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Part II

Interplay of Generic Interactions

and Specific Binding
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Chapter 4

Thermodynamics of
polymer-tethered ligand-receptor
interactions between surfaces
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4.1 Introduction

Cells communicate via ligand-receptor interactions (Alberts et al., 2002; Baltimore et al., 2003).

Such non-covalent interactions, which are present between specific pairs of residues in proteins or

polypeptides, are specific (one-to-one) and reversible (Lauffenburger and Linderman, 1993). The

interplay between specific and other generic physical interactions, such as electrostatic, hydrophobic

and steric interactions (Israelachvili, 1992), is crucial to the adhesion and signalling between cells and

the extracellular matrix, and has been extensively studied by researchers in physiology, biochemistry,

biophysics, and bioengineering (Alberts et al., 2002; Bongrand, 1999; Hammer and Tirrell, 1996;

Orsello et al., 2001; Zhu et al., 2000; Baudry et al., 2004; Cuvelier et al., 2004). Understanding

specific cellular interactions, especially their interplay with other generic interactions in biological

processes, assists bioengineering design, such as tissue engineering and bio-specific recognition. On

the other hand, artificially-designed bio-mimetic materials, such as polymersomes (Discher et al.,

1999; Lin et al., 2004; Bermúdez et al., 2004; Lin et al., 2005), vesicles or liposomes (Cuvelier

et al., 2004; Cuvelier and Nassoy, 2004), and substrate-supported monolayer and bilayer membranes

(Sackmann, 1996; Tanaka and Sackmann, 2005) allow better characterization of the specific and

non-specific interactions because of the absence of complicating factors such as chemical signaling

and deformability of biological cells in vivo (Lawrence and Springer, 1991; Dustin et al., 1996; Finger

et al., 1996; Kuo and Lauffenburger, 1993; Eniola et al., 2003).

Designing biomaterials with biocompatibility requires qualitative understanding of the ligand-

receptor interactions. In the classical model of cell adhesion proposed by Bell, Dembo, and Bongrand

(Bell, 1978; Bell et al., 1984; Torney et al., 1986; Dembo and Bell, 1987) (illustrated in Fig. 4.1),

ligand-receptor binding is treated as a chemical equilibrium between ligand and receptor molecules,

the interplay between specific binding and generic physical interactions resulting in an equilibrium

constant dependent on the separation between the adhesion surfaces. The Bell model captures

the qualitative features of cell adhesion and has been successful in fitting certain experimental

measurements quantitatively. However, careful inspection of the theory reveals several flaws and

confusions. First, the equilibrium constant in the Bell model is by definition for a chemical reaction

in two dimensions (2D), which can only be inferred from measurements in bulk solutions (3D), but the

relation between these two equilibrium constants is obscure and often causes confusion (Dustin et al.,

1996; Orsello et al., 2001; Zhu et al., 2000). A rigorous treatment of the statistical thermodynamics of

binding in a 2D system is still lacking. Second, a chemical-equilibrium treatment implicitly assumes

that the ligand and receptor molecules are mobile on the surfaces, which is valid only when molecules

are embedded in a fluid bilayer or membrane. In many experimental settings ligands and receptors

are fixed on beads (Kuo and Lauffenburger, 1993; Eniola et al., 2003) or covalently linked (Lin et al.,

2004; Bermúdez et al., 2004), therefore the chemical-equilibrium assumption fails (Martin et al.,
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2006) and it is erroneous to extract the parameters of the Bell model from these measurements by

fitting to a chemical equilibrium expression naively.

In many biological or engineering systems, ligand or receptor groups are tethered by polymers

or polypeptides to enhance specificity (Garcia, 2006; Chen and Dormidontova, 2005) or achieve

different functions (Springer, 1990, 1994). Polymer-tethering has also been a common motif in

surface force measurements and single-molecule studies (Wong et al., 1997; Jeppesen et al., 2001).

The polymer tether turns the short-range lock-and-key type interaction into a long-range specific

interaction, which has important implications to the equilibrium as well as dynamic properties of

adhesion (Martin et al., 2006; Moore and Kuhl, 2006; Moreira and Marques, 2004; Sain and Wortis,

2004), and suggests a new route to controlling the interactions between surfaces typically achieved

by generic physical interactions (Israelachvili, 1992; Hiddessen et al., 2000; Carignano and Szleifer,

2003; Nap and Szleifer, 2005). To characterize the polymer-tethered ligand-receptor binding, we

need to separate the contributions to the effective binding constant from molecular binding and

from conformation degrees of freedom—a single phenomenological binding constant is inadequate.

In this paper we study a microscopic model of polymer-tethered ligand-receptor binding and

analyze the thermodynamics of binding as well as the interactions between surfaces mediated by the

ligands and receptors. We explicitly account for the degrees of freedom of the flexible polymer tether,

and separate their contributions to the effective binding affinity as measured in experiments. Specific

attention is paid to the quenched case, where both ligands and receptors are immobile with random

distributions. In this scenario the physical free energy is the average over the random distributions

of ligands and receptors (“quenched average”), and an “effective binding constant” is not applicable.

In the low-density regime, the quenched system has qualitatively different thermodynamics than the

annealed system. We develop an asymptotic expansion of the quenched free energy of binding in

terms of the scaled molecular densities of ligands and receptors, which extends our previous analysis

for the single-ligand problem (Martin et al., 2006). The leading-order contributions (which are

accurate at low densities and intermediate binding strength) allow us to derive the dependence of

the binding free energy and the fraction of bound molecules on the microscopic binding affinity and

the tether chain lengths, which are qualitatively different from the annealed systems.

Another feature of this paper is that we distinguish between ligands and receptors with fixed

densities (closed) and connected to a reservoir with fixed chemical potential (open). In the Bell model

the densities of ligands and receptors are both assumed to be the bulk average values. However,

both experiments (Dustin et al., 1996) and theoretical estimations (Bruinsma et al., 2000; Bruinsma

and Sackmann, 2002) suggest that in the adhesion of cells or vesicles, the small contact adhesion

zones have ligand-receptor bonds aggregated at much higher densities than the bulk average. In this

scenario the whole non-contact area serves as a reservoir for the small adhesion zones; therefore the

adhesion part should be more naturally treated as an open system with a reservoir of molecules.



68

The biological implications are briefly discussed in Section 4.3.2. For further discussions in relation

to experiments, see Bruinsma and Sackmann (2002).

We illustrate all our calculations using the ideal-Gaussian-chain model for the polymer tether

and highlight the scaling dependences on the contour chain length (kuhn length); extensions to more

complicated realistic models are straightforward (Szleifer and Carignano, 1996; Chen and Dormi-

dontova, 2005). The Gaussian model allows exact analytical calculations of the chain confinement

repulsion as well as the chain stretching energy, which are the main motifs in addition to the spe-

cific binding. We find that both at the onset of binding (where ligand-receptor pairs start to form)

and at the free energy minimum (bridging conformation is most stable), the surface separations

scale linearly as the spatial extension of the Gaussian chain. While the equilibrium separation is

found to be insensitive to the binding energy, the onset of binding is proportional to the square

root of the binding energy
√
ε/kBT as was suggested by Moore and Kuhl (2006). These result in a

quasi-equilibrium critical tension for breaking a tethered ligand-receptor bond that scales as N−1/2.

This chapter extends our previous paper (Martin et al., 2006) where a discrete lattice model was

used and adhesion was between a single ligand and receptors. In Section 4.2 we define the continuum

model for tethered ligand-receptor binding as illustrated in Fig. 4.1, and present the theoretical

analysis. For simplicity we choose to study univalent ligands and receptors with monodisperse

tether lengths. In Section 4.3 we discuss the key features for the simple system corresponding to

the model solved in Section 4.2, and go on to study several examples combining different types of

specific and non-specific interactions based on the results in Section 4.2. We suggest some tentative

guidelines for the control over the interactions between surfaces via specific binding. The main

conclusions are summarized in Section 4.4 with brief discussions on relevant problems.

ρL, NL

ρR, NR

Figure 4.1: Schematic view of the model for surfaces with tethered ligands and receptors. The
surfaces are separated by a distance Lz, the polymer tethers have mean square end-to-end distance
NLb

2 and NRb
2, with area densities ρL and ρR for ligands and receptors, respectively; the anchoring

ends are located within distance z0 from the surface. In the Bell model, binding between ligands and
receptors is treated as a chemical equilibrium with constant K dependent on the surface separation.
Here we assume the binding between a ligand residue and a receptor residue to have an equilibrium
constant K0 as can be measured in a bulk solution of proteins.
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4.2 Model and solution

The model is schematically shown in Fig. 4.1. Definitions of variables are given in Table. 4.1. We

assume the anchoring ends on the surfaces to be non-interacting (i.e., ideal gas in 2D), and the

surfaces are non-adsorbing and impenetrable for the polymer segments.

The binding (ligand and receptor) groups are located at the free ends of the polymers. The

binding affinity is characterized by the equilibrium constant K0 of the reaction

L+R 
 LR

in a bulk solution of ligand and receptor proteins (without the polymer tether), as is given by

K0 =
cLR

cLcR
.

In our calculations all densities are molecular densities instead of molar densities.

From statistical thermodynamics we know that

K0 =
q′LR

q′Lq
′
R

,

where q′i = qi/V (i = L,R, or LR) is the internal part of the partition function for species i. If

molecules are tethered or confined, the translation part is modified, but we can assume that the

internal partition function remains the same, i.e., q′i is unaffected by the tether. For the current

model as illustrated in Fig. 4.1, the equilibrium constant in terms of the surface densities of molecules

is given by

K =
ρLR

ρLρR
=

qLR/A

qL/A · qR/A
=

q′LR

q′Lq
′
R

· Aq
t
LR

qtLq
t
R

= K0
AqtLR

qtLq
t
R

. (4.1)

qt
i are the translation part of the partition function, which are calculated in Section 4.2.2.

Throughout the paper we use ci to denote concentrations in 3D, in unit of “number of molecules

per unit volume” and ρi for concentrations in 2D (number of molecules per unit area). Later on we

also introduce a dimensionless density φi which is ρi multiplied by the area spanned by the tether.

4.2.1 Thermodynamics of the surface interactions

Before discussing the thermodynamics of tethered binding, we first consider the general thermo-

dynamics for the interactions between the surfaces with polymer-tethered ligands and receptors.

The total free energy of interaction ∆F is measured by the free energy at given surface separation

relative to infinite separation (non-interacting). Depending on the mobility and the relative fraction

of the contact area to the whole surface, each species of molecules (ligands or receptors) can be

in one of three different scenarios: immobile, mobile with a fixed density, or mobile with a fixed
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Table 4.1: Glossary

Variable Definition Dimensions or
Expressions

Nib
2 mean square end-to-end distance of the polymer tether [L]2

xL(xR) fraction of tether lengths NL/(NL +NR)
mi total number of molecules for each species –
ci number of molecules per unit volume [L]−3

ρi number of molecules per unit area [L]−2

φi scaled density in 2D ρiNb
2

c
(0)
i , ρ(0)

i , φ(0)
i overall densities (both bound and unbound) same as above

L separation between surfaces [L]
l scaled surface separation L/

√
Nb

l0(L0) position of the free energy minimum –
l1(L1) onset of binding –
qi partition function of the tethered receptor –
q′i internal partition function [L]−3

qti partition function of the polymer tether [L]3

F total free energy kBT
∆F interaction free energy kBT

Fb, Fr
contribution to ∆F from binding and repulsive
confinement kBT

µi reservoir chemical potential kBT
Ξ, Q grand partition function for open systems –
W,p grand potential, osmotic pressure kBT
K0 standard binding constant in terms of ci [L]3

K 2D binding constant in terms of ρi [L]2

(ε̃)ε (effective) binding energy kBT
A surface area [L]2

A
(0)
L (A(0)

R ) total area of the surface occupied by ligands (receptors) [L]2

G(r, r′;N) Green’s function of the polymer chain [L]−3

z0 anchoring distance [L]

T (Tc)
(critical) quasi-equilibrium tension force to break
a single ligand-receptor bond

[M][L]−1[T]−2

τD, τp, τr different time scales [T]

chemical potential (connected to a reservoir). These different scenarios are described by different

thermodynamic potentials.

For mobile receptors and ligands, the Helmholtz free energy can be written as

Ftot = FL(A(0)
L −A,m

(0)
L −mL) + FR(A(0)

R −A,m
(0)
R −mR) + F (A,mL,mR).

Here A(0)
α is the total area of the surface occupied by species α, m(0)

α is the total number of molecules,

A is the contact area, mα is the number of molecules within the contact area A, Fα is the free energy

of species α in the non-contact region on the surface, and F is the free energy in the contact region.

Before the surfaces are in contact, the free energy is

F
(0)
tot = FL(A(0),m

(0)
L ) + FR(A(0)

R ,m
(0)
R ).
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Therefore the net interaction free energy is

∆F = F (A,mL,mR) + FL(A(0)
L −A,m

(0)
L −mL)− FL(A(0),m

(0)
L )

+ FR(A(0)
R −A,m

(0)
R −mR)− FR(A(0)

R ,m
(0)
R ). (4.2)

If both species have fixed densities, we can take the surface in contact to be the entire surface,

and A(0)
α = A. We have

∆F = F (A,mL,mR)− FL(A,mL)− FR(A,mR); (4.3a)

If one species is connected to a reservoir with fixed chemical potential, then the total surface area

for that species can be considered infinite relative to the contact area, e.g., A(0)
L � A = AR, then

the net free energy of interaction is

∆F = F (A,mL,mR)− FR(AR,mR)−A
∂FL

∂AL

∣∣∣∣
AL=A

(0)
L

−mL
∂FL

∂mL

∣∣∣∣
mL=m

(0)
L

= F (A,mL,mR)−mLµL − [FR(A,mR)−ApL]. (4.3b)

pL = −∂FL/∂AL is the osmotic pressure of the ligands in the reservoir. For the case where both

species are mobile, the interaction free energy is

∆F = F (A,mL,mR)−mLµL −mRµR +A(pL + pR) = −A(p− pL − pR). (4.3c)

In these two cases the appropriate thermodynamic potential is given by F −µLmL and F −µLmL−

µRmR, respectively, corresponding to the case of open ensemble for ligands (closed ensemble for

receptors), and open ensemble for both ligands and receptors.

If one species is immobile (localized) while the other is mobile, the immobile species essentially

corresponds to the closed system with fixed densities. However, if both species are immobile, the

translation degrees of freedom are lost. This case is referred to as the “quenched” case. Here we

assume a priori that the quenched average free energy is self-averaging, i.e.,

1
A

lim
A→∞

F (A) = F =
〈
F ({xi}, {yj})

〉
,

A is the total surface area; the first equation defines the average free energy in the thermodynamic

limit, and the second implies that this is equivalent to the average over different distributions of the

quenched molecules.

In the quenched case the binding free energy is a random variable dependent on the distribution

of molecules, and its average is essentially different from the annealed cases (where either of the
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species is mobile). Let us first look at the simple case when ligands and receptors are put on a

lattice with no tether, i.e., binding occurs only between molecules directly facing each other, then

the quenched average of the binding free energy is just

〈Fb〉 = −ρLρRε,

where ρL and ρR give the probability of finding a ligand/receptor molecule within a unit area, and

ε gives the energetic gain due to binding. Clearly this is different from the chemical equilibrium in

the annealed cases.

Polymer tethers enlarge the range of binding between immobile ligands and receptors, as com-

pared to the molecular case, nonetheless, at low densities most molecules are far apart: the physics

of interactions is similar to the molecular case with a scaled density. In Section 4.2.3 we develop an

asymptotic expansion in this low density limit for the binding free energy, from which the density

(fraction) of bound pairs can be obtained.

In the rest of this subsection we discuss the relevant thermodynamic quantities for each of the

annealed cases in detail; these results are quite general and do not depend on the specific model for

the tether polymer; explicit treatment of polymer tethering will be described in detail in Section

4.2.2.

4.2.1.1 Both-open system

First we examine the system where both receptors and ligands are connected to a reservoir (in a

grand canonical ensemble). The free energy of interaction is related to the grand canonical partition

function, which is given by

Ξ(µL, µR) = exp
[
eβµLqL + eβµRqR + eβ(µL+µR)qLR

]
, (4.4)

where µL and µR are the chemical potentials of ligands and receptors; qL, qR, and qLR are the

partition functions of ligands, receptors, and ligand-receptor pairs.

At equilibrium the chemical potential of the bound pair µLR is equal to µL + µR, hence we can

rewrite the above equation as

Ξ = exp
(
eβµLqL + eβµRqR + eβµLRqLR

)
. (4.4′)

And from the grand potential

W = −kBT ln Ξ = −kBT
(
eβµLqL + eβµRqR + eβµLRqLR

)
, (4.5)
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we can obtain the 2D concentrations of ligands, receptors, and bound pairs in equilibrium

ρi =
1
A

∂ ln Ξ
∂βµi

=
1
A
eβµiqi =

qti
A
eβµiq′i (i = L,R,LR) (4.6)

where qti is the translation part of the partition function. From these we obtain the relation between

2D and 3D binding constant as given by Eq. (4.1)

K =
ρLR

ρLρR
= K0

AqtLR

qtLq
t
R

.

In Eq. (4.6) qti depends on the surface separation Lz. At infinite separation (Lz = ∞) no binding

occurs, therefore ρα(∞) (α = L,R) are just the reservoir concentrations ρ(0)
α ,

ρ(0)
α =

qtα(∞)
A

eβµαq′α.

This relates ρi at finite surface separation Lz to the reservoir concentrations ρ(0)
α as

ρα = ρ(0)
α

qtα(Lz)
qtα(∞)

, (α = L,R) (4.7)

ρLR = Kρ
(0)
L ρ

(0)
R

qtL(Lz)qtR(Lz)
qtL(∞)qtR(∞)

. (4.8)

The interacting free energy per unit area is given by the difference in the grand potential as given

in Eq. (4.5)

∆F (Lz)
AkBT

=
W (Lz)
AkBT

− W (∞)
AkBT

= − ρL − ρR − ρLR + ρ
(0)
L + ρ

(0)
R

= ρ0
L

[
1− qtL(Lz)

qtL(∞)

]
+ ρ0

R

[
1− qtR(Lz)

qtR(∞)

]
−Kρ0

Lρ
0
R ·

qtL(Lz)
qtL(∞)

qtR(Lz)
qtR(∞)

. (4.9)

4.2.1.2 Both-closed system

In the both-closed system the total number of molecules are fixed within the contact area. The

chemical equilibrium between receptors, ligands, and bound pairs implies

K
(
ρ
(0)
L − ρLR

)(
ρ
(0)
R − ρLR

)
= ρLR,

which gives

ρLR =
1
2

[
ρ
(0)
L + ρ

(0)
R +K−1 −

√
(ρ(0)

L + ρ
(0)
R +K−1)2 − 4ρ(0)

L ρ
(0)
R

]
. (4.10)

Here ρLR, ρL, and ρR are 2D concentrations of ligand-receptor pairs, free ligands, and free receptors,

and ρ(0)
α = ρα + ρLR (α = L,R) give the total concentration of ligands and receptors (both free and
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bound) within the contact area.

The Helmholtz free energy is related to the grand potential by a Legendre transform1

F

kBT
= − W

kBT
+
∑

α=L,R

µα

kBT
(ρα + ρLR)

= −ρL − ρR − ρLR +
∑

α=L,R

(ρα + ρLR) ln
ραA

qtαq
′
α

. (4.11)

The interaction free energy is given by

∆F (Lz)
AkBT

=
F (Lz)
AkBT

− F (∞)
AkBT

= ρLR(Lz)− ρ
(0)
L ln

qtL(Lz)
qtL(∞)

− ρ
(0)
R ln

qtR(Lz)
qtR(∞)

+ ρ
(0)
L ln

ρL(Lz)

ρ
(0)
L

+ ρ
(0)
R ln

ρR(Lz)

ρ
(0)
R

. (4.12)

One can verify that if one species is immobile while the other is mobile and both have fixed

number of molecules, the only difference is the translation entropy of the immobile species, which is

independent of binding. Therefore the free energy of interaction is the same as in the both mobile

case.

4.2.1.3 Open-closed system

Finally we examine the case in which one surface has a fixed number of molecules while molecules on

the other has a fixed chemical potential. This corresponds to the scenario in which the two surfaces

have different overall sizes, e.g., a virus binding to a cell, or a versicle or bead binding to a fluid

bilayer.

Assuming that receptors have a fixed overall density, we have

ρLR = KρL(ρ(0)
R − ρLR) ⇒ ρLR =

Kρ
(0)
R ρL

1 +KρL
, (4.13)

which is simply the Langmuir isotherm for an ideal gas of ligands. ρL is related to the reservoir

density as in Eq. (4.6)

ρL(Lz) = ρ
(0)
L

qtL(Lz)
qtL(∞)

.

The thermodynamic potential of interest is obtained from the grand potential through a Legendre

transform over the fixed density and the free energy of interaction is given by

∆F
AkBT

= ρ
(0)
L − ρL(Lz) + ρ

(0)
R ln

ρR(Lz)

ρ
(0)
R

− ρ
(0)
R ln

qtR(Lz)
qtR(∞)

. (4.14)

1Note that in Eq. (4.3a) mα refer to the total number of ligands or species within the contact area, including both
free molecules and bound ones; here ρi refer to the density of the free molecules only.
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This also applies to the case in which receptors are immobile, where the difference due to the

translational entropy is a constant independent of binding.

The results are summarized in Table. 4.2. In the next subsection we study the effects of the

polymer tether and derive the expressions of qti for the Gaussian chain model. The quenched case is

treated separately in Section 4.2.3.

Table 4.2: Summary of different scenarios
ligands receptors ensemble expressions

I immobile immobile quenched (4.33), (4.36)

II
fixed c fixed c
fixed c immobile canonical ensemble (4.3a), (4.10), (4.12)

III
fixed µ fixed c
fixed µ immobile open-closed (4.3b), (4.13), (4.14)

IV fixed µ fixed µ grand canonical (4.3c),(4.8), (4.9)

4.2.2 Polymer-mediated specific interactions

In this subsection we calculate the contribution of polymer tethers to the ligand-receptor interactions.

Before presenting the exact analytical calculations for the Gaussian chain, we first explore the scaling

behavior of the physical quantities of interest.

4.2.2.1 Scaling analysis

As mentioned above, polymer tethers have two effects: chain stretching in binding, and repulsion

between the surfaces due to short-range confinement. Both effects are classic problems in polymer

physics (de Gennes, 1979). A systematic scaling analysis of polymers confined between surfaces can

be found in Lipowsky (1995), and Manghi and Aubouy (2003). Here we analyze the scaling of the

size of the polymer tether in the presence of ligand-receptor binding. The scaling analysis is carried

out for a polymer chain with Flory exponent ν, (i.e., < R2 >∼ N2νb). The Gaussian chain results

follow by take ν = 1/2.

When surfaces are far apart, the polymer chain is confined in a semi-infinite space, which gives

the reference state for the problem. As surfaces come closer, ligand and the receptor groups at chain

ends can meet and bind with each other. We assume that at this stage the two surfaces are still far

apart so that the polymer chain is significantly stretched and chain confinement can be neglected,

which will be justified a posteriori. In the strong stretching regime, the polymer chain can be viewed

as a string of blobs of size ξ. Then the stretching energy is given by

E ∼ kBT × number of blobs ∼ N

(ξ/b)1/ν
,
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and the equilibrium end-to-end distance is

Lz ∼ Nξ1−
1
ν b1/ν .

Therefore the stretching energy is given in terms of the end-to-end distance as

E

kBT
∼ N

(
Lz

Nb

) 1
1−ν

=
(
Lz

Nνb

) 1
1−ν

. (4.15)

When binding becomes possible, the molecular binding energy ε becomes comparable to the stretch-

ing energy, hence we have for the separation L1
z corresponding to the onset of binding

(
L1

z

Nνb

) 1
1−ν

∼ ε

kBT
⇒ L1

z ∼ (ε/kBT )1−νNνb. (4.16)

This justifies our initial assumption that confinement is negligible in this regime.

As surfaces come very close, the polymer chains are squeezed by the surfaces into a string of

blobs on a plane parallel to the surfaces, with thickness Lz. The blob size is

ξ ' Lz,

therefore free energy due to confinement is

V = kBT
N

(Lz/b)1/ν
. (4.17)

Putting these two terms together with the binding energy, the overall free energy of a single

ligand-receptor pair is (C1 and C2 are dimensionless constants)

F

kBT
= −f

[
ε

kBT
− C1

(
Lz

Nνb

) 1
1−ν

]
+ C2

N

(Lz/b)1/ν
, (4.18)

and attains minimum at L0
z which is given by

L0
z ∼ f−ν(1−ν)Nνb, (4.19)

where f is the fraction of ligand-receptor bridges per ligand-receptor pair. For ε� kBT , L1
z � Nνb,

hence binding overcomes stretching energy and most molecules are bound (f ≈ 1), therefore the

equilibrium separation between the surfaces is given by L0
z ∼ Nνb.

The quenched case is more subtle. Assume ε� kBT . The binding fraction of a tethered ligand is

essentially the probability of finding a receptor within the “natural extension” of the ligand tether,
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ρR

〈
r2‖

〉
. (Here “

〈〉
” denotes the average over different chain conformations.) For a stretched chain,

r2‖ is given by an ideal string of blobs in 2D,

〈
r2‖

〉
' N

(ξ/b)1/ν
ξ2 ∼ Nb2

(
N

Lz

) 2ν−1
1−ν

, (4.20a)

while for a confined chain the “natural” size of the tether parallel to the surface is that of a self-

avoiding walk in 2D, 〈
r2‖

〉
'
[

N

(ξ/b)1/ν

]2ν2

ξ2 ∼ N2ν2L2−2ν2/ν
z b2ν2/ν , (4.20b)

ν2 is the 2D Flory exponent.

For Gaussian chains, ν = ν2 = 1/2, the scaling is the same in both cases, f ∼ Nb2ρR, which is a

scaled density of the receptor molecules. And we have (cf. Eq. (4.19))

L0
z ∼ N1/2b

(
ρRNb

2
)−1/4

. (4.21)

Hence we see that if ρR is kept constant O(1), then the equilibrium occurs at a smaller surface

separation compared to the annealed case. For swollen chains, ν ≈ 3/5 and ν2 = 3/4, the scaling in

both scenarios (stretched and confined) also happen to be identical, and the probability for forming

a ligand-receptor bridge is f ∼ ρRN
3/2b2(Lz/b)−1/2. The extra L

−1/2
z factor suggests that as

surfaces get closer, the polymer tether extends further in the direction parallel to the surface (since

ν2 = 3/4 > ν3 ≈ 3/5). The scaled density is given by ρRN
3/2b2, and the equilibrium separation is

(cf. Eq. (4.19))

L0
z ∼ bN15/22

(
ρRN

3/2b2
)−3/11

∼ N6/22ρ
−3/11
R . (4.22)

Finally we can also estimate the interaction force between the surfaces due to binding. For a

single bond, when the surfaces are pulled apart till the bond is broken, the total work done by the

pulling force is roughly equal to the ε, hence we have (for binding fraction f) the average pulling

force due to one ligand-receptor bond is

τ ∼ f
ε

L1
z − L0

z

∼ fkBT

Nνb

(
ε

kBT

)ν

. (4.23)

4.2.2.2 Analytical calculations for the Gaussian chain

Here we carry out the exact analytical calculations for Gaussian chains. Since the internal partition

functions q′i is assumed to be unaffected by the polymer tether, all we need is the translation part of

the partition function qti modified by the polymer tether. Using the Green’s functions of the polymer
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chain we can express qti as

qtLR =
∫
r

∫
rR,rL

G(r, rR;NR)G(r, rL;NL) =
∫
rL,rR

G(rL, rR;NL +NR); (4.24a)

qtα =
∫
r

∫
rα

G(r, rα;Nα) (α = L,R). (4.24b)

Here r is the position of the ligand or receptor group in the space between the surfaces, and rL and

rR are the positions of the anchoring ends of ligand or receptor tethers. Eq. (4.24) apply to any chain

model for the polymer tether (as reflected in the Green’s functions), as well as to both annealed and

quenched cases: For annealed cases, rL (rR) is restricted to the membrane whose integral is over

a thin layer within distance z0 from the surface; for the quenched case, it reduces to a summation

over the positions of the immobile molecules.

For ideal Gaussian chain model, we can factorize the Green functions,

G(r1, r2;N) = g(u1,u2;N)h(z1, z2;N),

where u and z are the transverse (parallel to the surface) and the longitudinal (perpendicular to

the surface) coordinates, and g and h are the transverse and the longitudinal part of the Green’s

functions. By translational invariance we have

g(u1,u2;N) = g(u1 − u2;N),

and ∫
u1,u2

g(u1,u2;N) = A

∫
u

g(u;N).

For the end-anchored polymer chain we further assume that z0 �
√
Nb, and

∫ z0

0

dzh(z, z1;N) ≈ z0h(z0, z1;N) = z0h0(z1;N).

For small enough z0, its value does not affect the physical quantities of interest, such as the binding

constant or the free energy of interactions.

From Eq. (4.1), the binding constant is given by

K = K0
AqtLR

qtLq
t
R

= K0

h0(Lz;NL +NR)
∫
u
g(u;NL +NR)∫

u
g(u;NL)

∫
z
h0(z;NL)

∫
u
g(u;NR)

∫
z
h0(z;NR)

. (4.25)

For Gaussian chains, g(u) is a Gaussian distribution and the integration over u yields unity. We are

left with

K = K0
h0(Lz;NL +NR)∫

z
h0(z;NL)

∫
z
h0(z;NR)

. (4.26)
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The one-dimensional Green’s function h0 for a Gaussian chain confined between surfaces can be

analytically solved; details are given in Appendix 4.A.

To highlight the scalings for Gaussian chains, it is convenient to rescale lengths by
√
Nb, which

is the mean square end-to-end distance. Here we choose to scale all lengths by
√
NL +NRb =

√
Nb. (As is shown in Appendix 4.A, h0 scales as a function of Lz/

√
Nb.) With this rescaling the

(dimensionless) receptor/ligand densities are given by

φα = ραNb
2, (4.27)

with a dimensionless binding constant

φLR

φLφR
=

K0

Nb2
h0(Lz/

√
Nb)∫

z
h0(z/

√
NLb)

∫
z
h0(z/

√
NRb)

=
K0

(Nb2)3/2
·
√
Nbh0(l)

qtL(l)qtR(l)
. (4.28)

(Note that h0 is of dimension [length]−1, hence the second factor, which depends on the scaled

surface separation l = Lz/
√
Nb, is dimensionless.)

In the literature the dissociation constant Kd is frequently reported in unit of M (mol/litre) and

a binding energy ε0 is defined as

ε0 = −kBT ln(Kd/[M]),

which is considered the binding energy measuring the intrinsic binding affinity. For most bound

pairs ε0 is found to be 5 to 30 kBT (Moore and Kuhl, 2006). In our problem K0 is given in terms

of molecular densities, it is related to Kd as

K0 = K−1
d N−1

a ,

where Na is Avogadro’s number.

Eq. (4.28) suggests that for tethered binding, we can define an effective binding energy

ln
φLR

φLφR
=
ε̃(l)
kBT

=
ε+ ∆ε(l)
kBT

, (4.29)

ε =kBT ln
K0

(Nb2)3/2
, (4.30)

∆ε(l) =kBT ln
√
Nbh0(l)

qL(l)qR(l)
. (4.31)

∆ε(l) measures the energetic cost due to stretching of the polymer tether; while ε accounts for the
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binding affinity excluding chain stretching. ε is related to ε0 as

ε = ε0 + ln
10−3m3

(Nb2)3/2Na
. (4.32)

For tether lengths in the normal range Nb ∼ 10nm while b ∼ 0.1nm, the second term is of order 0.1.

One can use either ε0 or ε as a measure of the binding affinity in the tethered case; we adopt ε for

convenience in the discussion of different energetic contributions to the binding.

4.2.3 Immobile receptors and ligands: low-density limit

Since the quenched case (both receptors and ligands are immobile) is qualitatively different from the

annealed case, we discuss it in detail in this subsection.

As mentioned above, in this case the physical quantities of interest are averaged over the quenched

distributions of the molecules. We assume the quenched distribution is uniform for each molecule

on the surface, namely the probability that a particular molecule is found at r satisfies

p(rα = r) =
1
A

d2r.

For each species (ligand or receptor), we assume that the distribution of molecules correspond

to a particular realization of the grand canonical distribution controlled by a chemical potential µ,2

then the probability distribution of samples with given number of molecules n in an area A is given

by

p(n) =
1
Q

λnqn

n!
,

where λ = eβµ and the normalization (grand partition function) is

Q =
∑

n

λnqn

n!
= exp(λq).

Hence for the ligand-receptor system, the quenched average free energy is given by

F̄ =
∑

mL,mR

p(mL)p(mR) 〈F (mL,mR)〉 . (4.33)

The chemical potential is related to the (thermodynamic average) number density of molecules as

ρ(0)
α =

1
A

∂ lnQ
∂µα

=
λαqα
A

. (4.34)

2Here we temporarily omit the subscript α for convenience.
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Putting this back into Eq. (4.33) we have

F̄ =
1

eAρ
(0)
L +Aρ

(0)
R

∑
mL,mR

(Aρ(0)
L )mL(Aρ(0)

R )mR

mL!mR!
〈F (mL,mR)〉 (4.35)

= A
[
F (1,1)ρ

(0)
L ρ

(0)
R + F (1,2)ρ

(0)
L ρ

(0)
R

2
+ F (2,1)ρ

(0)
L

2
ρ
(0)
R + · · ·

]
.

(Note that we have reserved F̄ for the “grand canonical average” and 〈F (mL,mR)〉 can be regarded

as the “canonical average” free energy with given number of molecules, mL and mR. It is easy to see

that the largest term in the series in Eq. (4.35) has mL = Aρ
(0)
L and mR = Aρ

(0)
R , therefore in the

thermodynamic limit, the canonical average < F > should be equal to the grand canonical average

F̄ .) In Appendix 4.B we present the calculations for F (n,m) up to n = 2,m = 2. The binding

fraction is most conveniently obtained by taking the derivative of F with respect to βε (or lnK).

Despite that the expansion is asymptotic, the leading-order results are usually qualitatively

accurate well beyond the range of densities in which the series is convergent, and here we present

the results

F̄ = F̄b(binding) + Fr(repulsion)

F̄b = −Aρ(0)
L ρ

(0)
R

∫
u

ln
{

1 +
3
2π

exp
[
βε̃(l)− 3u2

2Nb2

]}
, (4.36a)

Fr = −AkBT

[
ρ
(0)
L ln

qtL(Lz)
qtL(∞)

+ ρ
(0)
R ln

qtR(Lz)
qtR(∞)

]
, (4.36b)

ρ̄LR =
2π
3
Nb2 ln

(
1 +

3
2π
eβε̃

)
ρ
(0)
L ρ

(0)
R . (4.36c)

4.3 Results and discussion

In this section we discuss the key features of binding between polymer-tethered ligands and receptors,

and the overall interactions between surfaces mediated by these polymers. To focus on the key

aspects of the problem without complications due to other interactions we assume the ideal-Gaussian-

chain model. As discussed at the end of Section 4.2.2, after rescaling by the ideal end-to-end distance

of the polymer tether, we obtain the dimensionless quantities as listed in Table 4.3 (cf. Table. 4.1

for definitions of the variables).

Table 4.3: Scaled variables

surface separation l = Lz/
√
Nb

densities φi = ρiNb
2

binding affinity ε = kBT ln
[
K0/(Nb2)3/2

]
tether fraction xα = Nα/(NL +NR), (α = L,R)

Before the discussion, it is informative to estimate the values of these parameters. The aver-
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age number of ligand/receptor molecules is 105 ∼ 107 per cell, and the average area of a cell is

10−7 ∼ 10−6cm2: these give the average area densities of receptors/ligands ρ ∼ 1012/cm2. The av-

erage tether length (contour length) of integrins and selectins on lymphocyte cells is of order 10nm

(Springer, 1990), which is comparable to the estimation in the Bell papers (Bell, 1978; Bell et al.,

1984; Torney et al., 1986). Assuming the monomer size b to be ∼ 10−8cm we find

φ ∼ 1012 · 10−6 · 10−8 = 10−2,

which gives the overall (dimensionless) density of molecules on the cell surface. In other cases (e.g.,

a cell adhering to a large surface) where the adhesion zone is an open system (a small part of the

whole surface), we estimate that φ ∼ O(1) within the focal zone, and φ ∼ 0.001 outside the contact

area (the reservoir) due to depletion of ligands and receptors.

The binding constant K0 can be obtained from the dissociation constant Kd. In Dustin et al.

(1996) the dissociation constant was found to be Kd = 6µM , and the binding constant is K0 =

(KdNa)−1 ≈ 10−16cm3, which corresponds to a binding energy (in unit of kBT )

ln
K0

(Nb2)3/2
≈ ln 105 ≈ 12

in our definition. Bell et al. (1984) estimated the 2D binding constant to be K2D ∼ 10−8cm2, which

gives a binding energy
ε

kBT
= ln

K2D

(Nb2)
≈ ln 106 ≈ 14

in our definition. Moore and Kuhl (2006) compiled a list of experimentally measured physical param-

eters of ligand-receptor binding and it was quoted that the average binding energy ε0 (cf. Eq. (4.32))

of all available ligand-receptor pairs is about 15kBT . The numerical values of ε0 and ε are compa-

rable; in our calculations we take ε to be 10kBT or 15kBT .

In the discussions we proceed as follows. In Section 4.3.1 we study the effects of polymer tether

on specific binding and non-specific repulsion. In particular we examine the dependence of binding

on the tether fractions xL and xR. In Section 4.3.2, we discuss in detail the interactions between

surfaces mediated by ligand-receptor binding. We consider the following cases for the receptors and

ligands: I. Quenched (both ligands and receptors are immobile); II. “Both closed” (either ligands

or receptors are mobile, but both with fixed densities); III. “Open-closed” (ligands are connected to

a reservoir, and receptors have a fixed density (either mobile or immobile), or vice versa); IV. “Both

open” (both ligands and receptors are connected to a reservoir). Hereafter we will refer to these

different scenarios as “case I” to “case IV.”

We focus on the free energy of interaction and the average number of bound pair per lig-

and/receptor (“binding fraction”). In particular we discuss features including the dependences
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of the equilibrium separation and the minimum free energy on the binding energy and the molec-

ular densities; scaling relations are tested by analytical calculations. In addition we also study the

equilibrium force-extension curve between the surfaces. Finally in Section 4.3.3, we study several

systems combining different types of specific and non-specific interactions, including ligand-receptor

pairs with different tether lengths or binding affinities, and additional repelling polymers between

surfaces.

4.3.1 Effects of the polymer tether on specific binding and non-specific

interactions

From Eqs. (4.29) and (4.62) we see that the binding affinity in both quenched and annealed cases is

measured by the separation-dependent effective binding energy

ε̃(l)
kBT

=
ε

kBT
+ ln

√
Nbh0(l)

qtL(l)qtR(l)
.

Since ε is only weakly dependent on the chain length (cf. Table. 4.3), the dependence in the binding

affinity is primarily contained in the scaled surface separation l = Lz/
√
Nb in the second term. In

Appendix 4.A.1 we have worked out the close-form expressions for the second term in the asymptotic

limits of large and small separations

ε̃(l)− ε

kBT
'


ln
π2

8l
(l� 1),

ln
[
3
√

6πl2e−3l2/2√xLxR

]
(l� 1).

(4.37)

The effective binding constant (for the annealed case) is given by

K =
ρLR

ρLρR
= Nb2eβε̃(l),

and from Eqs. (4.37) this becomes

K ∝


K0

l
√
Nb

=
K0

Lz
(l� 1),

K0√
Nb

l2e−3l2/2 (l� 1).

(4.38)

Bell and co-workers (Bell, 1978; Bell et al., 1984; Torney et al., 1986) suggested that the 2D

binding constant should be related to the 3D binding constant as

K =
K0

Lz
.



84

0 1 2 3 4 5
−5

0

5

10

15

20

25

30

35

l = Lz/
√

Nb

Δε

Figure 4.2: The contribution to the effective binding energy due to tether stretching: −∆ε = ε− ε̃(l).
Here −∆ε is given in unit of kBT and plotted against scaled surface separation l = Lz/

√
Nb. Dash

lines and the solid line are results from the asymptotic expressions in the limits l � 1 and l � 1,
respectively; circles are from exact solutions. The thick dash line and circles are for equal tether
lengths (xL = xR = 0.5), and the thin line and circles for a tether length ratio of 1 : 99. In all
calculations the total tether length N = NL +NR is kept constant.

Our calculation establishes that this is valid only when surfaces are close enough, i.e., the surface

separation is less than the ideal size of the tethered ligand-receptor bridge. When surfaces are far

separate, the second expression implies a large stretching energy cost. Therefore one should be

careful when inferring 2D binding constant from the 3D experimental data3.

In Fig. 4.2 we plot −∆ε = ε − ε̃(l) in units of kBT against the scaled surface separation l =

Lz/
√
Nb. (Here −∆ε can be interpreted as the free energy cost due to tether stretching.) We choose

two different tether length ratios (xL): the thick lines and circles represent the case with equal tether

lengths, xL = xR = 0.5; while the thin lines and circles are for the case with xL = 0.01 (equivalent

to xR = 0.01 by symmetry). Here the circles represent results from exact solutions, dash lines are

from the approximate expressions for large separations and the solid line is for small separations (in

the latter case the results only depend on the total tether length and are identical in both cases).

For the whole range of surface separations the approximate expressions work remarkably well. In

particular, the stretching energy cost is given by 3l2/2 to the leading-order, as was given by scaling

3In real situations the polymer tethers are probably not Gaussian, however, our scaling analysis (cf. Section 4.2.2.1)
showed that the stretching regime and the confinement regime are qualitatively different, therefore it is impossible to
have one expression valid for these different regimes.
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arguments (de Gennes, 1979). We can define the onset of binding l1 as where ε̃ & 0, whence the

density of bound pairs starts to increase significantly. Assuming that at l1 the polymer tether is

stretched, we can estimate l1 as (from the asymptotic expression in the strong stretching limit)

l1 =
Lz√
Nb

∼
√
ε/kBT > 1, (4.39)

which justifies our assumption a posteriori. Therefore for ε� kBT , the tether chains are considerably

stretched when ligand-receptor bridges start to form.

From Fig. 4.2 we also see that with total tether length N = NL +NR fixed, binding is optimal if

ligand and receptor tether lengths are equal; the difference between different tether ratios vanishes

at small surface separations as can be inferred from Eq. (4.37). The 3kBT difference is purely an

entropic effect, and allows the fine tuning of the binding affinity at intermediate or large surface

separations without affecting the short-range behavior. This feature is especially relevant near the

onset of binding, where ε̃ ≈ 0, and a small difference in ∆ε can result in a large change in l1.

Another contribution from the polymers is the repulsion between surfaces due to the confinement

of polymer segments. Figure 4.3 shows the dependence of the repulsive free energy on the surface

separation for a single polymer with ideal end-to-end distance Nb2.

From Appendix 4.A.1 we have obtained4

Fr

kBT
'


− ln

4z0
l
√
Nb

+
π2

6l2
l� 1,

− ln
4z0√
Nb

− ln
√

6
4
√
π

l� 1.

(4.40)

The constant in the limit l � 1 gives the free energy of confining a single Gaussian chain in half

space, while the result for l� 1 scales as 1/l2, as is inferred from scaling arguments.

While the stretching energy cost flattens off at small surface separations, the repulsive free energy

(∼ 1/l2) increases sharply and dominates over the binding energy. On the other hand the stretching

energy grows as l2 at large separations and prohibits binding at large l. The net effect results in

a total free energy minimum attained around l = 1, with low stretching energy and not too strong

repulsion due to confinement. Next we discuss the total interaction due to tethered binding in

different physical scenarios.
4In Fig. 4.3 we have substracted out the first term in Eqs. (4.40) involving the anchoring distance z0, which is a

constant for given chain length.



86

0 1 2 3 4 5
0

2

4

6

8

10

l

Fr

Figure 4.3: The free energy of confining a polymer between parallel surfaces. Circles are results
from exact solutions and the dash line is from the asymptotic expression for l� 1.

4.3.2 Interactions between surfaces mediated by ligand-receptor binding

In this subsection we study 4 different scenarios according to the different mobilities of the species:

case I (quenched), case II (both closed), case III (open-closed), and case IV (both open). The

expressions for the density of bound molecules and the free energy of interactions are given by

(cf. Table. 4.2) Eqs. (4.36) for the quenched case (case I), Eqs. (4.10) and (4.12) for the both-closed

system (case II), Eqs. (4.13) and (4.14) for the open-closed system (case III), and Eqs. (4.8) and

(4.9) for the both-open system (case IV).

While the quenched case applies to interacting surfaces with immobile molecules unambiguously,

the different annealed cases can be difficult to distinguish. In particular we note that if one species is

mobile, the thermodynamics is the same whether the other species with a fixed density are immobile

or mobile. In reality a closed system (as in case II or case III) is best associated with surfaces with

uniformly distributed molecules, such as lipid bilayers supported on flat substrates. An open system,

on the other hand, corresponds to an inhomogeneous system with partial contact, such as flexible

membranes or lipid bilayers supported on spherical particles. In these cases the non-contact part

of the surface serves as a reservoir for the part in contact. Some typical examples of each cases are

listed in Table. 4.3.2.

Here we focus on two quantities. The binding fraction f is defined as the number of bound
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Table 4.4: Examples of different cases

Case I (quenched) polymersomes, solid substrates, colloidal particles with attached polymers
Case II (both closed) substrate-supporting lipid bilayers and monolayers
Case III (open-closed) flexible membranes interacting with surfaces covered by immobile molecules
Case IV (both open) flexible membranes, spherical vesicles

molecules divided by the number of molecules:

f =
ρLR

min(ρ(0)
L , ρ

(0)
R )

;

the free energy per molecule is defined by

F (l) =
∆F

Amin(ρ(0)
L , ρ

(0)
R )

,

which measures the strength of binding interactions between ligands and receptors. The definition

of F (l) coincides with the definition by Bell et al. (1984), and also allows a comparison with the

single-chain calculation in our previous paper (Martin et al., 2006). To avoid ambiguity we choose

ρ
(0)
L = ρ

(0)
R = ρ (φ(0)

L = φ
(0)
R = φ(0)) in our calculations. If both species are connected to a reservoir,

then the density of bound pairs ρLR can be significantly higher than the reservoir densities ρ(0)
L

or ρ(0)
R ; in this case f and F lose the meaning of “binding fraction” or “free energy per ligand or

receptor,” but purely serve as a comparison to the other cases (I, II, and III).

First we compare the different annealed cases (II, III, IV) where molecules are mobile. In Fig. 4.4,

we show results for case II (thin lines) and case III (thick lines) with densities φ(0)
L = φ

(0)
R = 0.01.

The binding energy is taken to be ε = 10kBT and equal tether lengths for ligands and receptors are

assumed. We see that for l ≥ 0.5, both cases are similar. In case III the binding fraction f saturates

at a larger surface separation than in case II. In particular, near l = 1 the binding fraction is close

to unity even for a lower reservoir density φ(0) = 0.001 (results not shown here). This indicates that

molecules in the reservoir can be attracted into the system and bind with their counterparts; near the

equilibrium bound state, the density of bound pairs is insensitive to the average density of ligands

or receptors in the reservoir, but is determined from the binding constant and the (maximum) fixed

density—this is consistent with the experimental observations by Dustin et al. (1996).

As surfaces come closer (l < 1), molecules start to feel the repulsion from the surfaces and are

squeezed out from the contact area. At very small l(< 0.5), the confinement repulsion dominates, and

in case III even bound pairs are broken and molecules are pushed out into the reservoir; accordingly

f drops to zero. In this regime of case III, the total interaction energy is the sum of the confinement

free energy of the molecules remaining in the system and the osmotic pressure from the reservoir.
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Figure 4.4: Comparison of case II (“both closed” system) and case III (“open-closed” system). The
binding fraction f and the interaction free energy F are plotted against the scaled surface separation
l = Lz/

√
NL +NRb. Thin solid lines are results for case II with φ(0) = ρ

(0)
L (NL + NR)b2 = 0.01,

(ρ(0)
L = ρ

(0)
R ); thick lines are for case III with the same densities. All calculations are for a binding

energy ε = 10kBT and equal tether lengths.

We see that the free energy of interaction is always lower compared with case II due to the extra

degrees of freedom of the species connected to a reservoir.

In Fig. 4.5 we compare case III (“open-closed”) and case IV (“both open”). The binding energy

is ε = 10kBT , and all the densities are φ(0)
L = φ

(0)
R = 10−3. Here thin lines are for case III and

thick lines for case IV; the dot line in Fig. 4.5(a) is the density of free (unbound) molecules with

a reservoir. (From Eq. (4.13) if the reservoir densities are equal, the density of free molecules is

the same in case III and case IV.) In both cases we see that as surfaces approach each other, free

molecules are pushed out, while the densities of bound molecules hit a maximum near l = 1, close

to the free energy minimum. But in the “both-open” system, we see a great enhancement of the

local densities since both types of molecules can flow into the system due to binding attraction. As

surfaces come even closer, both receptors and ligands are pushed out, the free energy in the “both

open” system flattens off at F = 2kBT , which is the total osmotic pressure from the reservoir.

Next we compare the annealed case (case II) and the quenched case (case I) and discuss the

features of binding in more detail.

Figure 4.6 shows F and f for case I (quenched) and case II (both closed) with scaled densities

φ
(0)
L = φ

(0)
R = 0.01: the solid lines are results for case II; for the quenched case, the dash lines are

results from the leading-order density expansion [O(φLφR)], and circles are from expansions up to

quartic order[O(φ4)]. To ensure accuracy of the density expansion, we choose a modest binding
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Figure 4.5: Comparison of case III (“open-closed”) and case IV (“both open”). In either case all
densities are chosen to be φ(0) = 10−3. Upper figure shows densities of molecules relative to the
reservoir density: the dot line represents the relative density of free molecules, thin and thick solid
lines represent the relative densities of bound pairs for case III and case IV. Lower figure: Total
free energy of interaction for case III (thin solid line) and case IV (thick solid line). The molecular
binding energy is ε = 10kBT .

energy ε = 10kBT .

In both cases, we see that the binding fraction f starts to increase around Lz/
√
Nb = 3.5, which

corresponds to the onset of binding. At the onset of binding, very few bound ligand-receptor pairs

are sparsely distributed and the situation is similar to isolated non-interacting ligand-receptor pairs,

therefore the scaling dependence of l1 on ε should be identical to that for a single ligand-receptor

pair, l1 = L1
z/
√
Nb ∼

√
ε/kBT , as discussed previously. Indeed this scaling estimate gives l1 ≈ 3.2

for the Gaussian chain model, quite close to the exact results5.

In the annealed case, as surfaces come closer, the binding fraction first increases rapidly and then

gradually approaches unity, whence most molecules are bound. In the latter regime the separation

between the surfaces is comparable to the size of the connected polymer tether, and ligand and

receptor groups can reach anywhere between the surfaces with almost equal probability—put in

other words, their densities are almost uniform in the space between the surfaces. This implies

that the 2D binding constant K is related to the 3D constant K0 as K = K0/Lz . On the other

hand, as surfaces come even closer the polymers start to feel stronger confinement from the surfaces,

which contributes a repulsive free energy scaling as 1/l2 for Gaussian chains. The balance between

5Of course, for very strong binding βε� 1, we have l1 � 1 and the Gaussian chain model becomes inaccurate. In
this regime the finite extensibility of the polymer chain should be accounted for.
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Figure 4.6: Comparison of case I (“quenched”) and case II (“both closed”). Solid lines are for case
II (mobile ligands and receptors with fixed densities), and dash lines are for case I (immobile ligands
and receptors) from leading-order density expansion; Circles are results for the quenched case from
second-order density expansion. The binding energy is ε = 10kBT and both ligands and receptors
have a density φ(0) = 0.01.

the attractive binding and the repulsive confinement leads to a free energy minimum at l0 ≈ 1.

Single-bound-pair scaling applies here as well because in this regime most molecules are bound,

hence f ≈ 1. For weaker binding such that the binding fraction has a substantial dependence on l,

the equilibrium separation l0 will also depend on ε, as will be discussed below.

We now investigate the quenched case. As discussed in Section 4.2.1, the free energy is averaged

over the random distributions of the molecules. The generic repulsion due to confinement is inde-

pendent of the relative positions of ligands and receptors; the quenched average is only invoked for

the binding part. By the convexity of the free energy,

Fq = −kBT
〈
lnQ

〉
≥ −kBT ln

〈
Q
〉

= F,

i.e., the quenched average is always larger than the annealed average. Hence the bound state in a

quenched system has a higher free energy, and binding is less probable compared to the annealed

case.

At least two factors contribute to the reduced tendency of binding between immobile molecules

at low densities6. First, at low densities the anchoring ends of ligands and receptors are far apart,

therefore the tether chains have to be laterally stretched for ligands and receptors to bind. This
6At high densities the quenched case should approach the annealed case.
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lateral stretching adds an extra energetic cost to binding, and is only dependent on the densities

and the tether lengths of the molecules. Another effect is due to the local inhomogeneity in molecule

distributions7: due to fluctuations in the quenched distributions, locally there could be more ligands

than receptors or vice versa, and the excess ones have no counterparts nearby, and remain unbound;

while in the annealed case, these molecules can move around to locate their counterparts.

In the Gaussian chain model, the polymer chain is infinitely extensible. We can estimate the

average number of molecules within an“accessible” distance as8

ρR2 = ρNb2ε/kBT = φε/kBT,

where the binding energy gain ε enables the tether to stretch farther to form a bridge. This gives an

estimate for the maximal binding fraction, f . φε/kBT , which is attained when surfaces are very

close. For reasonable values of ε with small φ it is always less than unity9.

We also note that the asymptotic density expansion is accurate if the surface densities φL, φR

are small and binding energy is not too big. Since the density expansion is carried out around

the no binding state, an empirical criterion is given by φε/kBT < 1, corresponding to the “weak”

binding scenario. We see that the leading-order expansion is fairly accurate compared with the

higher-order expansion (up to O(φ4)). Since we are mostly interested in the low-density regime

when the quenched case and the annealed cases are most different, we shall use the leading-order

result throughout the rest of the paper. From the leading-order expansion we have

ρ̄LR ∝ ρ
(0)
L ρ

(0)
R Nb2ε̃,

this should be distinguished from the conventional binding equilibrium,

ρLR ∝ (ρ(0)
L − ρLR)(ρ(0)

R − ρLR)eβε̃.

In general there is no well-defined binding constant for the quenched case, especially when higher

order terms O(φ3) and O(φ4) are relevant.

To summarize the binding favorability in different scenarios, we have

Both open � open-close & both close > quenched.

The difference is the entropic effect due to flexible polymers as well as to the diffusion of molecules

in the reservoir. To better illustrate the difference between these cases, we plot in Fig. 4.7 the free
7This is briefly commented on by Moreira et al. (2003).
8When the surface separation is large, ε should be replaced by ε̃ to account for the stretching energy.
9For finitely extensible chains, as in our previous paper (Martin et al., 2006), there is a strict upper bound set by

the average number of molecules within the maximal extension in the limit of βε→∞, which is completely determined
by the molecular density and maximal tether extension.
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energy of binding and the binding fraction against the density of one species (receptors or ligands)

while keeping the other fixed φ(0) = 0.01 (F and f is normalized to this fixed density). We see

that for the quenched case the free energy and binding fraction increases almost linearly with the

density, the slope is small, reflecting the restricted availability of binding molecules. In case II and

case III where the maximum density of bound pairs is set by the fixed density of one species, as the

density of the other species increases, f first increases exponentially but then approaches saturation.

In case IV, the increase is linear all the way with a much larger slope that is proportional to K

(cf. Eqs. (4.8) and (4.9)); this reflects a positive feedback effect: increasing the density of one species

automatically attracts more molecules of the other species from the reservoir.
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Figure 4.7: Dependence of the binding fraction and the free energy on the density of molecules
for case I (dash line), II (solid line), III (dash dot line), and IV (dot line). The binding energy
is ε = 10kBT ; receptors and ligands have equal tether lengths, one species has a fixed density
φ(0) = 0.01, while the other has a varying density. The free energy and the binding fraction are
calculated for a fixed surface separation l = 1 (Lz =

√
Nb), which is near the equilibrium position

(cf. Fig. 4.8).

Next we focus on the features related to the equilibrium separation l0 and the equilibrium (min-

imum) free energy. From our scaling analysis in Section 4.2.2, for Gaussian chains the interaction

free energy (per bound pair) can be written as

F

kBT
≈ −f

(
ε

kBT
− C1l

2

)
+
C2

l2
.

The first term gives the total stretching and binding energy, while the second term measures the

repulsion due to confinement. Assuming that f has a weaker dependence on l compared with the
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stretching energy and the confinement repulsion10, we obtain the equilibrium separation as

l0 ≈ f−1/4,

and the minimum free energy
Fmin

kBT
≈ −f ε

kBT
+ C3f

1/2.

The only dependence of l0 on the binding energy is contained in f . From previous discussions we

have seen that for reasonably large binding energy, f is close to unity near the equilibrium position

in the annealed cases, therefore in these scenarios we expect l0 to reach a constant if ε/kBT � 1,

this is indeed true as shown from in Fig. 4.8.
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Figure 4.8: The dependence of the equilibrium separation and free energy on the molecular binding
energy for case I (dash line), II (solid line), III (dash dot line), and IV (dot line). Ligands and
receptors have equal tether length, with densities φ(0) = 0.01.

In Fig. 4.8 we plot l0 and the equilibrium free energy for different binding energies. Broken

lines represent the quenched case, solid lines for case II (both closed), dash-dot lines for case III

(open-closed), and dot lines for case IV (both open). The receptors and ligands have equal tether

lengths, with equal density φ(0)
L = φ

(0)
R = 0.01. We observe that for the annealed cases in which the

binding fractions reach unity in the strong binding regime, l0 approaches 1, where the total energy

due to stretching and confinement is minimized. In the free energy plot, we see that in case II and

case III, for large ε the free energy curves approach linear with slope 1, reflecting that in this regime
10Indeed f ∼ 1 near the equilibrium separation in case II and case III, ∂f/∂L ' 0 in case IV, and in the quenched

case f ∝ ε with a logarithmic dependence when l ' 1.
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most molecules are bound (f ≈ 1); in the both-open system, the free energy has an exponential

increase due to the incoming molecules from the reservoirs.

On the other hand the quenched case is essentially different. From above we have the estimate

that f ≤ φε/kBT , therefore f � 1 for the range of ε we choose. Naive estimate for l0 gives

l0 ∼ f−1/4 ∼ ε−1/4 > 1, which would be true only if f is independent of l. Even though the latter

assumption does not hold in this regime, the qualitative trends still hold: we indeed observe that l0

is bigger than in the annealed cases and decreases as ε increases.
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Figure 4.9: The force-extension curve for case I (dash line), II (solid line), III (dash-dot line), and
IV (dot line). The binding energy is ε = 10kBT and the molecular densities are φ(0)

L = φ
(0)
R = 0.01.

Finally from the interaction potential we calculate the equilibrium force defined as

τ =
∂F

∂Lz
.

τ measures the force between the surfaces at a given surface separation in a quasi-equilibrium state.

(We adopt the convention that τ is positive if the surfaces are attracting each other, i.e., one needs

to exert force to pull the surfaces apart.) In Fig. 4.9 we plot τ
√
Nb against the scaled surface

separation l. If we neglect the weak dependence of ε on N , this is a scaling plot for τ
√
Nb against

l. One immediately sees that τ scales as N−1/2 against the tether length, reflecting the finite range

of binding attraction mediated by the polymer tether. The maximum in the force-extension curve

corresponds to the critical pulling force above which the bond will be broken even in the quasi-

equilibrium state (without fluctuations), which gives an upper bound of the bridging force (Moore
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and Kuhl, 2006). From scaling arguments we would expect

τc ∼
fβε

l1 − l0
∼ f

(
ε

kBT

)1/2

N−1/2.

For tether length
√
Nb ∼ 3nm and ρ ∼ 10−1nm−2, 1kBT in Fig. 4.9 corresponds to a force per unit

area 3.7 N/m2. Therefore the critical stresses in different cases are 2N/m2 (case I), 15N/m2 (case

II, III), and 100N/m2 (case IV). The values are comparable to the results reported by Moore and

Kuhl (2006), but larger than their values which are around 4N/m2. However, the polymer tether is

significantly stretched in the experiments by Moore and Kuhl (2006) therefore the Gaussian chain

approximation is invalid. In this strong stretching regime, the critical tension is approximately

τc ∼
fε/kBT

l1 − l0
∼ f

(
ε

kBT

)
N−1.

In summary, the interactions between surfaces due to ligands and receptors include the generic

repulsion due to confinement and the specific attraction due to binding. The magnitude of the

binding attraction is determined by the microscopic binding affinity, the tether lengths, and the

molecular densities, through an effective binding constant and the scaled molecular densities. The

net effect of binding attraction and confinement repulsion results in a free energy minimum at a

surface separation comparable to the ideal size of a tethered bridge.

When one or both species are connected to a reservoir, molecules can be attracted into or pushed

out of the system according to the interaction potential. Qualitatively different is the case when

molecules are immobile. The free energy cost due to lateral stretching makes binding much less

probable, resulting in a binding fraction considerably less than unity.

We further notice that in all these cases, the onset of binding (where the binding fraction starts to

increase considerably) appears to be identical, reflecting the binding energy ε as a universal measure

of binding strength; while the equilibrium bound state, which is dependent on the saturated density

of bound molecules, differs in the various scenarios due to entropic effects (diffusion of molecules).

The dependences of the equilibrium separation and the minimum free energy can be qualitatively

explained using the scaling relations.

Since our results are based on equilibrium analysis but real systems or processes are usually non-

equilibrium in nature, it is natural to ask in what situations these conclusions hold. Let’s take the

surface force measurement (Wong et al., 1997; Jeppesen et al., 2001) as an example. Here we observe

three physical time scales, corresponding to the binding reaction (τr), the diffusion of the polymer

tether (or the ligand/receptor group) in solution (τp), and the trans-membrane diffusion of polymers

(τD). In addition there is the time scale corresponding to the relative speed at which surfaces are

approaching or departing from each other (τ). Moore and Kuhl (2006) found that the polymer
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diffusion time τp (Zimm time) is roughly 1µs, and the binding reaction time τr is typically several

nanoseconds. The diffusivity of the protein across the membrane was quoted in Dustin et al. (1996)

and Cuvelier et al. (2004) to be 10−8 ∼ 10−9cm2/s, which gives a time scale of τD ∼ (ρD)−1 ∼ 1ms

for the rearrangement of molecular distributions. Therefore we have

τD � τp � τr.

Generally τ � τr, and it is always valid to treat the binding reaction as an equilibrium. If the

surfaces approach very fast such that τ < τp, then the diffusion of the polymer tether is relevant and

this is the scenario analyzed by Moreira et al. (2003) and Moreira and Marques (2004) using reaction-

diffusion theory. If the surfaces approach slow enough such that τ > τD, then the system is essentially

governed by the equilibrium thermodynamics and all our results should hold; if τD > τ > τp, the

system is in the quenched scenario as the diffusion of the molecules across the membrane is too slow

to be treated as annealed.

Moreira et al. (2003), Moreira and Marques (2004), and Moore and Kuhl (2006) discussed the

relevance of the approaching speed to the interacting force between the surfaces and the dependence

of the fraction of bonds on the surface separation. For the dependence of the onset of binding

(their “binding range”) on the binding affinity, they found the same result as ours, l1 ∝
√
ε/kBT ,

which sets an upper bound in the dynamic measurements where surfaces approach at a finite speed;

for the dependence on the tether length, our result suggests l1 ∼
√
ε/kBTN

νb, which agrees with

their experimental results for long tethers11; for short tethers the finite extensibility of the tether

should change the scaling dependence. The breaking of the bond is more subtle and is best put in

a dynamic context (Evans and Ritchie, 1999; Sain and Wortis, 2004). But as discussed by Moore

and Kuhl (2006), the equilibrium force gives an upper bound on the bridging force or the breaking

force as long as the approaching or separating speed is not faster than the relaxation of the polymer

segments. And our prediction that τ ∼ ε1/2/Nν should hold for long chains in this regime. Thermal

fluctuations will even lower the threshold for breaking the bond, as was considered by Sain and

Wortis (2004).

The distinct time scales of motion result in different physical scenarios. For example, the diffusion

of ligand and/or receptor groups is governed by the diffusion of the polymer tether as well as

the diffusion of the anchoring end in the membrane. But the diffusion in the bilayer is much

slower compared to the diffusion of polymer segments in the solution, therefore tethered ligands and

receptors can locate their counterparts more easily and result in faster adhesion dynamics compared

with the adhesion without tether, as was observed by Cuvelier and Nassoy (2004). In addition

the polymer tether increases the range of binding, which admits larger membrane deformations

compared with the case of molecular binding: such membrane fluctuations lower the energy barrier
11Moreira et al. (2003) and Moreira and Marques (2004) did not do a scaling plot.
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(a)

(b)

(c)

Figure 4.10: Schematic views of the models to be discussed in Section 4.3.3.1 (a), Section 4.3.3.2
(b), and Section 4.3.3.3(c). When molecules with different lengths are present, we usually scale the
densities by the length of the (shorter) tethered ligand-receptor bridge, and refer to the molecular
densities of other species relative to the density of ligands or receptors.

of adhesion and stabilize the bound state. These two effects qualitatively explain the experimental

findings by Cuvelier and Nassoy (2004), although quantitative treatments require an analysis of the

adhesion dynamics, which is beyond the scope of our current paper.

4.3.3 Composite interaction potential from specific binding and non-

specific interactions

In previous subsections we discuss the interactions between surfaces mediated by polymer-tethered

ligand-receptor binding. Real biological processes, however, usually involve many different types

of ligand-receptor interactions, with different binding affinities or tether lengths. (See Springer

(1990) for a snapshot of different proteins involved in immunological responses.) Even in a simple

cell adhesion, the polysaccharide layer on the cell surface introduces additional repulsion between

the cell surface and the external surface. This repulsive layer effectively prevents non-specific and

preserves specific adhesion.
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Here we study the overall interaction potential between the surfaces mediated by several specific

and non-specific interactions. We neglect non-specific intra- and intermolecular interactions, such as

the excluded volume, and focus on the features of specific interactions and generic repulsion. From

these examples we try to illustrate the different features associated with each interacting species and

provide some general principles for the design and control of surface interactions.

4.3.3.1 Cell adhesion revisited

Bell and co-workers (Bell, 1978; Bell et al., 1984; Torney et al., 1986) first proposed that cell ad-

hesion is a net result of specific ligand-receptor binding and non-specific steric repulsion due to

repelling molecules on the cell surface. Here we re-examine this model and study the dependence

of the interaction potential on measurable and controllable molecular parameters, which can guide

bioengineering design of artificial surfaces that can trigger cell adhesion. Specifically we treat the

binding molecules as polymer-tethered ligands and receptors and the repelling polymers as linear

Gaussian chains confined between surfaces 12. The model is schematically shown in Fig. 4.10(a).

Figure 4.11 shows the composite interaction potential due to ligand-receptor binding and steric

repellers. In Fig. 4.11(a) the system belongs to case III (open-closed system) and we plot the cases

with mobile repellers (dash line) and immobile repellers (thick solid line). The interaction potential

due to ligand-receptor interactions alone is shown for comparison (thin solid line).

The repeller polymer has length Nr = 16(NL +NR), hence the repulsion is present at

Lz ∼
√
Nrb = 4

√
NL +NRb &

√
βε
√
NL +NRb,

which is slightly larger than the separation at the onset of binding. When repellers are mobile,

the repulsive potential flattens off at small separation, implying that they are squeezed out (or

“redistributed” in Bell’s terminology). This introduces a modest barrier (osmotic pressure) that is

proportional to the density of repellers; the length of repellers only affects the range of repulsion,

not the barrier height. When repellers are immobile, the short-range repulsion scales as Nrb
2/L2

z

and presents a strong repulsion. Accordingly the equilibrium bound state is shifted towards larger

surface separations with shallower free energy minimum, due to the strong repulsion at small surface

separations.

In Fig. 4.11(b), we examine the case when both receptors and ligands are connected to a reservoir

with densities φ(0) = 0.005 and with immobile repeller polymers at different densities. Contrary to

the case of receptors/ligands with fixed densities, the equilibrium separation is shifted very little,

although the free energy minimum becomes shallower if not vanishing. This suggests a way to adjust
12Simple scaling tells us that the short-range repulsion due to confinement of Gaussian chains scales as ∼ Nb2/L2

z ,
Nb2 being the mean square end-to-end distance of the polymer and Lz the spatial confinement size. In the Bell
model, the repulsion is assumed to scale as ∝ (Lz)−1; this would correspond to stretched polymers in the brush
regime. Extension to this scenario can be straightforwardly implemented via self-consistent calculation.
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Figure 4.11: The interaction between surfaces mediated by ligand-receptor binding and repulsive
polymers. The ligand-receptor binding has a binding energy ε = 15kBT . The length of repelling
polymers is Nr = 16(NL +NR). In (a) the densities of ligands and receptors are ρ(0)(NL +NR)b2 = 1
and the repeller density is ρr = ρ(0)/3. The dash line is for mobile repellers and the thick solid line
for immobile repellers; the thin line is for the bare ligand-receptor system without repellers. (b)
Receptors and ligands are both in open system (case IV) with reservoir densities ρ(0)(NL +NR)b2 =
0.005, the binding energy is the same as in (a); from above the densities of repelling polymers are:
ρr = ρ(0) (thinnest), ρr = 2ρ(0)/3 (moderate), and ρr = ρ(0)/3 (thick).

the depth of the free energy of the bound state independent of its location, as compared to the case

in Fig. 4.11(a) where the two are correlated.

Recently Bruinsma et al. (2000) studied the adhesion between a large versicle and a lipid bilayer

when both receptors and repellers are present. They observed that tightly bound regions with

higher densities of receptors coexist with loosely bound states with lower densities, and receptors
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slowly aggregate to the tightly bound regions (focal adhesion zone). This coexistence was argued to

result from a double-well inter-membrane potential separated by a barrier induced by the repeller

molecules. The authors further pointed out that the repellers are better characterized as mobile

with a given chemical potential so that they can be pushed out in the tightly bound regions.

In our model we do not account for the long-range physical interactions or membrane defor-

mations, which result in the loosely bound minimum described in the Bruinsma paper. Otherwise

our analysis qualitatively agrees with their observations. In addition we point out that since the

growth of the contact area is slow, initially the adhesion zone should be viewed as an open system

of receptors with the loosely bound part serving as the reservoir. This was also observed by Dustin

et al. (1996). The attraction inside the focal contact is significantly higher than that predicted from

the overall density on the surface, which can overcome the barrier due to immobile repellers; such

a process would be impossible if the binding molecules were uniformly distributed as in a closed

ensemble.

Finally we point out that due to the barrier between the bound and the unbound state, even

in flat geometries the adhesion process should be a first-order transition (Bruinsma and Sackmann,

2002; Weikl et al., 2002). Therefore the presence of a considerable barrier is adequate to prevent

non-specific adhesion even though the bound minimum still exists. In this case the growth of the

adhesion contact is through nucleation, which is most likely mediated by membrane fluctuations. We

will study this interplay between membrane fluctuations and ligand-receptor interactions in Chapter

5.

4.3.3.2 Bidisperse ligand-receptor binding

Introducing long repelling polymers can generate a barrier from the unbound to the bound state,

thus preventing unwanted binding or adhesion between the surfaces. If, instead of purely repelling

polymers, we introduce longer-tethered ligands and receptors, then these molecules act as a “barrier”

to the shorter-tethered binding, but on the other hand generate another minimum at a larger surface

separation. Properly adjusting the binding affinities and tether lengths of these two ligand/receptor

pairs gives us extra freedom in controlling the strength and range of the attraction between the

surfaces.

Here we consider a system with two ligand-receptor pairs with different tether lengths and affini-

ties, as schematically represented in Fig. 4.10(b). The interaction potentials are shown in Fig. 4.12.

The shorter-tethered ligand/receptor pair has a larger binding energy ε = 15kBT and higher density

φ
(0)
1 = 1, and we assume them to be an “open-closed” system to mimic cell-substrate interactions.

The longer-tethered one has a smaller binding energy ε = 5kBT and smaller density ρ(0)
2 = 0.5ρ(0)

1

(note that this is the molecular density instead of the scaled density φ) and we assume both of them

to be in a closed system.
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Figure 4.12: The interaction potential resulting from binary ligand-receptor interactions. Ligands
and receptors have equal densities as their counterparts. The short-tethered ligand-receptor pairs
have ε1 = 15kBT , and φ

(0)
1 = 1, and the system belongs to case III (open-closed). The thin line

represents the interaction potential of this system alone. The long-tethered ligand-receptor pairs
have weaker binding energy ε2 = 5kBT , with fixed densities (case II) ρ(0)

2 = 0.5ρ(0)
1 . Both ligand-

receptor pairs have equal lengths for ligand and receptor tether. From above, the lengths of the
longer tethers are: N2 = 64N1 (dot line), N2 = 36N1 (dash-dot line), and N2 = 16N1 (thick solid
line).

Since the long-tethered molecules introduce a barrier to the short-tethered binding and generate

a new free energy minimum at larger separation, the superimposed interaction potential should take

a double-well shape. In Fig. 4.12 the dot line represents the case with tether ratio N2/N1 = 64, the

dash-dot line for N2/N1 = 36, and the thick solid line for N2/N1 = 16; the thin solid line is for the

system with short-tethered ligands and receptors only, the same as in Fig. 4.11(a). For the range of

tether lengths we studied, we see that the minimum due to the short-tethered binding is shifted to

larger separations with higher free energies, similar to Fig. 4.11(a).

When the length of the long-tethered bridge is much larger than that of the short-tethered one

(dot line), we observe two minima separated by a positive barrier. If the long tether is of intermediate

size (dash-dot line), we still observe two separate minima, but the barrier between them is small

and negative; for comparable tether lengths (thick solid line), the two minima merge with a larger

range of attraction. These results demonstrate that by adjusting the relative length ratio one can

qualitatively control the shape of the interaction potential from single well to double well.

Understanding the interactions due to binary ligand-receptor binding is both relevant to surface

engineering and to our understanding of biological systems. In a colloidal suspension with particles

interacting via a double-well potential, we expect structures with competing length scales of ordering
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Figure 4.13: Interaction between surfaces with two different ligand-receptor interactions and repelling
polymers. For short-tethered ligands/receptors we have ε1 = 15kBT , and φ

(0)
1 = 1; for the long-

tethered ligands/receptors we have ε2 = 10kBT , ρ(0)
2 = 0.5ρ(0)

1 , and N2 = 16N1. Ligand and receptor
tether lengths are equal for both types. And the short-tethered binding is assumed to belong to case
III (open-closed) and the long one to case II (both closed). The lengths of the immobile repelling
polymers are Nr = 36N1 (thickest line) and Nr = 16N1 (intermediate) with density ρr = ρ

(0)
1 /3.

with complicated symmetries, as well as colloidal gels with local but no long-range order13. On the

other hand, it is known that in the rolling of leukocyte cells (Lawrence and Springer, 1991; Springer,

1994), the longer but weaker selectin ligands mediate rolling of the cells, while the shorter but

stronger integrin receptors result in the final strong adhesion; the interplay between longer-tethered

ligands and shorter-tethered ligands is key to the successful immunological response (Qi et al., 2001).

For stable rolling, the double-well shape interaction potential might be crucial.

4.3.3.3 Attempt at a synthesis

From the above examples we have seen two ways to adjust the interaction potential between surfaces:

(1) introduce a barrier from the unbound to the bound state by adding longer repelling polymers;

(2) shift the equilibrium separation and the minimum free energy and allow different minima to

appear by combining ligand-receptor pairs of different lengths.

Let’s summarize the main results in these two cases. To introduce a barrier to the bound state,

mobile repellers introduce a less noticeable barrier and smaller shift to the equilibrium separation

compared with immobile repellers; with immobile repellers increasing the density or the chain length

of the repeller molecules can both increase the barrier height, but the latter will also result in a larger

range of repulsion. When a different type of ligand/receptor pairs with longer tethers is introduced,

13See Hiddessen et al. (2000) for some examples using single ligand-receptor pairs.
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depending on the tether lengths, the system can show two free energy minima separated by a

large barrier (large tether-length difference), two minima separated by a small barrier (intermediate

tether-length difference), or one minimum only (comparable tether lengths). Adjusting the density

of each type of ligand/receptor molecules allows us to control the relative stability of the minima

due to each ligand-receptor pair.

Combining these two methods allows us to control the subtle features of the interaction potential.

Here we just give one example to illustrate how the relative stability of the minima in a bidisperse

ligand-receptor system can be controlled by introducing repellers of different lengths. In Fig. 4.13

the thin line represents the system with bidisperse ligand/receptor molecules with parameters: ε1 =

15kBT , φ(0)
1 = 1, and ε2 = 10kBT , N2 = 16N1, ρ

(0)
2 = 0.5ρ(0)

1 . Comparing Fig. 4.13 with Fig. 4.12,

we see that although the binding energy for the longer-tethered ligand/receptor molecules is larger,

the qualitative features are identical, hence changing the binding energy has little effect on the

shape of the interaction potential. However, by introducing immobile repeller molecules with a fixed

density ρr = ρ
(0)
1 /3 but different lengths, we can qualitatively control the interaction potential. In

both cases we see two separate minima. For long repellers (Nr = 36N1, thickest line) the stable one

is at the larger separation, corresponding to the longer-tethered binding, and the repellers generate

a barrier to the bound state. In the case of short repellers (Nr = 16N1) the stable bound state is at

the smaller separation and there is no barrier from unbound to the longer-tethered bound state.

Clearly one can introduce more species into the system to adjust the individual features indepen-

dently. Because of the specificity of ligand-receptor binding, each type of ligand-receptor binding is

independent of others, and the total interaction potential is the superposition of all ligand-receptor

pairs, which provides a diverse and powerful way to engineer surface interactions.

4.4 Conclusion

We have studied a continuum microscopic model for polymer-tethered ligand-receptor interactions

between surfaces and analyzed the thermodynamics of interactions between the surfaces, which

essentially consist of a repulsion due to the confinement of polymers at small surface separations,

and an attractive binding at intermediate range of separations mediated by the polymer tether.

The generic short-range repulsion due to confinement can be calculated or estimated from scaling

analysis for a given chain model. For the tethered binding we find an effective binding constant that

relates the density of bound pairs to those of ligands and receptors.

The binding constant has contributions from a microscopic binding affinity between the ligand

and the receptor group, which is independent of the surface separation or tether lengths, and a tether

stretching energy, which reflects the conformation change of the polymer tethers due to binding. At

small surface separations, the 2D binding constant is independent of the tether length, and can
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be related to the 3D binding constant by K2D = K3D/surface separation, but at large surface

separations the stretching energy is important. The attractive binding and the repulsion due to

confinement result in an equilibrium separation between the surfaces corresponding to the minimum

of the total interaction free energy.

For the overall interactions between surfaces, we study the different scenarios when binding

molecules have different mobilities. Specifically ligands and receptors can be immobile, mobile with

a fixed density, or mobile with a fixed chemical potential. These different scenarios correspond to

binding between objects with different geometries or different molecular embeddings. Binding is

least probable in the case when both species are immobile. On the other hand, in the cases with

open ensembles, molecules are attracted into or pushed out of the system due to the net interaction,

resulting in a lower free energy. In particular, for the case with ligands in a closed system and

receptors in an open system, the maximum density of bound ligand-receptor pairs is determined by

the fixed density of ligands, and is insensitive to the reservoir density, as is observed in experiments.

We illustrate our calculations using an ideal-Gaussian-chain model. Simple scaling arguments

yield that the onset of binding (adhesion range) scales as L1
z ∼

√
ε/kBT

√
Nb, and the equilibrium

separation scales as L0
z ∼

√
Nb. These results agree well with the exact solutions. We also infer that

the quasi-equilibrium critical tension as obtained from the equilibrium force-extension curve should

scale as N−1/2 for the Gaussian tether. These scaling dependences should also hold for non-Gaussian

chain models by replacing the N1/2 factor with the characteristic size of the polymer chain (Nν).

Finally we demonstrate that by combining different types of ligand-receptor interactions and

non-specific repeller molecules, one can achieve precise control over the interaction potential between

surfaces. Specific examples include introducing a barrier between the unbound and the bound state

and introducing multiple minima and controlling the range and magnitude of each minimum. These

results suggest possible strategies for bioengineering design with better specificity and for a diverse

control of surface interactions using specific interactions.




