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Figure 2.5: Microphase spinodal calculated using the virial-type expansion instead of strict volume
incompressibility. The chain length is N = 40 with ¢; = 1kgT and ¢y = 6kgT. Results are shown
for fa =0.1,0.15,0.25,0.35.

Our calculations suggest that one can start from the basic microscopic model to study the
thermodynamics of gelation, without a priori assumptions of the gel phase. But the nature of
reversible gelation, like the glass transition, is different from conventional phase transitions, and
calls upon new theoretical tools. In the next chapter, which is adapted from our published paper,

we analyze the possibility of glass transitions associated with this microscopic spinodal.

Appendix 2.A Self-consistent field calculation

2.A.1 Calculations of the partition functions of non-interacting polymers

in external fields

In this subsection we solve the partition function Z(iW,) as defined in Eq. (2.10). First we replace

W, by W, it will turn out that thus defined W, are real. From Eq. (2.12) we have

24W5) = [ Ditamseon, exp [ [ s x5 0 dr}
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Ng

/Drn exp[ /Ws Z(s r—r,) dr] U WS(r)dr] S = q. (2.29)

We still need to calculate the single chain partition function gp.

Using the Green’s function for Gaussian chains (Doi and Edwards, 1986) we can express the

- [ G,

partition function ¢, as

where G(r,r’; N) satisfies
— -Vt W(r)} G(r,r';N)=46(r—1'). (2.30)

To calculate ¢p, we only need ¢(r,1), the once-integrated Green’s function (propagator) (see Wood

and Wang, 2002; Tzeremes et al., 2002; Drolet and Fredrickson, 1999; Fredrickson et al., 2002)

q(r,l) = /G(r,r’;l)dr’

which satisfies the same diffusion equation as G(r,r’)

[8 - —v2 + Z& ] q(r,1) =0, (2.30)
but with the following initial condition:
q(r,0)=1
q*(r,1), the conjugate of ¢, satisfies
[8 - —V2 + Z Sa( W, (r )] ¢ (x,1)=0 (2.30")
with the same initial condition. We can rescale [ by t = /N, 0 < ¢ < 1, then the equations become
[8—V2+NZ5 ] q(r,t) =0
ot 6
da,B(t) are defined the same as in Eq. (2.17). And

qp = /q(r,l)dr: /q*(r, 1)dr. (2.31)
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2.A.2 Grand canonical ensemble calculation

We have obtained the grand canonical partition function in Section 2.1.2 as

= (o) = Y 3 SR LI 7,

nglng!
np=0ns=0 P

:%/nga/DWa/DH

exp {ﬁHl [fa] + Waga + 11 (Z ba — p) + etogs + e“Pqp} : (2.32)

where p, and ps are the chemical potential of the polymers and the solvents.

In the grand canonical ensemble, Eq. (2.14) is replaced by

e 0 T9s= e (2.33a)
1 1 ) |
TWan () 0 = ¢ap(r)=exp (ﬂup)/o 0as(t)q(r,t)q* (r,1—t)dt; (2.33D)
5
i)~ 0 7 Za: da(r) =p; (2.33¢)
— _ B9H:(a)
Sgatr) T Walr) =" (2.334)

If we use the virial expansion instead of strict incompressibility we have the following SCF equations

(eap and c1, co are given in unit of kgT):

Wa (r) = eanda(r) + eapds (r) + casds (r) + 2c10p(r) + 3c203 (1), (2.34a)
W (r) = egpoB(r) + eada (r) + epsds (r) + 2c10p(r) + 3c203(r), (2.34b)
Ws (r) = essds(r) + easoa (r) +epsgn(r); (2.34c¢)
¢a = exp (Bup) /O 1 Oa(t)q (r,t) ¢" (r,1—t)dt, (2.34d)
o5 = exp (Gpy) | O () a (00" (11— ), (2.310)
¢s = exp (Bus — Ws). (2.34f)

Finally the grand potential is
G = —kpTInE = Hy(¢o) — €’rq, — g5 — Woda. (2.35)

In the grand canonical calculation we want to fix the concentration of the polymers in the reservoir
instead of by their total density, therefore only one chemical potential is independent. We can take

its = 0 for convenience and choose p, as in a uniform polymer solution with given volume fraction
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of polymer segments, which can be calculated from Eqs. (2.35) and (2.34).

The canonical free energy of the system is
F(¢a) = Hi(¢a) — kT Waopa +nplng, +nglngs) . (2.36)

2.A.3 Numerical solution of the SCF equations

To implement numerical solutions of the self-consistent equations (2.14) or (2.34), we first note that
the inputting parameters are €3, ¢1 and c2, N, fo, and pp in the grand canonical ensemble, and
€ag, €1 and cz, N, fo, and the average concentrations (Ep and ¢ in the canonical ensemble. f, are
the fractions of different blocks in each chain.

We adopt the following iteration scheme (Drolet and Fredrickson, 2001; Tzeremes et al., 2002):

1. The initial density distributions gb(()?) (r) are generated by adding a tiny fluctuation to the
uniform distribution, the conjugate fields WS’) (r) are calculated from the first 3 equations of

Egs. (2.14) or (2.34);

2. For a set of Wéi)(r) , qﬁ(ai/)(r) are obtained using the remaining 3 equations, and Wo(li/)(r) are

calculated from qﬁg)(r) using the first 3 equations;

3. W(gi) are updated by:

WD = WO+ AW + 06, (2:37)
AWD = W) ), (2.38)
Ap® = ) _ ). (2.39)

4. ¢>$+1) are updated for Wi from the last 3 equations and step (ii) and step (iii) are repeated.

To calculate the Green’s functions (the N factor has been adsorbed into W(r)):

2
0.0 =1, (5 - VLWL a0 = (2.40)

first we rescale r by Ry = (Nb?/ 6)1/2, and the solution can be formally written as
q(r,t+dt) =exp[(V> =W (r))dt] q(r,2). (2.41)
From the Baker-Hausdorff operator identity (Tzeremes et al., 2002),
exp(/i) eXp(B) = exp {A +B-—

;[A)g]+...}’
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Eq. (2.41) can be written as

dt

q(r,t+dt) = exp (—2W (r)) exp (dtV?) exp (—d;W (r)> q(r,t), (2.42)

which is accurate to dt?. Eq. (2.42) can be numerically implemented by Fourier transform,

q(r,t+dt) = exp (—(;tW (r)) Ft {eXp (—dtk®) F [exp (—itw (r)) q(r, t)} } ; (2.43)

F denotes the Fourier transform, which can be implemented using fast Fourier transform. The fast
Fourier transform (FFT) automatically ensures the periodic boundary conditions.

In the simulation we need to specify the size and discretization of the system. If we choose the
discretization lattice to be 64 x 64 and the size of the system to be 6.4R, x 6.4, then we can resolve
the density profile to ~ 0.1R, (R, is the radius of gyration of the polymer). In our simulations we

use square lattices and resolve the density profile to 0.1 ~ 0.2R,.

2.A.4 Analysis of the iteration scheme

Self-consistent equations for polymer systems are highly non-linear and it is notoriously difficult to
obtain convergent solutions. Here we briefly analyze possible steepest descent schemes to solve the
self-consistent equations.

In Section 2.1 and Section 2.2 we have obtained the mean field free energy potential F[¢,]:

F=~ln [ DouDWoexp (~Haldu] + Wade — GIIWa)). (2.44)
Taking the saddle point we have
oF _ 0 OF _ 0
Wy ' 0ba
From
oF
oWy, 0
we obtain
6G[Wa)
o = = ®(W,). 2.4
bo = T = (Vo) (2.45)

Therefore in terms of ¢, the saddle point free energy is

F*[pa] = Hi[¢a] = 27 [balda + G[27 (da)]- (2.46)
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The gradient of F™* against ¢, is

5F*[¢oc] _ 8H1 [‘ba]

-1

&1 or ® can be expanded as an asymptotic series of ¢, or W, as done in the free energy expansion
in Section 2.2, but we do not have close-form expressions. Therefore it is inconvenient to implement
steepest descent or Langevin type dynamics in the ¢ field.

Alternatively we can first take

oF
50a
and we have
o aHl [¢a] _
Wa = =5 =W(¢a). (2.48)
Then
F*[W,] = H{ WL (W) = W (W )Wy 4+ G[Wa), (2.49)
and the free energy gradient is
S [W,] 1
W, O(W,) — W (Wy). (2.50)

In most cases we do have a close form expression for W~! or W from Eq. (2.48), therefore in
principle we could do a steepest ascent on W, fields. But to ensure that the steepest descent on the
free energy landscape is well-behaved, we have to input the extra constraint that

2 F*[W4]

OWa0Wpg
is negative/non-positive definite. This is generally true for the first term ®(W,). For W~! this

imposes an extra constraint on H; such that

02H [¢o]

dpadp

is positive definite. But we know that this is not the case! Therefore the solutions to the self-
consistent equations of interest to us (for H; with double minima) are not the extrema in W, fields,
but saddle points. It is tempting to use the “string method” to be discussed in the Chapter 5 in
Part II, which is an efficient method to locate extremum as well as saddle points on the free energy

landscape, or to adapt the cell dynamics approach by Bahiana and Oono (1990).
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Appendix 2.B Free Energy Expansion

2.B.1 Calculation of the connected correlation functions

From Eq. (2.20), we have

G((lr?()l'z'“am (X17 X2yt 7Xm) = <¢a1 (X1)¢a2 (XQ) e (lgam (Xm)> .

c

From now on we shall adopt the short-hand label m for x,,,. To calculate these correlation functions,

note that the system consists of n non-interacting polymer chains, therefore
GO o (1,2,..m) = gl 0 (1,2,...m), (2.51)

where ¢ is the connected correlation function for a single chain, which is the joint probability
distribution Py, a,..-a,,(1,2,...m), i.e., the probability that at r; there is an o segment, at ro there
is an aiy segment, etc.

We first study P;,i,..i,, (1,2, ...m) which is the joint probability that there is the i;th segment
at ry, isth segment at ro, etc. Because the Gaussian chain (Brownian motion) is Markovian, we can

express P ;,...;, (1,2,...m) using the transition probabilities (two-point propagators):

Pi1i2'--im(1a 2,... m) =F, (1)Pi1i2(17 2)Pi2i3 (2a 3) R A (m -1, m) (2'52)
where
1
P (1) = v

is the probability that the first segment is located at position ry, and

P2 = (—3 1 T (2.53)
wi\ S T o liy —ig|62 ) P | T 2)ip — g 02 '

is the propagator of a Gaussian chain from ry to re with capacity (i — i1)b?.

To evaluate P;,;,...;, , it is convenient to use the characteristic function of P;,;,(1,2)
; — lig — 1] b*q?
Pria) = [ 97P i r)dr = exp ['Gq} . (2.54)

We now go on to evaluate gi,iy...i,, -

Givio (A1, d2) = /6i(q1‘rl+q2‘r2)Pil(1)Pm'2 (rg —ry)dridry

1
= V5(Q1 + d2) Piyi, (92); (2.55)
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Girizis(d1,Q2,93) = /6i(q1'r1+q2'r2+q3'r3)Pﬁ(1)Pm2 (r2 —11) Py (r3 — r2)dridradrs
= é(s((h + a2 + a3) Pii, (A1) Piyis (a3); (2.56)
Givinizia(d1,d2,d3,d4) = /drldf2dr3dr4€i(ql'r1+q2'r2+q3'r3+q4“)
P, (1)P;,;,(re —r1) Py, (rs — o) Py, (ra — 13)

1
= V5(Q1 +d2 + 93 + 94) Py i, (A1) Priyis (A1 + d2) Pigiy (9a)- (2.57)

The connected correlation functions Ga,ay--ay, (A1, 42, - - - Gm) are obtained via

Galag-nam (qh q2,... qm) = / le / de e / dimGi1i2i3~~-im (CI17 q2,... qm) (258)
aq a2 «@

m

The integral is over different blocks «;.

2.B.2 Spinodal limit

We now study the system of associating A-B-A triblock copolymers in a theta solution for B but
poor solution for A. The spinodal limit is defined as when the uniform phase becomes unstable.
To calculate the spinodal transition lines we expand the free energy of the solution to the leading
(quadratic) order.

The monomer interactions are assumed to be eas = —ea, €43 = 0 otherwise. From Egs. (2.24)
and (2.27) the quadratic term in the free energy expansion is

F(z) 04+7a _F(2) 704 ]. —
. (Ii}T el / doxrdacaten (x1) G, s (x1,%2) 05 (x2) + Hy (2.59)

P = —Jea [Gootx+a [ (oa0)+ o) dx+ 30 [ (a0 + pa(x) Gy, (260)

bq is the bulk average density of component a; q_Sp = ¢ +¢B, is the bulk average density of polymer
segments.

F®) can be expressed in terms of (4 (q),

FO = VkBTZ
q

e —

[;wa(q)Gaé(q, —q)pp(—q) — 7A90A(<:1)¢A(—q) + c19p(a)p(—a) + 3c29p(a)ep(—a) 9y |

(2.61)

where ¢, = @A + ¢B.
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Gap can be obtained from Egs. (2.55) and (2.58). Here we assume that each A block has Ny

segments and the midblock has Np segments. Then

n 2N2(D($A)+E($A)) QNANBH(wA,IB) n
Gas = 77 A = 7 @as (2.62)
2NANBH(LL‘A,LEB) N]%D(CEB)

where Ny is the length of the first A block, and

B Noq?b?
o T 6 b
r—14e"
D(Z‘) = sz ’
e (1 —e®)?
E(z) = 2
1—e ™)1 —e"7"8B
Hon, om) — | )( )
TATB

Next we minimize F(?) with respect to ¢p(q) or ¢p(—q),

N [Q7Y] \g + 6c202 + 2¢10y
—602@5% - 201(]513

eB(q) = —N[Q '] gg eala) (2.63)

[Q];ﬁ1 is the inverse of [Q], 5

Substitute Eq. (2.63) back into Eq. (2.61), and we obtain

BF@ — 14 Z N (QB}? + ZQA}? + Qan) (2c1¢p + 6c292) — N
2 bp | (6c202 +2¢10p) (Qan@B — Qip) — NQaa

= 2[5 (@) Bea] eala)ea(~a)

1 - ﬁeA} oa(@)pal(—a) (2.64)

qa

In the strict incompressible case, S~1(q) is given by

i - D@ N -G/,
¢p (Qaa@pB — Qp) + (1 — dp) NQaa
Note that the @) functions are dependent on g. The term in the square bracket attains a minimum
at g, and at ¢ = 0. Once fBea exceeds this minimum, the free energy becomes unstable with respect
to perturbations at g,. This gives the spinodal limit. At ¢ = ¢, ea ~ N ! gives the spinodal limit
of a microscopic phase transition; while at ¢ = 0, ex ~ N° corresponds to the spinodal limit of the

macroscopic phase separation.





