece may consequently change its configuration. An efficient
method needs to be devised to compute the workpiece’s preloading displace-
ment. Such a method would also be useful for the related problem of finding
the displacement of a workpiece in a non-preloaded fixture due to a work load.

The most desirable feature of the current stiffness matrix formula lies in
its closed-form incorporation of the Hertz contact model, as compared with
the use of the linear-spring model by existing formulas. However, the for-
mula leaves out two important factors: friction and global deformations. In
some fixturing applications, friction is either negligibly small or can be ig-
nored for a conservative analysis. However, under circumstances where it is
desired to explore the beneficial effects of friction, the current formula is no
longer valid. Thus, there is a need to incorporate friction in compliance anal-
ysis. We should, however, distinguish such an extension of the current work
from the traditional approach that models frictional contacts by linear springs
in the directions normal and tangential to the contacting surfaces. As has
been indicated, such a linear-spring based approach is not theoretically or
experimentally supported. In the current stiffness matrix formula, global de-

formations, i.e., elastic deformations that occur in the regions of the contacting



241

bodies away from the contact points, have also been neglected. The exclusion
of global deformations implies that the formula ceases to be valid for fixtures
that possess slender structures. To enable automated planning algorithms for
more general fixtures, there is a need to incorporate global deformations in
compliance analysis.

We have developed fixture quality measures that apply to general fixtures,
but have only developed optimal planning algorithms for the simplest cases,
i.e., three- and four-finger fixtures of polygons. In addition to the obvious need
for devising practical optimization algorithms for three-dimensional fixtures,
there are a few issues that still remain open even for planar fixtures. First,
the global optimization algorithms for four-finger polygonal fixtures are based
on the assumption that the finger force at a contact is a linear function of
the overlap. While globally optimal planning of fixtures that are modelled
by nomnlinear contact models appears to be extremely difficult, the practical
importance of Hertz model based modelling calls for the development of local
or approximately global algorithms which allow the planning of adequately
effective fixtures.

In addition to the restriction in the choice of contact model, we have
only used the root-mean-square velocity and wrench norms to plan minimum-
deflection fixtures. Moreover, the task wrench set used for optimal planning
has been limited to the unit wrench ball. These restrictions improved the
tractability of the optimization problem and served the need for demonstrat-
ing the minimum-deflection approach. However, to plan minimum-deflection
fixtures that can be used for practical manufacturing operations, there is a
need to relax some or all of these restrictions according the given manufac-
turing task. For example, the maximum velocity norm indicates the largest
displacement of the workpiece’s feature points, and can directly characterize

manufacturing accuracy requirements. Thus, it may be desirable to address
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the optimal planning by use of the maximum velocity norm instead of the
root-mean-square norm. Moreover, when a set of manufacturing operations is
specified, a task wrench set that models these operations in terms of primitive
wrench sets is generally preferred in optimal planning over the unit wrench
ball.

The efficient computation of the wrench norms for general objects, with
the exception of the root-mean-square wrench norm, also remains open. In
particular, the average norm of a wrench acting on a planar object has been
interpreted as the average magnitude of distributed forces that generate the
wrench, and based on this interpretation, a computation algorithm has been
devised for a polygon. However, it remains unclear whether the physical inter-
pretation and resulting computation algorithm can be extended to the average
norm of wrenches acting on a three-dimensional object. Such an extension
would be of practical interest since the physical interpretation is practically
attractive.

The results from this thesis have a number of potential applications. First,
as their main application domain, these results can be used in the analysis
and synthesis of compliant fixtures and grasps. Given a candidate fixture of a
workpiece, the compliance model and quality measures can be used to analyze
the fixture’s compliant behaviors under the action of given work loads. Note
that the work loads can be efficiently represented by a task wrench set in term
of the primitive wrench sets developed in the thesis. From thé analysis of
compliance, one can determine whether the fixture will be adequate to avoid
contact breakage and meet strength requirements. In addition, the effects of
the material, geometry, number, and position of fingers can be investigated.
Such an investigation would allow to determine whether the finger material,
geometry or location can be varied to obtain improved fixture stiffness and sta-

bility, and whether the finger number can be reduced to allow larger freedom in
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manufacturing operations while not jeopardizing stiffness and stability. These
analysis results can then be used in the fixture synthesis process, in which
the optimal choice is made of the material, geometry, number, and position of
fingers for the fixture. Such synthesis methods are well-suited to automated
planning systems, since the compliance model is in closed-form and directly
computable from CAD data on basic geometric and material properties, while
the quality measures accurately characterize fixture requirements and can be
efficiently computed. The efficiency and accuracy offered by such synthesis
methods can also facilitate, in a design-for-manufacture approach, the inte-
gration of fixture planning with the planning of manufacturing processes for
which the fixture is designed.

The results from this thesis can also be applied to research areas other
than the planning of compliant fixtures and grasps. It is believed that ob-
jective and frame-invariant kinematic metric functions potentially have a few
interesting applications. First, while we have focused on compliant fixtures
and grasps, the frame-invariant wrench norms developed in this thesis can be
used to define frame-invariant quality measures for rigid grasps, as opposed to
prior works that use frame-dependent wrench norms (e.g., [41,79,151]). Sec-
ond, the frame-invariant velocity and wrench norms can also be used to allow
well-defined performance evaluation, such as manipulability and dexterity, of
rigid or compliant robotic manipulation plans which may or may not involve
grasping and fixturing. Third, the objectivity notion leads to frame-invariant
distance metrics. Such metrics can be used for motion approximation, obstacle
avoidance, and other robot motion planning problems in which it is necessary
to measure the distance from a set of goal configurations, or a collection of ob-
stacles, to a candidate path along which an end-effector is to move. Last, the
notion of objectivity can be applied to simultaneous control of force and mo-

tion which uses “orthogonal complements” of velocity and wrench spaces. The
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theory of such control, called hybrid control, has been traditionally based on
orthogonality that is defined in terms of the Euclidean inner products on the
velocity and wrench spaces. Since these inner products are frame-dependent,
the resulting hybrid control theory is not well-defined (Duffy [36]). The no-
tion of objectivity now allows for frame-invariant Riemannian metrics, which
would lead to consistent hybrid control theory.

Finally, it is believed that the compliance analysis methodology presented
in this thesis can serve as an excellent starting point for analysis and design of
other mechanical systems in which compliance plays a significant role. These
systems include mechanical part handling tools such as grippers, fasteners,
and feeders, medical robotic tools, and in particular, microelectromechanical
systems (MEMS). In the MEMS community, there is a trend to use micro com-
pliant mechanisms, which reduce or eliminate the use of joints. Such designs
offer improved manufacturability, reduced friction and wear, and decreased
need for lubrication and assembly [68,81]. To facilitate compliant MEMS de-
sign, efficient and accurate micro compliance models need to be established,
and optimal synthesis algorithms need to be developed based on these models.
Research that addresses these needs will benefit from the approaches and ideas

of the modelling methods of macro-scale compliance.
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Appendix A

Details in Compliance Computation

and Analysis

This appendix contains results concerned with the derivation of the formula

for D?6;(qo) in Section 4.5, and the details of results from Sections 4.5 and 4.6.

A.1 Computation of D?§;(qg)

Let q(t) = (d(t),6(t)) be a c-space curve such that ¢(0) = go and ¢(0) = ¢.
For each t, let z;(q(t)) € 0B(q(t)) be B’s endpoint of the overlap segment.
Let 7;(q(t)) € 8B be the coordinates of this point in the body frame Fp,
ie. z;(q(t)) = R(O(t)) ri(q(t)) + d(t). We also use the notation z; = z;(qo),
r; = 1i{qo), N; = N(zi(q0)), and p; = Ror; where Ry is the orientation of B at
do-

We decompose the tangent space at go into the direct sum T, SE(3) =
Vi @ V3. The subspace V; is tangent to the level-set S; = {qg € SE(3) : 6;(q) =
5:(qo)}, and is given by Vi = {¢ € T;,,SE(3) : V67 (q0) ¢ = 0}. The subspace V,
is tangent to the line which passes through gq in the direction £ = (N;,0). The
subspace V3 is given by Vo = {¢: ¢ = a(N,;,0), a € R}. The following lemma

asserts that V] and V; induce a direct-sum decomposition on the tangent space
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T, SE(3).

Lemma A.1.1. Forany ¢ € T,,SE(3), there exist unique ¢; € Vi and §; € V3
such that ¢ = ¢; + go. These two components are given by ¢ = P;q and
o = —(V67(g0)4)¢ with

(A.1)

I— NN N,NTP;
Py = Ik + €V (q0) = ,

0 I

where Igyg 15 the 6 X 6 identity matriz.

Proof. The decomposition is straightforwardly verified. Its uniqueness follows

from the fact that V3 NV, = {0}. O

At this point, it is important to note that D?8;(qo) is a bilinear function on
the tangent space T, SE(3), and that what we are seeking is the matriz repre-
sentation of this function with respect to the hybrid coordinates. Let us still
denote this matrix by D%8;(go), and denote by Q; the matrix representation
of D?8;(qo) as restricted to V;. The following proposition gives the formula for

D25i(q0)-

Proposition 4.4.4. Let B(qp) have an overlap of 6;(qp) > 0 with A;. Us-
ing the hybrid parametrization (3.1), the 6 x 6 Hessian matriz of the overlap
function §; is:
) I — N;NI N;N[p;
D?6;(qo) = P Q;P; where P; = , (A.2)
0 I

where Q; is given in (4.17) and p; = Ror;.

Proof. Let ¢(t) be a c-space curve which coincides with the line /, such that

q(0) = qo and ¢(0) € V3. Clearly R(6(t))ri(q(t)) = Ror: and N(zi(q(t))) =
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N(z;(q)) (Figure 4.5). Hence Vé;(¢q(t)) = V;(q) and f—tlt:OVcSi(q(t)) =
0. Therefore, if one of two tangent vectors u,v € T, SE(3) lies in V3, then
uTD%5;(qo)v = 0. Since the vectors u,v € T,,SE(3) can be decomposed using

Lemma A.1.1, the bilinearity and symmetry of D?§;(go) imply that
u” D?8;(qo)v = uT PTD*6;(qo)Pv  for all u,v € T,,SE(3).

Since Pu, Pyv € V4, the right-hand side can be written as «” PTQ;FP,v, and the

result follows. O

Remark A.1.1. We have derived a formula for D%8;(qo) in Proposition 4.4.4
by considering the actual object B and an imaginary finger A;. Alternatively,
we may consider the actual finger A; and an imaginary object obtained by
uniformly compressing B by the amount 6;(go). It can be shown that the

result is identical.

A.2 Details of Stiffness Matrix Analysis

Now consider some details of results from Section 4.5. We first introduce the
following two lemmas, which are followed by Lemma A.2.3. Then Propo-
sition 4.5.1 will be proved using the matrix-norm inequalities provided in

Lemma A.2.3.

Lemma A.2.1. Let A and C be symmetric matrices and suppose that C s

positive definite. Let D = C-2AC-2. Then

/\min (A)

/\max(A)
>{=el

Il

, IC™HAmin(4) } < A(D) < min { , 17  Amax(A) }-
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Proof. Since Amin(A)C™! < D < Apax(A) C7L Anax(C™1) = ||C7Y|, and
)\min(C“l) = 1/||C||, we have

1 1
”—C,"I“Amln(A) < )\min(D) g mAmax(A)a (A3)
IC™H I Amin(4) < Amax(D) < [C7H [ Amax(A). (A4)

Since Amin(—A) = —Amax(A4) and Apax(—A) = —Amin(A), replacing A with —A
in (A.3) and (A.4) and rearranging yield

107 [ Amin(4) < Amin(D) < [IC7 [ Amax(A4), (A.5)
1 1 '
mln A < )\max D < max A A"6
el (4) (D) el (A). (A.6)
Combining (A.3)-(A.6) completes the proof. O

Lemma A.2.2. Let A and B be symmetric matrices and suppose that A+B =
C > 0. Then there exist a nonsingular matriz T and a diagonal matriz A such

that
(1) A=TTAT, B=TTI-ANT, and C =TTT.
@) |Tl = CII%, IT~Y| = |C~1|1%, and ||A]| < |—c“

Proof. Let the diagonal entries of A consist of the eigenvalues of D = C ~3AC ‘%,
and U be an orthogonal matrix such that UTDU = A. Let T = UTC’%,
which is nonsingular. Then Part (1) can be easily verified. The norms of T
and 7! are obvious. Using Lemma A.2.1, we have Amac(A) < g Amax(A),
and Ayin(A) > ||c“ Amin(A). Therefore, using ||A]| = max{Amax(A), —Amin(4)}
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yields

(A) _Amin(A) _ “A“

AN = masc{ A (4), ~Anin(A)} < mase {22 jor ~ler T len

Lemma A.2.3. For the terms involving the curvature matrices of the con-

tacting surfaces, the following inequalities hold true:

bu

[ Ly
lll;rel|

1zl < 1zl (L) < anzz,

[ Lre
1 Ls|?

e . Il Noell y -
IeaLialsll < min{|[Zall + 770 el

"]; -_—
MEAZAN < Ll (5722 < LA HIZZA,

|| Ls | +

Proof. In Lemma A.2.2, set A = Lz = TTAT, B= Ly, =TT (I — A)T and
C = Lye =TTT. Then

IZaLygLsll = | T"A (I = M) T < ITI* [IAY I — Al

IZal y, , ILal L
S G P O ) = W )

Similarly, it can be shown that

VL2 = 1T7ATT) < L)) (el

| Lretl
By setting A = Ly and B = L; instead, we obtain
Ly LM
1Ll < ML+ e2h) I < L) (22
‘l rel ” ll rel”
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Collecting these inequalities proves the lemma. O

Proposition 4.5.1. The second-order effects satisfy || ¥y;|| < 1 fori,j = 1,2,

when the following two conditions hold.

(1) SollLall < 1 and 6ol Lsll < 1.

(2) {2l = 0(1), J2 = 0(1), and Aty = 0(1).

Proof. First consider the term ¥q; = —(50£ALrel£B Using the third inequality
of Lemma A.2.3,

| Lal
”LrelH

|| La]|?

dollLaLliLs Li|| + =
0“ A 1 H (H AH HLrel”

) = dol| Lal|(1 +

).

But &/ Lz|| < 1 while WlEL“A‘_ = O(1) according to the proposition. Hence
|¥1]] < 1. Next consider the term W;y = LALrel(EBp + N). The first sum-
mand in Wy, can be written as (6oL3L relﬁ )( D). We have already shown that
160La L L] < 1, while [|3p]] = O(1). As for the second summand in ¥y, the
first inequality of Lemma A.2.3 implies: %5 LZAN| < (SollZal) (l%%%%) 1/2
But &l Lazl| < 1 and 5 ”L H O(1) according to the proposition. Hence
| ¥14]| < 1. Finally, ||Uss|| contains three summands. The second and third

summands can be treated in a way similar to the treatment of ||¥y,|| and

I|¥12||. The first summand satisfies: HZ%N TLTelN | < %||L;.|l. From the third
item of condition (2) in the proposition, ||L || = cl2HLrelH where ¢ = O(1)

is a scalar. Thus, %8| Ll = cdo|| Lyer]|- However, it can be verified that the

rel |

hypotheses do||Lz || < 1 and &||Ls|| < 1 imply that 8| Lyl < 1. This leads
to the conclusion that %L, ;|| < 1, and consequently || ¥a| < 1. O

Lemma 4.5.3 will now be proved. Based on the decomposition of the nondi-
mensionalized second-order term in the stiffness matrix given in Lemma 4.5.3,

Propositions 4.5.4 and 4.5.5 will then be proved.
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Lemma 4.5.3. Let L = Lzp+ N. Then the matriz U given in (4.21) can be

written as:
U=v,+17,
. (50;CATET—€%£;1 JTOEAE;;ES n —00Lz 0
LTI BLTIAL 0 B(-Lp+Tp))

(A7)

In this decomposition, U, is positive semidefinite, and provided that do||La|| <
1 and &||Ls|| < 1, the matriz U, satisfies || ¥l < 1.

Proof. The check that ¥ = ¥, + ¥, is straightforward. The matrix ¥, is
positive semidefinite since ¥, = (giﬁ *B};g) = [A, B|"[A, B], where A =

502 L /? L3 and B = (8)Y2L; )/ L,. As for U, we have [|doLz | < &ol| Lall <

1. We also have %57 Lsp]| < (311PI)*(8ol| Ls ) < 1 since 3[[p]| = O(1) while
Sol|Ls]| < 1. Finally, ||(Np)s|| < 1 since 2 < 1 and 3||p}| = O(1). 0

Proposition 4.5.4. Let a fizture be first-order stable (i.e. Ky > 0). Then the
fizture is stable (i.e. K=K+K,> 0), when the following condition holds

true:

2 . fi(8i(g0)) _ do
Thin(G) min, LB > o {RlT Ll TF (AB)
where G = diag(I, }1)[Vd1(qo)," - » VOm(qo)] and omin(G) is the smallest sin-

gular value of G.

Proof. We have K = K; + Ky = K, + S v, such that U; = U, + Uy,
Since 0 € v; < 1 and ¥, > 0, it suffices to show that /\min(f() > Amin(K'l) -
S sl > 0. In particular, it suffices to show that Amin (K1) > || Wy, || for
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each Uy, First, K, = GDG" and GDG"™ > Apin(D) GG*. Hence

Amin(K1) = Amin(GGT)Amin(D) = 02,;,(G) min M_)

1<i<m /{,‘0

Second, from the definition of the matrix ¥}, in Equation (A.7), we have:
00, rp o~ (R
5| < max { doll 2, S0 |57 LB+ (KD}
But 6oLl < dol|Lall and [ Lspll < (7[151)*(Jol| Ls[). Hence

1|wbi|1<max{<souf:z||< B 6ollZoll + 23 nmn}

Since [|3p]] ~ 1, condition (A.8) implies that Amin(K1) > ||¥s,]l. Thus
/\min(I? ) > 0 and the fixture is stable. O

Proposition 4.5.5. Let a fizture be second-order stable, such that do|| Lz|| < 1
and &||Ls|| < 1. Then the stabilizing curvature effects are comparable to the
stabilizing first-order effects when ||Lyell /(%) = O(1). In this case [T, ~ 1
(or even |V, || > 1), while ||¥| < 1.

Proof. In general, the norm of a matrix is bounded from below by the norm of
its diagonal blocks. Hence, to prove that ||¥,|| ~ 1, we consider the norm of its
lower-right diagonal block. Given a matrix B, the matrix BT (A — Apin(A) I)B
is positive semidefinite. Hence Apax(BTAB) 2 Amin(A)Amax(BT B) or, equiv-
alently, ||[B*AB| > ||IBIl/|IA7|l, since Amin(A) = 1/Amax(A71). In our case
A=} and B = £, Thus 1L Ll > Isll/| ol which gives for the
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lower-right diagonal block of W,:

bo 1|
2l

0 -

LIVAS YA
We may write the hypothesis ||L,«||/(52) = O(1) as || Lyal ~ €% where € =
O(1). Thus %||L"LgLsl|l = ||£sll/€ ~ 1/¢, where we have used the fact that

generically ||Cs|| ~ 1. Since || ¥, is bounded from below by the norm of its
diagonal blocks, ||U,|| is at least of the order-of-magnitude of unity. O

A.3 Details of the Impact of Contact Model
Choices on Stability Analysis

This section provides a proof of Proposition 4.6.3, which considers second-order
stable fixtures in which curvature effects are insignificant under the conditions
given in Proposition 4.5.5. In this case || K>|| is very small, and K, as such can
be considered as a small perturbation to K,. We hence introduce the following

lemma.

Lemma A.3.1. Let a real symmetric matriz A be perturbed to A+ B, where
B is real symmetric with ||B|| < ||Al|. Let X\ be an eigenvalue of Aand T an
orthogonal matriz whose columns span the invariant space of A associated with
. Then \ + u is approzimately an eigenvalue of A+ B, where p is an eigen-
value of T*BT. Equivalently, u = z* Bz, where x = Tu is a unit-magnitude
eigenvector of A associated with A\, and u a unit-magnitude eigenvector of

TTBT.

Proof. The continuity of eigenvalues implies that there is approximately an
eigenvalue A\ + p of A+ B with |u| very small. It can be shown that an

eigenvector of A + B associated with A + p can approximately be written as
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Tu + v, where |[u]| = 1 and T%v = 0 with |jv|| « 1. Thus,
(A+ B)(Tu+v) = (A+ pw)(Tu+v).
Expanding and pre-multiplying both sides by T, we obtain
T"B(Tu+v) = pu.
Since ||T'u|| = 1 and ||v|| is very small, we approximately have
(T*BT)u = pu,

and hence p is an eigenvalue of T7BT. The equivalent expression of u follows

by pre-multiplying by u” both sides of the above equation. O

We also need the following lemma on the eigenvalues of the first-order stiff-
ness matrix K 1, which is positive semidefinite for second-order stable fixtures.
In the lemma the set of eigenvalues of an n X n symmetric matrix A will be
arranged in increasing order: A;(A) < A(A) < ... < Ap(A). This lemma is

followed by the proof of Proposition 4.6.3.
Lemma A.3.2. Let )\j(l?l) > 0 be a nonzero eigenvalue of Ki. Then

M(RL) > 03(G) min L10®)

1<i<m ko

where 0o(G) is the smallest nonzero singular value of G.

Proof. From a basic result in matrix eigenvalue problems ([61]), if matrices A

and B are symmetric with A > B, then \;(A) > A;(B). Now, K, = GDG™ >
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Amin (D) GGT, where Ayin(D) = minigicm L(%@ﬁ is the smallest eigenvalue of

~

D. We hence have A;(K) = Apin(D)A;(GG™). Since D is nonsingular, it can be
shown that for a given vector z, K 1z = 0 if and only if GGTx = 0. Therefore,
K, and GGT have the same number of zero and nonzero eigenvalues. Since
\;(K1) > 0 by assumption, \;(GGT) > 0. This implies that \;(GGT) > 03(G),
which completes the proof. O

Proposition 4.6.3. Consider an essential fixture that satisfies the geometric

. Lz Ls. || IZ 0,
conditions Wﬁm = 0O(1), WHEI:_H = O(1), and m = O(1) at each contact.

Suppose that the fixture is second-order stable with respect to a given contact

model such that the following inequality holds:

. fi(d )
o3(G) smin LOD o myan ) Ll dolLLncl, 23,

1<i<m ko

where oo(G) is the smallest nonzero singular value of G. Then the fixture is

stable for all contact models under which the above inequality remains to hold.

Proof. We prove that all the eigenvalues of K are strictly positive for all the
contact models under consideration. The inequality in the proposition im-
plies that d||Lg|| < 1 and d||Lg,|| < 1. Along with the geometric con-
ditions TII'% = 0(1), ﬁ%ﬁf’;—l‘h = O(1), and Z‘l%f% = (1), this leads to
|K2|| < 1 by Proposition 4.5.1. In other words, the curvature effects are

small. Lemma A.3.1 then implies that the eigenvalues of K takes the form
ME) = )\ () + 27Ky,

where z is a unit-magnitude eigenvector of K, associated with the eigenvalue

/\j(l?l). First suppose that )\j(l?l) = 0. Then A(K) = 27 Kyz with z lying in

the null space of GT, which is model-independent. It follows that A(K) > 0
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for all the contact models under consideration. Now suppose that /\j(I? 1) >0,

which implies that /\j(l? ) = 02(G) minjgicm 1 {(5,12‘10)) by Lemma A.3.2. Fol-

lowing the proof of Proposition 4.5.1, it can be shown that | K2l is in the
order of max;cicm{dol|Laill, %l|Lsill, 22}. Thus, the inequality condition in
the proposition implies that Aj(l?l) > || K,|| > 7 K,z. This again indicates

that A(K) > 0 for all the contact models under consideration. Summarizing

the two cases completes the proof. O
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Appendix B

Details in Optimal Planning of Planar

Fixtures

This appendix provides details in the planning of maximum-stiffness and
minimum-deflection fixtures. We first adapt the compliance computation
method of Chapter 4 from hybrid coordinates to body coordinates, and con-
sider the characterization of compliant fixtures of a planar body by three and
four fingers. The algorithms are then presented for finding maximum-stiffness

and minimum-deflection four-finger fixtures.

B.1 Compliance Computation in Body Coor-
dinates

This section formulates the computation of fixture compliance in body coor-
dinates. Let the stiffness matrix of a fixture be respectively denoted by K
and K with respect to body and hybrid coordinates. That is, w, = Kpg
and wy, = K¢y, where ¢, and ¢, are the body and hybrid coordinates of an
instantaneous displacement of B, and w;, and wj; are the body and hybrid
coordinates of the corresponding restoring wrench. By Formula (3.5), the ma-

trices K, and Kj, are related by K = T}} Ki Ty, where the matrix Ty, is given



258

by (3.6).
From now on we denote K3, ¢, and w, simply by K, ¢ and w, respectively.
In terms of body representations, the equilibrium condition (4.12) and stiffness

matrix formula (4.13) take the form

> viVibi(go) =0, (B.1)
=1
and
m m .
K =K+ Ky =Y kVi8i(90) V07 (90) + fr ) viD}di(40), (B.2)

i=1 i=1

where v; = %‘?—)—2 are the normalized preloading finger force magnitudes,

fr = Y12, fi(8:(qo)) is the total preload, k; = f{(d:(q0)),
Vbdi(qo) = T,},;Vci,(qo) and Dg&(qO) = T&Dgéi(qO)Tbh. (B3)

The overlap derivatives Vd;(qo) and D?8;(qo) are given in hybrid coordinates
by Lemma 4.4.3 and Proposition 4.4.4, respectively.

B.2 Details in Characterization of Planar Fix-
tures

This section describes the characterization of stable equilibrium fixtures of

polygons by three and four disc fingers, and prove Lemmas 5.4.1 and 5.4.2.
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B.2.1 Details of Three-Finger Stable Fixtures

We prove Lemma 5.4.1, which gives a closed-form formula for the stiffness

matrix of a three-finger stable equilibrium fixture.

Lemma 5.4.1. Let three disc fingers of radius v hold a polygonal object B on
an edge-triplet in a frictionless equilibrium fixture. Choose the origin of the
body frame Fp at the concurrency point of the lines of the contact normals.
Then for a general contact model, the fixture is stable and its stiffness matriz

is given by

3
K= diag(z k;N;NT,p) where u= fr(2al +1). (B.4)

i=1

In the expression for u, fr is the total preload, given by fr = Z?:l 1i(6:(q0));

[T}y sinos
=l
Si=isinog

determined from the triangle’s three interior angles, denoted o; (1 =1,2,3).

a is the radius of the triangle’s circumscribing circle; and ¢ =

Proof. Denote the first and second summands in the overlap-based stiffness
matrix formula (B.2) by K; and K, respectively. By the choice of ori-
gin, the overlap gradient can be computed from Formulas (4.16) and (B.3):
Vsdi(go) = —(N;,0), from which it follows that K; = diag(3";_, k:N;NF,0).
To compute K,, the overlap Hessian can be computed from Corollary 4.4.5
and Formula (B.3): D25;(qo) = diag(0,0, p; + 1), where p; is the distance from
the concurrency point to the i*" contact point (positive if the finger and the
concurrency point lie on the opposite sides of the i*® edge). Thus, we obtain
K, = diag(0,0, u), where u = fr Zf’zl vilps +1) = fT(Zle vip; + ), and
v; = fi(6:(q0))/fr. When N positively span R?, it can be shown from (B.1)
that these normals uniquely determine v; by v; = d;/ (2321 d;), where d; =

det([Niy1, Niyo]) (mod 3). Using elementary geometry, we can express v; in
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terms of the triangle’s interior angles, and express p; in terms of the triangle’s
edge lengths and interior angles, as well as the location of the concurrency
point. Then we can further show that the sum Z?zl v;p; is actually indepen-
dent of the location of the concurrency point, and is given by 2a(. Finally,
the fact that the contact normals are concurrent and positively span the plane

implies that K is positive definite. Therefore, the fixture is stable. O

B.2.2 Details of Four-Finger Stable Fixtures

To prove Lemma 5.4.2, which characterizes the set of first-order stable equi-

librium fixtures of a polygon B, we present the following lemma.

Lemma B.2.1. Given s € P, the matriz [hi(s), ha(s), hs(s), ha(s)] has full
rank and the condition 3"+, cihi(s) = 0 holds for some ¢; > 0 if and only if

di(s), —da(s), ds(s) and —du(s) are all nonzero and have the same sign.

There is an intuitive interpretation for this lemma. From Formulas (4.16)
and (B.3), it can be shown that Vyd;(go) = —hs. Thus, S cihi(s) = 0O is
precisely the equilibrium condition (B.1) with ¢; representing the preloading
finger forces. Further, it can be shown that [h1(s), ha(s), hs(s), ha(s)] has
full rank precisely when the finger arrangement forms an essential equilibrium
fixture (see Section 4.4.2), i.e., in the absence of a disturbing wrench, each

finger must apply nonzero force to maintain equilibrium. In the following we

prove Lemma B.2.1, which is then used to prove Lemma 5.4.2.

Proof. First suppose that d;(s), —da(s), d3(s) and —d4(s) are nonzero and have
the same sign. This immediately implies that [hy, he, hs, hs] has full rank. It
remains to show that Z?:l cihi(s) = 0 for some ¢; > 0, or equivalently, there
exist ¢;,cs,c3 > 0 such that the vector ¢ = (¢1,ca,c3) solves the equation
[R1 ho h3)c = —hy. Indeed, since dg = det([hy hg hs]) # 0, we can use Cramer’s

; — _(d1 _dy ds
rule to obtain ¢ = —(, —2, %) > 0.
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Conversely, suppose that the matrix [hy(s), ha(s), h3(s), ha(s)] has full rank
and that the equilibrium condition Zg‘zl c;hi(s) = 0 holds for some ¢; > 0.
Clearly, at most two contact normals are aligned with any given line in the
plane; otherwise all the four contact normals would be aligned with this line
and [h1(s), ha(s), h3(s), ha(s)] would lose rank. It follows that we can always
arrange the contact points such that the contact normals NV; and N;,; intersect,
and hence det([n; ny41]) # 0, for all i mod 4. Now suppose that d;(s) = 0 for
some 3. Without loss of generality, we may choose the location of the origin so
that it coincides with the intersection of N;,; and N 5. Thus s;.1 = 8442 = 0,
and the determinant function d; takes the form d;(s) = s;;3 det([Nip1 Niya]).
But d;(s) = 0 by assumption, hence s;43 = 0. Thus the normals N; i1, Ny
and Nj 3 intersect at a common point. To maintain equilibrium, N; must
pass through this intersection, hence s; = 0. This implies that the matrix
[h1, ha, hs, ha], whose last row is identically zero, does not have full row rank.
Since this contradicts that assumption that [hi(s), ha(s), hs(s), ha(s)] has full

rank, we must have d;(s) # 0. In addition, there exist c;, ..., cs > 0 such that

Z?:l cih; = 0, or [hq hy hglc = —cqhs where ¢ = (1, ¢2,¢3). Using Cramer’s
rule again gives ¢ = —04(%,—%,%}) > 0. Thus di(s), —da(s), ds(s), and
—d4(s) must have the same sign. O

Lemma 5.4.2. An arrangement s € P of four fingers on a polygon B forms
a first-order stable equilibrium fizture if and only if di(s), —da(s), ds(s) and
—d4(s) are all nonzero and have the same sign. To the first order, the stiffness

matriz in this case approximately takes the form

Z?:l kiN: Njf Z?:l kisiN;
i kisiNF - YL kis?

K= , (B.5)

where N; is the inward unit normal at the i contact, k; = f](8;(q), and the
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function f; represents a general (linear or nonlinear) contact model.

Proof. Let s € P be an equilibrium fixture, whose stiffness matrix takes the
form K = K; + K, according to Formula (B.2). Since Vd;(qo) = —hs, the
first-order term is given by Ky = Y & kih;h? = H diag(ky, ... , ks)H, where
H = [hy, ha, hs, hy]. It follows that s gives a first-order stable equilibrium
fixture if and only if s satisfies the equilibrium condition Z?zl chi(s) = 0
(¢; > 0) and H has full rank. By Lemma B.2.1, this is equivalent to the
condition that di(s), —da(s), ds(s) and —ds(s) be all nonzero and have the
same sign. The stiffness matrix formula (B.5) can be obtained by expanding
K=K, = Z?zl k;h;h]. In the following we show that K ~ K is an excellent
approximation for a generic first-order stable fixture. From Formulas (B.3)
and (4.19), it can be shown that K, = diag(0,0, fr Zle vi(ra, + pi)), where
fr = 2;1 fi(6i(q0)), vi = —f—"gi’;(%)—z, p; is the distance along N; from Fp’s
origin to the i*® contact point, and 74, is the radius of the i finger tip. Since
Jfr ~ ki6:(qo) and 6;(go) < I where [ is a characteristic object length, fr < kil
This implies that for a generic first-order stable fixture of a polygon by disc
fingers, fr Z?=1 vi(ra, +pi) < ZLI k;s?. Therefore, the contribution of K,
is very small compared with that of Kj, and the approximation K =~ K; is

justified. O

B.3 Details in Computing Maximum-Stiffness

Four-Finger Fixtures

We wish to find the global maximum of fe,(s) = % over D, where D is a

convex polyhedral subset of RY. Define a function ¢: R x D — R by ¢(¢,s) =
w(s) — tf(s), which has the following properties. For a given ¢ € R, there
exists s € D such that ¢ = pe,(s) if and only if ¢(¢, s) = 0. Thus, ‘maximizing

Ueq(s) over D is equivalent to maximizing ¢ € R such that (¢, s) is a zero of ¢
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for some s € D. This equivalent problem is addressed by the scalar function

¥(t) = maxsep ¢(t, s) and Proposition 5.5.1.

Proposition 5.5.1. The scalar function (t) is strictly monotonic decreasing
and has a unique positive zero. In addition, mazimizing peq(s) over D is
equivalent to finding the zero of i in the following sense. A positive number
t* > 0 satisfies P(t*) = 0 if and only if t* = maxep Ueg(s). In this case, a
contact configuration s* € D mazimizes ¢(t*,s), regarded as a function of s,

over D if and only if it maximizes peq(s) over D.

Proof. The function % is strictly monotonic decreasing since given At > 0,

$lt + At) = max(u(s) — t/(s) = AF(s)) < max(u(s) - t£(s)) = ¥(®)

where we have used the fact that f(s) is strictly positive. Now, ¥(0) =
maxgep u(s) > 0, and 9(t) — —oo ast — oo. We conclude that there exists a
unique t* > 0 such that 1(¢*) = 0, i.e., ¢ has a unique positive zero. We now
prove the second part of the proposition. Suppose that t* > 0 and s* € D are
such that t* = pey(s*) = maxsep feg(s). This implies that ¢(¢*, s*) = 0. For

any s € D, we have

¢(t*7 5) = N(S) - t*f(s) = f(‘S)(/"’eq(s) - t*) <0= ¢(t*7 3*)'

Hence 9(t*) = ¢(t*,s*) = maxgep ¢(t*,5) = 0. Conversely, suppose that

Y(t*) = 0 for some t* > 0. Given any At > 0, we have

O(t* + At,s) < (" + At) < (") =0,
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where the strict monotonicity of ¢ has been used. This indicates that there
exist no s € D such that ¢(t* + At,s) = 0 for any At > 0. Therefore,
t* = maXsep feg(s). Furthermore, let s* € D be such that ¥(t*) = ¢(¢*, s*) =
maxgep ¢(t*, ). Then by definition of ¢, we have t* = u(s*)/f(s*) = peg(s*).

. .
Hence, s* maximizes fie4. O

B.4 Details in Computing Minimum-Deflection
Four-Finger Fixtures

This section considers the details in maximizing Qges(s) = Amin(K(s)) over
D, where D is a convex polyhedral subset of R*. Let a = o1/02, and for a

parameter t € (0, 1) define

ouB2(5) + (1 — )oni(s),

C(ta S) = ﬁ(s) + (1 - n

1
1—a(l—-1t)

Ce(t, s) = 1—_—2—0252(3) + %01772(5)-

a(l —1)
Since 0 < a < 1, which implies that 1 — a(1 — ) > 0, the functions ¢ and

(. are well-defined. The following decomposition of K can then be verified:

K(s) = Ki(t, s) + Ky(t, s), where

Ki(t, 5) = diag (1 — t)o1, (1 — t)oy, ((t,5)),

B toy 0 —o017(8)
Ky(t,s) = 0  (-a(l=t)os 09€(s)

—o17(s) 72¢(5) Celt, 8)
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The symmetry of K 1 and l?g implies that )\min(l? 1)+ )\min(l?z) < Amin(.f{' 1+
I?z) < )\max(ffl) + )\min(f{' 2). Further, it can be shown that K, is positive
semidefinite, and )\min(I?g) = (. Therefore

min{(1 — £)o1, C(%, 8)} < Auim(K(8) < max{(1 — o, C(t,8)},  (B.6)

which allows the following characterization of /\min(I? ) for a fixture s € D.

Lemma B.4.1. For a fired s € D, the function ((t, s) is monotonically in-
creasing in t, and either of the following two cases must be true.

(1) There is a unique t € (0,1), such that Amin(K(s)) = (1 —t)or = ((t, s).
(2) Amin(K(s)) achieves the upper bound oy, i.e., Amin(K () = o1.

Proof. Since %%(t, s) = (1—_5(1—1&;)—)7 + ";—2?’2 > 0, the function ((¢, s) is monotoni-

cally increasing in ¢. Consider the function (with dependence on s suppressed):

Ft) =<t s) = (1= t)o

—F+ (- )9:8 + (1= Do — (1= ),

1
1—oa(l—1)

which is also monotonically increasing in t. If 77 # 0, then f(0") = —oo and
f(1) = i > 0. Hence, f has a unique zero in the interval (0,1). This fact,
along with the bounds in (B.6), leads to Case (1). It remains to consider
the case 77 = 0. In this case, Kk = (7 2), where D = (;2'{;7:;552)‘ The
characteristic equation of the positive definite matrix D is given by f(2) =
2% — (i + 03 + 02€2) 2+ 03l = 0, which transforms to the equation f(t) = 0 by
change of variable z = (1 —¢)o;. Thus, there is a one-to-one correspondence

between the zeros of f(t) or f(¢) and the eigenvalues of D. If A\yin(D) < o7,
then Amax(D) = (B + 02 + 02€%) — 0y > 01, which implies that f has a unique
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zero in (0,07) and f has a unique zero in (0,1). This is again Case (1).

Otherwise, we have Apin(D) = 03 and /\min(f{' (s)) = o1, which is Case (2). O

Tt follows from the lemma that maximizing Amin (K (s)) for s € D is equiv-
alent to minimizing a scalar ¢ € (0,1) that satisfies the following condition:
¢(t,s) = 0 for some s € D. Moreover, if no such t exists, the maximal value
of Amin(K) is then precisely o;. Defining (t) = max,ep {(t,s) — (1 —t)oy, we

are now in a position to prove Proposition 6.4.3.

Proposition 6.4.3. The scalar function 1 is strictly monotonic increasing in
the interval (0,1). Moreover, mazimizing /\mm(f? ) is equivalent to finding the

zero of v, if any. Specifically, either of the following two cases must be true.

(1) There ezists a unique scalar t* € (0,1) such that ¥(t*) = 0 if and only if
t* satisfies the condition maXsep Amin(K(8)) = (1 — t*)o1. In this case,
s* € D mazimizes ((t*, s), regarded as a function of s, if and only if it

mazimizes )\min(f( (s)).

(2) There exists no zero for the function v in the interval (0, 1) if and only if
maXsep )\min(k(s)) = ;. In this case, for any fized t € (0,1), any global
mazimizer s* of ((t,s) satisfies the condition (1 —t)o; < Amin(K(s%)) <
o1. Hence, a global mazimizer of )\min(i{; (s)) can be found by letting

t— 0.

Proof. According to Lemma B.4.1, the function {(t, s) is increasing in ¢. Hence
max,ep ((t, s) is also increasing. This implies that ¢ is the sum of an increasing
function and a strictly monotonic increasing function, —(1 — t)o1. Therefore
1 is strictly monotonic increasing in the interval (0,1). We now prove the
second part of the proposition, starting with Case (1). Suppose that 3 has a

unique zero t* € (0,1). Then max,{(t*,s) = {(t*,s*) = (1 — t*)o; for some
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stable fixture s*. Using Lemma B.4.1, we have

Amin(K(8)) < max{(1 — t*)oy, C(t*,s)}

<
< max {(1 — t*)oy, rgle%cC(t ,8)}

(]. - t*)O'l.

But from the same lemma, Ayin(K(s*)) = (1 — t*)o1. Therefore, s* is the
desired optimal fixture. Conversely, let s* be the optimal fixture such that
for any s € D, we have /\min(IN((S)) < )\min(f?(s*)) < 0;. By Lemma B.4.1,
there exist t* and ¢ in (0, 1), with ¢* < ¢, such that Amin(K(s*)) = (t*,s*) =

~

(1 —t*)o1, and Apin(K(8)) = (¢, s) = (1 — t)o1. This implies that
(" 8) <t s) = (1 —t)oy < (1 —¢")oy = ((t", 57).

Therefore, max, ((t*, s) = ((t*, s*) = (1 — t*)o1, and ¥(t*) = 0.

Now consider Case (2). If ¢ has no zero in (0,1), then suppose that
maxs Amin(K(s)) < 01. From Case (1), ¢ would have a zero in (0,1), a con-
tradiction. Conversely, let max; )\min(k (s)) = o1. If ¢ had a zero in (0, 1),
then Case (1) would imply that max, Amin(K(s)) < o1, again a contradiction.
Thus, max; )\min(ﬁ' (s)) = o1. To prove the second assertion in this case, let
s* € D be such that {(t,s*) = max,((¢,s) for a given t € (0,1). Clearly,
Amin(K (s*)) < 01. Suppose that (¢, s*) < (1 — t)oy. Thus, ((t, s) < (1 — t)oy
for all s € D. According to the upper bound given in (B.6), this implies that
Amin(K(s)) < (1 — t)oy < 01, a contradiction. Hence (¢, s*) > (1 — t)oy, and

by the lower bound in (B.6) we obtain Amum(K (s*)) = (1 — t)oy. O
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Appendix C

Axiomatically Defined Euclidean

Space

C.1 Summary of the Axioms

The five systems of axioms on points, lines and planes in Euclidean space E3
are summarized as follows. The summary is not intended to be complete;
rather, it is aimed at demonstrating the frame-free axiomatic definition of E3.
See [55, 124] for a complete presentation of these axioms. ,

The azioms of incidence postulate that two distinct points determine one
and only one straight line, and that three points not situated in the same line
determine one and only one plane. The azioms of order establish the notion
of betweenness: given two distinct points p; and ps on a straight line, there
always exist distinct points ps and ps on the line such that p; lies between p;
and py, and p; lies between p; and ps. The azioms of congruence postulate
congruence relations of segments, where a segment, denoted plpz, on a line
between points p; and p, is the part of the line all points of which lie between
p1 and po. The aziom of continuity states that given three distinct collinear
points pi, p; and p3 on a straight line such that p, lies between p; and ps,

there exist a point py on the line such that ps lies between p; and p4, and the



269

segment p;ps is a concatenation of a finite number of segments congruent to
p1pe. Finally, the aziom of parallels postulates that in a plane for any point
p; outside a straight line ¢, there exists one and only one straight line which

passes through p; and which is parallel to £.

C.2 Distance and Orientation in E°

The notions of distance and orientation are defined in E3. The distance be-
tween any two points p1,ps € E3 is defined as the length of the segment pips,
where the notion of length is defined as follows. Given a segment poqo in E3,
there exists a unique real-valued function 4, defined on all segments, satisfy-
ing the following properties. First, u(pogo) = 1; next, for every segment pgq,
w(pg) > 0; third, if segments p;p, and ¢igo are congruent, then u(pig1) =
1(p2go); finally, if g lies between p; and py, then u(p1q) + p(gp2) = w(pip2)-
The number u(pq) is called the length of the segment pq, and the segment pogo
is called the unst of length. Now, consider the notion of orientation. Given
non-coplanar points p; € E3 (i = 1,...,4), the triple (p1, ps, p3) is said to have

clockwise (or counterclockwise) orientation with respect to py if the directed

circuit (p1p3, Pab3, P3pi), Where p;p; denotes the directed segment from p; to pj,
is clockwise (or counterclockwise) when the observer and p, are on the same
side of the plane determined by p;, p2 and ps.

Let §: U — V be a bijection, where U,V C E® are subsets of Euclidean
space each containing at least 4 non-coplanar points. The map g is said to be
distance-preserving if any p1, p2 € U have the same distance as §(p1),§(p2) €
V, and is said to be orientation-preserving if it satisfies the following condition:
if p; € xa(B) (i = 1,...,4) are non-coplanar, then g(p;) € x2(B) are non-
coplanar as well, and the orientation of (p1,ps2, p3) with respect to py is the

same as the orientation of (g(pi), g(p2), g(ps)) with respect to g(pa).
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Appendix D

Details of the Average Wrench Norm

This appendix proves the main results, Propositions 8.6.2 and 8.6.3, on the
average wrench norm for planar objects. We first consider convex polygonal

objects, and later extend the results to arbitrary polygons.

D.1 Preliminaries

Let B be a polygon, and let the region in R? occupied by the polygon also be
denoted by B. Given a wrench w acting on B, we focus on a subset of D},

rather than the entirety of DL, which consists of distributed forces of the form

k
f(r) = Zf 8(r — 1), (D.1)

where r; € B is the coordinates of a vertex of B. It will become clear later

that this subset is sufficient to contain the desired distributed forces.

Definition D.1.1 (Critical Distributed Forces and Velocities). Let f be
a distributed force generating a wrench w, and ¢ a rigid body velocity. We

say that f and ¢ are critical with respect to each other if they satisfy |w”¢| =
1Gllmax fis 1£(r)| dA.
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Note that if w admits a critical velocity and distributed force, then ||w],,, =
n{w) by Lemma 8.6.1. We now characterize the relationship between critical
distributed forces and critical velocities. In the following lemma, pyay is the
maximal distance from the instantaneous center of rotation (ICR) associated
with ¢ to any point in B, p,, is the distance from the ICR to vertex r; of B,

and ¢,, is the angle made by f; with the velocity of r; associated with 4.

Lemma D.1.1. Consider a distributed force f of the form (D.1), which gen-

erates some wrench w € W.

(1) f is critical with respect to a pure translation ¢ = (v,0) if and only if

fi - v = |fi||v| for all i, or f; - v = —|f||v| for alli.

(2) f is critical with respect to an instantaneous rotation ¢ = (v,w) (w # 0)
if and only if (a) pmax = pr; for alli, and (b) ¢,, =0 for alli or o,, =7

for all i.

Proof. In Case 1, |Jw”q| = ](Zle f;)-v], while ||g||max S5 If(r)] dA = |v| Zle If].
The criticality condition can be written as |(zf=1 f;) - I%Tl = 3% Ifi], from
which necessity and sufficiency are readily verified.

In Case 2, by writing ¢ = 6(v, 1), we have [w”¢| = | Zleufiﬂ(pm 8) cos ¢y,
Since ||¢|lmax = Pmaxl0] and [y |f(r)|dA = S L|If:]l, the criticality condition
= i, [[fil. Noting that | cos ¢y,| <

can be written as | 35, [1fil| (22 cos ¢,)

Pmax

1 and pr, < pmax yields both necessity and sufficiency. O

D.2 The Average Wrench Norm for Triangles

This section considers the case when B is a triangle, and by seeking criti-
cal distributed forces and velocities as characterized in Lemma D.1.1, proves

Proposition 8.6.2.
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Proposition 8.6.2. Let w = (f,7) € W be a wrench acting on a trian-
gle. Then |Jw]|| n(w), where n(w) = infeepy [ |f(r)|dV. Moreover, the
wrench space can be decomposed as W = Wy U W1 U W, U W3 U Wy, where

avg

W; = Wi UW; are mutually disjoint wrench subsets given as follows.

Wi={weW: 7> ,ande<0foranyj}

={weW: 7>0, 7, >0V, and f; > — smazcosa,} (i=1,2,3),

¢
={weW: 7>0, 7; >0, and f; < g—;—sinozjcosaj, Vil

and W, = {w € W: —w € Wi} (i =0,...,4), where f; and 7; are

computed using (8.14). The norm of w is given by

;

Ifl if w e W,

lwll 4 = 4 \/(el) -2(& )fzcotaz+f20sc2az ifweW, (i=1,23),

a if w e W;.

ka

Proof. Choose a body frame as shown in Figure D.1. We derive the wrench
subsets W;" and consider a wrench w = (f;, f,, 7) with 7 > 0. By the choice
of frame, fi = f,, where f; is the projection of f onto the edge directing
from r1 to 7. Note that while 7 > 0, the vertex torques 7; may be negative.
In the following cases, we show that wrenches in each of W;" admit critical
distributed forces and velocities of a certain form.

Case 1: 7; < 0 for any j. The wrench w is statically equivalent to a pure
force f acting at some point 1y in the triangle. Then f(r) = Zj.’:l f;6(r —r;),
where f; are aligned with f and apply zero torque about 7o, and ¢ = (cf,0)

are critical. Thus wl,,, = n(w) = |f| and this gives us the wrench subset
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Wy,

Case 2: 7; > 0 for all 4 € {1,2,3}, which implies that w is not equivalent
to a pure force acting at some point in the triangle.

Case 2(a): There is a critical distributed force f(r) = f10(r —r1) +f20(r —
r9), l.e., f is nonzero at vertices 7; and ro (Figure D.1(a)). Note that the
conditions 71 > 0 and 75 > 0 are necessary for this distributed force. Let ¢ be
an instantaneous rotation. By Lemma D.1.1, f and ¢ are critical if the ICR
associated with ¢ lies on the positive y-axis with coordinate y > 0, and each f;
is aligned with the velocity of r; induced by ¢, as shown in Figure D.1(a). For
f to generate w, we have (|fi| + [f2]) cosﬁ = fi, (—lfll + |f2]) sin B = f,, and
= 02+ (y+4; cot aq)?.

(If1] + |f2]) pmax = T + f1y, where cos 8 =

1 CSC (¥1 —7 COS (X1
T7—f1€1 cot a1

These equations determine y = £ , along with |f;|. Since 71,79 >

0 implies that 7 — fif; cota; > 0, y = 0 if and only if

.
f1 = —sina; cosay

~ b

This condition leads to the wrench subset W;', and as can be shown implies
that 73 > 0 when 71,75 > 0. Since f and ¢ are critical for w, w],,, = n(w) =

[f1| + |f2]. Thus, solving for |f;| gives

lwllag = \/7 ) - 2 f1 cot ag + fZcsc? a.

Case 2(b): There is a critical distributed force f(r) = fad(r — r9) +
f36(r — r3), i.e., f is nonzero at vertices o and rs. This is analogous to
Case 2(a). By replacing f; and ap with f> and oy, respectively, we ob-
tain fy > £-sinascosas, which determines Wy, and |Jwll,, = n(w) =

\/(275)2 —2(z)facotas + 12 csc? a.
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N, 4 I b I noNf
(a)

Figure D.1: A distributed force nonzero at (a) r; and r, and (b) 71, 72 and
T3.

(b)

Case 2(c): There is a critical distributed force f(r) = f36(r — r3) +
f16(r — r1), i.e., f is nonzero at vertices r3 and ;. This is again analo-
gous to Case 2(a). By replacing f1 and a3 with f3 and o3, respectively, we
obtain f3 > 7 sinagcosas, which determines Wy, and [lwl,,, = n(w) =
\/(i)2 —2(Z)facot oz + f3csc? az. ‘

Case 2(d): There is a critical force f(r) = Z;f:l fid(r —ry), Le., fis

nonzero at every vertex of the triangle. Let ¢ be an instantaneous rotation.
By Lemma D.1.1, f and ¢ are critical if the ICR associated with ¢ is equidistant,
at a distance a, to the three vertices, and each f; is aligned with the velocity of
r; induced by ¢, as shown in Figure D.1(b). The distributed force f generates
w if |fy] cosay + |fa] cosay — |fs| cos(ag — a3) = fi, —|fi|sina; + |fz|sina; —
|fs] sin(az — a3) = fy, and (|fi] + |f2] + |fs|)a = 7. It can be shown that |f;|
solved from this set of equations are all positive if f; < % sin a;j cos a5 at all
the three vertices. This gives the wrench subset W) . Since f and ¢ are critical

for w, flw|l,,, = n(w) = |fi| + |f2| + Ifs|. Solving for |f;] yields

Pl = -
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Having obtained W;", the consideration of W}~ is straightforward. For each

w e W~

z ?

it admits a critical distributed force and velocity that are critical
for —w € W*. Thus, |-wl,,, = n(-w) = [|w],,,- We finally consider the
relations among these wrench subsets. It is straightforward to observe that W;
and W are disjoint for each i = 0, ... ,4. We also observe that Wi and Wy
are disjoint from each other and from Wi, Wi and Wi . In addition, it can
be shown that if 7; > 0 for all j € {1,2,3}, the conditions f; > 7, Sin a; Cos
are mutually exclusive, which implies that W;", W5" and W5~ are mutually

disjoint. Thus, W, and hence W;

1 ?

are mutually disjoint for ¢ = 0,... ,4.
This implies the mutual disjointness of W; = W}f UW; (i =0,... ,4), whose
union is the entire wrench space: W =Wy UW; UWo, U W3 U W,. (I

D.3 The Average Wrench Norm for Polygons

This section extends the methodology for triangles to polygons. For clarity we
first consider a convex polygon B, and later remove the convexity condition
(Corollary D.3.4). Denote by pmax(¢) the maximal distance from the ICR
associated with a velocity ¢ to B’s vertices, and by p4(q) the distance from
the ICR of ¢ to a particular vertex A of B. The following lemma characterizes
the relationship between wrenches and their critical distributed forces and
velocities, if such distributed forces and velocities exist. The characterization
is made in terms of a containing circle of B, centered at O, such that the edge

eap is on the circle, as shown in Figure D.2(a).

Lemma D.3.1. Consider a convex polygon B. Suppose that each wrench w €
W has a critical distributed force of the form (D.1) and a critical velocity .
Then W = Wia2 UWE, where W5 and W are given as follows.

1) A wrench w is said to be in WiA2 C W if it admits a critical velocity
KQ
¢ = (v,w) (w # 0) with ICR lying on the ray KQ, where K is at or
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below O, such that pmax(4) = pa(§) = pa(g).

(2) A wrench w is said to be in WP € W if it admits a critical velocity that
is a pure translation or an instantaneous rotation. In the latter case, the
ICR is equidistant to two or more vertices of B, at least one of which is

different from A and B, such that pumax(q) equals this distance.

Proof. By assumption, for any wrench w there is a critical distributed force
f= Zi;l f;6(r — r;), where r; are vertices of B, with respect to a critical
velocity ¢. We consider the following cases of f.

Case 1: k£ = 1, i.e., f has only a single component, or £ > 2 with all f;
aligned in the same direction. In this case w is statically equivalent to a pure
force acting at some point in B, and a pure translation ¢ = (cf;,0) is a critical
velocity. Thus, w € W5,

Case 2: k > 2, f; are not in the same direction, and {r;} includes both 74
and rpg, the coordinates of A and B. Then by Lemma D.1.1, § must be an
instantaneous rotation such that pmax(q) = pa(¢) = ps(¢). Thus, the ICR lies
on the bisector of e4s. In addition, since pmax is achieved by pa and pp, the
ICR must be located on the bisector of the edge esp and above any line that
bisects the segment AV or BV, where V is any vertex of the polygon other
than A and B. Since B is contained in the circle, the uppermost intersection
of these lines with the bisector of esp, denoted K, must be at or below O
(Figure D.2(a)). In this case, w € Wi/J.

Case 3: k > 2, f; are not in the same direction, and at least one of r4 and
Tg, Say Ta, is not contained in {r;}. Then {r;} includes at least a vertex V
different from A and B. Again by Lemma D.1.1, ¢ must be an instantaneous
rotation such that pmax(q¢) = pv(d) > pa(q). In this case, w € W5.

Finally, we have considered all possibilities of distributed forces, and there-

fore all wrenches in W. It follows that W = Wi UW? O
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Figure D.2: (a) B’s edge ep lies on a circle containing B; (b) The arc ACB is
glued to B: if prax(¢) = pv(¢), the ICR lies in the cone SOT, which is below
the line DE.

As another convex polygon is glued to B on edge e4p to form a new convex
polygon B, the maximal distance ppmay associated with a given velocity is in
general different. Accordingly for a wrench w, a distributed force and velocity

that are critical for B may not remain critical for B. Therefore, even if w

B

admits critical forces and velocities with respect to both B and B, Jwl|,,, is in

B

avg) where the subscripts denote norms computed

general different from |wl||
for different polygons. The following lemma gives a condition allowing the two

norms to agree.

Lemma D.3.2. For both polygons B and B, suppose that each wrenchw € W
admits a critical distributed force of the form (D.1) and a critical velocity. If
the new polygon B remains in the circle O, then for any wrench w € WE q
velocity ¢ and a distributed force f that are critical for B remain critical for B.

Consequently,

lwl?, = lwll,, = ns(w) = ng(w),
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where subscripts are also used for the upper bound n to indicate computation

with respect to different polygons.

Proof. Let f be a critical distributed force and ¢ a critical velocity for B. As
illustrated in Figure D.2(b), it is sufficient to show that f and ¢ remain critical
for the geometric object G whose boundary consists of the arc ACB and the
edges of B (excluding esp).

When ¢ is a pure translation, the assertion is obviously true. It remains to
consider the case where ¢ is an instantaneous rotation. Then p8__(4) = pv(q),
where V' is a vertex of B different from A and B, and the superscript B
denotes computation with respect to B. For this reason, the ICR of ¢ must lie
on or below the bisector of the segment connecting V' with any other vertex,
including A and B, of B. Thus, the ICR must lie inside the cone SOT, where
O is the center of the circle determined by the points 4, B and V. This
indicates that p9.. (4) = pv(¢). Indeed, any line whose points are equidistant
to V and a point on the arc ACB lies above O, as illustrated by the line DE
in Figure D.2(b). O

Lemmas D.3.1 and D.3.2 allow us to extend the results for triangles to

arbitrary convex polygons in the following proposition.

Figure D.3: A polygon cut into two by the segment eap.
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Proposition D.3.3. Given an arbitrary convez polygon B, there is a critical
velocity and a critical distributed force of the form (D.1) for any wrench w €

W. Consequently, |lw|,,, = n(w).

Proof. We prove this proposition by induction for a polygon with j edges.
The assertion is true for j = 3, thanks to Proposition 8.6.2. Now assume that
the assertion is true for a polygon with j < n edges (n > 3) and consider a
polygon B with j = n 4 1 edges.

The convex polygon B can always be contained in a circle, centered at O,
such that two non-adjacent vertices A and B are on the circle (Figure D.5).
The segment e4p cuts B into two adjacent polygons, denoted P; and Ps, both
with no more than n edges. Let @;Q2 be the bisector of e4p, and let K; be
a point on @Q1Q, such that A and B are the farthest vertices of P; from any
point on the ray K;Q;. Likewise we have a point K on @;@)2 associated with

P,. Lemma D.3.1 and our assumption for polygons with j < n yield

P P.
W= Wge UW. and W=Wya UW.

This implies that W can be written in the form

W = WiAe UWI U 12%ER

where W25 = Wi NWAS,. Lemma D.3.1 implies that the rays K1Qh
and KpQ, overlap. If w € WiA% ., then w admits a critical velocity whose
ICR lies within the segment K;K>. As can be seen in Figure D.5, ¢ remains
to be a critical velocity with respect to B, since pmax(¢) = pa = pp remains
to hold for B. Meanwhile, by Lemma D.3.2, if w € WP or w € WF2, then

a critical distributed force and velocity for P; or P, remain critical for B. It
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follows that any w € W admits a critical distributed force of the form (D.1)
and a critical velocity for the body B. O

The above results for convex polygons can be further extended to noncon-

vex polygons as follows.

Corollary D.3.4. Let B be a nonconvex polygon and w a wrench acting on B.
Then w admits a critical distributed force and a critical velocity. The critical
distributed force is of the form (D.1), and vanishes except at the vertices of
B’s convezr hull. Consequently, lﬂwmfvg = m'wﬂ[fvg = ne(w) = ng(w), where B

is the convex hull of B.

Proof. From Proposition D.3.3, w, regarded as a wrench acting on B, admits
a critical velocity ¢ and a critical distributed force f, which vanishes except
at the vertices of B. Clearly, these vertices also belong to B, and p2_ (¢) =
P8 (§) = pa(d), where A represents vertices at which f is nonzero. Therefore,
f is a force distributed over B and remains critical with respect to ¢, and the

proof is completed. O

Now consider computing the wrench norm for polygonal objects. We first
introduce a lemma which characterizes the set of wrenches acting on a special
object—a line segment. As shown in Figure D.4, one can choose a body frame
such that the segment e4p lies on the z-axis and is bisected by the y-axis. Let

us consider wrench subsets ng‘f € W and W;g‘f’ € W. A wrench w is said

to be in W28 (or W,?) if it admits a critical velocity whose ICR is on the

y-axis with coordinate y > yo (or y < o).

Lemma D.3.5. The wrench subsets W,2? and WEAE gre mutually exclusive,

Yo—
ioe., WEAE NWEAE = ),

Proof. As shown in Figure D.4, by considering the ICR lying on the positive

and negative y-axis and performing a case analysis, we can obtain W;#F =
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Y1 ICR Y
% \{)\/>0 fy fx fz\ x
S flf/‘A\\ a a ’/B
fr g
A\f1 a a B A y<0

(a) (b)

Figure D.4: Critical velocities for a segment: ICR has coordinate (a) y > 0
and (b) y < 0.

{farfrm) t 750, fa> B |fI < T or7 <0, f < 22, |f,l < I}, and
Wi2 = Alfe fyo7) 2 7> 0, fo <8, 1l < G5 or 7 <0, o> 21 fl < %l}

Thus, W2AE N WERE = 0. m

Yo—

We are now in a position to compute the wrench norm for a general polyg-

onal object.

Qi

Figure D.5: Three vertices of a convex polygon lie on a containing circle.

Proposition 8.6.3. Let w = (f,7) € W be a wrench acting on a polygon B.
Then [|w|® = ns(w), where ng(w) = infeepr [i [f(r)|dV. Let B be contained

avg

in a circle with vertices r; (i=1,2,3) on the circle. Then B=AUP UP,UPs,
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as shown in Figure 8.3(b). By applying Proposition 8.6.2 to the triangle A,

the norm can be computed as follows.
(1) Ifwe W, i =04, then [lwllg, = llwlla,

(2) fweW;, i=1,23, and ¢; is an edge of B, then |wl[;,, = |lwl5,,-

B
avg

P
avg’

(3) Ifwe W, i=1,2,3, and e; is not an edge of B, then |w|,,, = |w]|

Proof. The fact that mwmfvg = np(w) and the computation can be performed
with respect to B’s convex hull follows from Corollary D.3.4.

Case 1: w e W,;,i=0,4. If w € W,, then w admits a pure translation
g = (v,0) as a critical velocity, and a critical distributed force f aligned with
v. Since f and ¢ remain critical for B, Illwmfvg = l|1'w|||,fVg On the other hand, if
w € W;, then w admits a critical velocity with ICR at O which is equidistant
to ;. Since B is contained in the circle, the maximal distance from the ICR
to B’s points remains to be the radius of the circle. Thus, ¢, along with its
associated critical distributed force, remain critical for B. This again implies
lwlg = Il

Case 2: w € W, (i=1,2,3), e; is an edge of B. As shown in Figure D.5,
suppose that e; is such an edge. Then w admits a critical velocity with
ICR on the ray OQ. Since the ray K@ contains OQ, by Lemma D.3.1, this
velocity, along with its associated critical distributed force, remains critical for
B. Hence [[wll%, = [wl,

Case 3. w € W, (i=1,2,3), e; is not an edge of B. Suppose that the
segment e; is such an edge of the triangle (Figure D.5), which cuts the polygon
P: from B. Thus, there is a critical velocity with ICR on the ray O@)q, and
w € Wgy,. By Proposition D.3.3, W = Wi, UW!™ for some point K
below O. If w € W, w admits the same critical force and velocity with

respect to both B and P; since r; and 7o are the farthest vertices of both B

and P; to a point on OK. It remains to consider w € Wg,, which admits a
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critical velocity with ICR on the ray K@), (excluding K). By Lemma D.3.5,

w & Wig, - This implies that w € W[ since W = Wi, UW?. Therefore,

lwlg, = lwll}, by Lemma D.3.2. O
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