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Abstract

In this thesis new methods for accessing the ultrasonic properties of supercooled liquid
region in bulk metallic glass forming liquids are presented. Additionally, an extensive
examination of the relationship between the elastic properties of metallic glasses and
liquid fragility has been undertaken.

In Chapter 2 the novel experimental techniques that have been developed are
introduced. The fundamental governing equations for ultrasonic measurements and
relationships to the elastic properties, as well as benefits and limitations of the various
methods are discussed.

Annealing relaxation experiments were the first method developed for accessing
the elastic properties of the supercooled liquid region. Chapter 3 presents the re-
sults of annealing experiments from two different alloy systems, Vitreloy-4 (Vit-4)
714675 Tig 95Cur s NijgBeor 5 and PANiCuP - PdysNijgCusrPgg. In addition to explor-
ing the temperature dependence of the elastic properties of the undercooled liquid
and determining the isoconfigurational shear modulus, a relationship between the
viscosity and shear modulus was established. It is also shown that the temperature
dependence of the shear modulus is, percentage-wise, much stronger than the tem-

perature dependence of the bulk modulus. It is shown that it is possible to accurately



ix
predict the viscosity from the shear modulus. The Angell fragility parameters calcu-
lated from previously performed viscosity experiments are compared with the Angell
fragility predicted from these new shear modulus measurements.

Chapter 4 explores the application of in situ ultrasonic methods utilizing a delay
line to measure the elastic properties of low-T, glasses. Results from the recently
discovered series of gold-based glasses are presented.(1)

In situ ultrasonic methods utilizing a novel notched sample geometry are discussed
in Section 2.4 and are applied to a variety of metallic glass forming systems with a
range of Angell fragilities in Chapter 5. Two of the systems studied were also studied
via the ez situ annealing methods. The results from both types of measurement com-
pared favorably; thus supporting the claim that we are truly measuring the properties
of the equilibrium supercooled liquid. Additionally, a cooperative shear model for the
viscosity model and the corresponding “Johnson indices” are presented in Chapter 3.

Chapter 6 discusses two experiments. In the first the possibility of controlling
material properties of metallic glasses by varying the cooling rate is examined. It
was determined that many other factors come into play. The second experiment was
originally designed to measure the in situ ultrasonic properties of the organic glass,
glycerol. This proved to be beyond our capabilities, however led to an attempt to
explore cavitation behavior in glycerol.

Finally, in Chapter 7 concluding thoughts are presented, and the experiments in
this thesis are put into a larger context. Future research topics for exploration using

the techniques presented in this thesis are discussed.
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Chapter 1

Introduction

1.1 Metallic Glass Overview

Traditional crystalline metallic alloys consist of periodically ordered atoms. Amor-
phous metals, on the other hand, are essentially ”frozen” liquids and have been cooled
in such a way that crystallization is bypassed. The resulting metals have no long-
range periodic order and many desirable mechanical properties. The first of these
materials, Aur5Siss, was found and reported at The California Institute of Technol-
ogy in 1960 by Pol Duwez.(10) Later, the first bulk metallic glass (BMG), defined
as having a minimum casting thickness of 1 mm was found by Chen.(11) Since then
many alloy systems based on various elements (Pd, La, Mg, Pt, Zr, Cu) have been
found.(12, 13, 14, 15, 16, 17)

Now, metallic glasses are used for a variety of commercial applications, including
medical devices, sporting goods, and thin casings for electronics. One of the long-
range goals for metallic glasses is to use them as structural materials. BMGs are
much stronger and have much better elastic energy transfer than their crystalline

counterparts; this is largely due to the lack of crystalline grain boundaries in the
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glassy alloys which, in crystalline alloys, behave as energy sinks. However, one of
the major downfalls of metallic glasses is that they tend to fail in a non-graceful,

catastrophic manner akin to the way a wine glass shatters.

1.1.1 The Glass Transition

The glass transition phenomenon is an important feature distinguishing glasses from
other metallic alloys and is intimately tied in with the unique properties of metallic
glasses. This phenomenon exists both in metallic and non-metallic glasses, and is the
point /region that distinguishes the solid from the supercooled liquid.

The (rheologic) glass transition temperature, T, is defined as the temperature at
which the viscosity of the melt is 10'2Pa — s. At this viscosity the time-scale for flow
in the amorphous solid is on the laboratory scale. At temperatures well below T}, all
glasses are essentially solid for human lifetime and applications. The thermodynamic
concept of the glass transition can be seen in Figure 1.1, which demonstrates the
temperature dependence of the volume (or enthalpy) of a liquid at a constant pressure.
It can be seen that by rapid cooling the liquid can be cooled below the melting
temperature. The liquid bypasses crystallization and when the molecular motion of
the atoms slows down enough (at 7}) the rate of change of volume (enthalpy) changes
sharply and the liquid is essentially “frozen”. At T, both the thermal expansion
coefficient and isobaric heat capacity change abruptly but continuously; since none of
these things change discontinuously the glass transition is not a true phase transition.

This heat capacity anomaly can be seen upon heating a glassy sample at a constant
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rate in a Differential Scanning Calorimeter (DSC)

However, there is some difficulty associated with the thermodynamic/calorimetric
definition of the glass transition. Different heating rates can yield different glass tran-
sition temperatures for the same alloy; in the literature most DSC curves are taken at
a rate of 10 or 20 K/s. However, the apparent glass transition temperature can shift
due to different heating rates — typically a lower heating rate corresponds to a lower
T,. This is largely related to the idea of frequency dependence of measurements, a
concept that will be discussed in more detail throughout this thesis. Different heating
rates correspond to different characteristic-length (in distance and time) atomic vi-
brations/rearrangements in the alloy, thus the transition from solid-like to liquid-like
occurs at different temperatures.

In the late 1940s - early 1950s Turnbull predicted that the “reduced glass transition
temperature”, T,,, was an important parameter characterizing glass forming ability.
T4 is defined as the ratio of T}, to the liquidus temperature, and he hypothesized that
as this ratio approached 2/3 that homogeneous nucleation of crystals should proceed
very slowly on the laboratory time scale.(18, 19) To date, this “Turnbull criterion” is
still a quite accurate rule of thumb in the glass community.

Physically, at temperatures above the glass transition region, the viscosity drops
very rapidly. Figure 1.2 shows the viscosity of Vitreloy-4 from the glass transition
region through crystallization; and the steep drop in viscosity above the glass tran-
sition region is apparent. Much of the interesting, and not completely understood,

physics of glassy systems occurs in the Supercooled Liquid Region (SCLR), which is
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the region above T, and below the crystallization temperature (T,). In the SCLR,
due to the decreasing viscosity and thus increasing fluidity, glasses are able to be

processed similarly to plastics and can be “net shaped” formed.(20, 21)

1.2 Elastic Properties

Elastic properties are a means for classifying material and comparing material re-
sponses to different applied stresses and strains. They provide useful information for
predicting how a material will behave under certain conditions and when and how
they might fail. Thus, a solid understanding of the elastic properties of a material
allows us to choose the appropriate material for a selected application.

For BMGs, the most commonly discussed elastic parameters are the bulk modulus,
B, the shear modulus, G, Young’s modulus, E, and the Poisson ratio, v. The bulk
modulus is a measure of a material’s response to a uniform pressure change. The
shear modulus measures a material’s resistance to shearing. The Young’s modulus
measures the material’s response to uniaxial strain (below the yield strength). The
Poisson ratio is a ratio of transverse to axial strain when pulling or pushing on a
material; by definition it has an upper limit of .5 (for a perfectly incompressible
elastic material).

These properties can either be measured in a destructive manner, using INSTRON-
type machines, or in a non-destructive manner utilizing ultrasonics. Within ultra-
sonics there are two main types of measurements: contact and non-contact. In this

thesis we only use and discuss contact methods. Since bulk metallic glasses have no
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long-range periodic ordering of the atoms, the elastic properties are considered to be
isotropic (the same in every direction). The detailed governing equations for ultra-
sonic measurements and their relation to elastic constants in isotropic materials are

given in Section 2.1.1.

1.2.1 Ultrasonic Measurements

Ultrasonic waves are sound waves that are beyond the frequency that humans are
able to hear (>~ 20 kHz). At the simplest level, ultrasonics are a way of studying
elastic properties by measuring the time it takes for a sound wave to travel through a
sample of known thickness. In 1880, the Curie brothers discovered that crystals could
convert ultrasonic energy to electrical energy; and in 1881 the inverse of this, the
piezoelectric effect, the ability of a crystal to convert electrical signals to mechanical
impulses, was discovered by Lippman. By the mid-1910s, ultrasonics were used to
detect underwater objects, and by the 1930s ultrasonic methods had been developed
and applied to testing materials.(22) It is possible to use ultrasonics to measure the
material properties discussed in Section 1.2. More of the details of the ultrasonic
methods employed in this thesis can be found in Chapter 2. A review of previous
contributions of ultrasonic techniques to the field of metallic glasses is given in Section

1.4.
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1.3 Motivation and Objectives

The main goal of this research is to measure in situ elastic properties, particularly the
shear modulus, of bulk metallic glasses in the supercooled liquid region (SCLR). The
dynamics and rheology of deeply undercooled liquids is a fertile area of condensed
matter physics. Much academic debate swirls around the form of the shear modulus

(G) versus temperature (T) curve in the supercooled liquid region for metallic glasses.

1.3.1 The Potential Energy Landscape and Cooperative Shear

Model

In glass physics there exists the concept of the Potential Energy Landscape (PEL)
or corresponding Potential Energy Surface (PES). This is a multi-dimensional func-
tion describing the potential energy of a system of N (point-like) particles in 3N
coordinates.(23, 24, 25, 26, 27, 28, 29) The PEL itself is not dependent on temper-
ature, but when locally exploring parts of the PEL a physical system will exhibit
a strong temperature dependence. PEL formalism is defined by the local minima,
and their distribution in energy and their corresponding surrounding potential en-
ergy surface. Local minima are separated by potential barriers. Stillinger and Weber
introduced a formal exact partitioning of configuration space into distinct basins, or
inherent states (IS). A basin consists of all points in space that are connected to the
local minimum by the steepest descent path. Sufficiently large thermal fluctuations
will allow transitions over the potential barriers to occur, and the system can change

its energetic inherent state. Figure 1.3 is reproduced from Debenedetti and Still-
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inger’s 2001 Nature paper and is a schematic representation of the PEL. From this
figure one can get a sense of the “basins” as well as an idea of the barriers between
different basins.

For metallic glasses, the yield strength is thought to be determined by the coop-
erative shear motion of atomic clusters.(30, 31, 32, 33, 34) These clusters are called
Shear Transformation Zones (STZs).(30) The STZs, are localized atomic clusters,
that can undergo stress-induced transformations that release stored elastic energy.

Recently, combining aspects of PEL/IS theory, the concept of STZs, and the
Frenkel analysis of shear strength for solids, Johnson and Samwer have developed a
Cooperative Shear Model (CSM) to describe plastic yielding of metallic glasses in the
glassy state below T}.(35) A scaling relationship is constructed between the barrier to
shear flow, a critical yield strain (that is determined to be a universal constant), and
the isoconfigurational shear modulus. This relationship is discussed in more detail in
Section 3.1.

Since the CSM predicts that W, the barrier to shear flow is temperature de-
pendent, it is natural to study the temperature dependence of the components that
contribute to the barrier. Thus, since W oc G it is logical to study the temperature
dependence to G.

Using the Johnson-Sawmer barrier the shear modulus, G, of the super-cooled
liquid of the glass is related to the viscosity, n. The details of this are given in
Section 3.1.5. Also, a relationship between G, 1, and the Angell fragility parameter is

also discussed.(36, 37) In this section new parameters, including the reduced “elastic
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represents all configurational coordinates reproduced from Stillinger(3) (copyright
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fragility” (n) and “cooperative shear zone fragility” (p) indices are introduced. Later,
Johnson et. al. further refined the model relating shear modulus, viscosity, and
Angell fragility and found experimentally that for most glasses, n = p. (6)

Thus, motivated to try and further understand the Johnson-Samwer barrier, the
challenge is to successfully access and measure the elastic properties in the SCLR and

determine the shape of the G vs. T curve above 7.

1.3.2 Viscosity and Fragility

Glasses are considered to be viscoelastic materials. They have time-dependent re-
sponses to applied mechanical stresses and strains (38) This viscoelastic response can

be described by the Maxwell model

n
= 1.1
e (1.1)

where 7, is the shear stress relaxation time, 7 is the viscosity, and G is the shear
modulus. Using the definition of viscosity at the glass transition and the fact that G
is on the order of GPa at the glass transition, the relaxation time at 7 is on the order
of hundreds of seconds.(39) For reference, the viscosity of water at room temperature
and pressure is ~ 1073 Pa-s. In the high temperature limit, glasses are expected to
approach the viscosity predicted by the Plank limit (~ 4 x 1075 Pa-s for Vit-4).
Experimentally, there are two main techniques used to measure the viscosity of
a metallic glass: parallel plate rheometry and beam bending. In Figure 1.2 parallel

plate rheometry was used to measure the viscosity of Vit-4 through the supercooled
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liquid until crystallization of the sample. The viscosity of different glasses “falls oft”
above T, at different rates.

The Angell fragility parameter, m, was introduced as a way to classify glasses
based on their viscosities.(37) It has become a widely used parameter in the glass
literature.(40) By plotting the log of the viscosity vs. the dimensionless temperature,
T,/T, the deviation from Arrhenius-like behavior can be assessed by evaluating the
derivative of this function at the glass transition temperature. This yields the pa-
rameter known as the “Angell fragility parameter”, m. This refers to the “kinetic”
fragility of an alloy: less-fragile alloys, such as the Zirconium-based alloys, have a
lower m~30 while more fragile alloys such as Pd-based alloys have m~50

Equation 1.2 is a formal definition of the Angell fragility, where y = %

m = | )] (12)

In 1999 Perera performed an analysis of 21 metallic glass forming alloys and found
that those with lower critical cooling rates tended to have lower fragility parameters,
or in other words to be kinetically “strong”.(41) Attempts have been made to corre-
late the fragility of liquids with elastic properties, mentioned in Section 1.2, of their
corresponding glasses.(42) Figure 1.4 is an Angell-type plot of typical metallic and
non-metallic glasses reproduced from Busch et al.(4) As can be seen in the plot, metal-
lic glasses fall within a wide range between the prototypical “strong” liquid (SiO,)

and “fragile” liquid (o-terpheynl).
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1.3.3 Frequency Dependence of Elastic Properties

A prime example of the frequency dependence of elastic properties is the behavior of
the children’s toy “silly putty” — a viscoelastic polymer. When silly putty is slowly
pulled on (a low frequency event) the material can be stretched to extraordinary
lengths. However, when quickly pulling on the same sample of silly putty at the same
temperature (a high frequency event), it will hardly stretch at all and quickly “snaps”
into two pieces. Thus, depending on the frequency at which we are looking at the
material properties, they appear to behave differently.

Returning to the Maxwell model of viscoelastic solids and Equation 1.1, we see that
the time-scale for viscoelastic relaxation at the rheologic glass transition temperature
is on the order of 100s of seconds at the glass transition temperature. Depending
upon the measuring frequency with which we are looking at a property, it may yield
different results due to the various time-scale relaxation processes in the material.
In glasses there are the “fast” relaxation processes, or those with relaxation times
shorter than the Maxwell relaxation time, and “slow” processes. In order to achieve
an accurate picture of instantaneous (or isoconfigurational properties) of the glass,
we need to measure using instruments that probe more rapidly than the timescale on

which the “fast” relaxation occurs.
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1.4 Review of Past Ultrasonic Contributions to

Metallic Glasses

Ultrasonic studies through non-contact methods (such as Electromagnetic Acoustic
Resonance (EMAR)) have been performed on metallic and non-metallic glasses. Elas-
tic properties can also be measured by studying the vibration characteristics through
Brillioun scattering. However, this thesis focuses exclusively on contact ultrasonic
methods.

Most of the work using ultrasonics to study metallic glasses done prior to the
year 2000 was to either study the room-temperature characteristics of a series of
alloys of varying compositions or to measure the low-temperature (from 4K to 300K)
temperature behavior of the properties. H.S. Chen and collaborators measured the
room temperature sound velocities and hardness of a series of Pd- and Pt- based
glasses and correlated the Poisson ratios” with the composition of these glasses. They
also noted that the alloys with higher Poisson ratios tended to be more ductile.(43)
Egami et al. utilized a torsional pendulum to measure the shear modulus of thin
ribbons of metallic glass in 1984, studying the effect of structural relaxation on the
shear modulus of the glass.(44) In 1986, Lambson et al. studied the low-temperature
dependence of the elastic properties of PdNigPa.(45)

More recently, the temperature dependence of the elastic properties of lanthanum
gallogermanate glasses was studied by Hwa et al.(46) While they present results over

a very large temperature range, they only take data points on the order of every
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70-100 degrees. They utilize a “specially designed high temperature piezoelectric
transducer,” but when contacted gave no response upon where/how to get/fabricate
such a transducer.

Ichitsubo et al. use EMAR techniques at relatively low-frequencies (300-1500KHz)
to study the elastic properties of Zr and Pd-based glasses. They claim that the
ultrasonic vibration instigates early crystallization in the alloys.(47, 48, 49)

The W.H. Wang group has done numerous studies investigating the in situ pres-
sure dependence of the elastic properties of glasses.(50, 51, 52) They have also
done stepwise annealing of glasses near the glass transition temperature until they
crystallize.(53)

Most recently, in 2007, studies by Inoue have measured in situ elastic properties of
BMGs via ultrasonics. However, in the these measurements the shear sound velocity
is not measured directly from a shear signal sent into the sample, but by measuring
the “trailing” pulse of a longitudinal wave and using mode conversions to calculate the
shear sound velocity.(54) In this thesis all of the shear sound velocities were measured
directly using a shear sound wave. Additionally, the measuring frequencies used by
Inoue et al. are a factor of 2 lower than the measuring frequencies used in most of

the experiments presented in this thesis.

1.5 Key Contributions

The key contributions made in this thesis were the development of new methods for

accessing the ultrasonic properties of supercooled liquid region in bulk metallic glass
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forming liquids. Additionally, an extensive examination of the relationship between
the elastic properties of metallic glasses and liquid fragility has been undertaken.

In Chapter 2 the novel experimental techniques that have been developed are
introduced. The fundamental governing equations for ultrasonic measurements and
relationships to the elastic properties as well as benefits and limitations of the various
methods are discussed.

Annealing Relaxation experiments were the first method of accessing the elastic
properties of the supercooled liquid region that were developed. Chapter 3 presents
the results of annealing experiments from two different alloy systems, Vitreloy-4 (Vit-
4) Zry6.75Tig25Cu7 5NijgBegr s and PANiCuP - PdysNijgCuyrPag. In addition to ex-
ploring the temperature dependence of the elastic properties of the undercooled lig-
uid and determining the isoconfigurational shear modulus, a relationship between the
viscosity and shear modulus was established. It is also shown that the temperature
dependence of the shear modulus is, percentage-wise, much stronger than the tem-
perature dependence of the bulk modulus. It is shown that it is possible to accurately
predict the viscosity from the shear modulus. The Angell fragility parameters calcu-
lated from previously performed viscosity experiments are compared with the Angell
fragility predicted from these new shear modulus measurements.

Chapter 4 explores the application of in situ ultrasonic methods utilizing a delay
line to measure the elastic properties of low-T, glasses. Results from the recently
discovered series of gold-based glasses are presented.(1)

In situ ultrasonic methods utilizing a novel notched sample geometry are discussed
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in Section 2.4 and are applied to a variety of metallic glass forming systems with a
range of Angell fragilities in Chapter 5. Two of the systems studied were also studied
via the ex situ annealing methods. The results from both types of measurement com-
pared favorably; thus supporting the claim that we are truly measuring the properties
of the equilibrium supercooled liquid. Additionally, a cooperative shear model for the
viscosity model and the corresponding “Johnson indices” are presented in Chapter 3.

Chapter 6 discusses two experiments. In the first the possibility of controlling
material properties of metallic glasses by varying the cooling rate is examined. It
was determined that many other factors come into play. The second experiment was
originally designed to measure the in situ ultrasonic properties of the organic glass,
glycerol. This proved to be beyond our capabilities. We also attempted to explore
cavitation behavior in glycerol.

Finally, in Chapter 7 concluding thoughts are presented. Future research topics

for exploration using the techniques presented in this thesis are discussed.
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Chapter 2

Introduction to Ultrasonic
Measurements and Experimental
Apparatus

Ultrasonic measurements are utilized for a variety of applications, from finding de-
fects and flaws in metallic parts to imaging human internal organs. In addition to
being relatively simple, ultrasonic measurements have the added benefit of being
nondestructive.(22) There are a variety of methods, either contact or non-contact, of
introducing an ultrasonic signal into a sample. In this thesis, only contact methods

have been employed.

2.1 Experimental Setup

The basic system needed to perform ultrasonic measurements consists of a transducer,
an oscilloscope, and an electrical pulser/reciever (PR). The PR generates pulsed elec-
tronic wavepackets which the piezoelectric transducer converts into mechanical os-
cillations that are sent into a sample. The oscilloscope allows the monitoring and

recording of these electrical signals. Ninety percent of the ultrasonic measurements
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presented in this thesis were performed with Ultran 25 MHz transducers, a tektronix
1500 oscilloscope, and a Panametrics 3500 pulser/reciever. Some measurements were
done with 5 MHz transducers from Panametrics.

There are two basic types of transducers: those that generate shear waves and
those that generate longitudinal waves. Longitudinal waves produce oscillations in
the direction of propagation of the wave while shear waves produce oscillations per-
pendicular to the direction of wave propagation. In order to obtain a complete picture
of the elastic properties of the material it is necessary to have both types of transducer.
Both types of transducers send and receive signals. The 25 MHz Ultran transducers
have built-in delay lines: the shear transducers have a quartz delay line with a delay
time of 10.6 wus, while the longitudinal transducers have a plastic-based delay line
with a delay time of 5.6 us. There is no built-in delay line for the 5 MHz Panametrics
transducers.

In addition, a method of digital signal acquisition and processing was developed.
The oscilloscope was connected to a Windows-based personal computer through a
GPIB interface. A labview program was created to interface with the oscilloscope
allowing the computer to digitally capture and save data points for the various signals.
Later analysis, through a Matlab program, of these captured signals yields the transit

time taken for the different types of sound waves to traverse the sample.

2.1.1 Governing Equations

For elastic waves in an isotropic medium, the following equations hold:
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In these equations, C} is the transverse, or shear, sound velocity; the shear wave

propagates through a sample with the direction of material motion perpendicular to
the direction of wave propagation. Cj is the longitudinal sound velocity, in which the
material motion is parallel to the direction of wave propagation (this is also called a
compressional or pressure-wave). Lamé parameters, p and A, are commonly used in
elasticity theory, p is the density of the material, G is the shear modulus, and K is
the bulk modulus. By measuring C;, C, and p, Equations D.3 and 2.2 can be solved
for G and K or A and p.

Another, slightly more intuitive, physical way to think of the shear and bulk

modulii are as follows:

G=" (2.3)

where 7 is the shear stress and ~ is the shear strain. The thermodynamic definition

of bulk modulus is as follows:

K=-V (g—5> . (2.4)
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As a rule of thumb, as first determined by MD simulations and later by exper-
iments, the bulk modulus of a glassy metal is K ~ 95K ystaiiine While the shear
modulus of a glassy meal G ~ .7G¢rystatiine-(36)

The Poisson ration is a combination of both the shear and bulk modulii and is

defined as follows:

€lateral o A
€longitudinal 2()\ + ,u)

1
V= — —
2

3-—2&
e (2.5)
3+ %

In theory the Poisson ratio can range from negative to .5, most rubbers have a
Poisson ratio of .45 while cork has a Poisson ratio close to 0. In the limit where
G approaches 0, the Poisson ratio approaches .5, corresponding to a material with
conservation of volume upon deformation. Recently, in the glass physics community,
the Poisson ratio has been correlated with the liquid fragility as well as the fracture
toughness and ductility of glassy alloys.(55, 56, 57)

Young’s Modulus may also be calculated from these measured values.

E =2G(1+v) (2.6)

2.1.2 Pulse-Echo Vs. Through Transmission

There are two major types of ultrasonic measurements used in this work: pulse-echo
and through transmission. The majority of the measurements in this thesis were
performed with the pulse-echo technique. Each technique has specific benefits and

drawbacks.
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In pulse-echo measurements the acoustic signal is sent and received with a single
transducer. Successive reflections off of the “back-wall” of the sample are overlapped,
and thus the time delay for the signal to travel two lengths of the sample is calcu-
lated. Pulse-echo measurements are considered the standard type of measurement in
the ultrasonic world. With pulse echo measurements it is often easy to see defects
and other non-uniformities within samples. See Figure 2.1 for a sample pule-echo
measurement reflection train and echo overlap. Also see Appendix E for the Matlab
code used in processing pulse-echo data.

In through-transmission measurements the acoustic signal is generated in one
transducer and received by a second transducer. The signal passes once through the
length of the sample. Prior to sample measurement, the intrinsic time delay of the
signal to pass from the first to the second transducer is measured and then subtracted
from the time measured with the sample. Through-transmission measurements are
useful for materials that have strong acoustic-attenuation. In this thesis this type of
measurement has been used to measure very thin (~.2 mm) samples.

Ultrasonic waves generally travel with low attenuation through metallic materials,
due to the high density and uniformity of the material. In contrast, ultrasonic waves

do not propagate well through porous or mechanically “soft” materials.

2.2 Room Temperature Measurements

To perform simple ultrasonic measurements on metals at room temperature the most

important things are (1) to have a sample of the proper size and shape with highly
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Figure 2.1: Top: sample pulse-echo wave train captured via labview. Bottom: over-
lap of pulse-echo reflections via Matlab. Note, the scale of the input and received
waveforms are different time-scales, in the top figures of (b), but as can be seen in the
lower right corner of (b) they are of essentially the same pulse-width and amplitude.
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polished surfaces and (2) a transducer of the proper frequency. Equally as important
as the sample preparation and geometry is the method of coupling the transducer to
the sample. In particular the couplant for shear waves needs to be viscous enough to
support the shear wave, while at the same time fluid enough to wet and form good
contact between the face of the transducer and the sample. There are commercially
available shear wave couplants from companies such as Panametrics, but we have
found that simple honey works as well and is much less expensive. The longitudinal
couplant used was Paker Aquasonic 100 Gel.

Precise measurement of both sample density and sample thickness are vital to ob-
taining accurate results. If these measurements are sloppy, large errors will propagate
through the calculation of the elastic properties from the sound velocities. Density
was measured according to American Society for Testing of Materials (ASTM) stan-

dard C-693. Sample thicknesses were measured multiple times using a micrometer.

2.3 Delay Line Measurements

Performing in-situ measurements above or below room temperature poses a challenge.
Generally it is not possible to subject the transducers to extreme temperatures (less
than 0C or greater than 70C). To avoid this but still enable the sample to be cooled or
heated, a “delay line” was introduced.(58) The delay line, or buffer rod, is not a novel
idea, but its use with metallic glasses is. In the experimental setup at hand, quartz
was chosen as the ideal delay-line material: not only because the built-in delay-line

of the shear transducers is quartz (and thus there is minimal impedance mismatch
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between the transducer and the delay), but also because quartz has a relatively low
thermal conductivity and thus will not rapidly conduct heat to the transducer. Care
was taken when selecting the length of the delay line so that the reflections from the
delay line would not overlap or be confused with reflections from the built in delay
of the transducer. Additionally, it was necessary to have a highly polished surface on
both ends of the delay line. At room temperature honey and aquasonic gel worked to
couple the transducer to the delay line and ultimately to the sample. However, the
above couplants failed at both low and high temperatures. Many different mechanisms
of coupling the delay line to the sample were tested (see Appendix B for complete
results of both successful and unsuccessful methods).

Ultimately, it was found that Varian Torr-Seal 2-part vacuum sealer was capable of
both transmitting the acoustic signal and maintaining the bond between the sample
and the delay line at temperatures as low as liquid nitrogen. The 2-part torr seal
solution was mixed and within 5 minutes a small dab was applied to the cleaned
and polished sample surface, the sample was then slowly twisted onto the end of the
polished delay line. The sample was rotated such that the thinnest possible, but still
complete layer of Torr-Seal connected the two parts. The part was then allowed to
air-dry at room temperature for a minimum of 1 hour and up to 24 hours to ensure
adequate bonding. After use, the sample could be removed from the delay line by a
combination of mechanical force and acetone.

While a successful means to couple the delay line to the sample was found for low-

temperature measurements, a simple solution for high-temperature measurements was
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not found as easily. Again, many different types of adhesives and cements were tested
to see if they would both resist high temperatures and transmit the acoustic signals.
A major problem for high-temperature measurement is that most good glass formers
that we are studying have T, s greater than 200C, while most organic adhesives begin
to break down around 100-150C.

It was eventually discovered that Big-Swell High Quality S-250A Clear Sanding
Resin with catalyst (primarily used for home-repair of fiberglass surfboards) was
capable of transmitting an acoustic signal from a quartz delay line into a metallic
sample at temperatures up to 150C. However, to date, no adhesive has been found

that supports the shear wave above 150C.

2.4 “Notched” Sample Measurements

In the 1980s in Britain, DP Almond and S Blairs created an apparatus to measure the
sound velocities of liquid metals. They successfully employed a long silica delay line
to measure in situ sound velocities in liquid indium and liquid mercury.(58) Both of
these metals have melting points below 160C. This apparatus precisely measured the
height of the delay line in the liquid, and by changing this height they were able to
obtain very accurate measurements. While interesting, this method was not readily
applicable to our metallic glass systems. In the temperature range we desire to study,
the viscosity of the alloys changes from solid-like to liquid-like.

Finally I unearthed a paper by JT Krause, published in 1961, attacking this

problem from a different point of view. In this paper the concept of differential path
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length was introduced.(59) A long rod of the desired material is made and at one end
a notch is cut and removed. This lower part of the sample is then placed into a heat
sink /source while the opposite end of the sample is kept out of the furnace at room
temperature, thus allowing contact via honey of the transducer to the sample. See
Figure 2.3 for a visual of how this powerful concept works. I discovered that it was
not necessary to completely remove the notched section from the sample, but that a
simple clean, straight cut (forming the top of the notch) parallel to the end face of a
metallic or organic glass rod was usually sufficient to produce high quality reflections
from the “notch surface”. When creating the notch it is important that the position
at which the notch is placed is carefully chosen, so as not to overlap with one of the
built-in reflections (if using 25 MHz transducers).

For both delay-line and notched measurements the transducer is held in-line with
the delay line or rod-sample through an aluminum fixture, as well as slight pressure.
In addition to holding the transducer in place and allowing for the tracking of one ul-
trasonic signal through the heat-up and cool down process, the applied axial pressure
also helps improve the coupling of the signal to the sample.

As the temperature of the experiment increases (and the gauge section passes)
through the glass transition temperature, the viscosity of the glass decreases rapidly.
This decrease in viscosity coupled with the pressure applied to maintain the inline
positioning of the transducer tends to cause the sample to slowly flow and deform.
Thus, design of an appropriate sample holder with the ability to prevent the sample

from significantly deforming was critical. Additionally, because the viscosity of the
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Figure 2.3: Notched sample geometry. The transducer and one end of the rod is
kept at room temperature. The delay time for the signal to travel between EN and
ER, over the distance d, is measured. The lower portion of the sample is kept at the
desired temperature by submersion in either a cold bath or in a copper heat sink.
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sample decreases rapidly above T, and because there is slight applied pressure to form
contact between the transducer and the rod, the cut notch is prone to collapse by
pressure-induced flow. Therefore it was also necessary to insert a quartz-chip within

the notch to maintain the integrity of the notch during heating and measurement.

2.5 Hot/Cold Sinks

To create uniform temperatures for the samples both attached to the end of delay
lines and the “notched” region of the rods during in-situ measurements, hot and cold
sinks were devised.

The hot sink consists of two 8 x 4 x .5 inch copper blocks, with two holes drilled
through the length of each. These holes allowed 150-watt heating cartridges to be
inserted directly into the block. The heating cartridges were wired to a 5-Ampere
DC power supply that allowed the current level to be manually adjusted to obtain a
block temperature with an accuracy of one degree Celsius. A 13-mm diameter hole
was drilled completely through the thickness of the top copper block and halfway
through the thickness of the bottom block; thus allowing a sample to be in contact
with the large heat reservoir of high thermal conductivity; this ensured temperature
uniformity of the blocks. Additionally, the blocks were insulated with fire brick and/or
pipe insulation. A thermocouple was brought between the top and bottom block, and
into direct contact with the sample to accurately record the temperature of the sample
in the gauge system during measurement. Small cylindrical samples with polished flat

surfaces were attached to the end of the quartz-delay-lines were in direct contact with
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the bottom copper block. Split copper molds were designed to encase the notched
rod samples: they have interior flat bottoms and inner diameters of either 5 or 7
millimeters, and are held tightly closed around the samples by set screws. The molds
are sized to slip-fit into the central hole in the copper blocks to ensure excellent
physical contact and heat transfer.

The cold sink consisted of an aluminum stand placed in the center of an insulating
cup. Methanol was then poured in the cup to a level that completely covered the
sample (or region of the sample to be measured). A thermocouple is placed into the
cup touching the area to be measured. The temperature could then be controlled very
precisely by adding small amounts of crushed dry-ice to the methanol and allowing
the mixture to come to a metastable equilibrium; methanol and dry ice reach a stable

equilibrium at -77 C.
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Chapter 3

Relaxation Experiments in (Glasses

Prior to getting the in-situ high-temperature experiment to work, we determined the
best way to access the super-cooled liquid was to anneal and quench the samples
from temperatures in the super-cooled liquid region and then measure the proper-
ties at room temperature. The first study of this type was performed on Vitreloy-4
Z146.75 Tig 25Cur 5 NijgBesr 5 and the second on Pdy3NijgCugrPag. Vit-4 was chosen be-
cause it has a large supercooled liquid region and is robust to phase-separation in the
undercooled liquid.(2) The Pd-based alloy was chosen for its large supercooled liquid

region and resistance to crystallization and oxidation.
3.1 Isoconfigurational Elastic Constants and Liqg-

uid Fragility in Vitreloy-4

3.1.1 Abstract

Samples of Zryg.75Tis.25Cur 5NijgBeor 5 (Vit-4) were isothermally annealed around the

glass transition temperature, from 567 to 671K, and subsequently water quenched.
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The acoustic and elastic properties of the annealed samples were studied via the
pulse-echo overlap technique. The shear modulus G of the annealed samples shows a
strong reversible dependence on varying annealing temperatures and correspondingly
on the specific configurational potential energy of the equilibrium liquid. In contrast,
the low-temperature dependence (from 78K to 298K) of the elastic modulii of the
configurational frozen glasses show weakly linear temperature dependence as expected
from Debye-Gruneisen theory. The T-dependence of G in the super-cooled equilibrium
liquid state is directly related to the viscosity of the liquid and more specifically the

liquid fragility.

3.1.2 Introduction

In the undercooled melt, Zr-based alloys exhibit “strong” liquid behavior with a
Vogel-Fulcher “fragility” parameter of Da20 or Angell Fragility of m~30.(60, 2) The
enthalpy recovery method was used in relaxation experiments to determine the en-
thalpy of the equilibrium liquid hy(T) in the neighborhood of the glass transition
temperature.(37, 61) According to the Potential Energy Landscape (PEL)/Inherent
State (IS) theory of Stillinger and Weber and later refinements, the liquid enthalpy
consists of separate vibrational and configurational contributions, hy, = hy + he. (62,
25) The glass transition can be identified with the configurational freezing of Inherent
States. The glass/liquid heat capacity anomaly at T}, cp = cp, —cp, , can be directly

associated with the configurational enthalpy he(ry such that
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he(T) = he(Ty) + cp(T — T,) + higherorderterms. (3.1)

By contrast, the vibrational enthalpy is expected to vary smoothly and linearly as
the glass transition is traversed with a slope given by the Dulong-Petit heat capacity
of 3K per atom. Recently, Johnson and Samwer have developed a Cooperative
Shear Model (CSM) to describe plastic yielding of metallic glasses in the glassy state
below T,.(35) In the CSM, the barrier, W, for shear flow is related through a scaling
law to a universal critical yield strain ycp, the shear modulus G for a fixed-glass

configuration, and the effective volume of the cooperative shear zones Qegective = €2

8

In Equation 3.2 the core volume of a Cooperatively Shearing Zone (CSZ) is €2 and
(¢ is an “Eshelby” factor which corrects for matrix confinement of the CSZ.(35) This
relation predicts that the barrier height for shear flow for a given glass or liquid con-
figuration should be proportional to the shear modulus for a given glass configuration.
For an equilibrium liquid near and above Ty, the IS configuration and corresponding
configurational enthalpy depend on T. It is natural to inquire how the shear modulus
of the liquid depends on the liquid configuration, or on he(T). This can be obtained
by studying the temperature dependence of the liquid shear modulus. Previous ul-
trasonic studies have investigated the pressure dependence of the elastic properties of

BMGs while torsional pendulum experiments have been used to study G.(50, 53, 44)
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3.1.3 Experimental

Ingots of Vit-4 were prepared via arc-melting from the mixture of the elements of
purity ranging from 99.5% to 99.999%. These ingots were cast into rods by melting
in a resistance furnace in an 8-mm diameter stainless steel tube for 3 minutes under
vacuum and 2 minutes under positive-pressure argon. Subsequently the entire tube
was water quenched. Then the steel tube and a thin reaction layer with the Vit-4
were removed by machining. The amorphicity and homogeneity of the cast rod were
verified through X-ray diffraction and by differential scanning calorimetry. The glass
transition temperature, Ty, was found to be 627K with a delta T of 100K. The rod
was cut into 3.2-mm-thick slices which were polished with flat and parallel surfaces
with a finish of 2 microns.

Ultrasonic measurements performed at a frequency w in the mega-hertz regime
measure the “isoconfigurational” (or unrelaxed) shear modulus G, for an IS, pro-
vided that the a-relaxation (or fast relaxation) time of the liquid, 7 = n(7T)/G, is
much greater than the inverse of the measuring frequency; where n(7') is the viscosity.
This condition is in fact easily satisfied for temperatures from below the laboratory Ty,
to substantially above T,. Only when T falls below ~ 10° Pa-s (~ 150C or more above
T, for Vitreloy-4) is this condition violated. Thus Ultrasonic measurements can be
used to probe the instantaneous or “isoconfigurational” G for IS of the liquid from 7
far into the undercooled liquid state. As a first step toward investigating the depen-
dence of G on the configurational state of the liquid, we measured the longitudinal and

transverse sound velocities of Vit-4 following thermal relaxation to the equilibrium lig-
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uid state at temperatures ranging around the laboratory glass transition temperature
(T,). Following relaxation, the samples were configurationally quenched to ambient
temperature where ultrasonic measurements could be conveniently performed.

We report results from an ultrasonic study of G[T], or G[e(T)]. We show that the
low-temperature dependence of the elastic modulii is roughly independent of config-
uration state. In the equilibrium liquid, obtained from the reversible variation of G
with annealing temperature the isothermal relaxation of G, (T), at a given annealing
temperature T4 is found to follow stretched exponential time dependence, similar
to isothermal viscosity relaxation.[5] Cycling between two T4s results in reversible
changes in G showing that the relaxed G is indeed an equilibrium liquid property.
For a fixed-glass configuration, we find a weakly linear dependence of G(T) on T,
as expected from a Debye-Gruinesen model. Additionally, the implications for the

temperature dependence of the liquid viscosity are examined.

3.1.4 Relaxation and Reversibility

The samples were isothermally annealed in sealed quartz tubes under an argon envi-
ronment in a resistance furnace at a variety of annealing temperatures (T 48) around
T,, and then water quenched after each aging treatment. The total annealing time
at each temperature was chosen to be less than the time to the onset of detectable
crystallization as determined by the Time-Temperature-Transformation (TTT) for
Vit-4 to be comparable to the previously determined time for viscosity relaxation

to occur.(2, 63) This ensured that the samples are in a fully relaxed, glassy state.



38

Through rapid water quenching, the relaxed liquid at T4 can be configurationally
captured provided the quenching time is short compared to the a-relaxation time at
T 4. When these conditions are met, the acoustical properties at ambient temperature
are characteristic of the equilibrium liquid at T 4.

The pulse-echo overlap technique with piezoelectric transducers with a center
frequency of 25 megahertz was used to measure the shear and longitudinal wavespeeds
at room temperature T gy for each of the quenched samples.(64) Additionally, in situ
low-temperature measurements were performed from 78K to 298K, on samples that
were quenched from T, = 567 and 665. The low-temperature measurements were
performed in situ using the methodology of the quartz delay line with Varian Torr-Seal
as a couplant, as described in Section 2.3. The density of all of the samples post-
annealing was measured by Archimedean technique according to American Society
for Testing of Materials (ASTM) standard C 693-93.

To ensure that the quenched samples were truly representative of the equilibrium
liquid the samples were cycled between a low and a high annealing temperature. From
this cycling the reversibility of the elastic modulii was demonstrated. Figure 1 depicts
the shear sound velocity C, relaxation of a sample at 567K. This sample was initially
relaxed and quenched from a temperature of 652K. After the initial relaxation at 652K
the sample was isothermally annealed at 567K, with measurements initially taken
every 15 minutes and then taken every one to two hours. This isothermally relaxed
sample exhibits stretched exponential relaxation towards a unique equilibrium value.

This relaxation follows the same form that Busch, Bakke, and Johnson demonstrated
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for isothermal viscosity relaxation for Vit-4. (2)

Cy(t) = Cso + ACs[1 — exp )] (3.3)

where Cg(t) is the shear sound velocity at time t, Cg is the initial modulus, ACy is
the total shear modulus change during relaxation into the final equilibrium state, t
is the elapsed annealing time in seconds, 7 is the characteristic shear flow relaxation
time, and 3 is the stretching exponent. Upon completion of the low-temperature
first relaxation the same sample was “cycled” back to 652 K, where Cg was found
to relax back to the same value it had prior to the lower temperature annealing.
This demonstrates that the measured equilibrium values of the samples annealed and
quenched from high temperatures are truly representative of the equilibrium liquid,
and have no residual irreversible effects. This can be seen in Figure 3.1.

Figure 3.2 shows the temperature dependence of the G and bulk modulus K
for equilibrium Vit-4 liquid together with in-situ data from 78K to 298K on the
quenched glass from samples annealed at 567K and 665K. The glass samples annealed
at different temperatures have different but fixed configurational entropy states, but
the linear fits to the low temperature modulus data have essentially the same slope.
This demonstrates that the low-temperature modulii T-dependence is independent
of the configurational state. This is the expected Debye-Gruinesen (DG) effect of

thermal expansion on elastic constants at a fixed glass configuration. The average

bulk modulus DG slope was found to be, %< DG = —.006815(+/—.0016)[“£2], and the

average DG shear modulus slope % DG = —.009115(+/ —.00033)[££4]. This thermal
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Figure 3.1: Relaxation of Vit-4 CS at 567K. Open squares represent the sample
annealed and quenched from 652K. The fitting parameters are for Equation 3.3. After
completion of relaxation at 567K, the sample was annealed at 652K and the shear
modulus came back to the value initially measured from 652K.
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expansion effect on the elastic properties was taken into account when analyzing the
data measured at room temperature for the samples annealed and quenched from
temperatures around T,. The trend in the modulii measured from the quenched
samples at room temperature is representative of the trend that the values should
have if they were to be measured in-situ. To determine the modulii at the actual
annealing temperature, the measured room temperature data should be corrected
with the DG effect. It is expected that the measured low-temperature DG dependence
of the modulii is a component of the temperature dependence at all temperatures.
The data measured at room temperature for a sample annealed at T4 should then be
corrected by Ty — T RTZ—?DG to obtain the actual value of G(T,4). This correction

was included in all of the liquid data shown in Figure 3.2 and Figure 3.3.

3.1.5 The Energy Dependence of The Shear Modulus

At ambient temperature in the “as-cast” sample G was 35.02 GPa while K was 110.34
GPa; the room temperature properties of a fully crystallized sample increased signifi-
cantly over the glassy material, G increases nearly 26% to 44.21 GPa while K increases
6.5% to 117.5 GPa. In the equilibrium liquid around 7} there is a strong linear cor-
relation between both G and K and temperature: [dG/dT]L = - 0.035 GPa/K and
[dK/dTI]L = - 0.0422 GPa/K. Although the absolute value of the change of K around
T, is larger than that of G, the relative change in G is much larger. Around 7}, G un-
dergoes relatively greater configurational “softening” than K. G decreases by nearly

9.3% over the 100K interval from 567 to 671K, while K only decreases by 2.4% over
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the same 100K interval. In summary, the configurational excitation of IS in the liquid
with increasing T leads to a dramatic softening of the shear modulus in the liquid
with temperature G (7). The T-dependence is much greater than the DG thermal
expansion effect for a fixed glass configuration [%} e

Combining our data for G (T) with earlier data for Hy(T) obtained by Busch, we
can obtain the energy (enthalpy) dependence of G on the configurational enthalpy
of the liquid. Specifically, the isoconfigurational shear modulus G of the equilibrium
relaxed liquid should be a unique function of pressure, P, and temperature, T—or
equivalently, of P and he(T). From Busch’s enthalpy recovery experiments on Vit-4
6ho(T) /0T was found to be 17 J (mol*K)~!.(65) Using the definition of enthalpy,
ho(T) = ec + Pu, and the fact that the experiments were performed at constant
pressure, taking the partial derivative with respect to temperature gives dheo /0T =
dec/6T. Combining dhe /0T with the experimental shear modulus data yields that
0G /dec = —2.05G Pa/(K J/mol) over the temperature range studied around 7. This
result expresses the dependence of G on the specific configurational potential energy of
the Inherent States of the liquid. This demonstration that G (7) falls steeply above

T, suggests that the energy barrier for configurational hopping between inherent

states and the related viscosity may be related to G (7).

3.1.6 Viscosity Model

Considering the energy barrier W(T), from Equation 3.2 for configurational hopping,

one would expect that the liquid viscosity would be of the form:
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W(T)]
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where n is the viscosity at temperature T, 7, is the high-temperature limit of the
viscosity, kp is Boltzmann’s constant, and T is temperature in Kelvin. By using the

dimensionless term y= T,/T , Equation 3.4 can be recast as:

yW(T)

77
) = TR
g

Mo

(3.5)

by definition at T, n = 10'? Pa s and in the high-T (Plank) limit , = 4 % 107 Pa s.
Thus evaluating Equation 3.5 at T} yields 37.8, a value that should be nearly constant

for all glasses. Angell defined liquid fragility as:

m:{dln(n(y))} _ W)
dy |,., 2.303kpT

+ {—dl”(g@))} _1] —164[1+1]  (3.6)
y=
where i is a reduced liquid fragility index related to the logarithmic derivative of W(y)
evaluated at T,. According to Equation 3.2, the temperature dependence of W(y)
should include G(T') or G(y). Following Johnson and Samwer, we assume yco to be
independent of y. Thus only the CSZ effective volume Q.;/(y) = Q¢ has a possible
temperature dependence; allowing for this, Equation 3.6 becomes m = 16.4[1 + i] =
16.4[1+n+p| where n and p are reduced “elastic fragility” and ” CSZ volume fragility”

indices:
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" {%C;(y))} _ _G(T%g) {d(;(TT)} . (3.7)
" [%;f(y))]y_l - _Qe,ﬁTg) {dﬁeﬂm]%- (3.8)

Figure 3.3 is an Angell plot depicting the Newtonian viscosity for Vit-4 calculated
from the shear modulus as outlined above, and measured by parallel plate rheometry
and three-point beam bending.(2) The measured viscosity yields an Angell fragility
parameter of m = 33(£1.5) and fragility index ¢ = 1.0. Later data of Masuhr that
includes high-T Couette viscometry measurements yields m ~ 37, or i = 1.3.(66)
Applying Equations 3.7 and 3.8 to the present data for G1(T"), we obtain n = 0.65
and an Angell fragility of m = 28.6(+/—1.1). Comparing the reduced fragility indices
calculated from the measured G with those from viscosity measurements, there is a
discrepancy between i and n of 0.35-0.65. Thus, the steep temperature dependence of
G1(T) found in this study does not account solely for the entire reduced fragility index
of Vit-4; perhaps the difference should be attributed to the temperature dependence of
the effective volume. From PEL studies, one expects as temperature is increased, the
characteristic CSZ barrier-crossing events will involve atomic clusters of decreasing
volume and thus decreasing cooperativity.(67) The present data suggest that a power
law behavior of the form y? with p 0.35-0.65 may provide an apt description of this
dependence in Vit-4; however the exact functional form above 1.27} has yet to be

experimentally measured. This model relating viscosity to shear modulus is similar



46

to the “shoving” model put forth by Dyre et al; the main difference between them is
in the details of the functional form taken for the energy barrier to configurational

hopping or a flow event.(68)

3.1.7 Conclusion About Vit-4

In conclusion, in the limited temperature range around T, that was studied, the tem-
perature dependence of the liquid shear modulus G, for Vit-4 was found to be linear
and much stronger than that of the bulk modulus K. The temperature dependence
of GG, in the liquid state is much steeper than the DG dependence of the configu-
rationally frozen glass. The dramatic change in the slope of G from glass to liquid
corresponds to a strong dependence of G on configurational potential energy of the
liquid. This finding provides support for the idea that the barrier height for configura-
tional change in the liquid PEL scales with shear modulus. Using a simple model, we
compared the rheological fragility measured for Vitreloy 4 with that predicted from
the temperature dependence of the shear modulus utilizing the CSZ model of John-
son and Samwer. The experimentally determined slope of G1(T") and corresponding
elastic fragility index n=0.65 accounts for most, but not all, of the liquid fragility
index i=1.0-1.3. This suggests that the remaining part of i arises from the decrease
in size of CSZs with increasing temperature. To explain our data, a “volume fragility

index” of p 0.35-0.65 is required.
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Figure 3.3: Angell plot of the viscosity of Vit-4 as measured by Busch (2) (open
circles), and calculated from the measured shear modulus following Equation 3.4.
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3.2 Elastic Constants in Pd 3Ni;0Cuyy Py

Annealing experiments similar to the ones performed in Vitreloy were performed in
a Pd-based alloy. The alloy Pdy3NijgCugrPo was selected for its relatively low T,
large AT, and resistance to oxidation.(13, 14) This alloy was also selected due to
its accessibility for inelastic neutron scattering experiments used to obtain phonon
Density of States for the glasses. These experiments will not be discussed here, but
were performed on the samples in collaboration with Rebecca Stevens of the Dr.

Brent Fultz’s group.

3.2.1 Palladium Experimental

One-mm-thick, by one-cm-wide, by three-cm-long samples were cast via copper-mold
casting with Argon-pressure in a vacuum. Amorphicity and homogeneity were deter-

mined by XRD and DSC. T, was found to be 585K, T, 716 K, and T; 802K.

3.2.2 Relaxation and Reversibility

Similar to the Vitreloy-4 study, a stretched exponential relaxation was noted in the
Pd-alloy. Figure 3.4 shows this phenomenon in the Pd-based alloy. In Figure 3.4 the
reversibility of the shear and longitudinal sound velocities between 531K and 597K can
be seen, demonstrating that the annealed and quenched samples are representative
of the equilibrium liquid.

In Figure 3.6 there is data from samples that were annealed and quenched at

temperatures around the calorimetric glass transition temperature and then measured
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ex situ. Additionally, samples quenched from both 300C and 350C were measured
in situ at temperatures below room temperature in order to determine the Debye-

Gruinesen effect.

’ region ‘ 3—? ‘ error ‘ coeff ‘
quenched around 7T, -0.0455 0.002 993
below RT, quenched from 300 C | -0.0129 4.86e-4 988
below RT, quenched from 350 C | -0.0127 8.56e-4 .96

Table 3.1: Summary of fitting data to PdysNijgCus7 Py relaxation measurements in
Figure 3.6

Table 3.1 contains the fitting results to the various regions of the Pd-relaxation
data. The slopes of the in situ measurement below room temperature of the samples
quenched from two different temperatures are very similar, as in the Vit-4 experiment;
thus further supporting the idea that the temperature dependence of the shear mod-
ulus below the calorimetric glass transition temperature is essentially due to thermal
expansion.

Figure 3.7 has viscosity data from Fan et al. (5) along with viscosity calculated
from the shear modulus data of samples annealed and quenched around 7. Clearly,
there is not a strong fit between the viscosity measured by Fan and that calculated
from G. This inconsistency can be attributed to a few things. First there are two
distinct regions of data from the previously performed viscosity measurements, these
are due to measurements that were done by two different methods (parallel plate
rheometry and beam bending). Additionally, as the viscosity model stands it does
not currently account well for the temperature dependence of the volume of the Shear

Transformation Zones.
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Using Equation 3.7, n for the Pd-alloy can be calculated. It is found to be:
n =~ .81 From the Fan viscosity data m =~ 58 or ¢« =~ 2.47. Using the n from the
shear modulus data and the p from the previously measured viscosity data yields a
p ~ 1.66. However, the fragility parameter calculated directly from the shear modulus
data, m ~ 28.26, is quite a bit lower than that from the measured viscosity data.
Additionally, the apparent % seen from the in situ measurements presented later in
Chapter 5, and also seen in other er situ annealing experiments on the same alloy,
is larger than that measured in this section.(7) This discrepancy may be explained
either by not-completely-relaxed samples at 531K or possibly by crystallization in
the samples annealed above T,. Not-fully-relaxed samples below T, have the effect
of “pulling down” the overall slope of the T, region, as their effective shear modulii
are lower than expected. Partially crystallized samples at and above T}, also have the
effect of “pulling down” the Z—g in the T, region because partially crystallized alloys

present higher elastic properties than their glassy counterparts (noted in Chapter 2).
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Chapter 4

In situ Experiments in Low-T
Glasses Using a Delay Line

As discussed in Chapter 2, two methods were developed that allowed for in situ
measurement of the shear and longitudinal sound velocities in bulk metallic glasses
at temperatures beyond room temperature. All measurements that are discussed
in this chapter were performed with a polished quartz delay line and adhesive as
shown in Figure 2.2. Below 300K Varian Torr-Seal was utilized, and from 300K to
450K Surf Resin was used. All of the low-temperature data presented in Chapter
3 was also performed by the delay line technique. While this technique was not
discussed extensively in Chapter 3 it was integral to the adjustment of the ex situ data
from the samples around 7};. The low-temperature data yielded the Debye-Gruinesen
correction factor by which all ex situ annealing data was adjusted to get an accurate
representation of the equilibrium isoconfigurational shear modulus around 7). In this
chapter low-temperature results on Pts;5Ni5 3Cui4 7P 5 that were used by Harmon
et al. are presented.(69, 70) Additionally, in situ shear modulus data from glasses

with T,s below 150C are discussed. Updates to the viscosity model of Chapter 3 are
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presented.

4.1 Measurements in Pt;; ;Ni;3Cuyy7Poo 5

The first low-temperature measurements in this thesis performed with the use of a
delay line and couplant were those presented for Vitreloy-4 and PANiCuP in Chapter
3. With the concept refined, proven, and tested, measurements were performed for
other members in the Johnson research group.

To facilitate a series of experiments and analysis very similar to those of the isocon-
figurational shear modulus presented in Chapter 3, samples of Pt575Ni53Cu147P225
were measured utilizing the in situ techniques described in detail in Chapter 2. These
results are presented in Figure 4.1. The Debye-Gruinesen slope was found to be

M Pa M Pa
-12.7MPa 4 541 MPa

4.2 History and Development of Gold-Based Bulk

Metallic Glasses

Duwez et al. found the first metallic glass in 1960 in the Au-Si system.(10) However,
the alloy found by Duwez could only be formed into thin films at very high cooling
rates (10° — 108K /s). Since Duwez’s discovery, many good metallic glass formers
have been found. While good glass forming systems based on other “precious metal”
systems such as Pd and Pt have been found, it was not until recently that good glass

formers in gold-based systems were discovered.(1, 71) This recent push to develop
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a good gold-based BMG was spurred by the desire for a high-Poisson-ratio alloy, as
well as the desire to find new gold alloys for jewelry applications. In addition to
being good glass formers, the newer Au alloys also have relatively low glass transition
temperatures.

To be able to perform in situ shear modulus measurements with the quartz delay
line and the “high temperature” adhesive, the T, of the glasses studied needed to
be low. Thus, the series of gold-based alloys discovered by B. Lohwongwatana in
collaboration with employees of Liquidmetal Technologies in Lakeforest, CA were
chosen. (1) This series of gold alloys has Tys ranging from 348-403K, ATs of 25-58K,
and critical casting thicknesses from .5-5mm. There are other metallic glasses with
very low glass transition temperatures (some less than the boiling point of water),
however these alloys (cerium-based, or gold-lead) are neither as good glass-formers

nor as easy to handle as the newer gold-based alloys.

4.3 Gold-Based Glass Sample Preparation and Ex-

perimental

A .63mm sample of slightly off-composition AussCugsSisg (Au-1) alloy was alloyed and
cast at Liquidmetal Technologies in Lakeforest, CA. The T, = 363K and T, = 393K
were determined by DSC (with a heating rate of 20K/min) and p was found to be
14.34 g/cm®. As can be seen in the X-ray diffraction pattern in Figure 4.3, there

is a small crystallization peak around 26 of 36 degrees, however, despite these small
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crystals, the sample was mainly amorphous; it is possible that this small peak could
have been due to surface oxidation.

The sample was then attached to the quartz delay line with Torr- Seal. After the
low temperature in situ measurements were performed, the torr seal attachment was
severed and the sample was attached on the other side with surf resin. The in situ
heating rate was 4 K/min.

A 1.5-mm sample of AusaPds3Cusg2Sigs (Au-2) was cast under vacuum with
argon pressure in the casting box at Caltech. The amorphocity and homogeneity
were determined by XRD and DSC. At a heating rate of 20 K/min in the DSC T,
was found to be 120 C and T, 152 C. The low- and high-temperature measurements

were performed in the same manner as with the previous gold alloy.

4.4 Gold-Based Glass Results and Discussion

In Figure 4.2 the results of the in situ shear sound velocity measurement for Au-1 can
be seen. As seen both in the figure and in Table 4.4 there is a distinct change in slope
from the Debye-Gruinesen region to the region immediately above the glass transition
temperature. However since this alloy only has a small undercooled liquid region
before the onset of crystallization occurs, the data collection in the SCLR was limited.
According to the calorimetric data, the crystallization temperature at a heating rate
of 20 K/min is approximately 393K. As can be seen in Figure 4.2, the shear modulus
begins to increase dramatically above 389K, representing the nucleation and growth

of crystals. Above 423K the Surf Resin used to attach the sample to the delay line
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begins to significantly break down and no longer transmits the ultrasonic signal, thus
no data was taken above 387K.

Figure 4.4 displays the in situ results from Au-2. There is the expected obvious
change of slope around the glass transition temperature, as the dependence of the
shear modulus on temperature turns from a purely thermal-expansion dependence to

more of a configurational dependence.

| | region | dG/dT | error | R? |
A CoSi below 7, | -0.0262 0.0022 0.9328
PO TRORR0 above T, | -0.0989 0.0056 0.9856
| below 7, | -0.0146 200069 0.961
Atts2Pd23CuzoaShos | e 7 | 20,0549 0.00598 | 0.977

Table 4.1: Summary of linear regression slopes and correlation coefficients for
AugsCugsSisy and AusaPds 5Cugg 25it6.5 in situ measurement above and below 7,

4.4.1 Updated Viscosity Model

In Section 3.1.6 a viscosity model was introduced that utilized the energy barrier of the
Cooperative Shear Model.(35) More recently, aspects of the model were updated.(6)
Particularly, it was determined that for most metallic glasses a reasonable approxima-
tion to make is that the “elastic fragility” (n) and “cooperative shear zone fragility”
(p) are equal. Or in other words assume that i, the reduced liquid fragility index, is
equal to 2n (i =n + p = 2n).

Using the Johnson-Samwer barrier, rearranging Equation 3.2 (essentially normal-

izing to the barrier at the glass transition temperature) yields:
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Figure 4.3: X-ray diffraction pattern of AussCugsSisg. Note the small peak around
2-theta of 36 could be due to surface oxidation of the sample.
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v (2)(8)

Since G is a much easier quantity to measure experimentally than Q (the size of

the Cooperative Shear Zone), the following approximation is made,

() =(a) @

Then, the general viscosity equation formulated with the Johnson-Sawmer barrier
given in Equation 3.4 can be reworked with the “new” barrier of Equation 4.1, the

relation of Equation 4.2, and the assumption that n=p yielding:

n_ (W W (G
e P\keT) T kT G,

where ¢ = n/(n + p) (or in the case of n = p then g = 1/2).

(4.3)

Considering Newtonian flow as simply thermally activated flow, the Newtonian
viscosity would be determined by the shear modulus of the equilibrium state, G..(6)
It is expected that G, will decay with increasing temperature in an approximately
exponential fashion. So, using the following exponential decaying relationship similar

to that used previously(70, 72):

S0 (1-3)

Equation 4.4 can be substituted into Equation 4.3, and viscosity data can be fit to

determine n; or if G has been measured directly as a function of temperature, Equation



65

[13)]

4.4 can be used to fit the results and determine the “n”, elastic fragility parameter.
Johnson et al. have determined the correlation between the Johnson, n, parameter
and the Angell fragility, m, (discussed in Section 1.3.2) to be m = (142n)log(ny/Ns),
where 7, is the viscosity at the glass transition temperature and 7, is the high
temperature limit of the viscosity.

In Figure 4.5 only the equilibrium shear modulus data from the Au-1 supercooled
liquid is utilized and fit by the method described above. Figure 4.6 displays only the
data around/above the calorimetric glass transition temperature and the fit by the

Johnson theory for Au-2.

| E | R’ [ m
AU55C1125Si20 1.6 £0.10 9838 67.2
Au52Pd2.3CUQ9.28116,5 .95 +0.118 93194 47.5

Table 4.2: Summary of linear regression slopes and correlation coefficients for
Aug5CugsSigy and AusaPds 3Cugg 25iie5 in situ measurement above and below T,

As can be seen in Table 4.2 the Au-1 alloy has a much larger n-parameter than the
Au-2 alloy. Accordingly the Au-1 alloy has a much higher Angell fragility parameter,
and can be considered a very “fragile” liquid. Although no experimental viscosity
data is available for either of these alloys, their n-parameters and associated Angell
fragilities place them as some of the most fragile glasses (in Chapter 5 they will be
compared with other data). From experience in the laboratory these alloys are very
fragile. When casting in the casting box, an extremely small nozzle must be used so

that the alloy will not fall prematurely into the mold.
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Figure 4.5: In situ G data of AussCugsSigg from T, to just before the onset of crys-
tallization. The data is fit to the model relating viscosity and G discussed in Section

4.4.1.
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4.5 Conclusions of Gold-Based Glasses

It is interesting to note that while both alloys, AugsCugsSisg and AussPds 3Cusg.2Siig s,
exhibit the expected change in temperature dependence of G around the glass tran-
sition temperature, that above their respective calorimetric Tys AussCugsSigg has a
much steeper slope than AusaPds 3Cug9.25i165. The fall off of AussCusgsSiag above Ty
is nearly twice as fast as that of AusoPds 3Cusg5Si6.5; additionally the “n parameter”
of the former is much larger (1.6) than that of the latter (0.95). Even though AuCuSi
is apparently much more fragile than AuPdCuSi, it is a much worse glass former. In
fact, it was impossible to probe more than 25 K into the supercooled liquid region
without nucleating crystals in Au-1. Rough correlations between the glass forming
ability and the liquid fragility have been made: more fragile alloys tend to be worse
glass formers. (4) This trend apparently holds true with these two gold-based alloys:

while Au-1 is much more fragile than Au-2, the latter is a much better glass former.
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Chapter 5

In situ Experiments in High-T,
Glasses Using “Notched” Samples

5.1 Abstract

Nowel in situ shear ultrasonic measurements using a unique measurement setup have
been performed on a series of bulk metallic glass forming systems with a variety of An-
gell fragilities: Zryg 75 Tis.o5 Cuz 5 NizgBear s (Vit-4), PdyzNijg Cugy Pog, PtsgNiy7.7 Cug Py s,
Auss Cugs Sing (Au-1), and Ausg Pdy 3 Cung 2 Sines (Au-2). The new in situ data corrob-
orates previously measured ex situ data. Additionally, using the Cooperative Shear
Model (CSM) the correlation between fragility and shear modulus is thoroughly inves-

tigated and discussed.

5.2 Introduction

Many multi-component alloy systems that form bulk metallic glasses (BMGs) have
been found in the past twenty years.(12, 73, 16, 1) The Angell fragility is a way of

indexing the apparent deviation from Arrhenius-like behavior of the temperature de-
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pendent viscosity of the supercooled liquid in glasses.(37) “Kinetically strong” glasses
(e.g., Vitreloy-type glasses) have lower fragility parameters and less deviation from Ar-
rhenius behavior while “kinetically fragile” glasses (e.g., Pt-based glasses) have higher
fragility parameters and more deviation. A rough correlation exists between the glass
forming ability and fragility: stronger liquids tend to be better glass formers.(4) Thus,
having a sense of the liquid fragility of an alloy is valuable in both developing new
alloys and characterizing existing ones.

Using the concept of the Potential Energy Landscape (PEL) or Inherent State (IS)
theory(62, 25), Johnson and Samwer developed a Cooperative Shear Model (CSM)
that describes the plastic yielding of bulk metallic glasses utilizing the constructs
of the Shear Transformation Zone (STZ) and barrier height (7)) to configurational
change (which is hypothesized to be directly proportional to the shear modulus, G).
A rheological model was developed using G as a thermodynamic parameter and re-
lates the equilibrium shear modulus directly to viscosity at various temperatures in
the supercooled liquid (see Equation 5.1 for the model).(35) A fitting parameter, n, is
introduced in this viscosity model, from which the Angell fragility can be predicted.
The method of measuring the shear modulus in the supercooled liquid that is pre-
sented in this paper, coupled with the previously introduced viscosity model, provides
a simpler way of determining the fragility than measuring viscosity directly.

It has previously been shown through ex situ ultrasonic measurements that in the
supercooled liquid region of Vit-4 the shear modulus has a much stronger temperature

dependence than the bulk modulus, and that the shear modulus is directly related



71
to the configurational state of the alloy.(36) Also, in the CSM for plastic deforma-

tion of glasses, the shear modulus was identified as one of the primary controlling
parameters to the barrier to shear flow.(35) This strong configurational dependence
of G on T also has been shown through Molecular Dynamics simulations.(74) Thus,
in this chapter we focus exclusively upon the shear sound velocity and shear mod-
ulus. We present new in situ ultrasonic data for Zrys 75Tig 05Cur 5NijoBegr 5 (Vit-4),
Pdy3NijoCugrPag, PtsoNiiz7CugPas3, AussCugsSigg (Au-1), and AuspPds 3Cu292Si16.5
(Au-2).(1) We show that the in and ez situ data corroborate one another, proving
that both are accurate representations of the supercooled equilibrium liquid. Ad-
ditionally, the shear modulus and the liquid fragility are discussed in terms of the

viscosity model that was introduced and refined by Johnson et al.(6, 36)

5.3 Alloy Selection

The three alloys selected for in situ measurement via the “notch” technique were
chosen for the following reasons: the primary reason the Pt-glass was selected was
due to its relatively low T, (220 C). In addition to having a very low T, the Pt-
glass has a large super-cooled liquid region (~ 100C), is highly resistant to oxidation,
and is recyclable. Despite having less than ideal oxidation-resistance behavior in air,
Vitreloy-4 was chosen for direct comparison between the new in situ results with the
previously presented ez situ. Pdy3NijgCugrPyg (studied ez situ in Section 3.2) was also
studied for comparison with ex situ results, as well as for its oxidation-resistance and

recyclability. Additionally, both the Pd-based and V-4 alloys have extensive viscosity
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data available in the literature.

In a recent study the in situ elastic properties of BMGs have been measured via
ultrasonics through mode conversion calculations of a “trailing shear wave” following
a longitudinal pulse.(54) However, in the these measurements the shear sound velocity
is not measured directly from a shear signal sent into the sample. Additionally, the
measuring frequencies used by are a factor of two lower than the measuring frequencies
used in the following experiments. Measurements have also been done on the pressure
dependence of the elastic properties of BMGs; torsional pendulum experiments have

been used to study G.(50, 44)

5.4 Experimental

In situ shear ultrasonic pulse-echo measurements were performed on five alloys from
liquid nitrogen temperature to temperatures 20-70 degrees above the calorimetric
glass transition temperature. An ultrasonic measuring frequency of 25 MHz was
employed. This measuring frequency allows for the measurement of the “isoconfigu-
rational” (or unrelaxed) shear modulus G of an Inherent State (IS) of the liquid,
provided that the a-relaxation (or fast relaxation) time of the liquid, 7 = n(T') /G, is
much greater than the inverse of the measuring frequency; where n(7') is the viscosity.
This condition is easily satisfied for temperatures from below the laboratory T, to
substantially above T,. Only when (T) falls below ~ 10° Pa-s (~150 C or more above
T, for Vit-4) is this condition violated.

Rods of Vit-4 approximately 76 mm long and 8 mm in diameter were prepared and
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cast via the method described elsewhere.(36) The Pd-based and Pt-based rods of the

same length, ranging from 5-8 mm in diameter, were cast via melting in a quartz tube
in an induction furnace under an argon environment and then water quenching. The
gold-based samples were made by copper-mold casting in an argon environment. The
amorphicity and homogeneity of all of the samples were confirmed by X-ray diffraction
and differential scanning calorimetry and the coefficients of thermal expansion were
measured by differential thermal analysis; this data is presented in Table 5.1.

The ultrasonic properties of “as-cast” rods were measured at and below room
temperature. The rods were then annealed at temperatures near T, to put them
into a defined configurational entropic state. The ends of the rod were polished to be
plane parallel and flat to a surface finish of 2 microns. Due to the low glass transition
temperatures and ease of crystallization the gold-based alloys were not annealed prior
to measurement. The density of the “as cast” and annealed rods and gold samples
were measured by Archimedean technique according to American Society for Testing
of Materials (ASTM) standard C 693-93. In the subsequent calculations of G from the
sound velocities both the lengths and densities used were adjusted by the appropriate
factor utilizing the measured thermal expansion coefficient.

The inspiration for the in situ experimental design for the measurements above
room temperature came from J.T. Krause’s seminal 1961 paper which utilized a “dif-
ferential path method” to measure sound velocities in glass rods.(59) In the rods,
notches .2 mm thick and approximately one-third of the diameter of the rods were

cut into the sample. Each notch was cut such that the gauge length, d, between the
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top of the notch and the end of the sample was approximately 20 mm; additionally,
the notch was plane parallel to both ends of the rod. A .2-mm-thick piece of quartz
glass was placed in the cut notch to prevent collapse of the notch upon heating. The
rod was placed in a split copper mold held tightly together with set screws. This
mold slip fit into a larger copper heat sink that was heated by four 250-watt cartridge
heaters controlled by a 5-ampere DC power supply. A thermocouple was fitted into
the heat sink and contacted the split copper mold. The ultrasonic pulse sent from
the transducer is reflected back from both the top of the notch and the end of the rod
and the time difference between these two pulses is measured and used to calculate
the elastic properties. There is a large temperature gradient from the portion of the
rod outside of the copper heat sink to the top of the rod in contact with the trans-
ducer, however this gradient effectively can be ignored since it is the same for both
the reflection from the top of the notch and the bottom of the rod. See Figure 5.1(b)
for a schematic of the experimental setup and notch design. The Au-based samples
were measured through the use of a quartz delay line.

The samples were heated and cooled at a rates ranging from 4-10 K/min. Upon
reaching the point where the ultrasonic signal was attenuated to have no amplitude
(the order of the measuring frequency was on the same timescale as the fast relax-
ation in the liquid), the heating was stopped. In Figure 5.2 the results of the in situ
heating and cooling cycles are shown. As can be seen from this figure it is virtually
impossible to distinguish between the heating and cooling cycles, thus demonstrating

the reversibility of the measurement and supporting the claim that we are measur-
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Figure 5.1: Schematic of in situ experimental measurement setup. The ultrasonic
pulse was sent from the transducer and reflected from both the End of Notch (EN)
and End of Rod (ER). The gauge section of length, d, from EN to ER was kept entirely
in the copper hot/cold sink. The temperature was measured with a thermocouple
that penetrates through the copper heat sink in direct contact with the sample. The
Cu hot/cold sink was kept well insulated with thermal fire-bricks.
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ing the elastic properties of the supercooled liquid in situ. Also in Figure 5.2, the

sharp increase in the shear modulus above 381K for Au-1 is due to crystallization

of the sample. The error in the shear modulii calculated from the ultrasonic data is

approximately 5%.

5.5 Results and Discussion

parameter Vit-4 Pd- Pt- Aul Au2
based based

T, (K) 623 573 493 363 393

T, (K) 733 716 591 393 425

CTE (/K) 86 | 130 «]|108 =« 197«
1076 1076 1076 10-¢

dG/dT quenched from LT, DG | -0.0087 |-0.0129 | ND ND ND

region

dG/dT quenched from HT, DG | -0.0094 |-0.0127 | ND ND ND

region

dG/dT in situ below T, (DG re- | -0.0099 | -0.0118 |-0.0124 | -0.0262 | -0.0135

gion)

dG/dT quenched from above T, | -0.0352 | -0.0455 | ND ND ND

exr situ

dG/dT in situ above T -0.0350 | -0.0527 | -0.057 -0.0989 | -0.0546

n 0.753 1.045 1.176 1.510 0.869
(£0.079) | (£0.105) | (£0.099) | (£0.087) | (£0.106)

Angell fragility calculated from n | 40.1 49.4 53.6 64.3 43.8

Table 5.1: Summary of calorimetric data, linear regression slopes to different regions
(all correlation coefficients are greater than .9 for the regressions). ND = no data

available.
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Vit-4 (circles); ex situ data shown by corresponding symbol with line through it.
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5.5.1 Comparison Between In Situ and Ex Situ Measure-

ments

As can be seen in Table 5.1 and in Figure 5.2 there is strong correlation between
the shear modulii as measured ex situ and in situ. As previously demonstrated for
Vit-4 (36), reversibility of the annealed and quenched samples was shown for the
Pd alloy. All of the samples show a strong dependence of G on temperature above
the glass transition temperature, while exhibiting an essentially Debye-Gruinesen (or
purely thermal expansion) effect in the region below T,. Since the ultrasonic signal
exists at temperatures as high as 420C, and the in situ and ex situ data (for Vit-4
and Pd in their respective systems) are essentially the same, this demonstrates that
the dependence of G on temperature is a true temperature effect and not simply
an acoustical attenuation (or damping) effect at high temperature. Experimentally
there is a point beyond which the ultrasonic signal no longer exists (it is damped
out) because the frequency of the measurement is on the same timescale as the «
relaxations in the liquid. Figure 5.1(a) shows sample ultrasonic reflection waveforms
captured from the end of notch in situ measurement of Vit-4 at 30C, 300C, and
400C. The amplitudes of the waveforms were not altered, they have only been shifted
in order to display all waveforms on the same graph. These waveforms all have the
same shape and roughly the same amplitude, demonstrating that no errant effects
due to signal attenuation are occurring at these temperatures. The small differences
between the various heating and cooling cycles in the measurement of the alloys

are representative of slight configurational differences due to very small variations in
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cooling rate.

Comparing the Z—g slopes between the various alloys, we see that, as expected, the
trend in slope below T, closely parallels the trend in thermal expansion coefficients: a
lower CTE corresponds to smaller % slope below Tj,. Interestingly, this trend is also
followed in the region above T,. However, as can be seen above T, there is a distinct
difference in % slope between the alloys; Au-1 has the strongest G dependence on T,
while Vit-4 has the weakest.

The fact that these slopes from the in situ and ex situ measurements align means
that the effect that we are seeing, of G rapidly decreasing above .9 Ty, is truly a
configurational effect of the equilibrium liquid and not a dynamic relaxation effect,
or an acoustical absorbtion effect. Essentially, the previously performed ez situ mea-
surements demonstrating the reversibility of the shear modulus are the absolute proof

that what is seen is truly a configurational property of the equilibrium liquid.

5.5.2 Updated Viscosity Model

The following viscosity model was introduced by Johnson et al. (6):

Wg % 1/q
ksT \ G,

where 7 is the viscosity at temperature, T, 7, is the high temperature limit of the

W(T)
kBT

LA exp[ } = exp (5.1)

Mo

viscosity, W(T') is the energy barrier to shear flow, kp is Boltzmann’s constant, ¢ =

nLer where n is a reduced elastic index and p is a STZ volume softening index. It

was found that for Equation 5.1 the correlation is best when n = p.(6) G. is the
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equilibrium value of G at T, and G is the equilibrium value of G at T,. W(T') =
W,(Ge/Gy)(2/Q,) where €, is the volume of a STZ and W), is the flow barrier of the
frozen configuration at T,. W, = (8/7%)x7.x G, %, where 7, is the shear strain limit
of the material, and a universal constant of 0.036 +/- .002.(35) As per the rheologic
definition of a glass n, was considered to be 10" Pa-s and n, was taken as the Plank
limit, or 4 % 10~° Pa-s.

While this paper makes an attempt at further elucidating the shape of G(T) in
the supercooled liquid, it does not conclusively do so. We will take an exponential

decay of the form (noting that other decaying forms could be used).(6)

g—: = exp ln (1 - %)] (5.2)

The only “unknown” in Equation 5.2 is the parameter n.(6, 36) Having experi-
mental G(T) data enables us to fit using Equation 5.2 to determine the parameter n,
or to use Equation 5.2 in Equation 5.1 and fit viscosity data by Equation 5.1.

According to Johnson, the Angell fragility is related to the parameter n in the

following way:

m = (1+ 2n)log(~2). (5.3)

o

Figure 5.3 shows previously published viscosity data for the Pd alloy and Vit-4
and the in situ % data converted to viscosity with fits by Equation 5.2( the fitting

parameters can be found in Table 5.1). A higher n corresponds to a higher Angell
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fragility, as can be seen from Table 5.1; the trend in n-parameters from smallest to
largest is: Vit-4, Au-2, Pd, Pt, Au-1. In Figure 5.3 the viscosity calculated from
the in situ data on the Pd alloy matches extremely well with the viscosity measured
by Fan et al. (n-parameter 1.150 (£0.033)). The fit of the viscosity calculated from
Vit-4 does not match quite as well with the viscosity measured by Busch et al., but is
still a reasonably good fit to within error bars (Busch n parameter = 0.572 (£0.015)).

When fitting with Equation 5.2 a one- or two-parameter fit can be used: in the
one-parameter fit, the high temperature limit of the viscosity is fixed at theoretical
limit of 4 %107°; in the two-parameter fit the high temperature limit of the viscosity
can also be varied. Using the two-parameter fit the n,s fit to the data varied from
the theoretical limit by no more than a factor of two. It is important to note that
in this paper the Johnson-viscosity theory has only been shown to hold for the lower
temperature region of the supercooled liquid, where the liquid behaves as a Newtonian
fluid. For the alloys studied in this paper no extremely high temperature data (>
900K) exists for either the viscosity or the shear modulus.

Using the method of predicting the liquid fragility from the shear modulus shows
that G is a meaningful parameter for probing the rheologic properties of a metallic
glass. The shear modulus data necessary for this can be accessed either by annealing
and quenching the samples, or by the recently developed, relatively simple in situ
measurement. These measurements are much simpler to perform than the traditional

methods of measuring viscosity and give quite good results.
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Figure 5.3: In situ shear modulus data converted to viscosity using Equation 5.3.
Open symbols represent data converted from shear modulus; filled symbols represent

measured viscosity data. Both n and n, were used as fitting parameters, and n can
be found in Table 5.1. All fits have an R? > .9.
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Chapter 6

Miscellaneous Experiments

6.1 Control of Elastic Properties by Cooling Rate
in Vitreloy-4

The possibility of controlling the elastic properties of Vitreloy 4 by different cooling
rates was studied. This alloy was chosen since extensive data is available for it, it is a
good glass former, and it is capable of being cast into a wide range of sample shapes

and dimensions.

6.1.1 Experimental

Using copper-mold casting, 3-mm, 1-mm, and half-mm rectangular samples of Vitreloy-
4 were cast, a .053 mm sample was fabricated in the splat quencher. The density of
each sample was measured according to American Society for Testing of Materials
(ASTM) standard C 693-93. The elastic properties of each sample were then mea-
sured ultrasonically using the pulse-echo technique described elsewhere in this thesis.

For the splat-sample, the sound velocity was measured using the through-transmission
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technique.

6.1.1.1 Ultrasonic Measurements on Very Thin Samples

Performing ultrasonic measurements on very thin samples (thicknesses less than .5
mm) can be questionable, depending on the frequency of the transducer. For ul-
trasonic waves, A\ = v/v, where A is the wavelength, v is the speed, and v is the
frequency. In metallic glasses, typical shear sound velocities are 2500 m/s; with a
transducer of frequency 25 MHz, the typical wavelength of a shear ultrasonic signal
is .1mm.

Many problems are associated with using a measuring tool that is the same length-
scale as the item that you are measuring. To avoid this problem when measuring
sound velocities in metallic glasses it is ideal for the section of the sample being
measured to be a minimum of 3-5 times the typical wavelength of sound in that
material. Additionally, when calculating the elastic properties from the sound travel
time, all measuring errors on a small sample are proportionally larger than on a
large sample, since they are a larger percentage of the quantity being measured. (See
Appendix D for more details on how to calculate and propagate the error in ultrasonic
calculations.)

Thus, the .053 mm splat produced is potentially shorter than the wavelength of
sound used to measure it. However, reasonable, reproducible data was produced using

the through-transmission technique.
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6.1.2 Results and Discussion

The cooling rates of the various dimensions of cast-alloys were calculated according
to the method presented by Liu and Johnson in 1995(75):
dar  T,-T, KT, —1T,)

da - CRrR?> (6.1)

T}, is the melting point of the alloy, K = thermal conductivity, C = heat capacity
per unit volume, R = typical sample dimension, and 7 = the total cooling time to

reach T,. 7 is of the order,

T~ —. (6.2)

Taking (T, — T,) ~ 400 Kelvin, K = 0.1 -2 C = 4 —4— then for a typical

cmsK?

metallic glass:

dar 10
dt — R2(incm)’

(6.3)

From the experiments in Chapter 3 it was seen that samples annealed at different
temperatures around 7; had different room temperature shear modulii. These values
directly corresponded to the temperature from which the sample was quenched (and
thus is partially related to the cooling rate/when the sample “fell out of equilibrium”).
It was hypothesized that samples of different sizes (reflecting different cooling rates)

would fall out of equilibrium in the supercooled liquid at different temperatures —

thus yielding different shear modulii. The thinner the sample, the higher this falling
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Figure 6.1: Shear modulus vs. cooling rate for different samples of Vit-4
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sample thick- | est. cool- | density G (GPa) K (GPa) v
ness (mm) ing  rate | (g/cm?)
(K/5)

3 105 5.938 35.34 110.26 0.355
(40.08) (40.36) (£0.001)

1 980 5.948 35.15 110.20 0.356
(£0.24) (££0.89) (£0.001)

) 2480 5.900 35.75 ND ND
(4£0.33)

0.053 357407 6.003 27.09 ND ND
(£2.87)

Table 6.1: Summary of Vitreloy-4 cooling rate estimated cooling rates and experi-
mental elastic property results. ND = no data available.

out of equilibrium temperature would be. However, as can be seen from Table 6.1 and
Figure 6.1 there is no obvious trend in the data. The only conclusion to be drawn from
the data is that the splat sample (.053 mm) has a much lower G, and is much more
“shear soft” than the other samples. It appears that many other factors come into
play in the as-cast samples: ranging from the rheological properties of filling a copper
mold, to the variation of cooling rate from the center of the sample to the edges, to
strain rate differences (the splat is subjected to much higher strains than the casting in
the copper mold). Thus, the best way to accurately compare cooling-rate differences
in the mechanical properties of bulk metallic glasses appears to anneal samples of the
same geometry and quench them. However the maximum and minimum quenching
rates achievable on a 1 mm sample are experimentally limited, and it is virtually
impossible to achieve such a high rate of quenching as in a splat-quenched sample,

other than by melt spinning or splat quenching.
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6.2 Cavitation in Glycerol

Glycerol is an organic glass with the chemical formula of HOCH,CH(OH)CH,OH.
Glycerol has a glass transition temperature of approximately 225K. At room temper-
ature glycerol exists as a colorless, odorless, clear, and viscous liquid.

Elastic property measurements in Glycerol have been performed through Bril-
luion scattering.(76) In 1986 Jeong et al. studied the temperature dependence of the
longitudinal sound speed and attenuation in glycerol through the glass transition.(77)

Initially, the goal was to measure the in situ elastic properties of glycerol. It was
thought that it would be relatively simple to obtain contact between the glycerol and
ultrasonic transducer and we would not have to worry about the problems associated
with high-temperature ultrasonic measurement. It was quickly discovered that it is
very difficult to get glycerol to vitrify, but that cavitation of voids easily occurs.

Cavitation is when there is a large negative pressure inside a liquid causing a pres-
sure gradient and a resulting void to form. Cavitation of voids is a relatively common
problem when casting larger-diameter metallic glass samples, and thus understanding

the behavior and potentially being able to model the formation of voids is of interest.

6.2.1 Experimental

It is very difficult to achieve clean vitrification in glycerol. Initially, glycerol was
poured into quartz tubes, and the tubes were swirled in a tub of liquid nitrogen to
quench the glycerol into a glassy state. The glycerol crystallized instead of vitrifying.

With any moisture content, even as little as available in the air of Southern California,
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the ability of glycerol to vitrify rapidly degrades. In subsequent trials the glycerol was
kept out of air and the samples were degassed by attaching the glycerol-containing
tube to a vacuum system and heating the glycerol above the boiling point of water.

Once relatively clean vitrification of glycerol was achieved, it was then noted that
the glycerol has a tendency to cavitate and that it was a rare occurrence for the
glycerol not to cavitate. Due to the incessant cavitation, it was impossible to get a
clean sound velocity signal through the sample. Thus, the focus of the experiment
was changed from attempting to perform in situ ultrasonic measurements on glycerol
to trying to study the cavitation behavior.

Since glycerol is a clear liquid, it is possible to videotape or photograph the cavi-
tation. A DVD camera was set up a fixed distance from a background with a ruler. A
beaker with warm water maintained at (~ 50C) was on a hotplate; when the glycerol
tube was removed from the liquid nitrogen it was placed inside of this beaker so that
condensation would not form on the outside of the tube and photographs/video could
be taken.

Then the test-tube setup for creating cavitation voids in the glycerol was modified.
Quartz tubes that were approximately 5 mm in inner diameter and 12 inches long were
used. A copper-plug that slip fit into the tube was made, the bottom of the plug was
polished to a 2-micron finish, and the level of the glycerol in the tube went above the
top of the “plug”. This plug was inserted to help the cooling of the “gauge section”
at the bottom of the tube occur more uniformly from top to bottom. Without the

plug, a downward shaped vortex from the surface of the glycerol tends to form. A
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schematic of this copper-plug and tube design can be seen in Figure 6.2.

6.2.2 Results and Discussion

A series of glycerol tubes with copper plugs were swirled in a container of liquid
nitrogen for 90 seconds. The tubes were immediately placed into the viewing chamber
and videotaped. The size of the cavitation bubble was recorded as well as the time for
the sample to reheat enough for the cavitation to dissipate. Samples were quenched
from two different starting temperatures: room temperature (25 C) and boiling water
(100C). The hypothesis was that different size voids would cavitate when quenched
from different temperatures. It was expected that larger bubbles would cavitate
when quenched from higher temperatures because larger temperature and pressure
gradients across the sample would be generated.

The fact that there were no visible air-bubbles prior to quenching, and the fact that
the cavitation voids would shrink upon re-heating of the samples, necessarily implies
that what is occurring is indeed cavitation (and not merely air-bubbles trapped in
the sample). Also, the nucleation of the cavities is most likely homogeneous and not
heterogeneous since the voids would cavitate away from any hard surfaces and the
glycerol was theoretically free of extraneous particles.

Figure 6.3 shows the results from a series of preliminary cavitation experiments of
average cavitation void diameter vs. the initial temperature from which the glycerol
was quenched. While there appears to be a slight difference in the average diameter

of the voids, it is not significant. Due to the loss of the video-taping equipment as well
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Figure 6.2: Schematic of glycerol cavitation setup



92

as the long times required to de-gas the glycerol, the experiments were discontinued.
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Chapter 7

Summary and Future

7.1 Conclusions

In this thesis it was demonstrated that it is possible to access the equilibrium state of
the supercooled liquid region of a bulk metallic glass through two methods. First, it is
possible to anneal samples in the super-cooled liquid region (SCLR) and then rapidly
quench them to room temperature. The properties measured at room temperature
are directly correlated to the configuration state of the sample at high temperature.
Second, with the appropriately shaped sample, as well as high enough frequency
transducers, it is possible to measure the in situ sound velocities of glasses in the
SCLR.

A variety of alloy systems with different Angell fragilities were studied: Zr, Pd,
Pt, Au, and Au. In the Vit-4 and Pd systems both the in situ and ex situ data
corroborate one another. Reversibility of the shear modulus between different tem-
peratures was shown in both the in situ and ex situ experiments. There is a distinct
change or “softening” in shear modulus seen above the glass transition temperature

as the dependence of the elastic properties changes from a purely thermal-expansion
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dependence to a configurational potential energy/entropy dependence. The results
show that both methods of measurement are representative of the equilibrium liquid,
and that what is being measured is the isoconfigurational shear modulus.

In the recently developed Cooperative Shear Model, the barrier height to configu-
rational change is hypothesized to be directly proportional to the shear modulus.(35)
Utilizing this barrier height in the general formulation of viscosity, a relationship

between shear modulus and viscosity has been established.

7.1.1 The Big Picture

While interesting and novel, the experimental work presented in this thesis is better
understood in the context of the “big picture.” In this thesis we demonstrated how
to measure in situ elastic properties of bulk metallic glasses below and through the
glass transition region and we presented results from a variety of systems. By com-
bining ultrasonic G(T) data presented in this thesis with other experiments in both
enthalpy recovery and strain rate dependence of G we can get the configurational
potential energy dependence of G.(6) In Chapter 3 it was shown that the shear sound
velocity, and hence shear modulus, was a reversible property of the equilibrium lig-
uid; this set the stage for testing the hypothesis that the shear modulus may have a
unique functional dependence on the configurational energy of the system. Harmon
et al. demonstrated that for the liquid of a glassy specimen that both mechani-
cal “relaxation” (via compression) and thermal relaxation (via annealing relaxation
el

measurements) yield essentially the same & (or %) slope.(7) This implies that the
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configurational dependence of these mechanical properties are a unique function of
the position in the configurational landscape.

In the Harmon et al. experiments samples of Pt and Pd were deformed at various
strain rates at constant temperatures. The ultrasonic properties of the samples at
room temperature were then measured. Then the samples were then put in the Differ-
ential Scanning Calorimeter and the “recovery enthalpy” was measured for both the
deformed samples and the undeformed reference sample. From the recovery enthalpy
the amount of stored configurational potential energy was computed.

Table 7.1.1 shows the summary of the % slopes from Figure 7.1. The data for
Vit-1 and Pts7.9Ni53Cuy147P9s 5 are reproduced exactly from that measured by Har-
mon. However, the data for PdysNi;qCugr Py was adjusted by the Debye-Gruinesen

parameter measured in this thesis (presented in Chapter 5)and not the one utilized

in the Harmon thesis (from (78)).

| system | dG/dAh (GPa/J2%%) |
Vit -0.01695 £0.00123
Pt57.2Ni5 5Cu147Pa2 5 -0.03105 £0.00213
Pdy3NijgCuarPyg -0.02305 £0.00225

Table 7.1: Summary of Slopes from Figure 7.1

system dG/dT dAh/dT dG/dAh
(GPa/K) (MJ/m?*K) (GPa/24%)
Vit-4 -0.0350 1.77* -0.0198
Pt57.9Ni5 3Cu147P22 5 -0.08** 2.56%* -0.0313
Pdy3NijgCugrPyg -0.0527 2.5%% -0.021

Table 7.2: * = data from (2); ** = from (7)

dG

“xy; Slopes given in Tables 8.1 and 8.2 we see that to within

By comparing the
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error the slopes of G from thermal relaxation and mechanical relaxation are very
similar. This implies that G is a unique function of the configurational potential
energy landscape, or that each configuration of a glass (or even the crystalline form
of the glass) has a unique shear modulus.

Figure 7.2 depicts the in situ data measured in this thesis as well as additional
data recently measured by Wang for a Cerium-based glass.(8) This figure leads us to
believe that there might be a correlation between the shear modulus and the glass
transition temperature of the alloy. Noting that the Ce-based alloy has a much larger
atomic volume than any of the alloys measured in this thesis, the following correlation

was proposed:

(7.1)

Where G is the shear modulus, v is the atomic volume, and kg is Boltzmann’s con-
stant.
Or in other words that

kb;g = constant. (7.2)

The shear modulus, G, can be thought of as an energy density posessing units of

[J/m?], the atomic volume has units of [m?/atom], and Boltzmann’s constant has

units of [J/K]. Thus the ratio %’ has units of [KK/atom] or essentially temperature.
Taking additional room temperature data for an iron-based glass, as well as G(T)

data for silica (SiOg), an organic glass, Figure 7.3 was generated using Equation
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7.1.(79)(80) As can be seen from Figure 7.3 there is a strong, nearly linear, correlation

between the proposed ratio, %, and the glass transition temperature of the alloys.
B

The raw data and calculated quantities used in Figure 7.3 can be found in Appendix
A.

The equation for the linear fit in Figure 7.3 is:

G
T, = 67.56 + .01198 k—“ (7.3)
B

with an R? value of .98.

This is a novel correlation from which it is possible to predict the glass transition
temperature from the elastic properties and atomic volume of a glass. This correlation
can potentially be used to help guide the design of new bulk metallic glasses with

specific glass transition temperatures.

7.2 Possible Future Experiments

7.2.1 Pure Shear

The concept of measuring in situ elastic properties via a notched sample opens up
many potential future experiments. An experiment proposed, in very rough form, by
Professor Johnson would be to study the shear modulus in situ in a metallic glass
sample under pure shear. One possible geometry enabling this would be a cylinder
with a large diameter but relatively small wall-thickness, that would approximately

replicate pure shear in the wall-thickness area when placed in torsion. Another pos-
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stant, and the glass transition temperature. The R? for the linear fit found in 7.3 is
.98, the slope of the fit is .01198.



102

sible geometry, utilizing the “notch” concept, is pictured in Figure 7.4. The sample
is designed with “legs” that stick up and down so the sample can be placed in com-
pression. The inner area between the “notches” will essentially be in pure shear, and
a transducer can be placed to measure width-wise across the sample in the region
between the 2 notches. Then the in situ behavior of the shear sound velocity can be
studied. Additionally, the polarization of the shear wave and how this responds to

the current state of stress in the sample can be studied.

7.2.2 The Undercooled Liquid, From High Temperature Down

The true challenge is to experimentally measure the shear sound velocity of glassy
samples completely through the undercooled liquid to try and determine the exact
shape of the C5(T") or G.(T') curves. In this thesis it was shown that the supercooled
liquid region can be accessed in an ex situ manner by annealing samples in the SCLR
and then rapidly quenching them to freeze in the configurational state. Experimen-
tally the fundamental limitation of this technique is how quickly the quenching can
happen, at a certain limit (approximately 50 degrees above T,) the rate at which a
millimeter-sized sample can be quenched in the laboratory is no longer faster than
the relaxation timescale in the sample; thus the true configurational state of the alloy
is not captured. The second technique introduced in this thesis was measuring the
in situ shear sound velocity in a long-rod sample with a reflective notch cut into
it. The fundamental limitations of this technique are having to use alloys capable

of being cast into rods greater than four-millimeters in diameter and that the shear
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transducer

/\ Notches cut into sample

Figure 7.4: Pure shear: by placing the sample in compressing where the arrows are a
“gauge” section of pure shear between the notches can be created.
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sound velocity attenuated out at temperatures 70-100K above the glass transition
temperature when using a 25-MHz transducer.

With a high-enough frequency transducer it would be possible to both probe
higher into the SCLR as well as potentially completely melt the sample (as in Elec-
trostatic Levitation Experiments(81)) and then undercool the liquid into the glassy
region. Using a very high frequency transducer it might be possible to measure elastic

properties in this undercooled liquid region.

7.2.3 Frequency Dependence of the Elastic Properties in the

SCLR

Another interesting project to tackle would be to study the frequency dependence of
the elastic properties in the supercooled liquid region. This could either be done by
doing a series of measurements with transducers of varying frequencies, or by obtain-
ing a transducer with a tuneable frequency range. From the acoustic attenuation,
more information could be gathered about the g-relaxation, or the “slow” relaxations

of the liquid.

7.2.4 Other Elastic Properties

It would be of value to perform in situ longitudinal sound velocity measurements
of the BMGs studied in this thesis. Due to material availability constraints in situ,
longitudinal measurements were not performed. The palladium- and platinum-based

glassy samples were recast a few times for repeated in situ shear measurements,
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however it is believed that after a few recastings a significant amount of phosphorous
is lost and the alloy composition has changed slightly. Therefore the samples were

not used for longitudinal measurements.

7.2.5 Viscosity/Shear Modulus Connection

To further study the viscosity /shear modulus connection proposed in this thesis and
elsewhere it would be beneficial to study a glass for which good viscosity data exists
for both low temperature (via parallel plate rheometry and beam bending) and high
temperature (via electrostatic levitation). It would also be beneficial to be able to
probe further into the SCLR, which could most likely be accomplished with higher
frequency transducers. An appropriate alloy for this would be Gang Duan’s GHDT
(Gang’s High Delta-T) alloy; there exists good viscosity data for it, and it should be
simple to make a sample with the appropriate geometry for in situ notched measure-

ments.
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Appendix A
Raw Data Used Throughout Thesis

This appendix contains the raw data for the graphs provided throughout this thesis.

time (s) temp | p G (GPa) error K (GPa)
K) | 2

0 652 | 6.038 | 32.73329 0.52 109.28749
900 569 6.054 | 34.48983 0.51 110.55314
1800 569 6.054 | 34.58984 0.5 110.65314
2700 567 | 6.044 | 34.60807 0.38 110.46677
3600 567 | 6.036| 34.61807 0.25 110.36677
5400 567 | 6.063 | 34.89807 0.38 110.86677
7200 567 | 6.041 | 34.73806 0.23 110.36677
10800 567 | 6.027 | 34.80806 0.38 110.16677
14400 567 | 6.02 | 34.81807 0.23 110.26676
21600 567 | 6.084 | 35.19807 0.21 111.46677
36000 567 | 6.073 | 35.30806 0.16 111.46677
36900 648 6.073| 32.80975 0.23 109.97475

Table A.1: Vitreloy-4 ex situ data used in Chapter 3 for relaxation figure

It is thought that the relaxation time for (*) the sample quenched from 671K is
faster than the time it took to quench the sample, therefore this point was excluded

from computations in the thesis.
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temp | p G K
K 25 | GPa GPa
567 | 6.08 | 35.41 £0.19 110.89 £0.72
586 | 6.087| 34.99 £0.16 111.14 £0.71
599 | 6.057| 34.43 £0.14 110.55 £0.59
quenched 623 | 6.031| 33.74 £0.229 | 108.90 £0.848
from around 646 | 6.026| 33.19 £0.13 108.34 £0.58
T, 648 | 6.073| 32.81 £0.25 110.01 £0.96
653 | 6.059| 32.65 £0.33 108.76 £0.96
665 | 6.004| 31.97 £0.1 106.91 £0.4
671* | 6.041 | 32.05 £0.35 108.25 £1.18
298 | 6.073| 37.76 £0.16 112.95 £0.69
273 | 6.078 | 38.1 £0.19 113.68 £0.76
quenched 248 | 6.083 | 38.34 +0.2 113.09 £0.85
from 579 K in | 238 | 6.085| 38.47 4+0.18 113.73 £0.81
situ low T 228 | 6.087| 38.52 £0.42 113.86 £0.85
measurement | 218 | 6.089 | 38.73 £0.71 113.74 +1
207 | 6.092| 38.7 £0.3 114.07 £0.76
195 | 6.094 | 38.78 +0.24 114.09 £0.84
7 6.118 | 39.89+0.25 114.87 £0.8
298 | 5.981 | 34.84 +£0.20 109.60 £0.82
quenched 273 | 5.986| 35.17 £0.21 109.53 +£0.82
from 663 K in 248 | 5.991| 35.53 £0.18 109.76 £0.90
situ low T 233 | 5.994 | 35.57 £0.20 109.90 £0.85
meastrerment 208 | 5.999| 35.79 £0.19 110.29 +£0.84
196 | 6.001| 35.82 £0.20 110.30 £0.90
78 6.025| 36.84 +0.20 110.82 £0.97

Table A.2: Vitreloy-4 ex situ data used in Chapter 3
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temp | G (Gpa)
(K)
295 35.99264
283 36.09144
273 36.22839
263 36.34365
253 36.2361
Pd quenched | 243 36.51842
from 300C 232 36.71022
223 36.8711
212 37.03427
203 37.16012
197 37.09981
294 34.68757
283 34.86785
273 35.03373
262 35.22399
Pd quenched | 253 35.28259
from 350C 243 35.4391
232 35.5652
222 35.69034
210 35.80849
201 35.86703
531 33.66
Pd quenched | 573 32.11
around Tg 597 31.17
623 29.84

Table A.3: Raw data for ez situ measurement of Pdy;3NijqCusrPoy. Data utilized in
Chapter 3
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| temp (K) | G (Gpa) |

291 27.68
281 27.38
273 27.89
263 27.7
253 27.87
242 28.19
233 28.3
222 28.45
212 28.6
AusaPdy 3Cugg 95165 ggg 3?(759
303 27.58
312 27.48
323 27.11
333 26.98
343 26.81
353 26.54
363 26.25
373 26.08
384 25.95

Table A.4: AusoPds3Cugg2Sijg s in data used in Chapter 4
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temp G (Gpa) K (GPa)

(K)

202 | 25.37 (£1.6) 135.94 (£11.12)
273 25.64 (£1.7) 142.77 (£11.58)
263 | 25.9979 (£1.70) 139.59 (£11.47)
249 26.19 (:i:1.70) 139.18 (:|:11.61)
239 | 25.97 (£1.69) 138.28 (£11.34)
223 26.46 (£1.76) 141.11 (:|:11.70)
209 | 28.05 (£1.81) 136.91(11.44+)
196 | 28.29 (£1.83) 137.24 (£11.47)
302 24.81 (:i:1.60)

311 | 24.67 (£1.60)

321 24.51 (£1.59)

331 | 24.39 (£1.57)

341 24.09 (£1.56)

351 | 23.84 (£1.54)

361 | 22.99 (£1.49)

371 | 21.79 (£1.41)

381 | 21.01 (£1.36)

380 | 25.24 (£1.63)

307 | 26.86 (+1.99)

410 | 29.29 (£3.29)

Table A.5: Aus5CussSigg in data used in Chapter 4

Table A.6: Raw data for first low temperature insitu measurement of Pdy3NijgCusrPog

temp G (Gpa)
(K)
292 35.58364
283 35.66533
273 35.81919
263 35.89503
below RT 253 36.06713
measure 1 243 36.13861
233 36.32636
223 36.486
212 36.56275
202 36.67337

using a notched-sample. Data utilized in Chapter 5
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temp G (Gpa)
(K)
296 35.48937
303 35.47411
314 35.36828
323 35.24654
334 35.11909
344 35.00978
353 34.89684
363 34.77235
374 34.64708
383 34.53992
404 34.33766
416 34.21947
430 34.08778
443 33.87088
454 33.96243
463 33.68667
473 33.56636
488 33.35281
498 33.23855
506 33.09554
513 32.95087
524 32.79779
538 32.63421
553 32.21432
571 31.63317
580 31.28962
593 30.65796
603 29.81559
613 29.05621
623 28.57605
560 31.78526
552 32.10213
542 32.39524
500.5 33.28298
480.5 33.73789
462 34.19926
down 1 387 35.02436
363 35.2689

351.5 35.43088
333 35.62118
321 35.75765
313 35.86724

Table A.7: Raw data for first insitu measurement of Pd43Ni;gCuyrPog Data utilized
in Chapter 5
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temp G (Gpa)
(K)
297 36.39947
303 36.44485
313 36.17474
323 36.22495
333 36.06041
342 35.95741
360 35.75488
368 35.63684
383 35.32959
393 35.29509
403 35.16167
413 35.10182
423 34.8979

433 34.87874
443 34.60229
453 34.44337
up 2 463 | 34.2593

473 34.08893
483 33.87924
493 33.66119
503 33.51196
514 33.46017
523 33.0706

533 32.82103
543 32.60297
553 32.37355
560 32.1922

575 31.76172
583 31.44908
593 30.88289
603 30.21278
613 29.84333
623 29.28684

Table A.8: Raw data for second insitu measurement of Pd3Ni;oCuyrPyy Data utilized
in Chapter 5
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temp G (Gpa)
(K)
302 36.87562
313 36.76262
323 36.72329
333 36.57658
343 36.51878
354 36.3852

363 36.37439
373 36.23046
383 36.20117
393 36.05788
403 36.04086
413 35.88966
423 35.86733
433 35.71716
443 35.68298
453 35.54845
first-heat 463 35.50202
473 35.40168
487 35.36307
503 35.23982
518 35.24286
553 35.00363
568 34.81916
584 34.67866
603 34.35931
633 33.3271

643 33.00926
653 32.2301

663 31.72159
673 31.44534
682 31.37942
690 30.9452

Table A.9: Raw data for first heat up insitu measurement of Vit-4 Data utilized in
Chapter 5
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temp G (Gpa)
(K)
602 34.41919
588 34.59234
573 34.89462
551 35.03606
532 35.34191
518 35.43351
503 35.74916
483 35.81062
463 35.98399
443 36.21371
first-cool 418 36.43832
403 36.49755
392 36.78876
381 36.65106
368 36.98883
358 36.97014
348 37.18894
338 37.04135
328 37.27681
318 37.74707
289 37.67488
278 37.79953
273 37.8234

263 37.89281
253 37.99392
243 38.07541
232 38.18568
222 38.25257
213 38.35791
203 38.44957

below RT

Table A.10: Raw data for first-cool down insitu measurement of Vit-4 Data utilized
in Chapter 5
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temp G (Gpa)
(K)
296 37.67649
303 37.60464
313 37.52503
324 37.43163
333 37.05758
344 36.95239
353 36.86785
363 36.79318
374 36.67642
383 36.61338
393 36.53564
403 36.48232
412 36.62466
423 36.20803
433 36.08934
443 36.00677
453 36.37551
463 35.97897
473 35.76807
483 35.70824
493 35.65238
502 35.61342
513 35.42794
523 35.28185
533 35.21466
543 35.15443
553 34.98145
563 34.85331
573 34.75314
583 34.55588
602 34.41189
623 34.0678

633 33.63608
643 33.29753
653 32.79695
663 32.36095
673 32.16158
683 31.84416
693 31.66044
703 31.78825
713 31.04972
723 29.85022

second heat

Table A.11: Raw data for second insitu measurement of Vit-4 Data utilized in Chapter
5
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temp G (Gpa)
(K)
295 33.15869
283 33.25892
273 33.339
263 33.45884
253 33.6449
238 33.77207
223 33.87518
208 34.07141
197 34.09158
&1 35.30846
294 33.10209
301 33.0627
310 32.9885
321 32.87135
330 32.76817
341 32.64994
351 32.53283
359 32.39799
up 1 371 32.27397
381 32.15208
390 32.03416
400 31.93798
410 31.83241
419 31.72435
433 31.61566
444 31.49529
455 31.30687
465 31.26048
474 31.00978

below RT

Table A.12: Raw data for second insitu measurement of Pt Data utilized in Chapter
5
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temp G (Gpa)
(K)
477 31.14015
466 31.41289
457 31.5812

449 31.75848
441 31.8842

429 32.08582
420 32.18004
410 32.32504
down 1 401 32.45612
390 32.58112
380 32.71501
371 32.79527
360 32.92986
350 33.02791
339 33.16717
330 33.26739
320 33.37782
311 33.46876
305 33.53416
304 33.53587
312 33.49373
323 33.39058
332 33.34468
342 33.16837
351 33.12906
361 32.94601
371 32.89588
380 32.7076

388 32.67507
399 32.47483
408 32.36843
418 32.32019
428 32.10372
438 32.04965
448 31.75807
458 31.65922
468 31.36342
476 31.2868

Table A.13: Raw data for second insitu measurement of Pt Data utilized in Chapter
5
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temp G (Gpa)
(K)
470 30.64872
457 30.87306
445 31.10677
429 31.54443
408 31.71097
386 31.97689
Qo 375 31.85923
358 32.10225
349 32.20224
341 32.28284
324 32.46444
312 32.59524
307 32.63617
302 33.1143
312 33.00739
322 32.96685
332 32.78485
342 32.74542
351 32.5441
360 32.49815
371 32.29783
381 32.31547
up 3 391 32.12847
401 32.09898
414 31.85397
423 31.81537
432 31.58593
443 31.54444
453 31.26734
462 31.24339
475 30.79009
296 33.59248
284 33.71287
273 33.86548
262 34.05617
253 34.16542
below RT 241 34.34757
230 34.46097
221 34.57061
211 34.72467
203 34.80179

Table A.14: Raw data for second insitu measurement of Pt Data utilized in Chapter
5
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temp G (Gpa)
(K)
296 33.54912
303 33.45035
312 33.4017

323 33.16849
332 33.1374

342 32.91724
353 32.78322
364 32.58778
373 32.62445
383 32.33864

recast up 1| 394 32.31097
403 32.1343
414 32.00841
423 32.07532
433 31.76648
442 31.71531
453 31.50244
463 31.40298
473 30.97441
293 33.90852
9283 34.08923
9273 34.23272
263 34.34678

below RT 253 34.54364

243 34.66153
233 34.82639
223 34.90266
213 35.06396
203 35.22892
77 36.34599

Table A.15: Raw data for second insitu measurement of Pt Data utilized in Chapter
5
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temp G (Gpa)
(K)
298 33.68044
297 33.68395
303 33.61008
313 33.5342
323 33.33642
333 33.24906
343 33.03549
354 32.91378
364 32.77534
up 373 32.75658
384 32.51865
393 32.49399
403 32.29044
413 32.30473
423 32.04259
433 32.09641
443 31.83423
453 31.84619
463 31.70828
473 31.46491
453 31.54883
442 31.52425
428 32.1221
413 32.09741
397 32.39583
383 32.49536
373 32.71111
353 33.27713
343 33.59026
333 33.61646
328 33.67586

down

Table A.16: Raw data for second insitu measurement of Pt Data utilized in Chapter

>
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temp G (Gpa)
(K)
298 34.01433
303 33.98378
313 33.83026
323 33.71702
333 33.54035
343 33.45704
355 33.19669
363 33.22613
373 32.95389
up 383 32.85135

393 32.89061
405 32.61134
413 32.36073
423 32.42679
433 32.09758
443 32.30637
453 31.65473
463 31.74866
473 31.60882

Table A.17: Raw data for second insitu measurement of Pt Data utilized in Chapter
5
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Appendix B
Adhesive Charts

Adhesive test results

: Manufacturer| Transmit? | Low T | High T | Removal
Material
°C °C
super glue Krazy yes 25 50 acetone, force
crystal bond yes 25 70 acetone or heat
SuperLock 2277 Devcon yes 25 50 acetone, heat
SuperLoc 2609 Devcon yes 25 50 acetone, heat
Mylar A Dupont- yes 25 100 heat
Teijin poly-
mer
High Quality || Big Swell yes 0 150 acetone, cold
S-250A Clear Sand-
ing Resin  with
catalyst
Torr-Seal Varian yes -195.8 50 acetone, force,
prolonged
exposure to
LN2

Table B.1: Tested Adhesives and Cements that Work



123

Material Manufacturer | Transmit? Removal
candle wax No force, heat
Structural Adhesive Scotch-Weld No
The Welder NY  Bronze | No

Powder Co.
2216 3M Scotch | No
Weld

101Br Ultra-Copper || Permatex No
High Temp RTV Sil-
icone
UHU Alles-Kleber No
S00601 Red Insulat- || Sherwin- No
ing Varnish Williams
Resbond 907GF ad- || Cotronics No
hesive sealing putty
Resbond 907 Green || Cotronics No
Thread Locking
Resbond 797 Cotronics No force
Resbond 940LE Cotronics No
In solder no, would

not wet
quartz

Table B.2: Tested Adhesives and Cements that Do Not Work




124

Appendix C

Catalogue of Ultrasonic Measured
Properties for Glasses

Unless otherwise noted, the results presented in this table are for “as-cast” alloys,
most of these alloys were cast by copper-mold casting in the“casting box” in Keck
320. The density of the samples was measured via Archimedes principle according to
American Society for Testing of Materials (ASTM) standard C 693-93, on occasion
the density was estimated from that of the pure elements. To my best knowledge the

alloys in the following table were glassy at the time of measurement.
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d P G K 14 Cs Ol

Alloy (mm) ] GPa | GPa o o
Zrs5BessCugg 1 6.245 | 33.72 | 108.05| 0.359 | 2323.7| 4949.7
(0.104) (0.82) | (2.75) | (0.004) (29.2) | (14.6)
ZreoBear5Cuias 6.049 | 32.75 | 120.19| 0.375 | 2326.9| 5204.8
(0.040) (0.33) | (1.32) | (0.002) (12.7) | (14.8)
ZrssBegr 5Cuirs 6.212 | 33.80 | 108.62| 0.359 | 2332.5| 4973.8
(0.024) (0.13) | (0.64) | (0.001) (1.8) | (5.0)
Zrs75Bess s Cugg 6.279 | 30.92 | 106.17| 0.367 | 2219.0| 4845.0
(0.026) (0.14) | (0.64) | (0.001) (3.4) | (2.9)
Zrs75BegsCuyrs 6.195 | 31.54 | 105.09| 0.364 | 2256.5| 4873.7
(0.011) (0.07) | (0.31) | (0.000) (2.6) | (3.9)
Zrs7 5 Bear 5Cugs 6.142 | 32.50 | 105.63| 0.360 | 2300.2| 4924.7
(0.024) (0.13) | (0.67) | (0.001) (2.1) | (7.0)
ZreoBegnCugg 6.454 | 30.30 | 106.05| 0.370 | 2166.6| 4763.5
(0.016) (0.09) | (0.49) | (0.001) (2.4) | (7.0)
ZresBeisCuyg 5.952 | 30.53 | 103.11] 0.365 | 2264.7| 4915.4
(0.168) (0.87) | (4.15) | (0.007) (8.1) | (7.4)
Tiy5Z1r90Bess 4.587 | 35.70 | 95.40 | 0.334 | 2789.8| 5583.4
(0.023) (3.60) | (16.83) (0.028) (198.4) (453.6
Tis0Zrss Bess 4.906 | 36.37 | 111.37| 0.353 | 2722.8| 5708.6
(0.057) (0.56) | (2.75) | (0.004) (19.6) | (49.3)
Ti11Zr54Begs 5Cuqa 5 5.991 | 30.29 | 103.48] 0.367 | 2248.4| 4900.3
(0.009) (0.07) | (0.31) | (0.000) (2.7) | (5.0)
TigZrs1 BeasCuqs 5.972 | 31.76 | 104.29| 0.362 | 2306.1| 4955.1
(0.010) (0.07) | (0.34) | (0.001) (2.5) | (5.7)
(0.014) (0.10) | (0.47) | (0.001) (3.2) | (6.9)
(0.034) (0.81) | (3.71) | (0.005) (39.6) | (85.9)
CugoZr50Ag10 1.7365 7.554 | 31.56 | 117.2 | 0.376 | 2044.0| 4591.4
(0.0015) | (0.046) (0.20) | (1.0) | (0.001) (2.1) | (4.6)
(0.0015) | (0.044) (0.23) | (1.2) | (0.002) (3.1) | (125

)
(0.0034) | (0.021) (0.13) | (3.7) | (0.005) (3.9) | (82.5)
Zrs95BegnCuars 1.3119 6.476 | 34.37 | 113.9 | 0.363 | 2303.9| 4966.7
(0.0022) | (0.054) (0.36) | (1.6) | (0.002) (10.3) | (16.7)
Zryo5Bea5Cuss 1.6713 6.407 | 33.84 | 110.1 | 0.361 | 2298.4| 4922.3
(0.0000) | (0.024) (0.14) | (0.6) | (0.001) (3.0) | (4.5)
(0.0055) | (0.023) (0.24) | (1.1) | (0.002) (9.8) | (20.8)
Z 595 Bear 5Cigg 2.3216 6.178 | 36.10 | 110.1 | 0.352 | 2417.3] 5061.1
(0.0000) | (0.089) (9.97) | (10.2) | (0.021) (471.4) (3.0)

Table C.1: Ultrasonic Material Properties of Zr-Be based alloys created by Gang
Duan
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d P G K v C, C

Alloy (mm) | % | GPa | GPa m m
dg269 6.414 | 36.57 | 117.95 ] 0.359 | 2387.9 | 5098.3
(0.029)| (0.24) | (0.89) | (0.001)| (8.1) | (9.1)
dg303 5.359 | 34.04 | 105.08 | 0.354 | 2520.4 | 5298.9
(0.010)| (0.09) | (0.40) | (0.001)| (3.7) | (7.1)
dg302 5.931 | 2850 | 100.04 | 0.370 | 2192.3 | 4824.6
(0.012)| (0.10) | (0.45) | (0.001)| (4.4) | (8.6)

Table C.2: Unpublished alloy results from Gang Duan
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Appendix D

Error Propagation

This section briefly demonstrates how to calculate error propagation through ultra-
sonic measurements. It is important to note that measurement errors in parameters
like sample thickness and density can have large effects on the final value determina-
tion.

This is by no means a comprehensive introduction to either statistics or error, but
simply a quick overview explaining how the error was calculated in this thesis. For
more complete introduction to error and statistical analysis the books by Bevington

and Skoog are referenced for the reader. (82, 9)

D.1 Basic Concept of Error

Typically quantities are measured in the laboratory, and then these quantities are used
to calculate things of interest (e.g. shear modulus, bulk modulus). When measuring
a quantity in the laboratory, there are two main types of uncertainty: instrumental
and statistical. Instrumental uncertainty are fluctuations in readings of an instrument

due to either the human effect, imperfections in the equipment or some combination
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of both. Statistical uncertainty

D.2 Basic Formula

Af = Zn: {%m} 2 (D.1)

=1

f = flxy,29,23,...,x,) A\f = error in f Az; = error in x;

Type of Calculation | Example Standard Deviations

addition or subtrac- | y=a+0b—c Sy = /82 + 82 + s

tion

multiplication or di- | y =a-b/c L= () 4 ()2 ()7

vision

exponentiation y=a” %y = /2

logarithm y =logpa sy = 0.4342

antilogarithm Y = %’ = 2.303s,
antilogpa

Table D.1: Error Propagation in Arithmetic Calculations table reproduced from (9)

D.3 Density

from American Society for Testing of Materials (ASTM) standard C-693

Wan - Wwpa
W, — W,

p= (D.2)

W, is the weight of the sample in air, W, is the weight of the sample in water, p,,

is the density of the water, and p, is the density of the air.
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D.4 Shear Modulus

The shear sound velocity as defined in Section 1.2 is :

_ e |G
ct_\/; \fp (D.3)

The error in measurement, A¢,, for the shear sound velocity is

o= () (2 D

where C} is the calculated shear sound velocity, d is the measured thickness of the

sample, \; is error in the measured thickness of the sample, t, is the measured time
for the signal to travel through the sample and )\, is the measured error for the shear

traveling time

o=y () (%) 03

Following Equation D.1 the error can be propagated very easily for the longitu-
dinal sound velocity, bulk modulus, Possion ratio, and any other quantity for which

calculation is desired.



130

Appendix E

Matlab Script

This the the Matlab program and function referred to in Section 2.1. The function
estimate delay ft may be used independently of the main program. The inputs to
the function are two 2x2 arrays of times and voltages, and the outputs are the cross-
correlated time to overlap the two input arrays; this is also displayed in a graph for
a visual check to ensure the cross-correlation was indeed successful. To use the main
program, the files must be names sequentially; the the program utilized the function
to process a batch of stored wavefunctions. The purpose of the fast fourier transform
in the estimate delay function is to provide a quick check that the signal captured
was indeed the intended signal - the FFT spectrum should be centered around the
operating frequency of the transducer; if the FFT is not found to be so, most likely

the measurement should be discarded and taken again.

0001 close all;

0002 clear all;

0003 format long;

0004

0005 outputfilename =input(’Please enter full path name for output: ’,’s’);
0006

0007 outfile = fopen(outputfilename, ’at’);

0008 fprintf(outfile, ’\n\n’);

0009 fprintf(outfile, ’name average round trip delay time stdev\n\n’)



0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
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firstwave = input (’Enter full path of 1st reflec.,non-seq. part: ’, ’s’);

totalmeas = input(’Please enter total number of measurements: ’);

numreflec = input(’Please enter number of reflections: ’);
%file read in loop created by N. Lundbliggity!
for i = 1:totalmeas
for j = l:numreflec
filenamestring = [’’’’ firstwave num2str(i) ’ R’ num2str(j) ’’’’];
eval([’array’ num2str(i) ’_’ num2str(j) ’ = spcread(’ filenamestring ’);’].
end
end
n-=1;
for i = 1l:totalmeas
for j = 2:numreflec
[delay(n)] = (eval([’estimate delay ft(array’ num2str(i) ’.1° ’,arr
num2str(i) ’_’ num2str(j) ’);’ 1))/(-1);
n = n+l;
end
end
avg = mean(delay)

stdev = std(delay)

fprintf (outfile, ’%s Y5 %f\n’ ,firstwave,
avg, stdev);

fclose(outfile);

Function Estimate Delay FT that is called by main program

0001
0002
0003
0004
0005

function timeDelay = estimate delay(X,Y)

%y make sure that X is the input
if (X(1,1) > v(1,1)
temp = Y;



0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
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Y = X;
X = temp;
end
% compute the total length of the vectors

totalSamples = max(length(X), length(Y));
timeStep = X(2,1)-X(1,1);

% compute the cross-correlation and find the max
Z = xcorr(X(:,2), Y(:,2));
[maxZ, maxInd] = max(Z);

% compute the associated time-delay
indexDelay = totalSamples - maxInd;
timeDelay = indexDelay*timeStep + Y(1,1) - X(1,1);

% plot stuff
plotMyStuff (X,Y,Z,indexDelay, timeDelay);

function [ ] = plotMyStuff(X,Y,Z,indexDelay, timeDelay)

% plot the input
figure(1)
subplot(2,2,1)

plot (X(:,1), X(:,2))
xlabel (’time’)
ylabel(’amplitude’)
title(’Input Waveform’)

% plot the received wave
subplot(2,2,2)
plot(Y(:,1), Y(:,2))
xlabel(’time’)

ylabel (’amplitude’)
title(’Received Waveform’)

% plot the correlation analysis
subplot(2,2,3)
plot([1:1length(Z)]-length(X), Z)
xlabel(’offset’)
ylabel(’correlation’)
title(’Signal Cross-Correlation’)

% plot the alleged overlap



0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
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subplot(2,2,4)

if (indexDelay >= 0)
plot (X(:,2))
hold on
plot(Y(indexDelay+1l:end,2),’r’)
else
plot (X(abs(indexDelay) :end,2))
hold on
plot(Y(:,2),’r’)
end

xlabel (’shifted time’)
ylabel (’amplitude’)

title([’Optimal Time-Delay: ’, num2str(timeDelay), ’ms’])
legend (’Input’, ’Received’)

hold off

A= £fft(X(:,2));

As = A.xconj(A);
B = fft(Y(:,2));
Bs = B.*conj(B);

ts = round ((X(2,1)-X(1,1))*10)/10;
freqstep = 1/(ts*10"-6*length(X));
freq = (1:fregstep: (length(X)*freqstep));

figure(2)

subplot(2,1,1)

plot (freq(1:50),As(1:50));
xlabel (’R1 frequency’);

subplot(2,1,2)
plot(freq(1:50),Bs(1:50));
xlabel (’R2 frequency’);
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