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Abstract

This dissertation is concerned with the development of a robust three-dimensional
finite-element framework for the simulation of complex problems in mechanics and
physics of solids. This approach is intended to shine light on impact and erosion
mechanisms among other multiscale, multiphysics problems. The components of the
computational framework are a contact algorithm including friction, wear, finite de-
formation plasticity, heat generation, heat transfer, and adaptive meshing coupled
with error estimation. The adaptive meshing is a key development that enhances the
efficiency and robustness of the method. We demonstrate the ability of the method-

ology to simulate diverse problems such as shear banding, impact, and wear.

1il



Contents

Acknowledgements

Abstract

1 Introduction

2 Finite-element methodology

2.1
2.2

2.3

2.4
2.5

Introduction . . . . . . . . . . .. e S i ..

Variational formulation of the incremental problem . . ... . .. .

2.2.1 Field and constitutive equations . . . . . . . . .. ... .. .. .

2.2.2 Time discretization . . . . . . . . . . ... .
2.2.3 A minimum principle for the incremental problem . . . . . . y
Asymptotic a-posteriorierror bounds . . . . . .. ... G
2.3.1 A local projection method of error estimation . . ... .. o
Heat generation and transfer . . . . . .. ... .. ... ... .. ..

Contact algorithm . . . . . ... .. ... .. ... ..... S

3 Adaptive meshiﬁg

3.1
3.2
3.3

34
3.5
3.6
3.7
3.8

Introduction . . . . . . . . . . . e .
Adaptionstrategy...........................‘..
Mesh-to-mesh transfer operator . . . . . .. .. ... ... ...
Subdivision algorithm . . . .. ... ... ... ...... e e
Edgecollapse . . ... ... .. ... ............ N
Reference updating . . . . . . . . . . ..o
Static convergence tests . . . . . .. ... ..o

Conclusions . . . . . . . . . . L S

iv

iii

- o o O

11
13
15

15
19

21



4 Application to adiabatic shear banding 53

4.1 Introduction . . . . . . . . ... 53
4.2 Numericalmodel . . . .. ... ... L o Lo 54
43 Conclusions . . . .. . . . . .. .. 61

5 Application to impact erosion . 63
51 Introduction . . . . . . . . . ... Lo - | 63
5.2 Constitutive model . . . . . . . . ... ... 63
5.3 Numerical model . . . . . .. ... ... .. L. ... 64
5.4 Comparison with Hutchings’s experiments [ 68
5.4.1 Variation of the impactangle . . . .. ... ... ... . ... 69

5.4.2 Variation of the impact velocity . . . . . . ... ... ... | ..on

5.5 Highimpactspeeds . . . . . . ... ... .. ... 74
56 Conclusions . . . . . . . . . o e e - 78

6 Application to wear 80
6.1 Introduction . . . . . . . . . . ... L 80
6.2 Computational framework . . . .. .. .. ... ... .. ..... .. 81
6.21 Wear . . . . . . .. e L8l

6.2.2 Contact and friction . . . . ... .. ... ... ... L. 85

6.2.3 Thermaleffects . . . . . .. ... ... ... L. 85

6.3 Finite-element validation . . . . . . . .. . ... ... oL 87
6.3.1 Problem definition . . . .. ... ... ... L. 87

6.3.2 Calibration of themodel . . . . . . .. ... ... ... ... 89

6.3.3 Numericalresults . . . . . . .. . .. ... ... ... ... 89

8.4 Conclusions . . . . . . . . ... . 91

7 Conclusions 95

A C-language data structures used in the bisection and edge-collapse

algorithms 98



B .Longest edge propagation path function 102

Bibliography 103

vi



List

2.1
2.2
2.3

3.1
3.2
3.3

3.4

3.5
3.6
3.7

3.8
3.9
3.10

3.11
3.12
3.13

3.14
3.15
3.16

of Figures

Initial configuration with boundary conditions . . . . . . .. ... ..
(k—1)interpolantof @, . . . . . . ... |

Slave node penetrating a master surface triangle . . . . . . .. .. ..

A diffusive remeshing scheme . . . .. ... ... ... ..., PR
Initial configuration . . . . . . . . . ... ...
Ilustration of the instabilities generated by the contact algorithm on
acontact face . . . . . . . . ...
Nlustration of the nodal transfer when subdividing a tetrahedron on a
comtact face . . . . .. ..o .
Successful nodal transfer algorithm . . . . ... ... ... ..... ..

Bisection of a tetrahedron and the 1-ring incident to the bisected edge

A degenerate subdivision algorithm: (a) initial mesh, t0 is subdivided

(red) (b) degeneracy of the mesh after 6 iterations . . . . .. ... ..
Longest-edge propagation graphof K1 . . . .. .. .. ... ... ..
Order in which the tetrahedra are bisected during the LEPGI of K

Longest-edge bisection of triangle to: (a) initial mesh; (b) first step in
the process; (c) second step in the process; (d) final mesh . . . . . ..
Bisection of a quadratic tetrahedron . . . . . . . ... ..o L.
Basic edge-collapse operation in three dimensions . . . . .. ... ..
Collapse operations in 2-D, the old mesh is represented in black, the
blue lines disappear and the dashed red lines are new edgeé ......
Changes of configurations . . . . . . ... ... ... .........
Initial geometry . . . . . . . ... L

Initial coarse mesh used in convergence tests . . . . . . . . e

Vil

30

31
31
32

33
34
36

37
38
40



3.17

3.18

3.19

3.20
3.21
3.22

4.1

4.2
4.3
4.4

Evolution of the mesh in the cracked solid test: a) Intermediate mesh
with 8 levels of subdivision, 265 elements; b) Final mesh at peak load
with 13 levels of subdivision, 3807 elements . . . . . . .. ... .. ..
Cracked solid test: Detail of the near-tip region of the final mesh at
peak load; a) Overall view; b) Full view from below of the mesh on the
plane of the crack; ¢) Detail of the near-tip region . . . . ... .. .. '.
Histograms of element quality at two stages of loading: a) Intermediate
mesh with 8 levels of subdivision, 1127 elements; b) Final mesh at peak
load with 13 levels of subdivision, 3807 elements . . . . . ... .. ..
Energy normerrorof . . . . . . . ... oo oo
Energy normerrorof . . . . . . . ... ..o
Illustration of the edge-collapse algorithm: a) Unrefined mesh after

unloading; b) Element quality histogram . . ... ... ... .. L

a) Geometry of the coupon analyzed in the shear banding simulation;
all degrees of freedom other than the X;-displacements are constrained;
initial mesh containing 1574 elements; b) thickness imperfection . . .
Temperature increase (a), (b), (c), and vorticity contour plots

Element qualities histograms . . . . . .. . . .. .. ... ...

Time evolution of temperature and plastic strain across the band thick-

Inmitial mesh . . . . . . . . . ..
Topviewof afinalmesh . . . .. ... ... .. ... ... ......
Mesh sensitivity study with an impact velocity of 100 m/s . . . . . .
Velocity response of the projectile versus time . . . . . .. e e e
Kinetic energy loss versus impact angle . . . . . .. ... ... ....
Temperature elevation versus impact angle . . . . . .. .. ... ...
Hutchings’s experimental results [49]; the angle of attack is 30° (left to

right); the impact velocities are from left to right and top to bottom:

141 m/s, 174 m/s, 178 m/s, 218 m/s, 262 m/s, 310m/s . . . . . . .. '

viil

46

48
30
50

a1



5.8 Effective plastic strain contour plot of the impacted zone; the impact

velocity is 310 m/s; the ellipse represents the shape of the experimental

Crater . . . . . . e e e e e e e e 72
5.9 Indentation diameter versus impact velocity . . . .. . ... ... .. 73
5.10 Vertical coordinate contour plot . . . . . . . . . .. ... ... 74
5.11 Rebound velocity versus impact velocity . . .. ... ......... .75
5.12 Temperature increase in the projectile versus impact velocity . . . . . 76
5.13 Contour plot of the vertical coordinate, impact velocity 2000 m/s . . 77
5.14 Projectile before and after impact . . . . . . . ... ... ... ... 78
5.15 Temperature increase in the projectile .. . . .. .. .. ... .. .. 78

6.1 Schematic representation of the wear experiment of Lancaster ([42, 56]) 82

6.2 Wear rate versus speed ([42,56]) .. ................ L. 82
6.3 Hardness variation in the brass (from [56]) . . . . .. .. ... ... . 84
6.4 Interfacial thermal problem . . . .. ... ... ... ... ...... 86
8.5 Geometry of finite-element model; the brass pin has a velocity V.. . . 87
6.6 Numerical results . . . ... oL 93

6.7 Wear rate contour plot showing increased wear rates at the leading

edgeof thebrasspin . . . . ... .. ... ... ... ... ... 94

ix



List of Tables

3.1 Possible configurations for the edge collapse in three dimensions . . .
4.1 Material constants for polycrystalline tantalum . . . . . ... .. ..

5.1 Material parameters for mild-steel . . . . . . . ... ... ... .



Chapter 1 Introduction

This thesis is concerned with the development of a robust three-dimensional finite-
element framework for the simulation of impact and erosion of metallic targets.. The
strategy adopted was to systematically validate the obtained numerical results with
experimental data. Once verified, the finite-element methodology was used to deter-
mine the key physical mechanisms in impact and erosion phenomena.

Impact and surface-erosion mechanisms are of interest over a wide range of ap-
plication areas. The most obvious domain of application is the military, where there
is a need to understand the limiting factors of ballistic penetration. For example,
one could try to reduce the development of instabilities such as shear bands in pro-
jectile materials. As shear bands are preferred sites of material failure, reducing or
delaying them will reduce the fragmentation of the projectile and therefore increase
its kinetic energy at impact. Other research efforts aim at designing better weapons.
As an example, shaped-charge technology has been shown to be widely successful.
A shaped charge is an ogive where a hollow cavity is left in front of a conical metal
liner. Upon detonation the metal liner will flow plastically to form a high-velocity jet.
This approach similarly has the consequence of producing a higher kinetic energy at
impact than simple brute force designs. Any increase in kinetic energy will produce
deeper cavities in the target.

When concerned with defense, there is also the inverse yet equally compelling
need to understand impact and erosion mechanics in order to minimize the damage
to armors. A strategy that is commonly chosen is to make use of layered composite
materials. For instance, a graphite layer is sometimes introduced within an armor to
deflect a projectile from its intended trajectory.

Understanding impact and erosion mechanics is also of great interest in civilian
applications. A few examples that are being investigated are micro-meteorite damage

to spacecraft structures, design of lightweight body armors, generation of cavities for



miﬁing and gas exploration, the safety of nuclear-reactor containment vessels, erosion
by abrasive particles in dusty environments, damage of car structures due to impact
of gravel, and erosion as a method of cleaning and shaping engineering components.

An excellent overview of impact dynamics and erosion mechanisms, including
experimental, numerical, and analytical models, is given by Zukas in his book on
high-velocity impact dynamics [113]. Numerous excellent reviews can be found in the
published literature. Johnson et al. [52] give an overview of high-velocity oblique
impact and ricochet of long rod projectiles. A complete survey of the mechanics
of penetration of projectiles into targets is given hy Backman and Goldsmith [7].
Brown [11] discusses the development of target/missile formulas together with ex-
perimental programs and numerical methods in the context of energy release-rate
protection for pressurized systems. He divides the numerical research efforts into two
categories: the finite-difference method, which enjoyed a long history of success, and
the finite-element method, which proves increasingly advantageous for its ability to
handle complex geometries. Spatial discretization can be carried out in Eulerian or
Lagrangian frameworks. In the Lagrangian approach, a grid is embedded in the ma-
terial and distorts together with it. In the Eulerian scheme, the grid is fixed in space
and mass flows through it. In the present work, we adopt a Lagrangian framework
since as the grid deforms following the material, time histories for each material point
are trivially obtained. Another advantage is that the material interfaces are easy to
track.

Despite a large set of numerical techniques and the recent advances in hardware
and software, most of the work in the area of impact dynamics is still experimental.
Hutchings [49] impacted steel plates with steel spherical projectiles. Magness [65]
commented on penetration efficiency of high-density materials in ballistic penetration
experiments. He described the mushrooming upon impact of thé penetrator tip as a
limiting factor for penetration, since more volume of armor has to be displaced as the
volume of the projectile increases. Roisman et al. [93] presented experimental results
on the oblique penetration of a rigid projectile into a thick plastic target. Forrestal [31]

carried out experiments on penetration of metallic targets and discussed the deflection



angles of the projectile. Eichelberger et al. [28] carried out a series of plate-impact
experiments and commented on the effects of meteoroid impact on space vehicles.

Since impact-dynamics problems define very complex multiphysics systems, it is
often difficult to track experimentally the influence of an isolated parameter. The
high cost of experiments is also an impediment to extensive experimental research.
However, the keen interest shown by both military and commercial research labora-
tories to understand the physics of impact and erosion calls for developing reliable
numerical codes which are validated by experiments.

To successfully carry out impact dynamics simulations, we will first be concerned
with developing a general framework for adaptive mesh refinement and coarsening in
three-dimensional finite-deformation dynamic-elasto-plastic problems. Impact prob-
lems are amenable to a fully Lagrangian finite-element treatment provided that the
deformation-induced distortion, which inevitably accompanies unconstrained plastic
flows, is eliminated by continuous remeshing (e.g., {76, 69, 14, 15, 81]). In addi-
tion, the solutions of interest often develop fine structure due to shock formation,
microstructural evolution, singularities (crack front), material instabilities, and other
physical phenomena. Under these conditions, mesh adaption provides an effective
tool for explicitly resolving multiple length scales in the solution. When combined
with error estimation, mesh adaption additionally provides a means of minimizing the
solution error, or, equivalently, of maximizing its accuracy, for a given computational
cost.

We begin in Chapter 2 by outlining a variational formulation of the incremental
problem of finite-deformation dynamic elasto-plasticity (see, [82, 79]) which provides
a mathematical basis for a posteriori error estimation and mesh adaption. The error
indicators which result are purely local, i.e., can be computed element by element,
and rigorously a posteriori, i.e., follow directly from the finite-element solution [82].
This is in contrast to other error indicators whose evaluation requires smoothing steps
involving patches of elements (e.g., [26, 25, 112, 21]). Based on these error estimates,
the optimal mesh size distribution may be determined as the solution proceeds. We

include in Chapter 2 the description of the contact algorithm, as well as discuss the



-issues of heat transfer and heat generation, both of which are key components in our
dynamic calculations.

One component of our finite-element methodology is left for detailed discussion in
Chapter 3: the three-dimensional adaptive meshing capability. This innovative devel-
opment consists of successive subdivision and edge-collapse operations. The particular
mesh refinement strategy which we adopt is an extension of Rivara’s two-dimensional
longest-edge propagation path (LEPP) bisection algorithm [91, 89, 90]. One appeal-
ing property of this method is that it guarantees that the aspect ratio of the elements
remains above a certain lower bound regardless of the number of applications of the
algorithm. Other desirable attributes are its low cost and simplicity, and its guaran-
teed termination after a finite, typically small, number of element subdivisions. This
is in contrast to other three-dimensional meshing techniques, such as constrained-
Delaunay (see, for instance, [2]) and the advancing front method, which sometimes
fail to terminate or produce ill-conditioned elements. In addition, local reméshing
algorithms such as subdivision tend to minimize the so-called projection errors in-
curred when the state variables are transferred to the new mesh. In this regard, it
should be noted the LEPP algorithm is strictly local, as all the nodes that are added
are introduced in pre-existing elements. Numerical diffusion is particularly critical in
problems of stra.in localization (such as the ones that will be discussed in Chapter 4),
in which excessive numerical diffusion may inhibit or completely suppress the shear
bands. Our strategy for mesh coarsening, or unrefinement, is based on the elimination
of elements by edge collapse. This technique has been discussed extensively in the
computer-graphics literature (see, {96, 45, 55, 57]). However, the applications therein
are for the most part confined to the treatment of surfaces. Extensions to three di-
mensions and applications to finite-element analysis have not received nearly as much
attention. In addition to coarsening, edge collapse may be used for eliminating from
the mesh poor-quality elements, such as slivers. In this guise, edge collapse provides
an effective means of controlling the quality of the evolving mesh.

The remainder of the thesis is concerned with applications of the proposed com-

putational methodology. Chapter 4 covers the application of adiabatic shear band-



| ing and serves to validate the general framework for adaptive meshing in the finite-
deformation dynamic-plasticity range. Shear banding furnishes a prime example of
the class of problems to which the framework outlined in the foregoing is intended
to apply. The presented calculations are motivated by the cylinder implosion tests
of Nesterenko et al. [75]. In these tests, a metallic hollow cylinder is subjected to
explosive loading by the detonation of a charge surrounding the cylinder. The defor-
mation field of the collapsing cylinder involves two families of spiraling shear bands
[75]. Our calculations are designed so as to roughly replicate the nominal conditions
experienced by an individual shear band. The material considered is tantalum.

Chapter 5 covers a finite-element analysis of impact erosion. We validate our nu-
merical results with Hutchings’s experiments [49] of hard-steel spherical projectiles
impacting steel plates at a wide range of impact velocities and angles. We comment
on the shape and dimensions of the impact area on the plates. More than purely
a validation of a method, the obtained numerical results shine light on the neces-
sity to carefully account for friction and the plastic behavior of the projectile in the
calculations. |

Finally, in Chapter 6, we conclude the thesis by showing how the contact algorithm
can be coupled to an erosion law. For that purpose, we introduced the Archard law
of wear to study the dry sliding wear regimes between a brass/steel metallic pair.
We compare our results to the experiments of Lancaster [56]. It is shown that the
selected method is successful in capturing the transition between severe and mild
wear at a given sliding velocity. All three different applications — shear banding,
plate impact, wear — demonstrate that our method is successful in capturing fine
features of the solution. The published experimental data surveyed also constitute a

sound validation test of our three-dimensional finite-element numerical solutions.



Chapter 2 Finite-element methodology

2.1 Introduction

This chapter covers the main mechanical components of the finite element methodol-
ogy. Within the context of the Lagrangian framework we begin in Section 2.2 by ex-
pressing in variational form the problem of an elastic-plastic solid undergoing dynamic
large deformations. The aspects of field and constitutive equations, time discretiza-
tion and a minimum principle for the incremental problem are covered. Section 2.3
provides a suitable framework for error estimation and mesh adaption. Section 2.4
covers heat transfer and the main sources of heat. Finally, Section 2.5 describes a
robust and efficient contact algorithm. The last component of the methodology, mesh
adaption, is left apart; it is the subject of Chapter 3. Throughout the calculations,

we are using ten-node quadratic tetrahedral elements.

2.2 Variational formulation of the incremental prob-

lem

We begin by expressing the problem of an elastic-plastic solid undergoing dynamic
large deformations in variational. More precisely, the aim is to characterize the mo-
tion of the solid as the solution to a sequence of minimization problems. As in the
work of Dolzmann and Friesecke [33], Kinderlehrer and Otto [53], Ortiz and Repetto
(78], and Kane et al. [54], the variational principles envisioned here are based on
time-discretization and pertain to the time-discretized incremental problem. Another
critical step in the derivation of the incremental minimum principle is the formulation
of variational constitutive updates for elastic-plastic solids [82, 79]. The combination

of time discretization and variational constitutive updates delivers a minimum prin-



“ciple which characterizes the solutions of the incremental problem. This minimum
principle in turn furnishes a powerful mathematical basis for error estimation and

mesh adaption.

2.2.1 Field and constitutive equations

In this thesis we shall be concerned with the motions of elastic-plastic materials.
We select the initial configuration By C R? of the body at time #; as the reference

configuration; see Figure 2.1.

Figure 2.1: Initial configuration with boundary conditions

The motion of the body is described by a time-dependent deformation mapping ¢ :
By % [tg,00) — R%. The local deformation of infinitesimal material neighborhoods is

described by the deformation gradient

F =V, in By (2.1)



- where, here and subsequently, Vo denotes the material gradient over By. The motions

of the body obéy the equation of motion (cf. [68])
Vo - P+ poB = po@, in Bg (22)

where pq is the mass density over By, B are the body forces per unit mass, P is
the first Piola-Kirchhoff stress tensor, and ¢ is the material acceleration field. For
purposes of formulating boundary conditions, we partition the boundary 8B, of By
into a Dirichlet or displacement boundary 8By; and a Neumann or traction boundary

0Bg,. The displacement boundary conditions then take the form:
Y=o, on 0By, (2.3)

where @(X,t) is the prescribed deformation mapping on 9Bp;. The traction bound-

ary conditions then take the form:
P-N= T, on 8302 (24)

where N is the unit outward normal to 0By, and T'(X, ) are the prescribed tractions
applied to 8Bg,. In addition, the formulation of the problem requires the initial de-
formation mapping and material velocity field, ¢ and ¢, respectively, to be supplied.

We assume a multiplicative decomposition of the deformation gradient F of the

form (see, [58, 101, 4, 40, 41, 66, 87])
F = F°F? (2.5)

into an elastic part F° and a plastic part FP. We further assume that the elasticity
and the specific heat of the material are structure insensitive, i.e., independent of the

internal processes. This leads to a free energy of the form [79}:

A(F,F?,T,q) = W*(F°,T) ~ W?(T,q, F?) (2.6)



where W€ is the elastic strain-energy density, W7 is the stored energy of cold work,
T is absolute femperature, and q is some appropriate set of internal variables (see,
e.g., [63, 64]). If, for simplicity, we restrict attention to isotropic hardening, then &?
may conveniently be identified as the sole internal variable of the material, and the

free energy simplifies to:
A(F,FP T,y = We(C®,T) + WP(T, eP) (2.7)
The flow rule which governs the evolution of F? is assumed to be of the form:
FPFrl=¢rp (2.8)

where &7 is the effective plastic strain and M is a tensor which defines the direction of
plastic flow. Within the present variational framework [79], the defining characteristic
of Jy-flow theory of plasticity is that M can be any symmetric tensor satisfving the

kinematic constraints:

tr{M)

2
-M-M
3 :

il
o

(2.9)

Il
—

(2.10)

Thus, the direction of plastic flow must be volume preserving, but it is otherwise
unrestricted by the kinematics of plastic deformation.

Finally, we require a suitable kinetic equation, or rate-sensitivity law, governing
the evolution of the effective plastic strain £?. For the constitutive relations and
updates to possess a variational structure, the kinetic relations must have a certain
potential form [79]. In the present context of isotropic plasticity, we begin by intro-
ducing the thermodynamic driving force conjugate to €? as

Y = —?ﬁ (2.11)

=P



Using (2.7), this relation evaluates to:

Y=0-0p (2.12)
where
. owe
0=—2 (2.13)
is the effective Mises stress, and
ow?P
= 2.
Op Oer ( 14)

is the quasistatic flow stress. It follows from (2.12) that the driving force Y coincides
with the effective overstress. We now postulate the existence of a ¢(Y,T) which acts
as a kinetic potential for the rate-sensitivity law, i.e., such that
o -
el = =(Y,T 2.15
W) (215)
For purposes of defining variational constitutive updates, we additionally introduce

the dual kinetic potential
V(P T) = m}n{w(Y, T),-YeP} (2.16)

The dual kinetic potential has the property that

_ow

Y = 22, 1) (2.17)

i.e., it furnishes a potential for the inverse rate-sensitivity law.
The preceding formulation, and the corresponding constitutive updates discussed
subsequently, may be extended to account for viscosity [82], but this extension will

not be pursued here for simplicity.
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- 2.2.2 Time discretization

Next we envision a process of incremental deformation and seek to determine the
solution at discrete times tg, ..., tht1 = tn + O, .... We begin by discretizing the
equations of motion (2.2) in time. Thus, we invert the usual sequence of spatial and
temporal discretization and discretize the governing equations in time prior to the
introduction of a spatial discretization. For definiteness, we restrict our attention to

the Newmark scheme (48, 9]:

Pnt1 = Pnpt Atv, + At2[(1/2 — Ba, + ﬁan+1] (2.18)
Vopr = Vp+ A1 - v)a, + yan41] (2.19)
Poany1 = Vo Ppy+ poBny | (2.20)

where v and a denote the material velocity and acceleration fields, and 3 € [0,1/2]
and v € [0,1] are the Newmark’s parameters. This defines a non linear system of
equations that can be solved using a Newton-Raphson iteration procedure. For the
dynamic simulations that are presented in the following chapters, the explicit version
of the previous system of equations is used. The second order accurate explicit scheme

we used is obtained defining 3 =0 and v = 1/2 (see, [48, 9])

1
Ppi1 = Pn+ AV, + §At2aﬂ (2.21)
an+1 = M_I(szafl - iﬁt-l (2.22)
1
Varl = Vgt EAt(a'n-H +an) (2.23)

The presented scheme is stable under the condition that the time step is below a
critical time step. Typically, one would like to capture numerically dilatational waves
(the fastest) propagation on any element of the mesh. The stable time step that is

used in the calculations is

he

Atsta.ble = C'(rninmesh (224)

11



where C is a security coefficient (of the order of 0.1), h° is the dimension of element
e, A and are the Lamé coefficients. The stable time step is computed at regular
intervals during the calculations and after every remeshing to take into account the
changes in the mesh.

Next we turn to the computation of the updated stresses P,.;. For the class of
elastic-plastic materials under consideration, this computation requires the integra-
tion of the constitutive equations in time. Additionally, for a minimum principle to
be in operation the constitutive update must itself have a variational structure.

Let the state of the material be fully known at time ¢, and let the deformation
F,.1 and the temperature T,,.; at time Z,.; be given. The problem is to determine
the state of the material at time ¢,.; from this information. We begin by discretizing

in time the flow rule (2.8) as:
F? .| =exp(AeP M) F?, (2.25)

where exp is the exponential mapping. Next, following Stainer and Ortiz [79] we

formulate an incremental work-of-deformation function of the form:

fn(Fn+17Tn+1§ E$L+1, M) =

We(Fg, 1, Tas1) + WP(Too1,6000) + At (AP /AL, T (2.26)

and define an effective work-of-deformation density W,,(F 1, T5.+1) by minimization
of f, with respect to the effective plastic strain €/, and the direction of plastic low

M, ie.,
Wn(Fn+1:Tn+1) = pmin fn(Fn+17Tn+1§5fL+1aM) (2'27)
En+l’

subject to constraints (2.9) and (2.10) and the plastic irreversibility constraint

NP =€l | —eP >0 (2.28)

n+1

12



‘Heré and subsequently, we append a label n to the effective work-of-deformation
density functidn W, to signify the fact that it is strictly incremental and depends
parametrically on the values of the state variables at time ¢,,. It bears emphasis that,
in the present variational formulation, the incremental effective plastic strain and
the direction of plastic flow are determined by the condition that they minimize the
incremental work of deformation.
The Ikey property of the effective work-of-deformation density is that W (Fpy1, Tni1)

acts as a potential for the first Piola—Kirchhoff stress tensor P,4; at time ¢, [79],

ie.,

oW,
8Fn+1

Pn+1 = (Fn+1aTn+1) (2-29)

The consistent tangent moduli follow by linearization of (2.29) in the form:

*W,

j AL -
DPon OF,110F 1

(Fat1, Tnt1) (2.30)

Evidently, the tangent moduli are symmetric owing to the potential character of the
incremental stress-strain relations. An efficient implementation based on the use of
logarithmic elastic strains has been given by Ortiz and Stainier [79]. The computation
of the exponential and logarithmic mapping and their first and second linearization

has been discussed at length by Ortiz et al. [77].

2.2.3 A minimum principle for the incremental problem

The incremental displacement problem for the deformation mapping ¢,_, at time

t,+1 is now obtained by inserting the relation

Fri1=Vopap (2.31)

which follows by evaluating (2.1) at time ¢,,;, into the variational update (2.29),
and substituting the result into the time-discretized equation of motion (2.20). The

crucial observation is that the resulting problem follows by requiring the stationarity

13



of the incremental potential energy functional:

pre ;2

- _P_o_ P+l — Pyl
@n[‘pn-é-lj - Ao 26 At ’ d%+
We(Vopni1) = poBnt1 - PnyldVeo — Trr1- @ny1dSo (2.32)
By 3Bo2
where
Qo1 = @ + Dtva + (1/2 = f) Atay, (2-33)

is the Newmark predictor for the deformation mapping.
We make the additional physical assumption that, among all stationary points of
®,,, the stable equilibrium configurations of the solid are the minimizers of ®,. This

finally leads to the minimum principle:

®uln] = inf Duln] (2.34)

where V is some suitable space of deformation mappings satisfying the essential
boundary conditions (2.3).

Consider now a pair of incremental displacements u and v applied to the deformed
configuration B, satisfying homogeneous essential boundary conditions over 0By;.
We then define the Dirichlet form of the problem as the second variation of the

potential energy @, at ¢, , i.e.,

0n[n 1] (0, V) = 6°@n[@n1](u, v) =

/ [ 2w v+ (Wa i os (Vonsr) - (Vou ® Vov)] dVo (2.35)
B, LBAOL

which, evidently, is symmetric. Thus, the variational structure of the problem ensures

the existence of a symmetric Dirichlet form. We further recall from the classical
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“¢alculus of variations that if W, is C? and ¢,,, € C'(By;R?) is a solution of the
Euler—Lagrangé equations of ®,, then a sufficient condition for ¢, , to be a weak

relative minimum of @, is that (coercivity condition)

an[@p 1) (u, 1) > Ciljull? (2.36)

for some constant C; and all u € W'2(B,;R?) satisfying homogeneous essential
boundary conditions over dBy; {103, 8]. In the sequel, we shall confine our attention

to solutions ¢,,_; for which (2.36) holds.

2.3 Asymptotic a-posteriori error bounds

The preceding developments provide a suitable framework for error estimation and
mesh adaption. We adopt a ‘fine-mesh’ viewpoint and confine our efforts to optimizing
fine meshes leading to high-quality finite-element approximations. Mathematically,
this focus gives us license to investigate the behavior of the finite element solutions
asymptotically as the mesh size h — 0. Throughout this section, we concern ourselves
with the finite element solution at a fixed time, e.g., time ¢,,1, and we shall omit the
corresponding label n+1 for clarity. For simplicity of notation, we also omit the label
n from the potential energy ®,, the Dirichlet form a,, and the effective incremental
strain-energy density W,,, which we have used to emphasize that these functions are

incremental and depend on the initial conditions for the time step.

2.3.1 A local projection method of error estimation

The Euler-Lagrange equations corresponding to the variational problem (2.34) take

the form

(D®[],v) = {%@[ga + ev]} = 0 (2.37)



for all v € V satisfying homogeneous boundary conditions on 8By;. Similarly the

finite-element solution satisfies the stationarity condition
(D®lpnl, vi) =0 (2.38)

for all v, € V), satisfying homogeneous boundary conditions on 0By;. Choosing

v = v3 in (2.37) and subtracting gives
(D®[pn; — D], va) =0 (2.39)

But, in the asymptotic regime of interest, ¢, may be expected to be close to ¢, and,

to leading order as h — 0, (2.39) becomes

ajp](en — @, Vi) =0 (2.40)

where a is the Dirichlet form (2.35). Identity (2.40) expresses the orthogonality of
the error function ¢y — ¢ and V}, in the Dirichlet form at ¢ asyrﬁptotically as h — 0.
It also shows that the finite-element solution (), possesses the ‘best-approximation’

property, namely,

ln — @llz = min |9, — @lle (2.41)
NREVR
where
llullz = Valel(u,u) (2.42)

is the energy norm at ¢. As it is well-known, the best-approximation property (2.41)

and the coercivity assumption (2.36) give the error bound (cf. [19])

E
len —elli < CZ(he)k|<Pe|k+1 (2.43)

e=1
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‘where k is the order of polynomial interpolation, | |k+1 is the Sobolev H**!-seminorm,
¢ is the restriction of ¢ to the domain Qf of finite element e, A€ is the size of element

¢ and we assume a lower bound for the aspect ratio of all elements.

-~

6,2 T

Figure 2.2: (k — 1) interpolant of ¢,

Instead of using the standard error bound (2.43) directly for purposes of mesh
adaption, following Radovitzky and Ortiz [82], we formulate a purely local adaption
strategy as follows. Assume that k > 2 and @, be the (k — 1)-interpolant of ¢,
Figure 2.2. For instance, if k = 2, i.e., if quadratic elements are used, then ¢, is a
piecewise linear deformation mapping which interpolates the positions of the corner
nodes of the elements. The strategy consists of estimating—and optimizing the mesh
so as to minimize—the error in ¢, as opposed to the error in the finite-element solution

p;, itself. Begin by noting that, by the triangular inequality,

1@ — el = 1(@n — 1) + (n — D S N@r = nlli +llon — 2l (2:44)

But, asymptotically as h — 0, the first term in the right-hand side is of order O(h*1),
whereas the second term is of order O(h*) by virtue of the bound (2.43). Consequently,

the first term dominates asymptotically with the result that

|@n — lls < Cllen — ealla (2.45)

for some constant C, asymptotically as h — 0. An application of the standard
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interpolation error bourds ( cf. [19]) to the right-hand side of (2.45) then gives

E
1@ — @l S CD (R et (2.46)
e=1
| asymptotically as A — 0.

A careful examination of (2.46) reveals the following: i) the bound in (2.46) is
expressed direcﬂy in terms of the finite-element solution ¢,, which makes the method
a posteriori; and i1) the bound involves derivatives of order & of ¢, which are well
defined and readily computed at the element level. The problem of mesh adaption
may now be identified with that of minimizing the bound (2.46), e.g., for a fixed

number of elements E. A straightforward derivation (see, e.g., [82]) gives

~1/(2(k—1)+d)

WX) = 4| 3 1D, (X)P (2.47)
|o|=k
and
4/(2(k—1)+d) t/d
1
A= |5 [ | Ziovenr 4% (2.48)
Bo al=k

Again we emphasize that the target mesh size distribution (2.47) is now defined in
terms of purely local element-wise indicators requiring only the evaluation of the
kth-order derivatives of the local finite-element solution, which greatly facilitates the
application of the method.

It should be noted that there are other research areas which deal with finding
the exact value of the constant C used in Equation 2.46. In those cases, adaptive
mesh generation is based on posteriori error estimates which are derived via duality
arguments yielding bounds for functionals of the error. Rannacher (see [83, 84]), a
leading investigator in this field, succeeded to derive accurate error estimates from
the solutions of linearized dual problems in the case of perfect plasticity. Previously,

the duality arguments were mainly applied to linear problems. However, in the case
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- of rate dependent large deformation plasticity, using those same methods is still an

open question.

2.4 Heat generation and transfer

Impact and erosion mechanisms involve a number of strongly interacting mechanical
and thermal processes. In the calculations, we would like to account for thermo-
mechanical coupling and the interaction between friction, temperature and plasticity.

The relevant balance law that needs to be considered in this case is the heat equation

/ pcTndV + / hndS = | q-VndV + / sndV (2.49)
B,

OB B; B

where p is the mass density, ¢ is the mass capacity, T is the temperature, h and s are
source terms of heat, q is a heat flux and 7 is a virtual temperature field. The heat
produced by friction and plastic work acts as a source for the thermal problem. The
corresponding thermal softening influences in turn the mechanical problem.

The details of the numerical approach used to account for thermo-mechanical
coupling may be found elsewhere [69, 15]. Here we restrict ourselves to noting the
main sources of heat accounted for in the calculations. During the deformation of the
bodies, a substantial amount of heat may be generated as a result of plastic working.

The corresponding rate of heat supply per unit volume may be written in the form:
s = pW? (2.50)

where WP is the plastic power per unit deformed volume, and 3 is the fraction of
plastic work converted into heat. The coefficient § is known to be a strong function
of deformation for some materials [70]. Here, however, we treat 3 as a constant for
the sake of simplicity. In addition, the rate at which heat is generated per unit area

as a result of friction is
h=-t-[v] (2.51)
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- where t is the contact traction vector and [v] denotes the velocity jump across the

contact surface. If, in addition, we assume Coulomb friction, (2.51) becomes:
h = ppv (2.52)

where p is the friction coefficient, p the applied pressure, and v the sliding velocity.
The heat h is apportioned to the bodies in contact in accordance with the following

equations [36]:

h1 = oayupv ' (2.53)
hy = (1—a1)upv (2.54)
where the labels 1 and 2 refer to the bodies in contact and

1

1+ /kacapa/kic1p1

is the fraction of the work of friction which is transferred to body 1. In (2.55), {p1, p2}

¢ = (255)

are the mass densities, {c;, ¢y} are the heat capacities, and {k;, k2} are the thermal
conductivities of the bodies in contact.

The mechanical and thermal field equations are coupled in two differenf ways.
The mechanical response feeds into the thermal equations through the heat gener-
ation mechanisms expressed in (2.50) and (2.51). The reverse coupling comes from
the softening effect of the temperature on the yield stress. A staggered procedure
is adopted in order to account for this two-way coupling (e.g., [80, 61, 69, 15]). An
isothermal explicit-dynamic step is first taken, based on the current distribution of
temperatures, leading to an update of all mechanical variables. Since the tempera-
tures are held constant throughout this step, they enter the constitutive relations as
a parameter. The heat generated is computed from (2.50) and (2.51) and used to
compute the heat source array energy-balance equation. A rigid-conductor forward-
Euler step is then taken at constant mechanical state, leading to a new temperature

distribution. In the applications of interest here, the mechanical equations always set
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~ the critical time step for stébility (e.g., [47, 48, 9]).

The Thermo-Mechanical coupling is summarized in the following steps:

1) Initialization of T}, n=0

2) Isothermal mechanical step: @, Vn, @n, Tnty1 = @pni1s Vorl, 8ntl, Ingl

3) Heat generation (bulk + contact)

4) Rigid conductor step: ¢, 1, Vat1, 8nt1, Insl = Pni1s Vntls Bnil, Ini2

5)n —n+1, go to 2)

2.5 Contact algorithm

Contact and friction must carefully be accounted for in impact simulation. The
contact /friction algorithm enforces the impenetrability constraint, and determines
the frictional forces and the extent of frictional dissipation, which is in turn fed into
the energy equation as heat. Owing to the simple contact geometries considered
here, we adopt a conventional master/slave approach with a predictor/corrector split
within the Newmark time-stepping algorithm. A more general algorithm, which is
applicable to complex nonsmooth contact situations, may be found elsewhere [54].
The predictor part of the Newmark algorithm neglects the contact constraints

and, therefore, consists of an unconstrained step, with the result:

red At2 =

T = @+ Atva+ —an (2.56)

) At ]
VI = va "'2—'(371. +ap.1) (2.57)

This predictor solution needs to be corrected in order to comply with the impene-
trability constraints. The net result of imposing these constraints is a set of self-
equilibrated contact forces that modify the predictor positions and velocities. Since

the contact surfaces are presumed smooth, normals are well-defined and the surfaces
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can be unambiguously classified as master and slave. The final corrector configuration

is, therefore:

2 NS S
S.pred _ At Nn+1 + Fn+1

Prr1 = Pl 5 e (2.58)
. NS, +F3

Vail = Vgﬂd—At—‘—_nH.Ms = (2.59)
N, + FX

okt = Va4 At (2.60)

Here MO denotes the nodal mass and the superscripts ()M and ()S designate the
nodes which belong respectively to the master and slave surfaces. It bears emphasis
that the master and slave nodal subsets are strictly disjoint. Finally, the vectors N

and F are respectively the normal and frictional forces.

Figure 2.3: Slave node penetrating a master surface triangle

The centerpiece of the algorithm is the formulation of an appropriate system
of normal and frictional forces. To this end, consider the configuration shown in
Figure 2.3, in which a master surface triangle is penetrated by several slave nodes.
For each of the penetrating slave nodes, let § be the normal depth of penetration to be
corrected by the contact forces. Each slave node additionally defines a relative velocity
v, with respect to the penetration point. This relative velocity is used to compute
the frictional forces. The contact/friction constraints determine a local problem with

the normal and frictional slave and master forces as the unknowns. The normal slave
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force is obtained from consérvétion of linear momentum as a direct function of the
penetration 4 a’nd the master normal, n. The frictional slave force is assumed to lie
on th_e master plane in the direction of the relative velocity, and its magnitude 1s
given by the frictional law as a function, e.g., of the pressure, relative sliding velocity

and temperature. These assumptions lead to the expressions:

26
Noy = MSAz n’ (2.61)

Fon = f®,v,T)tan (2.62)

The master forces are given by carefully enforcing conservation of linear and an-

gular momentum, which results in a system of equations per master triangle of the

form:

N3, = > NY, - (2.63)
nodes ..
F§+1 = Z Fn+1 (2.64)
nodes
0 = (NS+1 X ‘Pn+1 Z Nn+1 X ‘Pn+1) X Bpy1 (2.65)
nodes
0 = (Fayi X g1~ Z Fol1 X ¢ha) - Das (2.66)
nodes

It bears emphasis that the approach, which has been described, improves upon
other master/slave predictor/corrector contact/friction algorithms, which do not ex-
actly conserve linear and angular momenta. The contact algorithm developed by
Taylor and Flanagan [99, 100] for the PRONTO2D and PRONTO3D explicit dy-
namic codes, which was used by Camacho [13] is therefore improved. It should also
be pointed out that, due to the explicit treatment of the dynamics and the mas-
ter /slave approach adopted, each slave node defines a simple local problem, which
can be solved independently of the rest. This property renders the algorithm ideally

suited for parallel processing.
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Chapter 3 Adaptive meshing

3.1 Introduction

In the preceding chapter, we have discussed a general framework for mesh adaptiv-
ity in strongly nonlinear problems together with thermal aspects and the contact
algorithm. This chapter is devoted entirely to one component of the finite-element
methodology: adaptive meshing. Adaptive meshing is essential to the realization
of the calculations in this thesis to eliminate deformation-induced distortion which
inevitably accompanies unconstrained plastic flows. Adaptive meshing coupled with
error estimation is also used to solve fine features in the solution such as shock fronts,
microstructural evolution, singularities and material instabilities (shear bands). The
chapter is organized as follows. Section 3.2 describes the adaption strategy, i.e., the
coupling between the error estimates and the refinement and coarsening algorithms.
We discuss transfer issues in Section 3.3. We will emphasize the problem of diffusion
and the coupling of remeshing with our contact algorithm. Section 3.4 explains in
detail the refinement algorithm whereas Section 3.5 describes our coarsening stré,tegy.
Section 3.6 is concerned with reference updating. This will emphasize that remeshing
should be done on the deformed configuration to obtain good quality meshes. Finally,

we illustrate the methodology (Section 3.7) with static convergence tests on a cracked
solid.

3.2 Adaption strategy

A complete remeshing strategy based directly on the optimal mesh size distribution
(2.47) has been discussed by Radovitzky and Ortiz [82]. In this approach, the mesh is
regenerated in its entirety at regular intervals and reconstructed by a combination of

nodal insertion in regular face-centered-cubic arrangements followed by a constrained-
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 Delaunay triangulation. The advantage of this method is that it affords a very high
degree of control over the elements aspect ratio. However, while sufficient conditions
for the existence of a constrained-Delaunay volume triangulation consistent with a
given surface triangulation are known (e.g., [1]), in practice those conditions may not
be attained for geometries with very small local feature sizes. An additional difficulty
in the approaches based on complete remeshing is that the transfer of state variables
may be too diffusive in problems with sharp deformation gradients, e.g., in problems
involving shear bands. By contrast, local operations such as subdivision and edge
collapse are not generally afflicted by closure problems and tend to minimize the
extent of diffusion incurred during the transfer of state variables.

In the calculations presented in this thesis, remeshing is driven by the error bounds
discussed in the foregoing. The connection between the two is as follows. We take

each element contribution
It = ()l (3.1)

to the error bound (2.46) as a refinement indicator. We slate an element for subdivi-

sion when
IF >TOL, (3.2)

In addition, we assign to each edge e in the mesh a coarsening indicator I7 equal
to the maximum of the error indicators I? in the elements belonging to the 1-ring

incident to edge e. We then target an edge e for collapse when
It <TOL, (3.3)

Evidently, if TOL. < TOL,, at any given stage of the solution there may be a sizeable
fraction of elements which does not qualify for refinement or coarsening and, therefore,
remain unchanged during remeshing. As discussed in Section 3.5, we append to

Equation 3.3 additional conditions to ensure that the collapse operation does not
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-compromise the quality of the mesh or results in unacceptable volume changes due to
the coarsening of the boundary description. We also resort to edge collapse in order

to remove slivers from the mesh.

3.3 Mesh-to-mesh transfer operator

One critical aspect which sets history-dependent materials apart from elastic materi-
als within the context of adaptive meshing is the need to transfer or ‘remap’ history
state variables from the old mesh to the new mesh. Indeed, the incremental energy
function W, (F,,,) which serves as the potential function for the incremental stress-
strain relations (2.29) and for the computation of the tangent moduli (2.30) depends
parametrically on the state { F%, q,} at the beginning of the time step. If the triangu-
lations 7, and 7, at times ¢, and %,.1, respectively, are different due to remeshing,
the initial state variables { F?,q,} are interpolated on 7,, whereas the updated state
variables, nodal coordinates, velocities and accelerations are interpolated on the new
mesh T,.1. |

Ortiz and Quigley [76], for static problems, and Radovitzky and Ortiz [82], for
dynamic problems, have shown how the variational principle (2.34) in fact supplies
the requisite transfer operators. Conceptually, the situation is, simply, that the var-
jous fields at times t,_;, t, and t,,; which enter into the computation of the incre-
mental potential energy (2.32) are interpolated on different meshes. The variational
transfer operator for displacements, velocities and accelerations turns out to be a
mass-weighted L?-projection from 7, to Tn.1 [76]. However, by recourse to mass
lumping, the mesh-to-mesh transfer operator for nodal fields may simply be reduced
to a direct evaluation of the fields, as interpolated on the old mesh 7y, at the nodes
in the new mesh 7,.:. Because of the local nature of the bisection and edge-collapse
operations described subsequently, the transfer operator can be applied locally at the
elements level within 7,. To facilitate re-interpolation of nodal variables, the new
nodes are placed by way of the isoparametric mapping evaluated at pre-determined

natural coordinates (see, e.g., Figure 3.11).
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- In order for the variational principle to dictate the state-transfer operator, a pre-
cise form of the state-variable interpolation must be explicated. The representation
adopted here is based on the Voronoi tessellation associated with the set of all quadra-
ture points in the mesh. We choose to represent the state variable fields as constant
over each of the Voronoi cells in the tessellation. Evidently, the value of the state
variables over each cell equals their value at the corresponding quadrature point. For
this representation, the variational approach of Ortiz and Quigley [76] reduces to sim-
ply assigning to each quadrature point on the new mesh the full set of state variables
of the closest quadrature point in the old mesh. Here again, owing to the local nature
of bisection and edge collapsé, the state-variable transfer can be effected locally at
the element level.

The overriding advantage of piecewise constant representation for the state vari-
ables, and the resulting transfer operator, is that whole collections of attendant state
variables are transferred from quadrature point to quadrature point as blocks, thus
preserving all internal constraints and the compatibility between the various state
variables. These requirements may be violated by transfer operators which involve
extrapolation from several quadrature points. Thus, for instance, in the context of
isochoric plasticity, i.e., volume preserving, the plastic part of the deformation gradi-
ent F? must have a determinant of 1. This nonlinear constraint is preserved by the
piecewise constant transfer operator, but is violated upon extrapolation in general.
Likewise, in the context of ideal plasticity, stresses transferred in accordance with the
piecewise constant transfer operator, unlike extrapolated stresses, are guaranteed to
satisfy the yield conditions.

Next, we comment on two critical issues for the transfer operator: diffusion and

the coupling of transfer with our contact algorithm.

Diffusion Many adaptive meshing methods have as a significant drawback the pro-
duction of diffusion. For instance, the advancing front method [17, 29, 83] presents
the disadvantage of proposing no guarantees regarding the preservation of the demar-

cations of singularities. A schematic representation of diffusion is given in Figure 3.1.

27



A one-dimensional mesh (black points) is represented together with its interpolated
field. There exists a zone, delimited by points A and B, where the values of the
interpolated field are higher. The remeshing method replaces the old nodes by new
nodes (in red in the figure). The boundary of the previous zone has now changed (A’
and B’) with its thickness being larger and the high intensity peak at C disappearing.

This adaptive meshing scheme is clearly diffusive.

interpolated field

= e Em o Em oE m= o= =
- o am w—
R e

,_______
>
@

old node new node

Figure 3.1: A diffusive remeshing scheme

Our strategy for adaptive meshing preserves the mechanical fields in an optimum way
during the transfer operation from the old mesh to the new mesh. The subdivision
method is not diffusive as all the new nodes are introduced within the already existing
elements. Refinement does not change the boundary of shear bands and plastic
or thermal boundary layers. The edge-collapse algorithm, which removes nodes, is
on the other hand diffusive. However, its effect is delimited to regions where the
error estimates are low. Therefore, its diffusive effect has no negative impact on the

numerical results in the “mechanically interesting” regions.

Coupling remeshing/contact The first approach chosen for the nodal transfer
was to interpolate the nodal values at every new point using the shape functions

and the nodal values of the previous mesh. As the shape functions are quadratic,
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this method of interpolation is inconsistent with the contact algorithm. Indeed, the
contact algoritflm searches penetration assuming that every facet is plane (linear in-
terpolation). The negative impact of this implementation is that prior to remeshing,
a.ssurrﬁng the contact algorithm was successful, there is no penetration. However,
after remeshing, some of the new nodes are either inside the contacting body and the
contact needs to be restored, or away from the contact face and thus are not instan-
taneously accelerated due to contact forces. This source of mechanical fluctuations is
illustrated in the following example. Figure 3.2 represents the initial mesh of a cube.
One face is held fixed whereas the opposite face is in contact with a larger cube,
which is not represented in F igure 3.2. The larger cube is moving to the right at a
constant velocity and compresses the small cube. The contact face of the small cube
is defined as a slave face in the contact algorithm. The non penetrability condition
of the algorithm leads to a displacement at a velocity V of the face in the positive Y-
axis direction. The contact face is refined using the subdivision algorithm at regular
intervals of time. Figure 3.3 illustrates the negative effect of a quadratic remeshing
transfer algorithm coupled with the contact algorithm. As can be observed from the
fluctuations on the contact face instabilities have developed. The contact surface is

non smooth which is totally unphysical and based solely on numerical error.

N

i

Fixed

v<
NN

Figure 3.2: Initial configuration
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Figure 3.3: Illustration of the instabilities generated by the contact algorithm on a
contact face

When dealing with contact surfaces, another approach for the nodal transfer
should be taken to be consistent with the contact algorithm. The mechanical fields
at the new nodes are obtained by linear interpolation of the old fields. Figure 3.4
illustrates the method when a quadratic tetrahedron is refined along an edge. The
value at the four new nodes are computed using the values of nodes 1 and 5 for node
11, 5 and 2 for node 12, 6 and 7 for node 14 and 8 and 9 for node 13. This approach
proved to be the most efficient. The effect on our model of the corrected transfer

algorithm is shown in Figure 3.5. The contact face is perfectly smooth.
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Figure 3.4: Illustration of the nodal transfer when subdividing a tetrahedron on a

contact face
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Figure 3.5: Successful nodal transfer algorithm
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3.4 Subdivision algorithm

The first component of the adaptive meshing capability consists of the subdivision
algorithm for mesh refinement. Our particular implementation of subdivision is based
on Rivara’s longest-edge propagation path (LEPP) algorithm [91, 89, 90]. Whereas
the idea of a longest-edge propagation path is clear in two dimensions, describing
the algorithm in three dimensions is less obvious. In three dimensions, we will prefer
the use of the term longest-edge propagation graph (later called LEPG) to the term
longest-edge propagation path. The reason why we deliberately choose the term
graph will become clear in the follc-)wing and it arises from an attempt to extend the

description of the method of Rivara to three dimensions.

V2
\a V3
Ay
A
VA \
Ve o,
A Vb
V4
V5

Figure 3.6: Bisection of a tetrahedron and the 1-ring incident to the bisected edge

Figure 3.6 illustrates the subdivision of a tetrahedron in three dimensions. Follow-
ing Rivara [91, 89, 90], the subdivision of an element proceeds by bisection along
its longest edge. In three dimensions, when an edge is bisected conformity demands
that the entire ring of tetrahedra incident to the edge be bisected concurrently. This
operation is illustrated in Figure 3.6, which depicts the bisection of edge e = {V,, V;}
of tetrahedron {Vi, V4, V;, V,}, resulting in the insertion of vertex V,. The remaining

tetrahedra in the ring corresponding to edge e, namely, {V,, V4, V4, V3}, {4, V., Vi, Va}
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and {V,, V4, V3, Va}, must be bisected as well, resulting in the addition of four tetra-
hedra to the mesh. Evidently, the number of tetrahedra in the ring of an edge is

arbitrary and varies widely in typical meshes.

(a) (b)

Figure 3.7: A degenerate subdivision algorithm: (a) initial mesh, t0 is subdivided
(red) (b) degeneracy of the mesh after 6 iterations

Simple longest-edge bisection alone may result in degenerate elements. Figure 3.7
illustrates how a two-dimensional mesh degenerates when a refinement operation of
the upper left triangle is repeated using only the adjacent triangle. We overcome
this difficulty by bisecting a string of contiguous elements, or LEPG, starting at the
target element. Figure 3.8 illustrates a three-dimensional LEPG. Each vertex in the
directed graph represents an element of the mesh. The vertex are linked to each
other by directed edges which are the longest edges of the elements from which they
emanate. In the case of Figure 3.8, we start from tetrahedron K; which is adjacent
by its longest edge e; to five other tetrahedra: K, K3, K4, K5 and Kg. We will
explain in detail the construction of the LEPG in the direction of K, as it is the
most interesting case in the figure. Indeed, K, has an edge e; which is larger than e;.
This edge is adjacent to two other tetrahedra, K; and Kg. The longest edge of K
is also ey and thus is a terminal vertex of the graph. Therefore, the edge joining the

vertices Ky and K; proceeds in both directions; it is in fact a cycle. K7 is our first
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candidate for subdivision. Kg, on the other hand, has a larger edge e; which brings
the algorithm t;) the terminal tetrahedron Ky. The vertex K5 has another interesting
property: it has an edge e,, shorter than es but larger than e;. Therefore, the element
Ky, which is adjacent to K, along e, is a new member of the LEPG. K;; has another
longest edge es, which belongs to K7, a vertex that was previously encountered in the
graph. In two dimensions, the term longest edge propagation path is clearly valid as
the algbrithm is sufficiently described by a tree. However, in three dimensions, the

obtained configurations are graphs.

Figure 3.8: Longest-edge propagation graph of K,

In practice the graph does not need to be constructed in full. In fact, obtaining the
graph beforehand is a difficult task. It is easier to bisect the terminal tetrahedra as
soon as they are encountered. Suppose that the tetrahedron K, as in Figure 3.8,
is to be refined. Then the LEPG is generated recursively by the addition of new

tetrahedra at the end of the path in accordance with the following rules:
1. Initialization: LEPG = {K;}.
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2. Let LEPG = {K1, K, ..., Ki11} after k iterations of the algorithm. Then, the
algorithm terminates if K, is a terminal tetrahedron, i.e., if the following

condition is satisfied:
o The longest edge of K, is shared with Kj.

3. IfLEPG = {K}, K5, ..., Ki+1} and K, is not a terminal tetrahedron, then the
new path is LEPG = {K, K, ..., Kyy1, Ki+2}, where Ki» is the tetrahedron

incident to K. along its longest edge.

4. If LEPG = {K),Ks,..., K41} and Ky is a ';erminal tetrahedron, then Ky,
is bisected along its longest edge and the new path is LEPG = { K4, K», ..., Ki}.

This step results in the addition of new nodes to the mesh.

5. The previous rules are repeated until K is bisected.

Figure 3.9 describes the order in which the vertices of Figure 3.8 are visited. Each
line corresponds to a bisection of a tetrahedron. For instance, the first line signifies
that the LEPG = {K,, K>, K3, Ko} and K is bisected which brings back the LEPG
to Kg. Targeting initially K, for refinement leads to the bisection of 13 elements of

the mesh (K- is counted twice).

Figure 3.10 illustrates the propagation of the refinement in two dimensions. Tri-
angle T1 is targeted for refinement. Its longest edge is adjacent to T2 which in turn
has another longest edge adjacent to T3. The longest edge of T3 is on the boundary
and thus T3 is refined. At the next step, as T2 and T’3 share the same longest edge,
we refine both triangles and introduce node 2. Node 3 and 4 are added in the same

way. The algorithm terminates when triangle TO is refined.
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Figure 3.9: Order in which the tetrahedra are bisected during the LEPG of K;

When higher-order elements are used, the additional off-vertex nodes may be added
after the base simplicial complex has been refined. Figure 3.11 illustrates this oper-
ation for 10-node quadratic tetrahedra. It may be noted that the bisection of one
quadratic tetrahedron results in the insertion of at most four new nodes V,, V4, V. and
Vg, Figure 3.11. Indeed, some of these nodes could have already been created at an
earlier time in the LPEG if an adjacent element had been bisected. As the bisection
of an initial element leads to the refinement of a whole graph (LEPG), an element
could even be visited twice (or more) for refinement, Figure 3.8. Furthermore, this
could happen at possibly two different edges and two far apart times. It is there-
fore important to have suitable data structures to verify that the nodes introduced
by bisection are new or simply repeated. Appendix A contains the C-language data

structures used in the subdivision algorithm (and also in the edge-collapse algorithm
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Figure 3.10: Longest-edge bisection of triangle #5: (a) initial mesh; (b) first step in
the process; (¢) second step in the process; (d) final mesh

which will be explained in Section 3.5). We are using linked lists of nodes and tetra-
hedra to facilitate the dynamic memory allocation of new elements. It is important
to emphasize that each element in the tetrahedra list is pointing to nodes via the con-
nectivity array (ix) and the temporary storage space (xadd) for the nodes that have
been created on adjacent tetrahedra. Also, each node is pointing to the tetrahedra to
which it belongs (adj structure). These cross linkings clarify the algorithm and speed
up the searches tremendously. The following data structures do not correspond to
the classical data structures used in finite-element calculations. They are therefore
created locally, in the remeshing algorithm, for the purpose of clarity and efficiency.

At the end of the procedure their content is rewritten in the proper finite-element for-
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Figure 3.11: Bisection of a quadratic tetrahedron

mat and the structures are destroyed. Using the local data structures the algorithm
is organized as follows (see Appendix B). For all the elements of the mesh, we check
if their error estimate is above a user defined threshold (TOL,). If so, we call the
LongestEdgePath subroutine, which code is reproduced in Appendix B. The Con-
form subroutine searches the longest edge, shifts to one of the adjacent tetrahedron
and checks if it reached a terminal tetrahedron, meaning one which shares the same
longest edge as the previous one in the path (ListConform data structure). If this
is verified the subroutine is exited, otherwise it calls LongestEdgePath recursively.
Whenever SplitTetrahedron is called, the algorithm is pointing to the terminal tetra-
hedron of the ListConform data structure. This call has the cffect of subdividing the
element and conducting the local transfer of the nodal and element variables (Gauss
points).

The algorithm was verified reproducing the results of Rivara [91]. Four tetrahedra
of varying qualities were chosen and subdivided recursively using the 3-D LEPP.
Following Rivara [91] and Sommerville [95] we measure the quality of the tetrahedra

constructed. We associate to each vertex P of each tetrahedron T the value:

¢p = sin" (1 — cos’ap — cos® Bp — cos® yp + 2 cos ap cos Bp cos ’}’P)l/2 (3.4)
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where ap, fp and yp are the three coterminous planar interior angles associated with
vertex P. The square root of the term involving the angles is called the sine of the

solid angle of the tetrahedron. The quality of a tetrahedron is then:

¢é1 = minper) PP (3.5)

The results of Rivara were reproduced exactly up to a certain refinement level where
the choice of the longest edge is not unique and bifurcations in the meshes are ob-
tained. The LEPG algorithm always terminated after a finite number of steps and

the quality of each mesh at high degrees of refinement had a lower bound.

3.5 Edge collapse

Next we turn to edge collapse as a mesh-coarsening method. In three dimensions,
interior edges may be collapsed to their midpoint, which results in a net loss of
one corner node and the elimination of the complete ring of tetrahedra incident to
the edge. Figure 3.12 illustrates this basic collapse operation on a simple three-
dimensional mesh. The initial mesh contains seven nodes and five tetrahedra: ¢; =
(Vo Va, Vi, Vab, o = {Vi, Vo, Vi, Vo), ts = {Va, V5, V5, Vi), ta = {Vi, Vi, Vi, Va} and
ts = {Va, V4, V4, Va}. The collapse of edge {V,, V4} onto the midpoint V, eliminates
the tetrahedra t4 and t5 and results in a coarser mesh consisting of six nodes and the
three tetrahedra t1, £, and #;. These tetrahedra are deformed from ¢;, t; and 3 by the
dragging of V, and V, towards the midpoint V.. Of particular concern as regards the
implementation of the method is the treatment of boundaries and material interfaces
(cf. [96, 45, 55, 37]). In two dimensions, we distinguished four cases depending on
the position of the nodes of the edge to be collapsed. A node can either be inside
the domain (interior node) or on the boundary of the domain. In that case it can be
on an edge or at the intersection of two edges (corner node). The following cases are

represented in Figure 3.13:

e the two nodes are inside the domain (Figure 3.13(a))
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V3
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Vi

V5
Figure 3.12: Basic edge-collapse operation in three dimensions

e one node is inside the domain, whereas the other is on the boundary (Fig-

ure 3.13(b))
e the two nodes are on the boundary, but there are no corner nodes (Figure 3.13(c))

e the two nodes are on the boundary and one is a corner node (Figure 3.13(d))

The cases where the two nodes belong to two different global edges, or are both
corner nodes, are forbidden. Allowing them would change drastically the boundary

representation of the solid.

In three dimensions the number of possible situations is larger. A complete enu-
meration of these cases is collected in Table 3.1. The operations listed in the table
are designed so as to preserve the topology of the domain and sharp geometrical fea-
tures of the boundary such as global edges and vertices. It should be carefully noted,
however, that the identification of global edges and vertices depends on the choice of
tolerance. In our calculations, the edges are determined keeping in memory the initial
boundary representation of the solids. A boundary edge could also be identified as a
global edge when the dihedral angle subtended by the boundary at the edge is under
(sharp edge) or exceeds (groove) a given tolerance. Finally, a boundary vertex is

identified as a global vertex if it is at the intersection of two global edges.
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(a) 2 nodes inside the domain, projection (b) 1 node on the boundary, the
on C other inside the domain, projection
on A
Boundary -~ p A g Boundary

(¢) 2 nodes on the boundary, (d) 2 nodes on the boundary, one cor-
no corner nodes, projection on ner node, projection on A
C

Figure 3.13: Collapse operations in 2-D, the old mesh is represented in black, the
blue lines disappear and the dashed red lines are new edges

In some cases, the edge-collapse operation worsens the aspect ratio of the ele-
ments. This is not particularly critical from an accuracy standpoint since, by the
nature of coarsening criterion, edge collapse tends to occur in regions where the de-
formation gradients are small and the elements are nearly uniformly deformed. Even
so, we append to the coarsening criterion additional criteria in order to prevent an
unacceptable deterioration of the mesh quality. Following Rivara [91] (Equations 3.4
and 3.5), we adopt as the measure of the quality of a tetrahedron the minimum of

the solid angles at its four vertices. This measure ranges from 0, corresponding to a
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i edge Vi Vo operation
interior - interior interior collapse to midpoint
interior boundary interior collapse to V;
interior boundary boundary no collapse

' boundary face

face interior

face interior

collapse to midpoint

boundary face

face boundary

face interior

collapse to V;

boundary face

face boundary

face boundary

no collapse

global edge

edge interior

edge interior

collapse to midpoint

global edge

edge boundary

edge interior

collapse to V;

global edge

edge boundary

edge boundary

no collapse

Table 3.1: Possible configurations for the edge collapse in three dimensions

sliver, to 45° for a regular tetrahedron.

As already mentioned, we additionally use edge collapse to eliminate such slivers
as may be present in the mesh. We identify slivers as those elements whose quality
measure is below a certain tolerance. A final consideration concerns loss of mass due
to the coarsening of the boundary description. Taking all these considerations into
account, we perform edge collapse if one or more of the tetrahedra incident on an

edge are slivers, or if all the following conditions are met simultaneously:

1. The edge error indicator I¢ falls below the threshold TOL..
2. Edge collapse is geometrically possible, Table 3.1.

3. The average quality of the product tetrahedra exceeds the average quality of

the original tetrahedra.

4. The quality of the worst product tetrahedron exceeds the quality of the worst

original tetrahedron.

5. The total volume of the product tetrahedra is close to the total volume of the

original tetrahedra.

In our experience these criteria provide an effective means of mesh-quality con-

trol during coarsening.
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3.6 Ref,erence' updating

In impact and shear band calculations where large plastic deformations occur, the
mesh may get heavily distorted. Adaptive meshing is a tool that has been developed
in order to overcome this difficulty. However, when the displacements are large,
adaptive meshing alone is not sufficient. It has to be coupled with reference updating.
Changing periodically the reference configuration allows us to remesh on the deformed
configuration. As a consequence, a better mesh will be produced to continue with
the calculations. We update the reference configuration by adding the displacements

to the coordinates of the reference configuration, with the result

P =pres +d (3.6)

Figure 3.14 represents the change from the initial reference configuration, By to the
new one By.s. Fy_,rey maps By to Byej. F,ef—n maps By.s to the configuration B, at
time t,. F,_,n+1 maps B, to the configuration B, at time t,,. Those deformation
mappings can be related to each other via composition of functions; see Equations 3.7-
3.10. Even though the reference configuration is updated, one always computes the
deformation gradient with respect to By to preserve the whole history of deformation;

see E(juations 3.9, 3.10.

Fn—n+)

Figure 3.14: Changes of configurations
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Fony = Fn—-)n-‘-lFref—)nFO—-)ref (3.7)

with

FO—)n*l = VO(Pn+1 (38)
FO—)ref = VO‘Pref (3-9)
Foiny = FO-—m+1F{-)—~1m (310)

When the reference configuration is updated during remeshing, the shape functions
and their derivatives will be computed from then on with respect to the reference
configuration. To obtain the deformation gradient with respect to By it is necessary

to modify the shape functions using the current value of the deformation gradient.

3.7 Static convergence tests

In this section we test the performance of the method of mesh adaption in the presence
of strong elastic singularities. We will analyze the convergence properties as well as
the quality of the meshes which are produced by subdivision and edge collapse. To
this end we consider the standard problem of a mathematically sharp crack in a linear
elastic solid, Figure 3.15. The precise dimensions used in calculations are H/L = %,
W/L = ¢ and a/L = , and the Poisson’s ratio of the solid is » = 0.3. In order for

the problem to possess an exact solution, we subject the boundary of the domain of
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analysis to the plane strain mode-I displacement K-field (e.g., [86]):

. KI T 0 . 9 0

Up = 5 / 57 G085 [3 4v — 1 + 2sin -2-] (3.12)
K [r . 6 6
= L./ —sin=|3-4 - 27

u3 o\ 2r sin 3 [3 v+1-—2cos 2} (3.13)

Here (r,6) denotes a system of polar coordinates defined within planes perpendicular
to the crack front, with the polar angle # measured from the plane of the crack. The
symmetry of the solution about the plane of the cratk permits restricting the analysis
to the halfspace X3 > 0, Figure 3.15. The initial coarse mesh used as the starting
point of the calculations is of uniform size and contains 576 elements, Figure 3.16,
and was generated using the advancing-front Delaunay method of Radovitzky and
Ortiz [83]. The loading parameter K; is increased from zero to a maximum value
K;/E+/a = 0.6, where E is the Young’s modulus of the material and a is the crack
length, and subsequently decreased to zero again. All calculations are performed

using ten-node quadratic tetrahedral elements.

Mode-I Displacement Solution
Applied to Oute} Surfaces T X3

2 !

' Stress Free X

—[ir
H .

| o e

Figure 3.15: Initial geometry
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Figure 3.16: Initial coarse mesh used in convergence tests
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Figure 3.17: Evolution of the mesh in the cracked solid test: a) Intermediate mesh
with 8 levels of subdivision, 265 elements; b) Final mesh at peak load with 13 levels
of subdivision, 3807 elements
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()

Figure 3.18: Cracked solid test: Detail of the near-tip region of the final mesh at peak

load; a) Overall view; b) Full view from below of the mesh on the plane of the crack;
¢) Detail of the near-tip region
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Figure 3.19: Histograms of element quality at two stages of loading: a) Intermediate
mesh with 8 levels of subdivision, 1127 elements; b) Final mesh at peak load with 13
levels of subdivision, 3807 elements

The evolution of the mesh during the loading phase is shown in Figures 3.17-3.18.

The tolerance used in the subdivision criterion (3.2) is TOL, = 0.3. It is evident from

the figures that the mesh undergoes increasing refinement near the tip as the loading

parameter K is increased. Mesh quality histograms at two stages of deformation are

shown in Figure 3.19. As before, the quality of a tetrahedron is identified with the

sum of the solid angles at its four vertices [95, 91], Equations 3.4 and 3.5. We classify

the elements into eight groups depending on their respective quality:

e quality from 0 to 5 (very bad quality)

quality from 5 to 10 (poor quality)

quality from 10 to 15 (below average quality)
quality from 15 to 20 (average quality)
quality from 20 to 25 (above average quality)

quality from 25 to 30 (good quality)
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e quality from 30 to 35 (very good quality)

o quality from 35 to 40 (highest possible quality)

The good quality of the elements generated by the LEPG bisection algorithm, which
for the most part remains above 15, is noteworthy. The optimal mesh size distribution

for the displacement field (3.13) predicted by (2.47) is (see [82]):

27T ?
K7

1/4
h(r,0) = A ( ) 3/ [ (33 — 56w + 3202 + 3(—7 + 8v) cos(26) — 4cos(36))”

Gof—

+ (21 — 40v + 32v% + 3(5 — 8v) cos(26) + 4cos(36?))2}
(3.14)

where the constant A follows from (2.48). Thus, the optimal mesh consists of elements
whose size decreases to zero as r3/% as the crack tip is approached. As may be seen
from Figure 3.17, the refinement strategy outlined in Section 3.4 effectively results in
an optimal element-size distribution.

The convergence curves for the error ||©), — @egaclll and ||@f — Peracell, predicted
by the method, are also shown in Figures 3.20-3.21. The convergence curves clearly
exhibit the optimal convergence rates, O(N~2/3) for ¢, and O(N~'/3) for ¢, despite
the presence of a strong elastic singularity. By contrast, the convergence fate is
sub-optimal in the case of uniform refinement, as expected from the presence of

singularities in the solution.
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Figure 3.22: Illustration of the edge-collapse algorithm: a) Unrefined mesh after
unloading; b) Element quality histogram

The final unrefined mesh after unloading is shown in Figure 3.22a. As is evident
from this figure, the coarsening algorithm eliminates most of the fine mesh introduced
by subdivision, as expected. A number of residual elements smaller than the initial
element size is left in the final unrefined mesh due to the aspect-ratio constraints
imposed on the edge-collapse operation (cf. Section 3.5). Thus, we see that these
constraints inhibit coarsening to some extent. A histogram of element qualities for
the final unrefined mesh is shown in Figure 3.22. This histogram suggests that the

edge-collapse algorithm does effectively preserve the quality of the mesh.
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3.8 ConclusiOnS

We have presented a general framework for adaptive mesh refinement and coarsening
in three-dimensional problems. In our formulation, mesh adaption is driven by a
posteriori global error bounds derived on the basis of a variational formulation of the
incremental problem. The particular mesh-refinement strategy adopted is based on
Rivara’s longest-edge propagation path (LEPP) bisection algorithm [91, 89, 90] and
has been extended to three dimensions. Our strategy for mesh coarsening, or unre-
finement, is based on the elimination of elements by edge collapse. The edge-collapse
algorithm is also used to remove elements with low aspect ratio. The convergence
characteristics of the method in the presence of strong elastic singularities have been
tested numerically. We find that the method exhibits the optimal convergence rate
predicted by approximation theory, whereas uniform refinement suffers from a sub-

optimal convergence rate.
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Chapter 4 Application to adiabatic shear
banding |

4.1 Introduction

Solids deforming at high rates often develop narrow layers of intense shearing [5, 22,
12, 97, 6, 106, 92]. Outstanding features of dynamic shear bands are their thinness,
with typical widths of 10-100 xm [60], high local shear strains, which can reach values
of up to 100 [106, 92, 102}, ultra-high local shear strain rates, often in excess of 108571
'106, 92, 102], local temperature rises of several hundred degrees [20, 38, 39, 67, 18, 70],
and high propagation speeds, sometimes in excess of 1000 m/s [70, 110, 111, 108, 34].
In addition, cracks, whether the result of brittle fracture {6, 27], or of microvoid
growth and coalescence [51, 46, 35, 109, 70], often form along shear bands.

Shear banding furnishes a prime example of the class of problems to which the
framework outlined in the foregoing is intended to apply. In particular, we note
that the underlying constitutive behavior loses stability and, correspondingly, the
equilibrium equations lose ellipticity following the onset of shear banding (e.g., [88,
71, 32, 72]). In a time-discretized setting, shear banding coincides with the loss of
rank-one convexity of the incremental potential energy. Evidently, in the presence
of such strong material instabilities the static equilibrium problem is massively ill-
posed. However, inertia and rate-sensitivity have a strong stabilizing effect and,
in some cases, may render the incremental problem well-posed (see, [33, 73]) and
the solution unique up to finite time, at least in the presence of imperfections. In
particular, one may hope that when inertia and rate-sensitivity are accounted for, the
coercivity condition (2.36) is satisfied for a sufficiently small time step.

The calculations presented here are motivated by the cylinder implosion tests of

Nesterenko et al. [75]. In these tests, a metallic cylinder is subjected to explosive
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loading by the detonation of a charge surrounding the cylinder. The deformation
field of the collépsing cylinder involves two families of spiraling shear bands [75]. Our
calculations are designed so as to roughly replicate the nominal conditions experienced
by aﬁ individual shear band. The material considered is tantalum.

4.2 Numerical model

The specific model used in calculations is as follows. We assume the elastic strain

energy to be quadratic and isotropic in the logarithmic elastic strains:

€= %log(C’e) (4.1)

where
C¢ = FTF® (4.2)

is the elastic right Cauchy-Green deformation tensor. The elastic strain energy is,

therefore,

We = 207 + e (4.3)

where K is the bulk modulus, p is the shear modulus,
6° = trace(e®) = log(J°®) (4.4)
is the volumetric elastic strain, and
1 -
e =¢€°— gﬂeI (4.5)

is the deviatoric elastic strain. For simplicity we neglect thermal expansion and the
temperature dependence of the elastic moduli. The computation of W€ and the

corresponding stress-strain relations and tangent moduli requires the evaluation of
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the éxponential and logarithmic mappings and their first and second linearizations.
Simple explicit'formula.e for the evaluation of these objects may be found elsewhere
7.

Following Ortiz et al. [79], we assume power-law hardening. The corresponding

stored energy function is:

e = e [1 + (Ep)](n+1)/n (4.6)

n+1 €5

where 7 is the hardening exponent, €} is a reference plastic strain, and oo(T) is the

flow stress. In addition, we assume an exponential thermal-softening law of the form:
0o(T) = 0,e"T/T) (4.7)

where o, is the yield stress at zero absolute temperature and Tj is a characteristic
temperature. Finally, we assume power-law rate-sensitivity. The corresponding dual

kinetic potential is (79]:

(P, T) = moo(T)ép [1 + (fﬂ(mﬂ)/m (4.8)

m+1 b

where m is the rate-sensitivity exponent and £} is a reference plastic strain rate. For

simplicity, we neglect heat conduction and assume adiabatic heating of the form:
pocsT = BW? (4.9)

where c, is the specific heat per unit mass at constant volume and 3 is a constant
which expresses the fraction of plastic work which is converted into heat (see [98, 70,
43, 94}).

The uniaxial true stress-true strain law defined by these relations at constant

_ AN AN ~(T/To) 410
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This relation has been fitted to the experimental data of Hoge and Mukherjee (1977)
[44], Nemat-Nasser and Isaacs [74], and Vecchio [104] for polycrystalline Ta. The

resulting material constants are tabulated in Table 4.1.

p 16620 Kg/m”® |
E 185 GPa

v 0.33

o, | 150 MPa
eg 109

n h)

& 10.025

m 12.5

7y 0.0046 K~}
T 300 K

T,.; | 298 K

Table 4.1: Material constants for polycrystalline tantalum

The calculations are concerned with a coupon of material of dimensions 1 x0.2x 8
mm? embedded within the cylindrical specimens of Nesterenko et al. [75] at a location
such that, in the course of the test, a shear band cuts through the mid-plane of the
coupon. The domain of analysis is subjected to the nominal conditions expefienced
by the coupon during the test. We assume these to consist of a prescribed velocity
Vo at the ends of the coupon imparting the material a nominal shear-strain rate

4 = 2.5 x 10* s71. The domain of analysis is also given an initial linear velocity field
Vi =4X3 (4.11)

corresponding to a uniform shear-strain rate at the nominal prescribed value 4. In
order to simulate periodic boundary conditions and alleviate the computational bur-
den, we constrain the displacements in the X, (thickness direction, plane strain) and
X3 (transverse) direction throughout the calculations. Thus, the only unconstrained

degrees of freedom are the displacements in the X, or shearing direction. By virtue of
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X, direction. In order to fix the nucleation site for the shear band, we additionally
ure 4.1b. The maximum nominal shear strain imparted to the specimen at the end

these kinematic constraints, the calculations simulate a plate of infinite extent in the

introduce a thickness imperfection about the plane X,

of the calculations is v = 0.45.
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of freedom other than the X;-displacements are constrained;e 4.1a. This initial mesh
was generated using the advancing-front Delaunay method of Radovitzky and Ortiz
[83]. The initial mesh size on the mid-plane of the specimen is Apin = 0.14 mm.
The initial mesh contains 3439 nodes and 1574 elements. The method of solution
is explicit dynamics. The time step is set to 10% of the elastic stable time step
for explicit integration. The tolerance TOL, for refinement is set to 0.1. Since the
deformation gradients are monotonically increasing functions of time, no unrefinement

is necessary during the calculations.

(a) t = 10.7Tps (b) t = 12.4us
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Figure 4.2: Temperature increase (a), (b), (¢), and vorticity contour plots
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Figure 4.3: Element qualities histograms

The evolution of the deformation and temperature fields, as well as the evolution of
the computational mesh, are shown in Figure 4.2. The deformation and temperature
fields remain ostensibly uniform up until the onset of instability. Beyond this point,
deformations become increasingly localized. Evidently, the thickness imperfection
has the effect of focusing the initial instability around the mid-section of the coupon,
Figure 4.2a. In particular, initially the band is thick and fills the imperfection. It
should be noted that the material description used in the calculations is purely local
and lacks an intrinsic or characteristic length. Under these conditions, the initial
shear band may be expected to sharpen steadily and its thickness to decrease down
to zero at finite time.

However, our calculations demonstrate that the collapsing deformation pattern
may exhibit rather more complex structure. Thus, Figures 4.2b-c reveal that, perhaps
under the influence of the initial imperfection, the initial shear band breaks up and
spawns two daughter bands. Beyond this point, the thickness of these sub-bands
is independent of the imperfection thickness. It is also interesting to note that the
nucleation of the sub-bands is not homogeneous, but rather starts at discrete sites, or

‘hot spots’, within the parent shear band. The intricate structure of the deformation
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Figure 4.4: Time evolution of temperature and plastic strain across the band thickness

fields that develop is further exemplified by the vorticity field shown in Figures 4.2d.
The existence of multi-dimensional unstable deformation modes and vorticity patterns
in competition with the homogeneous shear band mode has been pointed out by Leroy
and Molinari [72, 62]. Recently, Guduru et al. [37] observed experimentally similar

vortices in a shear band emanating from a crack tip.
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The structure of the evolving temperature and deformation fields is further illus-
trated in Figu£e 4.4. The pi’oceé’s of breakdown of the initial band into sub-bands
is clear in this figure. The figure also suggests that the daughter sub-bands further
break up into still finer sub-bands. It is tempting to speculate that this process
of bifurcation of bands into sub-bands continues indefinitely, with the deformation
and temperature fields acquiring increasing complex structure, possibly fractal in the
limit.

The ability of the numerical solution to develop these fine structures is due entirely
to adaptive mesh refinement. Figures 4.2a-c show how the mesh effectively adapts to
the evolving solution. At maximum deformation, the element size at the center of the
bands reduces t0 Ami; = 0.015 mm, and the number of elements increases to 10147.
Also, histograms of tetrahedral quality, Figure 4.3, reveal that the mesh remains
of good quality throughout the calculation. It bears emphasis that the method of
adaption performs well under rather extreme conditions of geometric and material

nonlinearity, including strong material instabilities such as shear banding.

4.3 Conclusions

The general framework for adaptive mesh refinement and coarsening has been tested
in a three-dimensional finite-deformation dynamic-plasticity problem. The simula-
tion consists of adiabatic shear banding in dynamically loaded tantalum. The results
demonstrate the ability of the approach to adaptively resolve the increasingly fine
structure of the shear band. They also suggest that, owing to the stabilizing ef-
fect of inertia and rate sensitivity, the error bounds remain applicable well after the
equilibrium equations lose ellipticity.

We conclude by noting that, while methods of error estimation and mesh adaption
for linear problems have attained a certain degree of maturity (e.g., [105]), specially in
two dimensions, rigorous @ posteriori error bounds and robust adaption strategies for
strongly nonlinear three-dimensional dynamic problems are comparatively less devel-

oped (see, e-.g., [76, 23, 59, 10], for some notable exceptions). It is, of course, possible
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“to sﬁudy meshing and mesh adaptivity from a purely geometrical point of view. How-
ever, in the tyf)e of applications discussed above, mesh adaption is inextricably tied
to the mechanics and physics of the problem, and is but one among a vast array of
computational techniques required to carry out the calculations successfully. In addi-
tion, it bears emphasis that the mesh adaption strategy must make sense-and retain
its robustness—in the face of finite deformations, history effects, dynamics, viscosity,

and strong material instabilities such as adiabatic shear banding.



Chapter 5 Application to impact erosion

5.1 Introduction

This section is concerned with the analysis of impact damage. We apply the finite-
element methodology described in Chapters 2 and 3. The calculations are carried out
within the Lagrangian and explicit-dynamic frameworks. A new numerical difficulty
is added by the coupling of the contact algorithni with adaptive meshing. We seek
to determine the essential components of the adopted mechanical methodology and
the range of validity of a rigid sphere model for impact erosion. The section is
organized as follows. First, we describe our numerical model as well as some relevant
numerical aspects in Sections 5.2 and 5.3. Then, we compare the obtained numerical
results with the experimental data of Hutchings [49]. Hutchings [49]) conducted a
large number of experiments in which a mild-steel plate was impacted by 9.5 mm
hard-steel spherical projectiles at various impact angles and speeds. The idea behind
these experiments was to understand the erosion of metallic targets by the impact of
abrasive particles, particularly when plowing instead of cutting deformation oécurs.
The large set of experimental data is used to validate the present finite element
methodology. The comparison is presented in Section 5.4 which not only validates
our numerical approach but also gives valuable insight into some aspects of the physics
of impact mechanics and erosion. Finally, we carry out some parametric studies at

higher impact speeds in Section 3.5.

5.2 Constitutive model

Upon impact, the bodies in contact are expected to undergo very large plastic de-
formations. In order to account for this effect, we adopt a standard formulation of

finite-deformation plasticity based on a multiplicative decomposition of the deforma-
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tion gradient into elastic and plastic components. We further assume J, plasticity

and an isotropic hardening law of the form (e.g., [24, 69, 15]):

T,: (g(iT))m -1 (5.1)

T — T,-ef @ P %‘-
= l—| —m———— 1+ — 2
9= [ (Tmelt - T'ref) } < * eg) (5:2)

Here, & is the effective Von Mises stress; €? is the effective plastic strain; €” is the

effective plastic strain rate; €} is the reference plastic strain; € is the reference plastic
strain rate; m is the rate sensitivity exponent; n is the hardening exponent; g is the
flow stress; o, is the initial yield stress; Ty is the reference temperature; Tinel: 18 the

melting temperature; and a is the thermal softening exponent.

5.3 Numerical model

The material used in the simulation was a rectangular plate of mild steel. The material
parameters for the mild-steel plate are given in Table 5.1. For the spherical projectile,
the only material parameter that was changed was the yield stress: o, = 1430M Pa.
The initial mesh used in all the calculations is shown in Figure 5.1 and is nearly
uniform. The plate is fixed in all directions in the bottom face, and is unconstrained
in the remaining faces. The in-plane dimensions of the plate are 10 cm by 10 cm,
and the plate is 2 cm thick. In Figure 5.1, the spherical projectile impacts the plate
at a speed of 210 m/s. Figure 5.2 presents a typical final mesh of the plate, after the
rebound of the impactor. Most of the calculations presented in the remainder of the
section attained that degree of refinement. The error estimation captured successfully
the impact zone. The mesh density is very high at the central part of the plate.
The initial mesh contains approximately 1000 nodes and in some of the presented
calculations the final meshes contain 20000 nodes. This degree of refinement allows

us to resolve optimally the mechanical fields in the impact area which is the region
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of interest, in the plate. Adaptive meshing was also extensively used to remove sliver
elements that appeared at the impact area. The final mesh is not symmetric as the
asymmetry of the intial mesh was aggravated by the adopted bisection method. Mesh
refinement was not applied on the projectile as the quality of its elements remains
high throughout the calculations. In its initial configuration, the impactor contains

42 elements of approximate volume of 10 mm?.

z

b

V0 =210 m/s

Figure 5.1: Initial mesh

/]

Figure 5.2: Top view of a final mesh
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SI
p, mass density 7800 kg/m
E, Young’s modulus 202 GPa
v, Poisson’s ratio 0.3
oy, initial yield stress 600. MPa
eh, reference plastic strain 0.0001
&, reference plastic strain rate 157!
m, rate sensitivity exponent )
n, hardening exponent 10
¢, heat capacity 477 J/kg K
k, conductivity 38 W/mK
Tres 203. K
Toneit 1700. K
o, softening exponent 1.
u, friction coefficient 0.01
B, Taylor-Quinney parameter 0.9

Table 5.1: Material parameters for mild-steel

A natural question that arises is the effect of adaptive meshing on the mechanical
results. The first issue that needs to be addressed is mesh sensitivity. A test was
carried out with the number of elements contained in the steel projectile ranging from
42 to 650. The impact speed of the projectile was 100 m/s. The average velocity
vector Qf the projectile is computed so as to match its total linear momentum which

leads to the expression

nodes
Zn:l mn Vn

V= nodes
En:l My

(5.3)
where m,, is the mass of node n and V, is its velocity. The rebound speeds of
the spherical projectile as a function of the number of elements in the projectile are
summarized in Figure 5.3. They vary slightly around 78 m/s and are clearly mesh
independent.

A second issue which is worth addressing is the coupling of adaptive meshing
with the contact algorithm in the presence of non-smooth surfaces. The condition
of non penetrability of the contact could be respected before remeshing but violated

momentarily when new nodes are introduced. The contact algorithm applies in that
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case instantaneous accelerations to impose the non-penetrability condition. This has
a slight effect on the numerical résults_which is most visible at high impact speeds
as shown in Figure 5.4 in which the velocity response of the projectile is plotted as
a function of time. The striking velocity of the impactor is 2000 m/s. In Fig 5.4,
the horizontal components, V, and V,, of the velocity vector are negligible. The
vertical component, V,, experiences some jumps (dashed lines in the figure) and some
oscillations (zone 1 in Fig 5.4). These jumps correspond to the introduction and
removal of nodes via the remeshing procedure. The contact algorithm reinforces the
non penetrability condition at those stages. Overall, these jumps have a limited
impact on the finite-element solution. Up to 3us the velocity of the projectile decays
linearly. After that time, the decrease is asymptotic. It is also noteworthy that
once a higher degree of refinement is achieved (beginning of zone 2 in Fig 5.4), the
oscillations created by the contact stopped. Mesh adaption does not seem to be an

issue regarding the validity of the numerical results.
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Figure 5.3: Mesh sensitivity study with an impact velocity of 100 m/s
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Figure 5.4: Velocity response of the projectile versus time

5.4 Comparison with Hutchings’s experiments

Now that we explained and justified the methodology, we carry out parametric studies
to get valuable insight into the mechanics of impact and erosion. Ultimately, the idea
is to use our code as a tool to confirm or reject models. We will base our comparison
on Hutchings’s experiments [49]. In one specific series of experiments, Hutchings took
photographs of 9.5 mm hard-steel spherical proojectiles hitting a mild-steel plate at
speeds ranging from 0 to 310 m/s and impact angles from 0 to 90°. Hutchings analyzed
the craters which had formed upon impact and the velocity profiles of the rebounding
ball. We will focus our comparisons on these experiments.

Two sets of tests are carried out. In Section 5.4.1 we compare the obtained
numerical results to the available experimental data at a given impact speed for a
wide range of impact angles. In Section 5.4.2, comparisons are carried out at a fixed

impact angle at varying impact speeds.
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5.4.1 Variation of the impact angle

The first validation test consists of a 9.5 mm diameter high-strength steel ball im-
pacting a mild-steel plate at a velocity of 210 m/s. The impact angle ranges from 0

to 90°.
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Figure 5.5: Kinetic energy loss versus impact angle

A comparison between the experimental results of Hutchings and our computa-
tional results is given in Figure 5.5. The kinetic energy loss in the projectile is given
as a function of the impact angle. An impact angle of 0° implies that there is no pene-
tration; therefore, the kinetic energy loss is 0. The kinetic energy loss is maximum at
90°, which is normal penetration. The right profile is captured by fitting the friction
coefficient. Hutchings reports [49] an estimated friction coefficient of 0.05. The best
fitted value used in the calculations is 0.108. This coeflicient is fed into the Coulomb
friction law. Using this value, the numerical results are in good agreement with the

experimental data. At impact angles above 60°, the numerical results are slightly
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higher than the experimental data. One feature that is captured by the simulation is
the inflection péint in the curve at 45°. A more relevant comment than simply noting
that our estimation of the friction coefficient is higher than the experimental one, is
that the friction coeflicient has a clear effect on the mechanical response. If the fric-
tion coefficient is doubled, the kinetic energy loss increases at least 20% up to angles
of 70°. At normal penetration, friction plays a very limited role. The loss of kinetic
energy comes almost solely from plastic deformation. However, for impact angles
away from normal penetration, developing numerical or analytical models without

taking into account friction seems doubtful.

Temperature increase
in the projectile (Kelvin)

| A
: , e

20 40 60 80
Impact angle/deg

Figure 5.6: Temperature elevation versus impact angle

In Figure 5.6, we give the maximum temperature elevation in the projectile as a
function of the impact angle. Interestingly enough, the maximum of the curve is not
reached at normal incidence but at approximately 45°, which illustrates once more
the importance of taking the friction coefficient into account in impact simulations.

The calculations also revealed, in agreement with Hutchings [49], that the rotational
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kinetic energy can be neglected. For the remainder of the calculations, we keep the
material parameters and the fitted friction coeflicient constant. There is no further

fitting of the parameters.

5.4.2  Variation of the impact velocity

The second test consists of the same high-strength steel ball impacting a mild-steel
plate. This time, however, the angle of attack is fixed at 30° and the impact velocity
varies from 141 m/s to 310 m/s. The experimental photographs [49] are shown in

Figure 5.7.

Figure 5.7: Hutchings’s experimental results [49]; the angle of attack is 30° (left to
right); the impact velocities are from left to right and top to bottom: 141 m/s, 174
m/s, 178 m/s, 218 m/s, 262 m/s, 310 m/s
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The test aims at comparing the dimensions of the crater left after impact on the
upper face of the plate. This crater is the product of irreversible plastic deformation.
We delimited the numerical plastic zones using the contour plots of the effective plastic
strain. In Figure 5.8 is shown the effective plastic strain contour plot of the impacted
zone. We added on top of the figure the elliptical shape of the crater obtained
experimentally. In Figure 5.9, we plot crater size versus impact speed. There is a
very good agreement between experimental and numerical results. The high degree of
refinement within the impacted zone enabled the correct computation of the elliptical
shape of the damaged zone. Within the chosen range of impact velocities, crater size

seems to increase linearly with the velocity at impact, as shown in Figure 5.9.

Figure 5.8: Effective plastic strain contour plot of the impacted zone; the impact
velocity is 310 m/s; the ellipse represents the shape of the experimental crater
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Figure 5.9: Indentation diameter versus impact velocity

Figure 5.10 contains a plot of the vertical coordinate of the impacted area. The
direction of impact is from left to right. Following the impact direction, we observe
the elliptical damaged zone, followed by a lip (in red in Figure 5.10) and again a
depression (in blue). The depression behind the lip comes from the elastic response
of the plate. The lip, however, is being extracted from the plate due to frictional
contact. At impact angles ranging from 20° to 30°, it is known that the erosion rate
is maximum [30]. The spherical projectile pushed up the metal above the surface to
form a lip at the exit end of the crater. As discussed by Hutchings in its description of
erosion by plowing [49], and by Field et al. [30], the lip, which is deforming plastically,
may become detached at high enough velocities. The lip is a location where shear
band instabilities develop. Field et al. [30], noted that adiabatic shear occurs if the
sphere is sufficiently large and the impact speed is sufficiently high. Since the shear
bands are preferred sites for material failure, they aid the detachment of the lip. The

success of the adaptive meshing method in capturing fine features is noteworthy. Its
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ability to predict the lips in front of the damaged zones makes it an excellent tool to

obtain estimates on impact erosion.
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Figure 5.10: Vertical coordinate contour plot

5.5 High impact speeds

We now conduct further calculations to verify the validity of the proposed method
at higher impact speeds. We are still using the same numerical model. We will
restrict our calculations to normal impact. We seek to determine the range of impact
velocities in which the plastic deformation of the projectile can be safely neglected.
This in turn will serve in determining the domain of validity of a rigid sphere model
for erosion by plowing. Field et al. [30] divided solid particle impacts into three

different regimes corresponding to different damage numbers D, where

D= V%Y (5.4)

74



Here, V is the impact velocity and p and Y are the density and the yield stress of the

target material respectively. -
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Figure 5.11: Rebound velocity versus impact velocity

For velocities less than 1 m /s on steels (D < 107°), there is a very limited plastic
flow and the behavior of the target and projectile is .mainly elastic. The second regime
[30] corresponds to velocities on steel in the range 5 to 500 m/s (D < 1) and may be
termed the sub-ordnance range. Impacts in this range result in plastic deformation of
the target (see Figure 5.8). However, in our numerical model, the projectile behaves
mainly elastically. The third regime is called the hypervelocity regime with velocities
from 500 m/s to 3000 m/s. In our calculations within this regime, the projectile
(together with the plate) experiences drastic plastic flow. In Figure 5.11, we are
plotting the rebound velocity of the spherical projectile versus its impact velocity.
Three distinct zones appear; they are denoted by A, B and C in the figure. In zone
A, with impact velocities ranging from 210 to 600 m/s, the response of the impactor is

primarily elastic. The rebound velocity increases monotonically. The end of this zone
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at 600 m/s corresponds roughly to the limitation of sub-ordnance regime. In zone B,
the rebound vel(;city reaches a plateau. The response of the projectile is now mainly
plastic. In zone C, starting at impact velocities of 1300 m/s, the thermal softening
plays é leading role and the rebound speed of the impactor decreases drastically.
Another explanation to the sudden decrease at high impact velocities of the rebound
velocity comes from the fact that at high speeds, a deeper crater is produced. Then,
due to the frictional contact, the plate opposes the impactor a longer distance, as
the projectile is rebounding elastically. It is clear that above speeds of 600 m/s the
plastic behavior of the projectile should be taken into account. Considering only
plastic deformation in the target and neglecting thermal softening results in invalid

numerical or analytical models.
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Figure 5.12: Temperature increase in the projectile versus impact velocity

The importance of thermal softening is highlighted in Figure 5.12 in which we
plot the average temperature elevation in the sphere as a function of the impact

speed. The melting temperature of our material is: Tpner = 1700K. Therefore, at
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an impact speed of 2000 m/s, the average temperature reaches more than a third of
this value and implies a reduction of the average yield stress to approximately 55%
of its value without taking into account thermal effects (Equation 5.2). To further
illustrate the importance of the irreversible plastic deformation in our model we plot,
Figure 5.13, the deformed plate after a normal impact of 2000 m /s. We observe that
the projectile left a 3 mm deep crater in the plate. Also, the spherical projectile before
and after impact is represented in Figure 5.14. After impact the projectile remains in
a “pancake shape”. The maximum temperature increase is 1100 degrees Kelvin which
implies considerable thermal softening (Figure 5.15). The thermal effects take place
mainly at the impact zone and reduce the yield stress to 20% of the value it would
reach with no thermal softening (Equation 5.2). At high velocities, considering a rigid
sphere model for impact erosion will result in erroneous predictions. The deformed
shape of the projectile has to be taken into account as it will affect the contact area

and thus the degree of erosion in the plate.
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Figure 5.13: Contour plot of the vertical coordinate, impact velocity 2000 m/s
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Kelvin

1100
987.5
875
762.5
650
537.5
425
312.5
200

Figure 5.15: Temperature increase in the projectile

5.6 Conclusions

We have developed a finite-element computational capability for three-dimensional
impact. Within the Lagrangian framework and the context of explicit dynamics, the
components of the finite-element methodology are frictional contact, heat transfer,
finite deformation plasticity and adaptive meshing. The success of the calculations

is tightly linked to the use of three-dimensional adaptive meshing. Without this
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key component, it would not have been possible to remove the distorted element
at the impact zone. Adaptive meshing has been used extensively throughout the
calculations and particularly at high impact speeds. The degree of refinement attained
resolved fully the shear lip that appears when the projectile impacts the target at a
low angle. At high speeds material erosion takes place mainly in the lip as shear
bands are likely to develop in this location. The computational methodology was
validated using Hutchings’s experiment of hard steel spherical projectiles impacting
steel plates. We éompared the numerical loss of kinetic energy and crater sizes to
experimental results. The agreement is good for a wide range of impact velocities and
impact angles. More than a éomplete validation of the finite-element methodology,
the calculations reveal that frictional contact has to be taken into account in every
model (numerical or analytical), at all impact speeds and impact angles different
from normal incidence. A better fitting with the experimental data would have been
obtained by taking a friction coefficient dependent on temperature. Therefore, a
constant friction coefficient throughout the impact seems to be an invalid hypothesis.
We note also that at high impact speed (above 600 m/s) the plastic deformation
(and possibly thermal softening) of the projectile has to be taken into account as its
deformed shape will affect the contact area and thus the degree of erosion. A possible
future development is to include within the model the use of cohesive elements to
analyze the difference in behavior between ductile and brittle materials. The cohesive

element model could be dependent on deformation.
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Chapter 6 Application to wear

6.1 Introduction

The work presented in this chapter is concerned with the development, calibration
and validation of a finite-element model of dry sliding wear in metals. We will, in
that purpose, include within the already presented computational framework a surface
evolution model. Sliding wear here refers to the type of wear generated by the sliding
of one solid surface against another. Dry signifies that there is no lubrication.

We assume that the wear rate obeys Archard’s law [3]. However, we generalize
Archard’s law by allowing the hardness of the soft material to be a function of tem-
perature. This dependence provides a means of modeling the sharp transition in the
wear rate which is observed to occur in some materials systems at a critical speed.
Lancaster [56] speculated that this transition is linked to the level of oxidation of the
metals in contact. At high speeds, which imply high temperatures, the oxidation rate
increases and the protective oxide layer regenerates faster than it is removed by wear.
Mixing of oxides with the primitive materials is also observed in the bounda,ry layer.
The proposed dependence of the hardness H on temperature T indirectly models
the oxidation and other chemistry effects as well as the mixing which occurs in the
softer material. In particular, the function H(T') reflects the experimentally observed
transition temperature 7, which separates the regimes of severe wear at low speeds
to mild wear at high speeds.

The chapter is organized as follows. A brief description of the computational
framework, with particular emphasis on surface effects and such mechanisms as
strongly influence-or are influenced by—wear, is presented in Section 6.2. The model
is then calibrated and validated against the experimental observations of Lancaster
[42, 56]. Lancaster’s experiments concern the wear of a 60-40 brass pin (C37700) set

against a rotating high-strength steel disk. Lancaster reported the wear rate of the
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brass pin for different Speeds of rotation, along with a wealth of other observational
evidence. The fesults of the validation tests are reported in Section 6.3. The ability
of the full three-dimensional finite-element model to capture the transition from se-
vere wear to mild wear beyond a critical speed, and to resolve fine three-dimensional

features of the wear process such as leading-edge effects, is noteworthy.

6.2 Computational framework

6.2.1 Waear

We have chosen to use the conventional and well-established Archard’s law of wear

[3], which gives the wear rate w (height loss per unit time) through the relation:

w= %pv (6.1)

where v is the sliding speed, p is the applied pressure, H is the hardness of the
softer material (brass in the simulations reported subsequently), and K is the wear
coefficient, a constant which ranges from 1073 to 10~7 W/m K for typical materials
systems.

The experimental observations of Lancaster (see [42, 56]) shed additional light
on the variation of the various parameters in Archard’s law (6.1). The experiments
concern the wear of a brass pin set against a rotating steel cylinder. The experimental
set up is shown in Figure 6.1, where C denotes the brass pin, B the steel cylinder and
A is the rotating shaft. A pressure is applied at the top of the pin in order to press
it against the rotating cylinder.

Of particular interest are the wear rates reported by Lancaster [42, 56] for different
angular and sliding velocities. Thus, the four curves A, B, C, and D in Figure 6.2
refer to different values of applied pressure. It is evident from these curves that there
is a marked transition in the wear rate at a sliding speed of approximately 8 m/s.
Under 8 m/s a regime of severe wear is observed, whereas above 8 m/s the wear

rate is considerably less. Lancaster further observed that the temperature at the
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S

Figure 6.1: Schematic representation of the wear experiment of Lancaster ({42, 56})

interface for the four transition points (A, B, C, D) in Figure 6.2 was approximately
270°C. This suggests that the temperature at the transition is ostensibly constant

and independent of the applied pressure and the sliding speed.
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Figure 6.2: Wear rate versus speed ([42, 56])

Lancaster speculated that the transition from severe to mild wear is linked to

the level of oxidation of the metals in contact. At high speeds, which imply high
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terﬁperatures,’the oxidation rate increases. The protective oxide layer regenerates
faster than it is removed by wear. Figure 6.3 (reproduced from [56}) illustrates the
complexity of the chemistry involved in wear. The top figure shows a photograph
of ‘a tapered-section of the brass pin, and the graph below is a plot of the hardness
of the brass against depth from the contact surface. As may be seen from this plot,
the hardness decreases with depth. Close to the interfacé, the hardness is high and
comparable in magnitude to the hardness of steel. The dashed lines separate the
different observable layers of the brass. However, it should be carefully noted that
these layers are not made of pure brass. Indeed, the layer immediately adjacent to
the contact region is a complex mixture of oxides, steel, and brass.

Evidently, the transition from severe to mild wear is an important phenomenon
which requires careful modeling. We propose to account for the chemistry and mixing
attendant to wear by the simple device of letting the hardness H of the soft material in
Archard’s law, Equation 6.1, be a suitable function of temperature. The dependence
of the hardness on temperature indirectly models the oxidation and other chemistry
effects, as well as the mixing which occurs in the softer material. In particular, the
function H(T) should reflect the existence of a transition temperature T, the steady
decrease in the hardness (increase in the wear rate) up to 7, and the sudden and
sharp increase in the hardness (decrease in the wear rate) for temperatures higher
than 7,.. The calibration of the function H(T) for the brass/steel system tested by

Lancaster is described in detail in Section 6.3.2.
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Figure 6.3: Hardness variation in the brass (from [56])
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6.2.2 Contact and friction

Contact and friction must carefully be accounted for in a wear simulation. The con-
- tact/friction algorithm which was described in Chapter 2 enforces the impenetrability
" constraint, and determines the frictional forces and the extent of frictional dissipa-
- tion, which is in turn fed into the energy equation as heat. An additional byproduct
of the contact algorithm is the contact pressure required to evaluate Archard’s law
and to compute the wear rate. The contact pressure is computed simply node per
node as N/A, where A in a tributary area of the node. This contact pressure is used
to evaluate Archard’s law (Equation 6.1). The heat generated by friction is also com-
puted as the work done by the relative sliding velocities against the frictional forces

over a time step.

6.2.3 Thermal effects

Wear involves a number of strongly interacting mechanical and thermal processes.
In the calculations, we account for thermomechanical coupling and the interaction
between wear, friction, temperature and plasticity. The heat produced by friction
and plastic work acts as a source for the thermal problem. The constitutive model
chosen is described in Section 5.2. The corresponding thermal softening and the
mass loss due to wear in turn influence the mechanical problem. Finally, wear is a
function of the sliding velocity, contact pressure, and hardness. Since, in addition, the
hardness is a function of the temperature, wear rates are themselves tightly coupled
to the mechanical and thermal fields.

The heat h is apportioned to the bodies in contact in accordance with the Equa-
tions 2.54 and 2.55 [36]; see Section 2.4 in Chapter 2 for more details. The heat
flux g across the interface between the bodies in contact also needs to be carefully

quantified. Following Wriggers and Miehe [107] we write:

g=h(2) (T -T) (6.2)

where H is the hardness of the softer material, h, and ¢ are interfacial parameters,
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and T; and 7, are the temperatures of the bodies in contact. The term (p/H)*
is an estimate of the true area of contact. Thus, an increase in p is assumed to
result in a decrease in the number of air-filled gaps, which act as insulators, and,
correspondingly, in an increase in the contact area, with the attendant increase in the

thermal conductivity across the interface. Figure 6.4 summarizes the different heat

exchange.
M

Brass

T,

A h=o,upv
£
g=h(@E/H)T-T,)

Steel

T»

Figure 6.4: Interfacial thermal problem

The duration of a typical wear experiment is 40 minutes to an hour. The total
sliding distance ranges from a few hundred meters to several kilometers. Due to
these long durations, the initial short transient may be safely neglected, and steady-
state conditions may be assumed to prevail throughout the calculation to a good
approximation. Under steady-state conditions the heat supply to both bodies, hi, ho
and q is independent of time. The corresponding temperature profiles T; and 75 in the
bodies may be estimated by an application of Jaeger’s formula (see {50]) for a moving
line source on a semi-infinite body. Once determined, the steady-state temperature

profiles are set as initial condition for the calculation.
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6.3 Finite-element validation

The experimental observations of Lancaster [42, 56] provide a convenient basis for the
calibration and validation of the finite-element wear model described in the foregoing.
The experiments concern the wear of a 60-40 brass pin (C37700) set against a rotating

high-strength steel disk.

6.3.1 Problem definition

Steel /

\ Contact area

Figure 6.5: Geometry of finite-element model; the brass pin has a velocity V

The geometry of the finite-element model used in calculations is shown in Fig-
ure 6.5. For simplicity we assume a square cross section for the pin. The area of this
cross section, which equals 1.6 mm?, matches exactly the area of the cylindrical pin
used by Lancaster in test C (see Figure 6.2). A small square coupon of the rotating
cylinder is also considered in the analysis. The lateral dimensions and thickness of
this coupon are four and two times the side of the pin, respectively. The steel plate
is held stationary while the brass moves at a velocity V ranging from 0.2 to 20 m/s
along the length of the plate. V' is applied to the top surface of the pin, and, in addi-
tion an initial velocity of the same value is applied to the pin. When the pin reaches
the boundary of the steel coupon, the speed of the coupon is reversed, with the result

that the pin moves back and forth repeatedly over the plate surface. The applied
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E || 210 10° Pa
v 0.3

E || 20W/mK
c 486 J/kg K
p | 8670 kg/m?

Table 1. H.S. Steel

E 105 10° Pa
v 0.37
Oy 1.4 108 Pa
e 0.0005
z T
m 100.
n 3.2
Tref 293. K

- Tnelt 1168. K
o 1.
k 120 W/m K
c 380 J/kg K
P 8440 kg/m®

Table 2. 60-40 Brass

contact pressure is p = 1.82 x 10° Pa. In the application of the contact algorithm, the
brass pin is taken as slave and the steel plate as master. For simplicity, we neglect
heat losses in the surfaces in contact with air such as may be caused by radiation or

convection.

The material parameters used in the calculations are collected in Table 1 and

Table 2. The friction coefficient is taken to be y = 0.3.
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6.3.2 Calibration of the model

An upper bound for the stéady state temperature in the steel may be obtained by
directing all the heat generated by friction into the steel plate, i.e., by setting hy =
h = ppv. This upper bound gives a negligible temperature rise of approximately 2°C.
The temperature elevétion in the ste.el may therefore be safely neglected, and 75 may
be kept equal to the initial temperature Tina = 20°C to a good approximation. The
implication of this estimate is that, under the conditions of the analysis, the contact
area moves so fast that the steel does not have sufficient time to heat up appreciably.

At the steady state,

hi=gq (6.3)

o upv = h, (%)E (Ty — 1) (6.4)

The interfacial parameters h, and € which determine the heat flux ¢ from the brass to
the steel (Equation 6.2) may then be estimated simply by fitting the four transition
points, A, B, C, D of Figure 6.2 to Equation 6.4. Lancaster [42, 56] reported the
temperature at those points to be 270°C. The pressure, velocity, hardness, and steel
temperature T5 are also known. We obtained h, = 0.4 x 105W/km2 and € = (0.68.
Once h, and € are known, we may obtain an estimate of the temperature in the
brass at the steady state for any velocity. These estimates were used to properly scale
the brass hardness coefficient. Table 3 contains the values of the wear coeflicient over
the brass hardness coefficient for the different chosen velocities. The term K /H is
part of Archard’s law and thus was tabulated in the code as a function of temperature.

However, the function H(T) may be constructed by fixing the wear coefficient K.

6.3.3 Numerical results

Nine calculations at speeds ranging from 0.2 to 20 m/s were carried out. The physical

time duration simulated in each calculation is 1 ms. A typical calculated mass-
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V m/s] | T [K] | K/H [Pa~]
02 300 7.3 10713
0.5 || 310 | 5.78 10713
1 327 5.110°13
2.5 378 6.47 10~13
5 462 1. 10712
8 564 1.19 10~ 2
9 598 3.410714
10 632 1.7 10~
20 972 3.410°1°

Table 3. 60-40 Brass; Wear coeflicient over hardness coefficient

loss curve is shown in Figure 6.6(a). The slope of this curve gives the wear rate.
Despite the modest net mass loss, a careful examination of Figure 6.6(a) reveals some
noteworthy features. Firstly, the oscillations of the curve at the beginning of the
simulation may be noted. These oscillations arise from inertial effects due to the
instantaneous application of pressure to the brass pin. The wear rate stabilizes and
shows a smooth variation as soon as the waves in the brass are damped out. One
effect of the initial inertial effects is to increase the wear rate by approximately 20%
relative to the subsequent steady wear rate, which is ostensibly constant.

Figure 6.6(b) plots the steady wear rate vs. speed for the nine calculations con-
ducted. As may be seen from this figure, the transition from severe wear to mild wear
is well captured by the model. However, the calculated wear rates are systematically
10% higher than experiment. The offset comes from three-dimensional effects not
accounted for in the calibration of the model. Thus, Figure 6.7 shows contour levels
of the wear rate for two different speeds: 1 m/s, leading to severe wear; and 10 m/s,
corresponding to mild wear. A marked leading-edge effect is observed in both cases.
Thus, the pressure is higher at the leading edge of the brass than the average contact
pressure, which results in higher wear rates and mass loss. Indeed, the wear rate on
the leading edge may be up to 500 times larger than on the trailing edge. The ability
of the full three-dimensional finite-element model to resolve these fine features of the

wear process is particularly noteworthy.
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It should also be noted that the calibration of the function H(T) can be further
refined-and the match between simulation and observation improved-by interaction
based on the results of the calculations. However, this avenue will not be pursued

here.

6.4 Conclusions

A finite-element model of dry sliding wear in metals has been presented. The model is
formulated within a Lagrangian framework capable of accounting for large plastic de-
formations and history-dependent material behavior. Other features of the numerical
model include: surface evolution due to wear; finite-deformation J, thermoplasticity;
heat generation and diffusion in the bulk; non-equilibrium heat-transfer across the
contact interface; and frictional contact.

Particular attention has been devoted to a generalization of Archard’s law in which
the hardness of the soft material is allowed to be a function of temperature. Lancaster
[56] speculated that the transition from severe to mild wear is-iinked to the level of
oxidation of the metals in contact. At high speeds, which imply high temperatures,
the oxidation rate increases and the protective oxide layer regenerates faster than it is
removed by wear. Mixing of oxides with the primitive materials is also observed in the
boundary layer. The proposed dependence of the hardness of temperature indirectly
models the oxidation and other chemistry effects as well as the mixing which occurs
in the softer material. In particular, the function H(T’) reflects the experimentally
observed transition temperature 7, which separates the regimes of severe wear at low
speeds to mild wear at high speeds.

The model has been validated against the experimental test of Lancaster [56],
consisting of a brass pin rubbing against a rotating steel plate. The transition from
severe wear to mild wear beyond a critical speed is well captured by the model.
The calculations additionally reveal marked leading-edge effects. In particular, the
pressure is higher at the leading edge of the brass than the average contact pressure,

which results in higher wear rates and mass losses. Indeed, the wear rate on the
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leading edge may be up to 500 times larger than on the trailing edge. The ability
of the full three‘-dimensional finite-element model to resolve these fine features of the
wear process is particularly noteworthy.

Interestingly, the observed transition sliding velocity falls within the range of
tool/stock sliding velocities characteristic of high-speed machining. The existence of
a transition velocity in the wear rate may therefore be exploited by the design of

high-speed machining operations for minimum tool wear and best surface finish.
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(a) v =1 m/s, severe wear
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(b) v = 10 m/s, mild wear

Figure 6.7: Wear rate contour plot showing increased wear rates at the leading edge
of the brass pin
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Chapter 7 Conclusions

The intent of this dissertation was to propose a finite-element methodology that en-
ables a finite-element analysis of cbmplex mechanical problems seen in industrial and
military applications, i.e., impact and erosion of metals. We have presented a general
framework for adaptive mesh refinement and coarsening in three-dimensional finite-
deformation dynamic elasto-plastic problems. In our formulation, mesh adaption is
driven by a posteriori global error bounds derived on the basis of a variational formu-
lation of the incremental problem. The particular mesh-refinement strategy adopted
is an extension of Rivara’s longest-edge propagation path (LEPP) bisection algorithm
[91, 89, 90] to three dimensions. Our innovative strategy for mesh coarsening, or un-
refinement, is based on the elimination of elements by edge collapse. The bisection
algorithm together with the coarsening method define a robust, elegant, and efficient
alternative to other remeshing methods that in fact have failed in some cases to pro-
vide a viable mesh. For instance, three-dimensional Delaunay triangulations offer no
guarantees regarding the mesh quality and disregard completely non-convex bound-
aries. They often generate tetrahedra with vanishingly small volume, also referred to
as slivers [16]. The advancing front method, on the other hand, experiences problems
of mesh closure whenever the algorithm cannot decide how to continue the advance-
ment of the front. Many experience-based rules have been proposed to solve this
problem, but to our knowledge, none of them offers any guarantee. The remaining
components of our computational framework are a robust and efficient contact algo-
rithm that takes into account the possibility of different kinds of friction models and
surface evolution, i.e., due to erosion, finite-deformation thermally coupled elasto-
plésticity, heat transfer, and error estimation. With each one of these components we
are pushing the cutting edge of today’s finite-element technology.

| The validation of the method is not less relevant than the development itself.

The above mentioned finite-element developments have been successfully applied to a

95



series of applications which are, in order: adiabatic shear banding, impact erosion, and
| wear. Each oné of the applications requires the above described tools to be carried
out su_ccessfully. While the adiabatic shear banding application provided a unique
test- to validate the general framework for adaptive meshing in the finite-deformation
dynamic-elasto-plastic range, it also demonstrated the ability of the approach to
adaptively resolve the increasingly fine structure of the shear band. In that sense,
adaptive meshing is a viable tool for multiscale modeling. The second application
carried out was an analysis of impact erosion. The numerical results have been
validated by Hutchings’s experiments of hard-steel spherical projectiles impacting
mild-steel plates over a wide range of impact velocities and angles. More than purely
a validation of a method, the obtained numerical results shed light on the necessity of
paying extra attention to the fidelity of the friction model and the plastic behavior of
the projectile. Finally, we concluded the thesis by showing how the contact algorithm
can be coupled to a surface evolution problem, in our case an erosion law. For that
purpose, we used the Archard law of wear to study the dry sliding wear regimes
between a brass/steel metallic pair. All three applications simulated here have shown
the success of our method in capturing fine features of the solution. The published
experimental data surveyed also constitute a solid validation test of our finite-element
numerical solutions.

While the computational framework presented here has withstood a number of
stringent tests, several obvious extensions and improvements remain to be pursued.
For instance, it would be highly desirable to have fully nonlinear error bounds, e.g.,
in energy, as opposed to the asymptotic bounds based on linearization presented
here. Extensions of the variational framework accounting for full coupling between
mechanics and heat conduction would also be a desirable improvement. Another
computational development would be to incorporate the use of cohesive elements,
which provide a natural framework to study fragmentation, and a contact algorithm
able to locally conserve energy, since the numerical generation of energy is known to
cause instabilities in high-speed contact problems. Then, we could extend our work

to the three-dimensional analysis of brittle target materials, and adaptive meshing
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would be primarily responsible for providing a rich enough set of fracture paths to
be useful in aﬂalysis. It would also contribute to defining some set of multiscale
effecti_ve models to average behavior over a set of elements, and therefore, relax the
artificial friction caused by the “tetrahedral” shape of the fragments. The cohesive-
element model should ideally be defined as a function of deformation. Last but not
least, it would be of great interest to couple our finite-element methodology with an
optimizétion method to study the best possible arrangement possible of components

to minimize impact damage in a composite material.
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Appendix A C-language data structures
used in the bisection and edge-collapse

algorithms

/+ ~+/

/* nodal data structure (used in the tramsfer) */
typedef struct nodaldata
{
double *disp; /* displacements at the nodes */
double *velo; /* velocities */
double *acce; /* accelerations */
int *¥boun; /* boundary conditions */
/* note that the forces are left to the user to determine /*
/* after the remeshing function */

} NData;

/* - - - k]

/* element data, i.e., at the gauss points */
/* (used in the transfer) */
typedef struct elementdata
{
int elty; /* element type */

int ‘elma; /* element material */
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- double *stre; /* stresses */
double *stra; /+* strains */
double *inte; /* internal variables */

}EData;

/ ' — */

/* linked list of nodes */

typedef struct lnodes

{
double x[3]; /* x,y,z coordinates of the node */
int num; /* global number of the node */

/* goes from 1 to total number of nodes */
int xface;/* facel[il=0 for node not on face i */

/* face[il=1 for node on face i */

/* used to preserve the boundary information */
int nta; /* number of adjacent tets to the node */
struct ltets **adj;

/* list of the adjacent tetrahedra */
struct lnodes *LLink,*RLink;

/* pointers to the right link and left link */
NData ND; /* nodal data, see above */

} LNodes;

LNodes *HEADNODE,+TAILNODE;
/* TAILNODE is the first node of the linked list */
/* HEADNODE is the last */

/% e —T
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/% linked list of the tetrahedra */
/* it is conétructed during the LEPP */
/* and destroyed after */
typedef struct listconform
{
int tetnum; /* global number of the tet */
/* goes from 1 to elements */
int edge; | /* longest edge number, goes from 1 to 6 */
LNodes *nodea; /* points to 1st node of its longest edge */
LNodes *nodeb; /* points to 2nd node of its longest edge */
int sub; /* 1 for subdivide the tet! */
/* 0 for wait to be subdivided! */
struct listconform *LLink;
struct listconform *RLink;
struct ltets *Tet;

} ListConform;

ListConform *LC,*MC;

/* e */

/* linked list of all the tetrahedra of the mesh */
typedef struct ltets
{
int tetnum; /* global number of the tetrahedrom */
/* between 1 and total number of elements */
int sub; /* when sub = 1, the tet is marked */
/* by error estimation (will be subdivided) */
LNodes *ix[10];

/* points to the 10 nodes of the tetrahedron */
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"int nadd; /* number of nonconform nodes on the tet */
" /*"a non conform mode is introduced */

/* by subdividing an adjacent tet */

/* a nonconform node becomes conform */

/* when the current tet is subdivided */
LNodes **xadd;

/* temporary storage space for the nadd new */

/* nodes created by splitting adjacent tets */
double errortet;

/* tetrahedron’s error (error estimation) #*/
struct ltets *LLink;
struct ltets *RLink;
EData ED; /* element data, see above */

} LTets;

LTets *HEADTET,*TAILTET;
/* TAILTET is the first tet of the list */
/* HEADTET is the last */
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Appendix B Longest edge propagation
path function

void LongestEdgePath()
. _
while (FIRSTTET->sub!=0)
/* while the initial tet is not subdivided do:*/
{
while (LC->sub==0) Conform();
/* constructs the longest edge propagation path */
/% LC points to the ListConform data structure */
/* stops at one of the ending tetrahedron*/

/* the end is denoted by LC->sub==1 */

SplitTetrahedron();

/* split the last tet in the LC list */

/* go down one tet in the LC (ListConform) list */
if (LC->LLink!=NULL)
{
MC=LC->LLink;
free(LC);
LC=MC;
LC->RLink=NULL;
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