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Abstract

This thesis describes the application of ab initio and molecular mechanics
quantum chemical methods to several problems in the materials and surface sci-
ences. Chapter 1 reviews these methods. Chapter 2 details the application of these
methods to study the reaction rate of a proposed mechanism for growth of CVD
diamond. Chapter 3 uses high level ab initio methods to study the feasibility of
a hydrogen abstraction tool for nanotechnology. Chapter 4 uses ab initio methods
together with experimental data to develop a force field potential to model polysi-
lane polymers. Chapter 5 is comprised of the development of atomistic potentials
to describe semiconductors and their superlattices and interfaces. The approach
of Chapter 5 is extended in Chaper 6 by combining the bulk force field with force
field parameters developed from the Biased Hessian Method applied to unique clus-
ters to model the reconstructions of the Si (111) surface. Chapter 7 concludes this
thesis with a description of the Generalized London Potential which was developed
to accurately model chemical reactions at the accuracy of high level configuration

interaction methods, but with the practicality of molecular mechanics.



1.0 Introduction

Advances in quantum chemistry and molecular dynamics have progressed
to the point where materials behavior predictions from computational atomistic
simulations are being realized. Much progress has also been made in solving the
more challenging problems involved in simulating materials processing. Advances
in computer hardware together with advances in theory have lead to application
of computational materials science to numerous important industrial and scientific
problems, however many issues remain.

Our goal was to develop and apply molecular mechanics and quantum chem-
istry methods to simulate and predict the materials properties. We have chosen to
simulate several challenging materials problems, which required the development
and extension of techniques and which illustrate the success of our approé,ch; (i)
Si (111)!~3 surface reconstruction, (ii) chemical vapor deposition (CVD) growth
of diamond, (iii) properties of bulk semiconductors and their (iv) interfaces and
superlattices, (v) H abstraction for nanotechnology, and (vi) polysilane polymers.

In the case of surface reconstruction, the primary goals are to determine the
atomic structure of the surface and its stability. For the various Si(111) surface
reconstructions the differences in stability are very small and therefore only meth-
ods that are highly accurate should be employed in order to correctly resolve the
energetic differences between the various structures. This is the case in many other
systems as well. Advanced ab initio methods with high accuracy are the natural
choices for studying systems where slight differences in geometry or energy need
to be resolved.* However, except in the few cases of surfaces with small unit cells,
ab initio quantum chemical methods are not practical since they scale as N® where
N is the number of electrons and s is at least 4, and depends on the method em-
ployed. Furthermore, few of the most accurate methods that have been developed
for molecules and clusters have been extended to crystalline systems. One quantum

based method that shows promise in simulating large systems, such as the recon-
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struction of surfaces is density functional theory (DFT),>® especially if the method
includes the local density approximation, the gradient correction and algorithms
to reduce the scaling factor. Currently there is insufficient experience with these
methods and their accuracy for such systems is yet to be determined, however, pre-
liminary results are promising. These methods can be applied to relatively large
unit cells for single point energy calculations. However, these calculations are com-
putationally intensive, particularly optimization of geometries, and computation of

Hessians for frequency predictions.

Quantum chemical methods are not practical for (i) or other large systems
because they include the electrons in the simulations.” Molecular mechanics meth-
ods were developed to overcome this problem. In molecular mechanics, the atoms
of the system are treated as classical particles that interact with each other via two,
three, four,..., n-body interactions. The series of interactions is usually truncated
at a small n, like 4 or 5. The potentials that model these interactions take on vari-
ous forms. In the method® we employ these are represented by spring-like valence
terms for atoms connected by a series of bonds. Including bond terms, bond angle
terms, dihedral torsion terms, coupling terms and nonbond terms. For atoms not

connected by a string of bonds, there are Coulombic and van der Waals terms.

Each type of specific interaction has its own spring constant. In bulk silicon
Si-Si bonds are modelled by the same potential. Bonds between a Si with three-fold
coordination and a four-fold coordinated Si would have a different spring constant.
Since molecular mechanics includes only interactions between the atoms as classical
particles in a system, the effects of the electrons are averaged out. The number
of interactions is therefore relatively small leading to a relatively simple algebraic
expression for the energy of the system, in contrast to the much more complicated

Schrédinger equation.

The molecular mechanics total energy can be calculated by summing the

individual energy terms. The properties of the system can be calculated from the
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expression for the total energy. For example, forces are first derivatives of the energy
with respect to the atomic coordinates, and vibrational frequencies are the square
roots of the diagonalized second derivative matrix. Consequently, the energy of the
system, and thus the system properties, are functions of the spring ¢onstants: This
set of spring constants, called the force field or potential, can be optimized so as
to reproduce the system properties. Often this procedure is empirical and involves
varying the force constants to reproduce the experimental properties of the system:.
This is often very involved and can consume a major portion of the research activity.

Once an accurate force field is available, it can be used to study arbitrary sys-
tems containing the interactions modelled by the force field. For moderately sized
systems, less than a few thousand atoms, simulations of geometry optimization,
phonon dispersion curves, vibrational frequencies, elastic constants, and thermody-
namic properties are all carried out on inexpensive work stations over periods of
less than several days. The development of Cell-Multipole Methods® has enabled
simulations of systems with up to 1 to 10 million atoms at present.

The advantages of molecular mechanics are (a), it can handle large systems
relatively quickly and (b), the classical nature of the energy and other properties
make it easy to understand, especially if valence-like terms are used to model the
interactions. On the other hand, there are several drawbacks. One arises from the
same feature that gives it its advantage; since electrons are not included in the
simulation, quantum effects are neglected. The most important quantum effect is
that of bond dissociation and formation. During a chemical reaction major changes
to the electronic configuration of the system occur as what were once bonding in-
teractions become antibonding or nonbonding interactions. So as a system nears a
transition state, neglect of the Pauli principle leads to unphysical results, for exam-
ple excess covalent bonds. This problem will make simulation of (ii), CVD diamond
film growth and (v), H abstraction reactions unreliable. One way to circumvent
this disadvantage is to (a), combine molecular mechanics and ab initio methods for

a simulation in such a way that ab initio methods are applied to the portion of the
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system undergoing reaction, and molecular mechanics is applied to large numbers
of atoms in the nonreacting portion of the system which usually affect the energy
through strain effects. Another way to circumvent this drawback is to (b) develop
for force field expressions that take into account the Pauli Principle. One such ap-
proach is the Generalized London Potential method developed by Donnelly!® and
applied to hydrocarbon reactions in collaboration with Musgrave.'! In chapter 2
we report the results of approach (a) to study the CVD growth of diamond and in
chapter 7 we report the efforts of approach (b). The reactions involved in the mech-
anisms to grow diamond are similar to the reactions envisioned to make diamond
using nanotechnology. In chapter 3 we describe the simulations of hydrogen ab-
straction and carbon addition for making diamond using nanotechnology concepts.

Another disadvantage with the molecular mechanics approach is that the ap-
proximate method entirely depends on (c¢) the availability of a force field. Assuming
the force field has been developed, (d) it may not be transferable to the system un-
der study. That is, although the force field may model experimental properties of
one system well, it may break down when transferred to a similar system. Addi-
tionally, (e) there may not be sufficient experimental properties to determine an
accurate potential through an empirical fit. We use the Biased Hessian Method
of Dasgupta and Goddard!? for developing force fields for molecules to overcome
(c) and (d). The Biased Hessian Method increases the number of constraints on
a force field by requiring it to fit the vibrational frequencies, and also the normal
modes which are the ab initio vibrational eigenvectors. The force field is obtained
by minimizing an error function which depends on the fit to the normal modes, the
experimental frequencies and the ab initio normal modes.

In the simulation of (i), Si surface reconstructions and (vi), polysilane poly-
mers we are faced with systems for which insufficient experimental information
exists to apply the Biased Hessian method in the standard way. In the case of Si
(111) surface reconstruction, clusters needed to model the surface have not been ex-

perimentally detected. In the case of developing force fields for polysilane polymers,
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the experimental vibrational frequencies are incomplete for some of the oligomers
needed to develop the atomic potentials. Therefore in these cases the biased Hessian
method cannot be used to develop a force field that reproduces the experimental
information, since the experimental information currently does not exist. In chapter
6 we describe a method based on developing scales that describe the ratio of the
force constants fit to experimental frequencies to force constants that were fit to the
ab initio frequencies. We then describe how we apply these scales to the force field
for the experimentally unobserved cluster by applying the scales to the FF fit to ab
initio frequencies. We then apply this scaled force field to study the reconstructions
of the Si (111) surface. Chapter 4 describes how (e), the lack of experimental infor-
mation was over come to simulate (vi), polysilane polymers. Crystalline polysilane
is not experimentally studied, because no crystalline samples have been prepared.
We developed force fields for the Si, Ha, 42 oligomers which can then be used on the
extended, periodic system. However, the set of experimental frequencies is incom-
plete for SigHg and n-SigH;o. Consequently, we develop a scaling method which
uses scales between experimental frequencies and ab initio frequencies. The scales
are averages of these ratios for a particular class of vibrations within each molecule.
If one of the modes within that class is not experimentally known, then we apply
the scale from that class and molecule to the ab initio frequency of that mode.
These scaling methods are thought to be accurate since the standard deviation of
the ratios within each molecule is very small. We test the method by applying the
force field to larger oligomers of polysilane and comparing to the scaled ab initio
frequencies. The n-SisHio potential is then applied to the polysilane crystal.
Polymers are simple molecular extensions of oligomers and application of
a force field from an oligomer to the extended system is expected to include the
important physics that determines the material’s properties. On the other hand,
crystalline systems that are not molecular crystals, for example the diamond and
zinc-blende crystals cannot be treated this way. To simulate the semiconductor

(iv), materials we need to develop force fields directly for periodic systems. Our
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molecular mechanics simulations of (i), Si (111) surface reconstructions (ii), growth
of CVD diamond and (iv), semiconductor interfaces and superlattices involves com-
bining bulk potentials with atomic interactions that either model the surface con-
figurations, the interface configurations, or a surface chemical reaction. We develop
potentials to model periodic systems, specifically (iii), the semiconductor crystals
using a method similar to the Biased Hessian approach. In the periodic case, we
do not use a normal mode description (although this will soon be possible). We fit
to the special points in the A direction of the phonon dispersion curve and to the
elastic constants. To complete the force field to simulate (iv) we use an extrapola-
tion scheme to extend the potentials from the group IV, III/V or II/VI crystals to
include terms necessary to describe the interfaces between various combinations of
the materials. We describe our work on semiconductor force fields, interfaces and

superlattices (iii and iv), in chapter 5.
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Chapter 1
Review of Methods



1.0 Review of Methods
This chapter gives a brief review of the methods used in this thesis, including

ab initio methods, molecular mechanics, and the Biased Hessian method.

1.1 Review of Ab Initio Quantum Chemistry Methods
Ab initio quantum chemistry theory is used to find approximate solutions to

the electronic Schrodinger equation
HU = EV (1)

for the electronic wave function ¥, where the Hamiltonian of the system is given by

—h2 n M n 7 2 n 2
Hz—%;V?—ZZ - +ZZ%~ (2)

A=1i=1 i=1 j>i

Here the first sum includes the kinetic energy of the electrons, the second sum
includes the Coulombic interaction between the electrons and nuclei and the third
sum includes the Coulombic interactions of the electrons with each other. Z4 are
the nuclear charges, n the number of electrons and M the number of atoms in the
molecule. In (2) we have ignored the nuclear kinetic energy since the nuclei are
assumed to be at rest relative to the motion of the electrons. This approximation
works well in practice and is called the Born-Oppenheimer approximation. The
Coulombic interactions between the nuclei themselves are also not included since
they remain constant with the assumption of fixed nuclei. The wave function will
then be a function of the electron coordinates and only parametrically dependent on
the nuclear coordinates. To generate a potential energy surface one calculates the
wave function energy at various input nuclear coordinates. To calculate the forces
on the molecule, one takes derivatives with respect to the nuclear coordinates. To
calculate a Hessian, one computes the matrix of second derivatives and to extract
the vibrational frequencies and eigenvectors one diagonalizes the Hessian.

The solution to the many-electron Schrodinger equation will be an antisym-

metrized n-fold product of spin orbitals. Since electrons are Fermions they must
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satisfy the Pauli principle which states that no two electrons can occupy the same
spin orbital. This constraint on the solution is imposed by antisymmetrizing the
wave function by making ¥ a Slater determinant or sum of Slater determinants.
Constructing wave functions from Slater determinants also insures that the elec-
trons are indistinguishable.
1.2 The Hartree-Fock Wave Function

The simplest wave function which obeys the Pauli Principle and can describe
the ground state of the electronic Hamiltonian is, of course the single determinant
U. The single determinant ¥ that best approximates a solution to (1) is called the

Hartree-Fock wave function. Now
UHE = Apa(1)1h(2) - - - 2 (N)] (3)

can be varied until it éolves(l), the HF solution. This is done by applying the
variation principle which states that the best description of the wave function is
the one that minimizes the energy. To apply this in practice involves introducing
parameters which vary the shape of the spin orbitals. The most common way of
doing this is by using a set of atomic orbitals ¢, on each of the atoms as a basis for
describing the spatial portion of the spin orbitals. Each basis function, in this case
a fixed atomic orbital, is mixed into the spin orbital by an amount determined by

its orbital coeflicient, C;:

K
Yi(r) = Z Cuidu(r). (4)

Increasing the size of the basis set allows us to better describe the electronic orbitals,
however at a greatly increased computational cost. It is best then to be judicious
in the basis set expansion, including sufficient functions so as to accurately describe
the wave function, but not so many terms as to make the calculation too costly.
Usually these types of calculations follow the law of diminishing returns as each
additional basis function of a wisely chosen basis set improves the description of ¥

less than the preceding function.
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Applying the variational principle by minimizing the expectation value of

the energy
E=<UHE |1 | gHF > (5)

with respect to the set of coefficients C,; leads to a pseudo-one particle equation

HAF ), = B (6)
where
HHF =+ (2J; - K)) (7)
J

includes a sum over the Coulomb (J;) and exchange (K;) interactions with the
other particles. The one electron operator h is a function of the coordinates of only
one electron. It therefore includes the electronic kinetic energy and the Coulom-
bic interactions between the electrons and the nuclei. Equation (6), known as the
Hartree-Fock equation is in eigenvalue form. The operator HZ¥ is known as the
Fock operator. The spin orbitals are the eigenfunctions and the energies of the spin
orbitals are the eigenvalues. The spin functions 1; are expansions of the basis func-
tions, so the HF equation can be transformed into a matrix equation by multiplying
(6) on the left by ¢,(1) and the appropriate spin function, substituting in (4), and

integrating. This leaves
K
> Cui < (1) | HIF(1) | 6,(1) >= Ei < $,(1) | ¢ (1) > . (8)

The matrix
Spw =< ¢u(1) | (1) > (9)

is defined as the overlap matrix and the matrix
F=<¢,(1) | HF (1) [ ¢,(1) > (10)

is called the Fock matrix. We also define the matrix of expansion coefficients C

and the diagonal matrix £ of eigenvalues E; which are the orbital energies. So
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intergrating the HF equations and using the above definitions allows us to write the

equation

FC = SCE. (11)

This matrix equation is known as the Roothaan equation. The matrices are of
size K x K, where K is the number of basis functions so the time required to
solve such an equation grows rapidly with K. Since the Fock operator of the HF
and Roothaan equations depends on the eigenfunctions through the Coulomb and
exchange operators, the equations are nonlinear. This makes it necessary to use an
iterative procedure to find solutions to (6) or (11).
1.3 The SCF Procedure

The iterative procedure used for solving these equations is known as the self
consistent field (SCF) procedure. First to minimize the energy we require that the
first order variation of the energy with respect to orbital variation be zero. We

expand the energy to second order in changes to the orbitals and derive

> (6¢i|Fil¢:) =0 (12)

1

where variations in the orbitals are restricted to be orthogonal to the orbital being
varied. The SCF procedure involves setting the shape of all the spin orbitals at a
starting guess value by estimating C. This defines the Hartree-Fock potential for
this starting guess wave function and we can obtain the new expansion coefficients
and orbital energies by diagonalizing the Fock matrix. If the new expansion coef-
ficients are the same as the original ones, then the wave function is converged. If
they are significantly different then we use the orbitals described by this interme-
diate C to start the procedure over again and repeat until self-consistent. The n
lowest energy spin orbitals are occupied and the 2k-n remaining orbitals are un-
occupied and referred to as virtual orbitals. The Hartree-Fock method does not
allow the electrons to dynamically correlate their motions because they interact

with each other only in an average way. This approximation makes HF very fast
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and still capable of describing many processes reasonably well. On the other hand,
many physical properties will be poorly described, for example the dissociation of
bonds. Because the electrons do not correlate their motions dynamically, as a bond
breaks upon atom separation, the electrons continue to doubly occupy the bonding
orbital, which becomes nonbonding as the bond breaks. What is required is that
the doubly occupied orbital that describes the bond of the molecule become two
singly occupied nonoverlapping orbitals of the fragments. So near equilibrium HF
describes the ground state relatively well, but it poorly describes strains, bond dis-
sociation, excited states, chemical reactions, etc. Furthermore, this deficiency leads
to overestimates in the HF vibrational frequencies, typically 10 to 20% too large.

Much of quantum chemistry research has been devoted to improving upon
HF by including additional electron correlation. The inclusion of additional corre-
lation leads to a series of improved theories, all using HF as their starting point.
These include the Generalized Valence Bond! (GVB), Complete Active Space SCF?
(CASSCF), Configuration Interaction (CI), Multi Reference CI (MRCI), Multicon-
figuration SCF (MCSCF), and second order Mgller-Plesset perturbation theory?
(MP2) wave functions.
1.4 Configuration Interaction Wave Functions

The HF wave function, and all wave functions that use it as a starting point

explicitly include all of the electron-electron interactions in H,

2

N e
> — (13)
i>j=1"Y

but solve for the wave function in terms of a hierarchy of increasingly accurate
solutions. The Hartree-Fock wave function was limited to a single determinant.
Although HF satisfied the Pauli principle, there is no reason additional Slater de-
terminants (electronic configurations) cannot be allowed to be included in the wave
function. The configurations are obtained by replacing one or more of the occupied

HF spin orbitals with unoccupied virtual orbitals. The resulting Slater determinant
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is called an excited determinant. If one orbital is replaced, then the excitation is
referred to as a single excitation, two orbitals replaced leads to a double excitation,
etc. At this point we can do a series expansion for the ground state wave function
in the Slater determinants to make what is known as the CI wave function
U=Colo+ Y Cr1¥i+ > Cols+t.t Y Co¥ppypre.  (14)
single double n—tuple

As we include additional configurations, we can improve upon the description of
the wave function, however the computational costs of determining the coefficients
of the Slater determinants increases with the length of the series. Therefore, this
series is usually truncated very early, for example at the double excitations in many
cases, and even this leads to very large calculations for moderately sized molecules.
The coefficients are solved for by applying the variational principle to the CI wave
function and optimizing the configuration coefficients to minimize the energy of
the system. The HF*SD CI wave function is an example of CI method that is
truncated at the level of double excitations. Here all single and double excitations
of the valence electrons are allowed into the virtual orbitals with reference to only
the HF configuration.
1.5 MRCI Wave Functions

The MRCI wave function is similar to the CI wave function just described,
except that rather than just including excitations of the valence electrons into the
virtual orbitals from the HF determinant, we include valence excitations to the vir-
tual orbitals with reference to other important configurations (references). If the
CI wave function is not truncated, then the MRCI and CI wave functions are de-
generate. However, since we truncate the CI series at doubles in most cases, the
excitations from the references, which are excited Slater configurations themselves
can contribute significantly to lowering the energy of the wave function. Allowing
these extra references from which we can excite from greatly improves the CI de-
scription of transition states where several electronic states mix into the transition

state wave function. For example, in the case of H transfer between methyls the
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important configurations are the HF configuration, the antibond configuration with
one node and the antibond configuration with two nodes. The GVB*SD CI wave
function is a multireference CI that includes up to double excitations. This MRCI
wave function is a high accuracy approximation to complete CI. The improvement
over the HF*SD CI wave function for the description of transition states is shown
in chapter 3. As the MRCI wave function is calculated on larger and larger systems
a drawback is encountered in that the correlation energy included in the calculation
decreases as the size of the system increases. For example, the MRCI energy of
two infinitely separated molecules will be greater than the sum of the MRCI ener-
gies of the component molecules. This is because a greater fraction of the valence
space is allowed to be excited in the smaller calculation where the larger calculation
is restricted to a larger fraction by the truncation in the series. As the series of
excitations is extended this effect becomes less important, but the expenseb of the
calculation becomes prohibitively large.

Because MRCI calculations, from only a few references and truncated at the
doubles level, can still be prohibitively expensive we have in some cases used smaller
CI calculations which do a good job of approximating the results of GVB*SD CIL*5
These wave functions restrict the orbitals from which excitations can be made.
For example, in the correlation consistent CI (CCCI)® wave function all single and
double excitations of the active electrons (active electrons are those in orbitals that
undergo significant change during a reaction, for example the electrons in a breaking
bond) and all single excitations of the other valence electrons into the virtual space
relative to the three GVB configurations are allowed (thus double excitations from
the valence space is not allowed). Since double excitations from the valence space are
so numerous and do not contribute to the correlation as significantly as the allowed
excitations, the essential physics of a reaction is retained while greatly improving
the cost of the calculation. An equivalent way of writing the CCCI wave function
would be GVB*(SDctive + Svatence)-

A similar wave function, called the dissociation consistent CI (DCCI)” wave
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function can be constructed which allows double excitations which are the product
of single excitations from the valence space with single excitations from the active
space. When higher order excitations are allowed an even larger hierarchy of wave
functions can be made. Often, the set of wave functions in this hierarchy are tested
on a small system analogous to the one under study by comparing to experiment.
We can then determine which of them best describes the phenomena of interest
without being computationally expensive. In some cases a method may seem to
give accurate results, although the quality of the results are fortuitous. Therefore
care must be taken when using such a method. It is therefore often useful to apply
the method to small model systems that are well understood or experimentally
measured.

1.6 MCSCF Wave Functions

In addition to optimizing the configuration coefficients it is possible to re-
optimize the orbital coefficients (therefore the orbitals from which you build the
configurations are no longer confined to be the HF orbitals). This type of solution
is referred to as a MCSCF wave function. Once the orbital’s coefficients are reopti-
mized, then the configuration coefficients can be reoptimized until self consistency
is obtained. This procedure allows one to obtain much of the correlation energy
with far fewer configurations than a MRCI or CI. The CASSCF or GVBCI-SCF?
wave function is an example of an MCSCF wave functions.

In the CASSCF wave function an active space is picked. This space consists
of orbitals that vary significantly during the process being studied. For example,
in the case of H transfer between methyls the active space would include the C-H-
C orbitals along the symmetry axis with zero, one and two nodes. The electrons
are the radical of the reactant, the radical of the product and the H electron. All
symmetry and spin allowed configurations of these three active electrons in the three
orbitals are generated. Thus a CASSCF makes no restrictions on the excitations

the active electrons can make within the active space.
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1.7 The Generalized Valence Bond Wave Function
Probably the simplest and most economical way of improving the HF wave

function is the generalized valence bond wave function developed by Goddard and
coworkers. A brief summary of the GVB approach as described by Bobrowicz! is
given here to illustrate the method. The main aim of the GVB wave function is
to describe bond dissociation properly. To remove the HF deficiency GVB allows
bonds to be described by two singly occupied, overlapping orbitals which make up
a GVB pair. This removes the condition HF imposes on the bonding orbital; that
it remain doubly occupied during the dissociation process. The GVB pair can then

be written as

\I"pair = A [(¢1¢2 + ¢2¢1) aﬁ] (15)

where A is the antisymmetrizer and where the overlap, S15 between the two orbitals

describing the bond is not zero

512 =< ¢1 l ¢2 >3£ 0. (16)

Each orbital is associated with one of the atoms participating in the bond. For
example, ¢ is localized on atom 1 and ¢2 on atom 2. As these orbitals are optimized
to describe the bond properly their shape changes to describe the polarization of
charge. For simplicity we focus here on the perfect pairing form of the wave function

GVB-PP which has the form

V=A [\Ilcore\llopen \I’pair] y (17)
where
ncore/2
lIlco're = H (¢za) (szﬁ) (18)
1=1

contains all doubly occupied orbitals in the core space of the molecule however, not
the doubly occupied bonding orbitals. The function

nopen/2

\Ilopen = H (¢za) (19)

=1
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is the product of all the singly occupied orbitals. To maximize the exchange inter-
action (Hund’s Rule) the singly occupied orbitals will have the same spin. The core

and open shell electrons are treated exactly as they are for the wavefunction.

MNpair

\I’pair = H (Cgi¢ig¢ig - Cui¢iu¢iu) (aﬁ - ,BOL) ’ (20)
=1

describes all GVB pairs. Here we have rewritten U,,;. so that the two orbitals
which make up the spatial part of the bond are a linear combination of the sym-
metric bonding HF-like orbital and antisymmetric antibonding HF-like orbital. The
symmetric orbital ¢;4 of pair i is just the sum of ¢; + ¢2, while the antisymmetric
orbital ¢;, is the difference ¢; — ¢o and therefore has a node through the bond.

The general energy expression for GVB-PP wave functions is

E= Z 2fihii + Z (ai; Jij + bij Kij) (21)
(3 (2%}

where h, J, and K are the standard one-electron, Coulomb, and exchange energies.
This expression for the energy is similar to the HF expression except that the
coefficients of the Fock, Coulomb and Exchange energies are now functions of the
pair coefficients Cy; and Cy;.

The coefficient of the Fock energy is called the orbital occupation coefficient

~ fi and given by
¢ is a core orbital
i is an open orbital (22)

fi = (C;)* i is a pair orbital with pair coefficient C;.

The coefficients for the two-electron Coulomb and exchange operators can be written

as

ai; = 2fif;

bi; = —fif;



19

except that

bi; = —3 if 4 and j are both open orbitals
ai; = f; if 7 is a pair orbital

b;; =0 if ¢ is a pair orbital

a;; =0 if 4 and j are in the same pair

b;; = C;C; if ¢ and j are in the same pair.
With the energy expression (21), the general condition for convergence is that the

first-order change in the energy due to orbital changes be zero, leading to

> (6¢:|Fil¢i) = 0, (12)

)

where F; is the generalized Fock operator for orbital ¢;,

F; = fh+ Z aij 37 4 b K7, (23)
J

Since F; depends on the orbitals, this equation is nonlinear and we solve for (12)

iteratively until self-consistency is achieved.

1.8 Summary

The preceding review of ab initio quantum chemistry methods illustrates
the type of calculations that are done on small molecules. Many other methods
have been developed to be more accurate or faster. Often however, these methods
have deficiencies which make them inappropriate for application to certain classes of
problems. The various semi-empirical methods for example are very fast, and work
well for unstrained molecules. However, in the case of transition states or strained
systems the method gives highly inaccurate results. The pseudospectral methods
were also developed to be much faster than standard QC methods. These methods
however have so far proven very accurate for the systems studied. An exhaustive

review of the methods available today would span many large volumes and because
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this review is only meant to cover some introductory material we stop our review

of ab initio methods here.

2.0 Review of Molecular Mechanics

A molecular mechanics calculation begins by defining the coordinate infor-
mation of a given list of atoms. The form of the atomic potential used in this thesis
also requires that a list of the bonds in the system be specified. Given the coordi-
nate and coordination information the program (MSI/Polygraf)® makes a list of all
bond, angle, dihedral torsions, cross, and non-bond interactions. Each interaction
is classified by the atom types involved and an energy term is assigned for that
interaction. The molecular mechanics energy can then be calculated by summing
this series of energy terms and the properties of the system can be calculated from
the energy function. The energy of the system and thus the system properties are

functions of the spring constants in each valence term of the energy expression.

2.1 Form of the Force Field

In some molecular mechanics methods the potential is only dependent on
the atom type, and geometry. Thus the coordination must be determined implicitly
from the geometry. In the valence form of the potential the valence interactions are
determined based on the connectivity input, thus atoms with equivalent nuclei, but
with different coordination numbers have different force constants and thus different
functions describing their interactions with other atoms, while in the nonvalence
form they have the same force constants. The advantage to the valence method is
that it greatly simplifies the functional form of the potential and facilitates physical

understanding of the calculation. The general form of the force field® we use is
E = Eval +EQ +Evdw, (1)

where E¥% includes all terms involving bonds and angles where E® describes elec-

trostatic interactions, and EV®* describes the van der Waals nonbond interactions.



21

The valence term is taken as
E'val — Ebond + Eangle 4 Feross 4 Etorsion (2)

which includes all terms involving bonds between atoms and the coupling of these
bonds. When the notation MSXX is used to label the force field it indicates that
both one-center and two-center cross terms are included, the MS stands for materials

simulations.

2.2 Electrostatics

The electrostatic term is written as

!
Q _ q:q;
E~ = Ccoul Z Rz’j (3)
1>7
involving partial charges ¢; (in units of the electron charge, |e|) on the various atoms.

[Here Ceour = 332.0637 ensures that energies are in kcal/mol with distances in A.]

2.3 van der Waals

The van der Waals (vdW) potential represents the long-range attraction
(London dispersion) and short-range repulsion (Pauli orthogonalization of non-
bonded electrons). Such terms are often ignored in force fields (their effects being
embedded in valence terms).

The vdW interactions are described with the Lennard-Jones 12-6 form

/

Evdw — Z‘Dzdw [pi_j12 _ 210;6:[ , (4(1)
1>7
where
Rz'j

In addition we assumed the standard combination rule

R = /Ry RV (5a)
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vdw __ vdw NHvdw
Dy = /Dyt Dydv, (5b)

2.4 Nonbond Exclusions

The summation over 7 and j in (3) and (4) ezcludes bonded atoms [1-2 cases]
and next-nearest neighbors [1-3 cases|. It is assumed that these interactions (which
would be partially shielded) are included in the valence interaction terms for bonds
and angles, respectively. We found that the next-next-nearest neighbors [1-4 cases]
are very important in determining the lattice constant and include them plus all

longer interactions.

2.5 Bond Terms

We take E?"? as a sum over all bond pairs where each has the form of a

Morse function,?

EMT*¢(R) = De [x* ~ 2x] (6)

with

x = emo(fofe) (7)

o JE .

This describes anharmonicity and allows a proper description of bond dissociation.

and

There are three independent parameters R, kg, and Dg; however Dpg is not sen-

sitive to the data used in the fits.

2.6 Angle Terms

For each atom J there are six angle terms I — J — K. The functional form

for the diagonal angle term is taken as®

Ecostne(f) = % [cos 6 — cos 6.]?, (9)

where the force constant is

O’E . 9
ko = <—a—0—2>6 = C'sin” 0. (10)

€
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This form (9) leads correctly to dE/df = 0 for § = 0, 180° and has a barrier of

; C
Egarrier — 3 [1+ cosfe)?. (11)

2.7 Angle Cross Terms (1-Center)

For each angle term I — J — K, we include in E°"°®* the couplings between
the bonds (IJ — JK) and the coupling between each bond and the angle (IJ with
IJK and JK with IJK). These have the form of °

Epr = Krr (R1 — Ric) (R2 — Rae), (12)
where R; is the I — J distance and Ry is the J — K distance and
Erg = Dro (R — R.)(cos@ — cosb.), (13)

where there are two terms, one for R = R;; and the other for R = Rji. Dgg is

related to the force constant as

9*Ero .
kre = <8R39 )Re,e = —Dpg sinO,. (14)

€

2.8 Torsion Terms
Consider the bond J — K. The dihedrals involving various atoms I bonded
to J and L bonded to K are given the energy dependence described by®

1
Etr = —Z-WOT [1 + cosmg], (15)

where ¢ is the dihedral angles ¢rjxr. This has minima (with zero energy) for
m¢ = 180°, and maxima (with energy Vi) for 0° (cis), and m¢ = 360°. We sum
(16) over all Dy;=(Cy — 1)x(Cy — 1) dihedral terms, where C; is the coordination

number of atom i, and divide by Dy so that V;,, is the total barrier.
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2.9 Additional Cross Terms

For two angles sharing a common bond and apex, the one-center angle-angle

cross terms has the form?
Ego1 = Fyp (cos b1 — cosbye) (cosfs — cosby.) . (16)

The two-center angle-angle cross term involves the coupling between two

angles sharing a common bond, but not a common apex,’
Eggo = Ggg (cos b1 — cosbi.) (cos s — cosbs.) f(0), (17a)
where the force constant is
92 Eger >
kogo = = Ggg Sin 1. sinOa. f (de). 17b
062 (601802 - 06 1 2¢f (@) (170)

Thus for a sequence of four bonds, I —J — K — L, 8, =015k, and 0o = 05k . For

a given J — K there are Dy possibilities.

2.10 Vibrational States Periodic Systems (Phonons)

Using the above force constants to build an energy expression allows us to
manipulate the energy to calculate system properties. This section describes the
general concepts necessary to compute phonon dispersion curves. The detailed
substitutions of the derivatives of the energy etc. are straightforward, although

often tedious.

Consider the energy expanded near equilibrium, these calculations expand
R, — R +6R; (18)
E(R;) = B(RS) + Z (E}),6R; + = Z (El}), 6RiSR;. (19)

Here the force at equilibrium is zero

Fiz—(E;)e=—<§1§i>e=0 (20)
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and
9%FE
( J)e 3R18RJ e J

is the Hessian.

Newton’s equation of motion becomes

0 3N
MIW = - /321 Por,65 [6Rss(1)], (22)

where a and [ are the x,y, z components of the atomic coordinates and I, j =

1,...,N. Assuming periodic motion with frequency w,
6Rq1(t) = 6RO etk R-wt=9¢) (23)
leads to the eigenvalue equation

WM;(6RY;) =) ®arps (6RY;) e o —Rar), (24)
BJ

For the I' point this leads to the eigenvalue equation

U = U), (25)
where
Bos gy = Larps (26)
’ M M;
Xij = 6ijCFeqwi (27)

(with w in cm ™!, mass in atomic mass units, R in A, and energy in kcal/mol, then
Cfreq = 108.5913) and
Uar,; = VM1 (6RS1 ;) (28)

describes the jt* vibrational mode.
3.0 The Biased Hessian Method
The calculation of properties using molecular mechanics methods depends

on the quality and availability of a force field. Often a force field is applied to a
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system only to find that it is inadequate for the phenomena of interest. At this
point it is necessary to acquire an improved force field. One way to do this is to
use the Biased Hessian method of Dasgupta and Goddard.!°

The energy expression of a molecule can be expanded as:

3N OF 3N 82E
E(X1...Zy)=Eo+ ) (aR)O 6R)+3 > (M)o (6R;)(6R;) +
i=1 t i, j=1 ?
(29)

where the force on the i** component is:

OF
i = 3 30
F ok, (30)
and
0’E
i = 3r.om; (31

is the Hessian. From ab initio HF wave functions we calculate!!l a full Hessian

HHF aQEHF

oi,Bj = aRaiaR,@j ) (32)

where R,; is the a component (x, y, z) of the coordinates of atom ¢. After mass

weighting,

i = ——"_Wﬂai,ﬁj’

the vibrational modes {Uf¥'} and vibrational frequencies {v¥'} are obtained by

solving
AAFUHF = UHF\RF, (34)

where
MIF = (CpregrT)* (35)

and Cfreq = 108.5913 converts units so that energies are in kcal/mol, distances
are in A, frequencies are in cm™!, and masses are in atomic mass units (C'? has

mass = 12.0000 amu). This Hessian provides an enormous number of constraints
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useful in determining the force field. Thus there are g(g + 1)/2 independent pieces
of information [for example, 666 for SisHyg], where g = 3N — 6 is the number of
degrees of freedom. In contrast, fitting just the frequencies leads to only g conditions
[36 for n-SiyHqp]. However, at the HF level the calculated frequencies, I/iH F are
10-20% too high. This led to the development of the Hessian Biased method® for

FF parameterization in which the force field is fit to the biased Hessian
HHB — UHF/\e:va'HF, (36)

where U is the transpose and A°®P is the diagonal matrix based on experimental
frequencies

AP = (Cppeqvi®P)?. (37)

i

This Hessian has the property that, HEBUHF = UHF )e2p that is, the eigenvalues
match experiment (or a combination of experimental frequencies and scaled ab initio
frequencies) while the eigenfunctions match HF theory. Thus, H”Z has the best
available information on the vibrational modes. The method does require accurate
mode assignments.

To optimize the force field we minimize the error function

3N 3N
ERR =Wyeom 3 _ (8E})* + Whess 3 (6E)”
i=1 i<j=1
6 6
+ Watrs D (63)" + Weiy > (6Cy5)°

i=1 i<j=1

; (38)

where § denotes the difference between the quantities calculated from the force field
and the reference values from experiment (/N is the number of atoms). Here E is the
energy gradient (negative force, which should be zero for each atom), and EJ’ is the
second derivative of the energy (Hessian). For periodic cases we ignore the Hessian
and include ¥;, which is the lattice stress (6 independent values of which should be

zero), and C;;, the elastic constants (3 independent values for cubic crystals).
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The Hessian term is transformed to the eigenvalue form and replaced by

Wf'rqu(éVz )"+ Wosrdiag Z 6H23 ) (39)
=1 1<j=1

In general the optimum geometry at the HF level differs slightly from experiment,
raising the question as to which structure is used in (10). We use the structures
optimized at the Hartree-Fock level of theory. Previously'? we advocated the use
of the experimental structure for determining force constants from the ab initio cal-
culations primarily because the internuclear separations (which strongly affect the
Hessian) reflect the experimental system. However, in molecules with low frequency
torsions, a slight difference in structure can cause a noticeable rotational contami-
nation of the torsional modes. Since we want to use frequency scaling parameters to
compare various molecules, it is better to derive the frequencies for all molecules at
the ab initio minima (rather than at the experimental minimum for molecules where
experimental geometries are available and the ab initio minimum for those where
experimental geometries are not available). Fortunately, the differences between

the ab initio and experimental geometries are small.
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Chapter 2

SR-SOR Step for Growth of CVD Diamond
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Abstract

Recombination of a Surface-Radical with a Surface-Olefin (SR-SOR) to form
a six-membered ring is a critical step in the current mechanism for chemical vapor
deposition (CVD) growth of the diamond (100) surface. We compare the poten-
tial energy surfaces (PES) and activation barriers (E4.:) calculated with various ab
initio methods for the SR-SOR recombination step. The PES of SR-SOR-C3H7 is
calculated at various levels of correlation to compare the resultant geometries of
the reactant and transition states and to compare the topology of the PES. The
ab initio calculations of the CsH; PES include Hartree-Fock (HF), second order
Mgller-Plesset (MP2), Generalized Valence Bond-Configuration Interaction (GVB-
CI or CASSCF) and GVB times singles and doubles CI (GVB*SD CI). We estimate
the rate constant for SR-SOR by combining quantum chemistry calculations, molec-
ular mechanics calculations, and transition state theory. The cluster models were
corrected for steric interactions of the cluster with the rest of the surface and for
strain effects on the lattice. We also compare the barrier and geometries obtained
when using two different clusters; (i) C3Hz, and (ii) C10H5 to model the surface.
HF and MP2 were used to model the reactants, and saddle point of the larger clus-
ter modeling the surface. Our results show that the barrier calculated for the larger
cluster was slightly lower than the barrier of the small cluster. The ab initio Hes-
sian matrix was diagonalized to find the vibrational frequencies, which were used to
construct a partition function for calculating the entropy. Transition state theory
was used to obtain the rate constant, k = 2 x 1013¢=8800/ET gec—1  This implies
that under normal growth conditions SR-SOR is fast compared with competing

gas-surface reactions.
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1.0 Introduction

Because of strong industrial interest in developing low pressure technolo-
gies for synthesizing diamond, there has been considerable effort in elucidating the
fundamental mechanisms of diamond film growth.!=3 The understanding of the ki-
netics and thermochemistry of carbon-hydrogen systems is so developed that it has
been expected that chemical vapor deposition (CVD) of diamond could be under-
stood at a level of detail far greater than that of most other CVD processes. The
assumption usually made is that the gas phase reactions are a good analogue to
reactions on a diamond surface. The assumption depends on whether the electronic
rearrangement that occurs during reaction is local and to what extent the surface
constrains the reaction. To calculate a rate constant for SR-SOR on this surface
we combine several methods. The strategy is to use ab initio methods on small
clusters where they are less expensive and where the accuracy in modelling the lo-
cal electronic structure of the system is critical. Furthermore, molecular mechanics
techniques were employed where they were most accurate and cost effective; in esti-
mating the strain energies of the reaction on a lattice of approximately 500 atoms.
This hybrid technique gives an alternative, more accurate method to semi-empirical
methods when studying the energies of large systems where only a small portion is
undergoing significant electronic structure rearrangement.

For tetrahedral electronic materials (Si, GaAs, ...) the (100) surface has
generally been the surface of interest for commercial growth of thin films by CVD
and MBE technology. Hence the mechanisms for diamond growth on this surface
is of interest. Both AFM and STM measurements have established that the stable
surface is hydrogen terminated with a 2x1 reconstruction as indicated in Figure 1a.
A close-up of the 5-membered rings (denoted as Cs) is shown in Figure 1b. This Cs
ring must be opened and converted to a 6-membered ring (C5 to Cg) during growth.
Such a process is potentially rate determining, and hence an understanding of the
mechanism is relevant. In this chapter we use ab initio quantum chemistry theory,

molecular mechanics, and transition state theory to analyze the critical Surface
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Radical-Surface Olefin Recombination (SR-SOR) step in the proposed mechanism,
and we estimate its rate constant on the diamond surface.

A number of experiments have shown that methyl radicals are generally the
dominant gas phase precursor species reacting with the surface to grow diamond,*~8
and several detailed chemical kinetics mechanisms have been proposed to analyze
growth on various idealized diamond surfaces.®~16 For the most part, these models
have relied on the assumption that a growing diamond surface behaves like an alkane
and that the chemistry on diamond surfaces is controlled by the local electronic
environment, as in alkanes. In addition to assuming behavior similar to that of
alkanes, often rate constants for gas phase reactions have been used to predict the
reaction rates of analogous reactions taking place on the growing CVD diamond
surface. This assumption holds in most instances, however dynamical constraints
imposed by the diamond surface restrict nuclear motions such that transition states
can only be reached by straining the surrounding structure. Furthermore, several of
these mechanisms rely on the ability of semi-empirical methods to predict transition
state barriers.

Recently, Garrison et al.!® proposed dimer opening reactions for the
(100)—(2x1):H diamond surface based on molecular dynamics simulations using
Brenner’s hydrocarbon potential.!” These reactions form part of a complete chem-
ical kinetics mechanism which can make quantitative predictions for the growth
rates in hot filament, microwave plasma, flame and plasma jet CVD systems. The
virtue of the Garrison mechanism is that it consists entirely of reactions which have
well-known analogs in hydrocarbon chemistry, immediately making the mechanism
plausible.

2.0 The Mechanism
i. The Garrison mechanism (Figure 2) commences with addition of a CHjs
radical to a surface radical site (Figure 2b to Figure 2c), forming the structure
denoted as C5M.

ii. The next step (Figure 2c¢ to Figure 2d) is abstraction of a hydrogen atom
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from the C'Hs group to make the radical denoted as C5M*.

Through the [-scission electronic rearrangement (Figure 2d to Figure 2e),
this structure isomerizes to another radical, denoted as CZ,. Here the dimer
bond breaks and a double bond forms between the carbon atom (Cj) of the
original structure and the carbon atom (C,) that started as an adsorbed
methyl (now the a-carbon of the olefin). Such unimolecular reactions are
generally fast compared with bimolecular reactions.

The final SR-SOR step in the mechanism (Figure 2e to Figure 2f) is in-
tramolecular attack of the radical carbon (C,) of C¥; with the C, of the
double bond. This leads to a 6-membered ring denoted as Cg, containing a
radical site (Cj). It is this step that we examine herein.

Gas phase reactions involving radical attack at a doubly bonded carbon, such

C.Hs
| (1)
HyC, = CsHy + -CrH3 — HyCo — CsHy,

are typically very fast and proceed with almost no barrier. However, on the surface

two factors considerably decrease the rate:

8

the initial equilibrium distance between the radical carbon, C,, and the a-
carbon, C,, is 2.85A, almost twice the normal CC bond distance, and

C, is tightly constrained by the lattice from moving toward C,, while C,
cannot move toward C, without straining the C,-Cg m-bond.

Although all the steps in the mechanism have analogous gas phase reactions,

some of the reactions are modified by the strains introduced when putting these

reactions on a surface. Thus, on the growing diamond surface the SR-SOR reaction

step

C5d* hand Cg (2)

could have a significant barrier. The question is whether the constrained SR-SOR

reaction (6), is sufficiently slow on the diamond surface as to limit the rate of di-
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amond formation. We concentrate on examining the critical step in the Garrison
mechanism: the attack of the radical carbon of C} at the CHs end of the double
bond, leading to a 6-membered ring containing a radical. We refer to the rad-
ical carbon as C7, the a-carbon as Cs and the (-carbon of the olefin as Cj3, as
shown in Figure 3. We refer to the final step as the Surface Radical-Surface Olefin
Recombination Step (SR-SOR).

In the gas phase the analogue of the SR-SOR ring closing step is the attack
of an olefin by a methyl. Reactions involving radical attack at a doubly bonded

carbon, such as

CH3 + CoHy — C3Hy, (1)

typically have almost no barrier. This reaction in particular proceeds with a very
small barrier in the gas phase as the methyl is free to approach the olefin and the
resulting o-bond more than compensates for the breaking of the m-bond through-
out the reaction. However, on the surface two factors may considerably increase
the barrier. (i) The equilibrium distance between the radical carbon, C; and the
a-carbon, Cy is 2.85A, almost twice the normal CC bond distance; (i) C; is tightly
constrained by the lattice from moving toward Cj, while C5, being the tail of the
olefin cannot move toward the radical carbon without moving out of the plane de-
fined by the double bond and the two sub-surface carbons below Cj, straining or
perhaps breaking the w-bond. Thus, on the surface the constraints imposed by
the lattice force the reaction to proceed over a significant activation barrier. The
surface does not allow the radical to freely engage the olefin and for the reaction to
proceed the tail of the olefin must bend towards the radical. This process involves
the straining of the m-bond without any significant contribution from the o bond as
it is too far away to stablize the transition state. Barriers are the result of bonds dis-
sociating while new bonds are only partially formed and thus unable to contribute
enough to the stability of the system to make up for the energy to break the original

bond. Because it is the bond dissociation process that is poorly described by more
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approximate methods, the transition state is also poorly described. Because tran-
sition states are not well described by simple wave functions or by semiempirical
wave functions that are parameterized to describe unstrained systems and thus do
not adequately include the effects necessary to describe transition states it is impor-
tant to determine what is the minimum level of correlation necessary to adequately
describe various transition states to make quantitative predictions of reaction rates.
In this chapter we compare the results of various ab initio quantum chemistry meth-
ods in predicting the barriers and PES of the critical Surface Radical-Surface Olefin
Recombination (SR-SOR) step in the proposed mechanism. The questions we ask
are; (i) what is the appropriate level of correlation necessary to accurately predict
the PES and reaction barriers, (ii) what size cluster is needed to model the relevant
parts of the surface and (iii) what are the characteristics of various methods that

lead to the variation in reaction barriers.

3.0 Calculational Details
3.1.1 Ab Initio Quantum Chemistry

The simplest wave function used is the wave function in which each molecular
orbital is doubly occupied (except the radical orbital). HF should give a qualitative
picture of the SR-SOR reaction under study. HF will tend to over estimate reac-
tion barriers since it generally over estimates stretching frequencies of bonds due
to its poor description of the bond breaking process (a doubly occupied orbital of
the molecule must become two singly occupied orbitals for the fragments). We can
remedy this problem by removing the HF constraint that a bond be described with
a single doubly occupied orbital. Additionally, wave functions needed to describe
transition states can be significantly more complex than those needed to describe
minima. HF, being a single determinant wave function precludes the contributions
of important configurations along the reaction path. At the transition state, the
electronic structure includes a resonance between the reactant and product states,

which requires a multi-configuration wave function for proper description of the
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partially broken bonds and partially formed bonds. Thus, to obtain more accurate
potential energy surfaces for reactions such as (1) or (2) than HF, it is essential to in-
clude all important electron correlation effects that change during the reaction. For
this purpose we use the GVB-CI method. GVB!19 is the simplest wave function
which describes bond dissociation properly, by allowing each bond to be described
with two singly occupied, overlapping orbitals leading to a proper description of
dissociation. In the GVB-CI method all electrons involved in bonds that change
during the reaction are correlated, and all other pairs of electrons are calculated
self consistently. For Reactions (1) and (2) there are three such electrons. For the
reactant these correspond to the w-bond electrons and the radical electron of the
a-carbon. In the product they correspond to the new C — C o-bond electrons and
the radical electron on the C3. There are two ways to spin pair these three elec-
trons (one corresponding to reactant and the other to the product) and the GVB-CI
method calculates all orbitals self consistently (these three plus all other electrons)
while optimizing the spin coupling. Simply, all symmetry- and spin-allowed con-
figurations of three active electrons in three orbitals are generated. Although this
wave function is an improvement on the description of the reaction by HF, it will
still tend to over estimate the reaction barriers. After calculating the GVB-CI wave
function, we then allow all single and double excitations from the three GVB-CI
configurations to all possible virtual orbitals, which is called a GVB*SD CI. This
calculation is rather computationally intensive and was not attempted for the larger
C10H1s cluster. GVB*SD CI has been shown to accurately approximate the results
of very complete CI calculations.?°

To describe the reaction path we considered 40 positions of the critical car-
bon, C5 in the cluster shown in Figure 3. These points were selected to describe
the reactant and saddle points (the exit channel was not examined, although the
geometry and energy of the product, Cg* was calculated). Calculations were carried
out at the points (Rjs, Rag) shown in Figure 4. R;o corresponds to the distance

parallel to the surface from the initial position of Cy, while Ro3 refers to the dis-



38

tance from the original position of Cy perpendicular to the surface. We fixed Cj,
Cs and the two hydrogens on C; and on C5 representing the bulk atoms. Then for
each value for R,5 and Rs3, we optimized the position of the other three hydrogens.
This optimization was carried out at the MP2 level of Mgller-Plesset perturbation
theory.?! MP2 is based on the Hartree-Fock wave function and although through
perturbations it can include additional electron correlation not included in HF, it
may not include all the important electron correlation needed to describe transition
states well. Hence, the energies and forces on Cy, Cy and C3 may not be accurate
in the transition region. However the C — H bonds should be well described with
MP2 and hence the H positions are expected to be accurate. For each such geome-
try (Ri2 and Regs) from MP2 we calculated the GVB-CI and GVB*SD CI energies,
denoted GVB-CI ps and GVB*SD ClIspa.

In addition to the calculations performed on the C3H7; cluster, we perform
ab initio calculations on a larger cluster to estimate the effects of cluster size on
the reaction barriers. The cluster consists of 10 carbon atoms and 15 hydrogens (as
shown in Figure 1b), where the product is bicyclononane with a radical at one of
the tertiary carbons. We consider only two geometries. (i) The reactant geometry
and; (ii) The transition state geometry. In these calculations, the positions of Cy,
Cs and C3 and the hydrogen atoms bonded to these three carbon atoms were all
optimized, which gives a better model of the relaxation on the surface than the
smaller cluster. The remaining 7 carbon atoms and 12 hydrogen atoms were held
fixed to model the lattice. This optimization was carried out at the MP2 level
of Mgller-Plesset perturbation theory.?! Using the MP2 optimized geometries we
calculate the GVB-CIp;ps reactant and saddle point energies to obtain MP2 and
GVB-CI,;p2 barriers.

For all GVB calculations on the 3-carbon cluster we use the Dunning?? and
Huzinaga?® double ¢ basis set plus diffuse s and p functions (¢* = 0.0474, (P =
0.0365) plus one set of d polarization functions (¢ = 0.75). The triple zeta contrac-

tion of the 6s set was used for hydrogens. The 6-31G** basis set was used for the
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MP2 optimizations on the 3-carbon cluster while 6-31G* was used for the MP2 opti-
mizations on the 10-carbon cluster. MP2 was performed using GAUSSIAN 9224 on
Hewlett Packard 730s. The HF, GVB-CI, and GVB*SD CI calculations on FPS 522
and CRAY YMP computers used the GVB?® and MOLECULE SWEDEN Suites

of programs.?6

3.1.2 Potential Energy Surface

Using the HF, GVB-CI;ps, MP2 and GVB*SD CI,;p, energies versus the
reaction coordinates we calculate the potential energy surfaces shown respectively
in Figures 5a-d, with the reaction paths shown by the dashed curves. The reaction
energy versus distance along the reaction paths are shown in Figures 6a-d. The bar-
riers and transition state geometries are shown in Table 1. The calculated reaction
barrier generally falls with increasing levels of correlation. Hartree-Fock (HF') leads
to a barrier about a factor of two too high and to a poor location of the transition
state geometry. The E,.; = 9.3 kcal/mol from the GVB*SD CI is expected to be
about 1 kcal/mol too high from residual errors due to incompleteness of the basis
set and the CI expansion. Thus for the SR-SOR process, we obtain a corrected

GVB*SD CI activation barrier of

Ee¥act 5 8.3kcal /mol. (3)

act

We calculated the zero point energy contribution to the vibrational adiabatic barrier
by computing the MP2 vibrational frequencies at the transition and initial states.

This adds 0.13 kcal/mol to the activation barrier, leading to

Eact .. ~ 8.4kcal/mol. (4)

cluster

Table 2 lists the contributions to the energy barrier for the SR-SOR step.
3.2 Discussion and Results of Ab Initio Calculations
Table 1 lists the reaction barriers and geometries for the transition state from

various levels of calculation on the C3Hy; cluster. The calculated reaction barrier



40

falls with increasing levels of correlation, except for the MP2 case. Thus, EEZF =

18.1 keal/mol, EMP2 =10.0 kcal/mol, ESYB=C¢T = 10.5 kcal/mol and EGY B*SDPCI
= 9.3 kcal/mol. As expected, HF leads to a barrier much too high (by almost 10
kcals/mol) and to a poor location of the transition state geometry. This error is
exponentiated in calculating the reaction rate and can lead to errors in the rate

constant on the order of 100 at CVD diamond growth temperatures.

We find that the MP2 level of correlation leads to a good value for the barrier
(higher than the GVB*SD CI by only 0.5 kcal/mol) and transition state geometry,
but favors a shorter m-bond and a larger C; — C5 distance in the initial state than
the GVB—CI and GVB=SD CI levels by about 0.024 and 0.05A4, respectively. Since
for the GVB-CI ;p2 and GVB*SD Cly po PES we use the positions of the three
movable hydrogens calculated from the constrained MP2 geometry optimiz‘ations,
the bias of MP2 towards a shorter w-bond in the initial state may leave moderate
amounts of strain in these three hydrogen’s positions. To determine the size of this
effect and to further refine the transition state barriers, several single point energies
were calculated for each of the three H degrees of freedom and fit to a quadratic at
the transition and initial states. For each degree of freedom, we find that the MP2
geometry accurately describes the H angles for GVB—CI and GVB%SD CI at the
the transition and initial states, despite its inaccuracy in predicting the position of
Cj for the initial state. The refined GVB*SD CI geometries, for example lead to a
barrier only 0.1 kcal/mol less that the GVB*SD CIspy barrier. With the exception
of HF, the transition state geometries change relatively little despite the changes in
the reaction barriers. The transition state geometries predicted by all four methods
keep the Cy — C3 w-bond and the plane of the adsorbed C'Hs group coplanar up
through the transition state. This positions the tail of the olefin for attack by the
radical while maintaining the 7-bond and therefore leads to a rather gently sloping
entrance channel. The accuracy of the MP2 barrier is considered fortuitous, and

its ability to accurately approximate the GVB*SD CI barrier in general remains
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undetermined.

The effects of cluster size were determined from ab initio calculations on a
C10H15 cluster. We consider only two states. (i) The reactant geometry and; (ii)
The transition state geometry. The two carbon atoms, C; and Cj are allowed to
optimize their positions, in contrast to C3H;. Because these two carbon atoms
change hybridization during the reaction they are expected to relax towards the
surface from their positions in C5. However, the amount of relaxation is reduced
because although the change in hybridization causes the relaxation, the constraint
that each of the subsurface atoms already have 4 bonds reduces the increase in the
order of the bonds of C; and C3 with the sub-surface carbon atoms, thus reducing
the strain imposed on the surrounding lattice. For the initial state of SR-SOR for
example, the radical carbon would generally like to relax into the surface, increasing
its bond order with the sub-surface carbons. However, orthogonality constraints
between the p—orbital of the radical electron and bonds between the two sub-
surface carbons and the surrounding lattice reduce relaxation into the surface. The
MP2 geometry optimization results in moderate relaxation of C; and Cs towards
the surface, and increases in the distances between C; and C3 and C; and C5 from
their positions in C;-CsHy7. The effect is larger for geometries where C; and Cs
have sp? character, and is reduced as these atoms change hybridization to sp? during
the reaction. Thus, the relaxation towards the surface is largest for the reactant
geometry and smaller for the transition state, although because the transition state
maintains a large amount of sp? character on the surface carbons the effect is only
slightly smaller for the transition state. The remaining 7 carbon atoms and 12
hydrogen atoms were held fixed, thus providing some estimate of the constraints
of the lattice on the reaction barrier. The optimization results in an MP2 barrier
for the reaction on this cluster of 11.2 kcal/mol. The approximately 1 kcal/mol
increase in the barrier results in a reduction of the reaction rate by approximately 40
percent at 1200k, since rates depend exponentially on the barriers. The differences

are attributed to the additional relaxation of the strains near the reacting part of
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the cluster where hybridization changes are significant. In addition, portions of the
surface which do not directly participate in the reaction, but which have significant
changes in their electronic structure during the reactions, including a portion of the
strain effects which were included in the molecular mechanics calculations on the
smaller cluster are better estimated. The improvement in the model when C—-C—-C
bond angles of the surface are modeled by C — C — C bond angles in the cluster,
rather than H — C — H bond angles, as in C3H7 allows for the improved description
of the hybridization changes and also better models the strains in these bond angles.

Our results show that HF provides a poor description of the transition state.
This is similar to the results seen with HF on other transition states. Previous work,
for example showed that for hydrogen exchange reactions, HF greatly over estimates
the experimental reaction barrier and barriers predicted by other more sophisticated
techniques.?” Their results show that HF over estimates the experimental results
by approximately 250 percent (this includes some error due to the incompleteness
of the basis set). Not only does HF greatly over estimate the barrier, but it also
predicts a poor transition geometry. The over estimate of the barrier is reduced by
including correlation with MP2, GVB, GVB-CI, and GVB*SD CI. Although the
MP2 perturbation wave function is based on the HF wave function, it predicts a
barrier and transition state very similar to that of GVB-CI and GVB«*SD CI with the
largest error being in the description of the initial state. Although its high-accuracy
here is most likely fortuitous, the MP2 description of the reaction is much superior to
HF and should generally be considered as the minimum level calculation necessary
for quantitative prediction of reaction barriers. Even sophisticated, computationally
expensive calculations like GVB*SD CI wave functions over estimate the barriers.
Musgrave et al. showed the over estimate of GVB*SD CI in the hydrogen exchange
reactions were still 10 to 20 percent too large (after taking into account the difference
in zero point energy).?” The effect is partially due to the incompleteness of the
basis set and partially due to the incompleteness of the configuration expansion.

The over estimate due to the truncation of the CI becomes more prominent as the
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clusters studied become larger due to the size consistency problems of CI methods.
We estimate that at the cluster size studied and the level of basis set used we over
estimate the barrier by approximately 1 kcal/mol based on comparisons of GVB*SD

CI results with experimental results on other systems.?”

Semi-empirical methods (e.g. MNDO) that are parameterized to describe
stable molecules may also provide poor descriptions of transition states and re-
action barriers. For example, Valone showed that these methods produced large
errors in the reaction barrier for H transfer between two methyls.?® Although semi-
empirical methods are capable of modeling large systems, it is not recommended
that they be used for modelling transition states where the approximations used
for the methods become less valid. The most frequent hypothesis used in modeling
CVD diamond growth kinetics has been that the chemistry of diamond is similar to
that of analogous hydrocarbon molecules. For example, gas-surface rate constants
for diamond growth have been taken more or less directly from gas phase data.!!:!2
This hypothesis has been verified experimentally for the H abstraction reaction from
a diamond surface. In this work we examined a reaction between a radical and a
m-bond. In the gas phase this reaction has hardly any barrier. However, in our
case the reaction is subject to severe dynamical constraints introduced by putting
it on the surface of the very rigid diamond lattice. Our results show that there is
a significant difference in activation barriers between the reaction on the diamond
surface and the analogous reaction in the gas phase. Thus, the analogy between
diamond and the alkane hydrocarbons may in general be a better approximation for
gas—surface reactions than for some surface—surface reactions, like SR-SOR. On the
other hand, SR-SOR-like sites are present on the (111) surface, the reconstructed
(110) surface and at steps. We can thus extend the results of the (100)—(2x1):H
SR-SOR to approximate the nature of the transition states of other SR-SOR reac-

tions. We conclude that the analogy is potentially very useful, but it must be used

with considerable care.
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3.3 Molecular Mechanics Calculations
Strain imposed on the lattice by the reacting surface species as calculated
with molecular mechanics using the MSXX many-body force field fit to the dia-
mond phonon dispersion curves and elastic constants.?? To model the reaction we
increased the cubic unit cell by a factor of 4 in the z direction and by factors of 5 in
the x and y directions (leading to 800 atoms in the unit cell). We then cleaved the
(001) surface, 2 leading to a slab which was then hydrogenated. The cluster atoms
optimized in the quantum chemistry calculations were held fixed at the initial, fi-
nal, and transition state geometries, while the remaining atoms of the slab were
optimized.?® Strains and steric interactions included in the ab initio cluster calcula-
tions were not included in the molecular mechanics energy to avoid double counting
of this portion of the energy. The lattice strain energy (not including van der Waals
interactions) and the van der Waals energy were calculated for the transition state
and the reactant state. These energies do not include the interactions already in-
cluded in the ab initio calculations on the cluster. The steric interaction with the
surrounding lattice decreases in the transition state relative to the initial state. The
strain imposed on the lattice at the transition state relative to the reactant state is
calculated to add 0.73 kcal/mol to the barrier while the van der Waals interactions
subtract 0.34 kcal/mol from the barrier. Thus the van der Waals and strain effects
are small. The total of 0.39 kcal/mol adds to the net electronic structure barrier to
yield a net
Esvrface — 8.8 keal /mol. (5)

act

Cell structure and atomic coordinates were updated at each optimization
cycle. The atomic coordinates were optimized3® using conjugate gradient techniques

until the RMS force per degree of freedom was less than 0.01 (kcal/mol)/A.

3.4 Transition State Theory
We determined the entropy change AS* between reactants and the transition

state from vibrational mode analyses that included the effects of the constraints on
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the vibrational levels during the reaction. First, the Hessian (second derivative ma-
trix) was calculated using MP2 theory at each geometry of the C3 Hy cluster.?* Next,
the 3N — 6 vibrational levels were calculated by diagonalizing the (mass-weighted)
Hessian.3? Finally, these energy levels were used to construct a partition function
from which the entropy was calculated.?® For the transition state the imaginary
vibrational frequency was ignored.

The TST pre-exponential factor is given by

A= <£§T—> eASi/R, (6)

where Ine = 1, kp is the Boltzmann constant, T is the temperature, h is the Planck
constant, R is the gas constant, and AS? is the change in entropy between C} and
the transition state. We estimated the entropies for the initial, transition, and final

states of reaction (6), leading to AS* = —2.6 cal/mol-K and
A=5.6x 102 (7)

from equation (9).

Combining (4) with (8) leads to a total rate constant for SR-SOR of
ksr-sor = 5.6 x 10128800/ RT go0—1, (8)

The unimolecular reaction (6) on the diamond surface competes primarily
with abstraction and addition reactions involving gas phase H atoms. To examine
the relative importance of these competing gas phase reactions, we compare reaction
(6) with reaction (12)

Cqx+H9® — Cy, (9)

in which the radical site recombines with a gas phase H atom. At 1200K the
characteristic time scale for (6) is 1/ksr—_sor = 7x 10712 sec. In contrast, assuming
k1o is in the range®! 103 to 10'* ¢cm3/mole-sec with a H atom concentration3! of

106 to 10'° atoms/cm3, leads to characteristic time scales of 1073 to 1078 sec.
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Thus the SR-SOR reaction is 10 to 10° times faster than other steps in the growth
process, indicating that it does not affect the rate of diamond growth in the Garrison

mechanism.

4.0 Conclusion

Different levels of correlation predict reaction barriers and potential energy
surfaces with some variation. The largest errors were those produced by the HF
method which was expected, considering that it describes the bond dissociation
process poorly. We conclude that HF is a poor method for predicting quantitative
aspects of transition states. Although HF greatly over estimates the barriers, it does
so consistently. Semi-empirical methods, on the other hand give highly inconsistent
results” and are not recommended for the prediction of transition states or other
highly strained systems. MP2, was not expected to estimate the results of higher
level methods so well. We attribute much of this improvement over HF to fortuitous
cancellation of errors, however even in the general case, MP2 is a major improvement
over HF. Furthermore, MP2 did not reproduce the initial state geometries of GVB-
CI and GVB*SD CI. This inaccuracy in the geometry leads us to believe that
the result for the activation barrier at the MP2 level was fortuitous. Although the
accuracy of MP2 is fortuitous, we recommend it as the minimum level of correlation
- needed to calculate transition barriers with reasonable accuracy. The GVB-CI
result shows that as expected, the inclusion of all correlation within the active
space greatly improves the description of the transition state over HF and provides
a greatly improved activation energy. Although the activation energy is higher than
that predicted by MP2, we contend that in general, GVB-CI provides a more robust
method for predicting transition states than MP2. GVB-CI, however, requires
moderately CPU intensive calculations that in all but the smallest systems would
be impractical for computing the PES. GVB*SD CI is an even more computationally
intensive method that is well established at predicting the results of complete CI

calculations. It describes additional dispersion and gives better approximations to
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the potential energy surface. For quantitative accuracy GVB*SD CI is the method
of choice. This becomes even more true when reaction rates are to be calculated
from activation barriers.

We make our best estimate of the rate for the SR-SOR step by combining the
barrier from GVB*SD CI ab initio calculations with strain energies from molecular
mechanics and entropic contributions from transition state theory. The rate equa-
tion we predict of ksp_sor = 5.6 x 1012e~8800/ET ge—1 predicts that the SR-SOR
recombination step does not limit diamond growth under the range of conditions
for which diamond is grown, rather the activation of surface sites by H abstraction
will be the limiting step. The methods of combining quantum chemical calculations
with classical molecular mechanics calculations is useful in that it concentrates the
power of accurate ab initio methods on the structure undergoing reaction while
adding in strain effects of the surrounding surface using inexpensive molecular me-
chanics. Methods that treat a large enough portion of the surface to include strain
effects are necessarily approximate to avoid large computational costs, often leading

to misleading results, especially for reaction barriers.
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Table 1. Transition state geometries and barriers at various levels of correlation.

Level Barrier (kcal/mol) R;(A) Ry (A)
HF 18.1 -0.58 -0.075
MP2 10.0 -0.54 -0.042
CASSCF 10.5 -0.50 -0.023

GVB*SD CI 9.3 -0.51 -0.025
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Table 2. Contributions to the activation energy for the SR-SOR step.

Calculation Energy (kcal/mol)

a. Quantum Chemical Calculations

GVB*SD CI 9.30
Corrections (Basis set and Correlation) -1.0
Differential Zero Point Energy 0.13
Net Electronic Structure Barrier 8.43

b. Force Field Calculations
Strain from Balance of Surface 0.73
van der Waals Interactions —0.34

c. Total E . 8.82
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5a.

Figure 5b.

Figure 5c.

Figures 6a-c

(a) Dimer paired structure of the H stabilized C(100) surface; (b)
Enlargement of (a). Unshaded = H, shaded = Bulk C, hatched =

bulk terminating C.

The Brenner-Garrison mechanism for dimer ring opening during CVD

growth of C(100).
The C3H7 cluster used to generate the PES surfaces.

The points Rio and Rgs used to generate the PES surfaces of the

SR-SOR step on the C3H7; cluster.

The energy surface for the SR-SOR reaction from CASSCF calcula-
tions. The reactant site is denoted as 0.0. The saddle point for the
reaction is denoted as 10.5. The product is far to left and top of the

figure. The contour spacing is 1.15 kcal/mol.

The energy surface for the SR-SOR reaction from MP2 calculations.
The reactant site is denoted as 0.0. The saddle point for the reaction
is denoted as 10.0. The product is far to the left and top of the figure.

The contour spacing is 1.15 kcal/mol.

The energy surface for the SR-SOR reaction from GVB-SD CI calcu-
lations. The reactant site is denoted as 0.0. The saddle point for the
reaction is denoted as 9.3. The product is far to the left and top of
the figure. The contour spacing is 1.15 kcal/mol.

The energy along the reaction paths for the CASSCF, MP2 and

GVB*SD CI reaction surfaces, respectively.
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Figure 1
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Figure 2

(a) Cy site

SR-SOR B-scission

() C¢* site (e) Cgq” site (d) CsM* site
6
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Figure 4 Pairs of R; and R, used for ab initio calculations.

0.25
3 ®
0.2
3 ® ® ® ® ®
0.153
] ® ® ® ®
0.1 Initial state
E ® ¢ ® @
0.054 ®e ® / 'S
] @ ® @ ¢ @
04 ® ® ®
3 ® ® ® ®
-0.05 = ®
] ® @ o
-0.13
3 ¢
-0.15 — T , , | r
-0.8 -0.6 -0.4 -0.2 0 0.2 04









mmmmmmm




Energy (kcal/mol)

61

Figure 6 Energy Along Reaction Path
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Figure 6 . Energy along Reaction Path
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Figure 6 Energy Along Reaction Path
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Chapter 3

Ab initio Study of H Abstraction in Nanotechnology
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Abstract

Processes which use mechanical positioning of reactive species to control
chemical reactions by either providing activation energy or selecting between al-
ternative reaction pathways will allow us to construct a wide range of complex
molecular structures. An example of such a process is the abstraction of hydrogen
from diamond surfaces by a radical species attached to a mechanical positioning
device for synthesis of atomically precise diamond-like structures. In the design of
a nanoscale, site specific hydrogen abstraction tool, we suggest the use of an alkynyl
radical tip. Using ab initio quantum chemistry techniques including electron corre-
lation we model the abstraction of hydrogen from dihydrogen, methane, acetylene,
benzene and isobutane by the acetylene radical. Of these systems, isobutane serves
as a good model of the diamond (111) surface. By conservative estimates, the ab-
straction barrier is small (less than 7.7kcal/mol) in all cases except for acetylene
and zero in the case of isobutane. Thermal vibrations at room temperature should
be sufficient to supply the small activation energy. Several methods of creating the
radical in a controlled vacuum setting should be feasible. Thermal, mechanical, op-
tical and chemical energy sources could all be used either to activate a pre-cursor,
which could be used once and thrown away, or alternatively to remove the hydro-
gen from the tip, thus refreshing the abstraction tool for a second use. We show
how nanofabrication processes can be accurately, and inexpensively designed in a

computational framework.
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1.0 Introduction

Mechanical positioning of reactive species can be used to convert mechani-
cal energy to chemical energy to select between alternative reactions, or to provide
activation energy. Mechanosynthesis is the employment of these mechanochemical
processes to synthesize molecular structures.! Atomically precise mechanosynthesis
promises to let us manufacture complex systems of molecular machinery. Examples
include: self-replicating assemblers,? molecular scale surgical systems,? computers
made with molecular logic elements,® and macroscopic machines made of diamond-
like materials.! Construction of such systems will require the ability to precisely
manipulate structure on an atomic level. The great specificity of the chemical
reactions required to synthesize designs with specific atomic structures should be
achievable with mechanochemical tools capable of positioning the reactive moieties
with sub-angstrom accuracy. Mechanochemistry allows alternative reaction tran-
sition states to be selected by maneuvering the reactive species in to a position
where the chosen reaction has the smallest barriers. Such positional control re-
quires that the tool exert forces and torques on the reactive molecule to move it

over the potential energy surface of interaction with the workpiece.

Feynman in a talk entitled “There is Plenty of Room at the Bottom,” 1960
is credited with first pointing out that the laws of physics said nothing about the
impossibility of using mechanical means to direct chemical reactions to synthesize
molecules and materials. Applying positional control to reactions will require that
the tool have certain properties to make synthesis reliable, feasible, and practical.
The tool must (a) have the proper chemical properties (b) be relatively small to
reduce steric interactions with the workpiece (c) be capable of remaining chemi-
cally and mechanically stable under thermal motions and strains induced during

positioning (d) be bound to a system which can transfer forces and torques to the
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reactive portion of the tool (e) be selective between alternative reactions and (f)
be easily made. Molecular tips attached to atomic force microscope (AFM) tips,
scanning tunneling microscope (STM) tips, or molecular robotic arms have been
suggested.* Because construction of atomically precise machinery might require
about as many unit operations as there are atoms in the system, it is important
that reactions be fast. To increase the speed of reactions with moderate barriers,
forces can be exerted between the work piece and reactive species to effectively in-
crease the pressure on the system, reducing the barrier height. Moderate reductions
in the barrier heights lead to substantial increases in the reaction rate because ther-
mal vibrations have an exponential Boltzman probability of overcoming the reaction
barrier. Mechanochemistry not only reduces the barriers by converting mechanical
energy to chemical energy, but also maximizes the effective reactive concentration
by positioning the reactive moieties to best advantage. These speed enhancing steps
together with multiple mechanochemical machines working simultaneously can com-
pensate for the loss of parallelism when compared against solution based reactions.
Mechanochemical synthesis also increases the range of synthetic steps that can be
used to build novel structures by the use of applied torques; a moiety attached to

both the tool and the workpiece can be twisted, for example, to break 7-bonds.!

Nanomachines made of complex specific arrangements of diamond-like ma-
terial offer several advantages. First, diamond is light, and stiff. Macroscopic
machines could be made stronger and simultaneously much lighter, making such
activities as air and space travel substantially more practical. Moving parts of such
machines would be lighter and therefore, faster. Furthermore, hydrocarbons are
abundant, making raw materials readily available and inexpensive. Stiffness is not
only a desirable property of finished machines it is also useful during construction

since the material surrounding the reactive site on the workpiece must be stiff. This
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allows it to withstand the compressive forces that might be needed to reduce re-
action barriers, to withstand the tensile forces during moiety abstraction, and to
withstand torques applied to break m-bonds. Building machines of diamond will in-
clude maneuvering hydrocarbons into reactive sites, torsion of structures, insertions
into bonds, and preparation of reactive sites by removing unwanted moieties to cre-
ate radical sites. Abstraction of hydrogen is likely to be the most repeated step and
common to building a wide range of molecular structures, including diamond-like
structures. Highly reactive species are commonly thought to play a crucial role in
the chemical vapor deposition (CVD) synthesis of diamond.5~" The abstraction of
hydrogen via any of several radicals is one of the central mechanisms involved in
the growth of diamond. It is not unreasonable, therefore, to expect that the atom-
ically precise synthesis of diamond-like materials will utilize site-specific hydrogen
abstraction via a radical as one of the main steps. Drexler has proposed using a
molecular tip made of an ethynyl radical’ bound to a mechanical base on the tool

(Figure 1).

While many radicals exist, the desire for a simple, general, positionally accu-
rate and sterically undemanding hydrogen abstraction tool can be used to narrow
the search to a structure which (a) has a very high affinity for hydrogen (b) is not
encumbered by surrounding groups (c) can be made part of an extended structure
which can be used as a “handle” for positioning and can be attached to an STM or
AFM tip (d) is mechanically and chemically stable during positioning (e) is selec-
tive between alternative reactions such as abstraction of a neighboring hydrogen or
bonding to a nearby carbon atom and (f) is easily made or regenerated. Perhaps
the most natural structure in this regard is the ethynyl radical. The C-H bond
in acetylene is one of the strongest bonds to hydrogen; thus, the ethynyl radical

formed by removing this hydrogen is likely to have a higher affinity for hydrogen
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than almost any other chemical structure. Further, the ethynyl radical can easily
be incorporated into structures which provide a high degree of steric exposure. A
structure resembling the propynyl radical, but with the carbon furthest from the
radical site embedded in an extended diamond-like structure (Figure I) provides
both excellent steric exposure to the radical and a “handle” for positioning the rad-
ical for the desired abstraction. Attachment of the tool to an STM or AFM tip may
develop from technology designed for attachment of proteins to surfaces.* Drexler
showed that the bending stiffness of an ethynyl- like tip attached to an adamantyl
group is ~ 6 N/m and can be increased to ~ 65 N/m by building up a surround-
ing collar.! If the reaction requires application of mechanical force to supplement
thermal energy, then bending stiffness may need to be increased. Stiffness also is
desirable to achieve selectivity. STM and AFM positing is stable to more than
sub-angstrom accuracy. However, bending modes of the ethynyl tip will be active
at moderate temperatures. If during positioning of the tip, the bending of the rad-
ical and displacement of the AFM or STM relative to the workpiece positions the
reactive portion of the tip near a branched transition state, for example (one path-
way leading to abstracting the neighboring hydrogen), then selectivity is reduced.
Drexler has shown that at worst at room temperature with a bending stiffness of 20
N/m and transition states separated by 1.2A the unwanted reaction rate is less than
10-12 times the rate of the target reaction.! Transition states between neighboring
hydrogens on the (111) surface of diamond are separated by 2.5A, and transition
states for other possible reactions in diamond-like structures also generally exceed
1.2A, making mechanochemical reactions highly selective. The strong C-H bond of
alkynes (127-132 kcal/mol)8~12 should give large exothermicities and small barriers
(rapid reactions) for alkynyl radical abstraction of hydrogen from weaker sp? and

sp® hybridized C-H bonds (see Table 1). The large exothermicity would also give
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a small reverse reaction rate constant. Compressive mechanical forces could be ap-
plied to supplement thermal energy in cases where the barriers are large; however,
care must be taken so that the alkynyl radical tip does not bend away from the
transition state. In the cases we study, the barriers are such that this is not an
issue. Several methods of creating the radical should be feasible. The process of
creating the radical should take place in an inert environment: vacuum, helium, or
some other extremely non-reactive system would be appropriate. The activation
energy required to create the abstraction tool could be provided from thermal, me-
chanical, optical, or chemical sources. There are two obvious approaches. In the
first, a pre-cursor compound is activated to create the abstraction tool. The tool
is then used once and discarded. A second pre-cursor would then be activated to
abstract a second hydrogen. Thus, in a functioning system using this approach, a
steady supply of the pre-cursor would be required as well as a method for disposing
of the used abstraction tools. In the second approach, the abstraction tool would
be refreshed by the removal of the hydrogen after each use. Of course, the ethynyl
radical was selected on the basis of its strong C-H bond, so removal of the hydro-
gen might at first seem paradoxical. However, there are several methods of solving
this problem. One would be to first weaken the C-H bond, and then abstract the
hydrogen from the abstraction tool using a weaker radical. Drexler! proposed that
the C-H bond could be weakened by positioning a weak radical near the carbon
atom. A second weak radical could then abstract the hydrogen from the tip. An
alternative to the attack by two weak radicals strategy would be photo exciting
the acetylene to obtain the w7« state which would rearrange to the structure with
a weak C-H bond and thereby allow removal of the hydrogen. Our primary con-
cern is to analyze the energy barriers associated with hydrogen abstraction using

alkynyl radicals to determine the feasibility of such a tool, rather than to analyze
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the methods of creating such a tool. We model the chemically active site of the
tool by the acetylene radical and determine the transition state geometry and ac-
tivation energy for transferring the hydrogen from several species: Ho, CHy4, CoHa,
CgHg, and CH(CH3)s. The geometry of the various transition states can be used
to position a working hydrogen abstraction tool for fast reaction and without bend-
ing the tip. The barrier height itself can be used to calculate an abstraction rate
at a given temperature and thus, how long the abstraction tool must remain at
the transition state until the probability that abstraction has occurred reaches a
given value. Various levels of generalized valence bond (GVB) and configuration
interaction (CI) ab initio calculations are used. To calibrate the accuracy of these
calculations, we consider the abstraction barriers and transition states for hydrogen
transfer between methyl and methane and for hydrogen transfer between H and Hy

as compared to other theoretical and experimental results.!3—15

2.0 Results

The barrier to the acetylene radical abstraction of hydrogen from isobutane
(sp? carbon) is conservatively estimated to be less than 0.45 kcals/mol (Figure II).
Reaction barriers calculated at various levels of correlation are shown in Table 2.
The barrier to abstraction of hydrogen by the acetylene radical from benzene (sp?
carbon) is estimated to be less than 7.7 kcals/mol. The Hartree-Fock times Sin-
gles and Doubles Configuration Interaction (HF*SD CI) consistently overestimates
the Generalized Valence Bond times Singles and Doubles Configuration Interaction
(GVB*SD CI) barriers while the Dissociation Consistent Configuration Interaction
(DCCI) consistently underestimates the GVB*SD CI barriers. The GVB*SD CI
barriers will be conservatively high due to a lack of a third diffuse p function, zero
point corrections, and lack of more correlation of the valence electrons. Transi-

tion states were optimized at the Correlation Consistent Configuration Interaction
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(CCCI) level (Table 3). Although CCCI does not accurately predict activation barri-
ers, it does accurately describe the transition state geometries. For the largest cases,
the number of spin eigenfunctions in the Configuration Interaction (CI) calculation
grows beyond our computational capabilities (Table 4). This makes calculation
of abstraction from benzene and isobutane at the GVB*SD CI level impractical;
however, the overestimated, yet small barriers at the HF*SD CI level shows that
the acetylene radical hydrogen abstraction is feasible; thermal vibrations at room
temperature providing sufficient energy to overcome the barriers. Table 5 shows the
exothermicities for the various abstractions. There is little difference in the accuracy
of the methods in predicting the exothermicities because all the methods describe
bound states rather well. Note that the exothermicities are for reactions where the
product radical species are not allowed to relax. This describes abstraction from
surfaces where relaxation is constrained. Exothermicities for gas phase reactions
will be higher. The transition state is poorly described by many semi-empirical
methods and by ab initio methods with insufficient electron correlation and small

basis sets and large variation of the predicted barriers can be seen in Table 2.
3.0 Calculational Details

Standard ab initio quantum chemistry methods are employed and results are
given for several levels of calculation. The simplest wave function used is the wave
function in which each molecular orbital is doubly occupied. This single config-
uration (one determinant) Hartree-Fock (HF) wave function is the lowest energy
antisymmetrized n-fold product of molecular orbitals and should give a qualitative
picture of the hydrogen abstraction reactions studied. HF will tend to overesti-
mate the abstraction barrier since the radical-hydrogen stretching frequency is too
high due to the poor description by HF of the bond breaking process (a doubly

occupied orbital of the molecule must become two singly occupied orbitals for the
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fragments). This problem is remedied by using a GVB (Generalized Valence Bond)
wave function,'® which allows each bond to be described with two singly occupied,
overlapping orbitals leading to a proper description of dissociation. When solved
for self-consistently, this calculation is termed a Generalized Valence Bond Config-
uration Interaction Self Consistent Field (GVBCI-SCF) or equivalently a Complete
Active Space Self Consistent Field (CASSCF). Simply, all symmetry and spin al-
lowed configurations of three active electrons in three orbitals are generated. These
electrons are the radical of the reactant, the hydrogen and the radical of the prod-
uct. All other orbitals (considered inactive) are doubly occupied as in Hartree-Fock.
It is found that three configurations are all that is necessary to adequately describe
the transition state. These are the dominant configuration (with the Hartree-Fock
occupations of the orbitals) and the single and double excitations of the electrons in
the doubly occupied R;-H-Rs bonding orbital to the empty R;-H-Rs antibonding
orbital. The R;-Rs antibonding orbital (with a node at the hydrogen center) is
singly occupied in all three configurations. While this level of calculation includes
the most important correlation, it will still tend to overestimate the abstraction
barrier and, thus, will only serve as a zeroth order wave function for large CI (Con-

figuration Interaction) expansions which will account for additional dispersion.

Ideally, we would like to do a CI calculation in which all single and double
excitations of the valence electrons are made into the virtual orbitals with reference
to the three most important configurations describing the abstraction. This type
of multi-reference CI (called a GVB*SD CI) has been well established at approxi-
mating proximating results of complete CI calculations.!” However, this CI has not
been carried out for the lérgest cases, abstraction of hydrogen from isobutane and
benzene by the acetylene radical. Thus we have considered some smaller CI calcu-

lations which will do a good job in approximating the barriers for the larger CI.
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The first of these is the CCCI wave function.'®1? It involves making all single and
double excitations of the active electrons and all single excitations of the other va-
lence electrons into the virtual space relative to the three GVB references, or simply
GVB*(SD,ctive + Svalence)- The second CI, called a DCCI (Dissociation Consistent
Configuration Interaction), will add the double excitations which are the product of
a single excitation of an active electron and a single excitation of a valence electron,
or GVB*(SDctive *Svatence + Svalence)- The third CI does all single and double ex-
citations of the valence electrons (active and inactive) relative to only one reference,
a calculation called HF*SD CI (or equivalently 1 reference SDCI). Table 4 shows the
sizes of the CI expansions in terms of the number of spin eigenfunctions (SEFUs)
for each of the systems studied. The HF*SD CI already approaches the limits of
our programs 2 million SEF’s) in the cases of isobutane and benzene, for which
the GVB*SD CI is not possible. In all other cases, however, the GVB*SD CI’s are
of small to medium size and will serve as benchmarks to calibrate the accuracy of
the smaller CI's. The standard basis sets of Dunning/Huzinaga are used.?%2! Their
double zeta contraction of the 9s5p set is used on all carbons, with the addition
of one set of d polarization functions ((4=0.75). On the active carbons, diffuse s
- and p functions (¢s=0.0474 and (,=0.0365) are also added. For active hydrogens or
hydrogens bound to active carbons (in the case of methane), the triple zeta contrac-
tion of the 6s set is used, supplemented with a p polarization function ({,=0.60).
For all other hydrogens, the double zeta contraction of the 4s set is used, scaled by
a factor of 1.2. The basic geometries of the various systems studied are illustrated
schematically in Figure III. The geometries will be optimized at the CCCI level.
The orbital optimization at the GVBCI-SCF level is the most time consuming step,
so this CI will be a simple correction to that wave function. It would be impractical

to do a full geometry optimization, so certain constraints are assumed. Namely,
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only the relevant parameters to the description of the hydrogen abstraction (Ripy
and Rop or combinations thereof) will be optimized. In the case of abstraction on
from methane (by the methyl radical or by the acetylene radical), the H-C-Hgps
bond angle is also optimized since this angle changes from 109.5° for methane to
90° for the methyl radical. For isobutane, we would expect a small relaxation from
a tetrahedral C-C-H,;,s bond angle to something more planar at the transition state
and in the radical species. But Page and Brenner,?? in their work on abstraction
of hydrogen from isobutane by atomic hydrogen, found that full relaxation of the
t-butyl species reduced the abstraction barrier by only 1.7 kcal/mol at the GVBCI-
SCF level. However, since the goal of this work is to show the feasibility of using
an alkynyl radical tip as a hydrogen abstraction tool, a conservative overestimate
of the abstraction barriers is acceptable. So the C-C-H,s bond angle is fixed to
109.5° in these calculations. All other radicals are expected to show little or no
relaxation and are fixed to the experimental values of their hydrogen bound coun-
terparts. All calculations are run with the GVB2?? and MOLECULE/SWEDEN?
suites of programs on the Caltech group’s Alliant FX/80 and FPS 500.

4.0 Discussion
4.1 H-H-H:

A great deal of theoretical work has been done on this system,!® and, due
to its simplicity, it provides a good test of our hydrogen basis set and, to a lesser
extent, our methods. While the calculated equilibrium bond distance in Hy com-
pares favorably to experiment (0.74A vs. 0.74144A 2%), the calculated dissociation
energy for Ho (D.) is 105.4 kcal/mol as compared to the experimental number of
108.6 kcal/mol.?5 This discrepancy of 3 kcal/mol is chiefly due to the lack of a sec-
ond p polarization function. In contrast, the transition state is well described by

the GVB*SD CI (in this case only, the CCCI, DCCI and GVB*SD CI are equiva-
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lent since there are no valence electrons in addition to the three active electrons).
The optimized geometry has a H-H distance of 0.94A (compared to Liu’s value of
0.930A1%) and a barrier of 10.3 kcal/mol (compared to Bauschlicher’s value of 9.56
kcal /mol using a large ANO basis set'®). The geometries for all the systems studied
are listed in Table 3 and the abstraction barriers are listed in Table 2. An error of
less than 1 kcal in the barrier is adequate for the calculations at hand, particularly
since the barrier is overestimated. It should be noted, however, that the Hartree-
Fock barrier is well off the mark at 24.3 kcal/mol and that the apparently good
result at the GVBCI-SCF level (9.9 kcal/mol) is primarily due to the weak H-H
bond strength (87.5 kcal/mol) at this level. The HF*SD CI number including the
Davidson correction is in fortuitous agreement with the reference barrier height of
9.56 kcal/mol. This is rather symptomatic of the Davidson correction, which can
often overestimate the contributions from additional correlation.

4.2 CH3-H-CHs;:

The methyl-methane hydrogen transfer reaction is perhaps more represen-
tative as a test case of the systems in which we are most interested. There has
been less theoretical work done on this system'* but a reliable experimental num-
ber for the abstraction barrier of 14.2 kcal/mol!3 gives a good benchmark for us
to work with. Theoretical investigations into this reaction have not been success-
ful in obtaining quantitative accuracy in the barrier height. The best calculations
overestimate the barrier by 5-6 kcal/mol. Part of this is due to some assumptions
made in the calculations, namely the neglect of zero-point corrections, the Born-
Oppenheimer approximation and temperature effects. However, the sum of these
effects should only lower the theoretical activation energy by 1-2 kcal/mol (see Sana,
et.al.14). Our results agree well with previous theoretical work. The optimized tran-

sition state geometry is virtually identical to the full gradient optimized structure of
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Wunsch, et al.,'* which was done at the Hartree-Fock level. The calculated barrier
is 20.4 kcal/mol, higher than experiment by 6.2 kcal/mol. Test calculations with a
large ANO basis set?® only lowered the barrier to 19.2 kcal/mol, indicating that the
discrepancy between theory and experiment is likely a correlation problem rather

than a basis set problem. The importance of ionic terms such as
(CH; — HT —~ CH3)

are probably underestimated in the CI calculations due to biases against anionic
states and would require additional correlation of the non-active valence electrons.
This could be a formidable task even for such a small system and would not be pos-
sible with our current code for the larger cases we wish to study. However, again,
since these factors all tend to lead to an overestimate of the barrier height the results
for abstraction of hydrogen by the acetylene radical can be considered a conservative
upper limit to the actual barrier height. These calculations on the methyl-methane
system also offer a comparison of the smaller CI’s to the GVB*SD standard. We
find the CCCI result (29.8 kcal/mol) to be comparable to the GVBCI-SCF number
(27.8 kcal/mol), being slightly higher due to the stronger C-H bond at the CCCI
~level (113.2 kcal/mol vs. 97.6 kcal/mol at the GVBCI-SCF level and 107.2 kcal/mol
at the GVB*SD CI level). This indicates that correlation of the non-active elec-
trons is important in obtaining quantitative accuracy for the hydrogen abstraction
barriers. The DCCI, which includes only limited correlation of the inactive elec-
trons, underestimates the GVB*SD CI barrier by 2.9 kcal/mol. Alternatively, the
HF*SD CI, which sacrifices some of the active electron correlation, overestimates
this barrier by 2.1 kcal/mol. The combination of these two CI calculations should
offer an upper and lower limit to the GVB*SD CI for those large cases where that

CI is not feasible.
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4.2 H-H-CCH, CH3-H-CCH, CsH;-H-CCH and HCC-H-CCH

Results of calculations on these systems underscore the results of methyl-
methane. In particular, Hartree-Fock greatly overestimates the activation energies,
GVBCI-SCF and CCCI offer some improvement but still overestimate these barri-
ers, and DCCI and HF*SD CI bracket the results of the GVB*SD CI. In the case
of abstraction from methane and benzene, we found the geometries were most con-
veniently optimized by using the coordinate system Riy + Roy and Rigy - Rog.
In the case of abstraction from Hj, it was easier to optimize the transition state in
terms of the coordinates R;y and Rgpy. This was likely due to the fact that the
barrier was small at the CCCI level and that it occurred quite early, with only an
8% increase in the H-H bond length. To a large degree the barrier height and the
position of the barrier is determined by the exothermicity of the reaction. Other
properties, such as the polarizability of the bonds, play a role as well. The largest
barrier (and latest transition state) was for abstraction from acetylene, with an ac-
tivation energy of 14.6 kcal/mol. This is as expected, since this particular reaction
is thermoneutral. The calculated exothermicities of the other reactions are listed in
Table 5 (see also Table 1, for the experimental bond dissociation energies). Hs and
CH,4 are the most exothermic and have the smallest barriers. These barriers maybe
considered negligible as the calculations on H + Hs and methyl-methane showed
the numbers to be overestimated. Abstraction from benzene is less exothermic and
shows a small but non-negligible barrier. In addition, the phenyl-H bond is stretched
14% at the transition state in comparison to an 11% stretch of the metyl-H bond.

All of these results correlate with the exothermicities of the reactions.
1.3.2 (CH;);C-H-CCH:
Finding the transition state for abstraction from isobutane proved to be quite

difficult. The potential energy surface has many of the same features as that of H-H-
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CCH, in particular, a small, early barrier which leads to non-quadratic behavior in
the region of the saddle point. Due to the computational costs of these calculations,
it was necessary to sacrifice some accuracy in order to find the transition state. In
the end, the values of Ryg=1.2A and Ropy=1.5A are in agreement with results
for abstraction from methane and benzene by the acetylene radical. The large CI
calculations strongly indicate that there is no barrier for abstraction of hydrogen,
the more conservative number giving a barrier of only 0.45 kcal/mol. This again
correlates with the large exothermicity of this reaction, which is calculated from
snap bond energies. If one considers that the t-butyl group should relax somewhat
at the CCCI transition state and, thus, lower the energy of the barrier still, the
argument for the absence of a barrier becomes even more persuasive. Since this
system is a good model for the hydrogenated diamond (111) surface C-H bond,
we conclude that no barrier exists to abstraction of hydrogen from this surface by
acetylene. Barriers on other surfaces of diamond are likely nonexistent or negligibly

small.
4.4 Abstraction from Acetylene:

Now that it has been established that an alkynyl tipped hydrogen abstraction
tool would be able to abstract hydrogen from diamond surfaces with little or no
thermodynamic hindrances, it would be desirable to find a method for removing the
hydrogen from the tip. A simple alternative, but less elegant strategy, is to make
a new tip for each abstraction and dispose of the tool after use. What makes the
acetylene good at abstracting hydrogen is the strength of its C-H bond. However,
this bond is quite weak in the 3B, excited state (see Table 6). We calculate a bond
strength of 41.7 kcal/mol doing a GVBCI-SCF in which all 10 valence electrons
are active in 10 orbitals, followed by a Multi-Reference times Singles and Doubles

Configuration Interaction (MR*SD CI) in which all configurations in the GVBCI
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with coefficients > 0.05 are chosen as references. In the case of the triplet excited
state, there are 4 references and, in the case of dissociated H + CCH, there are
6 references. The geometry for the excited state is optimized at the MR*SD CI
level. The molecule is not linear in this state, having a C-C-H bond angle of 132.0°.
The C-C bond length also increases to 1.38A from 1.20A for the ground state,
reflecting the double bond character of this bond. The weakening of the C-C bond
in the excited state leads directly to the weakening of the C-H bonds, as the triple
bond character can be restored upon dissociation of one of the C-H bonds. The
weakening of the C-H bond leaves the acetylene prone to abstraction, making it
easy to remove the hydrogen and refresh the tip. So photoexcitation of the alkynyl
tip from its ground state to the 1B, excited state, followed by relaxation to the
triplet would facilitate the breaking of the tip-hydrogen bond. Drexler also made
an alternative proposal for removing the hydrogen from the tip by destabilizing the
H-tip bond with a second tip and disposing of the H into a H sink.!
5.0 Conclusion

We model the abstraction of hydrogen from Hy, CH4, CoHs, CgHg, and
CH(CHg3)3 by the acetylene radical using accurate CI ab initio quantum chemistry
techniques. From our results, conservative estimates show that the reaction barriers
for abstraction from sp® hybridized carbons are negligible, or zero for the case of
isobutane. The barriers are small for sp? hybridized carbons and slightly larger
for sp hybridized carbons. Therefore, abstraction tools based on ethynyl radical
molecular tips should reliably and rapidly abstract hydrogen from most carbon
structures at moderate temperatures. We also find that the hydrogen bond to the
wx excited ethynyl tip is relatively weak, and therefore can be broken to refresh
the tip. We also wish to show how nanofabrication processes can be accurately and

inexpensively designed in a computational framework.
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Table 1. Experimental bond dissociation energies (kcal/mol).

R-H Dy [reference]
H-H 102.3 [25]
CHs— H 105.1 [27]
(CHs3)s — H 93.2 [27]
CoHs — H 110.9 [27]

HCC - H 126.6 [11], 131.3 [9)]
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Table 2. Barriers for the hydrogen abstraction reaction, R;-H + R — R;+H-Ro,
calculated at the CCCI optimized geometry (kcal/mol). Negative energies
indicate that the CCCI transition state geometry is lower in energy than
the reactants. Numbers in parentheses are the barriers when the Davidson

correction is included.

Ry — H- R, HF GVBCI-SCF CCCI
H-H-H 24.3 9.9 10.3
CHs; — H — CHs 34.9 27.8 29.8
H-H-CCH 11.6 8.0 5.4
CHs; — H- CCH 14.6 8.6 10.2
(CH3)3s — H — CCH 11.0 5.9 8.0
Ce¢Hs — H— CCH 18.3 12.0 14.3
HCC - H-CCH 30.0 22.9 24.1
Ri—H-R, DCCI HF*SD CI GVB*SD CI
H-H-H 10.3 10.5 (9.6)° 10.3 (10.3)
CHs — H — CHs 17.5 22.5 (19.5) 20.4 (18.8)
H-H-CCH 0.8 4.5 (3.2) 3.3 (2.7)
CHs; — H—- CCH -2.9 4.2 (2.0 2.2 (1.3)
(CH3)3 — H— CCH -7.0 0.45 (-2.78)

Ce¢Hs — H— CCH 0.7 7.7 (4.1)

HCC —H - CCH 11.6 17.0 (13.7) 14.6 (12.9)
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Table 3. Transition state geometries optimized at the CCCI level. See text for con-

straints on these geometries.

Ri— H-Ry Rig Rong H-C-C angle
H-H-H 0.94 0.94

CH3 — H—-CHj; 1.36 1.36 105.2
H-H-CCH 0.80 1.61

CH; - H-CCH 1.22 1.48 105.5
(CHs)s— H—-CCH 120  1.50

CeHs — H-CCH 1.24 1.42

HCC-H-CCH 1.28 1.28
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Table 4. Number of spin eigenfunctions in each of the CI calculations for the transition

state. If the transition state has higher symmetry, then the number of SEF

is doubled for the product or reactant state.

Ry —H—-Ry CCCI DCCI HF*SD CI GVB*SD CI
H-H-H 191 191 139 191
CH3; — H - CH;s 4914 71666 79428 310778
H-H-CCH 2160 18234 15189 53048
CHs —-H-CCH 9477 150557

(CH3)s— H—-CCH 21676 695842 1675566

Ce¢Hs — H—-CCH 17265 987343 587343 1514151
HCC-H-CCH 2697 42201 55211 221805




87

Table 5. Calculated exothermicities (kcal/mol). Numbers in parentheses include the

Davidson correction.

Ri—H-R, HF GVBCI-SCF CCCI
H-H-CCH 33.9 31.6 31.8
CH; — H- CCH 28.9 28.4 27.0
(CHs)s — H— CCH 28.5 27.9 24.2
CeHs — H— CCH 18.7 18.2 15.4
Ri—-H-R, DCCI HF*SD CI GVB*SD CI
H—-H-CCH 30.1 30.0 (27.5) 29.9 (28.1)
CH; — H—- CCH 29.2 26.9 (25.5) 26.8 (25.4)
(CHs3)s — H — CCH 27.4 26.8 (25.9)

CsHs — H — CCH 18.9 18.3 (18.0)
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Table 6. Calculated relevant energetics of ground-state acetylene and the excited-state

triplet (kcal/mol).

R1 - H - R2 RlH RQH H-C-C angle

T.(*B, < 37) 72.3 92.0 90.2
1+

D.(*YJHCC - H) 116.5 122.3 131.9

D.(®B,HCC — H) 44.2 30.3 41.7
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Figure Captions
Figure 1. Acetylene radical hydrogen abstraction molecular tip attached to
diamond-like material.
Figure 2. Schematic diagram showing the transition barrier and exothermicity
of the acetylene radical abstraction of hydrogen from isobutane.

Figure 3. Geometries for the transition states.
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Figure 1: Acetylene radical hydrogen abstraction
molecular tip attached to diamond-like material.
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Figure 3: Geometries for the transition states
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Chapter 4

The Hessian Biased Force Field for Polysilane Polymers
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Abstract

We report a force field (FF) suitable for molecular dynamics simulations
of polysilane polymers. This FF, denoted MSXX, was developed using the Hes-
sian biased method to describe accurately the vibrational states, the ab initio tor-
sional potential energy surface, and the ab initio electrostatic charges of polysilane
oligomers. This MSXX FF was used to calculate various spectroscopic and mechan-
ical properties of the polysilane crystal. Stress-strain curves and surface energies are
reported. Gibbs molecular dynamics calculations (Nose, Rahman-Parrinello) were
used to predict various materials properties at higher temperatures. Phonon disper-
sion curves and elastic constants were calculated at various temperatures. Although
this polymer is of increasing industrial interest we could find no experimental data

with which to compare these predictions.
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I. Introduction

Polysilane polymers, —[—SiHs—],— denoted herein as P(SiH), have become
of significant interest. The substituted derivatives of P(SiH) can be used as precur-
sors to SiC ceramics, as nonlinear optical materials, as semiconducting polymers,
and as photoresists.! The polysilane polymers are amorphous and their structural,
physical, and electronic properties are not well characterized.2~® In order to pre-
dict such properties, we have developed a force field expected to be accurate for
predicting structural, mechanical, vibrational, and thermodynamic properties.

Section II develops the force field and Section III applies this force field to
the prediction of various properties for P(SiH) oligomers. The properties of P(SiH)

crystals are predicted in Section IV.

II. Development of the MSXX Force Field
II.A Introduction

The general form of the force field is taken as

E = Eval +EQ +Evdw. (1)
Here
EQ Ccoul Z Q1qj (2)
’L>_’] Z]

represents the Coulombic interactions between partial charges on the various atoms
(Ceour = 332.0637 converts units so that the R is in A and E€ is in kcal/mol),
Evdw _ ZEvdw(R (3)
>3
represents the long-range attraction (London dispersion) and short-range repulsion

(Pauli orthogonalization of nonbonded electrons), and

Eval Ebond Eangle + [icross + Etorsion (4)
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represents all terms involving bonds between atoms and coupling behavior of these

bonds.

Our general approach to developing force fields is to emphasize the use of ac-
curate quantum chemical calculations on model systems. Thus the atomic charges
[for Eq] and the torsional potentials about single bonds [for Etorsion] are taken di-
rectly from Hartree-Fock (HF') calculations using good basis sets. The force constant
parameters important in describing valence interactions (Epond; Eangles Eecross) are
taken from the Hessian (second derivative of energy with respect to atomic coordi-
nates) calculated from HF wavefunctions. However the eigenvalues of this Hessian
are modified [the Hessian Biased® FF, HBFF] since HF vibrational frequencies are
too high. Herein we derive the HBFF for P(SiH) using the model systems: SiHy,
SioHg, SigHg, n—SigHi9. Only the vdW terms, (3), are not based on HF calcu-
lations. The vdW parameters for Si and H were obtained from the Dreiding force
field” which were based on fits to experimental structural data for simple solids and

on extrapolations.

I1.B Calculations

For each model system we carried out HF calculations using the 6-31G**
basis set. The geometry was optimized at the HF level (using Gaussian 928 and
PS-GVB1°) and this geometry was used in determining the force field. Comparing
to experiment the HF geometry leads to errors of about 0.02 A in Si-Si distances,

0.01 A in Si-H distances, and 0.5° in bond angles (see Table 1).

We use the Potential Derived Charges (PDQ) as the partial atomic charges.?
PDQ are derived by (i) calculating the electron density distribution, p(r), from the

HF wavefunction, (ii) using p(r) to calculate the electrostatic potential on a set of
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grid points around the molecule,

_ p(r)
VHF(RQ) = /dB’f'm—I; (5)

and (iii) determining the set of atomic point charges on the various atoms to opti-

mally fit this electrostatic potential,
Ve(Ry) = E —__ ~VHF(R (6)
) - |R; — R,| (Bg)

at grid points outside the vdW radii. The PDQ charges (from Gaussian 92) as
well as Mulliken populations are shown in Table 2. Based on these calculations we

recommend in Table 2 the charges for P(SiH) chains.

I1.C The Biased Hessian Method

From ab initio HF wavefunctions we calculate® a full Hessian

32EHF
HEE — _— 2 7
at,B3 8RaiaR,Bj ( )

where R,; is the o component (x, y, z) of the coordinates of atom i. After mass

weighting,

. 1
HF _ HF

the vibrational modes {UF'} and vibrational frequencies {v//f'} are obtained by

solving

HYFUIE = UfFAIr (9a)

where

NIF = (CpregvtF)* (9b)

1

and Cfreq = 108.5913 converts units so that energies are in kcal /mol, distances are

in A, frequencies are in cm~!, and masses are in atomic mass units (C'? has mass =
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12.0000 amu). This Hessian provides g(g + 1)/2 independent pieces of information
[666 for SigHqg], where g = 3N — 6 is the number of degrees of freedom. These
constraints are sufficient to determine the force field. In contrast, fitting just the
frequencies leads to only g conditions [36 for n-SisH1o]. However, at the HF level
the calculated frequencies, v, are 10-20% too high. This led to the development
of the Hessian Biased method® for FF parameterization in which the force field is
fit to the biased Hessian

HHB — UHF)\ea:pl-?HF (10)

where U is the transpose and A¢*P is the diagonal matrix based on experimental

frequencies

AP = (Cpreqr™)°. (11)

This Hessian has the property that, HZBUHF = UHF \ezp that is, the eigenvalues
match experiment while the eigenfunctions match HF theory. Thus, H#® has the
best available information on the vibrational modes.

In general the optimum geometry at the HF level differs slightly from exper-
iment, raising the question of which structure to use in (10). We use the structures
optimized at the Hartree-Fock level of theory. Previously®!! we advocated the use
of the experimental structure for determining force constants from the ab initio cal-
culations primarily because the internuclear separations (which strongly affect the
Hessian) reflect the experimental system. However, in molecules with low frequency
torsions, a slight difference in structure can cause a noticeable rotational contami-
nation of the torsional modes. Since we want to use frequency scaling parameters to
compare various moleculeé, it is better to derive the frequencies for all molecules at
the ab initio minima (rather than at the experimental minimum for molecules where

experimental geometries are available and the ab initio minimum for those where
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experimental geometries are not available). Fortunately, as indicated in Table 1,

the differences between the ab initio and experimental geometries are small.

II.D The Potential Energy Surface for Torsions

The distribution of conformations in a polymer and the rates of conforma-
tional transitions have a strong effect on the properties (moduli, glass temperature);
hence, it is critical that the FF lead to the correct relative energies of the minima
(e.g., trans versus gauche) and of the barrier heights between them. Thus torsional
FF parameters are particularly important for describing amorphous polymers. We
use ab initio calculations to provide the torsional potential energy surface. With
the 6-31G** basis, the torsional potentials calculated from HF wavefunctions are
adequate.'?

The HF calculations lead to a total torsional potential function EHF(¢)

which we want to fit with the FF,

EHF(¢) = EFF(¢) = EZ4(¢) + E9(8) + BV (¢) + E*"(¢)

= EEFE,.(¢) + E*"(¢)

(12)

Here E”“l contains all parts of E¥% except for the torsional term including ¢. We
have already specified how E% and EVW are to be calculated, and the dependence
of E”“l on bonds and angles will be determined in Section D. Thus we define the

torsional potential as

E'r(¢) = E¥F(¢) - EFL.,.(8) (13)
where
Efof;m(qs) Ey (8) + E(¢) + E* (¢) (14)

contains all terms except the torsion, ¢.
In determining E*°"(¢) from (13), the simplest procedure would be to fix all

bonds and angles so that only the torsional angle ¢ changes [thus E”al ‘4 (¢) would be
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constant]. However such rigid rotations about bonds sometimes lead to bad contacts
(very short distances between nonbonded atoms). At a bad contact the ab initio
wavefunctions readjusts the molecular orbitals to minimize repulsion which invali-
dates the assumption of constant energy in the bond and angle terms. In addition
the Ev?W derived from fits to experiment may not accurately describe the inner
repulsive wall. Consequently (12) is defined by fixing ¢ and optimizing all other
degrees of freedom for each conformation to obtain the adiabatic torsional potential.
Thus for the HF wavefunction we optimize the other geometric parameters at each
¢ and for EFF(¢) we do the same. With this procedure E¥'¥(¢) depends on the FF
for bonds and angles, which is determined from fitting H# (Section IL.E). Thus,
to determine the nontorsional parts of the FF using HBFF, we use approximate
torsional parameters and put zero weights on fitting the torsional modes. Then
after determining E'°"(¢) from (13) we redo the HBFF using E®"(¢) and then use
the final bond and angle FF to calculate a new EFF(¢) and hence a final E*"(4).
We started with the Dreiding FF and found that one such iteration was generally
sufficient.

An alternative to the above procedure is to use the same geometry for both
the HF and FF calculations. This could be optimized either for HF or for the FF.
The problem is that the HF structure is generally not optimum for the HBFF. Hence
fitting to (13) to determine E**"(¢) would lead to residual forces (due to bond and
angle terms in the unoptimized structure). Thus at the top of the barrier, the total
forces on the molecule from either HF or HBFF would be nonzero so that it would
not be a true maximum.

The HF wavefunction was calculated by fixing the dihedrals of interest (in
increments of 15°) and optimizing all other degrees of freedom, leading to the results

in Figures 1-3 and Table 3.
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For each dihedral, the geometry was optimized using the force field with the
dihedral constrained (zero barrier used for this torsion). As indicated in (13) the
true torsional energy E'"(¢) [or E*"(¢1, ¢2), in the case of SigHg| is defined as
the difference between E¥(¢) and EFF(¢) with the torsion excluded. For SiHg
we considered the two-dimensional surface where the two torsions (¢; and ¢2) are

changed independently. In this case a bicubic spline was fitted to E*"(¢1, ¢1)

E*"(¢1, ¢2) = E'"(¢1) + E*"(¢2) (15)

to generate a denser grid which was in turn fitted to a Fourier series of torsional

terms
2

p
Z K [14 cosmg] = Vp + Z %Vm cosma, (16)

m=0 m=1

DO | =

Etor (¢) —

For a single term this becomes
1
E™(¢) = §Km(1 + cosmg) (17)

where K, is the barrier.
For a given J — K dihedral there are 3 choices for atom I bonded to J and
3 choices for atom L bonded to K, leading to 9 possible I — J — K — L terms. In

POLYGRAF?° the energy for this torsion is written as

3 3
, 1
3(}(=§ZZ 17kL (PriKL) -
I=1L=1

Thus each torsional energy E}¥y; (4) is written as if the whole barrier were due to
this term, but it is scaled to 1/9 of this value.

Tables 3a-c show EHF(é), and EFF(¢) [or EEF(¢1, o) and EFF(¢1, ¢2) in
the case of SigHg]. The fit to the ab initio energy surface was Boltzmann weighted so

that the errors near the minima are smaller than the errors near the maxima (since
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the higher barrier regions will be sampled less in molecular dynamics simulations).
We found that a single K3 term (barrier of 0.94 kcal/mol) for H — Si — Si— H was
sufficient for SioHg. For SizHg, we assumed the same H — Si — Si — H term and
found that for H — Si — Si — Si a single K3 term (barrier of 0.806 kcal/mol) was
sufficient. For n — Si4H19 we assumed the H — Si— St — H and H — Si— Si— St
terms from SioHg and SigHg and added Si — Si — Si — Si. Here we found a 3-term
potential (with K7, K, and K3) was sufficient. The resultant PES are plotted in
Figures 1-3 for HF and HBFF.

I1.E Valence Force Field Terms

The bond and angle part of the valence FF is written as
E%C:'ll‘l — Ebond+Eangle+Ecross.

We take E%"? as a sum over all bond pairs, each of which has the form of a Morse

function,”
EM°m*¢(R) = Dg [x* — 2] (18a)
with
x = e~ (B-Ee) (18b)
and

This includes anharmonicity and allows bond dissociation. Here there are three
independent parameters R., kg, and Dg. However Dy is not sensitive to the
Hessian or geometry; Hence, we choose D based on the experimental bond energy

(it was not optimized).
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We take E%™9' as a sum over all six angle terms I — J — K for each atom

J, where each angle term is described with the cosine angle form,”

Ecosine(g) = g— [cos 6 — cos 6] (19a)
with
o _Ffo_ (196)
 sin? 6,

This form leads correctly to dE/df = 0 for 6§ = 0,180° and has a barrier of
Eharrier — % [1+4 cosb.]”. (20)
We found that bond-bond cross-terms
Eigg = Kgrpr(r1 —rf) (ro —rs) (21)

sharing an apex atom (e.g., IJ and JK for the atoms I and K bonded to J) are
generally useful when the two are equivalent (e.g., Si— H/Si— H at SiHjz or SiH,
groups). However, Si— Si/Si— H at the SiH3 group does not have much effect on
the force field. This is because the splitting between equivalent terms is dominated
by off-diagonal interactions whereas analogous couplings for inequivalent bonds can
be built into the force field by modifying the diagonal terms. Thus we include
bond-bond cross terms only for equivalent bonds.

Bond-angle cross terms (e.g., bond IJ with angle IJK),
Eipa = Do (r1 — r{) (cos 6y — cos67) (22)

are necessary for a good description of the vibrations. For a given I — J — K there

are two such terms, one for r;; and one for 7.
In addition we find that one-center angle-angle cross terms (involving bonds

defining two angles sharing a common bond) are important,

E144 = Fpg (cos 1 — cos67) (cosfy — cosb5) . (23)
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The sign and magnitude of these terms are difficult to predict a priori. Hence we
started with various combinations of sign and magnitude and allowed the optimiza-
tion to determine both the sign and magnitude of these coupling constants.
For long chain molecules, we found that 2-center angle-angle cross terms are

also important,
Eoaa = Ggg (cosB; — coshs) (cos 2 — cos03) f(P). (24)

Thus for the dihedral I — J — K — L, 6, corresponds to the IJK angle and 6, cor-
responds to JK L. For disilane such terms determine the splitting between rocking
modes of different symmetries. In the case of polyethylene,!! they are essential in
reproducing the stiffness in the chain direction. For group IV and III/V solids (e.g.,
diamond, silicon, GaAs, etc.) they are necessary to describe the mode softening of
the transverse acoustic (TA) mode near the zone boundary.!® In P(SiH), we find
that they are important for predicting the modulus in the chain direction. For
semiconductors the factor f(¢) is taken as f(¢) = 2 [1 — 2 cos(¢)] so that £(0 °)
= (180 °) = 1 and (60 °) = (240 °) = 0. This is because only trans coupling is
important. For P(SiH) f(¢) is taken as f(¢) = 1 — cos(®).

Summarizing we take

Eecross=» Eipp+ » Eipa+» Eiaa+ Y Ezsa. (25)

I1I.F Scaling of Ab Initio Frequencies

For both SizHg and n—Si4H1g the set of experimental frequencies is incom-
plete. In order to estimate of the experimentally undetermined modes, we scale the
ab initio frequencies for these modes using scale factors (the ratio of the experi-
mental frequency to the ab initio frequency) obtained from observed modes. This

works well because within a particular class of vibrations the scale factor is nearly
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constant, even between different molecules. For example, it is 0.901 + 0.016 for
the SiH bending modes of SizgHgs. (A further refinement is to calculate separate
average scales for the rocking, wagging, and scissor SiH-bending modes.) Table
4 shows the scale factors derived for each molecule. Because the scales vary little
from molecule to molecule, the scaling procedure can be applied even to molecules
with no experimental frequencies. Table 5 shows the SizHio scaled frequencies
(from HF) and those predicted by the MSXX (from n — Si4H10). Here the MSXX
vibrations differ from the HF scaled values by 13 cm™! (rms error), about the same

as for cases where experiment is available.
Torsions do not follow the same scaling trend as bending and stretching
modes. However we base all torsional parameters on the HF torsion curves (Section

ITI.C) rather than on scaled torsional vibrations.

I1.G Optimization of Parameters

We used the program FFOPT!# developed by Yamasaki, Dasgupta, and
Goddard to optimize the valence HBFF parameters. This uses Singular Value
Decomposition (SVD) and emphasizes changes in parameters that most affect the

properties of interest (and to eliminates parameter redundancies).

ITI. Polysilane Oligomers
ITI.A SiH,

The vibrational frequencies for silane are shown in Table 6 and the silane
force field is shown in Table 7a. HBFF exactly reproduces the geometry and the
experimental frequencies.!® The MSXX (from n — SisHjp) leads to slightly low
(about 1%) frequencies for silane, and the inaccuracy in applying the MSXX to
disilane and trisilane is much smaller. (Table 6 also shows the accuracy of the

silane HBFF for predicting the frequencies of deuterated silane.!®) This indicates
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the robustness of the MSXX.
The MSXX FF parameters from the P(SiH) oligomers are shown in Table
7a (the calculated oligomer geometries are in Table 1). The MSXX FF leads to

excellent geometries and frequencies.

II1.B Si.Hsg

Disilane is the largest oligomer of P(SiH) having a complete set of exper-
imental vibrational assignments.'® In addition, all the isotopic shifts, except for
the torsional mode, are available for fully deuterated disilane. Table 8 shows pre-
dicted frequencies, where we find an RMS difference of 4.8 cm™! between HBFF
and experiment.'® The HBFF accurately reproduces the geometry as shown in Ta-
ble 1. The validity of the force field is shown by its accurate prediction of the SisDg
experimental frequencies'” as shown in Table 8.

Included in the complete set of frequencies for disilane is the torsional fre-
quency (determined indirectly from a two photon process). However we do not
use this in our fit. As discussed above the torsional potential is fitted to the en-
tire torsional potential surface. Disilane is the only P(SiH) oligomer for which we
can compare the torsional frequency for the single bond rotational potential to ex-
perimental data. Figure 1 and Table 3a show the accurate match of the ab initio
and HBFF torsional potentials over the entire dihedral angle range. This accuracy

comes at the modest cost of an error of 8.2 cm™! in the torsional frequency.

IT1.C SizHs

Silylpropane is the smallest model compound containing the [—SiH;—] re-
peating unit of P(SiH). Some experimental data (13 of 27 modes)!® are available
on the vibrational frequencies of SigHg, but a complete set of experimental fre-

quencies for the isolated molecule in the gas phase is not available. Consequently,
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for each class we considered only the experimentally known vibrations to obtain
the accurate scale factor for that class, which was then applied to all ab initio fre-
quencies to predict the complete set of “experimental” frequencies. Using scales
from within the same molecule leads to very small standard deviations of the scales
and thus is likely to yield accurate scaling of the experimentally unassigned modes.
The average error between the HBFF frequencies and the experimentally available
frequencies'® is 7.7 cm ™! (6.0 cm~! including the scaled HF frequencies). Table 9
also shows the frequencies for two deuterated species to compare with future exper-
imental results. We find that fitting the force field to experiment requires the use of
different valence terms for the SiHs hydrogens and the SiHg hydrogens (we use the
H — Si— Si— H torsional potential transferred from disilane). Using the MSXX FF
from n — Si4H;o to calculate the modes of SizHg leads to good accuracy, especially
for the geometry (Table 1). This justifies the transferability of the HBFF between
molecules and indicates that the HBFF description of P(SiH) or the other P(SiH)
oligomers should be accurate.

The torsional modes were not obtained from HBFF. In the Si3Hg force
field we include the disilane H-Si-Si-H torsional potential and fit a Fourier series of
torsions to the combinations of rotations of the two H-Si-Si-Si dihedrals. Figure 2

and Table 3b show the accuracy of the HBFF torsional potential energy surface.

ITI.D n—SisHyo

n—Si4Hio is the smallest oligomer which includes all the valence terms nec-
essary to model larger oligomers and P(SiH). Again only a partial assignment from
experimental spectra'® is available for n-silylbutane. We follow the same procedure
used for scaling of the silylpropane frequencies. Table 10 shows the HF frequencies,
the experimental assigned frequencies and the scales used for modes not observed.

Table 10 also shows the narrow range for similar scales. The HBFF procedure re-
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1

produces the experimental frequencies and scaled HF frequencies to 6.2 cm™" rms

error. The geometry is accurately reproduced as shown in Table 1.

For n — Si4H19 we also develop the MSXX-R FF which does not distinguish
between the SiHz and SiHs. We find that MSXX-R is only slightly worse than
the MSXX, as shown in Table 10. We use the valence terms describing the central
silicons of MSXX to describe the larger oligomers and the polysilane crystals. The n-
silylbutane HBFF not only includes all the terms to simulate the smaller oligomers,
it also includes all the terms necessary to model the larger oligomers and P(SiH)

and thus can be used to predict the properties of P(SiH) of arbitrary chain length.

The torsional mode was not scaled, but was calculated by fitting a Fourier
series to the rotations of the molecule about the Si-Si-Si-Si dihedral. The H-Si-Si-Si
and H-Si-Si-H torsional potentials were transferred from silylpropane and disilane,
respectively and not varied. Figure 3 and Table 3c show the HBFF and the ab initio

torsional potential.

III.E ’n—Sisng

The n—S'i5H12 molecule has not been observed experimentally. We calculate
HF/6-31G** and MP2/6-31G** vibrational frequencies to validate the MSXX force
field (from SigH1p). Scales from the smaller oligomers are applied to the n—Sis H1s
HF vibrational frequencies to obtain scaled HF frequencies which can be compared
to frequencies calculated using the MSXX. Table 5 shows the MSXX frequencies
and the scaled HF frequencies. The RMS difference is less than 12 cm ™! with most
modes differing less than 2%. Either method provides an acceptable prediction of
experimental frequencies; however scaled ab initio calculations require substantially
greater computational time. MP2 ab initio calculations take substantially more

time than scaled HF calculations but still overestimate experiment by 3-8% (Table
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5), with the exception of the low energy skeletal modes. Since scaled HF and MSXX
predictions are generally within a percent of experimental frequencies, we conclude
that MSXX is the most cost-effective approach to predicting frequencies in good
agreement with experiment. Table 11 compares the geometries for n—Sis H12 from
HF and from the MSXX. The differences are small, with the largest error (1.1°) for

the Si — St — St central angle.

IV. Polysilane

We base the FF for polysilane polymers on the parameters for the central
atoms of the HBFF for n — SisH1o in Table 7a. We refer to this as the MSXX FF
(see Table 7b). The charges for polysilane polymer were based on the PDQ atomic
charges for the central SiH, group of n — SizH;5 (See Table 2).

Particularly important for calculations on P(SiH) polymers are the Si-Si-Si
bends denoted as accordion modes in Tables 5, 9, and 10. This mode is prominent
on the Raman spectra for long alkanes and extrapolating the frequency of this
mode to infinite alkanes leads to an excellent prediction of the Young’s modulus
(see reference 11 for discussion).

The MSXX FF was used to calculate the properties of the crystal built with
the all trans conformation of P(SiH). This is analogous to polyethylene (PE) except
that structures with both one and two chains per cell were considered. Table 12
shows the structure and mechanical properties of the crystal at 0, 77 and 300K. The
bulk modulus at OK is 13.10 GPa. The Young’s moduli calculated are 11.94, 110.57,
and 18.64 GPa at OK which compare to 9.0, 337.0, and 9.4 for PE. PE is much stiffer
along the chain direction than P(SiH) while being softer perpendicular to the chains
at low temperatures and being similar in stiffness to P(SiH) perpendicular to the

chains at temperatures above 300K. Because of the anharmonicity of vdW and
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electrostatic interactions between chains, the Young’s moduli perpendicular to the
chain direction decrease dramatically with temperature (by ~ 65% for 0 to 300K).
The decrease in the Young’s moduli of polyethylene is much smaller (=~ 35% for 0
to 300K). The elastic constants of P(SiH) behave similarly to those of polyethylene.
Thus Caa, the elastic constant along the chain direction, decreases by only 15% from
0 to 300K. In PE the decrease is 5.9%. C1; and C33 for deformations perpendicular
to the chain direction show a decrease of 65% while in PE the decrease is ~ 40%. The
relative decrease in the deformation properties with temperature is large relative to
polyethylene (see Table 12) both along the chain direction and perpendicular to it
indicating that both the valence and non-bond interactions are more anharmonic
for P(SiH) than for PE.

The properties at 77K and 300K were calculated by averaging the crystal
structures from the last 20 ps of a 30 ps Gibbs molecular dynamics calculation
(Nose plus Rahman-Parrinello!®) at several temperatures to calculate the thermal
expansion tensor. Using the thermal expansion tensor we calculated the lattice
parameters at the desired temperatures and calculated the properties of the crystal
at that desired temperature. (After reminimizing the atomic positions for the new
lattice constants.)

The cohesive energy of the crystal is calculated to be 3.816 kcal/mol-SiHg
(Table 13). This compares with 1.8701 kcal/mol-CH, for polyethylene calculated
by Karasawa et al.!! also using the biased Hessian approach. Their result compared
favorably to experiment where the cohesive energy is measured to be 1.84 kcal/mol-
CHjy. The larger elastic constants of PSi compared to PE perpendicular to the chain
direction indicate the relatively stronger non-bond interactions and thus a larger
cohesive energy.

Tables 14 and 15 show the vibrational frequencies for the crystal and for the
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infinite single chain, respectively. Calculations by Cui et al.’> on single unpacked
chains (ignoring vdW and Coulomb) are within 5-30 cm~! of our results. Our re-
sults show that the inclusion of coulombic and vdW forces in the MSXX FF strongly
affects interactions between neighboring chains, as shown by the changes in the pre-
dicted vibrational frequencies between the packed and unpacked P(SiH). Our single
chain frequencies are in better agreement with many of the experimental frequencies
(Table 15) than our packed P(SiH) frequencies. This may be because the samples
are not very crystalline (including silicon-like clusters and metastable gauche con-
figurations), leading to an inefficiently packed local structure better approximated
by a single chain.

Figure 4 shows the phonon dispersion curves for the all-trans polysilane
crystal (there are no experimental numbers). The low energy bands depend strongly
upon the van der Waals and coulombic interactions as well as the torsional force
constant. In the case of PE (Karasawa et al.!!) the MSXX led to average errors
of 7.9 cm™! for n—C4Hyo and 24 cm~! for the crystal. The MSXX force field
reproduces the vibrational frequencies of n—Si4H;¢ with an error of 6 cm™! but we

expect larger errors for the crystal.

Figure 5a shows stress-strain curves for stresses along the unit cell axes (per-
pendicular to the chain) In these calculations we used a super cell consisting of 32
primitive cells. Although the Young’s modulii perpendicular to the chain direction
are larger for P(SiH) than for PE the yield stress is similar. This is the result of the
higher anharmonicity of the P(SiH) non-bond interactions which fall off faster that
those of PE. In the case of PE, shear perpendicular to the chain direction eventu-
ally leads to a transition to a metastable monoclinic phase. Shearing P(SiH) using
our force field did not lead to any stable phases. Minimization from any structure

arrived at by shearing always led back to the orthorhombic unit cell.
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The surface energy is calculated by stretching the crystal perpendicular to
the surface until the crystal breaks (Figure 5b). From the curves in Figure 6 we
derive surface energies of 63.5 dyn/cm for the (100) surface and 66.9 dyn/cm for
the (001) surface (using a conversion factor of 694.8 to convert from kcal/mol-A2
to erg/cm3). This compares with 106.8 dyn/cm (100) and 109.2 dyn/cm (001)
for the analogous surfaces of polyethylene. The (100) surface has two SiHs groups
per unit cell, leading to a surface energy per SiHs of 1.698 kcal/mol while the (001)
surface has 4 SiH, groups per unit cell leading to a surface energy of 1.609 kcal/mol.
This compares with 0.938 kcal/mol and 0.720 kcal/mol for the analogous surfaces
of polyethylene. We know of no experimental information on such properties for
P(SiH). Assuming only nearest-neighbor fiber-fiber interactions, we would expect a
surface energy of % the cohesive energy of the crystal. This would predict a surface
energy of 1.42 kcal/mol for both the (100) and (001) surfaces, which is low by ~ 15
%.

Figure 6 shows the predicted heat capacity (C,), entropy, enthalpy and free

energy versus temperature (again, we know of no experimental data).

V. Summary

In this paper we develop the MSXX force field for P(SiH) that should be
accurate and useful for a variety of structural, thermodynamic, spectroscopic, me-
chanical, and surface properties. The method follows the procedure developed by
Karasawa et al.!! for PE (modified for incomplete experimental vibrational data).
For PE the substantial amount of data on experimental properties validated the
accuracy attained with tilis procedure. For P(SiH) sample quality is poor and
this procedure is used to predict the properties of crystalline P(SiH) in advance of

experiment.
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Spectroscopic force fields (SFF) usually omit the electrostatic (Q) and van
der Waals (vdW) nonbond terms since the geometry is considered fixed. For molec-
ular dynamics (MD) calculations the FF must describe how the energy changes with
geometry, and hence the MSXX FF includes these intramolecular nonbond terms.
They are small for P(SiH) oligomers except for torsional modes, where they make
significant contributions. On the other hand, the bulk properties of P(SiH) depend
greatly on the intermolecular interactions.

The HBFF® combines experimental vibrational frequencies with the normal
mode description of the vibrations from ab initio calculations. For P(SiH) oligomer
systems it was necessary to extend the HBFF approach to handle systems with
incomplete spectroscopic information through scaling.

The validity of the resulting MSXX force field is tested by calculating the
properties for n—Si5H12, where we find the modes to be within 2% of the scaled ab
initio (HF/6-31G**) results (no experimental data are available). MSXX predicts
a Si-Si-Si bond angle 1.13 ° larger than HF, which although not a large error, will
manifest itself in predicting a slightly larger bond angle for the crystal. Despite
the slight difference in the geometry the MSXX predicts the vibrational frequencies
accurately.

The MSXX predictions should be useful for predicting the spectra of larger
oligomers where assignments are incomplete (particularly for torsional modes and
skeletal modes) and for the P(SiH) condensed phase where there are no assignments.

We used the Nosé formalism!® of canonical molecular dynamics to extract
thermodynamic properties of polysilane from the MD simulations. Properties at
various temperatures were averaged from dynamics calculations and thermal ex-
pansion coefficients were derived for temperatures up to 450K. Other properties

were calculated using the unit cell at the desired temperature.
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Table 1. Structural parameters. Distances are in A, angles are in degrees.

Molecule Feature?© MSXXc¢ HF/6-31G** n—SisHy9 Experimental®
FF FF4
SiHs Si— H 1.476 1.476
H-S—-H 111.01 111.01 110.6
SiHy4 Si— H 1.476 1.476 1.476 1.481
SioHg Si— Si 2.353 2.353 2.356 2.331
H - 53 1.479 1.479 1.479 1.492
H - Si— 851 110.35 110.35 110.50 110.3
SizHg S1— S, 2.358 2.357 2.351
H. - Si, 1.482 1.482 1.482
H;, — Si 1.479 1.478 1.477
H,, — 51 1.479 1.479 1.478
Si— Si. — St 112.73 112.56 108.83
H;p — St — Sic 110.74 110.69 110.84
H,, — S5i— Si. 110.17 110.16 109.75
H.—- Si.— 57 109.07 109.12 109.98
H,, — Si— Si. — S 59.77 59.77 59.65
n— Si4H10 St — SZC 2.358 2.357
Si. — Si, 2.362 2.361
H, - Si, 1.481 1.482
Hip — Si 1.480 1.479
H,, — St 1.479 1.479
Si— St. — Si. 113.06 112.73
H;, — Si— Sic 110.86 110.73
H,p, — St — 54 110.01 110.08
H,.— Si.— Si 109.22 109.30
H,p — Si— Si,— Si.  59.76 59.79
H,.— Si.— Si.— St 58.32 58.48

References 15 and 16.

Si. and H, denote atoms of SiHy groups. These are used in the P(SiH) FF.
Separate FF for each molecule, parameters in Table 6a.

Using the MSXX FF of n—Si4H1g to calculate the structure of the other molecules.
ip and op denote in-plane and out-of-plane hydrogens, respectively.

[S S}

Q o

[\
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Table 2. Atomic charges (electron units) from HF calculations on linear (all trans)
chains. Based on these results we recommend the following: (i) @s; = 0.30,
Qu = —0.15 for SiH, of P(SiH). (ii) @s; = 0.44, Qg = —0.14 for terminal

SiHs groups, and (iii) Qg; = 0.23 and @y = —0.125 for SiH, next to a

terminal group.

SioHg SizHg SiqaHyp SisHyo
Atom? PDQ  Mulliken PDQ Mulliken PDQ Mulliken PDQ Mulliken
Si (SiHjy)' 0.2971  0.2878
H (SiH,)' -0.1485  -0.1508
Si (SiH3) 0.1550  0.2287  0.2211  0.2565  0.2287  0.2617
H (SiH3) -0.1042  -0.1491  -0.1274  -0.1501  -0.1260  -0.1495
Si (SiH3) 0.3936  0.4752  0.4714 05096  0.4829  0.5175  0.4494  0.5138

H (SiH3)-ip -0.1312 -0.1584 -0.1369 -0.1567 -0.1458 -0.1569 -0.1370  -0.1570

H (SiH3)-op -0.1424  -0.159  -0.1518  -0.1584  -0.1446 -0.1584

@ Primes signify central SiHs. ip and op denote in-plane and out-of-plane hydrogens,

respectively.
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Table 3a. The torsional potential (kcal/mol) for SioHg. All bonds and angles were
optimized at each ¢. E¥%. is described with a single 3-fold term (17) with a
barrier K3 = 0.94 kcal/mol (see Table 7a).

) HF MSXX

60.000  0.00000  0.00000
45.000  0.13500  0.14490
30.000  0.47000  0.49150
15.000  0.82300  0.83280
0.0000  0.97400  0.97290
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Table 3b. The torsional potential (kcal/mol) of SigHg for various values of the two

EFF

dihedral angles, ¢; and ¢,. Same conventions as Table 3a. E;_.

scribed using the H — Si — Si — H torsion from Table 3a plus a single 3-fold

(¢) is de-

H — Si— Si— Si torsion with barrier of K3 = 0.806 kcal/mol (see Table 7a).

MSXX Torsional Energies

HF Torsional Energies

o1 ¢2 180 165 150 135 120 180 165 150 135 120

180 0 0.1205 0.4241 0.7504 0.8995 0 0.1150 0.3389 0.6884 0.8161
165 0.1205 0.2478 0.5568 0.8839 1.0278 0.1150 0.2058 0.4897 0.8111 0.9728
150 0.4241 0.5568 0.8734 1.2069 1.3511 0.3389 0.4897 0.8082 1.1716 1.3585
135 0.7504 0.8839 1.2069 1.5505 1.7011 0.6884 0.8111 1.1716 1.5656 1.7533
120 0.8995 1.0278 1.3511 1.7011 1.8601 0.8161 0.9728 1.3586 1.7533 1.9196
105 0.7504 0.8839 1.2069 1.5505 1.7011 0.6884 0.8111 1.1716 1.5656 1.7533
90 0.4241 0.5568 0.8734 1.2069 1.3511 0.3389 0.4897 0.8082 1.1716 1.3585
75 0.1205 0.2478 0.5568 0.8839 1.0278 0.1150 0.2058 0.4897 0.811 0.9727
60 0.0000 0.1205 0.4241 0.7504 0.8995 0.0000 0.1150 0.3389 0.6884 0.8161
45 0.1205 0.2478 0.5568 0.8839 1.0278 0.1150 0.2058 0.4897 0.8111 0.9727
30 0.4241 0.5568 0.8734 1.2069 1.3511 0.3389 0.4897 0.8082 1.1716 1.3585
15 0.7504 0.8839 1.2069 1.5505 1.7011 0.6884 0.8111 1.1716 1.5656 1.7533
0 0.8995 1.0278 1.3511 1.7011 1.8601 0.8161 0.9728 1.3586 1.7533 1.9196




Table 3c. The torsional potential (kcal/mol) for central torsion angle of n—SisHio.
For each ¢ all other structural parameters were optimized (at either the HF
or FF level). Same conventions as Table 3a. The Ey,.(¢) was described with
the H —Si— Si— H and H — Si— Si— 5% terms from Tables 3a and 3b plus
a three term Si — Si — Si — Si potential (see Table 7a). The last column is

the Si-Si-Si-Si torsional potential (after eliminating the other nonbond and

valence torsions).

120

10} HF MSXX Eior

0 1.5631 1.5628 0.7189
15 1.3380 1.3302 0.6682
30 0.8461 0.8345 0.5271
45 0.3893 0.3891 0.3455
60 0.1539 0.1542 0.1891
75 0.1639 0.1504 0.0734
90 0.3238 0.3189 -0.0324
105 0.5261 0.5376 -0.1005
120 0.6735 0.6458 -0.0657
135 0.5359 0.5478 -0.0787
150 0.3190 0.3110 -0.0247
165 0.0986 0.0883 0.0018
180 0.0000 0.0000 0.0000
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Table 4. Scale factors (ratio of experimental value to HF value) for estimating exper-

imental frequency from HF vibrational frequencies. Standard deviations are

in parentheses.

Mode SiH, SigHe SisHsg n—SisHyo
Si-H Stretch 0.9255 0.9113 0.9163 0.9140
(0.0035)  (0.0215)  (0.0015) (0.001)
Si-H Bend 0.9125 0.8972 0.9009 0.9081
(0.0191)  (0.0126)  (0.0162) (.0203)
Si-Si Stretch - 0.9100 0.9370 0.9177
- - (0.0226) (0.0055)
Si-Si-Si Bend - - 1.025 -
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Table 5. Predicted vibrational frequencies (cm‘l) for n — SisHqo.

Mode Sym Character MSXX Scaled HF MP2
1 B, Torsion (Si-Si) 24 23 23 52

2 Ag Torsion (Si-Si) 26 26 26 43

3 Ay Si-Si-Si bend 47 45 49 56

4 Ag Torsion (SiH3) 93 89 89 111

5 B, Torsion (SiH3) 95 90 90 112
6 B; Si-Si-Si bend 104 105 115 112
7 Aq Si-Si-Si bend 138 137 131 124
8 B, SiHg rock 303 301 331 300
9 Ag SiHg rock 322 321 353 329
10 Ay Si-Si Stretch 366 366 399 383
11 B twist-rock 379 376 414 391
12 B, Si-Si stretch 392 397 433 414
13 Ay Si-Si stretch 446 441 482 463
14 Ag Si-Si stretch 457 464 506 483
15 B twist 464 461 508 487
16 B, SiH3 rock 505 491 542 510
17 A SiH3 rock 515 526 581 550
18 By SiHo rock 568 567 624 596
19 Ao twist 646 647 711 674
20 B, wag 665 655 721 678
21 By twist 705 703 773 736
22 As wag 732 733 806 768
23 A twist 740 742 816 770
24 B; wag 797 799 879 830
25 B, SiH3 s-def 892 890 982 931
26 Aq SiHg3 s-def 892 895 988 938
27 Ay SiHg scissor 926 927 1019 972
28 B; SiHg scissor 929 929 1022 973
29 Ay SiHo scissor 933 931 1024 978
30 Ao SiH3 def 939 937 1034 993
31 By SiHg def 939 938 1034 993
32 B; SiH3 def 941 941 1038 997
33 Ay SiH3 def 941 944 1041 999
34 B, SiHg stretch 2112 2117 2315 2285
35 As SiHg stretch 2113 2119 2318 2287
36 B, SiHg stretch 2122 2120 2319 2290
37 Aq SiHg stretch 2122 2121 2320 2294
38 B SiHgy stretch 2123 2125 2325 2299
39 Aq SiHg stretch 2124 2128 2328 2304
40 B, SiH3 stretch 2142 2141 2343 2305
41 A SiH3 stretch 2142 2142 2343 2306
42 B; SiH3 stretch 2142 2142 2343 2319
43 A SiH3 stretch 2142 2143 2344 2319
44 Ag SiH3 stretch 2144 2144 2345 2319
45 By SiHg3 stretch 2144 2146 2348 2320
Error 4.0 0 116.7 92.8
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Table 7b. The MSXX FF for polysilane polymers. The subscript on the Si indicates
the number of H atoms attached. All quantities are in (kcal/mol), A, radian
units except for 6, which is in degrees.

Bonds R. K. D,

H-Siy 1.476  396.3  92.6

H-Si3 1.478 395.8 92.6

H-Sis 1.476  383.1 92.6

Siz-Sig 2.369  276.7 T73.7

Siz-Sig 2.330 278.8 73.7

Sio-Sis 2.328 261.1 73.7

Angles 96 Kg Km. DR1 0 DR29
H-Sis-H 110.4 68.35 4.30 -1.90 -1.90
H-Siz-H 113.6 56.39 3.34 -11.20 -11.20
H-Siy-H 113.4 56.05 4.46 -1.46 -1.46
Siz-Siz-H 115.14  42.25 - 16.14 -10.67
Sip-Siz-H 117.2 45.0 - -5.34  -10.54
Siz-Sis-H 118.5 33.3 - -6.41 -10.64
Sip-Sis-H 115.8 41.6 - -4.16 -2.68
Sig-Sis-Sig 122.55 42.53 15.21 -6.19 -6.19
Sig-Sia-Sig 126.6 354 0.635 -15.6 -18.7
Sig-Sig-Sig

Torsions Ko Ky Ko Ks Foo
H-Si-Si-H 0.940 0.940 -134
H-Si-Si-Si 0.806 0.806  -9.36
Si-Si-Si-Si 2.785 5.86 3.54 0.46 -9.28
1-Center Angle Angle Goe

Siy H-H-H 5.717

Sis H-H-H -0.349

Siz Si-H-H -1.108

Sip Si-H-H -4.775

Sig Si-Si-H -1.6
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Table 7c. Van der Waals parameters (reference 7) used for all MSXX force fields,
Eyiw = D, (p712 — 2p™) where p = R/R,. The off-diagonal parameters
D, and R, (Si--- H) are obtained from the diagonal parameters by using

the geometric mean.

vdW parameters St H

R, (A) 4.270 3.195
D, (kcal/mol) 0.310 0.0152
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Table 11. Predicted structure of n—SisHis. Distances are in A, angles are in degrees.

MSXX HF® A
Ste — Stce 2.365 2.361 0.004
Sic — St 2.355 2.357 0.002
H. - Si, 1.480 1.482 0.002
H.. — Sicc 1.479 1.482 0.003
H;p — St 1.478 1.479 0.001
H,, - 51 1.478 1.479 0.001
St — St — Stce 112.1 112.69 0.59
Sic — Stce — Ste 114.16 113.03 1.13
H;, — 51— St 110.06 110.63 0.57
H,, — St — St 110.04 110.14 0.10
H..— Sicc — Hee 106.63 107.25 0.62
H.— Si. — Sice 110.06 108.93 1.13
H,, — 81— Si. — Sic. 59.95 59.81 0.14

2 6-31G** basis.
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Table 12. Properties of P(SiH) at 0K, 77K, and 300K from Gibbs dynamics for a 2x4x4

supercell (containing 384 atoms).

Property 0K 77K 300K

unitcell (A)?

a 8.422 8.526 8.833
b 3.966 3.9769 3.955
c 4.685 4.733 4.929
Bulk Modulus (GPa)

B 13.095 10.412 4.594
Young’s Moduli (GPa)

Y, 11.94 9.586 4.720
Y, 110.57 107.64 98.384
Y, 18.64 14.750 5.789
Elastic Constants (GPa)

Cn 15.60 12.424 5.937
Coo 121.30 116.501 102.85
Css 22.97 18.172 7.088
Cia 12.73 10.335 5.045
Cis 8.17 6.486 2.765
Cos 9.24 7.374 3.369
Cyq 16.23 13.995 8.322
Css 7.34 5.936 2.876
Ces 19.30 16.299 8.906

¢ Structure was constrained to remain orthorhombic during the dynamics.
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Table 13. Predicted cohesive energy (kcal/mol SiHs) for polysilane crystal. The cohe-

sive energy at 0K of 3.82 kcal/mol SiHy compares with 1.87 kcal/mol C Hy

for polyethylene crystal.

Total Energy  Zero-point Energy?

Lattice Enthalpy

At minimum at 0K
Isolated Chain 3.224 8.568 11.792
Crystal (2 chain) -1.055 9.031 7.976
Cohesive Energy (2 chain) 4.279 -0.463 3.816
Crystal (1 chain) -1.231 9.053 7.822
Cohesive Energy (1 chain) 4.455 -0.485 3.970

¢ Using 5 x 5 x 5 points in the Brillouin zone.
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Table 14. Vibrational frequencies (cm™!) for polysilane crystal P(SiH) with two chains
per unit cell. Only the values for ¥ = 0 (I" point) are shown. The chain
direction is [010].

Mode Description Polarization Direction

[010] [100] [001]
1 interchain 63.6 63.6 63.6
2 interchain 95.7 95.7 96.3
3 interchain 98.1 98.1 98.1
4 skeletal torsion 152.2 152.2 152.2
5 skeletal torsion 160.9 160.9 160.9
6 SiH2 rock 320.9 320.9 343.8
7 SiH2 rock 357.7 348.9 348.9
8 Si-Si-Si bend 398.7 398.7 398.7
9 Si-Si-Si bend 403.2 403.2 403.2
10 Si-Si stretch 509.5 509.5 509.5
11 Si-Si stretch 532.3 532.3 532.3
12 SiH2 rock 573.5 573.5 573.5
13 SiH2 twist 573.5 573.5 573.5
14 SiH2 rock 583.7 583.7 583.7
15 SiH2 twist 648.5 649.0 648.5
16 SiH2 wag 702.1 742.5 702.1
17 SiH2 wag 771.7 771.7 771.7
18 SiH2 twist 840.6 840.6 840.6
19 SiH2 wag 871.5 871.5 871.5
20 SiH2 twist 927.5 927.5 927.5
21 SiH2 scissor 948.2 948.2 953.8
22 SiH2 scissor 950.6 950.6 950.6
23 SiH2 wag 954.5 940.1 940.1
24 SiH2 scissor 954.7 954.7 954.7
25 SiH2 scissor 964.7 964.7 964.7
26 SiH stretch 2150.2 2150.2 2150.2
27 SiH stretch 2151.8 2151.6 2151.6
28 SiH stretch 2152.2 2151.8 2153.9
29 SiH stretch : 2153.1 2153.1 2153.1
30 SiH stretch 2154.5 2154.5 2160.1
31 SiH stretch 2155.3 2155.3 2155.3
32 SiH stretch 2161.3 2161.3 2161.3

33 SiH stretch 2164.3 2159.0 2159.0
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Table 15. Vibrational frequencies (cm™!) of P(SiH). The first two columns are for a sin-

gle infinite chain, while last two columns are for the crystal, with 1 chain/unit

cell.

Isolated Chain Crystal
(single chain)

Mode Sym  Description  Cui et al.* MSXX MSXX Exper

1 Au SiHs rock 311 307.7 367.9
2 Ag Si-Si-Si bend 413 396.8 407.2
3 Ag Si-Si stretch 469 493.1 526.7 480
4 Au SiHs twist 549 556.8 613.0
5 Bg SiH, rock 532 562.5 585.1
6 Bu SiH, wag 604 685.0 692.9
7 Bg SiH, twist 769 795.2 842.4
8 Ag SiH, wag 808 852.1 929.8
9 Ag Scissor 943 936.4 949.4 909
10 Bu Scissor 953 935.6 974.7 905
11 Bg SiH stretch 2140 2128.3 2146.6 2155
12 Bu SiH stretch 2139 2128.5 2151.0 2100
13 Au SiH stretch 2158 2132.6 2153.6 2100
14 Ag SiH stretch 2150 2130.3 2156.5 2115

% Reference 5.
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Table 16. Packing of P(SiH) and Polyethylene. R is the C-H (1.096A) or Si-H (1.484)
bond distance and R is the C-C (1.553A) or Si-Si (2.35A) bond distance for
PE and P(SiH), respectively.

Lattice constant P(SiH) PE
unitcell®

a 8.422 7.121
b (chain) 3.966 2.546
c 4.685 4.851
a/R 5.69 6.50
b/R 1.69 1.64

¢/R 3.17 4.43
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figures 4a-b.

Figure 5.

Figure 6.

Torsional potential (kcal/mol) of SisHg from HF calculations and from the
MSXX FF. All bonds and angles are optimized for each ¢. The total E#F(¢)
and EFF(¢) is plotted.

Torsional potential (kcal/mol) of SigHg from (a) HF calculations and (b)
the MSXX FF. Each is plotted versus the two dihedral angles ¢; = H — Si —
Sio — Si3 and ¢g = S7 — Siy — Siz — H (abscissa and respective ordinate).
All other bonds and angles are optimized for each ¢; and ¢2

Torsional potential (kcal/mol) for the central Si—Si bond of H3S%i— SiH, —
SiHy — SiHs from HF and HBFF. All other bonds and angles are optimized
for each ¢.

The calculated phonon modes (cm™?!) of crystalline P(SiH) for the [010] and
[001] directions (the chain direction is [010]). Only the modes below 1000

1 are shown.

cm™
(a) The calculated stress-strain curves for crystalline P(S¢H) in directions
perpendicular to the chain axis. (b) The strain energy (kcal/mol) as a func-
tion of strain.

The thermochemical properties as a function of temperature (using a 5 by 5
by 5 set of phonons in the Brillouin zone). (a) The heat capacity (Cv). (b)

The Helmholtz free energy. (c) The internal energy. (d) The entropy.
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Figure 4a
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Wavevector in units of [0 t/2 0]

Figure 4b
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Figure 6a
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Chapter 5

Force Fields for Semiconductors and Their Superlattices



150

Abstract

We develop the MSXX force field (FF) for molecular dynamics (MD) simu-
lations of the group IV diamond materials, and group II/VI and III/V zinc-blende
semiconductors. This was developed to fit the structure, elastic constants, and the
phonons of the crystal. The MSXX force field for zinc-blende materials contains
only 6 adjustable force constants, 2 geometric parameters and an atomic partial
charge, yet it accurately describes the experimental crystal structure, elastic con-
stants, and phonon dispersion curves, and is suitable for predictions of the strained
structures at heterojunctions and for MD. The MSXX FF is used to calculate the
interface phonons of various superlattices and the Ge/Si ordered alloy where we

find excellent agreement with experiment.
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1.0 Introduction

Ab initio quantum mechanics can provide an accurate description of the
structures, mechanical properties, and electrical properties of semiconductor mate-
rials. Unfortunately, despite recent advances in first principles methods for large
systems! and for periodic systems,? such simulations are impractical for many im-
portant applications to semiconductor materials. Consequently, we have developed
a consistent set of valence force fields that should be useful for molecular dynamics
simulations of semiconductors. This MSXX (FF) is derived using empirical data on
lattice constants, elastic constants, and phonon states. Herein we report the MSXX
FF for the nine III/V systems with III= Al, Ga, In and V = P, As, Sb, the five
IT/VI systems with II = Zn, Cd, Hg, and for VI = S, Se, Te, and the group IV

systems, diamond, silicon and germanium.

A prime motivation in developing the MSXX FF is to describe the strain
effects and vibrational modes at heterojunction interfaces and superlattices. We
illustrate the approach by predicting the vibrational interface states in several su-
perlattices. These results show that the MSXX FF provides an accurate description
of the strains and interface phonons.

The form of the MSXX FF is described in Section 2 and the optimization
of the parameters is described in Section 3. Comparison to experimental phonon
dispersion data is made in Section 4. The calculations of the superlattice phonon

dispersion curves are given in Section 5.

2.0 The MSXX Force Field

Chapter 1 describes the general form of the force field. Here we describe the
MSXX force field as specifically applied to semiconductor materials. The general

form of the force field is taken as®

E = Eval +EQ +Evdw (1)
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where

145
EQ Ccoul Z 1 = (2)
1>7 ZJ

represents the Coulombic interactions between partial charges on the various atoms
(Ceout = 332.0637 ensures that E is in kcal/mol where R in A),
Evdw Z Evdw (3)

i>7

represents the long-range attraction (London dispersion) and short-range repulsion

(Pauli orthogonalization of nonbonded electrons) and
Eval — Ebond + Eangle + [eross Eto'rsion (4)

represents all terms involving bonds between atoms and coupling behavior of these
bonds. This type of FF has been used to describe polymers (polyethylene,?
polyvinylidene fluoride,® polysilane,® nylon”), SizN; ceramics,® and many other
systems. It is denoted as MSXX to indicate that it is for materials simulations and

that it includes both 1 center and 2 center cross terms.

2.1 Bond Terms
We take E%™ as a sum over all bond pairs where each has the form of a

Morse function,3

EMer*¢(R) = Dp [x* — 2x] (5)
with
x = e oiR) (6)
and -
a= ﬁ. (7)

This includes anharmonicity and allows a proper description of bond dissociation.

We choose the Morse form (5) over the more common harmonic description

Erer™(R) = %kR (R - R.)? (8)
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in order to better describe anharmonic effects, e.g. thermal expansion. Equation

(5) contains three independent parameters R., kr, and Dg. The structure, elastic

constant, and phonons are sensitive to R. and kg but not to Dr. Consequently we

choose Dg based on the experimental atomization energies.’

2.2 Angle Terms

We take E979!¢ as a sum over all angles —J—K for each atom J here each

angle term is described with the cosine angle form,3

Ecosine(g) = % [cos — cosb.]? (9)

where the force constant is

0%E
— h2p —
kg—C'sm 93— <W)96'

This form leads correctly to dE/df = 0 at # = 0 and 180° with a barrier (at 180°)of
4 C
Eharrier — 5 [1+ cosb]”. (10)
One might restrict 6. to be 6, = 109.471°, the tetrahedral value, since this is the
optimum geometry in these crystals. However we have optimized both 6, and kg.

2.3 Cross Terms

We find, generally, that bond-bond cross-terms
Err = Krp(r1 — r1¢)(T2 — T2¢) (11)

sharing an apex atom (e.g. IJ and JK) are required to describe the coupling of
equivalent bonds.* Since bonds sharing a common apex are identical for the zinc-
blende structures, we include such terms.

For two bonds I — J and J — K sharing a common atom, there are two

bond-angle cross terms of the form?

Erg = Dyg (11 — 17) (cosb — cosbe) (12)
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krg = Drg sin 96.

We find these to be necessary for III-V systems.

If three (or more) bonds share a common atom (say I — J, K — J, L — J),
we find that the one center angle-angle cross terms (e.g coupling of the IJK and
K JL angles)3

Eop1 = Fpo(costy — cosbi)(cosbs — cosbs) (13)

koo1 = Fpp sin 67 sin 65

are not necessary to describe the structure, elastic constants, and phonon spectra
of III/V semiconductors.

On the other hand we do find two-center angle-angle coupling to be impor-
tant. Thus for three sequential bonds I — J, J — K, and K — L, the coupling of the
IJK angle (6;) with the JK L angle (65)%1°

Egg2 = Goo(cos 01 — cosby)(cosby — cosbs)

is important when the IJ and KL bonds are trans (dihedral angle, ¢ = 180°) but
not when they are gauche (¢ = 60°,300°). Consequently we define this coupling

term as
Eoo2 = Goo f(¢) (cos By — cos ) (cos by — cos 65) (14)
where
1 2
f(o) = 3~ 5C08¢
and

koo2 = Gog sin 05 sin 65

which leads to £(180°) = +1 and f(60°) = £(300°) = 0. McMurry!° first introduced
such a coupling term to describe the TA mode softening for k£ approaching the
Brillouin zone boundary in Si. Such terms are generally required to describe the

vibrations of long chain molecules (such as polysilane® and polyethylene*) that



155

feature a trans zig-zag chain. Similarly they are needed to describe the stiffness
along the < 110 > chain directions of the diamond and zinc-blende materials.

Summarizing the cross terms are taken as

Eecross = Y _Ermi+ Y Ero1+ »_ Eooo. (15)

2.4 Torsion Terms

Generally one would include terms of the form?3
Etorsion(¢) — _;_Vtor (1 + cos 3¢) (16)

for describing the torsional barrier in a tetrahedral system. Such barriers describe
the observed preference for staggered dihedral angles and lead to chair-like six mem-
bered rings rather than the boat conformation. Thus such interactions would prefer
the sphalerite (cubic) or zinc-blende structure over wurzite (where 1/4 of the bonds
have eclipsed ligands). However, we find that the structure, elastic constants, and
phonon dispersion are not sensitive to V" and hence do not include it here. We
do find electrostatic effects lead to a slight (0.1 kcal/mol) disfavoring of the Wurzite

structure with respect to zinc-blende (see below).

2.5 Electrostatics

A valence force field without electrostatic terms leads to degenerate LO and
TO modes at the I' point, thus the group IV materials have degenerate optical T’
points. The observed splitting in these levels for the compound semiconductors re-
sults from the macroscopic electric field arising from the macroscopic displacement
of charge in the LO mode as k — 0. To describe this splitting requires the electro-
static term in (2). Indeed, fitting the LO-TO splitting leads to unique charges in
the range expected from the electronegativity differences of the III/V atoms. [We
use the Accuracy Bonded Convergence Acceleration (ABCA)!! procedure to sum

the Coulombic interactions.]
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2.6 Van der Waals

The energetics of small displacements in a tetrahedral crystal do not require
explicit van der Waals interactions. However we intend to use these potentials
for materials with surfaces, dislocations, vacancies, etc. where there may be other
atoms or molecules. Consequently we want to include the van der Waals interactions
required to describe interactions with nonbonded molecules. To do this we use the
parameters from the Universal Force Field,'? which includes vdw parameters for all

elements up through Lr (element 103).

3.0 Force Field Optimization

We optimized the MSXX force field by minimizing the error between the
calculated and experimental properties (lattice parameter, elastic constants, and
phonon special points) of the crystal with respect to variations in the force field

parameters.

3.1 The Error Function and Weights

The error function is!3
3N-6 3N—-6 6 6
Serr = Wforce Z (6E£)2+Wfreq Z (6Vi)2+Wst'r‘ess Z((Szi)z'i'welas Z (6013)2
i=1 =1 1=1 <=5=1

(16)
where § denotes the difference between the calculated quantities from the force field
and from experiment. Here N is the number of atoms, E; is the gradient of the
energy (the force), v; are the frequencies of the phonons (I' and X point only), ¥;
are the stresses, and C;; are the elastic constants (only Cii,Ci2,C4q are unique
for cubic crystals). We use the HB-SVD method!3:'4 to minimize the error, Se,,.
HB-SVD also handles redundancy in force field parameters so that the parameters
are changed only when they significantly improve the fit.

We choose the weights to ensure that the forces on the atoms and the stresses

on the crystal are zero. These weights were selected with three primary goals:
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1. We want to reproduce the crystal geometry and fit the experimental phonon

frequencies and elastic constants as closely as possible. There is generally a
trade off between these two errors. We choose the weights such that neither
is too large, but with more emphasis on the phonon frequencies. The reason
is that the low frequency properties associated with the elastic constants
have less bearing on the localized strains surrounding defects and surfaces.
. We want to ensure the intuitive nature of the valence force field by having
physically meaningful values for the force constants. This led us to include
only the significant cross terms, as discussed above.

. We want the resulting force constants to show regular behavior as we move
across and down the periodic table. This is so that reliable predictions can
be made for mixed systems such as heterojunctions. The weights chosen for

(1) and (2) lead to this regular behavior.

3.2 Phonon Dispersion

After fitting the force field, we used it to predict the complete phonon dis-

persion curves along the < 100 > and < 111 > directions. Expanding the energy

about equilibrium leads to

B(R) = B(R)+ Y Ei6R: + 3 Elj6RioR, (17)
i 4,J
with
R, = R + 6R;.
The force at equilibrium is zero
oF
F,=—E =— = 18
{=—5p =0 (18)
and
0°E
"o_ — H..
iy = 8Ri8Rj Hﬁ] (19)

is the Hessian.
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The equations of motion become

2
Mza—[égf%—(t)] =- ; Harp7[6Rss(t)]

where the subscripts I and J run from 1 to the number of atoms N, and the
subscripts a and 3 run though the x,y, 2 components of the atomic coordinates.

The time periodic eigenstates have the form
6Rar(t) = (6RY) 717,

where

w?M;(6RL,) = EHaI,ﬁJ (5RgJ) ik (Fos—Tar) (20)
BJ

Taking k in < 100 > and < 111 > directions and solving the equation (20) gives

the corresponding frequencies.

3.3 Charge Equilibration

For tetrahedral crystals, the splitting of the LO and TO modes at the T'
point is quite sensitive to the charge difference between the cation and anion. This
arises from the macroscopic dipole for the LO mode near k=o0. (With no charge
difference these modes are degenerate.) We develop a electronegativity scale based
on the splitting of the I' points. The resulting charges represent the electronegativity
difference in the elements. Thus gy ; = 0.88, 0.80, 0.76 for ZnS, ZnSe, ZnTe indicates
that the electronegativities are in the sequence S = Se > Te. The ¢;; = 0.76, 0.86,
0.74 for ZnTe, CdTe, and HeTe indicate that the electronegativities are in the
sequence Hg > Zn > Cd. This is in rough agreement with the Pauling values as
optimized by Allred!®: 2.58, 2.55, 2.3 for S, Se, Te and 1.65, 1.69, 2.00 for Zn, Cd,
Hg.

For the more interesting cases of interfaces and defects, we expect charge
readjustments but there is not sufficient experimental data to determine the mod-

ified charges. Thus we have used the charge equilibration (QEq) procedures of
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Rappé and Goddard!? but with the readjusted atomic electronegativities to fit the
MSXX FF.

In QEq'® the energy of an atom A is assumed to be

1
Ea(Qa) = Eoa + xaQa + §IAAQ31 (21)
where
1
XA=§(IP—I—EA) (22)
is called the electronegativity and
1
§JAA=IP—EA (23)

is called the hardness (or idempotency). Then in a molecule or crystal the total

energy is taken to have the form
E=Y Ea(Qa)+ Y QaQpJas (Ran) (24)
A A=B

where J4p(Rap) is the Coulomb potential between spherical charge distributions
on A and B with radii R4 and Rp, respectively. For crystals the second term in
(42) must be evaluated using the Ewald procedure. The QEq Ewald program was
rewritten by Karasawa and Goddard!” to calculate the ionic charges for periodic
systems.

For group II the standard QEq parameters®!6 lead to the results in Table
1. The discrepancy with the MSXX values are probably due to the special nature
of the group II atoms where the ground state s? is used to define x4 and Jaa
but, the crystal involves sp® hybridization. Consequently we have readjusted the
Xo for group II to agree with MSXX. The results are shown in Table 1. With
this readjustment of QEq parameters we can now predict charges at interfaces,

impurities, etc.
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4.0 Results
4.1 Group IV Materials

The experimental phonon frequencies and elastic constants of the group IV
materials are listed in Table 2 and were selected from reference 18 which provides
all the elastic constants and special phonon points needed for fitting the FF for all
the materials. We choose to fit to the phonon frequencies to the neutron scattering
experiment for each case when available. For elastic constants we choose to fit to
values that were in best agreement with other experimental techniques (this means
we fit to data that was not extreme relative to other experiments). This was done
to minimize the possibility of fitting to a piece of experimental data having a large
€error.

The optimized parameters for the MSXX force fields are listed in Table 3, and
the van der Waals parameters (not optimized) are listed in Table 4. The parameters
change monotonically going from C, to Si, to Ge. Thus K,., Ky, and Kygo decrease
moving down the periodic table (since the bonds get weaker). The cross terms
(except the 2 center angle-angle term) do not demonstrate this behavior. We can
also see that the charges decrease as the bonds gets weaker.

The predicted phonon dispersion curves are compared with experiment in
Figures 1-3. We plot the FF phonon dispersion curves in the <100>, <110> and
<111> directions and the neutron scattering data in these directions. Since the
data used to fit the curves was the elastic constants and the special points at T’
and X the <100> direction demonstrates the accuracy of the fitting procedure for
fitting to the entire branch while the <110> and <111> directions demonstrate
the ability of the model to predict values which are not included within the fit.
The discrepancy between the neutron scattering data and the theory is remarkably
small. .

Overall the deviation from experiment is quite small. The ability of MSXX
FF to reproduce phonon dispersion with such few parameters adds credibility to

the fundamental appropriateness of the description underlying this model. This
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suggests that this force field may be useful in predicting the strains and mechanical
properties of these systems.
4.2 Group III/V Materials

The experimental phonon frequencies and elastic constants of the group III/V
materials are listed in Table 5 and were selected from reference 18 which provides
all the elastic constants and special phonon points needed for fitting the FF for all
the materials except AIP for which the X points are unavailable.

The optimized parameters for the MSXX force fields are listed in Table 6, and
the van der Waals parameters (not optimized) are listed in Table 7. The parameters
change monotonically going from AIP to AlAs to AlISb, from GaP to GaAs to GaSb
and from InP to InAs and InSb. Thus K, and Ky decrease moving down the
periodic table (since the bonds get weaker). The cross terms do not demonstrate
this behavior. We can also see that the charges decrease as the bonds gets weaker.

The predicted phonon dispersion curves are compared with experiment in
Figures 4-12. The best data is for GaAs. We plot the FF phonon dispersion curves
in the <100>, <110> and <111> directions and the neutron scattering data in
these directions. The discrepancy between the neutron scattering data and the
theory is small. The largest differences occur along the TA branches in the <110>
direction (which is also the branch for which the neutron data has large error bars.

To extend the MSXX FF to the prediction of polarization properties, we will
add a covalent shell description to the valence force field (as was done for PVDF?®
We could also improve the fits of MSXX by using additional points from the phonon
dispersion curve in the set of constraints. However, the current fit is acceptable for
all systems.

4.3 Group II/VI Materials |

The experimental phonon frequencies and elastic constants of the group I1/VI
materials are listed in Table 8 and were selected from reference 18. The optimized
parameters for the MSXX force fields are listed in Table 9, and the van der Waals

parameters (not optimized) are listed in Table 10. The predicted phonon dispersion
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curves are compared with experiment in Figures 13-17. Again, as in the case of the

group III/V materials the largest errors occur along the TA branches in the <110>

direction.

5.0 Superlattices
Phonon dispersion curves for superlattices have long been an active research

19 much

area. Since Colvard et al. first observed the folded acoustic phonons,
progress has been made both in theory and experiment. Theoretical work has
included the elastic model and Fourier transform analysis which have been proposed
to explain the folding of the acoustic branch, and the degeneracy at the Brillouin
zone center and boundary.?? The alternating linear chain model has been employed
to explain the confined modes.?® And a theory treating the dielectric modulation
has been used to explain the interface modes.?? All these models deal only with the
dispersion curves along the axis direction. Complicated, non-intuitive, numerical
models such as the Valence Overlap Shell model, etc., have been necessary for the
full 3-D description of the superlattice phonons. Our approach offers an advantage
in that it is much simpler and physically intuitive. Another complicated issue is
the effect of strain on the superlattice phonons which is discussed by Jusserand and
Cardona.?° The acoustic phonon folding, zone edge and zone center splittings are
observed experimentally as are the confined optical modes and interface modes.

A general scheme to model the superlattice phonons is to utilize the models
for bulk materials and adapt them to the superlattice. As pointed out in,?0 3
problems should be addressed: (1) The choice of proper lattice dynamical models
for the bulk constituents. (2) The transferablity of the bulk model parameters to
the superlattice case, which is reasonable and straight-forward for local quantities
or very short range interactions, but which becomes more difficult for long range
forces. (3) Numerical difficulties arising from the size of the secular equations in

the case of thick layer superlattices.

In this section we extend the molecular mechanics FF to calculate the phonon
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dispersion curves for the superlattices. In the force fields, the local quantities such
as bond lengths and angles, bond stretching and angle bending force constants,
are all directly transferred, the long range van der Waals forces are also directly
transferred. We used the electronegativity of the atoms to calculate the charge
on the atoms to determine the Coulomb forces. However, some of the interface
local parameters are unique to the interface and we use an averaging method to
interpolate the interface potential. We justify the scheme in the following section
on detailed calculations and with comparisons to experiment in section 5.3.

The MSXX model is a 3-D model, capable of dealing with all crystallographic
directions and interfaces, and with difficult problems as strain, etc. It is also readily
to modified to simulate surface roughness. The parameters involved are few and so
the calculation is relatively fast.

5.1 Calculation Details: Transfer and Extension of the Force Field

We have developed MSXX force fields for the bulk materials elsewhere,?!
as described in sections 3 and 4 and showed that our force field reproduces the
whole range of the dispersion curves well. We directly transfer the force fields to
the superlattice after adding interface interactions interpolated from the bulk FF.
There are two types of superlattices: one type is (AB)n1(AC)n2, and the other
is (AB),1(CD)n2. The first type has a common atom on the interface, while the
second one doesn’t. Here we only deal with the first type. The second type is very
similar, and will be investigated in future work. For the first type, the superlattice
consists of layers of AB and AC, e.g. (HgTe),1(CdTe),3. From the bulk FF we
have the parameters involving only AB and AC. For the atoms on the interface,
the force fields are different from both of the bulk materials as new three and four
body (and higher) interactions are involved. We derive the new interactions using
a simple averaging technique.

For the Angle B-A-C; We take the angle to be the geometric mean, i.e:

Oac = V/0BaB *Ocac-
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We also do this for the angle bending force constant:

Ko,pac = \/Ko,Bap * Ko,cac.

The other terms needed to describe the interface are the cross terms and
these become more slightly more complicated. For the B-A-C angle we need two
bond-cross-angle terms which we obtain from the related parameters in the original
bulk material. However, the original bond-cross-angle terms are symmetric for angle
B-A-B and C-A-C, so the obvious way to extend it to the B-A-C is to use them
directly:

K.o.Bac = Kr0,BAB

Kro,caB = Kro,cac

and for the bond-bond cross-term, we can also take the geometric mean:

K’r‘r,BAC = \/K’I"I‘,BAB * KT‘T,CAC'

In developing the MSXX FF for the II/VI and III/V systems we did not
use torsion terms and likewise we don’t include them here. However, we did use
the two-center angle-cross-angle terms, for the superlattices we obtain from the two-
center angle-cross-angle terms in the chain B-A-C-A and C-A-B-A of the component
materials taking the geometric mean of the two-center angle-cross-angle terms B-

A-B-A and C-A-C-A :

Kangang,BACA = \/T(angang,BABA * Kangang,CACA

Kangang,CABA = \/Kcmgang,BABA * Kangang,C’ACA-

With these interpolations we get all the force field parameters we need, (Ta-
ble 11 shows the additional terms needed for the ZnSe/ZnTe superlattice, as an

example).
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5.2 Superlattice Dispersion Curve Calculation

The superlattice dispersion is calculated in the same way we calculated the
bulk phonon dispersion curves.?! We build a unit cell and apply periodic boundary
conditions. However, there are several concerns about building the cell. (1) The
number of atoms in the cell should be as small as possible to reduce the expense of
the calculation. In the superlattice (AB),, (AC)n, , if n1 + ny = even, the space
group is P4m2(Dygs ), and if ny 4+ ne = odd, the space group is 14m2(Dyye). Both
lattices are 4m2(Dyq). In the my + ny = even case it is easy to build a unit cell
which contains the smallest number of atoms. And in the n; + no = odd case,
we have to double the cell size so that the cell can repeat itself. This increases
the computer time required to compute the vibrations. (2) The II-VI superlattices
are usually strained. In the commensurate case the lattice constant in-plane is
constrained by the substrate or buffer layer. In the free standing case, the lattice
constant in-plane can be different from that of substrate, and the stress is released.
When we build the lattice unit cell, we can fix the in-plane lattice constant to be
that of substrate or buffer to simulate the commensurate case; or we can optimize
all the lattice parameters to simulate the free standing case. (3) The charge on the
atoms may be different from the bulk materials. For example, we expect the charge
on the interface atom to be intermediate between the two component materials.
We assigned the charge by doing Ewald charge equilibration: First, we used the
fitted Mulliken eletronegativities of the atoms that reproduce the charges of the
bulk material, and then use those eletronegativities to calculate the charges on the
atoms of the superlattice unit cell. Indeed, we see that the interface atom has a
charge which is intermediate to the charges of the like atoms in the two component
materials, and the charge transition is entirely confined to the interface layer and
the two monolayers adjacent to it. 4) Usually the unit cell is under stress; Both the
short range and long range interactions will contribute stress to the unit cell. So
we fix the in-plane lattice constant to the substrate lattice constant and do charge

equilibration and energy minimization of the cell iteratively until convergence. We
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then obtain the cell size and the right charge. We also obtain the in-plane stress.
Usually 3 or 4 iterations will suffice. It is also possible to free the in-plane lattice
constant and iterate to get the cell without strain for free standing superlattices.
5.3 Results

Our model is first compared to the available experimental data. Unfortu-
nately, the experimental phonon frequencies are scant and incomplete. The available
data for ZnS/ZnSe are from Cui,?? for ZnSe/ZnTe from Cui,?® Shen,?* Ozaki,?> and
Wu,%¢ and for CdTe/ZnTe from Menendez.?” In the simulation, we calculated the
layers of the composite material and constructed the corresponding unit cell. It is
required that the number of layers of the composite be an integer. For the commen-
surate case we require the in-plane lattice constant to be clamped by the buffer layer
or substrate layer; while for the free-standing case we allow the lattice completely
relax, optimizing the unit cell without constraints. Another assumption we made is
that the superlattices have perfect interfaces. We show that the interface phonons
are insensitive to surface roughness and then only consider perfect interfaces. The
results are summarized in Tables 12-14. Both the commensurate(stressed) and free-
standing (relaxed) cases are shown. The stressed cases should be compared to the
experiment. For ZnS/ZnSe (Table 12) it is not clear whether the sample is com-
mensurate or free-standing. We find basically the prediction of our model is in
agreement with experiment. However, there are also 3 discrepancies. (1) For the
ZnS/ZnSe LA mode we have to use a (ZnS)12(ZnSe)12 unit cell to reasonably re-
produce the experimental results, instead of (ZnS)19(ZnSe)1o unit cell which has
the layer thickness reported in the experiment. This could possibly be explained
by an error in the thickness measurement in the experiment. (2) The prediction
of a few of the interface modes deviates from experiment. In the first sample
of CdTe/ZnTe, Menendez?” assigned the Raman scattering peaks at 155.92 em ™!
and 199.69 ¢cm~! as interface modes, and in the second sample of CdTe/ZnTe,
Menendez?” attributed the Raman scattering peaks at 153.4 cm™! and 192.1 em™!

to interface modes. However, our simulations clearly show that there is no interface
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modes around those frequencies, instead we found interface modes at 176 cm ™!

and 179 cm™!, and they are independent of the slab thickness. This may not be
explained by the roughness of the interface of the experimental sample, because the
surface roughness should not affect the optical phonons drastically. On the other
hand it could be explained by an error in the experimental assignment. (3) For
the 184 em~! LO frequency in sample (1) of CdTe/ZnTe, Menendez?? assigned it
to be LO modes in the CdTe. We didn’t find any LO modes of CdTe around that

frequency, instead we found that there is a ZnTe confined LO mode at 185.3 cm ™1

1

so we assign this mode to the experimental peak at 184 ¢m™" as a confined LO

mode in ZnTe. Other than that our model agrees well with experiment.

The above comparison of our model and experiment shows that the model
is accurate and therefore useful for making predictions, which we make in the
form of phonon dispersion curves for the superlattices. The dispersion curves
(AB)n1(AC),2 for the ZnS/ZnSe, ZnSe/ZnTe,CdTe/ZnTe and HgTe/CdTe super-
lattices are shown for nl = 1, n2 = 1 in Figures 18-21, for n; = 2, ny = 2 in Figures
22-25, for n; = 4, ny = 4 in Figures 26-29, for n; = 10, ny = 2 in Figures 30-33.

Dispersion curves along both parallel and perpendicular to the interface are shown.
5.4 Acoustic Phonon Folding and Splitting

Here we compare the superlattice dispersion curves with those of the bulk
materials. For illustrative purposes we used the simplest case (ZnSe);(ZnTe); and
compare it to the bulk ZnSe and ZnTe in figure 34. From the figure we notice
that the dispersion curve of the superlattice is constructed by folding the composite
dispersion curves and then mixing the corresponding branches, e.g. the TA and LA
modes of the superlattice of (ZnSe);1(ZnTe); is a mixture of the folded TA(LA)
modes of ZnSe and ZnTe. If we compare the dispersion of (ZnSe)i(ZnTe); to
that of (ZnSe)2(ZnTe)y, we immediately observe that the dispersion curves of
(ZnSe)a(ZnTe)s are just the folded dispersion curves of (ZnSe)i(ZnTe);. The

bulk materials’ TA modes flatten near the zone boundary, and when they are folded,
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they remain essentially flat at the new BZ boundary. When the acoustic branches
are folded, the once degenerate branches split. The splitting increases as the energy
of the branch increases.

Also shown in Figure 18-33 are the in-plane dispersion curves. The TA modes
are split, as expected, and one of the TA modes is degenerate with the LA mode
at the zone boundary. This is because for the in-plane wave vector, the motion of
the LA modes is in-plane, while for TA modes, the motion of one of the branches is
in-plane and the other is perpendicular to the plane. At zone boundary, the in-plane
part of the higher energy TA mode takes on LA mode character.

5.5 Optical Confined Modes

We also observe the folding of the optical modes of the bulk composite disper-
sion curves. When the number n; and no are small, the optical dispersion curves
remain curved. However, as the number of atomic layers in the superlattice in-
creases, the optical modes flatten, and the “folding” becomes harder and harder
to see, and it becomes more appropriate to treat them as confined modes. In our
simulation we distinguish the TO and LO modes by their multiplicity: TO modes
are doubly degenerate and LO modes are non-degenerate. The in-plane optical
dispersion curves are also shown in the Figure 18-33. However, in this case the
double degeneracy of the TO modes is lifted and the resulting branch becomes a
mixture of the TO and LO modes of the bulk component materials. However, a
clear identification is difficult.

Notice at the reciprocal cell zone center, the phonon frequencies are different
for branches, in different directions. That is the I" points have split depending on
the direction of the wavevector (thus the polarization direction). This polarization
dependency is entirely due to the charge of the atoms. If the ionic charge is removed,
all the corresponding branches are continuous along different directions. With an
ionic charge a finite jump will occur as K passes through I' for some of the optical
modes. This behavior also exists in other anisotropic materials such as hep crystals,

and it is called “Angular dispersion.” It doesn’t exist in materials with the fcc lattice
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because of the cubic symmetry.
5.6 Interface Phonons

Interface modes in semiconductor superlattices have been reported by several
studies. In our simulations, we can directly distinguish the interface modes from the
non-interface modes by analyzing the displacement vectors of the atoms, making
assignments much easier. We list the interface modes in various superlattices in
Table 15. For comparison, the typical motion of the folded TA and LA modes, the
confined TO and LO modes, and the interface modes of (ZnSe)4(ZnTe)4 are shown
in Figure 35.

Analysis of the normal mode character of the interface modes listed in Table
15 indicates that all the interface modes are TO modes of the superlattice, being
confined to the interface, and being doubly degenerate. The motion of the atoms
is in-plane, and only the atoms on the interface and immediately adjacent to it
move. The frequency is characteristic of the interface, almost independent of the
layer thickness except in the (AB);(AC); case, where the slab is very thin and
there is no clear difference between interface atoms and inner layer atoms. To
verify this assumption we constructed several other superlattices with different slab
thicknesses, and found the assumption that interface modes are independent of layer
thickness to be true. The result is shown in Table 15. This means that the interface
phonon can be employed to characterize the interface properties for crystal growth.

Another important issue is that interface phonons are insensitive to surface
roughness. Since surface phonons are essentially TO modes, they come from folding
of the bulk material optical branches, and surface roughness just means that the
length of the reciprocal lattice perpendicular to the interface is different at different
parts of the superlattice, the lattice parameter being just the average of the en-
tire interface. However, the TO phonons are almost independent of the reciprocal
length, and so the effect of the interface roughness is minimal. In order to test this,
we constructed a supercell of (ZnSe)s(ZnTe)s and made the interface roughness

vary from 30% to 50%, and we found the interface modes varied in the small range
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of 192.6 to 194.6 cm™!.
5.7 Elastic Constants of the Superlattice

The elastic constants of the superlattice are shown in Table 16 along with
the bulk materials. The superlattice has lower symmetry and the elastic constant
matrix has the relation Ci;; = Cas , C31 = C39, C4y = Cs5. We have 6 unique
(C11, Cig,C33, C13, Cyayq, Ces) non-vanishing components. We find that the elastic
constants are usually between those of the component materials. Currently, no

measurement of elastic constants for superlattice has been reported.

6.0 Discussion

A number of approaches have been proposed to describing the interatomic
interactions of semiconductor crystals. This includes the bond charge models of
Martin?® and Weber?® and the quasiparticle valence bond force field of Messmer.3°
These models require a greater number of parameters (for example Messmer’s FF
requires 10 parameters for Si while MSXX requires only 7 parameters) and lead
to fairly complicated equations. These models succeed in modeling the phonon
spectra of the diamond lattice and zinc-blende semiconductors, although with some
cost in accuracy and simplicity. These models may provide a good model of the
polarization effects in these materials. The Kane potential! models such properties
through the interaction of his dipoles and quadrupoles with the polarization field.

The MSXX FF is essentially as accurate as the experimental data to which
it was fitted. Although more accurate and more complete experimental data is
becoming available there is still significant uncertainty in the experimental values
for some properties of some of these materials. These uncertainties often arise from
some of the indirect methods required to measure the phonon spectra.

Force fields capable of describing the strain fields, geometric structures, and
vibrational properties of distorted systems must be capable of reproducing the in-
teratomic potential energy surface for moderate strains and also the couplings of

interatomic interactions. It is possible to reproduce the phonon spectra of a zinc-
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blende crystal to relatively high accuracy using harmonic potentials. However, har-
monic potentials are inappropriate for describing the breaking of a bond. Thus even
though the phonon dispersion curve is reproduced, the strain fields may not be suf-
ficient for accurate modeling of highly distorted structures. For this reason we use
Morse potentials to approximate the anharmonic effects of strained bonds as bonds
are broken. This should lead to a good description of thermal expansion. Further-
more, the use a Morse potentials for bonds should allow phonon-phonon couplings
to be described in the harmonic description of the interatomic interactions.

The MSXX FF includes the coupling of coplanar angles that share a common
side, but not a common apex. This term (also used by Kane®') was first imple-
mented by McMurry!? to describe the flattening of the TA modes on approaching
the X and T' points along the < 100 > and < 111 > directions. Formally a fifth
neighbor interaction, it allows for through bond coupling of the accordion chains
along < 110 >. Furthermore, Kane3! observed that the introduction of an impu-
rity in the diamond lattice polarizes the charge distribution with high directionality
along the < 110 > chains. Again, the form of the coplanar-two-center-angle-angle
coupling leads to an effective model and an intuitive picture of this effect through
the coupling of adjacent bond angles along the < 110 > direction. This effect em-
phasizes the necessity for such terms. Because this coupling depends on the large
delocalization of bond charge along < 100 > chains associated with through bond
coupling, we expect the coupling to fall quickly as the bond angles become non-
coplanar. For the perfect crystals this is irrelevant, but for strain fields that break
the crystal symmetry and structures sampled with molecular dynamics at higher
temperatures, the damping of the coplanar angle-angle coupling is necessary. Al-
though the coupling between the two coplanar angles of the trans dihedral is critical
to the description of the TA mode, we find that the dihedral angle torsion force con-
stant itself is unnecessary for our fits. It might play a role in distinguishing between
the sphalerite and wurzite forms of the crystal, and if so it would be important for

describing of the stacking fault energy.



172

7.0 Conclusion

The simple MSXX valence force field with just a few parameters leads to
accurate structural, mechanical, and vibrational properties of the zinc-blende semi-
conductors. The systematic behavior of the force constants allows one to interpolate
force constants for tertiary interactions, as illustrated for the II/VI superlattices.
The MSXX FF describes anharmonic interactions in bonds and should be useful
for describing the thermal expansion, temperature dependence of the phonons, and

phonon-phonon interactions.
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Table 1. Ewald charge equilibration parameters and the comparison of the charges
resulted from phonon gap fitting and charge equilibration.

Atom Zn Cd Hg S Se Te
(a) Modified QEq Parameters

Electroneg (eV) 0.900 0.376 0.850 6.928 6.428 5.816
Hardness (eV) 4.285 3.957 4.160 4.486 4.131 3.526
(b) Predicted CHARRM

Material ZnS ZnSe ZnTe CdTe HgTe
Calculated Cation ¢ 0.90 0.79 0.77 0.86 0.74

Fitted Cation ¢ 0.88 0.80 0.76 0.86 0.74
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Table 2. Experimental lattice constants, phonon frequencies, elastic constants, used
in determining the MSXX FF (from reference 8, see discussion in Section
4.1). Comparison with theoretical predictions.

Quantity Diamond Silicon Germanium

Lattice Parameters (A)

Experiment 3.5610 5.4310 5.6507
MSXX 3.5610 5.4310 5.6507
Elastic Constants (GPa)
C11 exper 1076.0 167.5 129.0
MSXX 1083.5 170.7 138.2
C12 exper 125.0 65.0 48.0
MSXX 125.1 64.2 47.1
Cy4 exper 576.0 80.1 67.0
MSXX 573.4 78.6 64.5
rms C;; deviation 2.61 3.38 0.51
Phonons (cm™1)
TA(X) exper 803.6 150.4 80.1
MSXX 808.8 150.6 80.2
LA-LO(X) exper 1078.1 415.0 240.5
MSXX 1069.4 412.7 238.7
TO(X) exper 1194.8 463.7 275.5
MSXX 1161.8 463.8 275.4
I'y5 exper 1333.9 518.1 298.9
MSXX 1341.7 518.7 300.4

rms phonon deviation 0.40 2.69 0.94
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Table 3. MSXX force field parameters for the group IV materials.

Quantity Diamond Silicon Germanium
(a) Bond
kg [kcal/(molA?)] 576.55 193.75 180.04
R. (A) 1.522 2.380 2.465
Dpr® (kcal/mol) 110.0 73.7 73.7
(c) Angle
ke [kcal/(mol rad?)] 118.60 33.61 21.76
0 (degree) 109.41 105.05 109.47
ko [kcal/(molA rad)] -59.56 -14.76 -14.86
k. [kcal/(molA2)] 8.05 3.39 0.56
(e) Two Center Angle-Angle Cross Term
Goo |keal/(mol rad?)] -27.54 -25.14 -23.35
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Table 4. van der Waals parameters (from reference 23). See equations (4) and (5).

Atom C Si Ge

Rvv (A) 3.883 4.270 4.270
Dv% (kcal/mol) 0.0844  0.3100  0.3100
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Table 5. Lattice Constant, elastic constants, and phonon frequency from experiment
and from the MSXX force field. Numbers in square braces were not used
in the fit (they were extrapolations from trends in other materials and are
included for comparison).

AlP AlAs AlSb GaP GaAs GaSb InP InAs InSb

(a) Lattice Constants (A)

a 5.467 5.6611 6.1355 5.4506 5.6419 6.0940 5.8687 6.0584 6.4788

(b) Elastic Constants (GPa)

C11 €Xp 132.0 125.0 87.69 141.20 1181  88.39 102.0 83.29 66.69
MSXX 128.3 124.0 86.46 14216 1229  93.50 106.6  85.11  68.56

C12 €xp 63.00 53.40 43.41 62.53 53.20 40.33 57.6 45.26  36.45
MSXX 67.42 57.01  41.63 61.13 51.89 36.63 574 42.71  35.12

C44 €XP 46.00 54.20  40.76 70.47  59.40  43.16 46.0 39.59  30.30
MSXX 65.71 57.70  39.39 69.44  57.57  40.52 44.9 37.07  29.04

rms Cj; 11.86 2.65 1.47 1.15 3.06 3.95 2.73 2.32 1.51

(c) Phonon Frequencies (cm™?!)
TA(X) exp [51.91] 108.9 70.00 106.7 81.7 56.6 68.33 53.0 37.3
MSXX 147.60 109.2 70.30 106.7 81.9 56.7 68.9 53.0 37.5
LA(X) exp [47.67) 221.8 155.00 249.0 225.0 166.3 193.33 160.0 143.3
MSXX 356.60 216.6 152.90 249.0 221.9 163.3 182.8 160.6 141.3
TO(X) exp [436.10] 334.0 296.00 353.5 256.3 212.0 323.33 216.0 179.3
MSXX 437.20 333.9 296.30 353.9 256.7 213.1 323.5 217.0 179.9
LO(X) exp [371.54] 402.5 341.00 366.2 240.0 211.7 331.67 203.0 158.3
MSXX 395.50 400.8 346.60 365.8 236.8 209.3 326.6 201.7 156.4
TO(I') exp  439.40 360.9 323.40 366.2 271.0 232.3 304.00 217.3 184.7
MSXX 439.30 363.5 320.80 365.5 272.2 231.7 307.8 215.6 185.0
LO(T") exp 501.00 404.1 34440 404.1 293.0 235.0 346.00 238.6 196.7
MSXX 500.80 406.4 341.80 403.5 294.0  [240.5] 349.3 237.1 196.9
rms v; 0.16 2.64 2.87 0.44 1.94 1.81 5.17 1.17 1.16
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Table 6. Optimized parameters for the MSXX force field.

AlP AlAs AlSb GaP GaAs  GaSb InP InAs InSb

(a) Charge (e)
Cation (e) 0.83 0.78 0.60 0.72 0.64 0.46 0.83 0.72 0.61

(b) Bond

kr 143.36  101.67 94.996 107.51 99.10 85.68 93.77 78.26 75.82
R, 2.480 2.630 2.779 2.559 2.631 2.805 2.772 2.865 2.998
Dpg @ 48.25 44.53 40.80 40.60 38.88 34.73 38.64 36.11 32.04
(c) Angle at III

ko 32.15 36.882  28.97 50.09 34.69 36.85 32.29 34.91 21.15
0. 124.96 114.87 114.80 110.46 107.16 109.09 114.13 112.15 112.27
K. -17.57  -15.84 -10.02 -21.58 -15.24 -11.79 -21.09 -18.54 -6.49
Kgpr 7.10 3.33 2.71 4.19 4.70 4.071 2.55 3.25 1.61

(d) Angle at V

Ky 29.61 41.53 25.10 33.87 43.30 35.57 47.19 33.71  30.19
O 125.05 119.79 118.23 113.14 112.20 99.55 112.26 107.93 108.84
K. -26.28 -14.74 -10.67 -19.22 -17.76 -10.35 -20.03 -13.42 -17.17
Krr 7.25 16.67 8.84 9.47 6.27 1.96 10.48 4.11 2.76

(e) Cross Term
Kop2 -15.08 -17.44 -1745 -18.99 -1837 -18.77 -14.95 -14.89 -16.37

¢ Dg is based on atomization data at 298.15K from reference 21.
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Table 7. Van der Waals parameters from the universal force field (reference 5).

Al Ga In P As Sb

Rv (A) 4499  4.383  4.465  4.147  4.230  4.420
Dv Pkcal/mol) 0505  0.415  0.599  0.305  0.309  0.449
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Table 8. Experimental lattice constants, phonon frequencies, elastic constants, used
in determining the MSXX FF (from reference 8, see discussion in Section
4.1). Comparison with theoritical predictions.

Quantity ZnS ZnSe ZnTe CdTe HgTe
Lattice Parameters (A)
Experiment 5.410 5.6687 6.1037 6.481 = 6.461
MSXX 5.410 5.6687 6.1037 6.481 6.461
Elastic Constants (GPa)
C11 exper 104.62 86.00 71.30 53.30 59.71
MSXX 107.37 90.49 72.17 49.33 53.71
C19 exper 65.33 51.10 40.70 36.50 41.54
MSXX 62.18 47.91 40.83 31.85 32.89
Cy4 exper 46.50 40.20 31.20 20.44 22.59
MSXX 43.85 38.14 31.08 18.42 18.25
rms C;; deviation 2.61 3.38 0.51 3.37 2.70
Phonons (cm™1)
TA(X) exper 89.67 70.00 54.0 35.0 15.86
MSXX 89.68 70.40 54.10 34.90 15.86
LA(X) exper 211.33 194.00 143.0 97.0 85.00
MSXX 210.60 189.20 141.10 125.00 84.80
TO(X) exper 315.67 219.00 173.7 148.00 133.93
MSXX 315.60 219.60 173.7 147.80 133.80
LO(X) exper 330.00 213.00 183.7 85.00
MSXX 329.50 208.20 182.40 125.30 84.80
TO(T') exper 276.67 213.00 176.7 140.50 118.00
MSXX 277.20 214.40 177.50 138.80 118.60
LO(T) exper 348.00 253.00 206.7 167.0 138.00
MSXX 348.60 255.50 207.50 168.30 138.50

rms phonon deviation 0.40 2.69 0.94 0.80 0.72
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Table 9. MSXX force field parameters for the II-VI zinc blende materials.

Quantity ZnS ZnSe ZnTe CdTe HgTe
(a) Charge (e)
Cation 0.88 0.80 0.76 0.86 0.74
(b) Bond
kg [kcal/(molA?))] 100.51 71.72 68.51 62.32 55.44
R. (A) 2.519 2.686 2.809 2.971 3.005
Dpr® (kcal/mol) 36.78 31.13 26.59 23.97 21.35
(c) Angle, Group II Atom at Apex
ke [kcal/(mol rad?)] 34.33 29.85 17.02 17.98 20.13
6 (degree) 119.23 113.60 116.35 128.08 116.03
k¢ [kcal/(molA rad)] -24.01 -16.51 -17.92 -14.22 -2 0.51
k. [kcal/(molA?)] 13.01 7.61 9.11 6.11 8.43
ko [kcal/(molA rad)] -23.21 -15.40 -9.63 -11.34 -7 .39
k., [kcal/(molA2)] 4.63 8.07 6.46 3.70 0.45
(e) Two Center Angle-Angle Cross Term
Goe [kcal/(mol rad?)] -10.20 -10.47 -11.40 -9.12 -11.11

¢ Dpg is based on atomization energies at 298.15K from reference 30.
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Table 10. van der Waals parameters (from reference 23). See equations (4) and (5).

Atom 7n cd Hg S Se Te

R (A) 2.763  2.848 2705  4.035  4.205  4.470
DV (kcal/mol)  0.124  0.228  0.385  0.274  0.291  0.398
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Table 11. Additional force field terms for the ZnSe/ZnTe superlattice.

(a) Angle Se-Zn-Te
ke = 22.54 kcal/mol
0 =114.97 degree
krg = —17.92 kcal/(molA) for R = Se — Zn
kqo = —16.51 keal/(molA) for R = Zn — Te
k., = 8.33 kcal/(molA?)

(b) Two-Center Angle-Angle

Go0,72n—Se—zn-Te = G99,Zn—Te—zn—se = —10.93 kcal/mol
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Table 12. Comparison of the ZnS/ZnSe,?? superlattice predictions and the available

experimental data.

(ZnS)lg(ZnSB)lg

LA modes (q=0.07) 19.14 23.94 40 47.87 64.79 74
stressed 22.10 25.44 45.59 48.96 68.55 71.96
relaxed 21.30 24.51 43.94 47.19 66.07 69.35
(Sample dzns = 264, dznse. = 294, N = 150, buffer 1u ZnS, GaAs substrate)

(ZnS)4(ZnSe)q
TO modes in ZnS in ZnSe
experiment 270.1 214.6
stressed 263.9 214.2
relaxed 272.8 216.4

(Sample dzns = 124, dznse = 124, N = 100, buffer 1um ZnSe, substrate GaAs)
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Table 13. Comparison of the ZnS/ZnTe,?%23 superlattice predictions and the available

experimental data.

(ZnSe)10(ZnTe)10
LO modes in ZnSe 228.5 233.5 239 242.5 244 246
stressed 227.8 232.1 235.8 238.7 240.9 242.2
(relaxed) 228.0 232.3 236.0 238.9 241.1 242.4

Sample dznse = 27A, dznre = 294, N = 100, substrate InP

(ZnSe)o(ZnTe)26

LA modes(k=0.09) 11.59 14.49 24.15 28.21
stressed 13.8 14.2 27.6 28.2
(relaxed) 12.91 15.49 27.01 29.60
Sample ZnSe 5 layers , ZnTe 52 layers, total dg;, = 85.34, buffer 0.54 ZnTe, N = 80
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Table 14. Comparison of the CdTe/ZnTe?? superlattice predictions and the available

experimental data.

(CdTe)s(ZnTe)s
LO modes in Sublattice CdTe CdTe ZnTe ZnTe
experiment 172.88 184 203.87 205.5
stressed 175.7 185.3 205.5 207.1
(relaxed) 173.7 182.5 202.3 204.5

Sample: dogre = 214, dznre = 27TA, N = 21, buffer 0.94 Cdy.1 Zng oTe,

substrate GaAs < 100 >

(CdTe)7(ZnTe)11
LO modes in CdTe Layer LOy LO,4 LOg LOg
experiment 180 175.84 171 165.86
(stressed) 179.54 176.92 172.74 167.16
relaxed 177.41 174.78 170.60 165.03

Sample dogre = 514, dznre = 614, N = 15, buffer 0.94 Cdy.1ZngoTe,

 substrate GaAs < 100 >
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Table 15. Interface modes for several II/VI superlattices.

superlattice IF mode em™! IF mode cm™!
(ZnS)2(ZnSe)q 223.0

(ZnS)4(ZnSe)s 225.9

(ZnS)10(ZnSe)s 226.1

(ZnS)10(ZnSe)10 225.9

(ZnS)12(ZnSe)12 225.9

(ZnSe)a(ZnTe), 191.6 195.1
(ZnSe)s(ZnTe)s 192.6 193.6
(ZnSe)10(ZnTe)q 194.4 197.7
(ZnSe)10(ZnTe)1o 193.8 195.3
(ZnSe)1s(ZnTe)z 192.2 193.5
(CdTe)2(ZnTe), 170.2

(CdTe)y(ZnTe)y 169.1

(CdTe)s3(ZnTe)s 170.3

(CdTe)7(ZnTe)1s 170.1

(CdTe)10(ZnTe)s 170.7

(HgTe)y(CdTe), 137.6 151.6
(HgTe)4(CdTe)s 135.1 152.6
(HgTe)s(CdTe)s 135.3 152.3
(HgTe)10(CdTe)s 138.8 151.8

All interface modes are of TO character.
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Table 16. Elastic constants of the bulk materials, force field fitted results and the pre-
dicted results for superlattice.

Name Ci1 MSXX Cia MSXX Cys MSXX
ZnS 104.50 107.37 65.30 62.18 46.00 43.85
ZnSe 85.90 90.49 50.60 47.91 40.60 38.14
ZnTe 71.30 72.17 40.70 40.83 31.20 31.08
CdTe 53.30 49.33 36.50 31.85 20.44 18.42
HgTe 50.80 53.71 35.80 32.89 20.50 18.25
Name Cn Ci2 C33 Ci3 Cas Ces
(ZnS)1(ZnSe); 11713 34.44 98.82 5411 4101 2201
(ZHS)Q(ZHSG)Q 118.39 35.22 98.43 54.84 40.46 22.05
(ZnSe)4(ZnTe)y 118.90 35.58 97.95 55.05 40.01 22.12
(ZnS)lo(ZnSe)2 125.97 41.01 104.99 61.20 41.51 22.24
(ZnSe)1(ZnTe); 95.49 28.07 81.86 44.62 33.82 17.75
(ZnSe)2(ZnTe)q 95.66 28.51 82.15 44.70 33.76 18.04
(ZnSe)s(ZnTe)s 95.67 28.57 81.88 4466 3390  18.23
(ZnSe)10(ZnTe)s  103.00  20.65  87.74 4647 3672  20.25
(CdTe)1(ZnTe); 70.43 24.54 62.19 36.66 23.59 11.22
(CdTe)(ZnTe)s 70.78 24.65 62.58 36.88 2331  11.57
(CdTe)4(ZnTe)s 70.87 24.69 62.81 36.96 2311 1171
(CdTe)106(ZnTe)y  62.37 23.12 54.28 33.64  19.94 9.62
(HgTe); (CdTe); 60.16 23.28 52.06 32.37  18.16 9.39
(HgTe)o(CdTe)s 60.30 23.50 51.78 3239 1821 9.49
(HgTe)4(CdTe)q 60.25 23.62 51.70 3241  18.22 9.52
(HgTe)10(CdTe), 61.21 24.65 53.16 32.81 18.21 10.11

Experimental lattice constant and elastic constant taken from reference.!®



191

Table 17. Cell geometries of the superlattices.

Name a

ZnS 5.41

ZnSe 5.6687

ZnTe 6.1037

CdTe 6.481

HgTe 6.461

Name a// dSL
(ZnS)1(ZnSe), 5.5324 5.5457
(ZnS)2(ZnSe), 5.5308  11.0631
(ZnSe)4(ZnTe)y 55321  22.0902
(ZnS)10(ZnSe)s 54321  32.5660
(ZnSe); (ZnTe), 58748  5.9100
(ZnSe)s(ZnTe), 5.8687  11.8163
(ZnSe)4(ZnTe)y 5.8673  23.6193
(ZnSe)10(ZnTe)q 5.7389 34.5737
(CdTe)(ZnTe), 6.2413  6.3539
(CdTe)q(ZnTe), 6.2421 12.6978
(CdTe)4(ZnTe), 6.2408  25.4010
(CdTe)106(ZnTe), 6.3880 38.7556
(HgTe)1(CdTe); 6.4531  6.4760
(HgTe)2(CdTe), 6.4615 12.9465
(HgTe)4(CdTe)q4 6.4641 25.8917
(HgTe)10(CdTe), 6.4591  38.7802

Experimental lattice constant and elastic constant taken from reference.!®
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Figure Captions
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Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
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Figure 17.
Figure 18.
Figures 19-22.

Figures 23-38.

Figures 39.

Phonon dispersion curve for diamond.

Phonon dispersion curve for silicon.

Phonon dispersion curve for germanium.

Phonon dispersion curve for AIP.
Phonon dispersion curve for AlAs.
Phonon dispersion curve for AlSb.
Phonon dispersion curve for GaP.
Phonon dispersion curve for GaAs.
Phonon dispersion curve for GaSb.
Phonon dispersion curve for InP.
Phonon dispersion curve for InAs.
Phonon dispersion curve for InSb.
Phonon dispersion curve for ZnS.
Phonon dispersion curve for ZnSe.
Phonon dispersion curve for ZnTe.
Phonon dispersion curve for CdTe.
Phonon dispersion curve for HgSe.

Phonon dispersion curve for HgTe.

Superlattice phonons of ZnS/ZnSe, ZnSe/ZnTe, CdTe/ZnTe, and
HgTe/CdTe grown in the [111] direction.

Phonons of ZnS/ZnSe, ZnSe/ZnTe, CdTe/ZnTe, and HgTe/CdTe for
superlattices with layer thicknesses of 1, 2, 4 and 10 grown in the [100]

direction.

Comparison of folded phonons with phonons of component materials

for ZnSe/ZnTe.
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Figure 1. Phonon Dispersion Curve for Diamond
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Figure 2 Phonon Dispersion Curve for Si
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Figure 3. Phonon Dispersion Curve for Ge
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Figure 4. Phonon Dispersion Curves for AlP
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Figure 5. Phonon Dispersion Curves for AlAs
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Figure 6. Phonon Dispersion Curves for AlSb
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Figure 7. Phonon Dispersion Curves for GaP
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Figure 8. Phonon Dispersion Curves for GaAs
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Figure 9. Phonon Dispersion Curves for GaSb
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Figure 10. Phonon Dispersion Curves for InP
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Figure 11. Phonon Dispersion Curves for InAs
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Figure 12. Phonon Dispersion Curves for InSb
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Figure 19
ZnS1/ZnSe1 superlattice (grown on <111>
surface) phonon
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Figure 20

ZnSe1/ZnTel superlattice (grown on <111>
surface) phonon
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Figure 21
CdTel/ZnTe1l superlattice (grown on <111>
surface) phonon
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Figure 23

ZnS1/ZnSe1 superlattice phonon
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Figure 24
ZnS2/ZnSe?2 superlattice phonon
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Figure 25
ZnS4/ZnSed superlattice phonon
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Figure 26
ZnS10/ZnSe?2 superlattice phonon
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Figure 27

ZnSel/ZnTel superlattice phonon
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Figure 28

ZnSe2/ZnTe2 superlattice phonon

250

200 -

—————
—

»150 .

x-0 0-2



cm-1

ag

221

Figure 29
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Figure 30
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ZnSe10/ZnTe2 superlattice phonon
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Figure 31
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Figure 32
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CdTe4/ZnTe4 superlattice phonon
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CdTe10/ZnTe2 superlattice phonon
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Figure 35
HgTel/CdTe]l superlattice phonon
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Figure 36
HgTe2/CdTe2 superlattice phonon
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HgTe10/CdTe?2 superlattice phonon
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Chapter 6

Silicon (111) Surface Reconstructions
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Abstract

We use the biased Hessian method in conjunction with ab initio generalized
valence bond (GVB) calculations on Si clusters to derive the MSXX force field (FF)
for silicon (111) surfaces. This FF is tested by calculating the atomic geometries and
relative energies of the (2n+1) x (2n+1) DAS models of the Si (111) reconstruction.
We find that the (5 x 5) and (7 x 7) surfaces are most stable.
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1.0 Introduction

Since Schlier and Farnsworth! first observed the 7th order spots in the LEED
pattern in 1959, numerous models of the Si (111)-7 x 7 surface reconstruction
have been proposed based on the results of various experiments and theoretical
calculations.?~® Strong evidence from STM experiments have led to wide acceptance
of the Dimer Adatom Surface (DAS) model Takayangi”® which involves dimers,
adsorbed atoms, and a stacking fault. However the large number of atoms in the
surface unit cell has impeded detailed ab initio theoretical study. Indeed with ap-
proximately 100 atoms in just the first two layers of the 7 x 7 unit cells, it has
been difficult to unambiguously determine the structure from LEED and RHEED
experiments. Angle resolved X-ray photoemission spectroscopy (ARXPS), X-ray
diffraction, ion scattering, transmission electron diffraction, and scanning tunneling
microscopy each give clues to the atomic structure. However, no one technique has

conclusively determined the atomic arrangement of the Si (111)-7x7 surface.

McRae® suggested a model containing a stacking fault in one of the two
sub-cells which was supported by Bennet’s'® medium energy ion scattering results.
Himpsel® and McRae® each described how 12 atom rings around corner holes, two
8 atom rings around shallow holes on the sub-cell borders, and dimers along the
sub-cell borders resulted from removing the broken bonds across the stacking fault
boundary. These features are all observed by STM.® Harrison? first proposed an
adatom model. However, it was STM that first gave strong evidence that each unit
cell contained 12 adatoms and led Bennig!! to propose such a model. Takayangi’-®
combined the stacking fault-dimer idea with the adatom model to arrive at the
DAS model. The calculated intensities of over one hundred atomic arrangements
were compared to the TED pattern to refine the atom positions until the projected

surface geometry was well described.

Figure 1 shows the projected geometry of the DAS model, where the detailed
atom positions are from the MSXX force field described below. The unit cell consists
of two triangular sub-cells. The surface double layer of one sub-cell has the wurtzite
stacking and the other sub-cell the sphalerite stacking. The broken bonds needed to
create the stacking fault are removed by dimers that form at the sub-cell boundaries.

The cell corner contains a large hole with a twelve atom ring and one atom in the
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center with a dangling bond. Holes with eight atom rings separate dimers except
at the cell corners. Twelve adatoms occupy the T4 sites, removing a net of 24
dangling bonds. Three rest atoms in each sub-cell remain each with a dangling
bond. Twelve dangling bonds from the adatoms, six from the rest atoms and one in
the cell corner account for the 19 dangling bonds per unit cell in the Si (111)-7 x 7
DAS model. This structure eliminates 30 dangling bonds of the 49 dangling bonds
for the unreconstructed Si (111) surface, accounting for most of the stability of this
reconstruction. The essential features of the DAS model are observed by STM. The
small and large holes are easily seen as depressions in the STM micrographs. The
twelve adatom dangling bonds produce tunneling current at a different tunneling
voltage than the dangling bonds of the six rest atoms which are seen as twelve

bright spots at one voltage and six at another voltage, respectively.?

There remain, however, many questions. The 7 x 7 structure does not result
uniquely from the DAS reconstruction scheme. Thus one can form a family of
(2n+1) x (2n+ 1) DAS surfaces: 3 x3,5x 5, 7x 7,9 x 9, etc. Of these, the 7x 7
reconstruction is observed for the most part, although small amounts of the 5 x 5
surface reconstruction has been found to co-exist with the 7 x 7 surface in some
temperature ranges. To fully understand Si surface reconstruction, we need a more

quantitative description of the relative stabilities of such structures.

Due to the small surface normal momentum required to make the diffraction
experiment surface sensitive, TED like LEED provides little information about the
vertical positions of the atoms. However, unlike LEED, dynamical effects are much
less important for TED giving it an advantage for determining structure. Clearly
the surface normal positions must be determined in order to obtain quantitative
understanding of Si reconstruction. Other experimental techniques or theoretical
calculations more sensitive to the surface normal positions can be used to refine the

vertical atomic positions of the DAS model.

Several investigators have proposed refined atomic positions for the DAS
model.1?2~17 A key configuration is the adatom in the Ty site. This leads to a trig-
onal bipyramid with a sub-surface atom directly below the adatom. The distance
between these two atoms, Ri3(7y), is referred to as the 1-3 or nonbond distance.

Proposed values of R;3(T4) have ranged from 2.45 to 3.1A, indicating the uncer-
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tainty remaining in the structure characterization. From ab ¢nitio calculations on
clusters, we obtain R;3(Ty) = 2.52 to 2.56A (depending on the site) which we be-
lieve is accurate to 0.05A. The Si-Si bond length of the dimer has also been subject
to considerable uncertainty. We find values of 2.46 to 2.50A depending upon the
site. This is stretched by 0.11 to 0.15A from the bulk value.

The large unit cell has made impractical the use of ab initio methods to
study the surface. However, ab initio calculations can be performed on clusters of
moderate size that model specific configurations of the surface. Messmer!® used the
GVB ab initio method to calculate the geometries of various clusters to estimate
the atomic geometry of the Si (111)-7 x 7 surface. Using GVB calculations with
the interstitial electron model,'® he also developed a silicon FF which was applied
to study the Si (111)-7 x 7 surface.?’ Other methods include the density functional
theory 2122 (LDA) and semi-empirical methods such as modified intermediate ne-
glect of differential overlap (MINDO)?3 and tight binding energy minimization.13:24

Khor et al. calculated the energies of several of the DAS (2n+1) x (2n+1)
reconstructions using LDA and found the experimentally observed 7 x 7 surface to
be slightly higher in energy than the 5 x 5 surface.!* The 5 x 5 surface was observed
experimentally (in small areas) after low temperature anneals of the cleaved Si (111)-
2 x 1 surface.?® The predicted energy difference 0.008 eV/1x1 cell. is probably
less than the uncertainty in the method, so that these calculation do not show
conclusively which surface is lowest. Chadi'® used a semi-empirical tight binding
based energy minimization method to calculate the structure and found the DAS
- 7 x 7 model to be energetically more stable than 5 x 5 by 0.008 eV /1x1 cell and
more stable than the Si (111) c-2 x 8 dimer chain model by 0.223 eV/1z1 cell.

We have used the Biased Hessian force field method?®27 to combine the
second derivatives (Hessian) from ab initio calculations with the experimental ge-
ometry and spectroscopic data to generate an accurate force field (MSXX). This
force field is then used to calculate the atomic structures and energies of the 3 x 3,
5% 5,7x 7and 9 x 9 Si (111) DAS models, the Si (111) c-2 x 8 structure, two
Si (111)-2 x 2 structures, two Si (111)-v/3 x /3 surfaces and the perfect Si (111)

surface.
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2.0 Method
2.1 The MSXX Force Field
The force field of a molecule or surface can be described by the following

expression: ‘
E=Eb+Ea+Et+E¢+Ea:+EvdW+EQ’ (1)

which includes bond stretch (Ej), angle bend (E,), dihedral angle torsion (E),
umbrella inversion(Ey ), cross (E;), van der Waals (E,qw ), and electrostatic (Eg)

terms.
2.1.1 Bonds
Bond stretching is described by the Morse potential,
Er; =D, [6_0"’(R_Rb) - 1]2, (2)
where R is the length of bond 1J, R, and D, are the position and depth of the well,

and kp, = 2Dpa? is the force constant.

2.1.2 Angles
Angle bending is described by the harmonic cosine expression,

E, =1 Clcos6 — cosb,)?, (3)
where 6 is the angle between bonds IJ and JK, 6, is the equilibrium angle, and
kg = C'sin? 6, is the diagonal force constant.

2.1.3 Torsions
The dependence of the energy on the dihedral angle between bonds 1J, JK,
and KL is described by the three fold potential,

E, = V3(1 + cos 3¢), (4)
where ¢ is the torsional angle, and V3 is the barrier.

2.1.4 Inversions
Given an atom I bonded to exactly three other atoms J, K, and L, we can
include an inversion to describe the energy associated with the umbrella motion.

We use the harmonic expression

E; = -;—Kw [cos® ¢ — cos® ¥, (5)
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where v is the angle between the IL bond and the IJK plane. Here the barrier to

planarization is

bar

- 1
Vine — 5 Kv (1—cos®v).
2.1.5 Cross Terms

Bond-angle and bond-bond cross terms are given by the following expression,

E.: = Di(cosf — cosf,)(R1 — Rp1) + D2(cos@ — cosb,)(R2 — Re2)
+ Krr(R1 — Rp1)(R2 — Ry2)

(6)

associated with each angle term (6), where R; and R, are the lengths of the IJ
and JK bonds, k.9 = —Dsinf, is the angle-stretch force constant, and k., is the
stretch-stretch force constant.

One-center angle-angle cross terms are of the form,
Elaa = G(COS 9]JK — COS HGIJK)(COS 91JL — COS QGIJL), (7)

where k199 = Gsinf,y 5k sinf,ryr is the force constant for two angle terms (IJK
and IJL) sharing a common central bond (IJ) and a common central atom (J).

Two-center angle-angle terms are described by,

Esua = f(¢)F(cosOrjx — cosbarii)(cosOyxr — cosOuikrL) (8)

where kogg = f(¢)F sinb,r5k sinf, k1 is the force constant for angle terms (IJK
and JKL) in which the central atoms (J and K) are bonded to each other. This
interaction is important when IJ and KL are trans (dihedral angle, ¢ = 180°), but
not when they are gauche (¢ = 60°, 300°). Consequently we define this coupling

term as
1

f(8)= 3~ 5 coso. 9)

These cross terms are considered collectively as

Ea: = Eam + Elaa + E2aa- (10)
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2.1.6 Charges
The electrostatic nonbond interaction (Eq) is described using the Coulomb
expression

Eg = QRrQ (11)

coeRy g

where Q) is the charge (electron units) on center I, ¢ = 1, and 1/¢p = 332.0637
converts units to give E in kcal/mol when R;; is the distance in A.
The charges used for each molecule were calculated from the Hartree-Fock

wave function by using the Mulliken populations.

2.1.7 van der Waals

The van der Waals part of the nonbond interaction (3) for atoms I and J is

described using the exponential-6 potential

Evawry = Dy [(C _ei 6> e¢t=p) — (Z—C-_6> P_6] ; (12)

where p = Rrj/R,.

2.2 The Biased Hessian Method

The energy expression of a molecule can be expanded as:

3N

N [ OF 02E
(X3 N) O+;(6Ri>o(6R)+2i;_1 (8Ri8Rj>0(6R)(6RJ)+
(13)
where the force on the " component is:
oF
F,=— : 14
and
0*E
H;: =
OR,0R; (1)

is the Hessian. To calculate the vibrational frequencies we mass weight H;j; to form

Hij = Hij (MiMj)_1/2 and diagonalize

HU = U, (16)
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where
Ai = (CvibVi)2

gives the vibrational frequencies (with energies in kcal/mol, distances in A, and
masses in AMU, Cy; = 108.5918 gives v; in cm™! and the columns of U give the
vibrational eigenfunctions. To extract a force field we could require that the force
field reproduce this Hessian and the experimental geometry. However, the Hartree-
Fock wave function predicts frequencies that are 10% to 20% too large and thus
force constants derived from the theoretical Hessian would be too large. The biased
Hessian?%:33 alternative combines the normal mode description (U matrix) from
Hartree-Fock with the experimental frequencies to form a biased Hessian. That is,

using
HHFUHF — yHF \HF (17)

we construct
HBH — UHF)\ewpfjHF (18&)

(where ~ indicates transpose), which leads to
HEHUHE = UHF \eep, (18b)

We then fit the FF parameters to HB#. The (3N — 6)(3N — 5)/2 independent
elements of HBH provide constraints on the force field parameters. Requiring the

force field to also reproduce the experimental geometry leads to 3N — 6 additional

8EFF\
( 5T, ) = 0. (19)
EQ

The MSXX force field is obtained by simultaneously minimizing the error in fitting
(20) and (21).

constraints on

2.3 Electronic Structure Calculations

Hartree-Fock calculations were performed using GAUSSIAN 8628 to deter-
mine the theoretical second derivatives. We used the experimental structure where
available. For others we used the HF optimized geometry. We used the 6-311G**
basis (valence triple zeta on both Si and H with d polarization functions on Si and

p polarization functions on H).
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2.4 Scaling Theoretical Force Fields

The MSXX force field for the Si (111)-7 x 7 surface is obtained from com-
bining the force fields of Si4Hg (Figure 2), SisH7 (Figure 3), and bulk silicon. First
the Biased Hessian method was used to calculate the force fields for SiHs, SiH4 and
SioHg.

Because no experimental frequencies or geometries were available for SiyHyg,
we used the following approach. We calculated theoretical force fields for SiHs,
SiH4, and SiasHg in the same manner as the BH force fields except that we fit
to the Hartree-Fock frequencies. Comparing the force constants for the theoretical
force fields and the experimentally biased force fields for each of the three molecules
led to scaling rules for each type of term in the force field. This works well for bonds,
angles, and cross terms but not for inversion and torsion. We then calculated the
Hessian for SigHg at the Hartree-Fock optimized geometry and fit the force field to
the Hartree-Fock frequencies and geometry. The various terms in this force field
were then scaled using the scaling rules obtained from SiHs, SiHy4, and SioHg. (It
is sufficient to use only the scaling rules for disilane.) The energy versus distance
curves for Si4Hg from the Hartree-Fock wave function from the MSXX FF are

compared in Figure 4.

In order to calculate the force field for the Si5H;, we must add additional
force constants to the SiyHg force field. These terms are calculated from bulk Si

calculations.

Zur et al.?® reported a five parameter force field for bulk silicon obtained from
ﬁttihg the vibrational modes of Si5H1o calculated using the GVB-configuration in-
teraction (GVB-CI) wave function. We use this FF as a starting point and optimize
the parameters to fit the phonons and the elastic constants. Using this FF (Table
1) we reproduce the phonon dispersion frequencies and elastic constants found by
Zur et al. However, the MSXX FF also includes van der Waals interactions (which
tend to stiffen the lattice), and hence we reoptimized the bulk force field (to cal-
culate accurate elastic constants, and phonons). We started with the Zur force
field optimized with van der Waals interactions and added two center angle angle
and torsion terms. The parameters were optimized to fit the elastic constants and
phonons (Table 2).
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In agreement with McMurry®® we find that the two center angle angle force
constant (with couplings only between planar angles)”®/ is necessary to describe the
very flat transverse acoustic mode along the delta direction, Figure 5. The resulting
bulk silicon force field is similar to that of Turbino.3! We use the same terms except
the addition of the van der Waals interaction.

The torsion term (7) has little effect on the phonons and elastic constants.
Instead we calculate V3 from the difference in energy between the wurtzite and
sphalerite forms of silicon obtained from first principles local density calculations
by Cohen et al.3> The energy difference between these two forms is due to one of
every four torsions being in the eclipsed rather than the staggered position. There
are two torsions per atom and one quarter of these are responsible for the energy
difference between the two phases. Thus the torsional barrier is one half of the
energy difference per atom, or V3 = 0.738 kcal/mol. The van der Waals interactions
also affect the energy difference between the two forms of silicon. Thus we find
that V3 = 0.51 kcal/mol reproduces the difference 0.016 ev per atom as obtained by
Cohen from DFT calculations.3! Because the Si (111)-7 x 7 reconstructed surface
contains a stacking fault, V3 plays a role in determining the energetics of the surface
reconstruction.

On adding the bulk force constants to those of Si4Hg to complete the force
field for Si5H7, we then calculate the energy of the SisH7 cluster as a function of
the cap silicon position along the Cg axis. The MSXX FF accurately reproduces
this curve, including the equilibrium 1-3 distance (Figure 6). This requires an
equilibrium angle for the Siz — Siy — Sis (see Figure 3) angle terms of 115° (HF
calculations on SiqsHy lead to 122°). The HF equilibrium 1-3 distance of 2.906 A
was fit to within 0.02A. |

With the MSXX force field for SisH7, we optimized the geometries of the
(3 x 3), (5 x5), (7x7),and (9 x 9) DAS Si (111) reconstructed surfaces, the
centered (2 x 8), and three (2 x 3) surfaces, and the relaxed perfectly terminated Si

(111) surface.

2.5 Optimization
All calculations were carried out using POLYGRAF,33 an interactive molecu-

lar simulations package for molecular mechanics and molecular dynamics of crystals.
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The atomic coordinates were optimized (using conjugate gradient techniques) until
the RMS force became less than 0.01 (kcal/mol)/A. At the optimized structure,
all stress components are less than 0.005 GPa. We modelled the surface using 6
layers of silicon (three double layers). The bottom four layers having undergone
no reconstruction. The sixth layer of silicon atoms has its bonding saturated with
hydrogen atoms. The surface unit cell is constrained to an integral multiple of the

lateral size of the bulk unit cell.

3.0 Results

3.1 SiH,
Table 3 compares the MSXX frequencies with experiment. Table 4 shows
the MSXX force field, the theoretical force field, and the scales. The MSXX FF

leads to forces less than 0.005 kcal/molA at the experimental geometry.

3.2 SisHg
Table 5 lists the MSXX force constants and Table 6 compares the frequencies
from the MSXX and theoretical force fields for Siq Hg.

3.3 SiHg

The MSXX force field for silyl radical in Table 7 leads to the frequencies and
geometry in Table 8. Table 7 also gives the scaling factor for this force field (the
ratio of the force constants fitting the experimental frequencies to the force constants
fitted the HF frequencies). The stretch stretch cross terms do not scale the same
as found for silane and disilane. The inversion force constant scales differently than

the other valence terms.

3.4 Si4Hg and SisH-

Table 9 shows the force constants for SigHg from fitting to the HF frequencies.
To obtain the MSXX we used the scaled force constants from SisHg plus (i) the
inversion term was fitted to the HF energy curve for inversion and (ii) we adjusted
the equilibrium Si3S512513 angle to fit the geometry. The MSXX force field at the
experimental geometry leads to an rms force of less than 0.08 kcal/molA.

For SisH7; we used the MSXX force field for Si4Hg plus additional terms
from the bulk force field (Table 10). We find that we can obtain the HF optimized
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geometry for this cluster and the HF energy curve for the Si; position along the Cs

axis by adjusting the equilibrium Siz — Sis — Si3 bond angle.

3.5 DAS Structures
3.5.1 The R,3(T,) Distance

The adatom geometry for the Si (111)-7x7 reconstructed surface is of most
interest. In the DAS model the 12 adatoms sit directly above second layer atoms
in T4 sites. The repulsive interaction between the adatom and the third layer atom
tends to push the adatom outwards. On the other hand, the four coordinated
silicon of the second and third layer atoms prefer tetrahedral bond angles and
the triply coordinated adatom prefers angles near 113°. This tends to limit the
R13(Ty) distance. Ichmiya!” found a back bond distance of 2.56A using RHEED.
Tong et al.'® used dynamical LEED and reported a back bond distance that ranged
from 2.49A to 2.56A (depending on whether the adatom was on the faulted half,
unfaulted half, near a corner or near the center). Tromp and van Loenen!? found
that the back bond distance must be approximately 2.6A using medium energy ion
sca‘ttering. Robinson'® used XRD experiments to estimate a back bond distance
of 2.64A. Qian and Chadi'® used a tight binding energy minimization calculation
to determine the atomic structure. They reported a back bond distance of 3.1A.
Messmer18:20 reported a 1-3 distance of 2.52A based on GVB calculations and 2.45A
from calculations on the surface using a silicon potential based on the interstitial
electron model. We find Ry3(Ty) = 2.52A to 2.564A, depending on the location of

the adatom within the unit cell.

3.5.2 The R34(T4) Distance

Tong finds R34(T4), the bond length between the sub-surface eclipsed atom in
the Ty site and the atom directly below it, to be 2.13A or 2.18A (with uncertainties
of 0.1A), depending on whether the bond is in the faulted or the unfaulted side of
the unit cell respectively. We find Ras(Ty) = 2.25A.

3.5.3 The Dimer Distance
In addition to the adatom structures the dimer distances are also important.

Tong!® finds a dimer distance of 2.45A using dynamical LEED. Khor and Das

4 16

Sarma'* using an empirical potential and Robinson!® using X-ray diffraction find
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the dimer distance to be 2.49A. We find a dimer distance of 2.46A if the dimer is
not adjacent to a cell corner, and 2.50A if it is next to a cell corner. The equilibrium

bond distance in silicon is 2.35A, showing that the dimer is in tension.

3.5.4 Relative Energy of (2n 4+ 1) x (2n+ 1) DAS Structures

Optimizing the structures of each of the (3x3), (5x5), (7x7), and (9x9)
DAS models of the Si (111) reconstruction, we find that the (5x5) structure has
the lowest energy, with (7x7) slightly higher in energy. We find that the strain
energies decreases as the size of the DAS unit cell increases (Table 10). Although
the 5x5 unit cell has a higher tensile stress than the 7x7 reconstruction, the lower
density of 0.0244 dangling bonds/A? compared to 0.0263 dangling bonds/A? for the
7Xx 7 reconstruction accounts for part of the stability of the 5x5 cell over the 7x7
cell. The surface energy 0.8995 kcal/molA? due to the dangling bonds for the 5x5
unit cell is 0.0694 kcal /molA? less than the surface energy of 0.9689 kcal/molA? due
to dangling bonds for the 7x7 surface. Here we assign an energy per danglirig bond
equal to half the energy required to break a bond in bulk silicon (73.7/2 kcal/mol).
On the other hand, assigning an energy per dangling bond equal to half the average
energy required to break all the bonds in the silicon lattice (54.3/2 kcal/mol) gives a
surface energy difference due to the dangling bonds of 0.0511 kcal/molA2. The 5x5
reconstruction is still slightly lower than the 7x7 by 0.0055 kcal/molA2. We assign
an energy of 73.7/2 kcal/mol per dangling bond. Although the 3x3 DAS structure
has the lowest dangling bond density (0.0226/A2) of the DAS structures, it leads to
stresses too large for stability. Several investigators have reported finding the 5x5
DAS structure to be slightly more stable than the 7x7 DAS structure. Table 10
shows the relative energies of the (2n + 1) x (2n + 1) structures from our results,
and those of Khor et al. and Vanderbilt. It is unclear which structure is the lowest
energy structure since both are experimentally observed on the same samples and
the calculated energy difference is so small that the difference may be within the

error of the calculation.

4.0 Discussion
Because the MSXX force field differentiates between three coordinated and

four coordinated silicon atoms, it can model both the geometric and elastic proper-
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ties of the bulk as well as the energetics of surface atoms with large angle strains.
This makes MSXX appropriate for the modeling of the silicon (111) surface be-
cause local adatom strains and the strain of the surface unit cell on the bulk both

34=36 are successful in par-

contribute to the energetic stability. Earlier force fields
ticular areas, for example in the reconstruction of the (100) surface, modeling the
bulk elastic properties, and melting. However, they are inappropriate for the re-
construction of the (111) surface. The empirical potential used by Khor and Das
Sarma'? successfully describes the DAS structures. The MSXX potential has the
advantage that it is partitioned into physically significant valence energy terms.
Additionally, being derived from theoretical and experimental studies of small clus-
ters, we can get a quantitative test of the concepts. Although the energy difference
between the 5x5 and 7x7 DAS surfaces is too close to resolve with our current level
of theory, the stability with respect to other (2n + 1) x (2n + 1) structures and the
unreconstructed surface is successfully demonstrated.

The geometric description given by the MSXX FF is in excellent agreement
with the available experimental data on the 7x7 surface. This is evident in the
agreement between this study and experiment for R13(7y), the dimer length, and

the overall strain in the system.

5.0 Conclusion

Using the Biased Hessian method, we developed the MSXX FF for silicon
and use it to analyze the energetics and structures for the DAS (2n+1) x (2n +1)
reconstructions of the Si (111) surface. For n = 1 to 4, we find that the tensile
stress increases as the unit cell size decreases. We find the 3x3 and 9x9 structures
to be stable relative to the relaxed perfect (111) surface but much less stable than
7x7 surface. We find the 5x5 and 7x7 surfaces to be nearly equal in energy (in
agreement with some agreement with some previous findings) with the 5x5 surface
slightly more stable.

For the 7x7 surface we find dimer distances of 2.50A and 2.46A for dimers
adjacent to cell corners and dimers between small eight atom ringed holes respec-
tively, in agreement with X-ray diffraction studies. We find R;3(Ty) = 2.52A (for
the distance between the adatom and the eclipsed atom in the T4) for the faulted
subcell center, 2.54A for the site unfaulted subcell center, 2.53A in the faulted sub-
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cell corner, and 2.56A in the unfaulted subcell corner. These distances compare
well with RHEED and LEED data.

This MSXX FF is appropriate for calculating structures containing a stacking
fault since it describes the energy difference between the sphalerite and wurtzite
forms of silicon.

The elastic constants, and phonon dispersion curves are accurately calculated
by the MSXX FF including the TA mode flattening. Of most importance is the
ability of this potential to describe the energetics, ge,ometry and vibrations of surface

silicon atoms in both 7, and Hj sites.
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Table 1. Force constants for bulk silicon.

MSXX
van der Waals D, 0.310
R, 4.270
Bond Stretch [eq (5)] Ry 2.381
ks 193.0936
Dy (73.70)
Angle Bend [eq (6)] kg 31.2682
6. 105.0467
Angle Cross Terms [eq (8)] kgis0 —14.8184
kpr 3.6001
Torsion [eq (7)] Vs 0.5100
2-C A-A [egs (9) and (11)]  Fsi;.9i58i5:8i; —25.7242
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Table 2a. Elastic constants (in GPa) and the bulk modulus (B) of silicon from the

MSXX FF compared with experiment.

Parameter MSXX Experiment

Cn1 170.7 167.5
Ci2 64.2 65.0
Cua 78.6 80.1
B 99.1 99.2

Table 2b. Phonon frequencies (in THz) of silicon from the MSXX FF and experiment.

Phonon MSXX Experiment
LA-LO(X;) 12.38 12.44
TA(X3) 4.51 4.51
TO(Xy) 13.92 13.90

TO-LO(I'35) 15.56 15.53




Table 3. Vibrational frequencies of SiHy.
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Modes Expt. MSXX HF Scale
SiH3 d-deform. 914 914 1017.1 0.899
SiHs3 d-deform. 975 975 1053.4 0.926
SiH s-str. 2187 2187 2370.0 0.923
SiH d-str. 2191 2191 2360.6 0.928
|AV|rms 0 140.3
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Table 4. StH, FF.

MSXX HF Scale
Bond Stretch [eq (5)]
Si-H Ry 1.479 1.478 1.000
ks 400.0273 459.1177 0.871
Ds (92.60) (92.60) 1.000
Angle Bend [eq (6)]
H-Si-H ke 67.5345 79.8951 0.845
0, 110.9769 112.2213 0.989
Angle Cross Terms [eq (9)]
H-Si-H ko —10.2182 —11.1244 0.919
kpr 4.021 6.030 0.667

One-Center Angle-Angle Cross Terms [eqgs (9) and (10)]
Gsit:HH 5.3177 7.3658 0.722
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Table 5. S’iQHG FF.

MSXX HF Scale
Bond Stretch [eq (5)]
Si-H Ry 1.4782 1.4781 1.000
ks 393.9586 455.8698 0.864
Dy (92.60) (92.60) 1.000
Si-Si Ry 2.3366 2.3517 0.994
ks 286.9195 342.3163 0.838
Dy (73.70) (73.70) 1.000
Angle Bend [eq (6)]
H-Si-H ke 57.3767 69.2450 0.829
0. 111.9874 112.6561 0.994
Si-Si-H ke 43.3213 93.2658 0.813
6. 114.6627 116.1750 0.987
Torsion [eq (7)]
H-Si-Si-H V3 0.848 1.3542 0.626
Angle Cross Terms [eq (9)]
H-Si-H kre —3.9257 —3.6203 0.974
krr 3.2252 4.8795 0.661
Si-Si-H ksio 19.8201 26.7122 0.742
krro —3.7978 —4.6882 0.810
ksim 1.3292 1.5511 0.857

One-Center Angle-Angle Cross Terms [egs (9) and (10)]

GsiH.-HH —0.6003 —0.6424 0.934
Gsisi:HH —0.1914 —0.2321 0.825
GsiH:SiH 0.3563 0.4043 0.881

Two-Center Angle-Angle Cross Terms [egs (9) and (11)]

Fr.sisi:g —16.4782 —19.9482 0.826




255

Table 6. Vibrational frequencies of Si9Hg.

Modes Expt. MSXX HF Scale
Torsion 125 127 134.3 0.931
SiHgz-rock 379 378 416.6 0.910
Si-Si stretch 432 431 464.0 0.936
SiHg-rock 628 625 697.1 0.897
SiHs s-deform. 844 854 947.9 0.890
SiHs d-deform. 941 946 1031.5 0.881
SiH3 s-deform. 920 925 1043.1 0.891
SiH3 d-deform. 940 931 1027.5 0.914
SiHg d-str. 2155.00 2166 2337.1 0.880
SiHg s-str. 2154.30 2158 2352.7 0.915
SiHj3 d-str. 2178.60 2166 2337.3 0.922
SiHj s-str. 2163.00 2161 2346.7 0.928

|AV|gug 6.66
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Table 7. SiH3 FF.

MSXX HF Scale
Bond Stretch [eq (5)]
Si-H Ry 1.4830 1.4830 1.000
ky 323.6191 443.7879 0.729
Dy (92.60) (92.60) 1.000
Angle Bend [eq (6)]
H-Si-H ke 50.9033 02.9548 0.961
6, 110.5997 110.5997 1.000
Angle Cross Terms [eq (9)]
H-Si-H Kro —13.1042 —15.2668 0.858
kpr —0.1102 4.0105 —0.027

One-Center Angle-Angle Cross Terms [egs (9) and (10)]
GsiH.HH —9.7116 —12.6668 0.767

Inversion [eq (8)]

Fsi.nun 65.9534 61.5300 1.072




Table 8. Vibrational frequencies frequencies of SiHg.
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Modes Expt. MSXX HF Scale

SiHs deform. 926 926 871.2 1.063

SiH3 deform. 996 996 1016.5 0.9800
SiH str. 1955 1955 2342.4 0.836
SiH str. 1999 1999 2361.0 0.847
|AV|rms 0 266.6




Table 9a. Si4Hg FF.
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MSXX HF
Bond Stretch [eq (5)]
Sio-Sig Ry 2.395 2.395
ks 215.845 257.5712
Dy (73.70) (73.70)
Siz-H; Ry 1.483 1.483
ks, 382.387 442.578
Dy  (92.60) (92.60)
Siz-H, Ry 1.485 1.484
ks 381.585 441.650
Ds (92.60) (92.60)
Angle Bend [eq (6)]
H;-Siz-H, ko 598.256 70.273
| Oa 110.953 110.953
H,-Sis-H, kg 04.843 66.156
0, 111.562 111.562
Sig-Siz-H; ko 55.267 67.979
6q 116.838 116.838
Sig-Siz-H, ke 49.711 61.146
0, 112.207 112.207
Sig-Sig-Sig ko 50.8023 62.488
0, 122.671 124.2864
Torsion [eq (7)]
Siz-Sio-Siz-H; Vs - 1.020 1.630
Siz-Sip-Siz-H, Vs 2.126 3.396
Inversion [eq (8)]
Sig:Sis-Sis-Siz Ky 1.500 0.9700
Wb, 81.0000 38.5060
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Table 9b. SiyHg FF continued.

MSXX HF
Angle Cross Terms [eq (9)]
H,-Siz-H, k.o ~2.602 —2.672
kr.o —2.787 —2.862
ku. H, 3.457 5.230
H,-Siz-H, k.o ~1.899 ~1.950
ko 3.339 9.052
Sip-Siz-H, ksi,0 10.730 14.461
ki, o —1.914 —2.363
ksi,H, 1.958 2.285
Sip-Sis-H; Ksi,0 0.821 1.106
kr.o —3.662 —4.522
ksisH, 5.120 5.974
Siz-Sip-Sis Ksiy0 5.637 7.598
| - 0.908 1.060
One-Center Angle-Angle Cross Terms [egs (9) and (10)]
GsiySi3:5i3Sis 0.7610 0.992
G SiySig:H; H, 6.388 7.251
G5iySig:H, H, 2.645 3.002
GsisH;:H,H, —0.756 —0.810
GsisH,:H; H, —0.783 —0.838
GsigH,:Siy H; —2.476 —3.001
GsiyH,:Sis H, —2.031 —2.461
GsizH;:SiyH, —2.771 —3.001
Two-Center Angle-Angle Cross Terms [egs (9) and (11)]
F5i4:5i5Si5:H; —30.891 —37.398

Fsis:5i,5is:H, —16.495 —19.970
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Table 10. Relative energies (kcal/mol) of the (2n+1)x(2n+1) DAS structures and the

relaxed (111) surface from this work, Khor and Das Sarma,!* Vanderbilt?4

and Chadi.l?

Structure This work Khor Chadi
DAS 3x3 -0.310 -0.326 -

DAS 5x5 -0.341 -0.344 -0.395
DAS 7x7 -0.333 -0.335 -0.403

DAS 9x9 -0.328 -0.325 -
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Table 11. Additional Surface Force Constants.

Angle Bend [eq (6)]

Sig-Sig-Sig ke 11.0000
Sig-Sig-Sig kg 11.0000

0, 109.4712
Angle Cross Terms [eq (8)]
Sig-Sis-Sis ksi,o  —17.0000
Siy-Sis-Sis ksiie  —17.0000

- 0.0000
Torsion [eq (7)]
Sig-Sis-Sis-Sis Vs 0.5100
Sip-Siz-Siz-Sis Vs 0.5100
Two-Center Angle-Angle Cross Terms [egs (9) and (11)]
FSig:SiéSig:Sig —24.3179 -

FS’iz:S’i3S’i3:Si3 —24.3179 -
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Figure Captions

Figure 1.

Figure 2.
Figure 3.

Figure 4.

Figure 5.

Figure 6.

Top view of the optimized 7 x 7 DAS model. Blue shaded atoms
denote silicon atoms in the corner of the unit cell with a dangling
bond. Yellow shaded atoms are surface silicons in Hjs sites and with a
dangling bond. Silicon adatoms in T4 sites have a dangling bond and

are shaded red. All other atoms are Si, shaded orange and have four

bonds.
The Si4Hg cluster.
The Si5H; cluster.

The ab initio and force field energies plotted versus the central Si

atom position for SiyHy.
Phonon dispersion curve for Si.

The ab initio and force field energies plotted versus the cap Si atom

position for Si5H7.
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Blue - Corner Si (dangling bond)

Red - T4 Si Adatoms (dangling bond)
Yellow -= H3 Si (dangling bond)
Orange - Si with Four Bonds

Figure 1. DAS 7x7 Si (111) Surface
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Figure 2
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Figure 3
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Figure 4 Si4h9 Energy vs. R
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Figure 5. Phonon Dispersion Curve for Si
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Chapter 7

The Generalized London Force Field for Hydrocarbon Reactions
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Abstract
In this chapter we use the Generalized London Force Field (GLFF) method

to derive the potential energy surface (PES) for the exchange reaction: CHy4+ H —
CHs + Hy. The GLFF includes the effect of the Pauli Exclusion Principle on the
PES of chemical reactions. We find excellent agreement with the PES from ab initio

quantum chemical reactions (GVB*SD CI).
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1.0 Introduction

In chapters 2 and 3 we described the calculation of transition barriers for
reactions of diamond surfaces (for CVD growth and nanotechnology). The calcula-
tion of the potential energy surface for these reactions to determine the transition
state geometry and the activation barrier required a large quantity of CPU time on
a Cray supercomputer. This chapter describes a method for calculating the same
PES, but at a very small fraction of the computer cost.

Chemical reactions such as
-H+ Dy — HD + -D (1)

generally lead to a reaction barrier [~9.6 kcal/mol for (1)] much less than the bond
energy [10% for (1)]. There are clearly subtle interplays of bonding and antibonding
factors where the bond is never really broken, but rather as one bond is dissociating
the other is forming. Thus the transition state is a resonance between the reactant
and product states. The transition state barrier is a direct consequence of the Pauli
principle which allows only two electrons per orbital. As the third electron (of the H)
approaches the D5, it must remain orthogonal to the bond pair on the Dy (to satisfy
Pauli), leading to antibonding character and hence a barrier. Such reaction barriers
are adequately described with the modern methods of quantum chemistry, however
they generally require intensive calculations, especially if quantitative accuracy is
required. Furthermore, the generation of a PES is even more intensive since to
generate the surface the wave function must be calculated at a grid of geometries
~ along the reaction path.

In contrast, the FF for a Molecular Dynamics (MD) study would use a
bonding interaction (say a Morse function) between each particle. This incorrectly
predicts that the H3 molecule is stable, with a triangular geometry and a bond
energy of ~100 kcal/mol rather than a barrier of 10 kcal/mol and a linear transi-
tion state. This property prevents the simulation of reaction dynamics since the
description of the reaction surface is poorly described. For a proper description of
the reaction surface, must include the effects of the Pault principle, which are rarely
incorporated into MM potentials.

Of course quantum chemistry calculations automatically include the Pauli

Principle. However



272

i. the quantum chemistry (QC) requires a great deal of work for each geometry
and we would like a way to fit the QC with a general potential function
i1. the size of the QC calculation grows rapidly with the the size of the system,
making it impractical for many cases of interest and we would like to have a
way of predicting the interaction energies in the absence of QC.
We have developed a general procedure,!=3 the Generalized London Force Field
(GLFF), for accomplishing both objectives. This methodology allows a general
procedure for all reactions and permits development of routines for using this pro-
cedure with commercial molecular simulation codes such as POLYGRAF.4
The GLFF methodology is straightforward for any simple (three-electron)
radical reaction, e.g.
A+ X -B—- A- X+ -B. (2)

including surface reactions such as

The same formalism can also be used for simple four electron reactions, such

as metathesis

A—DB A B
= | | (4)
C—D C D
and insertion
A—DB A B
= | |

(e.g. Ziegler-Natta polymerization).

2.0 The Generalized London Force Field
2.1 Spin Coupling and the London Potential
Consider the bonding in the reactant (Figure la), transition state (Figure

1b), and product (Figure 1c) as given in Figure 1.
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The consequences of the Pauli principle can be directly expressed in terms
of the spin couplings shown schematically in the middle row of Figure 1 and more
explicitly in the bottom row.

For the reactant configuration of (1) the Valence Bond (VB) wave function is
A{ 190 [a(af — Ba)]} where the electrons on the Dy always have opposite spins,
leading to the singlet or bonding state of Ds. (Here ¢;, ¢., ¢, refer to atomic orbitals
on the left, center, and right atoms.) However the spin on the H is sometimes
the same and sometimes different than the spin on the D atoms. This leads to
an H—D interaction that contains both antibonding (or triplet) interactions and
bonding (or singlet) interactions. Analysis of the VB wave function shows that
the HD interaction is 75% triplet and 25% singlet. The result of these triplet or
antibonding terms is that the energy increases as H approaches Ds.

For the transition state the VB wave function is

A{¢19c0r (o (af — fa) — (af — Ba) af} (6)

which describes the resonance of H—D D- with H - D—D. Analysis of the wave
function shows that the outer orbitals are always triplet coupled whereas the middle
atom has interactions with the outer two atoms that are 75% singlet and 25% triplet.

Thus during the reaction the interactions between the H and central D
changes from 25% singlet (reactant), to 75% singlet (transition state), to 100%
singlet (product) and the other interactions change correspondingly. Thus to include

the effect of the Pauli principle, the simplest description is

E(R1, Ry, Rs) = Z Ei;(Ri;) (7)
where
Ei; (Rij) = fSES(Ry) + FEEL(Ry). (8)

Here f° and f7 are the fractions of singlet and triplet character and E° and ET
describe the bonding and antibonding two-body interactions. Defining the classical

and exchange energies as

Elz-;-(ET+ES) (9)



1
ET = § (ET . ES)
and the spin coupling fractions as
1
’S' (COS 2 72.7 )2
, (10)
g; (szn 2 /71.7')2
the energy (7) can be rewritten as
E= Z [ESH(Rij) + cosvi; EF] - (11)

z>y

The three spin coupling angles in (11), 7;;, are related to each other (by :!:-2-31) SO
that there is only one degree of freedom. Requiring that v be optimum, 0F /9y = 0,
leads to

%5 (B33 — Efy)
Efy + Eg3 — 2E7;

tanvyiz = (12)

Since (12) depends only on the exchange energies, E®(R;;), which depend only on
the distances, the optimum spin coupling is uniquely determined by the geometry.
Thus the full effect of the Pauli principle is included by using (12) with (11), leading

to

1

Ep = BE{'+E5'+E5'—[(EY)? + (E5)* + (E3)® — E{BS — ESES — ESES — EYES]* .

| (13)
This expression was originally derived by London.°~" Table 1 shows the special

cases of the energy for various ~’s.

2.2 Generalization of the London Force Field

Using the exact two body functions for the triplet and singlet states of Hs in
the London expression (1), leads to a potential surface that is qualitatively correct.
Thus for H3 it leads to a barrier of 12.4 kcal/mol rather than 9.6 kcal/mol® and
a saddle point geometry of 1.7922 bohr rather than 1.7757 bohr. In addition the
barrier is too narrow having too low an energy for particles along the reaction

path far from the transition state. Donnelly et al.}»? showed that the problem at
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the saddle point involves three body corrections when all three orbitals have high
overlap.

By substituting the two-body VB energy expressions with S2, # 0 into the
three-body VB energy expressions, also with §2, # 0, and retaining terms in overlap

squared only, the first order overlap correction to (13) was found to bel»?
1 T T
Az = ~5 (513 + S33) BTy + (575 + S33) Efs + (ST, + S13) ES3) - (14)

The problem with (11) is that it considers overlaps S;; as addition to the exchange
energies. This is not acceptable since we will generally not have overlaps. However
32 is proportional to Ef; so that 52 in (11) can be replaced with

S2 __ 60 E:c

ij> (15)

where 6° is a scaling constant. Using just this one parameter, the overestimate of
the energy barrier is removed. The resulting three-body correction depends only on
E=.

For larger distances the energy for (12) is too attractive because interference
between the London dispersion (vdw attraction) terms of different pairs of atoms is
ignored. The dynamic correlation effects (responsible for this attraction) between
atoms 1 and 2 interfere with the 1-3 and 2-3 dispersions, leading to less attraction.

This dispersion correction has the form

Agiop = —6 Ed S2. 16)
P
1>J

where E¢ is the (negative) dispersion energy of pair 7, and 6% is a constant. A good
estimate of the dispersion energy is found from the difference between the exact
energy (experiment or configuration interaction) and the VB or GVB energy.

The Generalized London Force Field (GLFF) has the form

ECLFF(R) Ry, R3) = Z [ES’( Ri;) + cosvi; EY; (Rij)] + As + Agisp (17a)
1>7

— Z ECl Ry )+ cosvi; B Z (ka + S [ E“’ 5dEzdj] (17b)

1>7 k#i,7
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= Z Ej'(Rij) + Ef; | cosvij — 5 Z (S5 + S5) | — 6aB], Z (5% + 57)

i>j | | k#i,j k#i,j

(17¢)
where §° is given by (16).
3.0 Ab Initio Calculations
To derive ab initio potentials (PES) that include the essential effects impor-
tant in describing saddle points of chemical reactions, one must employ QC methods
that accurately describe bold dissociation. Chemically accurate descriptions of the
PES generally require a large computational cost. Our goal is to predict accurate re-
action surfaces using a simple method practical for molecular dynamics simulations.

We will illustrate the procedure for the reaction
CHy+ H — -CHs + Hs. (21)

Elsewhere!! we required extensive GVB-CI calculations on (2). These studies
involved Generalized Valence Bond (GVB) calculations followed by configuration
interaction through single and double excitations from all GVB configurations. This
is denoted as GVB*SD CI.

These studies used an extended basis set [Dunning and Huzinaga®1° double-
zeta contraction of the 9s5p carbon basis with one additional set of d polarization
functions (n¢ =0.75). We also add diffuse s and p functions (p° = 0.0474 and (P
= 0.0365). The hydrogens were described using the triple-zeta contraction of the
6s set with one additional set of p polarization functions (n? = 0.60)]. The final
potential surface is shown in Figures 2.

This method has been applied to the
H D—-CD3s — H—-D -CD; (22)

and

ch D—CD3 —+H30D C.D3 (23)

reactions using H --H, H - - - CHs, and CHs - - - CHs two-body interactions from
QC. The potential surface for (20) is shown in Figure 3. The barrier from GLFF
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is 10.6 kcal/mol, in excellent agreement with the 10.9 kcal/mol from extensive QC

calculations on the reaction (17).

4.0 Discussion

The approach outlined above can be used for any three electron (or four

electron) exchange reaction,
A-B+.-C—-A+B-C.

The first step is to obtain the singlet and triplet states for A-B and for B-C. For
best results we should do QC calculations at various distances for A-B and B-C
separately. With no additional data on the A-B-C system, the London Equation
would predict the full potential surface in Figure 2. This leads to a barrier ~25%
too high and transition state bond distances about 3% too long. If there were no
additional information, this could be used to simulate the reactions. Better yet
we might do a quantum mechanical calculation at a single point near the predicted
saddle point and another single point half way to dissociation. This would determine
6° and 6¢, allowing an accurate description of most geometries. Thus the GLFF
allows a little bit of QC information to predict a great deal about the potential
surface.

Alternatively with no QC data on the reacting units, we could use data, say,
on the barrier height from experiment to estimate the overlap correction constant
(6°). In addition, if there were no QC data on the A-B bond and antibond, one
could get a qualitative estimate by using a Morse curve for the singlet or bond state
(which requires only R., k., and D.) and we could use an antimorse curve for the

triplet or antibond state (no additional data).

5.0 Application to Hydrocarbon Reactions

We have shown that the Generalized London Potential is effective in mod-
eling Ho + H and CHs + H by comparing the GLFF results to accurate ab initio
calculations. Because quantum chemistry calculations of potentials of systems with
more than several electrons are so impractical most systems have little available

data. We developed the GLP with the intention that it could accurately predict the
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entire potential energy surface using only two-body potentials plus a limited amount
of three-body information. Our results indicate that the GLP is indeed well suited
for such predictions. An accurate PES can be derived in a matter of hours or min-
utes, on a small computer where quantum chemical calculations have taken tens of
hours of super computer CPU for PES derivation on similar systems.!!'1? Actually,
the GLP may work best to compliment ab initio calculations in reducing the amount
of work required to find the saddle point. An expected sequence would be:
1. Calculation of two-body curves.
2. Use of London Potential to predict saddle point.
3. Use of GLP using parameters estimated from similar systems to improve
estimate of saddle point.
4. Ab initio calculation of several energies near saddle point.
5. Incorporation of new information into GLP to improve estimates of entire
potential energy surface and saddle point.
6. Possible refinement of GLP parameters using a small number of additional
ab initio points.
7. Use of GLP for simulations.

Our overall objective is to perform accurate reaction dynamics with molec-
ular modeling where reaction rates would be accurately modelled and mechanisms
could be studied, and extracted from the dynamics trajectories. We are especially
interested in applications to surface reconstructions, growth of thin films, polymer
and crystalline systems. Important carbon-based examples exist for all of these
cases. We first examine the case of hydrogen exchange among hydrocarbons. We
first considered the abstraction of one hydrogen from methane by an atomic hydro-
gen:

CHy+ H — CHs + H,.

Actually, this reaction as written is uphill in energy by several kcal/mol, however
this is not true for most hydrogen abstractions from hydrocarbons by a lone hy-
drogen atom. Thus, we write this equation in this direction, however it is more
appropriate to write it in the opposite direction for this system only. With the
CH,4 bond angles fixed, we first calculate a first approximation of hydrogen ab-

straction from a diamond surface. Of course, an improved model would consider
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abstraction from isobutane or larger clusters. Allowing the C'H, bond angles to
relax gives this reaction an extra degree of freedom not present in H3. This better
describes smaller systems and polymers where relaxation is not constrained by the
surrounding structure as in a surface reaction. For both the fixed and variable an-
gle cases the two-body interaction potentials are required. We present them next

before their use in the GLP.

5.1 Application to the CHy + H — CH3; + Hy Reaction
The GLFF is expressed in terms of two body potentials. Thus for

CH4+H—>CH3+H2 (18)
we need to consider the
CHs+ H (19)
and
H+H (20)

potentials. We carried out calculations on (18) and (19) at the same level of basis
set®10 and electron correlation as previously used for ab initio studies of (17). The
details of the calculations are in section 3.0. The potential curves are shown in
Figures 2 and 3. In (18) we considered three values 0oy = 90°,105°,120°. For
consistency we used a harmonic fit to predict the choice of Ogon for each particular
Rep.

The constants 6° and 6¢ were chosen by fitting to the saddle point and 50 %

dissociated energies for the reaction.

5.2 Comparison to ab initio calculations

The GVB-CI calculations optimized the structure near the saddle point for
reaction (17). As a first step we used the transition state geometries from these
calculations to calculate the London and GLFF energies. The results are in Table
2. Here we see the LFF leads to an energy barrier too high by 2.1 kcal/mol or 15%.
Using 6% = 0.003 from the Hj studies leads to Escr = 12.63kcal /mol. Adjusting
to match the ab initio surface leads to Eacr = 12.9kcal/mol. In the remainder of

this chapter we use 6¢ = 0.003 from Hs.
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To obtain a full potential surface, we first considered the same angle Ogoy =
104° for all Ry and Ryg. This leads to the London and GLFF PES in Figures 2
and 3. We then used the spin coupling at each geometry to determine the optimum
6oy by minimizing the energy (8) with respect to the angle.

We recalculated the London and GLFF potential surfaces shown in Figures
2 and 3. Very little change occurs in the spin coupling so that additional iterations
were not needed.

We conclude that GLFF gives an excellent description of the QC potential

surface.

5.3 Hy and C'H; Potentials

When all of our information is based on ab initio calculations, it is best to use
a consistent level of calculation for all potential surfaces. The C'H4 + H calculations
of Musgrave et al. on the saddle point of C Hy+ H? are not to high accuracy, however
a similar level calculation is feasible on larger systems. Calculations at a similar
level of accuracy were done for Hy and CHy!' and are reported in Tables 3 and 4
for Hy and C Hy, respectively.

We include the tetrahedral geometries for the fixed-angle, surface-like atom
case. For a lone C'Hy, the angle between the H whose bond is being stretched and
the other hydrogens relaxes from tetrahedral to planar during the course of the
reaction with H. For lone C Hjs, about 7 kcal/mol is required to go from planar to
tetrahedral. Calculations of the snap bond energies at various angles are possible
which can then be used to do the general relaxed angle case. To simplify matters
here, we report the energies at 104° which is about the optimized saddle point

geometry. 31!

5.4 Fixed Angle CHy+ H

We consider the first approximation of using C H, with the bond angle fixed
at tetrahedral and calculate the resulting potential energy surface. We start from
spline fits to the Hy and C'H,4 energies of the previous subsection. The London
Potential for this system is shown in Figure 2.

The C'Hs 4+ Hs limit is taken as the zero of energy. While the bond energies
of CH4 and Hs are only several kcal/mol apart, the additional energy to bend

CHs to tetrahedral makes the energy difference in the channels about 9 kcal/mol.
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As expected, the saddle point is closer to the higher energy Hs channel. The
corresponding spin coupling is shown in Figure 1. This shows that the “transition
state” as defined by the spin coupling (v = 0) is even further into the Hs valley
than the saddle point. The smooth variation of v along the reaction path is again
seen as for Hs in Figure 4 and for CH4 + H in Figure 5.

The potential energy surface is improved by assuming that the parameters
of the Hs GLP are about on the order of those for CH4 + H. Given the similar
bond energies, this should be a reasonable approximation. The corrections from
second order overlap and dispersion for Hsz lead to the new surface of Figure 3.
Thus, we have estimated the entire potential energy surface for C H4+ H using only
two-body curves and our knowledge of the London Equation error for Hz. With
more experience in the variation of the GLP parameters across various systems,
we can hopefully establish a methodology of creating such surfaces to a reasonable

accuracy with little more than two-body input.

5.5 Relaxed Angle CHy+ H

In order to compare the CHy + H results of Reference 2 with the GLP
results, we need to allow the C'H, bond angle to relax as the reaction proceeds.
The singlet and triplet energies at several angles for each C Hs — H distance could
be calculated in order to obtain the angular dependence. If the angle relaxed to
its singlet minimum, it would be planar at far distances, near tetrahedral at the
bond distance, and slightly beyond tetrahedral at shorter distances. At the saddle
point distance of about 2.6 bohr, the energy of the singlet is a minimum for an
angle between 106 and 107°. This is in contrast to the optimized angle of 103.8° of
Reference 11. The discrepancy arose because the energy minimum with respect to
angle for the triplet is much nearer planar. From the spin coupling ~;, we know the

mix of singlet and triplet character for a given pair of atoms i:

This is the function to be minimized with respect to bond angle at each geometric

configuration.
Even without knowledge of the C'H, triplet and singlet energies at various

angles and distances, we can still estimate the energy at the saddle point. Using
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the 104° energies of C' H4 from Subsection A, the saddle point for the relaxed angle
C'H4 + H reaction can be found. This was done for the London Potential and the
GLP with second order corrections based on the Hs parameters. Table 5 shows
that predicted GLP energy is within 0.3 kcal/mol of the ab initio value.

Separate Ho and C' Hy corrections would improve the saddle point position.
The information that went into this prediction includes only two-body Hy and C Hy
potentials, an estimate of two GLP parameters from Hs, and an estimate of the
C H,4 bond angle at the saddle point. This last piece of information is also derivable
independently by knowing the angular dependence of the separate singlet and triplet
curves at the saddle point distance. In addition to this saddle point information,
we now have an estimate of the potential energy surface over the entire range of
geometries. This can be used to add reactive dynamics to molecular modeling
simulations.
6.0 Conclusions

We use the Generalized London Force Field (GLFF) method to derive the
potential energy surface (PES) for the exchange reaction: CHy + H — CHs + Hos.
We find that we are able to accurately determine the PES when including dispersion
and three body interaction corrections. The GLFF includes the effect of the Pauli
Exclusion Principle on the PES of chemical reactions and greatly speeds up the cal-
culation of accurate PES over quantum chemical methods. Our results show excel-
lent agreement with the PES from ab initio quantum chemical reactions (GVB*SD
CI) where primarily only two-body interactions were included. To describe other
PES for other reactions a set of accurate two-body potentials are required. With
these potentials it is hoped that a large number of reactions could be described

accurately and with vastly reduced computational effort.
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Table 1. Special Cases of Energy for Various 7’s.

y EL+E.+E,+E,
0 Ef +1ET + 3FE5 + 1ET + 3E}
z E? + 2E{ + 1E§ + 3ET + 1E3
R Ef + $ET + 2E? + ;Ef 4+ 3ES
0 E5 + 2E] + 3Ef + 3ET + E?

-5 Bl +3E5+ 3B+ 1B +1E3
E; +SET + EY + 3ET + 1E§

I
wix




285

Table 2. Geometries and transition barriers for CHy + H - — - CH3 + H

(energies in kcal/mol).

OncH Reon Rup GVB-CI London GLFF

Reaction 109.47 1.09 00
TS 104.0 1.459 0.868 12.91 15.00 12.64

Product 90.0 00 0.7




Table 3. Two-Body Potentials for Hy. Distances are in A (note that so far we
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have dealt mainly in bohr), and energies are in Hartrees.

R ES ET
0.4 -0.96387083

0.5 -1.09183076 -0.57411048
0.6 -1.14695975 -0.68374487
0.7 -1.16604573 -0.75632627
0.74 -1.16781588

0.8 -1.16641530 -0.80860353
0.9 -1.15698075 -0.84849745
1.0 -1.14262579 -0.87990173
1.2 -1.10924298 -0.92499045
1.4 -1.07765713

1.5 -1.06391438 -0.96391211
1.6 -1.05181371

1.8 -1.03262628 -0.98315379
2.0 -1.01952662 -0.99000541
2.5 -1.00460386 -0.99738858
3.0 -1.00090262 -0.99930581
5.0 -0.99988367 -0.99988112
50.0 -0.99988096 -0.99988096
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Table 4. Two-Body Potentials for CH,. Distances are in A, and energies are in

Hartrees.
Tetrahedral 104°
R ES ET ES ET
0.80 -40.25584723 -39.87551304 -40.25047509 -39.86470574
0.90 -40.32346617 -39.94289320 -40.31871254 -39.92518046
1.00 -40.35288348 -39.95152791 -40.34895780 -39.96925500
1.05 -40.35863390 -39.96678868 -40.35518093 -39.98352944
1.09 -40.36023885 -39.97693589 -40.35718587 -39.99279529
1.15 -40.35887945 -39.99059157 -40.35645516 -40.00497786
1.20 -40.35516185 -40.00201942 -40.35328124 -40.01514904
1.25. -40.34974849 -40.01428129 -40.34842353 -40.02631230
1.30 -40.34311129 -40.02727004 -40.34234854 -40.03843393
1.40 -40.32756398 -40.05334920 -40.32792504 -40.06325829
1.50 -40.31062243 -40.07708134 -40.31207546 -40.08607365
2.00 -40.23606332 -40.14743236 -40.24161279 -40.15436516
2.50 -40.19695719 -40.16986183 -40.20385300 -40.17646641
3.00 -40.18315200 -40.17612653 -40.19006031 -40.18274728
4.00 -40.17853794 -40.17815402 -40.18525719 -40.18483343
6.00 -40.17824863 -40.17824772 -40.18493831 -40.18493718

50.00

-40.17824051

-40.17824051

-40.18493026

-40.18493025
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Table 5. Saddle Points for CH4 + H. Distances are in atomic units, and saddle
point energies are from Hs channel in kcal/mol.

Rlsp R23p Esp
London 2.6095 1.7435 14.9974
GLP 2.6448 1.6998 12.6379

Reference 39 2.63 1.74 12.91
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Figure Captions
Figure 1. The product, transition and reactant states of a H exchange reaction.
Figure 2. CH4 + H London Potential Contour Plot. The contour values shown
are the powers of two times +3 kcal/mol and zero. Axes are distances in atomic
units. Hy channel is to the upper left and C'H4 channel is to the bottom right.
Figure 3. CH,;+ H GLP Contour Plot. The contour values shown are the powers
of two times +3 kcal/mol and zero. Axes are distances in atomic units. H channel
is to the upper left and C H4 channel is to the bottom right.
Figure 4. Contour Plot of v for Hy + H. Contours are spaced every 10 degrees
with negative contours endashed.
Figure 5. Contour Plot of v for CH, + H. Contours are spaced every 10 degrees

with negative contours endashed.
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Figure 1. Truhlar and Horowitz (LSTH) Contour Diagram. Reported saddle point
properties are actually those of CI calculations of Liu et al.
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Figure 2 CH, + H London Potential Contour Plot. The contour values shown
are the powers of two times 3 kcal/mole and zero. Axes are distances in atomic
units. f, channel is to the upper left and C' Hy channel is to the bottom right.
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Figure 3 CH,+ H GLP Contour Plot. The contour values shown are the powers
of two times £3 kcal/mole and zero. Axes are distances in atomic units. H, channel
is to the upper left and C H, channel is to the bottom right.
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Figure 4 Contour Plot of v for CH, + H. Contours are spaced every 10 degrees
with negative contours endashed.
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Figure 5. Contour Plot of 4 for Linear H;. Contours are spaced every 10 degrees
with negative contours endashed.





