117

Chapter 5

Dynamics of membrane adhesion
mediated by receptor interactions
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5.1 Introduction

Cell adhesion is crucial to many biological processes, including cell differentiation and division, signal
transduction, and immunological responses (Alberts et al., 2002; Berg et al., 2002; Springer, 1990).
Many different interactions are involved in adhesions in vivo: lock-and-key type interactions between
proteins (Lauffenburger and Linderman, 1993), force-induced signaling, reorganization of actin fil-
aments and the cortex (Lipowsky, 1995), and various generic physical forces (Nelson et al., 2004).
Despite the complexity of these interactions, researchers have been successful in explaining many
experimental observations from thermodynamic and physico-chemical analysis, and many features of
cell adhesion can be qualitatively understood from basic physical principles (Bell, 1978; Bell et al.,
1984; Torney et al., 1986; Coombs et al., 2004; Flyvbjerg et al., 1997; Zukerman and Bruinsma,
1995; Lipowsky, 1996; Bruinsma et al., 2000; Boulbitch et al., 2001; Bruinsma and Sackmann, 2002;
Sackmann and Bruinsma, 2002; Sackmann and Goennenwein, 2006).

In contrast to adhesion mediated by generic interactions such as the van der Waals or electrostatic
forces, biological adhesions are induced by specific binding between proteins with complementary
domains, i.e, receptors and ligands. Other interactions provide different regulation mechanisms
to fortify (e.g., cytoskeleton reorganization) or destabilize (e.g., repeller molecules) the adhesion
contact. While adhesion receptors play the major role and are extensively studied, de-adhesion forces
are crucial to ensure specificity of the adhesion (Bruinsma et al., 2000; Bruinsma and Sackmann,
2002). The interplay between attractive specific and (usually repulsive) non-specific forces is a
recurring theme in cell adhesion, and provides delicate control over the adhesion—de-adhesion process
in cell migration and immunological response.

While receptors and their ligands have been the focus of biological studies over the past decades,
the physical carrier of these proteins—the cell membrane—has been extensively studied by physicists
and biophysicists since the fluid-mosaic model was proposed by Mitchell and Nicholson. Membranes
are composed of self-assembled lipid molecules and form vesicles in aqueous solutions of typical
sizes up to 10 gm. The physics of fluid or solid membranes are well studied and summarized by
Peliti (1994), Nelson et al. (2004), and Safran (1994). In particular the interactions between flexible
membranes have been studied by Lipowsky and co-workers (Peliti and Leibler, 1985; Lipowsky and
Leibler, 1986; Lipowsky, 1994, 1995).

Recent advances in bioengineering techniques have enabled studies of adhesion between biomimetic
membranes mediated by specific and non-specific interactions. Sackmann and co-workers (Sack-
mann, 1996; Tanaka and Sackmann, 2005) have designed self-assembled vesicles and monolayers
supported by a polymer cushion to mimic cell membranes and the extracellular matrix; in the mem-
branes they incorporated specific proteins (to mimic ligand-receptor binding), glycolipids (to mimic

the glycocalyx), as well as other additives to stabilize the vesicles. This system provides the first
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biomimetic system incorporating key elements in cell adhesion and allows systematic studies of the
dynamics and mechanics of adhesion without complications due to other factors present in biological
cells.

Based on in vitro experiments using biomimetic vesicles, Sackmann, Bruinsma, and co-workers
(Bruinsma et al., 2000; Bruinsma and Sackmann, 2002; Sackmann and Goennenwein, 2006) found
that cell adhesion is controlled by a double-well potential: a weak-adhesion state at a large surface
separation due to generic van der Waals interactions between lipids, and a strong-adhesion state
at a small surface separation due to ligand-receptor binding; membrane undulation and glycolipid
depletion induce repulsive forces that constitute the barrier between the two minima. The adhesion
process proceeds in three steps (Albersdorfer et al., 1997; Kloboucek et al., 1999; Boulbitch et al.,
2001; Sackmann and Bruinsma, 2002). First, small adhesion contacts are formed which are most
likely induced by membrane undulations; such a process is an activated process with a nucleation
barrier larger than 10 kg7'. Following nucleation, receptors diffuse into the adhesion contacts and
contact area grows accompanied by a depletion of repellers (glycolipids), this is the growth step. Fi-
nally, after receptors are depleted, the adhesion contacts evolve like coarsening in a phase separation:
the number of adhesion contacts decreases and various small focal contacts are formed with high
densities of receptors, accompanied by a possible decrease in the total area of contact. The whole
process is likened to the wetting transition (Bruinsma and Sackmann, 2002) and phenomenological
parameters like the surface tension, the spreading pressure, and the contact angle can be measured
and related to underlying parameters, including the mechanical properties of the membrane and
the molecular parameters of receptors (Bruinsma et al., 2000; Simson et al., 1998; Boulbitch et al.,
2001).

The conformations of adhered membranes are recorded in situ by reflection interference con-
trast microscopy (RICM) (Rédler and Sackmann, 1993; Radler et al., 1995), which provide direct
experimental measurements of the formation and growth of adhesion plaques. However, RICM is
unable to resolve adhesion contacts smaller than 300 nm (Boulbitch et al., 2001), therefore cannot
give direct support for the nucleation process. On the other hand, scaling arguments and Monte
Carlo studies (Lipowsky, 1994; Volmer et al., 1998) usually cannot yield quantitative results that
are experimentally testable.

In this paper we present a systematic study of the nucleation step of the adhesion controlled by a
double-well interacting potential. Following Bruinsma et al. (2000), Bruinsma and Sackmann (2002),
and Sackmann and Bruinsma (2002), we assume the “minimum” model of membrane adhesion
consisting of the elastic deformation energy of the flexible membrane and the double-well adhesion
potential. As discussed above, this minimum model preserves the key features of cell adhesion. From
a scaling analysis we find that the membrane shapes are governed by the adhesion length Ry which

is determined from the bending rigidity x and adhesion potential; the energy barrier is controlled
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by the energy scale \/m, where Vg is the effective barrier height and Lg is the characteristic
length determined by the adhesion potential.

If Fy > kT, adhesion is a first-order transition and nucleation proceeds along the “minimum
energy path” governed by the effective potential (free energy). Using the string method by E et al.
(2002), we calculate the “minimum energy path” from the weakly bound state to a well-developed
adhesion contact. We find that the typical energy barrier for adhesion between flexible membranes
is about 20-30 kT, corresponding to a time scale of 0.1-1000 seconds. For adhesion of cells with
actin cortices, which have much larger bending modulus, the nucleation barrier is much larger and
is essentially insurmountable by thermal undulations, and actin reorganization and cell signaling
provide additional mechanisms for stabilizing the adhesion contact.

For Fy comparable to kgT, we adopt a Peierls argument following Lipowsky (1994, 1995). We
find that near the critical unbinding transition, adhesion is a weak first-order transition, and the
adhesion dynamics depend on the shape of the irregular boundary. We show that if the potential
minima have comparable depth, the adhesion dynamics are controlled by the potential depths only,
and independent of the length scale of the double-well potential, which reflects the dominance of

membrane undulations.

5.2 Model and solution

5.2.1 Model description

The thickness of a self-assembled monolayer or bilayer is about 10-100 nm, thus negligible compared
to the spatial extension (~ 10 um). Therefore the macroscopic behaviors of membranes are mostly
determined by their geometric shapes, and to a good approximation independent of the microscopic
degrees of freedom of the consistituent amphiphilic molecules. Flexible membranes as random sur-
faces have been extensively studied in the past decades by physicists; theoretical models and results
are collected in the book edited by Nelson et al. (2004). For cell membranes or self-assembled mono-
layers with biological relevance, see Safran (1994) and the book edited by Lipowsky (1995); a more
up-to-date review of simulation methods and other approaches is given by Miiller et al. (2006).

For a single membrane that is homogeneous, smooth, and non-interacting, Canham (1970) and
Helfrich (1973) proposed that up to 2nd-order derivatives with respect to the local coordinates of

the membrane shape, the elastic energy of a deformed membrane is given by

H, B 1 2 _
kBTi/s |:0'+2I€(H Hy)” + kK| dA. (5.1)

Here o is the (local) surface tension conjugate to the surface area, x and & are elastic moduli known

as the bending regidity and the Gaussian rigidity coupled to the mean curvature H and the Gaussian
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curvature K, Hy is the spontaneous curvature. The integral is over the whole membrane area'.

S =
Wariva

Figure 5.1: Monge representation of a near-flat membrane shape

In this paper we study the adhesion between a flexible membrane and a flat surface, correspond-
ing to the experimental system studied by Bruinsma et al. (2000). For this model the separation
between the membrane and the flat surface provides a natural representation of the membrane shape
(cf. Fig. 5.1), z = z(x,y), also called the Monge representation?. Since we focus on the initial stage
of adhesion where the adhesion contact is small compared to the size of the membrane, we assume
Hy =0, and in this case the Monge representation is useful. The elastic energy of the membrane is
given by

kz} = / {g [Az(z,y)]” + 0 [Vz(x,y)}z} dady. (5.2)

The elastic energy gives the “kinetic” part of the Hamiltonian, now we consider the interacting
potential between the membrane and the adhering surface. Generic (non-specific) interactions,
including the van der Waals interaction, electrostatic interaction, and hydration forces (see Nelson
et al., 2004, Chapter 3) results in a potential V,; with a minimum around 10-100 nm (Albersdorfer
et al., 1997; Bruinsma et al., 2000; Guttenberg et al., 2001). The net interaction between the surfaces
mediated by receptors and repellers has been calculated in our previous paper?; for phenomenological

treatments, see Zukerman and Bruinsma (1995), Bruinsma et al. (2000), and Weikl et al. (2002).

1The Helfrich Hamiltonian is the simplest renormalizable model for fluctuating membranes that satisfies Euclidean
symmetry and reparametrization invariance; the functional accounts for the energy of elastic deformations from the
equilibrium state with minimum area A,i, and uniform curvature Hp. If the Gaussian rigidity is constant, then the
Gaussian curvature term is constant for a surface with fixed topology (Euler characteristic). See Peliti (1994) and
Nelson et al. (2004) for thorough discussions.

2In the case of adhesion between two membranes, the elastic energy is divided into two parts: one due to deformation
of the “center of mass” of the binary system, the other dependent on the relative separation between the membranes;
after integrating out the center of mass deformations, one can write the elastic energy dependent on the relative
separation in the same form as above with the additive bending rigidity (cf. Lipowsky (1996))

-1 _ -1 -1
K =Ky Tt Ry -

3Manuscript submitted to Langmuir.
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The interaction potential due to receptors Vy can be generally written as a functional of the density
distributions ¢;(z,y), and ¢; depends on the local surface separation z(x,y). Here we assume that
molecular transport is fast enough so that we can write V; as a functional of the separation z(z,y).

Therefore the total Hamiltonian is given by [r = (z,y)]

HIz(r), ¢i(r)] = He[2(r)] + Vg[2(r)] + Vilz(r)]. (5-3)

The free energy (effective potential) of the model given by (5.3) can be calculated by standard field
theoretic method by integrating out fluctuations of the separation variable z(r). These fluctuation
effects have been extensively studied (Nelson et al., 2004); in particular, membrane fluctuations
induce an effective repulsion which contributes to V]z(r)]. Since fluctuation effects are not our
focus here, we apply a mean-field approximation and assume the free energy takes the same form as
the Hamiltonian with renormalized elastic constants and interacting potential: these renormalized
parameters are experimentally measurable; we shall consider the membrane undulation effects in
Section 5.4 by scaling arguments.

With these approximations we can write the effective potential of our model as

Flz(r)]
kT

_ / {g D)) + 0 [V2(0)]? + V[a(r)]} d*r. (5.4)

The adhesion (interacting) potential V' (z) has a double-well shape (Bruinsma et al., 2000; Bruinsma
and Sackmann, 2002) and is characterized by the depths of and the locations of the minima, as is
schematically shown in Fig. 5.2(a). The parameters in Eq. (5.4) have been measured by Sackmann
and co-workers in different systems (see Flyvbjerg et al., 1997; Simson et al., 1998; Kloboucek et al.,
1999; Bruinsma and Sackmann, 2002; Sackmann, 2006; Sackmann and Goennenwein, 2006).  is
about 20 kgT for a self-assembled bilayer, and of order 1000 kgT for cells with actin cortices. o is

related to the so-called capillary length (Sackmann and Goennenwein, 2006)

which defines the length scale above which surface tension becomes important. Typical values for
R, are about 0.1-1 pwm (Bruinsma et al., 2000; Sackmann and Goennenwein, 2006). Generally the
size of adhesion plaques in the initial stage of adhesion is smaller than R, therefore the bending
energy dominates.

For clarity of our discussion it is convenient to scale the separation z(r) and the radial coordinate
r by natural length scales arisen from the adhesion potential and the membrane elasticity. After the
general rescaling

r/Roy—r, /Loy —1, z/Log — z;V/Va — v
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Vo=Vi — AV

AL=1L1+ Lo

Figure 5.2: Schematic representation of the interaction potential V' (z). The shape of the potential
is similar to that calculated from a phenomenological model proposed by Bruinsma et al. (2000).
Only the part of the potential inbetween the minima are important for our calculations, and the
potential is characterized by the position L, Lo (fixing the barrier at the origin) and the depths
W1, Wy of the minima. In our numerical calculations we choose the functional form for V' (z) such
that the widths W7 =~ Ly, and Wy =~ Lo for fast convergence.

the effective potential becomes

Flz] xkL3 2 2
PEL [ 358 (92 28 (00" + Vi) . 55)

In the rigidity dominant regime, we choose

2
KkLj

V2R8 = Ri(g)a

such that the length scales are determined by the adhesion potential V(z) and the bending rigidity.

This leads to
Flz] > [l o202, o2 ) )
k_BT—\/IiVQLO‘/S[Z (V22)"+ 5 (V2)" +0(2) | dr, (5.5

where
_ 20’L() _ QR(% (5 6)
\/KJVQ Rg ’ '
kL2 V4
Ry = | 2=0 ) 5.7
’ ( Va ) 57

We call Ry the adhesion length (similar to the “persistence length” defined by Sackmann and Goen-
nenwein (2006)), which turns out to control the interfacial width of the adhesion contact. In general
Ry ~ 10 nm < R, therefore the surface tension term is unimportant.

We further notice that the combination \/K/VQL% (even though L is unspecified) controls the
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magnitude of the free energy. If kVoL2 > 1, then the minima of V() is separated by a large barrier
(cf. Lipowsky (1995, 1994)). In this regime, thermal fluctuations are unimportant compared to the

adhesion energy, and we can apply the mean-field capillary approximation.

5.2.2 Scaling analysis of the nucleation dynamics

Experimental measurements suggest that cell adhesion is a first-order transition (Albersdorfer et al.,
1997; Boulbitch et al., 2001), therefore the potential minima are separated by a large barrier and ad-
hesion should proceed via a nucleation-and-growth pathway. Here we study the nucleation dynamics

in this regime using the classical capillary approximation.

Figure 5.3: Illustration of a regular adhesion droplet

Initially the membrane is in a loosely bound state at a larger separation Lo, and the equilibrium
shape is flat. Nucleation of an adhesion contact is driven by membrane undulations and results
in a droplet as shown in Fig. 5.3. When thermal fluctuations are irrelevant, the boundary of the
adhesion droplet is regular (a simple curve), and without loss of generality we assume the droplet
to be axi-symmetric and the membrane deviation to be a function of the radius z(r). If potential
depths are comparable, i.e., AV < Vs, the length scale Ly associated with the adhesion potential
V(2) is naturally chosen to be the separation between the minima AL; otherwise when AV > V;,
Ly should be taken to be the separation of the metastable minimum (V3) from the barrier, Lo.

In the first case, there is a well-defined adhesion “nucleus” which has size R in the interior and

an interfacial area of width AR (cf. Fig. 5.3). The length scales are

Lo = AL,

AL2 1/4
ROZ <K/ ) )
Va
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and the energy scale is

Fy = VKkVoAL2,

From scaling analysis we have (Ar = AR/Rg,r = R/Rp)

L KRL3
2 0 2.2 0
V2 ARz,m/(v P~ S5, (5.8)
/ V(2) = V(Ls)]dA ~ —wR2AV + nRARV:. (5.9)
Combining these two contributions we find
ALQ 1/4
AR~ Ry = (” > . (5.10)
Vs

We recognize that the free energy is similar to that in the capillary approximation, with a line
tension

T = ARV, ~ sYAVEAALY2. (5.11)

At the critical radius R* the free energy attains maximum, and we have

v Vy (kALY W
to 2 AR= 2 (2 -2 12
N AV( v ) N (5.12)
2

In the second case Vo /AV < 1, and the radius R is comparable to the boundary width 6 R. The

above results become

(5.12)

KRAL? 1/4
no) o

R~déR~Ry= (

F ~ 7R3V, = Fy. (5.13)

From Egs. (5.12), (5.13) and (5.12'), (5.13") we see that Ry and F, control the length (R and
AR) and energy (F) scales. The scaling R¥ ~ V{l/ * is different from classical mean-field results

RYV~1/2 which is due to the difference in the surface energy. We note that the capillary analysis is

valid only if Fy > kgT, and thermal fluctuations are not important. In particular,
KVaAL? ~ 1 (5.14)

marks the tricritical point where the unbinding transiton crosses over from first order to second

order (Lipowsky, 1994).
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5.2.3 Minimum-energy-path calculation

Under the mean field approximation (zero temperature limit), nucleation proceeds along the “min-
imum energy path,” or the valley on the free energy landscape. We parametrize this path by a
variable s and represent the path as

2(r,s) : s — z(r).

The minimum energy path (MEP) is defined such that the tangent along the path Vz(r,s) is
parallel to the free energy gradient 6F[z]/0z at z(r,s) for any s, or equivalently

1
<(”;£’Z]> = 522] (I-35)=0 (5.15)
o Velns)
IVsz(r, s)|

To calculate z(r,s) we adopt the string method by E and co-workers (E et al., 2002), which is a

modified steepest descent
0z(R,s;t) _ OF[z]

ot 0z

(I - 88) + A& (5.16)

Here A is a Lagrangian multiplier which is used to fix the parametrization s. The choice of X is
arbitrary, and we adopt the same parametrization as given by E et al. (2002), which requires the

points be uniformly separated along the path,

|Vsz(r, s)| = const.

which has a close form expression.

0F[z]/0z is the free energy gradient

oF
5[2] =A%z — XAz +/(2). (5.17)
z
In radial coordinates, the Laplacian is
d? 1d
A— — 4+
T + rdr’

and
2@ 1@ 1a
drt  rdrd  r2dr2  p3dr

To implement the steepest descent as described by Eq. (5.16), we proceed as follows: First we
impose a circular droplet centered at z = AL which has a radius large enough such that letting
it evolve along the free energy gradient (steepest descent) the size of the droplet grows instead of

shrinking to the flat profile. After evolving for some steps the profile reaches steady growth, and
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has passed the nucleation barrier, and this profile is taken as the final state z(r,s = 1;¢ = 0), and
the initial path is generated by a simple linear interpolation between z = 0 and z(r,s = 1;¢t = 0).
Although the final state z(r, s = 1;¢t = 0) might not be on the minimum energy path, after iteration
using Eq. (5.16), the whole path will evolve to the MEP and the maximum of the free energy
corresponds to the critical “nucleus.”

We adopt an explicit forward time splitting for the potential V' (z) and an implicit splitting for
the differential operators, which ensures fast convergence*. Iteration stops when the maximum free
energy of the reaction path max, F[z(s)] reaches a constant and the maximum residual gradient
max,{VF(z)1} is used to test the accuracy of convergence. In the next section we discuss the

numerical results.

5.3 Numerical results and discussion

In this section we discuss numerical results of the minimum-energy-path (MEP) calculations. Before
the discussion we first estimate the typical length and energy scales associated with the adhesion
process. The bending rigidity x is about 20 kg7 for bilayer membranes and 1000 kg7 for cell
membranes with actin cortices (Sackmann and Goennenwein, 2006; Bruinsma and Sackmann, 2002).
The separation AL is between 5 and 50 nm, depending on the size of the receptors (Bruinsma
et al., 2000; Martin et al., 2006), and we take Ly = 5 nm. The barrier height V5 is estimated to be
10~% J/m” (Bruinsma et al., 2000). Therefore the energy scale for flexible membranes is (at T = 300
K)
Fy = (KVoaAL*)Y? ~ 1kpT,

which indeed reflects flexibility. The lateral length scale is

Ry = v/KAL?/V5y ~ 2 nm.

In the case of cell membranes with actin network, Fjy increases by about 7 times and Ry about 2.5

times. The capillary length

is usually of order 0.1pm (Sackmann and Goennenwein, 2006), and hence the surface tension

Rp

o

is small, and we neglect the surface tension term in our calculations except in the discussion of their

effects on adhesion.

4See for example, the (p)reprints at http://www.math.utah.edu/~eyre/research/methods/papers.html.
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In the following discussions quantities are represented using the scaled units. The scaled potential

V(z) is parametrized by the positions of the potential minima and their depth as
V(z) = p(z; —L1, V1) + p(z; Lo, V2),
where p(xz; L, V) is given by
xr 2 x 2
pla; LV) = -V {(L -1) - 1} exp [—4 (Z -1) } . (5.18)

The combined potential has two minima located at —L; and Lo with depths V; and V5, and the

barrier is located at z = 0. An example is shown in Fig. 5.4.

0.5

-1.5¢

—%.5 -1 -0.5 0 0.5 1 15

Figure 5.4: Shape of the potential V(2) for Ly = Lo =1, V; =2, Vo =1

In Fig. 5.5 we present two representative nucleation paths. The barrier height is Vo = 1, the
locations of minima are Ly = 1, L; = 1, and we choose two cases V; = 1.3 and V; = 4, giving
potential depth difference AV = 0.3 and 3, respectively. Figure 5.5(a) and (c) show the evolution
of membrane shapes along the minimum energy path (MEP): the membrane conformation evolves
in the direction of the arrow; Figure 5.5(b) and (d) give the free energy along the MEP with red
circles corresponding to each membrane shape shown on the left. The red thick curves in (a) and
(c) are the critical shape corresponding to the maximum free energy along the nucleation contour

(saddle point).
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In the case that the barrier height is large, AV = 0.3 < V5 = 1, we see that the critical nucleus
has a well-formed adhesion contact with radius R ~ 7Ry = 14 nm, with an interfacial width
0R ~ 3Ry = 6 nm: this is similar to the classical nucleation scenario where capillary approximation
applies. On the other hand for AV = 3 > V5, the critical shape has not formed an adhesion contact
yet, but barely passed the barrier position z = 0. The free energy barrier in the second case is about
18 kT while in the first case is 51 kg7, the ratio is about 2.8, which is quite close to the scaling
result given by Vo/AV =1/0.3 ~ 3.33.

To have a better understanding of the nucleation dynamics, we estimate the characteristic time

scales of membrane undulations. By dimensional analysis, we have
Tun ~ NL3 JkpT = 0.24 ns

for L = 1 nm. For an energy barrier of 25 kg7 the nucleation time is
T ~ TunefFi/kT ~ 14 s.

Therefore in the first case (AV = 3) there is little barrier and nucleation is fast, while in the second
case (AV = 0.3) the nucleation barrier is so high that it is essentially impossible. It has been pointed
out by Bruinsma et al. (2000) and by us (Martin et al., 2006) that in the initial stage of adhesion
receptors form local aggregrates with very high densities, resulting in a deep potential minimum;
our calculations further corroborate this assumption. On the other hand, for cellular adhesion the
nucleation barrier is much higher and the reorganization of the actin cortex provides a mechanism
to fortify the adhesion contact; other mechanisms such as dimerization can also be triggered by cell
signaling.

Komura and Andelman (2000) studied the membrane shape near the phase boundary under
lateral phase separation induced by adhesion, and found that the membrane deformation is non-
monotonic near the phase boundary between coexisting phases. Our results show that this non-
monotonic feature is present throughout the adhesion process. As we shall see at the end of this
section, this feature is due to the bending energy term; increasing surface tension will diminish this
feature.

To study the crossover between the two scenarios shown in Fig. 5.5, we plot the critical membrane
shapes for different AV in Fig. 5.6. We notice that for 2 < AV < 4 the critical shape is almost
invariant: in this regime the barrier height V5 is small compared to the potential depth difference
AV and nucleation is determined by the potential near the metastable minimum at L. On the other
hand, when AV is small, the critical shape has a well-developed adhesion contact with increasing
radii as AV becomes smaller, and one can compare the critical radius and free energy with scaling

results from the capillary approximation.
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15

AV = 4,3,2,1,0.5,0.3,0.2

Figure 5.6: Critical membrane shapes at different potential depths. The positions of the minima are
the same as in Fig. 5.5, L1 = Lo = 1. Vo =1 and V; = Vo + AV with AV =4,3,2,1,0.5,0.3,0.2
along the arrow.

In Fig. 5.7 we plot the free energy barrier F* (maximum on the MEP) and the critical nucleus
R*, defined as the radius of the membrane contact within the adhesion minimum (with z(r) < 0).
The plot is on a log-log scale. Scaling arguments imply that when AV < V5, the free energy barrier
and the critical nucleus both scale as 1/AV. Numerical results indeed confirm this scaling. When
AV > V,, scaling arguments suggest that AV is irrelevant, this trend also holds approximately.

Inspecting Fig. 5.6 we notice that critical shapes at different AV resemble the growth of a single
adhesion contact, as in Fig. 5.5(a). Scaling analysis suggests that in the bending dominant regime the
controlling length scale is Ry = (kL2/V5)/4, which is independent of the potential depth difference;
in particular, the interfacial width §R ~ Ry. Therefore all membrane shapes look similar. Since
only Ry controls the shape of membrane deformations, we expect that the nucleation path in the
conformation space is mostly determined by Ry, through the barrier height V5, the length scale
Lo (which is proportional to AL here) and the bending rigidity ; potential depth difference AV
controls only the location of the saddle point along the nucleation path and the energy barrier.

To verify the dependence of nucleation on the minimum separation AL, we calculate the energy
barrier F* and the critical radius R* for interacting potential V(z) with potential minima having
the same depths but varying locations. These results are shown in Fig. 5.8. The potential depths
are fixed at V3 = 2 and V5 = 1 and the minima are located at —L and L with L varying from 1 to

2. We see that scaling relations Rf o ALY/? and F* o AL fit well with numerical results.
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Figure 5.7: The saddle point free energy F* and the critical shape radius R at different potential
depths. The potential is identical to that in Fig. 5.6 with changing AV. The radius R is defined as
the radial size of the contact area within the adhesion potential well: in our case the barrier is fixed
at z = 0, therefore the radius is given by the size of the contact with z < 0.
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Figure 5.8: The saddle point free energy F* and the critical shape radius R at different potential
well separations. The potential wells are symmetrically positioned across the barrier with separation
AL = 2L ranging from 2 to 4. The potential depths are fixed at V3 = 2, Vo = 1. Linear fits are
done for F* against AL and log R* against log AL and show as dash lines.
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Finally we study the effects of the surface tension term. Fig. 5.9(a) shows the development of
an adhesion nucleus under strong surface tension ¥ = 3. The potential depths are V; = 2 and
V5 =1 and the minima are located at L; = Lo = 1. Compared to the case with no surface tension,
we observe that the membrane shape is flatter, and the extra surface energy increases the critical
nucleus size. Fig. 5.9(b) shows the crossover of the critical membrane shape from rigidity-dominant
regime to tension-dominant regime and the straighten-up of the membrane shape due to surface
tension is apparent. In Fig. 5.9(c) we plot the energy barrier against the surface tension. Under a
small surface tension, the size of the critical nucleus does not change much and is still determined by
the adhesion length R, hence the extra surface area of the adhesion droplet is almost constant, and
the free energy should be a linear function of the surface tension: this is also verified by numerical
results.

In summary we have shown that the adhesion strength Ry = (kAL?/V5)'/* controls the evolution
of the membrane shape in the nucleation process, and the energy scale Fy = /kVoAL? determines
the nucleation barrier and the dynamics of the process. Our numerical results verify the scaling
relations obtained from capillary approximations. In addition, the surface tension term flattens out
the membrane shape and adds a surface energy to the energy barrier which is a linear function of
the surface tension.

Our results apply to membrane adhesions mediated by any double-well adhesion potential. In
particular, we note that our model also applies to the formation of the immunological synapse,
which are focal contacts between a T-lymphocyte cell and an antigen-present cell (APC) (Grakoui
et al., 1999). The synapse primarily consists of the T-cell receptor (TCR)-Major Histocompatibility
molecule-peptide Complex (MHC) bonds and integrin (ICAM-1/LFA-1) bonds. Due to their differ-
ent spatial extensions (the natural size of the integrin-ligand bond is ~40nm, and is about 15nm for
the TCR-MHC complex), the binary system consisting of TCR and integrin binding should exhibit
a double-well interaction potential (Raychaudhuri et al., 2003). Given the high membrane bending
rigidity (~400kT') of the T-cell, our results suggest that even after the integrin bonds form an ad-
hesion contact (surfaces are brought close to 40nm separation), nucleation of the TCR contact at
normal TCR, densities still exhibits a considerable barrier. Such a barrier would be impossible to
overcome by thermal fluctuations. Therefore some active mechanism is likely to be involved that
overcomes this barrier. Alternatively, increasing TCR expression could lower the TCR, binding min-
imum, thereby descreasing the nucleation barrier [cf. Fig. 5.7(a)], which is the case in the synapse
between a mature T-cell and APC (Qi et al., 2001). The fact that the synapses between premature
T-cells (thymocytes) and the APC do not show a well-developed contact with TCR-MHC bonds
could be due to either insufficient TCR bonds (Lee et al., 2003; Raychaudhuri et al., 2003), or the
absence of active mechanisms to overcome the high energy barrier. Our calculations thus offer a

complementary perspective to the work by Chakraborty and co-workers which did not explicitly
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Figure 5.9: Illustration of the effects of surface tension. The potential is parametrized by L1 = Lo =
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address the issue of nucleation.

5.4 The Peierls argument near the critical unbinding transi-
tion

Above we have discussed the nucleation dynamics of adhesion that is controlled by a large energy

barrier. Here we study the scenario when the energy barrier is small, i.e.,
kVoL2 < kpT.

This is the case when the barrier is small or the membrane is very flexible. In this regime thermal
fluctuations (membrane undulations) are comparable to the size of adhesion plaques, and the shape
of the adhesion contact may be irregular. Our discussions follow those by Lipowsky and co-workers
(Lipowsky, 1994, 1995; Lipowsky and Dimova, 2003).

Before the discussion of adhesion dynamics we first briefly discuss the interaction between the
membrane surfaces due to shape undulations. For a membrane confined within a well of width W,

the confinement free energy is found to be (Lipowsky, 1995)

%4 - C1
k‘BT o IQWQ.

(5.19)

c1 is a constant of order 1. This extra entropic repulsion contributes to the free energy at each
minimum ¢; /kW?2, and results in an effective energy barrier Vog < Vb, the bare energy barrier that
is calculated based on molecular models of ligand-receptor binding by us (Martin et al., 2006).
Taking into account the entropic contributions, we find the renormalized potential depth differ-
ence AV to be
c c1

AV = AVippe — — 4 S 5.20
b kW3 + kW3 (5.20)

where W; are the widths of the potential minima. AV = 0 corresponds to the binodal phase
coexistence (binding-unbinding transition).
If s is small or the energy scale Fy = \/kVeg L3 ~ kpT', then membrane undulations are prominent

and the boundary width JR is controlled by thermal fluctuations and determined as

Lo\’ .

Here Lg is the membrane roughness which measures the magnitude of thermal undulations. In the
adhesion we can take L to be the width of the metastable minimum Ws.

As we mentioned at the beginning of this section, membrane undulations induce an effective



137

repulsion between the surfaces; the effective barrier height is

C1

Var = Va =~
ff 2 HW22

(5.22)

where the 2nd term corresponds to the confinement energy of membrane undulations within the

metastable minimum. The line tension is given by
v X Ve O R. (5.23)

If /4V2VV22 < kT, then the line tension becomes zero and the barrier vanishes. Below we focus on

the case when /<;V2W22 > kg1 with Vg > 0.

Figure 5.10: Projection of an irregular droplet

When fluctuations are prevalent, the domain boundaries between the adhesion states (corre-
sponding to the two potential minima) are irregular, and we can apply a Peierls-type argument to
account for the extra entropic contribution due to the fluctuations of the boundary shapes. Assume
the boundary to be a self-avoiding walk in 2D plane (2D SAW) with Hausdorff dimension 4/3, then

the perimeter of a droplet scales as
R4/3
&

L~ (5.24)

where & is the “unit” step size of this self-avoiding loop (0 R is the width of this loop, see Fig. 5.10).

The configuration entropy of the domain boundary is given by

S~ek, (5.25)
&t

co is a universal constant.

For a string with line tension v and width dR, the step size or persistence length scales as
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& ~ y6R2, therefore the combined interface energy is given by

FZ%C—S:('y—Z)L’

o R4/3
B (7 - 7532> (YOR?)1/3 (526)

We see that if v0R ~ 1, i.e.,
kVeg L3 ~ 1, (5.27)

then the interface energy is of order kg7 and adhesion is a second-order transition. If y0R > 1,
then
2/3
I~ V2PRY3, (5.28)

and adhesion is a weak first-order transition. While Eq. (5.27) gives the transition from first order
adhesion to second order, which should be governed by a tricritical point (Lipowsky, 1995).

For the weak first order transition that is still governed by the critical point, we can modify the
capillary argument by incorporating the entropic correction. For an adhesion plaque (“nucleus”),

the total free energy is

F = —7R?AV +T7,

— —7R?AV + RV, (5.29)
The critical radius is
RY ~ Vg AV —3/2, (5.30)
and the free energy barrier scales as
Ve \ 2
Pt (Ae;) . (5.31)

Egs. (5.30) and (5.31) apply to the regime when the persistence length of the boundary & < R, i.e,
YOR? < RY = kAVIL2 < 1. (5.32)

This is further translated into AV < V. We note that in this regime the critical size RY and the
energy barrier only depend on the potential depths, but not on the length scale associated with the
potential V(z); this is because membrane undulations are comparable to the separation between the
potential minima, and the tunneling of the barrier is controlled by thermal fluctuations but not the
shape of the adhesion potential.
If KAVLE > kVogLE, then
R~ R = kL (5.30")
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and the energy is given by
F ~ R*V.g = Vg L}. (5.31")

Table 5.1 summarizes the scaling results in this section and in Section 5.2.2.

Rigid Membrane HVQL% >1

Vo> AV

AV 2 Vs

AV T,

Rl Ve (mL?)l 4

L_L% 1/4
Vs

Va

F E K‘/QALQ A/ KVQL%
Flexible membrane kVgL3 2> 1
Ve > AV AV Z Vg
R Vet JAV3/2 VEW,
F (‘/eﬂr/AV)Q KVQW;

Table 5.1: Summary of scaling results

5.5 Conclusion

In this paper we have systematically studied the nucleation dynamics of membrane adhesions me-
diated by specific receptor binding. We distinguish between the different regimes according to the
nature of the adhesion and the shape of the adhesion potential. Scaling arguments suggest that in
the rigid-membrane regime when adhesion is a first-order transition, the geometry of the membrane
shape is controlled by the adhesion length Ry, while the energetics is controlled by the characteristic
energy Fy = \/m —where L is the length scale associated with the adhesion potential, V5 is
the barrier height, and k is the bending rigidity. These conclusions are further verified from our
numerical calculations of the minimum energy path.

When the membrane is very flexible or the barrier is small, entropic effects due to membrane un-
dulations are important, and adhesion is a weak first-order transition controlled by the characteristic
energy scale given by Fy = \/m. If the potential depth difference AV is small, the adhesion
droplet still has a well-defined but irregular boundary. Applying a Peierls argument we find that the
nucleation dynamics depend on the geometric dimension of the boundary of the adhesion droplet.
In addition, the energy barrier and the critical nucleus size only depend on the potential depths but
not their locations.

The surface tension term increases the nucleation barrier as well as the size of the critical nucleus.
But we find that at a small surface tension, the shape of the nucleus is still controlled by the adhesion

length Ry, which is almost unaffected by the surface tension, implying that the extra surface area
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in the critical adhesion droplet is almost constant. We also show that the non-monotonic feature in
the membrane shape near the phase boundary, as was first found by Komura and Andelman (2000),

is due to the bending energy term and is reduced at increasing surface tension.





