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Abstract

This thesis presents measurements investigating the spin degree of freedom in two
dimensional electron systems (2DES’s). The measurements use nuclear magnetic
resonance (NMR) techniques to study the role of spin in several 2DES states.

We first examine the spin transition that occurs in a half-filled Landau level in a
single layer 2DES and compare our measurements to expectations from a composite
fermion (CF) model. We show the temperature and density dependence of the nuclear 7;
and resistively-detected NMR signal. The 7 data can be roughly understood via a
Korringa-like model of nuclear spin relaxation. However, the observed density
dependence of both 77 and the NMR signal is not explained by conventional CF theory.

We next consider a bilayer 2DES consisting of two closely spaced 2D electron
layers, where each of the individual layers contains a half-filled Landau level. In this
system, a transition occurs from a compressible single layer-like state to an
incompressible correlated bilayer state as a function of the effective spacing between the
two layers. When the effective spacing is made small enough, interactions between the
two layers lead to the formation of a new state that can be viewed as a Bose condensate
of excitons. Using NMR techniques we show that the spin degree of freedom is active
during this transition.

In a single-layer 2DES with one completely filled Landau level (v = 1), charged
spin-texture excitations called “skyrmions” are expected to exist. We probe the spin
dynamics near this state using NMR. We find relatively fast nuclear relaxation rates that
are consistent with a theory of spin excitations for a skyrmion solid. Our measurements
also provide clues as to the origin of an “anomalous” NMR lineshape seen near v=I.

We also present surface acoustic wave (SAW) measurements in a low density
2DES at zero magnetic field, under conditions where a 2D metal-insulator transition may
occur. We find that our SAW data are consistent with a disorder-driven, percolation-type

transition.
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Introduction

Two-dimensional electron systems (2DES’s) in semiconductors continue to provide
experimental access to a wide range of phenomena in correlated electron physics. Two
of the best known examples of exciting discoveries in 2DES’s are the integer and
fractional quantum Hall effects, which were first observed roughly 25 years ago [1-2].
However, 2DES research remains active, spanning a variety of topics including fractional
statistics and charge, metal-insulator transitions, charge density waves, and Bose-Einstein
condensation. New physics continues to emerge as sample quality improves,
experimentally accessible temperatures decrease, and new experimental probes are
developed.

This thesis starts with a discussion of surface acoustic wave (SAW) measurements
that probe the frequency and length scale dependent conductivity of the 2DES at low
densities. Several aspects of SAW’s make them an interesting probe for low density
2DES’s near the putative metal-insulator transition.

The second part of this thesis presents experiments that investigate the role of spin
in several 2DES states. We use a resistively detected nuclear magnetic resonance
(RDNMR) technique that is well-suited for studying 2DES’s (and nanostructures in
general). Due to the hyperfine interaction between nuclei and electrons in the 2DES host
semiconductor, the electron spin polarization can be probed using NMR techniques. For
typical 2DES’s in GaAs/AlGaAs heterostructures, at moderate perpendicular magnetic
fields the Coulomb interaction is large compared to the Zeeman energy and can play a
significant role in determining the behavior of the electron spin. This leads to a variety of
spin phenomena ranging from ground state spin transitions for fractional quantum Hall
states to the existence of “skyrmion” spin excitations in the quantum Hall regime. This
thesis describes several applications of RDNMR to the study of the electron spin degree
of freedom in 2DES’s. Recent work includes investigation of a spin transition in the half-
filled Landau level, observation of a spin transition in a correlated bilayer 2DES, and
measurements of electron spin dynamics near the lowest filled Landau level in a single
layer 2DES.

Chapter 1 describes the samples and experimental techniques that are generic to all

of the experiments described in this thesis. The chapter starts with an introduction to



GaAs/AlGaAs heterostructures and how they are used to create high mobility 2DES’s.
The chapter ends with a brief overview of basic experimental techniques typically
employed, such as standard semiconductor processing, dc transport measurements,
cryogenic refrigeration, and high magnetic fields.

Chapter 2 presents surface acoustic wave (SAW) measurements in low density
2DES’s at zero magnetic field, under conditions where a 2D metal-insulator transition
may occur. Controversy exists over whether this transition is better described as an
exotic, interaction-driven phase transition or by more straightforward physics of
disordered conductors. We compare our SAW data to standard dc resistivity
measurements and show that our measurements are consistent with a disorder-driven,
percolation-type transition [3].

Chapter 3 introduces the physics of 2D electrons in a perpendicular magnetic field,
from a classical to quantum mechanical picture, and eventually, the fully interacting
picture and the fractional quantum Hall effect (FQHE). The composite fermion picture of
the FQHE is also introduced.

Chapter 4 gives an overview of spin in 2DES’s and then an introduction to nuclear
magnetic resonance (NMR) techniques that are used in the experiments described in the
rest of the thesis. We introduce a resistively-detected NMR (RDNMR) technique used to
probe the spin degree of freedom in 2DES’s.

In Chapter S we probe the transition from partial to complete electron spin
polarization as a function of density in a single layer 2DES with a half-filled Landau
level [4]. The fractional quantum Hall effect can be understood in an elegant way using a
composite fermion (CF) picture. In this picture, a single layer 2DES at Landau level
filling fraction v = 1/2 can be described as a Fermi liquid of CF’s, where a CF is an
electron with two magnetic flux quanta attached [5]. The CF picture has been very
effective at describing a wide range of experiments, but the limit of its applicability is
still an ongoing subject of interest. Both the nuclear spin-lattice relaxation time 7' and
the derivative of the resistivity with respect to the electronic Zeeman splitting dp,./dEz
reflect this transition. Our RDNMR measurements show that at v= 1/2, T; has a
temperature dependence that is roughly described by a 2D version of Korringa nuclear
spin relaxation. However, the density dependence of both 7; and dp,/dE fail to agree

with a simple composite fermion (CF) picture. 7] is roughly density independent in the



partially polarized phase, in contrast to the variation expected from the dependence of the
CF density of states on Coulomb energy. The sign of dp,./dE7 is not understood and an
unexpected peak in dp,./dE; develops at low temperatures near the critical density for the
spin transition.

Chapter 6 describes RDNMR experiments in a bilayer 2DES consisting of two
closely spaced single layer 2DES’s. Interactions between the two layers can create new
many body states in bilayers that have no single layer 2DES analog. At total Landau
level filling factor vy = 1 and small effective interlayer spacing, a remarkable state
emerges that can be viewed as a Bose condensate of excitons. There is a phase transition
from a compressible state where the layers are weakly coupled to an incompressible
excitonic condensate state as the coupling between the layers is increased by reducing the
effective interlayer spacing [6-10]. This chapter discusses experiments which probe this
phase transition. Specifically, we present RDNMR measurements probing the spin
degree of freedom in a bilayer 2DES at total filling factor vy = 1, performed by lan
Spielman and myself [11]. Our data shows that the spin degree of freedom is active
during this transition.

Chapter 7 discusses RDNMR measurements that probe the electron spin near the
completely filled lowest Landau level (v= 1) in a single layer 2DES [12]. Although the
v=1 quantum Hall might at first glance appear to be easily described by a single-particle
picture, upon greater scrutiny, one finds that Coulomb interactions actually play a large
role in determining the behavior of this state. The lowest energy charged excitations at
filling factors at and nearby v= 1 are actually predicted to be skyrmions, excitations with
a smooth spatial variation in spin which carry spin and charge. The presence of
skyrmions is expected to have a large impact on nuclear spin dynamics for this state. Our
data is consistent with a theory of the spin excitations due to formation of a skrymion
solid. We also provide clues as to the origin of the “anomalous” RDNMR lineshape seen
near v=1.

The thesis ends with a brief Conclusions and Future Directions section, which

gives a final overview and possible future directions for related experiments.
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Chapter 1:
Samples and Experimental Techniques

Two-dimensional electron systems (2DES) are systems consisting of electrons confined
to motion in a plane. High-mobility 2DES’s are fascinating systems that give rise to a
wide range of phenomena. This chapter presents an overview of 2DES samples and

measurement techniques used to investigate their properties.

1.1 GaAs/AlGaAs Heterostructures

A variety of experimental systems exist for the creation of 2DES’s, ranging from a Si
MOSFET to electrons on the surface of *He. The measurements described in this thesis
were performed using high electron mobility 2DES’s in GaAs/AlGaAs heterostructures,
where mobility u is defined by o =neu, where o is the conductivity and # is the electron
density. Mobility is a measure of sample disorder. Using the Drude model (see Chapter
3, section 3.1), i ~ 7, where 7 is the transport lifetime, which is determined, in part, by
the rate at which electrons collide with sample impurities. Thus, very pure samples tend
to have high mobilities and allow better observation of delicate many-body electron
states. The GaAs/AlGaAs heterostructures used for the measurements described in this
thesis were kindly provided by our collaborators Loren Pfeiffer and Ken West at Bell
Labs.

1.1.1 Overview

The highest electron mobility 2DES’s are currently formed in GaAs/AlGaAs
heterostructures (the alloy AlyGa;As is abbreviated as AlGaAs). The GaAs/AlGaAs
system has several key properties that allow for high mobilities. One of the most
important of these properties is that the system is well lattice-matched; the lattice
constant of AlAs is only 0.15% larger than that for GaAs. This leads to a minimum
amount of strain, and thus defect formation, at interfaces between two alloys with
different Al content. The highest mobility 2DES’s in GaAs/AlGaAs are grown via
molecular beam epitaxy (MBE). For a UHV environment at a pressure lower than 107

Torr, the mean free path of molecules is greater than size of the vacuum chamber. Under



these conditions, molecules emerging from heated sources do not diffuse — they form a
molecular beam. MBE allows for controlled growth of individual atomic layers. The
technique 1is precise but slow; a typical growth rate is approximately one
monolayer/second. Several advances in MBE techniques, such as modulation [1] and
delta doping [2], where the dopant atoms are placed remote from the active area of the
device, have caused mobility to increase. The current record for high mobility is ~ 30 x
10° cm?/Vs (~ 300 um mean free path!) at low temperature (7 < 0.3 K), achieved by
Loren Pfeiffer and Ken West at Bell Labs.

1.1.2 GaAs crystal structure

The crystal structure of GaAs (or AlAs) is shown in Fig. 1.1. GaAs has a zincblende
structure; it is comprised of two fcc (face centered cubic) sublattices, one for Ga and
another for As, displaced from one another by (1/4, 1/4, 1/4)a, where a is the lattice
constant ~ 5.66 A (see Fig. 1.1). In the alloy AlGaAs, Ga atoms are randomly replaced
by Al atoms. The samples discussed in this thesis are oriented so that the [001] direction

is perpendicular to the 2DES.

[010]
/ A

0011 |AlGa ¢

As
[100]

Fig. 1.1. GaAs (or AlAs) unit cell with crystalline directions denoted by Miller indices
([100], [010], and [001]).



1.1.3 GaAs/AlGaAs interface

The interface between two AlGaAs alloys of differing Al and Ga content can be used to
confine electrons. A sketch of the band energies at this interface is shown in Fig. 1.2,

where E¢ and Ey are the conduction and valence band energies at the I point [3].

AlGaAs
x GaAs
X

AlGaAs GaAs
Eg I E,

e, — I
AlGaAs GaAs

vacuum level

Ec

Fig. 1.2. Ideal alignment of bands at GaAs-AlGaAs interface. 7y is the electron affinity.

The alignment of the conduction and valence bands is determined by the combination of
the band gap E, and electron affinity y for each alloy. For reference, the difference
between the conduction band energies at the interface between GaAs and the common
alloy Alp3Gag7As is AEc=0.23 eV [3].

Charge carriers can be introduced by doping. In (100) oriented AlGaAs,
substituting Si impurities for Al or Ga in the lattice will introduce electrons into the
conduction band. This addition of negative charge carriers by addition of impurities is
called n-type doping. There are two main states for the Si donor in AlGaAs — the
standard donor, which can be modeled as a hydrogen atom-like state, and the deep donor
or DX center [3]. The standard donor state can be treated as a hydrogen atom with the
vacuum permittivity replaced by the dielectric constant of AlGaAs and the bare electron
mass replaced by an effective mass, which gives a binding energy of the electron to the
donor of ~ 50 K. The DX center occurs when the replacement of the Al or Ga atom is

accompanied by a distortion of the surrounding lattice. The binding energy of the DX



center donor is much larger than the hydrogenic type donor and is experimentally
approximately 7'~ 150 K.

Examples of n-type doped heterostructures are sketched in Fig. 3.1. These
structures are modulation doped — the Si impurities are placed remote from the 2DES
AlGaAs/GaAs interfaces. If these impurities were located in the region where
conduction takes place they would contribute to electron scattering. Modulation doping
[1] can lead to large improvements in 2DES mobility. In one specific type of modulation
doping, referred to as delta doping [2], the dopants are placed in a thin monolayer sheet
positioned a few tens of nanometers away from the 2DES region. This places the 2DES
as far from the dopants as possible, leading to a reduction in the scattering rate.

Alternatively, undoped FET structures exist, where carriers are drawn in from Ohmic
contacts into a GaAs/AlGaAs interface region by gating [4]. These structures can have
very high mobilities at low densities due to the absence of disorder stemming from

1onized donors near the 2DES.

a) b)

AlGaAs GaAs AlGaAs GaAs AlGaAs
AlGaAs
C) /]\

GaAs

Fig. 1.3. Schematic band diagrams for a 2DEG confined in a) at a single interface and b)
in a quantum well, and ¢) a bilayer 2DES confined in a double quantum well structure.
Solid line: conduction band. Dashed line: chemical potential. Dotted line: electronic
wavefunction. Symbol “+” denotes position of ionized Si dopants.



An actual MBE structure is typically much more complicated than just an interface
or two and some dopants. An example of an actual single interface structure is shown in
Fig. 1.4.

The MBE layers are grown on a single-crystal GaAs substrate wafer, typically ~ 0.5
mm thick. This substrate is a polished slice sawed from a large single-crystal boule of
GaAs. First, a thick buffer layer of GaAs is grown to create a smooth surface and move
the important layers away from the defects and impurities present on the wafer surface.
Next, a cleaning superlattice is grown consisting of ~100 alternating AlGaAs, GaAs
layers which getter and trap impurities at the GaAs/AlGaAs interfaces [5]. Another thick
GaAs layer is grown and then the GaAs/AlGaAs interface for the 2DES. The Si dopants
are placed remotely from this interface (modulation doped). A layer of AlGaAs separates
the 2DES from the sample surface. A thin cap of GaAs is grown on the surface to
prevent oxidation of the AlGaAs. The Fermi level is pinned mid-gap at the GaAs cap

surface due to a large density of surface states in the middle of the band gap.

100 A GaA
aAs cap / /ﬁ # Material Thickness
doping 2 A)
2DEG —» ” 7 1| Gaas 100
2 Al ,Ga, ,As 1,000
10,000 A GaAs : —
. 3 Al,,Ga,,As:Si | 50
4 Aly;Gay,As 800
cleaning superlattice 5 GaAs 10,000
100 x repeat
6 Al ,Ga, ,As 500
*
100x 7 GaAs 30
GaAs substrate repeat
8* Al ,Ga, ,As 100
GaAs 206 | GaAs 3,000
B Al,Ga,,As 207 | GaAs substrate ~ 0.5 mm

B Al ,Ga,,As:Si

Fig. 1.4. Example sample structure for a 2DEG formed at a single interface with
modulation doping.
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1.1.4 Effective Mass and g-Factor

Al,Ga;.As for x < 0.4 is a direct gap semiconductor with a spherically symmetric
conduction band Fermi surface near the I point. A single effective mass, m*, can be
used to describe the kinetic energy of electrons near the bottom of the conduction band,
where the band dispersion E vs. k is roughly parabolic. For GaAs m* = 0.067m,, where
m, 1s the electron mass in vacuum.

The Zeeman splitting £z in AlGaAs can be parameterized by an effective g-factor g*,
where E; = g*uB. For GaAs, g* = -0.44, whereas the g-factor of an electron in vacuum is

g. = 2. Due to spin-orbit coupling, g* is not equal to g, and even has the opposite sign!

1.1.5 2DES Wavefunction

It is useful to be able to estimate properties of the bound 2DES states, such as the shape
of the electronic wavefunction in the direction of confinement, binding energies, etc.
This requires a self-consistent solution of the Poisson and Schrodinger equations, which
can be done numerically. An example of a Poisson-Schrodinger self-consistent
calculation is shown in Fig. 1.5. The solution includes the exchange and correlation
energies in the self-consistent potential, using the local density approximation (LDA) [6].
In the LDA approximation, the exchange-correlation energy at each z-coordinate (z is the
direction normal to the 2DES) is set equal to the exchange-correlation energy of a
homogeneous, three dimensional electron gas with a density proportional to the square of
the modulus of the 2D subband wavefunction at that point. The calculation shown in Fig.
1.5 is for a 2DES formed at a single GaAs/AlGaAs interface. One unknown parameter
that complicates the calculation of the exact wavefunction is the precise slope of the
conduction band energy in the tail of the wavefunction, heading towards the substrate. In
actual samples, impurities (bundled under the term “depletion charge”) may tend to
deplete carriers, causing the conduction band to rise towards the middle of the band gap
away from the 2DES region. Also, as mentioned previously, the Fermi level will be
pinned mid-gap at interfaces with a large number of surface states, such as at the surface
of the GaAs substrate wafer. Thus, the Fermi level must eventually reach the middle of
the band gap away from the 2DES region. The effect of depletion charge was ignored in
the calculation of Fig. 1.5.
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A convenient approximate solution for the 2DES wavefunction for the case of a
single interface structure is the Fang-Howard wavefunction [7], a variational

wavefunction of the form
w(z) o zexp(—bz/2),

where the interface is located at z = 0, and b is a parameter that is used to minimize the
energy, given a specific 2DES density n (the value of the barrier height at the interface is
ignored sincey(0)=0). Using the Hartree approximation (i.e., ignoring the exchange

and correlation energies) the solution with the minimum energy is given by

33me’n "
b= > .
8h e

A comparison of the Fang-Howard wavefunction and the Poisson-Schrodinger solution is

shown in Fig. 1.5.

02E 1 T | T |

-400 -200 0 200 400 600
depth (A)

Fig. 1.5. Dotted line: Schrodinger-Poisson solution to wavefunction modulus squared
for the single interface structure shown in Fig. 1.4. Solid line: conduction band energy.
Dashed line: Fang-Howard wavefunction squared. The horizontal dashed line
corresponds to the Fermi energy. The electron density is n=1.5 x 10'" cm™.



12

1.2 Experimental Techniques
1.2.1 Sample Fabrication

In order to make measurements it is usually necessary to create a specialized sample from
a piece of the parent GaAs/AlGaAs wafer. Fabricating a 2DES device can consist of
simply cleaving a chip and adding ohmic contacts with a soldering iron or can be a
multiple step process defining a patterned 2DES mesa region, metallic gates, and
lithographically defined ohmic contacts. For completeness, a brief description of the
processes used to fabricate the samples described in this thesis is included in Appendix
A.

1.2.2 DC Transport Measurements

One of the most common techniques used to investigate 2DES’s is via dc resistance
measurements. The following is a description of the basic characterization of 2DES

samples via low-frequency transport measurements.

1.2.2a Van der Pauw Method

The resistivity (at zero magnetic field) of any conducting sheet with four point contacts

on the periphery, as shown in Fig. 6, can be obtained using the van der Pauw method [8].

Fig. 1.6. Four point van der Pauw measurement setup.

The sheet resistivity per square is given by.

_ ™ RAB,CD +RAD,CB
In(2) 2

Po f(),
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7 =max {RAB,CD /RAD,CB’ RAD,CB /RAB,CD} ’

where Ryywz = Vwzlxy is the resistance measured by applying current Iyy between
contacts X and Y and measuring the voltage Vy, between contacts W and Z, and the

factor fis given by

osh

for+l) 2 I

M"_—l] iexp[@],

A plot of f'versus 7 is shown in Fig. 1.7.

1.0

0.8 ™~

0.6 ~
0.4

0.2
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2 3 45678 2 3 45678
1 10 100

7

Fig. 1.7. Function fversus r for calculating resistivity (see text).

1.2.2b Hall Bar

Another common geometry used for determining sheet resistivity is the Hall bar, as

shown in Fig. 1.8.
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| . |
NI

Fig. 1.8. Typical Hall bar geometry.

The bar is designed so that the current distribution is uniform along the width of the bar
in the region of the side-arm contacts. The distance between the side arms should be
greater than the arm width so that the voltage probes are point-like. Then, the sheet
resistivity is given by the longitudinal resistance divided by the number of squares

between the voltage probes:

(e r
0 I ) #of squares

1.2.2¢ Density and mobility

The 2DES density can be obtained by via Hall resistance measurements (see Chapter 3

for a discussion of transport in a magnetic field), where
py =B, /ne,

where n is the electron density, B, 1is the magnetic field normal to the 2DES,

and p,, =V /1 (see Fig. 1.9) is the Hall resistance.

[ T
I U®B ! ] ©

Fig. 1.9. Schematic for measurement of Hall resistance.
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An alternative method of determining the density is to use the SdH oscillations of the
longitudinal resistance versus magnetic field (see Chapter 3). The positions of the
resistance minima are given by B = hn/ve, where vis an integer. Then the slope of a plot
of B versus 1/vis a convenient way to obtain the density that is insensitive to offsets in
the measurement of the magnetic field. Finally, given the density and the sheet

resistivity, the mobility is given by

1
pne '

1.2.2d Measurement Circuit

One very common measurement performed to obtain the data in this thesis is
determination of the longitudinal resistivity of a 2DES in a perpendicular magnetic field.

Figure 1.10 shows the typical circuit used for this measurement.

Lock-in oscillator
Vac=10mV -1V :
f~13 Hz : Cryogenic environment

@

DVM
Lock-in (Agilent 34401A)

— amplifier

lac = 1 = 100 nA

Voltage
preamp

GPIB to computer
>

Fig. 1.10. Basic circuit for measurement of longitudinal resistivity.

The four-point measurement of the longitudinal resistivity is made by passing a fixed
current through the sample, and measuring the voltage between two contacts on one side

of the sample. The measurement is usually performed at low, but finite frequencies
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(typically 13 Hz) using lock-in detection to avoid the 1/fnoise which becomes a problem
at very low frequencies in many electronic components such as resistors and transistors.
Measurement currents range from / = 1 to 100 nA, depending on the sample geometry
and temperature. Large currents can cause Joule self-heating of the 2DES. As shown in
Fig. 1.10, a current source is created by placing a 10 MQ resistor in series with the lock-
in oscillator. A low-noise differential voltage amplifier, such as the Princeton Applied
Research PAR116, Ithaco 1201, or Stanford Research Systems SR550 voltage preamp,
measures across the two voltage probes. The output of this preamp is connected to the
input of a lock-in amplifier, either a Princeton Applied Research PAR124A or Stanford
Research Systems SRS830 lock-in amplifier. The lock-in output is digitized by a digital
volt meter (DMM, Agilent 34401A) and sent to a computer via GPIB. Details about the

wiring of the cryostat can be found in the next section.

1.2.3 Cryogenics

Low temperatures are required to see the delicate many-body physics of 2DES’s. The
majority of measurements discussed in this thesis were performed at low temperatures
(down to ~ 15 mK) reached via dilution refrigeration. Some measurements were also
performed in a *He immersion cryostat. The following is an overview of the Oxford
200TL dilution refrigerator, which was used for most of the measurements described in

this thesis.

1.2.3a Dilution Unit

Dilution refrigeration can allow one to reach temperatures down to 7 ~ 2 mK. A
description of the general principles behind dilution refrigeration, as well as other useful

information about cryogenic techniques, can be found in Ref. [9].
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still

sintered Ag
heat exchangers —
mixing chamber

carbon resistance = —
thermometer “R,./’

cold finger
w/annealed Ag rods

sample holder

Fig. 1.11. TL 200 dilution unit.

At low temperatures (below 0.87 K) a mixture of *He and “He, for a “He
concentration greater than 6%, will separate into two phases, a concentrated phase
consisting mostly of *He and a dilute phase consisting mostly of *He. Roughly, dilution
refrigeration “evaporates” “He in a “He - ‘He mixture, by passing *He from the
concentrated phase to the dilute phase (~ 6% “He), where *He remains soluble in *He
even as T'— 0. Figure 1.11 indicates a few of the main components of the dilution unit.
*He is continuously circulated through the unit using hermetically sealed pumps. The
*He is first condensed at the “1K pot”, a reservoir of *“He which is pumped to reach T ~
1.5 K, a temperature at which the *He will liquefy (the condenser pressure is usually ~
100 mBar). The *He is further cooled on its way to the mixing chamber by heat
exchangers, where *He entering and exiting the mixing chamber is allowed to thermally

equilibrate. The condensed liquid *He then flows into the mixing chamber, which
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contains both the dilute and concentrated phase of the *He - “He mixture, where the less
dense *He rich phase floats on top of the dilute phase. In the mixing chamber the *He is
passed from the concentrated to dilute phase. The mixing chamber is where the fridge
reaches the lowest temperatures. A cold finger, made of very pure, annealed high-
thermal conductivity silver, connects the mixing chamber to the sample stage. After
exiting the mixing chamber, the *He passes into the still, where it is evaporated and
pumped back into the condenser. The still is heated to increase the *He circulation rate
and is maintained a temperature of roughly 7~ 0.7 K. The sealed pumps pump directly
on the still, which is connected to the pumps via very wide plumbing lines for maximum
pumping speed.

The TL 200 fridge cooling power (~ T'%) is 200 pW at a temperature of 100 mK and
the fridge currently reaches a base temperature of ~ 15 mK. This is the cold finger
temperature; cooling the electrons in a 2DES sample and determining the electron
temperature is generally more challenging. It is difficult to directly determine the
electron gas temperature. However, we know that the magnetotransport of 2DES
samples continues to evolve down to the lowest fridge temperatures. For example,
measurements of the activation energies of various quantum hall states continue to follow

the expected Arrhenius trend at low temperatures.

1.2.3b Thermometry and Wiring

The main thermometer is a carbon resistor (R,y) mounted near the mixing chamber on a
silver rod connected directly to the sample stage. The system is equipped with a solenoid
magnet providing fields of up to B = 13.75 T at the sample stage (higher fields are
available if the lambda fridge is used). The magnetic field at the mixing chamber is kept
small via cancellation coils. The R, thermometer is placed near the mixing chamber in
order to avoid errors due to the magnetic field dependence of the resistivity.

The link between the mixing chamber and the sample is provided by a cold finger
consisting of four silver rods (see Fig. 1.11). This silver contains very few impurities
(99.999% pure), and has been annealed to reduce the number of grain boundaries,

improving the thermal conductivity at low temperatures.
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The cryostat wiring consists of semi-rigid coax, manganin wire twisted pairs, and
stainless steel flexible coax. At 7=4 K and 1 K heat sinking of the manganin leads is
achieved by wrapping the wires around OFHC copper spools. At the “50 mK plate”,
located below the still, and at the mixing chamber, the leads are heat sunk via Cu-
Kapton-Cu laminate heat sinks, where the front-side Cu is patterned into leads that are
placed in series with the fridge wiring, and the back-side Cu is clamped (good thermal
joint) to the 50 mK plate or mixing chamber. An example of one of these laminate heat

sinks is shown in Fig. 1.12.

Fig. 1.12. Cu-kapton-Cu laminate heat sinking (center of photo, labeled “TP3XX”) of
the manganin leads at the mixing chamber.

Additional heat sinking is done for each wire at the sample holder with a series 10 kQ
metal-film resistor and a 500 pF polyester-foil capacitor in parallel to ground (configured

like a low-pass RC filter).

1.2.3¢ RF Leads

A description of the RF leads installed in the lab cryostats can be found in Appendix B.
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Chapter 2:
Surface Acoustic Wave Propagation in Low density
2DES’s near the Metal-Insulator Transition

The apparent metal-insulator transition (MIT) in two-dimensions remains a subject of
interest due to the fact that the basic physics of this fundamental topic — the exact nature
of the ground state of a two dimensional electron system (2DES) — is still not well
understood. Controversy exists over whether this transition is better described as an
exotic, interaction-driven phase transition or by more straightforward physics of
disordered conductors. This chapter discusses surface acoustic wave propagation in the

presence of a 2DES at the low densities where this putative MIT should occur [1].

2.1 The 2D Metal-Insulator Transition

The ground state of a 2DES at zero magnetic field remains an enigma, due to the extreme
difficulty of solving the many-body problem of interacting 2D electrons. This is
especially true when one tries to incorporate disorder, which is necessary in order to
describe actual experimental systems. One aspect of this problem many have focused on
is the temperature dependence of the 2DES conductivity as a function of 2DES density.
Varying the electron density changes the strength of electron-electron interactions
relative to the kinetic energy and also varies both of these energy scales relative to the
strength of the disorder. Experimentally and theoretically, there is some evidence
suggesting a transition from metallic to insulating behavior upon varying the density.

The following is a brief overview of experimental data and theoretical arguments
regarding the apparent MIT. The reader is referred to two review articles [2, 3] which
take opposite viewpoints regarding the nature of this transition and review much of the

experimental and theoretical literature relevant to this topic.

2.1.1 Previous Experiments

The definition of a metal versus an insulator is given by the temperature dependence of
the resistivity. For a metal, the resistivity remains finite as the temperature goes to zero,

and for an insulator the resistivity will diverge in the zero temperature limit. An apparent
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MIT has been experimentally observed in some systems as the density of the 2DES is
tuned. Previous experiments [2 - 5] have shown that at low densities the 2DES appears
insulating — the resistivity increases with decreasing temperature at the lowest accessible
temperatures, while at high densities resistivity continues to decrease with decreasing
temperature, raising the possibility of a metallic phase at high densities. At some
intermediate density, the resistivity looks temperature independent, and frequently this
point is then identified as the critical density at which the MIT occurs. However, all data
is taken at finite temperatures, so it is hard to say what will actually happen as the
temperature is lowered further. This problem is further exacerbated by the fact that some
predictions for the insulating behavior of the resistivity, such as contributions from weak
localization, give a very weak, logarithmic temperature dependence, which will be
difficult to observe and, at experimentally accessible temperatures, may be masked by

other contributions from, for example, phonon scattering.

2.1.2 Theoretical Expectations

The apparent metal-insulator transition came as a surprise. The standard picture
(somewhat controversial) is that a “metallic” state is not expected to exist in two

dimensions, at least for non-interacting electrons.

Non-interacting picture

For high enough 2DES densities, the electron-electron interactions are relatively weak
compared to the kinetic energy. This is due to the fact that the Fermi energy scales
linearly with density, £, o< n, while for the Coulomb interaction E. o Jn . We first

examine this high-density limit, ignoring the effect of electron-electron interactions.

Classical Drude conductivity

Within the Drude picture the 2DES resistivity is given by
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where 1/7, is the momentum relaxation rate (the rate at which the electron undergoes a
collision that alters its initial momentum), 1/7; is the impurity scattering rate, and 1/7, is
the inelastic scattering rate. As the temperature is reduced, the inelastic relaxation rate
vanishes and the resistivity should become a constant p, = m/ne’r,as T — 0, where py

is commonly referred to as the residual resistivity.

Weak localization

Next, including quantum corrections, for a non-interacting 2DES and a small amount of
disorder the electron gas is expected to be weakly localized. More precisely, weak
localization occurs when [, > [ , where [, i1s the mean free path and /4 is the phase-
relaxation length. The mean free path is the distance an electron travels between
collisions which alter its momentum. The phase-relaxation length is the distance an
electron travels before its phase is destroyed due to inelastic collisions (typically due to
phonon or electron-electron scattering — see [6] for further discussion of /, and /4). In
this regime, there is a small correction to the conductivity that one would have obtained

by simple application of Ohm’s law:

2¢?
(TZO’CL—EIH(I(/)/Im), (1)

where ocy is the classical prediction for the conductivity. This reduction in conductivity
from the classical value is due the fact that it is more probable for phase-coherent
electrons to backscatter. Performing a sum of the scattering amplitudes over all
backscattering paths and the time-reversed versions of those paths leads to a factor of two
increase in the total backscattering probability over the classical, non-coherent version of
this sum, which would sum over the scattering probabilities, not the amplitudes.

Lowering the temperature tends to lengthen the phase-relaxation length. At low
enough temperatures, electron-electron scattering will dominate over the effect of
phonons. Electron-electron scattering increases as the temperature is raised and states

ksT above and below the Fermi level are filled and emptied. Thus, the weak localization
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contribution causes a decrease in the conductivity as the temperature is lowered, giving

rise to insulating behavior.

Electron-electron interactions

There is another correction to the temperature dependence of the conductivity due to
electron-electron interactions. This term looks similar in form to the weak localization

correction, having a logarithmic temperature dependence [7]:

2

S0~ —<—1In[(v, /1,)(n/ k,T)].
Th

Thus, adding weak interactions strengthens the insulating temperature dependence of the

weakly-localized state.

Strong localization

For large enough disorder such that / k. ~1, the 2DES is strongly localized. The
conductance in this regime is of order or less than e¢*/4. Conduction occurs via variable
range hopping from localized site to site. Efros and Shklovskii [8] argue that the
temperature dependence of the conductivity is given by o ~ (T *l)exp(—oz/ T”), where p
=1/2.

Scaling theory

The scaling theory of localization [9] predicts how the conductance G of a square sample
of size L* scales with system size at zero temperature. Based on various analytical
arguments, the theory says that there is a scaling parameter £ which is a function of only

the dimensionless conductance g = G /(e’ / h) , where

—
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The behavior of this scaling function can be determined by examining some limiting
cases. For large, finite conductivities the 2DES is weakly localized and depends on

sample size like
2
(L) = ol ) =2 In(L /1 ),
wh
where L replaces /4 in Eq. 1 in the zero temperature limit since /, — oo . Then

1
B ox—.
g
As a check, in the limit g — oo, the metallic limit, we obtain 3 — 0 which gives Ohm’s
law. For small conductivities, strong localization requires that the conductance fall

exponentially with length:

o(L) xexp(—al).
Then

G=In(g/g,),

where gy is a constant of order unity. For intermediate conductivities, it is argued on
physical grounds that the scaling parameter should be a smooth function of In(g). The
resulting prediction for £ is shown in Fig. 2.1. For reference, Fig. 2.1 also shows the
scaling for conductance in one and three dimensions as well. In general, in order to
obtain Ohm’s Law in the large conductivity limit, we require 3 —d—2 as g — o0,

where d is the dimensionality.
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Fig. 2.1. Scaling of conductivity as proposed by Ref. [5], where d is the dimensionality.

For d = 2, at all finite conductivities, £ < 0 implies that all states are localized. Thus, the

prediction of scaling theory is that no metallic state should exist in two dimensions.

The case of strong interactions

On the other extreme, we can ignore disorder but consider the case of strong electron-
electron interactions. Quantum Monte Carlo calculations predict that the two-
dimensional electron gas should crystallize at large r,, where » = E./E, ~n " is a
dimensionless parameter determining the relative importance of interactions, where E¢ is
the Coulomb energy and Er is the Fermi energy. The most recent calculations of
Attaccalite et al. [10] predict that the lowest energy ground state for », > 35 is a Wigner
crystal. Any small amount of disorder should then pin this crystal, leading to insulating

behavior at low temperatures.

Summary

In reality none of the above mentioned limiting cases completely describe actual
experimental systems. When both disorder and strong interactions play a strong role the
conclusions become less clear. Interpretation of both theory and experiment in the

putative MIT regime remain difficult and controversial.
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2.2 Introduction to Surface Acoustic Waves

We next discuss experiments involving surface acoustic wave (SAW) propagation near a
2DES in the MIT regime. Several aspects of SAW’s make them an interesting probe of
low-density 2DES’s. We first introduce SAW’s and their interaction with 2DES’s.

2.2.1 Surface Acoustic Waves

SAW’s can be used to study the frequency and length-scale dependent conductivity of
two-dimensional electron systems. A SAW is an elastic wave that travels on the surface
of an elastic body and whose energy is confined to a depth of about one wavelength
below the surface. Because GaAs is piezoelectric, a SAW will interact with a 2DES

located near (within one SAW wavelength) the sample surface.

gyl

Fig. 2.2. Schematic of SAW propagation across a region containing a 2DES (shaded
region), launched and detected by interdigitated transducers.

One can use the piezoelectricity of GaAs to launch and detect SAW’s by placing
interdigitated metallic transducers on either side of the region containing a 2DES (see
Fig. 2.2). By applying a potential between the fingers at the resonant frequency of the
transducer, which is where the wavelength of the SAW matches the period of the
transducer, one can create an clastic distortion and launch a surface acoustic wave across
the 2DES region, which is then received by a second transducer. The interdigitated
transducers can be created with either optical or e-beam lithography, depending on the
desired SAW wavelength. For further reading, see Appendix C, which describes SAW

propagation in GaAs and details about SAW transducer operation.
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2.2.2 SAW Interaction With a 2DES

The electric potential created by the SAW will be screened by a 2DES located near the
sample surface. This screening will affect both the velocity and amplitude of the SAW.

The resulting attenuation and velocity shift are given by [11]

_ka/f olo, @)
2 1+(o/o,)’

Ay Kez 1

—=—" (3)

v 2 1+(CT/0’M)2’

where I' is the attenuation per unit length, v is the SAW velocity, £ is the SAW
wavevector, Kjﬁ, is a piezoelectric coupling coefficient with a value of approximately 6.4
x 10™, ois the electron gas conductivity, and oy, is a characteristic conductivity. Kjﬁ. and
oy vary with kd, where d is the 2DES depth (see Appendix C, section C.1.3). The
velocity change Av=v(o)—(c >0, ) is referenced to the SAW velocity in the

presence of a perfect conductor (Av — 0 as 0 — 00).
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Fig. 2.3. Dependence of SAW attenuation and velocity shift on 2DES conductivity from
Eq.’s (2) and (3).

For conductivities below oy, the amplitude and velocity of the SAW is unaffected by the
2DES and propagates as in bulk GaAs. As shown in Fig. 2.3, for conductivities

comparable to or greater than oy, the screening of the piezoelectric potential causes
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attenuation and a decrease in the SAW velocity. The value of oy can be crudely
understood by considering the capacitive charging of the 2DES. Consider a square patch
of 2DES of area A, where A is the SAW wavelength. To screen the piezoelectric
potential, the charge on this patch must be rearranged to match the SAW potential. If we
set the RC time constant for this charging equal to the SAW period, A/vs, we find that R ~
1/ evg ~ 1/ o

The above model has been successfully applied to SAW propagation in 2DES’s in
GaAs/AlGaAs heterostructures in the quantum Hall [12] and fractional quantum Hall
[13] regimes. Interestingly, there are exceptions to the applicability of the above model
when the SAW wavelength becomes comparable to some other 2DES length scale, as
was seen near Landau level filling factor v= 1/2 where the SAW absorption by the 2DES

was enhanced due to a geometric resonance effect for composite fermions [14].

2.3 Experiment

Because oy is a very low conductivity (for our experimental conditions
oy ~7x107 Q"), SAW’s will be very sensitive to the 2DES conductivity at low
2DES densities, near the conditions required to observe the MIT. SAW’s then allow
investigation of the frequency or length scale dependence of the conductivity in this
regime. Also, SAW’s sample the 2DES conductivity in a different way than ordinary
four-point resistance measurements; for example, a very inhomogeneous 2DES
containing isolated patches with conductivity greater than o), separated by regions with
zero conductivity will cause a non-zero SAW velocity shift, while the four-point

resistance of the sample may appear infinite.

2.3.1 Overview

The samples wused in this experiment are modulation doped GaAs/AlGaAs
heterostructures. Most of the data is from a structure where a 2DEG is formed at a single
GaAs/AlGaAs interface. The as-grown density of this 2DES is n = 1.4 x 10" cm™ with a
corresponding mobility about 3 x 10° cm?/Vs at low temperatures. The 2DES is confined
to a 2 mm x 2 mm square mesa. A single ohmic contact and a top gate allow one to

change the 2DES density and determine the 2DES conductivity via a low-frequency
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admittance measurement. Interdigitated SAW transducers are placed on either side of the
region containing the 2DES. The SAW fractional velocity shift is measured using
standard homodyne techniques, using a phase-locked loop (PLL). Simultaneous SAW
and admittance measurements were done in a “He immersion cryostat at a temperature of
T ~ 0.3 K and additional admittance measurements were also performed at lower

temperatures down to 50 mK in a dilution refrigerator.

2.3.2 Phase-Locked Loop (PLL)

The use of a phase-locked loop (PLL) provides a frequency and phase sensitive method
of measuring SAW velocity shifts. The PLL measurement results in better noise

rejection than simple rectification and amplitude detection.

phase
detector

low-pass
filter

RF

X Vout ~ AV/vV

sample amplifier

frequency

control
U
VCO

Fig. 2.4. Simplified PLL circuit for SAW Av/v measurements.

Figure 2.4 shows a simplified diagram of the PLL. The signal generator is a voltage-
controlled oscillator (VCO) which drives the sample and the LO of the phase detector at a
frequency f = foase + df/dV x V,,. The phase detector in this loop is a mixer which
multiplies the RF and LO signals. The voltage at the IF output is the result of this

multiplication, i.e.
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Vig €V, XV =V, sin(at)V, sin (ot + ¢) = %[cos(2wt+¢)—cos(¢)] ,

where @ =2xf, V,, =V, sin(wt), and V,,. =V, sin(wt+¢). Thus, the IF output consists
of a dc component ~ cos(¢) plus a component at 2f. If the low-pass filter following the IF
output has a passband much less than 2f; then only the cos(¢) term will determine V.
To get a rough understanding of how the loop works, consider, for example, a situation
where f»45. 18 set to a value such that the initial phase difference ¢, between the RF and
LO is ¢, = n/2+7n, where n is an integer. Then, we have V,,, = 0, and the VCO
frequency will remain at f = f;,.. However, if ¢, # 7/2+7zn and the sign of the
amplifier gain at the phase detector IF output is set correctly (for negative feedback), then
upon closing the loop, the circuit will attempt to minimize the frequency control voltage.
It will do so by driving the VCO frequency to a value that brings ¢ to some new value ¢
near w/2+7n. After ¢ is established, the loop will adjust the frequency in order to

maintain a roughly constant ¢ = ¢, for small SAW velocity changes.

v

Fig. 2.5. Sample with SAW path length x.

To see roughly how this circuit allows measurement of SAW Av/v, consider the
loop in an initial condition where the SAW velocity and wavelength have initial values v
=vp and A = Ay, respectively. Then, let the conductivity of the electron gas change so that
the SAW velocity changes to some new value vy + Av, and the SAW wavelength changes
to Ao + AA. Because the majority of the time delay between the RF and LO occurs in the
SAW sample, not the coaxial leads, the phase difference between the RF and LO at the
phase detector is determined by ¢ =27xf /v (see Fig. 2.5). The PLL will try to maintain
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a constant phase difference ¢ by adjusting the frequency f so that x/A is held constant.
Since x/A = xf/v is held constant, we have Af/fo = Av/vy, where Af = f — 1, (fo is defined
as the frequency when Av = 0). Then, the SAW velocity shift is simply given by the
VCO control voltage (plus an offset that depends on the choice of the base frequency of
the VCO): Av/vy =(frue —fo)/ fo Tdf 1AV x V] 1.

Vour = Peos(9)

fbase + (dﬁdV)VOth

out

Fig. 2.6. Convergence of PLL. The solid trace shows the amplified and filtered mixer IF
output, ¥, = Scos(¢), where ¢ =27zxf /v. The dotted line is the VCO frequency. The
open circle represents the initial state of the PLL, prior to connecting V,,, to the VCO

frequency control input, where f = f, . and ¥V, =cos(27xf,,,/v,). The small arrows

show the convergence of f and V,,, to equilibrium after the loop is closed. The solid
circle marks the equilibrium f'and V,,,.

Figure 2.6 sketches the initial behavior of the loop. The dotted line shows the VCO
frequency and the solid line shows the amplified and filtered mixer IF output. Before the

loop is closed (frequency control input disconnected), f=f, ., and
V

out

=cos(27xf,,./v,), as indicated by the open circle in Fig. 2.6. After the PLL is
closed, the VCO moves to a new frequency, as determined by V,,,. The sequence of
arrows from the open to closed marker in Fig. 2.6 indicates how the loop converges to the
equilibrium values of f and V,,,. We have assumed that the VCO frequency responds
quickly compared to the bandwidth of the low pass filter, which is the case for our actual

measurement circuit. It is also visually clear from Fig. 2.6 that for large amplitude f, the
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intersect of f, ., +(df /dV)V,, and Bcos(¢) will occur near where cos(¢)=0, ie.
$~90°.

Writing down the voltages at various points in the loop, we have

I/()u)f = ngIF
Ve =V, cos(9)

Af :(fl;ase _f;))+(df/dV)xV:mt’
where g is the gain of the amplifier, a is a constant determined by the mixer
specifications, fpse 1S the frequency of the VCO when V,,, = 0, fy is the frequency when
the loop is initially closed and Av = 0, and V; and V are the magnitude of the voltages at

the mixer LO and RF terminals. Now, ¢ is determined by f, v, and path length x, as
shown in Fig. 2.5:

¢=27xf/v.
Then,
(f = fouse ) Jo = Beos(2zxf /v),

where f=(df /dV)gaVV,! f,. For large loop gain f and choice of fiu. such that
‘(f—fbase)/(ﬁfo )‘ <1, we can write

27xf /v=cos™ = o)
B,
~ (f_fhase)
9, * T

where@, =37/2+27n or /2+27n, for some integer n. Then

vz(2ﬁx/¢b)[li%]f ~(2zx/¢,)f .

0 b
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Thus, v/fis held approximately constant, which implies that Av/v, = Af'/ f,.

2.3.2 Measurement Setup

Figure 2.7 shows a diagram of the actual SAW Av/v measurement circuit. This circuit is
similar to that of the basic PLL loop shown in Fig. 2.5; however a few more components
are needed in order to take care of technical details. In practice, the measurement is
pulsed, rather than cw. The main reason for this is to avoid the signal due to capacitive
coupling between the input and output SAW transducers. The measurement is pulsed at a
repetition rate of about 10 kHz with a pulse length ranging from 0.1 to 1 ps. The pulsed
measurement allows one to separate out the SAW signal (delayed in time by the sample
size / speed of sound) from the nearly instantaneous signal due to capacitive coupling.
Switch “C” pulses the input RF to the sample and switch “G” gates the RF output from
the sample, rejecting the capacitively coupled signal and keeping only the SAW signal.
The best pulse length to use is the longest pulse possible (to get the narrowest bandwidth
to reject noise) without having any overlap between the capacitively coupled signal and
the SAW signal. The SAW frequency typically ranges from about 100 MHz to 2 GHz.

Mixer “L” is a level 7 mixer, meaning that +7 dBm should be applied to the LO
input. In order to avoid dc offsets at the mixer IF output, the RF level should be kept
below 7 dBm. However, if the RF input voltage is too small, there may be insufficient
gain and the mixer may add noise to the measurement. RF levels between 0 and 7 dBm
are recommended. The attenuator “K” can be used to adjust the RF level.

The low-pass filter shown in Fig. 2.5 has been replaced in the circuit of Fig. 2.7 by
a boxcar integrator. A boxcar integrator is a gated integrator, which accepts incoming
signals during a user-defined period of time, and rejects signals for all other times. The
boxcar integrates this accepted signal over the length of the gate and then averages this
integrated signal for a desired number of repetitions. The gate length is set
approximately equal to the length of the RF pulse sent to the sample. Typically, 1,000 —
10,000 cycles were averaged via the boxcar integrator in this experiment. At a repetition

rate of 10 kHz, this gives a measurement time constant in the range of 0.1 to 1 sec
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Parts list:

. HP8648B RF signal generator, with frequency modulation (FM) control
MiniCircuits ZFSC-2-2500 power splitter, 0° phase shift.
MiniCircuits ZASW-2-50DR PIN diode switch.
. HP8116A function generator
MiniCircuits VAT-X attenuator
Miteq JS2 low noise RF preamp
. MiniCircuits ZASW-2-50DR PIN diode switch
H. Advance Electronics 605B variable delay line
I. Wavetek 183 XCG/Sweep generator
J. MiniCircuits ZKL-2 RF amplifier
K. MiniCircuits VAT-X attenuator
L. MiniCircuits ZFM-2000 mixer
M. SRS280 boxcar integrator
N. PARI113 audio amplifier
O. Overvoltage protection diodes (1N914) for FM input

mTHmY 0w

Q

Fig. 2.7. Complete SAW Av/v measurement circuit and parts list.



36

The protection diodes “O” protect the HP8648B RF signal generator FM input from
excessive voltages (which could occur, for example, if one set the loop gain S to have the
wrong sign). The instrument may be damaged for voltages |VFM| >1V.

The initial RF preamp “F” (Miteq JS2 low-noise preamp) was the main source of
noise in the Av/v measurement. This preamp has a gain of about 36 dB and noise figure
NF = 0.6 dB at frequencies ranging from 0.2 — 2 GHz. This translates to a voltage noise
contributed by the amplifier alone (i.e., for a cold source resistance) of 0.35 nV/+/Hz ,
referred to the amplifier input. If one were to look at the amplifier output over its entire
bandwidth (~ 0.2 — 2 GHz), this would correspond to a total noise of about 15 uV rms,
referred to the amplifier input. The PLL measurement, however, can use a narrower
bandwidth. The SAW signal received by the high-frequency preamplifier is a 0.2 to 2
GHz signal lasting for a pulse length of 7= 0.1 to 1 uS. This signal is amplified and sent
to the mixer. The mixer IF output has roughly the same shape as the pulse envelope
function, which is a square pulse of length z. The Fourier transform of this envelope has
a width ~ 1/z~ 1 — 10 MHz. This is the minimum bandwidth needed to measure the
mixer IF signal. The boxcar integrator rejects frequencies below 1/7 by gating the
incoming signal and removes frequencies above 1/7 via integration over the gate width.
Now, with this reduced bandwidth, the total noise, referred to the preamplifier input is 0.4
— 1 pV rms.

Unwanted fluctuations in the PLL output voltage are mostly due to fluctuations in
the RF preamp output. The amount of rms phase noise accepted by the PLL is
5¢=(5V/ V)/\/E x \[BW , where OV is the spectral rms voltage noise density of the
preamp, V' is the SAW signal rms voltage at the output transducer, and BW ~ 1/7 is the
bandwidth. For large loop gain, the phase ¢ between the mixer LO and RF inputs is held

roughly constant. Then,
¢=27rx(f0 +Af+5f)/(v0 +Av)+5¢

is held constant, where of is the change in f induced by the phase noise (we define Af as
the ideal frequency shift one would measure with no preamp noise). Then, for

Af/ f,, Av/v, <1 and fixed Av (and thus Af), we have
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Vo

o1 Jv= 27xf,

0p .
Using the above expression for phase noise, the rms fluctuations in the frequency are

v
0

To compare with experiment, we next estimate the expected fluctuations in the
measurement of Av/v due to the preamp phase noise for typical experimental conditions.
For a pulse width of 1 uS, a rms voltage at the SAW output transducer =10 pV, and a
SAW frequency of fy = 1| GHz, we find &/fy ~ 10°. By averaging over N = 10,000
cycles, this error is reduced by another factor of 1/ JN=1/ 100, so that &Jfy ~ 107, This

estimate is in rough agreement with the fluctuations seen in Av/v in Fig. 2.8.
2.4 Data and Discussion

2.4.1 SAW Av/v Gate Voltage Dependence

Figure 2.8 shows SAW fractional velocity shift Av/v at 671 MHz as a function of top gate
voltage V,. The two curves correspond to data from two different devices: one where the
surface acoustic waves travel along the [110] direction, and the other along the [110]
direction. As a negative gate voltage is applied, the density of the 2DES is reduced. We
first concentrate on the gate voltage dependence of Av/v at smaller gate voltages.

The linear dependence of Av/v on V, for gate voltages V, > -1.6 V was not initially
expected and is actually due to the fact that the SAW Av/v measurement is a very
sensitive method of detecting changes in sample strain. Applying a voltage between the
gate and 2DES creates a strain in the GaAs through the piezoelectric effect (see Appendix
C). An electric field in the [001] direction causes a shrinkage along the [110] direction
and an expansion along the [110] direction, and vice-versa for an electric field of
opposite sign. Using the piezoelectric coupling constant e;4 and elastic moduli for GaAs,

one can make a simple estimate of the strain and thus the slope of the Av/v versus Vg,
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Fig. 2.8. SAW fractional velocity shift Av/v at 671 MHz as a function of top gate voltage
in two 2DES samples cut from the same MBE wafer. The two traces correspond to SAW
propagation in two orthogonal directions, along the [110] and [110] crystalline axes.
The linear portion of the data for V, > -1.6 V is due to a piezoelectric-induced strain,
while the steep rise in Av/v near V,=-1.7 V is due to the depletion of the 2DES.

curve: Ss = (e1s/cas)(Vy/d), where d is the 2DES depth. This yields a predicted velocity
shift of ~ 5 ppm/V, which is similar in magnitude to the experimentally observed slope.
This estimate assumes the strain is uniform throughout the region of SAW propagation,
which will not be true for regions of the sample outside of the 2DES mesa region or for
depths below the 2DES mesa (~ 1 um tall). The data of Fig. 2.8 are an experimental
demonstration of breaking the rotational symmetry of GaAs with a gate. This effect is
usually ignored, but may have implications for some 2DES experiments, such as the

density dependence of the anisotropic transport seen in high Landau levels [15].

2.4.2 Frequency Dependence

Next we focus on the step in the velocity shift seen at very low density, at the end of the
linear strain-induced effect. This step in the velocity roughly corresponds to the
conductivity of the electron gas passing through the value o), as the density is lowered.
Fig. 2.9 shows this step for measurements taken at various frequencies, corresponding to
harmonics of the interdigitated SAW transducers — the 1** harmonic up to the 11", This

corresponds to frequencies ranging from about 120 MHz to 1.3 GHz and wavelengths
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ranging from approximately 24 to 2 microns. The difference in the size of the step for the
various frequencies is due to fact that the top gate screens the interaction between the
surface acoustic wave and the 2DES by different amounts depending on the SAW
wavelength. The inset shows all of these curves normalized by the step size. The fact
that all of these curves lie on top of one another demonstrates that there is no visible

length scale or frequency dependence. We shall return to this point later.

1348 MHz

Aviv (ppm)

120

1 1 1 1

-1.2 -1.1 -1.0 -0.9

V, (volts)

Fig. 2.9. Depletion-induced step in SAW velocity shift vs. gate voltage at several
frequencies. Inset: collapse of same data sets onto a single curve after normalization by
the total step in Av/v at each frequency. The 120 MHz data is not included due to its
much lower signal-to-noise ratio.

2.4.3 DC Conductivity

To measure the quasi-DC conductivity (at audio frequencies) of the electron gas we
measure the admittance between the top gate and ohmic contact. Fig. 2.10 shows the
imaginary and real parts of the admittance versus dc gate voltage. Both traces have been
normalized by @C, the product of the angular frequency and the gate-2DES capacitance,
C =670 pF. At small gate voltages the conductivity of the 2DES is much greater than the
conductance @C so that the circuit looks just like a capacitor. When @C becomes
roughly equal to the conductivity of the 2DES, the imaginary and real parts of the

admittance become nearly equal. Then, as the conductivity of the electron gas is lowered



40

! I ! I ! I ! I
9 1.0
g Im(Y/wC)
g
< 0 5 (XN} ——L
5 - —
I LnLwn- L
®©
E
S Re(Y/wC)
Z
00 1 1 1 I
-1.12 -1.08 -1.04 -1.00

Vg (volts)

Fig. 2.10. Real and imaginary parts of the gate-2DES admittance, normalized by «C,
measured at 1.3 kHz. The inset is a schematic of the circuit model used to extract the
2DES conductivity from the admittance data.

further, the admittance drops to zero. The sample layout (see inset to Fig. 2.8) is such
that the admittance is well-described by a 1-D distributed RC circuit model, which can
then be used to calculate the electron gas conductivity from the admittance
measurements. Measurements were made at frequencies ranging from 10 Hz — 10 kHz.
Data near the peak in the real part of the admittance (where the measurement is most
sensitive to the 2DES conductivity) was used to extract the 2DES conductivity using this
1-D distributed circuit model.

Figure 2.11 shows an enlarged schematic of the sample layout, where V is the dc
gate voltage used to modify the 2DES density and V;, is the small ac voltage used to

measure the admittance between the top gate and ohmic contact.

V +V Ohmic
contact

top gate

Fig. 2.11. Schematic of sample layout.
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A small strip of 2DEG is left ungated on the ohmic contact side of the sample. We
operate in a regime where the ungated strip has relatively high conductivity compared to
the gated area. This allows us to model the gate-2DES admittance as a 1-D distributed
RC circuit.

@ — —
_— C Ax —_T ¥Mx)| --- E—
AN ANN— —AAA—
L / R A — / lx=a)=0
— fix)
x=0 x=da

Fig. 2.12. Distributed circuit model.

Fig. 2.12 shows this circuit model, which is basically a transmission line circuit with a
resistance replacing the usual inductance, where C is the capacitance per unit length, R is
the resistance per unit length, and a is the length of the gated 2DES region. We solve for
the admittance in the limit Ax — 0. Then

)4

— IR,
(9x

and

ol
—=—wCV, -V
o~ WC( )

m

with the boundary condition requirement that /(x =a)=0. We wish to know the

admittance 1/Z = I;,/V;, in terms of R and C. The result is

mn

I tanh(va)’

m

v, 7,

4)
where

1+
=—+RwC,
g 5 Rw (5)
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O_f wC

To check some limiting cases,

for yva <1,

iwC

and for va >1,

To obtain the 2DES conductivity, the gate-2DES admittance is measured and Eq’s (4)
and (5) are numerically inverted to solve for R. The admittance measurement is most
sensitive to the 2DES conductivity when R ~ 1/@C, so measurements are made at several

frequencies in order to obtain good resolution over a wide range of conductivities.

2.4.4 Temperature Dependence

Figure 2.13 shows the resulting low-frequency conductivity as a function of gate voltage
and density. The calibration of density versus gate voltage was obtained by measuring
the magnetic field dependence of the gate-2DES admittance. The minima in the
imaginary part of the admittance correspond to an integer number of filled Landau levels.
The density was determined in this way for several gate voltages, and a linear relation
between density and gate voltage was assumed to obtain a calibration down to the lowest
densities. The uncertainty in this calibration is ~ 10° cm™. The conductivity is shown in
units of the conductance quantum e’/A = 3.9 x 10> Q' on a log scale, showing that the
conductivity vanishes very quickly for conductivities below e*/4. Data is shown for three
different temperatures: 50, 150, and 400 mK. For densities above 8 x 10° cm™, changing
the temperature has negligible effect on the conductivity, suggesting that the 2D electron

gas is in a ‘metallic’ phase. For densities below about 6 x 10° cm™, the conductivity falls
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quickly with decreasing temperature, indicating that the sample is most likely insulating
in the low temperature limit. This temperature dependence suggests that the metal-
insulator transition in our sample occurs at a density of about 7 x 10° cm™, where the

conductivity is roughly e*/A.

-4 A

-1.10 -1.08 -1.06
Vg (volts)

Fig. 2.13. 2DES conductivity vs. gate voltage (and density) at three temperatures. For
densities below =~ 7 x 10’ cm™ the 2DES appears to have an insulating ground state.

2.4.5 SAW versus DC Conductivity

At first glance, by application of Eq. (3) using conductivity values like those shown in
Fig. 2.13, one should be able to predict how the SAW velocity shift will behave as a
function of gate voltage as the conductivity of the electron gas passes through o). Fig.
2.14 displays the result of following this procedure, along with the actual measured SAW
velocity shift. The closed symbol data of Fig. 2.13 is the 2DES conductivity from
admittance measurements as a function of density and gate voltage at a temperature of
300 mK. The dashed line is a prediction of the expected surface acoustic wave velocity
shift from this conductivity data using Eq. (3). For the experimental conditions relevant
to Fig. 2.14 (top gate with a 2DES 0.6 um below the surface and SAW A ~ 3.4 um), o/ ~
7107 Q. The open symbols are the measured SAW velocity shift at 856 MHz. There
is a striking conflict between the measured and predicted velocity shift. The measured

velocity shift begins to change at conductivities nearly two orders of magnitude above oy,
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and continues to change for conductivities about three orders of magnitude below G,. By
contrast, the change in the predicted velocity shift occurs in a very narrow density and

conductivity range.

N (10° cm™)

N
o

o
o

Normalized Av/v

o
o

V, (volts)

Fig. 2.14. Low-frequency conductivity ¢ and normalized SAW velocity shift at 856
MHz vs. gate voltage and density at 7= 300 mK. The dashed line is the prediction of Eq.
(3) using the measured .

One likely explanation for this conflict between the measured and predicted surface
acoustic wave velocity shift is that the electron gas becomes very inhomogeneous near
depletion. The model (Eq. (3)) used to calculate the expected velocity shift obviously
breaks down for a strongly inhomogeneous conductor. For example, if the majority of
the 2DES had a local conductivity much greater than o), but contained a few isolated
patches with conductivity lower than o), there would be a response in the measured
velocity shift even though the conductivity obtained via standard transport measurements
would still be much greater than o,

That the electron gas is inhomogeneous at these densities is consistent with
expectations about density fluctuations caused by the Si donors, and also with
magnetotransport measurements on a similar sample, which estimate density fluctuations

on the order of 5 x 10° cm®. Pikus and Efros have shown [16] that for randomly
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Fig. 2.15. Cartoon of SAW propagation near a 2DES with density inhomgeneities.
Hatched areas represent low-density regions where the conductivity is less than o). The
SAW wavelength, A, is greater than the disorder length scale.

distributed ionized donors of concentration C, located a distance d from the 2DES, that

the rms 2DES density variation is

SN =~C/87d? .

Using the 2DES ungated density of our sample for C = 1.4 x 10" cm™ and the spacer
distance d = 70 nm, this gives a density variation of SN ~ 1 x 10'° cm™. The length scale
of these density fluctuations is set by the spacer distance d. Considering that our smallest
experimentally accessible SAW wavelength was 2.2 um, the lack of wavelength
dependence seen in Fig. 2.9 is not surprising.

Looking at the temperature dependence of the conductivity (Fig. 2.13) we see that
the onset of insulating behavior in the temperature dependence is roughly coincident with
the initial rise in surface acoustic wave velocity. If our picture of an inhomogeneity-
driven increase in Av/v is correct, this coincidence suggests that the apparent metal-
insulator transition will be strongly influenced by the presence of inhomogeneities. In
light of this, it seems likely that for our system, the transition is better described as a
disorder-driven, percolation-type transition rather than as an exotic, interaction-driven

quantum phase transition.

2.5 Conclusion

In conclusion, we have examined the conductivity of a low-density 2DES via two very

different experimental techniques — low-frequency transport measurements versus surface
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acoustic wave propagation. Interpreting our measurements within a model for a
homogeneous conductor leads to a strong conflict in the results obtained from the two
types of measurements. This conflict demonstrates the importance of the inhomogeneous

nature of the 2DES near the putative metal-insulator transition.
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Chapter 3:
Two-dimensional Electrons in a Magnetic Field

This chapter reviews the transport properties of 2DES’s in a magnetic field, from a low-

field, classical picture to the integer and fractional quantum hall states.

3.1 Classical Magnetotransport

We start with the Driide model for conductivity of the electron gas, which assumes a
background of static, positively charged ions with a gas of classical, non-interacting
electrons whose motion is damped by collisions with the background ions. These
collisions reduce an electron’s average momentum at a rate m*v, /7, where m* is the
electron effective mass, v, is electron drift velocity, and 7, is called the momentum
relaxation time. The application of magnetic and electric fields modify the electron drift

velocity, vg:

Pla _ —e(E+\7d XE),
Tm
The current density in terms of the drift velocity is j = —v,en, where n is the electron
number density.
B
.-“l
I
2DES
X
e

Fig. 3.1. Coordinate system for magnetotransport analysis.

The resistivity tensorpis defined by £ = pj. Then, in 2D and using the coordinate

system shown in Fig. 3.1,
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E. _[—m/eT —B ]Vx]
E, B —mler)|\v,
So,
b m/ne*r  Bl/ne
—B/ne m/ne’t|

Conventionally, p,, =p, = m/ne’Tis known as the longitudinal resistivity and

Py = P,, = B/ne isreferred to as the transverse or Hall resistivity.

3.2 Integer Quantum Hall Effect

3.2.1 Landau Levels

Next, we consider the effect of quantum mechanics on 2DES magnetotransport. In a
magnetic field, the usual momentum in the Hamiltonian is replaced with p — qZ , Where
pis the canonical momentum, 4 is the vector potential and ¢ is the charge. Then, for

electrons
1. -2
H :—‘p—keA‘ —el.
2m
We consider an electron confined to a sheet in the x-y plane with "= 0 everywhere and a

magnetic field B in the z-direction. Using the Landau gauge for the vector potential, we

can choose A = yBx . Solving for the eigenvalues and eigenstates, we obtain

En:[n—i-l]hwc,
2
1/2
1) 1 X—x (x—x,.)
Y (2, ):[_] —F| H,_ Elexp|———5—|exp(iky),
i (XY 17 2,,””3\/; " p 28 p(iky

where 7 is an integer, & is any wavevector satisfying the desired boundary conditions, L is

the system size in the y-direction, x, =—hk/eB, H,k  are Hermite polynomials,
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w, =eB/m" is the cyclotron frequency, and /, = Jh/eB is the magnetic length. The
evenly spaced, allowed energies E, are called Landau levels.

If we impose periodic boundary conditions in the y-direction such that
¥, (x,0)=1  (y,L) for some length L, then the allowed k’s arek = N27 /L, where N is
an integer. A given state with label £ is localized in the x-direction around the position
x, = —hk/eB by the Gaussian factor in the wavefunction, with a decay length on the
order of /5. Then, if we count the states within an area of length and width L, for a given

Landau level 7, the number of available states per unit area will be N/L* = eB/h.

3.2.2 Localized States

From the above solution for an electron moving in a magnetic field, we might expect the
density of states of a 2DES to consist of a series of equally spaced delta functions
corresponding to the Landau levels £,. However, in actual physical systems, disorder
modifies this energy spectrum, broadening the Landau levels and also creating localized
states, as shown in Fig. 3.2. Disorder due to impurities and defects in the crystalline
lattice gives rise to a random, spatially varying background potential for the electron gas.
For example, in doped GaAs/AlGaAs heterostructures random fluctuations in the
distribution of donor ions can lead to a slowly varying (compared to/,) background
potential. This disorder then leads to spatial fluctuations in the electron density and the
formation of localized states -- states which are localized in spatial extent and, in the limit
of zero temperature, do not contribute to carrying current across the sample. Local
valleys in the potential landscape trap and localize electrons, especially in the presence of
a large perpendicular magnetic field. Due to the presence of these localized states, the

Fermi energy can lie at energies between Landau levels.



51

heo.

D(g)

Fig. 3.2. Density of states D(¢) with Landau levels (spin neglected) with extended
(hatched) and localized (shaded) states. The Fermi energy Er is indicated by the dashed
line.

3.2.3 Spin

Another contribution to the density of states in a magnetic field will be the Zeeman
splitting due to the electron spin degree of freedom. As shown in Fig. 3.3, this will lead

to a second set of energy levels separated from the first by E, = gu, B.

i ———

I

B - -——

hew,

i —-——

A A s -

Dig)

Fig. 3.3. Density of states D(g) with spin-split Landau levels with extended (hatched)
and localized (shaded) states. Drawing is not to scale.



52

Please note that Fig. 3.3 is not to scale. For electrons in GaAs, the energy gap between
spin-resolved energy levels is £, = gu,B = 0.29 x B (K), which is much smaller than
the cyclotron splitting @, = 20.1 x B (K), where B is in Tesla.

3.2.4 Magnetotransport — IQHE

Below, Fig. 3.4 shows the magnetotransport of a 2DES in moderately large magnetic
fields. The longitudinal resistance R, displays oscillations versus increasing magnetic
field. As the magnetic field rises, the energy gap between Landau levels increases so
that, at fixed 2DES carrier density, the Fermi level will drop through the ladder of
Landau levels as they are depopulated, leading to oscillations in the conductivity. Instead
of the linear Hall resistance R,, versus B one would expect from a classical analysis, Ry,
is actually quantized. When R,, = 0, the Hall resistance plateaus at a value R,, = h/ge’,
where ¢ is an integer such that v< g < v+ 1, and v = nh/eB is the number of filled
Landau levels and is called the Landau level filling factor. Amazingly, the exact value of
the quantized Hall resistance is completely independent of the sample used! In fact, the
quantized Hall resistance is used as a resistance standard due to the fact that the value of
R, at the plateaus does not depend on the material system containing the 2DES or

disorder.

©) “y

0.0 0.2 0.4 0.6
B(T)

Fig. 3.4. Magnetotransport displaying longitudinal resistance R, oscillations (red trace)
and quantized Hall resistance Ry, (blue trace) in the integer quantum Hall effect regime.
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This quantization is known as the integer quantum Hall effect (IQHE). The IQHE was
experimentally discovered by von Klitzing et al. in 1980 [1], who saw the quantization of
the Hall resistance in a Si MOSFET. This work was awarded a Nobel prize in 1985.

The presence of localized states is necessary for observation of the IQHE. The
zeroes in R,, versus B correspond to magnetic fields where the Fermi level lies between
Landau levels so that only localized states are occupied at the Fermi energy. As
mentioned earlier, the conductivity of these localized states vanishes at low temperature.
Inverting the 2D conductivity tensor we obtainR_ =o_ /(o +o*xy2), which, since
o, #0, leads to the (somewhat non-intuitive) conclusion that wheno,, =0, R, = 0 as
well. The precise quantization of Hall resistance can be understood by an analysis of

how current flows at the edges of a 2DES sample.

3.2.5 Edge States

Consider a 2DES confined in the y-direction such that V(y) = 0 for |y| < L and W(y)
increases for |[y| > L (see Fig. 3.5). If the confining potential varies slowly, such that
oV /oy < ha. /1,then we can make the approximation that the energy levels simply rise
in energy near the sample edge such thatE, =@, (n+1/2)+V(y). These energy levels
will then cross the Fermi energy near the edge, leading to a nonzero density of states at

the Fermi level.

H(v)

Fig. 3.5. Landau levels (dotted lines) in a confining potential V(y), showing the
formation of edge states.

These edge states carry current in the IQHE and are chiral, meaning that the motion of

electrons in an edge state is limited to only one direction [2]. Depending on the direction
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of the magnetic field, the left edge states carry current into the page and the left states
carry current out of the page, or vice versa. Because the left and right edge states are
spatially separated from one another, it is difficult for electrons to scatter from the states
carrying current one direction into states traveling in the other direction. This leads to
ballistic conduction in the edge states in the quantum Hall regime. The Landauer-
Biittiker formula for the conductance of ballistic 1-D conductor can be applied to find the

conductance of the edge states [3, 4]. In this formalism, the conductance of M parallel 1-

D modes is given by Me*/h.
v,
=1
........ +_ rrErErErrEEEEEE
14 B® V.
:::),:7::::::::.::::::::::::::
n=1{ v,

Fig. 3.6. Edge state transport in the IQHE. The central region contains a 2DES, while
the shaded regions are Ohmic contacts.

Consider applying a voltage V' = V| - V3 across the sample shown in Fig. 3.6. The
number of edge channels is equal to the number of filled Landau levels v (in Fig. 3.6 v=
2, since the n = 0 and n = 1 levels are occupied). The conductance between contacts 1
and 3 will be the conductance of two ballistic channels in parallel:
o, =1/V =2xe’ / h. The Hall resistance will be given by R, =W,-V,)/1. Now, Vy=
V1 since there is no voltage drop along a ballistic edge state. Similarly, /> = V3. Thus,

2 . . . .
R, =V/I=h/2e". In general, the quantized Hall resistance is given by

2
R, =hlve.

3.3 Fractional Quantum Hall Effect

We have so far neglected the effect of electron-electron interactions. However, Coulomb

interactions become increasingly important at large perpendicular magnetic fields. At
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high enough perpendicular magnetic fields, such that the Landau levels do not overlap in
energy, within a given Landau level the kinetic energy is the same for all electrons and
becomes an irrelevant constant in the Hamiltonian. This removal of kinetic energy from
the problem is referred to as “quenching of kinetic energy”.

One striking consequence of Coulomb interactions in 2DES’s at high magnetic fields
is the fractional quantum Hall effect (FQHE), which was discovered by D. C. Tsui, H. L.
Stormer, and A. C. Gossard [5], who were awarded a Nobel prize for their discovery in
1998. They observed a minimum in Ry, and plateau for R,, in the magneotransport of a
relatively high-mobility 2DES which appeared to correspond to a Landau level for a
fractional filling factor, v = 1/3. [Eventually, the fractional quantum Hall effect was
observed at other fractional filling factors as well.

Laughlin [6] wrote the following trial wavefunction to describe the v = 1/¢ FQH

states:

v (rzrnzy)= ]G =2,) exp( S /4j

i>j=1

where ¢ is an odd integer, N is the number of electrons, and the complex coordinate
z=(x+iy)/l,. This wavefunction is the exact solution for the case of 2D electrons in a
perpendicular magnetic field with hard core interactions; it is a very good approximation
for the Coulomb potential. The form of the wavefunction is reminiscent of the non-
interacting solution; for ¢ = 1 (v = 1), it is just an antisymmetric product of the single-
particle wavefunctions. For general g, the polynomial product factor provides the correct
symmetry (complete spin polarization is assumed) and ensures that any two electrons i
and j avoid one another, since when z; = z;, the value of the wavefunction is zero.

A standard series of fractional quantum hall states [7] are allowed for all vsuch that

P
2pg+l’

Vv =

where p and ¢ are integers. Particle-hole symmetry leads to another set of allowed FQH

states for holes instead of electrons:
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including the spin degree of freedom (the formula is v=1-p/ (2 pqil) for a fully
polarized system). Figure 3.7 shows an example of magnetotransport displaying several

FQHE states.

B(T)

Fig. 3.7. Magnetotransport displaying the FQHE. Several fractional states, including v =
2/3, 3/5, and 2/5 can be seen.

3.3.1 Composite Fermions

One elegant picture used to explain the FQHE, proposed initially by J. K. Jain [8], is the
composite fermion model. In this picture, electrons in a perpendicular magnetic field are
replaced by quasiparticles called composite fermions (CF’s), where a CF is an object
consisting of an even number of magnetic flux quanta rigidly attached to an electron.
The hope is that strongly-interacting electrons can be replaced by more weakly-
interacting CF’s.

The flux attachment process is accomplished mathematically via a gauge
transformation. Following the treatment in Ref. [9], consider the Schrodinger equation

for the initial problem of 2D electrons in a perpendicular magnetic field:
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Then make the gauge transformation

2p
Y= exp[—i2pz ijj‘PCS = H[%J Yo,

j<k

where p is an integer, z = (x+iy)/l 5 1s the complex coordinate for the position of an

electron, and 6, is the angle between two particles:

zZ.—Zz
o J k
ij =iln| ———|.
‘Zf_zk‘

This is known as the composite fermion Chern-Simons transformation [10 — 11], which is
why the wavefunction in the new gauge is labeled with the subscript “CS”. The

Schrodinger equation for the new wavefunction ¥ ¢ is

2
{LZ(ﬁz +§2(’€)_£&(’4’;)j +V}Pcs =EY,

2m 5

where

ais
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which is the magnetic field due to attaching a “flux tube” or point flux to the electrons at
positions r. The number of flux quanta attached to each particle, 2p, is even, so that this
flux does not modify the statistics of the particles, since when two particles are
exchanged the extra Aharonov-Bohm phase accumulated due to the extra flux will be
2mp, giving an extra phase factor of exp(27 pi) =1, which is unobservable.

We next rewrite the problem once more, defining

A*+6A=A4-a,

where A* is defined by
Vx A*=2B*=2(B-2png,),

where 7 is the electron number density and B* is a uniform magnetic field. Then, the

Schrédinger equation can be written as

2
{LZ(@ +§Z*(F[)) +V+V}‘PCS —(H'+V+V")¥ s = E¥ g,

2m 5

where V' ~58A4. Then, a mean field approximation can be used, where the problem is
first solved exactly for H' and then the V' + V"' term is treated perturbatively.

In this mean field approximation, the attached flux cancels some of the external
magnetic field so that the effective magnetic field experienced by a CF is B*= B — 2pné.
The effects of fluctuations of the electron density 7, which will lead to fluctuations of the
effective magnetic field, are treated as perturbations. It is not obvious that the
perturbations will be small. However, for judicious choice of flux attachment, this
approach is able to predict the locations in filling factor space of most FQH states, and
has even met some success in describing compressible states near even-denominator

filling factors.
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Fig. 3.8. Transformation of ordinary electrons in a magnetic field into composite
fermions. a) Electrons in a magnetic field are transformed into b) composite fermions by
attachment of two flux quanta, opposing the actual magnetic field. c¢) In a mean-field
picture, the composite fermions experience a reduced magnetic field. The figure shows
the case for v = 1/3, where each electron absorbs two flux quanta and the effective
magnetic field for CF’s corresponds to one flux quanta per CF.

Using this effective magnetic field, the FQH states can be understood as states
corresponding to the IQHE for CF’s. The CF filling factor is given by v, =ng,/ B*.
The electron filling factor is then v =ng,/B=v_.. /(2pv.. £1). If we require vcr to be

equal to some integer ¢, then
v=q/2pg*l),

which is just the expression given earlier for the principle series of FQH states.

The composite fermion picture can also be used to describe the compressible states
between QH states. For the case of the half-filled lowest Landau level, v = 1/2, CF’s
consisting of an electron bound to two flux quanta will, in a mean field approximation,
experience zero effective magnetic field; at exactly v = 1/2, B* = 0. This suggests that
the state at v = 1/2 may be described as a Fermi sea of composite fermions. A seminal
paper by Halperin, Lee, and Read [12] put this picture on firmer theoretical footing,
arguing that the CF Fermi surface at v= 1/2 survives beyond mean field theory, when the
effect of fluctuations in the effective magnetic field are included. The existence of a
Fermi surface at v= 1/2 has also been demonstrated experimentally by Willett and others
[13-15]. In these experiments, the motion of CF’s very near v = 1/2 appears to be

described by classical cyclotron orbits of radius R™ = hkrleB.y.
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3.4 Other 2DES States

Yet more fascinating physics has been found in high-quality 2DES’s at low temperature
and large magnetic fields — for example: a FQHE at even denominator filling factor
(forbidden according to the expected hierarchy of FQHE wavefunctions) v = 5/2, possible
charge density wave formation at high Landau levels (v > 3), and an exciton condensate
in bilayer 2DES’s at total filling factor vi = Vigyer1 + Vigyero = 1. More physics likely
awaits discovery as sample quality improves, experimentally accessible temperatures

decrease, and new experimental probes are developed.
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Chapter 4:
Spin and NMR Techniques

In the overview of the basic phenomena of 2D electrons in a magnetic field given in
Chapter 3 the spin degree of freedom was largely ignored. However, several chapters in
this thesis will discuss examples of 2DES states where spin does play an important role.
This chapter gives a basic introduction to the role of spin in 2DES’s and also introduces a
resistively-detected nuclear magnetic resonance technique (RDNMR) that we use to

probe the electron spin at several 2DES states.

4.1 Background

In a large enough magnetic field the Zeeman energy £, o B will eventually dominate the
Coulomb energy E . oc VB, and the spin degree of freedom will be frozen. However, the
g-factor in GaAs is reduced from that in vacuum: g* = -0.44 instead of 2. This means
that at intermediate magnetic fields the Coulomb interaction may play a large role in
determining the behavior of the electron spin.

The spin degree of freedom leads to a variety of phenomena in 2DES’s. Laughlin’s
wavefunction (see Chapter 3) assumes complete spin polarization. However, Halperin
proposed [1] incompletely spin polarized versions of fractional quantum Hall states.
Experimentally, it has been shown that transitions can occur between FQH states with
ground states of differing spin polarization, but at the same filling factor, by tuning the
ratio of the Zeeman to Coulomb energy. Some of the first experiments to observe this
type of transition were performed by tilting the sample in a magnetic field, so that the
total magnetic field, and thus the Zeeman splitting, can be varied relative to the
perpendicular magnetic field, which determines the filling factor and the Coulomb
energy. Using this technique, spin transitions were observed for the v = 8/5 and 2/3
states [2, 3]. Spin excitations are also strongly affected by electron-electron interactions.
For example, it is predicted that, due to Coulomb interactions, the lowest-lying charged
excitations at v =1 are Skyrmions -- objects with multiple reversed spins and a smooth

spatial variation in spin [4, 5].
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4.2 Nuclear Magnetic Resonance

4.2.1 Hyperfine Interaction

We are not interested in the nuclear spin itself, but, due to the hyperfine interaction, NMR
can be used to probe the electron spin. The full hyperfine Hamiltonian [6] describing the
interaction between an electron and the magnetic moment due to the spin of the nucleus

1S

hf =_Z_70Z{meqR3 1:]\2, +%{3(MS ];XMI .R)_Ms ‘MI]"%[MS 'M15(1§)}’

where ¢ is the nuclear charge, m, is the mass of the electron, R is the relative separation
between the electron and nucleus, L is the orbital angular momentum of the electron
relative to the nucleus,M, is the magnetic moment of the nucleus, M, =g, u I /H,
where g, is the nuclear g-factor, 1, is the nuclear Bohr magneton, I is the nuclear spin,
and M s =8oM B§ / h 1s the magnetic moment of the electron, where gy is the free electron
g-factor, z5 is the electron Bohr magneton, and S is the electron spin. The first term is
due to the interaction between the nuclear magnetic moment and the magnetic field
created at the nucleus by the orbital angular momentum of the electron. The second and
third terms stem from the dipole-dipole interaction between the nuclear and electronic
spin, where the last term is the contribution from the singularity that occurs when the
electronic wavefunction and nucleus spatially overlap. It turns out that this last term,
named the “point contact” term, is the dominant contribution to Hjs for our 2DES

samples.

4.2.2 Point Contact Interaction in n-Type GaAs

For electrons in the conduction band at the I" point in GaAs, the electronic wavefunction
is composed mostly of an s-type orbital. This means that the first term in Hj can be
neglected since for L = 0, this first term is zero. Because of the spherical symmetry of the
s-type orbital versus the symmetry of the dipole interaction, the second term also
vanishes. The third term, however, remains since the s-type orbital wavefunction is

nonzero at the origin. Thus,
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H, = —f—;%goﬂ37nh<f>'<§>5(ﬁ)’

where y, =g, u,/h is the nuclear gyromagnetic ratio. The value of the hyperfine

correction to the total energy is then

2
s

2u -\ /=
E, =T°goﬂ37nh<l>-<5>\w(0)
Where w(0) is the value of the electronic wavefunction at the position of the nucleus.
Paget et al. have estimated the magnitude of this term for n-type GaAs [7] for each of the
three nuclear species present in GaAs: "°As, *Ga, and 'Ga. The result is given in terms
of an effective magnetic field By due to the nuclear polarization of the host

semiconductor:

5= Xn, =2 £ by 1),
where B, is the contribution due to the individual nuclear species, g* is the effective g-
factor for electrons in the conduction band at the I' point in GaAs (g* = -0.44), x, is the
fractional concentration of each nuclear species, d, is the electron density at the nucleus,
and <f a>is the average value of the nuclear spin. The estimated contribution from each
nuclide at 7= 0 is Bysas = -2.76 T, Beoga = -1.37 T, and By, = -1.17 T, giving rise to a
maximum total contribution of By =-5.3 T. These effective fields are negative, meaning
they will oppose any externally applied magnetic field By. This leads to a total electronic

Zeeman splitting given by
AE, = g*ﬂB(Bo +BN)'

A decrease in the nuclear polarization will reduce the magnitude of By, causing an
increase in the magnitude of the Zeeman splitting. Also note that By affects only the

Zeeman energy, not the electron’s orbital motion.

4.2.3 Nuclear Polarization
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In the case of an externally applied magnetic field By, it is simple to obtain the

equilibrium fractional nuclear polarization of a given nuclear species at temperature 7-

> m, exp(-pm.)
‘fO = mz:_II 4
1> exp(-pm.,)

m,=—1

where f =y hB,/kT. When fis small we can use the approximation

hB,(I +1
éozyn 0( )’

3kT
which is just the nuclear Curie law.
For reference, Fig. 4.1 shows B, and By versus temperature for By = 10 T. At
conditions roughly similar to those of our experiments, By ~ 10 T, 7~ 100 mK, we have

By ~-0.2 T and a nuclear polarization of &, ~4%.

O Ll Ll LI ll :."l/..’l‘u,.l. prp———
,..__,,w"}
-1 _—;}’ - - ]
—~ i — total
£ 2 4 _ Tl T
< L7 B,=10T 8
Y 2 Gal _|
8]
Q --- Ga
4 —
-5 1 1 L1 11 III 1 1 L1 111 II 1 1 L1 1111
2 4 68 2 4 6 8 2 4 6 8
0.001 0.01 0.1 1

Temperature (K)

Fig. 4.1. Effective magnetic field due to thermal equilibrium polarization of host
semiconductor nuclides at a static magnetic field of Bo = 10 T. Dotted and dashed lines
show the contribution from As, 'Ga, and ®Ga separately, and the solid line displays the
total contribution due to all three species.
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4.2.4 Bloch Equations

The phenomenological equations of Bloch [8] describe the evolution of the nuclear
magnetization in the presence of a static magnetic field EO = B,z, and an ac magnetic
field B, = B,%cos(w,t), perpendicular to Bo. It is assumed that the nuclear magnetization
reaches thermal equilibrium with relaxation times 7 and 73, known as the longitudinal
and transverse relaxation times, respectively, such that in the absence of the ac magnetic

field (B, = 0)

M, M,

dt T,’

dMy :_&

dt T,’
and

M, M,-M,

dt T,

where M, is the thermal equilibrium magnetization. With B, #0, the full Bloch
equations are

M - . MX+My M_-M, .

- - z

—=yM xB
dt T, T

b

where yis the nuclear gyromagnetic ratio and B = B, + B,. It is convenient to transform
this equation into a rotating frame of reference that rotates in the x-y plane at the same

frequency w; as the ac magnetic field. Then

dM'! M
=AM’ ——=,

dt YT,

dM! !
=AM —-——w M.

dt ’ )

and
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where M’ is the magnetization in the rotating frame, @, = yB, /2 is the Rabi frequency,
and the detuning Aw = (@, — @, ), where ay is the NMR resonance frequency. Under
steady state conditions, dM'/dt =0, we have for the deviation of the z-component of the

nuclear polarization from equilibrium:

0)’,27—'sz

M,-M.=M .
’ “14+(A0)'T,” + 0, T T,

z

This describes a Lorentzian NMR lineshape (NMR-induced change in polarization versus

o) with a half-width at half-max given by

HWHM =Ti 1+ TT, .

2

4.3 Resistively Detected NMR

We use NMR to study the electron spin degree of freedom via the nuclear spins of the
host semiconductor. The NMR technique employed in this thesis is known as resistively-
detected NMR (RDNMR) [9]. In RDNMR, instead of measuring the response of the
nuclear spin system to resonant RF, the 2DES sample transport is monitored while
modifying the nuclear spin polarization; this allows one to measure dR/dE;. This
technique is especially useful for studying systems with a small number of nuclei in the
region of interest (as in nanostructures), where directly-detected NMR would be too
difficult. Previous applications of this technique include studying spin excitations in
single layer systems near filling factor v=1 [10-12] and the spin transitions at fractional

quantum Hall states, such as the v=2/3 state [13, 14].
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4.3.1 Experimental Setup

Fig. 4.2 shows a photograph of a typical RDNMR experimental setup. The 2DES sample
sits inside of a small NMR coil and has ohmic contacts for standard low-frequency
transport measurements. The coil and sample are mounted on a standard 18-pin DIP
header. The coil leads are wired to the central pin and ground of a semi-rigid coaxial lead

(see Chapter 1, section 1.2.4).

Fig. 4.2. 2DES sample mounted inside approximately 8-turn rectangular NMR coil. The
sample size is ~ 5 x 3 mm”.

The magnitude of the ac magnetic field B, applied via the NMR coil is typically in the ~
0.1 - 1 uT range. We discuss the estimation of the magnitude of this RF B-field in the
next section. Since the nuclear dipolar fields are on the order of 0.1 mT >> B;, we work

in a regime where @, << 1/T>.

4.3.1a Estimation of RF B-field

The coil was designed so that the magnetic field in the sample area would be somewhat
uniform and so that the magnitude of the RF B-field would have a weak frequency

dependence (convenient for experiments which are performed over a wide range of static
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magnetic fields, and thus a wide range of NMR frequencies). Figure 4.3 shows a sketch

of the NMR coil with relevant dimensions.

N turns

NMAAAANS

Fig. 4.3. Hall bar 2DES sample in N-turn NMR coil of length /.

As a typical example, consider a coil with 8 turns, a cross sectional area of 2 mm x 6 mm,
and a length of 4 mm. The coil is connected to the RF generator by a 50 Q2 impedance

transmission line (we assume the fridge coax looks roughly like this).

Fig. 4.4. Coil terminating 50 Q coax.

We first find the current in the coil for a given power into the line, assuming that the coil

looks like an inductance L. The voltage along the transmission line is

V(x)= V0+e_’kr + Vo_e”“
=V, [e™ +Te™],
where

ZL_ZO
Z,+Z,

Let Z, =iwL. Then
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V(x=0)=V,(1+T)

—vl1+ iwl —50
ioL + 50

_y 2iwl
ioL + 50

and

V(x=0)
iwL

oy [;j
ioL +50

Next, we can estimate the magnetic field in the coil as a function of current. If the B-field

I(x=0)=

1s uniform inside the coil, then L., = BeouAn, s0 Beoy = Ll.0i/ AN, where A is the cross-
sectional area of the coil, and N is the number of turns.

We also need to know the inductance of the coil. The inductance can be measured
using a resonant LRC circuit and measuring reflected power versus frequency. For this 8-
turn coil, the inductance measured via this method was L = 250 nH. As a check, using
the coil dimensions and the formula for an infinitely long solenoid, B = NI, we obtain L
=290 nH, which is in the right ballpark.

Now we can estimate B.,;. At 50 MHz (a typical operation frequency), iwL = 78i Q2.
For -30 dBm (1 uW) of power out of the RF source, V"= 10 mV.

_ L
coil Al’l
e
" liwL +50| An
—2%0.01Vx ! y 250nH
V7807 15007 ) ((2mm>x6mm)x8)
— 0.5 uT.

Figure 4.5 shows a plot of B, versus frequency for this 8-turn coil.
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20 40 60 80 100
J(MHz)

Fig. 4.5. Frequency response of NMR coil (dimensions given in text) terminating a 50 QQ
transmission line. The RF source output is 1 pW.

Ohmic loss

We have ignored the resistance of the coil wire until now. The ohmic loss in the NMR
coil is important to consider since it may affect the magnitude of the RF B-field and/or

cause unwanted heating of the coil. The surface resistance of the coil wire is given by

R, = |22,
’ 20

For for copper wire at low temperature (7 < 4 K), o ~ 10°/Q'm. Then

R, =.f(MHz)x6x107Q/1.

For 100 mm (length of coil wire + leads) of 0.0033” diameter wire, this gives a total
resistance of about R =/ f(MHz) x0.02 Q), which is much less than 1 Q for frequencies
below 100 MHz. For our coil design, the reactance of the coil is about 50i Q at typical
operation frequencies, so the effect of the resistance of the coil in determining the RF
magnetic field is negligible.

The power dissipated by ohmic heating will be given by ’R. For -30 dBm of RF

power from the generator (this is an upper bound — the RF power is usually less) and a
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coil reactance of 50i Q, the current will be /= 0.2 mA. Then, for f= 50 MHz (a typical
operating frequency) we have R ~ 0.14 Q and the power dissipated I°R ~ 6 nW.

4.3.2 RDNMR Signal

Ap,, (©/0)

0 1 5 2 3
time (10" s)

Fig. 4.6. Typical RDNMR trace (v=1/2, B=4.48 T, T = 45 mK) showing the response
in R, to an NMR pulse and the transient signal used to measure 7;. The RF is on
resonance for times between the dotted lines, and off resonance for all other times.

Fig. 4.6 shows a typical change in longitudinal resistance Ap,, at filling factor v = 1/2
obtained by applying resonant RF to change the nuclear spin polarization. For times
earlier than #;, the nuclear spin polarization is at thermal equilibrium and the RF magnetic
field is on, but off resonance. Then, at #; the RF is brought onto resonance and an
increase in the 2DES resistance is observed. The rise time is RF power dependent. At
time f#r the RF is moved off resonance and the resistance falls as the nuclear spin
polarization decays back to thermal equilibrium with a time constant 7.

From the data of Fig. 4.6, the magnitude of the ac magnetic field and the change in
the nuclear polarization due to NMR can be estimated from the rise time and 7}, where
Tiise and 77 are determined via an exponential fit to the data for # < ¢ < trand ¢ > ¢,
respectively. The fall time is 73, and, in the limit 7, << 7} and ®,T, << 1, the rise time is
given by

/7, =T, +1/T,,

rise

and the fractional change in the magnetization is approximately
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M, - M. _ o 1T, =l-z /T.
MO l+a)r27—iz—v2 rise 1

Appendix D contains a derivation of the above expressions, starting from the Bloch

equations.

4.3.3 Lineshape

8+ f,=29.307 MHz .

Ap,, (€/0)

Ok 1 1
-20 0 20
F-1f, (kHz)

Fig. 4.7. Typical RDNMR lineshape for °As. The 2DES is at filling factor v=1/2, B =

4 T. The center resonance frequency is fo = 29.307 MHz. The solid line is a guide to the
eye.

Fig. 4.7 shows a typical RDNMR lineshape for *As. This plot shows the NMR-induced
change in resistance Ap,, obtained by using the technique described by Fig. 5, versus
frequency, measured relative to the center of the NMR line. The two shoulders are due to
quadrupole splitting. The linewidth is ~ 5 kHz FWHM and the asymmetry of the peak is
likely due to the shape of the 2DES electronic wavefunction in the confinement direction.
Both the intensity of the RDNMR signal and the NMR frequency Knight shift (a negative
shift) will depend on the magnitude of the wavefunction for a given in-plane slice of the
2DES region.

A sketch of how the subband wavefunction determines the lineshape is shown in
Fig. 4.8. For nuclei located at a z-position near the peak of the wavefunction, the

magnitude of the Knight shift (marked as |K,| in Fig. 4.8) will be relatively large,
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Fig. 4.8. Cartoon showing how the shape of the 2DES subband wavefunction affects the
RDNMR lineshape, Ap vs. f. The distance between the dotted lines in the left figure
represents the NMR linewidth broadening that would be present without including the
effect of finite wavefunction thickness.

whereas nuclei located near the tails of the wavefunction will have a smaller Knight shift
(marked as |K 52| in Fig. 4.8). The width between the dotted lines in the left panel of Fig.
4.8 represents the NMR linewidth broadening that would be present before including the
effects of the finite wavefunction thickness (due to, for example, nuclear dipole-dipole
coupling or magnetic field inhomogeneity). At a given NMR frequency, this linewidth
broadening and the shape of the wavefunction will determine the number of nuclei which
will be influenced by the RF. Because coupling between the nuclei and the 2DES is
greatest near the peak in the wavefunction, nuclei located near this peak will have the
greatest influence on Ap, the NMR-induced change in resistivity. Combining all of these
effects leads to a RDNMR lineshape similar to that sketched in the right-hand panel of
Fig. 4.8.

4.4 Applications

Several applications of the RDNMR technique will be discussed in this thesis. The
RDNMR data of Chapter 5 provide evidence of a spin transition in a correlated bilayer
2DES. Next, Chapter 6 presents detailed RDNMR measurements near a spin transition
for composite fermions in the half-filled Landau level. Finally, Chapter 7 probes the
electron spin near v = 1 in a single layer 2DES, where the presence of Skyrmions,

charged spin-texture excitations, are expected to play a role in nuclear spin dynamics.
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Chapter S:
Spin Transition in the Half-Filled Landau Level

As discussed in Chapter 3, the fractional quantum Hall effect can be understood in an
elegant way using a composite fermion (CF) picture. In this picture, a single layer 2DES
at Landau level filling fraction v= 1/2 can be described as a Fermi liquid of CF’s, where
a CF is an electron with two magnetic flux quanta attached [1]. The CF picture has been
very effective at describing a wide range of experiments, but the limit of its applicability
is still an ongoing subject of interest.

Just as in the case of an ordinary Pauli paramagnet, one might expect a spin
transition for CF’s at v = 1/2 to occur as the magnitude of the electronic Zeeman energy
is tuned relative to the Fermi energy. Starting with a partially polarized electron gas, as
the ratio of Zeeman to Fermi energy is increased, the electronic spin polarization will
increase and eventually there will be a transition to a completely polarized state.
However, this deceptively simple picture hides some of the differences between this
strongly interacting system and a simple Pauli paramagnet. For example, in the case of
CF’s the Fermi energy is determined by the strength of the Coulomb interaction instead
of the kinetic energy. This chapter presents low-temperature resistively detected NMR

measurements which examine the spin transition for CF’s at v=1/2 [2].

5.1 Composite Fermions and Spin

The notion of composite fermions was introduced in Chapter 3. However, the spin
degree of freedom was neglected. Next, we introduce a simple picture that includes spin
at v=1/2.

Even though v = 1/2 occurs in the presence of a large perpendicular magnetic field,
in a mean field approximation, at exactly v= 1/2 the system can be treated as a Fermi sea
of CF’s. The CF orbital degree of freedom behaves as if there were effectively zero
magnetic field. However, the spin degree of freedom is still affected by the presence of
the magnetic field. Adopting a simple picture, we assume that the effect of the magnetic
field on the CF spin is to simply shift the energy of the up spins with respect to the down
spins by the Zeeman energy, and that this shift is given by the electron spin g-factor g*
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such that the Zeeman gap is £z = upg*B. We set the CF g-factor equal to the electron g-
factor [3]. We also assume that the CF’s have a parabolic dispersion relation E vs. k with
an effective mass mcr such that, using the usual relation for the density of states for free
fermions in 2D, the Fermi energy of a single spin branch of CF’s is Er = 2n/i*n/mcr. The
relative magnitude of the Zeeman splitting and Fermi energy will determine the spin
polarization of the system, as sketched in Fig. 5.1. For E; < Er the system is partially

spin polarized, and for E7 > Ep, the system is completely spin polarized.

Fig. 5.1. Simple model of composite fermion spin polarization. The dashed line is the
Fermi Energy. The two parabolas are the dispersion relations for up and down CF’s The
left and right plot show the case of a partially and completely spin polarized electron gas,
respectively.

The mass mcr is referred to as the “polarization mass” and is different from the
effective mass commonly extracted from measurements of activation energies of FQH
states via magnetotransport measurements [3]. A phenomenological, transport-derived
effective mass mcr yangpore for CF’s can be obtained by setting the activation energy A
(measured via the temperature dependence of the resistivity) at a FQH state equal to the
CF cyclotron energy. Then A = eBe/mcr manspors Where Bey= B — Bo = ¢yn(1/ V—2) is
the effective magnetic field experienced by a CF at filling factor v, B, =¢,2n for a CF
comprised of an electron bound with two flux quanta, ¢, = //e is the quantum of magnetic
flux, and # is the electron density. The activation gap at FQH states is determined by the
Coulomb energy, so that A ~ \/; . Then, for fixed v, mcr ransport ~ \/; .

The polarization mass is not equal to the transport mass. The activation gap used to

define mcr yranspore cONtains contributions from both the bare CF cyclotron energy and the
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self energies of an excited CF particle and CF hole. The polarization mass will not be
determined by just the bare CF cyclotron energy alone, but the contribution due to
interactions should be less than for the transport activation mass. However, the Fermi
energy used to define the polarization mass is proportional to the Coulomb energy so that
the polarization mass at fixed v= 1/2 also scales like mcr ~ \/; ~ \/E .

Within the model presented above, a spin transition between partial and complete
spin polarization at v= 1/2 should occur as a function of density and magnetic field (if n
is held fixed, then n ~ B). The situation is sketched in Fig. 5.2. At fixed v=1/2, as a
function of magnetic field, the Zeeman splitting rises more rapidly than the Fermi energy.
The Fermi energy is proportional to the Coulomb energy so that E,. ~ JB , while
E, ~B. Thus, Ez and Er will cross at some critical magnetic field B¢. For fields below
B, Ez < EF so that the spin polarization is partial. As B is increased, the spin polarization

will increase until B > B,., at which point the spin polarization will be complete.

v=1/2

Bc B

Fig. 5.2. Scaling of CF spin Zeeman and Fermi energies with magnetic field at v=1/2,
showing the critical field B¢ at which the two energies are equal and the transition from
partial to complete spin polarization should occur.

The value of the composite fermion effective mass mcr determines the critical
magnetic field and density at which the 2DES becomes completely spin polarized. The

transition occurs when the Zeeman splitting is equal to the Fermi energy:

guyB =E;
g(en/2m,)B=rxh*n/m,,
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where m, is the bare electron mass in vacuum and g is the g-factor for the composite
fermions, which we assume is the same as that for electrons, g = -0.44. Now, at v=1/2,

n = Be/2h, so at the critical magnetic field we find that

me, /' m, :1/|g|.

To start the chapter, we have presented a very simple picture of spin at v = 1/2.
More sophisticated versions of this Pauli paramagetism picture that, for example, do not
assume a parabolic dispersion relation for CF’s, can be found in Ref.’s [3, 4]. More
speculatively, there is a possibility that the spin transition at v= 1/2 is weakly first order.
Ferromagnetism, driven by residual interactions between CFs, has been theoretically
predicted for CF’s at v=1/4 [5]. We will return to the topic of ferromagnetism for CF’s
later in the Chapter. There is also theoretical evidence that the v = 1/2 state is
energetically near a state in which composite fermions form spin-polarized pairs [6].

Previous experimental evidence exists for a spin transition for CF’s at v=1/2. The
first observation of this transition was by Kukushkin et al. using polarization-resolved
photoluminescence; the electron spin polarization was observed to increase and then
saturate when increasing the electron density and magnetic field while maintaining fixed
filling factor v = 1/2 [7]. Optically pumped NMR measurements of the Knight shift,
using multiple quantum well samples (~ 100 closely spaced QW’s), also suggest that a
spin transition occurs when the total magnetic field is increased by rotating the sample in
the magnetic field while maintaining fixed perpendicular magnetic field to remain at v=
1/2 [8, 9]. A combination of RDNMR and standard directly detected NMR has been used
to measure the NMR Knight shift versus magnetic field in a variable density sample at v
= 1/2; the Knight shift versus field data show a change in slope that is suggestive of a
spin transition [10]. The electronic spin-flip excitations have been probed using inelastic
light scattering; the spin-flip gap was shown to collapse as v — 1/2 for a sample at
relatively low magnetic field and remain finite for another sample at higher magnetic
field [11].

The RDNMR measurements discussed in this chapter take a closer look at the spin
transition at v= 1/2, using higher quality samples and lower temperatures than previously

achieved. =~ Our measurements more thoroughly examine the nuclear spin-lattice
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relaxation time 7 temperature and magnetic-field dependence for temperatures ranging
from 35 to 200 mK over a wide magnetic field and density range. We also show the first

measurements of how transport at v = 1/2 depends on the electron spin polarization.

5.2 Experiment

We probe the transition from partial to complete electron spin polarization as a function
of density in a 2DES at v = 1/2 using the resistively detected NMR (RDNMR) technique
outlined in Chapter 4. Both the nuclear spin lattice relaxation time 7; of *As and the
response in resistance to a change in the nuclear spin polarization reflect this transition.
At low densities, where the electron spin polarization is partial, the 7} time is relatively
short, due to the presence of both electron spin states at the Fermi level. In this regime 7}
is density independent and has a Korringa-like [19] temperature dependence. At higher
densities, 7; increases and the RDNMR signal eventually vanishes, consistent with a
transition to complete electron spin polarization. In the transition region we observe an

unexpected enhancement of the RDNMR signal.

5.2.1 Sample

The sample used in the present experiment is a GaAs/AlGaAs heterostructure grown by
molecular beam epitaxy. A high mobility 2DESs is created in these structures via
modulation doping with Si. For the data presented here, the 2DES is confined in GaAs at
a single interface with AlGaAs and is laterally patterned into a wide (500 wm) Hall bar
geometry. An aluminum top gate was used to control the 2DES density. The as-grown
density of the 2DES is n ~ 1.3 x 10" cm™ and its low temperature mobility ranges from

~5x10°cm*/Vsatn~1.3 x 10" em™to g~ 1 x10° cm*/Vs at n ~ 0.3 x 10" cm™.

5.2.2 Transport

Magnetotransport for this sample is shown below in Fig. 5.3. At both low and high
densities, longitudinal resistance minima are seen at several integer and fractional

quantum Hall states.
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Py (kD)

B(T)

Fig. 5.3. Low temperature magnetotransport for the single layer 2DES used for the CF
spin transition RDNMR data shown in this chapter, at low and high density. a) n ~ 0.4 x
10" em™ (v=1/2 occurs at B~ 3.0 T). b) n~ 1.3 x 10" cm™ (v=1/2 occurs at B ~ 10.8
T).

Py (KQ/OD)

B(T)
Fig. 5.4. Log-log plot of p,, vs. B, at fixed filling factor v=1/2, T =45 mK. The solid

line is a power-law fit to the data, which yields p ~ B,

Figure 5.4 shows the longitudinal resistivity right at v= 1/2 versus magnetic field, while
tuning the density to maintain fixed filling factor v=1/2. The data approximately follow
a power law: pn ~ B'? ~ n'?. Using the Driide formula for resistivity at zero magnetic
field, 1/ p=ne’r, /m*, where m* is an effective CF mass. This implies z/m* is
independent of density. This does not agree with theoretical calculations of the resistivity
at v=1/2 by HLR [12] which predict 7, /m*~k,. See section 6.3.3, “Transport at v=
1/2”, later in this chapter for further description of transport at v = 1/2 as discussed in

HLR. The fit of Fig. 3.4 gives 7z, /(m*/m,)=12 x 107" s, where m, is the electron
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mass in vacuum. Experimentally, the CF effective mass obtained from transport
measurements at FQH states near v = 1/2 [13] is of the same order of magnitude as m..
Then, we have a transport lifetime for CF’s 7z, ~10ps. For comparison, at zero
magnetic field, the transport lifetime of ordinary electrons for this sample is roughly 7~

100 ps.
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Fig. 5.5. Temperature dependence of resistivity at v=1/2. In both graphs, solid line is a
fit to the data of the form p,, =a+bInT. a) p.=6.96—-0.31 In T (kQ). b) p. =4.45
—0.21 In T (k).

As seen in Fig. 5.5, the temperature dependence of the longitudinal resistivity at v=1/2
is of the form p,, ~a + b In T. This logarithmic temperature dependence at v = 1/2 has
been seen previously by Kang et al. and Rokhinson et al. [14], but is not theoretically

well-understood [12].

5.2.3 Sample Temperature

An approximately rectangular 8-turn NMR coil is wound around the sample for applying
RF magnetic fields parallel to the 2DES plane and perpendicular to the large applied dc
magnetic fields. We estimate the RF magnetic fields H; to be in the 0.1 puT range, much
less than typical nuclear dipolar fields H; ~ 1 gauss (see Chapter 4, section 4.3.1a). The
electron temperature with the RF magnetic field on was determined by using the 2DES
resistance as an in-situ thermometer, which was calibrated with the RF power off. Figure
5.6 shows the 2DES electron temperature, as determined via the 2DES resistance, vs.

cold finger temperature with the RF power on, at a fairly high power where the estimated
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RF magnetic field is H; ~ 0.5 pT. At this power level, there is a noticeable rise in the
electron temperature below about 100 mK, and it is not possible to reach electron

temperatures below about 50 mK.

200 H
— 150
X
£
é 100
-
50 —
ok 1 1 1 +
0 50 100 150 200
Tcold_finger (mK)

Fig. 5.6. Electron temperature, as determined from sample resistivity, vs. cold finger
temperature with RF on, at B =4.01 T, v= 1/2, at a relatively high RF power, H; ~ 0.5
uT, f~ 29 MHz. The solid line is a guide to the eye. The dotted line is the case for no
RF heating (RF off), for reference.

5.2.4 RDNMR signal at v=1/2

Below, Fig. 5.7 shows a typical change in resistance Ap,, at filling factor v = 1/2
obtained by applying resonant RF to change the nuclear spin polarization. For times
earlier than #;, the nuclear spin polarization is at thermal equilibrium and the RF magnetic
field is on, but off resonance. Then, at ¢; the RF is brought onto resonance and an
increase in the 2DES resistance is observed. As discussed in Chapter 4, the rise time is
RF power dependent and is determined by T; 1/(1+a)R2T »T1), where @y is the Rabi
frequency (see appendix H). At time ¢, the RF is moved off resonance and the resistance
falls as the nuclear spin polarization decays back to thermal equilibrium with a time

constant 77.



84

Apxx Q)

0 1000 2000 3000
time (s)

Fig. 5.7. Typical RDNMR trace (B =4.48 T, T'= 45 mK) showing the response in p, to
an NMR pulse and the transient signal used to measure 7. The RF is on resonance for
times between the dotted lines, and off resonance for all other times.

5.2.5 RDNMR Lineshape

Figure 5.8 shows a typical RDNMR lineshape for °As. The solid markers show the
change in resistance Apy,, obtained by using the procedure described in Fig. 4, versus
frequency measured relative to the center of the NMR line. The two satellite peaks are
due to quadrupole splitting. The linewidth is ~ 5 kHz FWHM and the asymmetry of the

peak is likely due to the shape of the 2DES electronic wavefunction in the confinement
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Fig. 5.8. RDNMR lineshape and nuclear 7} time vs. frequency on the NMR line for °As
at filling factor v=1/2, B=4.01 T. The center of the resonance is at fy = 29.307 MHz.
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direction. Both the intensity of the RDNMR signal and the NMR frequency Knight shift
(a negative shift for electrons in GaAs) will depend on the magnitude of the wavefunction
for a given in-plane slice of the 2DES region. 7; also varies as a function of frequency
through a similar argument. See Chapter 4, section 4.3.3 for a more detailed explanation
of the NMR lineshape. Subsequent measurements of 77 and Ap,, shown in this chapter
correspond to data taken at the center frequency (Af = 0, as shown in Fig. 5.8) of the
NMR line, defined as the frequency at which the NMR-induced change in the resistivity

is greatest.

5.2.6 RDNMR Signal Temperature Dependence

Figure 5.9 shows the RDNMR signal vs. temperature at v = 1/2 at fixed magnetic field
and RF power. There are two contributions to this temperature dependence. The first is
the temperature dependence of the thermal equilibrium nuclear polarization, which is

roughly proportional to 1/7 (nuclear Curie Law). This expected contribution is sketched

1.0x10°
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Fig. 5.9. Fractional change in longitudinal resistance due to NMR at B=4.01 T, v=1/2.
Solid line is a guide to the eye. The dashed line shows the expected temperature
dependence due to just the nuclear Curie Law, arbitrarily fitted to the lowest temperature
data point.
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in Fig. 5.9 by the dotted trace, which is of the form Ap./p. = a T 1, where « is arbitrarily
set by the lowest temperature data point. A second contribution is from the temperature
dependence of the response of the 2DES resistivity to changes in the Zeeman splitting

(temperature dependence of dp_ /OE,).

5.3 RDNMR Density Dependence at v=1/2

RDNMR measurements at v = 1/2 over a wide density and magnetic field range at two
temperatures, 7 = 45 and 100 mK, are shown in Fig. 5.10, below. The spin transition is
evident from both the RDNMR signal size and 7; data. Figure 5.10a displays the
RDNMR signal versus density. The quantity S =(dp,,/0E,)/ p,, is the NMR-induced
fractional change in resistance divided by the NMR-induced change in the Zeeman

splitting.

S = (dp,,/dE,)Ip,,
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Fig. 5.10. a) RDNMR signal S and b) nuclear 7 time and vs. magnetic field at fixed
filling factor v = 1/2. Closed and open symbols correspond to a temperature of 45 and
100 mK, respectively.
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5.3.1 Zeeman Energy Calibration

The change in the Zeeman energy is calculated using the known strength of the hyperfine
coupling in GaAs [15] and an estimate of the NMR-induced change in the nuclear

polarization. From Chapter 4, using the Bloch equations, we derived the expression

2
Ar:/rs{%}l—wn, 1)
where A&/¢& is the NMR-induced fractional change of the nuclear polarization. Thus,
the NMR-induced change in the nuclear polarization can be extracted from the rise and
fall time (7, =T7)) of transient data, like that shown in Fig. 5.4, or by measuring the RF
power dependence (RF power ~ @) of the RDNMR signal and fitting the data to a
function of the form given by the middle term in Eq. (1).

Figure 5.11 shows the magnitude of the fractional NMR-induced change in nuclear
polarization |A§/ §| obtained using these two methods, versus magnetic field, at fixed
filling factor v= 1/2. The scatter in the data is due to uncertainty in the measurement of
the RDNMR rise and fall time. To calculate S in Fig. 10a we use the average of
the|A& /¢] values shown Fig. 5.11, which is |AS/&] | =47%.

100_- T T
avg. =47%
e S N
wp .0.0. °
< °
0.
2 4 6 8
B (T)

Fig. 5.11. Change in nuclear polarization of *As due to NMR. Crosses correspond to
values determined from power dependence. Circles are points calculated from NMR T3
and rise time, closed and open circles correspond to 45 mK and 100 mK data,
respectively.
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5.3.2 Density Dependence: dp../dE,

Although the resistivity p. at v =1/2 has a gradual, monotonic dependence on
density/magnetic field (see Fig. 5.4), Fig. 5.10a shows that the RDNMR signal displays a
dramatic change while passing through the transition. At low magnetic fields, in the
partially polarized phase, there is a positive, finite response. At higher magnetic fields,
when the 2DES becomes completely spin polarized, the signal vanishes; the resistance is
no longer sensitive to RDNMR since increasing the Zeeman splitting only further
stabilizes a fully polarized state. A peculiar enhancement of the RDNMR response is
seen in the transition region, especially at 7= 45 mK. A similar peak has been seen in a
second sample, an undoped, gated heterojunction with a mobility ranging from p ~ 1 -2

2

x10° cm?/Vs at densities ranging from n ~ 0.3-1.2 x10'" cm™. This feature is weak but

present at 7= 100 mK and seems to quickly sharpen with decreasing temperature.

5.3.3 Transport at v=1/2

The origin of the RDNMR signal is not fully understood. Indeed, a theory of transport at
v=1/2, that fully explains current experimental data, such as the value of p,, at v=1/2,
and its density and temperature dependence, is lacking [12, 14, 15]. HLR [12] estimates
the resistance at v = 1/2 by assuming that the transport scattering rate 1/7, is dominated
by static fluctuations in the effective magnetic field for composite fermions, By, due to
density variations in the sample. These density fluctuations are assumed to be due to
ionized dopants, of average density n;,,, distributed randomly in a modulation doped

layer a distance d; from the 2DES. Then, HLR finds

1 4nhn,,

=—",
r, m*k.d,

i

where m* is an effective CF mass, and k is the Fermi wavevector. Using a Drude-like

model, where the conductivity for CF’s at v=1/2 is defined by o.. =1/p_,

2 2
_ne‘r, enkyd,

O = = .
CF
m*  4zhn,
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This formula is valid only for spinless electrons. If we include two spin species and
assume the total conductivity ocr will be simply the sum of the individual conductivities

of the two species ocry and ocr|, we have

Ocr =O0cpt T Oy
3 ezds
dhn.

imp

(”Tkm +nk,, )

We next hold the total electron density n constant and ask about ocr as a function of the
spin polarization y E(nT —ni)/ n. The densities of the individual spin species can be
written as n, =(y+1)n/2, n, =(1-x)n/2. Using the fact that the Fermi wavevector is

proportional to the square root of the density: kry | ~ ny, ll/ ?_ the conductivity is
o =an’’ [(;{ + 1)3/2 +(1- ;()3/2} ,

where « is a constant determined by n;,,, ds, and the electron charge. This expression
predicts that the conductivity increases monotonically with increasing spin polarization.
For example, if the system is unpolarized (y = 0), o, =2an’?, whereas for a

completely spin polarized (y = 1), o, =2 an’”.

Recall that p_=1/0... Then, we
find that p,, should decrease with increasing spin polarization. This does not agree with
our experiment. The sign of dp_/0OFE, is actually positive in the data of Fig. 5.10a, i.e.

Pxx Increases with increasing spin polarization

5.3.4 Dependence of RDNMR Signal on Current

Interestingly, the RDNMR response can depend on the magnitude of the measurement
current. Figure 5.12 shows the RDNMR signal versus the magnitude of the current
driven through the 2DES, at v= 1/2, in the partially polarized regime, B =3.6 T. For low
currents, there is a regime where the RDNMR signal is current independent. The
measurements shown in this chapter were made in this low current regime. However, as
shown in Fig. 5.12, we find that large currents can change the magnitude of the RDNMR

signal and even cause it to change sign. Many of the features of this non-linear response
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at high current are similar to those seen at v=2/3, where large currents have been shown
to dynamically pump the nuclear polarization to magnitudes greater than at thermal
equilibrium [16, 17]. That the nuclear spin system is pumped by high measurement
currents is supported by the fact that, after application of a large current, subsequent
application of resonant RF tends to bring the resistance back to the equilibrium, non-
pumped value. See Appendix E for preliminary data demonstrating this pumping

mechanism at v=1/2.

111

2 3 456 2 3 456
10 100 1000

Fig. 5.12. NMR-induced fractional change in longitudinal resistivity vs. quasi-dc current
driven through the 2DES.

5.3.5 Density Dependence: T;

Figure 5.10b shows 7} versus magnetic field. At low magnetic fields, deep in the
partially polarized phase, 7; is relatively short (the 7) time for bulk GaAs at these
temperatures can be hours or even days). Using the simple picture sketched in Fig. 1, the
2DES consists of a Fermi sea of spin up and down composite fermions, the two spin
branches simply shifted in energy with respect to one another by the Zeeman splitting. In
the partially polarized phase both up and down spin states are present at the Fermi level.
This presence of both spin species at the Fermi level provides a route for nuclear spin
relaxation. An electron and nucleus can perform a simultaneous spin flip, while

conserving total energy and momentum. Since gyunB, the nuclear Zeeman splitting, is
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much less than k7, there must be empty and full electron states available differing in
energy by gyunB, allowing for energy conservation. As sketched in Fig. 5.13, the
electron must experience a change in linear momentum during this process. This
momentum is provided by the hyperfine point contact interaction with the nuclei (see
Chapter 4). The Hamiltonian is of the form 7 -S& (R) — proportional to a delta function
in real space, and thus, couples the electron and nucleus for all values of momentum
transfer. In ordinary 3D paramagnetic metals, nuclear spin relaxation occurs via a similar
process and is known as Korringa relaxation. As shown in Fig. 10b, at higher magnetic
fields 7 increases dramatically. This is consistent with a transition to complete electron
spin polarization, in which case the Korringa relaxation mechanism will no longer exist.
Raising the electron temperature from 7' = 45 to 100 mK thermally smears the transition

over a broadened magnetic field range.

Fig. 5.13. Cartoon of Korringa nuclear relaxation process, showing a simultaneous
nuclear spin flip (blue) and electron spin flip (green) at the Fermi energy. The hyperfine
point contact interaction provides the momentum transfer for the electron spin flip.

5.3.6 Korringa Relaxation Rate

The Korringa nuclear relaxation rate is given by [19]

%:16”3’}1(&]2 TDT(g)D¢(g)f(g,T)(l—f(g,T))dg,

1 nJ g
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where the strength of the hyperfine coupling is given by the Knight shift for a fully
polarized electron gas K, divided by the electron density n, the energy & is measured
from the bottom of the lowest energy spin branch, 7' is the temperature, D1(&), D, (&) are
the density of states for up and down electrons, respectively, and f(e, 7) is the Fermi
function. This expression assumes that k7 >> gyuyB, so that the nuclear Zeeman splitting
can be ignored. Using the fact that the density of states is energy independent in 2D, we

have

Lo K] 0 ptami- e

2 ©
_ 3 Ksl 2 1 __ —1
=l6x h( " D é[ 1+e(5 u)/ kT 1_1_‘_6(57/1)//(7 &

This integral can be done analytically:

2
L (K)o, KT
Fl_16;z h( ; j i (1)

Next, we find the chemical potential & as a function of temperature. Using the fact that

the total density » of the 2DES remains fixed, we have

n=n, +l’l¢

D, ()f (,T)de + [ D, (&) (.T)de
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Solving for u gives

L= %+ kT In [\/e"/DkT +sinh? (E, / 2kT ) —cosh (E, /2kT)}- 2)
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Within the Korringa relaxation picture given above, the 1/7 rate will be proportional to
the square of the density of states at the Fermi energy, which for will be given by the
effective mass mcp, where D(¢) = mCF/Znh2 for one CF spin branch. As mentioned
earlier, this effective mass scales like m, ~ JB. Then, the expected density/magnetic
field dependence for 7 in the partially polarized phase will be 7; ~ 1/B. However, Fig.

5.10b shows that 7 is nearly density independent at low magnetic fields.

5.3.6a Finite Thickness Effects

A more careful analysis should include the variation of the 2DES subband wavefunction
v (z), whose amplitude and thickness will vary with density; this will affect both the
strength of the hyperfine coupling and also the 2DES Coulomb interaction.

The hyperfine coupling constant (Ks;/n) will be proportional to the square of the
peak magnitude of  (z), so that 1/T} ~ (Ks/n) > ~ 1/<z>2, where <z> is the rms
wavefunction thickness (this is only strictly true when the nuclear 75, without linewidth
broadening due to the shape of the 2DES subband wavefunction, is much longer than 1/
Ks). Using a Fang-Howard approximation for the wavefunction (see Chapter 1),
(z)~n"" ~B™" at fixed filling factor v=1/2. This will lead to an additional variation
of T with density, due to the variation of the strength of the hyperfine coupling alone, of
the form 77 ~ B3,

The variation of the strength of the Coulomb interaction with wavefunction thickness
will also affect 7. The composite fermion Fermi energy is proportional to the Coulomb
energy, so that that E, ~ E, =(hk, )2 /2mg,.. Then, m. ~1/E_, so that, using 1/T ~
D(&)* ~ mer”, we have T ~ EC2 . The dependence of the Coulomb interaction on the 2D
subband wavefunction can be estimated by calculating the Haldane pseudopotentials V),
for the Coulomb interaction in the lowest Landau level, as a function of the wavefunction
thickness. The Coulomb pseudopotential V,, is the expectation value of the interaction
energy for two electrons interacting via the Coulomb potential with relative angular
momentum m, in the lowest Landau level [20]. The dependence of V,, on the effective
wavefunction thickness parameter 1/b/, where b is the Fang-Howard thickness parameter
(see Chapter 1), and / is the magnetic length, is shown in Fig. 5.14. At fixed Landau

level filling factor, the parameter 1/b/ is proportional to the wavefunction thickness
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normalized by the spacing between electrons. The psuedopotential is normalized relative
to e’/&l, the Coulomb energy for the case of an infinitely-thin wavefunction. Figure 5.14

shows that V,, weakens with increasing effective thickness.

I I I I I
0.8} —V,
: : [ V1
0.6 Y
= — Vs
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e
= 0.4
>
0.2
0.0 1 1 L 1 |
0.0 0.2 0.4 0.6 0.8 1.0
1/bl

Fig. 5.14. Coulomb psuedopotentials V,, for m = 0 to 3 versus effective wavefunction
thickness 1/bl, where b is the Fang-Howard thickness parameter and / is the magnetic
length. The dotted lines mark the magnetic field range, B =2.5 — 5 T, over which the 7}
data of Fig. 5.10b is roughly magnetic field independent.

The wavefunction thickness can be estimated by using the Fang-Howard
approximation for the wavefunction as a function of density, or by calculating a self-
consistent solution to the Schrodinger and Poisson equations, as discussed briefly in
Chapter 1. Both methods yield a fairly weak dependence of the effective thickness
parameter 1/b/ on density/magnetic field at fixed filling factor v = 1/2. In the Fang-
Howard approximation, b~n'"" ~ B, while /~B"*. Then, 1/bl~B"®. From Fig.
5.14, we then see that the interaction energy will rise with density/magnetic field more
slowly than for an ideal, infinitely-thin 2DES. Even though the actual thickness of the
wavefunction is decreasing with increasing density, the spacing between electrons is
decreasing even more rapidly, so that the effect of finite thickness at large densities

actually becomes more important.
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The relative importance of V,, for different values of m at v = 1/2 is unclear, but a
rough upper bound on the effect of finite thickness on the interaction energy can be
obtained from V), which is most sensitive to finite thickness effects. Using the above
Fang-Howard approximation (1/bl ~ B"®), over the magnetic field range of interest, from
B~2to5Tat v=1/2, there is a roughly 5% decrease in V, /(e’/&l). Since T, ~E ?,
this will lead to a ~ 10% maximum additional decrease in 7 over this density/magnetic
field range. Using self-consistent solutions to the Schrodinger-Poisson equation for the
wavefunction yields similar results.

In short, the two above mentioned finite-thickness effects due to the variation of the
strength of the hyperfine coupling and the Coulomb interaction with wavefunction
thickness should cause 7 to fall even faster with magnetic field than 1/B, worsening the

comparison between experiment and composite fermion theory.

5.3.7 Korringa Relaxation — Comparison to Data

2000 i

1500 =

= 1000 fo =
K .

500 s

0 -

8

Fig. 5.15. T, vs. magnetic field/density at v= 1/2 calcuated using a simple 2D Korringa
relaxation theory for a critical magnetic field for the spin transition of Bc =5 T . Solid
and dotted line: calculated 7} at 45 and 100 mK, respectively. Solid and open circles:
RDNMR measured 7 at 45 and 100 mK, respectively.
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Figure 5.15 shows 7; vs magnetic field/density at v = 1/2 using the simple 2D Korringa
theory of Eq.’s (1) and (2). The effect of the density dependence of the width of the 2D
subband wavefunction on the hyperfine coupling strength has been included, but the
smaller effect of the variation in the Coulomb energy due to the changing thickness has
been ignored. We estimate the hyperfine coupling constant (Kgi/n) for °As by using
measurements of the NMR Knight shift for "'Ga in 2DES quantum wells at v = 1/3
published by Khandelwal ef al. [21]. For "'Ga (Kg1/n) = 4.5 x107"°/w m?/s, where w is the
2DES width measured in meters . We then scale this value by the magnitude of the
electronic wavefunction at a nucleus for "°As versus ''Ga, as calculated by Paget [15],
and also scale by the gryomagnetic ratio of these two atoms. This gives
K¢/n= (4.3 X 10'19)/w Hzm®, where w is the rms width of the 2DES subband
wavefunction, which we estimate via the Fang-Howard approximation.

Unlike the experimental 7} vs. magnetic field/density data, the calculated 7;’s in Fig.
5.15 at low magnetic fields show the simple Korringa theory prediction of a decreasing
T with increasing magnetic field/density deep in the partially polarized phase. Another
qualitative difference between data and theory is the sharpness of the rise in 7 at the
transition to complete spin polarization. Possibly, disorder may broaden this transition in
the experimental 7} data. A recent calculation by Murthy and Shankar including a
disorder-induced broadening of all momentum states predicts a broadened transition and
is able to provide a better match to the experimental data than the simple calculations of
Fig. 5.15 [22].

5.3.8 Effective Mass

A theoretical estimate of the mass m, /m, = 0.6VB is given by Park and Jain [3]. Using

this relation, the critical magnetic field for the transition is given by

me. /m, =1/|g|~2.3=0.6\[B.
—>B.=147T.

This value is for an ideal 2DES; the calculation does not take finite thickness or disorder
effects into account. A rough estimate of the B¢ can be obtained from our 7; vs.

magnetic field data (the temperature dependence of 7) also allows an estimate of B¢ as
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will be explained below). Because at 45 mK 7 begins to rise at above about B=5 T, it
seems reasonable that B¢ ~ 5 T, although disorder/finite temperature effects may affect
the validity of this estimate. Using polarization resolved photoluminescence, Kukushkin
et al. have measured a critical field of Bc = 9.3 T for a 2DES in a GaAs/AlGaAs
heterojunction [7]. However, this number was obtained by observing the apparent
saturation of the spin polarization as a function of magnetic field/density at a temperature
of T ~ 0.3 K. Possibly, finite temperature effects may cause the polarization to drop

below full polarization even at magnetic fields above Bc.

5.4 T, Temperature Dependence

Figure 5.16 shows the temperature dependence of 1/7) for several magnetic fields
spanning the transition (B = 3.0, 4.0, 5.0, and 6.4 T, corresponding to densities of n =
0.36, 0.48, 0.60, and 0.78 x10'' cm™?). In the partially polarized phase, at magnetic fields
below about B = 5 T, T; is density independent over a wide range of temperatures and
1/T, ~aT +b. However, at B = 6.4 T, 1/T) has a very steep, nonlinear temperature

dependence, indicating that the Zeeman splitting now exceeds the Fermi energy. At 7 =

0 50 100 150 200
T (mK)

Fig. 5.16. Temperature dependence of 7. The solid line passing through the data for B
= 3.04, 4.01, and 4.98 T is a least squares linear fit. The dashed line is an extrapolation
to 7= 0. The solid line passing through the B = 6.42 T data is a fit using Eq.’s (1) and (2)
(see text).
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0 the 2DES would be fully spin polarized. The solid line passing through the B =64 T
data of Fig.5.16 is a fit to the data using the simple 2D Korringa theory of Eq.’s (1) and
(2), plus an offset due to non-electronic nuclear spin relaxation mechanisms that will be

discussed below.

5.4.1 Korringa Temperature Dependence

Figure 5.16 shows the prediction of Eq.’s (1) and (2) for the temperature dependence of
T, at several magnetic fields/densities for a critical field B¢ = 5 T. The curves in Fig.
5.12 look fairly similar to the data of Fig. 11. In fact, as mentioned above, the solid line
passing through the data at B = 6.4 T in Fig. 15 is a best fit to the data using our simple
Korringa model. The data of Fig. 5.15 at B= 5 T, showing a 1/7 that is roughly linear in
T, can also be described by this model if B =5 T is relatively near the critical field Bc.

For the temperature range |n /D —EZ| < T |n/ D

, where 7 is the total density and D is

the density of states for a single spin branch, we have that 1/7} ~a + bT. The left side of
the inequality keeps the exponential in the denominator of Eq. (1) small, while the right

side keeps finite temperature corrections to the chemical potential relatively small.

20x10° l l ' e
Bo=5T
15 ——3T 7 -
. --- 5T
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// ~
okl — 1 — T | 1
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T (mK)

Fig. 5.17. 1/T; vs. temperature for several magnetic fields (B =3 — 7 T) for a critical
magnetic field Bc =5 T, calculated from the simple 2D Korringa formula of Eq.’s (1) and

2).
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5.4.2 Critical Magnetic Field

The temperature dependence of 7 allows for an estimate of B¢. Although it is difficult to
pinpoint the exact field which satisfies this condition from our data, we can still say that
the transition occurs below B = 6.4 T. The fit to the B = 6.4 T data of Fig. 5.11 yields a
Fermi energy of roughly Er =~ E; — 260 mK. If we assume E,. ~ JB , and using Ez ~ B,

B B
E.(B=64T),|—-=E,(B=64T)—°
3 )6.4T o )6.4T

E.(B=64T
—>BC=(6.4T)( & —ca )J =48T,

E,(B=64T)

which is fairly close to our previous estimate of Bc = 5 T from the magnetic field/density

dependence of 7.

5.4.3 Nuclear Spin Diffusion

The extrapolations of 1/7; to zero temperature shown in Fig. 5.15 show an offset in 77 on
the order of 1,000 s that is not predicted by the simple Korringa model. The most likely
explanation for this relaxation is that nuclear spins diffuse from the 2DES region into the
bulk of the substrate. Remember that the NMR frequency corresponding to nuclei in the
region of the sample containing the 2DES is Knight shifted. The RDNMR data is taken
at this Knight shifted frequency, which is different from the resonant frequency of the
nuclei in the bulk of the sample. Only a thin slice of nuclei near the 2DES are affected by
the RF, while the rest of the sample remains in thermal equilibrium. Then, one way for
nuclear spins located in this thin slice to relax back to thermal equilibrium is to diffuse
outward into the bulk of the sample [19]. Nuclear relaxation rates of similar magnitude
have been seen in previous 1/77 measurements in 2DES's in GaAs where the 2DES is

completely depleted during the time that the nuclei are allowed to relax [23].
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5.5 Discussion

The origin of the peak in dp./dE; near the transition is not explained by the simple CF
theory we have presented so far. Indeed, as previously mentioned, even the sign of the
NMR-induced change in the resistivity is not understood and is actually the opposite of

what is expected [12].

5.5.1 Screening and Spin Polarization

Due to the lack of a realistic theory of transport at v=1/2, we turn to 2D electrons at zero
magnetic field. Figure 5.17 shows the resistivity of a 2DEG as a function of parallel
magnetic field B, with no perpendicular magnetic field (8, = 0), as calculated by Das
Sarma and Hwang under the assumption that the resistivity is dominated by screened
impurity scattering [24]. The parallel magnetic field is assumed to simply create a
Zeeman spin splitting £z = gupB, but have no effect on the orbital motion of the 2DES
electrons (this will be strictly true only for an infinitely-thin 2DES). As By is increased,

e .
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Fig. 5.17. Main plot: Resistivity of a 2DEG in a parallel magnetic field B (B, = 0). As
the magnetic field increases, the spin polarization increases continuously until B = By, at
which point the 2DEG is completely spin polarized. Spin-dependent screening causes the
resistivity to increase with B). The four curves correspond to electron densities n = 0.4,
0.8, 1.2, and 2.0 10" cm ™. Taken from Das Sarma and Hwang [24]. (Reprinted with
permission).
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the spin polarization gradually increases, until the 2DEG becomes completely spin
polarized for B > Bs, where Bg is the magnetic field at which £ = E7. Spin polarization
dependent screening leads to the variation in the resistivity as a function of Bj.

The dependence of the conductivity on spin polarization can be roughly understood
from the dependence of the Fermi wavevector kr and screening wavevector gz on spin
polarization. The impurity scattering rate depends on the relative magnitude of kr and
qrr. Screening is more effective at reducing scattering for g7z large compared to kp, so
that the conductivity is an increasing function of (g, / k). How does (¢, /k,) depend
on spin polarization? In the Thomas-Fermi screening approximation, g, ~ D(E F), the
density of states at the Fermi level. The density of states contains a degeneracy factor for
spin; D, (E.)=2D,,(E.), where D, ,(E,) is the density of states for an
unpolarized 2DES (y = 0) and D,,(E,) is the density of states for a completely
polarized 2DES (y = 1). Thus, the screening wavevector for an unpolarized system is
twice as large as for a polarized 2DES:  q,,,.,, = 2¢;,,,- The Fermi wavevector scales
with density like &, ~ Jn. Then, for a given 2DES density, the Fermi wavevector for a
completely polarized system is larger than that of an unpolarized system:
kppy =~2k;,,,. Combining our results, (g, /k, ot =27 (@ ki) - Thus,
screening is more effective for an unpolarized 2DES, which explains the increasing
resistivity with increasing spin polarization seen in Fig. 5.17.

Assuming that CF’s at v = 1/2 behave like 2D electrons at zero perpendicular
magnetic field, our RDNMR signal 6p /0E, at v = 1/2 as a function of magnetic
field/density should look like the derivative of the curves in the main plot of Fig. 5.17.
This derivative will have a peak near the transition magnetic field By and vanish for B >

Bg, similar to what is seen in the RDNMR data at v=1/2.

5.5.2 Bloch Ferromagnetism

Another, perhaps more speculative, scenario to describe the transition is that two phases
of differing electronic spin polarization coexist near the transition region. As mentioned
earlier, theoretical calculations of the energy of FQH states near v = 1/4 as a function of
spin polarization suggest that the v = 1/4 state should exhibit interaction-driven

ferromagnetism, even in the absence of Zeeman splitting [5]. The type of spin transition
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that occurs at v=1/2 will also be determined by the character of any residual interactions
between CF’s at v=1/2.

In 2D systems at zero magnetic field it is hypothesized that a ferromagnetic phase
may exist at low enough densities due to exchange interactions. As the 2DES density is
lowered the Coulomb interaction becomes increasingly important relative to the kinetic
energy. The Coulomb energy scales like E.~n'"?, while the Fermi energy scales
linearly with density, Er ~ n. The dimensionless parameter r, = E./E, ~n ' is
frequently used to characterize the relative importance of these two energy scales.

In a Hartree-Fock approximation, the total energy per particle, in units of Rydbergs
(62/613, where ajp is the Bohr radius), for a 2DES at zero magnetic field is the sum of the

kinetic and exchange energy [25]

Etot :%(I_FZZ)_%[(I_FZYQ +(1_Z)3/2:|3

N N

where y is the fractional spin polarization. At a critical value 7, = 2, the system develops
a ferromagnetic instability where the two lowest energy configurations correspond to
unpolarized (y = 0) or completely polarized (¥ = 1) and are equally energetically
favorable. As a function of ry, there is a first-order transition from an unpolarized to
completely polarized state. This type of ferromagnetism is referred to as “Bloch
ferromagnetism”. As a side note, the actual value of », at which ferromagnetism occurs is
larger than that predicted by Hartree-Fock. Experiments do not see a transition at 7, = 2
and, although more realistic calculations also predict a ferromagnetic transition, they
estimate a higher transition value of 7, ~ 26 [26].

For composite fermions, we can write the total energy per particle as a sum of the
effective kinetic energy for composite fermions, using the CF effective mass, and the
Zeeman energy:

3 h’n

E

tot

(WZ)_% 1

2mg,

Writing this in terms of the Coulomb energy and the parameter n=E, / E., we have
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E,, =0.0056(1+ z*)-0.5ny , (1)

where we use m, /m, = 0.6/B at v=1/2, based on the calculations of Ref. [3]. This
expression describes CF paramagnetism. A plot of Eq. (1) for two values of 7 is shown
in Fig. 5.18. The dotted line corresponds to 77 = 0.1, where a minimum in the energy
occurs at a polarization of y ~ 0.45, as marked by the arrow. As 7 is increased, the value
of y at which the energy is minimized increases. There is a continuous transition from
partial to complete polarization as a function of 7. When 7 = 0.22 (dashed line in Fig.

5.18), the energy is minimized at y = 1, i.e., the polarization is complete. This

corresponds to Er=Ez sothat £ =E,./2-E,/2=0 at y=1.
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Fig. 5.18. Total energy per particle as a function of spin polarization y for composite
fermions in a simple model, with and without an exchange-like term, proportional to .
The parameter 7=E,/E.. Dotted line: The system is partially polarized (minimum
energy configuration at y = 0.45, as marked by the arrow) with 7 = 0.1, no exchange
energy. Dashed line: The system is completely polarized when n = 0.22, with no
exchange energy. Solid line: The system develops a ferromagnetic instability at 77 = 0.1
if an exchange-like term is included, for = 1, where o =E, /E, at y = 0. The inset
shows the development of two minima, marked by arrows, for y ~0.9 and y ~ 1.
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Making an analogy to Bloch ferromagnetism at B = 0, we next add an exchange-like

term to the energy per particle:
E,, =0.0056(1+ 1) -0.5ny - 0.00280{(1 +2) (1~ 1)“},

wherea = E, /K E., the ratio of this exchange-like energy to CF effective kinetic energy,
at y = 0. Although we have no way of knowing the actual form of this hypothetical
exchange-like term, as an example, we assume that its dependence on spin polarization is
like that of like that of the exchange term in the B = 0 Hartree-Fock expression for the
total energy. For nonzero ¢, a first-order spin transition is possible. The solid trace in
Fig. 5.18 shows the energy versus spin polarization when o ~ 1, 7= 0.1. In this case, a
ferromagnetic instability occurs, where the energy as a function of y develops two
distinct minima with nearly equal energy at y ~ 0.9 and y = 1. For this value of ¢, for
< 0.1, the system will prefer y < 0.9, while for 77> 0.1, the system will prefer y = 1.

How might this ferromagnetic transition affect the RDNMR signal? Assume that the
resistivity depends on the spin polarization in a smooth way such that p ( ;() is a
continuous, increasing function of . The RDNMR signal is proportional to dp,  /0E,~
op,. 1 0n=(0p,./0x)(0x/0mn). Even though Op, /0y may be well-behaved, near the
ferromagnetic instability 0y /0n will diverge. This could explain the peak in dp_ /0E,

near the transition to complete spin polarization seen in the data of Fig. 5.10a.

5.6 Conclusion

In summary, our RDNMR measurements show that at v = 1/2, the nuclear spin-lattice
relaxation time 77 has temperature dependence that is roughly described by a simple 2D
version of Korringa nuclear spin relaxation. However, the density dependence of 7} fails
to agree with a simple free CF picture. We also show the first measurements of the
Zeeman energy dependence of transport at v = 1/2. The sign of the NMR-induced
change in the resistivity as well as the peak in dp../dE; near the spin transition that
develops at low temperatures are not explained by a conventional CF theory of transport
at v=1/2.
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Chapter 6:
Spin Transition in a Correlated Bilayer 2DES

In Chapter 5 we observed that a spin transition occurs in a single-layer 2DES at v = 1/2
and that at low magnetic fields, below this transition, this system is partially spin
polarized. We next consider a bilayer 2DES consisting of two closely spaced single-layer
2DES’s, each at filling factor v = 1/2. If the layers are far enough apart so that
interactions between the two layers can be neglected and if they are separated by a tall
enough energy barrier such that tunneling between the layers can be ignored, then the
individual layers behave like two independent 2DES’s. However, the addition of
interlayer interactions can create new many-body states in bilayers that have no single-
layer 2DES analog. An example of one such state occurs at total filling factor vy = 1,
where v = v; + 1 1s the sum of the filling factors of the individual layers. At vy=1 and
small effective interlayer spacing a remarkable state emerges that can be viewed as a
Bose condensate of excitons. There is a phase transition from a compressible state,
where the layers are weakly coupled, to an incompressible excitonic state when the
effective interlayer spacing is reduced below a critical value. This chapter discusses
experiments which investigate the role of spin in this phase transition, performed by Ian

Spielman and myself [1].

6.1 Bilayer 2DES

Figure 6.1 shows a sketch of the conduction band energy and ground and first excited
state subband wavefunctions for a typical bilayer 2DES. As shown in Fig. 6.1, the
ground state wavefunction is symmetric with respect to the two wells while the first
excited state wavefunction is antisymmetric. One important parameter for bilayer
samples is Agys; the symmetric-antisymmetric splitting; Asqs is the energy difference
between the ground and first excited state. This parameter is determined by the strength
of the tunneling between the two layers. One can estimate Agys by solving for the 2DES
eigenstates and their energies (see Chapter 1 for a discussion of calculations of
eigenstates using a Schrodinger-Poisson solver). If the splitting is large enough Agys can

be resolved
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Fig. 6.1. Cartoon of conduction band profile and subband wavefunctions for a typical
bilayer sample. Solid line: conduction band energy Ec. Dashed line: ground state
electron wavefunction. Dotted line: first excited state wavefunction. The center-to-
center spacing between the two wells is labeled “d”. The height of the barrier between
the wells is labeled “AE”.

experimentally via Shubnikov-de Haas oscillations in magnetotransport. However, this is

difficult to observe in weakly-tunneling samples (small Agys).

6.1.1 Tunneling at B=0

Figure 6.2 shows a schematic of energies relevant for 2D-2D tunneling at zero magnetic
field. Momentum and energy conservation during the tunneling process requires
alignment of the left and right well’s subband energies (AE, = 0); a tunneling current can
be observed when the interlayer bias V' is adjusted to meet this condition. The inset to
Fig. 6.3 shows an example of the enhanced differential tunneling conductance dI/dV seen
when this condition is met, for the case of equal layer densities, where AEy = 0 when
V=0.
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Fig. 6.2. Band diagram for 2D-2D tunneling. The solid line is the conduction band
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energy Ec. Hatched regions correspond to occupied states with 2D Fermi energies Er,
Er. The difference between the ground state 1D subband energies of the two individual
layers is AEy, and V' is the interlayer bias.

6.1.2 Tunneling in a Magnetic Field

Figure 6.3 contrasts 2D-2D tunneling at zero magnetic field to tunneling in the presence
of a large perpendicular magnetic field. The main plot of Fig. 6.3 shows dI/dV at zero
interlayer bias versus magnetic field for a bilayer 2DES with equal layer densities. At
low magnetic fields there is a finite zero bias tunneling conductance which oscillates with
Landau level filling fraction, showing behavior reminiscent of the low-field oscillations
of longitudinal resistivity versus magnetic field. In this regime the tunneling conductance
is at a minimum near integer v, where v is the filling factor of the individual layers, and
at a maximum when the Fermi level lies in the middle of a Landau level. At higher
magnetic fields dI/dV at zero interlayer bias is suppressed for a wide range of filling
factors. The explanation for this is that interactions lead to a gap in the tunneling density
of states; the width of the region in interlayer bias for which the differential tunneling
conductance is suppressed is on the order of the Coulomb energy. At large perpendicular
magnetic fields, a single-layer 2DES tends to form a highly correlated state (for example,
a Wigner crystal is predicted to form in the limit of small disorder and strong
interactions). It is believed that the suppression of tunneling near zero interlayer bias is

due to the energetic penalty of tunneling an electron between two such correlated layers,
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which temporarily creates a vacancy in the originating layer and an interstitial in the

destination layer [3].
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Fig. 6.3. Main plot: Differential tunneling conductance dI/dV at zero interlayer bias vs.
perpendicular magnetic field at 7 ~ 35 mK. Inset: dI/dV vs. interlayer bias at B=0. For
both plots, the two layer densities are equal, with 7 =0.37 x 10'' cm™ per layer.

6.2 vy=1 State

6.2.1 Bilayer QHE

When interactions between the individual layers (interlayer interactions) of a bilayer
2DES become comparable to interactions between electrons within an individual layer
(intralayer interactions), new many-body states can emerge. At vy = 1, the effective
interlayer spacing parameter d//, which is the physical distance d between the individual
2DEG layers (see Fig. 6.1) normalized by the magnetic length /, determines the ratio of
the strength of interlayer to intralayer Coulomb interactions. The Coulomb energy due to
interlayer interactions is proportional to 1/d, while the Coulomb energy due to intralayer
interactions is proportional to Jn ~ 1/1 when at fixed filling factor. In a bilayer 2DES at

total filling factor vy = 1 the value of d// determines whether the system displays a bilayer
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quantum Hall effect or simply behaves like two single-layer 2DES’s, each in the
compressible v=1/2 state [4-9].

pxx (arb.)

0.25 0.50 0.75 1.00 1.25 1.50
B/B(v=1)

Fig. 6.4. Longitudinal resistivity p,, vs. magnetic field for two bilayer samples with
different densities. For ease of comparison, the magnetic field is normalized by B(v=1),
the value of the magnetic field at vy = 1. Dotted line: d/[=2.10 at vy = 1. Solid line: d//
=1.87 at vy = 1. Inset: phase diagram for bilayer quantum Hall effect at vy = 1. Closed
symbols correspond to samples which do show a QHE while open symbols correspond to
samples which do not show a QHE. Figure from S. Q. Murphy ef al. [9]. (Reprinted
with permission).

Figure 6.4, which shows the data of Murphy et al. [9], displays the dramatic
transition that occurs as a function of d//. The main figure displays the longitudinal
resistivity py, of a bilayer 2DES while driving the current through both layers in parallel.
The dotted trace corresponds to a sample with d/[ =2.10 at vy =1 (B/B(V = 1) =1). At
magnetic fields near v = 1 the magnetotransport looks identical to that of a single-layer
2DES at v=1/2. In contrast, the solid trace, corresponding to a slightly lower d// = 1.87
at vy = 1, displays a quantum Hall effect near vy = 1. The inset of Fig. 6.4 shows the
phase diagram for the vy = 1 bilayer quantum Hall effect for finite tunneling strength

(Asqs # 0), obtained by measuring magnetotransport in many samples with different
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values of d// and tunneling strength. The intersection of the phase boundary (dashed line)
with the Agys = 0 axis at finite d// ~ 2 suggests that the incompressible state persists even

in the absence of interlayer tunneling.

6.2.2 Exciton Condensate

The vy =1 incompressible state can actually be viewed as a Bose condensate of excitons
[10, 11]. This can be seen by making a particle-hole transformation on one of the layers,

as sketched in Fig. 6.5.

layer 1 layer 2 Iayer 1 layer 2
; + ;; > » + % + [
filled LL ‘holes” =3
‘U—'”E 11-11"2 v =1 v=1/2 v =12

Fig. 6.5. Cartoon picture of particle-hole transformation applied to a half-filled Landau
level in a bilayer system at vy = 1.

As an example, we can view the half filled Landau level in layer number 1 as a
completely filled Landau level plus a Landau level half filled with holes. The completely
filled Landau level can be ignored, similar to way that the completely-filled non-valence
levels in an atom are ignored. Once the particle-hole transformation is made, it can be
seen that when d// is reduced such that the interlayer and intralayer Coulomb interactions
are comparable, holes in one layer will tend to pair with electrons in the other layer,
forming interlayer excitons. These excitons can then Bose condense and may actually
form a superfluid [12-14, 17].

An extension of Laughlin’s QHE trial wavefunction to systems with an additional
two-state degree of freedom was proposed by Halperin [15]. Initially, this wavefunction
was intended to describe a single layer 2DES including the electron spin degree of
freedom. However, the wavefunction can also be used to describe a 2DES with a layer
degree of freedom, replacing up and down spin with layer 1 and layer 2. For the case of

the bilayer vy = 1 state, this trial wavefunction is
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N1 N2 N1,N2 N1 ’ N2 2
Vi = H(zl. -z )H(wl. —WJ.)H(ZZ. —-w, )exp(—2|zi| /4jexp(—2|wi| /4],
i>j=1 i>j=1 i>j=1 i=1 i=1

where the complex coordinates z; and w; correspond to electrons in layers 1 and 2,
respectively. Looking at the symmetry of the wavefunction, interlayer and intralayer
correlations are equally important; the wavefunction vanishes equally rapidly for z; — z;
as for z; — z; or w; — w;. Numerical studies show good overlap between the w1, state
and the exact ground state for 10 particles and small d// <1 [16].

This wavefunction can be mapped to a BCS wavefunction [10, 11]. In fact, it is
predicted that the vy = 1 state for d// below the phase boundary will form a superfluid of
excitons [12-14]. This neutral superfluid can be probed via counterflow measurements,
where currents of equal magnitude but opposite sign are driven through the two
individual layers. Counterflow experiments by Kellogg et al. [17] provide evidence for
this neutral superfluid. The data of Ref. [17] show a relatively large counterflow
conductivity that continues to improve with decreasing temperature down to 35 mK.

The vy =1 state has been studied via a variety of experimental techniques including
magnetotransport, interlayer tunneling, Coulomb drag, and counterflow conductivity
measurements [6-9, 17-19]. The rest of this chapter focuses on resistivity and tunneling

as probes of the vy =1 state.

6.2.3 Tunneling at v,y =1

Another signature of the transition to the excitonic state can be seen in interlayer
tunneling. Figure 6.6 shows the interlayer differential tunneling conductance as a
function of interlayer bias. For large d/I, the zero bias conductance is suppressed due to
the aforementioned Coulomb gap effect. However, as shown by I. B. Spielman et al.
[18], if d/I is brought below the critical point there is a dramatic enhancement of the zero
bias tunneling conductance. Interlayer correlations cause the Coulomb gap to be replaced
by a sharp tunneling peak. Roughly speaking, when interlayer interactions become
significant, an electron in one layer will be positioned near a hole in the adjacent layer

into which the electron can easily tunnel.
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Fig. 6.6. Zero bias differential tunneling conductance peak at vy = 1. Dashed trace: d//
above the phase boundary. Solid trace: below the phase boundary. Data courtesy of L.
B. Spielman.

6.2.4 Spin at vy=1

As discussed in Chapter 5, a single-layer 2DES at v = 1/2 is partially spin polarized.
However, the spin polarization of a bilayer 2DES at v = 1 when the layers are strongly
coupled is not known. This raises the question of what role spin might play in the
transition from the compressible to incompressible state as a function of d//. The NMR
experiments discussed next [1] show that the spin degree of freedom is actually active

during this transition.

6.3 Data

6.3.1 Sample

The 2DES sample used in this experiment consists of two closely spaced GaAs quantum
wells, 18 nm wide, separated by a 10 nm Aly9GagAs barrier. The as-grown electron

density in each quantum well is 4.4 x 10'° ¢cm™ and the low-temperature mobility is about
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Fig. 6.7. Schematic of typical bilayer device consisting of a central mesa with arms
leading to ohmic contacts, density-tuning front and back gates covering the central mesa
region, and arm depletion gates. a) Top view. b) Side view (not to scale) with depletion
arm gates biased in a tunneling measurement configuration.

9 x 10° cm?/Vs. The device consists of a square mesa region, 250 pm on a side, with
arms extending to ohmic contacts. Aluminum top and bottom gates covering the central
mesa region allow control over the 2DES densities. Gates covering the mesa arms are
used to make electrical contact to the individual layers [20]. The entire sample is thinned
to a thickness of ~ 50 um using a chemical-mechanical etch [2], in order to be able to
place the back gates near enough to the 2DES so that a substantial density change can be
obtained using moderate gate voltages (of magnitude less than 100 V). Figure 6.7a
shows a diagram of the sample layout with ohmic contacts and front and back gates.
Figure 6.7b shows a sketch of the sample in a tunneling configuration, where the left
back arm gate is biased to cut off conduction between the back layer and the left ohmic
and the right front arm gate is biased to cut off conduction between the top layer and right
ohmic.

Measurements are made at temperatures down to 7 ~ 25 mK in a dilution
refrigerator. The sample is suspended in vacuum by Au wires connected to the ohmic
contacts, which provide thermal contact to the cryostat cold finger. The thermal
relaxation time of the 2DES is a few seconds at 50 mK. Magnetotransport for this

sample displaying the vy =1 quantum Hall state is shown in Fig. 6.8.
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oL T ~45mK

Fig. 6.8. Longitudinal resistivity versus magnetic field for d// = 1.87 at vy = 1, below the
phase boundary. At this density, the sample displays a minimum in R, at vy = 1.
Minima corresponding to several single-layer QH states are also observed. Current is
driven through both layers simultaneously and voltage is measured across top layer.

6.3.2 NMR Techniques

We use the resistively detected NMR (RDNMR) techniques described in Chapter 4. The
2DES sample is mounted inside a rectangular eight-turn NMR coil for applying RF

Au wires to ohmics

NANANNN—

heater

SV VY

NMR coil

Fig. 6.9. Schematic of 2DES sample suspended in NMR coil by Au wires leading to
ohmic contacts. The shaded area represents the mesa region containing the 2DES. A
small resistive heater is epoxied directly onto the chip.
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magnetic fields parallel to the plane of the 2DES. Additionally, a small resistive heater is
attached directly to the 50 um thick sample (5 kQ surface mount thin-film resistor
attached via Stycast 1266 epoxy) for heat pulse experiments (see Fig. 6.9).

6.3.3 RDNMR Frequency Sweep

Figure 6.10 shows a RDNMR resonance at vy = 1, just inside the excitonic phase, at d// =
1.90, a density at which the vy = 1 quantum Hall state is not very strong, so that R, at vy
= 1 i1s not zero. The plot displays longitudinal resistance versus frequency, while
sweeping the frequency upward at + 0.33 kHz/s through the 'Ga Larmor resonance, at
constant RF power. The "'Ga resonance occurs at Af = 0, where the RF frequency is /= f;
+ Af and fy = 39.952 MHz is the "'Ga Larmor frequency. The magnitude of the RF
magnetic field is small enough such that @, < 1/7,, where w. is the Rabi frequency and
T, is the nuclear spin dephasing time. Thus, sweeping through the NMR line simply

reduces the magnitude of the nuclear spin polarization.
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Fig. 6.10. RDNMR frequency sweep showing the resonant response of the 2DES at the
"'Ga resonance frequency (Larmor frequency fp = 39.952 MHz) at vy = 1, just below the
phase boundary (d// = 1.90). The 2DES longitudinal resistance is monitored while the
RF B-field frequency is swept at a rate of +0.33 kHz/s. The RF frequency is /= f, + Af.
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At the start of the sweep, the nuclear polarization is at thermal equilibrium and the
longitudinal resistance is at some finite value. When the 'Ga Larmor resonance is
reached, the "'Ga spin polarization is reduced. The data of Fig. 6.10 does not represent
the equilibrium RDNMR lineshape; after passing through the NMR line, the resistance
slowly decays back to the equilibrium value in a time 77, the nuclear spin-lattice
relaxation time. Depolarizing the nuclear spins leads to an increase in the electronic
Zeeman splitting (see Chapter 4, section 4.2.2). Thus, the dip in resistance at the "'Ga
resonance seen in Fig. 6.10 implies that the quantum Hall state at vy = 1 is strengthened
by an increase in the Zeeman splitting. The NMR-induced increase in the Zeeman
splitting causes the strongly-coupled incompressible phase to be energetically favored
over the weakly-coupled compressible phase. This suggests that the incompressible

phase has greater electronic spin polarization than the compressible phase.

6.3.4 RDNMR Transients

Figure 6.11 shows the response of the longitudinal resistivity to NMR pulses at vy =1 for
d/l just below the phase boundary (d// = 1.91), corresponding to a density at which the

minimum in R, versus B at vy = 1 has just begun to form and the resistance at vy =1 is

700

R (€)

650

600

time (10° s)

Fig. 6.11. Longitudinal resistivity versus time, near the phase boundary (d/l = 1.91) at T
=35 mK. A burst of RF pulses (50 uS in length) applied at £ = 0 is used to completely
depolarize the "'Ga nuclei. The dotted line indicates the time at which the NMR-induced
change in resistance has decayed by 1/e.
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non-zero. Then, at time ¢ = 0 a burst of RF pulses (50 uS in length) are applied to
completely depolarize the "'Ga nuclei and the resistance rapidly decreases. The effect of
the NMR pulses is to depolarize the nuclei only temporarily. The resistance then decays
back to the equilibrium value with a characteristic time 77, which we can obtain from this
trace. The relaxation of the resistance is not precisely described by a single exponential.
This is most likely due to the fact that 7 varies with frequency across the NMR line due
to the finite width of the 2D subband wavefunction (for further discussion see Chapter 4,
Section 4.3.3 and Chapter 5, Section 5.2.5). The 50 uS RF pulses correspond to a 20 kHz
frequency width, which is larger than the width of the NMR line. Thus, the NMR pulses
depolarize all nuclear spins in the quantum well region. This will give rise to a RDNMR
transient signal which decays at a rate determined by a range of 7; times. Therefore,
instead of using a single exponential fit, we define 7; as the time required for the NMR-

induced change in resistance to decay by 1/e of its initial value.

6.3.5 Effective Interlayer Spacing Dependence

Next we examine the RDNMR signal and nuclear 7; time over a range of d// values near
the phase boundary at vy = 1, as shown in Fig. 6.12. Figure 6.12a shows the longitudinal
resistance and RDNMR signal versus d// at vy = 1. As expected, the sample resistance
(open circles) is finite in the compressible phase at large d// and vanishes as d/I is
reduced, signaling the development of the vy = 1 QHE. The RDNMR signal (solid
markers) is the fractional change in the longitudinal resistance AR,/R.. due to
depolarizing the 'Ga nuclei. This RDNMR signal is small and positive in the
compressible, weakly-coupled phase (see Chapter 5 for further discussion of RDNMR
signals at v=1/2 in a single-layer 2DES). The RDNMR signal becomes negative as d/!
is reduced below the phase boundary, just as the longitudinal resistivity begins to drop.
This negative RDNMR signal is consistent with the earlier data of Fig.’s 6.10 and 6.11.
The NMR-induced increase in Zeeman splitting causes the quantum Hall effect to
strengthen, implying that the incompressible phase has greater electronic spin

polarization than the compressible phase.



120

(M) **y

T T T
2000
1500 |-
®
— 1000 -
500
O 1 | | =
1.9 2.0 2.1
all

Fig. 6.12. RDNMR signal and 7} versus d// at vy = 1. a) Solid markers are the RDNMR
induced fractional change in the resistivity AR,,/R,. (left axis). Open circles are the
longitudinal resistivity R, (right axis). b) Nuclear 7; time. Solid lines are guides to the
eye.

The nuclear spin-lattice relaxation rate 7 is strongly affected by the nature of the
electronic spin excitations. Nuclear spin relaxation in bulk GaAs at low temperatures
with no electron gas present is extremely slow — the 77 times can be hours or days.
Figure 6.12b shows that for large d//, when the system is in the compressible phase, 77 is
relatively short. This reflects the presence of low energy electron spin flip excitations in
the compressible phase which lead to enhanced nuclear spin relaxation (A more detailed
discussion of nuclear spin relaxation in a single-layer 2DES at v = 1/2 can be found in
Chapter 5). The T; times rapidly increase as d/[ is reduced and the 2DES enters the
incompressible phase. In a 2DES with a large energy gap for spin excitations, where the
nuclei cannot efficiently relax via the electron gas, the 7; time in the 2DES region is most
likely limited by the rate of nuclear spin diffusion out of the 2DES region into the bulk of

the sample (see Chapter 5, section 5.4.3 for a discussion of nuclear spin diffusion). This
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diffusion time is roughly 1,000 — 2,000 s [21] and sets an upper bound for the measured

T 1 time.

6.3.6 RDNMR and Tunneling

Next, we look at the effect of NMR on interlayer tunneling at vy = 1. The solid trace in
Fig. 6.13 shows the response of the zero bias tunneling conductance Gy to NMR at vy =1
for d/l just below the phase boundary, where there is a small zero bias peak in the
tunneling conductance. For times before ¢+ = 0, the RF B-field is off, the nuclear
polarization is in thermal equilibrium and the conductance is at some finite value. Then,
at time ¢ = 0 a burst of RF pulses (50 uS in length) are applied to completely depolarize
the "'Ga nuclei and the tunneling conductance rapidly increases. The effect of the NMR
pulse is to depolarize the nuclei only temporarily. The conductance then decays back to

the equilibrium value at a rate determined by the nuclear 7.
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Fig. 6.13. Zero bias differential tunneling conductance Gy at vy = 1 versus time, near the
phase boundary (d/l = 1.92) at T = 35 mK. For the solid trace a burst of RF pulses
applied at # = 0 is used to completely depolarize the "'Ga nuclei. For the dotted trace a
heat pulse is applied for ~ 900 sec. prior to = 0. The heat pulse depolarizes all nuclear
species.
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The nuclear polarization can also be modified by applying a voltage pulse to the
resistive heater sketched in Fig. 6.9. The dotted trace in Fig. 6.13 shows the result of
applying a 900 sec. heat pulse, which raises the sample temperature to roughly 7' = 350
mK, depolarizing all nuclear species ("'Ga, “Ga, and As). Initially, the nuclear
polarization is at thermal equilibrium. During the heat pulse, Gy vanishes since the
incompressible vy = 1 state is destroyed due to the elevated sample temperature. Atz =0,
the heat is turned off, and the 2DES quickly cools back to the fridge cold finger
temperature (7 = 35 mK) with a thermal time constant of a few seconds. However, the
nuclei will slowly return to thermal equilibrium, at a rate determined by the nuclear T}
times of the three nuclear species. The zero-bias tunneling conductance after the 2DES
has cooled, just after the end of the heat pulse (¢ = 0), is enhanced over the equilibrium
value. This enhancement is larger than that seen for the ''Ga NMR pulse, since all three
nuclear species have been depolarized.

The increase in Gy due to depolarizing the nuclei seen in Fig. 6.13 is consistent with
the NMR-induced decrease in the longitudinal resistivity seen in Fig.’s 6.10, 6.11, and
6.12. Again, increasing the Zeeman splitting strengthens the strongly-coupled excitonic
phase, implying that this phase has greater spin polarization than the competing weakly-
coupled phase.

Figure 6.14 shows the dramatic response of the tunneling conductance to changes in
the nuclear polarization seen in the compressible phase, just above the phase boundary at
vr =1, d/l = 1.98. Both Fig. 6.14a and b show the differential interlayer tunneling
conductance versus interlayer bias. As shown in Fig. 6.14a, for nuclear spins in thermal
equilibrium there is no measurable zero-bias tunneling conductance. However, as shown
in Fig. 6.14b, if a heat pulse is applied to depolarize the nuclei, a small zero-bias
tunneling conductance appears. We are able to just enter the excitonic condensate phase

by decreasing the nuclear polarization.
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Fig. 6.14. Differential tunneling conductance vs. interlayer bias just above the phase
boundary, d/[ =1.98, vr=1 at T=35 mK. a) The nuclei are in thermal equilibrium. b) A
heat pulse has been applied immediately prior to the conductance measurement to

depolarize all nuclei.
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Fig 6.15. Evolution of zero-bias interlayer tunneling conductance, at equilibrium (solid
dots), with "'Ga nuclei depolarized via NMR (crosses), and with all nuclei depolarized
via a heat pulse (open circles). The solid lines are guides to the eye.

The experiment of Fig. 6.14 can be repeated for several d/l values near phase

boundary, using both NMR and heat pulse techniques. The result is shown in Fig. 6.15,

which plots the zero-bias tunneling conductance Gy versus d//, at equilibrium, just after
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an NMR pulse at the ' Ga resonance, and just after a heat pulse used to depolarize all the
nuclei. At all d// near the phase boundary, the effect of depolarizing the nuclei is to
enhance the G, the effect becoming proportionally more pronounced near the critical d//
(vanishing Gy).

In conclusion, we find that increasing the Zeeman splitting via NMR leads to an
enhancement of Gy for all d// near the phase boundary between the weakly-coupled and
strongly-coupled phase. The NMR tunneling data are consistent with the RDNMR R,
data and provide additional confirmation that the strongly-coupled phase has greater spin

polarization than the competing weakly-coupled phase.

6.3.7 Simple Model

To make the explanation of our observations more concrete, consider a simple model
where the bilayer 2DES at vy = 1 near the phase boundary contains two competing phases
with differing spin polarization, where the two phases are the weakly-coupled
compressible phase and the incompressible exciton condensate phase. The phase
separation can be driven by static fluctuations in the electron density or variations in the
tunnel barrier width, both of which are present in our bilayer sample.

From the RDNMR measurements shown above we know that increasing the

Zeeman splitting via application of NMR or heat pulses causes the excitonic phase to be

NMR
pulse

Fig. 6.16. Cartoon showing phase separation near the phase boundary where the
excitonic phase (hatched) has greater spin polarization than the compressible phase
(shaded). The application of an NMR pulse temporarily increases the fraction of the
sample occupied by the excitonic phase.
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favored, suggesting a picture where the excitonic phase has greater spin polarization than
the competing compressible phase.

Consider the situation sketched in Fig. 6.16 where the system is at vy = 1 near the
phase boundary and the two coexisting phases are present. The hatched regions are in the
incompressible, excitonic phase and have greater spin polarization than the shaded
regions, which are in the compressible phase. Application of an NMR pulse will
temporarily increase the Zeeman splitting, causing the state with greater spin
polarization, the excitonic state, to be energetically favored. The fraction of the sample
area occupied by the excitonic state will increase, which will lead to an enhanced zero-

bias tunneling conductance and a decrease in the longitudinal resistivity.

6.3.8 Filling Factor Dependence

Figure 6.17 shows the dependence of the RDNMR signal and 7} on total filling factor,
varying the magnetic field while holding the 2DES density fixed such that d// = 1.90 at v
= 1. Figure 6.17a shows the NMR-induced fractional change in longitudinal resistance
AR,./R.. versus v .. For reference, the longitudinal resistivity is also displayed, showing
the dip in R,, versus vr! that forms at vy = 1. The magnitude of AR,./R,, falls rapidly as
the filling factor is raised or lowered above or below vy = 1. In the compressible phase at
filling factors outside of the range where the dip in R, occurs, AR../R,, is positive.
Figure 6.17b shows the dramatic dependence of T} on vr', showing a very long 7| ~
2,000 s right at vy = 1. T decreases sharply when the filling factor deviates slightly from
vr=1.

The data of Fig. 6.17 can be understood if we assume that moving away in filling
factor from vy = 1 drives the system out of the incompressible, excitonic phase and into a

compressible phase that is similar to the weakly-coupled phase seen at vy = 1 for larger

d/l. Then, the decrease of |ARXX /R,

and 7 with increasing |VT —1| is analogous to the

behavior observed upon increasing d// as shown in Fig. 6.12.
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Fig. 6.17. RDNMR signal and 7 versus v;', varying the magnetic field while
maintaining a fixed density, such that d//=1.90 at vy = 1. a) Solid markers are the NMR-
induced fractional change in the resistivity AR./R,,. Open circles are the longitudinal
resistivity Ry,. b) Nuclear 7) time. Solid lines are guides to the eye.

We also note that the data of Fig. 6.17b looks similar to what is seen in single layer
2DES’s at v=1, where a similar peak in 7} near v=1 is expected due to the presence of
skyrmions (see Chapter 7 for further discussion). Theoretically, it is speculated that the
excitations of the bilayer system at vy = 1 may have a similar structure, where the
excitations are a type of skyrmion that involves both the pseduospin (layer index) and

spin degree of freedom [22].

6.4 Conclusions

We have shown that, contrary to the usual assumption, that the spin degree of freedom is

active during the transition between the compressible and incompressible state at vy = 1.
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The strengthening of the incompressible, excitonic phase that occurs when increasing the
electronic Zeeman splitting via NMR shows that the compressible phase is partially
polarized and that the excitonic phase has greater spin polarization than the competing

compressible phase.
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Chapter 7:
v=1 Quantum Hall Ferromagnet

The v =1 quantum Hall state in a single layer 2DES might at first glance appear to be
readily explained via a simple non-interacting picture invoking the single-particle Landau
levels described in Chapter 3. However, upon greater scrutiny, one finds that Coulomb
interactions actually play a large role in determining the behavior of this state. For
example, the activation energy of the v= 1 state is much larger than the bare Zeeman gap
that one would predict from a single-particle picture, due to the exchange interaction.
Exchange also plays a role in determining the spin and charge excitations of this quantum
hall state. The lowest energy charged excitations at filling factors at and nearby v= 1 are
actually predicted to be skyrmions [1], excitations with a smooth spatial variation in spin
which carry spin and charge. This chapter discusses resistively-detected NMR
(RDNMR) measurements that probe the electron spin near v =1 [2]. The presence of
skyrmions is expected to have a large impact on nuclear spin dynamics at this state.
Experimentally, RDNMR near v =1 is quite different when compared to the data of
earlier chapters. Near v= 1, the RDNMR lineshape is “anomalous”, having a derivative-
like lineshape rather than the simple unipolar lineshape seen at v= 1/2 (Chapter 5) and in
the bilayer 2DES at v = 1 (Chapter 6). The nuclear 1/7; relaxation rates near v= 1 can
also be more than an order of magnitude faster than those seen in the partially polarized,

compressible phase at v=1/2 or vy = 1.

7.1 Background
7.1.1 Skyrmions

A 2DEG at v=1 is a two-dimensional ferromagnet. Even in the absence of spin Zeeman
energy (i.e., g = 0), the ground state will be completely spin polarized due to Coulomb
interactions. In a single-particle picture, with nonzero g-factor, one would expect the
activation energy of this state to be equal to the bare Zeeman splitting, corresponding to a
single spin flip obtained by moving one electron up in energy to the next spin-resolved
Landau level. However, in reality, the energy gap at v = 1 is greatly enhanced by

exchange interactions in typical 2DEG’s in GaAs/AlGaAs heterostructures.
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Magnetotransport measurements show that the activation energy is nearly 20 times
greater than the bare Zeeman splitting [3, 6].

As was mentioned in the introduction, the lowest-lying charged excitations near
v =1lare strongly affected by the exchange interaction and are theoretically predicted to
be objects called skyrmions [1]. The skyrmions at and near v = 1 carry charge +e and
multiple reversed spins. When the exchange energy penalty due to a single spin flip is
larger than the Zeeman energy, in order to make a spin excitation, instead of reversing a
single spin it is favorable to flip multiple spins in order to attempt to align neighboring
spins. The spatial configuration of the spin and charge of a skyrmion is sketched in Fig.
7.1. A skyrmion has a single reversed spin located at the center and the surrounding

spins gradually rotate back to the ground state spin alignment with increasing radius.
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Fig. 7.1. Sketch of a single skyrmion showing the electron spin configuration (arrows)

versus position in the 2D plane.

The size of the skyrmion and number of reversed spins K is determined by the
relative magnitude of the exchange and Zeeman energies. For vanishing Zeeman energy

K and the size of the skyrmion diverges. As the Zeeman splitting is increased the
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energetic cost of creating multiple flipped spins increases and K and the skyrmion size
are reduced. Above a critical ratio of the Zeeman splitting to the Coulomb energy, the
lowest energy quasiparticle will be a single spin flip, rather than a skyrmion. A lower
bound for this critical ratio EZEc > 0.054 is given in Ref. [1]. For 2DES’s in
GaAs/AlGaAs heterostructures, where g = -0.44, this critical ratio implies that for
perpendicular magnetic fields less than B = 25 T, skyrmions will be the lowest energy
charged excitations at v=1.

Skyrmions with charge -e or antiskyrmions with charge +e are added to the ground
state as the filling factor v of the 2DEG is raised or lowered above or below v =1,
respectively. Since skyrmions (and antiskyrmions) carry reversed spins, this leads to a
drop in the electron spin polarization as v deviates from v= 1, as was predicted by Fertig
et. al [4]. In fact, this rapid decrease in the spin polarization has been observed
experimentally. Optically pumped NMR Knight shift measurements performed by
Barrett ef al. [5], show that right at v= 1, the spin polarization is maximal, and then drops
rapidly with increasing |v -1|. The rate at which the spin polarization decreases with
respect to filling factor provides an estimate of the number of reversed spins per
skyrmion. From a fit of the Knight shift versus v data, Barrett et al. find that K = 3.6 for
the case where the ratio E/Ec = 0.016 at v = 1. Schmeller et al. [6] also make an
experimental estimate of K via transport activation energy measurements versus Zeeman
energy at v= 1. Small changes in the Zeeman energy were made via applying an in-
plane magnetic field. The slope of the transport gap versus Zeeman splitting gave K =
3.5 for Ez/Ec~0.01 at v=1.

7.1.2 Skyrmion Solid

Away from v = 1, where the ground state of the system contains a finite density of
skyrmions, it is expected that interactions between skyrmions will lead to the formation
of a skrymion solid. Brey et al. predict the formation of skyrme crystal for |l—v| <0.2
[7]. Square or triangular lattice formation is predicted where the type of lattice depends

on both vand the ratio of the Zeeman to Coulomb energy [8].
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The prediction of a skyrme crystal near v= 1 remains somewhat controversial. An
unpolarized liquid state has also been predicted for filling factors near v =1 [9]. Also, in

most of the theoretical work to date the effect of disorder has not been well established.

7.1.3 Collective Modes

The skyrme crystal has magnetic modes that correspond to the orientational and
positional degrees of freedom for the skrymions [8]. These are the spin-wave and
phonon modes of the skyrme crystal. Fig. 7.2 sketches the dispersion at low energies for

both modes.

spin-wave

~"magnetophonon

k

Fig. 7.2. Collective mode dispersions for skyrme crystal for low energies, showing the
spin-wave (solid line) and magnetophonon (dotted line) modes.

The magnetophonon mode corresponds to fluctuations in the position of the skyrmions,
while the spin-wave mode corresponds to fluctuations in the in-plane (x-y) component of
the spin. Ideally, these modes are gapless — they have zero energy at zero wavevector.
These low-energy modes are expected to influence nuclear spin relaxation in the
vicinity of the 2DES. Both modes give rise to local fluctuations in the z-component of
the electron spin. These modes should lead to a Korringa-like temperature dependence
for the nuclear spin relaxation rate 1/7 (see Chapter 5, section 5.3.6 for a discussion of
Korringa relaxation). In the presence of disorder, pinning of the skyrme crystal to
charged impurities may occur, which will lead to a gapped phonon mode (nonzero energy

at zero wavevector). However, the spin-wave mode will remain gapless. In this case, the
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T, time will be determined by the thermal occupation of the spin-wave modes and will be

given by [8]:

k,T
uJ

/T ~—2—|v-1

; (1)

where the constant UJ determines the stiffness of the spin-wave mode: E ~ JUJk.
Alternate temperature dependences for 77 are predicted by Green [10], who

considers the importance of quantum fluctuations. Green predicts a relaxation rate that

can either increase or decrease with increasing temperature, depending on the relative

magnitude of the spin-wave stiffness, skyrmion size, and Zeeman energy.

7.1.4 Previous Experiments

Some of the earliest experiments probing the electron spin degree of freedom near v =1
have already been mentioned — the optically-pumped NMR Knight shift measurements of
the electron spin polarization versus filling factor by Barrett e al. [5] and the dependence
of the activation energy on Zeeman energy measured by Schmeller ez al. [6]. Both works
suggest the presence of finite-size skyrmions near v= 1. The nuclear 7} time near v=1
has also been measured via NMR. Tycko et al., using optically pumped NMR, find a
rapidly decreasing 7} as the filling factor deviates from v = 1, suggesting the presence of
low-lying electronic spin-flip excitations near v = 1 [11]. Bayot ef al. find a giant
enhancement of the heat capacity of a 2DES near v=1 at low temperatures, which can be
explained by a nuclear spin contribution to the heat capacity, suggesting a strong
coupling between the electrons and the nuclear spins in the 2DES region [12].

Using a RDNMR technique, Hashimoto et al. observe a nuclear relaxation rate
which increases dramatically as v is raised above or lowered below v=1 [13]. Smet et
al. [14] and Desrat et al. [15] also observe a relatively short 77 time as v deviates slightly
away from v =1 using RDNMR. Desrat et al. were also the first authors to report an
“anomalous” derivative-like RDNMR lineshape, very similar to the lineshape we observe
under comparable conditions, as shown in Fig. 7.6b [15].

RDNMR measurements of Gervais et al. also yield a fairly short 7} time [16].
However, the RDNMR lineshape of Gervais ef al. looks very different from that observed
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by Desrat et al., having a unipolar rather than a derivative-like lineshape. Gervais et al.
also perform a systematic study of the temperature dependence of 7 and find an
increasing T, with increasing temperature, which the authors interpret as evidence for
formation of a skyrme crystal at low temperatures. This interpretation is consistent with
the theory of the 7' temperature dependence of Green, as mentioned above (see section
7.1.3), for some values of the skyrme spin-wave stiffness, skyrmion size, and Zeeman

splitting [10].

7.2 Experiment

We use RDNMR (see Chapter 4 for a general introduction to RDNMR) to examine the
spin degree of freedom near v = 1 in a single layer 2DES, with the aim of further
investigating the “anomalous”, derivative-like RDNMR lineshape seen in Ref. [15] and

the peculiar temperature dependence of 7) (7 increasing with rising temperature) found
in Ref. [16].

7.2.1 Samples

We studied two different single-layer 2DES samples, labeled “A” and “B”. The sample

structure, mobility and density of these two samples is shown in Table 7.1.

Sample Structure Mobility (cm’/Vs) Density (cm™?)
A heterojunction 8 x 10° 1.6 x 10"
B quantum well (300 A) 14 x 10° 1.6 x 10"

Table 7.1. Sample structure, mobility, and density for single-layer 2DES samples used
in RDNMR experiment near v= 1.

Figure 7.3 shows magnetotransport for both of these samples, displaying minima in R,

versus B corresponding to several fractional and integer quantum Hall states.
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Fig. 7.3. Magnetotransport R, vs. B at T~ 50 mK for a) sample “A” and b) sample “B”.

7.2.2 Setup

The 2DES sample is placed in an approximately rectangular 8-turn NMR coil for
application of an RF magnetic field H; parallel to the 2DES and perpendicular to the
magnetic field. The magnitude of H; ranges from roughly 0.1 — 0.5 uT, as determined
via an analysis of our coax/coil circuit (see Chapter 4, section 4.3.1a). These RF fields

are much less than the nuclear dipolar field, H; ~ 0.1 mT.
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Fig. 7.4. Temperature dependence of the longitudinal resistivity R, at v = 0.88. The
solid line is an Arrhenius fit: R_ = R,e*". The fit gives a = 0.48 K.
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Fig. 7.5. Electron temperature 7,, as determined from sample resistivity, vs. cold finger
temperature with RF on, at v=0.88, where H, ~ 0.5 uT, f~ 52 MHz. The solid line is a
guide to the eye. The dashed line is the case for no RF heating (RF off), for reference.

Non-resonant RF heating of the sample raises the 2DES temperature above that of the
cryostat cold-finger. The electron temperature with the RF power on is determined by

using the longitudinal resistivity as an in-situ thermometer. As an example, Fig. 7.4
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shows the temperature dependence of R, near v =1 (at v = 0.88), which displays an
Arrhenius behavior. Figure 7.5 shows the magnitude of the RF heating at v = 0.88 with
H, ~ 0.5 uT, in which case the lowest reachable electron temperature is roughly 45 mK.
The 2DES is thermally connected to the cold finger via the ohmic contacts and leads.
The thermal time constant for cooling of the 2DES is short. The 2DES can be
temporarily be heated (due to ohmic heating) by application of a current pulse through
the sample. For filling factors near v= 1, this ohmic heating can be detected via a rise in
the longitudinal resistivity. The time required for the 2DES resistance to relax back to
the thermal equilibrium value yields the thermal time constant for cooling of the 2DES
electrons. For the experiments in this chapter, this thermal time constant is less than

0.1s.

7.2.3 RDNMR lineshape

Figure 7.6a shows Ry, versus B near v =1 at a temperature of 7= 70 mK for sample A.
Figure 7.6b shows the RDNMR lineshape — the NMR-induced change in resistance AR,

versus frequency, while sweeping the frequency upward at 0.13 kHz/s. The arrow in Fig.
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Fig. 7.6. Anomalous RDNMR lineshape near v =1 as seen in sample A. a) R, vs. B
near v= 1. The arrow marks the magnetic field at which the RDNMR lineshape shown
in b) was acquired. b) RDNMR lineshape AR,, vs. frequency for ’As. The frequency is
swept up at 0.13 kHz/s.
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7.6a marks the magnetic field at which the lineshape of Fig. 7.6b was taken. We observe
the same “anomalous” derivative-shaped RDNMR lineshape for filling factors near v =1
as seen previously by Desrat ef al. [15].

Figure 7.7 shows a typical RDNMR transient AR,, versus time, where the RF power
is held constant in order to keep the non-resonant RF heating of the 2DES constant. For
times earlier than f;, the frequency is off of the "’ As resonance and the resistance is at the
thermal equilibrium value. At ¢ the frequency is brought onto resonance and the
resistance falls. Finally, at #r the frequency is brought off resonance and the resistance
decays back to the equilibrium value. The inset to Fig. 7.7 shows the "As RDNMR
lineshape, where the open circle marks the “off resonance” frequency and the closed

circle marks the “on resonance” frequency.
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Fig. 7.7. RDNMR transient AR,, vs. time, showing the fall and rise of the resistivity with
application of resonant RF at the "As resonance frequency. At time # the frequency is
brought onto resonance and at - the RF is brought off resonance. The data is taken at B =
7.1 T (v=0.89), at a temperature 7= 70 mK. The solid red line for times greater than #
is an exponential fit to the data. Inset: RDNMR lineshape obtained by sweeping the
frequency upward at 0.13 kHz/s. The solid circle marks the “on resonance” frequency (f
= 51.425 MHz), while the open circle corresponds to “off resonance” (f = 51.42 MHz).
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The time required for the relaxation of the longitudinal resistivity back to equilibrium is
the nuclear 7 time. The red line in Fig. 7.7 is an exponential fit to the data during this

relaxation period, yielding 77 = 5.2 s.

7.2.4 Power Dependence

Figure 7.8 shows the power dependence of the RDNMR line. The derivative-like
lineshape is preserved for all RF power levels. The maximum power in Fig. 7.8

corresponds to H; ~ 0.5 puT, and for the minimum power H; ~ 0.1 uT.

AR /R,

0.0 0.2 0.4 0.6 0.8 1.0
power (arb.)

Fig. 7.8. RF power dependence of RDNMR lineshape amplitude AR,./R;, at v=0.89 for
f=151.425 MHz (open circles) and f= 51.441 MHz (filled circles). Solid lines are a fit to
the data of the expected form of the power dependence from the Bloch equations (see
text). Inset: RDNMR lineshape showing the location of /= 51.425 MHz (open circle)
and 51.441 MHz (filled circle).

From the Bloch equations we expect the fractional change in the nuclear polarization due

to NMR to be given by (see Chapter 4)

oTT.
AEE=|—— 2 |=1-7¢_ /T, 2
é: é: |:1+a)r27-1.7-.2 rise 1 ( )
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where & is the nuclear polarization, @, is the Rabi frequency, 7> and 7 are the nuclear

spin-spin and spin-lattice relaxation times, respectively, and 7. is the initial rise time of

the change in the nuclear polarization, just after the RF is brought onto the NMR
resonance. We next assume that the RDNMR signal AR,/R,. is proportional to the
NMR-induced change in Zeeman energy, which is proportional to the change in the
nuclear polarization. Then, since RF power ~ @, we fit the data of Fig. 7.8 to a function
of the form

AR PP

XX

a >
R 1+ P

XX

where P is the RF power (measured in the arbitrary units shown in Fig. 10), and « and S
are fitting parameters. The resulting fits are the solid lines shown in Fig. 7.8. The
parameter Bwill be determined by 717> and the calibration between RF power and H,*.
For the data taken at f'= 51.425 MHz (at the dip in the RDNMR line) we obtain = 9.5.
For the data at f=51.441 MHz (at the peak in the RDNMR line) we find = 3.6. In both
cases, the fact that #> 1 suggests that for the higher RF power levels shown in Fig. 7.8
the NMR line is near saturation, i.e. the nuclear polarization has been reduced to nearly
Zero.

We can also calculate A&/ & using our rough estimate for H; from an analysis of the
coil/coax circuit. In GaAs the intrinsic nuclear 7, time is on the order of 1 ms. Using our
estimate of /; and the nuclear gyromagnetic ratio,w, ~ 27z x 0.5 4T x 7.29 MHz/T ~
23 Hz. Then, @, T,T, ~ 3, which is in the same ballpark as the above estimate, using the
power dependence of the RDNMR signal.

From Eq. (2) we find that we should also be able obtain A/¢& from 7y andz,,
which are the rise and fall times in the RDNMR transient shown in Fig. 7.7. An
=43s. As
mentioned previously, a fit to the relaxation of AR, after #;in Fig. 7.7 gives T} = 5.2 s.
Then, AS/E=1-7
power dependence fits of Fig. 7.8. It appears that the Bloch equations fail to adequately

exponential fit to the data of Fig. 7.7 for times immediately after ¢; yields

rise

/T, =0.17, which is much smaller than the value obtained by the

rise

describe the RF power dependence of RDNMR near v= 1.
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7.2.5 Nuclear 7| Time

As previously observed, [11, 15] the data of Fig. 11a show that the nuclear relaxation rate

1/T) grows with increasing |1 -V

,near v= 1. This filling factor dependence is consistent
with Eq. (1) from the theory of Cote et al., where nuclear spin relaxation via the
skyrmion spin-wave modes is enhanced since raising |1—v| leads to an increase the

density of skyrmions [8].
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Fig. 7.9. Nuclear spin relaxation rate 7} for °As near v= 1 for sample A. a) 1/T} vs.
filling factor at 7= 70 mK. Solid lines are a guide for the eyes b) 1/7; vs. temperature
at v= 0.88. Solid line is a Korringa law fit: 7,7 = 0.28 s K. Top inset: RDNMR
transient AR,, vs. time showing the relaxation of the resistivity after the frequency is
brought off the NMR resonance. Bottom inset: RDNMR lineshape, AR, vs. frequency.
The solid circle marks the resonant frequency at which the 7; time data was acquired.

Figure 7.9b shows 1/T; versus temperature at v = 0.88. The upper inset to Fig. 7.9b
shows a representative transient RDNMR signal used to obtain the 7 time via an
exponential fit. The lower inset shows the frequency on the NMR line at which the 7}
data was taken. The data show a Korringa-like temperature dependence, 1/7, ~aT
consistent with the prediction of Cote ef al. in Eq. (1). As mentioned previously, the

theory of Green [10] predicts an increasing or decreasing 7 with respect to increasing
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temperature, depending on the relative values of the skyrme spin-wave stiffness,
skyrmion size, and Zeeman splitting. However, comparison between our experiment and
the theory of Green is difficult since we have no reliable way of estimating the spin-wave
stiffness.

As discussed earlier, the RDNMR data of Gervais ef al. show a decreasing 1/T) with
increasing temperature, at the same filling factor and over a similar temperature range as
our data [16]. One difference between the two experiments is the sample structure and
mobility. The sample of Gervais ef al. is a 40 nm wide quantum well with a mobility of
17 x 10° cm?/Vs, while the data of Fig. 11b was taken using sample A, which is a
heterojunction with a mobility of 8 x 10° cm?/Vs (see Table 7.1). In light of this, we
decided to perform RDNMR near v =1 on a different sample (sample B), with a higher
mobility (u = 14 x 10° cm?/Vs) and a quantum well structure (30 nm wide). The data of
Fig. 7.10 show a similar temperature dependence for 7) as seen in sample B, for which

we also find a derivative-like RDNMR lineshape.

0 50 100
T (mK)

Fig. 7.10. 1/T) temperature dependence at v = 0.86 for sample B. The solid line is a
Korringa fit to the data: 7,7=0.27 s K.

7.2.6 Lineshape and dR/dT

As seen in Fig. 7.11, the RDNMR lineshape can actually invert from a resonance with dip

at low frequencies and peak at higher frequencies to the opposite shape, with a peak on
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Fig. 7.11. Inversion of RDNMR lineshape with temperature dependence of Ry,. a) Ry
vs. B for three temperatures: 62 mK (dashed), 65 mK (solid), and 70 mK (dotted). The
arrows mark the magnetic fields at which the RDNMR lineshapes shown in b) and c)
were obtained. b) RDNMR lineshape at B=7.6 T, T=70 mK. ¢) RDNMR lineshape at
B=77T,T=70 mK. d) Magnetic field — temperature coordinates at which the
lineshape and temperature dependence invert. Solid circles: points at which dR../dT
changes sign. Open squares: points at which the lineshape has a dip at low frequencies
and a peak at higher frequencies, as shown in b). Open triangles: points at which the
lineshape has a peak at low frequencies and a dip at higher frequencies, as shown in c).
The shaded region corresponds to the range in which the RDNMR lineshape must invert.
Note that the data shown in d) is taken from a different cool-down than that of a) — ¢).
This produced a small density shift, and thus a shift in the B-fields at which dR../dT
changes sign.

the low-frequency side and a dip on the high-frequency side. The data also show that this
inversion occurs roughly when the temperature dependence of the longitudinal resistivity
changes sign, i.e. where dR,,/dT ~ 0.

Fig. 7.11b shows the RDNMR lineshape at B = 7.6 T, T = 70 mK, where the
resonance consists of a dip in R,, at low frequencies and a peak at higher frequencies.
Fig 7.11¢ shows the resonance at B = 7.7 T, T = 70 mK, with a lineshape that is inverted
from that seen in Fig. 7.11b, i.e., a peak on the low-frequency side of the resonance and

dip on the high-frequency side. Fig. 7.11a shows R, versus magnetic field at three
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temperatures with arrows marking the magnetic fields (B = 7.6 and 7.7 T) at which the
lineshapes of Fig. 7.11b and ¢ were taken. Note that the crossing of these three curves
(where dR,./dT changes sign), at B ~ 7.65 T, occurs between these two markers. The
solid circles in Fig. 7.11d show the points at which dR,./dT = 0, while the shaded region
indicates the magnetic field-temperature range over which the lineshape must invert. The
data of Fig. 7.11d show that the inversion of the lineshape and change of the sign of
dR./dT coincide over a large range of magnetic field and temperature. Note that the data
of Fig. 7.11d corresponds to a different cool-down than that of Fig. 7.11a — b. This
produced a small difference in density between the two data sets, and thus a difference in
the magnetic fields at which dR,,/dT changes sign.

In the usual picture of RDNMR, the application of resonant RF reduces the nuclear
polarization, which increases the electronic Zeeman splitting through the hyperfine
interaction. Right at v= 1, one would expect that R ~exp(—E,/T). Then, an increase
in £z would lead to a decrease in Ry,. In this picture, NMR should lead to a simple dip in
the resistivity at resonance, inconsistent with a derivative-like lineshape. However, we
note that the data is not taken at exactly v =1 and that it is not known if the Zeeman
energy dependence of the resistivity follows this simple form at filling factors away from
v= 1. If we assume that the resistivity near v =1 is of the general formR _~ f(E,/T),
where f'is a function of E7/T, then an increase in the Zeeman splitting will have roughly
the same effect as a decrease in temperature. This may explain the apparent connection
between the lineshape and the temperature dependence of the resistivity.

One explanation for the derivative-like lineshape could be a combination of Zeeman
and thermal effects. If we assume f'is a decreasing function of E£/7, an NMR-induced
increase in the Zeeman energy could lead to a dip in R,,, while a heat load from the
nuclear spin system could raise the 2DES temperature, causing an increase in Ry.
Reduction of the nuclear polarization via resonant RF corresponds to an increase in the
temperature of the nuclear spin system. The relaxation of the nuclear spins back to
thermal equilibrium via the 2DES requires a heat flow from the nuclear spin system to
the 2DES. Thus, one might expect a small increase in the 2DES temperature due to
NMR. Therefore, a combination of the NMR-induced change in Zeeman energy and

2DES temperature might explain the presence of both a peak and dip in R,, vs. frequency.
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However, why the Zeeman effect would dominate on the low-frequency side of the

resonance and the thermal effect on the high-frequency side is unclear.
7.3 Discussion

Fig. 7.12 shows the striking difference between the RDNMR lineshape seen at a) v=1/2
(see Chapter 5) versus b) near v=1 (v=0.89). The most noticeable difference between
the RDNMR linehsapes of Fig. 14a and 14b is the general shape. The data of Fig. 7.12a
show a simple peak in Ry, vs. frequency, while that of Fig. 7.12b show a derivative-like
lineshape.

Another prominent difference is the width of the resonance. The FWHM for the
lineshape of Fig. 7.12a (ignoring the satellite peaks due to quadrupole splitting) is ~ 5
kHz, while the spacing between the dip and peak (corresponding to the FWHM of the
integral of the lineshape) in R, in Fig. 7.12b is roughly 17 kHz, over three times the
linewidth seen at v = 1/2. However, this linewidth variation is roughly consistent with
broadening of the line due to the finite with of the 2DES subband wavefunction (see
Chapter 4, sec. 4.3.2). The maximum Knight shift is determined by the electron density
and the shape of the subband wavefunction: K, ~n/w, where w is the subband

wavefunction width. Using the Fang-Howard approximation (see Chapter 1, section
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Fig. 7.12. Comparison between °As RDNMR lineshape at a) v=1/2, B=4.01 T and at
b) v=0.89,B=7.1T.
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4/3

1.1.5) to estimate w, we find that K¢, ~»n""". The density is over three times larger for

the data of Fig. 7.12b than in 14a. Thus, assuming that the electron spin polarization is
not too different for the case of Fig. 7.12a and b, the extra broadening seen at v= 0.89 is
consistent with finite-thickness effects giving rise to variation in the NMR resonance
frequency due to the Knight shift and shape of the 2DES subband wavefunction.
Derivative-like RDNMR lineshapes have been seen near other quantum Hall states.
Stern et al. observe derivative-like lineshapes near v=1/3 and 2/3 [17] and Gervais et al.
find this type of lineshape near v=2/9 and 1/5 [18]. The formation of skyrmions is not
expected at these FQH states under typical experimental conditions for 2DES’s in
GaAs/AlGaAs heterostructures [19, 20]. The observation of this anomalous lineshape
near these states suggests that the lineshape is not related to the presence of skyrmions,
but rather some common feature of quantum Hall states, such as the presence of localized

states.

7.4 Conclusion

In summary, we have observed a derivative-like RDNMR lineshape near v = 1, as seen
previously by Desrat ef al. [15]. Our data show that the lineshape inverts when dR,./dT
changes sign. This inversion of the RDNMR lineshape may be a clue to the origin of this
“anomalous” derivative-like lineshape. We also observe a fast 1/7 nuclear relaxation
rate, relative to that seen at other filling factors, which suggests interesting spin physics
unique to filling factors near v = 1, possibly due to skrymions. However, we find a
different RDNMR lineshape and opposite 7 temperature dependence to that seen in
Gervais et al. [16]. A complete picture of RDNMR near v = 1 and the origin of this

conflict remains unclear.
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Conclusions and Future Directions

In summary, we have examined the role of spin in several 2DES states, using RDNMR
techniques to examine a spin transition for composite fermions at v = 1/2, a phase
transition in the correlated vy =1 state in a bilayer 2DES, and spin excitations near v= 1
in a single layer 2DES. We have also probed the low density 2DES via SAW
measurements under conditions where the putative metal-insulator transition should
occur. In all of these experiments, puzzles remain for further investigation. In

conclusion, we briefly discuss a few possible directions for future related experiments.
Composite Fermions at v =1/2

A fairly high mobility 2DES (~ 1 — 5 x 10° cm?*Vs) was used for the RDNMR
measurements at v = 1/2 described in this thesis (Chapter 5). It would be interesting to
see how the RDNMR signal and nuclear 7 time near the spin transition evolve as a
function of mobility. Higher mobility samples exist, although it is somewhat challenging
to fabricate a high mobility sample with tunable density. An undoped FET structure [1]
might be a possible candidate.

Our data shows a peak in the RDNMR signal as a function of density near the spin
transition (Chapter 5, Fig. 10a) that continues to sharpen as the temperature is lowered.
However, we were unable to reach temperatures below roughly 45 mK due to non-
resonant RF heating of the 2DES. It may be feasible to reduce this non-resonant heating
and see if the RDNMR signal versus density feature near the transition continues to
sharpen as the temperature reduced.

The RDNMR signal at v = 1/2 is a nonlinear function of dc measurement current
for large currents. Appendix C presents very preliminary data which seems to show that
this nonlinearity is due to pumping of the nuclear spin population out of equilibrium.
Further investigation of this nonlinear RDNMR signal as a function of magnetic field,
temperature, etc. is needed in order to understand the origin of this nonlinearity.

RDNMR could also be used to examine spin transitions for composite fermions at

other compressible states, such as at v=3/2 or v= 1/4. Interactions between CF’s could
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be different at these filling factors, which, in turn, could change the nature of any spin

transition that occurs for these states [2].
Bilayer 2DES’s

RDNMR could be used to probe bilayer states other than vy = 1. For example, the bilayer
state at total filling factor vy = 2 is predicted to possess interesting spin configurations,
including a canted antiferromagnetic state [3], due to the interplay between the tunneling
gap Asys, the Zeeman energy, and the strength of intralayer versus intralayer interactions
(d/l). Although Kumada ef al. have recently published a RDNMR study of this state [4],
they use a somewhat different experimental technique [5]. Further experiments could be

performed using our bilayer samples and variant of RDNMR technique.
Surface Acoustic Waves

The surface acoustic wave (SAW) experiments of Chapter 2 suggest that density
inhomogneities are important at the densities where the metal-insulator transition should
occur in our sample. The density inhomogeneities in our 2DES are most likely due to
ionized donor in the doping layer. It would be interesting to see if the same results hold
for a cleaner 2DES, such as an undoped FET structure, in which the issue of density

fluctuations due to the ionized dopants has been removed.
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Appendix A
Sample Processing

The following is a description of the processes used to fabricate the samples described in
this thesis. Other recipes and guidelines can be found in Ref [1], which is a good general

reference for GaAs processing.

A.1 Dicing

The first step in preparing a sample usually consists of separating a small chip from the
parent wafer. To cleave (or “dice”) a chip from the parent wafer (usually 4 X 4 or 5 mm
x 5 mm), place the wafer on a pad of clean paper and gently score along the top of the
edge of the wafer at the spot where you wish to cleave using a scribe tool. Flip the wafer
over (shiny side down -- avoid placing the wafer on GaAs particles, as this may scratch

the surface) and roll the round end of the scribe across the score. A (100) oriented GaAs

wafer will cleave nicely along the [110] and [1 10] directions.

A.2 Photolithography

Patterning of the 2DES sample can be done via standard photolithography. The sample
surface is coated with a UV light-sensitive organic polymer and the area of the sample
that one desires to pattern is then selectively exposed to UV light through a mask. After
development, selected areas of the resist will be removed, defining a pattern of resist that
can then be used to selectively etch or metallize the sample.

The following is a recipe for defining features > 1 um using the Karl Suss MJB3
mask aligner with a Hg vapor lamp UV light source and the Clariant AZ5214E i-line
resist. The AZ5214E resist is a positive resist, meaning that the exposed areas of resist
will be removed (it can also be used as a negative resist by performing a post exposure

bake and flood exposure before development).

1. Clean the sample surface. At a minimum, the sample should be allowed to soak

in acetone for a few minutes, followed immediately by a rinse in methanol and then
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in DI water. Blow dry immediately with dry nitrogen. The purpose of the
methanol rinse is to avoid residues that can be left by allowing acetone to dry on the
sample surface. Stubborn surface contamination can be removed by sonicating in a

solvent, such as acetone.

2. Dry the sample before applying the resist. Baking the sample in an oven at 150°
C for a half hour greatly improves the adhesion of the resist and is helpful for

patterning of long, thin (< 10 um) features.

3. (Optional) To improve resist adhesion apply a drop of HMDS and spin the
sample at 3000 rpm for 30 sec.

4. Apply a drop of AZ5214E resist and spin at 5000 rpm for 30 sec. This gives a

~1.5 pm thick resist layer.
5. Soft bake for 45 sec. at 100° C on a hot plate.

6. Place the sample at the center of the mask aligner vacuum chuck and align the
mask and sample. Raise the sample until the resist edge bead is barely touching the
mask (look for the appearance of Newton’s rings at at least three of the four corners
of the sample). Expose for 15 sec. at an intensity of 15 mW/cm®. The intensity at
the sample position should be regularly measured using the stand-alone intensity

meter.

7. For lift-off of fine metal features (< 10 um), soak the sample in chlorobenzene
for 10 min [2]. This changes the resist profile by hardening the top of the resist

layer to make more of an undercut, which then prevents tearing during lift-off.

8. Develop in AZ400K developer:H20, 1:4. Start with about 45 sec. of
development time, followed by rinsing in DI water. View the results using the

mask aligner microscope, and repeat if necessary.
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9. For subsequent etching, hard bake the resist by placing the sample on a hot plate
for 60 sec. at 130° C.

10. After the subsequent etch or metallization is done, the resist can be removed by
soaking in butyl acetate (do not use acetone to remove AZ5214E resist) for 15 min

at 60° C.

Fig. A.1. Surface acoustic wave transducer (see Chapter 2) with 6 um wide aluminum
fingers patterned via optical lithography.

Figure A.1 shows an example of an aluminum surface acoustic wave transducer on the

surface of a 2DES sample patterned via photolithography.

A.2.1 Masks for Photolithography
There are three methods of creating masks for photolithography:

1. Order a mask from Berkeley Microlab. UC Berkeley offers a relatively cheap mask
making service. The lab has a software package called “LinkCAD” that will convert an
AutoCAD file into the GDSII file format that Berkeley will accept.

2. Transparency. For features > 30 um, high-resolution film transparencies can be used

to make a mask. A trip to a printshop may be necessary since it is best to use a 3000 dpi
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printer'. Tape the transparency to a soda-lime glass plate of appropriate size for the mask
aligner chuck. The exposure time may need to be increased to compensate for the poor

transmission of the transparency film.

3. A mask can be written onto a metallized plate or glass cover slip using e-beam

lithography.

A.3 Wet Etch

An isolated region of 2DES can be patterned using lithography and a GaAs etch, to
remove the 2DES everywhere except in a select “mesa” region. One convenient recipe
for a GaAs mesa etch uses a dilute phosphoric acid, hydrogen peroxide solution. For a ~
0.1 um/min. etch rate use H,O:H3;PO4:H,0,, 50:5:1. Remaining etch solution can be

successfully stored for later use in an airtight bottle if kept in a refrigerator.

A.4 Metallization

We typically use aluminum gates and deposit the aluminum using a thermal evaporator.
A thickness of 1000 — 2000 A is good for achieving a continuous film with decent step
coverage for depositing a continuous trace over the edge of a ~ 0.5 um tall mesa.
Problems can occur with the continuity of the metal at the mesa edge for taller mesas or

thinner aluminum films.
1. Firmly clamp a tungsten basket into the center terminals of the evaporator.

2. Place two Al pellets (4 — 8 mm pellets, 99.999% pure) into the basket.

3. Pump down with the diffusion pump for ~ 1 hr. The bell jar pressure should
reach ~107 Torr.

4. Use a power level of 30 — 35% and evaporate at a rate of ~ 20 A/s.

" The printshop Mika Color (6000 Monterey Rd., Los Angeles, CA 90042, Ph: (323) 254-4116) has a high

resolution printer and has experience making transparency masks both for our group and others at Caltech.
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Patterning of the metal can be done either by a metal etch or a “lift-off” process. In the
lift-off process, the chip is first coated with resist. Then, resist is removed via
lithography in the regions where metal is desired. Next, metal is deposited. Finally, the
remaining resist is removed with a resist stripping solvent. In regions where the metal is
on top of resist, the metal will “lift-off”, while regions without resist (bare GaAs) will

remain metallized.

A.5 Ohmic Contacts

An ohmic contact is defined as an electrical contact that obeys Ohm’s Law — the contact
resistance is independent of bias. The two types of ohmic contacts employed in the
devices described in this thesis are diffused NiAuGe and indium contacts.

In the case of NiAuGe contacts, the idea is to dope heavily enough with Ge (an n-
type dopant) so that the metal/n-GaAs Schottky barrier becomes thin enough for electrons
to tunnel [3]. The NiAuGe recipe typically gives lower contact resistances than the
indium method. First evaporate 150 A of Ni at ~6 A/s; use a small tungsten boat. Then
evaporate 1700 A of AuGe (88:12 % by weight) eutectic at ~25 A/s using a tungsten boat
with an oxide barrier to prevent alloying of the boat with the AuGe. Empty the AuGe
boat fully before re-using it, since the process of evaporating may change the ratio of
Au:Ge. Anneal in forming gas, at 440 °C for 15 min. Figure A.2 shows typical NiAuGe
ohmics after thermal annealing. The roughness is due to balling up of the metal during

the anneal.

Fig. A.2. Annealed NiAuGe alloy making ohmic contact to a hall bar (2DES mesa
boundary indicated by purple outline).
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Indium is not an n-type dopant for GaAs. The indium contact is referred to as a
“graded heterojunction type” contact. In this case, an InGaAs alloy is formed. InAs is a
smaller band-gap semiconductor in which the Fermi level is pinned in the conduction
band at the surface. The InAs surface makes contact to the n-GaAs through a graded
heterojunction formed by a gradual change in Ga versus In content of the InGaAs alloy
[4]. Indium contacts can be formed by diffusing In down to the 2DEG layer. Indium
contacts are very convenient because they are simple to make. Place dots of In on the
sample using a low-temp soldering iron (In melts at 157° C). Use a dedicated soldering
tip used for In ohmic contacts only. Anneal the In contacts in the rapid thermal annealer
(strip heater) in forming gas (to prevent oxidation) for 5 min. at 425° C. Flow forming
gas for 5 min. before turning on the heater and leave the flow on until the strip has cooled
to < 100° C. Set the forming gas flow to ~ 3 L/min. Figure A.3 shows a sample with

annealed indium dots making ohmic contact to a hall bar-shaped 2DES.

Fig. A.3. Annealed indium dots (also attached to gold wires), making ohmic contact to a
2DES hall bar mesa.

A.6 E-Beam Lithography

The lab has a JEOL 840A SEM for both imaging and e-beam writing of features down to
~ 50 nm. This procedure uses a bilayer of PMMA resists of differing molecular weights.

A bilayer recipe is used rather than a single layer in order to achieve better lift-off.

1. Clean the sample as described in the optical lithography section.
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. Spin 6% 495k PMMA in chlorobenzene at 3000 rpm.
3. Bake on a hotplate at 180° C for 1 hr.
4. Spin 1.5% 950k PMMA in chlorobenzene at 7000 rpm.

5. Bake on a hotplate at 180° C for 1 hr.

[®)

. Store sample in 70° C oven.

7. Load the sample into the SEM and pump down for ~ 30 min. Turn on the
accelerating voltage and filament current and set probe current to desired value.
Adjust the focus and astigmatism and let settle for ~ 30 min. Check probe
current, focus, and astigmatism again. If stable, perform the e-beam exposure.

8. Develop 70 sec. in 3:1, isopropanol (IPA): methyl isobutyl ketone (MIBK).
Rinse 10 sec. in IPA and blow dry with nitrogen.

9.  After the subsequent etch or metallization is done, the resist can be removed by

soaking in acetone at 60° C.

Write the e-beam pattern in DesignCAD and use the NPGS (Nabity Pattern Generation
System) software to write the pattern. Work at an SEM acceleration voltage of 35 kV for

the finest features.

10 pm

Fig. A.4. SEM image of SAW transducer with 0.6 um wide aluminum fingers patterned
using e-beam lithography. The entire transducer (not shown) is ~ 1 mm long.



158

E-beam writing takes some practice. The exposure dose has to be tweaked for each
individual pattern due to exposure of nearby areas of the pattern due to secondary
electrons (proximity effect). First read the online Nabity tutorial, which is very helpful,
and try writing the pinwheel practice pattern, which will show if the focus and

astigmatism have been correctly adjusted.

A.7 Packaging

For dc resistance measurements, the sample is mounted on a standard 18-pin DIP (dual
inline package) plastic header. The chip is typically attached to the header surface using
vacuum grease or thermal paste. As shown in Fig. A.5, gold wires, 0.001 — 0.002” in
diameter, are used to connect the header pins to the sample gates and ohmics. The wires
are attached to the sample via indium solder joints, wire bonding, or conducting epoxy. It
is strongly suggested that conducting epoxy be used only for gates. Epoxy connections
can sometimes become very resistive over time, creating problems when used for

connections to ohmic contacts.

Fig. A.5. 2DES samples attached and wired to 18-pin DIP header with gold wires.
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Appendix B
Heat Sinking of RF Leads

B.1 Overview

The following is an overview of the RF leads installed in the lab cryostats.

B.1.1 *He Cryostat

In one of the inserts for the *He immersion cryostat (“stick B”), there are two CuBe UT-
34 (Ag-plated inner conductor) semi-rigid coax from room temperature to the sample
stage. There is an OFHC copper clamp which thermally sinks the coax to the insert 1 K
cone (which mates with the 1 K pot).

B.1.2 Dilution Unit

The 200TL and Kelvinox 25 dilution refrigerators also have two RF leads, but with
multiple heat sinks and thermal lags, as shown in Fig. B.1. RF connections are made
with SMA connectors (ideally good up to 26 GHz). Connectors for UT-34 cable (a
somewhat unusual size) can be purchased from Huber-Suhner. The 4 K clamp heat sink
is simply two plates of OFHC copper with grooves which firmly sandwich the coax. A
detailed discussion of the performance of the microstrip heat sinks and various coaxial
segments follows. Some of the choices for the type of coax used for different segments
were not necessarily driven by performance, but instead by what coax and connectors

were on hand in lab or what was previously installed.
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Fig B.1. RF connections and heat sinking in 200TL dilution refrigerator (not to scale).
(Kelvinox 25 dilution unit installation is similar)

B.2 Semi-Rigid Cryogenic Coax

Many material choices for coax are available, including Cu, CuBe alloy, stainless steel,
and Nb superconducting. The inner conductor is frequently silver-plated for lower loss at
high frequencies. Common cable sizes for low-temperature application are UT-34 and
UT-85. For each material and size choice, there is a trade-off between good signal
transmission and low thermal conductivity.

CuBe UT-34 w/ Ag plating was used for most leads except in cases where the
thermal conductivity had to be very low, in which case stainless steel UT-34 without Ag

plating was used. Figure B.2 indicates the dimensions for UT-34 coax.
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Fig. B.2. CuBe semi-rigid cable with silver-plated inner conductor. UT-34 coax is
0.034” (0.86 mm) in outer diameter.

B.2.1 RF Transmission

The role of the silver plating becomes important for RF transmission at frequencies above

~ 1 MHz. For good conductors (¢ >> ew) the RF skin depth is

5= .
ouc

For Ag with a conductivity of 10'° /Q'mat T=4K, § ~10um// f(MHz) . The
measured RF insertion loss at 7=4 K is 2 dB/GHz'm for CuBe UT-34 w/ Ag-plated
inner conductor, and 9 dB/GHz-m for 304 stainless UT-34.

B.2.2 Thermal Performance

Heat load

It is useful to first calculate roughly what the heat load will be assuming the heat sinking
is successful. The thermal conductivity of metals at low temperature (7 < 10 K) is
typically dominated by conduction electrons rather than phonons. This leads to a thermal
conductivity which is proportional to &7, so that x = &7, which results in a heat load

given by
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where A is the cross-sectional area, L is the length, and 7' and 7, are the temperatures at

the conductor endpoints.

1 K Pot Heat Sink

The segment of coax from 4 K to ~ 1 K is CuBe UT-85 (0.086” outer diameter) coax
with Ag-plating on the inner conductor. The heat load at the 1 K pot heat sink will be

° _ (ACuBeK07CuBe + AAgKoiAg)

0 i (I -T7),

where the diameter of the inner conductor is 0.51 mm, o cug. = 0.6 W/K-m, the thickness
of the silver plating is ~ 10 pm, &y 4, = 10 W/K'm, and L ~ 10 cm. Then, O =100 xW.
This should be fine for the 1 K pot stage.

Mixing chamber

Stainless steel UT-34 coax without silver plating was used for the link from 1 K to the
mixing chamber because CuBe UT-34 w/ Ag-plating would have created a heat load of
several #W. The dimensions of this segment of coax are the same as for the CuBe UT-34

depicted in Fig. B.2. For the stainless steel coax,

é _ (ASSK07SS)

Y3 Iy -17),

where xy ss=0.1 W/K'm, and L ~ 10 cm. Then Q: 0.2 uW.

Heat sinking of the inner conductor

The coaxial PTFE insulator should provide a thermal link between the inner and outer
conductor. However, there is a possibility that the thermal connection between the PTFE
and outer conductor is poor at low temperature due to the mismatched thermal
contraction of PTFE versus CuBe or stainless steel. As discussed next, better heat

sinking of the inner conductor was done using microstrip heat sink units.
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B.3 Microstrip Heat Sinks

Heat sinking of the inner conductor at temperatures below 1 K was done with microstrip
transmission line heat sinks. The heat sink unit consists of an OFHC copper box
containing a microstrip line fabricated from Sheldahl copper-laminated Kapton (Kapton
is a polyimide film made by DuPont). The microstrip copper ground plane is lead-tin
soldered to the bottom of the box. In hindsight, the thermal connection between the
copper backing and bottom of the box should probably have been done differently due to
the fact that PbSn goes superconducting at low temperatures, and thus has poor thermal

conductivity. Figure B.3 shows the typical dimensions of one of these heat sink units.

Cu strip P“]Fi’?(dt‘ substrate
SMA \
5 \l )

I = —0 Il
1 & 0

tab solder connection

Fig B.3. Microstrip heat sink unit (lid not shown). Box dimensions: 2 cm X 4 cm.
Stripline: 0.04 mm thick, ~ 0.6 mm wide copper strip on 0.16 mm thick polyimide.

Thermal Performance

Figure B.4 shows a sketch of the coordinates and variables used to calculate the heat flow

through the Cu-polyimide-Cu laminate.

Cu
n,'l.'}l \ N e

—1_ polyimide
Ter

Te

Fig. B.4. Cu-polyimide-Cu laminate. 7(x) is the temperature of the top copper strip, as a
function of position x, Tp; is the temperature of the polyimide, and T¢ is the temperature
of the copper back plane.
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The heat flow from the top copper strip through the polyimide to the back plane is given
by

d0=x, IK(TC _T(x))dx,

PI

where xpy is the thermal conductivity of the polyimide, w is the width of the strip, and #p;

is the polyimide thickness. The heat flow down the top copper strip is given by

Q = (Wi, )Ke, w 5
dx

where x(, is the thermal conductivity of the copper and 7¢, is the copper thickness.

1 K pot heat sink

We assume that the outer body of the heat sink, which is soldered to the laminate back
plane, is at 7c = 1 K. For a worst case scenario, we use the 1 K value for xp; ~ 7

mW/K-m [2] and the 4 K value for x¢c, ~ 200 W/K-m (RRR ~ 40). Then,

w d’T(x
Koy 2K =T () = (o i,
PI

The solution for 7(x) will decay exponentially with a characteristic length

K
A= |toty — ~0.7 cm.
PI

So, for the inner conductor to reach 7 ~ 1 K, a heat sink length greater than about a

centimeter should be sufficient.

Mixing chamber heat sink

Assume that the outer body of the heat sink is at 7 = 25 mK. For a worst case scenario,
we use the 25 mK value for xp; ~ 160 pW/K-m [2] and the 1 K value for ¢, ~ 50 W/K-m.
Then, 4 ~ 2.2 cm. In actuality, k¢, and xp; are proportional to temperature, so the

performance will be better than this simple estimate.
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As a final note, the experiments described in this thesis (surface acoustic wave and
NMR measurements) do not require a direct connection between the RF leads and the
2DES. In these experiments, the RF is applied to the 2DES via a transducer or coil
situated near the 2DES. It is not actually experimentally known whether the 2DES would
reach the lowest cryostat temperatures if the RF leads were directly connected to the

2DES via ohmic contacts.

RF Transmission

Next, we estimate the performance of the microstrip transmission line width dimensions

shown in Fig. B.5.

W

| " 1d

Fig. B.5. Microstrip transmission line of width w and dielectric thickness d.

For a lossless microstrip line with W/d > 1 the characteristic impedance is given by [3]

1207

Z, = ,
" Je W /d+1393+0.667In(W / d +1.444)]

where

c +1 ¢ -1

r r

1
= +
‘ 2 2 J1+12d/w

is the effective dielectric constant (&, is the relative dielectric constant of the substrate).

For Wid ~ 3, Zy ~ 50 and is approximately matched to the rest of the lines.
However, for fabrication ease, the strip was made slightly wider, but still less than 1 mm
(Wld ~ 6). Figure B.6 shows that for a 3 cm long heat sink, the loss due to the wider
strip is less than 1 dB for frequencies below 1 GHz.
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Fig. B.6. Calculated insertion loss due to a 3 cm long microstrip with 1 mm wide
metalization on 0.16 mm thick polyimide substrate.

The copper metallization thickness should not be an issue for loss at frequencies above 1
MHz. For a Cu strip with a low temperature conductivity of ~10° /Q-m, the skin depth is
0 ~10 um// f(MHz) , which is comparable to the 40 um laminate thickness at MHz

frequencies. Measurements of the insertion loss of a typical microstrip heat sink unit
yield 0.16 dB/GHz, which corresponds to a strip width of ~ 0.6 mm, which is in

reasonable agreement with the actual strip dimensions.
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Appendix C
SAW’s in GaAs

C.1 SAW’s in GaAs

We first present an overview of SAW’s in GaAs and their coupling to a 2DES. The
experiments described in this thesis used SAW’s propagating in the [110] or [110]

crystalline direction on the surface of devices grown on (100) oriented wafers.

C.1.1 Piezoelectricity in GaAs

GaAs is a piezoelectric material, meaning that applying an electric field to the material
will create strain and application of stress will change the electric polarization. The

crystalline structure of GaAs is shown in Fig C.1.

—

[100 As

Ga

[1401
o1

Fig. C.1. GaAs unit cell (zinc-blende structure).

The electric polarization generated in response to strain is described by the piezoelectric
tensor e;;, defined by D; = e;Si+¢E;, where D; is the electrical displacement (D, =0 for the
case of no free charge), ¢ is the dielectric constant, S; is the strain, and E; is the electric
field. The stress generated by application of an electric field is given by T; = c;Sj-¢;iE},
where T; is the stress and c;; is the elastic stiffness tensor. For GaAs the piezoelectric

tensor is
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000 ¢ O O
e,=|0 0 0 0 ¢, O],
000 0 0 e

where i = 1 to 3 with I=x,,2=x,,and 3=x;,andj =1 to 6 with 1=xx,, 2=x,x,,
3=xx,, 4=x,x;, 5=xx, 6 =xx,, wherex, =[100], x, =[010], x; =[001]. The
value of e14 is approximately 0.16 C/m”. For example, for a pure shear strain of only Sg
nonzero (elongation along the [110] direction and contraction along [110]) will give rise
to an electric polarization in the [001]direction, where a strain of ~ 10™ produces a

polarization of ~ & x 10* V/em.

C.1.2 Surface Acoustic Waves

Surface acoustic waves (SAW’s) are elastic waves which propagate at the surface of an
elastic body, where most of the energy density of the wave is confined to a depth of about
one wavelength below the surface. From Newton’s and Gauss’s Laws, the equations

describing SAW propagation in a piezoelectric material are

62u. 2 2
Pap ~ m ai,g;[ i 025)@ ’ )
and
Ve O )
" ox0x,

whereu, (x) is the displacement of the solid from equilibrium at position x, p is the
density, c;i 1s the elastic stiffness tensor, and ¢ is the electric potential. For convenience,
we have temporarily switched to a notation which uses the full 3x3x3 tensor for the
elastic and piezoelectric constants (three indices), rather than the abbreviated 3x6 matrix
form used in section C.1.1. For GaAs, because the piezoelectric coupling is weak (e,jkz/g
<< cjj), the last term in Eq. (1) can be ignored when solving for the motion of the elastic
wave. Then

O’u, 82uk

J =C..
orr ™ ox,ox,

p 3)
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For a cubic crystal this gives

O’u, O'u, O’u, O'u,
PYe = 9x +Cy 9'x +(Clz +C44)Zaxia;j . 4)

i J=i j J=i

p

Consider an infinitely large slab of GaAs occupying all space for x3 < 0, and vacuum for
x3 >0. We look for solutions that describe a surface wave propagating in the [110]

direction:

1

2

- - = - 1
U= (u, +u,)A+u,B|exp ik[lm]ﬁ(x1 +x,)+hyx, —ivt|, Q)

where v, is the SAW velocity and u; are unit vectors. We also require ko real and

Re[k,]> 0so that the wave amplitude decays in the bulk.

X3
[001] o
[010]

X1

[100]
|

Fig. C.2. SAW propagation in [110] direction on GaAs (001) surface.
After substitution we find that

A(P"sz —a +c44q2>_iBQ(C12 —|—c44): 0,
—iAq (044 —I—cu)—{—B(vaz “Cu "‘qzcn) =0, (6)

where g =k, /k,,, and ¢, = (¢ +¢,+2¢,)/2. The full solution will be a linear
combination of solutions of the form of Eq. (5) that satisfy our boundary conditions. The

boundary conditions are that the GaAs surface at x3 = 0 is stress free:
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c3jk,%:0 atx3 =0.

(7)
X

After substitution and some algebra,

ichZAn _cllzann =0,
—> A4q,+iy B,=0, (8)

where the subscript n = 1,2 indicates the two linearly independent solutions to Eq. (4).
For GaAs the elastic moduli are

¢, =11.877
¢, =5.372
12 x10'" Pa,
. =5.944
¢/, =14.569

and p=5316.9 kg/m’. This gives a SAW velocity of v, = 2860 m/s. The solution for the
elastic displacement is

- 1 - - - 1 - - -
u=Ul||l—=W, +u,)+u,A ]ex k, X +R[—(ul+u2)+u3)\]ex ki g X
I[\/E + p( 019+ 3) NG p( o4 3)
1
X exp [ik[”o] E(x1 +x,)— ivst],
9)

whereqg, =0.500134+0.47991i, A\, = £1.154144-0.67737i ,R = —0.50617 + 0.86243i ,
u; are unit vectors, sand U is the wave amplitude.
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Fig. C.3. Depth dependence of magnitude of elastic displacement, where d is the
distance below the GaAs surface and k = k110

Next, we can substitute into Eq. (2) to find the piezoelectric potential created by the

elastic wave:

0’u,
eVip=e E :
14i¢j¢k axjaxk (10)

— eMkZU[a+ exp(kq+x3 ) + Ra_ exp(kq_x, )] exp(z'k(x1 + xz)/\E),
where a, =i(2g, —)\_). We try a solution of the form
6 =6y exple,) + 6, explkg. x,)+ 6 explkq x,)|exp(ik(x, +x,)/2).

Upon substitution into Eq. (10) we find that ¢, =(e,/c)Ua, /(qi —1) and
¢ =(e,/e)URa_/(q° —1). Next, we use the boundary conditions that the normal
component of the electric displacement and the electric potential are continuous at x3 = 0.

For x3 > 0, the potential will be of the form ¢ = ¢, exp(—kx;). Then, atx; =0

= —ky1080 9 exp<ik(xl + xz)/\/i)

= [5 (Qbo +q,0, +9 ¢ ) +ie, (1+ R)] k110 €XP (ik(xl + xz)/\/z>
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and

¢a :¢0 +¢+ +¢7-

So

9. (& +q.8)+ ¢ (6 +q€)+ieg,(+R)

% = (e+¢y)

The resulting form of the potential is shown below in Fig. C.4.

N W B~ O

ol (arb.)

Fig. C.4. Depth dependence of the magnitude of the piezoelectric potential.

C.1.3 SAV interaction with a 2DES

The electric potential created by the SAW will be screened by a 2DES located near the
GaAs surface. This screening will affect both the velocity and amplitude of the SAW.

The resulting attenuation and velocity shift are given by [1]

Kjff olo,
2 1+(o/o,)’
Av, _Kezﬂ‘ 1

= , 12
v, 2 1+(o/0,) (12)

(11)

[110]

where I' is the attenuation per unit length, Kfﬁr 1s a piezoelectric coupling coefficient, ¢ is

the electron gas conductivity, and o) is a characteristic conductivity ~ 3.3 x 107 Q™.
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The velocity change Av, =v (o) — (0> 0,,) is referenced to the SAW velocity in the

presence of a perfect conductor (Av, — 0 as 0 — 00).

1.0 0.50
Q —
X 054 4025 X
>% § )
NG — vyelocit E
< —/attenuation

0.0 ! ! 0.00

0.01 0.1 1 10 100
c (o,)

Fig. C.5. Dependence of SAW attenuation and velocity shift on 2DES conductivity from
Eq. (11) and (12).

For conductivities below oy, the amplitude and velocity of the SAW are unaffected by
the 2DES and propagate as in bulk GaAs. As shown in Fig. C.5, for conductivities
comparable to or greater than oy, the screening of the piezoelectric potential causes
attenuation and a decrease in the SAW velocity. The value of o) can be crudely
understood by considering the capacitive charging of the 2DES. Consider a square patch
of 2DES of area A, where A is the SAW wavelength. To screen the piezoelectric
potential, the charge on this patch must be rearranged to match the SAW potential. If we
set the RC time constant for this charging equal to the SAW period, A/vs, we find that R ~
1/ evy ~ l/oy.

The form of the o dependence of Av/v given by Eq. (12) can be roughly understood
using a similar RC-circuit argument. The SAW fractional velocity shift is equal to the
electrostatic energy required to charge the 2DES divided by the elastic energy of the
SAW. When a SAW enters a region containing a 2DES, some of the elastic energy of the
wave is given up in order to charge the 2DES. This results in a reduction of the wave
velocity. As in the previous paragraph, consider a square patch of 2DES of area A2,
where the charge on this patch will be rearranged to try to screen the SAW potential. The
charging energy will be proportional to 7%, where V is the capacitive charging voltage.

This charging voltage will depend on the conductivity of the 2DES, where
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V=V (1/ioC)/ ((1/ ioC)+ R) and R and C are an effective resistance and capacitance
and Vs, 1s the SAW potential. This gives (V/VSAW)2 ~ 1/(1+(Ra)C)2). Now, in Eq.
(12) the velocity shift is referenced so that Av/v = 0 for a perfect conductor (R =0). Thus,
we set Av/v~1- (V IVuw )2 = 1/(1 + 1/(Ra)C)2) . As argued in the previous paragraph,
1/RoC =0o /0o, , so that we have Av/v ~ 1/(1+(0/0M )2) :

The precise value of Kjﬁr and o), depend on kd, due to the kd dependence of ¢ and
the effective dielectric constant €. Simon [2] has analyzed the 2DES — SAW interaction

and shown that

2

2
Keff — €€Tff ﬂ (13)
2 4nH|C|’

where C is the amplitude of the SAW, H is a material dependent constant, and

1 1

8eﬁ‘ 9

E—¢,

€+¢,

—2kd
e

1+

The value of 6y, is proportional to €.4and is shown in Fig. C.6.

x10"

Fig. C.6. Variation of o), with kd.

K 62// /2 1is basically the ratio of the capacitive charging energy of the 2DES, when its
conductivity is infinite so that the piezoelectric potential is completely screened, to the
elastic energy of the SAW. The kd dependence of K;. /21s shown below in Fig. C.7.
The value of H = 3.624 x 10" J/m’ in Eq. (13) was obtained by calculating the SAW
elastic energy per unit area. This gives a piezoelectric coupling constant of K fﬁ /2 =22

x 10 at kd = 0. This is a reasonable value, considering that the experimental value for
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K jjf /2 in GaAs/AlGaAs heterostructures is ~ 3.2 x 10™ [1, 2], where the piezoelectric
constant ej4 ~ 0.26 C/m” for AlAs is slightly larger than for GaAs.

x10™

Fig. C.7. Variation of K, with kd.

C.1.4 Interaction in the Presence of a Gate

The presence of a top gate on the GaAs surface, above the 2DES in the region of SAW
propagation can have a strong effect on the 2DES-SAW interaction. The value of both
ggrand K, will be modified.

The modified effective dielectric constant leads to a different o, dependence on kd:

oy = 2ve€,/7

where
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Fig. C.8. o)/ vs kd in the presence of a highly conductive top gate.

And, solving for the SAW piezoelectric potential with the new boundary conditions gives

the kd dependence shown in Fig. C.9.

10

Fig. C.9. K ;,f /2 vs. kd in the presence of a highly conductive top gate. The solid line is

the calculated coupling and the points are experimental SAW velocity shift data (see
text).

The solid data points in Fig. C.9 correspond to experimental SAW velocity shift data
from SAW propagation in a GaAs/AlGaAs heterostructure with a 2DEG 0.6 pm below a
top gate. K;f /2 was experimentally determined by measuring the SAW velocity
difference for a highly conducting 2DEG versus a completely depleted 2DEG (zero
conductivity), at several wavevectors corresponding to the harmonics of the SAW
transducers. It is unclear why there is a mismatch between experiment and theory, but
we note that one source of the discrepancy may be due to the fact that the calculated

curve is for a SAW in bulk GaAs, not a GaAs/AlGaAs heterostructure.
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C.2 Transducer design

The surface acoustic wave experiments performed in this thesis used aluminum
interdigitated SAW transducers created either via optical or e-beam lithography (see
appendix A for fabrication information). A sketch of a generic interdigitated transducer
is shown in Fig. C.10. An RF voltage is applied between the two sets of fingers and the
normal component of the electric field causes a strain that generates a SAW of

wavelength A = 2(a+b) (see Fig. C.10).

¢ 2
§ |

H 2 ¢

N pairs

Fig. C.10. Interdigitated SAW transducer of length /, finger width a, finger spacing b,
and N finger pairs.

voltage

time
Fig. C.11. Output transducer voltage vs. time for a ~300 ns pulse at 72 MHz.

Fig. C.11 shows a typical SAW pulse after detection by the output transducer and
amplification. The pulse shape is determined by the transducer width in the direction of

SAW propagation 2(a+b)N and the SAW velocity. The duration of the triangular
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envelope at the start and end of the pulse is given by the time required for a SAW to

propagate across the transducer width.

C.2.1 Frequency response

The frequency response of an interdigitated SAW transducer is roughly given by the
Fourier transform of the normal electric field £5 at the GaAs surface. As a first
approximation, consider infinitely thin fingers so that we take the Fourier transform of a

periodic array of delta functions separated by a distance . Then

2N
Ey o< Y 6(x—bn)(—1)".
n=l1
The wavevector response (transfer function) is then

2N )
H(kyoc Y e ™.

n=l

For large N and near resonance (k = m/2b), the frequency response is a sinc function:

|sin[N7(f = £,)/ ]|
| NR(f S f |

H(f)x

Thus, the transducer resonance width oc 1/N. We can see how well this model works for
the frequency response of a pair of transducers (a transmitting and receiving transducer)
shown in Fig. C.12. Because there are two transducers, we use the square the frequency
response for a single transducer. From the above expression we then expect the FWHM
to be about 6.4 MHz. The value extracted from Fig. C.12 is about 7.9 MHz, which is

reasonably close to our calculated estimate.
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amplitude (arb.)

60 70 80 90
frequency (MHz)

Fig. C.12. Measured frequency response for a pair of input and output transducers with
10 finger pairs with finger width and spacing @ ~ b = 10 um. Solid line is guide to the
eye.

Although this simple delta function modeling gives a basic understanding, it fails to
predict important features of transducers with finite finger width, such as the transducer
harmonic response. The relative amplitudes of the various harmonics for an actual
transducer have been calculated in Ref. [3]. For example, for equal finger width and
spacing, a = b, the 1%, 5™, and 9™ harmonics have relative amplitudes of 1, 0.5, and 0.4

respectively (the 3™ and 7™ harmonics have zero amplitude).

C.2.2 Transducer impedance

The impedance of a typical SAW transducer was calculated using an EM solver (Sonnet).
In the 0.1 — 1 GHz frequency range, the transducer basically looks like a capacitor. For
example, a 1 mm long transducer with 5 um wide fingers and 20 finger pairs looks like a
2 pF capacitor. It is useful to compare the reactance of the transducer to the input
transmission line impedance (50 ohms) in order to find the voltage that is actually across
the transducer fingers. Fig. C.13 shows the voltage at the transducer for an input voltage
out of the RF source of 1 V. For this transducer, above about 1 GHz (where 1/@wC ~ 50

ohms), the transducer impedance begins to matter.
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N

Fig. C.13. Voltage across SAW transducer (1 mm long, 5 um wide fingers, 20 finger
pairs) for a frequency generator output of 1 V.

C.2.3 Transducer efficiency

It is possible to estimate the expected efficiency of a pair of input and output SAW

transducers using the dimensions of the transducer and the value for Kjff :
total insertion loss ~ —20log,, [8 % (10092) Nszfprﬁ]] ,

where the total insertion loss is the difference between the power into the input transducer
and out of the output transducer in dB, N is the number of finger pairs in each transducer,
C, 1s the capacitance per finger pair, and f; is the resonant frequency of the transducers
[3]. To test the quality of our transducers, an input and output transducer pair with 20
finger pairs, 1.4 mm long, operating at a fundamental frequency of 144 MHz was
fabricated on semi-insulating GaAs. The measured total insertion loss was about 45 dB.
Using the above formula with N =20, K7, ~ 7.4 x 10™* at kd = 0, C, = 0.14 pF/pair, and
fo =144 MHz gives a calculated loss of 46 dB, which is similar to the experimental value.

The slight discrepancy is probably due to uncertainty in the value of C, and K@zﬁ for
GaAs.
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Appendix D
Solution to Bloch’s Equations for cw NMR

D.1 Overview

Bloch’s equations [1] are a set of simple equations derived from phenomenological
arguments that describe the evolution of nuclear spins in external magnetic fields. The
following solution to Bloch’s equations allow for better understanding of the RDNMR
data described in this thesis.

D.2 Solution

Consider a collection of nuclear spins in a static magnetic field E’O =B,z, and ac
magnetic field El = B,xcos(w,t), perpendicular to By. It is convenient to work in a
rotating frame of reference that rotates in the x-y plane at the same frequency @, as the ac

magnetic field. The Bloch equations in this rotating frame are

am

L= r  AoM
dt ) g
am, M,
— L =——2 -0 M. -AoM
dt T, !
M M. -M

=—|—L |+o M,

dt T, g

where M., M,, M. are the components of the nuclear magnetization in the rotating frame,
M, is the thermal equilibrium value of the magnetization, A®w = @ — @, is the detuning of
the frequency of the transverse ac B-field, B;, from the Larmor resonance frequency ay,
and o = B, is the Rabi frequency.

Consider a situation where initially B; = 0 and the nuclear magnetization is in
thermal equilibrium (M, = M;). Then, at time ¢ = 0, the ac B-field is turned on (B; > 0)
suddenly at the center NMR resonance frequency (4@ = 0). We want to solve for M. as a

function of time. It is only necessary to solve the equations for M, and M.:
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d(M_(-UL -o \(M,) (0
d\M.) \ o -1/T \M. ) \M,/T,

The solution to the above equation will be a sum of the homogeneous and particular
solutions, we denote as y, z, and y,, z,, respectively, so that M, =y +y,, M. =z + z,. We

first solve the homogeneous form of the above equation:

d(y) (UL -o \(y
di\z) | o -1UT )\z)

There will be two linearly independent solutions. Let the solutions be of the form

(y]:,iei’.

z

“UT,-4  -o, \(y) (0
o, -1/, -2\z) (o)

-UT,-4  -o, |
o, -1/T, -2

Then,

This requires

Then,

Loal[Lea +w =0.
T 1

Thus,
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2
LY UL S R R
2\ T, 11
IT| —+ -
4

Next, we make the simplifying assumption that 7, /7} < 1. This is generally a good
assumption for nuclear relaxation in 2DES’s in GaAs where 75 ~ 1 ms and 7 is typically

much longer than 1 s. Then,

yl :%[—li\/l+4(a)fT; +T, /Tl)]

If we also assume that @ .7, < 1, expanding the square root gives

A z%(—li[l+2(wf]‘; +T, /7;)])

2

So, the two decay constants are
ﬂﬁr = _COIZTVZ _I/TI’
A =-1T,-a'T, -1/T,.

The particular solutions y,, z, will be constants such that
0 (-UT, - \(», 0
= + .
0 o, -1/T)\z, M,

:_a’rszMo
[+ T,
z :—MO )
P T,

This gives

Y
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Next, we solve for the amplitudes of the two homogenous solutions, ;1+ and 4 . The

complete solution will be

We use the initial conditions

M =M,
dM
z :0
dt
Att=0. Then,
- 0
ZP MO
and

Looking at the z-component,

A_+A. =M, ”fz]sz
1+l TT,
and
AA_+AA4_.=0.
Then,

_ 1 1 > A i
- _M{waTszHl_/L/J[“’fTIE (¢ ~(a 12 )er)+1]

Because 7,/7, <1 and o.T, <1, we have A, /A < 1. Then, we can make the

approximation
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1
M. ~M,| ——— || 1+ @*T.T.e™" |.
z 0|:1+a)’2]-i]-,2:||: ro172 :I

From this expression we see that the rise time for the RDNMR signal is given by
A, =-&'T,-1/T,.
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Appendix E
Nuclear Spin Pumping at v=1/2

This appendix describes preliminary experiments that investigate the possibility of

pumping of the nuclear spins at v=1/2 by driving large currents through the 2DES.

E.1 Phenomenology

We look at two single-layer 2DES samples, both lithographically patterned into a hall bar
shape. Sample A is an undoped FET structure patterned into a 50 um wide hall bar.
Sample B is a Si modulation-doped heterojunction with a 500 um wide hall bar.

Figure E.1 shows the effect of driving a large current (/,,,; = 100 nA at 13 Hz)
through sample A, while at v=1/2, B=3.3 T. There is a gradual rise in the longitudinal

resistivity on a time scale of 1000’s of seconds.

[ [
44 v=1p2 -
B=33T
_ T = 50 mK
S 42k i
2
® 40l =100 nA -
38 1 1 -
0 2000 4000

time (s)

Fig. E.1. Longitudinal resistance Ry, vs. time at v=1/2, B=3.3 T, for sample A (50 um
hall bar) with application of large current. The current is /= 10 nA for times # < 0.

Figure E.2 shows an RDNMR frequency sweep, passing through the "As resonance
while applying /= 100 nA. The sample resistance is allowed to reach equilibrium with /
= 100 nA before starting the sweep. Recall from Chapter 6 that the RDNMR signal is
positive for small currents. The signal in Fig. E.2 is negative — application of large

currents actually reverses the sign of the RDNMR signal!
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Fig. E.2. R,, vs. frequency at v=1/2, B=3.3 T, for sample A with application of large
current. The frequency of the RF magnetic field is swept through the "As NMR
resonance (f7sas = 24.110 MHz).

Figure E.3 shows the fractional change in resistivity due to an NMR pulse at the "°As
resonant frequency, versus current through the 2DES. The resistance is allowed to reach
equilibrium while applying the pumping current. Then, the RF ac magnetic field is
always on at fixed amplitude (B, ~ 1 uT), but the frequency is moved onto the "As

resonance, depolarizing the nuclei.

AR /R (x 10°)

r ol 1 [
2 3 456 2 3 456
10 100 1000

I (nA)

Fig. E.3. Fractional change in longitudinal resistivity AR,./R,, due to an NMR pulse
versus the current driven through the 2DES sample for sample B (500 pum hall bar) at v=
1/2,B=3.6T.
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At low currents, as in Chapter 6, the RDNMR change in resistance is positive, while at
large currents (/ > 100 nA), the RDNMR signal decreases, changing sign, and then

becomes negative and relatively large in magnitude.

E.2 Conclusions

One interpretation for the above data is that sourcing large currents through the 2DES at
v = 1/2 alters the nuclear polarization of the host substrate. Similar phenomenology
involving pumping of the nuclear spin can be seen at the v = 2/3 and other FQH states

near transitions between states of differing spin polarization [1-3].

Thermal equilibrium:
4
fe & &
1
Apply current:
4 |
* - ‘ & M -
I v

Figure E.4. Cartoon of electron and nuclear spin (small black arrows) and putative
nuclear pumping mechanism at v=1/2.

The change in the sign of the RDNMR signal at high currents suggests that the sign of the
nuclear polarization can even be reversed from thermal equilibrium. A sketch of the
equilibrium electron and nuclear spin configuration and the current-driven nuclear
pumping process is shown in Fig. E.4. In thermal equilibrium, the nuclear and electron
spins should prefer to align with the static magnetic field (the electron spin aligns with
the B-field due to the negative g-factor of electrons in GaAs). How the current induces
electronic spin flips of the correct sign to pump the nuclear spin towards the direction

opposite from the configuration in thermal equilibrium is unclear.
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