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Chapter 5

Dynamics of membrane adhesion
mediated by receptor interactions
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5.1 Introduction

Cell adhesion is crucial to many biological processes, including cell differentiation and division, signal

transduction, and immunological responses (Alberts et al., 2002; Berg et al., 2002; Springer, 1990).

Many different interactions are involved in adhesions in vivo: lock-and-key type interactions between

proteins (Lauffenburger and Linderman, 1993), force-induced signaling, reorganization of actin fil-

aments and the cortex (Lipowsky, 1995), and various generic physical forces (Nelson et al., 2004).

Despite the complexity of these interactions, researchers have been successful in explaining many

experimental observations from thermodynamic and physico-chemical analysis, and many features of

cell adhesion can be qualitatively understood from basic physical principles (Bell, 1978; Bell et al.,

1984; Torney et al., 1986; Coombs et al., 2004; Flyvbjerg et al., 1997; Zukerman and Bruinsma,

1995; Lipowsky, 1996; Bruinsma et al., 2000; Boulbitch et al., 2001; Bruinsma and Sackmann, 2002;

Sackmann and Bruinsma, 2002; Sackmann and Goennenwein, 2006).

In contrast to adhesion mediated by generic interactions such as the van der Waals or electrostatic

forces, biological adhesions are induced by specific binding between proteins with complementary

domains, i.e, receptors and ligands. Other interactions provide different regulation mechanisms

to fortify (e.g., cytoskeleton reorganization) or destabilize (e.g., repeller molecules) the adhesion

contact. While adhesion receptors play the major role and are extensively studied, de-adhesion forces

are crucial to ensure specificity of the adhesion (Bruinsma et al., 2000; Bruinsma and Sackmann,

2002). The interplay between attractive specific and (usually repulsive) non-specific forces is a

recurring theme in cell adhesion, and provides delicate control over the adhesion–de-adhesion process

in cell migration and immunological response.

While receptors and their ligands have been the focus of biological studies over the past decades,

the physical carrier of these proteins—the cell membrane—has been extensively studied by physicists

and biophysicists since the fluid-mosaic model was proposed by Mitchell and Nicholson. Membranes

are composed of self-assembled lipid molecules and form vesicles in aqueous solutions of typical

sizes up to 10 µm. The physics of fluid or solid membranes are well studied and summarized by

Peliti (1994), Nelson et al. (2004), and Safran (1994). In particular the interactions between flexible

membranes have been studied by Lipowsky and co-workers (Peliti and Leibler, 1985; Lipowsky and

Leibler, 1986; Lipowsky, 1994, 1995).

Recent advances in bioengineering techniques have enabled studies of adhesion between biomimetic

membranes mediated by specific and non-specific interactions. Sackmann and co-workers (Sack-

mann, 1996; Tanaka and Sackmann, 2005) have designed self-assembled vesicles and monolayers

supported by a polymer cushion to mimic cell membranes and the extracellular matrix; in the mem-

branes they incorporated specific proteins (to mimic ligand-receptor binding), glycolipids (to mimic

the glycocalyx), as well as other additives to stabilize the vesicles. This system provides the first
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biomimetic system incorporating key elements in cell adhesion and allows systematic studies of the

dynamics and mechanics of adhesion without complications due to other factors present in biological

cells.

Based on in vitro experiments using biomimetic vesicles, Sackmann, Bruinsma, and co-workers

(Bruinsma et al., 2000; Bruinsma and Sackmann, 2002; Sackmann and Goennenwein, 2006) found

that cell adhesion is controlled by a double-well potential: a weak-adhesion state at a large surface

separation due to generic van der Waals interactions between lipids, and a strong-adhesion state

at a small surface separation due to ligand-receptor binding; membrane undulation and glycolipid

depletion induce repulsive forces that constitute the barrier between the two minima. The adhesion

process proceeds in three steps (Albersdörfer et al., 1997; Kloboucek et al., 1999; Boulbitch et al.,

2001; Sackmann and Bruinsma, 2002). First, small adhesion contacts are formed which are most

likely induced by membrane undulations; such a process is an activated process with a nucleation

barrier larger than 10 kBT . Following nucleation, receptors diffuse into the adhesion contacts and

contact area grows accompanied by a depletion of repellers (glycolipids), this is the growth step. Fi-

nally, after receptors are depleted, the adhesion contacts evolve like coarsening in a phase separation:

the number of adhesion contacts decreases and various small focal contacts are formed with high

densities of receptors, accompanied by a possible decrease in the total area of contact. The whole

process is likened to the wetting transition (Bruinsma and Sackmann, 2002) and phenomenological

parameters like the surface tension, the spreading pressure, and the contact angle can be measured

and related to underlying parameters, including the mechanical properties of the membrane and

the molecular parameters of receptors (Bruinsma et al., 2000; Simson et al., 1998; Boulbitch et al.,

2001).

The conformations of adhered membranes are recorded in situ by reflection interference con-

trast microscopy (RICM) (Rädler and Sackmann, 1993; Rädler et al., 1995), which provide direct

experimental measurements of the formation and growth of adhesion plaques. However, RICM is

unable to resolve adhesion contacts smaller than 300 nm (Boulbitch et al., 2001), therefore cannot

give direct support for the nucleation process. On the other hand, scaling arguments and Monte

Carlo studies (Lipowsky, 1994; Volmer et al., 1998) usually cannot yield quantitative results that

are experimentally testable.

In this paper we present a systematic study of the nucleation step of the adhesion controlled by a

double-well interacting potential. Following Bruinsma et al. (2000), Bruinsma and Sackmann (2002),

and Sackmann and Bruinsma (2002), we assume the “minimum” model of membrane adhesion

consisting of the elastic deformation energy of the flexible membrane and the double-well adhesion

potential. As discussed above, this minimum model preserves the key features of cell adhesion. From

a scaling analysis we find that the membrane shapes are governed by the adhesion length R0 which

is determined from the bending rigidity κ and adhesion potential; the energy barrier is controlled
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by the energy scale
√
κVeffL2

0, where Veff is the effective barrier height and L0 is the characteristic

length determined by the adhesion potential.

If F0 � kBT , adhesion is a first-order transition and nucleation proceeds along the “minimum

energy path” governed by the effective potential (free energy). Using the string method by E et al.

(2002), we calculate the “minimum energy path” from the weakly bound state to a well-developed

adhesion contact. We find that the typical energy barrier for adhesion between flexible membranes

is about 20–30 kBT , corresponding to a time scale of 0.1–1000 seconds. For adhesion of cells with

actin cortices, which have much larger bending modulus, the nucleation barrier is much larger and

is essentially insurmountable by thermal undulations, and actin reorganization and cell signaling

provide additional mechanisms for stabilizing the adhesion contact.

For F0 comparable to kBT , we adopt a Peierls argument following Lipowsky (1994, 1995). We

find that near the critical unbinding transition, adhesion is a weak first-order transition, and the

adhesion dynamics depend on the shape of the irregular boundary. We show that if the potential

minima have comparable depth, the adhesion dynamics are controlled by the potential depths only,

and independent of the length scale of the double-well potential, which reflects the dominance of

membrane undulations.

5.2 Model and solution

5.2.1 Model description

The thickness of a self-assembled monolayer or bilayer is about 10–100 nm, thus negligible compared

to the spatial extension (∼ 10 µm). Therefore the macroscopic behaviors of membranes are mostly

determined by their geometric shapes, and to a good approximation independent of the microscopic

degrees of freedom of the consistituent amphiphilic molecules. Flexible membranes as random sur-

faces have been extensively studied in the past decades by physicists; theoretical models and results

are collected in the book edited by Nelson et al. (2004). For cell membranes or self-assembled mono-

layers with biological relevance, see Safran (1994) and the book edited by Lipowsky (1995); a more

up-to-date review of simulation methods and other approaches is given by Müller et al. (2006).

For a single membrane that is homogeneous, smooth, and non-interacting, Canham (1970) and

Helfrich (1973) proposed that up to 2nd-order derivatives with respect to the local coordinates of

the membrane shape, the elastic energy of a deformed membrane is given by

He

kBT
=
∫

S

[
σ +

1
2
κ (H −H0)

2 + κ̄K

]
dA. (5.1)

Here σ is the (local) surface tension conjugate to the surface area, κ and κ̄ are elastic moduli known

as the bending regidity and the Gaussian rigidity coupled to the mean curvature H and the Gaussian
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curvature K, H0 is the spontaneous curvature. The integral is over the whole membrane area1.

x

y

z(x, y)

Figure 5.1: Monge representation of a near-flat membrane shape

In this paper we study the adhesion between a flexible membrane and a flat surface, correspond-

ing to the experimental system studied by Bruinsma et al. (2000). For this model the separation

between the membrane and the flat surface provides a natural representation of the membrane shape

(cf. Fig. 5.1), z = z(x, y), also called the Monge representation2. Since we focus on the initial stage

of adhesion where the adhesion contact is small compared to the size of the membrane, we assume

H0 = 0, and in this case the Monge representation is useful. The elastic energy of the membrane is

given by
He

kBT
=
∫ {κ

2
[∆z(x, y)]2 + σ [∇z(x, y)]2

}
dxdy. (5.2)

The elastic energy gives the “kinetic” part of the Hamiltonian, now we consider the interacting

potential between the membrane and the adhering surface. Generic (non-specific) interactions,

including the van der Waals interaction, electrostatic interaction, and hydration forces (see Nelson

et al., 2004, Chapter 3) results in a potential Vg with a minimum around 10–100 nm (Albersdörfer

et al., 1997; Bruinsma et al., 2000; Guttenberg et al., 2001). The net interaction between the surfaces

mediated by receptors and repellers has been calculated in our previous paper3; for phenomenological

treatments, see Zukerman and Bruinsma (1995), Bruinsma et al. (2000), and Weikl et al. (2002).

1The Helfrich Hamiltonian is the simplest renormalizable model for fluctuating membranes that satisfies Euclidean
symmetry and reparametrization invariance; the functional accounts for the energy of elastic deformations from the
equilibrium state with minimum area Amin and uniform curvature H0. If the Gaussian rigidity is constant, then the
Gaussian curvature term is constant for a surface with fixed topology (Euler characteristic). See Peliti (1994) and
Nelson et al. (2004) for thorough discussions.

2In the case of adhesion between two membranes, the elastic energy is divided into two parts: one due to deformation
of the “center of mass” of the binary system, the other dependent on the relative separation between the membranes;
after integrating out the center of mass deformations, one can write the elastic energy dependent on the relative
separation in the same form as above with the additive bending rigidity (cf. Lipowsky (1996))

κ−1 = κ−1
1 + κ−1

2 .

3Manuscript submitted to Langmuir.
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The interaction potential due to receptors Vs can be generally written as a functional of the density

distributions φi(x, y), and φi depends on the local surface separation z(x, y). Here we assume that

molecular transport is fast enough so that we can write Vs as a functional of the separation z(x, y).

Therefore the total Hamiltonian is given by [r = (x, y)]

H[z(r), φi(r)] = He[z(r)] + Vg[z(r)] + Vs[z(r)]. (5.3)

The free energy (effective potential) of the model given by (5.3) can be calculated by standard field

theoretic method by integrating out fluctuations of the separation variable z(r). These fluctuation

effects have been extensively studied (Nelson et al., 2004); in particular, membrane fluctuations

induce an effective repulsion which contributes to V [z(r)]. Since fluctuation effects are not our

focus here, we apply a mean-field approximation and assume the free energy takes the same form as

the Hamiltonian with renormalized elastic constants and interacting potential: these renormalized

parameters are experimentally measurable; we shall consider the membrane undulation effects in

Section 5.4 by scaling arguments.

With these approximations we can write the effective potential of our model as

F [z(r)]
kBT

=
∫ {κ

2
[∆z(r)]2 + σ [∇z(r)]2 + V [z(r)]

}
d2r. (5.4)

The adhesion (interacting) potential V (z) has a double-well shape (Bruinsma et al., 2000; Bruinsma

and Sackmann, 2002) and is characterized by the depths of and the locations of the minima, as is

schematically shown in Fig. 5.2(a). The parameters in Eq. (5.4) have been measured by Sackmann

and co-workers in different systems (see Flyvbjerg et al., 1997; Simson et al., 1998; Kloboucek et al.,

1999; Bruinsma and Sackmann, 2002; Sackmann, 2006; Sackmann and Goennenwein, 2006). κ is

about 20 kBT for a self-assembled bilayer, and of order 1000 kBT for cells with actin cortices. σ is

related to the so-called capillary length (Sackmann and Goennenwein, 2006)

Rc =
√
κ/σ,

which defines the length scale above which surface tension becomes important. Typical values for

Rc are about 0.1–1 µm (Bruinsma et al., 2000; Sackmann and Goennenwein, 2006). Generally the

size of adhesion plaques in the initial stage of adhesion is smaller than Rc, therefore the bending

energy dominates.

For clarity of our discussion it is convenient to scale the separation z(r) and the radial coordinate

r by natural length scales arisen from the adhesion potential and the membrane elasticity. After the

general rescaling

r/R0 → r, l/L0 → l, z/L0 → z;V/V2 → v
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∆L = L1 + L2

W1 W2

V1 V2 = V1 −∆V

L2L1

Figure 5.2: Schematic representation of the interaction potential V (z). The shape of the potential
is similar to that calculated from a phenomenological model proposed by Bruinsma et al. (2000).
Only the part of the potential inbetween the minima are important for our calculations, and the
potential is characterized by the position L1, L2 (fixing the barrier at the origin) and the depths
W1, W2 of the minima. In our numerical calculations we choose the functional form for V (z) such
that the widths W1 ≈ L1 and W2 ≈ L2 for fast convergence.

the effective potential becomes

F [z]
kBT

=
∫

S

[
κL2

0

2R2
0

(
∇2z

)2
+ γL2

0 (∇z)2 + V2R
2
0v(z)

]
d2r. (5.5)

In the rigidity dominant regime, we choose

V2R
2
0 =

κL2
0

R2
0

,

such that the length scales are determined by the adhesion potential V (z) and the bending rigidity.

This leads to
F [z]
kBT

=
√
κV2L2

0

∫
S

[
1
2
(
∇2z

)2
+

Σ
2

(∇z)2 + v(z)
]

d2r, (5.5′)

where

Σ =
2σL0√
κV2

=
2R2

0

R2
c

, (5.6)

R0 =
(
κL2

0

V2

)1/4

. (5.7)

We call R0 the adhesion length (similar to the “persistence length” defined by Sackmann and Goen-

nenwein (2006)), which turns out to control the interfacial width of the adhesion contact. In general

R0 ∼ 10 nm � Rc, therefore the surface tension term is unimportant.

We further notice that the combination
√
κV2L2

0 (even though L0 is unspecified) controls the
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magnitude of the free energy. If κV2L
2
0 � 1, then the minima of V (z) is separated by a large barrier

(cf. Lipowsky (1995, 1994)). In this regime, thermal fluctuations are unimportant compared to the

adhesion energy, and we can apply the mean-field capillary approximation.

5.2.2 Scaling analysis of the nucleation dynamics

Experimental measurements suggest that cell adhesion is a first-order transition (Albersdörfer et al.,

1997; Boulbitch et al., 2001), therefore the potential minima are separated by a large barrier and ad-

hesion should proceed via a nucleation-and-growth pathway. Here we study the nucleation dynamics

in this regime using the classical capillary approximation.

z(r)

r

∆L ∆R

Figure 5.3: Illustration of a regular adhesion droplet

Initially the membrane is in a loosely bound state at a larger separation L2, and the equilibrium

shape is flat. Nucleation of an adhesion contact is driven by membrane undulations and results

in a droplet as shown in Fig. 5.3. When thermal fluctuations are irrelevant, the boundary of the

adhesion droplet is regular (a simple curve), and without loss of generality we assume the droplet

to be axi-symmetric and the membrane deviation to be a function of the radius z(r). If potential

depths are comparable, i.e., ∆V � V2, the length scale L0 associated with the adhesion potential

V (z) is naturally chosen to be the separation between the minima ∆L; otherwise when ∆V > V2,

L0 should be taken to be the separation of the metastable minimum (V2) from the barrier, L2.

In the first case, there is a well-defined adhesion “nucleus” which has size R in the interior and

an interfacial area of width ∆R (cf. Fig. 5.3). The length scales are

L0 = ∆L,

R0 =
(
κ∆L2

V2

)1/4

,
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and the energy scale is

F0 =
√
κV2∆L2.

From scaling analysis we have (∆r = ∆R/R0, r = R/R0)

∇2z ∼ L0

∆R2
, κ

∫
(∇2z)2dA ∼ κRL2

0

∆R3
; (5.8)∫

[V (z)− V (L2)]dA ∼ −πR2∆V + πR∆RV2. (5.9)

Combining these two contributions we find

∆R ∼ R0 =
(
κ∆L2

V2

)1/4

. (5.10)

We recognize that the free energy is similar to that in the capillary approximation, with a line

tension

Γ = ∆RV2 ∼ κ1/4V
3/4
2 ∆L1/2. (5.11)

At the critical radius R‡ the free energy attains maximum, and we have

R‡ ∼ V2

∆V
∆R =

V2

∆V

(
κ∆L2

V2

)1/4

=
V2

∆V
R0, (5.12)

F ‡ ∼ V 2
2

∆V
∆R2 =

V2

∆V
(κV2∆L2)1/2 =

V2

∆V
F0. (5.13)

In the second case V2/∆V . 1, and the radius R is comparable to the boundary width δR. The

above results become

R ∼ δR ∼ R0 =
(
κ∆L2

V2

)1/4

, (5.12′)

F ∼ πR2
0V2 = F0. (5.13′)

From Eqs. (5.12), (5.13) and (5.12′), (5.13′) we see that R0 and F0 control the length (R and

∆R) and energy (F ) scales. The scaling R‡ ∼ V
−1/4
2 is different from classical mean-field results

R‡V −1/2 which is due to the difference in the surface energy. We note that the capillary analysis is

valid only if F0 � kBT , and thermal fluctuations are not important. In particular,

κV2∆L2 ≈ 1 (5.14)

marks the tricritical point where the unbinding transiton crosses over from first order to second

order (Lipowsky, 1994).
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5.2.3 Minimum-energy-path calculation

Under the mean field approximation (zero temperature limit), nucleation proceeds along the “min-

imum energy path,” or the valley on the free energy landscape. We parametrize this path by a

variable s and represent the path as

z(r, s) : s→ z(r).

The minimum energy path (MEP) is defined such that the tangent along the path ∇sz(r, s) is

parallel to the free energy gradient δF [z]/δz at z(r, s) for any s, or equivalently

(
δF [z]
δz

)⊥
=
δF [z]
δz

· (I− ŝŝ) = 0 (5.15)

ŝ =
∇sz(r, s)
||∇sz(r, s)||

.

To calculate z(r, s) we adopt the string method by E and co-workers (E et al., 2002), which is a

modified steepest descent
∂z(R, s; t)

∂t
= −δF [z]

δz
· (I − ŝŝ) + λŝ. (5.16)

Here λ is a Lagrangian multiplier which is used to fix the parametrization s. The choice of λ is

arbitrary, and we adopt the same parametrization as given by E et al. (2002), which requires the

points be uniformly separated along the path,

||∇sz(r, s)|| = const.

which has a close form expression.

δF [z]/δz is the free energy gradient

δF [z]
δz

= ∆2z − Σ∆z + v′(z). (5.17)

In radial coordinates, the Laplacian is

∆ → d2

dr2
+

1
r

d
dr
,

and

∆2 → d4

dr4
+

2
r

d3

dr3
− 1
r2

d2

dr2
+

1
r3

d
dr
.

To implement the steepest descent as described by Eq. (5.16), we proceed as follows: First we

impose a circular droplet centered at z = ∆L which has a radius large enough such that letting

it evolve along the free energy gradient (steepest descent) the size of the droplet grows instead of

shrinking to the flat profile. After evolving for some steps the profile reaches steady growth, and
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has passed the nucleation barrier, and this profile is taken as the final state z(r, s = 1; t = 0), and

the initial path is generated by a simple linear interpolation between z = 0 and z(r, s = 1; t = 0).

Although the final state z(r, s = 1; t = 0) might not be on the minimum energy path, after iteration

using Eq. (5.16), the whole path will evolve to the MEP and the maximum of the free energy

corresponds to the critical “nucleus.”

We adopt an explicit forward time splitting for the potential V (z) and an implicit splitting for

the differential operators, which ensures fast convergence4. Iteration stops when the maximum free

energy of the reaction path maxs F [z(s)] reaches a constant and the maximum residual gradient

maxs{∇F (z)⊥} is used to test the accuracy of convergence. In the next section we discuss the

numerical results.

5.3 Numerical results and discussion

In this section we discuss numerical results of the minimum-energy-path (MEP) calculations. Before

the discussion we first estimate the typical length and energy scales associated with the adhesion

process. The bending rigidity κ is about 20 kBT for bilayer membranes and 1000 kBT for cell

membranes with actin cortices (Sackmann and Goennenwein, 2006; Bruinsma and Sackmann, 2002).

The separation ∆L is between 5 and 50 nm, depending on the size of the receptors (Bruinsma

et al., 2000; Martin et al., 2006), and we take L0 = 5 nm. The barrier height V2 is estimated to be

10−5 J/m2 (Bruinsma et al., 2000). Therefore the energy scale for flexible membranes is (at T = 300

K)

F0 = (κV2∆L2)1/2 ≈ 1kBT,

which indeed reflects flexibility. The lateral length scale is

R0 = 4
√
κ∆L2/V2 ≈ 2 nm.

In the case of cell membranes with actin network, F0 increases by about 7 times and R0 about 2.5

times. The capillary length

Rc =
√
κ/σ

is usually of order 0.1µm (Sackmann and Goennenwein, 2006), and hence the surface tension

Σ ∼ R2
0

R2
c

is small, and we neglect the surface tension term in our calculations except in the discussion of their

effects on adhesion.
4See for example, the (p)reprints at http://www.math.utah.edu/∼eyre/research/methods/papers.html.



128

In the following discussions quantities are represented using the scaled units. The scaled potential

V (z) is parametrized by the positions of the potential minima and their depth as

V (z) = p(z;−L1, V1) + p(z;L2, V2),

where p(x;L, V ) is given by

p(x;L, V ) = −V
[( x
L
− 1
)2

− 1
]

exp
[
−4
( x
L
− 1
)2
]
. (5.18)

The combined potential has two minima located at −L1 and L2 with depths V1 and V2, and the

barrier is located at z = 0. An example is shown in Fig. 5.4.

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

z

V (z)

L1 = 1, V1 = 2

L2 = 1, V2 = 1

Figure 5.4: Shape of the potential V (z) for L1 = L2 = 1, V1 = 2, V2 = 1

In Fig. 5.5 we present two representative nucleation paths. The barrier height is V2 = 1, the

locations of minima are L2 = 1, L1 = 1, and we choose two cases V1 = 1.3 and V1 = 4, giving

potential depth difference ∆V = 0.3 and 3, respectively. Figure 5.5(a) and (c) show the evolution

of membrane shapes along the minimum energy path (MEP): the membrane conformation evolves

in the direction of the arrow; Figure 5.5(b) and (d) give the free energy along the MEP with red

circles corresponding to each membrane shape shown on the left. The red thick curves in (a) and

(c) are the critical shape corresponding to the maximum free energy along the nucleation contour

(saddle point).
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In the case that the barrier height is large, ∆V = 0.3 < V2 = 1, we see that the critical nucleus

has a well-formed adhesion contact with radius R‡ ≈ 7R0 = 14 nm, with an interfacial width

δR ≈ 3R0 = 6 nm: this is similar to the classical nucleation scenario where capillary approximation

applies. On the other hand for ∆V = 3 > V2, the critical shape has not formed an adhesion contact

yet, but barely passed the barrier position z = 0. The free energy barrier in the second case is about

18 kBT while in the first case is 51 kBT , the ratio is about 2.8, which is quite close to the scaling

result given by V2/∆V = 1/0.3 ≈ 3.33.

To have a better understanding of the nucleation dynamics, we estimate the characteristic time

scales of membrane undulations. By dimensional analysis, we have

τun ∼ ηL3/kBT = 0.24 ns

for L = 1 nm. For an energy barrier of 25 kBT the nucleation time is

τ0 ∼ τune
−F ‡/kT ∼ 14 s.

Therefore in the first case (∆V = 3) there is little barrier and nucleation is fast, while in the second

case (∆V = 0.3) the nucleation barrier is so high that it is essentially impossible. It has been pointed

out by Bruinsma et al. (2000) and by us (Martin et al., 2006) that in the initial stage of adhesion

receptors form local aggregrates with very high densities, resulting in a deep potential minimum;

our calculations further corroborate this assumption. On the other hand, for cellular adhesion the

nucleation barrier is much higher and the reorganization of the actin cortex provides a mechanism

to fortify the adhesion contact; other mechanisms such as dimerization can also be triggered by cell

signaling.

Komura and Andelman (2000) studied the membrane shape near the phase boundary under

lateral phase separation induced by adhesion, and found that the membrane deformation is non-

monotonic near the phase boundary between coexisting phases. Our results show that this non-

monotonic feature is present throughout the adhesion process. As we shall see at the end of this

section, this feature is due to the bending energy term; increasing surface tension will diminish this

feature.

To study the crossover between the two scenarios shown in Fig. 5.5, we plot the critical membrane

shapes for different ∆V in Fig. 5.6. We notice that for 2 ≤ ∆V ≤ 4 the critical shape is almost

invariant: in this regime the barrier height V2 is small compared to the potential depth difference

∆V , and nucleation is determined by the potential near the metastable minimum at L2. On the other

hand, when ∆V is small, the critical shape has a well-developed adhesion contact with increasing

radii as ∆V becomes smaller, and one can compare the critical radius and free energy with scaling

results from the capillary approximation.
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Figure 5.6: Critical membrane shapes at different potential depths. The positions of the minima are
the same as in Fig. 5.5, L1 = L2 = 1. V2 = 1 and V1 = V2 + ∆V with ∆V = 4, 3, 2, 1, 0.5, 0.3, 0.2
along the arrow.

In Fig. 5.7 we plot the free energy barrier F ‡ (maximum on the MEP) and the critical nucleus

R‡, defined as the radius of the membrane contact within the adhesion minimum (with z(r) < 0).

The plot is on a log-log scale. Scaling arguments imply that when ∆V � V2, the free energy barrier

and the critical nucleus both scale as 1/∆V . Numerical results indeed confirm this scaling. When

∆V � V2, scaling arguments suggest that ∆V is irrelevant, this trend also holds approximately.

Inspecting Fig. 5.6 we notice that critical shapes at different ∆V resemble the growth of a single

adhesion contact, as in Fig. 5.5(a). Scaling analysis suggests that in the bending dominant regime the

controlling length scale is R0 = (κL2
0/V2)1/4, which is independent of the potential depth difference;

in particular, the interfacial width δR ∼ R0. Therefore all membrane shapes look similar. Since

only R0 controls the shape of membrane deformations, we expect that the nucleation path in the

conformation space is mostly determined by R0, through the barrier height V2, the length scale

L0 (which is proportional to ∆L here) and the bending rigidity κ; potential depth difference ∆V

controls only the location of the saddle point along the nucleation path and the energy barrier.

To verify the dependence of nucleation on the minimum separation ∆L, we calculate the energy

barrier F ‡ and the critical radius R‡ for interacting potential V (z) with potential minima having

the same depths but varying locations. These results are shown in Fig. 5.8. The potential depths

are fixed at V1 = 2 and V2 = 1 and the minima are located at −L and L with L varying from 1 to

2. We see that scaling relations R‡ ∝ ∆L1/2 and F ‡ ∝ ∆L fit well with numerical results.
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Figure 5.7: The saddle point free energy F ‡ and the critical shape radius R‡ at different potential
depths. The potential is identical to that in Fig. 5.6 with changing ∆V . The radius R is defined as
the radial size of the contact area within the adhesion potential well: in our case the barrier is fixed
at z = 0, therefore the radius is given by the size of the contact with z ≤ 0.
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Figure 5.8: The saddle point free energy F ‡ and the critical shape radius R‡ at different potential
well separations. The potential wells are symmetrically positioned across the barrier with separation
∆L = 2L ranging from 2 to 4. The potential depths are fixed at V1 = 2, V2 = 1. Linear fits are
done for F ‡ against ∆L and logR‡ against log ∆L and show as dash lines.
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Finally we study the effects of the surface tension term. Fig. 5.9(a) shows the development of

an adhesion nucleus under strong surface tension Σ = 3. The potential depths are V1 = 2 and

V2 = 1 and the minima are located at L1 = L2 = 1. Compared to the case with no surface tension,

we observe that the membrane shape is flatter, and the extra surface energy increases the critical

nucleus size. Fig. 5.9(b) shows the crossover of the critical membrane shape from rigidity-dominant

regime to tension-dominant regime and the straighten-up of the membrane shape due to surface

tension is apparent. In Fig. 5.9(c) we plot the energy barrier against the surface tension. Under a

small surface tension, the size of the critical nucleus does not change much and is still determined by

the adhesion length R0, hence the extra surface area of the adhesion droplet is almost constant, and

the free energy should be a linear function of the surface tension: this is also verified by numerical

results.

In summary we have shown that the adhesion strength R0 = (κ∆L2/V2)1/4 controls the evolution

of the membrane shape in the nucleation process, and the energy scale F0 =
√
κV2∆L2 determines

the nucleation barrier and the dynamics of the process. Our numerical results verify the scaling

relations obtained from capillary approximations. In addition, the surface tension term flattens out

the membrane shape and adds a surface energy to the energy barrier which is a linear function of

the surface tension.

Our results apply to membrane adhesions mediated by any double-well adhesion potential. In

particular, we note that our model also applies to the formation of the immunological synapse,

which are focal contacts between a T-lymphocyte cell and an antigen-present cell (APC) (Grakoui

et al., 1999). The synapse primarily consists of the T-cell receptor (TCR)–Major Histocompatibility

molecule-peptide Complex (MHC) bonds and integrin (ICAM-1/LFA-1) bonds. Due to their differ-

ent spatial extensions (the natural size of the integrin-ligand bond is ∼40nm, and is about 15nm for

the TCR-MHC complex), the binary system consisting of TCR and integrin binding should exhibit

a double-well interaction potential (Raychaudhuri et al., 2003). Given the high membrane bending

rigidity (∼400kT ) of the T-cell, our results suggest that even after the integrin bonds form an ad-

hesion contact (surfaces are brought close to 40nm separation), nucleation of the TCR contact at

normal TCR densities still exhibits a considerable barrier. Such a barrier would be impossible to

overcome by thermal fluctuations. Therefore some active mechanism is likely to be involved that

overcomes this barrier. Alternatively, increasing TCR expression could lower the TCR binding min-

imum, thereby descreasing the nucleation barrier [cf. Fig. 5.7(a)], which is the case in the synapse

between a mature T-cell and APC (Qi et al., 2001). The fact that the synapses between premature

T-cells (thymocytes) and the APC do not show a well-developed contact with TCR-MHC bonds

could be due to either insufficient TCR bonds (Lee et al., 2003; Raychaudhuri et al., 2003), or the

absence of active mechanisms to overcome the high energy barrier. Our calculations thus offer a

complementary perspective to the work by Chakraborty and co-workers which did not explicitly
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Figure 5.9: Illustration of the effects of surface tension. The potential is parametrized by L1 = L2 =
1, V1 = −2, V2 = 1.
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address the issue of nucleation.

5.4 The Peierls argument near the critical unbinding transi-

tion

Above we have discussed the nucleation dynamics of adhesion that is controlled by a large energy

barrier. Here we study the scenario when the energy barrier is small, i.e.,

κV2L
2
0 . kBT.

This is the case when the barrier is small or the membrane is very flexible. In this regime thermal

fluctuations (membrane undulations) are comparable to the size of adhesion plaques, and the shape

of the adhesion contact may be irregular. Our discussions follow those by Lipowsky and co-workers

(Lipowsky, 1994, 1995; Lipowsky and Dimova, 2003).

Before the discussion of adhesion dynamics we first briefly discuss the interaction between the

membrane surfaces due to shape undulations. For a membrane confined within a well of width W ,

the confinement free energy is found to be (Lipowsky, 1995)

V

kBT
=

c1
κW 2

. (5.19)

c1 is a constant of order 1. This extra entropic repulsion contributes to the free energy at each

minimum c1/κW
2, and results in an effective energy barrier Veff < V2, the bare energy barrier that

is calculated based on molecular models of ligand-receptor binding by us (Martin et al., 2006).

Taking into account the entropic contributions, we find the renormalized potential depth differ-

ence ∆V to be

∆V = ∆Vbare −
c1
κW 2

1

+
c1
κW 2

2

, (5.20)

where Wi are the widths of the potential minima. ∆V = 0 corresponds to the binodal phase

coexistence (binding-unbinding transition).

If κ is small or the energy scale F0 =
√
κVeffL2

0 ∼ kBT , then membrane undulations are prominent

and the boundary width δR is controlled by thermal fluctuations and determined as

κ

(
L0

δR2

)2

δR2 ∼ 1 ⇒ δR ∼
√
κL0. (5.21)

Here L0 is the membrane roughness which measures the magnitude of thermal undulations. In the

adhesion we can take L0 to be the width of the metastable minimum W2.

As we mentioned at the beginning of this section, membrane undulations induce an effective
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repulsion between the surfaces; the effective barrier height is

Veff = V2 −
c1
κW 2

2

, (5.22)

where the 2nd term corresponds to the confinement energy of membrane undulations within the

metastable minimum. The line tension is given by

γ ∝ VeffδR. (5.23)

If κV2W
2
2 . kBT , then the line tension becomes zero and the barrier vanishes. Below we focus on

the case when κV2W
2
2 > kBT with Veff > 0.

R

ξt

∆
R

Figure 5.10: Projection of an irregular droplet

When fluctuations are prevalent, the domain boundaries between the adhesion states (corre-

sponding to the two potential minima) are irregular, and we can apply a Peierls-type argument to

account for the extra entropic contribution due to the fluctuations of the boundary shapes. Assume

the boundary to be a self-avoiding walk in 2D plane (2D SAW) with Hausdorff dimension 4/3, then

the perimeter of a droplet scales as

L ∼ R4/3

ξ
1/3
t

, (5.24)

where ξt is the “unit” step size of this self-avoiding loop (δR is the width of this loop, see Fig. 5.10).

The configuration entropy of the domain boundary is given by

S ≈ c2
L
ξt
, (5.25)

c2 is a universal constant.

For a string with line tension γ and width δR, the step size or persistence length scales as
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ξt ∼ γδR2, therefore the combined interface energy is given by

Γ = γL − S =
(
γ − c2

ξt

)
L

=
(
γ − c2

γδR2

)
R4/3

(γδR2)1/3
. (5.26)

We see that if γδR ∼ 1, i.e.,

κVeffL
2
0 ∼ 1, (5.27)

then the interface energy is of order kBT and adhesion is a second-order transition. If γδR � 1,

then

Γ ∼ V
2/3
eff R4/3, (5.28)

and adhesion is a weak first-order transition. While Eq. (5.27) gives the transition from first order

adhesion to second order, which should be governed by a tricritical point (Lipowsky, 1995).

For the weak first order transition that is still governed by the critical point, we can modify the

capillary argument by incorporating the entropic correction. For an adhesion plaque (“nucleus”),

the total free energy is

F = −πR2∆V + Γ,

= −πR2∆V +R4/3V
2/3
eff . (5.29)

The critical radius is

R‡ ∼ Veff∆V −3/2, (5.30)

and the free energy barrier scales as

F ‡ ∼
(
Veff

∆V

)2

. (5.31)

Eqs. (5.30) and (5.31) apply to the regime when the persistence length of the boundary ξt � R, i.e,

γδR2 � R‡ ⇒ κ∆V L2
0 � 1. (5.32)

This is further translated into ∆V � Veff . We note that in this regime the critical size R‡ and the

energy barrier only depend on the potential depths, but not on the length scale associated with the

potential V (z); this is because membrane undulations are comparable to the separation between the

potential minima, and the tunneling of the barrier is controlled by thermal fluctuations but not the

shape of the adhesion potential.

If κ∆V L2
0 > κVeffL

2
0, then

R ∼ δR =
√
κL0 (5.30′)
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and the energy is given by

F ∼ R2Veff = κVeffL
2
0. (5.31′)

Table 5.1 summarizes the scaling results in this section and in Section 5.2.2.

Rigid Membrane κV2L
2
0 � 1

V2 � ∆V ∆V & V2

R
V2

∆V

(
κ∆L2

V2

)1/4 (
κL2

2

V2

)1/4

F
V2

∆V

√
κV2∆L2

√
κV2L2

2

Flexible membrane κVeffL
2
0 & 1

Veff � ∆V ∆V & Veff

R Veff/∆V 3/2
√
κW2

F (Veff/∆V )2 κV2W
2
2

Table 5.1: Summary of scaling results

5.5 Conclusion

In this paper we have systematically studied the nucleation dynamics of membrane adhesions me-

diated by specific receptor binding. We distinguish between the different regimes according to the

nature of the adhesion and the shape of the adhesion potential. Scaling arguments suggest that in

the rigid-membrane regime when adhesion is a first-order transition, the geometry of the membrane

shape is controlled by the adhesion length R0, while the energetics is controlled by the characteristic

energy F0 =
√
κV2L2

0 —where L0 is the length scale associated with the adhesion potential, V2 is

the barrier height, and κ is the bending rigidity. These conclusions are further verified from our

numerical calculations of the minimum energy path.

When the membrane is very flexible or the barrier is small, entropic effects due to membrane un-

dulations are important, and adhesion is a weak first-order transition controlled by the characteristic

energy scale given by F0 =
√
κVeffL2

0. If the potential depth difference ∆V is small, the adhesion

droplet still has a well-defined but irregular boundary. Applying a Peierls argument we find that the

nucleation dynamics depend on the geometric dimension of the boundary of the adhesion droplet.

In addition, the energy barrier and the critical nucleus size only depend on the potential depths but

not their locations.

The surface tension term increases the nucleation barrier as well as the size of the critical nucleus.

But we find that at a small surface tension, the shape of the nucleus is still controlled by the adhesion

length R0, which is almost unaffected by the surface tension, implying that the extra surface area
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in the critical adhesion droplet is almost constant. We also show that the non-monotonic feature in

the membrane shape near the phase boundary, as was first found by Komura and Andelman (2000),

is due to the bending energy term and is reduced at increasing surface tension.




