

List of Figures

2.1	Spinodal lines for the microphase transition and the macrophase separation in solutions of associating polymers	20
2.2	Spinodal lines in the solution of associating polymers with chain length $N = 40$ and different end-block fractions, $f_A = 0.25, 0.3, 0.35$	21
2.3	Spinodal lines in the solution of associating polymers with large end blocks	22
2.4	Critical wave vector in the solution of associating polymers	23
2.5	Microphase spinodal calculated using the virial-type expansion instead of strict volume incompressibility	24
3.1	Glass transitions in diblock-copolymer melt	46
3.2	Chain-length dependence of glass transitions	48
3.3	Glass transition vs ODT in symmetric copolymer melts	51
3.4	Glass transition vs ODT in very asymmetric copolymer. (a) $\bar{N} = 10^7$. (b) $\bar{N} = 10^8$. .	52
3.5	Feynman diagrams: (a)–(d) Loop diagrams in Γ_2 . (e)–(g) Self-energy diagrams	57
4.1	Schematic view of the model for surfaces with tethered ligands and receptors	68
4.2	The contribution to the effective binding energy due to tether stretching	84
4.3	The free energy of confining a polymer between parallel surfaces	86
4.4	Comparison of case II (“both closed”) and case III (“open-closed”)	88
4.5	Comparison of case III (“open-closed”) and case IV (“both open”)	89
4.6	Comparison of case I (“quenched”) and case II (“both closed”)	90
4.7	Dependence of the binding fraction and the free energy on the density of molecules for different cases	92
4.8	Dependence of the equilibrium separation and free energy on the molecular binding energy for different cases	93
4.9	The force-extension curve for different cases	94
4.10	Schematic views of the models discussed in Section 4.3.3	97
4.11	The interaction between surfaces mediated by ligand-receptor binding and repulsive polymers	99

4.12	The interaction potential resulting from binary ligand-receptor interactions	101
4.13	Interaction between surfaces with two different ligand-receptor interactions and repelling polymers	102
4.14	Green's function of joined rods	108
5.1	Monge representation of a near-flat membrane shape	121
5.2	Schematic representation of the interaction potential $V(z)$	123
5.3	Illustration of a regular adhesion droplet	124
5.4	Shape of the potential $V(z)$ for $L_1 = L_2 = 1, V_1 = 2, V_2 = 1$	128
5.5	Evolution of the adhesion shape [(a) and (c)] and the free energy [(c) and (d)] along the minimum energy path for different adhesion potentials	129
5.6	Critical membrane shapes at different potential depths	131
5.7	The saddle point free energy F^\ddagger and the critical shape radius R^\ddagger at different potential depths	132
5.8	The saddle point free energy F^\ddagger and the critical shape radius R^\ddagger at different potential well separations	133
5.9	Illustration of the effects of surface tension	135
5.10	Projection of an irregular droplet	137

List of Tables

4.1	Glossary	70
4.2	Summary of different scenarios	75
4.3	Scaled variables	81
4.4	Examples of different cases	87
5.1	Summary of scaling results	139