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Abstract 

 
 
This thesis presents measurements investigating the spin degree of freedom in two 

dimensional electron systems (2DES’s).  The measurements use nuclear magnetic 

resonance (NMR) techniques to study the role of spin in several 2DES states.  

 We first examine the spin transition that occurs in a half-filled Landau level in a 

single layer 2DES and compare our measurements to expectations from a composite 

fermion (CF) model.  We show the temperature and density dependence of the nuclear T1 

and resistively-detected NMR signal.  The T1 data can be roughly understood via a 

Korringa-like model of nuclear spin relaxation.  However, the observed density 

dependence of both T1 and the NMR signal is not explained by conventional CF theory. 

 We next consider a bilayer 2DES consisting of two closely spaced 2D electron 

layers, where each of the individual layers contains a half-filled Landau level.  In this 

system, a transition occurs from a compressible single layer-like state to an 

incompressible correlated bilayer state as a function of the effective spacing between the 

two layers.  When the effective spacing is made small enough, interactions between the 

two layers lead to the formation of a new state that can be viewed as a Bose condensate 

of excitons.  Using NMR techniques we show that the spin degree of freedom is active 

during this transition. 

 In a single-layer 2DES with one completely filled Landau level (ν = 1), charged 

spin-texture excitations called “skyrmions” are expected to exist.  We probe the spin 

dynamics near this state using NMR.  We find relatively fast nuclear relaxation rates that 

are consistent with a theory of spin excitations for a skyrmion solid.  Our measurements 

also provide clues as to the origin of an “anomalous” NMR lineshape seen near ν =1. 

 We also present surface acoustic wave (SAW) measurements in a low density 

2DES at zero magnetic field, under conditions where a 2D metal-insulator transition may 

occur.  We find that our SAW data are consistent with a disorder-driven, percolation-type 

transition. 
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Introduction 
 

Two-dimensional electron systems (2DES’s) in semiconductors continue to provide 

experimental access to a wide range of phenomena in correlated electron physics.  Two 

of the best known examples of exciting discoveries in 2DES’s are the integer and 

fractional quantum Hall effects, which were first observed roughly 25 years ago [1-2].  

However, 2DES research remains active, spanning a variety of topics including fractional 

statistics and charge, metal-insulator transitions, charge density waves, and Bose-Einstein 

condensation.  New physics continues to emerge as sample quality improves, 

experimentally accessible temperatures decrease, and new experimental probes are 

developed. 

This thesis starts with a discussion of surface acoustic wave (SAW) measurements 

that probe the frequency and length scale dependent conductivity of the 2DES at low 

densities.  Several aspects of SAW’s make them an interesting probe for low density 

2DES’s near the putative metal-insulator transition.  

The second part of this thesis presents experiments that investigate the role of spin 

in several 2DES states.  We use a resistively detected nuclear magnetic resonance 

(RDNMR) technique that is well-suited for studying 2DES’s (and nanostructures in 

general).  Due to the hyperfine interaction between nuclei and electrons in the 2DES host 

semiconductor, the electron spin polarization can be probed using NMR techniques.  For 

typical 2DES’s in GaAs/AlGaAs heterostructures, at moderate perpendicular magnetic 

fields the Coulomb interaction is large compared to the Zeeman energy and can play a 

significant role in determining the behavior of the electron spin.  This leads to a variety of 

spin phenomena ranging from ground state spin transitions for fractional quantum Hall 

states to the existence of “skyrmion” spin excitations in the quantum Hall regime.  This 

thesis describes several applications of RDNMR to the study of the electron spin degree 

of freedom in 2DES’s.  Recent work includes investigation of a spin transition in the half-

filled Landau level, observation of a spin transition in a correlated bilayer 2DES, and 

measurements of electron spin dynamics near the lowest filled Landau level in a single 

layer 2DES. 

Chapter 1 describes the samples and experimental techniques that are generic to all 

of the experiments described in this thesis.  The chapter starts with an introduction to 
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GaAs/AlGaAs heterostructures and how they are used to create high mobility 2DES’s.  

The chapter ends with a brief overview of basic experimental techniques typically 

employed, such as standard semiconductor processing, dc transport measurements, 

cryogenic refrigeration, and high magnetic fields. 

Chapter 2 presents surface acoustic wave (SAW) measurements in low density 

2DES’s at zero magnetic field, under conditions where a 2D metal-insulator transition 

may occur.  Controversy exists over whether this transition is better described as an 

exotic, interaction-driven phase transition or by more straightforward physics of 

disordered conductors.  We compare our SAW data to standard dc resistivity 

measurements and show that our measurements are consistent with a disorder-driven, 

percolation-type transition [3]. 

Chapter 3 introduces the physics of 2D electrons in a perpendicular magnetic field, 

from a classical to quantum mechanical picture, and eventually, the fully interacting 

picture and the fractional quantum Hall effect (FQHE).  The composite fermion picture of 

the FQHE is also introduced. 

Chapter 4 gives an overview of spin in 2DES’s and then an introduction to nuclear 

magnetic resonance (NMR) techniques that are used in the experiments described in the 

rest of the thesis.  We introduce a resistively-detected NMR (RDNMR) technique used to 

probe the spin degree of freedom in 2DES’s. 

In Chapter 5 we probe the transition from partial to complete electron spin 

polarization as a function of density in a single layer 2DES with a half-filled Landau 

level [4].  The fractional quantum Hall effect can be understood in an elegant way using a 

composite fermion (CF) picture.  In this picture, a single layer 2DES at Landau level 

filling fraction ν = 1/2 can be described as a Fermi liquid of CF’s, where a CF is an 

electron with two magnetic flux quanta attached [5].  The CF picture has been very 

effective at describing a wide range of experiments, but the limit of its applicability is 

still an ongoing subject of interest.  Both the nuclear spin-lattice relaxation time T1 and 

the derivative of the resistivity with respect to the electronic Zeeman splitting dρxx/dEZ 

reflect this transition.  Our RDNMR measurements show that at ν = 1/2, T1 has a 

temperature dependence that is roughly described by a 2D version of Korringa nuclear 

spin relaxation.  However, the density dependence of both T1 and dρxx/dEZ fail to agree 

with a simple composite fermion (CF) picture.  T1 is roughly density independent in the 
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partially polarized phase, in contrast to the variation expected from the dependence of the 

CF density of states on Coulomb energy.  The sign of dρxx/dEZ is not understood and an 

unexpected peak in dρxx/dEZ develops at low temperatures near the critical density for the 

spin transition. 

Chapter 6 describes RDNMR experiments in a bilayer 2DES consisting of two 

closely spaced single layer 2DES’s.   Interactions between the two layers can create new 

many body states in bilayers that have no single layer 2DES analog.  At total Landau 

level filling factor νT = 1 and small effective interlayer spacing, a remarkable state 

emerges that can be viewed as a Bose condensate of excitons.  There is a phase transition 

from a compressible state where the layers are weakly coupled to an incompressible 

excitonic condensate state as the coupling between the layers is increased by reducing the 

effective interlayer spacing [6-10].  This chapter discusses experiments which probe this 

phase transition.  Specifically, we present RDNMR measurements probing the spin 

degree of freedom in a bilayer 2DES at total filling factor νT = 1, performed by Ian 

Spielman and myself [11].  Our data shows that the spin degree of freedom is active 

during this transition. 

Chapter 7 discusses RDNMR measurements that probe the electron spin near the 

completely filled lowest Landau level (ν = 1) in a single layer 2DES [12].  Although the 

ν = 1 quantum Hall might at first glance appear to be easily described by a single-particle 

picture, upon greater scrutiny, one finds that Coulomb interactions actually play a large 

role in determining the behavior of this state.  The lowest energy charged excitations at 

filling factors at and nearby ν = 1 are actually predicted to be skyrmions, excitations with 

a smooth spatial variation in spin which carry spin and charge.  The presence of 

skyrmions is expected to have a large impact on nuclear spin dynamics for this state.  Our 

data is consistent with a theory of the spin excitations due to formation of a skrymion 

solid.  We also provide clues as to the origin of the “anomalous” RDNMR lineshape seen 

near ν = 1. 

The thesis ends with a brief Conclusions and Future Directions section, which 

gives a final overview and possible future directions for related experiments. 
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Chapter 1:  
Samples and Experimental Techniques 

 

Two-dimensional electron systems (2DES) are systems consisting of electrons confined 

to motion in a plane.  High-mobility 2DES’s are fascinating systems that give rise to a 

wide range of phenomena.  This chapter presents an overview of 2DES samples and 

measurement techniques used to investigate their properties. 

 
1.1 GaAs/AlGaAs Heterostructures 
 
A variety of experimental systems exist for the creation of 2DES’s, ranging from a Si 

MOSFET to electrons on the surface of 4He.  The measurements described in this thesis 

were performed using high electron mobility 2DES’s in GaAs/AlGaAs heterostructures, 

where mobility μ is defined by neσ μ= , where σ is the conductivity and n is the electron 

density.  Mobility is a measure of sample disorder.  Using the Drude model (see Chapter 

3, section 3.1), μ ~ τ, where τ is the transport lifetime, which is determined, in part, by 

the rate at which electrons collide with sample impurities.  Thus, very pure samples tend 

to have high mobilities and allow better observation of delicate many-body electron 

states.  The GaAs/AlGaAs heterostructures used for the measurements described in this 

thesis were kindly provided by our collaborators Loren Pfeiffer and Ken West at Bell 

Labs. 

 
1.1.1  Overview 
 
The highest electron mobility 2DES’s are currently formed in GaAs/AlGaAs 

heterostructures (the alloy AlxGa1-xAs is abbreviated as AlGaAs).  The GaAs/AlGaAs 

system has several key properties that allow for high mobilities.  One of the most 

important of these properties is that the system is well lattice-matched; the lattice 

constant of AlAs is only 0.15% larger than that for GaAs.  This leads to a minimum 

amount of strain, and thus defect formation, at interfaces between two alloys with 

different Al content.  The highest mobility 2DES’s in GaAs/AlGaAs are grown via 

molecular beam epitaxy (MBE).  For a UHV environment at a pressure lower than 10-12 

Torr, the mean free path of molecules is greater than size of the vacuum chamber.  Under 
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these conditions, molecules emerging from heated sources do not diffuse – they form a 

molecular beam.  MBE allows for controlled growth of individual atomic layers.  The 

technique is precise but slow; a typical growth rate is approximately one 

monolayer/second.  Several advances in MBE techniques, such as modulation [1] and 

delta doping [2], where the dopant atoms are placed remote from the active area of the 

device, have caused mobility to increase.  The current record for high mobility is ~ 30 × 

106 cm2/Vs (~ 300 μm mean free path!) at low temperature (T < 0.3 K), achieved by 

Loren Pfeiffer and Ken West at Bell Labs. 

 
1.1.2  GaAs crystal structure 
 
The crystal structure of GaAs (or AlAs) is shown in Fig. 1.1.  GaAs has a zincblende 

structure; it is comprised of two fcc (face centered cubic) sublattices, one for Ga and 

another for As, displaced from one another by (1/4, 1/4, 1/4)a, where a is the lattice 

constant ~ 5.66 A (see Fig. 1.1).  In the alloy AlGaAs, Ga atoms are randomly replaced 

by Al atoms.  The samples discussed in this thesis are oriented so that the [001] direction 

is perpendicular to the 2DES. 

 

 
 

As

Al/Ga[001]

[100]

[010]

a

As

Al/Ga[001]

[100]

[010]

a

 
 

Fig. 1.1.  GaAs (or AlAs) unit cell with crystalline directions denoted by Miller indices 
([100], [010], and [001]). 
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1.1.3  GaAs/AlGaAs interface 
 
The interface between two AlGaAs alloys of differing Al and Ga content can be used to 

confine electrons.  A sketch of the band energies at this interface is shown in Fig. 1.2, 

where EC and EV are the conduction and valence band energies at the Γ point [3]. 

 
 

vacuum level 

 
 

Fig. 1.2.  Ideal alignment of bands at GaAs-AlGaAs interface.  χ is the electron affinity. 
 

The alignment of the conduction and valence bands is determined by the combination of 

the band gap Eg and electron affinity χ for each alloy.  For reference, the difference 

between the conduction band energies at the interface between GaAs and the common 

alloy Al0.3Ga0.7As is ΔEC = 0.23 eV [3]. 

Charge carriers can be introduced by doping.  In (100) oriented AlGaAs, 

substituting Si impurities for Al or Ga in the lattice will introduce electrons into the 

conduction band.  This addition of negative charge carriers by addition of impurities is 

called n-type doping.  There are two main states for the Si donor in AlGaAs – the 

standard donor, which can be modeled as a hydrogen atom-like state, and the deep donor 

or DX center [3].  The standard donor state can be treated as a hydrogen atom with the 

vacuum permittivity replaced by the dielectric constant of AlGaAs and the bare electron 

mass replaced by an effective mass, which gives a binding energy of the electron to the 

donor of ~ 50 K.  The DX center occurs when the replacement of the Al or Ga atom is 

accompanied by a distortion of the surrounding lattice.  The binding energy of the DX 

AlGaAs GaAs 

EV

Eg
AlGaAs

χAlGaAs 

χGaAs 

EC

Eg
GaAs
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center donor is much larger than the hydrogenic type donor and is experimentally 

approximately T ~ 150 K.  

Examples of n-type doped heterostructures are sketched in Fig. 3.1.  These 

structures are modulation doped – the Si impurities are placed remote from the 2DES 

AlGaAs/GaAs interfaces.  If these impurities were located in the region where 

conduction takes place they would contribute to electron scattering.  Modulation doping 

[1] can lead to large improvements in 2DES mobility.  In one specific type of modulation 

doping, referred to as delta doping [2], the dopants are placed in a thin monolayer sheet 

positioned a few tens of nanometers away from the 2DES region.  This places the 2DES 

as far from the dopants as possible, leading to a reduction in the scattering rate. 

Alternatively, undoped FET structures exist, where carriers are drawn in from Ohmic 

contacts into a GaAs/AlGaAs interface region by gating [4].  These structures can have 

very high mobilities at low densities due to the absence of disorder stemming from 

ionized donors near the 2DES. 

 

 
 
Fig. 1.3.  Schematic band diagrams for a 2DEG confined in a) at a single interface and b) 
in a quantum well, and c) a bilayer 2DES confined in a double quantum well structure.  
Solid line:  conduction band.  Dashed line:  chemical potential.  Dotted line:  electronic 
wavefunction.  Symbol “+” denotes position of ionized Si dopants. 
 

++ 
- - +

- -

+ 

GaAs AlGaAs AlGaAsAlGaAs GaAs
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+ +
- -

GaAs

AlGaAs
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An actual MBE structure is typically much more complicated than just an interface 

or two and some dopants.  An example of an actual single interface structure is shown in 

Fig. 1.4. 

The MBE layers are grown on a single-crystal GaAs substrate wafer, typically ~ 0.5 

mm thick.  This substrate is a polished slice sawed from a large single-crystal boule of 

GaAs.  First, a thick buffer layer of GaAs is grown to create a smooth surface and move 

the important layers away from the defects and impurities present on the wafer surface.  

Next, a cleaning superlattice is grown consisting of ~100 alternating AlGaAs, GaAs 

layers which getter and trap impurities at the GaAs/AlGaAs interfaces [5].  Another thick 

GaAs layer is grown and then the GaAs/AlGaAs interface for the 2DES.  The Si dopants 

are placed remotely from this interface (modulation doped).  A layer of AlGaAs separates 

the 2DES from the sample surface.  A thin cap of GaAs is grown on the surface to 

prevent oxidation of the AlGaAs.  The Fermi level is pinned mid-gap at the GaAs cap 

surface due to a large density of surface states in the middle of the band gap. 

 

 

…
…

GaAs substrate

2DEG

cleaning superlattice
100 × repeat

doping

10,000 Å GaAs

100 Å GaAs cap

GaAs

Al0.3Ga0.7As

Al0.3Ga0.7As:Si

…
…

GaAs substrate

2DEG

cleaning superlattice
100 × repeat

doping

10,000 Å GaAs

100 Å GaAs cap

GaAs

Al0.3Ga0.7As

Al0.3Ga0.7As:Si

GaAs

Al0.3Ga0.7As

Al0.3Ga0.7As:Si

~ 0.5 mmGaAs substrate207

3,000GaAs206

100Al0.3Ga0.7As8*

30GaAs7*

500Al0.3Ga0.7As6

10,000GaAs5

800Al0.3Ga0.7As4

50Al0.3Ga0.7As:Si3

1,000Al0.3Ga0.7As2

100GaAs1

Thickness 
(Å)

Material#

~ 0.5 mmGaAs substrate207

3,000GaAs206

100Al0.3Ga0.7As8*

30GaAs7*

500Al0.3Ga0.7As6

10,000GaAs5

800Al0.3Ga0.7As4

50Al0.3Ga0.7As:Si3

1,000Al0.3Ga0.7As2

100GaAs1

Thickness 
(Å)

Material#

100×
repeat

 
 

Fig. 1.4.  Example sample structure for a 2DEG formed at a single interface with 
modulation doping. 
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1.1.4  Effective Mass and g-Factor 
 
AlxGa1-xAs for x < 0.4 is a direct gap semiconductor with a spherically symmetric 

conduction band Fermi surface near the Γ point.  A single effective mass, m*, can be 

used to describe the kinetic energy of electrons near the bottom of the conduction band, 

where the band dispersion E vs. k is roughly parabolic.  For GaAs m* = 0.067me, where 

me is the electron mass in vacuum. 

The Zeeman splitting EZ in AlGaAs can be parameterized by an effective g-factor g*, 

where EZ = g*μB.  For GaAs, g* ≈ -0.44, whereas the g-factor of an electron in vacuum is 

ge = 2.  Due to spin-orbit coupling, g* is not equal to ge and even has the opposite sign! 

 
1.1.5  2DES Wavefunction 
 
It is useful to be able to estimate properties of the bound 2DES states, such as the shape 

of the electronic wavefunction in the direction of confinement, binding energies, etc.  

This requires a self-consistent solution of the Poisson and Schrodinger equations, which 

can be done numerically.  An example of a Poisson-Schrodinger self-consistent 

calculation is shown in Fig. 1.5.  The solution includes the exchange and correlation 

energies in the self-consistent potential, using the local density approximation (LDA) [6].  

In the LDA approximation, the exchange-correlation energy at each z-coordinate (z is the 

direction normal to the 2DES) is set equal to the exchange-correlation energy of a 

homogeneous, three dimensional electron gas with a density proportional to the square of 

the modulus of the 2D subband wavefunction at that point.  The calculation shown in Fig. 

1.5 is for a 2DES formed at a single GaAs/AlGaAs interface.  One unknown parameter 

that complicates the calculation of the exact wavefunction is the precise slope of the 

conduction band energy in the tail of the wavefunction, heading towards the substrate.  In 

actual samples, impurities (bundled under the term “depletion charge”) may tend to 

deplete carriers, causing the conduction band to rise towards the middle of the band gap 

away from the 2DES region.  Also, as mentioned previously, the Fermi level will be 

pinned mid-gap at interfaces with a large number of surface states, such as at the surface 

of the GaAs substrate wafer.  Thus, the Fermi level must eventually reach the middle of 

the band gap away from the 2DES region.  The effect of depletion charge was ignored in 

the calculation of Fig. 1.5. 
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A convenient approximate solution for the 2DES wavefunction for the case of a 

single interface structure is the Fang-Howard wavefunction [7], a variational 

wavefunction of the form 
 

),2/exp()( bzzz −∝ψ  
 
where the interface is located at z = 0, and b is a parameter that is used to minimize the 

energy, given a specific 2DES density n (the value of the barrier height at the interface is 

ignored since 0)0( =ψ ).  Using the Hartree approximation (i.e., ignoring the exchange 

and correlation energies) the solution with the minimum energy is given by  

 
3/1

2

2

8
33

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ε
nmeb . 

 
A comparison of the Fang-Howard wavefunction and the Poisson-Schrodinger solution is 

shown in Fig. 1.5. 
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Fig. 1.5.  Dotted line:  Schrodinger-Poisson solution to wavefunction modulus squared 
for the single interface structure shown in Fig. 1.4.  Solid line:  conduction band energy.  
Dashed line:  Fang-Howard wavefunction squared.  The horizontal dashed line 
corresponds to the Fermi energy.  The electron density is n = 1.5 × 1011 cm-2. 
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1.2 Experimental Techniques 
 
1.2.1  Sample Fabrication 
 
In order to make measurements it is usually necessary to create a specialized sample from 

a piece of the parent GaAs/AlGaAs wafer.  Fabricating a 2DES device can consist of 

simply cleaving a chip and adding ohmic contacts with a soldering iron or can be a 

multiple step process defining a patterned 2DES mesa region, metallic gates, and 

lithographically defined ohmic contacts.  For completeness, a brief description of the 

processes used to fabricate the samples described in this thesis is included in Appendix 

A.   
 
1.2.2  DC Transport Measurements 
 
One of the most common techniques used to investigate 2DES’s is via dc resistance 

measurements.  The following is a description of the basic characterization of 2DES 

samples via low-frequency transport measurements. 

 
1.2.2a  Van der Pauw Method 
 
The resistivity (at zero magnetic field) of any conducting sheet with four point contacts 

on the periphery, as shown in Fig. 6, can be obtained using the van der Pauw method [8]. 

 

 
 

Fig. 1.6.  Four point van der Pauw measurement setup. 
 

The sheet resistivity per square is given by. 
 

, , ( )
ln(2) 2

AB CD AD CBR R
f rπ

ρ
+

= , 
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{ }, , , ,max / , /AB CD AD CB AD CB AB CDr R R R R= , 
 

where RXY,WZ = VWZ/IXY is the resistance measured by applying current IXY between 

contacts X and Y and measuring the voltage VWZ between contacts W and Z, and the 

factor f is given by 

 
ln(2) 1 1 ln(2)cosh exp

1 2
r

f r f
⎛ ⎞ ⎛− ⎟ ⎟⎜ ⎜⎟ ⎟=⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜+⎝ ⎠ ⎝

⎞

⎠
. 

 

A plot of f versus r is shown in Fig. 1.7. 
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Fig. 1.7.  Function f versus r for calculating resistivity (see text). 
 
 
1.2.2b  Hall Bar 
 
Another common geometry used for determining sheet resistivity is the Hall bar, as 

shown in Fig. 1.8.   
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Fig. 1.8.  Typical Hall bar geometry. 
 

The bar is designed so that the current distribution is uniform along the width of the bar 

in the region of the side-arm contacts.  The distance between the side arms should be 

greater than the arm width so that the voltage probes are point-like.  Then, the sheet 

resistivity is given by the longitudinal resistance divided by the number of squares 

between the voltage probes: 
 

squares of #
1

⎟
⎠
⎞

⎜
⎝
⎛=

I
Vρ . 

 

1.2.2c  Density and mobility 
 
The 2DES density can be obtained by via Hall resistance measurements (see Chapter 3 

for a discussion of transport in a magnetic field), where  
 

/ ,H B neρ ⊥=  
 
where n is the electron density, B⊥  is the magnetic field normal to the 2DES, 

and IVH /=ρ  (see Fig. 1.9) is the Hall resistance. 

 

 

 
 
Fig. 1.9.  Schematic for measurement of Hall resistance. 
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An alternative method of determining the density is to use the SdH oscillations of the 

longitudinal resistance versus magnetic field (see Chapter 3).  The positions of the 

resistance minima are given by ,/ ehnB ν= where ν is an integer.  Then the slope of a plot 

of B versus 1/ν is a convenient way to obtain the density that is insensitive to offsets in 

the measurement of the magnetic field.  Finally, given the density and the sheet 

resistivity, the mobility is given by 
 

neρ
μ 1

= . 

  
 
1.2.2d  Measurement Circuit 
 
One very common measurement performed to obtain the data in this thesis is 

determination of the longitudinal resistivity of a 2DES in a perpendicular magnetic field.  

Figure 1.10 shows the typical circuit used for this measurement. 

 

 
 

Fig. 1.10.  Basic circuit for measurement of longitudinal resistivity. 
 

The four-point measurement of the longitudinal resistivity is made by passing a fixed 

current through the sample, and measuring the voltage between two contacts on one side 

of the sample.  The measurement is usually performed at low, but finite frequencies 
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(typically 13 Hz) using lock-in detection to avoid the 1/f noise which becomes a problem 

at very low frequencies in many electronic components such as resistors and transistors.  

Measurement currents range from I = 1 to 100 nA, depending on the sample geometry 

and temperature.  Large currents can cause Joule self-heating of the 2DES.  As shown in 

Fig. 1.10, a current source is created by placing a 10 MΩ resistor in series with the lock-

in oscillator.  A low-noise differential voltage amplifier, such as the Princeton Applied 

Research PAR116, Ithaco 1201, or Stanford Research Systems SR550 voltage preamp, 

measures across the two voltage probes.  The output of this preamp is connected to the 

input of a lock-in amplifier, either a Princeton Applied Research PAR124A or Stanford 

Research Systems SRS830 lock-in amplifier.  The lock-in output is digitized by a digital 

volt meter (DMM, Agilent 34401A) and sent to a computer via GPIB.  Details about the 

wiring of the cryostat can be found in the next section. 
 
1.2.3  Cryogenics 
 
Low temperatures are required to see the delicate many-body physics of 2DES’s.  The 

majority of measurements discussed in this thesis were performed at low temperatures 

(down to ~ 15 mK) reached via dilution refrigeration.  Some measurements were also 

performed in a 3He immersion cryostat.  The following is an overview of the Oxford 

200TL dilution refrigerator, which was used for most of the measurements described in 

this thesis. 

 
1.2.3a  Dilution Unit 
 
Dilution refrigeration can allow one to reach temperatures down to T ~ 2 mK.  A 

description of the general principles behind dilution refrigeration, as well as other useful 

information about cryogenic techniques, can be found in Ref. [9]. 
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Fig. 1.11.  TL 200 dilution unit. 
 

At low temperatures (below 0.87 K) a mixture of 3He and 4He, for a 3He 

concentration greater than 6%, will separate into two phases, a concentrated phase 

consisting mostly of 3He and a dilute phase consisting mostly of 4He.  Roughly, dilution 

refrigeration “evaporates” 3He in a 3He - 4He mixture, by passing 3He from the 

concentrated phase to the dilute phase (~ 6% 3He), where 3He remains soluble in 4He 

even as T → 0.  Figure 1.11 indicates a few of the main components of the dilution unit.  
3He is continuously circulated through the unit using hermetically sealed pumps.  The 
3He is first condensed at the “1K pot”, a reservoir of 4He which is pumped to reach T ~ 

1.5 K, a temperature at which the 3He will liquefy (the condenser pressure is usually ~ 

100 mBar).  The 3He is further cooled on its way to the mixing chamber by heat 

exchangers, where 3He entering and exiting the mixing chamber is allowed to thermally 

equilibrate.  The condensed liquid 3He then flows into the mixing chamber, which 
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contains both the dilute and concentrated phase of the 3He - 4He mixture, where the less 

dense 3He rich phase floats on top of the dilute phase.  In the mixing chamber the 3He is 

passed from the concentrated to dilute phase.  The mixing chamber is where the fridge 

reaches the lowest temperatures.  A cold finger, made of very pure, annealed high-

thermal conductivity silver, connects the mixing chamber to the sample stage.  After 

exiting the mixing chamber, the 3He passes into the still, where it is evaporated and 

pumped back into the condenser.  The still is heated to increase the 3He circulation rate 

and is maintained a temperature of roughly T ~ 0.7 K.  The sealed pumps pump directly 

on the still, which is connected to the pumps via very wide plumbing lines for maximum 

pumping speed. 

  The TL 200 fridge cooling power (~ T 2) is 200 μW at a temperature of 100 mK and 

the fridge currently reaches a base temperature of ~ 15 mK.  This is the cold finger 

temperature; cooling the electrons in a 2DES sample and determining the electron 

temperature is generally more challenging.   It is difficult to directly determine the 

electron gas temperature.  However, we know that the magnetotransport of 2DES 

samples continues to evolve down to the lowest fridge temperatures.  For example, 

measurements of the activation energies of various quantum hall states continue to follow 

the expected Arrhenius trend at low temperatures. 

 
1.2.3b  Thermometry and Wiring 
   
The main thermometer is a carbon resistor (Roxf) mounted near the mixing chamber on a 

silver rod connected directly to the sample stage.  The system is equipped with a solenoid 

magnet providing fields of up to B = 13.75 T at the sample stage (higher fields are 

available if the lambda fridge is used).  The magnetic field at the mixing chamber is kept 

small via cancellation coils.  The Roxf thermometer is placed near the mixing chamber in 

order to avoid errors due to the magnetic field dependence of the resistivity. 

The link between the mixing chamber and the sample is provided by a cold finger 

consisting of four silver rods (see Fig. 1.11).  This silver contains very few impurities 

(99.999% pure), and has been annealed to reduce the number of grain boundaries, 

improving the thermal conductivity at low temperatures. 
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The cryostat wiring consists of semi-rigid coax, manganin wire twisted pairs, and 

stainless steel flexible coax.  At T = 4 K and 1 K heat sinking of the manganin leads is 

achieved by wrapping the wires around OFHC copper spools.  At the “50 mK plate”, 

located below the still, and at the mixing chamber, the leads are heat sunk via Cu-

Kapton-Cu laminate heat sinks, where the front-side Cu is patterned into leads that are 

placed in series with the fridge wiring, and the back-side Cu is clamped (good thermal 

joint) to the 50 mK plate or mixing chamber.  An example of one of these laminate heat 

sinks is shown in Fig. 1.12.  
 

 
 
Fig. 1.12.  Cu-kapton-Cu laminate heat sinking (center of photo, labeled “TP3XX”) of 
the manganin leads at the mixing chamber. 
 

Additional heat sinking is done for each wire at the sample holder with a series 10 kΩ 

metal-film resistor and a 500 pF polyester-foil capacitor in parallel to ground (configured 

like a low-pass RC filter).   

 
1.2.3c  RF Leads 
 
A description of the RF leads installed in the lab cryostats can be found in Appendix B. 
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Chapter 2: 
Surface Acoustic Wave Propagation in Low density 

2DES’s near the Metal-Insulator Transition 
 

The apparent metal-insulator transition (MIT) in two-dimensions remains a subject of 

interest due to the fact that the basic physics of this fundamental topic – the exact nature 

of the ground state of a two dimensional electron system (2DES) – is still not well 

understood.  Controversy exists over whether this transition is better described as an 

exotic, interaction-driven phase transition or by more straightforward physics of 

disordered conductors.  This chapter discusses surface acoustic wave propagation in the 

presence of a 2DES at the low densities where this putative MIT should occur [1]. 

 
2.1  The 2D Metal-Insulator Transition 
 
The ground state of a 2DES at zero magnetic field remains an enigma, due to the extreme 

difficulty of solving the many-body problem of interacting 2D electrons.  This is 

especially true when one tries to incorporate disorder, which is necessary in order to 

describe actual experimental systems.  One aspect of this problem many have focused on 

is the temperature dependence of the 2DES conductivity as a function of 2DES density.  

Varying the electron density changes the strength of electron-electron interactions 

relative to the kinetic energy and also varies both of these energy scales relative to the 

strength of the disorder.  Experimentally and theoretically, there is some evidence 

suggesting a transition from metallic to insulating behavior upon varying the density. 

The following is a brief overview of experimental data and theoretical arguments 

regarding the apparent MIT.  The reader is referred to two review articles [2, 3] which 

take opposite viewpoints regarding the nature of this transition and review much of the 

experimental and theoretical literature relevant to this topic. 

 
2.1.1  Previous Experiments 
 
The definition of a metal versus an insulator is given by the temperature dependence of 

the resistivity.  For a metal, the resistivity remains finite as the temperature goes to zero, 

and for an insulator the resistivity will diverge in the zero temperature limit.  An apparent 
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MIT has been experimentally observed in some systems as the density of the 2DES is 

tuned.  Previous experiments [2 - 5] have shown that at low densities the 2DES appears 

insulating – the resistivity increases with decreasing temperature at the lowest accessible 

temperatures, while at high densities resistivity continues to decrease with decreasing 

temperature, raising the possibility of a metallic phase at high densities.  At some 

intermediate density, the resistivity looks temperature independent, and frequently this 

point is then identified as the critical density at which the MIT occurs.  However, all data 

is taken at finite temperatures, so it is hard to say what will actually happen as the 

temperature is lowered further.  This problem is further exacerbated by the fact that some 

predictions for the insulating behavior of the resistivity, such as contributions from weak 

localization, give a very weak, logarithmic temperature dependence, which will be 

difficult to observe and, at experimentally accessible temperatures, may be masked by 

other contributions from, for example, phonon scattering. 

 
2.1.2  Theoretical Expectations 
 
The apparent metal-insulator transition came as a surprise.  The standard picture 

(somewhat controversial) is that a “metallic” state is not expected to exist in two 

dimensions, at least for non-interacting electrons. 

 
Non-interacting picture 
 
For high enough 2DES densities, the electron-electron interactions are relatively weak 

compared to the kinetic energy.  This is due to the fact that the Fermi energy scales 

linearly with density, , while for the Coulomb interaction FE ∝ n CE n∝ .  We first 

examine this high-density limit, ignoring the effect of electron-electron interactions.    

 
Classical Drude conductivity 
 
Within the Drude picture the 2DES resistivity is given by 

 

2CL
m

m
ne

ρ
τ

= , 
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where 1/τm is the momentum relaxation rate (the rate at which the electron undergoes a 

collision that alters its initial momentum), 1/τi is the impurity scattering rate, and 1/τie is 

the inelastic scattering rate.  As the temperature is reduced, the inelastic relaxation rate 

vanishes and the resistivity should become a constant as T → 0, where ρ0 

is commonly referred to as the residual resistivity. 

2
0 / im neρ =

 
Weak localization 
 
Next, including quantum corrections, for a non-interacting 2DES and a small amount of 

disorder the electron gas is expected to be weakly localized.  More precisely, weak 

localization occurs when , where lm is the mean free path and lφ is the phase-

relaxation length. The mean free path is the distance an electron travels between 

collisions which alter its momentum.  The phase-relaxation length is the distance an 

electron travels before its phase is destroyed due to inelastic collisions (typically due to 

phonon or electron-electron scattering – see [6] for further discussion of lm and lφ).  In 

this regime, there is a small correction to the conductivity that one would have obtained 

by simple application of Ohm’s law: 

ml lφ �

 
22 ln( / )CL m

e l l
h φσ σ

π
= − , (1) 

 
where σCL is the classical prediction for the conductivity.  This reduction in conductivity 

from the classical value is due the fact that it is more probable for phase-coherent 

electrons to backscatter.  Performing a sum of the scattering amplitudes over all 

backscattering paths and the time-reversed versions of those paths leads to a factor of two 

increase in the total backscattering probability over the classical, non-coherent version of 

this sum, which would sum over the scattering probabilities, not the amplitudes. 

Lowering the temperature tends to lengthen the phase-relaxation length.  At low 

enough temperatures, electron-electron scattering will dominate over the effect of 

phonons.  Electron-electron scattering increases as the temperature is raised and states 

kBT above and below the Fermi level are filled and emptied.  Thus, the weak localization 
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contribution causes a decrease in the conductivity as the temperature is lowered, giving 

rise to insulating behavior. 

 
Electron-electron interactions 
 
There is another correction to the temperature dependence of the conductivity due to 

electron-electron interactions.  This term looks similar in form to the weak localization 

correction, having a logarithmic temperature dependence [7]:   

 

[ ]
2

ln ( / )( / )F m B
e v l k T
h

δσ
π

≈− = . 

 
Thus, adding weak interactions strengthens the insulating temperature dependence of the 

weakly-localized state. 

 
Strong localization 
 
For large enough disorder such that , the 2DES is strongly localized.  The 

conductance in this regime is of order or less than e2/h.  Conduction occurs via variable 

range hopping from localized site to site.  Efros and Shklovskii [8] argue that the 

temperature dependence of the conductivity is given by , where p 

= 1/2. 

1m Fl k ∼

( )1 exp( / )pTσ − −∼ Tα

 
Scaling theory 
 
The scaling theory of localization [9] predicts how the conductance G of a square sample 

of size L2 scales with system size at zero temperature.  Based on various analytical 

arguments, the theory says that there is a scaling parameter β which is a function of only 

the dimensionless conductance , where 2/( / )g G e h≡

 

[ ] lnln( )
ln

d gg
d L

β = . 
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The behavior of this scaling function can be determined by examining some limiting 

cases.  For large, finite conductivities the 2DES is weakly localized and depends on 

sample size like  

 
22( ) ( ) ln( / )m m

eL l L l
h

σ σ
π

= − , 

 
where L replaces lφ in Eq. 1 in the zero temperature limit since .  Then  lφ →∞

 
1
g

β ∝ . 

 
As a check, in the limit , the metallic limit, we obtain  which gives Ohm’s 

law.  For small conductivities, strong localization requires that the conductance fall 

exponentially with length: 

g →∞ 0β →

 
( ) exp( )L Lσ α∝ − . 

 
Then  
 

0ln( / )g gβ = , 
 
where g0 is a constant of order unity.  For intermediate conductivities, it is argued on 

physical grounds that the scaling parameter should be a smooth function of ln(g).  The 

resulting prediction for β is shown in Fig. 2.1.  For reference, Fig. 2.1 also shows the 

scaling for conductance in one and three dimensions as well.  In general, in order to 

obtain Ohm’s Law in the large conductivity limit, we require  as , 

where d is the dimensionality. 

2dβ → − g →∞
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Fig. 2.1.  Scaling of conductivity as proposed by Ref. [5], where d is the dimensionality. 
 

For d = 2, at all finite conductivities, β < 0 implies that all states are localized.  Thus, the 

prediction of scaling theory is that no metallic state should exist in two dimensions. 

 
The case of strong interactions 
 
On the other extreme, we can ignore disorder but consider the case of strong electron-

electron interactions.  Quantum Monte Carlo calculations predict that the two-

dimensional electron gas should crystallize at large rs, where  is a 

dimensionless parameter determining the relative importance of interactions, where EC is 

the Coulomb energy and EF is the Fermi energy.  The most recent calculations of 

Attaccalite et al. [10] predict that the lowest energy ground state for rs > 35 is a Wigner 

crystal.  Any small amount of disorder should then pin this crystal, leading to insulating 

behavior at low temperatures. 

1/ 2/ ~s C Fr E E n−=

 
Summary 
 
In reality none of the above mentioned limiting cases completely describe actual 

experimental systems.  When both disorder and strong interactions play a strong role the 

conclusions become less clear.  Interpretation of both theory and experiment in the 

putative MIT regime remain difficult and controversial. 
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2.2  Introduction to Surface Acoustic Waves 
 
We next discuss experiments involving surface acoustic wave (SAW) propagation near a 

2DES in the MIT regime.  Several aspects of SAW’s make them an interesting probe of 

low-density 2DES’s.  We first introduce SAW’s and their interaction with 2DES’s. 

 
2.2.1  Surface Acoustic Waves 
 
SAW’s can be used to study the frequency and length-scale dependent conductivity of 

two-dimensional electron systems.  A SAW is an elastic wave that travels on the surface 

of an elastic body and whose energy is confined to a depth of about one wavelength 

below the surface.  Because GaAs is piezoelectric, a SAW will interact with a 2DES 

located near (within one SAW wavelength) the sample surface. 

 
 

 
 
Fig. 2.2.  Schematic of SAW propagation across a region containing a 2DES (shaded 
region), launched and detected by interdigitated transducers. 
 

One can use the piezoelectricity of GaAs to launch and detect SAW’s by placing 

interdigitated metallic transducers on either side of the region containing a 2DES (see 

Fig. 2.2).  By applying a potential between the fingers at the resonant frequency of the 

transducer, which is where the wavelength of the SAW matches the period of the 

transducer, one can create an elastic distortion and launch a surface acoustic wave across 

the 2DES region, which is then received by a second transducer.  The interdigitated 

transducers can be created with either optical or e-beam lithography, depending on the 

desired SAW wavelength.  For further reading, see Appendix C, which describes SAW 

propagation in GaAs and details about SAW transducer operation. 
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2.2.2  SAW Interaction With a 2DES 
 
The electric potential created by the SAW will be screened by a 2DES located near the 

sample surface.  This screening will affect both the velocity and amplitude of the SAW.  

The resulting attenuation and velocity shift are given by [11] 
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where Γ is the attenuation per unit length, v is the SAW velocity, k is the SAW 

wavevector, is a piezoelectric coupling coefficient with a value of approximately 6.4 

× 10-4, σ is the electron gas conductivity, and σM is a characteristic conductivity. and 

σM vary with kd, where d is the 2DES depth (see Appendix C, section C.1.3).  The 

velocity change  is referenced to the SAW velocity in the 

presence of a perfect conductor ( ). 
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Fig. 2.3. Dependence of SAW attenuation and velocity shift on 2DES conductivity from 
Eq.’s (2) and (3). 
 

For conductivities below σM, the amplitude and velocity of the SAW is unaffected by the 

2DES and propagates as in bulk GaAs.  As shown in Fig. 2.3, for conductivities 

comparable to or greater than σM, the screening of the piezoelectric potential causes 



 29

attenuation and a decrease in the SAW velocity.  The value of σM can be crudely 

understood by considering the capacitive charging of the 2DES.  Consider a square patch 

of 2DES of area λ2, where λ is the SAW wavelength.  To screen the piezoelectric 

potential, the charge on this patch must be rearranged to match the SAW potential.  If we 

set the RC time constant for this charging equal to the SAW period, λ/vs, we find that R ~ 

1/ εvs ~ 1/σM. 

The above model has been successfully applied to SAW propagation in 2DES’s in 

GaAs/AlGaAs heterostructures in the quantum Hall [12] and fractional quantum Hall 

[13] regimes.  Interestingly, there are exceptions to the applicability of the above model 

when the SAW wavelength becomes comparable to some other 2DES length scale, as 

was seen near Landau level filling factor ν = 1/2 where the SAW absorption by the 2DES 

was enhanced due to a geometric resonance effect for composite fermions [14]. 

 
2.3  Experiment 
 
Because σM is a very low conductivity (for our experimental conditions 

-7 1
M  ~ 7 × 10  σ −Ω ), SAW’s will be very sensitive to the 2DES conductivity at low 

2DES densities, near the conditions required to observe the MIT.  SAW’s then allow 

investigation of the frequency or length scale dependence of the conductivity in this 

regime.  Also, SAW’s sample the 2DES conductivity in a different way than ordinary 

four-point resistance measurements; for example, a very inhomogeneous 2DES 

containing isolated patches with conductivity greater than σM separated by regions with 

zero conductivity will cause a non-zero SAW velocity shift, while the four-point 

resistance of the sample may appear infinite. 

 
2.3.1  Overview 

The samples used in this experiment are modulation doped GaAs/AlGaAs 

heterostructures.  Most of the data is from a structure where a 2DEG is formed at a single 

GaAs/AlGaAs interface.  The as-grown density of this 2DES is n = 1.4 × 1011 cm-2 with a 

corresponding mobility about 3 × 106 cm2/Vs at low temperatures.  The 2DES is confined 

to a 2 mm × 2 mm square mesa.  A single ohmic contact and a top gate allow one to 

change the 2DES density and determine the 2DES conductivity via a low-frequency 
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admittance measurement.  Interdigitated SAW transducers are placed on either side of the 

region containing the 2DES.  The SAW fractional velocity shift is measured using 

standard homodyne techniques, using a phase-locked loop (PLL).  Simultaneous SAW 

and admittance measurements were done in a 3He immersion cryostat at a temperature of 

T ~ 0.3 K and additional admittance measurements were also performed at lower 

temperatures down to 50 mK in a dilution refrigerator. 
 
2.3.2  Phase-Locked Loop (PLL) 
 
The use of a phase-locked loop (PLL) provides a frequency and phase sensitive method 

of measuring SAW velocity shifts.  The PLL measurement results in better noise 

rejection than simple rectification and amplitude detection. 
 

 

VCO

Vout ~ v/vIF

LO

RF

phase 
detector

sample

frequency 
control

amplifier

low-pass
filter

 
 

Fig. 2.4.  Simplified PLL circuit for SAW Δv/v measurements. 
 

Figure 2.4 shows a simplified diagram of the PLL.  The signal generator is a voltage-

controlled oscillator (VCO) which drives the sample and the LO of the phase detector at a 

frequency f = fbase + df/dV × Vout.  The phase detector in this loop is a mixer which 

multiplies the RF and LO signals.  The voltage at the IF output is the result of this 

multiplication, i.e. 
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( ) ( ) ( ) (1 2
1 2sin sin cos 2 cos

2IF LO RF
VVV V V V t V t t )ω ω φ ω φ φ∝ × = + = + −⎡ ⎤⎣ ⎦ , 

 
where ω = 2πf , V V ( )1 sinLO tω= , and ( )2 sinRFV V tω φ= + .  Thus, the IF output consists 

of a dc component ~ cos(φ) plus a component at 2f.  If the low-pass filter following the IF 

output has a passband much less than 2f, then only the cos(φ) term will determine Vout.  

To get a rough understanding of how the loop works, consider, for example, a situation 

where fbase is set to a value such that the initial phase difference φι between the RF and 

LO is φι = / 2 nπ π+ , where n is an integer.  Then, we have Vout = 0, and the VCO 

frequency will remain at f = fbase.  However, if φι ≠ / 2 nπ π+  and the sign of the 

amplifier gain at the phase detector IF output is set correctly (for negative feedback), then 

upon closing the loop, the circuit will attempt to minimize the frequency control voltage.  

It will do so by driving the VCO frequency to a value that brings φ to some new value φ0 

near / 2 nπ π+ .  After φ0 is established, the loop will adjust the frequency in order to 

maintain a roughly constant φ = φ0, for small SAW velocity changes. 

 

 

 
 

Fig. 2.5.  Sample with SAW path length x. 
 

 To see roughly how this circuit allows measurement of SAW Δv/v, consider the 

loop in an initial condition where the SAW velocity and wavelength have initial values v 

= v0 and λ = λ0, respectively.  Then, let the conductivity of the electron gas change so that 

the SAW velocity changes to some new value v0 + Δv, and the SAW wavelength changes 

to λ0 + Δλ.  Because the majority of the time delay between the RF and LO occurs in the 

SAW sample, not the coaxial leads, the phase difference between the RF and LO at the 

phase detector is determined by 2 /xf vφ π=  (see Fig. 2.5).  The PLL will try to maintain 
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a constant phase difference φ by adjusting the frequency f so held constant.  

Since x/λ = xf/v is held constant, we have Δf/f0 = Δv/v0, where 0

that x/λ is 

f f fΔ = −  (f0 is defined 

as the frequency when Δv = 0).  Then, the SAW velocity shift is simply given by the 

VCO control voltage (plus an offset that de  

the VCO):  0/ . 
 

pends on the choice of the base frequency of

( )0 0 0/ /  + /   base outv v f f f df dV V fΔ = − ×

f

Vout
0

φ = 90°

Vout = βcos(φ)

fbase + (df

  Convergence

/dV)Vout

 
Fig. 2.6.  of PLL.  The solid trace shows the amplified and filtered mixer IF 
output, ( )cosoutV β φ= , where 2 /xf vφ π= .  The dotted line is the VCO frequency.  The 
open circle represents the initia ng Vout to the VCO 
frequency control input, where base

l state of the PLL, prior to connecti
f f=  and ( )0cos 2 /out baseV xf vπ= .  The small arrows 

show the convergence of f and Vout to equilibrium after the loop is closed.  The solid 
circle marks the equilibrium f and Vout. 

loop is closed (

 

Figure 2.6 sketches the initial behavior of the loop.  The dotted line shows the VCO 

frequency and the solid line shows the amplified and filtered mixer IF output.  Before the 

frequency control input disconnected), basef f=  and 

( )0cos 2 /out baseV xf vπ= , as indicated by the open circle in Fig. 2.6.  After the PLL is 

closed, the VCO moves to a new frequency, as determined by Vout.  The sequence of 

arrows from the open to closed marker in Fig. 2.6 indicates how the loop converges to the 

equilibrium values of f and Vout.  We have assumed that the VCO frequency responds 

quickly compared to the bandwidth of the low pass filter, which is the case for our actual 

measurement circuit.  It is also visually clear from Fig. 2.6 that for large amplitude β, the 
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intersect of ( )/base outf df dV V+  and ( )cosβ φ  will occur near where ( )cos 0φ = , i.e. 

90φ °∼ . 

 Writing down the voltages at various points in the loop, we have 

 

( )

( )
1 2

0

cos

V

V

( )/ ,

IF

base out

V g

V V

out

IF

f f dV Vf df

α φ

=

=

Δ = − +

2 /

×

 

 
where g is the gain of the amplifier, α is a constant determined by the mixer 

specifications, fbase is the frequency of the VCO when Vout = 0, f0 is the frequency when 

the loop is initially closed and Δv = 0, and V1 and V2 are the magnitude of the voltages at 

the mixer LO and RF terminals.  Now, φ is determined by f, v, and path length x, as 

shown in Fig. 2.5:  

 
xf v . φ π=
 

Then, 

 
( ) ( )os 2 /base 0/ cf f f− = xfβ π v

/

, 
 

where .  For large loop gain β and choice of fbase such that ( ) 1 2 0/df dV g VV fβ α

( )
≡

( ) 0/ 1base fβ �f f− , we can write 
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where 3 / 2 2  or / 2 2b nφ π π π= + + π , for some integer n.  Then 
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Thus, v/f is held approximately constant, which implies that 0 0/ /v v f fΔ ≈ Δ . 

 
2.3.2  Measurement Setup 
 
Figure 2.7 shows a diagram of the actual SAW Δv/v measurement circuit.  This circuit is 

similar to that of the basic PLL loop shown in Fig. 2.5; however a few more components 

are needed in order to take care of technical details.  In practice, the measurement is 

pulsed, rather than cw.  The main reason for this is to avoid the signal due to capacitive 

coupling between the input and output SAW transducers.  The measurement is pulsed at a 

repetition rate of about 10 kHz with a pulse length ranging from 0.1 to 1 μs.  The pulsed 

measurement allows one to separate out the SAW signal (delayed in time by the sample 

size / speed of sound) from the nearly instantaneous signal due to capacitive coupling.  

Switch “C” pulses the input RF to the sample and switch “G” gates the RF output from 

the sample, rejecting the capacitively coupled signal and keeping only the SAW signal.  

The best pulse length to use is the longest pulse possible (to get the narrowest bandwidth 

to reject noise) without having any overlap between the capacitively coupled signal and 

the SAW signal.  The SAW frequency typically ranges from about 100 MHz to 2 GHz. 

Mixer “L” is a level 7 mixer, meaning that +7 dBm should be applied to the LO 

input.  In order to avoid dc offsets at the mixer IF output, the RF level should be kept 

below 7 dBm.  However, if the RF input voltage is too small, there may be insufficient 

gain and the mixer may add noise to the measurement.  RF levels between 0 and 7 dBm 

are recommended.  The attenuator “K” can be used to adjust the RF level. 

 The low-pass filter shown in Fig. 2.5 has been replaced in the circuit of Fig. 2.7 by 

a boxcar integrator.  A boxcar integrator is a gated integrator, which accepts incoming 

signals during a user-defined period of time, and rejects signals for all other times.  The 

boxcar integrates this accepted signal over the length of the gate and then averages this 

integrated signal for a desired number of repetitions.  The gate length is set 

approximately equal to the length of the RF pulse sent to the sample.  Typically, 1,000 – 

10,000 cycles were averaged via the boxcar integrator in this experiment.  At a repetition 

rate of 10 kHz, this gives a measurement time constant in the range of 0.1 to 1 sec 
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Parts list: 
 

A.  HP8648B RF signal generator, with frequency modulation (FM) control 
B.  MiniCircuits ZFSC-2-2500 power splitter, 0º phase shift. 
C.  MiniCircuits ZASW-2-50DR PIN diode switch. 
D.  HP8116A function generator 
E.  MiniCircuits VAT-X attenuator 
F.  Miteq JS2 low noise RF preamp 
G.  MiniCircuits ZASW-2-50DR PIN diode switch 
H.  Advance Electronics 605B variable delay line 
I.  Wavetek 183 XCG/Sweep generator 
J.  MiniCircuits ZKL-2 RF amplifier 
K. MiniCircuits VAT-X attenuator 
L.  MiniCircuits ZFM-2000 mixer 
M.  SRS280 boxcar integrator 
N.  PAR113 audio amplifier 
O.  Overvoltage protection diodes (1N914) for FM input 

 
Fig. 2.7.  Complete SAW Δv/v measurement circuit and parts list. 
 

. 
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The protection diodes “O” protect the HP8648B RF signal generator FM input from 

excessive voltages (which could occur, for example, if one set the loop gain β to have the 

wrong sign).  The instrument may be damaged for voltages 1 VFMV > . 

The initial RF preamp “F” (Miteq JS2 low-noise preamp) was the main source of 

noise in the Δv/v measurement.  This preamp has a gain of about 36 dB and noise figure 

NF ≈ 0.6 dB at frequencies ranging from 0.2 – 2 GHz.  This translates to a voltage noise 

contributed by the amplifier alone (i.e., for a cold source resistance) of 0.35 nV/ Hz , 

referred to the amplifier input.  If one were to look at the amplifier output over its entire 

bandwidth (~ 0.2 – 2 GHz), this would correspond to a total noise of about 15 μV rms, 

referred to the amplifier input.  The PLL measurement, however, can use a narrower 

bandwidth.  The SAW signal received by the high-frequency preamplifier is a 0.2 to 2 

GHz signal lasting for a pulse length of τ = 0.1 to 1 μS.  This signal is amplified and sent 

to the mixer.  The mixer IF output has roughly the same shape as the pulse envelope 

function, which is a square pulse of length τ.  The Fourier transform of this envelope has 

a width ~ 1/τ ~ 1 – 10 MHz.  This is the minimum bandwidth needed to measure the 

mixer IF signal.  The boxcar integrator rejects frequencies below 1/τ by gating the 

incoming signal and removes frequencies above 1/τ via integration over the gate width.  

Now, with this reduced bandwidth, the total noise, referred to the preamplifier input is 0.4 

– 1 μV rms. 

Unwanted fluctuations in the PLL output voltage are mostly due to fluctuations in 

the RF preamp output.  The amount of rms phase noise accepted by the PLL is 

( )/ / 2  × BWV Vδφ δ= , where δV is the spectral rms voltage noise density of the 

preamp, V is the SAW signal rms voltage at the output transducer, and BW ~ 1/τ is the 

bandwidth.  For large loop gain, the phase φ between the mixer LO and RF inputs is held 

roughly constant.  Then,  
 

( ) ( )0 02 /x f f f v vφ π δ δφ= + Δ + + Δ +  
 

is held constant, where δf is the change in f induced by the phase noise (we define Δf as 

the ideal frequency shift one would measure with no preamp noise).  Then, for 

 and fixed Δv (and thus Δf), we have 0 0/ ,  / 1f f v vΔ Δ �
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0
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δ δφ
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Using the above expression for phase noise, the rms fluctuations in the frequency are  

 

( ) 0
0 3/ 2

0

/ /  × 
2

vf f V V
xf

δ δ
π

= BW . 

 
To compare with experiment, we next estimate the expected fluctuations in the 

measurement of Δv/v due to the preamp phase noise for typical experimental conditions.  

For a pulse width of 1 μS, a rms voltage at the SAW output transducer V = 10 μV, and a 

SAW frequency of f0 = 1 GHz, we find δf/f0 ~ 10-5.  By averaging over N = 10,000 

cycles, this error is reduced by another factor of 1/ N = 1/100, so that δf/f0 ~ 10-7.  This 

estimate is in rough agreement with the fluctuations seen in Δv/v in Fig. 2.8. 

 
2.4  Data and Discussion 

 

2.4.1 SAW Δv/v Gate Voltage Dependence 
 
Figure 2.8 shows SAW fractional velocity shift Δv/v at 671 MHz as a function of top gate 

voltage Vg.  The two curves correspond to data from two different devices: one where the 

surface acoustic waves travel along the [110] direction, and the other along the [110]  

direction.  As a negative gate voltage is applied, the density of the 2DES is reduced.  We 

first concentrate on the gate voltage dependence of Δv/v at smaller gate voltages. 
 The linear dependence of Δv/v on Vg for gate voltages Vg > -1.6 V was not initially 

expected and is actually due to the fact that the SAW Δv/v measurement is a very 

sensitive method of detecting changes in sample strain.  Applying a voltage between the 

gate and 2DES creates a strain in the GaAs through the piezoelectric effect (see Appendix 

C).  An electric field in the [001] direction causes a shrinkage along the [110] direction 

and an expansion along the [110]  direction, and vice-versa for an electric field of 

opposite sign.  Using the piezoelectric coupling constant e14 and elastic moduli for GaAs, 

one can make a simple estimate of the strain and thus the slope of the Δv/v versus Vg  

sstest 
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Fig. 2.8.  SAW fractional velocity shift Δv/v at 671 MHz as a function of top gate voltage 
in two 2DES samples cut from the same MBE wafer.  The two traces correspond to SAW 
propagation in two orthogonal directions, along the [110] and [110]  crystalline axes.  
The linear portion of the data for Vg > -1.6 V is due to a piezoelectric-induced strain, 
while the steep rise in Δv/v near Vg = -1.7 V is due to the depletion of the 2DES. 
 
curve:  S4 = (e14/c44)(Vg/d), where d is the 2DES depth.  This yields a predicted velocity 

shift of ~ 5 ppm/V, which is similar in magnitude to the experimentally observed slope.  

This estimate assumes the strain is uniform throughout the region of SAW propagation, 

which will not be true for regions of the sample outside of the 2DES mesa region or for 

depths below the 2DES mesa (~ 1 μm tall).  The data of Fig. 2.8 are an experimental 

demonstration of breaking the rotational symmetry of GaAs with a gate.  This effect is 

usually ignored, but may have implications for some 2DES experiments, such as the 

density dependence of the anisotropic transport seen in high Landau levels [15]. 
 

2.4.2  Frequency Dependence 

Next we focus on the step in the velocity shift seen at very low density, at the end of the 

linear strain-induced effect.  This step in the velocity roughly corresponds to the 

conductivity of the electron gas passing through the value σM as the density is lowered.  

Fig. 2.9 shows this step for measurements taken at various frequencies, corresponding to 

harmonics of the interdigitated SAW transducers − the 1st harmonic up to the 11th.  This 

corresponds to frequencies ranging from about 120 MHz to 1.3 GHz and wavelengths 
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ranging from approximately 24 to 2 microns.  The difference in the size of the step for the 

various frequencies is due to fact that the top gate screens the interaction between the 

surface acoustic wave and the 2DES by different amounts depending on the SAW 

wavelength.  The inset shows all of these curves normalized by the step size.  The fact 

that all of these curves lie on top of one another demonstrates that there is no visible 

length scale or frequency dependence.  We shall return to this point later. 
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Fig. 2.9.  Depletion-induced step in SAW velocity shift vs. gate voltage at several 
frequencies.  Inset:  collapse of same data sets onto a single curve after normalization by 
the total step in Δv/v at each frequency.  The 120 MHz data is not included due to its 
much lower signal-to-noise ratio. 
 
 

2.4.3  DC Conductivity 

To measure the quasi-DC conductivity (at audio frequencies) of the electron gas we 

measure the admittance between the top gate and ohmic contact.  Fig. 2.10 shows the 

imaginary and real parts of the admittance versus dc gate voltage.  Both traces have been 

normalized by ωC, the product of the angular frequency and the gate-2DES capacitance, 

C = 670 pF. At small gate voltages the conductivity of the 2DES is much greater than the 

conductance ωC so that the circuit looks just like a capacitor.  When ωC becomes 

roughly equal to the conductivity of the 2DES, the imaginary and real parts of the 

admittance become nearly equal.  Then, as the conductivity of the electron gas is lowered 
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Fig. 2.10.  Real and imaginary parts of the gate-2DES admittance, normalized by ωC, 
measured at 1.3 kHz.  The inset is a schematic of the circuit model used to extract the 
2DES conductivity from the admittance data. 
 
further, the admittance drops to zero.  The sample layout (see inset to Fig. 2.8) is such 

that the admittance is well-described by a 1-D distributed RC circuit model, which can 

then be used to calculate the electron gas conductivity from the admittance 

measurements.  Measurements were made at frequencies ranging from 10 Hz – 10 kHz.  

Data near the peak in the real part of the admittance (where the measurement is most 

sensitive to the 2DES conductivity) was used to extract the 2DES conductivity using this 

1-D distributed circuit model. 

Figure 2.11 shows an enlarged schematic of the sample layout, where Vg is the dc 

gate voltage used to modify the 2DES density and Vin is the small ac voltage used to 

measure the admittance between the top gate and ohmic contact.   

 

 

 
 

Fig. 2.11.  Schematic of sample layout. 
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A small strip of 2DEG is left ungated on the ohmic contact side of the sample.  We 

operate in a regime where the ungated strip has relatively high conductivity compared to 

the gated area.  This allows us to model the gate-2DES admittance as a 1-D distributed 

RC circuit.  

 

 
 
Fig. 2.12.  Distributed circuit model. 
 

Fig. 2.12 shows this circuit model, which is basically a transmission line circuit with a 

resistance replacing the usual inductance, where C is the capacitance per unit length, R is 

the resistance per unit length, and a is the length of the gated 2DES region.  We solve for 

the admittance in the limit Δx → 0.  Then 

 
V IR
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∂
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∂
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with the boundary condition requirement that .  We wish to know the 

admittance 1/Z = Iin/Vin in terms of R and C.  The result is 

( ) 0I x a= =
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To obtain the 2DES conductivity, the gate-2DES admittance is measured and Eq’s (4) 

and (5) are numerically inverted to solve for R.  The admittance measurement is most 

sensitive to the 2DES conductivity when R ~ 1/ωC, so measurements are made at several 

frequencies in order to obtain good resolution over a wide range of conductivities. 

 
2.4.4  Temperature Dependence 
 
Figure 2.13 shows the resulting low-frequency conductivity as a function of gate voltage 

and density.  The calibration of density versus gate voltage was obtained by measuring 

the magnetic field dependence of the gate-2DES admittance.  The minima in the 

imaginary part of the admittance correspond to an integer number of filled Landau levels.  

The density was determined in this way for several gate voltages, and a linear relation 

between density and gate voltage was assumed to obtain a calibration down to the lowest 

densities.  The uncertainty in this calibration is ≈ 109 cm-2.  The conductivity is shown in 

units of the conductance quantum e2/h ≈ 3.9 × 10-5 Ω-1, on a log scale, showing that the 

conductivity vanishes very quickly for conductivities below e2/h.  Data is shown for three 

different temperatures: 50, 150, and 400 mK.  For densities above 8 × 109 cm-2, changing 

the temperature has negligible effect on the conductivity, suggesting that the 2D electron 

gas is in a ‘metallic’ phase.  For densities below about 6 × 109 cm-2, the conductivity falls 
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quickly with decreasing temperature, indicating that the sample is most likely insulating 

in the low temperature limit.  This temperature dependence suggests that the metal-

insulator transition in our sample occurs at a density of about 7 × 109 cm-2, where the 

conductivity is roughly e2/h. 
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Fig. 2.13.  2DES conductivity vs. gate voltage (and density) at three temperatures.  For 
densities below ≈ 7 × 109 cm-2 the 2DES appears to have an insulating ground state.  
 

2.4.5  SAW versus DC Conductivity 
 
At first glance, by application of Eq. (3) using conductivity values like those shown in 

Fig. 2.13, one should be able to predict how the SAW velocity shift will behave as a 

function of gate voltage as the conductivity of the electron gas passes through σM.  Fig. 

2.14 displays the result of following this procedure, along with the actual measured SAW 

velocity shift.  The closed symbol data of Fig. 2.13 is the 2DES conductivity from 

admittance measurements as a function of density and gate voltage at a temperature of 

300 mK.  The dashed line is a prediction of the expected surface acoustic wave velocity 

shift from this conductivity data using Eq. (3).  For the experimental conditions relevant 

to Fig. 2.14 (top gate with a 2DES 0.6 μm below the surface and SAW λ ~ 3.4 μm), σM ~ 

7 × 10-7 Ω-1.  The open symbols are the measured SAW velocity shift at 856 MHz.  There 

is a striking conflict between the measured and predicted velocity shift.  The measured 

velocity shift begins to change at conductivities nearly two orders of magnitude above σM 
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and continues to change for conductivities about three orders of magnitude below σM.  By 

contrast, the change in the predicted velocity shift occurs in a very narrow density and 

conductivity range. 
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Fig. 2.14.  Low-frequency conductivity σ and normalized SAW velocity shift at 856 
MHz vs. gate voltage and density at T = 300 mK.  The dashed line is the prediction of Eq. 
(3) using the measured σ. 
 

One likely explanation for this conflict between the measured and predicted surface 

acoustic wave velocity shift is that the electron gas becomes very inhomogeneous near 

depletion.  The model (Eq. (3)) used to calculate the expected velocity shift obviously 

breaks down for a strongly inhomogeneous conductor.  For example, if the majority of 

the 2DES had a local conductivity much greater than σM, but contained a few isolated 

patches with conductivity lower than σM, there would be a response in the measured 

velocity shift even though the conductivity obtained via standard transport measurements 

would still be much greater than σM. 

 That the electron gas is inhomogeneous at these densities is consistent with 

expectations about density fluctuations caused by the Si donors, and also with 

magnetotransport measurements on a similar sample, which estimate density fluctuations 

on the order of 5 × 109 cm2.  Pikus and Efros have shown [16] that for randomly 

distributed 
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λ 

 
 
Fig. 2.15. Cartoon of SAW propagation near a 2DES with density inhomgeneities.  
Hatched areas represent low-density regions where the conductivity is less than σM.  The 
SAW wavelength, λ, is greater than the disorder length scale. 
 

distributed ionized donors of concentration C, located a distance d from the 2DES, that 

the rms 2DES density variation is 
 

2/ 8N C dδ π= . 
 

Using the 2DES ungated density of our sample for C = 1.4 × 1011 cm-2 and the spacer 

distance d = 70 nm, this gives a density variation of δN ~ 1 × 1010 cm-2.  The length scale 

of these density fluctuations is set by the spacer distance d.  Considering that our smallest 

experimentally accessible SAW wavelength was 2.2 μm, the lack of wavelength 

dependence seen in Fig. 2.9 is not surprising. 

Looking at the temperature dependence of the conductivity (Fig. 2.13) we see that 

the onset of insulating behavior in the temperature dependence is roughly coincident with 

the initial rise in surface acoustic wave velocity.  If our picture of an inhomogeneity-

driven increase in Δv/v is correct, this coincidence suggests that the apparent metal-

insulator transition will be strongly influenced by the presence of inhomogeneities.  In 

light of this, it seems likely that for our system, the transition is better described as a 

disorder-driven, percolation-type transition rather than as an exotic, interaction-driven 

quantum phase transition. 

 
2.5  Conclusion 
 
In conclusion, we have examined the conductivity of a low-density 2DES via two very 

different experimental techniques – low-frequency transport measurements versus surface 
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acoustic wave propagation.  Interpreting our measurements within a model for a 

homogeneous conductor leads to a strong conflict in the results obtained from the two 

types of measurements.  This conflict demonstrates the importance of the inhomogeneous 

nature of the 2DES near the putative metal-insulator transition. 
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Chapter 3:  
Two-dimensional Electrons in a Magnetic Field 

 
This chapter reviews the transport properties of 2DES’s in a magnetic field, from a low-

field, classical picture to the integer and fractional quantum hall states. 

 
3.1 Classical Magnetotransport 
 
We start with the Drüde model for conductivity of the electron gas, which assumes a 

background of static, positively charged ions with a gas of classical, non-interacting 

electrons whose motion is damped by collisions with the background ions.  These 

collisions reduce an electron’s average momentum at a rate m*vd /τm, where m* is the 

electron effective mass, vd is electron drift velocity, and  is called the momentum 

relaxation time.  The application of magnetic and electric fields modify the electron drift 

velocity, vd: 

mτ

 

( )d
d

m

m v
e E v B

τ

∗

=− + × , 

 
The current density in terms of the drift velocity is dj v en=− , where n is the electron 

number density.   

 

 
 

Fig. 3.1.  Coordinate system for magnetotransport analysis. 
 
The resistivity tensor is defined byρ E ρ= j .  Then, in 2D and using the coordinate 

system shown in Fig. 3.1, 
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Conventionally, is known as the longitudinal resistivity and 2/xx yy m neρ ρ= = τ

/xy yx B neρ ρ= =  is referred to as the transverse or Hall resistivity. 
 
 
3.2  Integer Quantum Hall Effect 
 
3.2.1  Landau Levels 
 
Next, we consider the effect of quantum mechanics on 2DES magnetotransport.  In a 

magnetic field, the usual momentum in the Hamiltonian is replaced with p qA− , where 

p is the canonical momentum, A  is the vector potential and q is the charge.  Then, for 

electrons 

 
21

2
H p eA

m
= + −eV . 

 
We consider an electron confined to a sheet in the x-y plane with V = 0 everywhere and a 

magnetic field B in the z-direction.  Using the Landau gauge for the vector potential, we 

can choose ˆA yBx= .  Solving for the eigenvalues and eigenstates, we obtain 

 
1
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where n is an integer, k is any wavevector satisfying the desired boundary conditions, L is 

the system size in the y-direction, /kx k eB=− , are Hermite polynomials, 1nH −
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/c eB mω ∗=  is the cyclotron frequency, and /Bl = eB  is the magnetic length.  The 

evenly spaced, allowed energies En are called Landau levels.   

If we impose periodic boundary conditions in the y-direction such that 

( ,0)nk nx ( , )k y Lψψ =

/k

 for some length L, then the allowed k’s are , where N is 

an integer.  A given state with label k is localized in the x-direction around the position 

2 /k N Lπ=

x k e=− B  by the Gaussian factor in the wavefunction, with a decay length on the 

order of lB.  Then, if we count the states within an area of length and width L, for a given 

Landau level n, the number of available states per unit area will be N/L2 = eB/h. 

 
3.2.2  Localized States 
 
From the above solution for an electron moving in a magnetic field, we might expect the 

density of states of a 2DES to consist of a series of equally spaced delta functions 

corresponding to the Landau levels En.  However, in actual physical systems, disorder 

modifies this energy spectrum, broadening the Landau levels and also creating localized 

states, as shown in Fig. 3.2.  Disorder due to impurities and defects in the crystalline 

lattice gives rise to a random, spatially varying background potential for the electron gas.  

For example, in doped GaAs/AlGaAs heterostructures random fluctuations in the 

distribution of donor ions can lead to a slowly varying (compared to ) background 

potential.  This disorder then leads to spatial fluctuations in the electron density and the 

formation of localized states -- states which are localized in spatial extent and, in the limit 

of zero temperature, do not contribute to carrying current across the sample.  Local 

valleys in the potential landscape trap and localize electrons, especially in the presence of 

a large perpendicular magnetic field.  Due to the presence of these localized states, the 

Fermi energy can lie at energies between Landau levels. 

Bl
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Fig. 3.2.  Density of states D(ε) with Landau levels (spin neglected) with extended 
(hatched) and localized (shaded) states.  The Fermi energy EF is indicated by the dashed 
line. 
 
 
3.2.3  Spin 
 
Another contribution to the density of states in a magnetic field will be the Zeeman 

splitting due to the electron spin degree of freedom.  As shown in Fig. 3.3, this will lead 

to a second set of energy levels separated from the first by .BgE BZ μ=  

 

 
 
Fig. 3.3.  Density of states D(ε) with spin-split Landau levels with extended (hatched) 
and localized (shaded) states.  Drawing is not to scale. 
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Please note that Fig. 3.3 is not to scale.  For electrons in GaAs, the energy gap between 

spin-resolved energy levels is Z BE g Bμ=  = 0.29 × B (K), which is much smaller than 

the cyclotron splitting ħωc = 20.1 × B (K), where B is in Tesla.  

 
3.2.4  Magnetotransport – IQHE 
 
Below, Fig. 3.4 shows the magnetotransport of a 2DES in moderately large magnetic 

fields.  The longitudinal resistance Rxx displays oscillations versus increasing magnetic 

field.  As the magnetic field rises, the energy gap between Landau levels increases so 

that, at fixed 2DES carrier density, the Fermi level will drop through the ladder of 

Landau levels as they are depopulated, leading to oscillations in the conductivity.  Instead 

of the linear Hall resistance Rxy versus B one would expect from a classical analysis, Rxy 

is actually quantized.  When Rxx = 0, the Hall resistance plateaus at a value Rxy =  

where q is an integer such that ν < q < ν + 1, and ν ≡ nh/eB is the number of filled 

Landau levels and is called the Landau level filling factor.  Amazingly, the exact value of 

the quantized Hall resistance is completely independent of the sample used!  In fact, the 

quantized Hall resistance is used as a resistance standard due to the fact that the value of 

Rxy at the plateaus does not depend on the material system containing the 2DES or 

disorder. 

2/ ,h qe
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Fig. 3.4.  Magnetotransport displaying longitudinal resistance Rxx oscillations (red trace) 
and quantized Hall resistance Rxy (blue trace) in the integer quantum Hall effect regime. 
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This quantization is known as the integer quantum Hall effect (IQHE).  The IQHE was 

experimentally discovered by von Klitzing et al. in 1980 [1], who saw the quantization of 

the Hall resistance in a Si MOSFET.  This work was awarded a Nobel prize in 1985. 

The presence of localized states is necessary for observation of the IQHE.  The 

zeroes in Rxx versus B correspond to magnetic fields where the Fermi level lies between 

Landau levels so that only localized states are occupied at the Fermi energy.  As 

mentioned earlier, the conductivity of these localized states vanishes at low temperature.  

Inverting the 2D conductivity tensor we obtain , which, since )/( 22
xyxxxxxxR σσσ +=

,0≠xyσ  leads to the (somewhat non-intuitive) conclusion that when 0=xxσ , Rxx = 0 as 

well.  The precise quantization of Hall resistance can be understood by an analysis of 

how current flows at the edges of a 2DES sample. 

 
3.2.5  Edge States 
 
Consider a 2DES confined in the y-direction such that V(y) = 0 for |y| < L and V(y) 

increases for |y| > L (see Fig. 3.5).  If the confining potential varies slowly, such that 

,// lyV Cω=<∂∂ then we can make the approximation that the energy levels simply rise 

in energy near the sample edge such that )()2/1( yVnE Cn ++= ω= .  These energy levels 

will then cross the Fermi energy near the edge, leading to a nonzero density of states at 

the Fermi level. 

 

 
 
Fig. 3.5.  Landau levels (dotted lines) in a confining potential V(y), showing the 
formation of edge states. 
 
These edge states carry current in the IQHE and are chiral, meaning that the motion of 

electrons in an edge state is limited to only one direction [2].  Depending on the direction 
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of the magnetic field, the left edge states carry current into the page and the left states 

carry current out of the page, or vice versa.  Because the left and right edge states are 

spatially separated from one another, it is difficult for electrons to scatter from the states 

carrying current one direction into states traveling in the other direction.  This leads to 

ballistic conduction in the edge states in the quantum Hall regime.  The Landauer-

Büttiker formula for the conductance of ballistic 1-D conductor can be applied to find the 

conductance of the edge states [3, 4].  In this formalism, the conductance of M parallel 1-

D modes is given by Me2/h. 
 

 
 
Fig. 3.6.  Edge state transport in the IQHE.  The central region contains a 2DES, while 
the shaded regions are Ohmic contacts. 
 
Consider applying a voltage V = V1 - V3 across the sample shown in Fig. 3.6.  The 

number of edge channels is equal to the number of filled Landau levels ν (in Fig. 3.6 ν = 

2, since the n = 0 and n = 1 levels are occupied).  The conductance between contacts 1 

and 3 will be the conductance of two ballistic channels in parallel:  

 The Hall resistance will be given by ./2/ 2
13 heVI ×==σ ./)( 24 IVVRxy −=  Now, V4 = 

V1 since there is no voltage drop along a ballistic edge state.  Similarly, V2 = V3.  Thus, 

 In general, the quantized Hall resistance is given by .2// 2ehIVRxy ==

 
./ 2ehRxy ν=  

 
 
3.3 Fractional Quantum Hall Effect 
 

We have so far neglected the effect of electron-electron interactions.  However, Coulomb 

interactions become increasingly important at large perpendicular magnetic fields.  At 
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high enough perpendicular magnetic fields, such that the Landau levels do not overlap in 

energy, within a given Landau level the kinetic energy is the same for all electrons and 

becomes an irrelevant constant in the Hamiltonian.  This removal of kinetic energy from 

the problem is referred to as “quenching of kinetic energy”.   

One striking consequence of Coulomb interactions in 2DES’s at high magnetic fields 

is the fractional quantum Hall effect (FQHE), which was discovered by D. C. Tsui, H. L. 

Stormer, and A. C. Gossard [5], who were awarded a Nobel prize for their discovery in 

1998.  They observed a minimum in Rxx and plateau for Rxy in the magneotransport of a 

relatively high-mobility 2DES which appeared to correspond to a Landau level for a 

fractional filling factor, ν = 1/3.  Eventually, the fractional quantum Hall effect was 

observed at other fractional filling factors as well. 

Laughlin [6] wrote the following trial wavefunction to describe the ν = 1/q FQH 

states: 
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where q is an odd integer, N is the number of electrons, and the complex coordinate 

.  This wavefunction is the exact solution for the case of 2D electrons in a 

perpendicular magnetic field with hard core interactions; it is a very good approximation 

for the Coulomb potential.  The form of the wavefunction is reminiscent of the non-

interacting solution; for q = 1 (ν = 1), it is just an antisymmetric product of the single-

particle wavefunctions.  For general q, the polynomial product factor provides the correct 

symmetry (complete spin polarization is assumed) and ensures that any two electrons i 

and j avoid one another, since when zi = zj, the value of the wavefunction is zero.  

( ) Bliyxz /+=

A standard series of fractional quantum hall states [7] are allowed for all ν such that  

 

,
2 1

p
pq

ν =
±

 

 
where p and q are integers.  Particle-hole symmetry leads to another set of allowed FQH 

states for holes instead of electrons: 
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2
2 1

p
pq

ν = −
±

, 

 
including the spin degree of freedom (the formula is ( )1 / 2 1p pqν = − ±  for a fully 

polarized system).  Figure 3.7 shows an example of magnetotransport displaying several 

FQHE states. 
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Fig. 3.7.  Magnetotransport displaying the FQHE.  Several fractional states, including ν = 
2/3, 3/5, and 2/5 can be seen. 
 
 
3.3.1  Composite Fermions  
 
One elegant picture used to explain the FQHE, proposed initially by J. K. Jain [8], is the 

composite fermion model.  In this picture, electrons in a perpendicular magnetic field are 

replaced by quasiparticles called composite fermions (CF’s), where a CF is an object 

consisting of an even number of magnetic flux quanta rigidly attached to an electron.  

The hope is that strongly-interacting electrons can be replaced by more weakly-

interacting CF’s. 

 The flux attachment process is accomplished mathematically via a gauge 

transformation.  Following the treatment in Ref. [9], consider the Schrödinger equation 

for the initial problem of 2D electrons in a perpendicular magnetic field: 
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where p is an integer,  is the complex coordinate for the position of an 

electron, and 
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jkθ  is the angle between two particles: 
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This is known as the composite fermion Chern-Simons transformation [10 – 11], which is 

why the wavefunction in the new gauge is labeled with the subscript “CS”.  The 

Schrödinger equation for the new wavefunction CSΨ  is 
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and 0 /h eφ =  is the flux quantum.  The magnetic field generated by the vector potential 
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which is the magnetic field due to attaching a “flux tube” or point flux to the electrons at 

positions .  The number of flux quanta attached to each particle, 2p, is even, so that this 

flux does not modify the statistics of the particles, since when two particles are 

exchanged the extra Aharonov-Bohm phase accumulated due to the extra flux will be 

2πp, giving an extra phase factor of 

jrG

exp(2 ) 1piπ = , which is unobservable.   

 We next rewrite the problem once more, defining 

 
*A A A aδ+ ≡ −
G G G G , 

 
where  is defined by *A

G

 
( )0ˆ ˆ* * 2A zB z B pnφ∇× = = −

G
, 

 
where n is the electron number density and B* is a uniform magnetic field.  Then, the 

Schrödinger equation can be written as 
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where ~V δ′ .  Then, a mean field approximation can be used, where the problem is 

first solved exactly for   and then the VH ′ V ′+  term is treated perturbatively. 

In this mean field approximation, the attached flux cancels some of the external 

magnetic field so that the effective magnetic field experienced by a CF is B* = B – 2pnφ0.  

The effects of fluctuations of the electron density n, which will lead to fluctuations of the 

effective magnetic field, are treated as perturbations.  It is not obvious that the 

perturbations will be small.  However, for judicious choice of flux attachment, this 

approach is able to predict the locations in filling factor space of most FQH states, and 

has even met some success in describing compressible states near even-denominator 

filling factors. 

 
 



 59

a) b) c)

 
 

Fig. 3.8.  Transformation of ordinary electrons in a magnetic field into composite 
fermions.  a) Electrons in a magnetic field are transformed into b) composite fermions by 
attachment of two flux quanta, opposing the actual magnetic field.  c)  In a mean-field 
picture, the composite fermions experience a reduced magnetic field.  The figure shows 
the case for ν = 1/3, where each electron absorbs two flux quanta and the effective 
magnetic field for CF’s corresponds to one flux quanta per CF. 
 

Using this effective magnetic field, the FQH states can be understood as states 

corresponding to the IQHE for CF’s.  The CF filling factor is given by 0 / *.CF n Bν φ=  

The electron filling factor is then .0 / /(2CF CFn B p 1)ν φ ν ν= = ±   If we require νCF to be 

equal to some integer q, then 
 

/(2 1),q pqν = ±  
 
which is just the expression given earlier for the principle series of FQH states. 

The composite fermion picture can also be used to describe the compressible states 

between QH states.  For the case of the half-filled lowest Landau level, ν = 1/2, CF’s 

consisting of an electron bound to two flux quanta will, in a mean field approximation, 

experience zero effective magnetic field; at exactly ν = 1/2, B* = 0.  This suggests that 

the state at ν = 1/2 may be described as a Fermi sea of composite fermions.  A seminal 

paper by Halperin, Lee, and Read [12] put this picture on firmer theoretical footing, 

arguing that the CF Fermi surface at ν = 1/2 survives beyond mean field theory, when the 

effect of fluctuations in the effective magnetic field are included.  The existence of a 

Fermi surface at ν = 1/2 has also been demonstrated experimentally by Willett and others 

[13-15].  In these experiments, the motion of CF’s very near ν = 1/2 appears to be 

described by classical cyclotron orbits of radius R* = ħkF/eBeff. 
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3.4 Other 2DES States 
 
Yet more fascinating physics has been found in high-quality 2DES’s at low temperature 

and large magnetic fields – for example: a FQHE at even denominator filling factor 

(forbidden according to the expected hierarchy of FQHE wavefunctions) ν = 5/2, possible 

charge density wave formation at high Landau levels (ν > 3), and an exciton condensate 

in bilayer 2DES’s at total filling factor νT  =  νlayer1 + νlayer2 = 1.  More physics likely 

awaits discovery as sample quality improves, experimentally accessible temperatures 

decrease, and new experimental probes are developed. 
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Chapter 4:  
Spin and NMR Techniques 

 
In the overview of the basic phenomena of 2D electrons in a magnetic field given in 

Chapter 3 the spin degree of freedom was largely ignored.  However, several chapters in 

this thesis will discuss examples of 2DES states where spin does play an important role.  

This chapter gives a basic introduction to the role of spin in 2DES’s and also introduces a 

resistively-detected nuclear magnetic resonance technique (RDNMR) that we use to 

probe the electron spin at several 2DES states. 

 
4.1  Background 
 
In a large enough magnetic field the Zeeman energy BEZ ∝ will eventually dominate the 

Coulomb energy ,BEC ∝ and the spin degree of freedom will be frozen.  However, the 

g-factor in GaAs is reduced from that in vacuum:  g* = -0.44 instead of 2.  This means 

that at intermediate magnetic fields the Coulomb interaction may play a large role in 

determining the behavior of the electron spin. 

The spin degree of freedom leads to a variety of phenomena in 2DES’s.  Laughlin’s 

wavefunction (see Chapter 3) assumes complete spin polarization.  However, Halperin 

proposed [1] incompletely spin polarized versions of fractional quantum Hall states.  

Experimentally, it has been shown that transitions can occur between FQH states with 

ground states of differing spin polarization, but at the same filling factor, by tuning the 

ratio of the Zeeman to Coulomb energy.  Some of the first experiments to observe this 

type of transition were performed by tilting the sample in a magnetic field, so that the 

total magnetic field, and thus the Zeeman splitting, can be varied relative to the 

perpendicular magnetic field, which determines the filling factor and the Coulomb 

energy.  Using this technique, spin transitions were observed for the ν = 8/5 and 2/3 

states [2, 3].  Spin excitations are also strongly affected by electron-electron interactions.  

For example, it is predicted that, due to Coulomb interactions, the lowest-lying charged 

excitations at ν = 1 are Skyrmions -- objects with multiple reversed spins and a smooth 

spatial variation in spin [4, 5]. 
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4.2 Nuclear Magnetic Resonance 
 
4.2.1  Hyperfine Interaction 
 
We are not interested in the nuclear spin itself, but, due to the hyperfine interaction, NMR 

can be used to probe the electron spin.  The full hyperfine Hamiltonian [6] describing the 

interaction between an electron and the magnetic moment due to the spin of the nucleus 

is 
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where q is the nuclear charge, me is the mass of the electron, R  is the relative separation 

between the electron and nucleus, L  is the orbital angular momentum of the electron 

relative to the nucleus, IM  is the magnetic moment of the nucleus, ,/IgM nnI μ=  

where gn is the nuclear g-factor, nμ is the nuclear Bohr magneton, I  is the nuclear spin, 

and  is the magnetic moment of the electron, where g0 is the free electron 

g-factor, μB is the electron Bohr magneton, and 

/0 SgM BS μ=

S  is the electron spin.  The first term is 

due to the interaction between the nuclear magnetic moment and the magnetic field 

created at the nucleus by the orbital angular momentum of the electron.  The second and 

third terms stem from the dipole-dipole interaction between the nuclear and electronic 

spin, where the last term is the contribution from the singularity that occurs when the 

electronic wavefunction and nucleus spatially overlap.  It turns out that this last term, 

named the “point contact” term, is the dominant contribution to Hhf for our 2DES 

samples. 

 
4.2.2  Point Contact Interaction in n-Type GaAs 
 
For electrons in the conduction band at the Γ point in GaAs, the electronic wavefunction 

is composed mostly of an s-type orbital.  This means that the first term in Hhf can be 

neglected since for L = 0, this first term is zero.  Because of the spherical symmetry of the 

s-type orbital versus the symmetry of the dipole interaction, the second term also 

vanishes.  The third term, however, remains since the s-type orbital wavefunction is 

nonzero at the origin.  Thus,  
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( )0
0

8 ,
4 3hf B nH g I S Rμ π μ γ δ
π

= − ⋅  

 
where /nnn g μγ =  is the nuclear gyromagnetic ratio.  The value of the hyperfine 

correction to the total energy is then 

 

( ) 20
0

2 0 ,
3hf B nE g I Sμ μ γ ψ= ⋅  

 
Where ( )0ψ  is the value of the electronic wavefunction at the position of the nucleus.  

Paget et al. have estimated the magnitude of this term for n-type GaAs [7] for each of the 

three nuclear species present in GaAs: 75As, 69Ga, and 71Ga.  The result is given in terms 

of an effective magnetic field BN due to the nuclear polarization of the host 

semiconductor: 
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where Bα is the contribution due to the individual nuclear species, g* is the effective g-

factor for electrons in the conduction band at the Γ point in GaAs (g* = -0.44), xα is the 

fractional concentration of each nuclear species, dα is the electron density at the nucleus, 

and αI is the average value of the nuclear spin.  The estimated contribution from each 

nuclide at T = 0 is B75As = -2.76 T, B69Ga = -1.37 T, and B71Ga = -1.17 T, giving rise to a 

maximum total contribution of BN  ≈ -5.3 T.  These effective fields are negative, meaning 

they will oppose any externally applied magnetic field B0.  This leads to a total electronic 

Zeeman splitting given by 

 
( )NBZ BBgE +=Δ 0*μ . 

 
A decrease in the nuclear polarization will reduce the magnitude of BN, causing an 

increase in the magnitude of the Zeeman splitting.  Also note that BN affects only the 

Zeeman energy, not the electron’s orbital motion. 

 
4.2.3  Nuclear Polarization 
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In the case of an externally applied magnetic field B0, it is simple to obtain the 

equilibrium fractional nuclear polarization of a given nuclear species at temperature T:  
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where ./0 kTBnγβ =   When β is small we can use the approximation  
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which is just the nuclear Curie law. 

  For reference, Fig. 4.1 shows Bα and BN versus temperature for B0 = 10 T.  At 

conditions roughly similar to those of our experiments, B0 ~ 10 T, T ~ 100 mK, we have 

BN ~ -0.2 T and a nuclear polarization of %4~0ξ . 

 

-5

-4

-3

-2

-1

0

B α
 , 

B N
 (T

)

0.001
2 4 6 8

0.01
2 4 6 8

0.1
2 4 6 8

1
Temperature (K)

 total
 75As
 71Ga
 69Ga

B0 = 10 T

 
 

Fig. 4.1.  Effective magnetic field due to thermal equilibrium polarization of host 
semiconductor nuclides at a static magnetic field of B0 = 10 T.  Dotted and dashed lines 
show the contribution from 75As, 71Ga, and 69Ga separately, and the solid line displays the 
total contribution due to all three species. 
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4.2.4  Bloch Equations 
 
The phenomenological equations of Bloch [8] describe the evolution of the nuclear 

magnetization in the presence of a static magnetic field ,ˆ00 zBB =  and an ac magnetic 

field ),cos(ˆ 111 txBB ω=  perpendicular to B0.  It is assumed that the nuclear magnetization 

reaches thermal equilibrium with relaxation times T1 and T2, known as the longitudinal 

and transverse relaxation times, respectively, such that in the absence of the ac magnetic 

field (B1 = 0) 
 

 
2T

M
dt

dM xx −= , 

 
2T

M
dt

dM yy −= , 

and 

 

 
1

0

T
MM

dt
dM zz −

= , 

 
where M0 is the thermal equilibrium magnetization.  With 01 ≠B , the full Bloch 

equations are 
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where γ is the nuclear gyromagnetic ratio and 10 BBB += .  It is convenient to transform 

this equation into a rotating frame of reference that rotates in the x-y plane at the same 

frequency ω1 as the ac magnetic field.  Then 
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z −
+′= ω  

 
where M ′  is the magnetization in the rotating frame, 2/1Br γω =  is the Rabi frequency, 

and the detuning ( 01 )ωωω −=Δ

/dM dt′

, where ω0 is the NMR resonance frequency.  Under 

steady state conditions, 0,=  we have for the deviation of the z-component of the 

nuclear polarization from equilibrium: 
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This describes a Lorentzian NMR lineshape (NMR-induced change in polarization versus 

ω) with a half-width at half-max given by 

 

HWHM = 21
2

2

11 TT
T rω+ . 

 
 
4.3  Resistively Detected NMR 
 
We use NMR to study the electron spin degree of freedom via the nuclear spins of the 

host semiconductor.  The NMR technique employed in this thesis is known as resistively-

detected NMR (RDNMR) [9].  In RDNMR, instead of measuring the response of the 

nuclear spin system to resonant RF, the 2DES sample transport is monitored while 

modifying the nuclear spin polarization; this allows one to measure dR/dEZ.  This 

technique is especially useful for studying systems with a small number of nuclei in the 

region of interest (as in nanostructures), where directly-detected NMR would be too 

difficult.  Previous applications of this technique include studying spin excitations in 

single layer systems near filling factor ν = 1 [10-12] and the spin transitions at fractional 

quantum Hall states, such as the ν = 2/3 state [13, 14]. 

 

 

 



 68

4.3.1  Experimental Setup 
 
Fig. 4.2 shows a photograph of a typical RDNMR experimental setup.  The 2DES sample 

sits inside of a small NMR coil and has ohmic contacts for standard low-frequency 

transport measurements.  The coil and sample are mounted on a standard 18-pin DIP 

header.  The coil leads are wired to the central pin and ground of a semi-rigid coaxial lead 

(see Chapter 1, section 1.2.4). 

 
 

 
 

Fig. 4.2.  2DES sample mounted inside approximately 8-turn rectangular NMR coil.  The 
sample size is ~ 5 × 3 mm2. 
 
The magnitude of the ac magnetic field B1 applied via the NMR coil is typically in the ~ 

0.1 - 1 μT range.  We discuss the estimation of the magnitude of this RF B-field in the 

next section.  Since the nuclear dipolar fields are on the order of 0.1 mT >> B1, we work 

in a regime where ωr << 1/T2. 

 
4.3.1a  Estimation of RF B-field 
 
The coil was designed so that the magnetic field in the sample area would be somewhat 

uniform and so that the magnitude of the RF B-field would have a weak frequency 

dependence (convenient for experiments which are performed over a wide range of static 
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magnetic fields, and thus a wide range of NMR frequencies).  Figure 4.3 shows a sketch 

of the NMR coil with relevant dimensions. 

 
N turns 

l  
 

Fig. 4.3.  Hall bar 2DES sample in N-turn NMR coil of length l. 
 

As a typical example, consider a coil with 8 turns, a cross sectional area of 2 mm × 6 mm, 

and a length of 4 mm.  The coil is connected to the RF generator by a 50 Ω impedance 

transmission line (we assume the fridge coax looks roughly like this).   
 

 

 
 
Fig. 4.4.  Coil terminating 50 Ω coax. 
 
We first find the current in the coil for a given power into the line, assuming that the coil 

looks like an inductance L.  The voltage along the transmission line is 

 

],[

)(

0

00
ikxikx

ikxikx

eeV

eVeVxV

Γ+=

+=
−+

−−+

 

 
where 
 

.
0

0

ZZ
ZZ

L

L

+
−

=Γ  

 
Let .LiZ L ω=   Then 



 70

 
)1()0( 0 Γ+== +VxV  

 

⎟
⎠
⎞

⎜
⎝
⎛

+
−

+= +

50
5010 Li

LiV
ω
ω  

 

⎟
⎠
⎞

⎜
⎝
⎛

+
= +

50
2

0 Li
LiV

ω
ω  

 
and 
 

Li
xVxI
ω

)0()0( =
==  

 

 ⎟
⎠
⎞

⎜
⎝
⎛

+
= +

50
12 0 Li

V
ω

. 

 
Next, we can estimate the magnetic field in the coil as a function of current.  If the B-field 

is uniform inside the coil, then LIcoil = BcoilAn, so Bcoil = LIcoil/AN, where A is the cross-

sectional area of the coil, and N is the number of turns. 

We also need to know the inductance of the coil.  The inductance can be measured 

using a resonant LRC circuit and measuring reflected power versus frequency.  For this 8-

turn coil, the inductance measured via this method was L = 250 nH.  As a check, using 

the coil dimensions and the formula for an infinitely long solenoid, B = μ0NI, we obtain L 

= 290 nH, which is in the right ballpark. 

Now we can estimate Bcoil.  At 50 MHz (a typical operation frequency), iωL = 78i Ω.  

For -30 dBm (1 μW) of power out of the RF source, = 10 mV. +
0V
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Figure 4.5 shows a plot of Bcoil versus frequency for this 8-turn coil. 
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Fig. 4.5.  Frequency response of NMR coil (dimensions given in text) terminating a 50 Ω 
transmission line.  The RF source output is 1 μW. 
 
Ohmic loss 
 
We have ignored the resistance of the coil wire until now.  The ohmic loss in the NMR 

coil is important to consider since it may affect the magnitude of the RF B-field and/or 

cause unwanted heating of the coil.  The surface resistance of the coil wire is given by  

 

σ
ωμ
2

=sR . 

 
For for copper wire at low temperature (T < 4 K), σ ~ 109/Ω·m.  Then 
 

5(MHz) 6 10sR f −= × × Ω/. 
 
For 100 mm (length of coil wire + leads) of 0.0033” diameter wire, this gives a total 

resistance of about (MHz) 0.02R f= × Ω, which is much less than 1 Ω for frequencies 

below 100 MHz.  For our coil design, the reactance of the coil is about 50i Ω at typical 

operation frequencies, so the effect of the resistance of the coil in determining the RF 

magnetic field is negligible. 

The power dissipated by ohmic heating will be given by I2R.  For -30 dBm of RF 

power from the generator (this is an upper bound – the RF power is usually less) and a 
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coil reactance of 50i Ω, the current will be I = 0.2 mA.  Then, for f = 50 MHz (a typical 

operating frequency) we have R  ~ 0.14 Ω and the power dissipated I2R ~ 6 nW. 

 
4.3.2  RDNMR Signal 
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Fig. 4.6.  Typical RDNMR trace (ν = 1/2, B = 4.48 T, T = 45 mK) showing the response 
in Rxx to an NMR pulse and the transient signal used to measure T1.  The RF is on 
resonance for times between the dotted lines, and off resonance for all other times.   

 
Fig. 4.6 shows a typical change in longitudinal resistance Δρxx at filling factor ν = 1/2 

obtained by applying resonant RF to change the nuclear spin polarization.  For times 

earlier than ti, the nuclear spin polarization is at thermal equilibrium and the RF magnetic 

field is on, but off resonance.  Then, at ti the RF is brought onto resonance and an 

increase in the 2DES resistance is observed.  The rise time is RF power dependent.  At 

time tf the RF is moved off resonance and the resistance falls as the nuclear spin 

polarization decays back to thermal equilibrium with a time constant T1. 

From the data of Fig. 4.6, the magnitude of the ac magnetic field and the change in 

the nuclear polarization due to NMR can be estimated from the rise time and T1, where 

τrise and T1 are determined via an exponential fit to the data for ti < t < tf and t > tf, 

respectively.  The fall time is T1, and, in the limit T2 << T1 and ωrT2 << 1, the rise time is 

given by 

 

12
2 /1/1 TTrrise += ωτ , 

 
and the fractional change in the magnetization is approximately 
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Appendix D contains a derivation of the above expressions, starting from the Bloch 

equations. 

 
4.3.3  Lineshape 
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Fig. 4.7.  Typical RDNMR lineshape for 75As.  The 2DES is at filling factor ν = 1/2, B = 
4 T. The center resonance frequency is f0 = 29.307 MHz.  The solid line is a guide to the 
eye. 

 

Fig. 4.7 shows a typical RDNMR lineshape for 75As.  This plot shows the NMR-induced 

change in resistance Δρxx obtained by using the technique described by Fig. 5, versus 

frequency, measured relative to the center of the NMR line.  The two shoulders are due to 

quadrupole splitting.  The linewidth is ~ 5 kHz FWHM and the asymmetry of the peak is 

likely due to the shape of the 2DES electronic wavefunction in the confinement direction.  

Both the intensity of the RDNMR signal and the NMR frequency Knight shift (a negative 

shift) will depend on the magnitude of the wavefunction for a given in-plane slice of the 

2DES region.   

 A sketch of how the subband wavefunction determines the lineshape is shown in 

Fig. 4.8.  For nuclei located at a z-position near the peak of the wavefunction, the 

magnitude of the Knight shift (marked as 1SK  in Fig. 4.8) will be relatively large, 

represents 
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Fig. 4.8.  Cartoon showing how the shape of the 2DES subband wavefunction affects the 

 

whereas nuclei located near the tails of the wavefunction will have a smaller Knight shift 

RDNMR lineshape, Δρ vs. f.  The distance between the dotted lines in the left figure 
represents the NMR linewidth broadening that would be present without including the 
effect of finite wavefunction thickness. 

(marked as 2SK  in Fig. 4.8).  The width between the dotted lines in the left panel of Fig. 

4.8 represen e NMR linewidth broadening that would be present before including the 

effects of the finite wavefunction thickness (due to, for example, nuclear dipole-dipole 

coupling or magnetic field inhomogeneity).  At a given NMR frequency, this linewidth 

broadening and the shape of the wavefunction will determine the number of nuclei which 

will be influenced by the RF.  Because coupling between the nuclei and the 2DES is 

greatest near the peak in the wavefunction, nuclei located near this peak will have the 

greatest influence on Δρ, the NMR-induced change in resistivity.  Combining all of these 

effects leads to a RDNMR lineshape similar to that sketched in the right-hand panel of 

Fig. 4.8.   

 

ts th

.4  Applications 

everal applications of the RDNMR technique will be discussed in this thesis.  The 

charged spin-texture excitations, are expected to play a role in nuclear spin dynamics. 

4
 
S

RDNMR data of Chapter 5 provide evidence of a spin transition in a correlated bilayer 

2DES.  Next, Chapter 6 presents detailed RDNMR measurements near a spin transition 

for composite fermions in the half-filled Landau level.  Finally, Chapter 7 probes the 

electron spin near ν = 1 in a single layer 2DES, where the presence of Skyrmions, 
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Chapter 5:  
Spin Transition in the Half-Filled Landau Level 

 

As discussed in Chapter 3, the fractional quantum Hall effect can be understood in an 

elegant way using a composite fermion (CF) picture.  In this picture, a single layer 2DES 

at Landau level filling fraction ν = 1/2 can be described as a Fermi liquid of CF’s, where 

a CF is an electron with two magnetic flux quanta attached [1].  The CF picture has been 

very effective at describing a wide range of experiments, but the limit of its applicability 

is still an ongoing subject of interest.   

Just as in the case of an ordinary Pauli paramagnet, one might expect a spin 

transition for CF’s at ν = 1/2 to occur as the magnitude of the electronic Zeeman energy 

is tuned relative to the Fermi energy.  Starting with a partially polarized electron gas, as 

the ratio of Zeeman to Fermi energy is increased, the electronic spin polarization will 

increase and eventually there will be a transition to a completely polarized state.  

However, this deceptively simple picture hides some of the differences between this 

strongly interacting system and a simple Pauli paramagnet.  For example, in the case of 

CF’s the Fermi energy is determined by the strength of the Coulomb interaction instead 

of the kinetic energy.  This chapter presents low-temperature resistively detected NMR 

measurements which examine the spin transition for CF’s at ν = 1/2 [2]. 

 
5.1 Composite Fermions and Spin 
 
The notion of composite fermions was introduced in Chapter 3.  However, the spin 

degree of freedom was neglected.  Next, we introduce a simple picture that includes spin 

at ν = 1/2. 

Even though ν = 1/2 occurs in the presence of a large perpendicular magnetic field, 

in a mean field approximation, at exactly ν = 1/2 the system can be treated as a Fermi sea 

of CF’s.  The CF orbital degree of freedom behaves as if there were effectively zero 

magnetic field.  However, the spin degree of freedom is still affected by the presence of 

the magnetic field.  Adopting a simple picture, we assume that the effect of the magnetic 

field on the CF spin is to simply shift the energy of the up spins with respect to the down 

spins by the Zeeman energy, and that this shift is given by the electron spin g-factor g* 
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such that the Zeeman gap is EZ = μΒg*B.  We set the CF g-factor equal to the electron g-

factor [3].  We also assume that the CF’s have a parabolic dispersion relation E vs. k with 

an effective mass mCF such that, using the usual relation for the density of states for free 

fermions in 2D, the Fermi energy of a single spin branch of CF’s is EF = 2πħ2n/mCF.  The 

relative magnitude of the Zeeman splitting and Fermi energy will determine the spin 

polarization of the system, as sketched in Fig. 5.1.  For EZ < EF the system is partially 

spin polarized, and for EZ > EF, the system is completely spin polarized. 

 

 
 

Fig. 5.1.  Simple model of composite fermion spin polarization.  The dashed line is the 
Fermi Energy.  The two parabolas are the dispersion relations for up and down CF’s  The 
left and right plot show the case of a partially and completely spin polarized electron gas, 
respectively. 

 

The mass mCF is referred to as the “polarization mass” and is different from the 

effective mass commonly extracted from measurements of activation energies of FQH 

states via magnetotransport measurements [3].  A phenomenological, transport-derived 

effective mass mCF_transport for CF’s can be obtained by setting the activation energy Δ 

(measured via the temperature dependence of the resistivity) at a FQH state equal to the 

CF cyclotron energy.  Then Δ = eBeff/mCF_transport, where Beff = B – B0 = ( )0 1/ 2nφ ν −  is 

the effective magnetic field experienced by a CF at filling factor ν, 0 0 2B nφ=  for a CF 

comprised of an electron bound with two flux quanta, φ0 = h/e is the quantum of magnetic 

flux, and n is the electron density.  The activation gap at FQH states is determined by the 

Coulomb energy, so that Δ ~ n .  Then, for fixed ν, mCF_transport ~ n .   

The polarization mass is not equal to the transport mass.  The activation gap used to 

define mCF_transport contains contributions from both the bare CF cyclotron energy and the 

E
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self energies of an excited CF particle and CF hole.  The polarization mass will not be 

determined by just the bare CF cyclotron energy alone, but the contribution due to 

interactions should be less than for the transport activation mass.  However, the Fermi 

energy used to define the polarization mass is proportional to the Coulomb energy so that 

the polarization mass at fixed ν = 1/2 also scales like mCF ~ ~n B . 

Within the model presented above, a spin transition between partial and complete 

spin polarization at ν = 1/2 should occur as a function of density and magnetic field (if n 

is held fixed, then n ~ B).  The situation is sketched in Fig. 5.2.  At fixed ν = 1/2, as a 

function of magnetic field, the Zeeman splitting rises more rapidly than the Fermi energy.  

The Fermi energy is proportional to the Coulomb energy so that ~FE B , while 

.  Thus, EZ and EF will cross at some critical magnetic field BC.  For fields below 

BC, EZ < EF so that the spin polarization is partial.  As B is increased, the spin polarization 

will increase until

~ZE B

CB B≥ , at which point the spin polarization will be complete. 

 
EZν = 1/2

EF

BC B  
 
Fig. 5.2.  Scaling of CF spin Zeeman and Fermi energies with magnetic field at ν = 1/2, 
showing the critical field BC at which the two energies are equal and the transition from 
partial to complete spin polarization should occur. 
 

The value of the composite fermion effective mass mCF determines the critical 

magnetic field and density at which the 2DES becomes completely spin polarized.  The 

transition occurs when the Zeeman splitting is equal to the Fermi energy: 

 

( ) 2/ 2 / ,
B F

e C

g B E

g e m B n m F

μ

π

=

=
 

 



 79

where me is the bare electron mass in vacuum and g is the g-factor for the composite 

fermions, which we assume is the same as that for electrons, g = -0.44.  Now, at ν = 1/2, 

n = Be/2h, so at the critical magnetic field we find that 
 

/ 1/CF em m g= .  

 
To start the chapter, we have presented a very simple picture of spin at ν = 1/2.  

More sophisticated versions of this Pauli paramagetism picture that, for example, do not 

assume a parabolic dispersion relation for CF’s, can be found in Ref.’s [3, 4].  More 

speculatively, there is a possibility that the spin transition at ν = 1/2 is weakly first order.  

Ferromagnetism, driven by residual interactions between CFs, has been theoretically 

predicted for CF’s at ν = 1/4 [5].  We will return to the topic of ferromagnetism for CF’s 

later in the Chapter.  There is also theoretical evidence that the ν = 1/2 state is 

energetically near a state in which composite fermions form spin-polarized pairs [6]. 

Previous experimental evidence exists for a spin transition for CF’s at ν = 1/2.  The 

first observation of this transition was by Kukushkin et al. using polarization-resolved 

photoluminescence; the electron spin polarization was observed to increase and then 

saturate when increasing the electron density and magnetic field while maintaining fixed 

filling factor ν = 1/2 [7].  Optically pumped NMR measurements of the Knight shift, 

using multiple quantum well samples (~ 100 closely spaced QW’s), also suggest that a 

spin transition occurs when the total magnetic field is increased by rotating the sample in 

the magnetic field while maintaining fixed perpendicular magnetic field to remain at ν = 

1/2 [8, 9].  A combination of RDNMR and standard directly detected NMR has been used 

to measure the NMR Knight shift versus magnetic field in a variable density sample at ν 

= 1/2; the Knight shift versus field data show a change in slope that is suggestive of a 

spin transition [10].  The electronic spin-flip excitations have been probed using inelastic 

light scattering; the spin-flip gap was shown to collapse as ν → 1/2 for a sample at 

relatively low magnetic field and remain finite for another sample at higher magnetic 

field [11]. 

The RDNMR measurements discussed in this chapter take a closer look at the spin 

transition at ν = 1/2, using higher quality samples and lower temperatures than previously 

achieved.  Our measurements more thoroughly examine the nuclear spin-lattice 
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relaxation time T1 temperature and magnetic-field dependence for temperatures ranging 

from 35 to 200 mK over a wide magnetic field and density range.  We also show the first 

measurements of how transport at ν  = 1/2 depends on the electron spin polarization.  

 
5.2  Experiment 
 
We probe the transition from partial to complete electron spin polarization as a function 

of density in a 2DES at ν = 1/2 using the resistively detected NMR (RDNMR) technique 

outlined in Chapter 4.  Both the nuclear spin lattice relaxation time T1 of 75As and the 

response in resistance to a change in the nuclear spin polarization reflect this transition.  

At low densities, where the electron spin polarization is partial, the T1 time is relatively 

short, due to the presence of both electron spin states at the Fermi level.  In this regime T1 

is density independent and has a Korringa-like [19] temperature dependence.  At higher 

densities, T1 increases and the RDNMR signal eventually vanishes, consistent with a 

transition to complete electron spin polarization.  In the transition region we observe an 

unexpected enhancement of the RDNMR signal. 

 
5.2.1 Sample 
 
The sample used in the present experiment is a GaAs/AlGaAs heterostructure grown by 

molecular beam epitaxy.  A high mobility 2DESs is created in these structures via 

modulation doping with Si.  For the data presented here, the 2DES is confined in GaAs at 

a single interface with AlGaAs and is laterally patterned into a wide (500 μm) Hall bar 

geometry.  An aluminum top gate was used to control the 2DES density.  The as-grown 

density of the 2DES is n ~ 1.3 × 1011 cm-2 and its low temperature mobility ranges from μ 

~ 5 ×106 cm2/Vs at n ~ 1.3 × 1011 cm-2 to μ ~ 1 ×106 cm2/Vs at n ~ 0.3 × 1011 cm-2.   

 
5.2.2 Transport 
 
Magnetotransport for this sample is shown below in Fig. 5.3.  At both low and high 

densities, longitudinal resistance minima are seen at several integer and fractional 

quantum Hall states. 
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Fig. 5.3.  Low temperature magnetotransport for the single layer 2DES used for the CF 
spin transition RDNMR data shown in this chapter, at low and high density.  a) n ~ 0.4 × 
1011 cm-2 (ν = 1/2 occurs at B ~ 3.0 T).  b) n ~ 1.3 × 1011 cm-2 (ν = 1/2 occurs at B ~ 10.8 
T). 
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Fig. 5.4.  Log-log plot of ρxx vs. B, at fixed filling factor ν = 1/2, T = 45 mK.  The solid 
line is a power-law fit to the data, which yields ρxx ~ B-1.0. 
 
Figure 5.4 shows the longitudinal resistivity right at ν = 1/2 versus magnetic field, while 

tuning the density to maintain fixed filling factor ν = 1/2.  The data approximately follow 

a power law:  ρxx ~ B-1.0 ~ n-1.0.  Using the Drüde formula for resistivity at zero magnetic 

field, , where m* is an effective CF mass.  This implies 21/ / *trne mρ τ= / *mτ  is 

independent of density.  This does not agree with theoretical calculations of the resistivity 

at ν = 1/2 by HLR [12] which predict / * ~tr Fm kτ .  See section 6.3.3, “Transport at ν = 

1/2”, later in this chapter for further description of transport at ν = 1/2 as discussed in 

HLR.  The fit of Fig. 3.4 gives ( )* / 1.2em m 11/   10  strτ −= × , where me is the electron 
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mass in vacuum.  Experimentally, the CF effective mass obtained from transport 

measurements at FQH states near ν = 1/2 [13] is of the same order of magnitude as me.  

Then, we have a transport lifetime for CF’s ~ 10 pstrτ .  For comparison, at zero 

magnetic field, the transport lifetime of ordinary electrons for this sample is roughly τ ~ 

100 ps. 
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Fig. 5.5.  Temperature dependence of resistivity at ν = 1/2.  In both graphs, solid line is a 
fit to the data of the form ρxx = a + b ln T .  a)  ρxx = 6.96 – 0.31 ln T (kΩ).  b)  ρxx = 4.45 
– 0.21 ln T (kΩ). 
 
As seen in Fig. 5.5, the temperature dependence of the longitudinal resistivity at ν = 1/2 

is of the form ρxx ~ a + b ln T.  This logarithmic temperature dependence at ν = 1/2 has 

been seen previously by Kang et al. and Rokhinson et al. [14], but is not theoretically 

well-understood [12]. 

 
5.2.3 Sample Temperature 
 
An approximately rectangular 8-turn NMR coil is wound around the sample for applying 

RF magnetic fields parallel to the 2DES plane and perpendicular to the large applied dc 

magnetic fields.  We estimate the RF magnetic fields H1 to be in the 0.1 μT range, much 

less than typical nuclear dipolar fields Hd ~ 1 gauss (see Chapter 4, section 4.3.1a).  The 

electron temperature with the RF magnetic field on was determined by using the 2DES 

resistance as an in-situ thermometer, which was calibrated with the RF power off.  Figure 

5.6 shows the 2DES electron temperature, as determined via the 2DES resistance, vs. 

cold finger temperature with the RF power on, at a fairly high power where the estimated 
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RF magnetic field is H1 ~ 0.5 μT.  At this power level, there is a noticeable rise in the 

electron temperature below about 100 mK, and it is not possible to reach electron 

temperatures below about 50 mK. 
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Fig. 5.6.  Electron temperature, as determined from sample resistivity, vs. cold finger 
temperature with RF on, at B = 4.01 T, ν = 1/2, at a relatively high RF power, H1 ~ 0.5 
μT, f ~ 29 MHz.  The solid line is a guide to the eye.  The dotted line is the case for no 
RF heating (RF off), for reference. 
 
 
5.2.4 RDNMR signal at ν = 1/2 
 
Below, Fig. 5.7 shows a typical change in resistance Δρxx at filling factor ν  = 1/2 

obtained by applying resonant RF to change the nuclear spin polarization.  For times 

earlier than ti, the nuclear spin polarization is at thermal equilibrium and the RF magnetic 

field is on, but off resonance.  Then, at ti the RF is brought onto resonance and an 

increase in the 2DES resistance is observed.  As discussed in Chapter 4, the rise time is 

RF power dependent and is determined by T1/(1+ωR
2T2T1), where ωR is the Rabi 

frequency (see appendix H).  At time tf the RF is moved off resonance and the resistance 

falls as the nuclear spin polarization decays back to thermal equilibrium with a time 

constant T1. 
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Fig. 5.7.  Typical RDNMR trace (B = 4.48 T, T = 45 mK) showing the response in ρxx to 
an NMR pulse and the transient signal used to measure T1.  The RF is on resonance for 
times between the dotted lines, and off resonance for all other times.   
 
 
5.2.5 RDNMR Lineshape 
 
Figure 5.8 shows a typical RDNMR lineshape for 75As.  The solid markers show the 

change in resistance Δρxx, obtained by using the procedure described in Fig. 4, versus 

frequency measured relative to the center of the NMR line.  The two satellite peaks are 

due to quadrupole splitting.  The linewidth is ~ 5 kHz FWHM and the asymmetry of the 

peak is likely due to the shape of the 2DES electronic wavefunction in the confinement 

direction 
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Fig. 5.8.  RDNMR lineshape and nuclear T1 time vs. frequency on the NMR line for 75As 
at filling factor ν = 1/2, B = 4.01 T.  The center of the resonance is at f0 = 29.307 MHz. 
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direction.  Both the intensity of the RDNMR signal and the NMR frequency Knight shift 

(a negative shift for electrons in GaAs) will depend on the magnitude of the wavefunction 

for a given in-plane slice of the 2DES region.  T1 also varies as a function of frequency 

through a similar argument.  See Chapter 4, section 4.3.3 for a more detailed explanation 

of the NMR lineshape.  Subsequent measurements of T1 and Δρxx shown in this chapter 

correspond to data taken at the center frequency (Δf = 0, as shown in Fig. 5.8) of the 

NMR line, defined as the frequency at which the NMR-induced change in the resistivity 

is greatest. 

 
5.2.6 RDNMR Signal Temperature Dependence 

 
Figure 5.9 shows the RDNMR signal vs. temperature at ν = 1/2 at fixed magnetic field 

and RF power.  There are two contributions to this temperature dependence.  The first is 

the temperature dependence of the thermal equilibrium nuclear polarization, which is 

roughly proportional to 1/T (nuclear Curie Law).  This expected contribution is sketched 

in 
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Fig. 5.9.  Fractional change in longitudinal resistance due to NMR at B = 4.01 T, ν = 1/2.  
Solid line is a guide to the eye.  The dashed line shows the expected temperature 
dependence due to just the nuclear Curie Law, arbitrarily fitted to the lowest temperature 
data point. 
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in Fig. 5.9 by the dotted trace, which is of the form Δρxx/ρxx = α T-1, where α is arbitrarily 

set by the lowest temperature data point.  A second contribution is from the temperature 

dependence of the response of the 2DES resistivity to changes in the Zeeman splitting 

(temperature dependence of /xx ZEρ∂ ∂ ). 

 
5.3  RDNMR Density Dependence at ν = 1/2 
 
RDNMR measurements at ν = 1/2 over a wide density and magnetic field range at two 

temperatures, T = 45 and 100 mK, are shown in Fig. 5.10, below.  The spin transition is 

evident from both the RDNMR signal size and T1 data.  Figure 5.10a displays the 

RDNMR signal versus density.  The quantity ( )/ /xx ZS E xxρ ρ≡ ∂ ∂  is the NMR-induced 

fractional change in resistance divided by the NMR-induced change in the Zeeman 

splitting. 
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Fig. 5.10.  a) RDNMR signal S and b) nuclear T1 time and vs. magnetic field at fixed 
filling factor ν = 1/2.  Closed and open symbols correspond to a temperature of 45 and 
100 mK, respectively. 
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5.3.1  Zeeman Energy Calibration 
 
The change in the Zeeman energy is calculated using the known strength of the hyperfine 

coupling in GaAs [15] and an estimate of the NMR-induced change in the nuclear 

polarization.  From Chapter 4, using the Bloch equations, we derived the expression 
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1

r
rise

r

TT T
TT

ωξ ξ τ
ω

⎡ ⎤
Δ = = −⎢ ⎥+⎣ ⎦

/ ,      (1) 

 

where /ξ ξΔ

fall

 is the NMR-induced fractional change of the nuclear polarization.  Thus, 

the NMR-induced change in the nuclear polarization can be extracted from the rise and 

fall time ( 1Tτ = ) of transient data, like that shown in Fig. 5.4, or by measuring the RF 

power dependence (RF power ~ ωr
2) of the RDNMR signal and fitting the data to a 

function of the form given by the middle term in Eq. (1). 

Figure 5.11 shows the magnitude of the fractional NMR-induced change in nuclear 

polarization /ξ ξΔ  obtained using these two methods, versus magnetic field, at fixed 

filling factor ν = 1/2.  The scatter in the data is due to uncertainty in the measurement of 

the RDNMR rise and fall time.  To calculate S in Fig. 10a we use the average of 

the /ξ ξΔ  values shown Fig. 5.11, which is 
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Fig. 5.11.  Change in nuclear polarization of 75As due to NMR.  Crosses correspond to 
values determined from power dependence.  Circles are points calculated from NMR T1 
and rise time, closed and open circles correspond to 45 mK and 100 mK data, 
respectively. 
 

 



 88

5.3.2  Density Dependence:  dρxx/dEZ 
 
Although the resistivity ρxx at ν =1/2 has a gradual, monotonic dependence on 

density/magnetic field (see Fig. 5.4), Fig. 5.10a shows that the RDNMR signal displays a 

dramatic change while passing through the transition.  At low magnetic fields, in the 

partially polarized phase, there is a positive, finite response.  At higher magnetic fields, 

when the 2DES becomes completely spin polarized, the signal vanishes; the resistance is 

no longer sensitive to RDNMR since increasing the Zeeman splitting only further 

stabilizes a fully polarized state.  A peculiar enhancement of the RDNMR response is 

seen in the transition region, especially at T = 45 mK.  A similar peak has been seen in a 

second sample, an undoped, gated heterojunction with a mobility ranging from μ ~ 1 - 2 

×106  cm2/Vs at densities ranging from n ~ 0.3-1.2 ×1011  cm-2.  This feature is weak but 

present at T = 100 mK and seems to quickly sharpen with decreasing temperature. 

 
5.3.3  Transport at ν = 1/2 
 
The origin of the RDNMR signal is not fully understood.  Indeed, a theory of transport at 

ν = 1/2, that fully explains current experimental data, such as the value of ρxx at ν = 1/2, 

and its density and temperature dependence, is lacking [12, 14, 15].  HLR [12] estimates 

the resistance at ν = 1/2 by assuming that the transport scattering rate 1/τtr is dominated 

by static fluctuations in the effective magnetic field for composite fermions, Beff, due to 

density variations in the sample.  These density fluctuations are assumed to be due to 

ionized dopants, of average density nimp, distributed randomly in a modulation doped 

layer a distance ds from the 2DES.  Then, HLR finds  
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where m* is an effective CF mass, and kF is the Fermi wavevector.  Using a Drude-like 

model, where the conductivity for CF’s at ν = 1/2 is defined by 1/CF xxσ ρ≡ , 
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This formula is valid only for spinless electrons.  If we include two spin species and 

assume the total conductivity σCF  will be simply the sum of the individual conductivities 

of the two species σCF↑ and σCF↓, we have 
 

( )
2

.
4

CF CF CF

s
F F

imp

e d n k n k
n

σ σ σ

π

↑ ↓

↑ ↑ ↓ ↓

= +

= +
 

 
We next hold the total electron density n constant and ask about σCF as a function of the 

spin polarization .  The densities of the individual spin species can be 

written as , 
( ) /n nχ ↑ ↓≡ −

( )1 / 2n nχ= +

n

↑ ( )1n χ= − / 2n↓ .  Using the fact that the Fermi wavevector is 

proportional to the square root of the density: kF↑,↓ ~ n↑,↓
1/2, the conductivity is 

 

( ) ( )3/ 2 3/ 23/ 2 1 1CF nσ α χ χ⎡ ⎤= + + −⎣ ⎦ , 

 
where α is a constant determined by nimp, ds, and the electron charge.  This expression 

predicts that the conductivity increases monotonically with increasing spin polarization.  

For example, if the system is unpolarized (χ = 0), , whereas for a 

completely spin polarized (χ = 1), .  Recall that 

3/ 22CF nσ α=

13/ 2 3/ 22CF nσ α= /xx CFρ σ= .  Then, we 

find that ρxx should decrease with increasing spin polarization.  This does not agree with 

our experiment.  The sign of /xx ZEρ∂ ∂  is actually positive in the data of Fig. 5.10a, i.e. 

ρxx increases with increasing spin polarization 
 

5.3.4  Dependence of RDNMR Signal on Current 
 
Interestingly, the RDNMR response can depend on the magnitude of the measurement 

current.  Figure 5.12 shows the RDNMR signal versus the magnitude of the current 

driven through the 2DES, at ν = 1/2, in the partially polarized regime, B = 3.6 T.  For low 

currents, there is a regime where the RDNMR signal is current independent.  The 

measurements shown in this chapter were made in this low current regime.  However, as 

shown in Fig. 5.12, we find that large currents can change the magnitude of the RDNMR 

signal and even cause it to change sign.  Many of the features of this non-linear response 
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at high current are similar to those seen at ν = 2/3, where large currents have been shown 

to dynamically pump the nuclear polarization to magnitudes greater than at thermal 

equilibrium [16, 17].  That the nuclear spin system is pumped by high measurement 

currents is supported by the fact that, after application of a large current, subsequent 

application of resonant RF tends to bring the resistance back to the equilibrium, non-

pumped value.  See Appendix E for preliminary data demonstrating this pumping 

mechanism at ν = 1/2. 
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Fig. 5.12.  NMR-induced fractional change in longitudinal resistivity vs. quasi-dc current 
driven through the 2DES. 
 

5.3.5  Density Dependence:  T1 
 
Figure 5.10b shows T1 versus magnetic field.  At low magnetic fields, deep in the 

partially polarized phase, T1 is relatively short (the T1 time for bulk GaAs at these 

temperatures can be hours or even days).  Using the simple picture sketched in Fig. 1, the 

2DES consists of a Fermi sea of spin up and down composite fermions, the two spin 

branches simply shifted in energy with respect to one another by the Zeeman splitting.  In 

the partially polarized phase both up and down spin states are present at the Fermi level.  

This presence of both spin species at the Fermi level provides a route for nuclear spin 

relaxation.  An electron and nucleus can perform a simultaneous spin flip, while 

conserving total energy and momentum.  Since gNμNB, the nuclear Zeeman splitting, is 
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much less than kT, there must be empty and full electron states available differing in 

energy by gNμNB, allowing for energy conservation.  As sketched in Fig. 5.13, the 

electron must experience a change in linear momentum during this process.  This 

momentum is provided by the hyperfine point contact interaction with the nuclei (see 

Chapter 4).  The Hamiltonian is of the form ( )I S Rδ⋅  –  proportional to a delta function 

in real space, and thus, couples the electron and nucleus for all values of momentum 

transfer.  In ordinary 3D paramagnetic metals, nuclear spin relaxation occurs via a similar 

process and is known as Korringa relaxation.  As shown in Fig. 10b, at higher magnetic 

fields T1 increases dramatically.  This is consistent with a transition to complete electron 

spin polarization, in which case the Korringa relaxation mechanism will no longer exist.  

Raising the electron temperature from T = 45 to 100 mK thermally smears the transition 

over a broadened magnetic field range. 

 
 

FE

 
 
Fig. 5.13. Cartoon of Korringa nuclear relaxation process, showing a simultaneous 
nuclear spin flip (blue) and electron spin flip (green) at the Fermi energy.  The hyperfine 
point contact interaction provides the momentum transfer for the electron spin flip. 
 

5.3.6  Korringa Relaxation Rate 
 
The Korringa nuclear relaxation rate is given by [19] 
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where the strength of the hyperfine coupling is given by the Knight shift for a fully 

polarized electron gas Ks1 divided by the electron density n, the energy ε is measured 

from the bottom of the lowest energy spin branch, T is the temperature, D↑(ε), D↓(ε) are 

the density of states for up and down electrons, respectively, and  f(ε, τ) is the Fermi 

function.  This expression assumes that kT >> gNμNB, so that the nuclear Zeeman splitting 

can be ignored.  Using the fact that the density of states is energy independent in 2D, we 

have 
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This integral can be done analytically: 
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Next, we find the chemical potential μ as a function of temperature.  Using the fact that 

the total density n of the 2DES remains fixed, we have 
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Solving for μ gives 
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Within the Korringa relaxation picture given above, the 1/T1 rate will be proportional to 

the square of the density of states at the Fermi energy, which for will be given by the 

effective mass mCF, where D(ε) = mCF/2πħ2 for one CF spin branch.  As mentioned 

earlier, this effective mass scales like ~CFm B .  Then, the expected density/magnetic 

field dependence for T1 in the partially polarized phase will be T1 ~ 1/B.  However, Fig. 

5.10b shows that T1 is nearly density independent at low magnetic fields. 

 
5.3.6a  Finite Thickness Effects 
 
A more careful analysis should include the variation of the 2DES subband wavefunction 

ψ (z), whose amplitude and thickness will vary with density; this will affect both the 

strength of the hyperfine coupling and also the 2DES Coulomb interaction.   

The hyperfine coupling constant (KS1/n) will be proportional to the square of the 

peak magnitude of ψ (z), so that 1/T1 ~ (KS1/n) 2 ~ 21/ z , where z  is the rms 

wavefunction thickness (this is only strictly true when the nuclear T2, without linewidth 

broadening due to the shape of the 2DES subband wavefunction, is much longer than 1/ 

KS).  Using a Fang-Howard approximation for the wavefunction (see Chapter 1), 
1/3 1/ 3~ ~z n B− −  at fixed filling factor ν = 1/2.  This will lead to an additional variation 

of T1 with density, due to the variation of the strength of the hyperfine coupling alone, of 

the form T1 ~ B-2/3.   

The variation of the strength of the Coulomb interaction with wavefunction thickness 

will also affect T1. The composite fermion Fermi energy is proportional to the Coulomb 

energy, so that that ( )2~ /c F F C2 FE E k m=
2

1 ~
C

T E

.  Then, , so that, using 1/T1 ~ 

D(ε)2 ~ mCF
2, we have .  The dependence of the Coulomb interaction on the 2D 

subband wavefunction can be estimated by calculating the Haldane pseudopotentials Vm 

for the Coulomb interaction in the lowest Landau level, as a function of the wavefunction 

thickness.  The Coulomb pseudopotential Vm is the expectation value of the interaction 

energy for two electrons interacting via the Coulomb potential with relative angular 

momentum m, in the lowest Landau level [20].  The dependence of Vm on the effective 

wavefunction thickness parameter 1/bl, where b is the Fang-Howard thickness parameter 

(see Chapter 1), and l is the magnetic length, is shown in Fig. 5.14.  At fixed Landau 

level filling factor, the parameter 1/bl is proportional to the wavefunction thickness 

~ 1/
CCFm E
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normalized by the spacing between electrons.  The psuedopotential is normalized relative 

to e2/εl, the Coulomb energy for the case of an infinitely-thin wavefunction.  Figure 5.14 

shows that Vm weakens with increasing effective thickness. 
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Fig. 5.14.  Coulomb psuedopotentials Vm for m = 0 to 3 versus effective wavefunction 
thickness 1/bl, where b is the Fang-Howard thickness parameter and l is the magnetic 
length.  The dotted lines mark the magnetic field range, B = 2.5 – 5 T, over which the T1 
data of Fig. 5.10b is roughly magnetic field independent. 
 

The wavefunction thickness can be estimated by using the Fang-Howard 

approximation for the wavefunction as a function of density, or by calculating a self-

consistent solution to the Schrodinger and Poisson equations, as discussed briefly in 

Chapter 1.  Both methods yield a fairly weak dependence of the effective thickness 

parameter 1/bl on density/magnetic field at fixed filling factor ν = 1/2.  In the Fang-

Howard approximation, , while .  Then, .  From Fig. 

5.14, we then see that the interaction energy will rise with density/magnetic field more 

slowly than for an ideal, infinitely-thin 2DES.  Even though the actual thickness of the 

wavefunction is decreasing with increasing density, the spacing between electrons is 

decreasing even more rapidly, so that the effect of finite thickness at large densities 

actually becomes more important.   

1/3 1/3~ ~b n B 1/ 2~l B− 1/ 61/ ~bl B
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The relative importance of Vm for different values of m at ν = 1/2 is unclear, but a 

rough upper bound on the effect of finite thickness on the interaction energy can be 

obtained from V0, which is most sensitive to finite thickness effects.  Using the above 

Fang-Howard approximation ( ), over the magnetic field range of interest, from 

B ~ 2 to 5 T at ν = 1/2, there is a roughly 5% decrease in 

1/ 61/ ~bl B
2

0 /( / )V e lε .  Since , 

this will lead to a ~ 10% maximum additional decrease in T1 over this density/magnetic 

field range.  Using self-consistent solutions to the Schrodinger-Poisson equation for the 

wavefunction yields similar results. 

2
1 ~

C
T E

In short, the two above mentioned finite-thickness effects due to the variation of the 

strength of the hyperfine coupling and the Coulomb interaction with wavefunction 

thickness should cause T1 to fall even faster with magnetic field than 1/B, worsening the 

comparison between experiment and composite fermion theory. 

 
5.3.7  Korringa Relaxation – Comparison to Data 
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Fig. 5.15.  T1 vs. magnetic field/density at ν = 1/2 calcuated using a simple 2D Korringa 
relaxation theory for a critical magnetic field for the spin transition of BC = 5 T .  Solid 
and dotted line:  calculated T1 at 45 and 100 mK, respectively.  Solid and open circles:  
RDNMR measured T1 at 45 and 100 mK, respectively. 
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Figure 5.15 shows T1 vs magnetic field/density at ν = 1/2 using the simple 2D Korringa 

theory of Eq.’s (1) and (2).  The effect of the density dependence of the width of the 2D 

subband wavefunction on the hyperfine coupling strength has been included, but the  

smaller effect of the variation in the Coulomb energy due to the changing thickness has 

been ignored.  We estimate the hyperfine coupling constant (KS1/n) for 75As by using 

measurements of the NMR Knight shift for 71Ga in 2DES quantum wells at ν = 1/3 

published by Khandelwal et al. [21].  For 71Ga (KS1/n) = 4.5 ×10-19/w m2/s, where w is the 

2DES width measured in meters .  We then scale this value by the magnitude of the 

electronic wavefunction at a nucleus for 75As versus 71Ga, as calculated by Paget [15], 

and also scale by the gryomagnetic ratio of these two atoms.  This gives 

, where w is the rms width of the 2DES subband 

wavefunction, which we estimate via the Fang-Howard approximation. 
( )-19 2/ 4.3  10 /  Hz mSK n w= ×

Unlike the experimental T1 vs. magnetic field/density data, the calculated T1’s in Fig. 

5.15 at low magnetic fields show the simple Korringa theory prediction of a decreasing 

T1 with increasing magnetic field/density deep in the partially polarized phase.  Another 

qualitative difference between data and theory is the sharpness of the rise in T1 at the 

transition to complete spin polarization.  Possibly, disorder may broaden this transition in 

the experimental T1 data.  A recent calculation by Murthy and Shankar including a 

disorder-induced broadening of all momentum states predicts a broadened transition and 

is able to provide a better match to the experimental data than the simple calculations of 

Fig. 5.15 [22]. 

 
5.3.8  Effective Mass 
 
A theoretical estimate of the mass / 0.6CF em m B= is given by Park and Jain [3].  Using 

this relation, the critical magnetic field for the transition is given by 

 
/ 1/ ~ 2.3 0.6

14.7 T.
CF e C

C

m m g B
B

= =

→ =
 

 
This value is for an ideal 2DES; the calculation does not take finite thickness or disorder 

effects into account.  A rough estimate of the BC can be obtained from our T1 vs. 

magnetic field data (the temperature dependence of T1 also allows an estimate of BC as 
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will be explained below).  Because at 45 mK T1 begins to rise at above about B = 5 T, it 

seems reasonable that BC ~ 5 T, although disorder/finite temperature effects may affect 

the validity of this estimate.  Using polarization resolved photoluminescence, Kukushkin 

et al. have measured a critical field of BC = 9.3 T for a 2DES in a GaAs/AlGaAs 

heterojunction [7].  However, this number was obtained by observing the apparent 

saturation of the spin polarization as a function of magnetic field/density at a temperature 

of T ~ 0.3 K. Possibly, finite temperature effects may cause the polarization to drop 

below full polarization even at magnetic fields above BC. 

 
5.4  T1 Temperature Dependence 
 
Figure 5.16 shows the temperature dependence of 1/T1 for several magnetic fields 

spanning the transition (B ≈ 3.0, 4.0, 5.0, and 6.4 T, corresponding to densities of n = 

0.36, 0.48, 0.60, and 0.78 ×1011 cm−2).  In the partially polarized phase, at magnetic fields 

below about B = 5 T, T1 is density independent over a wide range of temperatures and 

.  However, at B = 6.4 T, 1/T1 has a very steep, nonlinear temperature 

dependence, indicating that the Zeeman splitting now exceeds the Fermi energy.  At T = 

0 

11/ ~T aT b+

6
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Fig. 5.16.  Temperature dependence of T1.  The solid line passing through the data for B 
=  3.04, 4.01, and 4.98 T is a least squares linear fit.  The dashed line is an extrapolation 
to T = 0.  The solid line passing through the B = 6.42 T data is a fit using Eq.’s (1) and (2) 
(see text). 
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0 the 2DES would be fully spin polarized.  The solid line passing through the B = 6.4 T 

data of Fig.5.16 is a fit to the data using the simple 2D Korringa theory of Eq.’s (1) and 

(2), plus an offset due to non-electronic nuclear spin relaxation mechanisms that will be 

discussed below. 

 
5.4.1  Korringa Temperature Dependence 
 
Figure 5.16 shows the prediction of Eq.’s (1) and (2) for the temperature dependence of 

T1 at several magnetic fields/densities for a critical field BC = 5 T.  The curves in Fig. 

5.12 look fairly similar to the data of Fig. 11.  In fact, as mentioned above, the solid line 

passing through the data at B = 6.4 T in Fig. 15 is a best fit to the data using our simple 

Korringa model.  The data of Fig. 5.15 at B ≈ 5 T, showing a 1/T1 that is roughly linear in 

T, can also be described by this model if B = 5 T is relatively near the critical field BC.  

For the temperature range / Zn D E T n D− / , where n is the total density and D is 

the density of states for a single spin branch, we have that 1/T1 ~ a + bT.  The left side of 

the inequality keeps the exponential in the denominator of Eq. (1) small, while the right 

side keeps finite temperature corrections to the chemical potential relatively small. 
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Fig. 5.17.  1/T1 vs. temperature for several magnetic fields (B = 3 – 7 T) for a critical 
magnetic field BC = 5 T, calculated from the simple 2D Korringa formula of Eq.’s (1) and 
(2). 
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5.4.2  Critical Magnetic Field 

.4 T data  

ermi energy of roughly EF ≈ EZ – 260 mK.  If we assume

 
The temperature dependence of T1 allows for an estimate of BC.  Although it is difficult to 

pinpoint the exact field which satisfies this condition from our data, we can still say that 

the transition occurs below B = 6.4 T.  The fit to the B = 6  of Fig. 5.11 yields a

 ~FE BF , and using EZ ~ B,  

 

( ) ( )

( ) ( )
( )

2

6.4 T 6.4 T
6.4 T 6.4 T

6.4 T
6.4 T 4.8 T,

6.4 T

C C
F Z

F
C

Z

B B
E B E B

E B
B

E B

= = =

⎛ ⎞=
→ = =⎜ ⎟⎜ ⎟=⎝ ⎠

 

 
which is fairly close to our previous estimate of BC ≈ 5 T from the magnetic field/density 

ependence of T1. 

he 2DES is 

ompletely depleted during the time that the nuclei are allowed to relax [23]. 

 

d

 
5.4.3  Nuclear Spin Diffusion 
 
The extrapolations of 1/T1 to zero temperature shown in Fig. 5.15 show an offset in T1 on 

the order of 1,000 s that is not predicted by the simple Korringa model.  The most likely 

explanation for this relaxation is that nuclear spins diffuse from the 2DES region into the 

bulk of the substrate.  Remember that the NMR frequency corresponding to nuclei in the 

region of the sample containing the 2DES is Knight shifted.  The RDNMR data is taken 

at this Knight shifted frequency, which is different from the resonant frequency of the 

nuclei in the bulk of the sample.  Only a thin slice of nuclei near the 2DES are affected by 

the RF, while the rest of the sample remains in thermal equilibrium.  Then, one way for 

nuclear spins located in this thin slice to relax back to thermal equilibrium is to diffuse 

outward into the bulk of the sample [19].  Nuclear relaxation rates of similar magnitude 

have been seen in previous 1/T1 measurements in 2DES's in GaAs where t

c
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5.5  Discussion 
 
The origin of the peak in dρxx/dEZ near the transition is not explained by the simple CF 

theory we have presented so far.  Indeed, as previously mentioned, even the sign of the 

NMR-induced change in the resistivity is not understood and is actually the opposite of 

what is expected [12].   

 
5.5.1  Screening and Spin Polarization 
 
Due to the lack of a realistic theory of transport at ν = 1/2, we turn to 2D electrons at zero 

magnetic field.  Figure 5.17 shows the resistivity of a 2DEG as a function of parallel 

magnetic field B||, with no perpendicular magnetic field (B⊥ = 0), as calculated by Das 

Sarma and Hwang under the assumption that the resistivity is dominated by screened 

impurity scattering [24].  The parallel magnetic field is assumed to simply create a 

Zeeman spin splitting EZ = gμBB, but have no effect on the orbital motion of the 2DES 

electrons (this will be strictly true only for an infinitely-thin 2DES).  As B|| is increased, 

the 
 

 
 
Fig. 5.17.  Main plot:  Resistivity of a 2DEG in a parallel magnetic field B|| (B⊥ = 0).  As 
the magnetic field increases, the spin polarization increases continuously until B|| =  BS, at 
which point the 2DEG is completely spin polarized.  Spin-dependent screening causes the 
resistivity to increase with B||.  The four curves correspond to electron densities n = 0.4, 
0.8, 1.2, and 2.0_1010 cm−2.  Taken from Das Sarma and Hwang [24].  (Reprinted with 
permission). 
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the spin polarization gradually increases, until the 2DEG becomes completely spin 

polarized for B|| ≥ BS, where BS is the magnetic field at which EF = EZ.  Spin polarization 

dependent screening leads to the variation in the resistivity as a function of B||.   

 The dependence of the conductivity on spin polarization can be roughly understood 

from the dependence of the Fermi wavevector kF and screening wavevector qTF on spin 

polarization.  The impurity scattering rate depends on the relative magnitude of kF and 

qTF.  Screening is more effective at reducing scattering for qTF large compared to kF, so 

that the conductivity is an increasing function of ( )/TF Fq k .  How does (  depend 

on spin polarization?  In the Thomas-Fermi screening approximation, 
)/TF Fq k

( )FE~TFq D , the 

density of states at the Fermi level.  The density of states contains a degeneracy factor for 

spin; , where ( ) (2unpol F pol FD E D E= ) ( )FEunpolD  is the density of states for an 

unpolarized 2DES (χ = 0) and ( )FE

TF unpolq

polD  is the density of states for a completely 

polarized 2DES (χ = 1).  Thus, the screening wavevector for an unpolarized system is 

twice as large as for a polarized 2DES:  2 TF polq= .  The Fermi wavevector scales 

with density like ~Fk n .  Then, for a given 2DES density, the Fermi wavevector for a 

completely polarized system is larger than that of an unpolarized system: 

2F pol F unpolk k= .  Combining our results, ( ) (3/ 2/ 2 Tl
= )/F F pol

q kTF F unpo
q k .  Thus, 

screening is more effective for an unpolarized 2DES, which explains the increasing 

resistivity with increasing spin polarization seen in Fig. 5.17. 

Assuming that CF’s at ν = 1/2 behave like 2D electrons at zero perpendicular 

magnetic field, our RDNMR signal /xx EZρ∂ ∂  at ν = 1/2 as a function of magnetic 

field/density should look like the derivative of the curves in the main plot of Fig. 5.17.  

This derivative will have a peak near the transition magnetic field BS and vanish for B|| > 

BS, similar to what is seen in the RDNMR data at ν = 1/2. 

 
5.5.2  Bloch Ferromagnetism 
 
Another, perhaps more speculative, scenario to describe the transition is that two phases 

of differing electronic spin polarization coexist near the transition region.  As mentioned 

earlier, theoretical calculations of the energy of FQH states near ν = 1/4 as a function of 

spin polarization suggest that the ν = 1/4 state should exhibit interaction-driven 

ferromagnetism, even in the absence of Zeeman splitting [5].  The type of spin transition 
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that occurs at ν = 1/2 will also be determined by the character of any residual interactions 

between CF’s at ν = 1/2. 

In 2D systems at zero magnetic field it is hypothesized that a ferromagnetic phase 

may exist at low enough densities due to exchange interactions.  As the 2DES density is 

lowered the Coulomb interaction becomes increasingly important relative to the kinetic 

energy.  The Coulomb energy scales like 1/ 2~CE n , while the Fermi energy scales 

linearly with density, EF ~ n.  The dimensionless parameter  is 

frequently used to characterize the relative importance of these two energy scales.   

1/ 2/ ~s C Fr E E n−=

In a Hartree-Fock approximation, the total energy per particle, in units of Rydbergs 

(e2/aB, where aB is the Bohr radius), for a 2DES at zero magnetic field is the sum of the 

kinetic and exchange energy [25] 

 

( ) ( ) ( )3/ 2 3/ 22
2

0.5 0.31 1 1tot
s s

E
r r

χ χ χ⎡ ⎤= + − + + −⎣ ⎦ , 

 
where χ is the fractional spin polarization.  At a critical value rs ≈ 2, the system develops 

a ferromagnetic instability where the two lowest energy configurations correspond to 

unpolarized (χ = 0) or completely polarized (χ = 1) and are equally energetically 

favorable.  As a function of rs, there is a first-order transition from an unpolarized to 

completely polarized state.  This type of ferromagnetism is referred to as “Bloch 

ferromagnetism”.  As a side note, the actual value of rs at which ferromagnetism occurs is 

larger than that predicted by Hartree-Fock.  Experiments do not see a transition at rs = 2 

and, although more realistic calculations also predict a ferromagnetic transition, they 

estimate a higher transition value of rs ~ 26 [26]. 

For composite fermions, we can write the total energy per particle as a sum of the 

effective kinetic energy for composite fermions, using the CF effective mass, and the 

Zeeman energy: 
 

( )
2

2 11
2 2tot Z

CF

nE E
m

π χ χ= + − . 

 
Writing this in terms of the Coulomb energy and the parameter /Z CE Eη ≡ , we have 
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( )20.0056 1 0.5totE χ ηχ= + − ,       (1) 

 

where we use / 0.6CF em m B=  at ν = 1/2, based on the calculations of Ref. [3].  This 

expression describes CF paramagnetism.  A plot of Eq. (1) for two values of η is shown 

in Fig. 5.18.  The dotted line corresponds to η = 0.1, where a minimum in the energy 

occurs at a polarization of χ ~ 0.45, as marked by the arrow.  As η is increased, the value 

of χ at which the energy is minimized increases.  There is a continuous transition from 

partial to complete polarization as a function of η.  When η = 0.22 (dashed line in Fig. 

5.18), the energy is minimized at χ = 1, i.e., the polarization is complete.  This 

corresponds to EF = EZ, so that / 2 / 2 0tot F ZE E E= − =  at χ = 1. 
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Fig. 5.18.  Total energy per particle as a function of spin polarization χ for composite 
fermions in a simple model, with and without an exchange-like term, proportional to α. 
The parameter /Z CE Eη ≡ .  Dotted line:  The system is partially polarized (minimum 
energy configuration at χ = 0.45, as marked by the arrow) with η = 0.1, no exchange 
energy.  Dashed line:  The system is completely polarized when η = 0.22, with no 
exchange energy.  Solid line:  The system develops a ferromagnetic instability at η = 0.1 
if an exchange-like term is included, for α = 1, where /ex FE Eα ≡  at χ = 0.  The inset 
shows the development of two minima, marked by arrows, for χ ~ 0.9 and χ ~ 1. 
 



 104

Making an analogy to Bloch ferromagnetism at B = 0, we next add an exchange-like 

term to the energy per particle: 

 

( ) ( ) ( )3/ 2 3/ 220.0056 1 0.5 0.0028 1 1totE χ ηχ α χ χ⎡ ⎤= + − − + + −⎣ ⎦ , 

 
where / . .exE K Eα ≡ , the ratio of this exchange-like energy to CF effective kinetic energy, 

at χ = 0.  Although we have no way of knowing the actual form of this hypothetical 

exchange-like term, as an example, we assume that its dependence on spin polarization is 

like that of like that of the exchange term in the B = 0 Hartree-Fock expression for the 

total energy.  For nonzero α, a first-order spin transition is possible.  The solid trace in 

Fig. 5.18 shows the energy versus spin polarization when α ~ 1, η = 0.1.  In this case, a 

ferromagnetic instability occurs, where the energy as a function of χ develops two 

distinct minima with nearly equal energy at χ ~ 0.9 and χ = 1.  For this value of α, for η 

< 0.1, the system will prefer χ < 0.9, while for η > 0.1, the system will prefer χ = 1. 

How might this ferromagnetic transition affect the RDNMR signal?  Assume that the 

resistivity depends on the spin polarization in a smooth way such that ( )xxρ χ  is a 

continuous, increasing function of χ.  The RDNMR signal is proportional to /xx ZEρ∂ ∂ ~ 

( )(/ /xx xx )/ρ η ρ χ χ η∂ ∂ = ∂ ∂ ∂ ∂ .  Even though /xxρ χ∂ ∂  may be well-behaved, near the 

ferromagnetic instability /χ η∂ ∂  will diverge.  This could explain the peak in /xx ZEρ∂ ∂  

near the transition to complete spin polarization seen in the data of Fig. 5.10a. 

 
5.6  Conclusion 
 
In summary, our RDNMR measurements show that at ν = 1/2, the nuclear spin-lattice 

relaxation time T1 has temperature dependence that is roughly described by a simple 2D 

version of Korringa nuclear spin relaxation.  However, the density dependence of T1 fails 

to agree with a simple free CF picture.  We also show the first measurements of the 

Zeeman energy dependence of transport at ν = 1/2.  The sign of the NMR-induced 

change in the resistivity as well as the peak in dρxx/dEZ near the spin transition that 

develops at low temperatures are not explained by a conventional CF theory of transport 

at ν = 1/2. 
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Chapter 6:  
Spin Transition in a Correlated Bilayer 2DES 

 

In Chapter 5 we observed that a spin transition occurs in a single-layer 2DES at ν = 1/2 

and that at low magnetic fields, below this transition, this system is partially spin 

polarized.  We next consider a bilayer 2DES consisting of two closely spaced single-layer 

2DES’s, each at filling factor ν = 1/2.  If the layers are far enough apart so that 

interactions between the two layers can be neglected and if they are separated by a tall 

enough energy barrier such that tunneling between the layers can be ignored, then the 

individual layers behave like two independent 2DES’s.  However, the addition of 

interlayer interactions can create new many-body states in bilayers that have no single-

layer 2DES analog.  An example of one such state occurs at total filling factor νT = 1, 

where νT = ν1 + ν2 is the sum of the filling factors of the individual layers.  At νT = 1 and 

small effective interlayer spacing a remarkable state emerges that can be viewed as a 

Bose condensate of excitons.  There is a phase transition from a compressible state, 

where the layers are weakly coupled, to an incompressible excitonic state when the 

effective interlayer spacing is reduced below a critical value.  This chapter discusses 

experiments which investigate the role of spin in this phase transition, performed by Ian 

Spielman and myself [1]. 

 
6.1  Bilayer 2DES 
 
Figure 6.1 shows a sketch of the conduction band energy and ground and first excited 

state subband wavefunctions for a typical bilayer 2DES.  As shown in Fig. 6.1, the 

ground state wavefunction is symmetric with respect to the two wells while the first 

excited state wavefunction is antisymmetric.  One important parameter for bilayer 

samples is ΔSAS; the symmetric-antisymmetric splitting; ΔSAS is the energy difference 

between the ground and first excited state.  This parameter is determined by the strength 

of the tunneling between the two layers.  One can estimate ΔSAS by solving for the 2DES 

eigenstates and their energies (see Chapter 1 for a discussion of calculations of 

eigenstates using a Schrodinger-Poisson solver).  If the splitting is large enough ΔSAS can 

be resolved experimentally 
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Fig. 6.1.  Cartoon of conduction band profile and subband wavefunctions for a typical 
bilayer sample.  Solid line:  conduction band energy EC.  Dashed line:  ground state 
electron wavefunction.  Dotted line:  first excited state wavefunction. The center-to-
center spacing between the two wells is labeled “d”.  The height of the barrier between 
the wells is labeled “ΔEC”. 
 

experimentally via Shubnikov-de Haas oscillations in magnetotransport.  However, this is 

difficult to observe in weakly-tunneling samples (small ΔSAS). 

 
6.1.1  Tunneling at B = 0 
 
Figure 6.2 shows a schematic of energies relevant for 2D-2D tunneling at zero magnetic 

field.  Momentum and energy conservation during the tunneling process requires 

alignment of the left and right well’s subband energies (ΔE0 = 0); a tunneling current can 

be observed when the interlayer bias V is adjusted to meet this condition.  The inset to 

Fig. 6.3 shows an example of the enhanced differential tunneling conductance dI/dV seen 

when this condition is met, for the case of equal layer densities, where ΔE0 = 0 when 

. 0V =
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Fig. 6.2.  Band diagram for 2D-2D tunneling.  The solid line is the conduction band 
energy EC.  Hatched regions correspond to occupied states with 2D Fermi energies EF1, 
EF2.  The difference between the ground state 1D subband energies of the two individual 
layers is ΔE0, and V is the interlayer bias. 
 
 
6.1.2  Tunneling in a Magnetic Field 
 
Figure 6.3 contrasts 2D-2D tunneling at zero magnetic field to tunneling in the presence 

of a large perpendicular magnetic field.  The main plot of Fig. 6.3 shows dI/dV at zero 

interlayer bias versus magnetic field for a bilayer 2DES with equal layer densities.  At 

low magnetic fields there is a finite zero bias tunneling conductance which oscillates with 

Landau level filling fraction, showing behavior reminiscent of the low-field oscillations 

of longitudinal resistivity versus magnetic field.  In this regime the tunneling conductance 

is at a minimum near integer ν, where ν is the filling factor of the individual layers, and 

at a maximum when the Fermi level lies in the middle of a Landau level.  At higher 

magnetic fields dI/dV at zero interlayer bias is suppressed for a wide range of filling 

factors.  The explanation for this is that interactions lead to a gap in the tunneling density 

of states; the width of the region in interlayer bias for which the differential tunneling 

conductance is suppressed is on the order of the Coulomb energy.  At large perpendicular 

magnetic fields, a single-layer 2DES tends to form a highly correlated state (for example, 

a Wigner crystal is predicted to form in the limit of small disorder and strong 

interactions).  It is believed that the suppression of tunneling near zero interlayer bias is 

due to the energetic penalty of tunneling an electron between two such correlated layers, 
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which temporarily creates a vacancy in the originating layer and an interstitial in the 

destination layer [3]. 
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Fig. 6.3.  Main plot:  Differential tunneling conductance dI/dV at zero interlayer bias vs. 
perpendicular magnetic field at T ~ 35 mK.  Inset:  dI/dV vs. interlayer bias at B = 0.  For 
both plots, the two layer densities are equal, with n = 0.37 × 1011 cm-2 per layer. 
 
 
6.2  νT = 1 State 
 
6.2.1  Bilayer QHE 
 
When interactions between the individual layers (interlayer interactions) of a bilayer 

2DES become comparable to interactions between electrons within an individual layer 

(intralayer interactions), new many-body states can emerge.  At νT = 1, the effective 

interlayer spacing parameter d/l, which is the physical distance d between the individual 

2DEG layers (see Fig. 6.1) normalized by the magnetic length l, determines the ratio of 

the strength of interlayer to intralayer Coulomb interactions.  The Coulomb energy due to 

interlayer interactions is proportional to 1/d, while the Coulomb energy due to intralayer 

interactions is proportional to n ~ 1/l when at fixed filling factor.  In a bilayer 2DES at 

total filling factor νT = 1 the value of d/l determines whether the system displays a bilayer 
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quantum Hall effect or simply behaves like two single-layer 2DES’s, each in the 

compressible ν = 1/2 state [4-9]. 

 

 
 

Fig. 6.4.  Longitudinal resistivity ρxx vs. magnetic field for two bilayer samples with 
different densities.  For ease of comparison, the magnetic field is normalized by B(ν = 1), 
the value of the magnetic field at νT = 1.  Dotted line:  d/l = 2.10 at νT = 1.  Solid line:  d/l 
= 1.87 at νT = 1.  Inset:  phase diagram for bilayer quantum Hall effect at νT = 1.  Closed 
symbols correspond to samples which do show a QHE while open symbols correspond to 
samples which do not show a QHE.  Figure from S. Q. Murphy et al. [9].  (Reprinted 
with permission). 
 

Figure 6.4, which shows the data of Murphy et al. [9], displays the dramatic 

transition that occurs as a function of d/l.  The main figure displays the longitudinal 

resistivity ρxx of a bilayer 2DES while driving the current through both layers in parallel.  

The dotted trace corresponds to a sample with d/l = 2.10 at νT = 1 ( ).  At 

magnetic fields near νT = 1 the magnetotransport looks identical to that of a single-layer 

2DES at ν = 1/2.  In contrast, the solid trace, corresponding to a slightly lower d/l = 1.87 

at νT = 1, displays a quantum Hall effect near νT = 1.  The inset of Fig. 6.4 shows the 

phase diagram for the νT = 1 bilayer quantum Hall effect for finite tunneling strength 

(ΔSAS ≠ 0), obtained by measuring magnetotransport in many samples with different 

( )/ 1B B ν = =1
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values of d/l and tunneling strength.  The intersection of the phase boundary (dashed line) 

with the ΔSAS = 0 axis at finite d/l ~ 2 suggests that the incompressible state persists even 

in the absence of interlayer tunneling. 
 

6.2.2  Exciton Condensate 
 
The νT = 1 incompressible state can actually be viewed as a Bose condensate of excitons 

[10, 11].  This can be seen by making a particle-hole transformation on one of the layers, 

as sketched in Fig. 6.5. 

 

 
 

Fig. 6.5.  Cartoon picture of particle-hole transformation applied to a half-filled Landau 
level in a bilayer system at νT = 1. 
 
As an example, we can view the half filled Landau level in layer number 1 as a 

completely filled Landau level plus a Landau level half filled with holes.  The completely 

filled Landau level can be ignored, similar to way that the completely-filled non-valence 

levels in an atom are ignored.  Once the particle-hole transformation is made, it can be 

seen that when d/l is reduced such that the interlayer and intralayer Coulomb interactions 

are comparable, holes in one layer will tend to pair with electrons in the other layer, 

forming interlayer excitons.  These excitons can then Bose condense and may actually 

form a superfluid [12-14, 17]. 

An extension of Laughlin’s QHE trial wavefunction to systems with an additional 

two-state degree of freedom was proposed by Halperin [15].  Initially, this wavefunction 

was intended to describe a single layer 2DES including the electron spin degree of 

freedom.  However, the wavefunction can also be used to describe a 2DES with a layer 

degree of freedom, replacing up and down spin with layer 1 and layer 2.  For the case of 

the bilayer νT = 1 state, this trial wavefunction is 
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where the complex coordinates zi and wj correspond to electrons in layers 1 and 2, 

respectively.  Looking at the symmetry of the wavefunction, interlayer and intralayer 

correlations are equally important; the wavefunction vanishes equally rapidly for zi → zj 

as for zi → zj or wi → wj.  Numerical studies show good overlap between the ψ111 state 

and the exact ground state for 10 particles and small d/l < 1 [16]. 

This wavefunction can be mapped to a BCS wavefunction [10, 11].  In fact, it is 

predicted that the νT = 1 state for d/l below the phase boundary will form a superfluid of 

excitons [12-14].  This neutral superfluid can be probed via counterflow measurements, 

where currents of equal magnitude but opposite sign are driven through the two 

individual layers.  Counterflow experiments by Kellogg et al. [17] provide evidence for 

this neutral superfluid.  The data of Ref. [17] show a relatively large counterflow 

conductivity that continues to improve with decreasing temperature down to 35 mK. 

The νT = 1 state has been studied via a variety of experimental techniques including 

magnetotransport, interlayer tunneling, Coulomb drag, and counterflow conductivity 

measurements [6-9, 17-19].  The rest of this chapter focuses on resistivity and tunneling 

as probes of the νT = 1 state. 

 
6.2.3  Tunneling at νT = 1 
 
Another signature of the transition to the excitonic state can be seen in interlayer 

tunneling.  Figure 6.6 shows the interlayer differential tunneling conductance as a 

function of interlayer bias.  For large d/l, the zero bias conductance is suppressed due to 

the aforementioned Coulomb gap effect.  However, as shown by I. B. Spielman et al. 

[18], if d/l is brought below the critical point there is a dramatic enhancement of the zero 

bias tunneling conductance.  Interlayer correlations cause the Coulomb gap to be replaced 

by a sharp tunneling peak.  Roughly speaking, when interlayer interactions become 

significant, an electron in one layer will be positioned near a hole in the adjacent layer 

into which the electron can easily tunnel. 
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Fig. 6.6.  Zero bias differential tunneling conductance peak at νT = 1.  Dashed trace:  d/l 
above the phase boundary.  Solid trace:  below the phase boundary.  Data courtesy of I. 
B. Spielman. 
 
6.2.4  Spin at νT = 1 
 
As discussed in Chapter 5, a single-layer 2DES at ν = 1/2 is partially spin polarized.  

However, the spin polarization of a bilayer 2DES at νT = 1 when the layers are strongly 

coupled is not known.  This raises the question of what role spin might play in the 

transition from the compressible to incompressible state as a function of d/l.  The NMR 

experiments discussed next [1] show that the spin degree of freedom is actually active 

during this transition. 

 
6.3  Data 
 
6.3.1  Sample 
 
The 2DES sample used in this experiment consists of two closely spaced GaAs quantum 

wells, 18 nm wide, separated by a 10 nm Al0.9Ga0.1As barrier.  The as-grown electron 

density in each quantum well is 4.4 × 1010 cm-2 and the low-temperature mobility is about  
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Fig. 6.7.  Schematic of typical bilayer device consisting of a central mesa with arms 
leading to ohmic contacts, density-tuning front and back gates covering the central mesa 
region, and arm depletion gates.  a) Top view.  b) Side view (not to scale) with depletion 
arm gates biased in a tunneling measurement configuration. 
 
9 × 105 cm2/Vs.  The device consists of a square mesa region, 250 μm on a side, with 

arms extending to ohmic contacts.  Aluminum top and bottom gates covering the central 

mesa region allow control over the 2DES densities.  Gates covering the mesa arms are 

used to make electrical contact to the individual layers [20].  The entire sample is thinned 

to a thickness of ~ 50 μm using a chemical-mechanical etch [2], in order to be able to 

place the back gates near enough to the 2DES so that a substantial density change can be 

obtained using moderate gate voltages (of magnitude less than 100 V).  Figure 6.7a 

shows a diagram of the sample layout with ohmic contacts and front and back gates.  

Figure 6.7b shows a sketch of the sample in a tunneling configuration, where the left 

back arm gate is biased to cut off conduction between the back layer and the left ohmic 

and the right front arm gate is biased to cut off conduction between the top layer and right 

ohmic. 

Measurements are made at temperatures down to T ~ 25 mK in a dilution 

refrigerator.  The sample is suspended in vacuum by Au wires connected to the ohmic 

contacts, which provide thermal contact to the cryostat cold finger.  The thermal 

relaxation time of the 2DES is a few seconds at 50 mK.  Magnetotransport for this 

sample displaying the νT = 1 quantum Hall state is shown in Fig. 6.8. 
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Fig. 6.8.  Longitudinal resistivity versus magnetic field for d/l = 1.87 at νT = 1, below the 
phase boundary.  At this density, the sample displays a minimum in Rxx at νT = 1.  
Minima corresponding to several single-layer QH states are also observed.  Current is 
driven through both layers simultaneously and voltage is measured across top layer. 
 

6.3.2  NMR Techniques 
 
We use the resistively detected NMR (RDNMR) techniques described in Chapter 4.  The 

2DES sample is mounted inside a rectangular eight-turn NMR coil for applying RF 

magnetic 

 
 
Fig. 6.9.  Schematic of 2DES sample suspended in NMR coil by Au wires leading to 
ohmic contacts.  The shaded area represents the mesa region containing the 2DES.  A 
small resistive heater is epoxied directly onto the chip. 
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magnetic fields parallel to the plane of the 2DES.  Additionally, a small resistive heater is 

attached directly to the 50 μm thick sample (5 kΩ surface mount thin-film resistor 

attached via Stycast 1266 epoxy) for heat pulse experiments (see Fig. 6.9). 
 

6.3.3  RDNMR Frequency Sweep 
 
Figure 6.10 shows a RDNMR resonance at νT = 1, just inside the excitonic phase, at d/l = 

1.90, a density at which the νT = 1 quantum Hall state is not very strong, so that Rxx at νT 

= 1 is not zero.  The plot displays longitudinal resistance versus frequency, while 

sweeping the frequency upward at + 0.33 kHz/s through the 71Ga Larmor resonance, at 

constant RF power.  The 71Ga resonance occurs at Δf = 0, where the RF frequency is f = f0 

+ Δf and f0 = 39.952 MHz is the 71Ga Larmor frequency.  The magnitude of the RF 

magnetic field is small enough such that 21/r Tω , where ωr is the Rabi frequency and 

T2 is the nuclear spin dephasing time.  Thus, sweeping through the NMR line simply 

reduces the magnitude of the nuclear spin polarization. 
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Fig. 6.10.  RDNMR frequency sweep showing the resonant response of the 2DES at the 
71Ga resonance frequency (Larmor frequency f0 = 39.952 MHz) at νT = 1, just below the 
phase boundary (d/l = 1.90).  The 2DES longitudinal resistance is monitored while the 
RF B-field frequency is swept at a rate of +0.33 kHz/s.  The RF frequency is f = f0 + Δf. 
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 At the start of the sweep, the nuclear polarization is at thermal equilibrium and the 

longitudinal resistance is at some finite value.  When the 71Ga Larmor resonance is 

reached, the 71Ga spin polarization is reduced.  The data of Fig. 6.10 does not represent 

the equilibrium RDNMR lineshape; after passing through the NMR line, the resistance 

slowly decays back to the equilibrium value in a time T1, the nuclear spin-lattice 

relaxation time.  Depolarizing the nuclear spins leads to an increase in the electronic 

Zeeman splitting (see Chapter 4, section 4.2.2).  Thus, the dip in resistance at the 71Ga 

resonance seen in Fig. 6.10 implies that the quantum Hall state at νT = 1 is strengthened 

by an increase in the Zeeman splitting.  The NMR-induced increase in the Zeeman 

splitting causes the strongly-coupled incompressible phase to be energetically favored 

over the weakly-coupled compressible phase.  This suggests that the incompressible 

phase has greater electronic spin polarization than the compressible phase. 

  
6.3.4  RDNMR Transients 
 
Figure 6.11 shows the response of the longitudinal resistivity to NMR pulses at νT = 1 for 

d/l just below the phase boundary (d/l = 1.91), corresponding to a density at which the 

minimum in Rxx versus B at νT = 1 has just begun to form and the resistance at νT = 1 is 
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Fig. 6.11.  Longitudinal resistivity versus time, near the phase boundary (d/l = 1.91) at T 
= 35 mK.  A burst of RF pulses (50 μS in length) applied at t = 0 is used to completely 
depolarize the 71Ga nuclei.  The dotted line indicates the time at which the NMR-induced 
change in resistance has decayed by 1/e. 
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non-zero.  Then, at time t = 0 a burst of RF pulses (50 μS in length) are applied to 

completely depolarize the 71Ga nuclei and the resistance rapidly decreases.  The effect of 

the NMR pulses is to depolarize the nuclei only temporarily.  The resistance then decays 

back to the equilibrium value with a characteristic time T1, which we can obtain from this 

trace.  The relaxation of the resistance is not precisely described by a single exponential.  

This is most likely due to the fact that T1 varies with frequency across the NMR line due 

to the finite width of the 2D subband wavefunction (for further discussion see Chapter 4, 

Section 4.3.3 and Chapter 5, Section 5.2.5).  The 50 μS RF pulses correspond to a 20 kHz 

frequency width, which is larger than the width of the NMR line.  Thus, the NMR pulses 

depolarize all nuclear spins in the quantum well region.  This will give rise to a RDNMR 

transient signal which decays at a rate determined by a range of T1 times.  Therefore, 

instead of using a single exponential fit, we define T1 as the time required for the NMR-

induced change in resistance to decay by 1/e of its initial value.   

 

6.3.5  Effective Interlayer Spacing Dependence 
 
Next we examine the RDNMR signal and nuclear T1 time over a range of d/l values near 

the phase boundary at νT = 1, as shown in Fig. 6.12.  Figure 6.12a shows the longitudinal 

resistance and RDNMR signal versus d/l at νT = 1.  As expected, the sample resistance 

(open circles) is finite in the compressible phase at large d/l and vanishes as d/l is 

reduced, signaling the development of the νT = 1 QHE.  The RDNMR signal (solid 

markers) is the fractional change in the longitudinal resistance ΔRxx/Rxx due to 

depolarizing the 71Ga nuclei.  This RDNMR signal is small and positive in the 

compressible, weakly-coupled phase (see Chapter 5 for further discussion of RDNMR 

signals at ν = 1/2 in a single-layer 2DES).  The RDNMR signal becomes negative as d/l 

is reduced below the phase boundary, just as the longitudinal resistivity begins to drop.  

This negative RDNMR signal is consistent with the earlier data of Fig.’s 6.10 and 6.11.   

The NMR-induced increase in Zeeman splitting causes the quantum Hall effect to 

strengthen, implying that the incompressible phase has greater electronic spin 

polarization than the compressible phase. 
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Fig. 6.12.  RDNMR signal and T1 versus d/l at νT = 1.  a) Solid markers are the RDNMR 
induced fractional change in the resistivity ΔRxx/Rxx (left axis).  Open circles are the 
longitudinal resistivity Rxx (right axis).  b) Nuclear T1 time.  Solid lines are guides to the 
eye. 
 

The nuclear spin-lattice relaxation rate T1 is strongly affected by the nature of the 

electronic spin excitations.  Nuclear spin relaxation in bulk GaAs at low temperatures 

with no electron gas present is extremely slow – the T1 times can be hours or days.   

Figure 6.12b shows that for large d/l, when the system is in the compressible phase, T1 is 

relatively short.  This reflects the presence of low energy electron spin flip excitations in 

the compressible phase which lead to enhanced nuclear spin relaxation (A more detailed 

discussion of nuclear spin relaxation in a single-layer 2DES at ν = 1/2 can be found in 

Chapter 5).  The T1 times rapidly increase as d/l is reduced and the 2DES enters the 

incompressible phase.  In a 2DES with a large energy gap for spin excitations, where the 

nuclei cannot efficiently relax via the electron gas, the T1 time in the 2DES region is most 

likely limited by the rate of nuclear spin diffusion out of the 2DES region into the bulk of 

the sample (see Chapter 5, section 5.4.3 for a discussion of nuclear spin diffusion).  This 
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diffusion time is roughly 1,000 – 2,000 s [21] and sets an upper bound for the measured 

T1 time. 

 
6.3.6  RDNMR and Tunneling 
 
Next, we look at the effect of NMR on interlayer tunneling at νT = 1.  The solid trace in 

Fig. 6.13 shows the response of the zero bias tunneling conductance G0 to NMR at νT = 1 

for d/l just below the phase boundary, where there is a small zero bias peak in the 

tunneling conductance.  For times before t = 0, the RF B-field is off, the nuclear 

polarization is in thermal equilibrium and the conductance is at some finite value.  Then, 

at time t = 0 a burst of RF pulses (50 μS in length) are applied to completely depolarize 

the 71Ga nuclei and the tunneling conductance rapidly increases.  The effect of the NMR 

pulse is to depolarize the nuclei only temporarily.  The conductance then decays back to 

the equilibrium value at a rate determined by the nuclear T1.   
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Fig. 6.13.  Zero bias differential tunneling conductance G0 at νT = 1 versus time, near the 
phase boundary (d/l = 1.92) at T = 35 mK.  For the solid trace a burst of RF pulses 
applied at t = 0 is used to completely depolarize the 71Ga nuclei.  For the dotted trace a 
heat pulse is applied for ~ 900 sec. prior to t = 0.  The heat pulse depolarizes all nuclear 
species. 
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The nuclear polarization can also be modified by applying a voltage pulse to the 

resistive heater sketched in Fig. 6.9.  The dotted trace in Fig. 6.13 shows the result of 

applying a 900 sec. heat pulse, which raises the sample temperature to roughly T = 350 

mK, depolarizing all nuclear species (71Ga, 69Ga, and 75As).  Initially, the nuclear 

polarization is at thermal equilibrium.  During the heat pulse, G0 vanishes since the 

incompressible νT = 1 state is destroyed due to the elevated sample temperature.  At t = 0, 

the heat is turned off, and the 2DES quickly cools back to the fridge cold finger 

temperature (T = 35 mK) with a thermal time constant of a few seconds.  However, the 

nuclei will slowly return to thermal equilibrium, at a rate determined by the nuclear T1 

times of the three nuclear species.  The zero-bias tunneling conductance after the 2DES 

has cooled, just after the end of the heat pulse (t = 0), is enhanced over the equilibrium 

value.  This enhancement is larger than that seen for the 71Ga NMR pulse, since all three 

nuclear species have been depolarized. 

 The increase in G0 due to depolarizing the nuclei seen in Fig. 6.13 is consistent with 

the NMR-induced decrease in the longitudinal resistivity seen in Fig.’s 6.10, 6.11, and 

6.12.  Again, increasing the Zeeman splitting strengthens the strongly-coupled excitonic 

phase, implying that this phase has greater spin polarization than the competing weakly-

coupled phase. 

 Figure 6.14 shows the dramatic response of the tunneling conductance to changes in 

the nuclear polarization seen in the compressible phase, just above the phase boundary at 

νT = 1, d/l = 1.98.  Both Fig. 6.14a and b show the differential interlayer tunneling 

conductance versus interlayer bias.  As shown in Fig. 6.14a, for nuclear spins in thermal 

equilibrium there is no measurable zero-bias tunneling conductance.  However, as shown 

in Fig. 6.14b, if a heat pulse is applied to depolarize the nuclei, a small zero-bias 

tunneling conductance appears.  We are able to just enter the excitonic condensate phase 

by decreasing the nuclear polarization. 
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Fig. 6.14.  Differential tunneling conductance vs. interlayer bias just above the phase 
boundary, d/l = 1.98, νT = 1 at T = 35 mK.  a) The nuclei are in thermal equilibrium.  b) A 
heat pulse has been applied immediately prior to the conductance measurement to 
depolarize all nuclei. 
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Fig 6.15.  Evolution of zero-bias interlayer tunneling conductance, at equilibrium (solid 
dots), with 71Ga nuclei depolarized via NMR (crosses), and with all nuclei depolarized 
via a heat pulse (open circles).  The solid lines are guides to the eye. 
 
 The experiment of Fig. 6.14 can be repeated for several d/l values near phase 

boundary, using both NMR and heat pulse techniques.  The result is shown in Fig. 6.15, 

which plots the zero-bias tunneling conductance G0 versus d/l, at equilibrium, just after 
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an NMR pulse at the 71Ga resonance, and just after a heat pulse used to depolarize all the 

nuclei.  At all d/l near the phase boundary, the effect of depolarizing the nuclei is to 

enhance the G0, the effect becoming proportionally more pronounced near the critical d/l 

(vanishing G0). 

 In conclusion, we find that increasing the Zeeman splitting via NMR leads to an 

enhancement of G0 for all d/l near the phase boundary between the weakly-coupled and 

strongly-coupled phase.  The NMR tunneling data are consistent with the RDNMR Rxx 

data and provide additional confirmation that the strongly-coupled phase has greater spin 

polarization than the competing weakly-coupled phase. 

 
6.3.7  Simple Model 
 
To make the explanation of our observations more concrete, consider a simple model 

where the bilayer 2DES at νT = 1 near the phase boundary contains two competing phases 

with differing spin polarization, where the two phases are the weakly-coupled 

compressible phase and the incompressible exciton condensate phase.  The phase 

separation can be driven by static fluctuations in the electron density or variations in the 

tunnel barrier width, both of which are present in our bilayer sample. 

 From the RDNMR measurements shown above we know that increasing the 

Zeeman splitting via application of NMR or heat pulses causes the excitonic phase to be 

favo 
 

 

NMR 
pulse 

 
 
Fig. 6.16.  Cartoon showing phase separation near the phase boundary where the 
excitonic phase (hatched) has greater spin polarization than the compressible phase 
(shaded).  The application of an NMR pulse temporarily increases the fraction of the 
sample occupied by the excitonic phase. 
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favored, suggesting a picture where the excitonic phase has greater spin polarization than 

the competing compressible phase. 

Consider the situation sketched in Fig. 6.16 where the system is at νT = 1 near the 

phase boundary and the two coexisting phases are present.  The hatched regions are in the 

incompressible, excitonic phase and have greater spin polarization than the shaded 

regions, which are in the compressible phase.  Application of an NMR pulse will 

temporarily increase the Zeeman splitting, causing the state with greater spin 

polarization, the excitonic state, to be energetically favored.  The fraction of the sample 

area occupied by the excitonic state will increase, which will lead to an enhanced zero-

bias tunneling conductance and a decrease in the longitudinal resistivity.  

 
6.3.8  Filling Factor Dependence 

 
Figure 6.17 shows the dependence of the RDNMR signal and T1 on total filling factor, 

varying the magnetic field while holding the 2DES density fixed such that d/l = 1.90 at νT 

= 1.   Figure 6.17a shows the NMR-induced fractional change in longitudinal resistance 

ΔRxx/Rxx versus νT
-1.  For reference, the longitudinal resistivity is also displayed, showing 

the dip in Rxx versus νT
-1 that forms at νT = 1.  The magnitude of ΔRxx/Rxx falls rapidly as 

the filling factor is raised or lowered above or below νT = 1.  In the compressible phase at 

filling factors outside of the range where the dip in Rxx occurs, ΔRxx/Rxx is positive.  

Figure 6.17b shows the dramatic dependence of T1 on νT
-1, showing a very long T1 ~ 

2,000 s right at νT = 1.  T1 decreases sharply when the filling factor deviates slightly from 

νT = 1.   

 The data of Fig. 6.17 can be understood if we assume that moving away in filling 

factor from νT = 1 drives the system out of the incompressible, excitonic phase and into a 

compressible phase that is similar to the weakly-coupled phase seen at νT = 1 for larger 

d/l.  Then, the decrease of /xx xxR RΔ  and T1 with increasing 1Tν −  is analogous to the 

behavior observed upon increasing d/l as shown in Fig. 6.12. 
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Fig. 6.17.  RDNMR signal and T1 versus νT

-1, varying the magnetic field while 
maintaining a fixed density, such that d/l = 1.90 at νT = 1.  a) Solid markers are the NMR-
induced fractional change in the resistivity ΔRxx/Rxx.  Open circles are the longitudinal 
resistivity Rxx.  b) Nuclear T1 time.  Solid lines are guides to the eye. 
 
  
 We also note that the data of Fig. 6.17b looks similar to what is seen in single layer 

2DES’s at ν = 1, where a similar peak in T1 near ν = 1 is expected due to the presence of 

skyrmions (see Chapter 7 for further discussion).  Theoretically, it is speculated that the 

excitations of the bilayer system at νT = 1 may have a similar structure, where the 

excitations are a type of skyrmion that involves both the pseduospin (layer index) and 

spin degree of freedom [22]. 

 

6.4  Conclusions 
 
We have shown that, contrary to the usual assumption, that the spin degree of freedom is 

active during the transition between the compressible and incompressible state at νT = 1.  
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The strengthening of the incompressible, excitonic phase that occurs when increasing the 

electronic Zeeman splitting via NMR shows that the compressible phase is partially 

polarized and that the excitonic phase has greater spin polarization than the competing 

compressible phase. 
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Chapter 7:  
ν = 1 Quantum Hall Ferromagnet 

 

The ν = 1 quantum Hall state in a single layer 2DES might at first glance appear to be 

readily explained via a simple non-interacting picture invoking the single-particle Landau 

levels described in Chapter 3.  However, upon greater scrutiny, one finds that Coulomb 

interactions actually play a large role in determining the behavior of this state.  For 

example, the activation energy of the ν = 1 state is much larger than the bare Zeeman gap 

that one would predict from a single-particle picture, due to the exchange interaction.  

Exchange also plays a role in determining the spin and charge excitations of this quantum 

hall state.  The lowest energy charged excitations at filling factors at and nearby ν = 1 are 

actually predicted to be skyrmions [1], excitations with a smooth spatial variation in spin 

which carry spin and charge.  This chapter discusses resistively-detected NMR 

(RDNMR) measurements that probe the electron spin near ν = 1 [2].  The presence of 

skyrmions is expected to have a large impact on nuclear spin dynamics at this state.  

Experimentally, RDNMR near ν = 1 is quite different when compared to the data of 

earlier chapters.  Near ν = 1, the RDNMR lineshape is “anomalous”, having a derivative-

like lineshape rather than the simple unipolar lineshape seen at ν = 1/2 (Chapter 5) and in 

the bilayer 2DES at νT = 1 (Chapter 6).  The nuclear 1/T1 relaxation rates near ν = 1 can 

also be more than an order of magnitude faster than those seen in the partially polarized, 

compressible phase at ν = 1/2 or νT = 1. 

 
7.1 Background 
 
7.1.1  Skyrmions 
 
A 2DEG at ν = 1 is a two-dimensional ferromagnet.  Even in the absence of spin Zeeman 

energy (i.e., g = 0), the ground state will be completely spin polarized due to Coulomb 

interactions.  In a single-particle picture, with nonzero g-factor, one would expect the 

activation energy of this state to be equal to the bare Zeeman splitting, corresponding to a 

single spin flip obtained by moving one electron up in energy to the next spin-resolved 

Landau level.  However, in reality, the energy gap at ν = 1 is greatly enhanced by 

exchange interactions in typical 2DEG’s in GaAs/AlGaAs heterostructures.  
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Magnetotransport measurements show that the activation energy is nearly 20 times 

greater than the bare Zeeman splitting [3, 6]. 

As was mentioned in the introduction, the lowest-lying charged excitations near 

1ν = are strongly affected by the exchange interaction and are theoretically predicted to 

be objects called skyrmions [1].  The skyrmions at and near ν = 1 carry charge ±e and 

multiple reversed spins.  When the exchange energy penalty due to a single spin flip is 

larger than the Zeeman energy, in order to make a spin excitation, instead of reversing a 

single spin it is favorable to flip multiple spins in order to attempt to align neighboring 

spins.  The spatial configuration of the spin and charge of a skyrmion is sketched in Fig. 

7.1.  A skyrmion has a single reversed spin located at the center and the surrounding 

spins gradually rotate back to the ground state spin alignment with increasing radius.   

 

 
 
Fig. 7.1.  Sketch of a single skyrmion showing the electron spin configuration (arrows) 

versus position in the 2D plane. 
 
 

The size of the skyrmion and number of reversed spins K is determined by the 

relative magnitude of the exchange and Zeeman energies.  For vanishing Zeeman energy 

K and the size of the skyrmion diverges.  As the Zeeman splitting is increased the 
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energetic cost of creating multiple flipped spins increases and K and the skyrmion size 

are reduced.  Above a critical ratio of the Zeeman splitting to the Coulomb energy, the 

lowest energy quasiparticle will be a single spin flip, rather than a skyrmion.  A lower 

bound for this critical ratio EZ/EC > 0.054 is given in Ref. [1].  For 2DES’s in 

GaAs/AlGaAs heterostructures, where g = -0.44, this critical ratio implies that for 

perpendicular magnetic fields less than B = 25 T, skyrmions will be the lowest energy 

charged excitations at ν = 1. 

Skyrmions with charge -e or antiskyrmions with charge +e are added to the ground 

state as the filling factor ν of the 2DEG is raised or lowered above or below ν = 1, 

respectively.  Since skyrmions (and antiskyrmions) carry reversed spins, this leads to a 

drop in the electron spin polarization as ν deviates from ν = 1, as was predicted by Fertig 

et. al [4].  In fact, this rapid decrease in the spin polarization has been observed 

experimentally.  Optically pumped NMR Knight shift measurements performed by 

Barrett et al. [5], show that right at ν = 1, the spin polarization is maximal, and then drops 

rapidly with increasing |ν -1|.  The rate at which the spin polarization decreases with 

respect to filling factor provides an estimate of the number of reversed spins per 

skyrmion.  From a fit of the Knight shift versus ν data, Barrett et al. find that K = 3.6 for 

the case where the ratio EZ/EC = 0.016 at ν = 1.  Schmeller et al. [6] also make an 

experimental estimate of K via transport activation energy measurements versus Zeeman 

energy at ν = 1.  Small changes in the Zeeman energy were made via applying an in-

plane magnetic field.  The slope of the transport gap versus Zeeman splitting gave K ≈ 

3.5 for EZ/EC ~ 0.01 at ν = 1. 

 
7.1.2  Skyrmion Solid 
 
Away from ν = 1, where the ground state of the system contains a finite density of 

skyrmions, it is expected that interactions between skyrmions will lead to the formation 

of a skrymion solid.  Brey et al. predict the formation of skyrme crystal for 1 0ν− < .2  

[7].  Square or triangular lattice formation is predicted where the type of lattice depends 

on both ν and the ratio of the Zeeman to Coulomb energy [8]. 
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 The prediction of a skyrme crystal near ν = 1 remains somewhat controversial.  An 

unpolarized liquid state has also been predicted for filling factors near ν = 1 [9].  Also, in 

most of the theoretical work to date the effect of disorder has not been well established. 

 
7.1.3  Collective Modes 
 
The skyrme crystal has magnetic modes that correspond to the orientational and 

positional degrees of freedom for the skrymions [8].  These are the spin-wave and 

phonon modes of the skyrme crystal.  Fig. 7.2 sketches the dispersion at low energies for 

both modes. 

 
 

E

k

magnetophonon

spin-wave

 
 
Fig. 7.2.  Collective mode dispersions for skyrme crystal for low energies, showing the 
spin-wave (solid line) and magnetophonon (dotted line) modes. 
 

The magnetophonon mode corresponds to fluctuations in the position of the skyrmions, 

while the spin-wave mode corresponds to fluctuations in the in-plane (x-y) component of 

the spin.  Ideally, these modes are gapless – they have zero energy at zero wavevector. 

 These low-energy modes are expected to influence nuclear spin relaxation in the 

vicinity of the 2DES.  Both modes give rise to local fluctuations in the z-component of 

the electron spin.  These modes should lead to a Korringa-like temperature dependence 

for the nuclear spin relaxation rate 1/T1 (see Chapter 5, section 5.3.6 for a discussion of 

Korringa relaxation).  In the presence of disorder, pinning of the skyrme crystal to 

charged impurities may occur, which will lead to a gapped phonon mode (nonzero energy 

at zero wavevector).  However, the spin-wave mode will remain gapless.  In this case, the 
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T1 time will be determined by the thermal occupation of the spin-wave modes and will be 

given by [8]: 
 

11/ ~ 1Bk TT
UJ

ν − ,        (1) 

 
where the constant UJ determines the stiffness of the spin-wave mode:  ~E UJ k . 

Alternate temperature dependences for T1 are predicted by Green [10], who 

considers the importance of quantum fluctuations.  Green predicts a relaxation rate that 

can either increase or decrease with increasing temperature, depending on the relative 

magnitude of the spin-wave stiffness, skyrmion size, and Zeeman energy. 

 
7.1.4  Previous Experiments 
 
Some of the earliest experiments probing the electron spin degree of freedom near ν = 1 

have already been mentioned – the optically-pumped NMR Knight shift measurements of 

the electron spin polarization versus filling factor by Barrett et al. [5] and the dependence 

of the activation energy on Zeeman energy measured by Schmeller et al. [6].  Both works 

suggest the presence of finite-size skyrmions near ν = 1.  The nuclear T1 time near ν = 1 

has also been measured via NMR.  Tycko et al., using optically pumped NMR, find a 

rapidly decreasing T1 as the filling factor deviates from ν = 1, suggesting the presence of 

low-lying electronic spin-flip excitations near ν = 1 [11].  Bayot et al. find a giant 

enhancement of the heat capacity of a 2DES near ν = 1 at low temperatures, which can be 

explained by a nuclear spin contribution to the heat capacity, suggesting a strong 

coupling between the electrons and the nuclear spins in the 2DES region [12]. 

 Using a RDNMR technique, Hashimoto et al. observe a nuclear relaxation rate 

which increases dramatically as ν is raised above or lowered below ν = 1 [13].  Smet et 

al. [14] and Desrat et al. [15] also observe a relatively short T1 time as ν  deviates slightly 

away from ν = 1 using RDNMR.  Desrat et al. were also the first authors to report an 

“anomalous” derivative-like RDNMR lineshape, very similar to the lineshape we observe 

under comparable conditions, as shown in Fig. 7.6b [15]. 

 RDNMR measurements of Gervais et al. also yield a fairly short T1 time [16].  

However, the RDNMR lineshape of Gervais et al. looks very different from that observed 
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by Desrat et al., having a unipolar rather than a derivative-like lineshape.  Gervais et al. 

also perform a systematic study of the temperature dependence of T1 and find an 

increasing T1 with increasing temperature, which the authors interpret as evidence for 

formation of a skyrme crystal at low temperatures.  This interpretation is consistent with 

the theory of the T1 temperature dependence of Green, as mentioned above (see section 

7.1.3), for some values of the skyrme spin-wave stiffness, skyrmion size, and Zeeman 

splitting [10]. 
 

7.2  Experiment 
 
We use RDNMR (see Chapter 4 for a general introduction to RDNMR) to examine the 

spin degree of freedom near ν = 1 in a single layer 2DES, with the aim of further 

investigating the “anomalous”, derivative-like RDNMR lineshape seen in Ref. [15] and 

the peculiar temperature dependence of T1 (T1 increasing with rising temperature) found 

in Ref. [16]. 

 
7.2.1  Samples 
 
We studied two different single-layer 2DES samples, labeled “A” and “B”.  The sample 

structure, mobility and density of these two samples is shown in Table 7.1. 

 
Sample Structure Mobility (cm2/Vs) Density (cm-2) 

A heterojunction 8 × 106 1.6 × 1011 
B quantum well (300 Å) 14 × 106 1.6 × 1011 

 
Table 7.1.  Sample structure, mobility, and density for single-layer 2DES samples used 
in RDNMR experiment near ν = 1. 
 
Figure 7.3 shows magnetotransport for both of these samples, displaying minima in Rxx 

versus B corresponding to several fractional and integer quantum Hall states. 
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Fig. 7.3.  Magnetotransport Rxx vs. B at T ~ 50 mK for a) sample “A” and b) sample “B”. 

 

7.2.2  Setup 
 
The 2DES sample is placed in an approximately rectangular 8-turn NMR coil for 

application of an RF magnetic field H1 parallel to the 2DES and perpendicular to the 

magnetic field.  The magnitude of H1 ranges from roughly 0.1 – 0.5 μT, as determined 

via an analysis of our coax/coil circuit (see Chapter 4, section 4.3.1a).  These RF fields 

are much less than the nuclear dipolar field, Hd ~ 0.1 mT. 
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Fig. 7.4.  Temperature dependence of the longitudinal resistivity Rxx at ν = 0.88.  The 
solid line is an Arrhenius fit:  .  The fit gives α = 0.48 K. /
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Fig. 7.5.  Electron temperature Te, as determined from sample resistivity, vs. cold finger 
temperature with RF on, at ν = 0.88, where H1 ~ 0.5 μT, f ~ 52 MHz.  The solid line is a 
guide to the eye.  The dashed line is the case for no RF heating (RF off), for reference. 
 
Non-resonant RF heating of the sample raises the 2DES temperature above that of the 

cryostat cold-finger.  The electron temperature with the RF power on is determined by 

using the longitudinal resistivity as an in-situ thermometer.  As an example, Fig. 7.4 
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shows the temperature dependence of Rxx near ν = 1 (at ν = 0.88), which displays an 

Arrhenius behavior.  Figure 7.5 shows the magnitude of the RF heating at ν = 0.88 with 

H1 ~ 0.5 μT, in which case the lowest reachable electron temperature is roughly 45 mK. 

The 2DES is thermally connected to the cold finger via the ohmic contacts and leads.  

The thermal time constant for cooling of the 2DES is short.  The 2DES can be 

temporarily be heated (due to ohmic heating) by application of a current pulse through 

the sample.  For filling factors near ν = 1, this ohmic heating can be detected via a rise in 

the longitudinal resistivity.  The time required for the 2DES resistance to relax back to 

the thermal equilibrium value yields the thermal time constant for cooling of the 2DES 

electrons.  For the experiments in this chapter, this thermal time constant is less than 

. 0.1 s

 
7.2.3  RDNMR lineshape 
 
Figure 7.6a shows Rxx versus B near ν = 1 at a temperature of T = 70 mK for sample A.  

Figure 7.6b shows the RDNMR lineshape – the NMR-induced change in resistance ΔRxx 

versus frequency, while sweeping the frequency upward at 0.13 kHz/s.  The arrow in Fig. 
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Fig. 7.6.  Anomalous RDNMR lineshape near ν = 1 as seen in sample A.  a)  Rxx vs. B 
near ν = 1.  The arrow marks the magnetic field at which the RDNMR lineshape shown 
in b) was acquired.  b)  RDNMR lineshape ΔRxx vs. frequency for 75As.  The frequency is 
swept up at 0.13 kHz/s. 
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7.6a marks the magnetic field at which the lineshape of Fig. 7.6b was taken.  We observe 

the same “anomalous” derivative-shaped RDNMR lineshape for filling factors near ν = 1 

as seen previously by Desrat et al. [15]. 

Figure 7.7 shows a typical RDNMR transient ΔRxx versus time, where the RF power 

is held constant in order to keep the non-resonant RF heating of the 2DES constant.  For 

times earlier than ti, the frequency is off of the 75As resonance and the resistance is at the 

thermal equilibrium value.  At ti the frequency is brought onto resonance and the 

resistance falls.  Finally, at tf the frequency is brought off resonance and the resistance 

decays back to the equilibrium value.  The inset to Fig. 7.7 shows the 75As RDNMR 

lineshape, where the open circle marks the “off resonance” frequency and the closed 

circle marks the “on resonance” frequency. 
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Fig. 7.7.  RDNMR transient ΔRxx vs. time, showing the fall and rise of the resistivity with 
application of resonant RF at the 75As resonance frequency.  At time ti the frequency is 
brought onto resonance and at tf the RF is brought off resonance.  The data is taken at B = 
7.1 T (ν = 0.89), at a temperature T = 70 mK.  The solid red line for times greater than tf 
is an exponential fit to the data.  Inset:  RDNMR lineshape obtained by sweeping the 
frequency upward at 0.13 kHz/s.  The solid circle marks the “on resonance” frequency (f 
= 51.425 MHz), while the open circle corresponds to “off resonance” (f = 51.42 MHz). 
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The time required for the relaxation of the longitudinal resistivity back to equilibrium is 

the nuclear T1 time.  The red line in Fig. 7.7 is an exponential fit to the data during this 

relaxation period, yielding T1 = 5.2 s. 

 
7.2.4  Power Dependence 
 
Figure 7.8 shows the power dependence of the RDNMR line.  The derivative-like 

lineshape is preserved for all RF power levels.  The maximum power in Fig. 7.8 

corresponds to H1 ~ 0.5 μT, and for the minimum power H1 ~ 0.1 μT. 
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Fig. 7.8.  RF power dependence of RDNMR lineshape amplitude ΔRxx/Rxx at ν = 0.89 for 
f = 51.425 MHz (open circles) and f = 51.441 MHz (filled circles).  Solid lines are a fit to 
the data of the expected form of the power dependence from the Bloch equations (see 
text).  Inset:  RDNMR lineshape showing the location of f = 51.425 MHz (open circle) 
and 51.441 MHz (filled circle). 
 
From the Bloch equations we expect the fractional change in the nuclear polarization due 

to NMR to be given by (see Chapter 4) 
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where ξ  is the nuclear polarization, rω  is the Rabi frequency, T2 and T1 are the nuclear 

spin-spin and spin-lattice relaxation times, respectively, and riseτ  is the initial rise time of 

the change in the nuclear polarization, just after the RF is brought onto the NMR 

resonance.  We next assume that the RDNMR signal ΔRxx/Rxx is proportional to the 

NMR-induced change in Zeeman energy, which is proportional to the change in the 

nuclear polarization.  Then, since RF power ~ ωr
2, we fit the data of Fig. 7.8 to a function 

of the form 

 

1
xx

xx

R P
R P

βα
β

Δ
=

+
, 

 

where P is the RF power (measured in the arbitrary units shown in Fig. 10), and α and β 

are fitting parameters.  The resulting fits are the solid lines shown in Fig. 7.8.  The 

parameter β will be determined by T1T2 and the calibration between RF power and H1
2.  

For the data taken at f = 51.425 MHz (at the dip in the RDNMR line) we obtain β = 9.5.  

For the data at f = 51.441 MHz (at the peak in the RDNMR line) we find β = 3.6.  In both 

cases, the fact that β > 1 suggests that for the higher RF power levels shown in Fig. 7.8 

the NMR line is near saturation, i.e. the nuclear polarization has been reduced to nearly 

zero. 

We can also calculate /ξ ξΔ  using our rough estimate for H1 from an analysis of the 

coil/coax circuit.  In GaAs the intrinsic nuclear T2 time is on the order of 1 ms.  Using our 

estimate of H1 and the nuclear gyromagnetic ratio, ~ 2   0.5 T  7.29 MHz/Trω π μ× ×  ~ 

23 Hz.  Then,  ~ 3, which is in the same ballpark as the above estimate, using the 

power dependence of the RDNMR signal. 

2
1 2r TTω

From Eq. (2) we find that we should also be able obtain /ξ ξΔ  from T1 and riseτ , 

which are the rise and fall times in the RDNMR transient shown in Fig. 7.7.  An 

exponential fit to the data of Fig. 7.7 for times immediately after ti yields riseτ = 4.3 s.  As 

mentioned previously, a fit to the relaxation of ΔRxx after tf in Fig. 7.7 gives T1 = 5.2 s.  

Then, 1/ 1 / 0.1rise T 7ξ ξ τΔ = − = , which is much smaller than the value obtained by the 

power dependence fits of Fig. 7.8.  It appears that the Bloch equations fail to adequately 

describe the RF power dependence of RDNMR near ν = 1. 
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7.2.5 Nuclear T1 Time 
 
As previously observed, [11, 15] the data of Fig. 11a show that the nuclear relaxation rate 

1/T1 grows with increasing 1 ν− , near ν = 1.  This filling factor dependence is consistent 

with Eq. (1) from the theory of Cote et al., where nuclear spin relaxation via the 

skyrmion spin-wave modes is enhanced since raising 1 ν−  leads to an increase the 

density of skyrmions [8].  
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Fig. 7.9.  Nuclear spin relaxation rate T1 for 75As near ν = 1 for sample A.  a)  1/T1 vs. 
filling factor at T = 70 mK.  Solid lines are a guide for the eyes  b)  1/T1 vs. temperature 
at ν = 0.88.  Solid line is a Korringa law fit:  T1T = 0.28 s K.  Top inset:  RDNMR 
transient ΔRxx vs. time showing the relaxation of the resistivity after the frequency is 
brought off the NMR resonance.  Bottom inset:  RDNMR lineshape, ΔRxx vs. frequency.  
The solid circle marks the resonant frequency at which the T1 time data was acquired. 
 
Figure 7.9b shows 1/T1 versus temperature at ν = 0.88.  The upper inset to Fig. 7.9b 

shows a representative transient RDNMR signal used to obtain the T1 time via an 

exponential fit.  The lower inset shows the frequency on the NMR line at which the T1 

data was taken.   The data show a Korringa-like temperature dependence, 11/ ~T Tα , 

consistent with the prediction of Cote et al. in Eq. (1).  As mentioned previously, the 

theory of Green [10] predicts an increasing or decreasing T1 with respect to increasing 
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temperature, depending on the relative values of the skyrme spin-wave stiffness, 

skyrmion size, and Zeeman splitting.  However, comparison between our experiment and 

the theory of Green is difficult since we have no reliable way of estimating the spin-wave 

stiffness. 

 As discussed earlier, the RDNMR data of Gervais et al. show a decreasing 1/T1 with 

increasing temperature, at the same filling factor and over a similar temperature range as 

our data [16].  One difference between the two experiments is the sample structure and 

mobility.  The sample of Gervais et al. is a 40 nm wide quantum well with a mobility of 

17 × 106 cm2/Vs, while the data of Fig. 11b was taken using sample A, which is a 

heterojunction with a mobility of 8 × 106 cm2/Vs (see Table 7.1).  In light of this, we 

decided to perform RDNMR near ν = 1 on a different sample (sample B), with a higher 

mobility (μ = 14 × 106 cm2/Vs) and a quantum well structure (30 nm wide).  The data of 

Fig. 7.10 show a similar temperature dependence for T1 as seen in sample B, for which 

we also find a derivative-like RDNMR lineshape. 

 

0.2

0.1

0.0

1/
T 1 

(s
-1

)

100500
T (mK)

ν = 0.86

 
 
Fig. 7.10. 1/T1 temperature dependence at ν = 0.86 for sample B.  The solid line is a 
Korringa fit to the data:  T1T = 0.27 s K. 
 
 
7.2.6 Lineshape and dR/dT 
 
As seen in Fig. 7.11, the RDNMR lineshape can actually invert from a resonance with dip 

at low frequencies and peak at higher frequencies to the opposite shape, with a peak on 

the 
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Fig. 7.11.  Inversion of RDNMR lineshape with temperature dependence of Rxx.  a)  Rxx 
vs. B for three temperatures:  62 mK (dashed), 65 mK (solid), and 70 mK (dotted).  The 
arrows mark the magnetic fields at which the RDNMR lineshapes shown in b) and c) 
were obtained.  b)  RDNMR lineshape at B = 7.6 T, T = 70 mK.  c)  RDNMR lineshape at 
B = 7.7 T, T = 70 mK.  d)  Magnetic field – temperature coordinates at which the 
lineshape and temperature dependence invert.  Solid circles:  points at which dRxx/dT 
changes sign.  Open squares:  points at which the lineshape has a dip at low frequencies 
and a peak at higher frequencies, as shown in b).  Open triangles:  points at which the 
lineshape has a peak at low frequencies and a dip at higher frequencies, as shown in c).  
The shaded region corresponds to the range in which the RDNMR lineshape must invert.  
Note that the data shown in d) is taken from a different cool-down than that of a) – c).  
This produced a small density shift, and thus a shift in the B-fields at which dRxx/dT 
changes sign. 

 

the low-frequency side and a dip on the high-frequency side.  The data also show that this 

inversion occurs roughly when the temperature dependence of the longitudinal resistivity 

changes sign, i.e. where dRxx/dT ~ 0. 

Fig. 7.11b shows the RDNMR lineshape at B = 7.6 T, T = 70 mK, where the 

resonance consists of a dip in Rxx at low frequencies and a peak at higher frequencies.  

Fig 7.11c shows the resonance at B = 7.7 T, T = 70 mK, with a lineshape that is inverted 

from that seen in Fig. 7.11b, i.e., a peak on the low-frequency side of the resonance and 

dip on the high-frequency side. Fig. 7.11a shows Rxx versus magnetic field at three 
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temperatures with arrows marking the magnetic fields (B = 7.6 and 7.7 T) at which the 

lineshapes of Fig. 7.11b and c were taken.  Note that the crossing of these three curves 

(where dRxx/dT changes sign), at B ~ 7.65 T, occurs between these two markers.  The 

solid circles in Fig. 7.11d show the points at which dRxx/dT = 0, while the shaded region 

indicates the magnetic field-temperature range over which the lineshape must invert.  The 

data of Fig. 7.11d show that the inversion of the lineshape and change of the sign of 

dRxx/dT coincide over a large range of magnetic field and temperature.  Note that the data 

of Fig. 7.11d corresponds to a different cool-down than that of Fig. 7.11a – b.  This 

produced a small difference in density between the two data sets, and thus a difference in 

the magnetic fields at which dRxx/dT changes sign. 

 In the usual picture of RDNMR, the application of resonant RF reduces the nuclear 

polarization, which increases the electronic Zeeman splitting through the hyperfine 

interaction.  Right at ν = 1, one would expect that ( )~ exp /xx ZR E T− .  Then, an increase 

in EZ would lead to a decrease in Rxx.  In this picture, NMR should lead to a simple dip in 

the resistivity at resonance, inconsistent with a derivative-like lineshape.  However, we 

note that the data is not taken at exactly ν = 1 and that it is not known if the Zeeman 

energy dependence of the resistivity follows this simple form at filling factors away from 

ν = 1.  If we assume that the resistivity near ν = 1 is of the general form ~ ( / )xx ZR f E T , 

where f is a function of EZ/T, then an increase in the Zeeman splitting will have roughly 

the same effect as a decrease in temperature.  This may explain the apparent connection 

between the lineshape and the temperature dependence of the resistivity. 

 One explanation for the derivative-like lineshape could be a combination of Zeeman 

and thermal effects.  If we assume f is a decreasing function of EZ/T, an NMR-induced 

increase in the Zeeman energy could lead to a dip in Rxx, while a heat load from the 

nuclear spin system could raise the 2DES temperature, causing an increase in Rxx.  

Reduction of the nuclear polarization via resonant RF corresponds to an increase in the 

temperature of the nuclear spin system.  The relaxation of the nuclear spins back to 

thermal equilibrium via the 2DES requires a heat flow from the nuclear spin system to 

the 2DES.  Thus, one might expect a small increase in the 2DES temperature due to 

NMR.  Therefore, a combination of the NMR-induced change in Zeeman energy and 

2DES temperature might explain the presence of both a peak and dip in Rxx vs. frequency.  
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However, why the Zeeman effect would dominate on the low-frequency side of the 

resonance and the thermal effect on the high-frequency side is unclear. 

 
7.3  Discussion 
 
Fig. 7.12 shows the striking difference between the RDNMR lineshape seen at a) ν = 1/2 

(see Chapter 5) versus b) near ν = 1 (ν = 0.89).  The most noticeable difference between 

the RDNMR linehsapes of Fig. 14a and 14b is the general shape.  The data of Fig. 7.12a 

show a simple peak in Rxx vs. frequency, while that of Fig. 7.12b show a derivative-like 

lineshape. 

 Another prominent difference is the width of the resonance.  The FWHM for the 

lineshape of Fig. 7.12a (ignoring the satellite peaks due to quadrupole splitting) is ~ 5 

kHz, while the spacing between the dip and peak (corresponding to the FWHM of the 

integral of the lineshape) in Rxx in Fig. 7.12b is roughly 17 kHz, over three times the 

linewidth seen at ν = 1/2.  However, this linewidth variation is roughly consistent with 

broadening of the line due to the finite with of the 2DES subband wavefunction (see 

Chapter 4, sec. 4.3.2).  The maximum Knight shift is determined by the electron density 

and the shape of the subband wavefunction: , where w is the subband 

wavefunction width.  Using the Fang-Howard approximation (see Chapter 1, section 
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Fig. 7.12.  Comparison between 75As RDNMR lineshape at a) ν = 1/2, B = 4.01 T and at 
b) ν = 0.89, B = 7.1 T. 
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1.1.5) to estimate w, we find that .  The density is over three times larger for 

the data of Fig. 7.12b than in 14a.  Thus, assuming that the electron spin polarization is 

not too different for the case of Fig. 7.12a and b, the extra broadening seen at ν = 0.89 is 

consistent with finite-thickness effects giving rise to variation in the NMR resonance 

frequency due to the Knight shift and shape of the 2DES subband wavefunction. 

4/3
1 ~SK n

Derivative-like RDNMR lineshapes have been seen near other quantum Hall states.  

Stern et al. observe derivative-like lineshapes near ν = 1/3 and 2/3 [17] and Gervais et al. 

find this type of lineshape near ν = 2/9 and 1/5 [18].  The formation of skyrmions is not 

expected at these FQH states under typical experimental conditions for 2DES’s in 

GaAs/AlGaAs heterostructures [19, 20].  The observation of this anomalous lineshape 

near these states suggests that the lineshape is not related to the presence of skyrmions, 

but rather some common feature of quantum Hall states, such as the presence of localized 

states. 

 
7.4 Conclusion 
 
In summary, we have observed a derivative-like RDNMR lineshape near ν = 1, as seen 

previously by Desrat et al. [15].  Our data show that the lineshape inverts when dRxx/dT 

changes sign.  This inversion of the RDNMR lineshape may be a clue to the origin of this 

“anomalous” derivative-like lineshape.  We also observe a fast 1/T1 nuclear relaxation 

rate, relative to that seen at other filling factors, which suggests interesting spin physics 

unique to filling factors near ν = 1, possibly due to skrymions.  However, we find a 

different RDNMR lineshape and opposite T1 temperature dependence to that seen in 

Gervais et al. [16].  A complete picture of RDNMR near ν = 1 and the origin of this 

conflict remains unclear. 
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Conclusions and Future Directions 
 

In summary, we have examined the role of spin in several 2DES states, using RDNMR 

techniques to examine a spin transition for composite fermions at ν = 1/2, a phase 

transition in the correlated νT = 1 state in a bilayer 2DES, and spin excitations near ν = 1 

in a single layer 2DES.  We have also probed the low density 2DES via SAW 

measurements under conditions where the putative metal-insulator transition should 

occur.  In all of these experiments, puzzles remain for further investigation.  In 

conclusion, we briefly discuss a few possible directions for future related experiments. 

 
Composite Fermions at ν = 1/2   
 

A fairly high mobility 2DES (~ 1 – 5 × 106 cm2/Vs) was used for the RDNMR 

measurements at ν = 1/2 described in this thesis (Chapter 5).  It would be interesting to 

see how the RDNMR signal and nuclear T1 time near the spin transition evolve as a 

function of mobility.  Higher mobility samples exist, although it is somewhat challenging 

to fabricate a high mobility sample with tunable density.  An undoped FET structure [1] 

might be a possible candidate. 

Our data shows a peak in the RDNMR signal as a function of density near the spin 

transition (Chapter 5, Fig. 10a) that continues to sharpen as the temperature is lowered.  

However, we were unable to reach temperatures below roughly 45 mK due to non-

resonant RF heating of the 2DES.  It may be feasible to reduce this non-resonant heating 

and see if the RDNMR signal versus density feature near the transition continues to 

sharpen as the temperature reduced. 

The RDNMR signal at ν = 1/2 is a nonlinear function of dc measurement current 

for large currents.  Appendix C presents very preliminary data which seems to show that 

this nonlinearity is due to pumping of the nuclear spin population out of equilibrium.  

Further investigation of this nonlinear RDNMR signal as a function of magnetic field, 

temperature, etc. is needed in order to understand the origin of this nonlinearity. 

 RDNMR could also be used to examine spin transitions for composite fermions at 

other compressible states, such as at ν = 3/2 or ν = 1/4.  Interactions between CF’s could 
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be different at these filling factors, which, in turn, could change the nature of any spin 

transition that occurs for these states [2]. 

 
Bilayer 2DES’s   
 

RDNMR could be used to probe bilayer states other than νT = 1.  For example, the bilayer 

state at total filling factor νT = 2 is predicted to possess interesting spin configurations, 

including a canted antiferromagnetic state [3], due to the interplay between the tunneling 

gap ΔSAS, the Zeeman energy, and the strength of intralayer versus intralayer interactions 

(d/l).  Although Kumada et al. have recently published a RDNMR study of this state [4], 

they use a somewhat different experimental technique [5].  Further experiments could be 

performed using our bilayer samples and variant of RDNMR technique. 

 
Surface Acoustic Waves 
 

The surface acoustic wave (SAW) experiments of Chapter 2 suggest that density 

inhomogneities are important at the densities where the metal-insulator transition should 

occur in our sample.  The density inhomogeneities in our 2DES are most likely due to 

ionized donor in the doping layer.  It would be interesting to see if the same results hold 

for a cleaner 2DES, such as an undoped FET structure, in which the issue of density 

fluctuations due to the ionized dopants has been removed. 
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Appendix A 
Sample Processing 

 
 
The following is a description of the processes used to fabricate the samples described in 

this thesis.  Other recipes and guidelines can be found in Ref [1], which is a good general 

reference for GaAs processing. 

 

A.1 Dicing 
 
The first step in preparing a sample usually consists of separating a small chip from the 

parent wafer.  To cleave (or “dice”) a chip from the parent wafer (usually 4 × 4 or 5 mm 

× 5 mm),  place the wafer on a pad of clean paper and gently score along the top of the 

edge of the wafer at the spot where you wish to cleave using a scribe tool.  Flip the wafer 

over (shiny side down -- avoid placing the wafer on GaAs particles, as this may scratch 

the surface) and roll the round end of the scribe across the score.  A (100) oriented GaAs 

wafer will cleave nicely along the [110] and [110]  directions. 

 
A.2 Photolithography 
 
Patterning of the 2DES sample can be done via standard photolithography.  The sample 

surface is coated with a UV light-sensitive organic polymer and the area of the sample 

that one desires to pattern is then selectively exposed to UV light through a mask.  After 

development, selected areas of the resist will be removed, defining a pattern of resist that 

can then be used to selectively etch or metallize the sample. 

 The following is a recipe for defining features > 1 μm using the Karl Suss MJB3 

mask aligner with a Hg vapor lamp UV light source and the Clariant AZ5214E i-line 

resist.  The AZ5214E resist is a positive resist, meaning that the exposed areas of resist 

will be removed (it can also be used as a negative resist by performing a post exposure 

bake and flood exposure before development). 

 
1.  Clean the sample surface.  At a minimum, the sample should be allowed to soak 

in acetone for a few minutes, followed immediately by a rinse in methanol and then 
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in DI water.  Blow dry immediately with dry nitrogen.  The purpose of the 

methanol rinse is to avoid residues that can be left by allowing acetone to dry on the 

sample surface.  Stubborn surface contamination can be removed by sonicating in a 

solvent, such as acetone.   

 

2.  Dry the sample before applying the resist.  Baking the sample in an oven at 150º 

C for a half hour greatly improves the adhesion of the resist and is helpful for 

patterning of long, thin (< 10 μm) features. 

 
3.  (Optional) To improve resist adhesion apply a drop of HMDS and spin the 

sample at 3000 rpm for 30 sec. 

 
4.  Apply a drop of AZ5214E resist and spin at 5000 rpm for 30 sec.  This gives a 

~1.5 μm thick resist layer. 

 
5.  Soft bake for 45 sec. at 100º C on a hot plate. 

 
6.  Place the sample at the center of the mask aligner vacuum chuck and align the 

mask and sample.  Raise the sample until the resist edge bead is barely touching the 

mask (look for the appearance of Newton’s rings at at least three of the four corners 

of the sample).  Expose for 15 sec. at an intensity of 15 mW/cm2.  The intensity at 

the sample position should be regularly measured using the stand-alone intensity 

meter. 

 
7.  For lift-off of fine metal features (< 10 μm), soak the sample in chlorobenzene 

for 10 min [2].  This changes the resist profile by hardening the top of the resist 

layer to make more of an undercut, which then prevents tearing during lift-off. 

 
8.  Develop in AZ400K developer:H20, 1:4.  Start with about 45 sec. of 

development time, followed by rinsing in DI water.  View the results using the 

mask aligner microscope, and repeat if necessary. 
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9.  For subsequent etching, hard bake the resist by placing the sample on a hot plate 

for 60 sec. at 130º C. 

 
10.  After the subsequent etch or metallization is done, the resist can be removed by 

soaking in butyl acetate (do not use acetone to remove AZ5214E resist) for 15 min 

at 60º C. 

 

 
 

Fig. A.1.  Surface acoustic wave transducer (see Chapter 2) with 6 μm wide aluminum 
fingers patterned via optical lithography. 
 
Figure A.1 shows an example of an aluminum surface acoustic wave transducer on the 

surface of a 2DES sample patterned via photolithography. 

 
A.2.1 Masks for Photolithography 
 
There are three methods of creating masks for photolithography: 
 
1.  Order a mask from Berkeley Microlab.  UC Berkeley offers a relatively cheap mask 

making service.  The lab has a software package called “LinkCAD” that will convert an 

AutoCAD file into the GDSII file format that Berkeley will accept. 

 
2.  Transparency.  For features > 30 μm, high-resolution film transparencies can be used 

to make a mask.  A trip to a printshop may be necessary since it is best to use a 3000 dpi 
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printer1.  Tape the transparency to a soda-lime glass plate of appropriate size for the mask 

aligner chuck.  The exposure time may need to be increased to compensate for the poor 

transmission of the transparency film. 

 
3.  A mask can be written onto a metallized plate or glass cover slip using e-beam 

lithography.   

 
A.3  Wet Etch 
 
An isolated region of 2DES can be patterned using lithography and a GaAs etch, to 

remove the 2DES everywhere except in a select “mesa” region.  One convenient recipe 

for a GaAs mesa etch uses a dilute phosphoric acid, hydrogen peroxide solution.  For a ~ 

0.1 μm/min. etch rate use H2O:H3PO4:H2O2, 50:5:1.  Remaining etch solution can be 

successfully stored for later use in an airtight bottle if kept in a refrigerator. 

 
A.4  Metallization 
 
We typically use aluminum gates and deposit the aluminum using a thermal evaporator.  

A thickness of 1000 – 2000 Å is good for achieving a continuous film with decent step 

coverage for depositing a continuous trace over the edge of a ~ 0.5 μm tall mesa.  

Problems can occur with the continuity of the metal at the mesa edge for taller mesas or 

thinner aluminum films. 

 
1.  Firmly clamp a tungsten basket into the center terminals of the evaporator. 
 
2.  Place two Al pellets (4 – 8 mm pellets, 99.999% pure) into the basket. 
 
3.  Pump down with the diffusion pump for ~ 1 hr.  The bell jar pressure should 
reach ~10-7 Torr. 
 
4.  Use a power level of 30 – 35% and evaporate at a rate of ~ 20 Å/s. 

 

                                                 
1 The printshop Mika Color (6000 Monterey Rd., Los Angeles, CA 90042, Ph: (323) 254-4116) has a high 

resolution printer and has experience making transparency masks both for our group and others at Caltech. 
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Patterning of the metal can be done either by a metal etch or a “lift-off” process.  In the 

lift-off process, the chip is first coated with resist.  Then, resist is removed via 

lithography in the regions where metal is desired.  Next, metal is deposited.   Finally, the 

remaining resist is removed with a resist stripping solvent.  In regions where the metal is 

on top of resist, the metal will “lift-off”, while regions without resist (bare GaAs) will 

remain metallized.  

 
A.5  Ohmic Contacts 

 

An ohmic contact is defined as an electrical contact that obeys Ohm’s Law – the contact 

resistance is independent of bias.  The two types of ohmic contacts employed in the 

devices described in this thesis are diffused NiAuGe and indium contacts. 

 In the case of NiAuGe contacts, the idea is to dope heavily enough with Ge (an n-

type dopant) so that the metal/n-GaAs Schottky barrier becomes thin enough for electrons 

to tunnel [3].  The NiAuGe recipe typically gives lower contact resistances than the 

indium method.  First evaporate 150 Å of Ni at ~6 Å/s; use a small tungsten boat.  Then 

evaporate 1700 Å of AuGe (88:12 % by weight) eutectic at ~25 Å/s using a tungsten boat 

with an oxide barrier to prevent alloying of the boat with the AuGe.  Empty the AuGe 

boat fully before re-using it, since the process of evaporating may change the ratio of 

Au:Ge.  Anneal in forming gas, at 440 ºC for 15 min.  Figure A.2 shows typical NiAuGe 

ohmics after thermal annealing.  The roughness is due to balling up of the metal during 

the anneal. 

 

 
 
Fig. A.2.  Annealed NiAuGe alloy making ohmic contact to a hall bar (2DES mesa 
boundary indicated by purple outline). 
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 Indium is not an n-type dopant for GaAs.  The indium contact is referred to as a 

“graded heterojunction type” contact.  In this case, an InGaAs alloy is formed.  InAs is a 

smaller band-gap semiconductor in which the Fermi level is pinned in the conduction 

band at the surface.  The InAs surface makes contact to the n-GaAs through a graded 

heterojunction formed by a gradual change in Ga versus In content of the InGaAs alloy 

[4].  Indium contacts can be formed by diffusing In down to the 2DEG layer.  Indium 

contacts are very convenient because they are simple to make.  Place dots of In on the 

sample using a low-temp soldering iron (In melts at 157º C).  Use a dedicated soldering 

tip used for In ohmic contacts only.  Anneal the In contacts in the rapid thermal annealer 

(strip heater) in forming gas (to prevent oxidation) for 5 min. at 425º C.  Flow forming 

gas for 5 min. before turning on the heater and leave the flow on until the strip has cooled 

to < 100º C.  Set the forming gas flow to ~ 3 L/min.  Figure A.3 shows a sample with 

annealed indium dots making ohmic contact to a hall bar-shaped 2DES. 

 

 
 

Fig. A.3.  Annealed indium dots (also attached to gold wires), making ohmic contact to a 
2DES hall bar mesa. 
 

A.6  E-Beam Lithography 
 
The lab has a JEOL 840A SEM for both imaging and e-beam writing of features down to 

~ 50 nm.  This procedure uses a bilayer of PMMA resists of differing molecular weights.  

A bilayer recipe is used rather than a single layer in order to achieve better lift-off. 

 
1.  Clean the sample as described in the optical lithography section. 
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2.  Spin 6% 495k PMMA in chlorobenzene at 3000 rpm. 
 
3.   Bake on a hotplate at 180º C for 1 hr. 
 
4.  Spin 1.5% 950k PMMA in chlorobenzene at 7000 rpm. 
 
5.  Bake on a hotplate at 180º C for 1 hr. 
 
6.  Store sample in 70º C oven. 
 
7. Load the sample into the SEM and pump down for ~ 30 min.  Turn on the 

accelerating voltage and filament current and set probe current to desired value.  

Adjust the focus and astigmatism and let settle for ~ 30 min.  Check probe 

current, focus, and astigmatism again.  If stable, perform the e-beam exposure.   

8. Develop 70 sec. in 3:1, isopropanol (IPA): methyl isobutyl ketone (MIBK).  

Rinse 10 sec. in IPA and blow dry with nitrogen. 

9.  After the subsequent etch or metallization is done, the resist can be removed by 

soaking in acetone at 60º C. 

 

Write the e-beam pattern in DesignCAD and use the NPGS (Nabity Pattern Generation 

System) software to write the pattern.  Work at an SEM acceleration voltage of 35 kV for 

the finest features. 

 
 
 
 
 
 
 
 
 
 
 

10 μm 
 
Fig. A.4.  SEM image of SAW transducer with 0.6 μm wide aluminum fingers patterned 
using e-beam lithography.  The entire transducer (not shown) is ~ 1 mm long. 
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 E-beam writing takes some practice.  The exposure dose has to be tweaked for each 

individual pattern due to exposure of nearby areas of the pattern due to secondary 

electrons (proximity effect).  First read the online Nabity tutorial, which is very helpful, 

and try writing the pinwheel practice pattern, which will show if the focus and 

astigmatism have been correctly adjusted. 

 

A.7  Packaging 
 
For dc resistance measurements, the sample is mounted on a standard 18-pin DIP (dual 

inline package) plastic header.  The chip is typically attached to the header surface using 

vacuum grease or thermal paste.  As shown in Fig. A.5, gold wires, 0.001 – 0.002” in 

diameter, are used to connect the header pins to the sample gates and ohmics.  The wires 

are attached to the sample via indium solder joints, wire bonding, or conducting epoxy.  It 

is strongly suggested that conducting epoxy be used only for gates.  Epoxy connections 

can sometimes become very resistive over time, creating problems when used for 

connections to ohmic contacts. 

 

 
 

Fig. A.5.  2DES samples attached and wired to 18-pin DIP header with gold wires. 
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Appendix B 
Heat Sinking of RF Leads 

 
B.1  Overview 
 
The following is an overview of the RF leads installed in the lab cryostats. 

 
B.1.1  3He Cryostat 
 
In one of the inserts for the 3He immersion cryostat (“stick B”), there are two CuBe UT-

34 (Ag-plated inner conductor) semi-rigid coax from room temperature to the sample 

stage.  There is an OFHC copper clamp which thermally sinks the coax to the insert 1 K 

cone (which mates with the 1 K pot). 

 
B.1.2  Dilution Unit 
 
The 200TL and Kelvinox 25 dilution refrigerators also have two RF leads, but with 

multiple heat sinks and thermal lags, as shown in Fig. B.1.  RF connections are made 

with SMA connectors (ideally good up to 26 GHz).  Connectors for UT-34 cable (a 

somewhat unusual size) can be purchased from Huber-Suhner.  The 4 K clamp heat sink 

is simply two plates of OFHC copper with grooves which firmly sandwich the coax.  A 

detailed discussion of the performance of the microstrip heat sinks and various coaxial 

segments follows.  Some of the choices for the type of coax used for different segments 

were not necessarily driven by performance, but instead by what coax and connectors 

were on hand in lab or what was previously installed. 
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Fig B.1.  RF connections and heat sinking in 200TL dilution refrigerator (not to scale).  
(Kelvinox 25 dilution unit installation is similar) 
 
 
B.2  Semi-Rigid Cryogenic Coax 
 
Many material choices for coax are available, including Cu, CuBe alloy, stainless steel, 

and Nb superconducting.  The inner conductor is frequently silver-plated for lower loss at 

high frequencies.  Common cable sizes for low-temperature application are UT-34 and 

UT-85.  For each material and size choice, there is a trade-off between good signal 

transmission and low thermal conductivity. 

CuBe UT-34 w/ Ag plating was used for most leads except in cases where the 

thermal conductivity had to be very low, in which case stainless steel UT-34 without Ag 

plating was used.  Figure B.2 indicates the dimensions for UT-34 coax. 
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Fig. B.2.  CuBe semi-rigid cable with silver-plated inner conductor.  UT-34 coax is 
0.034” (0.86 mm) in outer diameter. 
 
B.2.1  RF Transmission 
 
The role of the silver plating becomes important for RF transmission at frequencies above 

~ 1 MHz.  For good conductors (σ >> εω) the RF skin depth is 

 

ωμσ
δ 2
= . 

 
For Ag with a conductivity of 1010 /Ω·m at T = 4 K, )MHz(/μm 10 f≈δ .  The 

measured RF insertion loss at T = 4 K is 2 dB/GHz·m  for CuBe UT-34 w/ Ag-plated 

inner conductor, and  9 dB/GHz·m for 304 stainless UT-34. 

 
B.2.2  Thermal Performance 
 
Heat load 
 
It is useful to first calculate roughly what the heat load will be assuming the heat sinking 

is successful.  The thermal conductivity of metals at low temperature (T < 10 K) is 

typically dominated by conduction electrons rather than phonons.  This leads to a thermal 

conductivity which is proportional to kT, so that κ = κ0T, which results in a heat load 

given by  

 

)(
2

2
1

2
2

0 TT
L

A
Q −=
• κ

, 
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where A is the cross-sectional area, L is the length, and T1 and T2 are the temperatures at 

the conductor endpoints.   

 
1 K Pot Heat Sink 
 
The segment of coax from 4 K to ~ 1 K is CuBe UT-85 (0.086” outer diameter) coax 

with Ag-plating on the inner conductor.  The heat load at the 1 K pot heat sink will be 

 

)(
2

)( 2
1

2
2

_0_0 TT
L

AA
Q AgAgCuBeCuBe −

+
=

• κκ
, 

 
where the diameter of the inner conductor is 0.51 mm, κ0_CuBe = 0.6 W/K·m, the thickness 

of the silver plating is ~ 10 μm, κ0_Ag = 10 W/K·m, and L ~ 10 cm.  Then, 100 W.Q μ
•

=   

This should be fine for the 1 K pot stage. 

 
Mixing chamber 
 
Stainless steel UT-34 coax without silver plating was used for the link from 1 K to the 

mixing chamber because CuBe UT-34 w/ Ag-plating would have created a heat load of 

several μW.  The dimensions of this segment of coax are the same as for the CuBe UT-34 

depicted in Fig. B.2.  For the stainless steel coax, 
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2
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1

2
2

_0 TT
L

A
Q SSSS −=
• κ

, 

 

where κ0_SS = 0.1 W/K·m, and L ~ 10 cm.  Then 0.2 W.Q μ
•

=  

 
Heat sinking of the inner conductor 
 
The coaxial PTFE insulator should provide a thermal link between the inner and outer 

conductor.  However, there is a possibility that the thermal connection between the PTFE 

and outer conductor is poor at low temperature due to the mismatched thermal 

contraction of PTFE versus CuBe or stainless steel.  As discussed next, better heat 

sinking of the inner conductor was done using microstrip heat sink units. 
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B.3  Microstrip Heat Sinks 
 
Heat sinking of the inner conductor at temperatures below 1 K was done with microstrip 

transmission line heat sinks.  The heat sink unit consists of an OFHC copper box 

containing a microstrip line fabricated from Sheldahl copper-laminated Kapton (Kapton 

is a polyimide film made by DuPont).  The microstrip copper ground plane is lead-tin 

soldered to the bottom of the box.  In hindsight, the thermal connection between the 

copper backing and bottom of the box should probably have been done differently due to 

the fact that PbSn goes superconducting at low temperatures, and thus has poor thermal 

conductivity.  Figure B.3 shows the typical dimensions of one of these heat sink units. 

 

 
 
Fig B.3.  Microstrip heat sink unit (lid not shown).  Box dimensions:  2 cm × 4 cm.  
Stripline:  0.04 mm thick, ~ 0.6 mm wide copper strip on 0.16 mm thick polyimide. 
 
Thermal Performance 
 
Figure B.4 shows a sketch of the coordinates and variables used to calculate the heat flow 

through the Cu-polyimide-Cu laminate. 

 

 
 

Fig. B.4.  Cu-polyimide-Cu laminate.  T(x) is the temperature of the top copper strip, as a 
function of position x, TPI is the temperature of the polyimide, and TC is the temperature 
of the copper back plane. 
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The heat flow from the top copper strip through the polyimide to the back plane is given 

by  
 

( ( ))PI C
PI

wd Q T T x dx
t

κ
•

= − , 

 
where κPI is the thermal conductivity of the polyimide, w is the width of the strip, and tPI 

is the polyimide thickness.  The heat flow down the top copper strip is given by 

 

dx
xdTwtQ CuCu
)()( κ=

•

, 

 
where κCu is the thermal conductivity of the copper and tCu is the copper thickness.   
 
1 K pot heat sink 
 
We assume that the outer body of the heat sink, which is soldered to the laminate back 

plane, is at TC = 1 K.  For a worst case scenario, we use the 1 K value for κPI ~ 7 

mW/K·m [2] and the 4 K value for κCu ~ 200 W/K·m (RRR ~ 40).  Then,  

 

2

2 )()())(K 1(
dx

xTdwtxT
t
w

CuCu
PI

PI κκ =− . 

 
The solution for T(x) will decay exponentially with a characteristic length 
 

PI

Cu
PICutt
κ
κ

λ =  ~ 0.7 cm. 

 
So, for the inner conductor to reach T ~ 1 K, a heat sink length greater than about a 

centimeter should be sufficient. 

 
Mixing chamber heat sink 
 
Assume that the outer body of the heat sink is at TC = 25 mK.  For a worst case scenario, 

we use the 25 mK value for κPI ~ 160 μW/K·m [2] and the 1 K value for κCu ~ 50 W/K·m.  

Then, λ ~ 2.2 cm.  In actuality, κCu and κPI are proportional to temperature, so the 

performance will be better than this simple estimate. 
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 As a final note, the experiments described in this thesis (surface acoustic wave and 

NMR measurements) do not require a direct connection between the RF leads and the 

2DES.  In these experiments, the RF is applied to the 2DES via a transducer or coil 

situated near the 2DES.  It is not actually experimentally known whether the 2DES would 

reach the lowest cryostat temperatures if the RF leads were directly connected to the 

2DES via ohmic contacts. 

 
RF Transmission 
 
Next, we estimate the performance of the microstrip transmission line width dimensions 

shown in Fig. B.5. 

 

 
 

Fig. B.5.  Microstrip transmission line of width w and dielectric thickness d. 
 

For a lossless microstrip line with W/d ≥ 1 the characteristic impedance is given by [3] 
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is the effective dielectric constant (εr is the relative dielectric constant of the substrate). 

For W/d  ~ 3, Z0 ~ 50 and is approximately matched to the rest of the lines.  

However, for fabrication ease, the strip was made slightly wider, but still less than 1 mm 

(W/d  ~ 6).  Figure B.6 shows that for a 3 cm long heat sink, the loss due to the wider 

strip is less than 1 dB for frequencies below 1 GHz.  
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Fig. B.6.  Calculated insertion loss due to a 3 cm long microstrip with 1 mm wide 
metalization on 0.16 mm thick polyimide substrate. 

 
The copper metallization thickness should not be an issue for loss at frequencies above 1 

MHz.  For a Cu strip with a low temperature conductivity of ~109 /Ω·m, the skin depth is 

~ 10 μm / (MHz)fδ , which is comparable to the 40 μm laminate thickness at MHz 

frequencies.  Measurements of the insertion loss of a typical microstrip heat sink unit 

yield 0.16 dB/GHz, which corresponds to a strip width of ~ 0.6 mm, which is in 

reasonable agreement with the actual strip dimensions. 
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Appendix C 
SAW’s in GaAs 

 
C.1  SAW’s in GaAs 
 
We first present an overview of SAW’s in GaAs and their coupling to a 2DES.  The 

experiments described in this thesis used SAW’s propagating in the [  or 110] [110]  

crystalline direction on the surface of devices grown on (100) oriented wafers. 

 
C.1.1  Piezoelectricity in GaAs 
 
GaAs is a piezoelectric material, meaning that applying an electric field to the material 

will create strain and application of stress will change the electric polarization.  The 

crystalline structure of GaAs is shown in Fig C.1. 

 

 [110] 

[110] 

As[100

Ga

 
Fig. C.1.  GaAs unit cell (zinc-blende structure). 
 
The electric polarization generated in response to strain is described by the piezoelectric 

tensor eij, defined by Di = eijSj+εEi, where Di is the electrical displacement (  for the 

case of no free charge), ε is the dielectric constant, Sj is the strain, and Ei is the electric 

field.  The stress generated by application of an electric field is given by Ti = cijSj-ejiEj, 

where Ti is the stress and cij is the elastic stiffness tensor.  For GaAs the piezoelectric 

tensor is 

0iD =
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, 

 
where i = 1 to 3 with 11 x≡ , 22 x≡ , and 33 x≡ , and j = 1 to 6 with 1 11 x x≡ , 2 22 x x≡ , 

3 33 x x≡ , 2 34 x x≡ , 3 15 x x≡ , 1 26 x x≡ , where , , .  The 

value of e14 is approximately 0.16 C/m2.  For example, for a pure shear strain of only S6 

nonzero (elongation along the [110] direction and contraction along 

1x [100]≡ 2 [010]x ≡ 3 [x ≡ 001]

[110] ) will give rise 

to an electric polarization in the [00 1] direction, where a strain of ~ 10-3 produces a 

polarization of ~ ε × 104 V/cm. 

 
C.1.2  Surface Acoustic Waves 
 
Surface acoustic waves (SAW’s) are elastic waves which propagate at the surface of an 

elastic body, where most of the energy density of the wave is confined to a depth of about 

one wavelength below the surface.  From Newton’s and Gauss’s Laws, the equations 

describing SAW propagation in a piezoelectric material are 

 
2 2 2
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j k
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t x x x
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= +
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e

x x
ε φ

∂
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∂ ∂
, (2) 

 
where  is the displacement of the solid from equilibrium at position ( )iu x x , ρ is the 

density, cijk is the elastic stiffness tensor, and φ is the electric potential.  For convenience, 

we have temporarily switched to a notation which uses the full 3×3×3 tensor for the 

elastic and piezoelectric constants (three indices), rather than the abbreviated 3×6 matrix 

form used in section C.1.1.  For GaAs, because the piezoelectric coupling is weak (eijk
2/ε 

<< cijk), the last term in Eq. (1) can be ignored when solving for the motion of the elastic 

wave.  Then 
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For a cubic crystal this gives 
 

( )
22 2 2

11 44 12 442 2 2
ji i i

j i j ii j

uu u uc c c c
t x x x

ρ
≠ ≠

∂∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂∑ ∑
i jx∂

.  (4) 

 
Consider an infinitely large slab of GaAs occupying all space for x3 < 0, and vacuum for 

x3 >0.  We look for solutions that describe a surface wave propagating in the [110] 

direction:   
 

1 2 3 [110] 1 2 3 3
1 1( ) exp ( )
2 2 su u u A u B ik x x k x iv t

⎛ ⎞ ⎡⎟⎜ ⎤
⎢ ⎥= + + + + −⎟⎜ ⎟⎟⎜ ⎢ ⎥⎝ ⎠ ⎣ ⎦

,  (5) 

 
where vs is the SAW velocity and  are unit vectors.  We also require  real and 

so that the wave amplitude decays in the bulk.   
iu [110]k

3Re[ ] 0k >

 

 
 

Fig. C.2.  SAW propagation in [110] direction on GaAs (001) surface. 
 

After substitution we find that 
 

( ) ( )2 2
11 44 12 44 0sA v c c q iBq c cρ ′− + − + = ,      

( ) ( 2 2
44 12 44 11 0siAq c c B v c q cρ− + + − + =)

) 2

, (6) 
 
where  and c c .  The full solution will be a linear 

combination of solutions of the form of Eq. (5) that satisfy our boundary conditions.  The 

boundary conditions are that the GaAs surface at x3 = 0 is stress free: 

3 [110]/q k k≡ (11 11 12 442 /c c′ ≡ + +
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3 0k
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∂
=

∂
 at x3 = 0.  (7) 

 
After substitution and some algebra,  
 

12 11 0n n nic A c q B−∑ ∑ =

=

,   

0n n nA q i B− +∑ ∑ , (8) 
 

where the subscript n = 1,2 indicates the two linearly independent solutions to Eq. (4). 

For GaAs the elastic moduli are 
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, 

 
and ρ = 5316.9 kg/m3.  This gives a SAW velocity of vs = 2860 m/s.  The solution for the 

elastic displacement is 

 

( ) ( )1 2 3 1 2 3[110] 3 [110] 3

[110] 1 2

1 1( ) exp ( ) exp
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1      exp ( ) ,
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 (9) 
 
where , ,0.50013 0.47991q i± = ± 1.15414 0.67737iλ± =± + 0.50617 0.86243R i=− + , 

 are unit vectors, sand U is the wave amplitude. iu
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Fig. C.3.  Depth dependence of magnitude of elastic displacement, where d is the 
distance below the GaAs surface and k = k[110]. 
 
Next, we can substitute into Eq. (2) to find the piezoelectric potential created by the 

elastic wave: 
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where .  We try a solution of the form (2 )a i q λ± ±≡ − ±

 
( )0 3 3 3 1 2exp( ) exp( ) exp( ) exp ( ) / 2kx kq x kq x ik x xφ φ φ φ+ + − −

⎡ ⎤= + + +⎣ ⎦ .  

 
Upon substitution into Eq. (10) we find that  and 

.  Next, we use the boundary conditions that the normal 

component of the electric displacement and the electric potential are continuous at x3 = 0.  

For x3 > 0, the potential will be of the form φ φ .  Then, at x3 = 0 

2
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and 
 

0aφ φ φ φ+ −= + + . 
 
So 
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The resulting form of the potential is shown below in Fig. C.4. 
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Fig. C.4.  Depth dependence of the magnitude of the piezoelectric potential. 
 
 
C.1.3  SAW interaction with a 2DES 
 
The electric potential created by the SAW will be screened by a 2DES located near the 

GaAs surface.  This screening will affect both the velocity and amplitude of the SAW.  

The resulting attenuation and velocity shift are given by [1] 

  
2

[110] 2

/
2 1 ( / )
eff M

M

K
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σ σ
σ σ

Γ =
+

, (11) 
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2 1 ( / )
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Kv
v σ σ
Δ

=
+

, (12) 

 
 
where Γ is the attenuation per unit length, is a piezoelectric coupling coefficient, σ is 

the electron gas conductivity, and σM is a characteristic conductivity ~ 3.3 × 10-7 Ω-1.  

2
effK
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The velocity change  is referenced to the SAW velocity in the 

presence of a perfect conductor ( ). 

( ) ( )s s Mv v σ σ σΔ ≡ −

0 as sv σΔ → →∞
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Fig. C.5. Dependence of SAW attenuation and velocity shift on 2DES conductivity from 
Eq. (11) and (12). 
 
For conductivities below σM, the amplitude and velocity of the SAW are unaffected by 

the 2DES and propagate as in bulk GaAs.  As shown in Fig. C.5, for conductivities 

comparable to or greater than σM, the screening of the piezoelectric potential causes 

attenuation and a decrease in the SAW velocity.  The value of σM can be crudely 

understood by considering the capacitive charging of the 2DES.  Consider a square patch 

of 2DES of area λ2, where λ is the SAW wavelength.  To screen the piezoelectric 

potential, the charge on this patch must be rearranged to match the SAW potential.  If we 

set the RC time constant for this charging equal to the SAW period, λ/vs, we find that R ~ 

1/ εvs ~ 1/σM. 

 The form of the σ dependence of Δv/v given by Eq. (12) can be roughly understood 

using a similar RC-circuit argument.  The SAW fractional velocity shift is equal to the 

electrostatic energy required to charge the 2DES divided by the elastic energy of the 

SAW.  When a SAW enters a region containing a 2DES, some of the elastic energy of the 

wave is given up in order to charge the 2DES.  This results in a reduction of the wave 

velocity.  As in the previous paragraph, consider a square patch of 2DES of area λ2, 

where the charge on this patch will be rearranged to try to screen the SAW potential.  The 

charging energy will be proportional to V2, where V is the capacitive charging voltage.  

This charging voltage will depend on the conductivity of the 2DES, where 
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( ) ( )(1/ / 1/SAWV V i C i C Rω ω= )+

)
 and R and C are an effective resistance and capacitance 

and VSAW is the SAW potential.  This gives ( ) (( )2/ ~ 1/ 1SAWV V R Cω+

)

2 .  Now, in Eq. 

(12) the velocity shift is referenced so that Δv/v = 0 for a perfect conductor (R = 0).  Thus, 

we set ( ) (( )22 1 1/ R Cω+/ ~ 1 / 1/SAWv v V VΔ − =

/

.  As argued in the previous paragraph, 

1/ MR Cω σ σ= , so that we have ( )( )21 / Mσ σΔ +/ ~ 1/v v . 

 The precise value of  and σM depend on kd, due to the kd dependence of φ and 

the effective dielectric constant εeff.  Simon [2] has analyzed the 2DES – SAW interaction 

and shown that  

2
effK
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where C is the amplitude of the SAW, H is a material dependent constant, and 
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The value of σM is proportional to εeff and is shown in Fig. C.6. 
 

  
0 5 10

3

4

5

6

7
x 10

-7

σ
M

 ( Ω
- 1)

kd  
 

Fig. C.6.  Variation of σM with kd. 
 

2 / 2effK  is basically the ratio of the capacitive charging energy of the 2DES, when its 

conductivity is infinite so that the piezoelectric potential is completely screened, to the 

elastic energy of the SAW.  The kd dependence of is shown below in Fig. C.7.  

The value of H = 3.624 × 1011 J/m3 in Eq. (13) was obtained by calculating the SAW 

elastic energy per unit area.  This gives a piezoelectric coupling constant of  = 2.2 

× 10-4 at kd = 0.  This is a reasonable value, considering that the experimental value for 

2 / 2effK

2 / 2effK
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2 / 2effK  in GaAs/AlGaAs heterostructures is ~ 3.2 × 10-4 [1, 2], where the piezoelectric 

constant e14 ~ 0.26 C/m2 for AlAs is slightly larger than for GaAs. 
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Fig. C.7.  Variation of with kd. 2

effK
 
C.1.4  Interaction in the Presence of a Gate 
 
The presence of a top gate on the GaAs surface, above the 2DES in the region of SAW 

propagation can have a strong effect on the 2DES-SAW interaction.  The value of both 

εeff and will be modified. 2
effK

 The modified effective dielectric constant leads to a different σM dependence on kd: 

 
2M effvσ ε=  

 
where 
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ε ε
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 177

0 5 10
0

1

2

3
x 10

-6

kd

σ
M

 
 

Fig. C.8.  σM vs kd in the presence of a highly conductive top gate. 
 
And, solving for the SAW piezoelectric potential with the new boundary conditions gives 

the kd dependence shown in Fig. C.9. 
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Fig. C.9.   vs. kd in the presence of a highly conductive top gate.  The solid line is 
the calculated coupling and the points are experimental SAW velocity shift data (see 
text). 

2 / 2effK

 
The solid data points in Fig. C.9 correspond to experimental SAW velocity shift data 

from SAW propagation in a GaAs/AlGaAs heterostructure with a 2DEG 0.6 μm below a 

top gate.   was experimentally determined by measuring the SAW velocity 

difference for a highly conducting 2DEG versus a completely depleted 2DEG (zero 

conductivity), at several wavevectors corresponding to the harmonics of the SAW 

transducers.  It is unclear why there is a mismatch between experiment and theory, but 

we note that one source of the discrepancy may be due to the fact that the calculated 

curve is for a SAW in bulk GaAs, not a GaAs/AlGaAs heterostructure. 

2 / 2effK
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C.2  Transducer design 
 
The surface acoustic wave experiments performed in this thesis used aluminum 

interdigitated SAW transducers created either via optical or e-beam lithography (see 

appendix A for fabrication information).  A sketch of a generic interdigitated transducer 

is shown in Fig. C.10.  An RF voltage is applied between the two sets of fingers and the 

normal component of the electric field causes a strain that generates a SAW of 

wavelength λ = 2(a+b) (see Fig. C.10). 

 

 
 
Fig. C.10.  Interdigitated SAW transducer of length l, finger width a, finger spacing b, 
and N finger pairs. 
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Fig. C.11.  Output transducer voltage vs. time for a ~300 ns pulse at 72 MHz. 
 
Fig. C.11 shows a typical SAW pulse after detection by the output transducer and 

amplification.  The pulse shape is determined by the transducer width in the direction of 

SAW propagation 2(a+b)N and the SAW velocity.  The duration of the triangular 
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envelope at the start and end of the pulse is given by the time required for a SAW to 

propagate across the transducer width. 

 
C.2.1 Frequency response 
 
The frequency response of an interdigitated SAW transducer is roughly given by the 

Fourier transform of the normal electric field E3 at the GaAs surface.  As a first 

approximation, consider infinitely thin fingers so that we take the Fourier transform of a 

periodic array of delta functions separated by a distance b.  Then 
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( )(
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n
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The wavevector response (transfer function) is then 
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For large N and near resonance (k = π/2b), the frequency response is a sinc function: 
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Thus, the transducer resonance width ∝ 1/N.  We can see how well this model works for 

the frequency response of a pair of transducers (a transmitting and receiving transducer) 

shown in Fig. C.12.  Because there are two transducers, we use the square the frequency 

response for a single transducer.  From the above expression we then expect the FWHM 

to be about 6.4 MHz.  The value extracted from Fig. C.12 is about 7.9 MHz, which is 

reasonably close to our calculated estimate. 
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Fig. C.12.  Measured frequency response for a pair of input and output transducers with 
10 finger pairs with finger width and spacing a ~ b = 10 μm.  Solid line is guide to the 
eye. 
 
Although this simple delta function modeling gives a basic understanding, it fails to 

predict important features of transducers with finite finger width, such as the transducer 

harmonic response.  The relative amplitudes of the various harmonics for an actual 

transducer have been calculated in Ref. [3].  For example, for equal finger width and 

spacing, a = b, the 1st, 5th, and 9th harmonics have relative amplitudes of 1, 0.5, and 0.4 

respectively (the 3rd and 7th harmonics have zero amplitude). 

 
C.2.2  Transducer impedance 
 
The impedance of a typical SAW transducer was calculated using an EM solver (Sonnet).  

In the 0.1 – 1 GHz frequency range, the transducer basically looks like a capacitor.  For 

example, a 1 mm long transducer with 5 μm wide fingers and 20 finger pairs looks like a 

2 pF capacitor.  It is useful to compare the reactance of the transducer to the input 

transmission line impedance (50 ohms) in order to find the voltage that is actually across 

the transducer fingers.  Fig. C.13 shows the voltage at the transducer for an input voltage 

out of the RF source of 1 V.  For this transducer, above about 1 GHz (where 1/ωC ~ 50 

ohms), the transducer impedance begins to matter. 
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Fig. C.13.  Voltage across SAW transducer (1 mm long, 5 μm wide fingers, 20 finger 
pairs) for a frequency generator output of 1 V. 
 
C.2.3  Transducer efficiency 
 
It is possible to estimate the expected efficiency of a pair of input and output SAW 

transducers using the dimensions of the transducer and the value for : 2
effK

 
( ) 2 2

10 0total insertion loss  20log 8 100 eff pN K C f⎡ ⎤≈ − × Ω⎢ ⎥⎣ ⎦ , 
 
where the total insertion loss is the difference between the power into the input transducer 

and out of the output transducer in dB, N is the number of finger pairs in each transducer, 

Cp is the capacitance per finger pair, and f0 is the resonant frequency of the transducers 

[3].  To test the quality of our transducers, an input and output transducer pair with 20 

finger pairs, 1.4 mm long, operating at a fundamental frequency of 144 MHz was 

fabricated on semi-insulating GaAs.  The measured total insertion loss was about 45 dB.  

Using the above formula with N = 20,  ~ 7.4 × 10-4 at kd = 0, Cp = 0.14 pF/pair, and 

f0 = 144 MHz gives a calculated loss of 46 dB, which is similar to the experimental value.  

The slight discrepancy is probably due to uncertainty in the value of Cp and  for 

GaAs. 

2
effK

2
effK
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Appendix D 
Solution to Bloch’s Equations for cw NMR 

 
 
D.1  Overview 
 
Bloch’s equations [1] are a set of simple equations derived from phenomenological 

arguments that describe the evolution of nuclear spins in external magnetic fields.  The 

following solution to Bloch’s equations allow for better understanding of the RDNMR 

data described in this thesis. 

 
D.2  Solution 
 
Consider a collection of nuclear spins in a static magnetic field  and ac 

magnetic field 

,ˆ00 zBB =

),cos(ˆ 111 txBB ω=  perpendicular to B0.  It is convenient to work in a 

rotating frame of reference that rotates in the x-y plane at the same frequency ω1 as the ac 

magnetic field.  The Bloch equations in this rotating frame are 
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where Mx, My, Mz are the components of the nuclear magnetization in the rotating frame, 

M0 is the thermal equilibrium value of the magnetization, 0ω ω ωΔ = −  is the detuning of  

the frequency of the transverse ac B-field, B1, from the Larmor resonance frequency ω0, 

and ωr = γB1 is the Rabi frequency. 

 Consider a situation where initially B1 = 0 and the nuclear magnetization is in 

thermal equilibrium (Mz = M0).  Then, at time t = 0, the ac B-field is turned on (B1 > 0) 

suddenly at the center NMR resonance frequency (Δω = 0).  We want to solve for Mz as a 

function of time.  It is only necessary to solve the equations for My and Mz: 
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The solution to the above equation will be a sum of the homogeneous and particular 

solutions, we denote as y, z, and yp, zp, respectively, so that My = y + yp, Mz = z + zp.  We 

first solve the homogeneous form of the above equation: 
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There will be two linearly independent solutions.  Let the solutions be of the form 
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Then, 
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This requires 
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Thus, 
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Next, we make the simplifying assumption that   This is generally a good 

assumption for nuclear relaxation in 2DES’s in GaAs where T2 ~ 1 ms and T1 is typically 

much longer than 1 s.  Then, 

2 1/T T
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If we also assume that 2 1,rTω  expanding the square root gives 
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So, the two decay constants are  
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The particular solutions yp, zp will be constants such that 
 

2

01

01/0
.

1/0
pr

pr

yT
z MT

ω
ω

− − ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
This gives 
 

2
2 0

2
1 2

0
2

1 2

1

.
1

r
p

r

p
r

T M
y

T T
M

z
T T

ω
ω

ω

−
=

+

=
+

 

 



 186

Next, we solve for the amplitudes of the two homogenous solutions, A+ and A− .  The 

complete solution will be 
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We use the initial conditions 
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At t = 0.  Then, 
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Looking at the z-component, 
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Because  and 2 1/T T 1 2 1,rTω  we have / 1.λ λ+ −   Then, we can make the 

approximation 
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From this expression we see that the rise time for the RDNMR signal is given by 

. 2
2 11/r T Tλ ω+ = − −
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Appendix E 
Nuclear Spin Pumping at ν = 1/2 

 
This appendix describes preliminary experiments that investigate the possibility of 

pumping of the nuclear spins at ν = 1/2 by driving large currents through the 2DES. 

 
E.1 Phenomenology 
 
We look at two single-layer 2DES samples, both lithographically patterned into a hall bar 

shape.  Sample A is an undoped FET structure patterned into a 50 μm wide hall bar.  

Sample B is a Si modulation-doped heterojunction with a 500 μm wide hall bar. 

Figure E.1 shows the effect of driving a large current (Irms = 100 nA at 13 Hz) 

through sample A, while at ν = 1/2, B = 3.3 T.  There is a gradual rise in the longitudinal 

resistivity on a time scale of 1000’s of seconds. 
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Fig. E.1.  Longitudinal resistance Rxx vs. time at ν = 1/2, B = 3.3 T, for sample A (50 μm 
hall bar) with application of large current.  The current is I = 10 nA for times t < 0. 
 
Figure E.2 shows an RDNMR frequency sweep, passing through the 75As resonance 

while applying I = 100 nA.  The sample resistance is allowed to reach equilibrium with I 

= 100 nA before starting the sweep.  Recall from Chapter 6 that the RDNMR signal is 

positive for small currents.  The signal in Fig. E.2 is negative – application of large 

currents actually reverses the sign of the RDNMR signal! 



 189

-50

0

Δ
R

xx
 (Ω

)

24.2024.1524.1024.05
frequency (MHz)

ν = 1/2
B = 3.3 T
I = 100 nA

+0.33 kHz/s

 
 
Fig. E.2.  Rxx vs. frequency at ν = 1/2, B = 3.3 T, for sample A with application of large 
current.  The frequency of the RF magnetic field is swept through the 75As NMR 
resonance (f75As = 24.110 MHz). 
 
Figure E.3 shows the fractional change in resistivity due to an NMR pulse at the 75As 

resonant frequency, versus current through the 2DES.  The resistance is allowed to reach 

equilibrium while applying the pumping current.  Then, the RF ac magnetic field is 

always on at fixed amplitude (Bac ~ 1 μT), but the frequency is moved onto the 75As 

resonance, depolarizing the nuclei.   
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Fig. E.3.  Fractional change in longitudinal resistivity ΔRxx/Rxx due to an NMR pulse 
versus the current driven through the 2DES sample for sample B (500 μm hall bar) at ν = 
1/2, B = 3.6 T. 
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At low currents, as in Chapter 6, the RDNMR change in resistance is positive, while at 

large currents (I > 100 nA), the RDNMR signal decreases, changing sign, and then 

becomes negative and relatively large in magnitude. 

 
E.2 Conclusions 
 
One interpretation for the above data is that sourcing large currents through the 2DES at 

ν = 1/2 alters the nuclear polarization of the host substrate.  Similar phenomenology 

involving pumping of the nuclear spin can be seen at the ν = 2/3 and other FQH states 

near transitions between states of differing spin polarization [1-3]. 
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Figure E.4.  Cartoon of electron and nuclear spin (small black arrows) and putative 
nuclear pumping mechanism at ν = 1/2. 
 
The change in the sign of the RDNMR signal at high currents suggests that the sign of the 

nuclear polarization can even be reversed from thermal equilibrium.  A sketch of the 

equilibrium electron and nuclear spin configuration and the current-driven nuclear 

pumping process is shown in Fig. E.4.  In thermal equilibrium, the nuclear and electron 

spins should prefer to align with the static magnetic field (the electron spin aligns with 

the B-field due to the negative g-factor of electrons in GaAs).  How the current induces 

electronic spin flips of the correct sign to pump the nuclear spin towards the direction 

opposite from the configuration in thermal equilibrium is unclear. 
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