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Abstract

Neurons have been identified in the human medial temporal lobe (MTL) that display
a strong selectivity for only a few stimuli (such as familiar individuals or landmark
buildings) out of perhaps 100 presented to the test subject. While highly selective for
a particular object or category, these cells are remarkably insensitive to different pre-
sentations (i.e., different poses and views) of their preferred stimulus. This invariant,
sparse, and explicit representation of the world may be crucial to the transformation
of complex visual stimuli into more abstract memories. In this thesis I first discuss
the issue of how best to quantify sparseness, particularly in very sparse systems where
biases are significant, and show the results of this analysis applied to human MTL
data. I also provide an overview of existing results from other investigators on mea-
suring sparseness both elsewhere along the primate visual pathway and in selected
other sensory processing systems. From there I move into the computational realm.
Sparse coding as a computational constraint applied to the representation of natural
images has been shown to produce receptive fields strikingly similar to those observed
in mammalian primary visual cortex. I apply sparse coding as a model for processing
further along the visual hierarchy: not directly to images but rather to an invariant
feature-based representation of images analogous to that found in the inferotemporal
cortex. This combination of sparseness and invariance naturally leads to explicit cat-
egory representation. That is, by exposing the model to different images drawn from
different categories, units develop that respond selectively to different categories. Af-

ter extending an existing model of sparse coding and providing some mathematical
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analysis of its operation, I show results obtained by applying this method both to
unsupervised category discovery in images and to differentiation between images of

different individuals.
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Chapter 1

Overview

1.1 Experimental Motivation

The fundamental motivation for the research culminating in this thesis was the results
of Quian Quiroga, Reddy, Kreiman, Koch, and Fried (2005), who recorded the activity
of single neurons in the human medial temporal lobe (MTL), a brain area linked to
memory consolidation and cross-modal association. The recordings were carried out in
the laboratory of neurosurgeon Itzhak Fried at UCLA, with his active participation
in all stages of the experiments. Dr. Fried implants chronic electrodes in patients
with pharmacologically intractable epilepsy for the purpose of localizing the seizure
focus for later resection. In the experiments I describe here, microwires capable
of measuring the activity of individual neurons were included at the electrode tips.
During the roughly one week period of time that the electrodes were in place in
each patient researchers were able to record neuronal activity while the patient—who
volunteered for these studies—participated in various experiments.

Two complimentary experimental paradigms involving the patient viewing natural
visual stimuli form the experimental motivation for my work. In the first, known as a
“screening” session, the patient viewed multiple presentations of roughly 100 different
images of individuals, animals, objects, and landmark buildings presented on a laptop

computer. The goal of this session was to discover at least one stimulus that some
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neuron was selective for. In a subsequent “invariance” session, the patient again
viewed numerous images, but several different images (with varying pose, lighting,
background, etc.) of objects that elicited strong responses in the screening session
were presented in addition to the standard images. Two important discoveries came
out of these two experiments. First, in general, MTL neurons responded strongly
(defined by a threshold above background firing rate) only very rarely—most neurons
did not respond strongly to any image in the screening session, and those that did
sometimes respond strongly only did so to a very small number of images. This
was evidence that MTL employs what is known as a “sparse” code, as opposed to a
“dense” or combinatoric code in which individual neurons would respond much more
frequently. Second, several neurons were identified (and many more have been since)
that responded strongly to many very different images of the same person or object,
but not to images of different objects (even very similar ones), a property known as
“invariance.” The best known example from this study was a neuron that responded
to seven different images of the actress Jennifer Aniston with an average of 4.85 spikes
between 300 and 500 ms after stimulus onset, but was virtually silent otherwise (with
a baseline rate of 0.03 spikes/s and very few spikes in response to other images).
Further investigations have uncovered cells that are invariant not only to different
images of the same object, but also to the name of the object both printed or spoken
aloud (Quian Quiroga, personal communication), underscoring the fact that, while it

receives input from visual areas, MTL itself is not limited to visual processing.

These results suggest a sparse and invariant encoding in MTL and seem to imply
the existence of “grandmother cells” that respond to only a single category, individual,
or object (Konorski, 1967; Barlow, 1972; Gross, 2002), though limitations on the
number of images that can be presented and neurons that can be recorded from
stop us short of making such a controversial claim. Further, these neurons seem

to respond to the high-level “concept” of their preferred object rather than to any
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particular features of the input. The work in this thesis represents an effort to better
understand the behavior of these remarkable cells from two perspectives—quantifying
as precisely as possible the behavior of these cells, and building a computational model

capable of reproducing some aspects of this behavior.

1.2 Outline and Contributions of Thesis

Chapters 2 and 3 of this thesis are devoted to developing a better understanding of
the experimental results first reported by Quian Quiroga and colleagues. First, in
Chapter 2, I discuss the various ways one might answer the fundamental question
“How sparse is the code?” based on experimental data. Sparseness is an important
parameter both for understanding the level of network activity and for quantifying
network capacity (Tsodyks & Feigel'man, 1988; Treves & Rolls, 1991; Meunier, Yanai
& Amari, 1991; Willmore & Tolhurst, 2001; Hahnloser, Kozhevnikov & Fee, 2002),
but no single measure exists that serves these purposes well in all circumstances. |
describe several commonly used sparseness measures and discuss the strengths and
weaknesses of each. I then turn to the practical problem of how to estimate sparseness
based on neural recordings. My primary contributions in this area are to show that the
most direct method for approaching this task breaks down in very sparse regimes such
as the human MTL due to extreme sensitivity to noise, and to propose a less direct but
more robust method for estimating sparseness in this setting. Then, in Chapter 3, I
apply this method to the human MTL data reported by Quian Quiroga et al., showing
that very sparse, though likely not grandmother, coding is employed by MTL. This
work has appeared in journal form as “Sparse Representation in the Human Medial
Temporal Lobe” (Waydo, Kraskov, Quian Quiroga, Fried & Koch, 2006). T also place
this data in the context of experimental results from other systems, both at different

locations along the primate ventral visual stream and in selected other systems such



as rat hippocampus and auditory cortex.

In Chapters 4 and 5, I present a computational model for the human MTL cells
described above and how they can arise as a consequence of an unsupervised learning
process. My central hypothesis is that the two distinct but complimentary compu-
tational principles of sparseness and invariance together naturally lead to the type
of sparse, selective representation observed in MTL. I treat these two principles as
separable, modeling the ventral visual stream as a system for producing invariant,
but not necessarily sparse, representations, then modeling MTL as learning a sparse
representation for the activity of the visual system (without the benefit of a teacher
who labels each image). The process by which a sparse code is learned builds on work
by Olshausen and Field (1996, 1997). In that work, Olshausen and Field developed
a neurally implementable learning algorithm that seeks a sparse representation of
its inputs (meaning one in which the individual coding elements are active rarely),
and applied it directly to natural image patches, learning a set of basis functions for
images much like that observed in mammalian early visual cortex. In Chapter 4 I
describe this process in detail, then extend the model in several ways that improve
both its computational efficiency and its relevance as a model for MTL. In Chapter 5
I apply this model to collections of images of different individuals and categories after
first processing them through one of two different models for invariant feature extrac-
tion. That is, rather than applying the model directly to pixels, as Olshausen and
Field did, I apply it to some invariant representation of image features obtained from
established biologically-motivated machine vision algorithms. Through this learning
process, model neurons emerge that respond selectively to images of particular indi-
viduals or categories, much like those observed in human MTL. Portions of this work

have appeared as a conference paper (Waydo & Koch, 2007a), and a journal version

is in press (Waydo & Koch, 2007b).

Finally, in Chapter 6, I summarize the results of the thesis and outline a number of
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potentially fruitful avenues of future research. Possible extensions include expanding
the scope of the model to cover the entire visual hierarchy (rather than applying it
only at the top and the bottom), implementing the model using more biophysically
realistic neurons, and developing a method for cross-modal association to model the

multi-modal effects briefly mentioned above.






Chapter 2

Quantifying the Sparseness of
Neural Codes

A fundamental question confronting any examination of neural coding schemes is
“How sparse is the code?” (Barlow, 1972; Olshausen & Field, 2004). Sparseness, ei-
ther intuitively defined as how frequently a neuron responds above some threshold or
according to various more general schemes, is an important quantity both for under-
standing the level of network activity and for quantifying network capacity (Tsodyks
& Feigel'man, 1988; Treves & Rolls, 1991; Meunier et al., 1991; Willmore & Tolhurst,
2001; Hahnloser et al., 2002). In later chapters I will explore in detail the sparse-
ness measured along the visual pathway and the implications for neural coding, and
develop computational models of visual processing inspired by these findings. First,
however, I turn to the task of quantifying sparseness. In Section 2.1 I will describe
several candidate measures for sparseness and discuss the strengths and weaknesses
of each. In Section 2.2 I discuss the practical problem of estimating sparseness from
neural recordings. The work in Section 2.2 was performed in collaboration with
Alexander Kraskov and Christof Koch, with additional contributions from Rodrigo
Quian Quiroga and Itzhak Fried in portions that overlap with material published as

“Sparse Representation in the Human Medial Temporal Lobe” (Waydo et al., 2006).
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2.1 Sparseness Measures

While seemingly an intuitive concept, sparseness can be very difficult to rigorously
define and quantify, and the appropriate choice of measure can vary depending on
the nature of the questions being investigated. Several authors have discussed and
compared different measures (Willmore & Tolhurst, 2001; Olshausen & Field, 2004);
what follows is an expanded description of the most common measures, along with

their strengths and weaknesses.

2.1.1 Notation

I denote random variables by capital letters, with corresponding samples in lower case,
i.e., x is a sample of a random variable X. The probability of an event is written
Plevent], so the probability that X takes on a value larger than a is written P[X > al.
The probability density function for X is denoted by fx(x). The expectation operator
is denoted by E[:| or (-), with the special cases of the mean E[X] = ux and the

variance E[(X — ux)? = 0%.

2.1.2 Threshold

The intuitive notion we would like to capture with sparseness is the likelihood that a
neuron will respond “significantly” to any particular stimulus. In the case of a truly
binary neuron (such as in a Hopfield network), then, sparseness can be simply defined
as the probability that a neuron will be in the “on” state. Real neurons, however, do
not necessarily fire in a clean “on/off” fashion; rather a neuron responds with some
rate R to a stimulus. In this more general case, we choose some reasonable threshold

rr and define the sparseness as
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Provided the threshold r is chosen in a meanful way, this definition clearly captures
the basic question of “how active is this neuron?” It is particularly relevant when
attempting to quantify the behavior of neurons that have a strongly bimodal distribu-
tion, such as a neuron that fires with some high mean rate when a preferred stimulus
is present and some low background rate otherwise. For this reason it has been useful
when studying the responses of category- and individual-specific cells in the human
medial temporal lobe (Waydo et al., 2006).

In the case where a neuron has a unimodal distribution of firing rates and signifi-
cant information may be carried in the smoothly varying firing rate (as opposed to a
binary present/not present judgement), this measure may fail to capture important
subtleties in the rate distribution. I shall show below, however, that it may still pro-
vide a reasonable estimate of more sophisticated measures that is robust to noise. I
turn now to two sparseness measures that directly address the issue of continuously

variable firing rates.

2.1.3 Kurtosis

One common definition of sparseness is that a sparse distribution has more probability
density concentrated both near the mean and far from it than a Gaussian of the same
variance (Dayan & Abbott, 2001, p. 378), that is, it has a sharp peak and a heavy
tail. This definition is related to a measure called kurtosis, which is the fourth central

moment of a probability distribution. The kurtosis k of a probability distribution

(R ;R“R)4] . (2.2)

Occasionally an alternative definition k* = k — 3 (sometimes called the “kurtosis ex-

fr(r) is defined as
k=FE

cess”) is used so that a Gaussian distribution has a kurtosis of £* = 0, with less sparse

distributions having negative kurtosis excess and sparse distributions having positive
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Gaussian (0)
= = = Laplacian (3) ||
------ Uniform (-1.2)

Figure 2.1: Kurtosis excess for several probability distributions, each with zero mean
and unit variance. Shown are a Gaussian distribution (solid, £* = 0), a Laplacian
distribution (dashed, £* = 3), and a uniform distribution (dotted, k* = —1.2).

kurtosis excess, though this distinction has no bearing on the following discussion.
Figure 2.1 gives a few examples of probability distributions with zero mean and unit
variance but different kurtosis. Note that larger kurtosis corresponds to a taller peak
and heavier tails, which corresponds well with the intuitive definition of sparseness
described above.

Kurtosis is generally described as reflecting either the “peakedness” or the heav-
iness of the tails of fr, and has the convenient property of being invariant both to
shift and scale. In the neural coding literature large values of k are identified with
sparse codes (Olshausen & Field, 1996; Bell & Sejnowski, 1997; Vinje & Gallant,
2000; Willmore & Tolhurst, 2001). This description, however, comes with the caveat
that kurtosis is only appropriately applied to reasonably symmetric, unimodal dis-
tributions such as those obtained from linear filters or artificial neurons (Vinje &
Gallant, 2000; Olshausen & Field, 2004), and not to the one-sided distributions nec-
essarily obtained from real neurons. Vinje and Gallant (2000) alleviate this difficulty
by reflecting their measured neural responses about zero before computing & (that

is, for each response r they include an artificial response of —r), but in the case of
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bimodal distributions, such as those that may be obtained from neurons involved in

recognition, the meaning of kurtosis remains unclear.

A further challenge confronting the application of kurtosis as a measure of neural
sparseness is its invariance with respect to flipping a distribution about its mean
(because it measures only shape). When evaluated with kurtosis, a neuron that is
highly active, only rarely dropping its firing rate, would be considered just as sparse
as a neuron that is highly inactive, only rarely firing strongly. From an information-
theoretic point of view the two neurons may carry equal information, one conveying
that information by a decrease in firing rate and the other by an increase, but in a
biological context a reasonable sparseness measure should rate the mostly inactive

neuron as much more sparse than the mostly active neuron.

Many of these difficulties stem from the fact that, as a high-order moment, several
disparate factors influence kurtosis and it is difficult at best to capture it intuitively.
Numerous papers in the statistics literature have lamented this difficulty, with com-
ments such as “what do we even mean by kurtosis?” (Bickel & Lehmann, 1975), “there
seems to be no universal agreement about the meaning and interpretation of kurto-
sis” (Moors, 1986), and “there is no agreement on what kurtosis measures” (Ruppert,
1987). Darlington first challenged the traditional interpretation of kurtosis, arguing
that “kurtosis is best decribed not as a measure of peakedness versus flatness, as in
most texts, but as a measure of unimodality versus bimodality” (Darlington, 1970).
This view was later found to fall short of capturing the essence of kurtosis, and the
most precise interpretation is the intuitively unsatisfying one that kurtosis measures

the dispersion of the distribution about the two points p + o (Moors, 1986).

For the reasons outlined above I conclude that, while kurtosis may be a useful
tool for interpreting the sparseness of filters and artificial neurons with symmetric
response distributions, it may not be appropriate for interpreting real neural data.

This is particularly true in the case of bimodal response distributions that may be
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obtained, for example, from neurons that fire strongly to some preferred stimulus and

weakly or not at all to other stimuli.

2.1.4 Treves-Rolls Sparseness

Treves and Rolls (1991) present an alternative measure of sparseness more appropriate
for application to neural data. Let fr(r) be the probability density function for the

neuron’s response rates. They defined

(2.3)

that is, the square of the mean response divided by the mean squared response. With
this definition the (dimensionless) sparseness a varies between 0 and 1, and small
values of a correspond to sparse representations. This definition has two convenient
properties. First, in the case of a binary neuron that responds to a stimulus with
probability ¢ (and has zero response otherwise), a = ¢; so indeed, a is the probability
that the neuron responds significantly. Second, from elementary properties of the

mean and variance we can rewrite Equation 2.3 as
2
MR
a=—5——:7, (2.4)
IU’R + Oy
Thus the sparseness is small if the variance is large compared to the mean (i.e.,

when the neuron has widely separated responses to different stimuli), and large if the

variance is small compared to the mean (i.e., when most responses are very similar).

In addition to being a relatively intuitive generalization of our notion of sparseness
to neurons with continuous rates, a is related to the theoretical storage capacity of
an autoassociative neural network (Tsodyks & Feigel’'man, 1988; Treves & Rolls,

1991; Meunier et al., 1991). Hence we take an interest in a not simply as a means
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of quantifying the question of how frequently neurons fire “strongly,” but also as a
functionally relevant parameter.
As it is more appropriate than kurtosis when measuring the sparseness of real
neural data, this measure has been used extensively in experimental work (Rolls &
Tovee, 1995; Vinje & Gallant, 2000; Weliky, Fiser, Hunt & Wagner, 2003). In the

remainder of this work I will take this as my primary definition of sparseness.

2.1.5 A Selectivity Index

Working in the context of sparse, invariant neurons in the human medial temporal
lobe (Quian Quiroga et al., 2005), Quian Quiroga and colleagues (2007) propose a
novel threshold-independent index for quantifying the selectivity of neurons. They
first define a function describing the normalized number of responses above a threshold

rT
~ 1

S(rr) = g 9(7”2' —rr), (2.5)

IIMO)

where 0(z) =1 for x > 0, 6(z) = 0 for < 0. Note that if fr(r) is the probability
density function of the response distribution and Fr(r) the corresponding cumulative
density function, then for large S S, (ry) approaches 1 — Fg(ry). The area under this

curve (as rp is varied) is

ZS (rr), (2.6)

where 77 = T + J ( ’"m”i]\_jm) defines M equally spaced threshold values between
the minimum and maximum responses 7, and 7, (equivalently one can simply
rescale the responses to lie between 0 and 1). This area will be close to 0.5 for a
uniform distribution of firing rates and much smaller when only a small fraction of
responses are significant. Quian Quiroga and colleagues then define their selectivity
index by

I=1-2A. (2.7)
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Consider the case of a binary neuron. If all responses but one are significant, [ =
1-2 (%), so for large S I approaches —1. If instead only a single response is
significant, I =1 — 2 (%), so for large S I approaches 1.
Assuming a large number of samples and noting the relationship between S~T(TT)

and Fg(rr), some algebra yields the relationship

=2 /m F(rydr -1, (2.8)

T'maz — Tmin Tmin

so the selectivity is (in the limit) defined by the cumulative density function of the
response distribution. From this definition it can be seen that any symmetric response
distribution (e.g., Gaussian or uniform) will, in the limit, have I = 0. Thus, like
skewness (which is related to the 3" central moment of a distribution), this measure
quantifies the asymmetry of the response distribution. Values close to the minimum of
—1 indicate that most responses are clustered near the maximum (the neuron nearly
always responds), values close to the maximum of 1 indicate that most responses are
clustered near the minimum (the neuron rarely responds), and values close to zero
indicate a symmetric response distribution.

As noted by Quian Quiroga et al., this index has a few convenient features.
It is threshold-independent, and captures the selectivity of roughly binary neurons
well and so conforms to our intuitive notion of sparseness. As with any threshold-
independent measure, accurate results depend strongly on a given experiment finding
enough responses to characterize the response distribution well (since no assumptions

are placed on the form of the distribution).

2.1.6 Population versus Lifetime Sparseness

In most discussions of sparse coding, the quantity of interest would more precisely be

defined as lifetime sparseness, which refers to the sparseness of an individual neuron’s
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responses over time. This is the sense in which I defined sparseness above. It is
also possible, however, to discuss the sparseness of the responses of a population of
neurons, or the population sparseness. In this case, the relevant sparseness measures
would be the same as defined above, except that the expectations would be taken
across the population of neurons for an individual stimulus rather than across the

universe of stimuli for an individual neuron (perhaps then averaging across all stimuli).

If the neurons’ responses to stimuli are independent and identically distributed,
it is clear from the definitions above that lifetime and population sparseness are
exactly equivalent. Simply speaking, the fraction of stimuli an individual neuron
responds to will be equal to the fraction of neurons that respond to a particular
stimulus. If, however, some neurons participate in many more representations than
others, the population sparseness may be very different than the lifetime sparseness.
Willmore and Tolhurst (2001) investigated this issue by examining the representation
of a set of natural images within several different filtering schemes such as Gabor,
principal components, and independent components filters. They computed both the
population and lifetime sparseness of the responses of each of the filters in each of
these coding systems and found no direct relationship between the two. This should
not be an unexpected result. For example, principle components analysis (PCA)
specifically seeks filters such that a small number of filters code for a large portion of
the input statistics (Hancock, Baddeley & Smith, 1992). A set of PCA filters would
be expected to have a high population sparseness but low average lifetime sparseness,
because a few of the filters have large output much of the time, while many of the

filters are active only rarely.

From an experimental point of view, it is not possible to directly measure the
population sparseness of a given representation—to do so would require recording
from a large enough subset of the entire coding set of neurons to establish the response

statistics at the population level. The below discussion will then be restricted to the
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lifetime sparseness, which can be estimated by recording a single neuron’s responses to
a large group of stimuli. Where I make inferences about the population sparseness,
it is under the assumption that the population of neurons under consideration is
homogenous (in the sense of their responses being i.i.d.).

It should be noted that sparseness should properly be defined with respect to a
particular class of “relevant” stimuli. I assume in what follows that the stimulus set is
relevant to the computation performed by the neurons from which we record. In other
work describing experimental results obtained from the human medial temporal lobe
my co-authors and I discuss the potential bias due to choice of stimulus set (Waydo
et al., 2006, and see Chapter 3). Note also that the issues I discuss here are different
than the extreme temporal sparseness observed, for example, in high vocal center
neurons of the zebra finch (Hahnloser et al., 2002; Fiete, Hahnloser, Fee & Seung,
2004). There, neurons appear to encode a time-varying signal (the finch’s song)
using precise spike timing, and “sparseness” refers to the fact that individual neurons
encode their portion of the signal using an extremely small number of spikes. In this
work, I am instead concerned with encoding static signals, and sparseness refers to
how rarely individual neurons will be active (in the case of lifetime sparseness) or

how few neurons will be active simultaneously (in the case of population sparseness).

2.2 Estimation of Sparseness from Neural Record-
ings

As we have seen above, a great deal of work has been done to find an appropriate
quantitative definition of sparseness and to understand how sparseness fits in models
of network performance. Comparatively little attention has been paid to the prac-
tical challenge of how to accurately measure it, the problem to which I now turn.

In a typical experimental paradigm, the activity of one or more neurons is recorded
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while a collection of stimuli is presented to the subject (Young & Yamane, 1992; Rolls
& Tovee, 1995; Vinje & Gallant, 2000; Quian Quiroga et al., 2005; Kreiman et al.,
2006). Due to constraints on experiment duration, the number of stimuli presented
generally varies in the range of about 50-100. The rate of “spontaneous” background
firing, usually of unclear significance (is it noise or signal?), can be significant and
needs to be properly accounted for. In this section I examine two methods for es-
timating representational sparseness from spiking data, direct computation and a
binary model-based approach. My primary contribution is to show that the direct
computation is, in many cases, vulnerable to corruption by noise, particularly if the
underlying code is sparse. I further show that this issue is likely to arise when the
mean noise is large compared to the mean response, regardless of the peak response.
In this regime it is more accurate to apply a binary model using a response threshold
and compute the probability that a neuron fires above that threshold.

This work was performed in collaboration with Christof Koch and Alexander
Kraskov (now at University College London); my contribution was the development
of the probabilistic reasoning about sparseness and the quantification of the biases

inherent in computing sparseness from limited, noisy datasets.

2.2.1 Direct Computation of Sparseness

Let S be the number of stimuli presented and r; be the neuron’s response to stimulus
1. The obvious way to estimate a is to calculate the sample mean and the sample

mean square, or, letting a be the estimate of a,

(% Ez 17“’)2 T

a= 1 2>
SZ Tz r

(2.9)

where the bar over a quantity denotes the sample average.

This method of calculating a has two clear strengths. First, it is a direct calcula-
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tion of the quantity of interest, and so the result needs little interpretation. Secondly,
no underlying assumptions about the neuron’s behavior (i.e., a firing-rate model) are
required—one simply collects the neuron’s responses and plugs them in to Equation
2.9. This second strength, however, may also be a pitfall of this method. If one has a
very sparse neuron for which large responses are rare, one may measure a large num-
ber of responses that are purely noise. Because these responses are all very similar to
one another, Equation 2.9 will erroneously yield a large value. In what follows I will

make this issue more precise.

A fundamental challenge confronting the application of Equation 2.9 is that a is
sensitive to a uniform translation of responses, that is to adding a constant offset to all
responses, such as when taking spontaneous firing into account. For example, consider
a binary neuron with an “off” rate of 0 spikes/s, an “on” rate of 5 spikes/s, and a
firing probability of 5%. The sparseness calculated from Equation 2.3 is a = 5%.
If instead it fires at 6 spikes/s with the same probability and 1 spike/s otherwise,
a = 57%. This is a very different result, but we would argue that the answer to our

basic question (“how often does this neuron respond significantly”) has not changed.

This feature in turn means that the calculation of a can be highly vulnerable
to noise, particularly for very sparse systems. I will here examine the effect of this
vulnerability for a simple model with additive noise. Consider a system in which a

neuron’s response to a stimulus s is the sum of two components, that is

R(s) = X(s) + Y, (2.10)

where X(s) is the deterministic portion of the neuron’s response (that is, X(s) is
some parameterization of the neuron’s tuning curve) and Y is a noise term that is
independent of X. Assuming we choose stimuli randomly from the universe of all

possible stimuli, X can be viewed as a random variable.
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Let X and Y have means y, and 1, and variances o2 and 05, respectively. Presum-
ably in any discussion of sparseness what we are truly interested in is the sparseness
of the distribution of X, which by Equation 2.4 is

ou

= . 2.11
i+ o; 24y

However, we have only the noisy responses R with which to characterize it. Because
X and Y are independent, the response distribution f has mean i, + 1, and variance

o2+ 02. Applying Equation 2.4, the sparseness of the noisy distribution is then

(,um + ,uy)z
(Mo + f1y)? + (02 + 07)

a= (2.12)
Comparing Equations 2.11 and 2.12, we see that a approaches a if y, is large compared
to p, and o,. If this is not the case, a may, in fact, be quite different from the
underlying a that we wish to estimate. Roughly speaking, we have a signal-to-noise
ratio characterized by 1, /1, or p,/o,. Even for seemingly low levels of noise, this can
present a significant difficulty. Although the significant responses may be quite large
in comparison to the noise, for a very sparse system we expect the mean response to
be small and so a will not accurately reflect a. Note also that only the mean and the
variance of the noise affect Equation 2.12; apart from these parameters the error is

independent of the details of the noise distribution.

Consider the case where X is a binary distribution, with an “off” rate of 0 spikes/s,
and an “on” rate of 10 spikes/s. The model neuron fires to a random stimulus with
probability a (as we pointed out above, the firing probability of such a neuron is
exactly its sparseness a). Now add to each response an independent noise component
with mean and standard deviation of 1 spike/s. It would seem in this case that the
signal-to-noise ratio ought to be very favorable: the “on” response is 10 times greater

than the mean noise level. However, the relevant comparison for our computation of
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Figure 2.2: Sensitivity of response sparseness a to noise. Response sparseness is
plotted as a function of the underlying distribution’s sparseness for binary (solid) and
gamma (dashed) distribution. High rate for the binary neuron is 10 spikes/s and
scale parameter A for the gamma neuron is 5, so that both neurons have mean firing
rate 5 spikes/s at @ = 1/2. Sparseness is varied by adjusting the firing probability a
for the binary neuron and the shape parameter « for the gamma neuron. The noise
is held constant at 1 spike/s mean and standard deviation.

a is between the mean response 1, and the mean noise y,, = 1. In this case, the mean
response is 10a, and so if a is even as low as 10% we may run into trouble. Plugging

these numbers into Equations 2.11 & 2.12 reveals that a = 29% for a = 10%, and
= 38% for a = 1%!

While this example used binary model neurons to illustrate noise sensitivity, the
basic issue remains for any response model in which the mean response decreases
with a. For example, consider a neuron whose noiseless firing rates follow a gamma

distribution with shape parameter 1 and scale parameter A,

i le”

fr(r) = BUNCIR (2.13)

where T'(n) is the gamma function. This distribution, depicted in Figure 2.2(b),
is convenient because it has an exponential falloff in rates and an easily tunable

sparseness. The sparseness of this distribution is a = - + , while the mean rate is
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nA. If we fix the scale parameter A, then the mean rate declines with n and we
have the same bias problem as before. Figure 2.2(a) illustrates this issue for both
the gamma and binary neuron. Plotted is the sparseness estimate a as a function
of the underlying distribution’s sparseness a. Both neurons are parameterized such
that their mean firing rate is 5 spikes/s when a = 1/2. The sparseness of the binary
neuron is adjusted using the response probability a, while that of the gamma neuron
is adjusted using the shape parameter 1 while the scale parameter \ is held fixed. For
all levels of sparseness the noise is fixed with mean and standard deviation 1 spike/s.
We see from this figure that the bias due to noise can be substantial. Worse, the
variation of a with a is not even monotonic—the estimated sparseness increases as

the true sparseness becomes very small.

2.2.2 A Binary Model

If we make some a priori assumptions about the underlying rate distribution, we can
generate a few alternative methods for estimating a. In contrast to the direct calcu-
lation, in which the signal-to-noise ratio was that of the means of the response and
noise components, the relevant ratio will be that of the size of the “large” responses to
the noise. We can achieve this by assuming that the neuron responds to some stimuli
with at least some rate rp, where we pick r¢ to be our threshold for considering a
response significant. With this threshold we can then treat our neurons as behaving
in a binary fashion, with responses above rr considered “on” and all others “off.” It
is then straightforward to estimate the sparseness simply from the fraction of stimuli
a neuron responds to, or

Sy
i = — 2.14
a S Y ( )

where S is the total number of stimuli presented and S, is the number of stimuli

the neuron responded to with at least rp. This approach has the advantage that it
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exactly answers the question of how frequently the neuron responds at a significant
level, as long as we can define a reasonable value for significance. Note that if the
underlying probability of achieving a significant response is a, then S, follows a bi-
nomial distribution and E[a] = a. This estimate is biased upward by the probability
that an “off” response will be pushed above threshold by noise, so this bias is reduced
by increasing rp. Setting r7 too high may, of course, cause significant responses to
be ignored as noise, so the separation between the significant responses and the back-
ground noise is the limiting factor for this method, which is much more favorable
than the difference between the mean response and the background noise in the case

of a sparse distribution.

Continuing with this binary model, I developed a method for determining a range
of sparseness that is consistent with our data, or alternatively the probability distri-
bution of the underlying response probability a. Let f, be the probability density
function of the response probability a. We want to determine f,(«|S, = s,), the
probability density function for a given the observed number of responses s,.. We
place no a priori assumption on a, so we set f,(a) =1 for 0 < o < 1, that is, a is

equally likely to take on any value between 0 and 1.

At a particular value of a, the number of responses follows the binomial distribu-

tion

S
P[S, = s.Ja=a] = @’ (1— )7, (2.15)

Bayes’ rule applied to this system gives

P[Sr = Sr|a' - Oé]fa(Oé) - fa(a|ST’ = ST’)P[ST’ = sr]a (216)
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or, solving for the desired distribution,

falalSy =s,) =

= (1 —a)¥ (S +1). (2.17)

For a given experiment we obtain a curve f,(a) describing the range of plausible
values for the underlying response probability a. Figure 2.3 gives examples of three
such curves derived from three different response patterns with S = 100. It is easy
to check that the peak of this distribution is at o = %, so the most likely value from
this distribution matches the intuitive definition of a for a binary model. We now

have additional information, however, about just how close the true a is likely to be

to our estimate a.

While the imposition of the binary model eliminates the noise sensitivity of the
direct method, it is of course not without challenges of its own. Primary among these
is that the binary model is an approximation of the true behavior that varies in its
accuracy depending on the details of the true firing rate distribution. In some cases
we may have a neuron that responds robustly at a high rate to some stimuli and
much less to others, and so the appropriate choice of threshold is clear. In other
cases, though, a neuron may respond with a wide variety of rates and the resulting
estimate of a based on a binary model will be sensitive to threshold. Obviously this
method sacrifices some of the detail in the neuron’s responses in favor of robustness

to noise.

It is possible to quantify to some extent the relationship between the true sparse-
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Figure 2.3: Example probability density functions for sparseness (expressed as a
percentage of stimuli that evoke a response) computed using Equation 2.17 in three
scenarios in which the number of stimuli presented was S = 100. The solid curve
would be obtained from a neuron for which no significant responses were recorded,
while the dashed and dash-dotted curves correspond to neurons for which 1 and 10
significant responses were recorded, respectively. As the number of stimuli shown to
the cell approaches the total number of images stored by the network, the density
function will converge to an ever-narrower curve centered at the true sparseness a.

ness of the underlying rate distribution and our estimate a derived from a binary
model. Note that @ = P[R > rr|, that is, our estimate of a is just the probability
that a response is greater than the threshold rr. The Markov inequality provides
an upper bound for the probability that a positive random variable exceeds some

threshold (Leon-Garcia, 1994). By this inequality,

E[R
a= P[R>ry| < [ ] (2.18)
rr
Applying our additive noise model from above, we have
o< ety (2.19)

rT

Now assume as above that u, = apg for some rate jo. This is true for a binary neuron
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with g = rp,, and is approximately true for a gamma neuron with pg = A and small
a. We now have

(2.20)

Here we have an upper bound on a with two convenient features. First, the bias

f—';, the mean noise relative to the threshold, so if our threshold is large

is equal to
compared to the mean noise the bias is small. Second, the bound decreases with a,
so we are guaranteed that for any choice of threshold a small true a will give us a

small estimate a (provided the mean noise p, is small compared to the threshold).

This bound can also inform our choice of rr, but some caution is required. Clearly
we would like 77 to be significantly larger than the mean noise j,, to reduce the offset
from the noise term. From the first term, the temptation would be to set rr close
to one’s best guess for . The bound given by the Markov inequality may be quite
loose, though, and this approach could result in a significant underestimate of a. A
balance must be struck between making rp as large as possible without getting too

close to p.

2.2.3 Simulation Results

Figures 2.4(a) and (b) depict Monte Carlo simulation results of sparseness estima-
tion with binary and gamma underlying rate distributions, respectively. The binary
neuron had an “on” response of 10 spikes/s, while the gamma neuron was tuned to
have the same mean response at each a as the binary neuron. For each neuron I
generated responses to S = 100 stimuli using the appropriate probability distribution
plus Poisson noise with unit (i.e., 1 spike/s) mean and variance. I then estimated
the sparseness of each neuron using both the direct calculation of Equation 2.9 and
the binary model with rp = 5 spikes/s (corresponding to r = po/2 in the above

discussion). Plotted are the mean estimates over 1000 simulated neurons of each
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Figure 2.4: Monte Carlo simulation results for sparseness estimation for binary and
gamma distribution rate models. Noise was Poisson with 1 spike mean and standard
deviation. Solid line is the direct calculation (Equation 2.9); dashed line is the binary
calculation with a threshold of 5 spikes/s (Equation 2.14). Dotted line is the ideal of
a = a (which exactly overlaps the binary calculation in (a)). The number of stimuli
was S = 100, and 1000 neurons were simulated.

type.

In both cases the binary model produced substantially more accurate estimates
than the direct computation, particularly (as predicted) for very sparse distributions.
Because the binary model matched the underlying rate distribution, performance
in that case was nearly perfect. In the case of the gamma distribution, though,

performance was still very good in the sparse regime despite the model mismatch.

Figure 2.5 shows the effect of the choice of response threshold. Thresholds of
3, 5, and 7 spikes/s are considered with a fixed mean noise level of 1 spike/s. In
the case of the 3 spikes/s threshold, a significant number of “responses” were due to
noise and an overestimate of a resulted, though this overestimate was still much more
accurate than the direct computation in the sparse regime. The 5 and 7 spikes/s
thresholds both provided estimates close to the true a, and, most importantly, varied
monotonically with a. Figure 2.6 shows the effect of variations in mean noise level

on both the binary (a) and direct (b) computations. In the binary case, as the noise



27

100 - ‘ ‘ ——
7I’T— K
_ 80’77}-'—:5 /// K
\o _ a /
S T ,
© 60| /
:8 ideal : P
£ 40
7 /// ,//
()] e -
20t
O‘:/ ‘ : ‘ :
0 20 40 60 80 100
a (%)

Figure 2.5: Variation of estimated sparseness with threshold. Response thresholds of
3, 5, and 7 spikes/s are considered, with noise level fixed at p, = 1 spike/s. Simulated
responses are drawn from the same gamma distribution as in Figure 2.4(b).

level drew close to the threshold (fixed at 5 spikes/s), many “responses” were due
to noise, resulting in an overestimate of a, but not as severe an overestimate as in
the direct computation case. At noise levels of 1 and 2 spikes/s, the estimates were
close to the true a. The direct computation provided a much worse overestimate of

a, particularly in the sparse regime.

2.2.4 Application to Data

I applied both the binary model and Equation 2.9 to the spiking responses obtained
from 1425 human MTL units from 34 experimental sessions in 11 patients (Quian
Quiroga et al., 2005; Waydo et al., 2006). This data will be discussed in more detail
in the next chapter, but it serves to illustrate the issues I discuss here. Figures 2.7
and 2.8 depict histograms of the results. In Figure 2.7, I calculated for each unit
the percentage of stimuli for which the median response was at least 3 standard
deviations above its background firing rate (for lower thresholds, many “responses”

are a result of random fluctuations; see (Waydo et al., 2006) for further discussion on



28

100 ‘ ‘ ‘ — 100
80 — 80
S e SR
< 60f < 605 -
° ° N
2 _p=1 g
£ 40 ’_ £ 40/
= B =
A g 3
20 - W =3 20|
e ideal
0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100
a (%) a (%)
(a) Binary computation with threshold fixed at (b) Direct computation

rp = 5 spikes/s

Figure 2.6: Variation of estimated sparseness with mean noise level. Mean noise levels
of 1, 2, and 3 spikes/s are considered. Simulated responses are drawn from the same
gamma distribution as in Figure 2.4(b).

the choice of threshold). The large majority of these units responded (according to
the 3 standard deviation criterion) to less than 2% of presented stimuli, and the mean
value of this distribution is 1.5%. This is consistent with the qualitative observation
that these units respond in a highly selective manner (Quian Quiroga et al., 2005).
By contrast, Figure 2.8 depicts the sparseness estimate a computed using Equation
2.9 for the same data. In Figure 2.8(a) I applied Equation 2.9 to the raw firing rates,
and the estimate is fairly evenly distributed from 0-100%, with the spike at zero
caused by considering an entirely silent unit to have a sparseness of zero. The mean
value of @ computed in this way is 37.8%. In Figure 2.8 I take a common approach
to compensating for noise by subtracting each neuron’s baseline firing rate from its
responses (setting the response to zero in cases where the result is negative). This
improves the results somewhat, with estimates now evenly distributed from 0-40%,

and a mean of 16.6%.

Recalling the example from Section 2.2.1, in which the numbers were motivated
by our experimental data, we see that a true sparseness of 1% can easily lead to a

sparseness estimate of 38%. Thus the seemingly contradictory results from Figures
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Figure 2.7: Histogram of the percentage of stimuli for which the median response was
at least three standard deviations above the background rate computed from spiking
responses of 1425 human MTL units. The mean is 1.5%.
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Figure 2.8: Histograms of estimated sparseness calculated using the direct computa-
tion of Equation 2.9 applied to spiking responses of 1425 human MTL units
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Figure 2.9: Histogram of the kurtosis excess for the responses of 1425 human MTL
units. The mean is 29.5.

2.7 and 2.8 are reconciled by the noise sensitivity of Equation 2.9 as described by
Equation 2.12. For this reason, and because it matches much better with the qual-
itative interpretation of the responses as highly sparse (Quian Quiroga et al., 2005)
(that is, the observation of highly selective responses to very few stimuli), I believe the
sparseness value of 1-2% implied by Figure 2.7 is a much more accurate description
of the data.

Figure 2.9 is a histogram of the kurtosis excess for the same set of responses. The
kurtosis excess is positive in all but 2% of neurons and has a mean of 29.5, indicating
a sparse response distribution in nearly all cases. Beyond this statement, however,
the kurtosis gives us little quantitative information about neuronal behavior for the

reasons discussed above.

2.2.5 Multiple-Unit Recordings

A limitation of the binary model approach outlined in Section 2.2.2 is that if, for
example, two neurons are presented with the same 100 stimuli and neither responds,
the true sparseness is likely to be much smaller than that implied by the individual

density curves (although the neurons may simply be unresponsive to any stimulus).
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As in some recent experiments responses are collected simultaneously from up to
several dozen neurons, I extend the binary approach to account for an experiment in
which N neurons are recorded simultaneously while S stimuli are presented. Define
N, to be the number of neurons that respond above threshold to at least one stimulus,
and S, to be the number of stimuli that produce a response above threshold in at
least one of these. The derivation of the closed-form joint probability distribution of
N, and S, involves solving a recursive relation for the conditional distribution of S,

given N, and is described in Appendix A. I simply state the result here:

S N
P[Nr :nr/\Sr :ST‘CL:Oé] = (1_Oé>NS(_1)nT

Sy Uz

B [(1—a)™®—1]". (2.21)

As in the single-neuron case discussed above, we can invert this relationship using

Bayes’ rule to obtain the probability distribution of a given N, and S,.:

fal@|N, =n, NS, =s,) = IP[NT =y NS = srla = alfa(a) . (2.22)
Jo PIN, =n, A'S, = s,]a = o fu(a)da

This gives us the probability density function for a given the results of a full recording
session: Rather than obtaining a single curve for each cell, we now obtain a single
curve for each session that takes into account the presence of cells that did not respond

to any stimulus or that responded to multiple stimuli.

2.2.6 Conclusions

I demonstrated a few of the pitfalls inherent in attempting to estimate sparseness
from experimental spike recordings. In particular, I showed that the most direct way

of calculating the sparseness can be very sensitive to noise, especially in the case
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where the true sparseness is small. From these developments I emerge with a few

recommendations:

1. If the mean firing rate is on the order of the mean noise level or smaller, the
direct computation will be very error-prone and applying the binary model will

likely lead to much better results.

2. Noise can be problematic for both methods. Repeated exposure to each stimulus
and response averaging should be used to reduce noise levels. Because the noise
is likely to have nonzero mean, however (since these are spiking cells), it will

produce a bias despite this averaging.

3. When applying the binary calculation, the response threshold should be var-
ied over a wide range to examine how estimated sparseness varies with this

threshold.
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Chapter 3

Experimental Evidence for
Sparseness

In this chapter I describe some of the evidence for sparse coding in biological systems
obtained from electrophysiology experiments. In Section 3.1 I survey results from
recordings taken throughout the visual system. In Section 3.2 I present my own
results (generated in collaboration with Alexander Kraskov, Rodrigo Quian Quiroga,
Itzhak Fried, and Christof Koch) from the human medial temporal lobe (MTL),
which, though not a visual area, sits at the end of the ventral visual pathway and is
linked to associating information across sensory modes and consolidating long-term
memory. Finally, in Section 3.3 I discuss a few relevant findings from the sensory

processing systems of other organisms.

3.1 The Visual System

Vinje and Gallant (2000) assessed the sparseness of the representation of natural
scenes in V1 in awake macaque monkeys. The stimuli were extracted from natural
scenes along simulated eye scan paths, and several patch sizes (1-4 times the classical
receptive field size) were tested to explore the effect of nonclassical receptive field
(nCRF) stimulation on sparseness. The representation became progressively more

sparse as the size of the stimulus increased, with a mean of 38% (using the Treves-
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Rolls definition of sparseness) for the largest stimuli. Furthermore, the responses of
the 11 different neurons recorded became increasingly less correlated with one another
as stimulus size increased, and so the increase in sparseness was linked to an increase
in the independence of the information transmitted by different neurons. Weliky et
al. (2003) obtained similar results in the primary visual cortex of the anesthetized
ferret, measuring a mean lifetime sparseness (again using the Treves-Rolls definition)
of about 50% in response to large natural images. As in the Vinje and Gallant study,
the responses to large-field images were much more sparse than would be predicted
by the classical receptive field behavior alone, indicating that a possible role of the

nCRF is to increase the sparseness of the V1 visual representation.

Proceeding further along the ventral visual processing hierarchy, Rolls and Tovee
(1995) recorded from single neurons in the superior temporal sulcus of the macaque
temporal visual cortex, an area known to be selective for faces (Bruce, Desimone &
Gross, 1981). Using a set of 23 face and 45 non-face stimuli, Rolls and Tovee measured
an average response sparseness (that is, sparseness computed from responses with the
mean firing rate subtracted) of 33%. However, they also note that these units were in
general highly selective for faces, with many neurons responding to the “best” (most
effective) face at a level at least 5 times that of the response to the best non-face.
As about 33% of the images were of faces, this selectivity and the statistics of the
input set could easily account for the result. The responses to faces were graded
rather than binary in nature, and the mean response sparseness with respect to faces
was 60%. These results suggest a non-sparse, distributed code for face identity in
this area, with little information about non-faces represented. A separate analysis
of similar data indicated that the representational capacity for faces in this area
grows exponentially in the number of neurons, providing additional evidence for a
distributed code (Abbott & Rolls, 1996). These results are consistent with those of

Young and Yamane (1992), who also find evidence for a population code for face
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identity in macaque inferotemporal cortex. Gross (1992) provides evidence that cells
in the inferior temporal cortex select for some aspect of shape, texture, or color rather
than act as narrow filters for particular stimuli, also categorizing face-selective cells
not primarily as face detectors but as part of a distributed code for facial identity.
However, it is not clear from the published data whether the responses of these cells
were invariant across different pictures of the same face, which would be a necessary
feature of a code for facial identity. It could instead be the case that these cells simply
make a face/non-face judgement, with the variations in firing rate due to differences

in the images rather than due to the identity of each face.

3.2 Medial Temporal Lobe

Single unit recordings from the human MTL have revealed the existence of highly
selective cells that may, for example, respond strongly to different images of a single
celebrity, but not to 100 pictures of other people or objects (Quian Quiroga et al.,
2005). These results suggest a sparse and invariant encoding in MTL and seem to
imply the existence of “grandmother cells” that respond to only a single category,
individual, or object (Konorski, 1967; Barlow, 1972; Gross, 2002). However, due to
limitations on the sampling of MTL neurons and on the sampling of the stimulus
space, it is unclear how many stimuli a given neuron will respond to on average and
conversely, how many MTL neurons are involved in the representation of a given ob-
ject. I here use the methods developed in Chapter 2 to explore these issues; this data
was previously published in journal form (Waydo et al., 2006). This data was col-
lected by Rodrigo Quian Quiroga (now at the University of Leicester) and Alexander
Kraskov (now at University College London) in the lab of Itzhak Fried at UCLA, and
this work was performed in collaboration with these individuals and Christof Koch at

Caltech; much of it has appeared in journal form (Waydo et al., 2006). My primary
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contribution was the development of the probabilistic description of the data and the

resulting numerical analysis.

Because the representations in this brain area are clearly very sparse, we use the
binary model-based approach to estimate the sparseness. As the original data was
acquired using 64 microelectrodes, we further make use of the extension to multiple-
unit recordings discussed at the end of Chapter 2. This analysis rests on a few key
assumptions. First, we assume the responses of all neurons can be treated in a binary
fashion, that is, it is reasonable to define a threshold above which we consider a
neuron to have responded (and we examine how the results vary with this threshold).
Note however that the results of Chapter 2 tell us that even if the neurons truly
respond in a more finely graded fashion this is still an accurate approach in the highly
sparse regime. Second, we assume the stimulus presentations are independent, and
further that the neuronal responses are independent of one another (aside from any
stimulus-induced correlations). The independence assumptions are consistent with
the observation of no significant correlations between neurons in the experimental
data. Finally, we assume that all of our recorded neurons share the same underlying
sparseness a. However, as our results are expressed as a probability density function
over this value, the width of the density function can be interpreted as describing the

range of sparseness present in the MTL.

The data set consisted of recordings of 1425 MTL units from 34 experimental
sessions in 11 patients (Quian Quiroga et al., 2005). To fit the data against the binary
model, we considered a response to be significant if it was larger than the mean plus
a threshold number of standard deviations of the baseline rate and had at least two
spikes in the post-stimulus time interval considered (0.3-1 sec) (as in previous work
by Quian Quiroga et al. (2005)). The baseline rate was determined by averaging the
number of spikes in the 1 second preceding stimulus onset across all trials. Figure

3.1 depicts the resulting probability distributions for thresholds of three and five
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Figure 3.1: Probability density function for sparseness a averaged over 34 experimen-
tal sessions that yielded spiking responses from 1425 units. Two different thresholds
for defining significant responses are considered: five (solid curve) and three (dashed)
standard deviations above baseline. The means of the distributions, corresponding
to the best estimates for a, are indicated by arrows, and the values below which a is
likely to lie with 95% probability are a = 1.4% and 2.6%. The peaks of the distribu-
tions are at 0.23% and 0.70%. The average number of simultaneously recorded units
per session, N, is 41.9 and the mean number of images shown to the subjects, S, is
88.4.

standard deviations; for lower thresholds many of the “responses” are due to random
fluctuations in firing rate rather than genuine responses to stimuli. For a threshold of
five standard deviations above baseline, the peaks of the 34 individual distributions
lie in the range of 0.16-1.64%. For a threshold of three standard deviations above
baseline, the individual curves peak in the range of 0.52-3.08%. The peaks of the
average distributions shown in Figure 3.1 are at a = 0.23% and 0.70% for thresholds
of five and three standard deviations, respectively, while the means are at a = 0.54%

and 1.2%.

From this figure we conclude that a most likely lies in the range of 0.2-1%. While
this is a sparse coding scheme, considering the large number of MTL neurons and
the large number of represented stimuli, it still results in a single unit responding

to many stimuli, and many MTL units responding to each stimulus. We assume,
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however, that all cells we are listening to are involved in the representation of some
stimulus, which may not be the case (i.e., some of them could serve a different function
altogether) and which could cause a downward bias in our estimate. To quantify a
plausible magnitude for this bias, we repeated the same analysis leaving out half of
the unresponsive neurons, that is, we used

N — N,
2

N =N, +

in place of N. This analysis showed the potential bias to be small, as it yielded
most likely values for a of 0.9% and 1.8% at thresholds of five and three standard

deviations, respectively.

We can then estimate the probability of finding such highly selective cells in a
given experiment. If the true sparseness is 0.54% (the mean of the distribution with
a threshold of 5), in a typical session with N = 42 simultaneously recorded units and
S = 88 test stimuli (the averages from our experiments), we would expect to find on
average 15.9 units responding to 17.9 stimuli (with each responsive neuron responding
on average to 1.3 images, and each evocative stimulus producing a response in an
average of 1.1 neurons). In our experiments N ranged from 18 to 74 and S ranged
from 57 to 114, and with a five-standard-deviation threshold we found on average
7.9 responsive units (range: 3 to 20) responding to 16.4 stimuli (range: 3 to 44). As
a further check of our methods, we can examine how frequently two or more units
responded to the same stimulus. At a five-standard-deviation threshold, on average
4.1% of stimuli produced a (simultaneous) response in at least two neurons (range:
0 to 17.9%; median: 1.6%), compared to a predicted value (at 0.54% sparseness)
of 2.2%. Noting that we cannot expect perfect agreement between this prediction
and the observed value because of the varying numbers of neurons and stimuli across

recording sessions, we see that our model agrees very well with the observed statistics.
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We developed a method for obtaining a probability distribution for sparseness
based on multiple simultaneous neuronal recordings. This distribution allows us to
not only examine the average sparseness observed in a given experiment, but also the
range of sparseness consistent with the data. Averaging these distributions over 34
recording sessions in the human medial temporal lobe, we conclude that highly sparse

(though not grandmother) coding is present in this brain region.

To animate this discussion with some numbers, consider 0.54% sparseness level.
Assuming on the order of 10° neurons in both left and right human medial tempo-
ral lobes (Harding, Halliday & Kril, 1998; Henze et al., 2000), this corresponds to
about 5 million neurons being activated by a typical stimulus, while a sparseness
of 0.23% implies activity in a bit more than 2 million neurons. If we furthermore
assume that a typical adult recognizes between 10,000 and 30,000 discrete objects
(Biederman, 1987), a = 0.54% implies that each neuron fires in response to 50-150

distinct representations.

This interpretation relies on the assumption that the cells from which we record
are part of an object representation system. Instead, it may be possible that these
neurons signal recency or familiarity rather than the identity of a stimulus. Neurons
responding to both novelty and familiarity have been identified in the human hip-
pocampus (Fried, MacDonald & Wilson, 1997; Rutishauser, Mamelak & Schuman,
2006; Viskontas, Knowlton, Steinmetz & Fried, 2006) (and see Rolls, Perrett, Caan,
and Wilson (1982) for related results in monkeys). Even if true, however, this view
does not invalidate our conclusion that the true sparseness likely lies below 1%. In-
stead, it would imply that rather than a single neuron responding to dozens of stimuli
out of a universe of tens of thousands, such a neuron might respond to only one or a
few stimuli out of perhaps hundreds currently being tracked by this memory system,
still with millions of neurons being activated by a typical stimulus. Further, Rolls,

Xiang, and Franco (2005) identified neurons in macaque hippocampus and posterior
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perirhinal cortex responding to specific objects, places, and object-place combina-
tions while the animal performed an object-place association task. Because only two
objects and two places were used in each experiment it is impossible to assess the
sparseness of this representation, but the results at least suggest units selective for

specific stimuli as part of an episodic memory system.

These numbers are consistent with the results of Lennie (2003), who, building on
earlier work in rats by Attwell and Laughlin (2001), used detailed estimates of cortical
metabolism and the energy cost of spiking to calculate the maximum activity level
possible in human cortex. Lennie concluded that the cortical metabolism can support
an average spike rate of 0.80 spikes/s/neuron. Alternatively, if an “active” neuron
fires at 50 spikes/s, then only about 1.6% of neurons could be active at the same time,
and even fewer if the inactive neurons still maintained some small resting firing rate.
These results imply that, aside from any computational considerations, the cortical
metabolism can only support sparse codes in which only a small fraction of neurons
are simultaneously active. This analysis may not be enough to justify sparse coding
in and of itself, however—if it were significantly advantageous to utilize a distributed
code in which more neurons were simultaneously active, then it is easy to imagine that
the cortical metabolism would have evolved to support a higher energy consumption
rate. It may be that the cortical metabolism can only support a sparse code because
(as I will argue in the following chapters) a sparse code is computationally useful and

so a more vigorous metabolism is unnecessary.

Two significant factors may bias our estimate upward. A large majority of neurons
within the listening radius of an extracellular electrode are entirely silent during a
recording session: there are as many as 120 to 140 neurons within the sampling
region of a tetrode in the CA1 region of the hippocampus (Henze et al., 2000), but
we typically only succeed in identifying 1-5 units per electrode. In rats as many as 2

out of 3 cells isolated in the hippocampus under anesthesia may be behaviorally silent
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(Thompson & Best, 1989), though the reason for their silence is unclear. Thus, the
true sparseness could be considerably lower. Furthermore, there is a sampling bias
in that we present stimuli familiar to the patient (e.g., celebrities, landmarks, and
family members) that may evoke more responses than less familiar stimuli. For these
reasons these results should be interpreted as an upper bound on the true sparseness,
and some neurons may provide an even sparser representation.

These results are consistent with Barlow’s claim that “at the upper levels of the
hierarchy a relatively small proportion [of neurons] are active, and each of these

" and his further speculation that the “aim of information

says a lot when it is active,’
processing in higher sensory centres is to represent the input as completely as possible

by activity in as few neurons as possible” (Barlow, 1972).

3.3 Sparseness Elsewhere

I here describe a few other interesting examples of sparse coding identified in different

organismes.

3.3.1 Place Cells

O’Keefe and Dostrovsky (1971) discovered place cells in the rat hippocampus, which
are silent most of the time but fire more vigorously when the rat is in a particular loca-
tion (known as the cell’s place field), a result verified by numerous investigators in the
years since. Collectively, the place fields of hippocampal neurons form a map of the
environment that could be used for various tasks such as navigation and association
of places to memories. For example, place fields have been seen to be modulated by
spatial cues (that is, stay tied to the cues rather than the physical environment) dur-
ing a spatial memory task (O’Keefe & Speakman, 1997). As each place cell is highly

selective for a specific location, these cells form a sparse representation for location
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much like the human MTL cells discussed above form a sparse representation for ob-
ject category or identity. Extending these results to very different species, Ulanovsky
and Moss (2007) recorded from hippocampal area CA1 of bats during a foraging task,
finding well-defined place fields in a majority of active units. Remarkably, these place
fields were generally stable between recording sessions even when different sessions
allowed the use of different sensory modalities (vision and echolocation), a form of
invariance perhaps related to that observed in human MTL.

Hafting and colleagues (2005) may have illuminated part of the computation that
gives rise to place cells, recording earlier in the processing hierarchy in the dorsocaudal
region of the medial entorhinal cortex (AMEC) of rats. Here they found units with
multiple place fields, which each unit’s place fields organized in a regular triangular
grid. Spacing, orientation, and field size of these grids varied as a function of recording
location. It is likely that a sparse coding strategy much like that discussed in the
context of vision in later chapters could give rise to place cells when applied to inputs

from such “grid cells.”

3.3.2 Insect Olfaction

Sparsening of responses to stimuli as one proceeds up the processing hierarchy has
also been observed in insect sensory systems. Perez-Orive and colleagues (2002) mea-
sured responses of neurons in locust antennal lobe (AL), which receives input directly
from olfactory receptors, and the mushroom body (MB), the next stage in olfactory
processing. In an experiment roughly analogous to our own human MTL experiments,
they presented a panel of odors to the locusts and recorded spiking activity. Infor-
mation about the odor presented appears to be coded across the population of AL
neurons, with an average response probability (that is, the likelihood that a particular
odor will elicit a strong response in a neuron) of multiglomerular projection neurons

(which are the only pathway for olfactory input to MB) of 64%. At the next stage,
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however, the representation was considerably more sparse: the average response prob-
ability of Kenyon cells in MB was only 11%, and 58% of neurons recorded failed to
respond to any odor tested. As only 5 to 24 odors were presented in a particular ex-
periment, this means a typical MB neuron responded to only 1 to 3 of the presented
odors. Clearly the information carried at the population level in AL has been made

much more explicit in MB.

3.3.3 Temporal Sparseness

The issues of lifetime and population sparseness investigated above are distinct from
the related notion of temporal sparseness, in which individual neurons may fire only
a very small number of spikes in response to a stimulus or as part of a precise time
sequence. In the extreme case, a neuron may send a signal using only a single spike.
DeWeese, Wehn, and Zador (2003) recorded single neurons in the auditory cortex
of ketamine-anesthetised rats as they responded to pure tones. They found neurons
behaving in a nearly perfect binary fashion, responding to each stimulus with either
zero or one spikes. The probability of spiking in response to a particular stimulus was
a function of the tone frequency, approaching 1 at a specific preferred frequency and
falling off rapidly away from it. These neurons display sparse selectivity in the sense
defined above in that they respond selectively to a very specific stimulus (frequency),
as well as extreme temporal sparseness in that they generally fire only a single spike
in response to even an “optimal” stimulus. DeWeese and colleagues also suggest that
these results demonstrate a more precise control of spike number (or equivalently, the
presence of less noise) than is generally assumed possible. It may be that much of
the “noise” observed in cortex (including in our own data) is in fact stimulus driven
rather than a reflection of an inherently noisy computational system, and that the
ability to stimulate auditory cortex with a precise signal exposes the true precision

of sensory cortex.
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Hahnloser, Kozhevnikov, and Fee (2002) recorded single units in the high vocal
center (HVC) of zebra finches, finding units that burst just once during an approx-
imately 1 second song motif. These bursts consisted of about 5 spikes and were
time-locked to the song motif with better than 1 ms accuracy. The units were vir-
tually silent at other times, with a background rate in awake, non-singing birds less
than 0.001 spikes/s. The authors suggest that this precision is the temporal analogue
of the grandmother cell. Fiete and colleagues (2004) created a neural network model
of birdsong and found that this high level of sparsity speeded learning due to the
decreased interference between different patterns (i.e., different points in time) when

the patterns are sparse.

3.4 Conclusion

All of the results discussed in this chapter support the notion that a goal of sensory
processing is to represent the sensory world in a compact, sparse manner. That
is, sensory cortex transforms the behaviorally important information present only
implicitly at the periphery into an explicit representation in central structures in
which the activity of (relatively) small numbers of neurons carries a great deal of
information about the outside world. Individual neurons are then feature detectors
(Martin, 1994) that indicate the presence of different sensory features in the input
stream, with feature complexity increasing as one progresses along the hierarchy.

Again, Barlow (1972) expressed this idea most clearly:

The central proposition is that our perceptions are caused by the activity
of a rather small number of neurons selected from a very large population
of predominantly silent cells. The activity of each single cell is thus an
important perceptual event and it is thought to be related quite simply to

our subjective experience. The subtlety and sensitivity of perception re-
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sults from the mechanisms determining when a single cell becomes active,

rather than from complex combinatorial rules of usage of nerve cells.

In the next chapters I will examine computational methods by which sparse, ex-
plicit representation may be achieved in a neurally plausible manner, and the results

obtained from applying such a model to visual information processing.
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Chapter 4

Models for Sparse Coding

In this chapter I discuss the manner in which sparse representations can be generated
from sensory information. In Section 4.1 I introduce the general idea of a generative
model and how such models are computed. I then discuss how this framework has
been used to develop a model of sparse coding that has successfully reproduced a V1-
like code for natural images in Section 4.2. In Section 4.3 I describe the extensions
I have made to this model for the particular type of coding I seek to reproduce.
Computational results from the application of these methods to visual processing will
be presented in Chapter 5. Finally, in Section 4.4 I discuss a few other unsupervised

learning algorithms and their relationships to sparse coding.

4.1 Generative Models

The framework I will use to develop a computational model for sparse coding is that
of a generative model. 1 provide here an overview of generative models sufficient to
motivate my results; for a more extensive discussion see Dayan and Abbot (2001,
Chapter 10), from which I derive much of the following notation.

Our model of the world is one in which a random process generates causes V' € R™
according to some distribution fy(v). These causes in turn generate inputs U €

R™ according to the marginal distribution fy(u|v). The inputs are the observable



48
quantity, and in general are of much higher dimension than the causes, so n > m.
Our eventual goal will be recognition, in which an estimate of the cause v(u) (or a
distribution of causes fy (v|u)) can be determined for any particular observed input
u. We further desire to carry out this inference in an wunsupervised manner—no
information about the specific causes underlying the observed inputs will be provided
to the model. Instead, the model must extract the cause estimates solely from the
statistics of the inputs u, subject to a set of heuristics, or assumptions on the structure
of the data and causes, that we place on the model. In general we view a particular
cause as potentially giving rise to a great many different inputs (or, in recognition,
a particular cause could be attributed to many different inputs). For example, the
collection of objects in an image would be considered the cause of the image, but

many different images (inputs) could be produced by the same set of objects.

I use the symbol G to stand for all of the (yet-to-be-specified) parameters and
assumptions of our generative model. In general, the model G is characterized by two
distributions: the generative distribution fy(u|v,G) by which causes generate inputs,
and the prior distribution of causes fy(v|G), the distribution according to which the
causes themselves occur. In other words, the prior distribution is a model of the
statistical structure of the outside world, while the generative distribution is a model
of the sensory process. The prior distribution and generative distribution together

define the marginal distribution of inputs within the model,

fu(ulG) = / folulv, G) fr (v]G). (4.1)

The goal is then to find a model G for which the distribution of inputs generated by

the model closely matches the observed distribution of inputs, or

fo(ulG) = fu(u). (4.2)
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Figure 4.1: World model (top) and the generative model (bottom) that attempts to
match its behavior

Figure 4.1 depicts this assumed structure of the world and the generative model

designed to match the world’s behavior.

Once such a model has been obtained, we can use it to estimate the causes un-
derlying the individual data points u. Applying Bayes’ rule we obtain the recognition

distribution

fu(ulv,G) fv(v|G)
fu(ul|g) '

From this distribution we can compute the expected or most likely cause underlying

fv(vlu,G) = (4.3)

a particular input u and use that as our estimate ©. In many cases, however, the
integrals involved in evaluating Equation 4.3 are computationally intractable (that
is, it is impractical to evaluate Equation 4.1) and the model G is called noninvertible.
We then rely on an approzimate recognition distribution qy (v|u, G) and include as part
of our optimization of G improving the fit of our approximate recognition distribution

to the true recognition distribution. Ultimately we would like

qv(vlu, G) = fv(v|u, G). (4.4)

By placing various assumptions on the structure of G, we can obtain different types
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of coding. The nature of the true underlying causes of the observed data determines

what coding strategy will be most appropriate.

4.1.1 Expectation Maximization

The method we shall use to optimize our generative models (that is, to attempt
to satisfy Equation 4.2) is known as ezpectation mazimization (EM), introduced by
Dempster, Laird, and Rubin (1977). In our setting, EM is based on maximizing the

function

B fvu(v,ulG) y
#0.9) = { [ av(uhung)1og 22120, (45)

where the expectation (-) is taken over all observed inputs u. Noting that Bayes’ rule
states that fyy(v,u|G) = fv(v|u,G)fu(u|G) and with some rearrangement of terms

we can see why F is a useful quantity to consider:

(v

Fa.) = o

/qu(v\u, g) 1ngU(u|Q)dv—/qu(U|u’g) log ?\‘j
— {log fu(ulG)) - < [avtin6) m%@

= (log fu(ulG)) — (Dxr(av(v]u,G), fv(v]u, ), (4.6)
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where Dy is the Kullback-Leibler divergence (Kullback & Leibler, 1951), which mea-
sures how different two probability distributions are from one another. The simplifi-
cation of the first term occurs because fy(u|G) does not depend on v, and gy (v|u, G)
integrates to one since it is a probability distribution. Thus F has two very meaning-
ful terms. The first term is the average log-likelihood that the model would generate
the observed inputs, and so it rewards a model that generates the observed data with
high probability. The second term penalizes the discrepancy between the approximate
recognition distribution ¢y (v|u,G) and the true recognition distribution fy (v|u,G).

In the case of an invertible model (so fi (v|u,G) is known), the second term vanishes
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and we are left simply maximizing the likelihood of the model generating the data.

Expectation maximization separately maximizes F with respect to its two argu-
ments G and ¢. In the expectation (E) phase, F is increased with respect to gy by
improving the fit of gy to the true recognition distribution, holding the other param-
eters of G constant. In the maximization (M) phase, F is increased with respect to
G while holding ¢ constant. In the cases we will consider, optimization proceeds in
a series of alternating E and M phases.

When we consider sparse coding we will further restrict ourselves to deterministic
recognition, in which for a given input u we compute a specific estimate of the un-
derlying cause, 0(u). In this case we consider the limit of Equation 4.5 as ¢y (v|G)

approaches the Dirac d-function d(v — v(u)), obtaining

F(0(u),G) = (log fyu(d(u),ulG)). (4.7)

In the E phase we find the function 0(u) that maximizes F, while in the M phase
we maximize with respect to G as before. This structure has the simple interpreta-
tion that we are trying to maximize the probability that our model G would have

simultaneously produced the inputs u and causes 0(u).

4.2 Sparse Coding with a Generative Model

With an appropriate structure on G, the approach described above can be used to
learn a sparse code for the inputs u, that is, a code in which the individual coding
elements are active only rarely. This technique was first used by Olshausen and Field
to generate a code for natural images resembling the oriented bar filters observed in
V1 (Olshausen & Field, 1996, 1997). As my results build on an extension of their
work, I will summarize it here (though we adopt the notation of Dayan and Abbott

(2001) to map better to the extensions described later).
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Olshausen and Field developed a model in which the inputs u were assumed to
be a linear function of the unknown underlying causes v plus additive, zero-mean

Gaussian noise, so

u=Gv+E, (4.8)

where ¢ is a zero-mean Gaussian random variable with covariance AI. The columns
of G € R™™ can be viewed as (non-orthogonal) basis functions for w. They further
assume that the individual causes v; € R (that is, the individual elements of the cause
vector) are sparse, independent, and identically distributed, defining the sparse prior

distribution

fr(v) oc [ exp(S(w)), (4.9)

i=1
where S is a function designed such that fi(v) is sparse. In this context, sparse means
that both large responses and small ones are more likely than under a Gaussian dis-
tribution. The exponential form of the prior is chosen for mathematical convenience.
For simplicity I omit the proportionality constant required to make this distribution
integrate to 1 (this constant would drop out of the forthcoming optimization, so there
is no loss of generality). In Olshausen and Field (1997), where this strategy was used
to develop a visual cortex-like sparse code for natural images, the sparse prior S

followed a Cauchy distribution with S(v) = —log(1 + v?).

The problem of optimizing the model is now reduced to finding the weight matrix
G that maximizes the average log likelihood of the observed inputs u. Ideally one

would like to find the matrix G* such that

G = arg max <log ( / fululv, G) fv(v)dv>> , (4.10)

where the expectation (-) is taken over all inputs u. However, the integral within

the optimization is in practical terms intractable (to perform for each of perhaps
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cause recognition mput
arg max fy (v|u, G) fv(vlu, G) u

Figure 4.2: Recognition model derived from the generative model of Figure 4.1

thousands of input stimuli for each GG). Olshausen and Field instead take the deter-
ministic recognition approach, approximating the integral by its maximum value (a

valid approach if it has a tightly localized peak), finding

G* = argmax <mgmxlog( Fululv, Q) fv(v))> . (4.11)

Substituting in the assumed linear (plus noise) relationship between u and v and the

sparse prior, we find the function to be maximized is

F(o(u),G) = (log(fu(uli(u),G)fv(0(u)))) (4.12)

1 2 N g
- <—ﬁ||u—Gv(u)|| +;S(vi(U))>+C,

where ©(u) is the most likely cause given the input u (and so is our estimate of the

true cause v), or

0(u) = arg max fo(ulv, G) fy(v). (4.13)

This deterministic recognition process is illustrated in Figure 4.2.

Inspecting the cost function F, we find that it has two meaningful parts. The
first penalizes |[u — G0(u)|, the mismatch between the generated input Go(u) and
the actual input u, and so expresses how well the current model represents the input
set. The second penalizes causes v(u) that are unlikely under the sparse prior S(v).
Thus the optimization seeks to find a set of basis functions G that describe the
data well, subject to the sparseness constraint. The constant C' is the result of the
proportionality factors required so that the various distributions integrate to one, and

does not effect the optimization, and so will be dropped.
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The optimization of F is carried out via the two-step expectation-maximization
process outlined above. In the first (E) step, we compute the cause estimate ¢ for a
particular input v drawn from some set of inputs {u} (solving Equation 4.13). Taking

the derivative of F with respect to v and setting it equal to zero we find

0=G"(u— Gv) + \S'(0), (4.14)

" component is S’'(?;) and the prime

where S’(0) is shorthand for the vector whose i’
denotes the derivative of S with respect to its argument. This equation can be solved

by simulating the differential equation

v =G (u— Gv) +\S'(v) (4.15)

until it reaches some equilibrium point v, and setting © = v,. In Appendix B I
show that it is always the case that © — 0 as ¢ — oo, and so in practical terms this
process always converges. If one makes the additional assumption that all solutions of
Equation 4.14 are isolated, then this also implies that Equation 4.15 converges to one

such solution (and this has been the case in all test cases in the following chapter).

Equation 4.15 can be interpreted as the two-layer recurrent neural network pic-
tured in Figure 4.3. The neurons in the lower layer compute the reconstruction error
u — Gu, while those in the upper layer compute the most likely cause v. The neu-
rons are of two different types: the “error” neurons in the lower layer simply output
the sum of their inputs (with no internal dynamics), while those in the upper “out-
put” layer have dynamics that integrate their inputs while incorporating a nonlinear
self-inhibition term given by S’. The recurrent feedback (—GTG) term introduces
competition between output units that represent similar inputs, producing winner-
take-all behavior, and this stage of the optimization can be viewed as computing

the set of basis functions that best represent the input, subject to the sparseness
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Figure 4.3: Neural network implementation of Equation 4.15. The bottom-layer
neurons compute the reconstruction error v — G0, while the upper layer outputs the
causes v. The learning rule (Equation 4.16) is a Hebbian rule for this network.

constraint imposed by the self-inhibition term S’. Note that the sparse prior only
enters the dynamics through the self-inhibition term, not through any interactions
between neurons. If one wished to alter the response probability of a given neuron
to reflect changing assumptions about the world (for example due to some top-down

attentional effect), one would only need to change that neuron’s inhibition term.

For a particular input u and cause estimate 0(u) computed as above, Olshausen
and Field performed gradient-ascent learning to improve G, which results in the

update rule

G—G+ g(u — Go(u))o(u)’, (4.16)

where 0 is a small, positive learning constant. Expanding this learning rule to look
only at the update of the single connection between error neuron ¢ and output neuron

J in Figure 4.3, we obtain
0 o
Agij = X(Ul — Z G,-jvj)vj. (417)
J

In the network of Figure 4.3 (which implements the dynamics of Equation 4.15), the
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u

Figure 4.4: Alternative network implementation of Equation 4.15

output of all the error neurons is
e =u— G0, (4.18)
so the output of error neuron 7 is
e =u;— Y _ Gy, (4.19)
J

Thus the update of synaptic weight 77 is proportional to the product of the pre-
synaptic input and the post-synaptic response, and this is a standard Hebbian learning

rule for the network in Figure 4.3.

The network depicted in Figure 4.3 is not the only possible network implementing
the dynamics of Equation 4.15. These dynamics would also be implemented by the
network depicted in Figure 4.4, in which the input u is passed through the weight ma-
trix GT directly into the output () layer, which comprises neurons identical to those
in the upper layer of Figure 4.3 connected with recurrent weights —G7G. The learn-
ing rule given by Equation 4.16 is not Hebbian for this alternate network, however,

and so this topology does not have as straightforward a biological interpretation.

One possible weakness of the network interpretation is that there is a constraint
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imposed that the feedforward weights must match the feedback weights (transposed).
However, if the network were initialized with different feedforward weights G and
feedback weights —H, Hebbian learning would give Ah;; = Ag;;. To verify this, first

note that the output of error neuron 7 is

€ = U; — E Hijvja
J

while its pre-synaptic input from output neuron j is simply ©;. The Hebbian weight
update is then

Ahij = (ul — Z HZJIA)j)IA)j
J

>

Meanwhile, the output of output neuron j is ©;, while its pre-synaptic input from

input neuron 7 is u; — » ; Hijvj, so the Hebbian weight update is
0 o
Agji = X(ul — Z Hijl)j)'l}j.
J

Hence AH = (AG)T. If a decay term were then included in the weight update (as
described in Section 4.3.2 below) the two weight matrices would converge to the same
solution over time (as their dynamics would be described by stable linear systems

with the same dynamics and inputs, differing only in initial conditions).

Olshausen and Field point out that there is a penalty inherent in approximating
the integral of Equation 4.10 with the maximum operation of Equation 4.11, namely
that there will be a trivial solution for G, since the larger G is the smaller o(u) can
be, and so the larger fy(v) can be (assuming that fi (v) increases as v approaches
zero). Without further constraints, then, G could grow without bound while trending
toward a good set of basis vectors. This problem was alleviated by adapting the length
of the basis functions (in our notation, the columns of GG) to maintain the variance of

the individual cause estimates 0; at a desired level. In Section 4.3.3 I discuss another
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method of mitigating this issue that fits directly in the optimization and may have a

cleaner biological interpretation.

4.3 Extensions

I here describe several extensions to the original Olshausen and Field sparse cod-
ing model besides the application of the model to a much higher level in the visual
hierarchy described in the next chapter; these extensions compose my main theoret-

ical contribution in this area. This section expands on work that has recently been

published elsewhere (Waydo & Koch, 2007a, 2007b).

4.3.1 Bimodal Sparse Prior

I would like to adapt the approach of Olshausen and Field to generate sparse, invariant
representations of objects in the visual world like those observed in human MTL
(Quian Quiroga et al., 2005; Waydo et al., 2006, and see Chapter 3). Olshausen and
Field used a Cauchy prior distribution for v, which is sparse in the sense that it will
generate more responses close to zero and far from it than a Gaussian. Because the
neuronal behavior I would like to replicate is more binary in nature (i.e., responses
are either “off,” near zero, or “on,” near some large firing rate), I employ a different
sparse prior that reflects this desire. The prior distribution I choose is a weighted
average of Gaussians centered at zero and some higher “on” rate r,. Denoting the
probability that the neuron responds strongly by a and the desired variance as o2,

my sparse prior is

o (o) l1—a e—_uj n a o)
v == 20 e 20
v V2o V2o
_v2 7(1177‘,7’)2

= aez:2 + Be 202 . (420)
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The constants o and ( are introduced to simplify notation. In principle the variance
o? could be different for the two Gaussians, though this modification has not been
necessary. It would also be desirable to impose the constraint that neuronal responses
are always greater than zero (both for biological realism and to ease interpretation of
the results), which corresponds to fy(v) = 0 for v < 0. To avoid numerical difficulties
stemming from the resulting discontinuity, I instead impose a very narrow Gaussian
prior distribution for v < 0, which will result in negative responses being strongly
pushed toward zero. In the following development I assume v > 0 and omit this

detail.

To use this formulation within the framework described above, I define S(v) such

that exp(S(v)) = fy(v), or

2 —(v—rp)?
S(v) =log (aezﬂ + Be S= ) . (4.21)

Taking the derivative of S with respect to v gives us the needed function describing

the neuronal dynamics,

]_ 2r) v—r2
§'(v) = —2 4 O e (4.22)
2 2 2rpv—r
g g o+ ﬂeﬁQ_h

Figure 4.5 provides a comparison between this form of S’(v) and that used by Ol-

shausen and Field (as well as the corresponding sparse priors exp(S)), where

, 2v

The differences in scale between the two approaches are not important, as the two
models are driven by different inputs, but the difference in the overall shape is crucial.
In the Olshausen and Field approach (Equation 4.23), small responses are linearly

suppressed (i.e., S’(v) o v for small v), while the self-inhibition becomes small for
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large v. In our case (Equation 4.22), small responses are linearly suppressed toward
zero, while larger responses are linearly suppressed toward r;, (in this figure, r, = 1),

giving rise to a bimodal response distribution.

exp(S(v))

exp(S(v) )

Figure 4.5: Comparison of sparse prior exp(S) (a, ¢) and the derivative S’ (b, d)
between the approach of Olshausen and Field and that taken here. The differences
in scale are related to the differences in scale of our input sets and are unimportant;
the overall shape of the curve determines the resulting distribution of responses. (a,
b): Olshausen and Field approach (Equation 4.23). (¢, d): Our approach (Equation
4.22). Only the portion for v > 0 is shown, as we will later restrict ourselves to this
regime.

4.3.2 Weight Penalty

I also extend the approach of Olshausen and Field to incorporate a prior probability

distribution on the elements g;; of the weight matrix G' to express the constraint
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that the weights not be too large. I do so by placing a zero-mean Gaussian prior

distribution (with variance 7) on g;;,

2
o2,
e 2v

1
=" (4.24)

f(gij) =

and further assuming that the distributions f(g;;) are independent, so
£&) =11 f(ga). (4.25)
i,J

The function to be maximized is now the average log likelihood of the inputs u, the

cause estimates Uy (u), and the weights G, or

F(0(u), G) = (log(fu(ulo(u), G) fv (0(u)) f(G)))- (4.26)

This strategy for introducing additional structure on G is closely related to the
method of “hyperparameter estimation” introduced in the original work describing

EM (Dempster et al., 1977).

Plugging in the expressions for the various distributions and neglecting the con-

stant terms we find

Fli(w),G) = <—%||u -G + Y 8(5) - * >y g3j> . (4.27)

Taking the derivative with respect to v and setting equal to zero gives us the same
result as before (Equation 4.14), and so we compute v via the same differential equa-
tion as before (Equation 4.15). The Gaussian distribution on g;; introduces a decay

term to the update rule for GG, however, and we have

) ) NN Af AT
G — (1 — ;) G+ X(u — Go(u))o(u) (4.28)
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for learning rate 6. This decay term keeps the size of the weights under control,
eliminating the need for the explicit constraint employed by Olshausen and Field, and
reflects the plausible biological condition that rarely active synapses become weaker

over time (alternatively, “forgetting” is built into the model through the decay term).

4.3.3 Batch Learning

The quadratic penalty on the weights g;; of G also allows us to explicitly solve for
the optimal G for a set of inputs {u} and cause estimates {0(u)}. To do so, we first
carry out the E-step computation for all inputs u for fixed GG, obtaining an estimate
0(u) for each u. We then take the derivative of F with respect to G, set it equal to

zero, and solve for G to obtain the batch update rule

G — (ud(u)") <3] + (@(u)@(u)T>>_1 . (4.29)
Because %I is positive definite and (vv?) is positive semidefinite, their sum is positive
definite and thus nonsingular, so this learning rule is always well defined and yields
the globally optimal G for the current ©(u). This rule is a significant extension of the
method, as the large M step results in much faster convergence of the EM algorithm
than the incremental rule presented in Olshausen and Field (1997). In the applications
discussed in the next chapter, a typical experiment was sped up by easily an order of

magnitude or more by implementing the batch process.

The batch algorithm is then as follows. We denote the k' iteration of G and o

by G*) and 9*)| respectively.

Initially: 9 (u) = 0 for all u € {u}, G = rand(n,m)

k+1

E step: For each u € {u}, compute 9**1 by gradient ascent on F starting at 9*) with



M step:

Iteration:
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G = G® . That is, simulate the differential equation
v =V, F =G"(u—Gv)+ \S'(v) (4.30)

until ||o|| falls below some convergence threshold vy

Set G+ according to the update rule

GFY = (upT) (51 + <@@T>) B (4.31)

with v = p*+1D),

Alternate E and M steps until the average change in the weights g;; falls below

some threshold dgr.

One advantage of the batch learning rule is that it renders the algorithm more

amenable to analysis. In Appendix B I show that this algorithm converges to some

set of local maximizers of F; in practice the algorithm has always converged by the

average change in weight criterion.

In summary, the algorithm I use for the remainder of this work implements sparse

coding with a bimodal prior via EM. The model requires 6 parameters to be specified:

. m, the number of output (v) neurons,
. A, the noise variance,

. 7, the target weight variance,

o2, the variance of the Gaussians in the sparse prior,

a, the probability of a large response in the sparse prior, and

. Ty, the high response rate (though this is simply a rescaling and is always set

to 1.
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4.4 Related Models

The sparse coding algorithm discussed here is a special case of a very general class
of linear Gaussian generative models, in which the observed inputs are a noisy linear
function of unobserved states (“causes” in our terminology). Roweis and Ghahra-
mani (1999) provide an extensive discussion of such models, detailing how such dis-
parate learning techniques as factor analysis, principal component analysis, mixtures
of Gaussians, and Kalman filters can be described in this framework. I here high-
light a few important cases that are particularly relevant to the learning problems

discussed in this work.

Sparse coding is closely related to factor analysis, discussed by Dempster, Laird,
and Rubin (1977) alongside the EM algorithm. As with sparse coding algorithm
discussed here, factor analysis assumes the observed variables (inputs) depend in
an affine way on a lower-dimensional set of unobserved “factors” (causes), and the
EM algorithm is used to estimate the parameters of the mapping from factors to
observed variables as well as the factor scores themselves. In Dempster and colleagues’
discussion, however, the assumed prior distribution on factors (exp(.S) in my notation)
is a zero-mean, unit-variance Gaussian (though he does not include this assumption

as part of the definition of factor analysis).

Taking the limit of factor analysis as the noise goes to zero (with the usual zero-
mean Gaussian assumption on the factors, so exp(.S) becomes a zero-mean Gaussian
with increasingly small variance) yields principal component analysis (PCA), first
introduced (though not given this name) by Pearson (Pearson, 1901) as an approach
to the problem of optimally fitting lines and planes to systems of points. PCA finds
the directions of maximum variance in a set of input points, thereby finding the
most efficient set of basis vectors for representing the inputs (in terms of minimizing

reconstruction error for any fixed number of basis vectors). From an information-
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theoretic point of view, PCA maximizes the information about the inputs that can
be carried by a limited number of basis vectors (Dayan & Abbott, 2001). Though
PCA can be solved exactly via singular value decomposition (SVD), an EM algorithm
has also been found (Roweis, 1997). This algorithm, found by viewing PCA as the
zero-noise limit of factor analysis and applying the same learning techniques, offers
two distinct advantages over the SVD approach: its complexity grows only linearly in
number of data points, input dimension, and number of components to be learned, and
it can deal gracefully with incomplete data points by estimating maximum likelihood
values for any missing information. PCA has been applied to natural images with the
aim of describing the behavior of V1 cells, but only the first few principal components
were found to bear significant resemblance to known V1 responses (Hancock et al.,
1992).

If the number of causes and inputs is the same (so m = n) and no noise is included
in the model, the problem of estimating the causes and their mapping to inputs is
known as independent components analysis (ICA), first introduced by Herault and
Jutten (1986) in the context of extracting source signals from sensors sensitive to an
unknown linear combination of the sources. Bell and Sejnowski (1995) generalized
this problem and cast it in an information-theoretic framework, with applications
to blind source separation and blind deconvolution problems. In later work they
apply it to natural scenes, finding that Gabor-like filters develop with more sparsely
distributed outputs than other decorrelating filters such as principal components (Bell
& Sejnowski, 1997). ICA has also been used to learn efficient codes for natural sounds,
with the resulting code bearing a great resemblance to that observed in cochlear nerve

cells (Lewicki, 2002).
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Chapter 5

Application to Visual Information

The sparse coding model described in the last chapter was originally applied directly
to natural images. It developed receptive fields strikingly similar to those of simple
cells in the mammalian primary visual cortex (Olshausen & Field, 1996, 1997). In
this work I am interested instead in building a model capable of reproducing the selec-
tive, invarient behavior observed further along the visual pathway and in the MTL as
described in Chapter 3 (Quian Quiroga et al., 2005; Waydo et al., 2006). My central
hypothesis is that the machinery of the ventral visual pathway is largely concerned
with building an invarient feature-based description of visual inputs, transforming the
input data but not necessarily increasing the sparseness of representation. The MTL,
then, builds a sparse model for these invarient features. These two simple computa-
tional principles, sparseness and invariance, naturally lead to explicit representation
as observed in MTL. In the first half of this thesis, I described the representation
at various stages along the ventral visual pathway, culminating in the highly sparse,
selective, and invariant representation observed in MTL. In the previous chapter I de-
scribed one method for learning a sparse representation for sample data, and now in
this chapter I will show that this method, when combined with a separate system for
invariant feature extraction, is sufficient to reproduce these response patterns. To do
so I apply the sparse coding model of the previous chapter to the outputs of different

models for invariant feature extraction. Through training, units develop displaying
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sparse, invariant selectivity for particular object categories (such as faces or cars) or
even for particular individuals, much like that observed in the MTL data. Portions of

these results are currently in press for publication elsewhere (Waydo & Koch, 2007a,

2007h).

To achieve the high-level invariance observed in the human MTL data, it is first
necessary to develop an invariant feature-based (rather than pixel-based) description
of images such as may exist in inferotemporal cortex (IT) as input to MTL. Aside
from mimicking the observed data from electrophysiology, this process projects im-
ages from the space of pixels (or patterns of retinal activity) in which different images
of the same object may be wildly different to a space of features in which different im-
ages of the same object will lie close to one another (and hopefully images of different
objects are far apart). That is, the features are robust to “unimportant” (from the
standpoint of recognition) transformations such as lighting, pose, and scale. Cells in
monkey I'T have been found to be selective for “moderately complex” features—that
is, features more complex than orientation, size, color, and texture, but in general
not complex enough to represent natural objects (Tanaka, 1997) (with the exception
of faces, for which specialized machinery appears to exist (Bruce et al., 1981; Perrett,
Rolls & Caan, 1982, and see Chapter 3)). I investigate three methods of generating
such a representation here and show results of applying the sparse coding network to
this representation for different input sets. The primary method (upon which most
of my results are based) is the feedforward neural network model of visual process-
ing of Serre et al. (2005, 2007), which has the advantage of employing biologically
plausible computations throughout the hierarchy; its practical drawback is that it is
very computationally complex. This model is also highly non-invertible, in the sense
that it is impossible to determine what portions of each image contribute most to
any given response. [ describe this model in more detail and present results in Sec-

tion 5.2. The second model, discussed in Section 5.3, is based on the Scale-Invariant
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Feature Transform (SIFT) algorithm of Lowe (1999). While the SIFT computations
are less biologically plausible, the outputs at least are still analogous to I'T responses
and can be computed much faster. Furthermore, it is possible to determine what
image features drive the responses. In Section 5.4 I present some preliminary results
from applying this model to a feature extraction system tailored specifically to face
recognition (Holub & Moreels, 2007). In Section 5.5 I discuss the statistics of the re-
sponse distribution in more detail. Finally, in Section 5.6 I investigate the structure
of the G matrix after training and examine the effects of quantizing and truncating
GG on recognition performance. Robustness of G to these disturbances, which model
synaptic noise and pruning, is crucial to establishing the biological plausibility of my

results.

5.1 Classification Accuracy Metrics

In the following sections I apply the sparse coding model of Chapter 4 to features
extracted from various collections of images of objects drawn from different categories
(or in come cases, images of different people). My goal is for the sparse coding net-
work to develop units that respond selectively to the different categories present in
the input set, without being given information about which images belong to which
categories, or even the number or type of categories present. Given that I use a
purely unsupervised training process, and that the model is free to identify fewer or
more categories than are present in the training set, there are several possibilities for
evaluating the classification accuracy of this system. I consider three metrics here,
two of which are weakly supervised as they require us to decide what category each

unit is selective for, and one of which is fully unsupervised:

Metric 1: Single-category classifier. I consider each unit individually as a classi-
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fier for its most preferred category. The accuracy figure I use is the receiver-operating
characteristic (ROC) equal error rate (i.e., p(true positive) = 1-p(false positive)) test-
ing against the other categories. Chance level in this case is 50%. The metric is the

average accuracy of the best classifier for each category.

Metric 2: Weakly supervised classifier. [ use all selective units together to
classify each input image into one of the input categories. To do so, I first manually
assign to each unit a category for which it is most selective, as before (so multiple
units could be assigned the same category). I then classify each image according
to which unit responded the most strongly. The accuracy is then the percentage of
testing images correctly classified, and the chance level is one over the number of

categories.

Metric 3: Unsupervised classifier. In the fully unsupervised setting I rely on the
output units to both define the categories and assign images to them. Each image
is assigned to a putative category based on which output unit responded the most
strongly. I then form a confusion matrix in which element (i,7j) is the percentage
of images from input category j assigned to output category ¢ and rearrange this
matrix to maximize the average of the diagonal elements, thereby picking the output
categories that best correspond to the input categories. This average is then the

classification accuracy, and chance level is one over the number of output units.

Note that each of these metrics says something different about the behavior of
the network, and none of them by themselves describe exactly the sparse, invariant
selectivity that is our goal. Metric 1 quantifies how selective individual units are
for particular categories, but disregards the separation between “on” and “off” re-

sponses. Metric 3 quantifies how precisely the categories discovered by the network
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correspond to those we defined, but a network that divides one or more categories
into subcategories would score poorly here despite qualitatively good performance.
Metric 2 alleviates this issue, but could disregard excessive subcategorization. Hence,
sparse, invariant representation of the input categories is only captured by good scores
according to all three metrics.

It is important to note that I label metrics 1 and 2 “weakly supervised” purely
because evaluating them requires information about which images are in which cat-
egories. In all cases the model is trained in a completely unsupervised manner: no
information is supplied about which images are in which categories, or even how
many categories are present in the input set. The model simply receives a collection

of inputs and learns a representation for them.

5.2 A Feedforward Model of Visual Processing

5.2.1 Overview of the Model

The first model I use to generate an invariant feature-based description of images is
the feedforward model of Serre et al. (2005, 2007), which is an extension of the HMAX
model of Riesenhuber and Poggio (1999). This model processes images via a series of
alternating layers of S (simple) and C' (complex) units in an extension of the Hubel
and Wiesel (1962) simple-to-complex cell hierarchy. The S units provide Gaussian-
like tuning around template features, while the C' units provide scale and position
invariance by pooling S units with the same feature selectivity across nearby positions
and scales. The initial S layer, called S, consists of units which, like V1 simple cells,
are tuned to oriented bars and edges at a variety of scales and orientations. In the next
layer, C', each unit pools the responses of Sy units with the same preferred orientation
but with small variations in position and scale, increasing the receptive field size and

the invariance to transformations and modeling complex cell behavior. Continuing up
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the hierarchy, each Sy unit is tuned to the activity of nearby C units with different
feature selectivity, increasing the complexity of the unit’s preferred feature, and each
C5 unit pools the responses of similar S, units over position and scale. In this way
both feature complexity and receptive field size increase as one progresses up the
hierarchy, until at the output layers of the model each unit responds to the presence
of a particular complex feature located anywhere in the input image, in a manner
analogous to IT cells. The most recent version of this model (which I use here)
incorporates two parallel processing paths with somewhat different parameters for
the selectivity and pooling range, a “standard” route with three simple-to-complex
stages terminating with layer C3 (S; — C; — Sy — Cy — S3 — () and a “bypass”
route with two stages terminating with layer Cy (S; — C} — So — (). This
model normally terminates with a layer S, (receiving inputs from Cy, and C3) that
is task-specific in that its feature templates are learned from images from the set
to be classified. I instead rely only on the task-independent Cy, and C3 outputs.
That is, in the version of the model I use, the feature templates for the S layers are
learned from images unrelated to the specific tasks at hand. Despite being designed
primarily to model biological vision, this model has been shown to perform on par
with the state of the art in image classification tasks in a supervised setting (Serre,
Wolf, Bileschi, Riesenhuber & Poggio, 2007) and even to match human performance
in a rapid categorization task (Serre, Oliva & Poggio, 2007). The software is available

from http://cbcl.mit.edu/software-datasets/.

5.2.2 Inputs to the Model

All images used in this investigation were taken from the Caltech-256 database of
images from 256 categories (Griffin, Holub & Perona, 2006). Images were resized
(using MATLAB’s imresize with nearest-neighbor interpolation) so that the smaller

dimension was 128 pixels while preserving the aspect ratio. The outputs of the Cy,
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and (' layers of the visual processing model were computed using a feature set derived
from training on 500 natural images. The feature set I used for the S layer templates
was the “universal” set included with the software distribution. There were 1000 units
in each of these layers, for a total of n = 2000 outputs. In some cases an input image
was large enough to have multiple C' units for the same feature in the top layer, in
which case I performed an additional max operation over these units to preserve input
dimension. After computing the outputs for all input images, I renormalized them to
have zero mean and unit variance (they were initially values between 0 and 1). While
it may be possible to find parameters of the sparse coding network that work well
on the unnormalized data, this rescaling makes it possible to apply the network to
different input sets (such as this set and the SIFT features described below) without

adjusting the various network parameters for optimum performance.

5.2.3 Results: Categorization

I performed several object categorization experiments with this model. In all cases
the number of output units was m = 10 and the network parameters were A = 10,
t = 0.05, and 02 = 0.04. The weight penalty was v = 100. The matrix G was
initialized with uniformly distributed random weights between —0.5 and 0.5. In each
experiment I used the batch update rule and terminated the optimization when the
average change in the weights ¢,; was less than 2% for 5 consecutive iterations. I used
40 random images from each category for training and reserved 40 different images
for testing. After training, I ran the recognition model on the novel testing images;
these are the responses depicted below.

I performed the following three experiments:

(A) Three object categories. I trained and tested the model on images of motor-

bikes, airplanes, and faces. This is directly comparable to experiment (C) of Sivic et
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al. (2005).

(B) Four object categories. I added a fourth category (cars) to the training set
from experiment (A). This is similar to experiment (D) of Sivic et al. (2005), except

that I used side- rather than rear-views of cars.

(C) Four object categories. As the images from experiment (B) are relatively easy
to classify (a supervised classifier operating on the same inputs can perform this task
at near 100% accuracy), I performed the same experiment with four more difficult

categories: blimps, elephants, ketches (a type of sailboat), and leopards.

I ran each experiment 10 times with different random initial conditions for G.
All model parameters were identical between the three experiments—mno adjustment
was required to account for different number or type of input categories between

experiments.

I here focus on describing the response profiles of the output units from a typical
run of experiment (B); results from the other trials and experiments were qualitatively
similar. Figure 5.1 depicts the responses of two of the selective units (from the same
session) that emerged in training. For each unit this figure shows 20 of the 40 images
that evoked the strongest responses (every other response is omitted for clarity) as
well as a histogram of all responses. The ROC curve for each unit treated as a classifier
for its preferred category is inset in the histogram, along with the ROC curve for the
best principal component for that category for comparison. We see from these figures
that category tuning has spontaneously emerged from the learning process.

The quantitative results of each experiment, as measured by the three metrics de-
scribed above, averaged over 10 trials (one “trial” refers to a complete training/testing

run with random initial conditions), are summarized in Table 5.1. As a baseline for
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Figure 5.1: Responses of two selective units (out of 10) after the unsupervised category
learning. (a, ¢): images that evoked the top responses, with the activation level above
each image. Every 2"¢ image omitted for clarity. (b, d): response histograms. z-axis is
the activation level; y-axis is the number of test images (160 total) evoking a response
at that level. Responses to preferred category in black; responses to all other images
in white. Insets: ROC curves. Solid line is ROC curve for selected unit, dashed line
is ROC curve for best principal component. ROC equal-error accuracies were 100%

and 88%.
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Ex Metric 1 Metric 2 Metric 3

SN PCA SVM <c¢h | SN PCA k-means SVM <c¢h | SN PCA ch
A |91.7 69.2 981 50.0|90.6 55.0 95.8 96.7 33.3|164.0 37.5 10.0
B | 8.8 71.9 974 50.0|82.6 46.9 91.9 96.9 25.0|66.1 40.6 10.0
C |77.0 69.2 88.1 50.0|638 47.5 57.5 81.9 25.0|41.4 36.3 10.0

Table 5.1: Classification accuracy computed using different metrics averaged over 10
trials with random initial conditions. In all cases unseen images were used for testing.
For each metric I report the classification accuracy (as a percentage) for the sparse
network (SN) and for PCA applied to the same inputs, as well as chance level. For
metrics 1 and 2 I also provide the accuracy of a supervised SVM classifier applied to
the same inputs, and for metric 2 I further include the accuracy of k-means with k
equal to the true number of categories.

comparison, I also evaluated the performance of PCA applied to the same inputs as
the sparse coding network against these three metrics. As there were 10 units in the
output layer of the sparse coding network, I used the top 10 principal components for
this comparison. I also found the best performance I could achieve using a supervised
SVM classifier applied to the same inputs, which provides a reasonable upper bound
on achievable performance and an objective measure of task difficulty. For metric 1
I report the average accuracy of a binary SVM classifier for each category versus the
others, while for metric 2 I report the accuracy of a multi-way SVM. Finally, I applied
a k-means algorithm with k£ equal to the true number of categories. As in this case
the number of categories is a given, this performance metric is most comparable to

the semi-supervised performance of the sparse coding network.

The seemingly poor results from experiment (C) still occur in the context of units
that show very clean selectivity for each category. However, in each case the units
responded strongly only to a subset of the category in question. Figure 5.2 gives an
example of such a unit which responded selectively to some but not all of the ketch
images. Note also that this task is considerably more difficult than the others, as

quantified by the large drop in supervised SVM accuracy (also listed in Table 5.1).
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Figure 5.2: Responses of a ketch unit from experiment (C). (a): images that evoked
the top responses, with the activation level above each image. Every 2"¢ image
omitted for clarity. (b): response histogram. z-axis is the activation level; y-axis is
the number of test images (160 total) evoking a response at that level. Responses to
ketches in black; responses to all other images in white. Inset: ROC curve. Solid line
is ROC curve for this unit, dashed line is ROC curve for best principal component.
ROC equal error accuracy with respect to all ketches was 85%.

5.2.4 Results: Face Discrimination

To evaluate performance in a finer discrimination (as opposed to categorization) task,
I tested the algorithm on a dataset consisting of gray-scale frontal facial images of
different individuals obtained from the Caltech-256 dataset (Griffin et al., 2006).
Though the backgrounds vary slightly from image to image, these images are fairly
well structured and could be viewed as the output of an attentional selection and
segmentation process. Training was performed using 10 different images of each
individual, with 10 different images of the same individuals reserved for testing. I
performed experiments with 4 to 10 different individuals in the input set. All network
parameters were identical to the categorization task described above, except that the

number of output units was m = 15.

Figure 5.3 depicts the responses of two selective units (the best and a more typical

unit) from a single training session with 10 different individuals in the input set. The
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mean ROC accuracy (that is, the average ROC accuracy of the best unit for each
category) for this run was 91%, and the ROC accuracies for the two units shown were
100% (Figure 5.3 (a, b)) and 90% (Figure 5.3 (c, d)). The semi-supervised 10-way
classification accuracy of the sparse network was 56%. PCA yielded a mean ROC
accuracy of 78% and a semi-supervised classification accuracy of 37%. Additionally,
in contrast to the responses of the sparse units depicted in Figure 5.3, the responses of
the principal components were unimodal and so did not clearly indicate the presence
of a category in the same way as the sparse units (which is reflected in the poor semi-
supervised accuracy). Figure 5.4 depicts the response of the best principal component
for any category from the same dataset as in Figure 5.3 and gives an example of
this issue: while the ROC equal-error accuracy of this principal component for its
“preferred” category is 90%, there is no clean separation between in-category and

out-category responses.

I repeated this experiment 50 times for each number of different individuals, each
time starting with different random initial conditions (initial synaptic weights), using
a different random subset of the 17 individuals for which the dataset contains at least
20 pictures, and using different random subsets for training and testing. Figure 5.5
summarizes the results for metrics 1 and 2 (ROC and semi-supervised) and compares
them to those obtained from the top 15 principal components and the performance
achieved by a supervised SVM; the complete numerical results are listed in Table 5.2
with the addition of the performance of a k-means algorithm with k£ equal to the
true number of categories. Performance according to the ROC metric did not vary
significantly with the number of people presented, indicating that in all cases units
emerged that responded selectively to each individual. The mean ROC accuracy
across all 350 trials was 91.3%, compared to 96.6% for a binary SVM and 80.4% for
PCA. Performance according to the semi-supervised metric did decline as the number

of people in the input set increased, dropping from a mean of 85.5% to 64.2% as the
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Figure 5.3: Responses of two selective units (out of 15) after the unsupervised category
learning. (a, c¢): images that evoked the top responses, with the activation level above
each image. Every 2"? image omitted for clarity. (b, d): response histograms. z-axis is
the activation level; y-axis is the number of test images (100 total) evoking a response
at that level. Responses to preferred person in black; responses to all other images in
white. Insets: ROC curves. Solid line is ROC curve for selected unit (exactly along
the vertical and horizontal axes in (b)), dashed line is ROC curve for best principal
component.
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Figure 5.4: Responses of best principal component for a particular category for same
inputs as in Figure 5.3. (a): images that evoked the top responses, with the compo-
nent loading above each image. Every 2" image omitted for clarity. (b): response
histogram. z-axis is the component loading; y-axis is the number of test images
(100 total) evoking a response at that level. Responses to preferred person in black;
responses to all other images in white. Inset: ROC curve.

number of people increased from 4 to 10. This is in all cases significantly better than
the PCA performance, which decreased from 58.1% to 41.1%, and the performance
of k-means, which decreased from 70.7% to 63.7%. This decline is not unexpected,
because as more categories are presented it becomes more likely that, in addition
to the “correct” unit responding to a given image, some other unit will spuriously
respond strongly (which is also reflected in the decreasing chance performance). In
the purely unsupervised case, performance increases slightly as the number of people’s
faces to be recognized rises from 4 to 6 before dropping off gradually with more people,
likely because with 15 output units significant subcategorization may be taking place
when there are few people in the input set. PCA sees a similar increase in accuracy in
this regime. Figure 5.6 depicts an example of such subcategorization occurring when
only 4 different faces were present in the input set. Shown are two units that, after
training, responded to different images of the same individual. The top unit had an

ROC equal-error accuracy of 80%, while the bottom unit had an accuracy of 90%.
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Figure 5.5: Face discrimination accuracy (mean + s.d.) as a function of number of
people in the input set. Solid line: sparse coding network, dashed line: SVM (su-
pervised) classifier, dotted line: PCA. Dotted line without error bars depicts chance
performance. (a): ROC equal-error accuracy for binary classification. (b): semi-
supervised multi-way classification accuracy

The overall ROC accuracy of this run (which only the more accurate bottom unit
contributed to) was 92.5%. However, since both units responded strongly to several
images of the same person, either one was liable to have the strongest response to any
particular image of that person, hurting the unsupervised accuracy (metric 3), which
was 67% overall. In fact, each of these two units provided the strongest response to
40% of the testing images of this individual, so they evenly divide the category in two.
The only clear difference between the two subsets of images is that the bottom unit’s
preferred images appear brighter; though the normalization steps in the HMAX model
should provide invariance to brightness it may be that the top unit is responding to
details in the darker images that are washed out in the bright images.

It is interesting to note that, even with 10 faces in the input set, performance
on this task was essentially as good as in the categorization tasks described above.
While the distinction between different faces is clearly more subtle than the distinction
between categories, there is also less within-category variation in the face images than
in the images from other categories, so different images of the same individual are

likely to be tightly clustered in feature space. From this we see that the within-
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Figure 5.6: Responses of two selective units (out of 15) after the unsupervised category
learning. (a,c): images that evoked the top responses, with the activation level above
each image. (b,d): response histograms. x-axis is the activation level; y-axis is the
number of test images (40 total) evoking a response at that level. Responses to
preferred person in black; responses to all other images in white. Insets: ROC curves.
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# Metric 1 Metric 2 Metric 3
people | SN PCA SVM c¢h | SN PCA k-means SVM ch | SN PCA «ch
4 91.9 79.0 97.3 50.0|85.6 58.1 70.7 96.8 25.0|67.0 49.7 6.7
5 92.2 80.5 974 50.0|814 558 71.2 95.6 20.0 | 70.0 532 6.7
6 92.7 81.0 975 50.0|81.6 523 70.6 95.7 16.7 | 722 50.7 6.7
7 91.3 80.0 96.5 50.0|73.6 475 65.5 93.6 14.3|68.7 475 6.7
8 90.6 80.6 96.2 50.0|70.0 46.9 64.0 92.9 125 |65.7 472 6.7
9 90.2 80.8 959 50.0|67.5 428 63.4 92.6 11.1 |63.5 44.0 6.7
10 90.1 80.7 954 50.0|64.1 41.2 63.7 91.2 10.0|63.3 439 6.7

Table 5.2: Face discrimination accuracy computed using different metrics averaged
over 10 trials with random initial conditions using HMAX features. In all cases,
unseen images were used for testing. For each metric, I report the classification
accuracy (as a percentage) for the sparse network (SN) and for PCA applied to the
same inputs, as well as chance level. For metrics 1 and 2, I also provide the accuracy
of a supervised SVM classifier applied to the same inputs, and for metric 2 I further
include the accuracy of k-means, where k equals the true number of categories.

class homogeneity drives classification accuracy as much as the inter-class separation.
These experiments also highlight the importance of the statistics of the input set to
the representation learned. In experiments (A) and (B) in the previous section, faces
were present often in the inputs, but no particular individual was present often. In
this case we obtained a representation for “face,” but no individuation within that
class. Roughly speaking, there was a cluster of inputs in feature space distinct from
the inputs from the other categories, but no smaller clusters corresponding to specific
individuals within it. In these experiments, particular individuals were present often
(and each individual was present equally often), so it became apparent that there were
well defined clusters within the “face” cluster, giving the network enough information

to identify multiple individuals and represent them separately.

To evaluate robustness of this method to more widely varied facial images (and
to improve the analogy with the results from human MTL), T also applied the model
to images of four celebrities collected from the web (Jennifer Aniston, Halle Berry,

George Clooney, and Matt Damon). I selected images that contained reasonably
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frontal views of faces and cropped them to include only the face, so the overall com-
position was similar to the images used above. However, these images contained
substantially more variation in pose, facial expression, hairstyle, and background
than the images used above, and were much more difficult to classify even using su-
pervised methods. I again performed 50 trials (full training and testing runs) using
10 images for training and 10 different images for testing, randomizing over initial
weights and which subsets of images were used for training and testing. The resulting
average ROC accuracy was 77.4%, compared to an average supervised SVM accuracy
of 84.3%. Relative to the benchmark of supervised classification (which expresses how
well the underlying vision model separates the categories into distinct groups), then,
performance was essentially the same as before.

Figure 5.7 depicts the responses of two selective units from a typical run on the
celebrity images. The Halle Berry (upper) unit had an ROC equal-error accuracy of
90%, while the Jennifer Aniston (lower) unit had an accuracy of 80%. It is particularly
interesting to note that the images “missed” by the Halle Berry unit all depicted her
with long hair, while the images that evoked strong responses depicted her with short

hair, so the unit in fact selects for a subcategory of Halle Berry images.

5.2.5 Results: Morphed Faces

A further investigation of the human MTL responses currently in progress involves
presenting the patient with “morphed” images of familiar people, that is, images that
are created by blending images of two different people (A. Kraskov, personal commu-
nication). This experiment serves two purposes: to investigate how the response of
a neuron changes as an image is continuously transformed from a person the neuron
responds strongly to into some other person (and back), and to see how the neu-
ron’s activity correlates with the subject’s perception of the image’s identity. The

first question can also be investigated within this computational framework, with the
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Figure 5.7: Responses of two selective units (out of 15) after the unsupervised category
learning. (a, c¢): images that evoked the top responses, with the activation level above
each image. Every 2" image omitted for clarity. (b, d): response histograms. z-axis
is the activation level; y-axis is the number of test images (40 total) evoking a response
at that level. Responses to preferred person—Halle Berry in (b), Jennifer Aniston in
(d)—in black; responses to all other images in white. Insets: ROC curves. Solid line is
ROC curve for selected unit, dashed line is ROC curve for best principal component.
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additional advantage that we can look at the responses of neurons that ordinarily
represent both ends of the morph (while in the human studies the investigators gen-
erally only have access to a neuron representing one of the endpoints due to the small

number of simultaneously recorded selective neurons in any one session).

To explore the question of how the model responds to morphed images, I picked
two individuals with some similarities in appearance from the same training session.
For this example I used the same trained network for which I presented results in
Section 5.2.4 above, for which there were 10 different individuals in the input set. Both
individuals used for morphing were very well represented by the trained network, with
a unit providing 100% ROC accuracy and well separated in-category and out-category
responses for each. I generated 9 morphed images between each of 5 different pairs
of images using the commercially available photo morphing software “Morpheus”
(available at http://www.morpheussoftware.net/). To ensure a smooth morph
between the two images I manually matched keypoints such as eyes, ears, and mouths
in the two images, so the resulting morph was a combination of distortion and grey-
level interpolation between the starting and ending images. I then computed the
response of the trained network to the morphed images. There is no effect of hysteresis
in these results, as the state of the network (initial condition of v) was reset for each

image presentation.

Figure 5.8 summarizes the results for all 5 morphings and gives an example mor-
phing. Response strength to each morphed image is shown for the two neurons
representing the two indivduals. Each curve is the response of one neuron to one
set of morphed images; the curves are individually normalized by the strength of the
neuron’s response to the unmorphed image of its preferred person. As expected, the
response curves are sigmoidal, with a sharp transition between on and off responses as
some threshold is crossed. This sigmoidal transition is a feature of the sparse coding

network and is due to a combination of the bimodal prior and the winner-take-all
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Figure 5.8: Responses of trained network to 5 different morphings between the same
two individuals (top) and an example morphing (bottom). Solid lines are the re-
sponses of the neuron that prefers the person on the left; dashed lines are the responses
of the neuron that prefers the person on the right. All responses are normalized by
the response to the unmorphed preferred image.

like network topology; it is much different from the gradual transition that would be
expected from linear filters. In a distributed population code in which individual neu-
rons responded to, for example, different types of facial features, individual neurons
may still switch on or off in the same sigmoidal fashion as their preferred features
became more or less clear, though just as plausibly their activity could vary smoothly

if they functioned as linear feature templates.

Much like in the human data from both electrophysiology and psychophysics,
different morphings result in different transition thresholds, reflecting the difference
between the qualitative similarity of a morphed image to one individual or the other
and the distance along the continuum of morphings (Kraskov, personal communi-
cation). The average point at which the response was 50% of the response to the
unmorphed preferred image was 18.6% morphed (o = 4.6) for the neuron that pre-

ferred the individual on the left, and 35.3% morphed (¢ = 10.5) for the neuron that
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preferred the individual on the right. Hence in most cases there is a range of mor-
phings that produce only weak responses in both neurons—the network essentially
decides that the image resembles neither individual. Because (as noted above) in the
human experiments neurons representing both endpoints are only rarely available it
is very difficult at this time to compare this particular aspect of the responses to
real data, but this suggests one interesting question that could be asked if it is ever
possible to perform the morphing experiment between images of two people that are
represented by two different recorded neurons: is one or the other of two such neu-
rons always active, or, like in the model, is there some range of morphed images that
elicit no strong response? Further, how does this activity correlate with the subject’s

identification of the image as being one person or the other (or neither)?

5.3 Scale-Invariant Feature Transform

5.3.1 Overview of the Model

Another algorithm that can be used to produce invariant feature detectors is the
Scale-Invariant Feature Transform (SIFT), first introduced by Lowe (1999) and later
refined to the form applied here (Lowe, 2004). The first step in the SIFT algorithm is
to identify a set of keypoints corresponding to features with a high interest level and
high likelihood of invariance to scale and affine transformations. In this work I use
Harris-Affine interest point detection (Mikolajczyk & Schmid, 2004), which combines
the Harris edge and corner detector (Harris & Stephens, 1988) with an automatic
scale selection algorithm (Lindeberg, 1998) to obtain a scale invariant detector. On
the order of 500 (though at times as few as 100) features are identified for each
image. FEach keypoint is assigned an image location, scale, and orientation, which
together naturally define a local 2D coordinate system that provides invariance to

these parameters. The next step is to compute a descriptor for the image region
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around each of these keypoints that is both highly distinctive and invariant to other
unimportant transformations such as changes in illumination and viewpoint. The
descriptor is based on local image gradients. First, the gradient magnitude and ori-
entation is computed at an array of sample points surrounding the keypoint, with
the extent of the array defined by the scale of the keypoint. The gradient sam-
ples are weighted by a Gaussian centered at the keypoint (to avoid discontinuities
in the descriptor with small changes in keypoint location) and accumulated into his-
tograms over subregions. These histograms are smoothed to avoid discontinuities
in the descriptor with small changes in keypoint orientation. Finally, the descrip-
tor is formed by concatenating all of the subregion histograms into a single vector
and normalizing to unit length. The resulting descriptor is invariant to changes in
location, scale, and orientation (because these are explicitly accounted for in the
keypoint identification), brightness (because it is based on gradients), and contrast
(because it is normalized). In the SIFT implementation I use here, there are 16
subregions (in a 4 x 4 array about the keypoint) and 8 bins in each subregion his-
togram, so the resulting descriptor is 128 dimensional. The software I use to im-
plement both keypoint detection and descriptor computation can be obtained from

http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html.

The intent in the original SIFT work was to compute descriptors that could be
matched between images, allowing test images to be classified with respect to template
images. Here we need to convert the collection of SIF'T descriptors extracted from
each image into an n-dimensional vector describing in some sense the presence of
various features in the input image. In other words, we need to compute a feature
vector analogous to the outputs of the neural network model discussed above from the
SIFT descriptors. To do so, I first extract n descriptors at random from some image
set (I will describe exactly what image set I used in the results sections below) to be

feature templates. I denote the i** such template by 7;. Denoting the descriptors in
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an image by d;, the input u was computed by

J

That is, for each template, each descriptor is assigned a score based on the dot product
of the descriptor with the template, then the maximum of these scores is taken to be
the response to that feature. In this way u; will be large if there is some feature in
the image very similar to 7;.

While the computations used to generate these inputs have no simple biological
implementation, the inputs themselves are not altogether unreasonable from a biolog-
ical standpoint. They are essentially complex feature detectors with receptive fields
of the entire field of view, and Lowe points out that “SIFT features share a number of
properties in common with the responses of neurons in inferior temporal (IT) cortex
in primate vision” (Lowe, 1999).

As with the first model, I normalize these inputs to have zero mean and unit

variance prior to feeding them into the sparse coding network.

5.3.2 Results: Face Discrimination

As SIFT is geared more toward object recognition rather than the broader catego-
rization task, I repeated the face discrimination experiments from Section 5.2.4 using
SIFT inputs. All network parameters were the same as before, and I used n = 2000
SIFT features to match the number of inputs I used in the HMAX experiments.
The feature templates were extracted at random from images from the Caltech-256
dataset. That is, I ran the SIFT algorithm on all of the images in the Caltech-256
dataset, then picked 2000 random descriptors from random images to be my feature
templates. Repeating this analysis using only features from the face dataset did not

significantly affect the results. Figure 5.9 summarizes the results for metrics 1 and
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2 (ROC and semi-supervised) and compares them to those obtained from the top 15
principal components and the performance achieved by a supervised SVM; the com-
plete numerical results are listed in Table 5.3 with the addition of the performance
of a k-means algorithm with k£ equal to the true number of categories. Performance
according to the ROC metric did not vary significantly with the number of people
presented, indicating that in all cases units emerged that responded selectively to
each individual. The mean ROC accuracy across all 350 trials was 93.7%, compared
to 95.5% for a binary SVM and 81.3% for PCA. It is interesting to note that the
performance of the unsupervised sparse coding network was just as good as the su-
pervised SVM, especially as the number of people in the input set increased, though
it could be that the choice of SVM parameters was not optimal. Performance ac-
cording to the semi-supervised metric again declined as the number of people in the
input set increased, dropping from a mean of 92.0% to 75.7% as the number of peo-
ple increased from 4 to 10. This is in all cases significantly better than the PCA
performance, which decreased from 58.0% to 45.8%, though it is about the same as
the performance of k-means, which decreased from 94.1% to 82.6%. The fact that
k-means performed much more on par with the sparse coding network in this case
implies that the underlying clusters were more nearly spherical than in the case of
HMAX features. In the purely unsupervised case, performance increased significantly
as the number of people rose from 4 to 9 before dropping off slightly with 10 people,
likely because with 15 output units significant subcategorization may be taking place
when there are few people in the input set. This difference is more dramatic than
with the HMAX algorithm used in Section 5.2.4, likely because the SIFT descrip-
tors distinguish finer differences between images and so subcategorization is a bigger
problem when excess output neurons are available. PCA sees a smaller increase in

accuracy in this regime.

An advantage of the SIFT approach is that it is possible to determine which image



92

[
i

i
N
A,

o
©

o
[
—

o
o

°

[=2]
©
~

o
)

binary classification accuracy
o
~
multi-way classification accuracy

o
&
2]
z

0.4 . . . . . ol— . . . . ; ;
4 5 6 7 8 9 10 4 5 6 7 8 9 10
Number of people Number of people
(a) (b)

Figure 5.9: Face discrimination accuracy (mean + s.d.) as a function of number of
people in the input set, using SIFT for invariant feature extraction. Solid line: sparse
coding network, dashed line: SVM (supervised) classifier, dotted line: PCA. Dotted
line without error bars depicts chance performance. (a): ROC equal-error accuracy
for binary classification. (b): semi-supervised multi-way classification accuracy

# Metric 1 Metric 2 Metric 3
people | SN PCA SVM «c¢h | SN PCA k-means SVM ch | SN PCA «ch
4 94.0 81.3 98.2 50.0|92.0 58.0 94.1 98.8 25.0|60.2 49.3 6.7
5 94.8 80.6 97.7 50.0|90.5 53.8 87.7 98.2 20.0|67.4 482 6.7
6 93.6 &81.1 957 50.0|85.8 b5H4.4 86.7 95.5 16.7 | 69.7 50.4 6.7
7 93.6 823 954 50.0|84.9 53.9 85.9 95.5 14.3|73.8 51.1 6.7
8 93.1 80.8 94.6 50.0|83.7 50.4 82.5 95.3 12.5|76.6 481 6.7
9 93.7 814 93.9 50.0|80.7 49.5 83.8 95.5 11.1| 775 492 6.7
10 93.0 81.3 92.7 50.0|75.7 458 82.6 94.5 10.0 | 74.1 46.0 6.7

Table 5.3: Face discrimination accuracy computed using different metrics averaged
over 10 trials with random initial conditions using SIF'T features. In all cases unseen
images were used for testing. For each metric I report the classification accuracy (as
a percentage) for the sparse network (SN) and for PCA applied to the same inputs, as
well as chance level. For metrics 1 and 2 I also provide the accuracy of a supervised
SVM classifier applied to the same inputs, and for metric 2 I further include the
accuracy of k-means, where k equals the true number of categories.
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features (SIFT descriptors) contributed the most to the observed response. To do so,
[ first determined which of the 2000 features drove the output unit most strongly (i.e.,
for neuron j which inputs ¢ had the largest u;g;;). I then found which SIFT descriptors
“won” the max operation in Equation 5.1 for these features. These descriptors then
provided the largest input to the unit in question. Figure 5.10 depicts the responses
of an example unit from a network trained on the same image set as in Figure 5.3
above, with the 10 most important descriptors highlighted. This unit formed a very
clean, sparse representation for its preferred individual. From the figure we see that
the most important features were those that we may expect to be most discriminatory
between individuals: eyes, eyebrows, and other distinctive features such as hairline
or goatee. It is also interesting to note that even for the distractor images very few
of the driving features are from the image background, indicating that the model
has successfully interpreted the variable background as noise and learned the more

consistent features of the various faces.

5.3.3 Comparison with HMAX

Table 5.4 summarizes the results of the face discrimination task for both HMAX
and SIFT inputs. Performance is fairly close between the two underlying models,
indicating that they do a similar job of projecting images into a feature space good
for discriminating between different faces while generalizing between different images
of the same face. A few more subtle details expose differences between the two
models, however. SIFT was designed to take advantage of features that should be
very similar between different images of the same object (as opposed to images of
different exemplars of the same class), so the features are generally very specific to
that object. In fact, just three descriptors or so are often good enough to match
an object between two images (Lowe, 1999). Performance as measured by the ROC

or semi-supervised metrics, then, is somewhat better when the model is applied to
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Figure 5.10: Responses of one selective unit (out of 15) after the unsupervised category
learning on the same image set as in Figure 5.3 using SIFT features. (a): images
that evoked the top responses with the 10 most important SIFT descriptors outlined
and the activation level above each image. Every 2" image omitted for clarity. (b):
response histograms. z-axis is the activation level; y-axis is the number of test images
(100 total) evoking a response at that level. Responses to preferred person in black;
responses to all other images in white. Insets: ROC curves. Solid line is ROC curve
for selected unit, dashed line is ROC curve for best principal component.

SIFT features rather than HMAX features. This is because a unit is less likely to be
excited by a non-preferred person because such an image is likely to be well separated
from images of the preferred person in feature space. Furthermore, with fewer people
in the input set than available coding units, the SIFT features make available finer
distinctions between images than the HMAX features, so categories are more likely to
be split into subcategories. Using the semi-supervised metric 2, this results in better
performance, as multiple units representing different subsets of the same category are
taken into account. Using the unsupervised metric 3, however, this results in worse

performance for small numbers of input categories.

I also tested the SIFT approach on the multi-class categorization task (airplanes-
cars-motorbikes-faces) described in Section 5.2.3 above, with very different results. In
that case, the images from a single category are much more widely separated, so the

generalization capabilities of the model need to be correspondingly better. This is
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+# Metric 1 Metric 2 Metric 3
people | HMAX SIFT c¢h | HMAX SIFT c¢h | HMAX SIFT «ch
4 91.9 94.0 50.0| 85.6 92.0 25.0| 67.0 60.2 6.7
5 92.2 94.8 50.0| 814 90.5 20.0 | 70.0 67.4 6.7
6 92.7 93.6 50.0| 81.6 85.8 16.7| 722 69.7 6.7
7 91.3 93.6 50.0| 73.6 84.9 143 | 68.7 73.8 6.7
8 90.6 93.1 50.0 | 70.0 83.7 125| 65.7 76.6 6.7
9 90.2 93.7 50.0| 675 80.7 11.1| 635 775 6.7
10 90.1 93.0 50.0| 64.1 75.7 10.0 | 63.3 74.1 6.7

Table 5.4: Comparison of performance of sparse coding network applied to HMAX
and SIFT features on face discrimination task.

where SIFT performs much worse than HMAX; in fact, performance is barely better
than chance in this setting (and so the details are omitted). It turns out that, for
example, images of two different motorcycles may be as widely separated in SIFT
feature space as an image of a motorcycle and one of an airplane, so they are not
likely to be clustered together.

These distinctions between HMAX and SIFT suggest a possible hierarchy for
object and category representation in the brain. At one stage, neurons may operate
on HMAX-like inputs to become selective to broad categories such as motorcycles
and faces. Such neurons would explicitly represent their preferred categories, but
within each category the identity of a particular exemplar would be carried only
across the population. As discussed in Chapter 3, the “face cells” of the macaque
inferior temporal cortex are an example of such neurons: individual cells respond
much more strongly to faces than non-faces, but facial identity is carried across the
population (Young & Yamane, 1992; Rolls & Tovee, 1995). These neurons may then
be making explicit image features best suited for making fine distinctions between
objects within their preferred category, but perhaps not suited for making broader
category judgement; these features would be more akin to the SIFT features used
here. A large population of these neurons with the same category selectivity, then,

may form the input to a second sparse coding stage that makes identity within the
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category explicit. The sparse, invariant human MTL neurons are the clear example
here (Quian Quiroga et al., 2005).

A second possibility also comes to mind, however. With only roughly 10,000
afferents on average, cortical neurons receive input from only a tiny fraction of cells
in the preceding region. Simply by chance, then, some neurons may receive input from
neurons representing a subset of features well-suited to broad categorization (HMAX-
like features) while others receive input from neurons that respond to features better
adapted to making fine distinctions within some category (SIFT-like features). The
emergence of category- and exemplar-selective cells would then happen in parallel
rather than as a two-stage process. With the available data it is unclear which of
these two architectures is more likely (or if there is a third possibility), though the
clear existence of face-selective cells in macaque IT and individual-selective cells in

human MTL makes the hierarchical architecture attractive.

5.4 A Specialized Facial Recognition Model

5.4.1 Overview of the Model

To generalize face discrimination results of Sections 5.2 and 5.3 to more natural
images (that is, with more variation in lighting, pose, etc.) I applied the model to a
machine vision model specifically tailored to face recognition, in which faces of the
same individual are likely to produce similar feature vectors in a manner somewhat
robust to common transformations (Holub & Moreels, 2007). Their model first detects
and segments faces within an image using the Viola and Jones face detector (Viola &
Jones, 2001). The segmented region is then passed to an Everingham facial feature
detector (Everingham, Sivic & Zisserman, 2006), which identifies the position of 19
facial features such as eyebrows, eyes, nose, and mouth (and parts thereof). These

features can be characterized in a number of ways, such as raw pixel intensity or
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intensity gradients. For this investigation I obtained features characterized by raw
pixel intensity in a 9 x 9 patch at each feature, for 9 x 9 x 19 = 1539 features per

image.

5.4.2 Results: Celebrity Faces

I tested the algorithm applied to responses obtained from the face recognition model
applied to facial images of 99 different celebrities collected from the web (note that
this is a different celebrity dataset than that used in Section 5.2.4 above). These
responses were provided by the Caltech Vision Lab; at the time of this writing I had
access only to the model outputs, not the original images. These images contain
significantly more variation in pose, lighting, etc. than the facial images used above.
As before, I performed experiments with 4 to 10 different individuals in the input set
with exactly the same network parameters. As fewer images of each individual were
available, I used just 5 images for training and 5 for testing; the data set included 92
individuals for which I had responses to at least 10 images.

Figure 5.11 summarizes the results for metrics 1 and 2 (ROC and semi-supervised)
and compares them to those obtained from the top 15 principal components and
the performance achieved by a supervised SVM; the complete numerical results are
listed in Table 5.5. Again, performance according to the ROC metric did not vary
significantly with the number of people presented, indicating that in all cases units
emerged that responded selectively to each individual. The mean ROC accuracy
across all 350 trials was 82.4%, compared to 82.0% for a binary SVM and 78.1% for
PCA. As in the SIFT case above, the sparse network matched the performance of
supervised SVM in the binary identification task quantified by the ROC accuracy.
Performance according to the semi-supervised metric again declined as the number
of people in the input set increased, dropping from a mean of 68.4% to 45.8% as

the number of people increased from 4 to 10. This is in all cases significantly better
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Figure 5.11: Face discrimination accuracy (mean + s.d.) as a function of number of
people in the input set using celebrity images and the face representation of Holub and
Moreels (2007). Solid line: sparse coding network, dashed line: SVM (supervised)
classifier, dotted line: PCA. Dotted line without error bars depicts chance perfor-
mance. (a): ROC equal-error accuracy for binary classification. (b): semi-supervised
multi-way classification accuracy

than the PCA performance, which decreased from 55.9% to 36.9%. In the purely
unsupervised case, performance did not change significantly as the number of people

rose from 4 to 10.

Figure 5.12 depicts the responses of two units (the best and a typical unit) from
the same network after training on 10 individuals. It was frequently the case that
even the most selective units would have very few (if any) large responses, as can be
seen in this figure. This may help to explain why the accuracy of the sparse coding
approach was no better than PCA for this dataset: if the network is never excited to
large responses, the sparse prior is essentially a zero-mean Gaussian, and so the result
approaches PCA as the variance becomes small. The reason behind the network being
rarely excited to large responses is unclear; it may be that the very small size of the
training set (just 5 training images of each individual) was insufficient for the network

to extract the underlying sparse structure.



99

# Metric 1 Metric 2 Metric 3
people | SN PCA SVM c¢h | SN PCA SVM «ch | SN PCA «ch
4 84.1 778 84.3 50.0]68.4 559 839 25.0|50.8 443 6.7
5 83.6 77.7 83.6 50.0|61.3 479 79.8 20.0|485 41.0 6.7
6 829 77.8 82.8 50.0|57.5 453 79.5 16.7|52.3 41.7 6.7
7 82.2 787 827 50.0|56.4 442 773 143|519 434 6.7
8 82.0 788 81.2 50.0|52.6 43.0 747 125 |51.0 433 6.7
9 80.7 780 80.4 50.0]46.8 38.0 73.6 11.1 489 396 6.7
10 81.1 782 79.2 50.0|458 36.9 723 10.0|475 388 6.7

Table 5.5: Face discrimination accuracy computed using different metrics averaged
over 10 trials with random initial conditions using features from Holub and Moreels
(2007). In all cases unseen images were used for testing. For each metric I report the
classification accuracy (as a percentage) for the sparse network (SN) and for PCA
applied to the same inputs, as well as chance level. For metrics 1 and 2 I also provide
the accuracy of a supervised SVM classifier applied to the same inputs.
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Figure 5.12: Response histograms for two units (the best and a typical unit) from
the same training run on celebrity faces using the face representation of Holub and
Moreels (2007). x-axis is the activation level; y-axis is the number of test images
(100 total) evoking a response at that level. Responses to preferred person in black;
responses to all other images in white. Insets: ROC curves. Solid line is ROC curve
for selected unit, dashed line is ROC curve for best principal component. ROC equal-
error accuracy of the left unit was 89%, of the right unit was 78%.
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5.5 Statistics of the Response Distribution

In this section I discuss the statistics of the responses obtained from the sparse coding
network after training. As an example I use the responses from the face discrimination
network discussed in Section 5.2.4 (which was trained on 10 images of each of 10
different individuals); these results are typical of those obtained from other runs.
For comparison I will look at two cases that strip key features from the sparse coding
network. First, I cut the feedback connections but leave the dynamics of the individual

neurons intact, to the network dynamics become
v =G u+ \S'(v). (5.2)

This will illuminate the role feedback plays in recognition performance and sparsening
of responses, and provide a prediction of how recognition would suffer in the event
that feedback connections were cut in the real biological system. Second, I simply
treat the trained G matrix as a feed forward linear filter, that is, I set v = GTu. This
shows how similar each input u is to each learned basis function in the absence of
the feedback inhibition that produces winner-take-all like behavior in the network.
This linear feedforward network will allow us to see how much of the sparseness of
the responses is due to the form of the learned basis functions and how much is due

to the sparsening nature of the dynamics.

Both the dynamic and linear feedforward networks still perform well according
to our classification metrics, with an average ROC accuracy of 89% in both cases
(compared to 91% for the feedback network). However, a more detailed look at
the responses reveals that true recognition performance would likely suffer somewhat
more that the optimal ROC result suggests. The purely linear feedforward model
lacks the bimodal response distribution that cleanly separates “on” responses from

“off” responses and makes readout particularly easy. The response distribution of
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the dynamic feedforward network is still bimodal, but while the largest responses of
an individual neuron tend to be to its preferred person, many significant responses
are to other people due to the lack of inhibitory feedback from other neurons in the
network. Hence our model predicts that, if feedback connections in the visual path-
way were somehow cut, recognition performance would suffer but not be eliminated
entirely—instead we would expect increased confusion between similar people or ob-
jects. Feedback is crucial for learning, however—we would expect a person with such

an injury to be unable to learn to recognize new people or categories.

Figure 5.13(a) is a histogram of the strength of all responses to all images in the
testing data set (100 images times 15 neurons for 1500 total responses). The response
distribution is bimodal, as specified by the sparse prior, with most responses near
zero. The “large” responses are centered around roughly 1.25, somewhat larger than
the second peak location of 1 in the prior as the inputs bias all responses to be larger
than the unstimulated equilibrium points of 0 and 1. The kurtosis excess of this
distribution is 8.7, reflecting its sparse and bimodal nature. The responses of the
dynamic feedforward network, depicted in Figure 5.13(b), are still bimodal, and are
in general larger due to the lack of inhibitory feedback. These responses are still
sparse, with a kurtosis excess of 6.6. The responses of the feedforward network are
unimodal and widely varied, but due to the nature of the sparse basis functions are
still sparse (but less so), with a kurtosis excess of 3.5. Figure 5.13(c) is the same

histogram for the feedforward network; the distribution is clearly unimodal.

One often-suggested role for sparseness is the reduction of redundancy by decor-
relating neuronal responses (Vinje & Gallant, 2000). Figure 5.14(a) is a histogram of
the correlation coefficient between all neuron pairs (15 choose 2, or 105 pairs). Most
correlation coefficients are negative, reflecting the inhibitory effect neurons have on
one another. Overall correlations are weak, with a mean absolute value of the corre-

lation coefficient of 0.18. Figure 5.14(b) is the same histogram for the network with



102

0.8 : 0.8
0.7 0.7

. 0.6 ., 0.6

Q Q

w w

505 505

o o

8 8

S04 S04

o o

j = j =

203 S03

Q Q

g g

T 02 02
0.1 o.1I
0 0

0 0.5 1 1.5 2 215 3 0 2 4 6 8
v, Yi
(a) (b)
0.8
0.7F
0.6F

o
3]

o
w

fraction of responses
o
5

o
)

o
[

0
-1000 -500 0 500 1000 1500

Figure 5.13: Histogram of the strength of all responses to all images in the testing
data set (1500 responses total). (a): feedback network depicted in Figure 5.3. (b):
the same network with the feedback connections cut. (c): linear feedforward network
with the same GG matrix.



103

o
w
ol
o
w
a1

o
w
o
w

o
)
a
o
)
a

o
)
o
[N)

o
[
o
o
[
o

fraction of unit pairs
fraction of unit pairs

o
N
o
N

0.05 0.05

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
correlation coefficient correlation coefficient

(a) (b)

o
w
a

o
© N ©
N w

fraction of unit pairs
o
=
ul

o
o ©
o a -
. .

I
[N

-05 0 0.5 1
correlation coefficient

()

Figure 5.14: Histogram of the correlation coefficient between all neuron pairs (105
neuron pairs total). (a): feedback network depicted in Figure 5.3. (b): the same
network with the feedback connections cut. (c): linear feedforward network with the
same GG matrix.

the feedback connections cut; correlations in this setting are somewhat higher, with
an mean absolute value of 0.28. Finally, Figure 5.14(c) is the same histogram for the
linear feedforward network. Neuronal responses are more strongly correlated in this
case, with a mean absolute value of the correlation coefficient of 0.37. From this we
see that both the dynamics induced by the sparse prior and the recurrent feedback
play a role in decorrelating neural responses. Note that we are not considering tem-
poral correlations here (as our network considers each image separately rather than

an image sequence), but correlation in the amplitude of neural responses.

From these results we see that the structure of the recurrent sparse coding net-
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work serves to both enhance the sparseness of the responses (through the sparse prior
distribution encoded in each neuron’s dynamics) and to reduce the correlation be-
tween the responses of different neurons. This decorrelation reduces the redundancy

of information carried in the firing rates of different neurons.

5.6 Structure and Robustness of the G Matrix

In this section I examine the structure of the synaptic weight matrix G after training,
particularly with regard to the robustness of the network performance to perturba-
tions in synaptic weights. Given that real neural networks do not enjoy full connec-
tivity, and individual synapses most likely cannot have precisely controlled strength,

this robustness is crucial to establishing the biological relevance of the model.

Figure 5.15 depicts histograms of the weights g¢;; after training for the category
classification example given in Section 5.2.3 and the face discrimination example
given in Section 5.2.4 (both with HMAX features as inputs). Both sets of weights
are essentially zero mean. The standard deviations are very similar, at 0.30 for
the categorization network and 0.28 for the face discrimination network. The only
significant difference between the two distributions is that the face discrimination
network has more weights near zero and (though it cannot be seen in the figure)
far from it, which is reflected in a higher kurtosis value of 4.5 compared to 3.2 for
the categorization network. The dashed line overlaid on each histogram depicts a
Gaussian distribution of the same mean and variance. It is clear from the figure
that many more weights are near zero than would be expected from a Gaussian
distribution. Though it is difficult to see from the figure, it is also the case that
more weights are large than would be expected from a Gaussian: 5.4% and 5.3% of
weights are more than 2 standard deviations from the mean for the category and

face examples, respectively, compared to 4.6% for a Gaussian distribution. Thus the
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Figure 5.15: Histogram of synaptic weights g;; after training. Bin locations and sizes
are the same for both figures. Dashed line depicts a Gaussian distribution of the
same mean and variance. (a): Category classification network of Figure 5.1. (b):
Face discrimination network of Figure 5.3

weight distribution is sparse in the sense that more weights are both very small and
very large than would be expected from a Gaussian distribution.

An important issue pertaining to the biological plausibility of all of these results
is how much fidelity is required in the G’ matrix for successful recognition. It is un-
likely that individual synaptic weights are precisely controlled to nearly the degree
of accuracy used in the computational experiments described here. In Section 5.6.1
I investigate the effect of modeling the biological imprecision by quantizing the indi-
vidual weights. Furthermore, the sparseness model assumes full connectivity of the
neural network, again a biologically implausible constraint. In Section 5.6.2 I examine
what happens when connectivity is reduced by truncating weights smaller than some
threshold to zero. In both cases the network performance proves to be very robust to

perturbations in GG, bolstering the biological realism of the results.

5.6.1 Quantization

To determine the effect of noise or limited fidelity in synaptic weights, I quantized the

GG matrix to a fixed number of weights between the minimum and maximum trained
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Figure 5.16: Histogram of synaptic weights g¢;; after quantization for the category
classification network. (a): original weights. (b): 6 bits quantization. (c): 4 bits
quantization. (d): 2 bits quantization

values. This modification was carried out after training and the recognition model
then run on previously unseen images. Figure 5.16 depicts histograms of the synaptic
weights of the category classification network after quantization at different levels of
fidelity.

Tables 5.6 and 5.7 give the resulting performance according to each metric, in-
cluding the number and percentage of nonzero weights remaining, for the 4-category
classification network used to generate Figure 5.1 and the trained face-discrimination
network used to generate Figure 5.3 above. In both cases, performance according to

all three metrics was preserved even at just 2 bits, or 4 quantization levels.

Looking at the actual responses depicted in Figures 5.17 and 5.18 tells a more
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Table 5.6: Results from quantizing GG, 4 category classification task

# bits | Metric 1 | Metric 2 | Metric 3
00 91.9 82.5 75.6
8 91.9 81.3 75.6
6 91.9 81.3 75.6
4 92.1 80.6 75.6
2 91.7 85.0 76.3

Table 5.7: Results from quantizing GG, 10 face discrimination task

# bits | Metric 1 | Metric 2 | Metric 3
00 91.1 56.0 56.0
8 91.2 58.0 58.0
6 91.3 58.0 58.0
4 91.1 57.0 57.0
2 90.1 52.0 58.0

complete story, however. While it is true that the responses remain well-ordered
with respect to the categories (thus producing a good ROC score) even at 2 bits
quantization, the magnitude of the responses drops off as the quantization is decreased
from 4 to 2 bits. In the case of the face recognition network, no responses are in the
“high” regime at 2 bits quantization, though the ROC score remains at 99% accuracy.
It appears that, by quantizing the G' matrix, the overall input to each output (v)
unit is decreased (because many weights are set to zero), resulting in the smaller
responses. There may then be a strategy for rescaling G after quantization that
could alleviate this issue, though simply rescaling G' to preserve the average weight
magnitude was not fruitful. It may also be possible to quantize G during training
rather than just at the end, which would better reflect the biological reality of limited
precision in synaptic weights and also allow the appropriate rescaling to happen as

part of learning.
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Figure 5.17: Responses of the motorbike unit of Figure 5.1(c, d) after quantizing G
matrix. (a, b): 4 bits quantization. (c, d): 2 bits quantization. ROC equal-error
accuracy was 87% at 4 bits and 88% at 2 bits.
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Figure 5.18: Responses of the face unit of Figure 5.3(a, b) after quantizing G matrix.
(a, b): 4 bits quantization. (c, d): 2 bits quantization. ROC equal-error accuracy
was 100% at 4 bits and 99% at 2 bits.
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5.6.2 Truncation

To determine the effect of reducing network connectivity, I truncated all weights of
the G matrix smaller than a threshold number of standard deviations from zero to
zero. Again, this modification was done after training, then the recognition model
was run on previously unseen images. In contrast to the quantization results, in which
it would be more realistic to quantize the network weights all along the way during
training, truncation after training is somewhat more reasonable as it could reflect
pruning of weak synapses.

Tables 5.8 and 5.9 give the resulting performance according to each metric, in-
cluding the number and percentage of nonzero weights remaining, for the 4-category
classification network used to generate Figure 5.1 and the trained face-discrimination
network used to generate Figure 5.3 above. In both cases, performance according
to all three metrics was preserved up to about 2 standard deviations truncation (at
which point only just over 5% of weights remain nonzero), and drops off slowly after

that.

Table 5.8: Results from truncating G, 4 category classification task

thresh (o) | # nonzero | % nonzero | Metric 1 | Metric 2 | Metric 3
0.0 20000 100.0 91.9 82.5 75.6
0.5 10643 53.2 91.9 80.6 76.3
1.0 6294 31.5 91.3 85.0 76.3
1.5 3179 15.9 92.1 81.9 77.5
2.0 1078 5.4 89.8 83.1 83.1
2.5 246 1.2 90.8 82.5 82.5
3.0 23 0.5 73.8 50.0 53.8

As with the quantization case, the actual responses depicted in Figures 5.19 and
5.20 show that, though the ROC score is maintained, truncating G too aggressively
results in many responses dropping dramatically. The same comments about there

perhaps being a way to rescale G to alleviate this issue apply.
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Table 5.9: Results from truncating G, 10 face discrimination task

thresh (o) | # nonzero | % nonzero | Metric 1 | Metric 2 | Metric 3
0.0 30000 100.0 91.1 56.0 56.0
0.5 16301 54.3 91.1 57.0 57.0
1.0 8777 29.3 91.1 56.0 57.0
1.5 4209 14.0 91.3 48.0 56.0
2.0 1592 5.3 91.2 49.0 56.0
2.5 515 1.7 89.3 45.0 50.0
3.0 163 0.5 89.0 48.0 49.0
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Figure 5.19: Responses of the motorbike unit of Figure 5.1(c, d) after truncating G
matrix. (a, b): 1.50 truncation. (c, d): 2.5¢ truncation. ROC equal-error accuracy
was 89% at 1.50 truncation and 82% at 2.50 truncation.
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Figure 5.20: Responses of the face unit of Figure 5.3(a, b) after truncating G matrix.
(a, b): 1.50 truncation. (c, d): 2.50 truncation. ROC equal-error accuracy was 98%
at 1.50 truncation and 99% at 2.50 truncation.
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5.6.3 Summary

While preliminary, the results of this section are highly encouraging in that any
reasonable model of real neural learning must be robust in the face of both limited
connectivity and significant noise in synaptic weights. These two features of real
networks are nicely modeled by truncation and quantization, respectively, and I have
shown here that the trained network is very robust to these disturbances. The next
step along these lines would be to implement some form of these errors during the
learning process, as in the real brain these issues are present all the time. One
challenge confronting this process is that some small weights may be necessary to
give learning a place to take hold: if some column j of G (which, recall, can be
seen as a basis function) becomes entirely zero due to truncation or quantization,
inspection of the equations describing the algorithm reveals that the corresponding
unit v; will no longer respond, and further that the learning process will never cause
the column to become nonzero again. If this proves to be an issue it may be necessary
to either quantize not to zero but to some small nonzero number, or to include a noise
source that occasionally randomly perturbs zero weights to nonzero values (possibly
realistically reflecting new synaptic growth). On the plus side, however, implementing
these disturbances during training may allow us to truncate (or quantize) aggressively
and still maintain large responses, as GG should automatically be rescaled by the

learning process to keep some responses large.

5.7 Related Work

The problem I discussed in this chapter is clearly distinct from the more common
approach to object recognition or classification in which a labeled training set is used
to learn features common to the category. These features are then extracted from

unlabeled images to classify them (Barnard et al., 2003). From a pure engineering
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standpoint, in many settings such as recognition of objects from previously learned
templates, this supervised approach is likely to be the best one. However, the MTL
data suggests that the brain is capable of forming internal representations of objects
in the absense of explicit supervisory signals, the issue I explore here. Further, prob-
lems such as clustering and classification of large image databases will likely benefit
from at least a partially unsupervised approach, as human labeling of all images may
not always be feasible. Only a few examples of truly unsupervised image classification
exist in the literature. The only directly comparable work is that of Sivic et al. (2005),
who address much the same computational task using very different techniques. As
in my work, they first compute a feature-based (as opposed to pixel-based) repre-
sentation of images, but they do so using vector quantized SIFT descriptors (Lowe,
1999) where the quantized features are obtained from a k-means algorithm applied
to descriptors from sample images from their input set. I instead obtain a feature-
based representation using a more biologically plausible model of visual processing,
the most recent extension of the HMAX model (Riesenhuber & Poggio, 1999; Serre,
Oliva & Poggio, 2007). Sivic et al. then also apply a generative statistical model
to the image features, using techniques developed for unsupervised topic discovery
in text applied to the “words” (features) extracted from each image. An important
distinction is that they found it important to restrict the number of categories (top-
ics) searched for to the number truly present in their datasets, while my method is
robust to varying numbers of input categories (and objects could in principle belong
to multiple categories, though preliminary experiments along these lines have met
mixed results). Nonetheless, the essential computational approach of first building
a feature-based representation of images and then learning a generative statistical

model for these features is the same.

Between the extremes of fully supervised and unsupervised classification lie a

number of different approaches that can be described as “weakly” or “partially”
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supervised, in which at least some information about the stimulus set is provided to
the algorithm. Fergus, Perona, and Zisserman (2003) use an unsupervised generative
learning algorithm to build representations of particular image categories, but only
images from a single category are presented to the model, which is then tested in a
category-versus-background setting. Their model thus attempts to find the features
common to all the images in the input set because it is known that they all come
from the same category. In contrast, my model simultaneously learns representations
for multiple image categories without a priori specification of the labels (or even
the number of categories present). Weber, Welling, and Perona (2000) also cast the
unsupervised categorization problem as emergent population coding, but again only
present images from a single category at a time. The different “components” of
their representation then correspond to different views or sub-categories of the input
category, and each image is “explained” by a single component. In principal their
method could be applied to an input set consisting of images from multiple categories
and it should distinguish between them. As with Sivic et al., however, it would be
important to specify the number of categories to be identified. Dong and Bhanu
(2003) present a method for image search in which the user can specify whether or
not returned images were relevant to the search. As in this work, image features
are modeled as a Gaussian mixture dependent on the components (causes) present
in the image, and the components of this model are estimated using unsupervised
expectation maximization. Over time, a subset of images in the database are labeled
though user feedback, and the system makes use of these labels to refine the category

clustering.

Sparse coding as a tool for efficient representation and classification has attracted
a great deal of attention in recent years, both in the context of vision and elsewhere.
Olshausen and Field developed the algorithm I extend here and showed that, when

applied to natural image patches, it generates feature selectivity much like that ob-
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served in simple cells in primary visual cortex (1996, 1997). Hinton and Ghahramani
(1997) also cast sparse representation in a generative modeling framework, but, as
with Olshausen and Field, they work directly at the image level. Mutch and Lowe
(2006) improve the performance of one of the underlying vision system models T use
here (HMAX), in part using sparsification to enhance selectivity lower in the hierar-
chy. They evaluate performance in a supervised setting by training a support-vector
machine (SVM) for category selection. Ranzato et al. (2006) take an energy-based
approach to the unsupervised learning of sparse representations of natural images
and briefly discuss its extension to a hierarchical model, though their results are at a
much lower level of the visual hierarchy and so do not address categorization. Their
approach, if applied to a higher level of the feature hierarchy, may produce results
similar to my own. The categorization task I discuss here can be viewed as a blind
source separation problem. Li et al. (2004) discuss the utility of sparse coding ap-
plied to this problem, including the aspect that the number of sources is unknown.
They consider several applications, including separating speech signals and separat-
ing mixed (superimposed) drawings of faces, but not the image categorization task I

discuss here.
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Chapter 6

Conclusions and Future Directions

In this final chapter I will revisit and tie together the topics discussed so far, then
discuss a handful of ideas for carrying this work forward. In Section 6.1 I summarize
the main results of this thesis and how they can be viewed as a whole. In the fol-
lowing sections I describe a few possible avenues of future research that could grow
out of the work presented here. These can be broadly characterized as possible com-
putational enhancements to the sparse coding model (Section 6.2) and as furthering
the links to biological data (Section 6.3), though of course there will be significant
cross-fertilization between these areas (as I hope has been the case throughout this

work). Finally, in Section 6.4 I offer a few closing thoughts.

6.1 Summary of Thesis

The unifying theme of this thesis has of course been sparse coding and its computa-
tional utility. The primary motivating examples from biology are the extraordinary
human MTL cells reported by Quian Quiroga and colleagues (2005). In my view
the two most important questions to ask about such neurons are “How selective are
they?” and “How did they come to be this way?” In Chapters 2 and 3 I answered the
first question, first describing various methods by which it can be answered (and the

strengths and limitations of different approaches) and then applying these methods
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to the MTL data. The result is that these cells are indeed highly selective, respond-

ing to perhaps 1% (or even much less) of all stimuli. These cells appear to me to
sit at the top of a hierarchy devoted to extracting the sparse structure underlying
the vastly complex bombardment of sensory information entering our brains from the
world around us. Making this sparse structure explicit serves a variety of purposes:
it makes readout of signals elsewhere in the brain (for example, to drive behavior in
response to stimuli) very easy, it is metabolically efficient, and, if the hippocampus
serves as some sort of “pointer table” indexing detailed memories stored in sensory
cortex, it maximizes the number of patterns that can be stored therein and thus the
number of memories indexed.

In Chapters 4 and 5 I moved on to the second question, investigating a neurally
plausible scheme for learning a sparse code for sensory inputs. I first provided a
theoretical discussion of sparse coding, building upon the work of Olshausen and Field
and extending their model both to increase learning efficiency and to better serve as a
model of the MTL data. Finally, I presented results from applying these ideas to the
top of the visual processing hierarchy, showing that sparse coding as a computational
constraint can naturally lead to the type of sparse, selective behavior observed in
MTL. I believe these results compellingly illustrate the power of such computational

models to better understand the biological data and, perhaps, to begin to explain it.

6.2 Computational Extensions

6.2.1 Extending the Scope of the Model

I have shown here that the same sparse coding model successfully employed by Ol-
shausen and Field to model V1 can also be fruitfully applied to a much higher level of
the visual hierarchy. That is not to say that the top and bottom of the hierarchy are

the only places where sparse coding may be advantageous. In Chapter 3 I provided
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evidence that sparse codes may be advantageous from a metabolic point of view, and
in Chapters 4 and 5 I argued for their computational utility. It is reasonable to expect
that the principles of sparse coding described in this work could be fruitfully applied
throughout the visual hierarchy to enhance the coding efficiency of visual inputs.
In its current state, the feature selectivity of the HMAX network used to generate
most of the results of Chapter 5 is simply memorized from a random selection of
images. That is, in each S layer (aside from S;, in which V1-like oriented bar filters
are used), each neuron is given weights by propagating some image patch through
the network up to that point and memorizing the resulting pattern of activity on its
afferents as a template feature. While this method should capture the statistics of
natural images, it makes no effort to build a particularly efficient representation as
a sparse coding network does, and it must make use of millions of neurons in the
intermediate layer in order to capture enough image features to support recognition.
It is therefore reasonable to expect that applying the coding strategy described in this
thesis throughout the hierarchy of a simple-complex processing network like HMAX
(that is, at each simple cell stage) could provide a performance improvement both in

fidelity of representation and in number of coding units required.

The primary obstacle to this approach is one of available computational resources—
the intermediate layers of the vision model used here consist of millions of simulated
neurons, and so the model is only tractable because these neurons operate in a purely
feedforward fashion. By contrast, interactions between neurons in the same layer are
crucially important to our sparse coding scheme, and so a more efficient means for
computing the equilibrium of the network (and thus computing the representation)
would be required. A few ideas may be of use here. First, if we assume the sparse
coding network will truly learn a more efficient code for image features, we may be
able to reduce the number of representing units. Second, we can exploit the sparse

structure of the trained interconnection (G) matrix (as described in Chapter 5) to
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speed computation at the recognition stage, though this will not improve training
speed. Finally, it may be possible to impose a sparse set of interconnections between

neurons even during training rather than the full connectivity used in this work.

6.2.2 Multi-Modal Perception

One of the most striking results from human MTL reported by Quian Quiroga and
colleagues was a neuron that, in addition to its robust invariant response to various
images of the actress Halle Berry, responded vigorously to the letter string “Halle
Berry” (Quian Quiroga et al., 2005). Furthermore, pilot data from continuing studies
in this area reveal MTL cells that respond strongly to the name of their preferred
stimulus spoken aloud by a computer (R. Quian Quiroga, personal communication).
One intriguing area of future work is therefore to extend the computational work
described in Chapters 4 and 5 to other forms of sensory input. In principal the
same machinery for sparse coding should be sufficient—at the level of abstraction of
the inputs to the sparse coding model, namely image features, nothing is specifically
designed or tuned to the visual mode. Furthermore, evidence of neural plasticity
across brain areas suggests that it may be worthwhile to seek general computational
structures that apply across sensory modes (Pascual-Leone, Amedi, Fregni & Mer-
abet, 2005, and references therein). The same methodology applied to an invariant
representation of written or spoken words may be successful in extracting the sparse
structure present therein.

Though written words (text) enter the brain through the visual system, evidence
from fMRI experiments suggests that specialized machinery for the holistic process-
ing of words develops in the Visual Word Form Area as reading skills are acquired
(Gaillard et al., 2006; McCandliss, Cohen & Dehaene, 2003, and references therein)
(but see criticisms of this view in Price and Devlin (2003)). For this reason it may

be appropriate to treat written words as a distinct sensory mode and investigate the
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application of our coding methodology to it. To generate a representation of text
invariant to transformations such as changes in scale and font one may either use
one of many sophisticated systems for optical character recognition (OCR) currently
available on any input images containing words, or simply apply the model directly
to text represented as such. A minor distinction between this mode of input and the
vision system model described above is the crucial importance of the spatial rela-
tionship between letters—in the vision model excellent performance is possible even
when most spatial information is discarded, while in text rearranging letters generally
destroys the meaning (though some robustness to this is present, as long as the first

and last letters of a word are preserved).

In the auditory domain, one could use existing models of auditory language pro-
cessing to project auditory signals into a space wherein the same word spoken by
different individuals or otherwise manipulated will produce a similar representation.
Smith and Lewicki (2005) discuss methods for developing efficient, shift-invariant rep-
resentations for natural sounds using spiking models, among them a sparse generative
model much like that employed by Olshausen and Field in the visual domain. Such
a representation can then be fed into the sparse coding network, which could extract

structure, such as commonly used words, from the input data stream.

The goal of this line of inquiry would be to replicate the multi-modal response
characteristics observed in the human MTL recordings. Further, significant evidence
from fMRI and psychophysical experiments indicate that this type of cross-modal
interaction plays an important role in perception (Shimojo & Shams, 2001, and refer-
ences therein). A likely strategy here would be to feed into the sparse coding network
not inputs from a single sensory mode, but simultaneous inputs from multiple modes.
For example, one would present the image of Halle Berry together with her name
spoken aloud, each processed through the appropriate invariance model. The model

will then be able to associate the inputs across modes, in essence allowing each mode
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to act as a supervisory signal for the other(s). Computational studies have already
shown the utility of such multi-modal “self-supervision” in performing the unsuper-
vised clustering task of learning vowels from spoken English using both auditory and

visual information (Coen, 2006).

6.3 Enhancing the Link to Biology

A final important area of future research is to enhance the quantitative link of the
model to real biological systems. I here describe a few areas in which either the link

to biology could be strengthened, or in which it has not yet been fully investigated.

6.3.1 Neuronal Dynamics

The sparse coding model depends on neurons with a specific type of nonlinear self-
inhibition (the S'(v) term in the network dynamics), which enforces the constraint
that the responses follow the sparse prior distribution. The physical meaning of this
inhibition term has not been well explored either in this work or elsewhere. In the
case of the prior distribution used here (the mixture of Gaussians), the input-output
behavior of a single neuron with this nonlinearity is similar to that of a threshold-linear
unit, and the dynamics can be approximated by a continuous firing-rate model of a
leaky integrate-and-fire neuron. I have carried out some preliminary investigations in
which I replaced the ideal sparse coding neurons with such a model with encouraging
results (similar performance in the 4-category classification task). In fact, it may
be possible to formalize this approximation as still constituting a gradient descent,
though not a steepest descent, of the sparse coding cost function (B. Olshausen,
personal communication). However, much more work is still needed to implement the
sparse coding model with truly biophysically plausible neurons.

All of the computational results presented here were based on the steady-state
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responses of neurons to constant inputs. Another potential avenue for future work
is to investigate the time-course of the neural responses and compare to the electro-
physiological data. This work must be closely tied to the effort to implement the
model using biophysically realistic neurons described above in order to have a hope

of illuminating the data at a quantitative level.

6.3.2 Learning Dynamics

The learning model used here required numerous presentations of images from each
category to be learned in order for the weights to converge to a point where sparse,
selective behavior emerges. In contrast, it appears that the selective neurons observed
in MTL may develop their representations in a relatively short time—cells have been
observed that begin to respond to the clinical personnel and attending scientists af-
ter a number of hours of interactions with these people (R. Quian Quiroga, personal
communication). While there is some evidence from studies in rat hippocampus that
memories are “replayed” during sleep, effectively increasing the number of presenta-
tions (Hoffman & McNaughton, 2002), there still may be a gap between the relatively
slow learning rate of the algorithms presented here and the speedy learning observed
in experimental settings (and in our qualitative personal experience).

The evolution of the representation as learning progresses has not been carefully
studied, though preliminary investigations have been interesting. For example, in
the face discrimination task, the network first learns to distinguish between subsets
of the individuals in the input set, then, as more information becomes available, it
further differentiates between them. This bears a qualitative resemblance to how
humans categorize data, with people only broadly categorizing rarely encountered
classes but making fine distinctions between members of a more commonly seen (or
more personally important) category. For example, many people may only recognize

rough categories of automobiles such as “car,” “truck,” and “SUV,” while automotive
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enthusiasts make fine distinctions between different makes, models, and years of car.

6.4 Conclusion

I would like to close by repeating the quote from Barlow (1972) about sparse coding

and perception:

The central proposition is that our perceptions are caused by the activity
of a rather small number of neurons selected from a very large population
of predominantly silent cells. The activity of each single cell is thus an
important perceptual event and it is thought to be related quite simply to
our subjective experience. The subtlety and sensitivity of perception re-
sults from the mechanisms determining when a single cell becomes active,

rather than from complex combinatorial rules of usage of nerve cells.

The MTL data strongly supports this “central proposition,” and my goals in this
thesis have been to argue in favor of this point and to put forth a model for the
“mechanisms determining when a single cell becomes active,” furthering at least a
bit our understanding of the neural computations underlying our perception of the

world around us.
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Appendix A

Derivation of the Joint Probability
of N, and S,

Here I describe how to calculate the joint probability of measuring N, responsive
neurons and S, evocative stimuli given that we are recording from N neurons and
presenting S stimuli. I will first derive a recursive relation for the conditional distri-
bution of S, given N,., then solve the recurrence in closed form and apply Bayes’ rule

to obtain the joint distribution.

In what follows I assume the sparseness a is known, that is, all probability dis-
tributions are conditioned on a. First, let M be the number of stimuli among the S
presented that a particular neuron responds to. The value of M follows a binomial

distribution,

If we assume that the neuron in question is responsive (i.e., M > 1), this distribution

becomes (using Bayes’ rule)

PM=m] [ S |Jar(1l—-a)™

PIM>1 | ] 1-(1-a)%’ (A1)

PIM =m|M>1] =

To begin our recursive definition, note that P[S, = s,|N, = 1] = P[M = s,|M > 1].
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Now assume the first n, — 1 responsive neurons are excited by R stimuli. Let @) be
the number of stimuli not in the set of size R that excite the next neuron (neuron

n,). The distribution of ) is given by

r S—r
r+q m—q q
PlQ=q|R=r]=)_ PM=m|M > 1] : (A.2)
m=q S
m

where ¢ € {0,...,5 —m}. The first term in the sum is simply the probability that
the neuron in question responds to m stimuli total. The second term is the number
of ways these m stimuli could be split such that ¢ of them are not in the set of
size r divided by the total number of ways these m stimuli could be chosen, so it is
the probability that the m stimuli include exactly ¢ stimuli not already in the set

responded to by the first n, — 1 neurons.

With a little effort we can find a closed-form expression for Equation A.2. If ¢ > 0,
we can combine equations A.1 and A.2 and pull out terms unrelated to the sum to

obtain
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Applying the binomial theorem to the sum we have

PlQ=q|R=r1]= S;T 19&?;( ¢ )q< ! ) (g >0). (A.3)

If ¢ = 0, the first term in the sum vanishes and we have instead

(1—-a)" < r a \"
P — e = .
@ =07 =" 1—(1—a)sz::1 1-a
Again applying the binomial theorem this becomes

PlQ=0[R=1] = 19(}?2)3 [(1;)?_1}. (A4)

We can combine Equations A.3 and A.4 to obtain the final result,

PlQ=qlR=r] = S;T 19([5);3(ﬁa)q[(lia)r—é(q)}v (4.5)

where §(¢) = 1if ¢ = 0, and 0(¢q) = 0 otherwise.

The relationship in Equation A.5 now lets us complete the recursive definition of

the conditional distribution of S, given N,.:

P[S, = s,|N, =n,] =Y P[S, =y|N, =n, —1JP[Q = s, —y|M =y].  (A.6)

y=1
Simply put, this is the probability that neuron n, adds just enough new stimuli to
the set responded to by the first n, — 1 neurons to total s,.. Since we calculated the
base case P[S, = s.|N,, = 1] above, this probability can be calculated for any n, and

s, by starting at N, = 1 and working upward.

Next I solve the recurrence to find a simpler expression for this probability and
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eliminate the need to calculate the needed probability recursively.

Proposition A.1. The recurrence given in Equation A.6 has solution

S (1—a)® 1"
P[Sr = ST|NT = nr’] = |i—:| (_1)7“'
s 1—(1—a)
Ny n, .
>, D [Q—a) ™ —1]"
k=1 \ k
Proof. For convenience, define
_ (1—a)®
T 1-(1-a)
a
"= 1—a

Then the recurrence we are trying to solve is

P[Sr - S’I‘|N’r‘ = nr] = ZP[ST = y‘NT =Ny — 1]P[Q = Sy _y‘R:y] (A8>

y=1
~ -y |
= G{HSTZP[S,,:y|NT:nT—1] a™Y
y=1 Sp— Y
—P[S, =y|N, =n, — 1]}
S
P[S, = s, N, =1] = HG,
Sy
and the proposed solution is
S L | HN" ST
P[S, = s;|N, = n,| = G (=1)" (—1) (—) -1 . (A9
Sy k=1 \ k a
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We will prove the result using induction. For the base case, let n, = 1. Then

S H sr
P[S, =s,|N,=1] = G(—-1)(-1) {— — 1]
Sr a
S
= GH*r,
Sy

the desired result. For the inductive step, assume the result holds for n, — 1. Then

substituting into Equation A.8 we have

S S
PS, = s,N, =n,] = G{HST 3 Gt (1)t

y=1 Yy
ny—1 . 1 k Y
e [(5) —1]
k=1 k “
S — S
Yy a ¥ — Gnr—l(_1>nr—1
Sr—Y Sy
wln,—1 [ k o
> ot (4) —1] }
k=1 k [\

where the simplification results from extensive algebraic manipulation and applica-
tions of the binomial theorem. This is exactly the proposed solution from Equation

A.9 and the proof is complete. O

To obtain the joint probability of measuring N, responsive neurons and S, stimuli

to which they respond from Bayes’ rule, we will need the probability of measuring
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N, responsive neurons independent of S,.. The probability that a neuron responds to
some stimulus, which we denote p,, is 1 minus the probability that it responds to no

stimuli, or

pr=1—(1-a)’.

The number of responsive neurons then follows a binomial distribution,

N n N—n
PIN, =n,| = pr(1—=p) "
Ny
N
= [1- (1= )] (1= ).
ny

We are now ready to apply Bayes’ rule to obtain the desired probability,

P[N,. =n, NS, =s,] = PI[S,=s|N,=n,|P[N, =n,]
S (1—a)® 1™ -
. ata] o
3 z (—DF[(1—a)™* = 1]
(1—(1=a)%)" (1 —a) W)
s N
- (1 - @)¥S(-1)"
Dl I S (TR R )
k=1 k

Equation A.10 has been verified to match Monte Carlo results within 5% for all
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cases in which the number of trials (10® simulated sessions) was statistically signifi-
cant (108 trials is sufficient to measure a probability of 0.01 to within 5% with 99%
confidence) for select values of a. Note also that it can be shown that if the roles of N
and S and those of n, and s, are reversed Equation A.9 does not change, an expected
result due to the symmetry of the problem. Furthermore, summing Equation A.9
over all s, or n, yields the expected marginal distributions. We should also note that
Equation A.9 is numerically very poorly conditioned, as the binomial coefficients can
easily produce numbers much larger than machine precision allows. Hence care is
needed when evaluating these probabilities numerically. In some cases wildly inac-
curate results were obtained using MATLAB, and it was necessary to make use of
Mathematica’s arbitrary-precision capabilities to generate meaningful results.

Note that all of the above assumed a was known, so replacing a by « in the derived

distribution we obtain the conditional distribution P[N, = n, A S, = s.|a = a].
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Appendix B

Convergence of EM for Sparse
Coding

I here show that the EM algorithm for sparse coding described in Chapter 3 converges.

The cost function to be maximized is:

F(5,G) = <—%||U—G@H2+ZS(@]-)> —%Zzgfj (B.1)

j=1 i=1

where to simplify the notation we denote v(u) by 0.

The algorithm is as follows:
Initially: 9 (u) = 0 for all u € {u}, G = rand(n,m).

E step: For each u € {u}, compute 91 by gradient ascent on F starting at ©*) with

G = G™_ That is, simulate the differential equation
b=V, F =G (u—Gv)+ \S'(v) (B.2)

until ||o]| falls below some convergence threshold v7.

M step: Set G*t1) according to the update rule

G = (upT) (31 + <@@T>) B (B.3)
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with v = p*+D,

Lemma B.1. The cost function F(v,G) is bounded from above.

Proof. Clearly
F(0,G) < <ZS(@Z)>
i=1
Recall exp(S) is a continuous probability distribution. Hence exp(S) has a finite

maximum and so S has a finite maximum as well, which I denote by S,,... Then

F(6,G) < mSmas. O

Proposition B.2. The update rule given by Equation B.3 yields the G that globally

mazimizes F (for fized ).

Proof. Let G*(0) be the value of G given by B.3, and let H(G) = F(0,G). Let
Q. = {G/H(G) > ¢}, and choose ¢ < H(G*) so G* lies in the interior of €2.. Note that
H(G) — —o0 as ||G|| — oo (where |G| denotes the norm of G taken as a vector),
so €). is compact. H is a continuous function on 2., so it must have a maximum
value in €2.. This maximum is not on the boundary of 2. because on the boundary
H = ¢ < H(G"), and so it must be the case that 2% = 0 at the maximum. G* is

the only point at which this is the case, and so it must be the maximum of H on Q..

H(G) < ¢ < H(G*) for G outside (). and so G* is the global maximum of H. O

Lemma B.3. The cause estimate v is bounded, that is, there exists some constant

¢ < oo such that |0 < c.

Proof. The E step is a gradient ascent with respect to v on F, and by Proposition B.2
the M step yields the global maximum of F with respect to G, so F is bounded from
below by its initial value Fy. Recall exp(S(0)) is a continuous probability distribution,
so exp(S(0)) — 0 as ||0|| — oo and S(0) — —oo as ||0|| — co. The other term of F
involving ¥ is —5||u — Go||?, which also goes to —oo as [|9]| — oo. Hence F — —o0

as ||0|| — oo, but F is bounded from below, so ||o|| must be bounded. O
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Proposition B.4. The E step converges to locally optimal cause estimates v(u).

Proof. For fixed G, define the Lyapunov function

V(i) = —F(0,G). (B.4)

The derivative of V is

V=-V,Fi=—i* <0, (B.5)

with equality if and only if ||0| = 0. By Lemma B.3 ||v|| is bounded, so LaSalle’s
invariance principle states that the dynamics converge to the largest invariant set M
such that © = 0 for v € M (LaSalle, 1976). Further, Theorem 2.7.8 of LaSalle (1976)
states that M is (locally) asymptotically stable, so it consists of local minimizers

(with respect to v) of V, or maximizers of F. O

Note that I have not shown that v converges to a particular unique equilibrium
point, only that its derivative © goes to zero. This is sufficient to show that this step
of the algorithm will converge. However, if we make the additional (very reasonable)
assumption that the equilibrium points of the dynamics of v are isolated then it

follows that v converges to such a point.

Theorem B.5. The cause estimate 0(u) and weight matriz G' converge to a closed

set of local maximizers of F.

Proof. Let G*(v) be the value of G given by B.3, and define the Lyapunov function
V(0) = =F(0,G*(0)), that is, V is the negative of the cost function after the M step.

Let T'(0) be the mapping of v through the E step. Define

AV(0) = V(T (2)) = V(0),

that is, AV is the change in V across a full EM iteration. By the fact that the E
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step is gradient ascent on F and Proposition B.2, it is the case that AV < 0. By
Lemma B.3 ||0]| is bounded, so by a discrete version of LaSalle’s invariance principle
(LaSalle, 1976) the limit set €2, is contained in the largest invariant set M such that
AV(v) = 0 in M. Thus v converges to a closed set of local minima of V. In the M
step G is a continuous function of v, so this implies that G converges to the closed

set

Qe ={G|G = G(v) for somet € Q,}.

Define the limit set of the EM algorithm,

Q= {(0,G)]i €, G = G(0)}.

This is a closed set because both €2, and Qs are. By Proposition B.4 v is locally
optimal at points in €2, and G is globally optimal at points in €2, so points in €2 are

local maximizers of F. O

In practice, not only does the algorithm converge to some set of maximizers, it

always converges to a particular fixed point (0%, G*).
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