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Figure 2.5: Microphase spinodal calculated using the virial-type expansion instead of strict volume
incompressibility. The chain length is N = 40 with c1 = 1kBT and c2 = 6kBT . Results are shown
for fA = 0.1, 0.15, 0.25, 0.35.

Our calculations suggest that one can start from the basic microscopic model to study the

thermodynamics of gelation, without a priori assumptions of the gel phase. But the nature of

reversible gelation, like the glass transition, is different from conventional phase transitions, and

calls upon new theoretical tools. In the next chapter, which is adapted from our published paper,

we analyze the possibility of glass transitions associated with this microscopic spinodal.

Appendix 2.A Self-consistent field calculation

2.A.1 Calculations of the partition functions of non-interacting polymers

in external fields

In this subsection we solve the partition function Z(iWα) as defined in Eq. (2.10). First we replace

iWα by Wα, it will turn out that thus defined Wα are real. From Eq. (2.12) we have

Zs(iWS) =
∫
D[rn]n=1,2,···ns exp

[
−
∫
WS (r) φ̂S (r) dr

]
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=
∫
D[rn] exp

[
−
∫
WS (r)

ns∑
n=1

δ (r− rn) dr

]
=
[∫

e−WS(r)dr
]ns

= qns
s . (2.29)

We still need to calculate the single chain partition function qp.

Using the Green’s function for Gaussian chains (Doi and Edwards, 1986) we can express the

partition function qp as

qp =
∫
G(r, r′;N),

where G(r, r′;N) satisfies

[
∂

∂N
− b2

6
∇2

r +W (r)
]
G(r, r′;N) = δ(r− r′). (2.30)

To calculate qp, we only need q(r, l), the once-integrated Green’s function (propagator) (see Wood

and Wang, 2002; Tzeremes et al., 2002; Drolet and Fredrickson, 1999; Fredrickson et al., 2002)

q(r, l) =
∫
G(r, r′; l)dr′,

which satisfies the same diffusion equation as G(r, r′)

[
∂

∂l
− b2

6
∇2

r +
∑
α

δα(l)Wα (r)

]
q(r, l) = 0, (2.30′)

but with the following initial condition:

q (r, 0) = 1.

q∗(r, l), the conjugate of q, satisfies

[
∂

∂l
− b2

6
∇2

r +
∑
α

δα(N − l)Wα (r)

]
q∗(r, l) = 0 (2.30′′)

with the same initial condition. We can rescale l by t = l/N , 0 ≤ t ≤ 1, then the equations become

[
∂

∂t
− Nb2

6
∇2

r +N
∑
α

δα(t)Wα (r)

]
q(r, t) = 0

δA,B(t) are defined the same as in Eq. (2.17). And

qp =
∫
q (r, 1) dr =

∫
q∗(r, 1)dr. (2.31)
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2.A.2 Grand canonical ensemble calculation

We have obtained the grand canonical partition function in Section 2.1.2 as

Ξ (µp, µs) =
∞∑

np=0

∞∑
ns=0

exp (βµpnp + βµsns)
ns!np!

Z(np, ns),

=
1
N

∫
Dφα

∫
DWα

∫
DΠ

exp

{
−βH1[φα] +Wαφα + Π

(∑
α

φα − ρ

)
+ eµsqs + eµpqp

}
. (2.32)

where µp and µs are the chemical potential of the polymers and the solvents.

In the grand canonical ensemble, Eq. (2.14) is replaced by

δ

δWS (r)
= 0 ⇒ φS = eβµs−WS ; (2.33a)

δ

δWA,B (r)
= 0 ⇒ φA,B (r) = exp (βµp)

∫ 1

0

θA,B(t)q (r, t) q∗ (r, 1− t) dt; (2.33b)

δ

δΠ(r)
= 0 ⇒

∑
α

φα(r) = ρ; (2.33c)

δ

δφα(r)
= 0 ⇒Wα(r) =

β∂H1(φα)
∂φα

. (2.33d)

If we use the virial expansion instead of strict incompressibility we have the following SCF equations

(εαβ and c1, c2 are given in unit of kBT ):

WA (r) = εAAφA(r) + εABφB (r) + εASφS (r) + 2c1φp(r) + 3c2φ2
p(r), (2.34a)

WB (r) = εBBφB(r) + εABφA (r) + εBSφS (r) + 2c1φp(r) + 3c2φ2
p(r), (2.34b)

WS (r) = εSSφS(r) + εASφA (r) + εBSφB(r); (2.34c)

φA = exp (βµp)
∫ 1

0

θA(t)q (r, t) q∗ (r, 1− t) dt, (2.34d)

φB = exp (βµp)
∫ 1

0

θB (t) q (r, t) q∗ (r, 1− t) dt, (2.34e)

φS = exp (βµs −WS) . (2.34f)

Finally the grand potential is

G = −kBT ln Ξ = H1(φα)− eβµpqp − eβµsqs −Wαφα. (2.35)

In the grand canonical calculation we want to fix the concentration of the polymers in the reservoir

instead of by their total density, therefore only one chemical potential is independent. We can take

µs = 0 for convenience and choose µp as in a uniform polymer solution with given volume fraction
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of polymer segments, which can be calculated from Eqs. (2.35) and (2.34).

The canonical free energy of the system is

F (φα) = H1(φα)− kBT (Wαφα + np ln qp + ns ln qs) . (2.36)

2.A.3 Numerical solution of the SCF equations

To implement numerical solutions of the self-consistent equations (2.14) or (2.34), we first note that

the inputting parameters are εαβ , c1 and c2, N , fα, and µp in the grand canonical ensemble, and

εαβ , c1 and c2, N , fα, and the average concentrations φ̄p and φ̄s in the canonical ensemble. fα are

the fractions of different blocks in each chain.

We adopt the following iteration scheme (Drolet and Fredrickson, 2001; Tzeremes et al., 2002):

1. The initial density distributions φ(0)
α (r) are generated by adding a tiny fluctuation to the

uniform distribution, the conjugate fields W (0)
α (r) are calculated from the first 3 equations of

Eqs. (2.14) or (2.34);

2. For a set of W (i)
α (r) , φ(i′)

α (r) are obtained using the remaining 3 equations, and W
(i′)
α (r) are

calculated from φ
(i′)
α (r) using the first 3 equations;

3. W (i)
α are updated by:

W (i+1)
α = W (i)

α + y1∆W (i)
α + y2∆φ(i)

α , (2.37)

∆W (i)
α = W (i′)

α −W (i)
α , (2.38)

∆φ(i)
α = φ(i′)

α − φ(i)
α . (2.39)

4. φ(i+1)
α are updated for W (i+1)

α from the last 3 equations and step (ii) and step (iii) are repeated.

To calculate the Green’s functions (the N factor has been adsorbed into W (r)):

q (r, 0) = 1,
(
∂

∂t
− Nb2

6
∇2

r +Wα (r)
)
q(r, t) = 0, (2.40)

first we rescale r by Rg =
(
Nb2/6

)1/2, and the solution can be formally written as

q (r, t+ dt) = exp
[(
∇2 −W (r)

)
dt
]
q (r, t) . (2.41)

From the Baker-Hausdorff operator identity (Tzeremes et al., 2002),

exp(Â) exp(B̂) = exp
{
Â+ B̂ − 1

2
[Â, B̂] + · · ·

}
,
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Eq. (2.41) can be written as

q (r, t+ dt) = exp
(
−dt

2
W (r)

)
exp

(
dt∇2

)
exp

(
−dt

2
W (r)

)
q (r, t) , (2.42)

which is accurate to dt2. Eq. (2.42) can be numerically implemented by Fourier transform,

q (r, t+ dt) = exp
(
−dt

2
W (r)

)
F−1

{
exp

(
−dtk2

)
F
[
exp

(
−dt

2
W (r)

)
q (r, t)

]}
; (2.43)

F denotes the Fourier transform, which can be implemented using fast Fourier transform. The fast

Fourier transform (FFT) automatically ensures the periodic boundary conditions.

In the simulation we need to specify the size and discretization of the system. If we choose the

discretization lattice to be 64×64 and the size of the system to be 6.4Rg×6.4Rg, then we can resolve

the density profile to ∼ 0.1Rg (Rg is the radius of gyration of the polymer). In our simulations we

use square lattices and resolve the density profile to 0.1 ∼ 0.2Rg.

2.A.4 Analysis of the iteration scheme

Self-consistent equations for polymer systems are highly non-linear and it is notoriously difficult to

obtain convergent solutions. Here we briefly analyze possible steepest descent schemes to solve the

self-consistent equations.

In Section 2.1 and Section 2.2 we have obtained the mean field free energy potential F [φα]:

F = − ln
∫
DφαDWα exp (−βH1[φα] +Wαφα −G[Wα]) . (2.44)

Taking the saddle point we have
δF

δWα
= 0,

δF

δφα
= 0.

From
δF

δWα
= 0

we obtain

φα =
δG[Wα]
δWα

= Φ(Wα). (2.45)

Therefore in terms of φα, the saddle point free energy is

F ∗[φα] = H1[φα]− Φ−1[φα]φα +G[Φ−1(φα)]. (2.46)
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The gradient of F ∗ against φα is

δF ∗[φα]
δφα

=
∂H1[φα]
∂φα

− Φ−1(φα). (2.47)

Φ−1 or Φ can be expanded as an asymptotic series of φα or Wα as done in the free energy expansion

in Section 2.2, but we do not have close-form expressions. Therefore it is inconvenient to implement

steepest descent or Langevin type dynamics in the φ field.

Alternatively we can first take
δF

δφα
= 0,

and we have

Wα =
∂H1[φα]
∂φα

= W(φα). (2.48)

Then

F ∗[Wα] = H1[W−1(Wα)]−W−1(Wα)Wα +G[Wα], (2.49)

and the free energy gradient is

δF ∗[Wα]
δWα

= Φ(Wα)−W−1(Wα). (2.50)

In most cases we do have a close form expression for W−1 or W from Eq. (2.48), therefore in

principle we could do a steepest ascent on Wα fields. But to ensure that the steepest descent on the

free energy landscape is well-behaved, we have to input the extra constraint that

δ2F ∗[Wα]
δWαδWβ

is negative/non-positive definite. This is generally true for the first term Φ(Wα). For W−1 this

imposes an extra constraint on H1 such that

δ2H[φα]
δφαδφβ

is positive definite. But we know that this is not the case! Therefore the solutions to the self-

consistent equations of interest to us (for H1 with double minima) are not the extrema in Wα fields,

but saddle points. It is tempting to use the “string method” to be discussed in the Chapter 5 in

Part II, which is an efficient method to locate extremum as well as saddle points on the free energy

landscape, or to adapt the cell dynamics approach by Bahiana and Oono (1990).
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Appendix 2.B Free Energy Expansion

2.B.1 Calculation of the connected correlation functions

From Eq. (2.20), we have

G
(m)
α1α2···αm(x1,x2, · · · ,xm) =

〈
φ̂α1(x1)φ̂α2(x2) · · · φ̂αm(xm)

〉
c
.

From now on we shall adopt the short-hand label m for xm. To calculate these correlation functions,

note that the system consists of n non-interacting polymer chains, therefore

G
(m)
α1α2···αm(1,2, . . .m) = ng

(m)
α1α2···αm(1,2, . . .m), (2.51)

where g is the connected correlation function for a single chain, which is the joint probability

distribution Pα1α2···αm(1,2, . . .m), i.e., the probability that at r1 there is an α1 segment, at r2 there

is an α2 segment, etc.

We first study Pi1i2···im(1,2, ...m) which is the joint probability that there is the i1th segment

at r1, i2th segment at r2, etc. Because the Gaussian chain (Brownian motion) is Markovian, we can

express Pi1i2···im(1,2, ...m) using the transition probabilities (two-point propagators):

Pi1i2···im(1,2, . . .m) = Pi1(1)Pi1i2(1,2)Pi2i3(2,3) · · ·Pim−1im(m− 1,m) (2.52)

where

Pi1(1) =
1
V

is the probability that the first segment is located at position r1, and

Pi1i2(1,2) =
(

3
2π |i2 − i1| b2

)3

exp

[
− 3 |r2 − r1|2

2 |i2 − i1| b2

]
(2.53)

is the propagator of a Gaussian chain from r1 to r2 with capacity (i2 − i1)b2.

To evaluate Pi1i2···im , it is convenient to use the characteristic function of Pi1i2(1,2)

Pi1i2(q) =
∫
eiq·rPi1i2(r)dr = exp

[
− |i2 − i1| b2q2

6

]
. (2.54)

We now go on to evaluate gi1i2···im
.

gi1i2(q1,q2) =
∫
ei(q1·r1+q2·r2)Pi1(1)Pi1i2(r2 − r1)dr1dr2

=
1
V
δ(q1 + q2)Pi1i2(q2); (2.55)
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gi1i2i3(q1,q2,q3) =
∫
ei(q1·r1+q2·r2+q3·r3)Pi1(1)Pi1i2(r2 − r1)Pi2i3(r3 − r2)dr1dr2dr3

=
1
V
δ(q1 + q2 + q3)Pi1i2(q1)Pi2i3(q3); (2.56)

gi1i2i3i4(q1,q2,q3,q4) =
∫

dr1dr2dr3dr4e
i(q1·r1+q2·r2+q3·r3+q4·r4)

Pi1(1)Pi1i2(r2 − r1)Pi2i3(r3 − r2)Pi3i4(r4 − r3)

=
1
V
δ(q1 + q2 + q3 + q4)Pi1i2(q1)Pi2i3(q1 + q2)Pi3i4(q4). (2.57)

The connected correlation functions Gα1α2···αm(q1,q2, . . .qm) are obtained via

Gα1α2···αm(q1,q2, . . .qm) =
∫

α1

di1
∫

α2

di2 · · ·
∫

αm

dimGi1i2i3···im(q1,q2, . . .qm). (2.58)

The integral is over different blocks αi.

2.B.2 Spinodal limit

We now study the system of associating A-B-A triblock copolymers in a theta solution for B but

poor solution for A. The spinodal limit is defined as when the uniform phase becomes unstable.

To calculate the spinodal transition lines we expand the free energy of the solution to the leading

(quadratic) order.

The monomer interactions are assumed to be εAA = −eA, εαβ = 0 otherwise. From Eqs. (2.24)

and (2.27) the quadratic term in the free energy expansion is

F (2){ϕα + φ̄α} − F (2){φ̄α}
kBT

=
1
2

∫
dx1dx2ϕα(x1)G−1

αβ(x1,x2)ϕβ(x2) +H
(2)
1 , (2.59)

where

H
(2)
1 = −1

2
eA

∫
ϕ2

A(x)dx + c1

∫
(ϕA(x) + ϕB(x))2 dx + 3c2

∫
(ϕA(x) + ϕB(x))2 φ̄pdx. (2.60)

φ̄α is the bulk average density of component α; φ̄p = φ̄A + φ̄B, is the bulk average density of polymer

segments.

F (2) can be expressed in terms of ϕα(q),

F (2) = V kBT
∑
q[

1
2
ϕα(q)G−1

αβ(q,−q)ϕβ(−q)− eA
2
ϕA(q)ϕA(−q) + c1ϕp(q)ϕp(−q) + 3c2ϕp(q)ϕp(−q)φ̄p

]
,

(2.61)

where ϕp = ϕA + ϕB.
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Gαβ can be obtained from Eqs. (2.55) and (2.58). Here we assume that each A block has NA

segments and the midblock has NB segments. Then

Gαβ =
n

V

 2N2
A(D(xA) + E(xA)) 2NANBH(xA, xB)

2NANBH(xA, xB) N2
BD(xB)

 =
n

V
Qαβ (2.62)

where NA is the length of the first A block, and

xα =
Nαq

2b2

6
,

D(x) =
x− 1 + e−x

x2
,

E(x) =
e−x(1− e−x)2

x2
,

H(xA, xB) =
(1− e−xA)(1− e−xB)

xAxB
.

Next we minimize F (2) with respect to ϕB(q) or ϕB(−q),

ϕB(q) =
N
[
Q−1

]
AB

+ 6c2φ̄2
p + 2c1φ̄p

−6c2φ̄2
p − 2c1φ̄p

−N
[
Q−1

]
BB

ϕA(q). (2.63)

[Q]−1
αβ is the inverse of [Q]αβ

[Q]−1
αβ [Q]βγ = δαγ .

Substitute Eq. (2.63) back into Eq. (2.61), and we obtain

βF (2) =
V

2

∑
q

{
N

φ̄p

[
(QBB + 2QAB +QAA)

(
2c1φ̄p + 6c2φ̄2

p

)
−N(

6c2φ̄2
p + 2c1φ̄p

)
(QAAQBB −Q2

AB)−NQAA

]
− βeA

}
ϕA(q)ϕA(−q) (2.64)

=
V

2

∑
q

[
S−1(q)− βeA

]
ϕA(q)ϕA(−q).

In the strict incompressible case, S−1(q) is given by

S−1(q) =
N3D(x) +N2(1− φ̄p)/φ̄p

φ̄p (QAAQBB −Q2
AB) + (1− φ̄p)NQAA

.

Note that the Q functions are dependent on q. The term in the square bracket attains a minimum

at qm and at q = 0. Once βeA exceeds this minimum, the free energy becomes unstable with respect

to perturbations at qm. This gives the spinodal limit. At q = qm, eA ∼ N−1 gives the spinodal limit

of a microscopic phase transition; while at q = 0, eA ∼ N0 corresponds to the spinodal limit of the

macroscopic phase separation.




