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Abstract 

This thesis describes the application of ab initio and molecular mechanics 

quantum chemical methods to several problems in the materials and surface sci­

ences. Chapter 1 reviews these methods. Chapter 2 details the application of these 

methods to study the reaction rate of a proposed mechanism for growth of CVD 

diamond. Chapter 3 uses high level ab initio methods to study the feasibility of 

a hydrogen abstraction tool for nanotechnology. Chapter 4 uses ab initio methods 

together with experimental data to develop a force field potential to model polysi­

lane polymers. Chapter 5 is comprised of the development of atomistic potentials 

to describe semiconductors and their superlattices and interfaces. The approach 

of Chapter 5 is extended in Chaper 6 by combining the bulk force field with force 

field parameters developed from the Biased Hessian Method applied to unique clus­

ters to model the reconstructions of the Si (111) surface. Chapter 7 concludes this 

thesis with a description of the Generalized London Potential which was developed 

to accurately model chemical reactions at the accuracy of high level configuration 

interaction methods, but with the practicality of molecular mechanics. 



1.0 Introduction 

Advances in quantum chemistry and molecular dynamics have progressed 

to the point where materials behavior predictions from computational atomistic 

simulations are being realized. Much progress has also been made in solving the 

more challenging problems involved in simulating materials processing. Advances 

in computer hardware together with advances in theory have lead to application 

of computational materials science to numerous important industrial and scientific 

problems, however many issues remain. 

Our goal was to develop and apply molecular mechanics and quantum chem­

istry methods to simulate and predict the materials properties. We have chosen to 

simulate several challenging materials problems, which required the development 

and extension of techniques and which illustrate the success of our approach; (i) 

Si (111) 1- 3 surface reconstruction, (ii) chemical vapor deposition (CVD) growth 

of diamond, (iii) properties of bulk semiconductors and their (iv) interfaces and 

superlattices, (v) H abstraction for nanotechnology, and (vi) polysilane polymers. 

In the case of surface reconstruction, the primary goals are to determine the 

atomic structure of the surface and its stability. For the various Si(lll) surface 

reconstructions the differences in stability are very small and therefore only meth­

ods that are highly accurate should be employed in order to correctly resolve the 

energetic differences between the various structures. This is the case in many other 

systems as well. Advanced ab initio methods with high accuracy are the natural 

choices for studying systems where slight differences in geometry or energy need 

to be resolved.4 However, except in the few cases of surfaces with small unit cells, 

ab initio quantum chemical methods are not practical since they scale as Ns where 

N is the number of electrons and s is at least 4, and depends on the method em­

ployed. Furthermore, few of the most accurate methods that have been developed 

for molecules and clusters have been extended to crystalline systems. One quantum 

based method that shows promise in simulating large systems, such as the recon-
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struction of surfaces is density functional theory (DFT), 5,6 especially if the method 

includes the local density approximation, the gradient correction and algorithms 

to reduce the scaling factor. Currently there is insufficient experience with these 

methods and their accuracy for such systems is yet to be determined, however, pre­

liminary results are promising. These methods can be applied to relatively large 

unit cells for single point energy calculations. However, these calculations are com­

putationally intensive, particularly optimization of geometries, and computation of 

Hessians for frequency predictions. 

Quantum chemical methods are not practical for (i) or other large systems 

because they include the electrons in the simulations. 7 Molecular mechanics meth­

ods were developed to overcome this problem. In molecular mechanics, the atoms 

of the system are treated as classical particles that interact with each other via two, 

three, four, ... , n-body interactions. The series of interactions is usually truncated 

at a small n, like 4 or 5. The potentials that model these interactions take on vari­

ous forms. In the method8 we employ these are represented by spring-like valence 

terms for atoms connected by a series of bonds. Including bond terms, bond angle 

terms, dihedral torsion terms, coupling terms and nonbond terms. For atoms not 

connected by a string of bonds, there are Coulombic and van der Waals terms. 

Each type of specific interaction has its own spring constant. In bulk silicon 

Si-Si bonds are modelled by the same potential. Bonds between a Si with three-fold 

coordination and a four-fold coordinated Si would have a different spring constant. 

Since molecular mechanics includes only interactions between the atoms as classical 

particles in a system, the effects of the electrons are averaged out. The number 

of interactions is therefore relatively small leading to a relatively simple algebraic 

expression for the energy of the system, in contrast to the much more complicated 

Schrodinger equation. 

The molecular mechanics total energy can be calculated by summing the 

individual energy terms. The properties of the system can be calculated from the 
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expression for the total energy. For example, forces are first derivatives of the energy 

with respect to the atomic coordinates, and vibrational frequencies are the square 

roots of the diagonalized second derivative matrix. Consequently, the energy of the 

system, and thus the system properties, are functions of the spring constants: This 

set of spring constants, called the force field or potential, can be optimized so as 

to reproduce the system properties. Often this procedure is empirical and involves 

varying the force constants to reproduce the experimental properties of the system. 

This is often very involved and can consume a major portion of the research activity. 

Once an accurate force field is available, it can be used to study arbitrary sys­

tems containing the interactions modelled by the force field. For moderately sized 

systems, less than a few thousand atoms, simulations of geometry optimization, 

phonon dispersion curves, vibrational frequencies, elastic constants, and thermody­

namic properties are all carried out on inexpensive work stations over periods of 

less than several days. The development of Cell-Multipole Methods9 has enabled 

simulations of systems with up to 1 to 10 million atoms at present. 

The advantages of molecular mechanics are (a), it can handle large systems 

relatively quickly and (b), the classical nature of the energy and other properties 

make it easy to understand, especially if valence-like terms are used to model the 

interactions. On the other hand, there are several drawbacks. One arises from the 

same feature that gives it its advantage; since electrons are not included in the 

simulation, quantum effects are neglected. The most important quantum effect is 

that of bond dissociation and formation. During a chemical reaction major changes 

to the electronic configuration of the system occur as what were once bonding in­

teractions become antibonding or nonbonding interactions. So as a system nears a 

transition state, neglect of the Pauli principle leads to unphysical results, for exam­

ple excess covalent bonds. _This problem will make simulation of (ii), CVD diamond 

film growth and ( v), H abstraction reactions unreliable. One way to circumvent 

this disadvantage is to (a), combine molecular mechanics and ab initio methods for 

a simulation in such a way that ab initio methods are applied to the portion of the 
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system undergoing reaction, and molecular mechanics is applied to large numbers 

of atoms in the nonreacting portion of the system which usually affect the energy 

through strain effects. Another way to circumvent this drawback is to (b) develop 

for force field expressions that take into account the Pauli Principle. One such ap­

proach is the Generalized London Potential method developed by Donnelly10 and 

applied to hydrocarbon reactions in collaboration with Musgrave. 11 In chapter 2 

we report the results of approach (a) to study the CVD growth of diamond and in 

chapter 7 we report the efforts of approach (b). The reactions involved in the mech­

anisms to grow diamond are similar to the reactions envisioned to make diamond 

using nanotechnology. In chapter 3 we describe the simulations of hydrogen ab­

straction and carbon addition for making diamond using nanotechnology concepts. 

Another disadvantage with the molecular mechanics approach is that the ap­

proximate method entirely depends on ( c) the availability of a force field. Assuming 

the force field has been developed, ( d) it may not be transferable to the system un­

der study. That is, although the force field may model experimental properties of 

one system well, it may break down when transferred to a similar system. Addi­

tionally, ( e) there may not be sufficient experimental properties to determine an 

accurate potential through an empirical fit. We use the Biased Hessian Method 

of Dasgupta and Goddard 12 for developing force fields for molecules to overcome 

( c) and ( d). The Biased Hessian Method increases the number of constraints on 

a force field by requiring it to fit the vibrational frequencies, and also the normal 

modes which are the ab initio vibrational eigenvectors. The force field is obtained 

by minimizing an error function which depends on the fit to the normal modes, the 

experimental frequencies and the ab initio normal modes. 

In the simulation of (i), Si surface reconstructions and (vi), polysilane poly­

mers we are faced with systems for which insufficient experimental information 

exists to apply the Biased Hessian method in the standard way. In the case of Si 

(111) surface reconstruction, clusters needed to model the surface have not been ex­

perimentally detected. In the case of developing force fields for polysilane polymers, 
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the experimental vibrational frequencies are incomplete for some of the oligomers 

needed to develop the atomic potentials. Therefore in these cases the biased Hessian 

method cannot be used to develop a force field that reproduces the experimental 

information, since the experimental information currently does not exist. In chapter 

6 we describe a method based on developing scales that describe the ratio of the 

force constants fit to experimental frequencies to force constants that were fit to the 

ab initio frequencies. We then describe how we apply these scales to the force field 

for the experimentally unobserved cluster by applying the scales to the FF fit to ab 

initio frequencies. We then apply this scaled force field to study the reconstructions 

of the Si ( 111) surface. Chapter 4 describes how ( e), the lack of experimental infor­

mation was over come to simulate (vi), polysilane polymers. Crystalline polysilane 

is not experimentally studied, because no crystalline samples have been prepared. 

We developed force fields for the SinH2n+2 oligomers which can then be used on the 

extended, periodic system. However, the set of experimental frequencies is incom­

plete for Si3Hs and n-Si4H10. Consequently, we develop a scaling method which 

uses scales between experimental frequencies and ab initio frequencies. The scales 

are averages of these ratios for a particular class of vibrations within each molecule. 

If one of the modes within that class is not experimentally known, then we apply 

the scale from that class and molecule to the ab initio frequency of that mode. 

These scaling methods are thought to be accurate since the standard deviation of 

the ratios within each molecule is very small. We test the method by applying the 

force field to larger oligomers of polysilane and comparing to the scaled ab initio 

frequencies. The n-Si4Hrn potential is then applied to the polysilane crystal. 

Polymers are simple molecular extensions of oligomers and application of 

a force field from an oligomer to the extended system is expected to include the 

important physics that determines the material's properties. On the other hand, 

crystalline systems that are not molecular crystals, for example the diamond and 

zinc-blende crystals cannot be treated this way. To simulate the semiconductor 

(iv), materials we need to develop force fields directly for periodic systems. Our 
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molecular mechanics simulations of (i), Si (111) surface reconstructions (ii), growth 

of CVD diamond and (iv), semiconductor interfaces and superlattices involves com­

bining bulk potentials with atomic interactions that either model the surface con­

figurations, the interface configurations, or a surface chemical reaction. We develop 

potentials to model periodic systems, specifically (iii), the semiconductor crystals 

using a method similar to the Biased Hessian approach. In the periodic case, we 

do not use a normal mode description (although this will soon be possible). We fit 

to the special points in the ~ direction of the phonon dispersion curve and to the 

elastic constants. To complete the force field to simulate (iv) we use an extrapola­

tion scheme to extend the potentials from the group IV, III/V or II/VI crystals to 

include terms necessary to describe the interfaces between various combinations of 

the materials. We describe our work on semiconductor force fields, interfaces and 

superlattices (iii and iv), in chapter 5. 
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1.0 Review of Methods 

This chapter gives a brief review of the methods used in this thesis, including 

ab initio methods, molecular mechanics, and the Biased Hessian method. 

1.1 Review of Ab Initio Quantum Chemistry Methods 

Ab initio quantum chemistry theory is used to find approximate solutions to 

the electronic Schrodinger equation 

1iiI! = EiI! (1) 

for the electronic wave function iI!, where the Hamiltonian of the system is given by 

(2) 

Here the first sum includes the kinetic energy of the electrons, the second sum 

includes the Coulombic interaction between the electrons and nuclei and the third 

sum includes the Coulombic interactions of the electrons with each other. ZA are 

the nuclear charges, n the number of electrons and M the number of atoms in the 

molecule. In ( 2) we have ignored the nuclear kinetic energy since the nuclei are 

assumed to be at rest relative to the motion of the electrons. This approximation 

works well in practice and is called the Born-Oppenheimer approximation. The 

Coulombic interactions between the nuclei themselves are also not included since 

they remain constant with the assumption of fixed nuclei. The wave function will 

then be a function of the electron coordinates and only parametrically dependent on 

the nuclear coordinates. To generate a potential energy surface one calculates the 

wave function energy at various input nuclear coordinates. To calculate the forces 

on the molecule, one takes derivatives with respect to the nuclear coordinates. To 

calculate a Hessian, one computes the matrix of second derivatives and to extract 

the vibrational frequencies and eigenvectors one diagonalizes the Hessian. 

The solution to the many-electron Schrodinger equation will be an antisym­

metrized n-fold product of spin orbitals. Since electrons are Fermions they must 



10 

satisfy the Pauli principle which states that no two electrons can occupy the same 

spin orbital. This constraint on the solution is imposed by antisymmetrizing the 

wave function by making '¥ a Slater determinant or sum of Slater determinants. 

Constructing wave functions from Slater determinants also insures that the elec­

trons are indistinguishable. 

1.2 The Hartree-Fock Wave Function 

The simplest wave function which obeys the Pauli Principle and can describe 

the ground state of the electronic Hamiltonian is, of course the single determinant 

\.Li. The single determinant W that best approximates a solution to (1) is called the 

Hartree-Fock wave function. Now 

(3) 

can be varied until it solves(l), the HF solution. This is done by applying the 

variation principle which states that the best description of the wave function is 

the one that minimizes the energy. To apply this in practice involves introducing 

parameters which vary the shape of the spin orbitals. The most common way of 

doing this is by using a set of atomic orbitals c/>µ on each of the atoms as a basis for 

describing the spatial portion of the spin orbitals. Each basis function, in this case 

a fixed atomic orbital, is mixed into the spin orbital by an amount determined by 

its orbital coefficient, Cµi: 

K 

'l/Ji(r) = L Cµic/>µ(r). (4) 
µ=1 

Increasing the size of the basis set allows us to better describe the electronic orbitals, 

however at a greatly increased computational cost. It is best then to be judicious 

in the basis set expansion, including sufficient functions so as to accurately describe 

the wave function, but not so many terms as to make the calculation too costly. 

Usually these types of calculations follow the law of diminishing returns as each 

additional basis function of a wisely chosen basis set improves the description of '1T 

less than the preceding function. 
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Applying the variational principle by minimizing the expectation value of 

the energy 

E = < wHF I H I wHF > (5) 

with respect to the set of coefficients C µi leads to a pseudo-one particle equation 

where 

HHF = h + I)2Jj - kj) 
j 

(6) 

(7) 

includes a sum over the Coulomb (Jj) and exchange (Kj) interactions with the 

other particles. The one electron operator h is a function of the coordinates of only 

one electron. It therefore includes the electronic kinetic energy and the Coulom­

bic interactions between the electrons and the nuclei. Equation (6), known as the 

Hartree-Fock equation is in eigenvalue form. The operator HHF is known as the 

Fock operator. The spin orbitals are the eigenfunctions and the energies of the spin 

orbitals are the eigenvalues. The spin functions 'I/Ji are expansions of the basis func­

tions, so the HF equation can be transformed into a matrix equation by multiplying 

(6) on the left by </>µ(1) and the appropriate spin function, substituting in (4), and 

integrating. This leaves 

K 

I: Cvi < </>µ(1) I HHF (1) I </>v(l) >= Ei < </>µ(1) I </>v(l) > . (8) 
V 

The matrix 

(9) 

is defined as the overlap matrix and the matrix 

(10) 

is called the Fock matrix. We also define the matrix of expansion coefficients C 

and the diagonal matrix £ of eigenvalues Ei which are the orbital energies. So 
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intergrating the HF equations and using the above definitions allows us to write the 

equation 

FC = SC£. (11) 

This matrix equation is known as the Roothaan equation. The matrices are of 

size K x K, where K is the number of basis functions so the time required to 

solve such an equation grows rapidly with K. Since the Fock operator of the HF 

and Roothaan equations depends on the eigenfunctions through the Coulomb and 

exchange operators, the equations are nonlinear. This makes it necessary to use an 

iterative procedure to find solutions to (6) or (11). 

1.3 The SCF Procedure 

The iterative procedure used for solving these equations is known as the self 

consistent field (SCF) procedure. First to minimize the energy we require that the 

first order variation of the energy with respect to orbital variation be zero. We 

expand the energy to second order in changes to the orbitals and derive 

(12) 

where variations in the orbitals are restricted to be orthogonal to the orbital being 

varied. The SCF procedure involves setting the shape of all the spin orbitals at a 

starting guess value by estimating C. This defines the Hartree-Fock potential for 

this starting guess wave function and we can obtain the new expansion coefficients 

and orbital energies by diagonalizing the Fock matrix. If the new expansion coef­

ficients are the same as the original ones, then the wave function is converged. If 

they are significantly different then we use the orbitals described by this interme­

diate C to start the procedure over again and repeat until self-consistent. The n 

lowest energy spin orbitals are occupied and the 2k-n remaining orbitals are un­

occupied and referred to as virtual orbitals. The Hartree-Fock method does not 

allow the electrons to dynamically correlate their motions because they interact 

with each other only in an average way. This approximation makes HF very fast 
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and still capable of describing many processes reasonably well. On the other hand, 

many physical properties will be poorly described, for example the dissociation of 

bonds. Because the electrons do not correlate their motions dynamically, as a bond 

breaks upon atom separation, the electrons continue to doubly occupy the bonding 

orbital, which becomes nonbonding as the bond breaks. What is required is that 

the doubly occupied orbital that describes the bond of the molecule become two 

singly occupied nonoverlapping orbitals of the fragments. So near equilibrium HF 

describes the ground state relatively well, but it poorly describes strains, bond dis­

sociation, excited states, chemical reactions, etc. Furthermore, this deficiency leads 

to overestimates in the HF vibrational frequencies, typically 10 to 20% too large. 

Much of quantum chemistry research has been devoted to improving upon 

HF by including additional electron correlation. The inclusion of additional corre­

lation leads to a series of improved theories, all using HF as their starting point. 

These include the Generalized Valence Bond1 (GVB), Complete Active Space SCF2 

(CASSCF), Configuration Interaction (CI), Multi Reference CI (MRCI), Multicon­

figuration SCF (MCSCF), and second order M0ller-Plesset perturbation theory3 

(MP2) wave functions. 

1.4 Configuration Interaction Wave Functions 

The HF wave function, and all wave functions that use it as a starting point 

explicitly include all of the electron-electron interactions in 1i, 

N 2 

L ; __ 
i>j=l iJ 

(13) 

but solve for the wave function in terms of a hierarchy of increasingly accurate 

solutions. The Hartree-Fock wave function was limited to a single determinant. 

Although HF satisfied the Pauli principle, there is no reason additional Slater de­

terminants ( electronic configurations) cannot be allowed to be included in the wave 

function. The configurations are obtained by replacing one or more of the occupied 

HF spin orbitals with unoccupied virtual orbitals. The resulting Slater determinant 
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is called an excited determinant. If one orbital is replaced, then the excitation is 

referred to as a single excitation, two orbitals replaced leads to a double excitation, 

etc. At this point we can do a series expansion for the ground state wave function 

in the Slater determinants to make what is known as the CI wave function 

w = Co'1>'o + L C1 '1>'1 + L C2'112 + ... + 
single double 

L Cn W n-tuple • 

n-tuple 

(14) 

As we include additional configurations, we can improve upon the description of 

the wave function, however the computational costs of determining the coefficients 

of the Slater determinants increases with the length of the series. Therefore, this 

series is usually truncated very early, for example at the double excitations in many 

cases, and even this leads to very large calculations for moderately sized molecules. 

The coefficients are solved for by applying the variational principle to the CI wave 

function and optimizing the configuration coefficients to minimize the energy of 

the system. The HF*SD CI wave function is an example of CI method that is 

truncated at the level of double excitations. Here all single and double excitations 

of the valence electrons are allowed into the virtual orbitals with reference to only 

the HF configuration. 

1.5 MRCI Wave Functions 

The MRCI wave function is similar to the CI wave function just described, 

except that rather than just including excitations of the valence electrons into the 

virtual orbitals from the HF determinant, we include valence excitations to the vir­

tual orbitals with reference to other important configurations (references). If the 

CI wave function is not truncated, then the MRCI and CI wave functions are de­

generate. However, since we truncate the CI series at doubles in most cases, the 

excitations from the references, which are excited Slater configurations themselves 

can contribute significantly to lowering the energy of the wave function. Allowing 

these extra references from which we can excite from greatly improves the CI de­

scription of transition states where several electronic states mix into the transition 

state wave function. For example, in the case of H transfer between methyls the 
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important configurations are the HF configuration, the antibond configuration with 

one node and the antibond configuration with two nodes. The GVB*SD CI wave 

function is a multireference CI that includes up to double excitations. This MRCI 

wave function is a high accuracy approximation to complete CL The improvement 

over the HF*SD CI wave function for the description of transition states is shown 

in chapter 3. As the MRCI wave function is calculated on larger and larger systems 

a drawback is encountered in that the correlation energy included in the calculation 

decreases as the size of the system increases. For example, the MRCI energy of 

two infinitely separated molecules will be greater than the sum of the MRCI ener­

gies of the component molecules. This is because a greater fraction of the valence 

space is allowed to be excited in the smaller calculation where the larger calculation 

is restricted to a larger fraction by the truncation in the series. As the series of 

excitations is extended this effect becomes less important, but the expense of the 

calculation becomes prohibitively large. 

Because MRCI calculations, from only a few references and truncated at the 

doubles level, can still be prohibitively expensive we have in some cases used smaller 

CI calculations which do a good job of approximating the results of GVB*SD CL 4,5 

These wave functions restrict the orbitals from which excitations can be made. 

For example, in the correlation consistent CI ( CCCI)6 wave function all single and 

double excitations of the active electrons ( active electrons are those in orbitals that 

undergo significant change during a reaction, for example the electrons in a breaking 

bond) and all single excitations of the other valence electrons into the virtual space 

relative to the three GVB configurations are allowed (thus double excitations from 

the valence space is not allowed). Since double excitations from the valence space are 

so numerous and do not contribute to the correlation as significantly as the allowed 

excitations, the essential physics of a reaction is retained while greatly improving 

the cost of the calculation. An equivalent way of writing the CCCI wave function 

would be GVB*(SDactive + Svalence). 

A similar wave function, called the dissociation consistent CI (DCCI) 7 wave 
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function can be constructed which allows double excitations which are the product 

of single excitations from the valence space with single excitations from the active 

space. When higher order excitations are allowed an even larger hierarchy of wave 

functions can be made. Often, the set of wave functions in this hierarchy are tested 

on a small system analogous to the one under study by comparing to experiment. 

We can then determine which of them best describes the phenomena of interest 

without being computationally expensive. In some cases a method may seem to 

give accurate results, although the quality of the results are fortuitous. Therefore 

care must be taken when using such a method. It is therefore often useful to apply 

the method to small model systems that are well understood or experimentally 

measured. 

1.6 MCSCF Wave Functions 

In addition to optimizing the configuration coefficients it is possible to re­

optimize the orbital coefficients ( therefore the orbitals from which you build the 

configurations are no longer confined to be the HF orbitals). This type of solution 

is referred to as a MCSCF wave function. Once the orbital's coefficients are reopti­

mized, then the configuration coefficients can be reoptimized until self consistency 

is obtained. This procedure allows one to obtain much of the correlation energy 

with far fewer configurations than a MRCI or CI. The CASSCF or GVBCI-SCF2 

wave function is an example of an MCSCF wave functions. 

In the CASSCF wave function an active space is picked. This space consists 

of orbitals that vary significantly during the process being studied. For example, 

in the case of H transfer between methyls the active space would include the C-H­

C orbitals along the symmetry axis with zero, one and two nodes. The electrons 

are the radical of the reactant, the radical of the product and the H electron. All 

symmetry and spin allowed configurations of these three active electrons in the three 

orbitals are generated. Thus a CASSCF makes no restrictions on the excitations 

the active electrons can make within the active space. 
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1.7 The Generalized Valence Bond Wave Function 

Probably the simplest and most economical way of improving the HF wave 

function is the generalized valence bond wave function developed by Goddard and 

coworkers. A brief summary of the GVB approach as described by Bobrowicz1 is 

given here to illustrate the method. The main aim of the GVB wave function is 

to describe bond dissociation properly. To remove the HF deficiency GVB allows 

bonds to be described by two singly occupied, overlapping orbitals which make up 

a GVB pair. This removes the condition HF imposes on the bonding orbital; that 

it remain doubly occupied during the dissociation process. The GVB pair can then 

be written as 

(15) 

where A is the antisymmetrizer and where the overlap, S12 between the two orbitals 

describing the bond is not zero 

(16) 

Each orbital is associated with one of the atoms participating in the bond. For 

example, ¢1 is localized on atom 1 and ¢2 on atom 2. As these orbitals are optimized 

to describe the bond properly their shape changes to describe the polarization of 

charge. For simplicity we focus here on the perfect pairing form of the wave function 

GVB-PP which has the form 

W = A [ '1f core W open W pair] , (17) 

where 
ncore/2 

W core = IT (<Pia) ( </Ji/3) (18) 
i=l 

contains all doubly occupied orbitals in the core space of the molecule however, not 

the doubly occupied bonding orbitals. The function 

nopen/2 

W open = IT (<Pia) (19) 
i=l 
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is the product of all the singly occupied orbitals. To maximize the exchange inter­

action (Hund's Rule) the singly occupied orbitals will have the same spin. The core 

and open shell electrons are treated exactly as they are for the wavefunction. 

npair 

Wpair = II (C9 ic/>igc/>ig - Cuic/>iuc/>iu) (a/3- f3a), (20) 
i=l 

describes all GVB pairs. Here we have rewritten W pair so that the two orbitals 

which make up the spatial part of the bond are a linear combination of the sym­

metric bonding HF-like orbital and antisymmetric antibonding HF-like orbital. The 

symmetric orbital c/>ig of pair i is just the sum of ¢1 + ¢2 , while the antisymmetric 

orbital c/>iu is the difference ¢1 - ¢2 and therefore has a node through the bond. 

The general energy expression for GVB-PP wave functions is 

DCC DCC 

E = L 2Jihii + L (aijJij + bijKij) 
i,j 

(21) 

where h, J, and Kare the standard one-electron, Coulomb, and exchange energies. 

This expression for the energy is similar to the HF expression except that the 

coefficients of the Fock, Coulomb and Exchange energies are now functions of the 

pair coefficients Cgi and Cui• 

The coefficient of the Fock energy is called the orbital occupation coefficient 

· Ji and given by 

Ji = 1 i is a core orbital 

1 
Ji = 2 i is an open orbital 

Ji = ( Ci )2 i is a pair orbital with pair coefficient Ci, 

(22) 

The coefficients for the two-electron Coulomb and exchange operators can be written 

as 
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except that 
1 

bij = - 2 if i and j are both open orbitals 

aii = Ii if i is a pair orbital 

bii = 0 if i is a pair orbital 

aii = 0 if i and j are in the same pair 

bii = CiCi if i and j are in the same pair. 

With the energy expression (21), the general condition for convergence is that the 

first-order change in the energy due to orbital changes be zero, leading to 

i 

where Fi is the generalized Fock operator for orbital </Ji, 

occ 

Fi = fih + L aijJi + bijKi, 
j 

(12) 

(23) 

Since Fi depends on the orbitals, this equation is nonlinear and we solve for (12) 

iteratively until self-consistency is achieved. 

1.8 Summary 

The preceding review of ab initio quantum chemistry methods illustrates 

the type of calculations that are done on small molecules. Many other methods 

have been developed to be more accurate or faster. Often however, these methods 

have deficiencies which make them inappropriate for application to certain classes of 

problems. The various semi-empirical methods for example are very fast, and work 

well for unstrained molecules. However, in the case of transition states or strained 

systems the method gives highly inaccurate results. The pseudospectral methods 

were also developed to be much faster than standard QC methods. These methods 

however have so far proven very accurate for the systems studied. An exhaustive 

review of the methods available today would span many large volumes and because 
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this review is only meant to cover some introductory material we stop our review 

of ab initio methods here. 

2.0 Review of Molecular Mechanics 

A molecular mechanics calculation begins by defining the coordinate infor­

mation of a given list of atoms. The form of the atomic potential used in this thesis 

also requires that a list of the bonds in the system be specified. Given the coordi­

nate and coordination information the program (MSI/Polygraf)8 makes a list of all 

bond, angle, dihedral torsions, cross, and non-bond interactions. Each interaction 

is classified by the atom types involved and an energy term is assigned for that 

interaction. The molecular mechanics energy can then be calculated by summing 

this series of energy terms and the properties of the system can be calculated from 

the energy function. The energy of the system and thus the system properties are 

functions of the spring constants in each valence term of the energy expression. 

2.1 Form of the Force Field 

In some molecular mechanics methods the potential is only dependent on 

the atom type, and geometry. Thus the coordination must be determined implicitly 

from the geometry. In the valence form of the potential the valence interactions are 

determined based on the connectivity input, thus atoms with equivalent nuclei, but 

with different coordination numbers have different force constants and thus different 

functions describing their interactions with other atoms, while in the nonvalence 

form they have the same force constants. The advantage to the valence method is 

that it greatly simplifies the functional form of the potential and facilitates physical 

understanding of the calculation. The general form of the force field9 we use is 

(1) 

where Eval includes all terms involving bonds and angles where EQ describes elec­

trostatic interactions, and Evdw describes the van der Waals nonbond interactions. 
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The valence term is taken as 

(2) 

which includes all terms involving bonds between atoms and the coupling of these 

bonds. When the notation MSXX is used to label the force field it indicates that 

both one-center and two-center cross terms are included, the MS stands for materials 

simulations. 

2.2 Electrostatics 

The electrostatic term is written as 

I 

E Q - C ~ qiqj 
- coul L.,; R·. 

i>j iJ 

(3) 

involving partial charges qi (in units of the electron charge, lei) on the various atoms. 

[Here Ccoul = 332.0637 ensures that energies are in kcal/mol with distances in A.] 

2.3 van der Waals 

The van der Waals (vdW) potential represents the long-range attraction 

(London dispersion) and short-range repulsion (Pauli orthogonalization of non­

bonded electrons). Such terms are often ignored in force fields ( their effects being 

embedded in valence terms). 

The vdW interactions are described with the Lennard-Jones 12-6 form 

I 

Evdw = ~ D1!~W [p:-: 12 _ 2p:-:6] 
L....t iJ iJ iJ ' 

(4a) 
i>j 

where 

( 4b) 

In addition we assumed the standard combination rule 

(5a) 



22 

(5b) 

2.4 Nonbond Exclusions 

The summation over i and j in (3) and ( 4) excludes bonded atoms [1-2 cases] 

and next-nearest neighbors [1-3 cases]. It is assumed that these interactions (which 

would be partially shielded) are included in the valence interaction terms for bonds 

and angles, respectively. We found that the next-next-nearest neighbors [1-4 cases] 

are very important in determining the lattice constant and include them plus all 

longer interactions. 

2.5 Bond Terms 

We take Eb0nd as a sum over all bond pairs where each has the form of a 

Morse function, 9 

(6) 

with 

(7) 

and 

(8) 

This describes anharmonicity and allows a proper description of bond dissociation. 

There are three independent parameters Re, kn, and Dn; however Dn is not sen­

sitive to the data used in the fits. 

2.6 Angle Terms 

For each atom J there are six angle terms I - J - K. The functional form 

for the diagonal angle term is taken as9 

(9) 

where the force constant is 

(10) 
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This form (9) leads correctly to dE/d0 = 0 for 0 = 0, 180° and has a barrier of 

Egarrier = C [1 + COS 0e)2 . 
2 

2.7 Angle Cross Terms (!-Center) 

(11) 

For each angle term I - J - K, we include in Ecross the couplings between 

the bonds ( I J - J K) and the coupling between each bond and the angle ( I J with 

I J K and J K with I J K). These have the form of 9 

(12) 

where R1 is the I - J distance and R2 is the J - K distance and 

(13) 

where there are two terms, one for R = R1 J and the other for R = RJ K. D R0 is 

related to the force constant as 

(14) 

2.8 Torsion Terms 

Consider the bond J - K. The dihedrals involving various atoms I bonded 

to J and L bonded to K are given the energy dependence described by9 

Etor = 1 ½or [1 + COS m¢) , (15) 

where ¢ is the dihedral angles <PIJKL· This has minima (with zero energy) for 

m¢ = 180°, and maxima (with energy ½or) for 0° (cis), and m¢ = 360°. We sum 

(16) over all DIJ=(C1 - l)x(CJ - 1) dihedral terms, where Ci is the coordination 

number of atom i, and divide by D 1 J so that ½or is the total barrier. 
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2.9 Additional Cross Terms 

For two angles sharing a common bond and apex, the one-center angle-angle 

cross terms has the form 9 

(16) 

The two-center angle-angle cross term involves the coupling between two 

angles sharing a common bond, but not a common apex, 9 

(17a) 

where the force constant is 

(17b) 

Thus for a sequence of four bonds, I - J - K - L, 01 = 0IJK, and 02 = 0JKL• For 

a given J - K there are D 1 J possibilities. 

2.10 Vibrational States Periodic Systems (Phonons) 

Using the above force constants to build an energy expression allows us to 

manipulate the energy to calculate system properties. This section describes the 

general concepts necessary to compute phonon dispersion curves. The detailed 

substitutions of the derivatives of the energy etc. are straightforward, although 

often tedious. 

Consider the energy expanded near equilibrium, these calculations expand 

R· -R~ +8R· i i i (18) 

E(Ri) = E(Rf) + L (EI)e 8Ri + ~ L (Eijt 8Ri8Rj, 
i iJ 

(19) 

Here the force at equilibrium is zero 

(20) 
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and 

(21) 

is the Hessian. 

Newton's equation of motion becomes 

(22) 

where a and /3 are the x, y, z components of the atomic coordinates and I, j 

1, ... , N. Assuming periodic motion with frequency w, 

leads to the eigenvalue equation 

w2 M1( bR~I) = L 4>ad,,6J ( bRij) eik-(R13J-Ra1). 

,6J 

For the r point this leads to the eigenvalue equation 

where 

(23) 

(24) 

(25) 

(26) 

(27) 

(with win cm-1, mass in atomic mass units, R in A, and energy in kcal/mol, then 

Cjreq = 108.5913) and 

describes the lh vibrational mode. 

3.0 The Biased Hessian Method 

(28) 

The calculation of properties using molecular mechanics methods depends 

on the quality and availability of a force field. Often a force field is applied to a 
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system only to find that it is inadequate for the phenomena of interest. At this 

point it is necessary to acquire an improved force field. One way to do this is to 

use the Biased Hessian method of Dasgupta and Goddard. 10 

The energy expression of a molecule can be expanded as: 

where the force on the ith component is: 

(30) 

and 
a2E 

Hij = 8Ri8Rj (31) 

is the Hessian. From ab initio HF wave functions we calculate11 a full Hessian 

(32) 

where Rai is the a component (x, y, z) of the coordinates of atom i. After mass 

weighting, 

- HF 1 HHF H ·13·=--;::== ·13· 
m, J ✓MiMj m, J' 

(33) 

the vibrational modes {Uff F} and vibrational frequencies {vff F} are obtained by 

solving 

(34) 

where 

,HF (C HF)2 
/Ii = JregVi (35) 

and C freq = 108.5913 converts units so that energies are in kcal/mol, distances 

are in A, frequencies are in cm- 1 , and masses are in atomic mass units ( C 12 has 

mass = 12.0000 amu). This Hessian provides an enormous number of constraints 
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useful in determining the force field. Thus there are g(g + 1)/2 independent pieces 

of information [for example, 666 for Si4H10], where g = 3N - 6 is the number of 

degrees of freedom. In contrast, fitting just the frequencies leads to only g conditions 

[36 for n-Si4 H10]. However, at the HF level the calculated frequencies, vfIF, are 

10-20% too high. This led to the development of the Hessian Biased method6 for 

FF parameterization in which the force field is fit to the biased Hessian 

(36) 

where U is the transpose and Aexp is the diagonal matrix based on experimental 

frequencies 

, exp (C exp)2 
Ai = freq Vi • (37) 

This Hessian has the property that, HHBuHF = uHFAexp, that is, the eigenvalues 

match experiment ( or a combination of experimental frequencies and scaled ab initio 

frequencies) while the eigenfunctions match HF theory. Thus, HHB has the best 

available information on the vibrational modes. The method does require accurate 

mode assignments. 

To optimize the force field we minimize the error function 

3N 3N 

ERR =Wgeom L (8ED 2 + Whess L (8Eij) 2 

i=l 

6 6 
(38) 

+ Wstrs L (8~i) 2 + Wcij L (8Cij) 2 

i=l i<j=l 

where 8 denotes the difference between the quantities calculated from the force field 

and the reference values from experiment ( N is the number of atoms). Here EI is the 

energy gradient (negative force, which should be zero for each atom), and E:'j is the 

second derivative of the energy (Hessian). For periodic cases we ignore the Hessian 

and include ~i, which is the lattice stress (6 independent values of which should be 

zero), and Cij, the elastic constants (3 independent values for cubic crystals). 
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The Hessian term is transformed to the eigenvalue form and replaced by 

3N 3N 

Wfreq L (8vi) 2 + Waffdiag L (8Hij) 2 • (39) 
i=l i<j=l 

In general the optimum geometry at the HF level differs slightly from experiment, 

raising the question as to which structure is used in (10). We use the structures 

optimized at the Hartree-Fock level of theory. Previously12 we advocated the use 

of the experimental structure for determining force constants from the ab initio cal­

culations primarily because the internuclear separations (which strongly affect the 

Hessian) reflect the experimental system. However, in molecules with low frequency 

torsions, a slight difference in structure can cause a noticeable rotational contami­

nation of the torsional modes. Since we want to use frequency scaling parameters to 

compare various molecules, it is better to derive the frequencies for all molecules at 

the ab initio minima (rather than at the experimental minimum for molecules where 

experimental geometries are available and the ab initio minimum for those where 

experimental geometries are not available). Fortunately, the differences between 

the ab initio and experimental geometries are small. 
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Chapter 2 

SR-SOR Step for Growth of CVD Diamond 
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Abstract 

Recombination of a Surface-Radical with a Surface-Olefin (SR-SOR) to form 

a six-membered ring is a critical step in the current mechanism for chemical vapor 

deposition (CVD) growth of the diamond (100) surface. We compare the poten­

tial energy surfaces (PES) and activation barriers (Eact) calculated with various ab 

initio methods for the SR-SOR recombination step. The PES of SR-SOR-C3 H7 is 

calculated at various levels of correlation to compare the resultant geometries of 

the reactant and transition states and to compare the topology of the PES. The 

ab initio calculations of the C3H7 PES include Hartree-Fock (HF), second order 

M0ller-Plesset (MP2), Generalized Valence Bond-Configuration Interaction ( G VB­

CI or CASSCF) and GVB times singles and doubles CI (GVB*SD CI). We estimate 

the rate constant for SR-SOR by combining quantum chemistry calculations, molec­

ular mechanics calculations, and transition state theory. The cluster models were 

corrected for steric interactions of the cluster with the rest of the surface and for 

strain effects on the lattice. We also compare the barrier and geometries obtained 

when using two different clusters; (i) C3H7 , and (ii) C10H15 to model the surface. 

HF and MP2 were used to model the reactants, and saddle point of the larger clus­

ter modeling the surface. Our results show that the barrier calculated for the larger 

cluster was slightly lower than the barrier of the small cluster. The ab initio Hes­

sian matrix was diagonalized to find the vibrational frequencies, which were used to 

construct a partition function for calculating the entropy. Transition state theory 

was used to obtain the rate constant, k = 2 x 1013e-8800/ RT sec-1 • This implies 

that under normal growth conditions SR-SOR is fast compared with competing 

gas-surface reactions. 
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1.0 Introduction 

Because of strong industrial interest in developing low pressure technolo­

gies for synthesizing diamond, there has been considerable effort in elucidating the 

fundamental mechanisms of diamond film growth. 1- 3 The understanding of the ki­

netics and thermochemistry of carbon-hydrogen systems is so developed that it has 

been expected that chemical vapor deposition ( CVD) of diamond could be under­

stood at a level of detail far greater than that of most other CVD processes. The 

assumption usually made is that the gas phase reactions are a good analogue to 

reactions on a diamond surface. The assumption depends on whether the electronic 

rearrangement that occurs during reaction is local and to what extent the surface 

constrains the reaction. To calculate a rate constant for SR-SOR on this surface 

we combine several methods. The strategy is to use ab initio methods on small 

clusters where they are less expensive and where the accuracy in modelling the lo­

cal electronic structure of the system is critical. Furthermore, molecular mechanics 

techniques were employed where they were most accurate and cost effective; in esti­

mating the strain energies of the reaction on a lattice of approximately 500 atoms. 

This hybrid technique gives an alternative, more accurate method to semi-empirical 

methods when studying the energies of large systems where only a small portion is 

undergoing significant electronic structure rearrangement. 

For tetrahedral electronic materials (Si, GaAs, ... ) the (100) surface has 

generally been the surface of interest for commercial growth of thin films by CVD 

and MBE technology. Hence the mechanisms for diamond growth on this surface 

is of interest. Both AFM and STM measurements have established that the stable 

surface is hydrogen terminated with a 2 x 1 reconstruction as indicated in Figure la. 

A close-up of the 5-membered rings (denoted as Cs) is shown in Figure lb. This Cs 

ring must be opened and converted to a 6-membered ring ( Cs to C6 ) during growth. 

Such a process is potentially rate determining, and hence an understanding of the 

mechanism is relevant. In this chapter we use ab initio quantum chemistry theory, 

molecular mechanics, and transition state theory to analyze the critical Surface 
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Radical-Surface Olefin Recombination (SR-SOR) step in the proposed mechanism, 

and we estimate its rate constant on the diamond surface. 

A number of experiments have shown that methyl radicals are generally the 

dominant gas phase precursor species reacting with the surface to grow diamond, 4-s 

and several detailed chemical kinetics mechanisms have been proposed to analyze 

growth on various idealized diamond surfaces. 9- 15 For the most part, these models 

have relied on the assumption that a growing diamond surface behaves like an alkane 

and that the chemistry on diamond surfaces is controlled by the local electronic 

environment, as in alkanes. In addition to assuming behavior similar to that of 

alkanes, often rate constants for gas phase reactions have been used to predict the 

reaction rates of analogous reactions taking place on the growing CVD diamond 

surface. This assumption holds in most instances, however dynamical constraints 

imposed by the diamond surface restrict nuclear motions such that transition states 

can only be reached by straining the surrounding structure. Furthermore, several of 

these mechanisms rely on the ability of semi-empirical methods to predict transition 

state barriers. 

Recently, Garrison et al.16 proposed dimer opening reactions for the 

(100)-(2xl):H diamond surface based on molecular dynamics simulations using 

Brenner's hydrocarbon potential. 17 These reactions form part of a complete chem­

ical kinetics mechanism which can make quantitative predictions for the growth 

rates in hot filament, microwave plasma, flame and plasma jet CVD systems. The 

virtue of the Garrison mechanism is that it consists entirely of reactions which have 

well-known analogs in hydrocarbon chemistry, immediately making the mechanism 

plausible. 

2.0 The Mechanism 

i. The Garrison mechanism (Figure 2) commences with addition of a CH3 

radical to a surface radical site (Figure 2b to Figure 2c), forming the structure 

denoted as C5M. 

ii. The next step (Figure 2c to Figure 2d) is abstraction of a hydrogen atom 
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from the CH3 group to make the radical denoted as C5 M*. 

'tz't. Through the ,8-scission electronic rearrangement (Figure 2d to Figure 2e), 

this structure isomerizes to another radical, denoted as C5d. Here the dimer 

bond breaks and a double bond forms between the carbon atom (C,a) of the 

original structure and the carbon atom (Ca) that started as an adsorbed 

methyl (now the a-carbon of the olefin). Such unimolecular reactions are 

generally fast compared with bimolecular reactions. 

iv. The final SR-SOR step in the mechanism (Figure 2e to Figure 2f) 1s m­

tramolecular attack of the radical carbon (Cr) of C5d with the Ca of the 

double bond. This leads to a 6-membered ring denoted as C6, containing a 

radical site ( C ,a). It is this step that we examine herein. 

Gas phase reactions involving radical attack at a doubly bonded carbon, such 

(1) 

H2Ca = C,aH2 + ·CrH3 --t H2Co: - C,aH2, 

are typically very fast and proceed with almost no barrier. However, on the surface 

two factors considerably decrease the rate: 

i. the initial equilibrium distance between the radical carbon, Cr, and the a­

carbon, Ca, is 2.85A, almost twice the normal CC bond distance, and 

ii. Cr is tightly constrained by the lattice from moving toward Ca, while Ca 

cannot move toward Cr without straining the Ca-C,a 1r-bond. 

Although all the steps in the mechanism have analogous gas phase reactions, 

some of the reactions are modified by the strains introduced when putting these 

reactions on a surface. Thus, on the growing diamond surface the SR-SOR reaction 

step 

(2) 

could have a significant barrier. The question is whether the constrained SR-SOR 

reaction (6), is sufficiently slow on the diamond surface as to limit the rate of di-
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amond formation. We concentrate on examining the critical step in the Garrison 

mechanism: the attack of the radical carbon of Cd at the CH 2 end of the double 

bond, leading to a 6-membered ring containing a radical. We refer to the rad­

ical carbon as C1 , the a-carbon as C2 and the ,B-carbon of the olefin as Ca, as 

shown in Figure 3. We refer to the final step as the Surface Radical-Surface Olefin 

Recombination Step (SR-SOR). 

In the gas phase the analogue of the SR-SOR ring closing step is the attack 

of an olefin by a methyl. Reactions involving radical attack at a doubly bonded 

carbon, such as 

(1) 

typically have almost no barrier. This reaction in particular proceeds with a very 

small barrier in the gas phase as the methyl is free to approach the olefin and the 

resulting er-bond more than compensates for the breaking of the 1r-bond through­

out the reaction. However, on the surface two factors may considerably increase 

the barrier. (i) The equilibrium distance between the radical carbon, C1 and the 

a-carbon, C2 is 2.85A, almost twice the normal CC bond distance; (ii) C1 is tightly 

constrained by the lattice from moving toward C2 , while C2 , being the tail of the 

olefin cannot move toward the radical carbon without moving out of the plane de­

fined by the double bond and the two sub-surface carbons below Ca, straining or 

perhaps breaking the 1r-bond. Thus, on the surface the constraints imposed by 

the lattice force the reaction to proceed over a significant activation barrier. The 

surface does not allow the radical to freely engage the olefin and for the reaction to 

proceed the tail of the olefin must bend towards the radical. This process involves 

the straining of the 1r-bond without any significant contribution from the er bond as 

it is too far away to stablize the transition state. Barriers are the result of bonds dis­

sociating while new bonds are only partially formed and thus unable to contribute 

enough to the stability of the system to make up for the energy to break the original 

bond. Because it is the bond dissociation process that is poorly described by more 
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approximate methods, the transition state is also poorly described. Because tran­

sition states are not well described by simple wave functions or by semiempirical 

wave functions that are parameterized to describe unstrained systems and thus do 

not adequately include the effects necessary to describe transition states it is impor­

tant to determine what is the minimum level of correlation necessary to adequately 

describe various transition states to make quantitative predictions of reaction rates. 

In this chapter we compare the results of various ab initio quantum chemistry meth­

ods in predicting the barriers and PES of the critical Surface Radical-Surface Olefin 

Recombination (SR-SOR) step in the proposed mechanism. The questions we ask 

are; (i) what is the appropriate level of correlation necessary to accurately predict 

the PES and reaction barriers, (ii) what size cluster is needed to model the relevant 

parts of the surface and (iii) what are the characteristics of various methods that 

lead to the variation in reaction barriers. 

3.0 Calculational Details 

3.1.1 Ab Initio Quantum Chemistry 

The simplest wave function used is the wave function in which each molecular 

orbital is doubly occupied (except the radical orbital). HF should give a qualitative 

picture of the SR-SOR reaction under study. HF will tend to over estimate reac­

tion barriers since it generally over estimates stretching frequencies of bonds due 

to its poor description of the bond breaking process ( a doubly occupied orbital of 

the molecule must become two singly occupied orbitals for the fragments). We can 

remedy this problem by removing the HF constraint that a bond be described with 

a single doubly occupied orbital. Additionally, wave functions needed to describe 

transition states can be significantly more complex than those needed to describe 

minima. HF, being a single determinant wave function precludes the contributions 

of important configurations along the reaction path. At the transition state, the 

electronic structure includes a resonance between the reactant and product states, 

which requires a multi-configuration wave function for proper description of the 
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partially broken bonds and partially formed bonds. Thus, to obtain more accurate 

potential energy surfaces for reactions such as (1) or (2) than HF, it is essential to in­

clude all important electron correlation effects that change during the reaction. For 

this purpose we use the GVB-CI method. GVB18,19 is the simplest wave function 

which describes bond dissociation properly, by allowing each bond to be described 

with two singly occupied, overlapping orbitals leading to a proper description of 

dissociation. In the GVB-CI method all electrons involved in bonds that change 

during the reaction are correlated, and all other pairs of electrons are calculated 

self consistently. For Reactions (1) and (2) there are three such electrons. For the 

reactant these correspond to the 1r-bond electrons and the radical electron of the 

a-carbon. In the product they correspond to the new C - Ca-bond electrons and 

the radical electron on the C3 • There are two ways to spin pair these three elec­

trons ( one corresponding to reactant and the other to the product) and the GVB-CI 

method calculates all orbitals self consistently ( these three plus all other electrons) 

while optimizing the spin coupling. Simply, all symmetry- and spin-allowed con­

figurations of three active electrons in three orbitals are generated. Although this 

wave function is an improvement on the description of the reaction by HF, it will 

still tend to over estimate the reaction barriers. After calculating the GVB-CI wave 

function, we then allow all single and double excitations from the three GVB-CI 

configurations to all possible virtual orbitals, which is called a GVB*SD CL This 

calculation is rather computationally intensive and was not attempted for the larger 

C10H15 cluster. GVB*SD CI has been shown to accurately approximate the results 

of very complete CI calculations. 20 

To describe the reaction path we considered 40 positions of the critical car­

bon, C2 in the cluster shown in Figure 3. These points were selected to describe 

the reactant and saddle points ( the exit channel was not examined, although the 

geometry and energy of the product, C6* was calculated). Calculations were carried 

out at the points (R12 , R23 ) shown in Figure 4. R12 corresponds to the distance 

parallel to the surface from the initial position of C2, while R23 refers to the dis-
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tance from the original position of C2 perpendicular to the surface. We fixed C1, 

C3 and the two hydrogens on C1 and on C3 representing the bulk atoms. Then for 

each value for R12 and R23 , we optimized the position of the other three hydrogens. 

This optimization was carried out at the MP2 level of M0ller-Plesset perturbation 

theory. 21 MP2 is based on the Hartree-Fock wave function and although through 

perturbations it can include additional electron correlation not included in HF, it 

may not include all the important electron correlation needed to describe transition 

states well. Hence, the energies and forces on C1, C2 and C3 may not be accurate 

in the transition region. However the C - H bonds should be well described with 

MP2 and hence the H positions are expected to be accurate. For each such geome­

try (R12 and R23 ) from MP2 we calculated the GVB-CI and GVB*SD CI energies, 

denoted GVB-CIMP2 and GVB*SD CIMP2· 

In addition to the calculations performed on the C3H7 cluster, we perform 

ab initio calculations on a larger cluster to estimate the effects of cluster size on 

the reaction barriers. The cluster consists of 10 carbon atoms and 15 hydrogens ( as 

shown in Figure lb), where the product is bicyclononane with a radical at one of 

the tertiary carbons. We consider only two geometries. (i) The reactant geometry 

and; (ii) The transition state geometry. In these calculations, the positions of C1, 

C2 and C3 and the hydrogen atoms bonded to these three carbon atoms were all 

optimized, which gives a better model of the relaxation on the surface than the 

smaller cluster. The remaining 7 carbon atoms and 12 hydrogen atoms were held 

fixed to model the lattice. This optimization was carried out at the MP2 level 

of M0ller-Plesset perturbation theory. 21 Using the MP2 optimized geometries we 

calculate the GVB-CIMP2 reactant and saddle point energies to obtain MP2 and 

GVB-CIM P2 barriers. 

For all GVB calculations on the 3-carbon cluster we use the Dunning22 and 

Huzinaga23 double ( basis set plus diffuse s and p functions ((8 = 0.0474, (P = 
0.0365) plus one set of d polarization functions (( = 0.75). The triple zeta contrac­

tion of the 6s set was used for hydrogens. The 6-31G** basis set was used for the 
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MP2 optimizations on the 3-carbon cluster while 6-31G* was used for the MP2 opti­

mizations on the 10-carbon cluster. MP2 was performed using GAUSSIAN 9224 on 

Hewlett Packard 730s. The HF, GVB-CI, and GVB*SD CI calculations on FPS 522 

and CRAY YMP computers used the GVB25 and MOLECULE SWEDEN Suites 

of programs. 26 

3.1.2 Potential Energy Surface 

Using the HF, GVB-CIMP2, MP2 and GVB*SD CIMP2 energies versus the 

reaction coordinates we calculate the potential energy surfaces shown respectively 

in Figures 5a-d, with the reaction paths shown by the dashed curves. The reaction 

energy versus distance along the reaction paths are shown in Figures 6a-d. The bar­

riers and transition state geometries are shown in Table 1. The calculated reaction 

barrier generally falls with increasing levels of correlation. Hartree-Fock (HF) leads 

to a barrier about a factor of two too high and to a poor location of the transition 

state geometry. The Eact = 9.3 kcal/mol from the GVB*SD CI is expected to be 

about 1 kcal/mol too high from residual errors due to incompleteness of the basis 

set and the CI expansion. Thus for the SR-SOR process, we obtain a corrected 

GVB*SD CI activation barrier of 

E~~f ct ~ 8.3kcal / mol. (3) 

We calculated the zero point energy contribution to the vibrational adiabatic barrier 

by computing the MP2 vibrational frequencies at the transition and initial states. 

This adds 0.13 kcal/mol to the activation barrier, leading to 

E~/Jster ~ 8.4kcal / mol. 

Table 2 lists the contributions to the energy barrier for the SR-SOR step. 

3.2 Discussion and Results of Ab Initio Calculations 

(4) 

Table 1 lists the reaction barriers and geometries for the transition state from 

various levels of calculation on the C3H7 cluster. The calculated reaction barrier 
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falls with increasing levels of correlation, except for the MP2 case. Thus, Ef!cf = 
18.1 kcal/mol, E~r2 =10.0 kcal/mol, E';!cYB-CI = 10.5 kcal/mol and EfXB*SDCI 

= 9.3 kcal/mol. As expected, HF leads to a barrier much too high (by almost 10 

kcals/mol) and to a poor location of the transition state geometry. This error is 

exponentiated in calculating the reaction rate and can lead to errors in the rate 

constant on the order of 100 at CVD diamond growth temperatures. 

We find that the MP2 level of correlation leads to a good value for the barrier 

(higher than the GVB*SD CI by only 0.5 kcal/mol) and transition state geometry, 

but favors a shorter n-bond and a larger C1 - C2 distance in the initial state than 

the GVB-CI and GVB*SD CI levels by about 0.02A. and 0.0511, respectively. Since 

for the GVB-CIMp2 and GVB*SD CIMP2 PES we use the positions of the three 

movable hydrogens calculated from the constrained MP2 geometry optimizations, 

the bias of MP2 towards a shorter 7r-bond in the initial state may leave moderate 

amounts of strain in these three hydrogen's positions. To determine the size of this 

effect and to further refine the transition state barriers, several single point energies 

were calculated for each of the three H degrees of freedom and fit to a quadratic at 

the transition and initial states. For each degree of freedom, we find that the MP2 

geometry accurately describes the H angles for GVB-CI and GVB*SD CI at the 

the transition and initial states, despite its inaccuracy in predicting the position of 

C2 for the initial state. The refined GVB*SD CI geometries, for example lead to a 

barrier only 0.1 kcal/mol less that the GVB*SD CIMP2 barrier. With the exception 

of HF, the transition state geometries change relatively little despite the changes in 

the reaction barriers. The transition state geometries predicted by all four methods 

keep the C2 - C3 7r-bond and the plane of the adsorbed CH2 group coplanar up 

through the transition state. This positions the tail of the olefin for attack by the 

radical while maintaining the 7r-bond and therefore leads to a rather gently sloping 

entrance channel. The accuracy of the MP2 barrier is considered fortuitous, and 

its ability to accurately approximate the GVB*SD CI barrier in general remains 
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undetermined. 

The effects of cluster size were determined from ab initio calculations on a 

C10H15 cluster. We consider only two states. (i) The reactant geometry and; (ii) 

The transition state geometry. The two carbon atoms, C1 and C3 are allowed to 

optimize their positions, in contrast to C3H7. Because these two carbon atoms 

change hybridization during the reaction they are expected to relax towards the 

surface from their positions in C5. However, the amount of relaxation is reduced 

because although the change in hybridization causes the relaxation, the constraint 

that each of the subsurface atoms already have 4 bonds reduces the increase in the 

order of the bonds of C1 and C3 with the sub-surface carbon atoms, thus reducing 

the strain imposed on the surrounding lattice. For the initial state of SR-SOR for 

example, the radical carbon would generally like to relax into the surface, increasing 

its bond order with the sub-surface carbons. However, orthogonality constraints 

between the p-orbital of the radical electron and bonds between the two sub­

surface carbons and the surrounding lattice reduce relaxation into the surface. The 

MP2 geometry optimization results in moderate relaxation of C1 and C3 towards 

the surface, and increases in the distances between C1 and C3 and C1 and C2 from 

their positions in Cd-C3H7. The effect is larger for geometries where C1 and C3 

have sp2 character, and is reduced as these atoms change hybridization to sp3 during 

the reaction. Thus, the relaxation towards the surface is largest for the reactant 

geometry and smaller for the transition state, although because the transition state 

maintains a large amount of sp2 character on the surface carbons the effect is only 

slightly smaller for the transition state. The remaining 7 carbon atoms and 12 

hydrogen atoms were held fixed, thus providing some estimate of the constraints 

of the lattice on the reaction barrier. The optimization results in an MP2 barrier 

for the reaction on this cluster of 11.2 kcal/mol. The approximately 1 kcal/mol 

increase in the barrier results in a reduction of the reaction rate by approximately 40 

percent at 1200k, since rates depend exponentially on the barriers. The differences 

are attributed to the additional relaxation of the strains near the reacting part of 
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the cluster where hybridization changes are significant. In addition, portions of the 

surface which do not directly participate in the reaction, but which have significant 

changes in their electronic structure during the reactions, including a portion of the 

strain effects which were included in the molecular mechanics calculations on the 

smaller cluster are better estimated. The improvement in the model when C -C -C 

bond angles of the surface are modeled by C - C - C bond angles in the cluster, 

rather than H -C-H bond angles, as in C3H1 allows for the improved description 

of the hybridization changes and also better models the strains in these bond angles. 

Our results show that HF provides a poor description of the transition state. 

This is similar to the results seen with HF on other transition states. Previous work, 

for example showed that for hydrogen exchange reactions, HF greatly over estimates 

the experimental reaction barrier and barriers predicted by other more sophisticated 

techniques. 27 Their results show that HF over estimates the experimental results 

by approximately 250 percent ( this includes some error due to the incompleteness 

of the basis set). Not only does HF greatly over estimate the barrier, but it also 

predicts a poor transition geometry. The over estimate of the barrier is reduced by 

including correlation with MP2, GVB, GVB-CI, and GVB*SD CI. Although the 

MP2 perturbation wave function is based on the HF wave function, it predicts a 

barrier and transition state very similar to that of GVB-CI and GVB*SD CI with the 

largest error being in the description of the initial state. Although its high-accuracy 

here is most likely fortuitous, the MP2 description of the reaction is much superior to 

HF and should generally be considered as the minimum level calculation necessary 

for quantitative prediction of reaction barriers. Even sophisticated, computationally 

expensive calculations like GVB*SD CI wave functions over estimate the barriers. 

Musgrave et al. showed the over estimate of GVB*SD CI in the hydrogen exchange 

reactions were still IO to 20 percent too large (after taking into account the difference 

in zero point energy). 27 The effect is partially due to the incompleteness of the 

basis set and partially due to the incompleteness of the configuration expansion. 

The over estimate due to the truncation of the CI becomes more prominent as the 
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clusters studied become larger due to the size consistency problems of CI methods. 

We estimate that at the cluster size studied and the level of basis set used we over 

estimate the barrier by approximately 1 kcal/mol based on comparisons of GVB*SD 

CI results with experimental results on other systems. 27 

Semi-empirical methods ( e.g. MNDO) that are parameterized to describe 

stable molecules may also provide poor descriptions of transition states and re­

action barriers. For example, Valone showed that these methods produced large 

errors in the reaction barrier for H transfer between two methyls. 28 Although semi­

empirical methods are capable of modeling large systems, it is not recommended 

that they be used for modelling transition states where the approximations used 

for the methods become less valid. The most frequent hypothesis used in modeling 

CVD diamond growth kinetics has been that the chemistry of diamond is similar to 

that of analogous hydrocarbon molecules. For example, gas-surface rate constants 

for diamond growth have been taken more or less directly from gas phase data. 11 •12 

This hypothesis has been verified experimentally for the H abstraction reaction from 

a diamond surface. In this work we examined a reaction between a radical and a 

1r-bond. In the gas phase this reaction has hardly any barrier. However, in our 

case the reaction is subject to severe dynamical constraints introduced by putting 

it on the surface of the very rigid diamond lattice. Our results show that there is 

a significant difference in activation barriers between the reaction on the diamond 

surface and the analogous reaction in the gas phase. Thus, the analogy between 

diamond and the alkane hydrocarbons may in general be a better approximation for 

gas-surface reactions than for some surface-surface reactions, like SR-SOR. On the 

other hand, SR-SOR-like sites are present on the (111) surface, the reconstructed 

(110) surface and at steps. We can thus extend the results of the (100)-(2xl):H 

SR-SOR to approximate the nature of the transition states of other SR-SOR reac­

tions. We conclude that the analogy is potentially very useful, but it must be used 

with considerable care. 
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3.3 Molecular Mechanics Calculations 

Strain imposed on the lattice by the reacting surface species as calculated 

with molecular mechanics using the MSXX many-body force field fit to the dia­

mond phonon dispersion curves and elastic constants. 29 To model the reaction we 

increased the cubic unit cell by a factor of 4 in the z direction and by factors of 5 in 

the x and y directions (leading to 800 atoms in the unit cell). We then cleaved the 

(001) surface, 29 leading to a slab which was then hydrogenated. The cluster atoms 

optimized in the quantum chemistry calculations were held fixed at the initial, fi­

nal, and transition state geometries, while the remaining atoms of the slab were 

optimized. 29 Strains and steric interactions included in the ab initio cluster calcula­

tions were not included in the molecular mechanics energy to avoid double counting 

of this portion of the energy. The lattice strain energy (not including van der Waals 

interactions) and the van der Waals energy were calculated for the transition state 

and the reactant state. These energies do not include the interactions already in­

cluded in the ab initio calculations on the cluster. The steric interaction with the 

surrounding lattice decreases in the transition state relative to the initial state. The 

strain imposed on the lattice at the transition state relative to the reactant state is 

calculated to add 0. 73 kcal/mol to the barrier while the van der Waals interactions 

subtract 0.34 kcal/mol from the barrier. Thus the van der Waals and strain effects 

are small. The total of 0.39 kcal/mol adds to the net electronic structure barrier to 

yield a net 

E!~;Jace = 8.8 kcal/mol. (5) 

Cell structure and atomic coordinates were updated at each optimization 

cycle. The atomic coordinates were optimized30 using conjugate gradient techniques 

until the RMS force per degree of freedom was less than 0.01 (kcal/mol) / A. 

3.4 Transition State Theory 

We determined the entropy change LlS+ between reactants and the transition 

state from vibrational mode analyses that included the effects of the constraints on 
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the vibrational levels during the reaction. First, the Hessian (second derivative ma­

trix) was calculated using MP2 theory at each geometry of the C3H 4 cluster. 24 Next, 

the 3N - 6 vibrational levels were calculated by diagonalizing the (mass-weighted) 

Hessian. 3° Finally, these energy levels were used to construct a partition function 

from which the entropy was calculated. 3° For the transition state the imaginary 

vibrational frequency was ignored. 

The TST pre-exponential factor is given by 

A= ( ekiT) eb.st /R, (6) 

where lne = 1, kB is the Boltzmann constant, Tis the temperature, his the Planck 

constant, R is the gas constant, and ~st is the change in entropy between Cd and 

the transition state. We estimated the entropies for the initial, transition, and final 

states of reaction (6), leading to ~st = -2.6 cal/mol-K and 

A= 5.6 X 1012 (7) 

from equation (9). 

Combining ( 4) with (8) leads to a total rate constant for SR-SOR of 

ksR-SOR = 5.6 X 1012e-SSOO/ RT sec- 1 • (8) 

The unimolecular reaction (6) on the diamond surface competes primarily 

with abstraction and addition reactions involving gas phase H atoms. To examine 

the relative importance of these competing gas phase reactions, we compare reaction 

(6) with reaction (12) 

(9) 

in which the radical site recombines with a gas phase H atom. At 1200K the 

characteristic time scale for (6) is l/ksR-SOR = 7x 10-12 sec. In contrast, assuming 

k12 is in the range31 1013 to 1014 cm3 /mole-sec with a H atom concentration31 of 

106 to 1010 atoms/cm3, leads to characteristic time scales of 10-3 to 10-8 sec. 
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Thus the SR-SOR reaction is 104 to 109 times faster than other steps in the growth 

process, indicating that it does not affect the rate of diamond growth in the Garrison 

mechanism. 

4.0 Conclusion 

Different levels of correlation predict reaction barriers and potential energy 

surfaces with some variation. The largest errors were those produced by the HF 

method which was expected, considering that it describes the bond dissociation 

process poorly. We conclude that HF is a poor method for predicting quantitative 

aspects of transition states. Although HF greatly over estimates the barriers, it does 

so consistently. Semi-empirical methods, on the other hand give highly inconsistent 

results 7 and are not recommended for the prediction of transition states or other 

highly strained systems. MP2, was not expected to estimate the results of higher 

level methods so well. We attribute much of this improvement over HF to fortuitous 

cancellation of errors, however even in the general case, MP2 is a major improvement 

over HF. Furthermore, MP2 did not reproduce the initial state geometries of GVB­

CI and GVB*SD CI. This inaccuracy in the geometry leads us to believe that 

the result for the activation barrier at the MP2 level was fortuitous. Although the 

accuracy of MP2 is fortuitous, we recommend it as the minimum level of correlation 

needed to calculate transition barriers with reasonable accuracy. The GVB-CI 

result shows that as expected, the inclusion of all correlation within the active 

space greatly improves the description of the transition state over HF and provides 

a greatly improved activation energy. Although the activation energy is higher than 

that predicted by MP2, we contend that in general, GVB-CI provides a more robust 

method for predicting transition states than MP2. GVB-CI, however, requires 

moderately CPU intensive calculations that in all but the smallest systems would 

be impractical for computing the PES. GVB*SD CI is an even more computationally 

intensive method that is well established at predicting the results of complete CI 

calculations. It describes additional dispersion and gives better approximations to 
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the potential energy surface. For quantitative accuracy GVB*SD CI is the method 

of choice. This becomes even more true when reaction rates are to be calculated 

from activation barriers. 

We make our best estimate of the rate for the SR-SOR step by combining the 

barrier from GVB*SD CI ab initio calculations with strain energies from molecular 

mechanics and entropic contributions from transition state theory. The rate equa­

tion we predict of ksR-SOR = 5.6 x 1012e-88001 RT sec- 1 predicts that the SR-SOR 

recombination step does not limit diamond growth under the range of conditions 

for which diamond is grown, rather the activation of surface sites by H abstraction 

will be the limiting step. The methods of combining quantum chemical calculations 

with classical molecular mechanics calculations is useful in that it concentrates the 

power of accurate ab initio methods on the structure undergoing reaction while 

adding in strain effects of the surrounding surface using inexpensive molecular me­

chanics. Methods that treat a large enough portion of the surface to include strain 

effects are necessarily approximate to avoid large computational costs, often leading 

to misleading results, especially for reaction barriers. 



48 

6.0 References 

*To whom correspondence should be addressed. 

1. J. C. Angus and C. C Hayman, Science 241, 913 (1988). 

2. K. E. Spear, J. Am. Ceram. Soc. 72, 171 (1989). 

3. W. A. Yarbrough and R. Messier, Science 247, 688 (1990). 

4. C. J. Chu, M. P. D'Evelyn, R.H. Hauge, and J. L. Margrave, J. Appl. Phys. 

70, 1695 (1991). 

5. C. E. Johnson, W. A. Weimer, and F. M. Cerio, J. Mat. Res. 7, 1427 (1992). 

6. S. J. Harris and A. M. Weiner, Thin Solid Films 212, 201 (1992). 

7. S. J. Harris, A. M. Weiner, T. A. Perry, J. Appl. Phys. 70, 1385 (1991). 

8. W. A. Yarbrough, K. Tankala, T. J. Debray, Mat. Res. 7, 379 (1992). 

9. S. J. Harris, Appl. Phys. Lett. 56, 2298 (1990). 

10. S. J. Harris and D. N. Belton, Thin Solid Films 212, 193 (1992). 

11. D. N. Belton and S. J. Harris, J. Chem. Phys. 96, 2371 (1992). 

12. M. Frenklach and H. Wang, Phys. Rev. B. 43, 1520 (1991). 

13. M. E. Coltrin and D. S. Dandy, J. Appl. Phys. 74, 5803 (1993). 

14. W. A. Yarbrough, in Diamond Optics IV, A. Feldman and S. Holly Editors 

(SPIE, Bellingham, Washington, 1991), p. 1534. 

15. S. J. Harris and D. G. Goodwin, J. Phys. Chem. 97, 23 (1993). 

16. B. J. Garrison, E. J. Dawnkaski, D. Srivastava, and D. W. Brenner, Science 

255, 835 (1992). 

17. D. W. Brenner, Phys. Rev. B. 42, 9458, (1990). 

18. F. W. Bobrowicz and W. A. Goddard, III, Methods of Electronic Structure 

Theory ed. HF Schaefer (New York: Plenum) p. 79. 

19. W. J. Hunt, P. J. Hay and W. A. Goddard, III, J. Chem. Phys. 57, 738 

(1972). 

20. C. W. Bauschlicher and S. R. Langhoff, Chem. Phys. Lett. 135, 67 (1987). 

21. C. M0ller and M. S. Plesset, Physical Review, 46, 618 (1934). 

22. T. H. Dunning, J. Chem. Phys. 53, 2823 (1970). 



49 

23. S. J. Huzinaga, Chem. Phys. 42, 1293, (1965). 

24. M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, 

J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, 

R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. 

L. Martin, D. K. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. 

Pople, Gaussian 92 Revision, Gaussian, Inc. Pittsburgh, PA, (1992). 

25. W. A. Goddard, III, unpublished. 

26. J. Almlof, C. W. Bauschlicher, M. R. A. Blomberg, D. P. Chong, A. Heiberg, 

S. R. Langhoff, P-A Malmqvist, A. P. Rendell, B. 0. Roos, P. E. M. Siegbahn 

and P. R. Taylor MOLECULE SWEEDEN (PROGRAM), unpublished. 

27. C. B. Musgrave, J. K. Perry, R. C. Merkle and W. A. Goddard, III, Nan­

otechnology 2, 187 (1991). 

28. S. M. Valone, in Proc. 1990 NATO Adv. Study Inst. on Diamond and 

Diamond-Like Films and Coatings, (1990). 

29. C. B. Musgrave, J. Hu, W. A. Goddard, III, to be submitted. 

30. These calculations used POLYGRAF from Molecular Simulations Inc. 

(Burlington Mass). 

31. D. G. Goodwin, J. Appl. Phys. 74, 6895 (1993). 



50 

Table 1. Transition state geometries and barriers at various levels of correlation. 

Level 

HF 

MP2 

CASSCF 

GVB*SD CI 

Barrier (kcal/mol) 

18.1 

10.0 

10.5 

9.3 

-0.58 -0.075 

-0.54 -0.042 

-0.50 -0.023 

-0.51 -0.025 
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Table 2. Contributions to the activation energy for the SR-SOR step. 

Calculation Energy (kcal/mol) 

a. Quantum Chemical Calculations 

GVB*SD CI 9.30 

Corrections (Basis set and Correlation) -1.0 

Differential Zero Point Energy 0.13 

Net Electronic Structure Barrier 8.43 

b. Force Field Calculations 

Strain from Balance of Surface 

van der Waals Interactions 

c. Total Eact 

0.73 

-0.34 

8.82 
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Figure Captions 

Figure 1. (a) Dimer paired structure of the H stabilized C(lO0) surface; (b) 

Enlargement of (a). Unshaded = H, shaded = Bulk C, hatched = 

bulk terminating C. 

Figure 2. The Brenner-Garrison mechanism for dimer ring opening during CVD 

growth of C(lO0). 

Figure 3. The C3H7 cluster used to generate the PES surfaces. 

Figure 4. The points R12 and R23 used to generate the PES surfaces of the 

SR-SOR step on the C3H1 cluster. 

Figure 5a. The energy surface for the SR-SOR reaction from CASSCF calcula­

tions. The reactant site is denoted as 0.0. The saddle point for the 

reaction is denoted as 10.5. The product is far to left and top of the 

figure. The contour spacing is 1.15 kcal/mol. 

Figure 5b. The energy surface for the SR-SOR reaction from MP2 calculations. 

The reactant site is denoted as 0.0. The saddle point for the reaction 

is denoted as 10.0. The product is far to the left and top of the figure. 

The contour spacing is 1.15 kcal/mol. 

Figure 5c. The energy surface for the SR-SOR reaction from GVB-SD CI calcu­

lations. The reactant site is denoted as 0.0. The saddle point for the 

reaction is denoted as 9.3. The product is far to the left and top of 

the figure. The contour spacing is 1.15 kcal/mol. 

Figures 6a-c The energy along the reaction paths for the CASSCF, MP2 and 

GVB*SD CI reaction surfaces, respectively. 
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Figure 1 
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Figure 1 
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Figure 2 

(a) Cs site (b) Cs* site 

SR-SOR ~-scission 

(e) Cs/ site (d) CsM* site 
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Figure 3 
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Figure 4 Pairs of R1 and R2 used for ab initio calculations. 
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Figure 6 Energy Along Reaction Path 
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Figure 6 . Energy along Reaction Path 

o~-==::;::;... _______ .................................. ~ 
0 2 4 6 8 1 0 12 14 16 18 20 

Distance 



--0 

.€ -ns 
V 
~ -:>-. 
~ cu = i;.::i 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

63 

Figure 6 Energy Along Reaction Path 
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Chapter 3 

Ab initio Study of H Abstraction in Nanotechnology 
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Abstract 

Processes which use mechanical positioning of reactive species to control 

chemical reactions by either providing activation energy or selecting between al­

ternative reaction pathways will allow us to construct a wide range of complex 

molecular structures. An example of such a process is the abstraction of hydrogen 

from diamond surfaces by a radical species attached to a mechanical positioning 

device for synthesis of atomically precise diamond-like structures. In the design of 

a nanoscale, site specific hydrogen abstraction tool, we suggest the use of an alkynyl 

radical tip. Using ab initio quantum chemistry techniques including electron corre­

lation we model the abstraction of hydrogen from dihydrogen, methane, acetylene, 

benzene and isobutane by the acetylene radical. Of these systems, isobutane serves 

as a good model of the diamond (111) surface. By conservative estimates, the ab­

straction barrier is small (less than 7. 7kcal/mol) in all cases except for acetylene 

and zero in the case of isobutane. Thermal vibrations at room temperature should 

be sufficient to supply the small activation energy. Several methods of creating the 

radical in a controlled vacuum setting should be feasible. Thermal, mechanical, op­

tical and chemical energy sources could all be used either to activate a pre-cursor, 

which could be used once and thrown away, or alternatively to remove the hydro­

gen from the tip, thus refreshing the abstraction tool for a second use. We show 

how nanofabrication processes can be accurately, and inexpensively designed in a 

computational framework. 
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1.0 Introduction 

Mechanical positioning of reactive species can be used to convert mechani­

cal energy to chemical energy to select between alternative reactions, or to provide 

activation energy. Mechanosynthesis is the employment of these mechanochemical 

processes to synthesize molecular structures. 1 Atomically precise mechanosynthesis 

promises to let us manufacture complex systems of molecular machinery. Examples 

include: self-replicating assemblers,2 molecular scale surgical systems,2 computers 

made with molecular logic elements, 3 and macroscopic machines made of diamond­

like materials. 1 Construction of such systems will require the ability to precisely 

manipulate structure on an atomic level. The great specificity of the chemical 

reactions required to synthesize designs with specific atomic structures should be 

achievable with mechanochemical tools capable of positioning the reactive moieties 

with sub-angstrom accuracy. Mechanochemistry allows alternative reaction tran­

sition states to be selected by maneuvering the reactive species in to a position 

where the chosen reaction has the smallest barriers. Such positional control re­

quires that the tool exert forces and torques on the reactive molecule to move it 

over the potential energy surface of interaction with the workpiece. 

Feynman in a talk entitled "There is Plenty of Room at the Bottom," 1960 

is credited with first pointing out that the laws of physics said nothing about the 

impossibility of using mechanical means to direct chemical reactions to synthesize 

molecules and materials. Applying positional control to reactions will require that 

the tool have certain properties to make synthesis reliable, feasible, and practical. 

The tool must (a) have the proper chemical properties (b) be relatively small to 

reduce steric interactions with the workpiece ( c) be capable of remaining chemi­

cally and mechanically stable under thermal motions and strains induced during 

positioning (d) be bound to a system which can transfer forces and torques to the 
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reactive portion of the tool ( e) be selective between alternative reactions and ( f) 

be easily made. Molecular tips attached to atomic force microscope (AFM) tips, 

scanning tunneling microscope (STM) tips, or molecular robotic arms have been 

suggested. 4 Because construction of atomically precise machinery might require 

about as many unit operations as there are atoms in the system, it is important 

that reactions be fast. To increase the speed of reactions with moderate barriers, 

forces can be exerted between the work piece and reactive species to effectively in­

crease the pressure on the system, reducing the barrier height. Moderate reductions 

in the barrier heights lead to substantial increases in the reaction rate because ther­

mal vibrations have an exponential Boltzman probability of overcoming the reaction 

barrier. Mechanochemistry not only reduces the barriers by converting mechanical 

energy to chemical energy, but also maximizes the effective reactive concentration 

by positioning the reactive moieties to best advantage. These speed enhancing steps 

together with multiple mechanochemical machines working simultaneously can com­

pensate for the loss of parallelism when compared against solution based reactions. 

Mechanochemical synthesis also increases the range of synthetic steps that can be 

used to build novel structures by the use of applied torques; a moiety attached to 

both the tool and the workpiece can be twisted, for example, to break 1r-bonds.1 

Nanomachines made of complex specific arrangements of diamond-like ma­

terial offer several advantages. First, diamond is light, and stiff. Macroscopic 

machines could be made stronger and simultaneously much lighter, making such 

activities as air and space travel substantially more practical. Moving parts of such 

machines would be lighter and therefore, faster. Furthermore, hydrocarbons are 

abundant, making raw materials readily available and inexpensive. Stiffness is not 

only a desirable property of finished machines it is also useful during construction 

since the material surrounding the reactive site on the workpiece must be stiff. This 
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allows it to withstand the compressive forces that might be needed to reduce re­

action barriers, to withstand the tensile forces during moiety abstraction, and to 

withstand torques applied to break 1r-bonds. Building machines of diamond will in­

clude maneuvering hydrocarbons into reactive sites, torsion of structures, insertions 

into bonds, and preparation of reactive sites by removing unwanted moieties to cre­

ate radical sites. Abstraction of hydrogen is likely to be the most repeated step and 

common to building a wide range of molecular structures, including diamond-like 

structures. Highly reactive species are commonly thought to play a crucial role in 

the chemical vapor deposition ( CVD) synthesis of diamond. 5- 7 The abstraction of 

hydrogen via any of several radicals is one of the central mechanisms involved in 

the growth of diamond. It is not unreasonable, therefore, to expect that the atom­

ically precise synthesis of diamond-like materials will utilize site-specific hydrogen 

abstraction via a radical as one of the main steps. Drexler has proposed using a 

molecular tip made of an ethynyl radical1 bound to a mechanical base on the tool 

(Figure 1). 

While many radicals exist, the desire for a simple, general, positionally accu­

rate and sterically undemanding hydrogen abstraction tool can be used to narrow 

the search to a structure which (a) has a very high affinity for hydrogen (b) is not 

encumbered by surrounding groups ( c) can be made part of an extended structure 

which can be used as a "handle" for positioning and can be attached to an STM or 

AFM tip (d) is mechanically and chemically stable during positioning (e) is selec­

tive between alternative reactions such as abstraction of a neighboring hydrogen or 

bonding to a nearby carbon atom and (f) is easily made or regenerated. Perhaps 

the most natural structure in this regard is the ethynyl radical. The C-H bond 

in acetylene is one of the strongest bonds to hydrogen; thus, the ethynyl radical 

formed by removing this hydrogen is likely to have a higher affinity for hydrogen 
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than almost any other chemical structure. Further, the ethynyl radical can easily 

be incorporated into structures which provide a high degree of steric exposure. A 

structure resembling the propynyl radical, but with the carbon furthest from the 

radical site embedded in an extended diamond-like structure (Figure I) provides 

both excellent steric exposure to the radical and a "handle" for positioning the rad­

ical for the desired abstraction. Attachment of the tool to an STM or AFM tip may 

develop from technology designed for attachment of proteins to surfaces. 4 Drexler 

showed that the bending stiffness of an ethynyl- like tip attached to an adamantyl 

group is ~ 6 N/m and can be increased to ~ 65 N/m by building up a surround­

ing collar. 1 If the reaction requires application of mechanical force to supplement 

thermal energy, then bending stiffness may need to be increased. Stiffness also is 

desirable to achieve selectivity. STM and AFM positing is stable to more than 

sub-angstrom accuracy. However, bending modes of the ethynyl tip will be active 

at moderate temperatures. If during positioning of the tip, the bending of the rad­

ical and displacement of the AFM or STM relative to the workpiece positions the 

reactive portion of the tip near a branched transition state, for example ( one path­

way leading to abstracting the neighboring hydrogen), then selectivity is reduced. 

Drexler has shown that at worst at room temperature with a bending stiffness of 20 

N/m and transition states separated by 1.2A the unwanted reaction rate is less than 

10-12 times the rate of the target reaction. 1 Transition states between neighboring 

hydrogens on the (111) surface of diamond are separated by 2.5A, and transition 

states for other possible reactions in diamond-like structures also generally exceed 

1.2A, making mechanochemical reactions highly selective. The strong C-H bond of 

alkynes (127-132 kcal/mol)8- 12 should give large exothermicities and small barriers 

(rapid reactions) for alkynyl radical abstraction of hydrogen from weaker sp2 and 

sp3 hybridized C-H bonds (see Table 1). The large exothermicity would also give 
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a small reverse reaction rate constant. Compressive mechanical forces could be ap­

plied to supplement thermal energy in cases where the barriers are large; however, 

care must be taken so that the alkynyl radical tip does not bend away from the 

transition state. In the cases we study, the barriers are such that this is not an 

issue. Several methods of creating the radical should be feasible. The process of 

creating the radical should take place in an inert environment: vacuum, helium, or 

some other extremely non-reactive system would be appropriate. The activation 

energy required to create the abstraction tool could be provided from thermal, me­

chanical, optical, or chemical sources. There are two obvious approaches. In the 

first, a pre-cursor compound is activated to create the abstraction tool. The tool 

is then used once and discarded. A second pre-cursor would then be activated to 

abstract a second hydrogen. Thus, in a functioning system using this approach, a 

steady supply of the pre-cursor would be required as well as a method for disposing 

of the used abstraction tools. In the second approach, the abstraction tool would 

be refreshed by the removal of the hydrogen after each use. Of course, the ethynyl 

radical was selected on the basis of its strong C-H bond, so removal of the hydro­

gen might at first seem paradoxical. However, there are several methods of solving 

this problem. One would be to first weaken the C-H bond, and then abstract the 

hydrogen from the abstraction tool using a weaker radical. Drexler1 proposed that 

the C-H bond could be weakened by positioning a weak radical near the carbon 

atom. A second weak radical could then abstract the hydrogen from the tip. An 

alternative to the attack by two weak radicals strategy would be photo exciting 

the acetylene to obtain the 7r7r* state which would rearrange to the structure with 

a weak C-H bond and thereby allow removal of the hydrogen. Our primary con­

cern is to analyze the energy barriers associated with hydrogen abstraction using 

alkynyl radicals to determine the feasibility of such a tool, rather than to analyze 
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the methods of creating such a tool. We model the chemically active site of the 

tool by the acetylene radical and determine the transition state geometry and ac­

tivation energy for transferring the hydrogen from several species: H2, CH4 , C2H2, 

C6H5, and CH(CH3)3. The geometry of the various transition states can be used 

to position a working hydrogen abstraction tool for fast reaction and without bend­

ing the tip. The barrier height itself can be used to calculate an abstraction rate 

at a given temperature and thus, how long the abstraction tool must remain at 

the transition state until the probability that abstraction has occurred reaches a 

given value. Various levels of generalized valence bond (GVB) and configuration 

interaction ( CI) ab initio calculations are used. To calibrate the accuracy of these 

calculations, we consider the abstraction barriers and transition states for hydrogen 

transfer between methyl and methane and for hydrogen transfer between Hand H2 

as compared to other theoretical and experimental results. 13- 15 

2.0 Results 

The barrier to the acetylene radical abstraction of hydrogen from isobutane 

(sp3 carbon) is conservatively estimated to be less than 0.45 kcals/mol (Figure II). 

Reaction barriers calculated at various levels of correlation are shown in Table 2. 

The barrier to abstraction of hydrogen by the acetylene radical from benzene ( sp2 

carbon) is estimated to be less than 7. 7 kcals/mol. The Hartree-Fock times Sin­

gles and Doubles Configuration Interaction (HF*SD CI) consistently overestimates 

the Generalized Valence Bond times Singles and Doubles Configuration Interaction 

(GVB*SD CI) barriers while the Dissociation Consistent Configuration Interaction 

(DCCI) consistently underestimates the GVB*SD CI barriers. The GVB*SD CI 

barriers will be conservatively high due to a lack of a third diffuse p function, zero 

point corrections, and lack of more correlation of the valence electrons. Transi­

tion states were optimized at the Correlation Consistent Configuration Interaction 
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(CCCI) level (Table 3). Although CCCI does not accurately predict activation barri­

ers, it does accurately describe the transition state geometries. For the largest cases, 

the number of spin eigenfunctions in the Configuration Interaction ( CI) calculation 

grows beyond our computational capabilities (Table 4). This makes calculation 

of abstraction from benzene and isobutane at the GVB*SD CI level impractical; 

however, the overestimated, yet small barriers at the HF*SD CI level shows that 

the acetylene radical hydrogen abstraction is feasible; thermal vibrations at room 

temperature providing sufficient energy to overcome the barriers. Table 5 shows the 

exothermicities for the various abstractions. There is little difference in the accuracy 

of the methods in predicting the exothermicities because all the methods describe 

bound states rather well. Note that the exothermicities are for reactions where the 

product radical species are not allowed to relax. This describes abstraction from 

surfaces where relaxation is constrained. Exothermicities for gas phase reactions 

will be higher. The transition state is poorly described by many semi-empirical 

methods and by ab initio methods with insufficient electron correlation and small 

basis sets and large variation of the predicted barriers can be seen in Table 2. 

3.0 Calculational Details 

Standard ab initio quantum chemistry methods are employed and results are 

given for several levels of calculation. The simplest wave function used is the wave 

function in which each molecular orbital is doubly occupied. This single config­

uration ( one determinant) Hartree-Fock (HF) wave function is the lowest energy 

antisymmetrized n-fold product of molecular orbitals and should give a qualitative 

picture of the hydrogen abstraction reactions studied. HF will tend to overesti­

mate the abstraction barrier since the radical-hydrogen stretching frequency is too 

high due to the poor description by HF of the bond breaking process ( a doubly 

occupied orbital of the molecule must become two singly occupied orbitals for the 
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fragments). This problem is remedied by using a GVB (Generalized Valence Bond) 

wave function, 16 which allows each bond to be described with two singly occupied, 

overlapping orbitals leading to a proper description of dissociation. When solved 

for self-consistently, this calculation is termed a Generalized Valence Bond Config­

uration Interaction Self Consistent Field (GVBCI-SCF) or equivalently a Complete 

Active Space Self Consistent Field (CASSCF). Simply, all symmetry and spin al­

lowed configurations of three active electrons in three orbitals are generated. These 

electrons are the radical of the reactant, the hydrogen and the radical of the prod­

uct. All other orbitals ( considered inactive) are doubly occupied as in Hartree-Fock. 

It is found that three configurations are all that is necessary to adequately describe 

the transition state. These are the dominant configuration (with the Hartree-Fock 

occupations of the orbitals) and the single and double excitations of the electrons in 

the doubly occupied R 1-H-R2 bonding orbital to the empty R1-H-R2 antibonding 

orbital. The R 1-R2 antibonding orbital (with a node at the hydrogen center) is 

singly occupied in all three configurations. While this level of calculation includes 

the most important correlation, it will still tend to overestimate the abstraction 

barrier and, thus, will only serve as a zeroth order wave function for large CI ( Con­

figuration Interaction) expansions which will account for additional dispersion. 

Ideally, we would like to do a CI calculation in which all single and double 

excitations of the valence electrons are made into the virtual orbitals with reference 

to the three most important configurations describing the abstraction. This type 

of multi-reference CI ( called a GVB*SD CI) has been well established at approxi­

mating proximating results of complete CI calculations. 17 However, this CI has not 

been carried out for the largest cases, abstraction of hydrogen from isobutane and 

benzene by the acetylene radical. Thus we have considered some smaller CI calcu­

lations which will do a good job in approximating the barriers for the larger CI. 
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The first of these is the CCCI wave function. 18 ,19 It involves making all single and 

double excitations of the active electrons and all single excitations of the other va­

lence electrons into the virtual space relative to the three GVB references, or simply 

GVB*(SDactive + Svalence)- The second CI, called a DCCI (Dissociation Consistent 

Configuration Interaction), will add the double excitations which are the product of 

a single excitation of an active electron and a single excitation of a valence electron, 

or GVB*(SDactive *Svalence + Svalence). The third CI does all single and double ex­

citations of the valence electrons ( active and inactive) relative to only one reference, 

a calculation called HF*SD CI ( or equivalently 1 reference SDCI). Table 4 shows the 

sizes of the CI expansions in terms of the number of spin eigenfunctions (SEFUs) 

for each of the systems studied. The HF*SD CI already approaches the limits of 

our programs 2 million SEF's) in the cases of isobutane and benzene, for which 

the GVB*SD CI is not possible. In all other cases, however, the GVB*SD Cl's are 

of small to medium size and will serve as benchmarks to calibrate the accuracy of 

the smaller Cl's. The standard basis sets of Dunning/Huzinaga are used. 20,21 Their 

double zeta contraction of the 9s5p set is used on all carbons, with the addition 

of one set of d polarization functions ( (d=0. 75). On the active carbons, diffuse s 

and p functions ((8 =0.0474 and (p=0.0365) are also added. For active hydrogens or 

hydrogens bound to active carbons (in the case of methane), the triple zeta contrac­

tion of the 6s set is used, supplemented with a p polarization function ((p=0.60). 

For all other hydrogens, the double zeta contraction of the 4s set is used, scaled by 

a factor of 1.2. The basic geometries of the various systems studied are illustrated 

schematically in Figure III. The geometries will be optimized at the CCCI level. 

The orbital optimization at the GVBCI-SCF level is the most time consuming step, 

so this CI will be a simple correction to that wave function. It would be impractical 

to do a full geometry optimization, so certain constraints are assumed. Namely, 
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only the relevant parameters to the description of the hydrogen abstraction (RiH 

and R2H or combinations thereof) will be optimized. In the case of abstraction on 

from methane (by the methyl radical or by the acetylene radical), the H-C-Habs 

bond angle is also optimized since this angle changes from 109.5° for methane to 

90° for the methyl radical. For isobutane, we would expect a small relaxation from 

a tetrahedral C-C-Habs bond angle to something more planar at the transition state 

and in the radical species. But Page and Brenner, 22 in their work on abstraction 

of hydrogen from isobutane by atomic hydrogen, found that full relaxation of the 

t-butyl species reduced the abstraction barrier by only 1. 7 kcal/mol at the GVBCI­

SCF level. However, since the goal of this work is to show the feasibility of using 

an alkynyl radical tip as a hydrogen abstraction tool, a conservative overestimate 

of the abstraction barriers is acceptable. So the C-C-Habs bond angle is fixed to 

109.5° in these calculations. All other radicals are expected to show little or no 

relaxation and are fixed to the experimental values of their hydrogen bound coun­

terparts. All calculations are run with the GVB23 and MOLECULE/SWEDEN24 

suites of programs on the Caltech group's Alliant FX/80 and FPS 500. 

4.0 Discussion 

4.1 H-H-H: 

A great deal of theoretical work has been done on this system, 15 and, due 

to its simplicity, it provides a good test of our hydrogen basis set and, to a lesser 

extent, our methods. While the calculated equilibrium bond distance in H2 com­

pares favorably to experiment (0.74A vs. 0.74144A 25), the calculated dissociation 

energy for H2 (De) is 105.4 kcal/mol as compared to the experimental number of 

108.6 kcal/mol. 25 This discrepancy of 3 kcal/mol is chiefly due to the lack of a sec­

ond p polarization function. In contrast, the transition state is well described by 

the GVB*SD CI (in this case only, the CCCI, DCCI and GVB*SD CI are equiva-
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lent since there are no valence electrons in addition to the three active electrons). 

The optimized geometry has a H-H distance of 0.94A ( compared to Liu's value of 

0.930A15 ) and a barrier of 10.3 kcal/mol (compared to Bauschlicher's value of 9.56 

kcal/mol using a large ANO basis set15 ). The geometries for all the systems studied 

are listed in Table 3 and the abstraction barriers are listed in Table 2. An error of 

less than 1 kcal in the barrier is adequate for the calculations at hand, particularly 

since the barrier is overestimated. It should be noted, however, that the Hartree­

Fock barrier is well off the mark at 24.3 kcal/mol and that the apparently good 

result at the GVBCI-SCF level (9.9 kcal/mol) is primarily due to the weak H-H 

bond strength (87.5 kcal/mol) at this level. The HF*SD CI number including the 

Davidson correction is in fortuitous agreement with the reference barrier height of 

9.56 kcal/mol. This is rather symptomatic of the Davidson correction, which can 

often overestimate the contributions from additional correlation. 

The methyl-methane hydrogen transfer reaction is perhaps more represen­

tative as a test case of the systems in which we are most interested. There has 

been less theoretical work done on this system14 but a reliable experimental num­

ber for the abstraction barrier of 14.2 kcal/mol13 gives a good benchmark for us 

to work with. Theoretical investigations into this reaction have not been success­

ful in obtaining quantitative accuracy in the barrier height. The best calculations 

overestimate the barrier by 5-6 kcal/mol. Part of this is due to some assumptions 

made in the calculations, namely the neglect of zero-point corrections, the Born­

Oppenheimer approximation and temperature effects. However, the sum of these 

effects should only lower the theoretical activation energy by 1-2 kcal/mol (see Sana, 

et.al. 14). Our results agree well with previous theoretical work. The optimized tran­

sition state geometry is virtually identical to the full gradient optimized structure of 
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Wunsch, et al., 14 which was done at the Hartree-Fock level. The calculated barrier 

is 20.4 kcal/mol, higher than experiment by 6.2 kcal/mol. Test calculations with a 

large ANO basis set26 only lowered the barrier to 19.2 kcal/mol, indicating that the 

discrepancy between theory and experiment is likely a correlation problem rather 

than a basis set problem. The importance of ionic terms such as 

are probably underestimated in the CI calculations due to biases against anionic 

states and would require additional correlation of the non-active valence electrons. 

This could be a formidable task even for such a small system and would not be pos­

sible with our current code for the larger cases we wish to study. However, again, 

since these factors all tend to lead to an overestimate of the barrier height the results 

for abstraction of hydrogen by the acetylene radical can be considered a conservative 

upper limit to the actual barrier height. These calculations on the methyl-methane 

system also offer a comparison of the smaller Cl's to the GVB*SD standard. We 

find the CCCI result (29.8 kcal/mol) to be comparable to the GVBCI-SCF number 

(27.8 kcal/mol), being slightly higher due to the stronger C-H bond at the CCCI 

level (113.2 kcal/mol vs. 97.6 kcal/mol at the GVBCI-SCF level and 107.2 kcal/mol 

at the GVB*SD CI level). This indicates that correlation of the non-active elec­

trons is important in obtaining quantitative accuracy for the hydrogen abstraction 

barriers. The DCCI, which includes only limited correlation of the inactive elec­

trons, underestimates the GVB*SD CI barrier by 2.9 kcal/mol. Alternatively, the 

HF*SD CI, which sacrifices some of the active electron correlation, overestimates 

this barrier by 2.1 kcal/mol. The combination of these two CI calculations should 

offer an upper and lower limit to the GVB*SD CI for those large cases where that 

CI is not feasible. 
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4.2 H-H-CCH, CH3-H-CCH, C 6H 5-H-CCH and HCC-H-CCH 

Results of calculations on these systems underscore the results of methyl­

methane. In particular, Hartree-Fock greatly overestimates the activation energies, 

GVBCI-SCF and CCCI offer some improvement but still overestimate these barri­

ers, and DCCI and HF*SD CI bracket the results of the GVB*SD CI. In the case 

of abstraction from methane and benzene, we found the geometries were most con­

veniently optimized by using the coordinate system R 1H + R2H and R 1H - R2H. 

In the case of abstraction from H2 , it was easier to optimize the transition state in 

terms of the coordinates R 1H and R2H. This was likely due to the fact that the 

barrier was small at the CCCI level and that it occurred quite early, with only an 

8% increase in the H-H bond length. To a large degree the barrier height and the 

position of the barrier is determined by the exothermicity of the reaction. Other 

properties, such as the polarizability of the bonds, play a role as well. The largest 

barrier (and latest transition state) was for abstraction from acetylene, with an ac­

tivation energy of 14.6 kcal/mol. This is as expected, since this particular reaction 

is thermoneutral. The calculated exothermicities of the other reactions are listed in 

Table 5 (see also Table 1, for the experimental bond dissociation energies). H2 and 

CH4 are the most exothermic and have the smallest barriers. These barriers maybe 

considered negligible as the calculations on H + H2 and methyl-methane showed 

the numbers to be overestimated. Abstraction from benzene is less exothermic and 

shows a small but non-negligible barrier. In addition, the phenyl-H bond is stretched 

14% at the transition state in comparison to an 11 % stretch of the metyl-H bond. 

All of these results correlate with the exothermicities of the reactions. 

1.3.2 (CH3)3C-H-CCH: 

Finding the transition state for abstraction from isobutane proved to be quite 

difficult. The potential energy surface has many of the same features as that of H-H-
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CCH, in particular, a small, early barrier which leads to non-quadratic behavior in 

the region of the saddle point. Due to the computational costs of these calculations, 

it was necessary to sacrifice some accuracy in order to find the transition state. In 

the end, the values of R1H=L2A and R2H=l.5A are in agreement with results 

for abstraction from methane and benzene by the acetylene radical. The large CI 

calculations strongly indicate that there is no barrier for abstraction of hydrogen, 

the more conservative number giving a barrier of only 0.45 kcal/mol. This again 

correlates with the large exothermicity of this reaction, which is calculated from 

snap bond energies. If one considers that the t-butyl group should relax somewhat 

at the CCCI transition state and, thus, lower the energy of the barrier still, the 

argument for the absence of a barrier becomes even more persuasive. Since this 

system is a good model for the hydrogenated diamond ( 111) surface C-H bond, 

we conclude that no barrier exists to abstraction of hydrogen from this surface by 

acetylene. Barriers on other surfaces of diamond are likely nonexistent or negligibly 

small. 

4.4 Abstraction from Acetylene: 

Now that it has been established that an alkynyl tipped hydrogen abstraction 

tool would be able to abstract hydrogen from diamond surfaces with little or no 

thermodynamic hindrances, it would be desirable to find a method for removing the 

hydrogen from the tip. A simple alternative, but less elegant strategy, is to make 

a new tip for each abstraction and dispose of the tool after use. What makes the 

acetylene good at abstracting hydrogen is the strength of its C-H bond. However, 

this bond is quite weak in the 3Bu excited state (see Table 6). We calculate a bond 

strength of 41. 7 kcal/mol doing a GVBCI-SCF in which all 10 valence electrons 

are active in 10 orbitals, followed by a Multi-Reference times Singles and Doubles 

Configuration Interaction (MR*SD CI) in which all configurations in the GVBCI 
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with coefficients > 0.05 are chosen as references. In the case of the triplet excited 

state, there are 4 references and, in the case of dissociated H + CCH, there are 

6 references. The geometry for the excited state is optimized at the MR *SD CI 

level. The molecule is not linear in this state, having a C-C-H bond angle of 132.0°. 

The C-C bond length also increases to 1.38A from 1.20A for the ground state, 

reflecting the double bond character of this bond. The weakening of the C-C bond 

in the excited state leads directly to the weakening of the C-H bonds, as the triple 

bond character can be restored upon dissociation of one of the C-H bonds. The 

weakening of the C-H bond leaves the acetylene prone to abstraction, making it 

easy to remove the hydrogen and refresh the tip. So photoexcitation of the alkynyl 

tip from its ground state to the lBu excited state, followed by relaxation to the 

triplet would facilitate the breaking of the tip-hydrogen bond. Drexler also made 

an alternative proposal for removing the hydrogen from the tip by destabilizing the 

H-tip bond with a second tip and disposing of the H into a H sink.1 

5.0 Conclusion 

We model the abstraction of hydrogen from H2, CH4, C2H2, C6H6, and 

CH(CH3)3 by the acetylene radical using accurate CI ab initio quantum chemistry 

techniques. From our results, conservative estimates show that the reaction barriers 

for abstraction from sp3 hybridized carbons are negligible, or zero for the case of 

isobutane. The barriers are small for sp2 hybridized carbons and slightly larger 

for sp hybridized carbons. Therefore, abstraction tools based on ethynyl radical 

molecular tips should reliably and rapidly abstract hydrogen from most carbon 

structures at moderate temperatures. We also find that the hydrogen bond to the 

7r7r* excited ethynyl tip is relatively weak, and therefore can be broken to refresh 

the tip. We also wish to show how nanofabrication processes can be accurately and 

inexpensively designed in a computational framework. 
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Table 1. Experimental bond dissociation energies (kcal/mol). 

R-H Do [reference] 

H-H 102.3 [25] 

CH3 -H 105.1 [27] 

(CH3)g - H 93.2 (27] 

C6H5-H 110.9 [27] 

HCC-H 126.6 [11], 131.3 [9] 
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Table 2. Barriers for the hydrogen abstraction reaction, R1-H + R2 --+ R1 +H-R2 , 

calculated at the CCCI optimized geometry (kcal/mol). Negative energies 

indicate that the CCCI transition state geometry is lower in energy than 

the reactants. Numbers in parentheses are the barriers when the Davidson 

correction is included. 

R1 -H-R2 HF GVBCI-SCF CCCI 

H-H-H 24.3 9.9 10.3 

CH3-H-CH3 34.9 27.8 29.8 

H-H-CCH 11.6 8.0 5.4 

CH3 -H-CCH 14.6 8.6 10.2 

(CH3)3-H-CCH 11.0 5.9 8.0 

C5H5-H-CCH 18.3 12.0 14.3 

HCC-H-CCH 30.0 22.9 24.1 

R1 -H-R2 DCCI HF*SD CI GVB*SD CI 

H-H-H 10.3 10.5 (9.6t 10.3 (10.3) 

CH3-H-CH3 17.5 22.5 (19.5) 20.4 (18.8) 

H-H-CCH 0.8 4.5 (3.2) 3.3 (2.7) 

CH3 -H-CCH -2.9 4.2 (2.0) 2.2 (1.3) 

(CH3)3 - H - CCH -7.0 0.45 (-2.78) 

C5H5-H-CCH -0.7 7.7 (4.1) 

HCC-H-CCH 11.6 17.0 (13.7) 14.6 (12.9) 
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Table 3, Transition state geometries optimized at the CCCI level. See text for con­

straints on these geometries. 

Ri -H-R2 R1H R2H H-C-C angle 

H-H-H 0.94 0.94 

CH3-H-CH3 1.36 1.36 105.2 

H-H-CCH 0.80 1.61 

CH3-H-CCH 1.22 1.48 105.5 

(CH3)3-H-CCH 1.20 1.50 

C5H5-H-CCH 1.24 1.42 

HCC-H-CCH 1.28 1.28 
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Table 4. Number of spin eigenfunctions in each of the CI calculations for the transition 

state. If the transition state has higher symmetry, then the number of SEF 

is doubled for the product or reactant state. 

R1 -H-R2 CCCI DCCI HF*SD CI GVB*SD CI 

H-H-H 191 191 139 191 

CH3-H-CH3 4914 71666 79428 310778 

H-H-CCH 2160 18234 15189 53048 

CH3-H-CCH 9477 150557 

(CH3)3-H-CCH 21676 695842 1675566 

C6H5 -H- CCH 17265 587343 587343 1514151 

HCC-H-CCH 2697 42201 55211 221805 
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Table 5. Calculated exothermicities (kcal/mol). Numbers in parentheses include the 

Davidson correction. 

R1 -H-R2 HF GVBCI-SCF CCCI 

H-H-CCH 33.9 31.6 31.8 

CH3-H-CCH 28.9 28.4 27.0 

(CH3)3 - H - CCH 28.5 27.9 24.2 

C6Hs -H-CCH 18.7 18.2 15.4 

R1 -H-R2 DCCI HF*SD CI GVB*SD CI 

H-H-CCH 30.1 30.0 (27.5) 29.9 (28.1) 

CH3-H-CCH 29.2 26.9 (25.5) 26.8 (25.4) 

(CH3)3 - H - CCH 27.4 26.8 (25.9) 

C6Hs-H-CCH 18.9 18.3 (18.0) 
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Table 6. Calculated relevant energetics of ground-state acetylene and the excited-state 

triplet (kcal/mol). 

R1 -H-R2 R1H R2H H-C-C angle 

Te(3 Bu +-1 ~;) 72.3 92.0 90.2 

De(1 ~: HCC - H) 116.5 122.3 131.9 

De(3 BuHCC - H) 44.2 30.3 41.7 
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Figure Captions 

Figure 1. Acetylene radical hydrogen abstraction molecular tip attached to 

diamond-like material. 

Figure 2. Schematic diagram showing the transition barrier and exothermicity 

of the acetylene radical abstraction of hydrogen from isobutane. 

Figure 3. Geometries for the transition states. 
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Figure 1: Acetylene radical hydrogen abstraction 
molecular tip attached to diamond-like material. 
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Figure 3: Geometries for the transition states 

System 
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Chapter 4 

The Hessian Biased Force Field for Polysilane Polymers 
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Abstract 

We report a force field (FF) suitable for molecular dynamics simulations 

of polysilane polymers. This FF, denoted MSXX, was developed using the Hes­

sian biased method to describe accurately the vibrational states, the ab initio tor­

sional potential energy surface, and the ab initio electrostatic charges of polysilane 

oligomers. This MSXX FF was used to calculate various spectroscopic and mechan­

ical properties of the polysilane crystal. Stress-strain curves and surface energies are 

reported. Gibbs molecular dynamics calculations (Nose, Rahman-Parrinello) were 

used to predict various materials properties at higher temperatures. Phonon disper­

sion curves and elastic constants were calculated at various temperatures. Although 

this polymer is of increasing industrial interest we could find no experimental data 

with which to compare these predictions. 
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I. Int:roduction 

Polysilane polymers, -[-SiH2 -]n- denoted herein as P(SiH), have become 

of significant interest. The substituted derivatives of P(SiH) can be used as precur­

sors to SiC ceramics, as nonlinear optical materials, as semiconducting polymers, 

and as photoresists. 1 The polysilane polymers are amorphous and their structural, 

physical, and electronic properties are not well characterized. 2- 5 In order to pre­

dict such properties, we have developed a force field expected to be accurate for 

predicting structural, mechanical, vibrational, and thermodynamic properties. 

Section II develops the force field and Section III applies this force field to 

the prediction of various properties for P(SiH) oligomers. The properties of P(SiH) 

crystals are predicted in Section IV. 

II. Development of the MSXX Force Field 

II.A Introduction 

The general form of the force field is taken as 

Here 

EQ - C ~ qiqj 
- coul L....t R·. 

i>j iJ 

(1) 

(2) 

represents the Coulombic interactions between partial charges on the various atoms 

( Ccoul = 332.0637 converts units so that the R is in A and EQ is in kcal/mol), 

(3) 

represents the long-range attraction (London dispersion) and short-range repulsion 

(Pauli orthogonalization of nonbonded electrons), and 

(4) 
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represents all terms involving bonds between atoms and coupling behavior of these 

bonds. 

Our general approach to developing force fields is to emphasize the use of ac­

curate quantum chemical calculations on model systems. Thus the atomic charges 

[for EQ] and the torsional potentials about single bonds [for Etorsion] are taken di­

rectly from Hartree-Fock (HF) calculations using good basis sets. The force constant 

parameters important in describing valence interactions (Ebond, Eangle, Ecross) are 

taken from the Hessian (second derivative of energy with respect to atomic coordi­

nates) calculated from HF wavefunctions. However the eigenvalues of this Hessian 

are modified [the Hessian Biased6 FF, HBFF] since HF vibrational frequencies are 

too high. Herein we derive the HBFF for P(SiH) using the model systems: SiH4, 

Si2H5, Si3Hs, n-Si4H10. Only the vdW terms, (3), are not based on HF calcu­

lations. The vdW parameters for Si and H were obtained from the Dreiding force 

field7 which were based on fits to experimental structural data for simple solids and 

on extrapolations. 

11.B Calculations 

For each model system we carried out HF calculations using the 6-31G** 

basis set. The geometry was optimized at the HF level ( using Gaussian 928 and 

PS-GVBl 9 ) and this geometry was used in determining the force field. Comparing 

to experiment the HF geometry leads to errors of about 0.02 A in Si-Si distances, 

0.01 A in Si-H distances, and 0.5° in bond angles (see Table 1). 

We use the Potential Derived Charges (PDQ) as the partial atomic charges.10 

PDQ are derived by (i) calculating the electron density distribution, p(r), from the 

HF wavefunction, (ii) using p( r) to calculate the electrostatic potential on a set of 
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grid points around the molecule, 

(5) 

and (iii) determining the set of atomic point charges on the various atoms to opti­

mally fit this electrostatic potential, 

(6) 

at grid points outside the vdW radii. The PDQ charges (from Gaussian 92) as 

well as Mulliken populations are shown in Table 2. Based on these calculations we 

recommend in Table 2 the charges for P(SiH) chains. 

11.C The Biased Hessian Method 

From ab initio HF wavefunctions we calculate8 a full Hessian 

(7) 

where Rad is the a component (x, y, z) of the coordinates of atom i. After mass 

weighting, 

- HF l HHF H . (3 . = --;:::::::;:::;;::::::::::: . f3 . 
ai, 1 JMiMj ai, 1 ' 

(8) 

the vibrational modes {Uf F} and vibrational frequencies {vflF} are obtained by 

solving 

(9a) 

where 

,HF (C HF)2 
Ai = fregl.li (9b) 

and C freq = 108.5913 converts units so that energies are in kcal/mol, distances are 

in A, frequencies are in cm-1, and masses are in atomic mass units ( C 12 has mass= 
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12.0000 amu). This Hessian provides g(g + 1)/2 independent pieces of information 

[666 for Si4H10], where g = 3N - 6 is the number of degrees of freedom. These 

constraints are sufficient to determine the force field. In contrast, fitting just the 

frequencies leads to only g conditions [36 for n-Si4H10]. However, at the HF level 

the calculated frequencies, vfl F, are 10-20% too high. This led to the development 

of the Hessian Biased method6 for FF parameterization in which the force field is 

fit to the biased Hessian 

HHB = uHFAexpfjHF (10) 

where U is the transpose and ,\exp is the diagonal matrix based on experimental 

frequencies 

, exp (C exp)2 
"'i = f reqVi • (11) 

This Hessian has the property that, HHBuHF = uHF..\exp, that is, the eigenvalues 

match experiment while the eigenfunctions match HF theory. Thus, HHB has the 

best available information on the vibrational modes. 

In general the optimum geometry at the HF level differs slightly from exper­

iment, raising the question of which structure to use in (10). We use the structures 

optimized at the Hartree-Fock level of theory. Previously6•11 we advocated the use 

of the experimental structure for determining force constants from the ab initio cal­

culations primarily because the internuclear separations (which strongly affect the 

Hessian) reflect the experimental system. However, in molecules with low frequency 

torsions, a slight difference in structure can cause a noticeable rotational contami­

nation of the torsional modes. Since we want to use frequency scaling parameters to 

compare various molecules, it is better to derive the frequencies for all molecules at 

the ab initio minima (rather than at the experimental minimum for molecules where 

experimental geometries are available and the ab initio minimum for those where 
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experimental geometries are not available). Fortunately, as indicated in Table 1, 

the differences between the ab initio and experimental geometries are small. 

II.D The Potential Energy Surface for Torsions 

The distribution of conformations in a polymer and the rates of conforma­

tional transitions have a strong effect on the properties ( moduli, glass temperature); 

hence, it is critical that the FF lead to the correct relative energies of the minima 

(e.g., trans versus gauche) and of the barrier heights between them. Thus torsional 

FF parameters are particularly important for describing amorphous polymers. We 

use ab initio calculations to provide the torsional potential energy surface. With 

the 6-31G** basis, the torsional potentials calculated from HF wavefunctions are 

adequate. 12 

The HF calculations lead to a total torsional potential function EH F ( </>) 

which we want to fit with the FF, 

(12) 

Here EBa~ contains all parts of Eval except for the torsional term including </J. We 
' 

have already specified how EQ and EvdW are to be calculated, and the dependence 

of EBa~ on bonds and angles will be determined in Section D. Thus we define the 
' 

torsional potential as 

(13) 

where 

(14) 

contains all terms except the torsion, </J. 

In determining Et0 r(</>) from (13), the simplest procedure would be to fix all 

bonds and angles so that only the torsional angle </> changes [thus EBa~ ( </>) would be 
' 
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constant]. However such rigid rotations about bonds sometimes lead to bad contacts 

( very short distances between nonbonded atoms). At a bad contact the ab initio 

wavefunctions readjusts the molecular orbitals to minimize repulsion which invali­

dates the assumption of constant energy in the bond and angle terms. In addition 

the EvdW derived from fits to experiment may not accurately describe the inner 

repulsive wall. Consequently (12) is defined by fixing </J and optimizing all other 

degrees of freedom for each conformation to obtain the adiabatic torsional potential. 

Thus for the HF wavefunction we optimize the other geometric parameters at each 

</J and for EF F ( <p) we do the same. With this procedure EF F ( <p) depends on the FF 

for bonds and angles, which is determined from fitting HHB (Section ILE). Thus, 

to determine the nontorsional parts of the FF using HBFF, we use approximate 

torsional parameters and put zero weights on fitting the torsional modes. Then 

after determining Et0 r(</J) from (13) we redo the HBFF using Et0 r(</J) and then use 

the final bond and angle FF to calculate a new EF F ( <p) and hence a final Etor ( <p). 

We started with the Dreiding FF and found that one such iteration was generally 

sufficient. 

An alternative to the above procedure is to use the same geometry for both 

the HF and FF calculations. This could be optimized either for HF or for the FF. 

The problem is that the HF structure is generally not optimum for the HBFF. Hence 

fitting to (13) to determine Et0 r(</J) would lead to residual forces (due to bond and 

angle terms in the unoptimized structure). Thus at the top of the barrier, the total 

forces on the molecule from either HF or HBFF would be nonzero so that it would 

not be a true maximum. 

The HF wavefunction was calculated by fixing the dihedrals of interest (in 

increments of 15°) and optimizing all other degrees of freedom, leading to the results 

in Figures 1-3 and Table 3. 
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For each dihedral, the geometry was optimized using the force field with the 

dihedral constrained (zero barrier used for this torsion). As indicated in (13) the 

true torsional energy Et 0 r(c/>) [or Et0 r(cp1 , ¢2 ), in the case of Si3H8] is defined as 

the difference between EH F ( cp) and EF F ( cp) with the torsion excluded. For SiH8 

we considered the two-dimensional surface where the two torsions ( ¢1 and ¢2 ) are 

changed independently. In this case a bicubic spline was fitted to Etor ( ¢1 , ¢1 ) 

(15) 

to generate a denser grid which was in turn fitted to a Fourier series of torsional 

terms 
1 P P 1 

Etor(c/>) = 2 L Km[l+cosmcp] = Vo+ L 2Vmcosmcp, (16) 
m=O m=l 

For a single term this becomes 

(17) 

where Km is the barrier. 

For a given J - K dihedral there are 3 choices for atom I bonded to J and 

3 choices for atom L bonded to K, leading to 9 possible I - J - K - L terms. In 

POLYGRAF20 the energy for this torsion is written as 

3 3 

E:tk = t LL E}°JKL (c/>IJKL). 
l=l L=l 

Thus each torsional energy E}j KL ( cp) is written as if the whole barrier were due to 

this term, but it is scaled to 1/9 of this value. 

Tables 3a-c show EHF(c/>), and EFF(cp) [or EHF(c/>1 , ¢2 ) and EFF(c/>1 , ¢2 ) in 

the case of ShHs]. The fit to the ab initio energy surface was Boltzmann weighted so 

that the errors near the minima are smaller than the errors near the maxima (since 
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the higher barrier regions will be sampled less in molecular dynamics simulations). 

We found that a single K 3 term (barrier of 0.94 kcal/mol) for H - Si - Si - H was 

sufficient for Si2H6. For Si3H6, we assumed the same H - Si - Si - H term and 

found that for H - Si - Si - Si a single K 3 term (barrier of 0.806 kcal/mol) was 

sufficient. For n - Si4 H10 we assumed the H - Si - Si - Hand H - Si - Si - Si 

terms from Si2H6 and Si3H8 and added Si - Si - Si - Si. Here we found a 3-term 

potential (with K 1 , K2, and K3) was sufficient. The resultant PES are plotted in 

Figures 1-3 for HF and HBFF. 

11.E Valence Force Field Terms 

The bond and angle part of the valence FF is written as 

We take Eb0nd as a sum over all bond pairs, each of which has the form of a Morse 

function, 7 

(18a) 

with 

(18b) 

and 

(18c) 

This includes anharmonicity and allows bond dissociation. Here there are three 

independent parameters Re, kR, and DR. However DR is not sensitive to the 

Hessian or geometry; Hence, we choose DR based on the experimental bond energy 

(it was not optimized). 
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We take Bangle as a sum over all six angle terms I - J - K for each atom 

J, where each angle term is described with the cosine angle form, 7 

with 

. C 2 
Ecosine(0) = - [cos0- cos Be] 

2 

C = k0 

sin2 Be 

This form leads correctly to dE / d0 = 0 for 0 = 0, 180° and has a barrier of 

Ebarrier = C [1 + COS 0e]2. 
2 

We found that bond-bond cross-terms 

(19a) 

(19b) 

(20) 

(21) 

sharing an apex atom (e.g., IJ and JK for the atoms I and K bonded to J) are 

generally useful when the two are equivalent (e.g., Si-H/Si-H at SiH3 or SiH2 

groups). However, Si - Si/ Si - Hat the SiH3 group does not have much effect on 

the force field. This is because the splitting between equivalent terms is dominated 

by off-diagonal interactions whereas analogous couplings for inequivalent bonds can 

be built into the force field by modifying the diagonal terms. Thus we include 

bond-bond cross terms only for equivalent bonds. 

Bond-angle cross terms ( e.g., bond IJ with angle IJK), 

E1BA = Dre (r1 - rf) ( cos 01 - cos en (22) 

are necessary for a good description of the vibrations. For a given J - J - K there 

are two such terms, one for r I J and one for r J K. 

In addition we find that one-center angle-angle cross terms (involving bonds 

defining two angles sharing a common bond) are important, 

E1AA = F00 ( cos 01 - cos en ( cos 02 - cos BD . (23) 
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The sign and magnitude of these terms are difficult to predict a priori. Hence we 

started with various combinations of sign and magnitude and allowed the optimiza­

tion to determine both the sign and magnitude of these coupling constants. 

For long chain molecules, we found that 2-center angle-angle cross terms are 

also important, 

(24) 

Thus for the dihedral J - J - K - L, 01 corresponds to the I J K angle and 02 cor­

responds to J KL. For disilane such terms determine the splitting between rocking 

modes of different symmetries. In the case of polyethylene, 11 they are essential in 

reproducing the stiffness in the chain direction. For group IV and III/V solids ( e.g., 

diamond, silicon, GaAs, etc.) they are necessary to describe the mode softening of 

the transverse acoustic (TA) mode near the zone boundary. 13 In P(SiH), we find 

that they are important for predicting the modulus in the chain direction. For 

semiconductors the factor !(¢) is taken as !(¢) = ½ [1 - j cos(¢)] so that f(O 0 ) 

= £(180 °) = 1 and f(60 °) = £(240 °) = 0. This is because only trans coupling is 

important. For P(SiH) f( </>) is taken as f( ¢) = 1 - cos(¢). 

Summarizing we take 

II.F Scaling of Ab Initio Frequencies 

For both Si3 H 8 and n-Si4 H 10 the set of experimental frequencies is incom­

plete. In order to estimate of the experimentally undetermined modes, we scale the 

ab initio frequencies for these modes using scale factors ( the ratio of the experi­

mental frequency to the ab initio frequency) obtained from observed modes. This 

works well because within a particular class of vibrations the scale factor is nearly 
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constant, even between different molecules. For example, it is 0.901 ± 0.016 for 

the SiH bending modes of Si3Hs, (A further refinement is to calculate separate 

average scales for the rocking, wagging, and scissor Sill-bending modes.) Table 

4 shows the scale factors derived for each molecule. Because the scales vary little 

from molecule to molecule, the scaling procedure can be applied even to molecules 

with no experimental frequencies. Table 5 shows the Si5H12 scaled frequencies 

(from HF) and those predicted by the MSXX (from n - Si4 H10). Here the MSXX 

vibrations differ from the HF scaled values by 13 cm-1 (rms error), about the same 

as for cases where experiment is available. 

Torsions do not follow the same scaling trend as bending and stretching 

modes. However we base all torsional parameters on the HF torsion curves ( Section 

III.C) rather than on scaled torsional vibrations. 

11.G Optimization of Parameters 

We used the program FFOPT14 developed by Yamasaki, Dasgupta, and 

Goddard to optimize the valence HBFF parameters. This uses Singular Value 

Decomposition (SVD) and emphasizes changes in parameters that most affect the 

properties of interest (and to eliminates parameter redundancies). 

III. Polysilane Oligomers 

III.A SiH4 

The vibrational frequencies for silane are shown in Table 6 and the silane 

force field is shown in Table 7a. HBFF exactly reproduces the geometry and the 

experimental frequencies. 15 The MSXX (from n - Si4 H10 ) leads to slightly low 

( about 1 % ) frequencies for silane, and the inaccuracy in applying the MSXX to 

disilane and trisilane is much smaller. (Table 6 also shows the accuracy of the 

silane HBFF for predicting the frequencies of deuterated silane. 15 ) This indicates 
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the robustness of the MSXX. 

The MSXX FF parameters from the P(SiH) oligomers are shown in Table 

7a (the calculated oligomer geometries are in Table 1). The MSXX FF leads to 

excellent geometries and frequencies. 

111.B Si2H6 

Disilane is the largest oligomer of P(SiH) having a complete set of exper­

imental vibrational assignments. 16 In addition, all the isotopic shifts, except for 

the torsional mode, are available for fully deuterated disilane. Table 8 shows pre­

dicted frequencies, where we find an RMS difference of 4.8 cm-1 between HBFF 

and experiment. 16 The HBFF accurately reproduces the geometry as shown in Ta­

ble 1. The validity of the force field is shown by its accurate prediction of the Si2 D6 

experimental frequencies17 as shown in Table 8. 

Included in the complete set of frequencies for disilane is the torsional fre­

quency ( determined indirectly from a two photon process). However we do not 

use this in our fit. As discussed above the torsional potential is fitted to the en­

tire torsional potential surface. Disilane is the only P(SiH) oligomer for which we 

can compare the torsional frequency for the single bond rotational potential to ex­

perimental data. Figure 1 and Table 3a show the accurate match of the ab initio 

and HBFF torsional potentials over the entire dihedral angle range. This accuracy 

comes at the modest cost of an error of 8.2 cm-1 in the torsional frequency. 

111.C Si3Hs 

Silylpropane is the smallest model compound containing the [-SiH2-] re­

peating unit of P(SiH). Some experimental data (13 of 27 modes) 18 are available 

on the vibrational frequencies of Si3H8 , but a complete set of experimental fre­

quencies for the isolated molecule in the gas phase is not available. Consequently, 
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for each class we considered only the experimentally known vibrations to obtain 

the accurate scale factor for that class, which was then applied to all ab initio fre­

quencies to predict the complete set of "experimental" frequencies. Using scales 

from within the same molecule leads to very small standard deviations of the scales 

and thus is likely to yield accurate scaling of the experimentally unassigned modes. 

The average error between the HBFF frequencies and the experimentally available 

frequencies18 is 7.7 cm-1 (6.0 cm-1 including the scaled HF frequencies). Table 9 

also shows the frequencies for two deuterated species to compare with future exper­

imental results. We find that fitting the force field to experiment requires the use of 

different valence terms for the SiH2 hydrogens and the SiH3 hydrogens (we use the 

H - Si - Si - H torsional potential transferred from disilane). Using the MSXX FF 

from n - Si4H10 to calculate the modes of Si3H8 leads to good accuracy, especially 

for the geometry (Table 1). This justifies the transferability of the HBFF between 

molecules and indicates that the HBFF description of P(SiH) or the other P(SiH) 

oligomers should be accurate. 

The torsional modes were not obtained from HBFF. In the Si3H8 force 

field we include the disilane H-Si-Si-H torsional potential and fit a Fourier series of 

torsions to the combinations of rotations of the two H-Si-Si-Si dihedrals. Figure 2 

and Table 3b show the accuracy of the HBFF torsional potential energy surface. 

111.D n-Si4H10 

n-Si4H10 is the smallest oligomer which includes all the valence terms nec­

essary to model larger oligomers and P(SiH). Again only a partial assignment from 

experimental spectra18 is available for n-silylbutane. We follow the same procedure 

used for scaling of the silylpropane frequencies. Table 10 shows the HF frequencies, 

the experimental assigned frequencies and the scales used for modes not observed. 

Table 10 also shows the narrow range for similar scales. The HBFF procedure re-
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produces the experimental frequencies and scaled HF frequencies to 6.2 cm-1 rms 

error. The geometry is accurately reproduced as shown in Table 1. 

For n - Si4 H10 we also develop the MSXX-R FF which does not distinguish 

between the SiH3 and SiH2. We find that MSXX-R is only slightly worse than 

the MSXX, as shown in Table 10. We use the valence terms describing the central 

silicons of MSXX to describe the larger oligomers and the polysilane crystals. The n­

silylbutane HBFF not only includes all the terms to simulate the smaller oligomers, 

it also includes all the terms necessary to model the larger oligomers and P(SiH) 

and thus can be used to predict the properties of P(SiH) of arbitrary chain length. 

The torsional mode was not scaled, but was calculated by fitting a Fourier 

series to the rotations of the molecule about the Si-Si-Si-Si dihedral. The H-Si-Si-Si 

and H-Si-Si-H torsional potentials were transferred from silylpropane and disilane, 

respectively and not varied. Figure 3 and Table 3c show the HBFF and the ab initio 

torsional potential. 

111.E n-Si5H12 

The n-Si5H12 molecule has not been observed experimentally. We calculate 

HF /6-31G** and MP2/6-31G** vibrational frequencies to validate the MSXX force 

field (from Si4H10), Scales from the smaller oligomers are applied to the n-Si5H12 

HF vibrational frequencies to obtain scaled HF frequencies which can be compared 

to frequencies calculated using the MSXX. Table 5 shows the MSXX frequencies 

and the scaled HF frequencies. The RMS difference is less than 12 cm-1 with most 

modes differing less than 2%. Either method provides an acceptable prediction of 

experimental frequencies; however scaled ab initio calculations require substantially 

greater computational time. MP2 ab initio calculations take substantially more 

time than scaled HF calculations but still overestimate experiment by 3-8% (Table 
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5), with the exception of the low energy skeletal modes. Since scaled HF and MSXX 

predictions are generally within a percent of experimental frequencies, we conclude 

that MSXX is the most cost-effective approach to predicting frequencies in good 

agreement with experiment. Table 11 compares the geometries for n-Si5H 12 from 

HF and from the MSXX. The differences are small, with the largest error (1.1 °) for 

the Si - Si - Si central angle. 

IV. Polysilane 

We base the FF for polysilane polymers on the parameters for the central 

atoms of the HBFF for n - Si4 H10 in Table 7a. We refer to this as the MSXX FF 

( see Table 7b). The charges for polysilane polymer were based on the PDQ atomic 

charges for the central SiH2 group of n - Si5H 12 (See Table 2). 

Particularly important for calculations on P(SiH) polymers are the Si-Si-Si 

bends denoted as accordion modes in Tables 5, 9, and 10. This mode is prominent 

on the Raman spectra for long alkanes and extrapolating the frequency of this 

mode to infinite alkanes leads to an excellent prediction of the Young's modulus 

( see reference 11 for discussion). 

The MSXX FF was used to calculate the properties of the crystal built with 

the all trans conformation of P(SiH). This is analogous to polyethylene (PE) except 

that structures with both one and two chains per cell were considered. Table 12 

shows the structure and mechanical properties of the crystal at 0, 77 and 300K. The 

bulk modulus at OK is 13.10 GPa. The Young's moduli calculated are 11.94, 110.57, 

and 18.64 GPa at OK which compare to 9.0, 337.0, and 9.4 for PE. PE is much stiffer 

along the chain direction than P(SiH) while being softer perpendicular to the chains 

at low temperatures and being similar in stiffness to P(SiH) perpendicular to the 

chains at temperatures above 300K. Because of the anharmonicity of vdW and 
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electrostatic interactions between chains, the Young's moduli perpendicular to the 

chain direction decrease dramatically with temperature (by ~ 65% for Oto 300K). 

The decrease in the Young's moduli of polyethylene is much smaller (~ 35% for 0 

to 300K). The elastic constants of P(SiH) behave similarly to those of polyethylene. 

Thus C22 , the elastic constant along the chain direction, decreases by only 15% from 

0 to 300K. In PE the decrease is 5.9%. C11 and C33 for deformations perpendicular 

to the chain direction show a decrease of 65% while in PE the decrease is~ 40%. The 

relative decrease in the deformation properties with temperature is large relative to 

polyethylene (see Table 12) both along the chain direction and perpendicular to it 

indicating that both the valence and non-bond interactions are more anharmonic 

for P(SiH) than for PE. 

The properties at 77K and 300K were calculated by averaging the crystal 

structures from the last 20 ps of a 30 ps Gibbs molecular dynamics calculation 

(Nose plus Rahman-Parrinello19 ) at several temperatures to calculate the thermal 

expansion tensor. Using the thermal expansion tensor we calculated the lattice 

parameters at the desired temperatures and calculated the properties of the crystal 

at that desired temperature. (After reminimizing the atomic positions for the new 

lattice constants.) 

The cohesive energy of the crystal is calculated to be 3.816 kcal/mol-SiH2 

(Table 13). This compares with 1.8701 kcal/mol-CH2 for polyethylene calculated 

by Karasawa et al. 11 also using the biased Hessian approach. Their result compared 

favorably to experiment where the cohesive energy is measured to be 1.84 kcal/mol­

CH2. The larger elastic constants of PSi compared to PE perpendicular to the chain 

direction indicate the relatively stronger non-bond interactions and thus a larger 

cohesive energy. 

Tables 14 and 15 show the vibrational frequencies for the crystal and for the 
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infinite single chain, respectively. Calculations by Cui et al. 5 on single unpacked 

chains (ignoring vdW and Coulomb) are within 5-30 cm-1 of our results. Our re­

sults show that the inclusion of coulombic and vdW forces in the MSXX FF strongly 

affects interactions between neighboring chains, as shown by the changes in the pre­

dicted vibrational frequencies between the packed and unpacked P(SiH). Our single 

chain frequencies are in better agreement with many of the experimental frequencies 

(Table 15) than our packed P(SiH) frequencies. This may be because the samples 

are not very crystalline (including silicon-like clusters and metastable gauche con­

figurations), leading to an inefficiently packed local structure better approximated 

by a single chain. 

Figure 4 shows the phonon dispersion curves for the all-trans polysilane 

crystal ( there are no experimental numbers). The low energy bands depend strongly 

upon the van der Waals and coulombic interactions as well as the torsional force 

constant. In the case of PE (Karasawa et al. 11 ) the MSXX led to average errors 

of 7.9 cm-1 for n-C4H 10 and 24 cm-1 for the crystal. The MSXX force field 

reproduces the vibrational frequencies of n-Si4H 10 with an error of 6 cm-1 but we 

expect larger errors for the crystal. 

Figure 5a shows stress-strain curves for stresses along the unit cell axes (per­

pendicular to the chain) In these calculations we used a super cell consisting of 32 

primitive cells. Although the Young's modulii perpendicular to the chain direction 

are larger for P(SiH) than for PE the yield stress is similar. This is the result of the 

higher anharmonicity of the P(SiH) non-bond interactions which fall off faster that 

those of PE. In the case of PE, shear perpendicular to the chain direction eventu­

ally leads to a transition to a metastable monoclinic phase. Shearing P(SiH) using 

our force field did not lead to any stable phases. Minimization from any structure 

arrived at by shearing always led back to the orthorhombic unit cell. 
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The surface energy is calculated by stretching the crystal perpendicular to 

the surface until the crystal breaks (Figure 5b). From the curves in Figure 6 we 

derive surface energies of 63.5 dyn/cm for the (100) surface and 66.9 dyn/cm for 

the (001) surface (using a conversion factor of 694.8 to convert from kcal/mol-A2 

to erg/cm3 ). This compares with 106.8 dyn/cm (100) and 109.2 dyn/cm (001) 

for the analogous surfaces of polyethylene. The (100) surface has two SiH2 groups 

per unit cell, leading to a surface energy per SiH2 of 1.698 kcal/mol while the (001) 

surface has 4 SiH2 groups per unit cell leading to a surface energy of 1.609 kcal/mol. 

This compares with 0.938 kcal/mol and 0. 720 kcal/mol for the analogous surfaces 

of polyethylene. We know of no experimental information on such properties for 

P(SiH). Assuming only nearest-neighbor fiber-fiber interactions, we would expect a 

surface energy of ½ the cohesive energy of the crystal. This would predict a surface 

energy of 1.42 kcal/mol for both the (100) and (001) surfaces, which is low by~ 15 

%. 

Figure 6 shows the predicted heat capacity ( Cv), entropy, enthalpy and free 

energy versus temperature (again, we know of no experimental data). 

V. Summary 

In this paper we develop the MSXX force field for P(SiH) that should be 

accurate and useful for a variety of structural, thermodynamic, spectroscopic, me­

chanical, and surface properties. The method follows the procedure developed by 

Karasawa et al. 11 for PE (modified for incomplete experimental vibrational data). 

For PE the substantial amount of data on experimental properties validated the 

accuracy attained with this procedure. For P(SiH) sample quality is poor and 

this procedure is used to predict the properties of crystalline P(SiH) in advance of 

experiment. 
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Spectroscopic force fields (SFF) usually omit the electrostatic (Q) and van 

der Waals (vdW) nonbond terms since the geometry is considered fixed. For molec­

ular dynamics (MD) calculations the FF must describe how the energy changes with 

geometry, and hence the MSXX FF includes these intramolecular nonbond terms. 

They are small for P(SiH) oligomers except for torsional modes, where they make 

significant contributions. On the other hand, the bulk properties of P(SiH) depend 

greatly on the intermolecular interactions. 

The HBFF6 combines experimental vibrational frequencies with the normal 

mode description of the vibrations from ab initio calculations. For P(SiH) oligomer 

systems it was necessary to extend the HBFF approach to handle systems with 

incomplete spectroscopic information through scaling. 

The validity of the resulting MSXX force field is tested by calculating the 

properties for n-Si5 H12 , where we find the modes to be within 2% of the scaled ab 

initio (HF /6-31G**) results (no experimental data are available). MSXX predicts 

a Si-Si-Si bond angle 1.13 ° larger than HF, which although not a large error, will 

manifest itself in predicting a slightly larger bond angle for the crystal. Despite 

the slight difference in the geometry the MSXX predicts the vibrational frequencies 

accurately. 

The MSXX predictions should be useful for predicting the spectra of larger 

oligomers where assignments are incomplete (particularly for torsional modes and 

skeletal modes) and for the P(SiH) condensed phase where there are no assignments. 

We used the Nose formalism19 of canonical molecular dynamics to extract 

thermodynamic properties of polysilane from the MD simulations. Properties at 

various temperatures were averaged from dynamics calculations and thermal ex­

pansion coefficients were derived for temperatures up to 450K. Other properties 

were calculated using the unit cell at the desired temperature. 
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Table 1. Structural parameters. Distances are in A, angles are in degrees. 

Molecule Featureb,e MSXXc HF/6-31G** n-Si4H10 Experiment ala 
FF FFd 

SiH3 Si-H 1.476 1.476 
H-Si-H 111.01 111.01 

SiH4 Si-H 1.476 1.476 1.476 
Si2H6 Si-Si 2.353 2.353 2.356 

H-Si 1.479 1.479 1.479 
H- Si- Si 110.35 110.35 110.50 

Si3Hs Si - Sic 2.358 2.357 2.351 
He - Sic 1.482 1.482 1.482 
Hip - Si 1.479 1.478 1.477 
Hop - Si 1.479 1.479 1.478 

Si - Sic - Si 112.73 112.56 108.83 
Hip - Si - Sic 110.74 110.69 110.84 
Hop - Si - Sic 110.17 110.16 109.75 
He - Sic - Si 109.07 109.12 109.98 

Hop - Si - Sic - Si 59.77 59.77 59.65 
n - Si4H10 Si - Sic 2.358 2.357 

Sic - Sic 2.362 2.361 
He - Sic 1.481 1.482 
Hip - Si 1.480 1.479 
Hop - Si 1.479 1.479 

Si - Sic - Sic 113.06 112.73 
Hip - Si - Sic 110.86 110.73 
H 0 p - Si- Si 110.01 110.08 
He - Sic - Si 109.22 109.30 

Hop - Si - Sic - Sic 59.76 59.79 
He - Sic - Sic - Si 58.32 58.48 

a References 15 and 16. 
b Sic and He denote atoms of SiH2 groups. These are used in the P(SiH) FF. 
c Separate FF for each molecule, parameters in Table 6a. 
d Using the MSXX FF of n-Si4H 10 to calculate the structure of the other molecules. 
e ip and op denote in-plane and out-of-plane hydrogens, respectively. 

110.6 
1.481 
2.331 
1.492 
110.3 
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Table 2. Atomic charges ( electron units) from HF calculations on linear ( all trans) 

chains. Based on these results we recommend the following: (i) Qsi = 0.30, 

QH = -0.15 for SiH2 of P(SiH). (ii) Qsi = 0.44, QH = -0.14 for terminal 

SiH3 groups, and (iii) Qsi = 0.23 and QH = -0.125 for SiH2 next to a 

terminal group. 

Si2H6 Si3Hs Si4H10 SisH12 

Atoma PDQ Mulliken PDQ Mulliken PDQ Mulliken PDQ Mulliken 

Si (SiH2)' 0.2971 

H (SiH2)' -0.1485 

Si (SiH2) 0.1550 0.2287 0.2211 0.2565 0.2287 

H (SiH2) -0.1042 -0.1491 -0.1274 -0.1501 -0.1260 

Si (SiH3) 0.3936 0.4752 0.4714 0.5096 0.4829 0.5175 0.4494 

H (SiH3)-ip -0.1312 -0.1584 -0.1369 -0.1567 -0.1458 -0.1569 -0.1370 

H (SiH3)-op -0.1424 -0.159 -0.1518 -0.1584 -0.1446 

a Primes signify central SiH2. ip and op denote in-plane and out-of-plane hydrogens, 

respectively. 

0.2878 

-0.1508 

0.2617 

-0.1495 

0.5138 

-0.1570 

-0.1584 
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Table 3a. The torsional potential (kcal/mol) for Si2H6 • All bonds and angles were 

optimized at each¢. E}7; is described with a single 3-fold term (17) with a 

barrier K 3 = 0.94 kcal/mol (see Table 7a). 

¢ HF MSXX 

60.000 0.00000 0.00000 

45.000 0.13500 0.14490 

30.000 0.47000 0.49150 

15.000 0.82300 0.83280 

0.0000 0.97400 0.97290 
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Table 3b. The torsional potential (kcal/mol) of Si3 H8 for various values of the two 

dihedral angles, ¢1 and ¢2 • Same conventions as Table 3a. Efo{ ( <p) is de­

scribed using the H - Si - Si - H torsion from Table 3a plus a single 3-fold 

H - Si- Si - Si torsion with barrier of K3 = 0.806 kcal/mol (see Table 7a). 

MSXX Torsional Energies HF Torsional Energies 

¢1 ¢2 180 165 150 135 120 180 165 150 135 

180 0 0.1205 0.4241 0.7504 0.8995 0 0.1150 0.3389 0.6884 

165 0.1205 0.2478 0.5568 0.8839 1.0278 0.1150 0.2058 0.4897 0.8111 

150 0.4241 0.5568 0.8734 1.2069 1.3511 0.3389 0.4897 0.8082 1.1716 

135 0.7504 0.8839 1.2069 1.5505 1.7011 0.6884 0.8111 1.1716 1.5656 

120 0.8995 1.0278 1.3511 1.7011 1.8601 0.8161 0.9728 1.3586 1.7533 

105 0.7504 0.8839 1.2069 1.5505 1.7011 0.6884 0.8111 1.1716 1.5656 

90 0.4241 0.5568 0.8734 1.2069 1.3511 0.3389 0.4897 0.8082 1.1716 

75 0.1205 0.2478 0.5568 0.8839 1.0278 0.1150 0.2058 0.4897 0.811 

60 0.0000 0.1205 0.4241 0.7504 0.8995 0.0000 0.1150 0.3389 0.6884 

45 0.1205 0.2478 0.5568 0.8839 1.0278 0.1150 0.2058 0.4897 0.8111 

30 0.4241 0.5568 0.8734 1.2069 1.3511 0.3389 0.4897 0.8082 1.1716 

15 0.7504 0.8839 1.2069 1.5505 1.7011 0.6884 0.8111 1.1716 1.5656 

0 0.8995 1.0278 1.3511 1.7011 1.8601 0.8161 0.9728 1.3586 1.7533 

120 

0.8161 

0.9728 

1.3585 

1.7533 

1.9196 

1.7533 

1.3585 

0.9727 

0.8161 

0.9727 

1.3585 

1.7533 

1.9196 
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Table 3c. The torsional potential (kcal/mol) for central torsion angle of n-Si4H10. 

For each ¢ all other structural parameters were optimized ( at either the HF 

or FF level). Same conventions as Table 3a. The Etar ( ¢) was described with 

the H - Si - Si - H and H - Si - Si - Si terms from Tables 3a and 3b plus 

a three term Si - Si - Si - Si potential (see Table 7a). The last column is 

the Si-Si-Si-Si torsional potential ( after eliminating the other nonbond and 

valence torsions). 

¢ HF MSXX Etor 

0 1.5631 1.5628 0.7189 

15 1.3380 1.3302 0.6682 

30 0.8461 0.8345 0.5271 

45 0.3893 0.3891 0.3455 

60 0.1539 0.1542 0.1891 

75 0.1639 0.1504 0.0734 

90 0.3238 0.3189 -0.0324 

105 0.5261 0.5376 -0.1005 

120 0.6735 0.6458 -0.0657 

135 0.5359 0.5478 -0.0787 

150 0.3190 0.3110 -0.0247 

165 0.0986 0.0883 0.0018 

180 0.0000 0.0000 0.0000 
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Table 4. Scale factors (ratio of experimental value to HF value) for estimating exper­

imental frequency from HF vibrational frequencies. Standard deviations are 

in parentheses. 

Mode SiH4 Si2H6 Si3Hs n-Si4H10 

Si-H Stretch 0.9255 0.9113 0.9163 0.9140 

(0.0035) (0.0215) (0.0015) (0.001) 

Si-H Bend 0.9125 0.8972 0.9009 0.9081 

(0.0191) (0.0126) (0.0162) (.0203) 

Si-Si Stretch 0.9100 0.9370 0.9177 

(0.0226) (0.0055) 

Si-Si-Si Bend 1.025 
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Table 5. Predicted vibrational frequencies (cm-1) for n - SisH12-

Mode Sym Character MSXX Scaled HF MP2 

1 B2 Torsion (Si-Si) 24 23 23 52 
2 A2 Torsion (Si-Si) 26 26 26 43 
3 A1 Si-Si-Si bend 47 45 49 56 
4 A2 Torsion (SiH3) 93 89 89 111 
5 B2 Torsion (SiH3) 95 90 90 112 
6 B1 Si-Si-Si bend 104 105 115 112 
7 A1 Si-Si-Si bend 138 137 131 124 
8 B2 SiH2 rock 303 301 331 300 
9 A2 SiH2 rock 322 321 353 329 
10 A1 Si-Si Stretch 366 366 399 383 
11 B2 twist-rock 379 376 414 391 
12 B1 Si-Si stretch 392 397 433 414 
13 A1 Si-Si stretch 446 441 482 463 
14 A2 Si-Si stretch 457 464 506 483 
15 B1 twist 464 461 508 487 
16 B1 SiH3 rock 505 491 542 510 
17 A1 SiH3 rock 515 526 581 550 
18 B2 SiH2 rock 568 567 624 596 
19 A2 twist 646 647 711 674 
20 B1 wag 665 655 721 678 
21 B2 twist 705 703 773 736 
22 A2 wag 732 733 806 768 
23 A1 twist 740 742 816 770 
24 B1 wag 797 799 879 830 
25 B1 SiH3 s-def 892 890 982 931 
26 A1 SiH3 s-def 892 895 988 938 
27 A1 SiH2 scissor 926 927 1019 972 
28 B1 SiH2 scissor 929 929 1022 973 
29 A1 SiH2 scissor 933 931 1024 978 
30 A2 SiH3 def 939 937 1034 993 
31 B2 SiH3 def 939 938 1034 993 
32 B1 SiH3 def 941 941 1038 997 
33 A1 SiH3 def 941 944 1041 999 
34 B2 SiH2 stretch 2112 2117 2315 2285 
35 A2 SiH2 stretch 2113 2119 2318 2287 
36 B1 SiH2 stretch 2122 2120 2319 2290 
37 A1 SiH2 stretch 2122 2121 2320 2294 
38 B2 SiH2 stretch 2123 2125 2325 2299 
39 A1 SiH2 stretch 2124 2128 2328 2304 
40 B1 SiH3 stretch 2142 2141 2343 2305 
41 A1 SiH3 stretch 2142 2142 2343 2306 
42 B1 SiH3 stretch 2142 2142 2343 2319 
43 A1 SiH3 stretch 2142 2143 2344 2319 
44 A2 SiH3 stretch 2144 2144 2345 2319 
45 B2 SiH3 stretch 2144 2146 2348 2320 
Error 4.0 0 116.7 92.8 
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Table 7b. The MSXX FF for polysilane polymers. The subscript on the Si indicates 

the number of H atoms attached. All quantities are in (kcal/mol), A, radian 

units except for 0e which is in degrees. 

Bonds Re Kr Dr 

H-Si4 1.476 396.3 92.6 

H-Si3 1.478 395.8 92.6 

H-Si2 1.476 383.1 92.6 

Si3-Si3 2.369 276.7 73.7 

Si3-Si2 2.330 278.8 73.7 

Si2-Si2 2.328 261.1 73.7 

Angles 0e K0 Krr DR10 DR20 

H-Si4-H 110.4 68.35 4.30 -1.90 -1.90 

H-Si3-H 113.6 56.39 3.34 -11.20 -11.20 

H-Si2-H 113.4 56.05 4.46 -1.46 -1.46 

Sh-Si3-H 115.14 42.25 16.14 -10.67 

Si2-Si3-H 117.2 45.0 -5.34 -10.54 

Si3-Si2-H 118.5 33.3 -6.41 -10.64 

Si2-Si2-H 115.8 41.6 -4.16 -2.68 

Si3-Si2-Si3 122.55 42.53 15.21 -6.19 -6.19 

Si2-Si2-Sh 126.6 35.4 0.635 -15.6 -18.7 

Si2-Si2-Si2 
Torsions Ko K1 K2 K3 F00 

H-Si-Si-H 0.940 0.940 -13.4 

H-Si-Si-Si 0.806 0.806 -9.36 

Si-Si-Si-Si 2.785 5.86 3.54 0.46 -9.28 

1-Center Angle Angle G00 

Si4 H-H-H 5.717 

Si3 H-H-H -0.349 

Si3 Si-H-H -1.108 

Si2 Si-H-H -4.775 

Si2 Si-Si-H -1.6 
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Table 7c. Van der Waals parameters (reference 7) used for all MSXX force fields, 

Evdw = Dv (p-12 - 2p-6 ) where p = R/ Rv. The off-diagonal parameters 

Dv and Rv (Si · · · H) are obtained from the diagonal parameters by using 

the geometric mean. 

vdW parameters 

Rv (A) 

Dv (kcal/mol) 

Si 

4.270 

0.310 

H 

3.195 

0.0152 
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Table 11. Predicted structure of n-Si5H12 • Distances are in A, angles are in degrees . 

MSXX HFa .6. 

Sic - Bice 2.365 2.361 0.004 

Sic - Si 2.355 2.357 0.002 

He - Sic 1.480 1.482 0.002 

Hee - Bice 1.479 1.482 0.003 

Hip - Si 1.478 1.479 0.001 

Hop - Si 1.478 1.479 0.001 

Si - Sic - Bice 112.1 112.69 0.59 

Sic - Bice - Sic 114.16 113.03 1.13 

Hip - Si - Sic 110.06 110.63 0.57 

Hop - Si - Sic 110.04 110.14 0.10 

Hee - Bice - Hee 106.63 107.25 0.62 

He - Sic - Bice 110.06 108.93 1.13 

Hop - Si - Sic - Bice 59.95 59.81 0.14 

a 6-31G** basis. 
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Table 12. Properties of P(SiH) at OK, 77K, and 300K from Gibbs dynamics for a 2x4x4 

supercell ( containing 384 atoms). 

Property OK 77K 300K 

unitcell (A)a 

a 8.422 8.526 8.833 

b 3.966 3.9769 3.955 

C 4.685 4.733 4.929 

Bulk Modulus (GPa) 

B 13.095 10.412 4.594 

Young's Moduli (GPa) 

Yx 11.94 9.586 4.720 

Yy 110.57 107.64 98.384 

Yz 18.64 14.750 5.789 

Elastic Constants (GPa) 

Cn 15.60 12.424 5.937 

C22 121.30 116.501 102.85 

C33 22.97 18.172 7.088 

C12 12.73 10.335 5.045 

C13 8.17 6.486 2.765 

C23 9.24 7.374 3.369 

C44 16.23 13.995 8.322 

Css 7.34 5.936 2.876 

c66 19.30 16.299 8.906 

a Structure was constrained to remain orthorhombic during the dynamics. 
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Table 13. Predicted cohesive energy (kcal/mol SiH2) for polysilane crystal. The cohe­

sive energy at OK of 3.82 kcal/mol SiH2 compares with 1.87 kcal/mol CH2 

for polyethylene crystal. 

Total Energy Zero-point Energya Lattice Enthalpy 

At minimum at OK 

Isolated Chain 3.224 8.568 11.792 

Crystal (2 chain) -1.055 9.031 7.976 

Cohesive Energy (2 chain) 4.279 -0.463 3.816 

Crystal (1 chain) -1.231 9.053 7.822 

Cohesive Energy (1 chain) 4.455 -0.485 3.970 

a Using 5 x 5 x 5 points in the Brillouin zone. 
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Table 14. Vibrational frequencies ( cm-1 ) for polysilane crystal P(SiH) with two chains 
per unit cell. Only the values for k = 0 (r point) are shown. The chain 
direction is [010]. 

Mode Description Polarization Direction 
[010] [100] [001] 

1 interchain 63.6 63.6 63.6 
2 inter chain 95.7 95.7 96.3 
3 interchain 98.1 98.1 98.1 
4 skeletal torsion 152.2 152.2 152.2 
5 skeletal torsion 160.9 160.9 160.9 
6 SiH2 rock 320.9 320.9 343.8 
7 SiH2 rock 357.7 348.9 348.9 
8 Si-Si-Si bend 398.7 398.7 398.7 
9 Si-Si-Si bend 403.2 403.2 403.2 
10 Si-Si stretch 509.5 509.5 509.5 
11 Si-Si stretch 532.3 532.3 532.3 
12 SiH2 rock 573.5 573.5 573.5 
13 SiH2 twist 573.5 573.5 573.5 
14 SiH2 rock 583.7 583.7 583.7 
15 SiH2 twist 648.5 649.0 648.5 
16 SiH2 wag 702.1 742.5 702.1 
17 SiH2 wag 771.7 771.7 771.7 
18 SiH2 twist 840.6 840.6 840.6 
19 SiH2 wag 871.5 871.5 871.5 
20 SiH2 twist 927.5 927.5 927.5 
21 SiH2 scissor 948.2 948.2 953.8 
22 SiH2 scissor 950.6 950.6 950.6 
23 SiH2 wag 954.5 940.1 940.1 
24 SiH2 scissor 954.7 954.7 954.7 
25 SiH2 scissor 964.7 964.7 964.7 
26 SiH stretch 2150.2 2150.2 2150.2 
27 SiH stretch 2151.8 2151.6 2151.6 
28 SiH stretch 2152.2 2151.8 2153.9 
29 SiH stretch 2153.1 2153.1 2153.1 
30 SiH stretch 2154.5 2154.5 2160.1 
31 SiH stretch 2155.3 2155.3 2155.3 
32 SiH stretch 2161.3 2161.3 2161.3 
33 SiH stretch 2164.3 2159.0 2159.0 
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Table 15. Vibrational frequencies (cm- 1 ) of P(SiH). The first two columns are for a sin­

gle infinite chain, while last two columns are for the crystal, with 1 chain/unit 

cell. 

Isolated Chain Crystal 

( single chain) 

Mode Sym Description Cui et al.a MSXX MSXX Exper 

1 Au SiH2 rock 311 307.7 367.9 

2 Ag Si-Si-Si bend 413 396.8 407.2 

3 Ag Si-Si stretch 469 493.1 526.7 480 

4 Au SiH2 twist 549 556.8 613.0 

5 Bg SiH2 rock 532 562.5 585.1 

6 Bu SiH2 wag 604 685.0 692.9 

7 Bg SiH2 twist 769 795.2 842.4 

8 Ag SiH2 wag 808 852.1 929.8 

9 Ag Scissor 943 936.4 949.4 909 

10 Bu Scissor 953 935.6 974.7 905 

11 Bg SiH stretch 2140 2128.3 2146.6 2155 

12 Bu SiH stretch 2139 2128.5 2151.0 2100 

13 Au SiH stretch 2158 2132.6 2153.6 2100 

14 Ag SiH stretch 2150 2130.3 2156.5 2115 

a Reference 5. 
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Table 16. Packing of P(SiH) and Polyethylene. R is the C-H (1.096A) or Si-H (1.48A) 

bond distance and R is the C-C (1.553A) or Si-Si (2.35A) bond distance for 

PE and P ( SiH), respectively. 

Lattice constant P(SiH) PE 

unitcena 

a 8.422 7.121 

b (chain) 3.966 2.546 

C 4.685 4.851 

a/R 5.69 6.50 

b/R 1.69 1.64 

c/R 3.17 4.43 
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Figure Captions 

Figure 1. Torsional potential (kcal/mol) of Si2H6 from HF calculations and from the 

MSXX FF. All bonds and angles are optimized for each ¢. The total EH F ( ¢) 

and EF F ( ¢) is plotted. 

Figure 2. Torsional potential (kcal/mol) of Si3 H8 from (a) HF calculations and (b) 

the MSXX FF. Each is plotted versus the two dihedral angles ¢1 = H -Si­

Si2 - Si3 and ¢2 = Si - Si2 - Si3 - H (abscissa and respective ordinate). 

All other bonds and angles are optimized for each ¢1 and ¢2 

Figure 3. Torsional potential (kcal/mol) for the central Si- Si bond of H3Si - SiH2 -

SiH2 - SiH3 from HF and HBFF. All other bonds and angles are optimized 

for each¢. 

Figures 4a-b. The calculated phonon modes (cm-1) of crystalline P(SiH) for the (010) and 

[001) directions (the chain direction is (010)). Only the modes below 1000 

cm-1 are shown. 

Figure 5. (a) The calculated stress-strain curves for crystalline P(SiH) in directions 

perpendicular to the chain axis. (b) The strain energy (kcal/mol) as a func­

tion of strain. 

Figure 6. The thermochemical properties as a function of temperature ( using a 5 by 5 

by 5 set of phonons in the Brillouin zone). (a) The heat capacity (Cv). (b) 

The Helmholtz free energy. ( c) The internal energy. ( d) The entropy. 
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Figure 2a 
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Figure 4b 

130-------------.--------------. 
R Ag 

160t============r::-
140 

120 -,-I 
I e 
V ->-. 100 u 
i::: 
(lJ 

::i 
O"' 
(lJ 80 "'" j;.r.i 

60 R+ 

40 

20 

0-+-----.----.---......---...---~-----,---..---.....---------1 
-0.5 0 0.5 

Wavevector in units of [O n/2 O] 



143 
Figure Sa 
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Figure 5b 
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Figure 6a 
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Figure 6b 
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Figure 6c 

2 

--0 

~ 1.5 -fl:! 
l;J 

~ -::> 1 

0.5 

0-4-,..,..,...i:::;;....... .................................... ______ .,....,l 

0 50 100 150 200 250 300 350 400 
T (K) 



148 

Figure 6d 
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Chapter 5 

Force Fields for Semiconductors and Their Superlattices 
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Abstract 

We develop the MSXX force field (FF) for molecular dynamics (MD) simu­

lations of the group IV diamond materials, and group II/VI and III/V zinc-blende 

semiconductors. This was developed to fit the structure, elastic constants, and the 

phonons of the crystal. The MSXX force field for zinc-blende materials contains 

only 6 adjustable force constants, 2 geometric parameters and an atomic partial 

charge, yet it accurately describes the experimental crystal structure, elastic con­

stants, and phonon dispersion curves, and is suitable for predictions of the strained 

structures at heterojunctions and for MD. The MSXX FF is used to calculate the 

interface phonons of various superlattices and the Ge/Si ordered alloy where we 

find excellent agreement with experiment. 
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1.0 Introduction 

Ab initio quantum mechanics can provide an accurate description of the 

structures, mechanical properties, and electrical properties of semiconductor mate­

rials. Unfortunately, despite recent advances in first principles methods for large 

systems1 and for periodic systems,2 such simulations are impractical for many im­

portant applications to semiconductor materials. Consequently, we have developed 

a consistent set of valence force fields that should be useful for molecular dynamics 

simulations of semiconductors. This MSXX (FF) is derived using empirical data on 

lattice constants, elastic constants, and phonon states. Herein we report the MSXX 

FF for the nine III/V systems with III= Al, Ga, In and V = P, As, Sb, the five 

II/VI systems with II = Zn, Cd, Hg, and for VI = S, Se, Te, and the group IV 

systems, diamond, silicon and germanium. 

A prime motivation in developing the MSXX FF is to describe the strain 

effects and vibrational modes at heterojunction interfaces and superlattices. We 

illustrate the approach by predicting the vibrational interface states in several su­

perlattices. These results show that the MSXX FF provides an accurate description 

of the strains and interface phonons. 

The form of the MSXX FF is described in Section 2 and the optimization 

of the parameters is described in Section 3. Comparison to experimental phonon 

dispersion data is made in Section 4. The calculations of the superlattice phonon 

dispersion curves are given in Section 5. 

2.0 The MSXX Force Field 

Chapter 1 describes the general form of the force field. Here we describe the 

MSXX force field as specifically applied to semiconductor materials. The general 

form of the force field is taken as3 

(1) 
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E Q - C ~ QiQj 
- coul L__ R .. 

i>j iJ 

(2) 

represents the Coulombic interactions between partial charges on the various atoms 

( Ccoul = 332.0637 ensures that Eis in kcal/mol where R in A), 

Evdw = L Eijdw ( Rij) 

i>j 

(3) 

represents the long-range attraction (London dispersion) and short-range repulsion 

(Pauli orthogonalization of nonbonded electrons) and 

(4) 

represents all terms involving bonds between atoms and coupling behavior of these 

bonds. This type of FF has been used to describe polymers (polyethylene, 4 

polyvinylidene £1.uoride,5 polysilane,6 nylon7), Si3 N4 ceramics,8 and many other 

systems. It is denoted as MSXX to indicate that it is for materials simulations and 

that it includes both 1 center and 2 center cross terms. 

2.1 Bond Terms 

We take Eb0nd as a sum over all bond pairs where each has the form of a 

Morse function, 3 

(5) 

with 

(6) 

and 

a=~- (7) 

This includes anharmonicity and allows a proper description of bond dissociation. 

We choose the Morse form (5) over the more common harmonic description 

(8) 
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in order to better describe anharmonic effects, e.g. thermal expansion. Equation 

(5) contains three independent parameters Re, kR, and DR, The structure, elastic 

constant, and phonons are sensitive to Re and kR but not to DR. Consequently we 

choose DR based on the experimental atomization energies. 9 

2.2 Angle Terms 

We take Bangle as a sum over all angles 1-J-K for each atom J here each 

angle term is described with the cosine angle form, 3 

. C 2 
Ecosine(0) = - [cos0 - cos0e] 

2 
(9) 

where the force constant is 

ke = Csin2 0e = ( ~:!) ee. 

This form leads correctly to dE / d0 = 0 at 0 = 0 and 180° with a barrier ( at 180° )of 

Ebarrier = C [1 + cos0e]2 . 
2 

One might restrict 0e to be 0e = 109.471 °, the tetrahedral value, since this is the 

optimum geometry in these crystals. However we have optimized both 0e and k0 • 

2.3 Cross Terms 

We find, generally, that bond-bond cross-terms 

(11) 

sharing an apex atom ( e.g. I J and J K) are required to describe the coupling of 

equivalent bonds. 4 Since bonds sharing a common apex are identical for the zinc­

blende structures, we include such terms. 

For two bonds I - J and J - K sharing a common atom, there are two 

bond-angle cross terms of the form3 

(12) 
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We find these to be necessary for III-V systems. 

If three (or more) bonds share a common atom (say I - J, K - J, L - J), 

we find that the one center angle-angle cross terms ( e.g coupling of the I J K and 

K J L angles )3 

(13) 

k001 = F00 sin 0i sin 02 

are not necessary to describe the structure, elastic constants, and phonon spectra 

of III/V semiconductors~ 

On the other hand we do find two-center angle-angle coupling to be impor­

tant. Thus for three sequential bonds I - J, J - K, and K - L, the coupling of the 

IJK angle (01) with the JKL angle (02) 3•10 

is important when the I J and KL bonds are trans (dihedral angle, ¢ = 180°) but 

not when they are gauche (¢ = 60°,300°). Consequently we define this coupling 

term as 

where 

and 

1 2 
!(</>) = - - - cos</> 

3 3 

k002 = G00 sin 0i sin 02 

(14) 

which leads to /(180°) = +1 and /(60°) = /(300°) = 0. McMurry10 first introduced 

such a coupling term to describe the TA mode softening for k approaching the 

Brillouin zone boundary in Si. Such terms are generally required to describe the 

vibrations of long chain molecules (such as polysilane6 and polyethylene4 ) that 
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feature a trans zig-zag chain. Similarly they are needed to describe the stiffness 

along the < 110 > chain directions of the diamond and zinc-blende materials. 

Summarizing the cross terms are taken as 

(15) 

2 .4 Torsion Terms 

Generally one would include terms of the form3 

(16) 

for describing the torsional barrier in a tetrahedral system. Such barriers describe 

the observed preference for staggered dihedral angles and lead to chair-like six mem­

bered rings rather than the boat conformation. Thus such interactions would prefer 

the sphalerite (cubic) or zinc-blende structure over wurzite (where 1/4 of the bonds 

have eclipsed ligands). However, we find that the structure, elastic constants, and 

phonon dispersion are not sensitive to vtor and hence do not include it here. We 

do find electrostatic effects lead to a slight (0.1 kcal/mol) disfavoring of the Wurzite 

structure with respect to zinc-blende (see below). 

2.5 Electrostatics 

A valence force field without electrostatic terms leads to degenerate LO and 

TO modes at the r point, thus the group IV materials have degenerate optical r 
points. The observed splitting in these levels for the compound semiconductors re­

sults from the macroscopic electric field arising from the macroscopic displacement 

of charge in the LO mode as k ---+ 0. To describe this splitting requires the electro­

static term in (2). Indeed, fitting the LO-TO splitting leads to unique charges in 

the range expected from the electronegativity differences of the III/V atoms. [We 

use the Accuracy Bonded Convergence Acceleration (ABCA) 11 procedure to sum 

the Coulombic interactions.] 
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2.6 Van der Waals 

The energetics of small displacements in a tetrahedral crystal do not require 

explicit van der Waals interactions. However we intend to use these potentials 

for materials with surfaces, dislocations, vacancies, etc. where there may be other 

atoms or molecules. Consequently we want to include the van der Waals interactions 

required to describe interactions with nonbonded molecules. To do this we use the 

parameters from the Universal Force Field, 12 which includes vdw parameters for all 

elements up through Lr ( element 103). 

3.0 Force Field Optimization 

We optimized the MSXX force field by minimizing the error between the 

calculated and experimental properties (lattice parameter, elastic constants, and 

phonon special points) of the crystal with respect to variations in the force field 

parameters. 

3.1 The Error Function and Weights 

The error function is13 

3N-6 3N-6 6 6 

Serr= Wjorce L (oE:) 2+WJreq L (ovi) 2+Wstress L(O~i) 2+Welas L (<5Cij) 2 

i=l i=l i=l i<=j=l 

(16) 

where o denotes the difference between the calculated quantities from the force field 

and from experiment. Here N is the number of atoms, EI is the gradient of the 

energy ( the force), vi are the frequencies of the phonons (r and X point only), ~i 

are the stresses, and Cij are the elastic constants (only Cu, C12, C44 are unique 

for cubic crystals). We use the HB-SVD method13•14 to minimize the error, Serr• 

HB-SVD also handles redundancy in force field parameters so that the parameters 

are changed only when they significantly improve the fit. 

We choose the weights to ensure that the forces on the atoms and the stresses 

on the crystal are zero. These weights were selected with three primary goals: 



157 

1. We want to reproduce the crystal geometry and fit the experimental phonon 

frequencies and elastic constants as closely as possible. There is generally a 

trade off between these two errors. We choose the weights such that neither 

is too large, but with more emphasis on the phonon frequencies. The reason 

is that the low frequency properties associated with the elastic constants 

have less bearing on the localized strains surrounding defects and surfaces. 

2. We want to ensure the intuitive nature of the valence force field by having 

physically meaningful values for the force constants. This led us to include 

only the significant cross terms, as discussed above. 

3. We want the resulting force constants to show regular behavior as we move 

across and down the periodic table. This is so that reliable predictions can 

be made for mixed systems such as heterojunctions. The weights chosen for 

( 1) and ( 2) lead to this regular behavior. 

3.2 Phonon Dispersion 

After fitting the force field, we used it to predict the complete phonon dis­

persion curves along the < 100 > and < 111 > directions. Expanding the energy 

about equilibrium leads to 

(17) 

with 

The force at equilibrium is zero 

(18) 

and 

(19) 

is the Hessian. 
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The equations of motion become 

M 82[bRa1(t)] = - ~ H [bR (t)] 
I f)t2 ~ al,f]J j]J 

j]J 

where the subscripts J and J run from 1 to the number of atoms N, and the 

subscripts a and /3 run though the x, y, z components of the atomic coordinates. 

where 

The time periodic eigenstates have the form 

w2M1(bR~1) = LHaI,f]J (bRiJ) eik(rr31 -r0 r). 

j]J 
(20) 

Taking k in < 100 > and < 111 > directions and solving the equation (20) gives 

the corresponding frequencies. 

3.3 Charge Equilibration 

For tetrahedral crystals, the splitting of the LO and TO modes at the r 
point is quite sensitive to the charge difference between the cation and anion. This 

arises from the macroscopic dipole for the LO mode near k = 0. (With no charge 

difference these modes are degenerate.) We develop a electronegativity scale based 

on the splitting of the r points. The resulting charges represent the electronegativity 

difference in the elements. Thus qvI = 0.88, 0.80, 0.76 for ZnS, ZnSe, ZnTe indicates 

that the electronegativities are in the sequence S =Se> Te. The qn = 0.76, 0.86, 

0.74 for ZnTe, CdTe, and HeTe indicate that the electronegativities are in the 

sequence Hg > Zn > Cd. This is in rough agreement with the Pauling values as 

optimized by Allred 15 : 2.58, 2.55, 2.3 for S, Se, Te and 1.65, 1.69, 2.00 for Zn, Cd, 

Hg. 

For the more interesting cases of interfaces and defects, we expect charge 

readjustments but there is not sufficient experimental data to determine the mod­

ified charges. Thus we have used the charge equilibration ( QEq) procedures of 
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Rappe and Goddard12 but with the readjusted atomic electronegativities to fit the 

MSXX FF. 

In QEq16 the energy of an atom A is assumed to be 

where 
1 

XA = 2 (JP + EA) 

is called the electronegativity and 

1 
-JAA =IP-EA 
2 

(21) 

(22) 

(23) 

is called the hardness ( or idempotency). Then in a molecule or crystal the total 

energy is taken to have the form 

E = LEA (QA)+ L QAQBJAB (RAB) (24) 
A A=B 

where JAB(RAB) is the Coulomb potential between spherical charge distributions 

on A and B with radii RA and RB, respectively. For crystals the second term in 

( 42) must be evaluated using the Ewald procedure. The QEq Ewald program was 

rewritten by Karasawa and Goddard 17 to calculate the ionic charges for periodic 

systems. 

For group II the standard QEq parameters9 ,16 lead to the results in Table 

1. The discrepancy with the MSXX values are probably due to the special nature 

of the group II atoms where the ground state s2 is used to define XA and J AA 

but, the crystal involves sp3 hybridization. Consequently we have readjusted the 

Xa for group II to agree with MSXX. The results are shown in Table 1. With 

this readjustment of QEq parameters we can now predict charges at interfaces, 

impurities, etc. 
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4.0 Results 

4.1 Group IV Materials 

The experimental phonon frequencies and elastic constants of the group IV 

materials are listed in Table 2 and were selected from reference 18 which provides 

all the elastic constants and special phonon points needed for fitting the FF for all 

the materials. We choose to fit to the phonon frequencies to the neutron scattering 

experiment for each case when available. For elastic constants we choose to fit to 

values that were in best agreement with other experimental techniques (this means 

we fit to data that was not extreme relative to other experiments). This was done 

to minimize the possibility of fitting to a piece of experimental data having a large 

error. 

The optimized parameters for the MSXX force fields are listed in Table 3, and 

the van der Waals parameters (not optimized) are listed in Table 4. The parameters 

change monotonically going from C, to Si, to Ge. Thus Kr, K0, and K002 decrease 

moving down the periodic table ( since the bonds get weaker). The cross terms 

( except the 2 center angle-angle term) do not demonstrate this behavior. We can 

also see that the charges decrease as the bonds gets weaker. 

The predicted phonon dispersion curves are compared with experiment in 

Figures 1-3. We plot the FF phonon dispersion curves in the <100>, <110> and 

<111> directions and the neutron scattering data in these directions. Since the 

data used to fit the curves was the elastic constants and the special points at r 
and X the <100> direction demonstrates the accuracy of the fitting procedure for 

fitting to the entire branch while the <110> and <111> directions demonstrate 

the ability of the model to predict values which are not included within the fit. 

The discrepancy between the neutron scattering data and the theory is remarkably 

small. 

Overall the deviation from experiment is quite small. The ability of MSXX 

FF to reproduce phonon dispersion with such few parameters adds credibility to 

the fundamental appropriateness of the description underlying this model. This 
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suggests that this force field may be useful in predicting the strains and mechanical 

properties of these systems. 

4.2 Group IH/V Materials 

The experimental phonon frequencies and elastic constants of the group III/V 

materials are listed in Table 5 and were selected from reference 18 which provides 

all the elastic constants and special phonon points needed for fitting the FF for all 

the materials except AlP for which the X points are unavailable. 

The optimized parameters for the MSXX force fields are listed in Table 6, and 

the van der Waals parameters (not optimized) are listed in Table 7. The parameters 

change monotonically going from AlP to AlAs to AlSb, from GaP to GaAs to GaSb 

and from InP to InAs and InSb. Thus Kr and Ke decrease moving down the 

periodic table ( since the bonds get weaker). The cross terms do not demonstrate 

this behavior. We can also see that the charges decrease as the bonds gets weaker. 

The predicted phonon dispersion curves are compared with experiment in 

Figures 4-12. The best data is for GaAs. We plot the FF phonon dispersion curves 

in the <100>, <110> and <111> directions and the neutron scattering data in 

these directions. The discrepancy between the neutron scattering data and the 

theory is small. The largest differences occur along the TA branches in the <110> 

direction (which is also the branch for which the neutron data has large error bars. 

To extend the MSXX FF to the prediction of polarization properties, we will 

add a covalent shell description to the valence force field (as was done for PVDF5 

We could also improve the fits of MSXX by using additional points from the phonon 

dispersion curve in the set of constraints. However, the current fit is acceptable for 

all systems. 

4.3 Group II/VI Materials 

The experimental phonon frequencies and elastic constants of the group II/VI 

materials are listed in Table 8 and were selected from reference 18. The optimized 

parameters for the MSXX force fields are listed in Table 9, and the van der Waals 

parameters (not optimized) are listed in Table 10. The predicted phonon dispersion 
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curves are compared with experiment in Figures 13-17. Again, as in the case of the 

group III/V materials the largest errors occur along the TA branches in the <110> 

direction. 

5.0 Superlattices 

Phonon dispersion curves for superlattices have long been an active research 

area. Since Colvard et al. first observed the folded acoustic phonons, 19 much 

progress has been made both in theory and experiment. Theoretical work has 

included the elastic model and Fourier transform analysis which have been proposed 

to explain the folding of the acoustic branch, and the degeneracy at the Brillouin 

zone center and boundary. 20 The alternating linear chain model has been employed 

to explain the confined modes. 20 And a theory treating the dielectric modulation 

has been used to explain the interface modes. 20 All these models deal only with the 

dispersion curves along the axis direction. Complicated, non-intuitive, numerical 

models such as the Valence Overlap Shell model, etc., have been necessary for the 

full 3-D description of the superlattice phonons. Our approach offers an advantage 

in that it is much simpler and physically intuitive. Another complicated issue is 

the effect of strain on the superlattice phonons which is discussed by Jusserand and 

Cardona. 20 The acoustic phonon folding, zone edge and zone center splittings are 

observed experimentally as are the confined optical modes and interface modes. 

A general scheme to model the superlattice phonons is to utilize the models 

for bulk materials and adapt them to the super lattice. As pointed out in, 20 3 

problems should be addressed: (1) The choice of proper lattice dynamical models 

for the bulk constituents. (2) The transferablity of the bulk model parameters to 

the superlattice case, which is reasonable and straight-forward for local quantities 

or very short range interactions, but which becomes more difficult for long range 

forces. (3) Numerical difficulties arising from the size of the secular equations in 

the case of thick layer superlattices. 

In this section we extend the molecular mechanics FF to calculate the phonon 
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dispersion curves for the superlattices. In the force fields, the local quantities such 

as bond lengths and angles, bond stretching and angle bending force constants, 

are all directly transferred, the long range van der Waals forces are also directly 

transferred. We used the electronegativity of the atoms to calculate the charge 

on the atoms to determine the Coulomb forces. However, some of the interface 

local parameters are unique to the interface and we use an averaging method to 

interpolate the interface potential. We justify the scheme in the following section 

on detailed calculations and with comparisons to experiment in section 5.3. 

The MSXX model is a 3-D model, capable of dealing with all crystallographic 

directions and interfaces, and with difficult problems as strain, etc. It is also readily 

to modified to simulate surface roughness. The parameters involved are few and so 

the calculation is relatively fast. 

5.1 Calculation Details: Transfer and Extension of the Force Field 

We have developed MSXX force fields for the bulk materials elsewhere, 21 

as described in sections 3 and 4 and showed that our force field reproduces the 

whole range of the dispersion curves well. We directly transfer the force fields to 

the superlattice after adding interface interactions interpolated from the bulk FF. 

There are two types of superlattices: one type is (AB)n 1(AC)n 2 , and the other 

is (AB)n 1(CD)n 2 • The first type has a common atom on the interface, while the 

second one doesn't. Here we only deal with the first type. The second type is very 

similar, and will be investigated in future work. For the first type, the superlattice 

consists of layers of AB and AC, e.g. (HgTe)n 1(CdTe)n2 . From the bulk FF we 

have the parameters involving only AB and AC. For the atoms on the interface, 

the force fields are different from both of the bulk materials as new three and four 

body ( and higher) interactions are involved. We derive the new interactions using 

a simple averaging technique. 

For the Angle B-A-C; We take the angle to be the geometric mean, i.e: 
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We also do this for the angle bending force constant: 

Ke,BAC = JK0,BAB * Ke,cAC· 

The other terms needed to describe the interface are the cross terms and 

these become more slightly more complicated. For the B-A-C angle we need two 

bond-cross-angle terms which we obtain from the related parameters in the original 

bulk material. However, the original bond-cross-angle terms are symmetric for angle 

B-A-B and C-A-C, so the obvious way to extend it to the B-A-C is to use them 

directly: 

Kre BAG = Kre BAB 
' ' 

Kre CAB = Kre GAG 
' ' 

and for the bond-bond cross-term, we can also take the geometric mean: 

Krr,BAC = JKrr,BAB * Krr,CAC• 

In developing the MSXX FF for the II/VI and III/V systems we did not 

use torsion terms and likewise we don't include them here. However, we did use 

the two-center angle-cross-angle terms, for the superlattices we obtain from the two­

center angle-cross-angle terms in the chain B-A-C-A and C-A-B-A of the component 

materials taking the geometric mean of the two-center angle-cross-angle terms B­

A-B-A and C-A-C-A : 

Kangang,BACA = JKangang,BABA * Kangang,CACA 

Kangang,CABA = JKangang,BABA * Kangang,CACA· 

With these interpolations we get all the force field parameters we need, (Ta­

ble 11 shows the additional terms needed for the ZnSe/ZnTe superlattice, as an 

example). 
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5,2 Superlattice Dispersion Curve Calculation 

The superlattice dispersion is calculated in the same way we calculated the 

bulk phonon dispersion curves. 21 We build a unit cell and apply periodic boundary 

conditions. However, there are several concerns about building the cell. (1) The 

number of atoms in the cell should be as small as possible to reduce the expense of 

the calculation. In the superlattice (AB)n 1 (AC)n 2 , if n 1 + n2 = even, the space 

group is P4m2(D2d5 ), and if n 1 + n 2 = odd, the space group is I4m2(D2d9 ). Both 

lattices are 4m2(D2d)- In the n 1 + n 2 = even case it is easy to build a unit cell 

which contains the smallest number of atoms. And in the n 1 + n 2 = odd case, 

we have to double the cell size so that the cell can repeat itself. This increases 

the computer time required to compute the vibrations. (2) The II-VI superlattices 

are usually strained. In the commensurate case the lattice constant in-plane is 

constrained by the substrate or buffer layer. In the free standing case, the lattice 

constant in-plane can be different from that of substrate, and the stress is released. 

When we build the lattice unit cell, we can fix the in-plane lattice constant to be 

that of substrate or buffer to simulate the commensurate case; or we can optimize 

all the lattice parameters to simulate the free standing case. (3) The charge on the 

atoms may be different from the bulk materials. For example, we expect the charge 

on the interface atom to be intermediate between the two component materials. 

We assigned the charge by doing Ewald charge equilibration: First, we used the 

fitted Mulliken eletronegativities of the atoms that reproduce the charges of the 

bulk material, and then use those eletronegativities to calculate the charges on the 

atoms of the superlattice unit cell. Indeed, we see that the interface atom has a 

charge which is intermediate to the charges of the like atoms in the two component 

materials, and the charge transition is entirely confined to the interface layer and 

the two monolayers adjacent to it. 4) Usually the unit cell is under stress; Both the 

short range and long range interactions will contribute stress to the unit cell. So 

we fix the in-plane lattice constant to the substrate lattice constant and do charge 

equilibration and energy minimization of the cell iteratively until convergence. We 
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then obtain the cell size and the right charge. We also obtain the in-plane stress. 

Usually 3 or 4 iterations will suffice. It is also possible to free the in-plane lattice 

constant and iterate to get the cell without strain for free standing superlattices. 

5.3 Results 

Our model is first compared to the available experimental data. Unfortu­

nately, the experimental phonon frequencies are scant and incomplete. The available 

data for ZnS/ZnSe are from Cui,22 for ZnSe/ZnTe from Cui,23 Shen,24 Ozaki,25 and 

Wu, 26 and for CdTe/ZnTe from Menendez.27 In the simulation, we calculated the 

layers of the composite material and constructed the corresponding unit cell. It is 

required that the number of layers of the composite be an integer. For the commen­

surate case we require the in-plane lattice constant to be clamped by the buffer layer 

or substrate layer; while for the free-standing case we allow the lattice completely 

relax, optimizing the unit cell without constraints. Another assumption we made is 

that the superlattices have perfect interfaces. We show that the interface phonons 

are insensitive to surface roughness and then only consider perfect interfaces. The 

results are summarized in Tables 12-14. Both the commensurate(stressed) and free­

standing (relaxed) cases are shown. The stressed cases should be compared to the 

experiment. For ZnS/ZnSe (Table 12) it is not clear whether the sample is com­

mensurate or free-standing. We find basically the prediction of our model is in 

agreement with experiment. However, there are also 3 discrepancies. (1) For the 

ZnS/ZnSe LA mode we have to use a (ZnSh2(ZnSeh2 unit cell to reasonably re­

produce the experimental results, instead of (ZnS)i0 (ZnSe)i0 unit cell which has 

the layer thickness reported in the experiment. This could possibly be explained 

by an error in the thickness measurement in the experiment. ( 2) The prediction 

of a few of the interface modes deviates from experiment. In the first sample 

of CdTe/ZnTe, Menendez27 assigned the Raman scattering peaks at 155.92 cm- 1 

and 199.69 cm- 1 as interface modes, and in the second sample of CdTe/ZnTe, 

Menendez27 attributed the Raman scattering peaks at 153.4 cm- 1 and 192.1 cm- 1 

to interface modes. However, our simulations clearly show that there is no interface 
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modes around those frequencies, instead we found interface modes at 176 cm-1 

and 179 cm-1, and they are independent of the slab thickness. This may not be 

explained by the roughness of the interface of the experimental sample, because the 

surface roughness should not affect the optical phonons drastically. On the other 

hand it could be explained by an error in the experimental assignment. (3) For 

the 184 cm-1 LO frequency in sample (1) of CdTe/ZnTe, Menendez27 assigned it 

to be LO modes in the CdTe. We didn't find any LO modes of CdTe around that 

frequency, instead we found that there is a ZnTe confined LO mode at 185.3 cm-1 

so we assign this mode to the experimental peak at 184 cm-1 as a confined LO 

mode in ZnTe. Other than that our model agrees well with experiment. 

The above comparison of our model and experiment shows that the model 

1s accurate and therefore useful for making predictions, which we make in the 

form of phonon dispersion curves for the superlattices. The dispersion curves 

(AB)n1(AC)n2 for the ZnS/ZnSe, ZnSe/ZnTe,CdTe/ZnTe and HgTe/CdTe super­

lattices are shown for nl = 1, n2 = 1 in Figures 18-21, for n 1 = 2, n2 = 2 in Figures 

22-25, for n 1 = 4, n 2 = 4 in Figures 26-29, for n1 = 10, n 2 = 2 in Figures 30-33. 

Dispersion curves along both parallel and perpendicular to the interface are shown. 

5.4 Acoustic Phonon Folding and Splitting 

Here we compare the superlattice dispersion curves with those of the bulk 

materials. For illustrative purposes we used the simplest case (ZnSe)i(ZnTe)i and 

compare it to the bulk ZnSe and ZnTe in figure 34. From the figure we notice 

that the dispersion curve of the superlattice is constructed by folding the composite 

dispersion curves and then mixing the corresponding branches, e.g. the TA and LA 

modes of the superlattice of (ZnSe)i(ZnTe)i is a mixture of the folded TA(LA) 

modes of ZnSe and ZnTe. If we compare the dispersion of (ZnSe)i(ZnTe)i to 

that of (ZnSe)2(ZnTe)2, we immediately observe that the dispersion curves of 

(ZnSe)2(ZnTe)2 are just the folded dispersion curves of (ZnSe)i(ZnTe)i. The 

bulk materials' TA modes flatten near the zone boundary, and when they are folded, 
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they remain essentially flat at the new BZ boundary. When the acoustic branches 

are folded, the once degenerate branches split. The splitting increases as the energy 

of the branch increases. 

Also shown in Figure 18-33 are the in-plane dispersion curves. The TA modes 

are split, as expected, and one of the TA modes is degenerate with the LA mode 

at the zone boundary. This is because for the in-plane wave vector, the motion of 

the LA modes is in-plane, while for TA modes, the motion of one of the branches is 

in-plane and the other is perpendicular to the plane. At zone boundary, the in-plane 

part of the higher energy TA mode takes on LA mode character. 

5.5 Optical Confined Modes 

We also observe the folding of the optical modes of the bulk composite disper­

sion curves. When the number n 1 and n 2 are small, the optical dispersion curves 

remain curved. However, as the number of atomic layers in the superlattice in­

creases, the optical modes flatten, and the "folding" becomes harder and harder 

to see, and it becomes more appropriate to treat them as confined modes. In our 

simulation we distinguish the TO and LO modes by their multiplicity: TO modes 

are doubly degenerate and LO modes are non-degenerate. The in-plane optical 

dispersion curves are also shown in the Figure 18-33. However, in this case the 

double degeneracy of the TO modes is lifted and the resulting branch becomes a 

mixture of the TO and LO modes of the bulk component materials. However, a 

clear identification is difficult. 

Notice at the reciprocal cell zone center, the phonon frequencies are different 

for branches, in different directions. That is the r points have split depending on 

the direction of the wavevector (thus the polarization direction). This polarization 

dependency is entirely due to the charge of the atoms. If the ionic charge is removed, 

all the corresponding bra~ches are continuous along different directions. With an 

ionic charge a finite jump will occur as K passes through r for some of the optical 

modes. This behavior also exists in other anisotropic materials such as hep crystals, 

and it is called "Angular dispersion." It doesn't exist in materials with the fee lattice 
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5.6 Interface Phonons 
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Interface modes in semiconductor superlattices have been reported by several 

studies. In our simulations, we can directly distinguish the interface modes from the 

non-interface modes by analyzing the displacement vectors of the atoms, making 

assignments much easier. We list the interface modes in various superlattices in 

Table 15. For comparison, the typical motion of the folded TA and LA modes, the 

confined TO and LO modes, and the interface modes of (ZnSe)4(ZnTe)4 are shown 

in Figure 35. 

Analysis of the normal mode character of the interface modes listed in Table 

15 indicates that all the interface modes are TO modes of the superlattice, being 

confined to the interface, and being doubly degenerate. The motion of the atoms 

is in-plane, and only the atoms on the interface and immediately adjacent to it 

move. The frequency is characteristic of the interface, almost independent of the 

layer thickness except in the (AB)i(AC)i case, where the slab is very thin and 

there is no clear difference between interface atoms and inner layer atoms. To 

verify this assumption we constructed several other superlattices with different slab 

thicknesses, and found the assumption that interface modes are independent of layer 

thickness to be true. The result is shown in Table 15. This means that the interface 

phonon can be employed to characterize the interface properties for crystal growth. 

Another important issue is that interface phonons are insensitive to surface 

roughness. Since surface phonons are essentially TO modes, they come from folding 

of the bulk material optical branches, and surface roughness just means that the 

length of the reciprocal lattice perpendicular to the interface is different at different 

parts of the superlattice, the lattice parameter being just the average of the en­

tire interface. However, the TO phonons are almost independent of the reciprocal 

length, and so the effect of the interface roughness is minimal. In order to test this, 

we constructed a supercell of (ZnSe)4(ZnTe)4 and made the interface roughness 

vary from 30% to 50%, and we found the interface modes varied in the small range 
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of 192.6 to 194.6 cm- 1 . 

5. 7 Elastic Constants of the Superlattice 

The elastic constants of the superlattice are shown in Table 16 along with 

the bulk materials. The superlattice has lower symmetry and the elastic constant 

matrix has the relation Cn = C22 , C31 = C32, C44 = C55. We have 6 unique 

(C11, C12, C33, C13, C44, C66 ) non-vanishing components. We find that the elastic 

constants are usually between those of the component materials. Currently, no 

measurement of elastic constants for superlattice has been reported. 

6.0 Discussion 

A number of approaches have been proposed to describing the interatomic 

interactions of semiconductor crystals. This includes the bond charge models of 

Martin28 and Weber29 and the quasiparticle valence bond force field of Messmer.30 

These models require a greater number of parameters (for example Messmer's FF 

requires 10 parameters for Si while MSXX requires only 7 parameters) and lead 

to fairly complicated equations. These models succeed in modeling the phonon 

spectra of the diamond lattice and zinc-blende semiconductors, although with some 

cost in accuracy and simplicity. These models may provide a good model of the 

polarization effects in these materials. The Kane potential31 models such properties 

through the interaction of his dipoles and quadrupoles with the polarization field. 

The MSXX FF is essentially as accurate as the experimental data to which 

it was fitted. Although more accurate and more complete experimental data is 

becoming available there is still significant uncertainty in the experimental values 

for some properties of some of these materials. These uncertainties often arise from 

some of the indirect methods required to measure the phonon spectra. 

Force fields capable of describing the strain fields, geometric structures, and 

vibrational properties of distorted systems must be capable of reproducing the in­

teratomic potential energy surface for moderate strains and also the couplings of 

interatomic interactions. It is possible to reproduce the phonon spectra of a zinc-
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blende crystal to relatively high accuracy using harmonic potentials. However, har­

monic potentials are inappropriate for describing the breaking of a bond. Thus even 

though the phonon dispersion curve is reproduced, the strain fields may not be suf­

ficient for accurate modeling of highly distorted structures. For this reason we use 

Morse potentials to approximate the anharmonic effects of strained bonds as bonds 

are broken. This should lead to a good description of thermal expansion. Further­

more, the use a Morse potentials for bonds should allow phonon-phonon couplings 

to be described in the harmonic description of the interatomic interactions. 

The MSXX FF includes the coupling of coplanar angles that share a common 

side, but not a common apex. This term ( also used by Kane31 ) was first imple­

mented by McMurry10 to describe the flattening of the TA modes on approaching 

the X and r points along the < 100 > and < 111 > directions. Formally a fifth 

neighbor interaction, it allows for through bond coupling of the accordion chains 

along < 110 >. Furthermore, Kane31 observed that the introduction of an impu­

rity in the diamond lattice polarizes the charge distribution with high directionality 

along the < 110 > chains. Again, the form of the coplanar-two-center-angle-angle 

coupling leads to an effective model and an intuitive picture of this effect through 

the coupling of adjacent bond angles along the < 110 > direction. This effect em­

phasizes the necessity for such terms. Because this coupling depends on the large 

delocalization of bond charge along < 100 > chains associated with through bond 

coupling, we expect the coupling to fall quickly as the bond angles become non­

coplanar. For the perfect crystals this is irrelevant, but for strain fields that break 

the crystal symmetry and structures sampled with molecular dynamics at higher 

temperatures, the damping of the coplanar angle-angle coupling is necessary. Al­

though the coupling between the two coplanar angles of the trans dihedral is critical 

to the description of the TA mode, we find that the dihedral angle torsion force con­

stant itself is unnecessary for our fits. It might play a role in distinguishing between 

the sphalerite and wurzite forms of the crystal, and if so it would be important for 

describing of the stacking fault energy. 
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7 .0 Conclusion 

The simple MSXX valence force field with just a few parameters leads to 

accurate structural, mechanical, and vibrational properties of the zinc-blende semi­

conductors. The systematic behavior of the force constants allows one to interpolate 

force constants for tertiary interactions, as illustrated for the II/VI superlattices. 

The MSXX FF describes anharmonic interactions in bonds and should be useful 

for describing the thermal expansion, temperature dependence of the phonons, and 

phonon-phonon interactions. 
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Table 1. Ewald charge equilibration parameters and the comparison of the charges 
resulted from phonon gap fitting and charge equilibration. 

Atom Zn Cd Hg s Se Te 
(a) Modified QEq Parameters 
Electroneg ( e V) 0.900 0.376 0.850 6.928 6.428 5.816 

Hardness ( e V) 4.285 3.957 4.160 4.486 4.131 3.526 

(b) Predicted CHARRM 
Material ZnS ZnSe ZnTe CdTe HgTe 
Calculated Cation q 0.90 0.79 0.77 0.86 0.74 

Fitted Cation q 0.88 0.80 0.76 0.86 0.74 
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Table 2. Experimental lattice constants, phonon frequencies, elastic constants, used 

in determining the MSXX FF (from reference 8, see discussion in Section 

4.1). Comparison with theoretical predictions. 

Quantity Diamond Silicon Germanium 

Lattice Parameters (A) 
Experiment 3.5610 5.4310 5.6507 

MSXX 3.5610 5.4310 5.6507 

Elastic Constants (GPa) 

Cn exper 1076.0 167.5 129.0 

MSXX 1083.5 170.7 138.2 

C12 exper 125.0 65.0 48.0 

MSXX 125.1 64.2 47.1 

C44 exper 576.0 80.1 67.0 

MSXX 573.4 78.6 64.5 

rms Cij deviation 2.61 3.38 0.51 
Phonons (cm-1) 

TA(X) exper 803.6 150.4 80.1 

MSXX 808.8 150.6 80.2 
LA-LO(X) exper 1078.1 415.0 240.5 

MSXX 1069.4 412.7 238.7 

TO(X) exper 1194.8 463.7 275.5 

MSXX 1161.8 463.8 275.4 

I'15 exper 1333.9 518.1 298.9 

MSXX 1341.7 518.7 300.4 

rms phonon deviation 0.40 2.69 0.94 
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Table 3. MSXX force field parameters for the group IV materials. 

Quantity Diamond Silicon Germanium 

(a) Bond 

kR [kcal/(molA2)] 576.55 193.75 180.04 

Re (A) 1.522 2.380 2.465 

DRa (kcal/mol) 110.0 73.7 73.7 

(c) Angle 

ke [kcal/(mol rad2 )] 118.60 33.61 21.76 

0 (degree) 109.41 105.05 109.47 

kre [kcal/(molA rad)] -59.56 -14.76 -14.86 

krr [kcal/(molA2 )] 8.05 3.39 0.56 

(e) Two Center Angle-Angle Cross Term 

Gee [kcal/(mol rad2 )] -27.54 -25.14 -23.35 
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Table 4. van der Waals parameters (from reference 23). See equations (4) and (5). 

Atom 

Rvdw (A) 

nvdw (kcal/mol) 

C 

3.883 

0.0844 

Si 

4.270 

0.3100 

Ge 

4.270 

0.3100 
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Table 5. Lattice Constant, elastic constants, and phonon frequency from experiment 
and from the MSXX force field. Numbers in square braces were not used 
in the fit ( they were extrapolations from trends in other materials and are 
included for comparison). 

AlP AlAs AlSb GaP GaAs GaSb InP InAs InSb 

(a) Lattice Constants (A) 

a 5.467 5.6611 6.1355 5.4506 5.6419 6.0940 5.8687 6.0584 6.4788 

(b) Elastic Constants (GPa) 

c11 exp 132.0 125.0 87.69 141.20 118.1 88.39 102.0 83.29 66.69 

MSXX 128.3 124.0 86.46 142.16 122.9 93.50 106.6 85.11 68.56 

C12 exp 63.00 53.40 43.41 62.53 53.20 40.33 57.6 45.26 36.45 

MSXX 67.42 57.01 41.63 61.13 51.89 36.63 57.4 42.71 35.12 

C44 exp 46.00 54.20 40.76 70.47 59.40 43.16 46.0 39.59 30.30 

MSXX 65.71 57.70 39.39 69.44 57.57 40.52 44.9 37.07 29.04 

rms Cij 11.86 2.65 1.47 1.15 3.06 3.95 2.73 2.32 1.51 

(c) Phonon Frequencies (cm- 1 ) 

TA(X) exp [51.91] 108.9 70.00 106.7 81.7 56.6 68.33 53.0 37.3 

MSXX 147.60 109.2 70.30 106.7 81.9 56.7 68.9 53.0 37.5 

LA(X) exp [47.67] 221.8 155.00 249.0 225.0 166.3 193.33 160.0 143.3 

MSXX 356.60 216.6 152.90 249.0 221.9 163.3 182.8 160.6 141.3 

TO(X) exp [436.10] 334.0 296.00 353.5 256.3 212.0 323.33 216.0 179.3 

MSXX 437.20 333.9 296.30 353.9 256.7 213.1 323.5 217.0 179.9 

LO(X) exp [371.54] 402.5 341.00 366.2 240.0 211.7 331.67 203.0 158.3 

MSXX 395.50 400.8 346.60 365.8 236.8 209.3 326.6 201.7 156.4 

TO(r) exp 439.40 360.9 323.40 366.2 271.0 232.3 304.00 217.3 184.7 

MSXX 439.30 363.5 320.80 365.5 272.2 231.7 307.8 215.6 185.0 

LO(r) exp 501.00 404.1 344.40 404.1 293.0 235.0 346.00 238.6 196.7 

MSXX 500.80 406.4 341.80 403.5 294.0 [240.5] 349.3 237.1 196.9 

rms Vi 0.16 2.64 2.87 0.44 1.94 1.81 5.17 1.17 1.16 



180 

Table 6. Optimized parameters for the MSXX force field. 

AIP AlAs AlSb GaP GaAs GaSb InP InAs InSb 

(a) Charge (e) 

Cation (e) 0.83 0.78 0.60 0.72 0.64 0.46 0.83 0.72 0.61 

{b) Bond 

kn 143.36 101.67 94.996 107.51 99.10 85.68 93.77 78.26 75.82 

Re 2.480 2.630 2.779 2.559 2.631 2.805 2.772 2.865 2.998 

Dn a 48.25 44.53 40.80 40.60 38.88 34.73 38.64 36.11 32.04 

{ c) Angle at III 

k0 32.15 36.882 28.97 50.09 34.69 36.85 32.29 34.91 21.15 

0e 124.96 114.87 114.80 110.46 107.16 109.09 114.13 112.15 112.27 

Kr0 -17.57 -15.84 -10.02 -21.58 -15.24 -11.79 -21.09 -18.54 -6.49 

Knn 7.10 3.33 2.71 4.19 4.70 4.071 2.55 3.25 1.61 

{d) Angle at V 

Ko 29.61 41.53 25.10 33.87 43.30 35.57 47.19 33.71 30.19 

0e 125.05 119.79 118.23 113.14 112.20 99.55 112.26 107.93 108.84 

Kr0 -26.28 -14.74 -10.67 -19.22 -17.76 -10.35 -20.03 -13.42 -17.17 

Krr 7.25 16.67 8.84 9.47 6.27 1.96 10.48 4.11 2.76 

( e) Cross Term 

K002 -15.08 -17.44 -17.45 -18.99 -18.37 -18.77 -14.95 -14.89 -16.37 

a Dn is based on atomization data at 298.15K from reference 21. 



181 

Table 7. Van der Waals parameters from the universal force field (reference 5). 

Rv (A) 

Dv Pkcal/mol) 

Al 

4.499 

0.505 

Ga 

4.383 

0.415 

In 

4.465 

0.599 

p 

4.147 

0.305 

As 

4.230 

0.309 

Sb 

4.420 

0.449 
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Table 8. Experimental lattice constants, phonon frequencies, elastic constants, used 
in determining the MSXX FF (from reference 8, see discussion· in Section 

4.1). Comparison with theoritical predictions. 

Quantity ZnS ZnSe ZnTe CdTe HgTe 

Lattice Parameters (A) 
Experiment 5.410 5.6687 6.1037 6.481 6.461 

MSXX 5.410 5.6687 6.1037 6.481 6.461 

Elastic Constants (GPa) 

Cu exper 104.62 86.00 71.30 53.30 59.71 

MSXX 107.37 90.49 72.17 49.33 53.71 

C12 exper 65.33 51.10 40.70 36.50 41.54 

MSXX 62.18 47.91 40.83 31.85 32.89 

C44 exper 46.50 40.20 31.20 20.44 22.59 

MSXX 43.85 38.14 31.08 18.42 18.25 

rms Cij deviation 2.61 3.38 0.51 3.37 2.70 

Phonons (cm-1) 

TA(X) exper 89.67 70.00 54.0 35.0 15.86 

MSXX 89.68 70.40 54.10 34.90 15.86 

LA(X) exper 211.33 194.00 143.0 97.0 85.00 

MSXX 210.60 189.20 141.10 125.00 84.80 

TO(X) exper 315.67 219.00 173.7 148.00 133.93 

MSXX 315.60 219.60 173.7 147.80 133.80 

LO(X) exper 330.00 213.00 183.7 85.00 

MSXX 329.50 208.20 182.40 125.30 84.80 

TO(r) exper 276.67 213.00 176.7 140.50 118.00 

MSXX 277.20 214.40 177.50 138.80 118.60 

LO(r) exper 348.00 253.00 206.7 167.0 138.00 

MSXX 348.60 255.50 207.50 168.30 138.50 

rms phonon deviation 0.40 2.69 0.94 0.80 0.72 
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Table 9. MSXX force field parameters for the II-VI zinc blende materials. 

Quantity ZnS ZnSe ZnTe CdTe HgTe 

(a) Charge (e) 

Cation 0.88 0.80 0.76 0.86 0.74 

{b) Bond 

kn [kcal/(molA2)] 100.51 71.72 68.51 62.32 55.44 

Re (A) 2.519 2.686 2.809 2.971 3.005 

Dna (kcal/mol) 36.78 31.13 26.59 23.97 21.35 

( c) Angle, Group II Atom at Apex 

k0 [kcal/(mol rad2 )] 34.33 29.85 17.02 17.98 20.13 

0 (degree) 119.23 113.60 116.35 128.08 116.03 

kr0 [kcal/(molA rad)] -24.01 -16.51 -17.92 -14.22 -2 0.51 

krr [kcal/(molA 2)] 13.01 7.61 9.11 6.11 8.43 

kr0 [kcal/(molA rad)] -23.21 -15.40 -9.63 -11.34 -7 .39 

krr [kcal/(molA2)] 4.63 8.07 6.46 3.70 0.45 

(e) Two Center Angle-Angle Cross Term 

G00 [kcal/(mol rad2 )] -10.20 -10.47 -11.40 -9.12 -11.11 

a Dn is based on atomization energies at 298.15K from reference 30. 
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Table 10. van der Waals parameters (from reference 23). See equations (4) and (5). 

Atom 

Rvdw (A) 

nvdw (kcal/mol) 

Zn 

2.763 

0.124 

Cd 

2.848 

0.228 

Hg 

2.705 

0.385 

s 

4.035 

0.274 

Se 

4.205 

0.291 

Te 

4.470 

0.398 
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Table 11. Additional force field terms for the ZnSe/ZnTe superlattice. 

(a) Angle Se-Zn-Te 

k0 = 22.54 kcal/mol 

0e =114.97 degree 

kr0 = -17.92 kcal/(molA) for R = Se - Zn 

kr0 = -16.51 kcal/(molA) for R = Zn - Te 

krr = 8.33 kcal/(molA2) 

(b) Two-Center Angle-Angle 

G00,Zn-Se-Zn-Te = G00,zn-Te-Zn-Se = -10.93 kcal/mol 
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Table 12. Comparison of the ZnS/ZnSe,22 superlattice predictions and the available 

experimental data. 

(ZnS)i2(ZnSe)i2 

LA modes ( q=0.07) 19.14 23.94 40 47.87 64.79 74 

stressed 22.10 25.44 45.59 48.96 68.55 71.96 

relaxed 21.30 24.51 43.94 47.19 66.07 69.35 

(Sample dzns = 26.A., dznse = 29.A., N = 150, buffer 1µ ZnS, GaAs substrate) 

TO modes 

experiment 

stressed 

relaxed 

in ZnS in ZnSe 

270.1 214.6 

263.9 214.2 

272.8 216.4 

(Sample dzns = 12.A., dznse = 12.A., N = 100, buffer lµm ZnSe, substrate GaAs) 
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Table 13. Comparison of the ZnS/ZnTe,22,23 superlattice predictions and the available 

experimental data. 

(ZnSe)10(ZnTe)io 

LO modes in ZnSe 228.5 233.5 239 242.5 244 246 

stressed 227.8 232.1 235.8 238.7 240.9 242.2 

(relaxed) 228.0 232.3 236.0 238.9 241.1 242.4 

Sample dznSe = 27 A, dznTe = 29.A., N = 100, substrate InP 

(ZnSe)2(ZnTe)26 

LA modes(k=0.09) 11.59 14.49 24.15 28.21 

stressed 13.8 14.2 27.6 28.2 

(relaxed) 12.91 15.49 27.01 29.60 

Sample ZnSe 5 layers , ZnTe 52 layers, total dsL = 85.3.A, buffer 0.5.A. ZnTe, N = 80 
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Table 14. Comparison of the CdTe/ZnTe27 superlattice predictions and the available 

experimental data. 

LO modes in Sublattice 

experiment 

stressed 

(relaxed) 

(CdTe)3(ZnTe)5 

CdTe 

172.88 

175.7 

173.7 

CdTe 

184 

185.3 

182.5 

ZnTe 

203.87 

205.5 

202.3 

ZnTe 

205.5 

207.1 

204.5 

Sample: dcdTe = 21A, dznTe = 27 A, N = 21, buffer 0.9µ Cdo.1Zno_gTe, 

substrate GaAs < 100 > 

(CdTeh(ZnTe)n 

LO modes in CdTe Layer L02 L04 L05 LOs 

experiment 180 175.84 171 165.86 

(stressed) 179.54 176.92 172.74 167.16 

relaxed 177.41 174.78 170.60 165.03 

Sample dcdTe = 5lA, dznTe = 61.A, N = 15, buffer 0.9µ Cdo.1Zno_gTe, 

substrate GaAs < 100 > 
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Table 15. Interface modes for several II/VI superlattices. 

superlattice IF mode cm-1 IF mode cm-1 

(ZnS)2(ZnSe)2 223.0 

(ZnS)4(ZnSe)4 225.9 

(ZnS)io(ZnSe)2 226.1 

(ZnS)io(ZnSe)io 225.9 

(ZnS)i2(ZnSe)i2 225.9 

(ZnSe)2(ZnTe)2 191.6 195.1 

(ZnSe)4(ZnTe)4 192.6 193.6 

(ZnSe)io(ZnTe)2 194.4 197.7 

(ZnSe)10(ZnTe)10 193.8 195.3 

(ZnSe)is(ZnTe)20 192.2 193.5 

(CdTe)2(ZnTe)2 170.2 

(CdTe)4(ZnTe)4 169.1 

(CdTe)a(ZnTe)s 170.3 

(CdTeh(ZnTe)n 170.1 

(CdTe)10(ZnTe)2 170.7 

(HgTe)2(CdTe)2 137.6 151.6 

(HgTe)4(CdTe)4 135.1 152.6 

(HgTe)s(CdTe)s 135.3 152.3 

(HgTe)io(CdTe)2 138.8 151.8 

All interface modes are of TO character. 
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Table 16. Elastic constants of the bulk materials, force field fitted results and the pre­
dicted results for superlattice. 

Name Cn MSXX C12 MSXX C44 MSXX 

ZnS 104.50 107.37 65.30 62.18 46.00 43.85 

ZnSe 85.90 90.49 50.60 47.91 40.60 38.14 

ZnTe 71.30 72.17 40.70 40.83 31.20 31.08 

CdTe 53.30 49.33 36.50 31.85 20.44 18.42 

HgTe 50.80 53.71 35.80 32.89 20.50 18.25 

Name Cn C12 Caa C1a C44 c66 

( ZnS h ( ZnSe h 117.13 34.44 98.82 54.11 41.01 22.01 

(ZnS)2(ZnSe)2 118.39 35.22 98.43 54.84 40.46 22.05 

(ZnSe)4(ZnTe)4 118.90 35.58 97.95 55.05 40.01 22.12 

(ZnS)10(ZnSe)2 125.97 41.01 104.99 61.20 41.51 22.24 

(ZnSe h (Zn Te h 95.49 28.07 81.86 44.62 33.82 17.75 

(ZnSe)2(ZnTe)2 95.66 28.51 82.15 44.70 33.76 18.04 

(ZnSe )4 (Zn Te )4 95.67 28.57 81.88 44.66 33.90 18.23 

(ZnSe ho(ZnTe )2 103.00 29.65 87.74 46.47 36.72 20.25 

( Cd Te h (Zn Te h 70.43 24.54 62.19 36.66 23.59 11.22 

(CdTe)2(ZnTe)2 70.78 24.65 62.58 36.88 23.31 11.57 

(CdTe)4(ZnTe)4 70.87 24.69 62.81 36.96 23.11 11.71 

(CdTe)106(ZnTe)2 62.37 23.12 54.28 33.64 19.94 9.62 

(HgTe)1(CdTe)1 60.16 23.28 52.06 32.37 18.16 9.39 

(HgTe)2(CdTe)2 60.30 23.50 51.78 32.39 18.21 9.49 

(HgTe)4(CdTe)4 60.25 23.62 51.70 32.41 18.22 9.52 

(HgTe) 10 ( Cd Te )2 61.21 24.65 53.16 32.81 18.21 10.11 

Experimental lattice constant and elastic constant taken from reference. 18 
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Table 1 7. Cell geometries of the superlattices. 

Name 

ZnS 
ZnSe 
ZnTe 

CdTe 
HgTe 

Name 

(ZnS)i(ZnSe)i 

(ZnS)2(ZnSe)2 

(ZnSe )4 (Zn Te )4 

(ZnS)io(ZnSe)2 
(ZnSe )i (Zn Te )i 

(ZnSe)2(ZnTe)2 

(ZnSe)4(ZnTe)4 
(ZnSe)io(ZnTe)2 
( Cd Te )i (Zn Te )i 

(CdTe)2(ZnTe)2 

(CdTe)4(ZnTe)4 
(CdTe)106(ZnTe)2 

(HgTe)1(CdTe)1 
(HgTe)2(CdTe)2 

(HgTe )4( Cd Te )4 
(HgTe)i0 (CdTe)2 

a 
5.41 

5.6687 

6.1037 
6.481 

6.461 

a;; dsL 
5.5324 5.5457 

5.5308 11.0631 

5.5321 22.0902 

5.4321 32.5660 
5.8748 5.9100 

5.8687 11.8163 

5.8673 23.6193 

5.7389 34.5737 

6.2413 6.3539 

6.2421 12.6978 

6.2408 25.4010 
6.3880 38.7556 

6.4531 6.4760 

6.4615 12.9465 

6.4641 25.8917 

6.4591 38.7802 

Experimental lattice constant and elastic constant taken from reference. 18 
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Figure Captions 

Figure 1. Phonon dispersion curve for diamond. 

Figure 2. Phonon dispersion curve for silicon. 

Figure 3. Phonon dispersion curve for germanium. 

Figure 4. Phonon dispersion curve for AlP. 

Figure 5. Phonon dispersion curve for AlAs. 

Figure 6. Phonon dispersion curve for AlSb. 

Figure 7. Phonon dispersion curve for GaP. 

Figure 8. Phonon dispersion curve for GaAs. 

Figure 9. Phonon dispersion curve for GaSb. 

Figure 10. Phonon dispersion curve for InP. 

Figure 11. Phonon dispersion curve for InAs. 

Figure 12. Phonon dispersion curve for InSb. 

Figure 13. Phonon dispersion curve for ZnS. 

Figure 14. Phonon dispersion curve for ZnSe. 

Figure 15. Phonon dispersion curve for ZnTe. 

Figure 16. Phonon dispersion curve for CdTe. 

Figure 1 7. Phonon dispersion curve for HgSe. 

Figure 18. Phonon dispersion curve for HgTe. 

Figures 19-22. Superlattice phonons of ZnS/ZnSe, ZnSe/ZnTe, CdTe/ZnTe, and 

HgTe/CdTe grown in the [111] direction. 

Figures 23-38. Phonons of ZnS/ZnSe, ZnSe/ZnTe, CdTe/ZnTe, and HgTe/CdTe for 

superlattices with layer thicknesses of 1, 2, 4 and 10 grown in the [100] 

direction. 

Figures 39. Comparison of folded phonons with phonons of component materials 

for ZnSe/ZnTe. 
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Figure 1. Phonon Dispersion Curve for Diamond 
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Figure 2 Phonon Dispersion Curve for Si 
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Figure 3. Phonon Dispersion Curve for Ge 
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Figure 5. Phonon Dispersion Curves for AIAs 
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Figure 6. Phonon Dispersion Curves for AISb 
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Fugure 7, Phonon Dispersion Curves for GaP 
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Figure 8. Phonon Dispersion Curves for GaAs 
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Figure 9" Phonon Dispersion Curves for GaSb 
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Figure 1 0. Phonon Dispersion Curves for lnP 
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Figure 11. Phonon Dispersion Curves for lnAs 
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Figure 12. Phonon Dispersion Curves for lnSb 
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Figure 24 

ZnS2/ZnSe2 superlattice phonon 
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Figure 25 

ZnS4/ZnSe4 superlattice phonon 
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Figure 26 

Zn510/Zn5e2 superlattice phonon 
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Figure 36 

HgTe2/CdTe2 superlattice phonon 
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Figure 37 

HgTe4/CdTe4 superlattice phonon 

200 ------------,,-,----------, 

180 

x-0 0-z 



230 

Figure 38 
HgTe 10/CdTe2 superlattice phonon 
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Chapter 6 

Silicon (111) Surface Reconstructions 
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Abstract 

We use the biased Hessian method in conjunction with ab initio generalized 

valence bond (GVB) calculations on Si clusters to derive the MSXX force field (FF) 

for silicon (111) surfaces. This FF is tested by calculating the atomic geometries and 

relative energies of the (2n+l) x (2n+l) DAS models of the Si (111) reconstruction. 

We find that the (5 x 5) and (7 x 7) surfaces are most stable. 
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1.0 Introduction 

Since Schlier and Farnsworth1 first observed the 7th order spots in the LEED 

pattern in 1959, numerous models of the Si (111)-7 x 7 surface reconstruction 

have been proposed based on the results of various experiments and theoretical 

calculations. 2- 5 Strong evidence from STM experiments have led to wide acceptance 

of the Dimer Adatom Surface (DAS) model Takayangi7•8 which involves dimers, 

adsorbed atoms, and a stacking fault. However the large number of atoms in the 

surface unit cell has impeded detailed ab initio theoretical study. Indeed with ap­

proximately 100 atoms in just the first two layers of the 7 x 7 unit cells, it has 

been difficult to unambiguously determine the structure from LEED and RHEED 

experiments. Angle resolved X-ray photoemission spectroscopy (ARXPS), X-ray 

diffraction, ion scattering, transmission electron diffraction, and scanning tunneling 

microscopy each give clues to the atomic structure. However, no one technique has 

conclusively determined the atomic arrangement of the Si (111)-7x7 surface. 

McRae9 suggested a model containing a stacking fault in one of the two 

sub-cells which was supported by Bennet's10 medium energy ion scattering results. 

Himpsel3 and McRae9 each described how 12 atom rings around corner holes, two 

8 atom rings around shallow holes on the sub-cell borders, and dimers along the 

sub-cell borders resulted from removing the broken bonds across the stacking fault 

boundary. These features are all observed by STM. 5 Harrison2 first proposed an 

adatom model. However, it was STM that first gave strong evidence that each unit 

cell contained 12 adatoms and led Bennig11 to propose such a model. Takayangi7•8 

combined the stacking fault-dimer idea with the adatom model to arrive at the 

DAS model. The calculated intensities of over one hundred atomic arrangements 

were compared to the TED pattern to refine the atom positions until the projected 

surface geometry was well described. 

Figure 1 shows the projected geometry of the DAS model, where the detailed 

atom positions are from the MSXX force field described below. The unit cell consists 

of two triangular sub-cells. The surface double layer of one sub-cell has the wurtzite 

stacking and the other sub-cell the sphalerite stacking. The broken bonds needed to 

create the stacking fault are removed by dimers that form at the sub-cell boundaries. 

The cell corner contains a large hole with a twelve atom ring and one atom in the 
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center with a dangling bond. Holes with eight atom rings separate dimers except 

at the cell corners. Twelve adatoms occupy the T 4 sites, removing a net of 24 

dangling bonds. Three rest atoms in each sub-cell remain each with a dangling 

bond. Twelve dangling bonds from the adatoms, six from the rest atoms and one in 

the cell corner account for the 19 dangling bonds per unit cell in the Si ( 111 )-7 x 7 

DAS model. This structure eliminates 30 dangling bonds of the 49 dangling bonds 

for the unreconstructed Si ( 111) surface, accounting for most of the stability of this 

reconstruction. The essential features of the DAS model are observed by STM. The 

small and large holes are easily seen as depressions in the STM micrographs. The 

twelve adatom dangling bonds produce tunneling current at a different tunneling 

voltage than the dangling bonds of the six rest atoms which are seen as twelve 

bright spots at one voltage and six at another voltage, respectively. 5 

There remain, however, many questions. The 7 x 7 structure does not result 

uniquely from the DAS reconstruction scheme. Thus one can form a family of 

(2n + 1) x (2n + 1) DAS surfaces: 3 x 3, 5 x 5, 7 x 7, 9 x 9, etc. Of these, the 7 x 7 

reconstruction is observed for the most part, although small amounts of the 5 x 5 

surface reconstruction has been found to co-exist with the 7 x 7 surface in some 

temperature ranges. To fully understand Si surface reconstruction, we need a more 

quantitative description of the relative stabilities of such structures. 

Due to the small surface normal momentum required to make the diffraction 

experiment surface sensitive, TED like LEED provides little information about the 

vertical positions of the atoms. However, unlike LEED, dynamical effects are much 

less important for TED giving it an advantage for determining structure. Clearly 

the surface normal positions must be determined in order to obtain quantitative 

understanding of Si reconstruction. Other experimental techniques or theoretical 

calculations more sensitive to the surface normal positions can be used to refine the 

vertical atomic positions of the DAS model. 

Several investigators have proposed refined atomic positions for the DAS 

model. 12- 17 A key configuration is the adatom in the T 4 site. This leads to a trig­

onal bipyramid with a sub-surface atom directly below the adatom. The distance 

between these two atoms, R13(T4 ), is referred to as the 1-3 or nonbond distance. 

Proposed values of R 13 (T4 ) have ranged from 2.45 to 3.lA, indicating the uncer-
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tainty remaining in the structure characterization. From ab initio calculations on 

clusters, we obtain R13(T4 ) = 2.52 to 2.56A (depending on the site) which we be­

lieve is accurate to 0.05A. The Si-Si bond length of the dimer has also been subject 

to considerable uncertainty. We find values of 2.46 to 2.50A depending upon the 

site. This is stretched by 0.11 to 0.15A from the bulk value. 

The large unit cell has made impractical the use of ab initio methods to 

study the surface. However, ab initio calculations can be performed on clusters of 

moderate size that model specific configurations of the surface. Messmer18 used the 

GVB ab initio method to calculate the geometries of various clusters to estimate 

the atomic geometry of the Si (111)-7 x 7 surface. Using GVB calculations with 

the interstitial electron model, 19 he also developed a silicon FF which was applied 

to study the Si (111)-7 x 7 surface.20 Other methods include the density functional 

theory 21•22 (LDA) and semi-empirical methods such as modified intermediate ne­

glect of differential overlap (MINDO )23 and tight binding energy minimization.13•24 

Khor et al. calculated the energies of several of the DAS (2n + 1) x (2n + 1) 

reconstructions using LDA and found the experimentally observed 7 x 7 surface to 

be slightly higher in energy than the 5 x 5 surface.14 The 5 x 5 surface was observed 

experimentally (in small areas) after low temperature anneals of the cleaved Si (111)-

2 x 1 surface.25 The predicted energy difference 0.008 eV /lxl cell. is probably 

less than the uncertainty in the method, so that these calculation do not show 

conclusively which surface is lowest. Chadi13 used a semi-empirical tight binding 

based energy minimization method to calculate the structure and found the DAS 

7 x 7 model to be energetically more stable than 5 x 5 by 0.008 eV /lxl cell and 

more stable than the Si (111) c-2 x 8 dimer chain model by 0.223 eV /lxl cell. 

We have used the Biased Hessian force field method26•27 to combine the 

second derivatives (Hessian) from ab initio calculations with the experimental ge­

ometry and spectroscopic data to generate an accurate force field (MSXX). This 

force field is then used to calculate the atomic structures and energies of the 3 x 3, 

5 x 5, 7 x 7 and 9 x 9 Si (111) DAS models, the Si (111) c-2 x 8 structure, two 

Si (111)-2 x 2 structures, two Si (111)-v'J x J3 surfaces and the perfect Si (111) 

surface. 
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2.0 Method 

2.1 The MSXX Force Field 

The force field of a molecule or surface can be described by the following 

expression: 

which includes bond stretch (Eb), angle bend (Ea), dihedral angle torsion (Et), 

umbrella inversion(E'¢ ), cross (Ex), van der Waals (EvdW ), and electrostatic (EQ) 

terms. 

2.1.1 Bonds 

Bond stretching is described by the Morse potential, 

E]J = Db [ e-ab(R-Rb) - 1 r' (2) 

where R is the length of bond IJ, Rb and Db are the position and depth of the well, 

and kb = 2Dba:i is the force constant. 

2.1.2 Angles 

Angle bending is described by the harmonic cosine expression, 

(3) 

where 0 is the angle between bonds IJ and JK, 0a is the equilibrium angle, and 

k0 = C sin2 0a is the diagonal force constant. 

2.1.3 Torsions 

The dependence of the energy on the dihedral angle between bonds IJ, JK, 

and KL is described by the three fold potential, 

where cp is the torsional angle, and Vi is the barrier. 

2.1.4 Inversions 

(4) 

Given an atom I bonded to exactly three other atoms J, K, and L, we can 

include an inversion to describe the energy associated with the umbrella motion. 

We use the harmonic expression 

(5) 
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where 1/; is the angle between the IL bond and the IJK plane. Here the barrier to 

planarization is 

2.1.5 Cross Terms 

Bond-angle and bond-bond cross terms are given by the following expression, 

Eax = D1(cos0 - cos0a)(R1 - Rbl) + D2(cos0- cos0a)(R2 - Rb2) 

+ Krr(R1 - Rb1)(R2 - Rb2) 
(6) 

associated with each angle term (6), where R1 and R2 are the lengths of the IJ 

and JK bonds, kre = -D sin 0a is the angle-stretch force constant, and krr is the 

stretch-stretch force constant. 

One-center angle-angle cross terms are of the form, 

E1aa = G(cos0IJK - cos0aJJK)(cos0IJL - cos0aJJL), (7) 

where k100 = G sin 0 aI J K sin 0 al J L is the force constant for two angle terms (IJK 

and IJL) sharing a common central bond (IJ) and a common central atom ( J). 

Two-center angle-angle terms are described by, 

E2aa = f(c/>)F(cos0IJK - cos0aIJK)(cos0JKL - cos0aJKL) (8) 

where k200 = f(c/>)Fsin0aIJK sin0aJKL is the force constant for angle terms (IJK 

and JKL) in which the central atoms (J and K) are bonded to each other. This 

interaction is important when IJ and KL are trans (dihedral angle, ¢ = 180°), but 

not when they are gauche ( ¢ = 60°, 300°). Consequently we define this coupling 

term as 
1 2 f ( ¢) = - - - cos ¢. 
3 3 

These cross terms are considered collectively as 

(9) 

(10) 
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2.1.6 Charges 

The electrostatic nonbond interaction ( EQ) is described using the Coulomb 
. 

expression 

(11) 

where Q1 is the charge (electron units) on center I, E = 1, and 1/Eo = 332.0637 

converts units to give E in kcal/mol when R1 J is the distance in A. 
The charges used for each molecule were calculated from the Hartree-Fock 

wave function by using the Mulliken populations. 

2.1.7 van der Waals 

The van der Waals part of the nonbond interaction (3) for atoms I and J is 

described using the exponential-6 potential 

(12) 

2.2 The Biased Hessian Method 

The energy expression of a molecule can be expanded as: 

where the force on the ith component is: 

8E 
Fi= - 8Ri' (14) 

and 
82E 

Hij = 8Ri8Ri (15) 

is the Hessian. To calculate the vibrational frequencies we mass weight Hij to form 

Hij = Hij (MiMj )- 1/ 2 and diagonalize 

HU= U.t\, (16) 
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where 

Ai = ( CvibVi)
2 

gives the vibrational frequencies (with energies in kcal/mol, distances in A, and 

masses in AMU, Cvib = 108.5918 gives Vi in cm-1 and the columns of U give the 

vibrational eigenfunctions. To extract a force field we could require that the force 

field reproduce this Hessian and the experimental geometry. However, the Hartree­

Fock wave function predicts frequencies that are 10% to 20% too large and thus 

force constants derived from the theoretical Hessian would be too large. The biased 

Hessian26 ,33 alternative combines the normal mode description (U matrix) from 

Hartree-Fock with the experimental frequencies to form a biased Hessian. That is, 
. 

using 

(17) 

we construct 
'HBH = uHFAexpfjHF (18a) 

(where- rv indicates transpose), which leads to 

(18b) 

We then fit the FF parameters to 'HBH_ The (3N - 6)(3N - 5)/2 independent 

elements of JiBH provide constraints on the force field parameters. Requiring the 

force field to also reproduce the experimental geometry leads to 3N - 6 additional 

constraints on 

(

8EFF\ -

oR· ) - O. 
i EQ 

(19) 

The MSXX force field is obtained by simultaneously minimizing the error in fitting 

(20) and (21). 

2.3 Electronic Structure Calculations 

Hartree-Fock calculations were performed using GAUSSIAN 8628 to deter­

mine the theoretical second derivatives. We used the experimental structure where 

available. For others we used the HF optimized geometry. We used the 6-311G** 

basis ( valence triple zeta on both Si and H with d polarization functions on Si and 

p polarization functions on H). 
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2.4 Scaling Theoretical Force Fields 

The MSXX force field for the Si ( 111 )-7 x 7 surface is obtained from com­

bining the force fields of Si4H9 (Figure 2), Si5H7 (Figure 3), and bulk silicon. First 

the Biased Hessian method was used to calculate the force fields for SiH3 , SiH4 and 

Si2H5. 

Because no experimental frequencies or geometries were available for Si4 H 9 , 

we used the following approach. We calculated theoretical force fields for SiH3 , 

SiH4 , and Si2H6 in the same manner as the BH force fields except that we fit 

to the Hartree-Fock frequencies. Comparing the force constants for the theoretical 

force fields and the experimentally biased force fields for each of the three molecules 

led to scaling rules for each type of term in the force field. This works well for bonds, 

angles, and cross terms but not for inversion and torsion. We then calculated the 

Hessian for Si4 H9 at the Hartree-Fock optimized geometry and fit the force field to 

the Hartree-Fock frequencies and geometry. The various terms in this force field 

were then scaled using the scaling rules obtained from SiH3 , SiH4 , and Si2 H 6 • (It 

is sufficient to use only the scaling rules for disilane.) The energy versus distance 

curves for Si4 H 9 from the Hartree-Fock wave function from the MSXX FF are 

compared in Figure 4. 

In order to calculate the force field for the Si5 H7 , we must add additional 

force constants to the Si4 H 9 force field. These terms are calculated from bulk Si 

calculations. 

Zur et al. 29 reported a five parameter force field for bulk silicon obtained from 

fitting the vibrational modes of Si5H 12 calculated using the GVB-configuration in­

teraction (GVB-CI) wave function. We use this FF as a starting point and optimize 

the parameters to fit the phonons and the elastic constants. Using this FF (Table 

1) we reproduce the phonon dispersion frequencies and elastic constants found by 

Zur et al. However, the MSXX FF also includes van der Waals interactions (which 

tend to stiffen the lattice), and hence we reoptimized the bulk force field (to cal­

culate accurate elastic constants, and phonons). vVe started with the Zur force 

field optimized with van der Waals interactions and added two center angle angle 

and torsion terms. The parameters were optimized to fit the elastic constants and 

phonons (Table 2). 
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In agreement with McMurry30 we find that the two center angle angle force 

constant (with couplings only between planar angles)ref is necessary to describe the 

very flat transverse acoustic mode along the delta direction, Figure 5. The resulting 

bulk silicon force field is similar to that of Turbino. 31 We use the same terms except 

the addition of the van der Waals interaction. 

The torsion term (7) has little effect on the phonons and elastic constants. 

Instead we calculate V3 from the difference in energy between the wurtzite and 

sphalerite forms of silicon obtained from first principles local density calculations 

by Cohen et al. 32 The energy difference between these two forms is due to one of 

every four torsions being in the eclipsed rather than the staggered position. There 

are two torsions per atom and one quarter of these are responsible for the energy 

difference between the two phases. Thus the torsional barrier is one half of the 

energy difference per atom, or V3 = 0. 738 kcal/mol. The van der Waals interactions 

also affect the energy difference between the two forms of silicon. Thus we find 

that V3 = 0.51 kcal/mol reproduces the difference 0.016 ev per atom as obtained by 

Cohen from DFT calculations. 31 Because the Si (111)-7 x 7 reconstructed surface 

contains a stacking fault, V3 plays a role in determining the energetics of the surface 

reconstruction. 

On adding the bulk force constants to those of Si4 H 9 to complete the force 

field for Si5 H 7 , we then calculate the energy of the Si5 H 7 cluster as a function of 

the cap silicon position along the C3 axis. The MSXX FF accurately reproduces 

this curve, including the equilibrium 1-3 distance (Figure 6). This requires an 

equilibrium angle for the Si3 - Si2 - Si3 (see Figure 3) angle terms of 115° (HF 

calculations on Si4 H9 lead to 122°). The HF equilibrium 1-3 distance of 2.906A 

was fit to within 0.02A. 

With the MSXX force field for Si5H7 , we optimized the geometries of the 

(3 x 3), (5 x 5), (7 x 7), and (9 x 9) DAS Si (111) reconstructed surfaces, the 

centered (2 x 8), and three (2 x 3) surfaces, and the relaxed perfectly terminated Si 

( 111) surface. 

2.5 Optimization 

All calculations were carried out using POLYGRAF,33 an interactive molecu­

lar simulations package for molecular mechanics and molecular dynamics of crystals. 
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The atomic coordinates were optimized ( using conjugate gradient techniques) until 

the RMS force became less than 0.01 (kcal/mol) / Ao At the optimized structure, 

all stress components are less than 0.005 GPa. We modelled the surface using 6 

layers of silicon ( three double layers). The bottom four layers having undergone 

no reconstruction. The sixth layer of silicon atoms has its bonding saturated with 

hydrogen atoms. The surface unit cell is constrained to an integral multiple of the 

lateral size of the bulk unit cell. 

3.0 Results 

3.1 SiH4 

Table 3 compares the MSXX frequencies with experiment. Table 4 shows 

the MSXX force field, the theoretical force field, and the scales. The MSXX FF 

leads to forces less than 0.005 kcal/molA at the experimental geometry. 

3.2 Si2H6 

rable 5 lists the MSXX force constants and Table 6 compares the frequencies 

from the MSXX and theoretical force fields for Si2 H6 • 

3.3 SiH3 

The MSXX force field for silyl radical in Table 7 leads to the frequencies and 

geometry in Table 8. Table 7 also gives the scaling factor for this force field ( the 

ratio of the force constants fitting the experimental frequencies to the force constants 

fitted the HF frequencies). The stretch stretch cross terms do not scale the same 

as found for silane and disilane. The inversion force constant scales differently than 

the other valence terms. 

3.4 Si4H9 and SisH1 

Table 9 shows the force constants for Si4H9 from fitting to the HF frequencies. 

To obtain the MSXX we used the scaled force constants from Si2 H 6 plus (i) the 

inversion term was fitted to the HF energy curve for inversion and (ii) we adjusted 

the equilibrium Si3Si2Si3 angle to fit the geometry. The IVISXX force field at the 

experimental geometry leads to an rms force of less than 0.08 kcal/molA. 

For Si5 H 7 we used the MSXX force field for Si4 H9 plus additional terms 

from the bulk force field (Table 10). We find that we can obtain the HF optimized 
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geometry for this cluster and the HF energy curve for the Si2 position along the C3 

axis by adjusting the equilibrium Si3 - Si2 - Si3 bond angle. 

3.5 DAS Structures 

3.5.1 The R 13 (T 4) Distance 

The adatom geometry for the Si ( 111 )-7 x 7 reconstructed surface is of most 

interest. In the DAS model the 12 adatoms sit directly above second layer atoms 

in T 4 sites. The repulsive interaction between the adatom and the third layer atom 

tends to push the adatom outwards. On the other hand, the four coordinated 

silicon of the second and third layer atoms prefer tetrahedral bond angles and 

the triply coordinated adatom prefers angles near 113°. This tends to limit the 

R 13(T4 ) distance. Ichmiya17 found a back bond distance of 2.56A using RHEED. 

Tong et al. 15 used dynamical LEED and reported a back bond distance that ranged 

from 2.49A to 2.56A ( depending on whether the adatom was on the faulted half, 

unfaulted half, near a corner or near the center). Tromp and van Loenen12 found 

that the back bond distance must be approximately 2.6A using medium energy ion 

scattering. Robinson16 used XRD experiments to estimate a back bond distance 

of 2.64A. Qian and Chadi13 used a tight binding energy minimization calculation 

to determine the atomic structure. They reported a back bond distance of 3.lA. 

Messmer18,20 reported a 1-3 distance of 2.52A based on GVB calculations and 2.45A 

from calculations on the surface using a silicon potential based on the interstitial 

electron model. We find R 13 (T4 ) = 2.52A to 2.56A, depending on the location of 

the adatom within the unit cell. 

3.5.2 The R34(T4) Distance 

Tong finds R34 (T 4), the bond length between the sub-surface eclipsed atom in 

the T 4 site and the atom directly below it, to be 2.13A or 2.18A (with uncertainties 

of O.lA), depending on whether the bond is in the faulted or the unfaulted side of 

the unit cell respectively. We find R34(T4 ) = 2.25A. 

3.5.3 The Dimer Distance 

In addition to the adatom structures the dimer distances are also important. 

Tong15 finds a dimer distance of 2.45A using dynamical LEED. Khor and Das 

Sarma14 using an empirical potential and Robinson16 using X-ray diffraction find 



245 

the dimer distance to be 2.49A. We find a dimer distance of 2.46A if the dimer is 

not adjacent to a cell corner, and 2.50A if it is next to a cell corner. The equilibrium 

bond distance in silicon is 2.35A, showing that the dimer is in tension. 

3.5.4 Relative Energy of (2n + 1) x (2n + 1) DAS Structures 

Optimizing the structures of each of the (3x3), (5x5), (7x7), and (9x9) 

DAS models of the Si (111) reconstruction, we find that the (5x5) structure has 

the lowest energy, with (7x 7) slightly higher in energy. We find that the strain 

energies decreases as the size of the DAS unit cell increases (Table 10). Although 

the 5 x 5 unit cell has a higher tensile stress than the 7 x 7 reconstruction, the lower 

density of 0.0244 dangling bonds/ A 2 compared to 0.0263 dangling bonds/ A 2 for the 

7 x 7 reconstruction accounts for part of the stability of the 5 x 5 cell over the 7 x 7 

cell. The surface energy 0.8995 kcal/molA2 due to the dangling bonds for the 5x5 

unit cell is 0.0694 kcal/molA 2 less than the surface energy of 0.9689 kcal/molA 2 due 

to dangling bonds for the 7x 7 surface. Here we assign an energy per dangling bond 

equal t_o half the energy required to break a bond in bulk silicon (73. 7 /2 kcal/mo!). 

On the other hand, assigning an energy per dangling bond equal to half the average 

energy required to break all the bonds in the silicon lattice (54.3/2 kcal/mol) gives a 

surface energy difference due to the dangling bonds of 0.0511 kcal/molA2 • The 5x5 

reconstruction is still slightly lower than the 7x7 by 0.0055 kcal/molA2 • We assign 

an energy of 73.7/2 kcal/mol per dangling bond. Although the 3x3 DAS structure 

has the lowest dangling bond density ( 0.0226 / A 2 ) of the DAS structures, it leads to 

stresses too large for stability. Several investigators have reported finding the 5 x 5 

DAS structure to be slightly more stable than the 7x7 DAS structure. Table 10 

shows the relative energies of the (2n + 1) x (2n + 1) structures from our results, 

and those of Khor et al. and Vanderbilt. It is unclear which structure is the lowest 

energy structure since both are experimentally observed on the same samples and 

the calculated energy difference · is so small that the difference may be within the 

error of the calculation. 

4.0 Discussion 

Because the MSXX force field differentiates between three coordinated and 

four coordinated silicon atoms, it can model both the geometric and elastic proper-
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ties of the bulk as well as the energetics of surface atoms with large angle strains. 

This makes MSXX appropriate for the modeling of the silicon (111) surface be­

cause local adatom strains and the strain of the surface unit cell on the bulk both 

contribute to the energetic stability. Earlier force fields34- 36 are successful in par­

ticular areas, for example in the reconstruction of the (100) surface, modeling the 

bulk elastic properties, and melting. However, they are inappropriate for the re­

construction of the (111) surfacee The empirical potential used by Khor and Das 

Sarma14 successfully describes the DAS structures. The MSXX potential has the 

advantage that it is partitioned into physically significant valence energy terms. 

Additionally, being derived from theoretical and experimental studies of small clus­

ters, we can get a quantitative test of the concepts. Although the energy difference 

between the 5 x 5 and 7 x 7 DAS surfaces is too close to resolve with our current level 

of theory, the stability with respect to other (2n + 1) x (2n + 1) structures and the 

unreconstructed surface is successfully demonstrated. 

The geometric description given by the MSXX FF is in excellent agreement 

with the available experimental data on the 7x 7 surface. This is evident in the 

agreement between this study and experiment for R 13 (T4 ), the dimer length, and 

the overall strain in the system. 

5.0 Conclusion 

Using the Biased Hessian method, we developed the MSXX FF for silicon 

and use it to analyze the energetics and structures for the DAS (2n + 1) x (2n + 1) 

reconstructions of the Si (111) surface. For n = 1 to 4, we find that the tensile 

stress increases as the unit cell size decreases. We find the 3x3 and 9x9 structures 

to be stable relative to the relaxed perfect (111) surface but much less stable than 

7x7 surface. We find the 5x5 and 7x7 surfaces to be nearly equal in energy (in 

agreement with some agreement with some previous findings) with the 5 x 5 surface 

slightly more stable. 

For the 7x7 surface we find dimer distances of 2.50A and 2.46A for dimers 

adjacent to cell corners and dimers between small eight atom ringed holes respec­

tively, in agreement with X-ray diffraction studies. We find R 13 (T4 ) = 2.52A (for 

the distance between the adatom and the eclipsed atom in the T 4 ) for the faulted 

subcell center, 2.54A for the site unfaulted subcell center, 2.53A in the faulted sub-
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cell corner, and 2.56A in the unfaulted subcell corner. These distances compare 

well with RHEED and LEED data. 

This MSXX FF is appropriate for calculating structures containing a stacking 

fault since it describes the energy difference between the sphalerite and wurtzite 

forms of silicon. 

The elastic constants, and phonon dispersion curves are accurately calculated 

by the MSXX FF including the TA mode :flattening. Of most importance is the 

ability of this potential to describe the energetics, geometry and vibrations of surface 

silicon atoms in both T4 and H 3 sites. 
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Table 1. Force constants for bulk silicon. 

MSXX 

van der Waals Dv 0.310 

Rv 4.270 

Bond Stretch [eq (5)] Rb 2.381 

kb 193.0936 

Db (73. 70) 

Angle Bend [eq (6)] ke 31.2682 

0a 105.0467 

Angle Cross Terms [ eq ( 8)] ksiae -14.8184 

krr 3.6001 

Torsion [ eq ( 7)] V3 0.5100 

2-C A-A [eqs (9) and (11)] Fsia :Si3Si3 :Si3 -25.7242 
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Table 2a. Elastic constants (in GPa) and the bulk modulus (B) of silicon from the 

MSXX FF compared with experiment. 

Parameter MSXX 

170.7 

64.2 

78.6 

99.1 

Experiment 

167.5 

65.0 

80.1 

99.2 

Table 2b. Phonon frequencies (in THz) of silicon from the MSXX FF and experiment. 

Phonon MSXX Experiment 

LA-LO(X1) 12.38 12.44 

TA(X3) 4.51 4.51 

TO(X4) 13.92 13.90 

TO-LO(r2s) 15.56 15.53 
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Table 3. Vibrational frequencies of SiH4 • 

Modes Expt. MSXX HF Scale 

SiH3 d-deform. 914 914 1017.1 0.899 

SiH3 d-deform. 975 975 1053.4 0.926 

SiH s-str. 2187 2187 2370.0 0.923 

SiH d-str. 2191 2191 2360.6 0.928 

l~vlrms 0 140.3 
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Table 4. SiH4 FF. 

MSXX HF Scale 

Bond Stretch [eq (5)] 

Si-H Rb 1.479 1.478 1.000 

kb 400.0273 459.1177 0.871 

Db (92.60) (92.60) 1.000 

Angle Bend [eq (6)] 

H-Si-H ke 67.5345 79.8951 0.845 

0a 110.9769 112.2213 0.989 

Angle Cross Terms [ eq ( 9)] 

H-Si-H kHe -10.2182 -11.1244 0.919 

krr 4.021 6.030 0.667 

One-Center Angle-Angle Cross Terms [eqs (9) and (10)] 

GsiH:HH 5.3177 7.3658 0.722 
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MSXX HF Scale 

Bond Stretch [eq (5)] 

Si-H Rb 1.4782 1.4781 1.000 

kb 393.9586 455.8698 0.864 

Db (92.60) (92.60) 1.000 

Si-Si Rb 2.3366 2.3517 0.994 

kb 286.9195 342.3163 0.838 

Db (73.70) (73. 70) 1.000 

Angle Bend [eq (6)] 

H-Si-H k0 57.3767 69.2450 0.829 

0a 111.9874 112.6561 0.994 

Si-Si-H k0 43.3213 53.2658 0.813 

0a 114.6627 116.1750 0.987 

Torsion [ eq ( 7)] 

H-Si-Si-H V3 0.848 1.3542 0.626 

Angle Cross Terms [ eq ( 9)] 

H-Si-H kH0 -3.5257 -3.6203 0.974 

krr 3.2252 4.8795 0.661 

Si-Si-H ksi0 19.8201 26.7122 0.742 

kH0 -3.7978 -4.6882 0.810 

ksiH 1.3292 1.5511 0.857 

One-Center Angle-Angle Cross Terms [eqs (9) and (10)] 

GsiH:HH -0.6003 -0.6424 0.934 

GsiSi:HH -0.1914 -0.2321 0.825 

GsiH:SiH 0.3563 0.4043 0.881 

Two-Center Angle-Angle Cross Terms [eqs (9) and (11)] 

FH:SiSi:H -16.4782 -19.9482 0.826 
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Table 6$ Vibrational frequencies of Si2H5. 

Modes Expt. 

Torsion 125 

SiH3-rock 379 

Si-Si stretch 432 

SiH3-rock 628 

SiH3 s-deform. 844 

SiH3 cl-deform. 941 

SiH3 s-deform. 920 

SiH3 d-deformG 940 

SiH3 d-str. 2155.00 

SiH3 s-str. 2154.30 

SiH3 d-str. 2178.60 

SiH3 s-str. 2163.00 

l~vlavg 

MSXX HF Scale 

127 134.3 0.931 

378 416.6 0.910 

431 464.0 0.936 

625 697.1 0.897 

854 947.9 0.890 

946 1031.5 0.881 

925 1043.1 0.891 

931 1027.5 0.914 

2166 2337.1 0.880 

2158 2352. 7 0.915 

2166 2337.3 0.922 

2161 2346.7 0.928 

6.66 
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Table 7. SiH3 FF. 

MSXX HF Scale 

Bond Stretch [eq (5)] 

Si-H Rb 1.4830 1.4830 1.000 

kb 323.6191 443.7879 0.729 

Db (92.60) (92.60) 1.000 

Angle Bend [eq (6)] 

H-Si-H k0 50.9033 52.9548 0.961 

0a 110.5997 110.5997 1.000 

Angle Cross Terms [ eq ( 9)] 

H-Si-H kH0 -13.1042 -15.2668 0.858 

krr -0.1102 4.0105 -0.027 

One-Center Angle-Angle Cross Terms [eqs (9) and (10)] 

GsiH:HH -9.7116 -12.6668 0.767 

Inversion [ eq ( 8)] 

Fsi:HHH 65.9534 61.5300 1.072 
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Table 8. Vibrational frequencies frequencies of SiH3 • 

Modes Expt. MSXX HF Scale 

SiH3 deform. 926 926 871.2 1.063 

SiH3 deform. 996 996 1016.5 0.9800 

SiH str. 1955 1955 2342.4 0.836 

SiH str. 1999 1999 2361.0 0.847 

l~vlrms 0 266.6 
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MSXX HF 

Bond Stretch [eq (5)] 

Si2-Si3 Rb 2.395 2.395 

kb 215.845 257.5712 

Db (73. 70) (73. 70) 

Si3-Hi Rb 1.483 1.483 

kb 382.387 442.578 

Db (92.60) (92.60) 

Si3-Ho Rb 1.485 1.484 

kb 381.585 441.650 

Db (92.60) (92.60) 

Angle Bend [eq (6)] 

Hi-Si3-Ho k0 58.256 70.273 

0a 110.953 110.953 

Ho-Si3-Ho k0 54.843 66.156 

0a 111.562 111.562 

Si2-Si3-Hi k0 55.267 67.979 

0a 116.838 116.838 

Si2-Si3-Ho k0 49. 711 61.146 

0a 112.207 112.207 

Si3-Si2-Si3 k0 50.8023 62.488 

0a 122.671 124.2864 

Torsion [eq (7)] 

Si3-Si2-Si3-Hi V3 · 1.020 1.630 

Si3-Si2-Si3-Ho V3 2.126 3.396 

Inversion [ eq ( 8)] 

Si2 :Si3-Si3-Si3 -K 'l/J 1.500 0.9700 

1l/J e 81.0000 38.5060 
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Table 9b. Si4 H9 FF continued. 

MSXX HF 

Angle Cross Terms [ eq ( 9)] 

Hi-Si3-Ho kH0 0 -2.602 -2.672 

kHi0 -2.787 -2.862 

kHiHo 3.457 5.230 

Ho-Si3-Ho kH0 0 -1.899 -1.950 

krr 3.339 5.052 

Si2-Si3-Ho ksi20 10. 730 14.461 

kH0 0 -1.914 -2.363 

ksi2Ho 1.958 2.285 

Si2-Si3-Hi ksi20 0.821 1.106 

kHi0 -3.662 -4.522 

ksi3Hi 5.120 5.974 

Si3-Si2-Si3 ksi30 5.637 7.598 

krr 0.908 1.060 

One-Center Angle-Angle Cross Terms [eqs (9) and (10)] 

G Si2Si3 :Si3Si3 0. 7610 0.992 

GsiaSi2:HiHo 6.388 7.251 

Gsi3Si2:H0Ho 2.645 3.002 

Gsi3Hi:HoHo -0.756 ~0.810 

GsiaHo:HiHo -0.783 -0.838 

GsiaHo:Si2Hi -2.476 -3.001 

Gsi3Ho:Si2Ho -2.031 -2.461 

Gsi3Hi:Si2Ho -2.771 -3.001 
Two-Center Angle-Angle Cross Terms [eqs (9) and (11)] 

Fsi 3 :Si2 Si 3 :Hi -30.891 -37.398 
-16.495 -19.970 
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Table 10. Relative energies (kcal/mol) of the (2n+l)x(2n+l) DAS structures and the 

relaxed (111) surface from this work, Khor and Das Sarma,14 Vanderbilt24 

and Chadi. 13 

Structure This work Khor Chadi 

DAS3x3 -0.310 -0.326 

DAS5x5 -0.341 -0.344 -0.395 

DAS 7x7 -0.333 -0.335 -0.403 

DAS 9x9 -0.328 -0.325 
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Table 11. Additional Surface Force Constants. 

Angle Bend [eq (6)] 

Si2-Si3-Si3 

Si2-Si3-Si2 

ke 

ke 

11.0000 

11.0000 

0a 109.4712 

Angle Cross Terms [ eq ( 8)] 

Si2-Si3-Si3 ksiae -17.0000 

Si2-Si3-Si2 ksia0 -17.0000 

krr 0.0000 

Torsion [eq (7)] 

Si3-Si2-Si3-Si3 V3 0.5100 

Si2-Si3-Si3-Si3 V3 0.5100 

Two-Center Angle-Angle Cross Terms (eqs (9) and (11)] 

Fsis:Si2Si3:Si3 -24.3179 

-24.3179 
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Figure Captions 

Figure lo Top view of the optimized 7 x 7 DAS model. Blue shaded atoms 

denote silicon atoms in the corner of the unit cell with a dangling 

bond. Yellow shaded atoms are surface silicons in H3 sites and with a 

dangling bond. Silicon adatoms in T 4 sites have a dangling bond and 

are shaded red. All other atoms are Si, shaded orange and have four 

bonds. 

Figure 2. The Si4 H 9 cluster. 

Figure 3. The Si5 H1 cluster. 

Figure 4o The ab initio and force field energies plotted versus the central Si 

atom position for Si4H9. 

Figure 5. Phonon dispersion curve for SL 

Figure 6. The ab initio and force field energies plotted versus the cap Si atom 

position for Si5H7. 
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Blue - Corner Si (dangling bond) 

Figure 1. DAS 7x7 Si (111) Surface 
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Figure 2 
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Figure 3 
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Figure 4 Si4h9 Energy vs. R 
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Figure 5. Phonon Dispersion Curve for Si 
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Chapter 7 

The Generalized London Force Field for Hydrocarbon Reactions 
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Abstract 

In this chapter we use the Generalized London Force Field (GLFF) method 

to derive the potential energy surface (PES) for the exchange reaction: CH 4 + H --+ 

CH3 + H 2 • The GLFF includes the effect of the Pauli Exclusion Principle on the 

PES of chemical reactions. We find excellent agreement with the PES from ab initio 

quantum chemical reactions (GVB*SD CI)o 
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1.0 Introduction 

In chapters 2 and 3 we described the calculation of transition barriers for 

reactions of diamond surfaces (for CVD growth and nanotechnology). The calcula­

tion of the potential energy surface for these reactions to determine the transition 

state geometry and the activation barrier required a large quantity of CPU time on 

a Cray supercomputer. This chapter describes a method for calculating the same 

PES, but at a very small fraction of the computer cost. 

Chemical reactions such as 

(1) 

generally lead to a reaction barrier [~9.6 kcal/mol for (1)] much less than the bond 

energy [10% for (1)]. There are clearly subtle interplays of bonding and antibonding 

factors where the bond is never really broken, but rather as one bond is dissociating 

the other is forming. Thus the transition state is a resonance between the reactant 

and product states. The transition state barrier is a direct consequence of the Pauli 

principle which allows only two electrons per orbital. As the third electron ( of the H) 

approaches the D2 , it must remain orthogonal to the bond pair on the D2 ( to satisfy 

Pauli), leading to antibonding character and hence a barrier. Such reaction barriers 

are adequately described with the modern methods of quantum chemistry, however 

they generally require intensive calculations, especially if quantitative accuracy is 

required. Furthermore, the generation of a PES is even more intensive since to 

generate the surface the wave function must be calculated at a grid of geometries 

along the reaction path. 

In contrast, the FF for a Molecular Dynamics (MD) study would use a 

bonding interaction (say a Morse function) between each particle. This incorrectly 

predicts that the H3 molecule is stable, with a triangular geometry and a bond 

energy of ~100 kcal/mol rather than a barrier of 10 kcal/mol and a linear transi­

tion state. This property prevents the simulation of reaction dynamics since the 

description of the reaction surface is poorly described. For a proper description of 

the reaction surface, must include the effects of the Pauli principle, which are rarely 

incorporated into MM potentials. 

Of course quantum chemistry calculations automatically include the Pauli 

Principle. However 
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z. the quantum chemistry ( QC) requires a great deal of work for each geometry 

and we would like a way to fit the QC with a general potential function 

ii. the size of the QC calculation grows rapidly with the the size of the system, 

making it impractical for many cases of interest and we would like to have a 

way of predicting the interaction energies in the absence of QC. 

We have developed a general procedure, 1- 3 the Generalized London Force Field 

(GLFF), for accomplishing both objectives. This methodology allows a general 

procedure for all reactions and permits development of routines for using this pro­

cedure with commercial molecular simulation codes such as POLYGRAF.4 

The GLFF methodology is straightforward for any simple (three-electron) 

radical reaction, e.g. 

·A+ X - B--+ A - X + ·B. 

including surface reactions such as 

•A+ H - S1 

(2) 

(3) 

The same formalism can also be used for simple four electron reactions, such 

as metathesis 

A-B A B 
⇒ I I (4) 

C-D C D 

and insertion 
A-B A B 

⇒ I I 
C=D C-D (5) 

( e.g. Ziegler-N atta polymerization). 

2.0 The Generalized London Force Field 

2.1 Spin Coupling and the London Potential 

Consider the bonding in the reactant (Figure la), transition state (Figure 

lb), and product (Figure le) as given in Figure 1. 
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The consequences of the Pauli principle can be directly expressed in terms 

of the spin couplings shown schematically in the middle row of Figure 1 and more 

explicitly in the bottom row. 

For the reactant configuration of (1) the Valence Bond (VB) wave function is 

A{cpzc/Jcc/Jr[a(a/3- /30:)]} where the electrons on the D2 always have opposite spins, 

leading to the singlet or bonding state of D2. (Here cpz, c/Jc, c/>r refer to atomic orbitals 

on the left, center, and right atoms.) However the spin on the H is sometimes 

the same and sometimes different than the spin on the D atoms. This leads to 

an H - D interaction that contains both antibonding ( or triplet) interactions and 

bonding ( or singlet) interactions. Analysis of the VB wave function shows that 

the HD interaction is 75% triplet and 25% singlet. The result of these triplet or 

anti bonding terms is that the energy increases as H approaches D 2 • 

For the transition state the VB wave function is 

(6) 

which describes the resonance of H -D D· with H • D-D. Analysis of the wave 

function shows that the outer orbitals are always triplet coupled whereas the middle 

atom has interactions with the outer two atoms that are 75% singlet and 25% triplet. 

Thus during the reaction the interactions between the H and central D 

changes from 25% singlet (reactant), to 75% singlet (transition state), to 100% 

singlet (product) and the other interactions change correspondingly. Thus to include 

the effect of the Pauli principle, the simplest description is 

where 

E(R1, R2, R3) = L Eij(Rij) 
i>j 

(7) 

(8) 

Here f s and JT are the fractions of singlet and triplet character and Es and ET 

describe the bonding and antibonding two-body interactions. Defining the classical 

and exchange energies as 

(9) 
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and the spin coupling fractions as 

(10) 

the energy (7) can be rewritten as 

E = L [Ei](Rj) + COS/ijEij]. (11) 
i>j 

The three spin coupling angles in (11), rij, are related to each other (by ± 2
;) so 

that there is only one degree of freedom. Requiring that , be optimum, 8E / 8, = 0, 

leads to 

(12) 

Since (12) depends only on the exchange energies, Ex(Rij), which depend only on 

the distances, the optimum spin coupling is uniquely determined by the geometry. 

Thus the full effect of the Pauli principle is included by using (12) with (11), leading 

to 

1 

EL= Ef +E~z+E~z_ [(Ef)2 + (E2)2 + (E3)2 
- Ef E2 - E2 E2 - E2 E3 - Ef E3] 2 • 

(13) 

This expression was originally derived by London. 5- 7 Table 1 shows the special 

cases of the energy for various ,1's. 

2.2 Generalization of the London Force Field 

Using the exact two body functions for the triplet and singlet states of H 2 in 

the London expression (1), leads to a potential surface that is qualitatively correct. 

Thus for H 3 it leads to a barrier of 12.4 kcal/mol rather than 9.6 kcal/mol8 and 

a saddle point geometry of 1. 7922 bohr rather than 1. 7757 bohr. In addition the 

barrier is too narrow having too low an energy for particles along the reaction 

path far from the transition state. Donnelly et a1. 1,2 showed that the problem at 
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the saddle point involves three body corrections when all three orbitals have high 

overlap. 

By substituting the two-body VB energy expressions with S~b # 0 into the 

three-body VB energy expressions, also with S;,b -=I=- 0, and retaining terms in overlap 

squared only, the first order overlap correction to (13) was found to be1' 2 

The problem with (11) is that it considers overlaps Sij as addition to the exchange 

energies. This is not acceptable since we will generally not have overlaps. However 

Sfj is proportional to E0 so that S'fj in (11) can be replaced with 

S~- == 8° E~-
iJ 1,J ' (15) 

where 8° is a scaling constant. Using just this one parameter, the overestimate of 

the energy barrier is removed. The resulting three-body correction depends only on 

Ex. 

For larger distances the energy for (12) is too attractive because interference 

between the London dispersion (vdw attraction) terms of different pairs of atoms is 

ignored. The dynamic correlation effects ( responsible for this attraction) between 

atoms 1 and 2 interfere with the 1-3 and 2-3 dispersions, leading to less attraction. 

This dispersion correction has the form 

Lldisp = -{i L Ej ( sfk + sJk) (16) 
i>j 

where Ef is the (negative) dispersion energy of pair i, and 8d is a constant. A good 

estimate of the dispersion energy is found from the difference between the exact 

energy ( experiment or configuration interaction) and the VB or GVB energy. 

The Generalized London Force Field (GLFF) has the form 

EGLFF(R1, R2, R3) = L [E51(Rij) + COS"fijEij(Rij)] + Ll3 + Lldisp 
i>j 

[ Egt ( Rij) + COS"f ij Eij] - L ( sf k + SJz) [ ~ Eij + {jd Ej] 
k#i,j 

(17a) 

(17b) 
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E31
(Rij) + Eij COS"fij - ~ L (SJk + SJ1) - 8dEt L (S[k+ SJ1) 

k#i,j k#i,j 

(17c) 

where 8° is given by (16). 

3.0 Ab Initio Calculations 

To derive ab initio potentials (PES) that include the essential effects impor­

tant in describing saddle points of chemical reactions, one must employ QC methods 

that accurately describe bold dissociation. Chemically accurate descriptions of the 

PES generally require a large computational cost. Our goal is to predict accurate re­

action surfaces using a simple method practical for molecular dynamics simulations. 

We will illustrate the procedure for the reaction 

(21) 

Elsewhere11 we required extensive GVB-CI calculations on (2). These studies 

involved Generalized Valence Bond (GVB) calculations followed by configuration 

interaction through single and double excitations from all GVB configurations. This 

is denoted as GVB*SD CL 

These studies used an extended basis set [Dunning and Huzinaga9 ,10 double­

zeta contraction of the 9s5p carbon basis with one additional set of d polarization 

functions (rJd =0.75). We also add diffuses and p functions (rJ 8 = 0.0474 and (rJP 

= 0.0365). The hydrogens were described using the triple-zeta contraction of the 

6s set with one additional set of p polarization functions (rJP = 0.60)]. The final 

potential surface is shown in Figures 2. 

This method has been applied to the 

(22) 

and 

(23) 

reactions using H · ·H, H · · · CH3, and CH3 · · · CH3 two-body interactions from 

QC. The potential surface for (20) is shown in Figure 3. The barrier from GLFF 
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is 10.6 kcal/mol, in excellent agreement with the 10.9 kcal/mol from extensive QC 

calculations on the reaction (17). 

4.0 Discussion 

The approach outlined above can be used for any three electron ( or four 

electron) exchange reaction, 

A- B + ·C ~·A+ B - C. 

The first step is to obtain the singlet and triplet states for A-B and for B-CG For 

best results we should do QC calculations at various distances for A-B and B-C 

separately. With no additional data on the A-B-C system, the London Equation 

would predict the full potential surface in Figure 2. This leads to a barrier rv25% 

too high and transition state bond distances about 3% too long. If there were no 

additional information, this could be used to simulate the reactions. Better yet 

we might do a quantum mechanical calculation at a single point near the predicted 

saddle point and another single point half way to dissociation. This would determine 

8° and od, allowing an accurate description of most geometries. Thus the G LFF 

allows a little bit of QC information to predict a great deal about the potential 

surface. 

Alternatively with no QC data on the reacting units, we could use data, say, 

on the barrier height from experiment to estimate the overlap correction constant 

(8°). In addition, if there were no QC data on the A-B bond and antibond, one 

could get a qualitative estimate by using a Morse curve for the singlet or bond state 

(which requires only Re, ke, and De) and we could use an antimorse curve for the 

triplet or anti bond state ( no additional data). 

5.0 Application to Hydrocarbon Reactions 

We have shown that the Generalized London Potential is effective in mod­

eling H2 + H and CH3 + H by comparing the GLFF results to accurate ab initio 

calculations. Because quantum chemistry calculations of potentials of systems with 

more than several electrons are so impractical most systems have little available 

data. We developed the GLP with the intention that it could accurately predict the 
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entire potential energy surface using only two-body potentials plus a limited amount 

of three-body information. Our results indicate that the GLP is indeed well suited 

for such predictions. An accurate PES can be derived in a matter of hours or min­

utes, on a small computer where quantum chemical calculations have taken tens of 

hours of super computer CPU for PES derivation on similar systems. 11 ,12 Actually, 

the GLP may work best to compliment ab initio calculations in reducing the amount 

of work required to find the saddle point. An expected sequence would be: 

1. Calculation of two-body curves. 

2. Use of London Potential to predict saddle point. 

3. Use of GLP using parameters estimated from similar systems to improve 

estimate of saddle point. 

4. Ab initio calculation of several energies near saddle point. 

5. Incorporation of new information into GLP to improve estimates of entire 

potential energy surface and saddle point. 

6. Possible refinement of GLP parameters using a small number of additional 

·ab initio points. 

7. Use of GLP for simulations. 

Our overall objective is to perform accurate reaction dynamics with molec­

ular modeling where reaction rates would be accurately modelled and mechanisms 

could be studied, and extracted from the dynamics trajectories. We are especially 

interested in applications to surface reconstructions, growth of thin films, polymer 

and crystalline systems. Important carbon-based examples exist for all of these 

cases. We first examine the case of hydrogen exchange among hydrocarbons~ We 

first considered the abstraction of one hydrogen from methane by an atomic hydro­

gen: 

Actually, this reaction as written is uphill in energy by several kcal/mol, however 

this is not true for most hydrogen abstractions from hydrocarbons by a lone hy­

drogen atom. Thus, we write this equation in this direction, however it is more 

appropriate to write it in the opposite direction for this system only. With the 

C H 4 bond angles fixed, we first calculate a first approximation of hydrogen ab­

straction from a diamond surface. Of course, an improved model would consider 
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abstraction from isobutane or larger clusters. Allowing the CH4 bond angles to 

relax gives this reaction an extra degree of freedom not present in H3 • This better 

describes smaller systems and polymers where relaxation is not constrained by the 

surrounding structure as in a surface reaction. For both the fixed and variable an­

gle cases the two-body interaction potentials are required. We present them next 

before their use in the GLP. 

5.1 Application to the CH4 + H-+ CH3 + H2 Reaction 

The GLFF is expressed in terms of two body potentials. Thus for 

(18) 

we need to consider the 

(19) 

and 

H+H (20) 

potentials. We carried out calculations on (18) and (19) at the same level of basis 

set9 ,10 and electron correlation as previously used for ab initio studies of (17). The 

details of the calculations are in section 3.0. The potential curves are shown in 

Figures 2 and 3. In (18) we considered three values 0HcH = 90°, 105°, 120°. For 

consistency we used a harmonic fit to predict the choice of 0HcN for each particular 

RcH• 

The constants 8° and [Jd were chosen by fitting to the saddle point and 50 % 

dissociated energies for the reaction. 

5.2 Comparison to ab initio calculations 

The GVB-CI calculations optimized the structure near the saddle point for 

reaction (17). As a first step we used the transition state geometries from these 

calculations to calculate the London and GLFF energies. The results are in Table 

2. Here we see the LFF leads to an energy barrier too high by 2.1 kcal/mol or 15%. 

Using 8d = 0.003 from the H3 studies leads to EAcT = 12.63kcal/mol. Adjusting 

to match the ab initio surface leads to EAcT = 12.9kcal/mol. In the remainder of 

this chapter we use 8d = 0.003 from H3 • 
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To obtain a full potential surface, we first considered the same angle 0HcH = 
104° for all RcH and RHH· This leads to the London and GLFF PES in Figures 2 

and 3. We then used the spin coupling at each geometry to determine the optimum 

0HcH by minimizing the energy (8) with respect to the angle. 

We recalculated the London and GLFF potential surfaces shown in Figures 

2 and 3. Very little change occurs in the spin coupling so that additional iterations 

were not needed. 

We conclude that GLFF gives an excellent description of the QC potential 

surface. 

5.3 H2 and CH4 Potentials 

When all of our information is based on ab initio calculations, it is best to use 

a consistent level of calculation for all potential surfaces. The C H 4 + H calculations 

of Mus grave et al. on the saddle point of CH 4 + H 2 are not to high accuracy, however 

a similar level calculation is feasible on larger systems. Calculations at a similar 

level of accuracy were done for H2 and CH4
1 and are reported in Tables 3 and 4 

for H2 ·and CH4, respectively. 

We include the tetrahedral geometries for the fixed-angle, surface-like atom 

case. For a lone CH4 , the angle between the H whose bond is being stretched and 

the other hydrogens relaxes from tetrahedral to planar during the course of the 

reaction with H. For lone CH3 , about 7 kcal/mol is required to go from planar to 

tetrahedral. Calculations of the snap bond energies at various angles are possible 

which can then be used to do the general relaxed angle case. To simplify matters 

here, we report the energies at 104° which is about the optimized saddle point 

geometry. 3, 11 

5.4 Fixed Angle CH4 + H 

We consider the first approximation of using CH4 with the bond angle fixed 

at tetrahedral and calculate the resulting potential energy surface. We start from 

spline fits to the H 2 and CH4 energies of the previous subsection. The London 

Potential for this system is shown in Figure 2. 

The C H 3 + H2 limit is taken as the zero of energy. While the bond energies 

of CH4 and H2 are only several kcal/mol apart, the additional energy to bend 

CH3 to tetrahedral makes the energy difference in the channels about 9 kcal/mol. 
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As expected, the saddle point is closer to the higher energy H 2 channel. The 

corresponding spin coupling is shown in Figure 1. This shows that the "transition 

state" as defined by the spin coupling (, = 0) is even further into the H 2 valley 

than the saddle point. The smooth variation of , along the reaction path is again 

seen as for H3 in Figure 4 and for CH4 + Hin Figure 5. 

The potential energy surface is improved by assuming that the parameters 

of the H 3 GLP are about on the order of those for CH4 + H. Given the similar 

bond energies, this should be a reasonable approximation. The corrections from 

second order overlap and dispersion for H3 lead to the new surface of Figure 3. 

Thus, we have estimated the entire potential energy surface for CH 4 + H using only 

two-body curves and our knowledge of the London Equation error for H3. With 

more experience in the variation of the GLP parameters across various systems, 

we can hopefully establish a methodology of creating such surfaces to a reasonable 

accuracy with little more than two-body input. 

5.5 Relaxed Angle CH4 + H 

In order to compare the CH4 + H results of Reference 2 with the GLP 

results, we need to allow the C H 4 bond angle to relax as the reaction proceeds. 

The singlet and triplet energies at several angles for each CH 3 - H distance could 

be calculated in order to obtain the angular dependence. If the angle relaxed to 

its singlet minimum, it would be planar at far distances, near tetrahedral at the 

bond distance, and slightly beyond tetrahedral at shorter distances. At the saddle 

point distance of about 2.6 bohr, the energy of the singlet is a minimum for an 

angle between 106 and 107°. This is in contrast to the optimized angle of 103 .. 8° of 

Reference 11. The discrepancy arose because the energy minimum with respect to 

angle for the triplet is much nearer planar. From the spin coupling ti, we know the 

mix of singlet and triplet character for a given pair of atoms i: 

E,; == jf E! + f~E~ 
II 'l, 'l, 'l, 'l, • 

This is the function to be minimized with respect to bond angle at each geometric 

configuration. 

Even without knowledge of the CH4 triplet and singlet energies at various 

angles and distances, we can still estimate the energy at the saddle point. Using 
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the 104° energies of CH4 from Subsection A, the saddle point for the relaxed angle 

C H 4 + H reaction can be found. This was done for the London Potential and the 

GLP with second order corrections based on the H3 parameters. Table 5 shows 

that predicted GLP energy is within 0.3 kcal/mol of the ab initio value. 

Separate H 2 and CH4 corrections would improve the saddle point position. 

The information that went into this prediction includes only two-body H2 and CH4 

potentials, an estimate of two GLP parameters from H3 , and an estimate of the 

CH4 bond angle at the saddle point. This last piece of information is also derivable 

independently by knowing the angular dependence of the separate singlet and triplet 

curves at the saddle point distance. In addition to this saddle point information, 

we now have an estimate of the potential energy surface over the entire range of 

geometries. This can be used to add reactive dynamics to molecular modeling 

simulations. 

6.0 Conclusions 

We use the Generalized London Force Field ( GLFF) method to derive the 

potential energy surface (PES) for the exchange reaction: CH4 + H -t CH3 + H 2 • 

We find that we are able to accurately determine the PES when including dispersion 

and three body interaction corrections. The GLFF includes the effect of the Pauli 

Exclusion Principle on the PES of chemical reactions and greatly speeds up the cal­

culation of accurate PES over quantum chemical methods. Our results show excel­

lent agreement with the PES from ab initio quantum chemical reactions (GVB*SD 

CI) where primarily only two-body interactions were included. To describe other 

PES for other reactions a set of accurate two-body potentials are requiredc With 

these potentials it is hoped that a large number of reactions could be described 

accurately and with vastly reduced computational effort. 
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Table 1. Special Cases of Energy for Various 1's. 

0 
7r 

3 
21r 
3 

7r 

7r 

3 
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Table 2. Geometries and transition barriers for CH4 + H · ---+ • CH3 + H 2 

(energies in kcal/rnol). 

Reaction 

TS 

Product 

109.47 

104.0 

90.0 

RcH 

1.09 

1.459 

CX) 

CX) 

0.868 

0.7 

GVB-CI London GLFF 

12.91 15.00 12.64 
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Table 3. Two-Body Potentials for H 2 • Distances are in A (note that so far we 
have dealt mainly in bohr), and energies are in Hartrees. 

R Es ET 

0.4 -0.96387083 

0.5 -1.09183076 -0.57411048 

0.6 -1.14695975 -0.68374487 

0.7 -1.16604573 -0. 75632627 

0.74 -1.16781588 

0.8 -1.16641530 -0.80860353 

0.9 -1.15698075 -0.848497 45 

1.0 -1.14262579 -0.87990173 

1.2 -1.10924298 -0.92499045 

1.4 -1.07765713 

1.5 -1.06391438 -0.96391211 

1.6 -1.05181371 

1.8 -1.03262628 -0.98315379 

2.0 -1.01952662 -0.99000541 

2.5 -1. 00460386 -0.99738858 

3.0 -1. 00090262 -0.99930581 

5.0 -0.99988367 -0.99988112 

50.0 -0.99988096 -0.99988096 
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Table 4. Two-Body Potentials for CH4 • Distances are in A, and energies are in 
Hartrees. 

Tetrahedral 104° 

R Es ET Es ET 

0.80 -40.25584 723 -39.87551304 -40.2504 7509 -39.86470574 

0.90 -40.32346617 -39. 94289320 -40.31871254 -39.92518046 

1.00 -40.35288348 -39.95152791 -40.34895780 -39. 96925500 

1.05 -40.35863390 -39.96678868 -40.35518093 -39. 98352944 

1.09 -40.36023885 -39.97693589 -40.35718587 -39. 99279529 

1.15 -40.35887945 -39.99059157 -40.35645516 -40.00497786 

1.20 -40.35516185 -40.00201942 -40.35328124 -40.01514904 

1.25. -40.3497 4849 -40.01428129 -40.34842353 -40.02631230 

1.30 -40.34311129 -40.02727004 -40.34234854 -40.03843393 

1.40 -40.32756398 -40. 05334920 -40.32792504 -40.06325829 

1.50 -40.31062243 -40.07708134 -40.31207546 -40.08607365 

2.00 -40.23606332 -40.14743236 -40.24161279 -40.15436516 

2.50 -40.19695719 -40.16986183 -40.20385300 -40.17646641 

3.00 -40.18315200 -40.17612653 -40.19006031 -40.1827 4 728 

4.00 -40.17853794 -40.17815402 -40.18525719 -40 .18483343 

6.00 -40.17824863 -40.17824772 -40 .18493831 -40.18493718 

50.00 -40.17824051 -40.17824051 -40.18493026 -40.18493025 
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Table 5. Saddle Points for CH4 + H. Distances are in atomic units, and saddle 
point energies are from H 2 channel in kcal/mol. 

London 

GLP 

Reference 39 

R1sp 

2.6095 

2.6448 

2.63 

1. 7435 

1.6998 

1.74 

14.9974 

12.6379 

12.91 
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Figure Captions 

Figure 1. The product, transition and reactant states of a H exchange reaction. 

Figure 2. CH4 + H London Potential Contour Plot. The contour values shown 

are the powers of two times ±3 kcal/mol and zero. Axes are distances in atomic 

units. H2 channel is to the upper left and CH4 channel is to the bottom right. 

Figure 3. CH4 + H GLP Contour Plot. The contour values shown are the powers 

of two times ±3 kcal/mol and zero. Axes are distances in atomic units. H 2 channel 

is to the upper left and C H 4 channel is to the bottom right. 

Figure 4. Contour Plot of, for H 2 + H. Contours are spaced every 10 degrees 

with negative contours endashed. 

Figure 5. Contour Plot of, for CH4 + H. Contours are spaced every 10 degrees 

with negative contours endashed. 
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Figure 1. Truhlar and Horowitz (LSTH) Contour Diagram. Reported saddle point 
properties are actually those of CI calculations of Liu et al. 
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Figure 2 C H4 + H London Potential Contour Plot. The contour values ·shown 
are the powers of two times ±3 kcal/mole and zero. Axes are distances in atomic 
units. H2 channel is to the upper left and C H4 channel is to the bottom right. 
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Figure 3 C H4 + H GLP Contour Ploto The contour values shown are the powers 
of two times ±3 kcal/mole and. zero. Axes are distances in atomic units. H2 channel 
is to the upper left and C ... 1I1 channel is to the bottom right. 
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Figure 4 Contour Plot of --y for CH4 + H. Contours are spaced every 10 degrees 
with negative contours endashed. 
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Figure 5. Contour Plot of, for Linear H3 • Contours are spaced every 10 degrees 
with negative contours endashed. 




