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ABSTRACT 

Coagulation, i n  t h e  physical context, i s  looked upon here f i r s t  

from t h e  fundamental perspect ive o f  c o l l i s i o n  and coa lescenc~  o f  

i nd i v idua l  p a r t i c l e s .  A Monte Car lo technique i s  used t o  i nves t i ga te  

t h e  p a r t i c l e  s i z e  d i s t r i b u t i o n  i n  a  suspension o f  coagulat ing p a r t i c i e s  

when one o r  more c o l l i s i o n  mechanisms operate. The e f f e c t  o f  

i n t e r p a r t i c l e  fo rces  - hydrodynamic, van der Waals' and e l e c t r o s t a t i c  - 
on t h e  c o l l i s i o n  p r o b a b i l i t y  o f  t h e  p a r t i c l e s  i s  examined. The r e s u l t s  

obtained a re  used t o  evaluate t h e  well-known dynamic e q u i l i b r i u m  

hypothesis according t o  which an e q u i l i b r i u m  p a r t i c l e  s i z e  d i s t r i b u t i o n  

i s  assumed t o  e x i s t  under t h e  a c t i o n  of a  g iven c o l l i s i o n  mechanism. I t  

i s  shown t h a t  diicensional ana lys is  cannot, i n  general, be used t o  

p r e d i c t  steady s t a t e  p a r t i c l e  s i z e  d i s t r i b u t i o n s ,  mainly because o f  t h e  

s t rong dependence of t h c  i n t e r p a r t i c l e  forces on t h e  s izes  o f  t h e  

i n t e r a c t i n g  p a r t i c l e s .  

The i n s i g h t  i n t o  p a s t l c l e  k i n e t i c s  thus gained from t h e  Monte Car lo 

s imu la t i on  o f  c o l l i s i o n  processes i s  used t o  develop a  numerical 

s imu la t i on  o f  a  rec tangu lar  s e t t l i n g  basin. The computer model fo l lows 

t h e  s p a t i a l  and temporal development o f  t h e  i n f l u e n t  p a r t i c l e  s i z e  

d i s t r i b u t i o n  towards t h e  o u t l e t  o f  t h e  tank, accounting f o r  a l l  o f  t h e  

bas ic  k i n e t i c s  of p a r t i c l e  c o l i i s i o n  and coalescence processes and 

inc lud ing  t r a n s p o r t  processes such as p a r t i c l e  s e t t l i n g ,  advection, 

resuspension and t u r b u l e n t  mixing. The in f luence o f  t h e  p a r t i c l e  

s ize-densi ty  r e l a t i o n s h i p  and f l o c  deaggregation by t u r b u l e n t  shearing 

a re  a l so  modeled. Of necessity, modeling of some of these processes has 

been somewhat empi r ica l  s ince t h e  physical  and biochemical na ture  o f  t h e  



f l o c s  are  unique t o  a  p a r t i c u l a r  suspension and t h e i r  determinat ion 

requ i res  experimental work. The r e s u l t s  o f  t h e  s imula t ions  performed 

i n d i c a t e  t h a t  t h e  p a r t i c l e  s ize-densi ty  re la t i onsh ip ,  t h e  c o l l i s i o n  

e f f i c i e n c i e s  between f l o c s  and t h e  i n f l u e n t  p a r t i c l e  s i z e  d i s t r i b u t i o n  

a re  o f  major importance t o  t h e  performance of t h e  sedimentat ion basin. 

Clear ly ,  f u r t h e r  modi f icat ions,  improvements and t r i a l s  a re  needed i n  

order  t o  use t h e  model f o r  t h e  design o f  new f a c i l i t i e s .  Nevertheless, 

t h e  computer ncdel may serve as a  guide f o r  s e l e c t i o n  o f  several design 

and opera i ion  va r iab les  f o r  t h e  successful t reatment  o f  a  p a r t i c u l a r  

waste or  t h e  s e i e c t i v e  removal o f  p o l l u t a n t s  whose concent ra t ion  depends 

on t h e  shape of t h e  e f f l u e n t  p a r t i c l e  s i z e  d i s t r i b u t i o n .  
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INTRODUCTION 

Suspended partic I es are ub i qu it0us in most env i ronmenta 1 or 

industrial flows. They affect both the bulk properties of the fluid and 

the surfaces with which the suspension is in contact. Information on 

the physical characteristics of the individual particles and the 

properties of the flow i s  required in order to predict the behavior of 

the suspension. The knowledge of the fluid-particle interactions, 

however, is not sufficient for successful modeling of flows in which 

partlcles Interact with each other. Coagulation, the process of 

collision and coalescence of particles, modifies the distribution of 

suspended mass in the particle size space. Particle-particle 

interactions become thus important in quantifying the fate of suspended 

matter in flows in which coagulation occurs. 

More specifically, the coagulation process in dispersive systems 

has applications In collold chemistry (precipitation of colloidal 

particles from liquids), in atmospheric physics (coalescence of cloud 

particles in a vapour-air medlum), in industrial processes (deposition 

of particles in heat-exchangers) and is of major importance in air and 

water pollution practice (fate of particulates discharged in water or 

air, mass-fluid separation processes). This work Is primarily concerned 

with solid partlcles suspended in water, butthe techniques used and the 

conclusions reached have general applications. In Chapter I a physical 

simulation is used to provide a better understanding of the mechanisms 

that cause collision and coalescence of particles in fluids. The 

dynamics of a population of coagulating particles are examined when one 

or more coagulation mechanisms operate. A review of the interparticle 



forces is carried out, including a comprehensive evaluation of their 

effect on the collision probability of the particles. The information 

obtained is used in Chapter l l  to develop a numerical model simulating 

the operation of a rectangular sedlmentation basin. The computer model 

is based on the fundamental mechanisms which govern particle motion and 

growth and includes transport processes such as particle advection, 

turbulent mixing and particle resuspension. The model follows the 

spatial and temporal development of the particle size distribution in 

the tank and, from the local development of the particle size spectrum, 

predicts the overall performance of the set-tling tank. 
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CHAPTER I: MONTE CARL0 SIMULATION OF PARTICLE COLLISIONS 

1 .  THE DYNAMIC EQUILIBRIUM HYPOTHESIS 

Reasoning on dimensional grounds, Fr iedlander (1960a,b) and Hunt 

(1980) der ived expressions f o r  t h e  dynamic steady s t a t e  s i z e  

d i s t r i b u t i o n  n (v )  o f  coagulat ing p a r t i c l e s ,  n ( v )  i s  def ined by 

where dN i s  t h e  number o f  p a r t i c l e s  w i t h  volumes i n  t h e  range v t o  v+dv 

per u n i t  volume o f  f l u i d ,  so t h a t  n (v )  i s  t h e  number dens i ty  o f  

p a r t i c l e s  I n  v-space. 

The under ly ing  idea was insp i red  by Kolmogorov's (see Monin and 

Yaglom, 1975) e q u i l i b r i u m  theory o f  turbulence. Fr iedlander assumed 

t h a t  a s t a t e  o f  dynamic equl l i b r i u m  would e x l s t  between production, 

coagu la t lon  and loss through sedimentation o f  p a r t i c l e s  i n  atmospheric 

aerosols. He hoped t h a t  t h e  p a r t i c l e  s i z e  d i s t r i b u t i o n  would reach a 

dynamic steady s t a t e  (i.e. would remain i n v a r i a n t  w i t h  t ime), sustained 

by a f l u x  o f  p a r t i c l e  volume through t h e  size-space, I f  it i s  f u r t h e r  

assumed t h a t  there  e x i s t  s i z e  ranges where on ly  one o f  t h e  coagulat ion 

mechanisms l i s t e d  i n  Table 1 i s  important, then t h e  s i z e  d i s t r i b u t i o n  i n  

some subrange w i l l  depend on ly  on t h e  p a r t i c l e  volume v, t h e  constant 

p a r t i c l e  volume f l u x  E through t h e  s i z e  d i s t r i b u t i o n  and a dimensional 

1 / 2  
parameter (Kb , KSh=G o r  KSh=(&/v) and Kds) cha rac te r i z ing  t h e  dominant 

coagulat ion mechanism (Table 1).  Hunt extended Fr iedlander 's  ideas t o  

hydrosols, included a shearing and d i f f e r e n t i a l  s e t t l i n g  dominated 



Mechanism 

---- -- 

Brownian Hotion 

Laminar Shear 

Pure S tra in  
(extension)  

isotropic Turbulent 
Shear 

Turbulent I n e r t i a  

D i f f e r e n t i a l  
Sedimentation 

Table  1, Var ious  mecl-ianisrrrs f o r  p a r t i c l e  c o l l i s i o n s .  

C o l l i s i o n  Function Source 
8 

Smoluchowski 
(1916) 

Smoluchowski 
(1917) 

Zeichner and 
Schowalter (1977) 

Saffman and 
Turner (1956) 

Findheisen 
(1939) 

Dimensional 
Parameter 

s: co r rec ted  from o r i g i n a l ,  see Pearson e t  a l .  (1983) 



subrange and used dimensional ana lys is  t o  der ive  t h e  f o l l o w i n g  

expressions f o r  n(v1: 

A a re  dimensionless constants. where Ab ?Ash, d, 

J e f f r e y  (1981) o f fe red  a  new d e r i v a t i o n  o f  Hunt's r e s u l t s  which 

c l a r i f i e s  t h e  assumptions involved i n  t h e  dimensional arguments. The 

change w i t h  t ime  of t h e  p a r t i c l e  s i z e  d i s t r i b u t i o n  n(v )  i s  g iven by t h e  

General Oynamic Equation (GDE) 

where B(v,v 1 i s  t h e  c o l l i s i o n  func t i on  which represents t h e  geometry 

and dynamics o f  t h e  c o l l i s i o n  mechanism, I ( v )  i s  a  source o f  p a r t i c l e s  

(through condensation, f o r  example) and w(v) --- a n ( V )  i s  a  p a r t i c l e  s ink  a z 

r e s u l t i n g  from p a r t i c l e s  sedirnenting I n  t h e  z d i r e c t i o n  a t  t h e i r  Stokes1 

s e t t l i n g  ve loc i t y ,  w(v1. For homogeneous p a r t i c l e  systems and f o r  s i z e  

ranges where fhe  source term i s  n e g l i g i b l e  t h e  steady s t a t e  form o f  

Eq.  1,5 Is 

The i n t e g r a l  oti t h e  I .h.s, o f  E q .  1.6 represents t h e  r a t e  o f  ga in  o f  

p a r t l c i e s  of volume v by coagulat ion o f  p a i r s  o f  smal ler  pa r t i c les ,  



conserving volume; t h e  i n t e g r a l  on t h e  r.h.s. represents t h e  f l u x  of 

p a r t i c l e s  o u t  o f  t h e  s i z e  range (v,v+dv) due t o  t h e i r  coagu la t ion  w i t h  

p a r t i c l e s  o f  a l l  s izes. Der i va t i on  o f  Huntls expressions proceeds 

(Jef f rey,  1981) under t h e  assumption t h a t  co l  l i s i o n s  between p a r t i c l e s  

of s i m i l a r  s i z e  c o n t r i b u t e  mostly t o  t h e  r.h.s, term of Eq. 1.6. 

Je f f rey  approximates 

which, i f  m u l t i p l i e d  by v2 t o  convert from number dens i ty  f l u x  t o  volume 

f l u x  i s  p rec i se l y  t h e  f l u x  E o f  p a r t i c l e  volume through t h e  size-space. 

The general expression then fo l l ows  

The c o l l l s l o n  func t i on  p(v,vl) 1s t h e  p r o b a b i l i t y t h a t t w o  

p a r t i c l e s  o f  sizes v  and v 1  w i l  I c o l l i d e  i n  u n i t  time. Th is  p r o b a b i l i t y  

i s  equal t o  t h e  common volume two p a r t i c l e s  sweep per u n i t  t ime under 

t h e  in f luence o f  one o r  more physical mechanisms i n  a  u n i t  volume o f  

f l u i d .  I f  non-interference o f  t h e  d i f f e r e n t  coagulat ion mechanisms i s  

assumed, then subranges e x i s t  where a so le  mechanism dominates and 

p  (v,v t )  I s  given by t h e  expressions l l s t e d  i n  Table 1; from Eq. 1.8 

Hunt's expressions then Poliow. 

I t  i s  c l e a r  That *iwo assumptions are needed f o r  t h e  dynamic 

equi i i b r i u m  hypothesis t o  be va l i d :  

1. C o l l i s i o n s  SePween p a r t i c l e s  o f  s i m i l a r  s i z e  are more 

important, or, eqb iva lent ly ,  t he re  i s  non-interference o f  p a r t i c l e s  o f  a  

s i z e  c h a r a c t e r i s t i c  0-ane c a l i l s i o n  mechanism w i t h  those o f  another. 

2. An e q u l l l b r ' ~ m  s f z e  d i s t r i b u t i o n  i s  establ ished. 
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The l a t t e r  assumption can be j u s t i f i e d  from t h e  r e g u l a r i t i e s  

observed i n  t h e  s i z e  d i s t r i b u t i o n s  o f  both atmospheric aerosols 

(Friedlander, 1960a,b) and hydrosols (Faisst,  1976). 

2. VER l F ICATION OF THE THEORY 

Hunt (1980) studied t h e  coagulat ion o f  s o l i d  p a r t i c l e s  ( th ree  types 

o f  small c l a y  p a r t i c l e s  and f i n e l y  d iv ided c r y s t a l l i n e  s i l i c a )  i n  

a r t i f i c i a l  sea-water i n  t h e  laminar shear generated between two r o t a t i n g  

coaxia l  c y l i n d e r s  when t h e  outer  one was rotated.  Some o f  h i s  r e s u l t s  

support t h e  p red ic t i ons  o f  t h e  theory f o r  Brownian motion and laminar 

shear Induced coagulation, b u t  none of t h e  steady s t a t e  s l z e  

d i s t r i b u t i o n s  a t ta ined  i n  t h e  experiments had s i z e  regimes e x h i b i t i n g  

t h e  power law behavior o f  both t h e  coagulat ion mechanisms. S e t t l i n g  o f  

p a r t i c l e s  caused HuntPs systems t o  be i n  a quasi-dynamic steady s ta te ;  

t h e  s i z e - d i s t r i b u t i o n s  obtained were decreasing i n  magnitude wh i l e  

remaining s iml  i a r  I n  shape as t h e  t ime progressed. Also, t h e  

dimensionless parameters Ab and Ash appearing i n  Eqs. 1.2 and 1.3 were 

no t  t h e  same f o r  t h e  d i f f e r e n t  suspensions studied. Hunt a t t r i b u t e d  

t h i s  v a r i a t i o n  t o  proper t ies  o f  t h e  suspensions which modi f ied t h e  

coagulat ion rate.  

Pearson, Va l iou l  i s  and L i s t  (1383) developed a method f o r  Monte 

Car lo s imu la t i on  o f  t h e  evolution sf 6 coagulat ing suspension. The 

log l ca l  sequence of t h e l r  simulaBYen I s  g iven  i n  F igure  2.1. Spherical 

p a r t i c l e s  move i n  a cubical  box GT '.,ai??rotg volume (shown I n  F igure  

2.2) under t h e  inf luence of Broual 2: aa*fon and/or f l u l d  shear. 



S T A R T  Q 

I N I T I A L I S E  
P A R T I C L E  

POSITIONS 
A N D  R A D I I  

O V E R L A P S  

STATISTICS OF 

Fig. 2.1. Schematic representation of the logical sequence of 
the simulation. 



Fig .  2.2. Schematic r e p r e s e n t a t i o n  of t h e  ' c o n t r o l '  volume and 
d e f i n i t i o n  of t h e  c o o r d i n a t e  system used i n  t h e  s i m u l a t i o n .  
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Hydrodynamic and colloidal forces are ignored so that particles move on 

straight paths. Particles In suspension have unit volume, vo , or 

integral multiples, v i  =i.vo of the unit volume. Colliding particles 

coagulate to form a larger, still spherical particle, conserving volume. 

The model employs periodic boundary conditions which allow an infinite 

homogeneous system to be simulated approximately by a finite volume. A 

system in dynamic equilibrium is successfully modeled by using the 

following technique. A fixed number NA of particles of unit volume are 

added to the population at random each time step, and any particles 

which have reached a preset maximum volume, vmax , are removed. The 

addition of small particles is a crude representation of the flux of 

particle volume into the slze range from coagulation of particles 

smaller than vo. The removal of particles larger than vM represents 

the physical loss of large particles from the box by sedimentation or 

vertical concentration gradients. This procedure is consistent with the 

first hypothesis of the theory and is Justified a posteriori by the 

success of the simulation in reproducing Hunt's (1980) dimensional 

results for Brownian motion, laminar shear and isotropic turbulent shear 

induced coagulation. Pearson, Valioulis and List (1983) concluded that 

the final steady state size distributions attained In their computer 

'experiments' were i nsensltive to ?-he size range covered by the 

simulation. However, as in Hunt's experiments, no one single simulation 

gave a slze distribution having both Brownian motion and shear 

coagulation dominated regimes. 

Their computer program, operating in a different mode, allows also 

the direct measurement of the collision function, On col lisfon, 

particles are not coagulated but one of them simply repositioned so as 
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to avoid repeated collisions of the same particle pair. In this manner 

the analytic estimates for the collision function for Brownian motion, 

laminar shear and isotropic turbulent shear were verified. 

The present study is a sequel to the work by Pearson, Valioulis and 

List (1983) and is an attempt to improve the realism of their results by 

accounting for the modifications to the coagulation rate caused by 

hydrodynamic, van der Waals' and electrostatic forces acting between the 

approaching particles. Differential sedimentation induced coagulation 

is also modeled and the validity of Hunt's (1980) dimensional arguments 

are reexamined in the light of the results of the simulations performed 

in this study. 

3. BROWNIAN DIFFUSION 

3.a. Hydrodynamic Interactions 

Smoluchowskils (1916) classical model for Brownian motion induced 

coagulation applies to extremely dilute systems where only binary 

particle encounters are considered. The two particles are treated as 

rigid spheres describing Brownian motions independently of each other 

with a constant relative diffusion coefficient 



where the single particle diffusion coefficients 

are functions of the particle mobilities bl and b2 which are determined 

by Stokes' law. For a particle of radius r the mobility Is b=1/(67~~r), 

where 1.1 is the fluid dynamic viscosity. In Eqs. 3.2 k is Boltzmannls 

constant and T is the absolute temperature. However, this formulation 

ignores hydrodynamic forces which tend to correlate the particle motions 

as the particle separation decreases, The motion of one particle 

generates a velocity gradient of order s - ~  at distance s in the 

surrounding fluid. This velocity gradient causes a particle located at 

that distance to act as a force d?po!e which !nduces a velocity of order 

s - ~  at the location of the first particle (Batchelor, 1976). Thus, 

Eq. 3.1 becomes increasingly invalid as the particle separation 

decreases. 

Spielman (1970) modified the relative diffusion coefficient to 

account for such particle interactions by extending ~i nstei n ' s  ( 1926) 

ingenious argument. In an unbounded system of particles a hypothetical 

dynamic equilibrium is assumed: at any point in space, the mean radial 

number density flux J of particles 2 relative to particle 1 due to 
D 

Brownian diffusion is balanced by an advective flux JF The latter 

arises from the action of an arbitrary steady conservative force F 

derivable from a potential V and acting between the particles: 
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where N is the number density of particles 2 and u the relative radial 

velocity imparted to the particles by the conservative force F 

Here b is the relative particle mobility which is a function of 

separation. 

Under equilibrium the number density of particles 2 must be 

Boltzmann distributed 

where N, ! the number density of particles 2 at infinite interparticle 

distance. Then the relative particle diffusion flux is 

and the flux induced by the conservative force F 

J F  =-N b(dV/dr) 

The hypothetical equilibrium situation (Eq. 3 .3 )  is invoked then to 

deduce from Eqs. 3.7 and 3.8 the relative particle diffusivity 

which Is a function of interparticle separation. Following Einstein 
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(1926) it is now assumed that Eq. 3.9 is valid even when the force F is 

removed. This is only justified if inertial effects are ignored so that 

the two fluxes become superposable (Batchelor, 1976). The relative 

mobility b can be computed from the exact solution of Stokes equations 

for two spheres moving along their line of centers obtained by Stimson 

and Jeffery (1926). Both the rotational motion, and the motion 

perpendicular to the line of centers of the particles, are irrelevant 

when spherical particles are considered, since all motions are then 

hydrodynamically uncoupled through Stokest equations (Brenner,l964). 

The hydrodynamic force between two approaching particles determined 

from the linearised equations of motion becomes singular at zero 

separation. This unphysical behavior is explained by the breakdown of 

continuum flow at distances of the order of the fluid molecular mean 

free path. Van der Waalsl short range forces which diverge at particle 

contact can be considered to overcome this difficulty in the col lision 

prob l em. 

3.b Van der Waalsv Forces 

The attractive London-van der Waalst forces arise from the 

synchronized dipoles created by fluctuating charges in the electron 

clouds of the interacting bodies. Hamaker (1937) assumed additivity of 

the pairwise interactions of the constituent atoms and molecules and 

derived his well-known formula for the van der Waals' interaction energy 

V A  between spherical part i c l es 



Here r is the distance between particle centers and A is the Hamaker 

constant. Schenkel and Kitchener (1960) incorporated retardation 

effects in Hamaker's formula and recommended the best-fit approximation 

to their numerical integrations 

where p =27r h/X and a = h/r ; h is the dimensionless minimum 

d I siance between the particles, h=(r-r2-rl )/rl and A = I  OOnm is the 

London wave length; X introduces another length in the problem, so the 

collision efficiencies become a function of the absolute size of the 

particles. 

Langbein (1971) used Lifshitzls continuum theory which considers 

tho bulk electrodynamic response of particle 1 to all electrodynamic 

fluctua%ions in particle 2 (and vice versa) to obtain an expression for 

ihe van der Waalsl potential which avoids all approximations inherent in 

Harnakerts expression. According to Lifshitzk theory the van der Waalsf 

attractive energy A is separated to three frequency regimes: 

uitraviolet, infrared and microwave frequencies contribute to A, each 

one possess ingacharac te r i s t i c  wavelenth (Parsegian and Nigham, 1970). 

Electromagnetic retardation occurs when the interparticle distance Is 

larger than the characteristic wavelength and is due to the finite time 



of propagation of electromagnetic waves which causes a phase difference 

between the fluctuating charges in the electron clouds of the 

interacting particles. Langbelnls (1971) solution is in terms of a 

multiply infinite series and is difficult to evaluate. Smith et 

al. (1973) and Kiefer et al. (1978) compared Langbein's formulation with 

Hamaker1s expression. They concluded that the latter represents well 

the ultraviolet and infrared contributions to the frequency spectrum; 

the microwave radiation is represented poorly when the dielectric 

permittivities of the particles and the medium are very different. This 

is the case of solid particles in water where only the microwave 

contribution is retarded (Smith et al,, 1973). This suggests that 

Eq. 3.11, which accounts for the microwave retardation only, is a good 

appoximation to Langbein" (1971) exact formulation provided that the 

Hamaker constant is determined experimentally or calculated from 

Lifshitz's theory (Zeichner and Schowalter, 1979). 

The generalized Smoluchowski equation for the diffnsing partlc!es 

under the action of interparticle conservative forces is given by 

Spielman (1970) 

w i t h  boundary conditions 

The steady siate solution of this equation gives the diffusive flux 

Jt20f particiee 2 into a sphere of radius r,+r2 
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where Dm is the relative particle diffusion coefficient in the absence 

of any interparticle forces and s the dimensionless separation s=r/rl. 

The collision rate depends on the Integral of the particle interactions 

over all separations. A collision efficiency can be defined 

as the enhancement of the collision rate over the collision rate in the 

absence of any interactions between the particles. Eb(r1,r2) is the 

inverse of FucRst (1964) stability factor. 

3.c. C s l  lision Efficiencies for Brownian Diffusion 

Accounting for Hydrodynamic and van der ~aal s' Forces. 

The relative diffusion coefficients, D12, were determined as a 

function of particle separation by summing the series solution to 

Stokes8 equations obtained by Stimson and Jeffery (1926) (as corrected 

by Splelman, 19701, A single convergence criterion c=0.0001 was used 

for each series, whish were assumed to converge when the condition 

/(S,+~-S,)/S,I < c  was fulfilled; S is the nth-partial sum of a series. 
n 

All the numerical calculations were performed to a precision of thirteen 

significant figures. For dimensionless separations s <0,001 the 

asymptotic formula 



developed by Brenner (1966) was used; t h i s  speeds up t h e  c a l c u l a t i o n s  

s ince t h e  se r ies  converges s lowly  a t  small separations. The r e s u l t s  

( f i r s t  obta ined by Spielman) are  shown i n  F igure  3.1, 

The i n t e g r a t i o n  i n  Eq. 3.15 was performed numer ical ly  us ing 

Simpsonls formula. A successively decreasing i n t e g r a t i o n  step was used 

t o  account f o r  t h e  more r a p i d  v a r i a t i o n  of t h e  integrand w i t h  decreasing 

p a r t i c l e  separation. The i n t e g r a t i o n  ranged over a dimensionless 

separat ion 1 o - ~  < r/r < 500, where r i s  t h e  l arger o f  t h e  two p a r t  l c l  es; 
2 2 

extending t h e  i n t e g r a t i o n  range d i d  no t  a l t e r  t h e  resu l ts .  

To assess t h e  s i g n i f i c a n c e  o f  retardat ion,  both t h e  re tarded 

(Eq. 3.11) and t h e  unretarded (Eq. 3.10) p o t e n t i a l  were used t o  compute 

c o l l i s i o n  e f f i c i e n c i e s  f o r  p a r t i c l e s  o f  equal s i z e  and f o r  var ious 

values o f  A/(kT). F igure  3.2 i s  a comparison between t h e  unretarded and 

re tarded p o t e n t i a l  f o r  d i f f e r e n t  values of t h e  r e t a r d a t i o n  parameter 

a . The curves co l lapse f o r  dimensionless separat ions s less  than 

about 0.001; f o r  l a rge r  i n t e r p a r t i c l e  distances electromagnetic 

r e t a r d a t i o n  reduces t h e  a t t r a c t i v e  p o t e n t i a l  s i g n i f i c a n t l y .  The curve 

f o r  t h e  re tarded p o t e n t i a l  I n  F igure  3-2  approaches t h e  curve f o r  t h e  

unretarded potent la1  as r decreases (o r  as a increases); t h e  l i m i t  
1 

a -t corresponds t o  $he unretarded case. ( a =0.1 w i t h  X =100nm 

corresponds t o  a p a r t l c l e  rad ius  r, =1um). 

I n  t h e  c a l c u l a t i o n s  represented by t h e  curves marked w i t h  W i n  

F igure  3.3 hydrodynamle interactions are ignored; t h e  curves marked 

w i t h  H represent  csD l i s i on  e f f i c i e n c i e s  when both van der Waalsl and 

hydrodynamic fo rces  operaCe, Refardai ion assumes increasing importance 

as t h e  van der Waals? energy 0% aiPraction increases. The hydrodynamic 

fo rces  tend t o  dominate t h e  cc l  i i s i o r i  process as t h e  van der Waalsf 



Fig .  

F i g ,  

3.1. Normalised p a r t i c l e  d i f f u s i v i t y  v s .  d i m e n s i o n l e s s  p a r t i c l e  separa -  
t i o n .  D12 i s  t h e  r e l a t i v e  d i f f u s i o n  c o e f f i c i e n t  o f  p a r t i c l e s  
w i t h  r a d i i  r l  and r2  i n  s t o k e s '  f low;  D,=Dl+D2, where D l  and D2 
are t h e  u n d i s t u r b e d  p a r t i c l e  d i f f u s i v i t i e s .  

, 3.2. Dimensionless  v a n  d e r  Wasls '  p o t e n t i a l  v s .  d i m e n s i o n l e s s  p a r t i c l e  
s e p a r a t i o n  f o r  v a r i o u s  v a l u e s  of t h e  r e t a r d a t i o n  parameter  a .  
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Fig.  3.3. E f f e c t  of r e t a r d a t i o n  on t h e  c o l l i s i o n  e f f i c i e n c y  of e q u a l  s i z e  
p a r t i c l e s  f o r  v a r i o u s  v a l u e s  of A / ( ~ T ) .  

1 0 - 4  I o - ~  1 0 - 2  10-1  I 0 0  1 0 '  I 02 
HAMAKER GROUP ~/(k T) 

Fig .  3.4. C o l l i s i o n  e f f i c i e n c e s  of p a r t i c l e s  w i t h  v a r i o u s  r e l a t i v e  s i z e s  
and f o r  v a r i o u s  v a l u e s  of A/(kT) when o n l y  van  d e r  Waals'  f o r c e s  
o p e r a t e .  



forces became of shorter range. 

The efficiencies computed with the unretarded potential for equal 

size particles agreed very well with SpielmanIs results; this provided 

a check for the validity of the calculations. 

The effect of the relative size of the interacting particles on the 

collision efficiency when only van der Waalsl forces are considered Is 

shown in Figure 3.4. For these and all subsequently described 

calculations the retarded potential with a =O.1 is used. The 

enhancement of the collision rate decreases as the interacting particles 

become of increasingly different size. The computed efficiencies are 

lower than the ones calculated by Twomey (19771, who did not include 

retardation, and are in agreement with the results obtained by 

Schmidt-Oft and Burtscher (19821, 

Hydrodynamic forces reduce the collision efficiency of interacting 

particles (Figures 3.5 and 3.6). The effect is more pronounced for 

particles of similar size and for small A/(kT). This is Illustrated in 

Figure 3.6 where the reduction in the collision efficiency due to 

hydrodynamic forces for different particle pairs and at various A/(kT) 

is shown. EH stands for the collision efficiency when both 

hydrodynamic and van der Waal s' forces operate; EW is the col l is ion 

efficiency when only van der Waal s' forces act. The curves shown 

approach zero as the interparticle attractive energy decreases. In the 

l lmit A -+ 0 collisions are theoretically impossible since in Stokesf 

flow the hydrodynamic repulsive force between the particles grows 

without bound as the particle separation decreases. 

Reported experimental collision efficiencies range from 0.35 to 0-7 

for equal size particles (see Zeichner and Schowalter, 1979, for a 
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Fig.  3.5. C o l l i s i o n  e f f i c i e n c e s  of p a r t i c l e s  w i t h  v a r i o u s  r e l a t i v e  s i z e s  
and f o r  v a r i o u s  v a l u e s  of A/(kT) when van d e r  Waals'  and 
hydrodynamic f o r c e s  o p e r a t e .  





recent survey a result which according to Figure 3.3 implies a maximum 

val ue for the Hamaker constant of about 2-lbl~oules (at 300°K) for the 

retarded potential. According to Lyklema (1968) the Hamaker constant of 

most hydrophobic col l oi ds in water ranges from about 1 f l y  Joules to 

about 2 -1c2 '  Joules corresponding to Hamaker groups (at 300°K) of about 

25 and 0.06 respective1 y (according to Stumm and Morgan ( 1  981 A ranges 

from about 161yJoules to lbzlJoules). According to Figure 3.3 these 

correspond to a collision efficiency of about 0.65 and 0.35 respectively 

(for the retarded potential), which are in the range of collision 

efficiencies determined experimentally. 

Theoretical estimation of the vac der Waalst attractive energy 

(Hamaker constant A) i s  carried out by Lifshitzts (1956) method. This 

requires knowledge of the frequency w dependent dlelectrlc 

permi-ttivities ~ ( w )  of the particles and the dispersive medium. Apart 

from the difficulty of estimating ~ ( w )  (Smith et al., 19731, it has 

been shown (Parsegian and Nigham, 1970) that considerable dumpins of the 

microwave radiation takes place in dispersions of high ionic strength. 

This complicates the theoretical determination of A and suggests that 

its experimental determination may be more promising for practical 

applications. Experimental determination of the collision efficiency 

and subsequent estimation of the Hamaker constant is carried out 

directly from optical data (Gregory, 1969) or indirectly in rapid 

csaguiation experiments of monodisperse systems in which double layer 

forces are assumed to be negligible. In the latter case the coagulation 

r a t e  i s  determined by means of the half-life of the dispersion assuming 

s a~ostsdisperse system of particles (Zeichner and Schowalter, 1979). 

r n a i  numerical calcuiations (or Figure 3.3) give the value of the 
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Hamaker constant. Large scale modeling v i a  t h e  General Dynamic Equation 

can be accomplished then, s ince t h e  c o l l i s i o n  e f f i c i e n c i e s  between 

p a r t i c l e s  o f  u n l i k e  s izes  can be obtained r e a d i l y  from F igure  3.5. 

3.d. Double Layer Forces 

Dispersed p a r t i c l e s  i n  na tura l  waters ca r ry  an e l e c t r i c  charge. 

Since t h e  d ispers ion  i s  e l e c t r i c a l l y  neutra l ,  t h e  aqueous phase c a r r i e s  

an equal charge o f  opposi te sign. Close t o  t h e  p a r t i c l e  su r f  ace a  

compact layer  o f  s p e c i f i c a l l y  adsorbed ions i s  formed (Stern layer ) .  

The outer  (Gouy) layer  cons is t s  o f  t h e  excess o f  oppos i te ly  charged ions 

(counter ions)  o f  t h e  d ispers ing  medium. According t o  t h e  Gouy-Chapman 

mode! (Verwey and Overbeek, 1948) an e q u i l i b r i u m  i s  es tab l ished I n  t h e  

outer  (diffuse) layer  between e l e c t r o s t a t i c  fo rces  and fo rces  due t o  t h e  

thermal motion o f  t h e  ions. Th is  causes t h e  d i f f u s e  layer  t o  extend 

outwards from t h e  p a r t i c l e  sur face i n t o  t h e  solut ion,  t h e  concentrat ion 

o f  counter ions d imin ish ing w i t h  distance. 

Th is  loca l  d i s t r i b u t i o n  o f  charges i n  an e l e c t r i c a l l y  neu t ra l  

s o l u t i o n  induces double layer  i n t e r a c t i o n  fo rces  between approaching 

p a r t i c l e s ,  S i g n i f i c a n t  s i m p l i f i c a t i o n s  are needed I n  order  t o  descrlbe 

q u a n t i t a t i v e l y  t h e  I n t e r p a r t i c l e  double layer  forces. A s u f f i c i e n t l y  

d i l u t e  system o f  negat ive ly  charged spher ica l  p a r t i c l e s  i s  assumed so 

t h a t  on l y  b inary  p a r t i c l e  encounters are  considered. The p a r t i c l e s  can 

have d i f f e r e n t  s izes  b u t  c a r r y  t h e  same charge. The r e a l i s t i c  

assumption o f  t h i n  double layers and smal l surface p o t e n t i a l s  I s  

app l i cab le  t o  p a r t i c l e s  suspended i n  most na tura l  waters (Lyklerna, 
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1968). Then two types of particle encounters are subject to approximate 

analytical description: a) the particle surface potential remains 

constant during the interaction, and b) their surface charge density 

remains constant. According to the Gouy-Chapman model of the electrical 

double layer the electrostatic potential Y (s) at any point around a 

spherical particle satisfies 

where s is the dlstance from the surface of the particle, z i s  the 

valence of the ionic species in sol ution, e=1 .6 lvl9 Cb, the charge of 

the electron, E the dielectric constant of the suspending medium 

( ~=89.10'-~~Cb/(Vcm) for water), c the number sf Ion pairs (ions/cm3 I +  

k=1 ,38 - 1  0-' VCb/"K Bet tzmanns* constant and T the absoi ute temperature. 

The double layer surface charge density o Is related to Y by 

According to the Gouy-Chapman model Eq. 3.18 gives 

Traditionally the constani potential assumption has been used to 

evaluate the double layer forces, Then the Debye-Huckel linearized form 

of Eq, 3.17 (Verwey and Overbeek, 19481, appl icable to smal l potentials, 

can be used. The constant psPentHai assumption is equivalent to 

assuming equll Pbrfum between %ke adsasbed Ions and the bulk solution 
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during the time of the interparticle interaction. Frens and Overbeek 

(1971) and Bell and Peterson (1972) showed that the time scale of the 

Brownian interaction between particles (of the order of 10-~sec) is too 

short for electrochemical equilibrium to be restored. Thus the surface 

charge density rather than the surface potential remains constant during 

the time scale of the Brownian interaction. The particle surface 

potential increases then infinitely (Bell and Peterson, 1972) as the 

interparticle distance decreases invalidating the convenient assumption 

of small potentials. This increase In the surface potential causes the 

repulsion at small distances to be stronger at constant charge density 

than at constant potentlai. 

For thin double layers, symmetrical electrolytes (one electrolyte 

only with ions of charge number +z and -2) and for dimensionless 

i nterparti c I e separat Y ons KS greater than about 4 (where K'-~ is the 

Debye-Huckel length, a measure of the double layer thickness) the linear 

superposition approxirnaflsn to the diffuse layer interaction between 

spheres obtained by Bell eP a9.(1970) can be used. It Is assumed that 

the potential of one particle remalns undisturbed due to the presence of 

the other. Then the interparticle force f Is given by 

where r,,r2 are the radi 1 04 Phe particles and r the center-to-center 

distance between them. The reffectlveP seduced potential Y is 

approximated by (Be! l e t  a ! , ,  1970) 
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v a l i d  f o r  K r  > 10 and Q, < 8. The reduced (dimensionless) p o t e n t i a l  

Q, i s  g iven by 

Q, =ze "//(kT) ( 3 . 2 2 )  

where Y o  i s  t h e  surface p o t e n t i a l  o f  a s i n g l e  p a r t i c l e  alone i n  t h e  

f l u i d .  Eq. 3.20 i s  equa l ly  v a l i d  f o r  t h e  constant  surface p o t e n t i a l  and 

constant  charge densi ty  case f o r  la rge i n t e r p a r t i c l e  distances. The 

energy o f  i n t e r a c t i o n  V o f  t h e  two spher ical  p a r t i c l e s  a t  separat ion s 
P 

i s  then 

A t  small separat lons Der jagu lnPs (1954) approximation can be used. 

I t  s ta tes  t h a t  t h e  double-layer fo rce  between a p a i r  of spheres can be 

der ived from t h e  interactOan energy o f  two f l a t  double layers. Frens 

and Overbeek ( 1971 1 ob ta i  ned t h e  i n t e r a c t  i on  energy V'  a t  constant  
F 

sur face charge dens i ty  o f  two approaching f l a t  double layers I n  terms o f  

t h e  i n t e r a c t  i on energy V: a t  constant  su r f  ace potent  i a l  

0 V = v  + -  a H - 0) s i  nh(;) - 2  Q, 
F F K H 

cosh - 
2 

Here QH i s  t h e  reduced electrostatic p o t e n t i a l  half-way between t h e  

f l a t  double layers. OH can be computed from t h e  i m p l i c i t  r e l a t i o n  

(Verwey and Overbeek, 1948) 

where F(a, @ 1 I s  t h e  e l l i p t i c  i n teg ra l  of ?he t : rs t -  klnd. Hogg e t  al .  



(1965) used Der jagu in ' s  approximation t o  ob ta in  t h e  po ten t ia l  energy 

V: of two approaching f l a t  double layers  a t  constant  sur face p o t e n t i a l  

v = Tr [ Y  + Y (1 - c o t  + 2 ~ l ~ 0 2 / i i  n h ~ ~ s )  ] 0 * 2 6 1  

v a l i d  f o r  Yoi < 25mv. Here Yol and YO2 a re  t h e  sur face e l e c t r o s t a t i c  

p o t e n t i a l s  o f  t h e  undisturbed f l a t  double layers. Given t h e  sur face 

charge dens i ty  5 o f  t h e  pa r t i c les ,  @ ( o r  Yo) I s  computed from Eq. 3.19; 

Y Eqs. 3.25 and 3.26 g i v e  QH and VF respect ive ly ,  so V' can be computed 
F 

from Eq. 3.24. The i n t e r a c t i o n  energy V: between two spher ical  double 

layers a t  small separat ions i s  then given i n  terms o f  t h e  p o t e n t i a l  

0 
energy V F  o f  two f l a t  double layers by 

The e l e c t r i c  p o t e n t l a l  drop Yd across The d i f f u s e  p a r t  o f  t h e  

double layer  (Gouy layer )  I s  approximated customar i ly  by The 

e l e c t r o k i n e t i c  (ze ta)  p o t e n t i a l  Y obtained from t h e  e lec t rophore t i c  
5 

m o b i l i t y  o f  t h e  p a r t i c l e .  The corresponding efec- t - rsk inet ic  charge 0. i s  
i 

then approximately equal t o  t h e  charge densi ty  o I n  t h e  d i f f u s e  layer. 
d 

For t h i n  double layers  t h e  l a t t e r  i s  s e t  equal So t h e  p a r t i c l e  sur face 

charge dens i ty  a . 

Natural  waters and wastewater are t h e  d ispers ions of concern here. 

Water of i o n i c  s t rength  ( m o l a r i t y )  I i s  t rea ted  as & nonova!ent 

symmetrical e l e c t r o l y t e  w i t h  the  same i o n i c  s-frengtk .Scd.;1?i a n d  Morgan ,  

1981 1. The double layer  th ickness K- ' (  ln cml i s  assor: ; ? a ~  ?c i 



according t o  (Stumm and Morgan, 1981 

~'1 g 2.8 10-8 1 - 0 . 5  

For natura l  waters and sea-water I i s  0.01 and 0.65 respect ive ly .  

K-I ranges t y p i c a l  I  y  from 5 t o  20nm i n  f resh water and i s  about 0.4nm i n  

sea-water (Stumrn and Morgan, 1981). For s i m p l i c i t y  t h e  i n t e r a c t i n g  

p a r t i c l e s  are assumed here t o  c a r r y  t h e  same negative charge. Th is  i s  a  

f i r s t  approximation t o  t h e  wide spectrum o f  p o s i t i v e l y  and negat ive iy  

charged surfaces e x i s t i n g  i n  na tura l  waters. 

3.e. C o l l i s i o n  E f f i c i e n c i e s  o f  Spherical P a r t i c l e s  i n  Brownian 

D i f f u s i o n  Accounting f o r  Hydrodynamic, van der Waalsq and 

Double Layer Forces. 

The c o l l i s i o n  e f f i c i e n c y  o f  spher ica l  p a r t i c l e s  sub jec t  t o  Brownian 

diffusion and accoonting f o r  hydrodynamic, van der Waalsl and dcuble 

l ayer  forces can be computed from Eq. 3.15. The i n t e r a c t i o n  energy o f  

two approaching p a r t i c l e s  i s  t h e  sum o f  t h e  a t t r a c t i v e  van der Waals 

potent  i a  l VA and t h e  repu I  s  i ve e l  e c t r o s t a t  i c  potent  i a  l V' a t  constant  
R 

sur face charge 

vp=vA +vG 
R 

The s a l i e n t  fea tures  o f  t h e  curve o f  t h e  i n t e r a c t i o n  energy V against  
P 

separat ion are shown i n  Figure 3.7, A t  small and large p a r t i c l e  

separat ions t h e  van der Waals energy outweighs t h e  repuis ion.  A t  



repulsion 

n 

AV: energy barrier 

F i g .  3.7. Schematic i l l u s t r a t i o n  of t h e  p o t e n t i a l  energy 
a s  a  f u n c t i o n  of p a r t i c l e  s u r f a c e  s e p a r a t i o n .  



intermediate separations the electrostatic repulsion predominates 

creating a maximum in the potential energy curve (energy barrier). This 

energy barrier reduces the coagulation rate between two particles and 

can even prevent them from colliding. Since the collision efficiency 

(Eq. 3.15) involves Vp  as an exponential factor the height of the energy 

barrier is the most significant factor governing the behaviour of the 

collision efficiency; the rest of the curve in Figure 3.7 is of little 

importance. 

For i arge dimension1 ess interparticle distances KS, V: is 

determined from Eqs. 3.20 and 3.23. For small values of KS, Eq. 3.27 

is used. The transition from Eq. 3.23 to 3.27 is such that the curve of 

0 V R  VS. KS is as smooth as possible. The van der Waalsl energy of 

attraction V A  is given by Eq. 3.10. 

For the near-field computation the potential half-way between two 

approaching flat double layers is needed (see Eqs. 3.24 and 3.251, The 

elliptic integral in Eq. 3.25 was numerically evaluated using Simpson's 

formula. The half-way potential a,, is plotted in Figure 3.8 against the 

dimensionless double layer separation KS for five dimenslonless 

undisturbed potentials in the range of interest. A second-order 

polynomial can be fitted to the numerical results obtained from the 

integration to an accuracy of better than 0.998; the resulting equation 

is used in all subsequent calculations. 

Figure 3.9 shows the effect of the van der Waaist energy of 

attraction on the collision efficiency of the interacting pafrs. The 

ionic strength 1=0.05 and both particles have the same (negative) 

d?mensionless undisturbed surface potential @ = 0.5. corresponding to a 

surface charge density a=0.67 cb/cm2 . The sequence of Figures 
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10. C o l l i s i o n  e f f i c i e n c e s  of p a r t i c l e s  i n  Brownian d i f f u s i o n  (I=0 

Fig.  3.11. C o l l i s i o n  e f f i c i e n c e s  of p a r t i c l e s  i n  Brownian d i f f u s i o n  (I=0.5). 



3.9, 3.10 and 3.11 illustrate the effect of the ionic strength on the 

collision efficiency. The horizontal parts of the curves shown are 

identical in the range of A/(6kT) they overlap, This is the regime of 

trapid' coagulation where the particle behavior is not influenced by 

electrostatic interactions. The transition from kinetically stable (no 

significant change in the number density of the particles during the 

observation time) to unstable state of the dispersion shifts to smaller 

A/(6kT) as the ionic strength of the solution increases. The transition 

is abrupt, so a quantitative criterion of coagulation (or stability) can 

exist, 

The rapid variation of the collision efficiency with the van der 

Waals energy of attraction occurs in the tsiow' coagulation regime. 

According to Flgurzs 3.9, 3.10 and 3-11 the translt:on frm slow to 

rapld coagulation is independent of particle size. This is consistent 

with experimental results (Ottewil l and Show, 1966) and theoretical 

calcuiations (Honlg et ale, 1971). Collision efficiencies are very 

small here, so the dispersion is stable for the time scales of most 

practical applications. The half-life time t,,2 in which the number N 

of particles in an initially monodisperse system Is reduced to one-half 

the original value by Brownian motion is (Smoluchowski, 1916) 

Here any partlcle interactions are ignored (Eq. 3.30 is approximate 

since only collisions between primary particles of radlus r are 

csnsBderedf. The collision efficiency as defined in Eq. 3.15 Is 



where in t hydrodynamic, van der Waals' and electrostatic interactions 
1 /2 

between the particles are considered, For water at ambient temperature 

Eq, 3.30 reduces to (Verwey and Overbeek, 1948) 

where N is the number of part ic l es per cm3 and t, /2 1 s i n seconds. 

The number density of particles in primary sewage sludge is, for 

examp l e, of order 10 (Fai sst, 1976) correspond i ng to a ha1 f- l i fe 

time of t,,2=E*55 hrs. Natural waters have particle number densities of 

order lo5 -lo7 ~m'~(o'~elia, 1980). A collision efficiency smaller than 

0.001 implies a stable dispersion for all practical purposes. 

Consequently, only the transition from slow to rapid coagulation, given 

by the bend i n  the curves in Figures 3.9, 3.10 and 3-11 is of interest. 

For the computations presented the unretarded potential (Eq. 3.10) 

is used. Practically there i s  no change in the transition from slow to 

rapid coagulation when the retarded potential (Eq. 3.11) Is used. This 

is so because the energy barrier for coagulation is typically at a 

dimensionless particle separation of order 1 where retardation effects 

are not important. 

Honig and Mull(1974) derived an expression for the critical 

electrolyte concentration at the onset of coagulation in a monodisperse 

system of particles with constant charge surfaces, The transition from 

slow to rapid coagulation is assumed to occur when the energy of 

interaction V p  and its derlvative with respect to interparticle 

separation are both zero 



For p a r t i c l e s  o f  d i f f e r e n t  s izes  t h e  ana lys is  by Honig and Mull (1971) i s  

equa l ly  va l i d .  A t  small separat ions s t h e  van der Waalst energy o f  

a t t r a c t i o n  between two spher ical  p a r t i c l e s  reduces t o  (Hamaker, 1937) 

The r e p u l s i v e  energy due t o  sur face charge a t  small i n t e r p a r t i c l e  

d is tances i s  obtained from Eq. 3.27. The cond i t i ons  expressed by 

Eqs. 3.33 reduce then t o  

and 

and a re  independent o f  pa r fYc le  size. Honig and Mul l  (1971) solved 

Eqs. 3 -35 and 3.36 numer l c a l  l y. For t h e  smal l s u r f  ace charges o f  

interesC here t h e i r  c r l P e r l o n  f o r  t h e  onset o f  coagulation becomes ( i n  

our noi-at ion) 

v a l i d  t o r  An < 2 - 1 0 - ~ ~ .  I n  Eq. 3.37 ~ ~ = 6 . 0 3 . 1 0 ~ ~ m o l e - ~  i s  Avogadrofs 

number, For water a t  20°C Eq. 3 -37 reduces t o  
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valid for Aa < 2*10-~~(if this restriction is violated the plotted 

results of Honig and Mull (1971) can be used); here the ionic strength 

is in moles/liter (molarity), a in Cb/cm2 and A in Joules. Any 

combination of I, a and A that do not satisfy Eq. 3.38 implies a stable 

dispersion for all practical purposes. 

3.f. Summary 

The aim of the work described in Sections 3.a through 3.e has been 

to Improve the col l iston rate given by Smoluchowski's (1916) classical 

theory for Brownian diffusion. The computed collision efflclencies take 

into account hydrodynamic, van der Waals' and double layer lnferactlons 

between two approackIng particles. 

The short-range van der Waals' potential and the long-range 

hydrodynamic forces tend to affect both the collision rate and the 

functional dependence of the coilision rate on the relative sizes of the 

interacting particles, For practical applications only rapid 

coagulation is ImporPant. Double layer forces determine the onset of 

coagulation. Once caE I isBons occur, the coagulation rate is determined 

solely iron the relative mobility of the particles (modified to account 

for hydrodynawic forces1 and Phe Hamaker constant. 

The collision e f f f c i enc ies  obtained above wil I be used next to 

provide support or 0-i-herwtse for Huntrs (1980) dimensional arguments. 

In the form presenicd ncre, however, the collision efficiencies can also 

be incorporabed rr?e Geflerei Dynamic Equation (GDE) to obtain 

real istic resuits 1r3 farse-scale model lng. Table 2, where several 



Table 2: Collision efficiencies for Brownian diffusion 

Retardation parameter a = 0.1 

Van der ~ a a l s '  forces 

Van der Waals' and hydrodynamic forces 

P 3 5 10 20 50 100 



Table 3. Approximations for collision efficiences in 
Brownian diffusion. Retardation parameter a = 0.1. 
(valid for 1 6 r / r  6 20) 2 1 



computed col lision efficiencies are listed, and Figure 3.5 serve this 

purpose. In the latter the collision efficiency Is given as a functlon 

of the ratio of the radii of the interacting particles for various 

energies of attraction. The curves in Figure 3.5 are given in 

parametric form in Table 3, Interpolation can be used for intermediate 

values of the Hamaker constant. Experimental information on the Hamaker 

constant, the charge on the particles and the ionic strength of the 

dispersive medium are then needed to predict the time evolution of the 

particle size distribution in a coagulating dispersion. 

3.9. Computer Simulation 

For Brownian induced coagulation in the presence of van der Waals' 

forces and hydrodynamic interactions, the functional dependence of the 

collision efficiency on the relative size of the interactlng particles 

(see Figure 3.5) suggests that the first assumption in the theory Is 

inval id. 

The computer simulation of Pearson et al, (19839 is used to 

investigate the dependence of the steady state size distribution on the 

externally imposed conditions, in particular the particle size range 

covered in any computer run. The COD !ision func-iion B depends oniy on 

the relative size of the interacting particles; the col lision 

efficlency E,, depends both on the relative and the absolute size of the 

interacting particles. The coll lsion rate of particles r, and r2, per 

unit time and per volume V of fiuld, under khe influence sf hydrodynamic 

and van der Waals' forces can be set equal to the C G ~  EIsion rate of the 



same number of non-interacting particles t and t , per volume V of 
1 2 t 

fluid and per unit time 

Solving Eq. 3.39 for t2/tl we obtain 

where we have put Vt  =El*!'; El is the collision efficiency for 

r2 /rl =1 and Is introduced so that Eq. 3.39 has real roots. For 

r2/r1=1 Eq. 3.40 gives t2/tl = l .  Thus, the col l ision rate in a 

monodisperse non-interacting system of particles, per volume V of fluid, 

is equal to the collision rate, per volume (V.El 1 of fluid, i n  a system 

of the same number of particles of equal size between which hydrodynamic 

and van der Waals' forces act (hereupon referred to as the realistic 

system). Eq. 3.40 maps the realistic system of particles of a l l  sizes 

onto a non-Interacting particle system; the latter is simulated In the 

model and the evolutlon of the size distribution of the real lstle system 

is followed using Eq. 3.39. The method for generating the particle 

displacements at each step and updating their positions i s  described In 

detail in Pearson et al. (1983). The initial volume concentration of 

suspended particles used In the simui ations ranges from 0.1% to I $ ;  

such a high concentration is necessary in order to achieve resuBks i r i  

reasonable computation times. 
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Fig. 3.12. Evolution of the normalised size distribution for Brownian motion. 
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Fig. 3.13. Comparison of the steady state non-dimensional size distribution 
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F igu re  3.12 shows t h e  t ime development of t h e  normalised p a r t i c l e  

s i z e  d i s t r i b u t i o n  o f  a  popu la t ion  o f  p a r t i c l e s  undergoing Brownian 

induced coagulat ion, The suspension i s  i n i t i a l  l y  monodisperse and has a  

vo l  ume concent ra t ion  o f  0.57%- The curves shown a re  smoothed 

approximations t o  ensemble averages of actual data po in ts  from f i v e  

s imu la t i on  runs, The data i n  t h e  small s i z e  range a t t a i n  a  slope o f  

about -3/2 once p a r t i c l e s  ten - fo ld  i n  volume are created. The leve l  o f  

t h e  d i s t r l b u t i o n  decl ines then gradual l y  u n t i l ,  a f t e r  about 1200 

time-steps, a  dynamic e q u i l i b r i u m  i s  reached; t h i s  occurs when t h e  

f i r s t  la rge p a r t i c l e  i s  phys i ca l l y  removed from t h e  ' c o n t r o l '  volume. 

A l l  lengths i n  t h e  computer model are non-dimensionalised w l t h  t h e  

rad ius  o f  t h e  u n i t  p a r t i c l e  and t h e  time-scale used depends on ly  on t h e  

magnitude o f  t h e  d ? f f u s ? o n  c o e f f ? c ? e n t  of t h e  u n i t  par t !c le ,  An aeroso! 

p a r t i c l e  o f  1 ym rad ius  has a  d i f f u s i v i t y  o f  about 

13 1 0 ' ~ c m ~  /sec (Pruppacher and K l e t t ,  1978). For a  micron-size 

p a r t i c l e  then, 1 sec o f  rea l  t ime corresponds t o  about 15 t ime steps i n  

t h e  s imulat ion.  S im i la r l y ,  f o r  a  p a r t i c l e  o f  rad ius  0,1 ym, 1 sec o f  

r e a l  t ime i s  equ iva lent  t o  264 t ime steps. Thus, f o r  t h e  volume 

concentrat ions used here t h e  growth of t h e  populat ion o f  suspended 

p a r t i c l e s  examined i s  very rapid. 

The se r les  o f  simulation runs shown i n  Figures 3.13, 3.14 and 3.15 

i l l u s t r a t e  t h e  e f f e c t  t h a t  t h e  r a t i o  v  /v  1 . .  t h e  s i z e  range 
max o 

covered by t h e  s imula t ion)  has on t h e  f i n a l  steady s t a t e  s i z e  

d i s t r i b u t i o n s ;  v  I s  t h e  u n i t  p a r t i c l e  volume and v  t h e  volume o f  
o max 

t h e  l a rges t  p a r t i c l e  allowed t o  remain i n  t h e  system. A l l  s imu la t i on  

runs were s t a r t e d  w i t h  a  monodisperse populat ion o f  particles, I n  a! l 

f i g u r e s  t h r e e  runs w l t h  v  /v  =27,125 and 512 a re  shown. The po in ts  
max o 
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plotted in Figure 3.13 are numerical data obtained by Pearson et al. who 

did not account for interparticle forces. The data shown are averaged 

over 1000 time steps; this is necessary because of the small number of 

particles Involved in the simulation (typically about 200 to 400 

particles). The data points, when non-dlmensionalised according to 

Eq. 1.2 and plotted logarithmical ly against particle volume 

(non-dimensionalised with the unit particle volume), collapse onto a 

slope of -3/2. 

Pearson et al., based on the results shown In Figure 3.13, suggest 

that the final steady state distribution of a system of particles 

undergoing Brownian coagulation is insensitive to the size range covered 

by the simulation. 

The next two figures show how the steady state size distribution is 

modified when hydrodynamic and van der Waals8 forces between the 

particles are considered. For the simulations in Figure 3.14 the 

Hamaker group A/(kT) is 1 and for those in Figure 3.15 it is 0.01 (it 

thus covers the range of Hamaker constants found in natural waters). 

The data shown are averaged over 2000 time steps; because of the 

decreased coagulation rate the size distribution evolves slower, so a 

longer time average Is required to obtain meaningful results. Again the 

data points when normalised according to Eq. 1.2 exhibit the -3/2 power 

law. The level of the distributions as determined by the intercept of 

the best fit line of slope -3/2 with the axis v/vo is considerably above 

the simulation runs of Pearson et ale This is shown in Figure 3.16 

where the results of two computer simulations at dlfferent A/(kT) are 

compared with the non-interacting system of Pearson et ale, ail other 

parameters being the same. 
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At the upper end of the size range the results of all three 

slmulation runs in both Figures 3.14 and 3.15 are statistically 

identical. It seems that the constant addition of unit particles, which 

clearly cannot represent properly the creation of unit particles by 

coagulation of smaller ones, covers the influence of vmax on the 

smallest particles of the simulation. For the largest part of the size 

range a consistent decline in level of the size distribution with 

Increasing vm,,/vo occurs in both Figures 3.14 and 3.15. Contrary to 

the rnon-lnteractingr particle system of Pearson et at. the size range 

influences the final steady state size distribution. 

4. LAMINAR SHEAR 

Adler (1381 used the rigorous theory for the hydrodynamic 

inferaction of two unequal spheres in simple shear flow (Batchelor and 

Green, 1972, Arp and Mason, 1976) to correct Smoluchowski's (1917) 

expression for the collision rate of spherical particles with radii 

',and ?and number concentrations N,and N2, per unit volume of fluid. 

Adlerk %I9811 formulation for the collision rate is 

col I Ision rate = 2/3 N1N2(r,+r2)3~ ESh (r, ,r2) (4.1) 

whore ESh(rIpr2) is Adlerfs (1981) correction factor (or collision 

efl!cfency) to Smoluchowski's (1917) expression for the col lision rate, 

which consYders only binary particle encounters and assumes that 



particles move on straight paths (rectilinear approach). Geometrical 

exclusion determines the collision cross-section of the two particles. 

Hydrodynamic forces induce curvature in the particle trajectories which 

can be open or closed (Adler, 1981). Between the two kinds of 

trajectories a separation surface exists whose cross-section at infinite 

interparticle distance defines a ~curvilinear~ollision cross-section 

(Adl er, 1981 1. I n the absence of ather forces the cross-sect ion of the 

separatlon surface tends So zero at large distances (Batchelor and 

Green, 19721, the singu l at- behav lor of the interparticl e hydrodynamic 

force in StokesVlow at particle contact, When, in addition, van der 

Waalst or other external forces act between the particles a non-zero 

curvilinear cross-section may exist (Adler, 1981). 

The correction ESh(r1,r21 to the rectilinear coil ision rate is 

equivalent to defining a curvi l inear col l i sion cross-section a 2  

For two unequal spherical particles In simple shear flow in the presence 

of van der WaalsVorces E (r ,r 1 is a function of the relative size 
sh I 2 

of the interacting particles and fhe dimensionless parameter 

where A is the van der Waal s1 energy of attraction, G the rate of strain 

and r, the radius of the large parficls, H represents the relative 

strength of the shear and the attractive van der WaalsVorces. The 



collision efficiency ESh(r1,r2) is plotted In Figure 4.1 against the 

relative size of the interacting particles for various values of H. 

Adler (1981) reports corrections to the rectilinear collision rate for 

four different relative particle sizes r2/r,=l, 2, 5, 10 and for H 

ranging from lo-* to lo-' . Interpolation was used to obtain the 

collision rate corrections for intermediate values of r2/r,. Figure 

4.1 indicates that homocoagulation (coagulation between particles of 

similar size) is favored over heterocoagulation. The first requirement 

for the exfstence of a quasi-stationary size distribution in a 

coagulating system of particles is, thus, fulfilled. 

The computer simulation mode! of Pearson et al. is used to study 

the evolution of the size dlstributlon of a coagulating populatlon of 

particles subjected to laminar shear and accounting for van der Waalsf 

forces. The correction f o  the curvilinear collision cross-section 

obtained from Eq. 4.2 is used in the simulation to check for particle 

collisions. 

Figure 4.2 illustrates the evolution in time of an initially 

monodisperse suspension of particles with an initial volume 

concentration of 0.57% col l idi ng under the inf l uence of simp1 e shear. 

The data of six slmulatlon runs with identical initial conditions are 

averaged and norrnalised according to the dimensional arguments (see 

Eq. 1.3) to give the plotted curves. The temporal development of the 

size distribution follows a pat-bern similar to the Brownian system, that 

is, the upper portion of the size spectrum attains a slope of -2 once a 

range of about one decade in volume is reached. Notice that the size 

dlstributlon approaches Its steady state value long before a dynamic 
, 

equiIIbrYum Is attained. If r-, represenPs ar; aerosol particle wlth 
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Fig.  4.1. C o l l i s i o n  e f f i c i e n c i e s  o f  s p h e r i c a l  p a r t i c l e s  i n  simple shear  
(Adler,  1381). 

F ie .  4.2. Evolution of t h e  normalised s i z e  d i s t r i b u t i o n  f o r  laminar shear .  " 
~=10-', G = l ,  V=125, ro=0,075, A t = l ,  N =400, NA=5, 

i n i t i a l  
r =0.375. 
max 



radius lpm, then the strain rate used corresponds to G=125sec-I and the 

time step to 1/125 seconds; if ro is set equivalent to a micron-size 

hydrosol particle, ~=2sec-l and the time step corresponds to 0.5 

seconds. 

Figure 4.3 is a comparison of the steady state size distribution of 

three coagulating populations of particles when the maximum size of 

part i c l e, vmaX , allowed to stay In the tcontrol~ volume varies. For 

the three sets of data shown H=l0" and vmaX/vo=27,125 and 512. The 

numerical results, non-dlmenslonalised according to Eq. 1.3 and averaged 

over 2000 time steps collapse onto a slope of -2. The three populations 

of particles are statistically identical: the size range does not 

influence the final steady state size distribution. 

The effect of the hydrodynamic interactions in decreasing the 

coagulation rate Is lllustraied in FIgure e.4. The final steady state 

size distribution of two popu l atlons of partic! es at H=I 0" and are 

compared wlth the non-interacting system of Pearson et af. The size 

distribution shifts upwards as the strength of the shear (lee. rate of 

strain) decreases. 

5, DIFFERENTIAL SED!MENTA%ION 

5.a. Hydrodynamic Interactions and Cmpuier Sl82uia$ion 

In contrast to Brownian di f fusfcsn and C l b l c  shearing, differential 
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sedimentation induced coagulation involves a physical property of the 

particles: their density excess ratio, Pp - @f 
over that of the f I u i d. 

f 
Col lisions and subsequent coagulation may occur when larger or heavier 

particles overtake smal ler ones. 

The presence of a particle moving with velocity u induces a 

velocity gradient of order ur/s2 at a distance s in the surrounding 

fluid (Batchelor, 1976). This velocity gradient modifies the trajectory 

of an approaching particle as if a force dipole were located at the 

position of the particle. The collision rate, per unit volume of fluid 

and unit time, of particles with sizes r, and r2 is given by the 

rectilinear col lision function for differential settling (Table 1 )  

multiplied by the number densities N, and N2 of the particles and the 

coiiision efficiency Eds(r,,r2j 

col I ision rate= (2/9) n KdS(r,+r2)2 11'; - 

Theoretical computations of the collision efficiency are based on 

several assumptions (see Pruppacher and Klett, 1978) and yleld 

approximately the same values for Eds as given by Eq. 5.2. Experimental 

difficulties have not allowed verification of the computed coil ision 

efficiencies in the laboratory, mainly because of the critical role 

which molecular or other short range forces play In coalescing two 

particles which are brought into contact by their relative motio~ (Tag, 

1974). Neiburger et al. (1974) obtained an analytic expression for 

theoretical collision efficiencies, computed assuming Stokes flow ( w i f h  

the slip-flow correction) and modified to be consistent with 



experimental r e s u l t s :  

where Eo = 0.95 - (0.7 - 0.005 r2 ) '  (7.92 - 0.12 r2 + 0.001 r;) 

2 
E = -  

1 ( - 0.5) 

2  = -1.5exp[-(0.0015 r i + 8 ) -  rll r 2 

E 3 = - (1  - 0.007 r 2 )  exp[-0.651 r2  (I -G)] r 2 

E d s  i s  p l o t t e d  i n  F igure  5.2 as a  func t i on  o f  t h e  p a r t i c l e  r a t i o  

p = r 1 / r 2 ( r 2 >  r l )  f o r  d i f f e r e n t  rl. For f i x e d  r e l a t i v e  p a r t i c l e  s i z e  t h e  

c o l l i s i o n  e f f i c i e n c y  Ed, increases w i t h  increasing p a r t i c l e  s i z e  s ince 

t h e  d e f l e c t i n g  hydrodynamic fo rces  become less important as p a r t i c l e  

i n e r t i a  increases. For t h e  same reason Ed, decreases w i t h  p  when p<< 1, 

f o r  f i x e d  r2. For p  near u n i t y  'wakef capture occurs when t h e  two 

p a r t i c l e s  a re  la rge enough f o r  i n e r t i a l  e f f e c t s  t o  become appreciable. 

The coagu la t ion  process was s imulated by imposing on each spher ica l  

p a r t i c l e  i t s  Stokes0 terminal  s e t t l i n g  v e l o c i t y  w 

v a l i d  f o r  t ime scales greater  than t h e  p a r t i c l e  viscous r e l a x a t i o n  dime 





2 r 2  
j- = - -  

9 V '  
All particles have the same density and are moving in a 

'control volume1 of variable dimensions. Particles reaching the bottom 

are reintroduced at the top at a random cross-sectional position. This 

is necessary in order to prevent the simulation from becoming 

deterministic after a certain time: collisions would cease after each 

particle had swept out its own path through the control volume. 

Particles move in straight paths during the time step At. Eq. 5.1 

suggests that hydrodynamic interactions can be incorporated in the 

simulation by using an effective collision cross-section 

effective collision cross-section = Ed,(rl,r2 I (r1+r212 (5.5) 

to check for particle collisions. Notice, however, that this 

formulation assumes that collisions between particles of equal size do 

not occur even when their col l ision efficiency Is non-zero, ignoring 

thus wake capture. 

The algorithm was verified using a non-coagulating version of the 

simulation with two particle sizes. The collision rates computed from 

the simulation were in agreement with the prediction of the theoretical 

model (see Figure 6.1 in Section 6 ) .  

An initially monodisperse system of spherical particles was 

subjected to gravity settling. Weak Brownian diffusion or weak fluid 

shearing operated at the same time to initiate the coagulation process. 

When uniform shearing motion u =Gbx i s  imposed in the presence of 

settling, the particle crosses the streamlines perpendicular to the 
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direction of the shearing during the tlme step At. The particle 

displacement Y(i) in any time step is then 

where P(i)=(P1(i),P2(i),P3(i)) is the position of the particle i at the 

beginning of the time step. It is necessary to take into account the 

'average' vertical position of the particle during any time step At to 

predict correctly the col llslon rates. 

5.b. Simulation Results 

Figure 5.2 shows the steady state size distributions of two 

initially monodisperse systems subjected to weak Brownian motion and 

weak laminar shearing, respectively, and gravity settling. Hydrodynamic 

interactions such as discussed in Sections 3 and 4, are initially 

ignored but will be discussed later, The size distributions are 

collapsed when non-dimensionallsed according to E q ,  1 - 4  and ptotted 

against particle volume, non-dimenslonalised with the unit particle 

volume. A constant -13/6 slope line is drawn for comparison. The data 

shown in Figure 5.2 are results of the simulation averaged over 1600 

time steps. A long-time average is needed to reduce the scattering of 

the data at the long tail of the distribution caused by the high 

collision probability of the large particles. 

The next figure illustrates how weak Brownian motion modifies the 
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Fig. 5.3. Comparison of the steady state normalised size distribution for 
differential settling and Brownian motion with differential 
settling. Kds=50, ro=0.075, At=0.25, NA=l, rmax=0.375; 
0 Do=O; X Do=O. 005. 



size distribution at the small size range. The steady state slze 

distribution of the population of particles subjected to weak Brownian 

motion and gravity settling (Figure 5.3) is allowed to evolve in the 

presence of settling only. The steady state size distribution attained 

and averaged over 1000 time-steps, is compared with the initial one in 

Figure 5.3. The numerical results are statistically identical in the 

largest part of the size spectrum. When only differential settling 

operates as a volume-transferring mechanism through the size spectrum, 

the shape of the size distribution near the small size range reflects 

the Ineffectlveness of differential settling to coagulate particles of 

similar size. Particles of equal size subjected to gravity settling do 

not collide. However, since the flux of particle volume into the size 

range f r m  coagulation of particles smaller than v is represented in 
0 

t h e  simulation by a constant addition of unit particles it is apparent 

t h a t  Sh8s scheme cannot represent properly the coillslons of partlcles 

larger than v wlth particles smaller than v ; hence the awkwardly 
0 0 

h i g h  number of unit particles in the size distribution shown in Figure 

5 * 3 ,  

Figures 5.4 and 5.5 show two stages in the development of the size 

distribution of an initially monodisperse system of particles undergoing 

Brownian diffusion and settling. The relative strength of the two 

csagulaPisn mechanisms can be assessed from the ratio of their 

respecCive reePil lnear col lislon functions Bb and Bds (see Table 1 )  

where p i s  the particle radius non-dimensionallsed wlth the radius ro of 
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the unit particle and Do the diffusivity of the unit particle. The 

transltfon In dominance of the two mechanisms in the particle system 

shown in Figures 5.4 and 5.5 is at v/vo=24: the collision rates of 

particles of volume (24-vo 1 with particles of volume vo due to Brownian 

motion and differentia! settling are equal. Figure 5.4 shows the 

particle size distlbution after 1200 time steps, only about 200 time 

steps before a steady state is attained. The -3/2 and -1 3/6 slopes are 

clearly distinguishable, but the transition point Is shifted from 

v/vo =24 i nai cat1 ng that the 1 nf l uence of the large particles undergoing 

differential setti lng induced coagulation tends to propagate to smaller 

size ranges in the slze spectrum, The statistically steady state 

attained is shown in Figure 5,5, where the data points are averaged over 

3000 time steps, The dominance of differential settling is evident. 

So far hydrodynamic lnteractlons were Ignored. We turn now to more 

reallstlc particle sysBems in which hydrodynamic forces between two 

approaching particles exist. The tlme-evolution of the normalised size 

distribution of an initial ly mono-disperse suspension subjected to 

gravity settling and weak Brownian diffusion is shown in Figure 5.6. 

The data of five simulation runs, for a rocorresponding to an actual 

particle radius of 40~m, are averaged and smoothed to give the curves 

shown. For a unit particle with radius 40um and a density excess ratio 
Pp - P f  

=0.1 the time step used in the simulation corresponds to about 
P f  

0.05 seconds. The deveEopment pattern Is s t r i k i n g l y  sirni lar to the  

Brownian and shear systems, but the change in the number of unit 

particles is more slgniflcant. This indicates that large particles 

formed at progressively !a%er tfrnes influence slgntficantly the particle 

size distribution at the sma! 1 end of the spectrum. 





The func t i ona l  dependence of t h e  e f f e c t i v e  c o l l i s i o n  cross-sect ion 

on r , (F igure  5.1 suggests t h a t  t h e  shape o f  t h e  s i z e  d i s t r i b u t i o n  w i l l  

depend on t h e  absolute s i z e  o f  t h e  pa r t i c les ,  Th is  i s  i l  l u s t r a t e d  i n  

F igure  5.7 where t h e  normalised s i z e  d i s t r i b u t i o n s  of two p a r t i c l e  

systems d i f f e r l n g  I n  t h e  s i z e  of t h e  u n i t  p a r t i c l e s  are  compared. The 

two se ts  o f  data correspond t o  actual u n i t  p a r t i c l e  s izes  o f  20um and 

40um, a1 I o ther  parameters being equal. The p l o t t e d  po in ts  are 

numerical data averaged over 1000 t ime  steps and normallsed as suggested 

by Eq, 1.4. Weak Brownian d i f f u s i o n  i s  al lowed t o  operate i n  order t o  

smooth t h e  s l z e  d i s t r i b u t i o n  a t  t h e  smal ler  p a r t i c l e  s l z e  range, The 

smal ler  t h e  s i z e  o f  t h e  u n i t  p a r t i c l e s  t h e  steeper t h e  f i n a l  steady 

s t a t e  s l z e  d i s t r i b u t i o n  becomes. I n  F igu re  5,8 $wo B i n t e r a c t i n g 9  

populat ions o f  p a r t i c l e s  w l t h  r =20um and 80um are compared w l t h  a  

lnon- in terac t ing '  system. Note t h a t  f o r  t h e  l a t t e r  t h e  absolute s i z e  o f  

t h e  p a r t i c l e s  I s  i r re levan t .  The s i z e  d i s t r i b u t i o n  w l t h  r =80um leve ls  
0 

o f f  a t  v/v0=15 where t h e  c u t o f f  i n  t h e  respec t i ve  e f f i c i e n c y  curve 

occurs (see F igure  5,1), From Figures 5.7 and 5.8 we conclude t h a t  

t h e  s lope o f  t h e  s l z e  d i s t r i b u t i o n  o f  a  coaguiat ing system o f  suspended 

p a r t i c l e s  subjected t o  d i f f e r e n t i a l  s e t t l i n g  depends on t h e  s i z e  o f  t h e  

p a r t i c l e s ,  When t h e  rad ius  o f  t h e  smal les t  p a r t i c l e s  Involved i n  t h e  

s imu la t i on  i s  less than about 40um, t h e  steady s t a t e  s i z e  d i s t r l b u t l o n  

has a  s lope steeper than -13/6; i n  sirnulat lons w i t h  la rger  r o t h e  s i z e  

spectrum i s  f l a t t e r .  

I n  s imula t ions  performed w i t h  ro less than 1519 a  steady s t a t e  s i z e  

d i s t r i b u t i o n  was n o t  at ta ined,  I r respec t i ve  o f  t h e  shape o f  t h e  l n i t i a l  

p a r t i c l e  spectrum t h e  number of u n i t  p a r t i c l e s  In t h e  con t ro l  volume 

constant ly  increased. Th is  i s  due t o  t h e  shape o f  t h e  e f f l c f e n c y  curve 
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Fig. 5.7. Comparison of the steady state normalised size distribution for 

differential sedimentation and weak Brownian motion when different 
collision efficiences are used. Kds=50, Do=0.005, V=128, ro=0.075 
At=0.25, NA=l, rmax=0.375; O when ro corresponds to an actual radius 
of 20pm; X when ro corresponds to an actual radius of 40~m. 
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Fig. 5.8. Comparison of the steady state normalised size distribution for 
differential sedimentation and weak Brownian motion for a non- 
interacting system and two realistic ones. Kds=50, Do=0,005, 
V=128, ro=0.075, At-0.25, NA=l, rmax=0.375; X non-interacting; 
0 realistic with ro corresponding to an actual radius of 20ym; 
A realistic with ro corresponding to an actual radius of 8Oum. 



for r less than about 15pm: collisions simply do not occur for 
1 

particles close in size and widely different in size. However, for 

particles less than 1 5 ~  shearing motion is more effective in inducing 

collisions (Hunt, 1980). 

Simulations performed for a non-interacting system of particles 

gave 

for the dimensionless constant Adsin Eq. 1.4. Hydrodynamic interactions 

between the approaching particles steepen or flatten the steady state 

size distributlon, depending on the particle size range considered. 

However, computational cost effectively prohibited the direct simulation 

of a more extended particle size range. The simulations performed 

therefore involve overlapping sections of the size spectrum. The 

numerical results indicate that the size distibution becomes the steeper 

the smaller the size of the particles considered; for unit particles 

smaller than about 15 pm the computer model suggests that no steady 

state can exist as a result of the shape of the efficiency curve for 

such particles. Thus, no power-law expression of the form of Eq, 1,4 

with a unique exponent can represent the particle size distribution in 

the size range where differential settling dominates. Unlike shearing 

induced coagulation (see Section 4 )  hydrodynamic interactions cannot be 

incorporated solely in the dimensTonless coefficient Ads. 
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6. CONCLUSIONS AND DISCUSSION 

The d i r e c t  s imula t ion  o f  t h e  physical processes o f  p a r t i c l e  

c o l l i s i o n  and coalescence was undertaken i n  order  t o  i nves t i ga te  

Fr ied lander 's  (1960a,b) and Hunt's (1980) theory regarding t h e  exis tence 

o f  a quasi -s tat ionary p a r t i c l e  s i z e  d i s t r i b u t i o n  i n  aerosols and 

hydrosols. Observations i n  t h e  atmosphere (Friedlander, 1960ab) and i n  

oceanic waters and wastewater sludges (Hunt, 1980) and Hunt's 

experiments p a r t l y  support t h e  theory. The numerical simula-tions of 

Pearson, V a l i o u l l s  and L i s t  (1983) showed that ,  provided hydrodynamic 

and o ther  i n t e r p a r t i c l e  fo rces  a r e  ignored, a popu la t ion  o f  coagu la t ing  

p a r t i c l e s  can reach a s t a t e  o f  dynamic e q u i l i b r i u m  sustained by t h e  f l u x  

o f  mass through t h e  s i z e  space, when t h e  c o l l i s i o n  mechanism I s  Brownlan 

motion, s imple shear or  i s o t r o p i c  t u r b u l e n t  shear. The steady s t a f e  

s i z e  d i s t r i b u t i o n s  obtained by Pearson e t  a l .  were I n  agreement w i t h  

Hunt's dimensional resu l t s .  

Th is  study reexamined t h e  k i n e t i c s  o f  a popu la t ion  o f  coagulat ing 

p a r t i c l e s  accounting f o r  t h e  in f luence o f  i n t e r p a r t i c l e  fo rces  on t h e  

c o l l i s i o n  rate.  Such fo rces  can a r i s e  from t h e  disturbance t h e  presence 

o f  t h e  p a r t i c l e  causes i n  t h e  f l u i d  (hydrodynamic forces),  from t h e  

c loud of ions which surround an e l e c t r i c a l l y  charged p a r t i c l e  (double 

layer  forces), o r  they can be of molecular o r i g i n  (van der Waalst 

forces) .  These forces modify t h e  t r a j e c t o r y  o f  two approaching 

pa r t i c les ,  increasing o r  decreasing t h e  p r o b a b i l i t y  o f  c o l l i s i o n  and 

subsequent coalescence. The s ign i f i cance o f  these in te rac t i ons  f o r  t h e  

v a l i d i t y  of t h e  theory l i e s  i n  t h e  func t iona l  dependence o f  t h e  
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collision efficiency - which multiplies the rectilinear collision rate 
and incorporates the effect of all interparticle forces on the collision 

process - on the relative size of the interacting particles. For 

underlying Hunt's dimensional arguments is the notion that the 

coagulation process is mainly 'localf In size space. 

For Brownian motion induced coagulation cot lision efficiencies were 

computed for two spherical particles of different size assuming Stokesq 

flow and taken into account the attractive van der Waals' and the double 

layer forces. The latter are assumed dispersive, since suspended 

particles in natural waters usually carry a negative charge. The 

results suggest that double layer electrostatic forces determine the 

onset of coagulation, but, once collisions occur, the coagulation rate 

depends only on the hydrodynamic and the van der Waalsf forces. The 

onset of coagulation is abrupt, and so a quantitative criterion of 

stability was derived. The combined action of hydrodynamic and van der 

Waals' forces reduces the collision rate of all particle palrs, but it 

decreases the collision rate more between particles of similar size. As 

a result, contrary to the fnon-interacting' system of Pearson et a l . ,  

the simulations performed here showed that the size range covered 

Jnfluences the flnal steady state size dlstributlon. In Brownian 

diffusion the rectilinear collision rate increases with the ratio of the 

interacting particles; for the fnon-interactingt system of Pearson et 

a!. this effect is counterbalanced by the relatively small number of 

large particles. Hydrodynamic and van der WaaisVorces tend to reduce 

the collision efficiency relatively more between particles of equal 

size. Collisions between particles widely different in size therefore 



become important in determining the evolution of the size distribution, 

The coagulation process Is no longer 'local' in size space, external 

parameters Ilke the particle size range do become important and so 

dimensional analysis cannot be used to describe the development of the 

size distribution. 

Adler (1981) computed the collision efficiency for two unequal 

spheres in slmple shear flow under the action of van der Waalsl 

attractive forces. For particles very different in size the collision 

rate Is negligible. As a result, the dynamic equilibrium obtained in 

the simulated population of coagulating particles does not depend on the 

size range considered. The power law expression for the steady state 

size distribution suggested by dimensional analysis is verified in the 

~Imulations, but the level of the equilibrium size distribution depends 

on the relative strength of the shear and the van der Waals-nergy of 

attraction, 

Simulations for turbulent induced coagulation were not performed, 

Pearson et al, showed that, for particles much smaller than the 

Kolmogorov microscale, isotropic turbulent shear is equivalent in 

coagulating power to a rectilinear laminar shear of magnitude 1.72 times 

the character! st ic turbulent strai n rate (&/vll'f Adl er's ( 1  981 l 

coll islon efficiencies then can be used for isotropic turbulent shear 

Induced coagulation. The equivalence with the simple shear is apparent 

and the same conclusions hold. 

The rectilinear collision function for differential sedimentation 

induced coagulation was verified In this study using the non-coagulating 



version of the model. This is illustrated in Figure 6.1 where the 

computed number of collisions, for several collision mechanisms, is 

plotted against the number of collisions predicted by the theoretical 

models. The data points shown are results from simulations involving a 

variety of different situations, such as monodisperse systems or 

suspensions with two particle sizes and systems with different densities 

and/or with different values of the dimensional parameters K b  , G and 

K d  s (which represent the strength of the collision mechanisms). 

Simulations with a non-interacting sedimenting population of particles 

gave steady state size dlstributions in agreement with the theory. 

Published collision efficiencies derlved from theoretical computations 

assuming Stokes' flow and corrected to be consistent with experimental 

results (Neiburger e t  al., 1974) depend both on the relative and the 

absolute size of the interacting particles. For large particles (larger 

than about 8 0 ~ )  the col lision efficiency decreases as the particles 

become of increasingly different slze; for smaller particles collisions 

between both similar and widely different in size particles are 

unlikely. Equil lbrium size distributions were obtained only In 

simulations where the smallest particle in suspension was larger than 

about 15pm. The steady state size d i s t r i b u t i o n s  a t t a i n e d  by t h e  

coagulating particles had a slope varying about -13/6, which is the 

slope predicted by dimensional arguments, and depending on the s1ze 

range considered. Measured size distributions of particles in aerosols 

(Pruppacher and Klett, 1978, pg.212) and in sewage sludges (Faisst, 

1976) In the slze range 10-100pm have a slope varying about -13/6. The 

larger slope of t h e  slze distribution has been attributed erroneously in 

the past io a 9setti ingl dominated regime where particles settle out of 
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the system. Settling, however, represents a spatially non-homogeneous 

mass flux (or volume flux, if the particle density is assumed to remain 

constant after coalescence) whlch cannot be sustained unless another 

mechanism operates simultaneously to input mass into the volume of fluid 

under consJderat1on. The results of the computer sImulat1on help to 

explain both the steeper slopes of the particle size distributions . 

observed and their variability. 

In conclusion, the results of the slmulations suggest that a 

dynamic equilibrium, sustained by the flux of mass through the size 

spectrum, exists, but a power law expression of the form predicted by 

Hunt and Friedlander can be expected only in the shear induced 

coagulation regime. The limited size range covered by the simulations 

did not allow confirmation or otherwise of the hypothesis that different 

collision mechanisms act independently over separate regions of the size 

spectrum, The functional dependence of the collision efficiency on the 

relative size of the sedimenting particles suggest that differential 

settling induced coagulation does not influence the small end of the 

size spectrum; and Brownian motion is too weak as a coagulating 

mechanlsm to affect large particles. To further elucidate this point, 

information is needed on the lnfluence of hydrodynamic, van der Waals' 

and electrostatic forces on the col lision probability of two particles 

when two or more of the collision mechanisms examined here act 

simultaneously. 

The simuiation described here can also be used to give insight into 

the spatial fluctuations in particle number and size which occur in a 



r e a l  system. Such in format ion  cannot be obtained from t h e  numerical 

s o l u t i o n  o f  t h e  General Dynamic Equation (GDE) whlch i s  a d e t e r m i n i s t i c  

phenomenological equation and describes t h e  behavior o f  t h e  suspenslon 

averaged over some volume o f  f l u i d .  Furthermore, t h e r e  i s  a good reason 

t o  quest ion t h e  s u i t a b i l i t y  o f  t h e  GDE t o  descr ibe t h e  evo lu t i on  of a 

coagulat ing suspension. The GDE assumes a completely mixed system and 

ignores c o r r e l a t i o n s  between t h e  p a r t i c l e s  induced by t h e  coagulat ion 

process. For example, as p a r t i c l e s  o f  a g iven s i z e  i n  a reg ion o f  f l u i d  

coagulate, a loca l  reduc t ion  i n  t h e i r  number occurs, so fewer p a r t i c l e s  

o f  t h i s  s i z e  remain f o r  f u r t h e r  coalescence. I f  t h e  suspension o f  

p a r t i c l e s  I s  poor ly  mixed o r  t h e  number o f  p a r t i c l e s  i s  small, then t h e  

average behavior o f  t h e  suspenslon pred ic ted by t h e  GDE may n o t  

represent  t h e  t r u e  average o f  t h e  loca l  coalescence processes. 

G i i l e s p i e  (1972) and Bayewitz e t  a l e  (1974) developed t h e  f u l l  

s tochas t i c  equat ion o f  t h e  coalescence process and showed t h a t  t h e  

s o l u t i o n  obta ined from t h e  GDE approaches t h e  t r u e  s tochast lc  average 

provided c e r t a i n  c o r r e l a t i o n s  are  neglected and t h a t  coagulat ion between 

particles o f  equal s i z e  are unimportant. The computer modei developed 

by Pearson e t  a l e  i s  a d i r e c t  s imula t ion  o f  t h e  processes o f  c o l l i s i o n  

and coalescence o f  p a r t i c l e s  and, as such, it accounts f o r  a l l  

c o r r e l a t i o n s  between p a r t i c l e  propert ies.  I t  does not  on ly  p r e d i c t  t h e  

average spectrum, b u t  it a l s o  g ives  in format ion  on h igher order moments 

of p roper t i es  o f  t h e  suspenslon. Th ls  i s  important  since t h e  s i z e  

d l s t r i b u t i o n  pred ic ted by t h e  GDE w i l l  be v a l i d  when t h e  standard 

deviation of t h e  var ious  p roper t i es  o f  t h e  suspension i s  a small 

f r a c t i o n  of t h e  mean. The Monte Car io s imula t ion  thus provides a unique 

too! t o  evaluate t h e  v a l i d i t y  of t h e  GDE t o  descr ibe t h e  dynamics o f  a 



coagulatlng population of particles and such work is in progress. The 

small number of particles which are employed in the simulatlon restricts 

its application to small regions of the fluid. However, slnce the 

coagulation process is mainly local, this may not be a serlous defect. 

Ensemble averages over repeated runs can then represent the true 

stochastic average of the coagulation process in a larger fluid volume. 



NOTAT l ON 

a Correction for the curvilinear collision cross-section in 
laminar shear. 

A Van der Waalsl energy of attraction 

Ab 
Dimensionless constant for Brownian diffusion. 

Dimensionless constant for shear. 

Ad s 
Dimensionless constant for differential sedimentation. 

b Particle mobility 

c Number of ion pairs 

D Diffusivlty of unit size particle in the simulation 
0 

i 
Diffusivity sf particle with radius ri 

D i  j 
Relative diffusivity of particles I and j 

e Electron charge 

E Particle volume flux through the size spectrum 

Eb(r,'r2) Collision efficiency of particles r and r in Brownian 
diffusion. 1 2 

r )Collision efficiency of particles r and r in shear. 
E S h ( r i  ' 2 1 2 

E .  (r19r2)C~llision efilciency of particles r. and r- in differential 
a S sedimentation, I Z 

f, F Interparticle forces 

9 Gravitational acceleration 

G Rate of strain Cstrsngth of the shear) 

h Dimensionless particle separation, h=(r-r -r )/r,. 
2 1 

H Dln~enslsnlesc; param@+er for shear induced collisions. 

i Number of un ! f  parl-icles i n  a cluster of size v. in the 
simulaflsn, 1 

D 
Number d e r i z i t y  fii-ix d m  d-o diffusion 

F 
Number dens.4~ f l u x  due to a conservative force 



NOTATION (continued) 

Brownian coagulation parameter 

Differential sedimentation coagulation parameter 

Particle size distribution function 

Particle number density 

Number of particles added per time step in the simulation. 

Avogadro number 

Partlcle radius 

Particle radius 

Absolute temperature 

Relative velocity of particles 

Volume of particle 

Volume of cluster with i monomers in the simulation 

Volume of unit particae In fhe simulation 

Volume of particle with maximum size in the simulation 

Fluid volume used in the simulation 

Potential energy between particles 

Attractive potential between particles 

Electrostatic potential at constant surface charge between 
two flat double layers 

Electrostatic potential at constant surface potential 
between two flat double layers 

Electrostatic potential at constant surface charge between 
spherical particles 

Stokes? settling velocity of particle with volume v 

Valence of the ionic species in soluPion 



NOTATION (continued) 

Greek letters 

ci Dimensionless retardation parameter. 

, Collision function for particles r, and r2. 

+ Rate of extension in pure straining motion 

E Turbulent energy dlssipation rate per unit mass of f l u l d  

K - ~  Debye-Wuckel length 

X London wave-length 

ii Fluid dynamic vls~osity 

v Fluid kinematic viscosity 

O f  Fluid density 

Particle density 

o Particle surface charge 

Ca,Y Dimensionless particle electros4atic potentials. 

w Frequency 
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CHAPTER 1 1 :  NUMERICAL SIMULATION OF A SEDIMENTATION BASIN 

1 . l NTRODUCT l ON 

1.a. Small- and Large-Scale Modeling 

D i r e c t  s imu la t i on  o f  p a r t i c l e  coagulat ion processes i n  a natura l  

system i s  n o t  f e a s i b l e  w i t h  cu r ren t  computer technology. Instead, we 

attempt t o  descr ibe t h e  c o l l i s i o n s  and coalescences o f  p a r t i c l e s  by 

continuum mathematical models, t r y i n g  t o  incorporate i n t o  them t h e  

physics which determine p a r t i c l e  behavior. However, i n  t h e  process o f  

t r a n s i a t i n g  physical  phenmena t o  mathematical language we are forced t o  

make several approximations. Some of these are due t o  t h e  ' t r a n s l a t i o n f  

i t s e l f ,  f o r  instance render ing t h e  random process o f  coagulat ion 

de te rm in i s t i c .  Others are a consequence of t h e  l i m i t e d  a v a i l a b i l i t y  o f  

computer resources and could be avoided i f ,  f o r  example, it were 

poss ib le  t o  decrease t h e  computational mesh-size both i n  physical space 

and i n  p a r t i c l e  size-space. Nevertheless, mathematical models, i f  

c a r e f u l l y  constructed, can provide t h e  i nves t iga to r  w i t h  t h e  essent ia l  

features o f  t h e  natura l  system, thus becoming a valuable t o o l  f o r  design 

purposes. 

The Monte Car lo  s imula t ion  o f  coagulat ion described i n  Chapter I  

g ives i n s i g h t  t o  small sca le  phenomena and e x t r a c t s  in format ion useful 

f o r  a p p l i c a t i o n  i n  large scale modeling. Such in format ion  ( the  

c o l l i s i o n  func t i ons )  w i l l  be used here t o  develop a mathematical model 

f o r  a sedimentat ion basin, The numerical model developed incorporates 



the basic kinetics of particle collision and coagulation processes, 

including floc break-up due to shear, and accounts for transport 

processes such as particle advection and settling, turbulent mixing and 

particle resuspension. Experimental results available in the literature 

are used extensively in an attempt to improve the realism of the model. 

Some common fallacies with regard to the influence of certain 

characteristics of the suspension (e.g. particle size-density 

relationship, particle collision efficiencies) on the efficiency of the 

tank are revealed and the parameters which play a major role in the 

operation of a settling basin are pointed out. 

i . b .  His to r i ca l  Review 

Settling is the most common unit treatment process in a wastewater 

treatment plant. Settling basins are used both as primary clarifiers to 

remove particulate matter and oil drops and as secondary tanks following 

the activated sludge unit for biological floc removal. They are also 

used to settle the chemical floc in the chemical coagulation process. 

Camp (1945) presented in a compendium all physical processes which 

are important for the economic design of a settling tank. Later 

investigators focused successfully on the experimental evaluation of 

some of the parameters indicated by Camp, such as the design of inlets 

and outlets and the optimum dimensions of the basin (see, for example, 

lngersoll et al., 1956, and Kawamura, 1981). The investigations on 

other physical processes, such as flocculation and the effect of the 

properties of the suspension upon It, or the scouring of deposits from 



t h e  bottom o f  t h e  tank by t u r b u l e n t  eddies, al though numerous, have been 

less successful i n  p rov id ing  t o o l s  f o r  design purposes, mainly because 

o f  t h e  complexi ty  o f  t h e  mechanisms involved. Thus, most s e t t l i n g  tanks 

are  c u r r e n t l y  designed on t h e  bas is  o f  de tent ion  t imes ( c i r c u l a r  tanks)  

and over f low r a t e s  ( rec tangu lar  tanks).  P i l o t  uni ts ,  o r  data frcm 

actual  plants, a re  o f t e n  used t o  develop r e l a t i o n s  between loading and 

performance. The s i g n i f i c a n c e  o f  physical  processes such as p a r t i c l e  

f l o c c u l a t i o n  and resuspension i s  widely recognized, bu t  they are not  

wel l  understood and subsequently modeled, so t h a t  t h e  successful design 

o f  a s e t t l i n g  tank r e l i e s  heav i l y  on t h e  experience of t h e  engineer. 

However, t h e  performance o f  tanks might  be improved if d i f f e r e n t  design 

and opera t ion  schemes could be evaluated by a numerical s imula t ion  which 

would lnc iude a i i  o f  t h e  physlcai processes i n  t h e  rank, such as 

t u r b u l e n t  mixing, p a r t i c l e  s e t t l i n g ,  advection, coalescence, 

resuspension and deaggregation by t u r b u l e n t  shearing. 

Numerous mathematical and numerical models f o r  t h e  performance o f  

sett! Ing tanks under steady and unsteady cond i t i ons  have been developed 

( A l a r i e  e t  at., 1980). Regression models (Tebbutt  and Christoulas, 

1975) are  empir ica l .  They use data from opera t ing  tanks t o  der ive  a 

r e l a t i o n s h i p  between loading and e f f l u e n t  cha rac te r i s t i cs .  Hydrau l ic  

scale-models (Kawamura, 19811, i f  successful, a re  app l icab le  on ly  t o  t h e  

sedimentation basins they simulate. Dispers ion models (El-Baroudi, 

1969, Humphreys, 1975) a re  based on t h e  s o l u t i o n  o f  a two-dimensional 

d i f f u s i o n  equat ion obtained by Dobbins (1944) and Camp (1946) and use an 

experimentally determined long i tud ina l  eddy d ispers ion  c o e f f i c i e n t  t o  

charac ter ize  t h e  departure from p lug f low i n  t h e  tank. Mechanist ic 

models (Shiba and lnoue, 1975, A l a r i e  e t  al., 1980) assume a v e r t i c a l l y  



well-mixed settling basin and use a one-dimensional unsteady diffusion 

equation to predict the effluent quality under variable load. The 

physical configuration of the tank is taken into account and the 

resuspension of sediment related empirically to the longitudinal 

dispersion coefficient. Ramaley et al. (1981) incorporated coagulation 

in simulating the settling basin in their numerical model for integral 

water treatment plant design. Their model does not account for 

scouring, vertical turbulent transport and dispersion of mass through 

the tank, it assumes a constant density for all particle sizes and uses 

a collision efficiency of unity. Dick (1982) noted that the utility of 

The Ramaley et ai. model is limited because of the simplifications 

involved. 

Hazents t1994! early theory predicts that a l l  particles with 

settling velocity greater than Q/A, where Q is the flow rate and A the 

surface area of the tank, are removed provided that the flow is uniform, 

no short-circuiting currents or scouring occur, and particles of uniform 

density and shape settle discretely. In reality, inlets, outlets, wind 

and density differences induce currents or create dead regions in the 

tank, High forward velocities near the bottom of the tank resuspend the 

deposits and reduce the efficiency of the basin. Regardless of surface 

loading coagulation is essential in achieving high suspended solids 

removai (Camp, 1945). Rigorous analysis of the performance of a 

sePtling basin must be based on the detailed spatial behavior of the 

fluid and the particles in the tank and take into account the 

fluid-particle and particle-particle interactions. 

The aim of this computer simulation of a rectangular settling basin 

is to describe the spatial and temporal development of the particle size 



distribution from the influent towards the outlet of the tank. It is 

based on the fundamental mechanisms which govern particle motion and 

growth. The model accounts for the variability of the flow-field and 

the particle size distribution in the tank and, from the local 

development of the particle size spectrum, predicts the overall 

performance of the settling basin. 

2. FUNDAMENTAL MECHAN l SMS 

In this section we discuss the basic features of the mode!. 

2,a. Flow field 

Any empirical or observed velocity distribution in the tank can be 

incorporated into the model. However, for this analysis the logarithmic 

vefocity profile i s  used to demonstrate the model capabilities. We 

assume that the local mean longitudinal velocity through the tank is 

given by 

where TI i s  t h e  cross-sectional mean velocity, u, is the shear velocity, 

H i s  the d s p t r  cf ~ i - 1 5  -:ank, u the time averaged velocity at the vertical 

coordina-i-6 a, ii3s-d " = 0 , 3 8  is von Karmanvs constant, reduced to account 



f o r  t h e  suspended mass (Vanoni and Brooks, 1957). 
h 

The cross-sect ional  t u r b u l e n t  mix ing c o e f f i c i e n t  E can be derived 

from t h e  loga r i t hm ic  v e l o c i t y  p r o f i l e  (F ischer e t  al., 1979) 

where it i s  assumed t h a t  p a r t i c l e s  have t h e  same d i f f u s i v e  p roper t i es  as 

t h e  f l u i d  momentum. Longi tudinal  t u r b u l e n t  mix ing i s  neglected because 

it i s  i n s i g n i f i c a n t  when compared w i t h  t h e  shear f low d ispers ion  caused 

by t h e  v e r t i c a l  v e l o c i t y  g rad ient  (F ischer e t  al., 1979). 

An est imate o f  t h e  r a t e  o f  t u r b u l e n t  energy d i s s i p a t i o n  E , per 

u n i t  mass o f  f l u i d ,  can be obtained from (Blackadar, 1962) 

which agrees we1 l w i t h  experimental r e s u l t s  (Tennekes and Lumley, 1972). 

E i s  needed i n  t h e  s o ! !  i s l o n  func t i on  f o r  t u rbu !en t  shear induced 

coagu la t ion  and f o r  determining t h e  maximum al lowable f l o c  s i z e  f o r  a  

given shear strength. 

For t h e  s imula t ions  performed and presented below t y p i c a l  values o f  

t h e  parameters d e f i n i n g  t h e  v e l o c i t y  f i e l d  are  as fo l lows:  



2.b. Coagulation 

Particles in wastewater are cl assi f ied as (Rudol fs and Balmat, 1952) 

settiable > 100pm 

supracol loidal lvm to 100pm 

col loidal 1 0 - ~ ~ m  to lvm 

soluble < I  0-~2irn 

In the absence of coagulation a settl lng basin operating at a detention 

time of practical lnterest will remove only the settlable and some of 

the supracolloidal particles. However, flocculation transfers mass 

through the particle size spectrum towards larger particle sizes with a 

subsequent increase in the removal efficiency of the tank. Thus 

particles in the size range traditionally referred to as suspended 

solids ( >  1 urn) may be generated within the tank from coagulation of 

colloidal material, 

Brownian motion, fluid shear and differential settling cause 

relative motion of the particles through the fluid and bring then into 

close proximity. Short-range interfacial forcas act then between the 

particles to bring about their coalescence. Analytic estimates of the 

probabil ity (col I ision function) L3(ri , r . )  that fwo spherical particles of 
J 

radii ri and r in a unit volume of fluid will collide in unit time are 
j 

shown i n Tab l e 4; @ ( r i  , r .)  represents the geometry and dynamics of the 
J 

collision mechanisms. The col Iislon efficiency E(r.,r.)reflects the 
1 J  

influence of hydrodynamic and van der Waalst forces on the collision 

probability of two approaching particles, 
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Published work on E deals with interactions between hard spherical 

particles. For Brownian diffusion induced collisions the best-fit 

approximation to the numerical calculations obtained from Table 3 can be 

used 

r .  r  2 r  
i r i j  = 0.652 + 0 .0055($ - ) -  3.035 x for 20<i(100 
j 

where r. > r. and for A/(kT)=l; A is the van der Waals' energy of 
I J 

attraction, k Boltzmann's constant and T the absolute temperature. For 

particle slze ratios larger than 100, where rj =0.1 urn is the minimum 

particle size considered here, Brownian diffusion is no longer important 

in inducing particle collisions (Hunt, 1980). 

Adler (1987a)used Stokes' equations to compute the coll ision 

efficiency E ( r  ,r ) f o r  two unequal hard spheres In simple shear flow. s h  . i  j' 

His results are a function of the ratio of the size of the InteracPing 

particles r /r , where r > r , and, either the van der Waai s f  energy 
i j 

of attraction (Table 51, or the distance between the spheres at which 

collision is assumed to occur. The Monte Carlo simulation of the 

evolution of the particle size distribution by Pearson et al. (19831 

showed that, for particles much smaller than the Kolmogorov microscale, 

isotropic turbulent shear is equivalent in coagulating power to a 

rectilinear laminar shear with a strain rate, G, of magnitude 1,72 times 
1 / 2  

the characteristic strain rate ( E  / v  given by the rate of disslpa-t-ion 

of turbulent kinetic energy, F- , per unit mass of fluid and the fluid 



Table 5 

Collision efficiencies E for hard spherical 
sh 

particles in laminar shear (Adler, 1981a) 



kinematic viscosity v . In primary clarifiers, even at high forward 

velocities, (E/v'/* is rarely larger than 10 sec-'(~am~, 1945); E is 

then of order 1 o'~ m2/sec3 and the Kolmogorov length microscal e 
1/ 4 

( v3 / E =3 I O - " ~ .  This suggests the use of Adlerfs (198la) results 
I/ 2 

with G=1.72 ( & /  v 1 for turbulent shear induced col llsions between 

particles with sizes up to 1OOvm. For larger particles differential 

settling induced coagulation becomes dominant. 

Nei burger et al . (1974) obtained an analytic expression for 
theoretical collision efficiencies induced by differential sedimentation 

of hard spherical particles, computed assuming Stokest flow (with the 

slip-flow correction) and modified to be consistent with experimental 

resu l ts 

where E0 = 0.95 - (0.7 - 0.005 r . ) ' (7.92 - 0.12 r i  + 0.001 r i 2 )  
I 

where r. > r and r ,r are in gm. This expression can be used for 
I j i j 

r.>10 vm, Davis (1972) computed collision efficiencies for two 
I 

spherical particles smaller than 10 vm. H i s  results suggest that 



efficiencies for col I isions between particles ri and r such that 
j 

r.<r.<lOvm are essentially equal to those with r.< ri=lOvm. 
J '  J 

In hydrosols only the smaller particles can be assumed nearly 

spherical. These particles coalesce and form loose aggregates rather 

than solid masses. The volume of the aggregate is larger than the sum 

of the volumes of primary particles it contains due to inclusion of 

water. The size-density relationship and the structure of the flocs 

depend on their physical and chemical characteristics. This has 

important implications with regard to particle-particle and 

fluid-particle interactions. Floc densities observed (Tambo and 

Watanabe, 1979, Dick, 19821, or computed numerically (Vold, 1963, 

Sutherland and Goodarz-Nia, 1971, Tambo and Watanabe, 19791, indicate 

almost neutral I y  buoyant flocs for sizes larger than about- 100~m. For 

this model particles smaller than 4vrn are considered solid spheres with 

a density of 2650 kg/m . For I arger particl es the emp i r ical 

size-density relationship proposed by Tambo and Watanabe (1979) is used: 

where p and p are the densities of the floc and the water, 
f W 

respectively. 

The very low aggregate densities are characteristic of particles 

with an expanded structure. Sutherland's (1967) computer simulation of 

floc formation and observations under an electron microscope by Thiele 

and Levern (1965) revealed an open network of filaments joining denser 

regions. Collisions of such clusters creates a chain-like framework. 

Vold (1963) and Sutherland and Goodarz-Nia (1971) characterized their 



numerical I y generated f I ocs by a core rad i us, where about 60% of the 

primary particles are contained, and by branches or tentacles with a 

mean length from 0.2 to 1 times the diameter of the core. Vold (1963) 

suggested that coagulation of such particle formations can lnvolve only 

mechanical entanglement of their branches. 

The above discussion suggests that the collision efficiencies for 

hard spheres can be used In the simulation of particles smaller than 

4 urn but wlll underestimate the collision frequency between flocs. The 

increased chances of collisions of such aggregates are accounted for in 

the simulation by assuming that they behave like solid spheres with a 

20% larger effective coalescence radius. The collision rate of Brownian 

diffusion Induced collisions Is not altered by this assumption, since 

both the collision function and the eff!clency depend only on the size 

ratio of the interacting particles. For shear induced collisions and 

for particles larger than 4 urn, the best-fit approximation to Adlerls 

(198aI graphical results for the collision efficiency (assuming that 

coalescence occurs at interparticle separation of 0.2r.l is used 
i 

where r. > r Hocking i1970) showed that the efficiency for 
I j '  

differential settl ing induced collisions is a weak function of the 

interparticle separation at which coalescence is assumed to occur. Thus 

the collision efficiencies for hard spheres can be used. 

The open structure of the aggregate indicates that flow streamlines 

wlll cross the aggregate. Small particles moving on these streamlines 

are likely to be captured by purely hydrodynamic effects. Adler (1981b) 
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computes the streamlines around a porous sphere of radius r and 

permeability p. A reasonable approximation is that, when the two 

approaching particles are very different in size, the flow field is 

determined solely by the presence of the larger one. For such particle 

encounters Ad l er Vs ( 1  981 b) drai nage cross-sect i on, i .e. the 

cross-section at infinity for streamlines which cross the aggregate, is 

equivalent to the collision cross-section of the particles. 

Using the argument advanced by Pearson, Valioulis and List (19831, 

Adlerfs (198lb)tabulated numerical results for simple laminar shear are 

used here for turbulence induced coagulation. AdlerPs (1981) results 

are approximated with 

where 5 = 6 

For differential settling the coil ision efficiencies for particles 

with large difference in size are computed from (Adler, 1981b) 

b a  E ( r  , r . )  = 1 - - - 
d s  i J 3 ,  > > r  5 5 i j 

where s = 2 c 2 + 3 - 3 -  tanh5 
5  

a = - -  ' F s +  65. - - 
5 lanh5 5 ( 5  + 6 E 3 4  

1 b = -  363 (I - y) 
5 

For aggregates with high porosity the permeability p can be estimated 

Prom Bsinkmanls equation applicable to a cloud of spherical particles 
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(Sutherland and Tan, 1970) 

where c i s  t h e  rad ius  o f  t h e  primary p a r t i c l e s  ( o r  denser regions)  i n  

t h e  aggregate, assumed t o  be 1/20 o f  i t s  diameter, and e i t s  po ros i t y  

computed from 

where P i s  t h e  dens i ty  o f  t h e  primary p a r t i c l e s  ( o r  denser formations) 
P 

which compose t h e  aggregate. 

The e f f i c i e n c i e s  g iven by Eqs. 2.8 and 2.9 have been used f o r  

p a r t i c ! e  encounters w i t h  r e ! a i ! v e  s i z e  less than 0,! and when t h e  !a rger  

p a r t i c l e  possesses a r e l a t i v e  dens i ty  lower than 2.65, t h a t  is, it i s  

considered a f l o c .  C o l l i s i o n  e f f i c i e n c i e s  o f  two porous spheres of 

comparable s i z e  do no t  appear t o  be known. Since such p a r t i c l e s  w i l l  

i n t e r a c t  hydrodynamically as they approach each other, it i s  assumed 

t h a t  t h e  c o l  l i s i o n  e f f i c i e n c i e s  o f  hard spheres ( w i t h  t h e  20% increased 

coalescence rad ius  assumption) can be used. 

Summarizing, t h e  f o l l o w i n g  hypotheses are  used here w i t h  regard t o  

p a r t i c l e  dynamics: P a r t i c l e s  smal l e r  than 4 pm are  assumed t o  behave as 

so! i d  spheres. Larger p a r t i c l e s  are  considered f l o c s  w i t h  reduced 

dens i ty  and an amorphous shape which increases t h e  c o l l i s i o n  rad ius  o f  

t h e  sphere equ iva lent  i n  mass by 205. The increased chances o f  

c o l l i s i o n s  between a porous aggregate and a f l o c  o r  a s o l i d  p a r t i c l e  are  

Paken i n t o  account only fo r  encounters between p a r t i c l e s  w i t h  r e l a t i v e  

s l z e  less than 0.1. 
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For this simulation the collision mechanisms are assumed additive, 

although this may not be strictly true (van de Ven and Mason 19771, and 

only binary particle encounters are assumed to occur. In most 

wastewater applications the ionic strength of the suspension is large 

enough that double-layer electrostatic forces do not influence the 

coagulation rate. 

2.c Particle size distribution 

The size distribution function n(d) of a population of coagulating 

particles is defined by 

AN=n(d) Ad 

where A N  is the number of particles with a diameter d in the size 

i n t e r v a l  (d,d+ Ad), per unit volume of fluid. Atmospheric aerosols 

(Friedlander, 1960) and hydrosols (Faisst, 1976) are found to exhibit 

the power taw 

n(d)=( A N/ A d)=A d-' 

where the exponent cx is a constant and the constant A depends on the 

total parPBcfe mass per unit volume of fluid. The surface AS, volume 

A V and mass 09 of particles in the size range Ad, per unit volume of 

fluid, are  then expressed as 



where the particle density P (dl is in general a function of particle 

size as discussed in the previous section. 

In hydrosols a ranges from 2.5 to 5.6 (Hunt, 19801, and depends on 

one or more physical rnechanisns which induce particle collisions. 

Lawler et al. (1980) stresseci the significance of a for water quality: 

some pollutants are expressed as mass concentrations (suspended solids), 

some concentrate on surfaces (trace metals) and for others the total 

number is important (pathogenic organisms). 

2.d. Resuspension 

Strong iiuid shear near the bottom of the tank resuits In 

rssuspension of material previously deposited. Work on entrainment of 

sediments has focused on the determination of the crifical conditions 

for the initiafion of motion of the deposits (for an extended revieh see 

Vanoni, 19771. Individual particles resist resuspension by iheir weight 

while fine, cohesive sediments (incorporating fractions of silt or clay, 

for example) offer additional resistance to entrainment due to cohesive 

forces, It is widely accepted that the critical shear stress for the 

initiation of motion of noncohesive sediments can be obtained from 

Shields-urve (Vanmi, 19771, The critical velocity near the bottom 

is, in general, an increasing function of the grain size. 

Knowledge sf the resuspension of cohesive sediments is primitive. 

Experimental data for the critical conditions for the entrainment of 

cohesive seiimsnts is not consistent, mainly because the cohesive forces 

depend en factors such as shear strength, mineral content, plasticity 



and electrochemical  c o n d i t i o n  o f  t h e  deposits. Resul ts  of several 

experimental s tud ies  suggest t h a t  cohesive sediments e x h i b i t  increasing 

res i s tance  t o  eros ion  w i t h  decreasing g r a i n  s i z e  (Vanoni, 1977). 

For t h e  s imula t ion  m d e l  t h e  r e s u s p e ~ s i o n  f l u x  o f  t h e  deposi ts  i s  

needed, To t h e  knowledge c f  t h e  author, publ ished in format ion  cL t ho  

amount o f  en t ra ined mater ia l  from cohesive o r  noncohes iv~ purpcse c f  

t e s t i n g  t h e  s e n s i t i v i t y  o f  t h e  r e s u l t s  t o  scouring, a reduced depos i t ion  

mass f l u x  per u n i i  volume o f  f l u i d  i s  def ined 

depos i t ion  mass f l u x  = -w (1-s) Q 
P P 

where k is t h e  Stokesf s e t t l i n g  v e l o c i t y  o f  p a r t i c l e s  w i t h  mass 
P 

concent ra t ion  Q and s I s  a scouring parameter. For s=0 on ly  depos i t ion  
P 

takes place; f o r  O < s < 1  p a r t i a l  scour ing occurs; s=l imp1 ies  thal- 

depos i t ion  i s  bijlanced by scouring; s >  1 imp1 ies t h a t  scouring 

dominates. For a t y p i c a l  s imula t ion  run a value o f  s=0.15 was chosen; 

t h i s  va lue  o f  s  agrees well wi th  t h e  experimental r e s u l t s  of Takamatsu 

e t  al .  (1974) i n  a model s e t t l i n g  tank. I n  addi t ion,  s imu la t i on  runs 

w i t h  s=O, s=0.4 and s=O.B were performed. 

2,e. F loc  break-up 

Strong loca l  f f u i d  shear may cause t h e  aggregates t o  break up. The 

e f f e c t  i s  more important i n  t h e  f l o c c u l a t i o n  basin which o f t e n  precedes 

t h e  s e t t l i n g  tank, bu t  can be s i g n i f i c a n t  i n  regions o f  t h e  c l a r i f i e r  

where turbulence leve ls  are high, 



Two f l o c  break-up mechanisms are  d is t ingu ished (Parker e t  al., 

1972): Inorganic f i o c s  tend t o  d i s in teg ra te  due t o  sur face erosion; i n  

organic $lots t h e  polymer br idge ho ld ing  pr imary p a r t i c l e s  on t h e  f i o c  

sur face breaks when t h e  shear s t rength  o f  t h e  polymer b r idge  i s  exceeded 

( f i l a m e n t  f r a c t u r e ) .  Parker e t  a l .  (1972) obta ined experimental 

r e l a t i o n s h i p s  between t h e  maximum s i z e  o f  t h e  aggregate and t h e  locat 

shear. For inorganic f l o c s  they found 

f e r r i c  f l o c :  rmax - - 3.6 x 105 
G lOOyrn<r  max <15,00Opm 

alum f l o c :  r - - 6 x  l o 3  
rnax G , 15 u m  < rmax < 250 urn 

and t o r  conven i - ie~e l  ec t i va ted  s l u d g e  fiocs 

r - - -  2,250 
max GG.35 ' 400 urn < rman < 1,000 urn 

I/ 2 
where G = ( E / v )  and rmax i s  i n  um. 

3. THE CQk4PUTER BfODEL 

For t h e  purpose c f  &odel ing these processes a s e t t l i n g  tank i s  

segmented i n t o  k  equal rec tengc lar  c e l l s  w i t h  length x and he igh t  z 

(F igure  3.1). The f low f i e l d  and t h e  s i z e  d l s t r i b u t l o n  of t h e  p a r t i c l e s  

are assumed uni form across t h e  wid-i-r! of She P a ~ k  and t h e  suspension i s  

s p a t i a l l y  homogeneous w i t h i n  eack repi, The eoaiinuous p a r t i c l e  s i z e  

( rad ius1 spectrum i s  d i v ided  Infc q f ~ ~ s r % t h m I c a l  l y  equat spaced 



sections within each of which the mass concentration of particles is 

constant (Gelbard and Seinfeld, 1980). This procedure reduces the 

number of conservation equations to be integrated and renders the 

problem tractable for computer solution. 

The discrete conservaticn equation for the development of the 

partlcle size distribution in any cell k=(m,n) at time t is 



Fig. 3.1. Schematic diagram of tank partition. 
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Fig. 3.2. Numerical diffusion. The removal efficiencies for a 
non-coagulating suspension are compared with the 
predictions of Hazen's theory. 



Table 6 

Sectional Coagulation Coefficients with Geometric Constraint (vi+].>'2vi, io0,1,2, . . . q - 1 )  

Symbol Remarks Coefficient 

u~(u,v) 
uv(xi - Xi-l)(xt-I - Xr-2 ) dydx 

uE(u*v) dydx 
uv(xy-l - x n-2) 

i- 1 

u5(u*v' ) 2  dydx 
uv(xe-l - xi-2 

1 b- 1 a- l < f s q  IXi IXn-I v5(u,v) , dydx 
%,n-l,e= 't-l,i,t i <  t- 1 uv(xi - i ~ ~ - ~  - x 

f (v~-~-v) e-2'  xi-^ 
X X 

2a- 1 a: l<ll,<q uB(usv) 
P. = b .  dydx 1 , c  1,1,P+1 1s i <  B uv(xi - x~-~)(x~ - x ~ - ~ )  

i-1 

dydx 

i- 1 
1s a,< q 

+ 

l,<P<q uB(u,v) dydx 
P<i,<q uv(xi - Xi-1> (xt - 

where x = logv.,= f(vi). ui = exp(yi), vi = exp(x ) and u, v denote particle mass per unit 
i i 

volume of fluid, 6(urv) is the collision function obtained from Table I and w(v) is the 
Stokes' settling velocity of particles with mass concentration v. 

*adapted from Gelbard and Seinfeld (1 980)  



where m and n denote, respectively, the horizontal and vertical index of 

the cell and are subscripts to all variables in the square brackets. 

Q is the concentration of the suspension in section R in cell 
l i ,m,n 

(rn,n). The coagulation coefficients '"E Ib- 
i,jyR ' 'i,j,R , 

2a- 2b- 3- 4- 
' i , ~  'i,~ * h,R 'i ,R and settling coefficient 

t - 
SR are listed in Table 6. En,"+, i s  the vertical turbulent mixing 

coefficient for the exchange of momentum and mass between cells (m,n) 

and (m,n+l) and is computed on the line separating the two cells. 

u is the horizontal velocity assigned to the cell (m,n), calculated 
m,n 

at its center. 

Term ( 1 )  represents the flux of mass into section R by coagulation 

of particles from lower sections (i.e. particles of smaller size). 

Term ( 2 )  accounts for the loss of mass from section R when a particle 

in section R coagulates with a particle from lower sections. Term ( 3 )  

represents the loss of mass from section R due to intrasectional 

coagulation and terrii ( 4 )  the loss of mass from section R when a 

particle from section R coagulates with a particle from a higher 

section. Terms ( 5 )  and (6) represent, respectively, gain and loss of 

mass for the cell (m,n) resulting from particles sedimenting at their 

2 Pf-Pw 
Stokes1 sett I lng vet oci ty w= - g --- 

9 r 2  . Terms ( 7 )  correspond to the 
1-1 

advective transfer of mass and terms ( 8 )  to the turbulent transport of 

mass from cell to cell. 

The accumulation of particle mass per unit area at the bottom of 

the tank is obtained from 

where QO is the deposited mass per unit volume of fluid in section 
R,m, 1 



R from c e l l  (m, l ) .  Thus t h e  computer model p r e d i c t s  t h e  p a r t i c l e  s i z e  

d i s t r i b u t i o n  i n  t h e  deposi ts  and t h e  th ickness o f  t h e  sludge b lanket  

along t h e  length o f  t h e  tank. For s i m p l i c i t y  it i s  assumed t h a t  t h e  

tank volume does no t  change due t o  sludge accumulation throughout t h e  

ca lcu la t ions .  

Due t o  coagu la t ion  p a r t i c l e s  may exceed t h e  maximum s i z e  allowed by 

t h e  loca l  shear, The i r  mass i s  then d i s t r i b u t e d  equa l l y  among t h e  

smal ler  s i z e  f rac t i ons .  

Incoming p a r t i c l e s  o f  a g iven s i z e  d i s t r i b u t i o n  can be introduced 

s e l e c t i v e l y  a t  any height, P a r t i c l e s  reaching t h e  end o f  t h e  tank are  

removed i n  t h e  e f f l u e n t  from one o r  more c e l l s .  

The bas is  o f  t h e  computer program i s  t h e  MAEROS code deveioped by 

Gelbard (1982) a t  Sandia National Laborator ies. Th is  code simula-kes t h e  

e v o l u t i o n  o f  t h e  s i z e  d i s t r i b u t i o n  o f  a multicomponent aerosol i n  a 

completely mixed a i r  chamber. The code i s  adapted here t o  water 

suspensions and modi f ied  t o  incorporate t h e  s p a t i a l  inhomogeneity o f  t h e  

tank and t h e  exchange o f  p a r t i c l e  mass and f l u i d  volume between t h e  

ce l  Is. 

For k  c e l l s  and q sect ions a system o f  k x q  f i r s t - o r d e r  ord inary  

d i f f e r e n t i a l  equations resu l ts .  The Runge-Kutta-Fehlberg (4,5) 

i n t e g r a t i o n  r o u t i n e  t h a t  MAEROS uses proved t o  be i n e f f i c i e n t ,  because 

t h e  i n t roduc t ion  o f  convect ive and t u r b u l e n t  mass f l u x e s  renders t h e  

system o f  equations s t i f f .  Instead, Gear's (1971) mod i f i ca t i on  o f  

Adamsls m u l t i s t e p  v a r i a b l e  order pred ic tor -cor rec tor  method i s  used. 

Gear's 11971) method uses in format ion  from previous steps t o  p r e d i c t  t h e  

d e r i v a t i v e  func t i ons  and ex t rapo la te  them i n t o  t h e  next  i n te rva l ,  

t h e r e f o r e  a l l ow ing  a l a rge r  step size. 



The geometric c o n s t r a i n t  vi+, > 2  vi (i=O,l,....q-11, where v i s  
i 

t h e  upper l i m i t  o f  sec t i on  i, i s  imposed i n  t h e  code on t h e  

s e c t i o n a l i z a t i o n  o f  p a r t i c l e  mass, thus minimiz ing t h e  number of 

sec t iona l  c o e f f i c i e n t s  t o  be computed (Gelbard e t  al., 1980). The 

l a t t e r  depend on t h e  sec t ion  boundaries, t h e  co l  l i s i o n  f u n c t i o n  

@( r ip ' . )  and t h e  physical  dimensions o f  t h e  ce l  Is. Normally 15 sect ions 
J 

a re  used cover ing t h e  p a r t i c l e  s i z e  range from l o m 7 m  t o  I O - ' ~ .  The 

h igher s i z e  range conta ins  i n s i g n i f i c a n t  mass throughout t h e  

ca lcu la t ions ,  so t h e  p a r t i c l e  mass i s  e s s e n t i a l l y  conserved. 

From t h e  th ree  coagu la t ion  mechanisms l i s t e d  i n  Table 4 on ly  shear 

induced p a r t i c l e  c o l l i s i o n s  are inf luenced by t h e  flow. For t h e  c e l l s  

where t u r b u l e n t  shear induced co l  l i s i o n s  are  comparat ively unimportant, 

t h e  same sect iona l  c o e i i i c i e n f s  are  used, Phus reducing t h e  

computational work, 

The a b i l i t y  o f  t h e  computer model t o  reproduce t h e  actual  opera i ing  

c h a r a c t e r i s t i c s  o f  a s e t t l i n g  bas in  depends on t h e  mesh s i z e  used, both 

i n  t h e  physical  space and i n  t h e  p a r t i c l e  size-space. A f i n i t e  ce l  l 

s i z e  introduces an a r t i f i c i a l  mix ing i n  t h e  tank. Increased v e r t i c a l  

and reduced long i tud ina l  mix ing enhance t h e  s e t t l i n g  rate.  The 

s e l e c t i o n  o f  t h e  number o f  c e l l s  and p a r t i c l e  s i z e  sec t ions  represents a 

compromise between accuracy and computational cost. 18 c e l l s  ( 3  rows 

and 6 columns) and 15 p a r t i c l e  s i z e  sect ions are  used, thus a t o t a l  o f  

270 ord inary  d i f f e r e n t i a l  equations are in tegra ted simultaneously 

r e q u i r i n g  about 12 minutes o f  Central  Processor U n i t  (CPU) t ime on an 

IBM 370/3032 computer f o r  5 h rs  o f  s e t t l i n g .  The numerical d i f f u s i o n  i s  

evaluated by passing a non-coagulating suspension through t h e  basin. 

P a r t i c l e s  enter  t h e  tank un i fc rmly  d i s t r i b u t e d  w i t h  he ight  and a re  



subjected t o  a  uni form v e l o c i t y  f i e l d .  The removal e f f i c i e n c i e s  

obtained under steady s t a t e  opera t ion  are  compared i n  F igure  3.2 w i th  

t h e  ones obtained when a  logar i thmic  v e l o c i t y  p r o f i l e  i s  used and w i t h  

t h e  p r e d i c t i o n s  o f  Hazenls (1904) theory. The p l o t t e d  data p o i n t s  

represent  t h e  removal e f f i c i e n c i e s  of t h e  15 p a r t i c l e  s i z e  sec t ions  used 

i n  t h e  s imulat ion.  I t  i s  seen t h a t  both numerical d i f f u s i o n  and f low 

induced mix ing cause some suspended pa r t i c les ,  which would have s e t t l e d  

according t o  Hazenls theory, t o  be c a r r i e d  i n  t h e  e f f l u e n t .  Numerical 

d i f f u s i o n  inf luences s t rong ly  t h e  removal o f  p a r t i c l e s  i n  t h e  s i z e  range 

50um t o  100vm; f o r  smal ler  o r  l a rge r  p a r t i c l e s  d ispers ion  and t u r b u l e n t  

mix ing are  more important. 

Mix ing  c o e f i c i e n t s  i n  sedimentat ion tanks depend a l s o  on parameters 

which are n o i  considered here, such as dens i ty  currenfs, h i gh  i n i e t  

v e l o c i t i e s ,  three-dimensional e f f e c t s  and sludge removal f a c i l i t i e s .  

A i l  these mechanisms increase t h e  mix ing  i n  t h e  tank, so t h a t  t h e  

d ispers ion  and v e r t i c a l  mixing caused by t h e  logar i thmic  v e l o c i t y  

p r o f i l e  represents a  lower bound t o  t h e  actual  d ispers ion  

c h a r a c t e r i s t i c s  o f  t h e  tank. I n  t h e  f o l l o w i n g  sec t ions  we use t h e  mesh 

s i z e  described above t o  i l l u s t r a t e  t h e  c a p a b i l i t i e s  o f  t h e  computer 

model developed, being aware of t h e  add i t i ona l  mix ing caused by 

numerical d i f f u s i o n  and regarding it as i f  it were due t o  t h e  

aforementioned mechanisms. However, i n  order  t o  reproduce t h e  

c h a r a c t e r i s t i c s  o f  an operat ing s e t t l i n g  tank w i t h  known mix ing 

c o e f f i c i e n t s  a f i n e r  mesh s i z e  both i n  physical  and i n  p a r t i c l e  s i z e  

space i s  needed. 



4. SENSITIVITY ANALYSIS 

A standard wastewater treatment plant with parameters 

representative of treatment practice (Table 7 )  is selected to illustrate 

the capabilities of the model. A logarithmic velocity profile is 

assumed. The influent particle mass flux is proportional to the 

influent fluid flux. Particles are removed as deposits when they reach 

the bottom of the tank, or as effluent from all three cells at the end 

of the basin. Suspended solids, as traditionally defined, include ail 

particles with diameters larger than lvm; colloidal particles range in 

size from O.lvm to lvm. 

It is common practice to evaluate the performance of a settling 

tank by the fraction RSS of suspended solids removed; this is because 

in the field suspended solids analysis only captures particles larger 

than lvm. This is only one measure of tank efficiency since the 

effectiveness of the settling process depends on how the mass is 

d!strlbuted In size-space. RSS Is reported here fo r  a ! !  cases examined 

together with the total solids removal efficiency RTS . The relative 
magnitude of RSS and RTS indicates the importance of flocculation in 

transferring particle mass from the colloidal particle size range 

( < 1  vm) to the suspended size range ( > I  vm). 

Sensitivity analysis is performed to determine the Influence of 

selective variables on the steady state plant performance. For the 

standard plant steady state operation is reached after about 5 hrs of 

constant inflow. In Section 11.6 the dynamic response of the 

sedimentation basin to a temporally variable flow rate and concentration 

of inflow is examined. 
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The output  o f  t h e  computer program i s  a  histogram i n  p a r t i c l e  s i z e  

space. The curves o f  mass and number concent ra t ion  aga ins t  p a r t i c l e  

s i z e  shown i n  t h e  f o l l o w i n g  paragraphs a re  b e s t - f i t  approximations t o  

t h e  histograms. The geometric mean o f  t h e  diameters which de f i ne  t h e  

s l z e  sec t i on  i s  taken as t h e  rep resen ta t i ve  diameter of t h e  sect ion. 

5. STEADY STATE OPERATION 

5.a. Constant/Variable P a r t i c l e  Densi ty  

The e f f l u e n t  p a r t i c l e  s i z e  d i s t r i b u t i o n  o f  two suspensions, one 

f o i i o w i n g  t h e  s ize-densi ty  r e i a t i o n s h i p  o f  Tambo and Waianabe (15753 

(suspension A, standard case), and one w i t h  a  constant  p a r t i c l e  dens i ty  

o f  2000 kg/m3 f o r  a l  l p a r t i c l e s  s i zes  (suspension 8 )  are  compared i n  

F igures 5.1 and 5.2. The curves are  b e s t - f i t  approxfrnations t o  t h e  

r e s u l t s  o f  t h e  s imulat ion.  For both suspensions t h e  e f f i c i e n c i e s  f o r  

c o l l i s i o n s  between f l o c s  a re  used. The i n f l u e n t  s i z e  d i s t r i b u t i o n  has a  

s lope parameter o f  a=4 which g ives  t h e  same in f l uen?  number s i z e  

d i s t r i b u t i o n  b u t  d l f f e r e n t  i n f l u e n t  mass d i s t r i b u t i o n s .  The sol ids  

remova l e f  f i c  i enci es a re  R TS =61% and R S S  =44k f o r  t h e  var  i ab l e dens i ty  

suspension and RTs ~ 5 3 %  and R S S  =45$ f o r  t h e  constant  dens i ty  

suspension. Large p a r t i c l e s  ( l a r g e r  than 20 ym9 a re  removed less  

e f f e c t i v e l y  i n  t h e  case o f  t h e  v a r i a b l e  dens i ty  suspension because o f  

t h e i r  reduced density.  The i r  presence, however, increases t h e  

coagu la t ion  r a t e  and t h e  t r a n s f e r  o f  mass t o ~ a r d s  i s r ~ a r  s i z e  sect ions. 

As a  r e s u l t ,  t h e  number o f  p a r t i c l e s  i n  t h e  s l z e  f r a c t i o n  0.5 urn t o  



F i g ,  5.1. Comparison of t h e  v a r i a b l e  d e n s i t y  
suspens ion  A w i t h  t h e  c o n s t a n t  d e n s i t y  
suspens ion  B. Number d i s t r i b u t i o n  
f u n c t i o n .  
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Fig .  5 .2 .  Comparison of t h e  v a r i a b l e  d e n s i t y  
suspens ion  A w i t h  t h e  c o n s t a n t  d e n s i t y  
suspens ion  B. Ifass d i s t r i b u t i o n  
f u n c t i o n .  
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F i g .  5.4.  Mass accumulated a t  t h e  bottom of t h e  t a n k  ( p e r  u n i t  w i d t h )  when t h e  
v a r i a b l e  d e n s i t y  suspens ion  A and t h e  c o n s t a n t  d e n s i t y  suspens ion  B 
a r e  t r e a t e d  under s t e a d y  s t a t e  c o n d i t i o n s .  
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F i g .  5.5. Number d i s t r i b u t i o n  i n  t h e  d e p o s i t s  when t h e  v a r i a b l e  d e n s i t y  
s u s p e n s i o n  A and t h e  c o n s t a n t  d e n s i t y  suspens ion  I3 a r e  t r e a t e d  
under  s t e a d y  s t a t e  c o n d i t i o n s .  



20 ym remaining i n  t h e  e f f l u e n t  i s  lower f o r  t h e  v a r i a b l e  dens i ty  

suspension and t h e  o v e r a l l  mass removal e f f i c i e n c y  higher. However, 

note t h a t  i n - f i e l d  suspended s o l i d s  ana lys i s  would, cont rary  t o  t h i s  

r e s u l t ,  i nd i ca te  a  b e t t e r  tank performance when t h e  constant dens i ty  

suspension i s  t rea ted.  

The development o f  t h e  mass s i z e  d i s t r i b u t i o n  o f  suspensions A and 

B along t h e  tank, averaged over i t s  cross-section, i s  shown i n  Figure 

5.3. Two d i s t i n c t i v e  peaks i n  both mass s i z e  d i s t r i b u t i o n s  develop near 

t h e  p a r t i c l e  s izes  0.5 v m  and 10 ym. The constant  dens i ty  suspension 

loses a l l  p a r t i c l e s  l a rge r  than 10 v m  by t h e  t ime it reaches t h e  

midpoint  o f  t h e  tank b u t  coagulat ion recreates such p a r t i c l e s  near t h e  

end o f  t h e  basin. Th is  i s  f u r t h e r  i l l u s t r a t e d  i n  F igure 5.4 where the  

t o t a l  mass (per u n i t  w id th)  deposited along t h e  tank dur ing  t h e  2  hrs  

detent ion  t ime under steady s t a t e  cond i t i ons  i s  shown. For both 

suspensions most o f  t h e  removal takes place i n  t h e  f i r s t  quar ter  o f  t h e  

tank length. Dep le t ion  o f  t h e  la rge p a r t i c l e s  i n  suspension reduces t h e  

depos!t lon r a t e  o f  t h e  constant  dens i ty  s u s p s n s i ~ n  near t h e  midd!e of 

t h e  tank and some t ime  i s  requ i red  before  s e t t l a b l e  p a r t i c l e s  are 

created and p rec ip i ta ted .  I n  contrast ,  a  sludge b lanket  o f  decreasing 

th ickness accumulates when t h e  v a r i a b l e  dens i ty  suspension i s  t reated,  

The average p a r t i c l e  number d i s t r i b u t i o n  i n  t h e  deposi ts  i s  

depicted i n  F igure  5.5. C lea r l y  t h i s  i s  no t  t h e  p a r t i c l e  s i z e  

d i s t r i b u t i o n  expected i n  t h e  sludge s ince hindered motion and 

compression s e t t l i n g  i n  t h e  high dens i ty  zone near t h e  bottom of t h e  

tank w i l l  a l t e r  t h e  sludge s i z e  d i s t r i b u t i o n .  I t  provides t h e  input  

parameters, however, f o r  t h e  modeling o f  these s e t t l i n g  processes. 

Informat ion on t h e  q u a n t i t y  and q u a l i t y  o f  t h e  sludge b lanket  i s  useful  
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in designing the sludge removal facilities of the tank. 

5.6. Hydrodynamic Efficiencies 

In modeling particle coagulation in hydrosols the collision 

efficiencies are commonly either assumed unity or constant, independent 

of the absolute and relative sizes of the interacting particles. A 

variable density suspension (suspension C) with half the total solids 

concentration of the standard case is used to evaluate the importance of 

employing the proper collision efficiencies. Two cases are compared in 

Figures 5.6 and 5.7, one using the rectilinear coagulation functions 

(efficiency unity) and one the collision efficiencies for flocs 

(Eqs. 2.8 and 2.9). The effluent particle size distributions are 

completely different in shape and the reduction in the removal 

efficiency of the tank is dramatic. When the collision efficiencies for 

f l ocs are used on l y 16% of the suspended and 39% of the total sol ids are 

removed, compared with 87% and 828, respectively, for the 

hydrodynamically non-interacting suspension. 

It is interesting to compare the removal efficiencies of the tank 

with suspensions B and C (where in both cases the collision efficiencies 

for flocs are used). Suspension A has a total solids concentration of 

400mg/~ of which 250mg/R is def i ned as suspended sol ids. For th is 

influent 61% of the total sol ids are removed in the tank and 44% of the 

Influent particles larger than 1 um (the suspended solids), i.e. 

Rs s =44$. For the i nf l uent suspension C w i th 200mg/~ of total sol ids 

and 125mg/~ of suspended sol ids, 39% of the total sol ids are removed and 
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Fig.  5.6.  E f f e c t  of t h e  c o l l i s i o n  e f f i c i e n c y  on 
t h e  e f f l u e n t  number d i s t r i b u t i o n  f u n c t i o n  
of t h e  v a r i a b l e  d e n s i t y  suspens ion  C. 

F ig .  5.7.  E f f e c t  of t h e  c o l l i s i o n  e f f i c i e n c y  on 
t h e  e f f l u e n t  mass d i s t r i b u t i o n  f u n c t i o n  
of t h e  v a r i a b l e  d e n s i t y  suspens ion  C.  



16% of the suspended sol ids (RSS =16%). This low figure is indicative 

of the production of suspended solids by the coagulation process. A 

non-coagu l at i ng suspension g i ves remova l ef f i c i enc i es RTS =20% and 

RSS =33%. Coagulation transfers mass through the particle size spectrum 

toward settleable particle sizes so that the total solids removal 

efficiency is increased but the suspended solids removal efficiency is 

reduced. Coagulation is responsible for this paradox. For the 

hydraulic conditions and the size density relationship used here only 

particles larger than about 20 urn are precipitated. Coagulation 

accumulates particle mass in the size range 1 urn to 40 urn and this is 

characteristic of all simulations presented above. The rate of mass 

transfer to particle sizes larger than 40 urn is slow since the number of 

large particles which will extract mass from the immediately smaller 

size fractions is reduced because of settling. Hence the remarkable 

reduction in suspended solids removal efficiency for the coagulating 

suspensions. 

5,c. Influent Particle Size Distribution 

Suspension D has a total solids concentration of 400 rng/R , as for 
suspension A, but a flatter particle size distribution with a =3. This 

value of a implies a uniform surface area concentration distribution 

and increasing volume and mass concentrations with increasing particle 

size (see Eqs. 2.12 in Chapter II).Both coagulation and settling are 

enhanced and so 988 of the sol ids are removed when suspension D is 

treated under the standard hydraulic conditions. Figures 5.8 and 5.9 



i l l u s t r a t e  t h e  change I n  t h e  mass and number d i s t r i b u t i o n s ,  

respect ive ly ,  when suspension D passes through t h e  s e t t l i n g  tank. For 

a l l  p a r t i c l e s  smal ler  than about 8 pm t h e  p a r t i c l e  number d i s t r i b u t i o n  

i s  merely s h i f t e d  downwards, r e t a i n i n g  t h e  i n f l u e n i  slope; f o r  larger  

p a r t i c l e s  t h e  slope i s  a l t e r e d  t o  -3.5. 

The developnlent o f  t he  volume average diameter, def ined as 

where N and v  are, respect ive ly ,  t h e  number and volume concentrat ions o f  

t h e  pa r t i c les ,  along t h e  length o f  t h e  tank f o r  suspensions A and D i s  

shown i n  F igure  5.10. The volume average diameter increases 

cont inuously i n  t h e  case o f  suspension A i n d i c a t i n g  t h a t  coagulat ion 

t r a n s f e r s  mzss t o  la rge p a r t i c l e  s i z e  s ~ c t i o n s  a t  a  f a s t e r  r a t e  than 

sedimentat ion removes suspended mass. The s i t u a t i o n  i s  reversed f o r  

suspension D which has r e l a t i v e l y  more mass a t  la rge p a r t i c l e  sizes. 

5.d. Longer Tank 

For t h e  same detent ion  t ime a  longer bu t  more shallow tank w i t h  

reduced overf low r a t e  can be used. Longi tudinal  d ispers ion  i s  enhanced 

and v e r t i c a l  t u r b u i e ~ f  mix ing  reduced. Large p a r t i c l e s  spend less t ime 

scspended, c o l l e c t i n g  fewer p a r t i c l e s  as they f a l l .  

Suspension 5 was t r e a t e d  i n  a  s e t t l i n g  basin 64m long and 2.5m 

deep. The s o l i d s  removat e f f i c i e n c i e s  were R T S  =50$ and R S S  =27% 

i n d i c a t i n g  a  reduct ion  i n  t h e  removal e f f i c i e n c y  o f  t h e  basin. F igure  

5.11 compares t h e  e f f l u e n t  c h a r a c t e r i s t i c s  f o r  t h e  standard basin and 
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F i g .  5.10. E v o l u t i o n  of t h e  volume average  d i a m e t e r  of t h e  v a r i a b l e  d e n s i t y  
s u s p e n s i o n s  A ( a = 3 )  and D (a=4). 

F i g .  5.11. Comparison of t h e  e f f l u e n t  mass d i s t r i b u t i o n  f u n c t i o n s  f o r  t h e  
s t a n d a r d  and t h e  sha l low tank bo th  t r e a t i n g  t h e  v a r i a b l e  
d e n s i t y  suspens ion  A. 



the longer one, both treating suspension A. The stronger shearing 

in the shal low tank promoted coagulation of particles in the size range 

0.5 pm to 10 pm, but larger particles, whose coagulation rate depends 

largely on differential settling induced collisions, tend to remain i n  

suspension. 

5.e. Recirculation 

The logarithmic velocity distribution is not realistic near the 

inlet and outlet of the basin and has been used above only to provide a 

convenient flow regime in order to examine other para~is te r s  c f  interest. 

Published data on the flow f i e lds  in settling tanks do nct satisfy 

continuity of fluid mass. Thus, a flow field Is assumed, including a 

circulation current, as shown i n  Figure 5.12. T h i s  i s  obviously one of 

an infinite number of possible flow patterns which can develop in a 

sedimentation t ~ n k  and assumes that f h c  i n f l ow  has a Jet-! ike behavier. 

L 

Fig. 5.12. Schematic diagram of the recircu!at;ng flow p a t t e r n .  
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A va r iab le  mesh s i z e  i s  used i n  t h e  v e r t i c a l  d i r e c t i o n  and it i s  

assumed, f i r s t ,  t h a t  one f o u r t h  o f  t h e  i n f l ow  moves h o r i z o n t a l l y  along 

t h e  upper row o f  c e l l s ,  and second, t h a t  a l l  v e r t i c a l  v e l o c i t i e s  i n  t h e  

tank are  equal. Th is  crude f low pa t te rn  enhances t h e  mix ing and t h e  

turbulence i n t e n s i t y  a t  t h e  lower sec t ion  o f  t h e  tank. The v e r t i c a l  

mix ing c o e f f i c i e n t  i s  est imated using t h e  mix ing- length argument from 

where zn and un are, respect ive ly ,  t h e  depth and t h e  ho r i zon ta l  v e l o c i t y  

i n  t h e  c e l l s  i n  row n. The t u r b u l e n t  energy d i s s i p a t i o n  rate,  per u n i t  

mass o f  f l u i d ,  i s  est imated using Eq. 2.3 i n  Chapter 1 1 .  The intense 

loca l  shearing enhances t h e  coagulat ion r a t e  b u t  a l so  breaks up any 

f l o c s  which, according t o  Eq. 2.15 i n  Chapter 1 1 ,  grow larger  than about 

1000 Um. 

F igures 5.13 and 5.14 compare t h e  tank e f f l u e n t  when suspension A 

i s  subjected t o  t h e  r e c i r c u l a t i n g  f low f i e l d  w i t h  t h e  e f f l u e n t  o f  t h e  

standard case. The increased mix ing i n  t h e  tank, induced by t h e  

c i r c u l a t i n g  current,  causes more la rge p a r t i c l e s  t o  be c a r r i e d  over t h e  

e f f l u e n t  weir. Enhanced coagulat ion ra tes  and t h e  break-up o f  f l o c s  

exceeding 1000 v m  i n  diameter - t h e i r  mass i s  equa l l y  d i s t r i b u t e d  among 

t h e  other  sec t ions  - r e s u l t  i n  smoother number and mass d i s t r i b u t i o n s  i n  

t h e  e f f l u e n t .  The t o t a l  sol ids removal e f f i c i e n c y  remains 61% bu t  t h e  

suspended sol  i ds remova I e f  f i c  i ency i s  i ncreased t o  545, as compared 

w i t h  t h e  standard case. 



Fig .  5.13. E f f e c t  of t h e  f low f i e l d  on t h e  e f f l u e n t  
number d i s t r i b u t i o n  f u n c t i o n  of t h e  
v a r i a b l e  d e n s i t y  suspens ion  A. 
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F i g .  5.14. E f f e c t  of t h e  f low f i e l d  on t h e  
e f f l u e n t  mass d i s t r i b u t i o n  f u n c t i o n  
of t h e  v a r i a b l e  d e n s i t y  suspens ion  A. 



5.f. Scouring 

The s e n s i t i v i t y  o f  t h e  tank performance t o  scouring was 

inves t iga ted by performlng s imu la t i on  runs a t  var ious  values of t h e  

resuspension parameter s, a l l  o ther  parameters remaining t h e  same. The 

removal e f f i c i e n c i e s  obta ined when suspension A was t r e a t e d  are  l i s t e d  

i n  Table 8. Included i n  t h e  same t a b l e  are  t h e  r e s u l t s  f o r  a 

non-coagulating suspension w i t h  t h e  same c h a r a c t e r i s t i c s  as suspension 

A. I n  t h e  case of t h e  non-coagulating suspension t h e  tank performance 

de te r io ra tes  as t h e  r a t e  o f  resuspension increases. The s e n s i t i v i t y  of 

t h e  s o l i d s  removal e f f i c i e n c y  t o  s i s  i n  accordance w i t h  t h e  r e s u l t s  of 

Takamatsu et ,  a l .  (1974) f o r  a non- f loccu la t ing  suspension. On t h e  

contrary, when a suspension which undergoes coagulat ion I s  t reated,  

resuspension o f  t h e  deposi ts  improves s l i g h t l y  t h e  tank performance f o r  

small values o f  t h e  resuspension parameter s; f o r  la rge s t h e  tank 

perfomance deter io ra tes .  

Coagulat!on !n t h e  h igh  mass concentrat ion reg!ons near t h e  bottom 

o f  t h e  tank, r e s u l t i n g  from resuspension o f  p rev ious ly  deposited 

mater ia l ,  t r a n s f e r s  mass toward l a rge r  p a r t i c l e  s i z e  sect lons w i t h  a 

subsequent improvement i n  t h e  tank performance. As t h e  resuspension 

f l u x  increases, however, a c r i t i c a l  s i t u a t i o n  i s  reached, where 

coagu la t ion  cannot compensate f o r  t h e  reduced s e t t l i n g  r a t e s  and so t h e  

s o l i d s  removal e f f i c i e n c y  o f  t h e  bas in  i s  reduced. 
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6. UNSTEADY RESPONSE 

In actual wastewater treatment plants the flow rate and the 

concentration in the inflow may vary considerably with time. The 

computer simulation is capable of predicting the dynamic response of the 

settling tank to a temporally variable input. For the purpose of 

demonstrating the capabilities of the computer model the effluent 

characteristics are investigated when a top-hat discontinuity or a 

sinusoidal variation in the influent concentration or the flow rate 

occurs. 

6.a. Top-hat Discontinuity 

A sedimentation tank is assumed operating with a detention time of 

2 hrs. It is taken to be treating the variable density suspension A in 

a steady state mode. Then, either the influent concentration, or the 

overflow rate is doubled for 30 minutes, the discontinuity occurring at 

360 minutes after start-up time, with the latter marked as time zero. 

The ratio of the total mass concentration in the effluent at a given 

time to the steady state effluent concentration is plotted in Figure 6.1 

as a function of time for the two cases examined. The change in the 

effluent concentration due to an impulse in the concentration in the 

inflow is small. After a time lag of about 30 minuies the effluent 

concentration increases, reaches its maximum value at 60 minutes after 

the initial change in the influent concentration and then decreases for 
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some t ime below i t s  steady s t a t e  value. The shape o f  t h e  e f f l u e n t  curve 

r e f l e c t s  t h e  t rade-o f f  between t h e  increased i n f l u e n t  mass load, which 

suggests t h a t  more mass w i l l  be c a r r i e d  i n  t h e  e f f l u e n t ,  and 

coagulat ion, which i s  a second order  func t i on  o f  concent ra t ion  and 

promotes s e t t l i n g  and the re fo re  mass loss from t h e  e f f l u e n t .  The 

response o f  t h e  tank t o  t h e  impulse i n  t h e  f low r a t e  i s  immediate; t h i s  

i s  because it i s  assumed t h a t  t h e  f low f i e l d  i n  t h e  tank ad jus ts  

instantaneously t o  t h e  change i n  t h e  i n f l ow  ra te .  I n  both cases t h e  

increase i n  t h e  e f f l u e n t  concent ra t ion  i s  small because o f  t h e  dumping 

e f f e c t s  of numerical d i f f us ion ,  t u r b u l e n t  mix ing and coagulat ion. 

The next  two f i gu res  compare t h e  e f f l u e n t  p a r t i c l e  mass 

d i s t r i b u t i o n  curves a t  t h e  peak e f f l u e n t  mass concentrat ion w i t h  t h a t  

f o r  t h e  steady s t a t e  e f f l u e n t .  F igure  6.2 i s  f o r  t h e  case when the re  i s  

an impulse I n  t h e  i n f l u e n t  mass concentrat ion and it can be seen t h a t  

t h e  e f f e c t s  are  mainly on p a r t i c l e s  l a rge r  than 100 urn. I n  Figure 6.3, 

which i s  f o r  t h e  case o f  an impulse i n  f low rate, t h e  e f f e c t s  are more 

severe. There I s  a  s i g n i f i c a n t  r i s e  i n  t h e  concent ra t ion  o f  la rger  

p a r t i c l e s  i n  t h e  e f f l u e n t .  

6.b. Pe r iod i c  Input  

The v a r i a b l e  densi ty  suspension A i s  used t o  i nves t i ga te  t h e  

response o f  t h e  tank t o  a  pe r iod i c  v a r i a t i o n  i n  t h e  i n f l u e n t  

concentrat ion o r  t h e  f low rate.  The frequency o f  t h e  s inusoidal  input  

i s  equal t o  t h e  inverse of t h e  residence t ime of t h e  suspension i n  t h e  

tank ( 2  hrs )  and i t s  amplitude equal t o  h a l f  t h e  steady s t a t e  input. 



Figure  6.4 shows t h e  temporal v a r i a t i o n  i n  t h e  e f f l u e n t  

concent ra t ion  when t h e  mass concent ra t ion  i n  t h e  in f low va r ies  

s i n u s o i d a l l y  w i t h  time. The tank ac ts  as a f i l t e r  and smooths t h e  

v a r i a t i o n s  i n  t h e  i n f l u e n t  concentrat ion.  The e f f l u e n t  c h a r a c t e r i s t i c s  

o f  a non-coagulating suspension, p l o t t e d  i n  t h e  same f i gu re ,  i nd i ca te  

t h a t  numerical d i f f u s i o n  and t u r b u l e n t  d i spe rs ion  and mix ing  a re  mainly 

respons ib le  f o r  t h e  f i l t e r i n g  a c t i o n  o f  t h e  tank, w h i l e  coagu la t ion  

reduces s i g n i f i c a n t l y  t h e  time-averaged e f f l u e n t  concentrat ion.  

Coagulaf lon a l s o  reduces t h e  t ime between t h e  e f f l u e n t  and i n f l u e n t  peak 

concent ra t ions  (modal t ime)  from 90 minutes f o r  t h e  non-coagulating 

suspension t o  about 60 minutes. I n  both cases t h e  modal t ime i s  smal ler  

than t h e  t h e o r e t i c a l  de ten t ion  t ime; observed d i spe rs ion  curves i n  

modei s e t t i  ing  tanks show t h e  same t rend  (Ei-Baroudi, 1969, Kawamura, 

1981 1 .  

Figure  S , 5  i l  l u s t r a t e s  t h e  e f f l u e n t  response t o  a s i n u s o i d a l l y  

vary ing  f low ra te .  I n  t h i s  f i g u r e  t h e  f l ow  rate,  non-dfmensionalised 

w i t h  i t s  time-averaged value, and t h e  e f f l u e n t  mass concentrat ion, 

non-dimensional ised w i t h  t h e  steady s t a t e  e f f l u e n t  concent ra t ion  

obta ined when t h e  f l ow  r a t e  i s  steady and equal t o  t h e  time-averaged 

f low rate, a re  p l o t t e d  aga ins t  time. Note t h e  very s h o r t  modal time, 

about 30 minutes, and t h a t  t h e  time-averaged e f f l u e n t  concent ra t ion  i s  

s l i g h t l y  h igher  than t h e  one obta ined when t h e  f l ow  r a t e  i s  steady. 

The n e x i  two Figures 6.6 and 6.7 show t h e  mass d i s t r i b u t i o n  a t  t h e  

maximum and min imum e f f l u e n t  concentrat ions f o r  t h e  two t ime  v a r i a b l e  

i n p u t  s imn ia f ions  performed. As I n  t h e  case o f  t h e  top-hat 

d i s c o n t i n u i i i s s ,  t h e  v a r i a t i o n  i n  t h e  mass concent ra t ion  f u n c t i o n  i s  

l a rge r  when t h e  f l ow  r a t e  v a r i e s  w i t h  time. 



Fig .  6 , 4 .  Temporal v a r i a t i o n  of t h e  e f f l u e n t  mass c o n c e n t r a t i o n  f o r  a  s i n u s o i d a l l y  v a r y i n g  
c o n c e n t r a t i o n  i n  t h e  in f low.  The f requency  of t h e  s i n u s o i d a l  i n p u t  i s  e q u a l  t o  
t h e  i n v e r s e  of  t h e  d e t e n t i o n  t i m e  ( 2  h r s )  and i t s  a m p l i t u d e  e q u a l  t o  h a l f  t h e  
s t e a d y  s t a t e  i n f l u e n t  c o n c e n t r a t i o n .  

8 .  
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7. CONCLUSIONS 

The basic aim of this study has been to develop a numerical model 

simulating the operation of a rectangular sedlmendation basin. The 

model is based on a computer solution of an extended General Dynamic 

Equation and includes all of the basic kinetics of particle collision 

and coagulation processes, including Brownian motion, turbulent shear 

and differential sedimentation. Also included are estimates for the 

modification to particle collision efficiencies by van der Waalsf forces 

and hydrodynamic interactions between particles. Specific attention is 

directed to transport processes such as particle advection, turbulent 

diffusion and particle resuspension. The influence of the particle 

size-density rerationship and ftoc deaggregatlon by turbulent shearing 

are also modeled. Of necessity, modeling of some of these processes has 

been somewhat empirical since the physical and biochemical nature of the 

flocs produced are often unique to a particular suspension. 

Nevertheless, the model developed is capable of predicting the evolution 

of a particle size distribution in flow through a sedimentation tank 

under both steady and unsteady operating conditions, and within 

reasonable computation time. 

For the purpose of elucidating features of the model, it has been 

applied to a specific sedimentation tank design. From the limited 

number of simulations presented here it is evident that particle 

coilision efficiencies, the particle size-density relationship and the 

shape of the influent particle size distribution affect dramatically 

both the characteristics of the effluent size distributlon and the 

overal l tank performance. The collision efficiencies between particles 



and t h e  p a r t i c l e  s ize-densi ty  r e l a t i o n s h i p  were modeled somewhat 

a r b i t r a r i l y ,  since, t o  t h e  knowledge o f  t h e  wr i t e r ,  no r e l a t e d  publ ished 

r e s u l t s  e x i s t ;  both depend on t h e  physical  and biochemical nature o f  

t h e  f l o e s  and w i l l  be unique f o r  a  p a r t i c u l a r  suspension, so t h e i r  

determinat ion requ i res  experimental work. 

The c o l l i s i o n  e f f i c i e n c i e s  used i n  t h e  s imu la t i on  runs are v a l i d  

on ly  i f  it i s  assumed t h a t  t h e  i o n i c  s t rength  of t h e  suspension i s  

s u f f i c i e n t l y  la rge f o r  coagu la t ion  t o  occur. Repulsive double layer  

fo rces  may i n h i b i t  f l occu la t i on ,  as suggested by Figures 3.9, 3.10 and 

3.11 i n  Chapter I. For a  non-coagulating suspension t h e  removal 

e f f i c i e n c y  RSSof suspended s o l i d s  i s  la rger  than t h e  removal e f f i c i e n c y  

RTSof t h e  t o t a l  s o l i d s  (see t h e  r e s u l t s  i n  Sect ion 5 . b ;  t h e  reverse 

I s  t r u e  f o r  a coagu!at!ng suspension i n  most simulation runs performed. 

Th is  i nd i ca tes  t h a t  coagulat ion t r a n f e r s  mass through t h e  s i z e  speckrum 

toward s e t t l e a b l e  p a r t i c l e  sizes. Th is  phenomenon i s  more l i k e l y  t o  

occur i n  polymer-added sedimentation. Coagulants help p r e c i p i t a t e  

p a r t i c l e s  w i t h  s i zes  less than lum (phosphorus (Long and Nesbi t t ,  1975) 

o r  b a c t e r i a  (Waite, 19791, f o r  instance) and have been found t o  increase 

t h e  r e l a t i v e  c o n t r i b u t i o n  o f  suspended s o l i d s  i n  t h e  t o t a l  s o l i d s  o f  t h e  

e f f l u e n t  (Hunter and Heukelekian, 1965). The above suggest t h a t  t h e  

s imu la t i on  runs performed here are app l icab le  t o  s i t u a t i o n s  where t h e  

suspension has been destab i l  ized by some coagulat ing agent. 

Moderate resuspension o f  t h e  deposi ts  may improve t h e  performance 

of a  bas in  when a  coagulat ing suspension i s  t reated.  For a  

non- f loccu la t lng  suspension scouring reduces t h e  s o l i d s  removal 

e f f i c iency .  Since , however, scouring and resuspension o f  sedimenPs 

were modeled empi r ica l ly ,  d e f i n i t e  conclusions cannot be drawn, 



However, experimental and theoretical work on resuspension of cohesive 

sediments is in progress (NOAA, 1982) and the results can be easily 

incorporated in the simulation. 

The simulations of tank operation under unsteady state inflow 

conditions suggest that coagulation smooths moderate variations in the 

inflow concentration and flow rate. A finer mesh size than the one used 

here in physical space is required in order to reduce the effect of 

numerical diffusion. 

Clearly, further modifications, improvements and trials will be 

necessary before the model can be used with confidence in the design of 

new facilities. At this juncture, it appears that more experimental 

work on the nature of the particle size-density relationship, the 

resuspension of deposits and the particie coil ision efficiencies are the 

crucial next steps in improving the realism of the model. Also, 

information on the properties of the suspension in the influent and 

effluent of operating sedimentation tanks will allow the testing and 

subsequent improvement of the simulation mode!. 



NOTAT l ON 

A Van der Waals' energy of attraction 

c Density of dense regions in the floc 

d Particle diameter 

i Diffusivity of particle with radius ri 

e Poros i ty 

E Particle volume flux through the size spectrum 

Eb(rl ,r2) Col 1 ision efficiency of particles rl and r2 in Brownian 
diffusion. 

, r2) Ccl I ision efficiency of particles rl and r2 in shear 

~ ~ ~ ( r ~  ,r2) Col I ision efficiency of particles rl and r2 in differential 
sedimentation 

F Froude number 

9 Graviiaiionai acceierailon 

G Strain rate 

H Depth of tank 

k Boltzmannls constant 

K Average cross-sectional mixing coefficient 

L Length of tank 

n(d) Particle size distribution function 

N Particle number density 

P Permeability 

Q ~ , m , n  Mass concentration of the particle size section R in cell 
number (m, n 1 

AQ Particle mass concentration in the size range (d,d+ Ad) 

r 
i Particle radius 

max 
Maximum particle radius for a given shear rate 

ss Suspended solids removal efficiency, $ 

R~~ Total sol ids removal efficlenct, $ 



138 

NOTATION (continued) 

s Resuspension parameter, dimensionless 
- 
S~ Settl ing coefficient 

AS Particle surface concentration in the size range (d,d+ Ad) 

T Absolute temperature 

u Mean horizontal velocity in cell (m,n) 
m, n 
- u Vertical ly averaged horizontal velocity in the tank 

u 9: Shear velocity 

AV Particle volume concentration in the size range (d,d+ Ad)  

w Stokesf settling velocity 

x Horizontal dimension of the cell 

z Vertical dimension of the cell 

Greek letters 

a Slope parameter for particle size distribution 

r i j  Col lision function for particles ri and r. 
J 

- 
Di, j ,k  Coagulation coefficient 

E Turbulent energy dissipation rate per unit mass of fluid 

K Von Karman's constant 

i-i Fluid dynamic viscosity 

v Fluid kinematic viscosity 

P f  Density of floc 

P~ 
Density of particle 

Pw 
Density of water 
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ABSTRACT 

A method f o r  t h e  Monte C a r l o  s i m u l a t i o n ,  by d i g i t a l  computer,  of 

t h e  e v o l u t i o n  of a c o l l i d i n g  and c o a g u l a t i n g  p o p u l a t i o n  of suspended 

p a r t i c l e s  i s  d e s c r i b e d .  C o l l i s i o n  mechanisms s t u d i e d  b o t h  s e p a r a t e l y  

and i n  combina t ion  a r e :  Brownian mot ion of t h e  p a r t i c l e s ,  and l a n i n a r  

and i s o t r o p i c  t u r b u l e n t  s h e a r i n g  mot ions  of t h e  suspend ing  f l u i d .  

S teady  s t a t e  d i s t r i b u t i o n s  a r e  o b t a i n e d  by add ing  u n i t  s i z e  p a r t i c l e s  

a t  a c o n s t a n t  r a t e  and removing a l l  p a r t i c l e s  once  t h e y  r e a c h  a p re - se t  

maxi mu^ volume. The r e s u l t i n g  s i z e  d i s t r i b u t i o n s  a r e  found t o  a g r e e  w i t h  

t h o s e  o b t a i n e d  by d imens iona l  a n a l y s i s  (Hunt, 1980a ,b ,  1982) .  I s o t r o p i c  

t u r b u l e n t  s h e a r  i s  shown, f o r  p a r t i c l e s  much s m a l l e r  t h a n  t h e  Kolmogorov 

m i c r o s c a l e ,  t o  be  e q u i v a l e n t  i n  c o a g u l a t i n g  power t o  a r e c t i l i n e a r  

l a m i n a r  s h e a r ,  G ,  of uiagnitude 1 . 7 2  t i m e s  t h e  c h a r a c t e r i s t i c  s t r a i n  

L 
r a t e  ( E / v ) '  g i v e n  by t h e  r a t e  of d i s s i p a t i o n  of k i n e t i c  ene rgy  p e r  

u n i t  mass and t h e  f l u i d  v i s c o s i t y .  



1. INTRODUCTION 

In many fluid systems with a continuous size distribution of 

suspended particles the primary mechanism for the production of larger 

particles from smaller particles, over much of the size range, is 

coagulation, the process of collision and coalescence of particles. 

These coagulating particles can be solid or liquid with the suspending 

medium gaseous or liquid, for example: atmospheric aerosols, cloud 

water droplets, colloidal suspensions in water or emulsions of one 

liquid in another. The computations described in this paper are 

primarily concerned with suspensions of solid particles in water but 

the techniques used have general applications. 

In describing the dynamics of continuous size distributions it is 

convenient to introduce the particle size distribution, n(v), defined by 

so that dK is the number of particles per fluid volume whose sizes 

(volumes) lie in the range v to v+dv. The collision rate, per unit 

volume of fluid, of particles of volumes v and v is given by the i j 

product of their respective concentrations and a collision function, 

B(vi,v.), representing the geometry and dynamics of the collision 
J 

mechanism, so that 

collision rate = B(v.,v. )n(~. )n(v. )dyidv 
1 3  1 3  j 

Then the change with time of the particle size distribution is 

given by the general dynamic equation (GDE) 



Here I ( v )  i s  a  sou rce  of p a r t i c l e s  (through condensat ion,  f o r  example) 

an and S(v)  - i s  a  p a r t i c l e  s i n k  r e s u l t i n g  from p a r t i c l e s  sedimenting i n  a z 

t h e  z d i r e c t i o n  a t  t h e i r  S tokes '  s e t t l i n g  v e l o c i t y ,  S(v) .  I f  we r e s t r i c t  

a t t e n t i o n  t o  s i z e  ranges  where t h e  source  term i s  n e g l i g i b l e ,  and t o  

homogeneous s i t u a t i o n s  ( s o  t h a t  s p a t i a l  d e r i v a t i v e s  map be  neg lec t ed )  

then  (1)  reduces t o  t h e  coagu la t i on  equa t ion  

v  CO 

The two terms on t h e  r . h .6 .  of ( 2 )  r e p r e s e n t ,  r e s p e c t i v e l y ,  t h e  r a t e  of 

ga in  of p a r t i c l e s  of volume v  by coagu la t i on  of p a i r s  of smal le r  p a r t i c l e s ,  

conserv ing  volume, and t h e  l o s s  of p a r t i c l e s ,  v ,  due t o  t h e i r  coagula t ion  

wi th  p a r t i c l e s  of a l l  s i z e s .  

A v a r i e t y  of t echniques  have been used t o  i n v e s t i g a t e  (1)  and (2)  

and an ex t ens ive  l i t e r a t u r e  h a s  r e s u l t e d  ( s ee  Pruppacher and K l e t t ,  1978 

f o r  a  r e c e n t  account ) .  I n  most of t h e s e  techniques  some s imple a n a l y t i c  

form f o r  B i s  used. The h e a r t  of t h e  coagu la t i on  problem i s  t o  provide 

an accu ra t e  model f o r  t h i s  c o l l i s i o n  k e r n e l  and t h e  s tudy  of two p a r t i c l e  

c o l l i s i o n s  has  been most ly  toward t h i s  end. I n  t h e  p re sen t  s tudy both E 

and s o l u t i o n s  t o  ( 2 )  a r e  d i r e c t l y  s imula ted  a t  t h e  same time by a  Monte 

Car lo  method. D i r e c t  numerical  s o l u t i o n s  of equa t ion  (2)  such a s  

developed by Gelbard, Tambour and S e i n f e l d  (1980) must assume forms 

f o r  t h e  8 f u n c t i o n s .  

For p a r t i c l e s  t o  coagu la t e  two processes  a r e  r equ i r ed :  ( a )  a  

mechanism t o  develop r e l a t i v e  motion of t h e  p a r t i c l e s  through t h e  f l u i d  

which w i l l  b r i n g  them i n t o  c l o s e  proximi ty ,  and (b) short-range i n t e r -  

f a c i a l  f o r c e s  a c t i n g  between t h e  p a r t i c l e s  t o  b r i n g  about t h e i r  



coalescence. Relative motion of particles in a fluid can be due to one 

or a combination of the following: 

1. Brownian or thermal motion. 

2. Laminar or turbulent fluid shear or straining. 

3. Particle inertia in turbulent flows. 

4. Differential sedimentation of different size particles. 

As a first step, the hydrodynamic interactions between particles are 

often ignored. In this case, relatively simple analytic estimates for 

B are available for each of these collision mechanisms acting indepen- 

dently and these are sua~arized in Table 1. The table also includes 

the dimensional parameters that characterize the mechanisms and deternine, 

in any given situation, the characteristic size of particle that they 

affect. 

Note that all the collision functions depend on properties of the 

suspending fluid, the structure of its velocity field, and the size of 

the particles. However, only the functions for the final two collision 

mechanisms depend on a physical property of the particles: the 

difference between their density and that of the fluid. If the particle 

density excess ratio (p - p  ) l p  is small then sedimentation and inertia 
P f f  

will only be important for larger particles. In a turbulent flow 

sedimentation will dominate inertial effects unless the characteristic 

b acceleration ( c3 / v )  is comparable with g, the gravitational accelera- 

tion. In this papex we will be concerned only with the first two 

collision mechanisms. Differential sedimentation and interfacial 

forces will be the ST bj erst of a sequel. 

For a coagulating system more than one collision mechanism can be 

important for a given size range of particles. However, if there is a 





particle size subrange in which the coagulation is dominated by only 

one collision mechanism, and this subrange is in a state of dynamic 

equilibrium, then the theory of Friedlander (1960a,b) and Hunt (1980a,b) 

predicts the local size distribution given a constant flux of mass 

through the particle size distribution. The theory depends on two 

basic hypotheses: an equilibrium size distribution being established 

and non-interference of particles of a size characteristic of one 

collision mechanism with those of another collision mechanism. 

Hunt's (1980a)*experimental results generally support the predic- 

ticns of the theory for Brownian motion and laminar shear but are 

limited by uncertainty over the effects of the unsteadiness in the 

experiments due to particle sedimentation and loss from the system. 

In the present work these limitations are overcome by performing a 

computer "experiment" in which particle collisions are directly 

simulated by Monte Carlo techniques. The size evolution of a population 

of particles is followed. This allows the effects of each collision 

mechanism to be evaluated independently, and, by combining mechanisms, 

the hypothesis of non-interference of characteristic particle sizes to 

be tested. Collision rates as well as the approach to and the final 

f c m  of an equilibrium size distribution are studied. The method 

could also be used to study the "aging" of an initially fixed number 

of particles as they collide and grow. 

Monte Carlo simulations have been used by Nowakowski and Sitarski 

(1981) to model the collision function for Brownian coagulation of 

aerosol particles and by Husar (1971) and Gartrell and Friedlander (1975) 

to find soluti6ns to the coagulation equation (2). In addition to 

*See also Hunt (1982). 



s i m u l a t i n g  d i r e c t l y  t h e  c o l l i s i o n  f u n c t i o n ,  t h e  Monte C a r l o  method 

a c c o u n t s  p r o p e r l y  f o r  c o r r e l a t i o n s  which a r e  ignored  i n  t h e  d e r i v a t i o n  

of t h e  g e n e r a l  dynamic e q u a t i o n  ( G i l l e s p i e ,  1975) .  

1 n  t h i s  paper  we f i r s t  b r i e f l y  d e s c r i b e  Hunt ' s  t h e o r y  and e x p e r i -  

menta l  r e s u l t s .  Subsequent  s e c t i o n s  d e s c r i b e  i n  d e t a i l  t h e  s i m u l a t i o n  

t e c h n i q u e s  used t o  model Brownian, l a m i n a r  s h e a r  and t u r b u l e n t  s h e a r  

induced c o a g u l a t i o n  and t h e  r e s u l t s  o b t a i n e d .  The r e s u l t s  a r e  t h e n  

compared w i t h  p r e v i o u s  exper iments  and t h e o r y ,  and t h e  s u c c e s s  of t h e  

method e v a l u a t e d .  

F r i e d l a n d e r  (196Ga,b) e x p l a i n e d  observed r e g u l a r i t i e s  i n  t h e  s i z e  

d i s t r i b u t i o n s  of a tmospher ic  a e r o s o l s  by assuming t h a t  a  s t a t e  of 

dynamic e q u i l i b r i u m  e x i s t e d  between p r o d u c t i o n ,  c o a g u l a t i o n  and l o s s  

through s e d i m e n t a t i o n  of p a r t i c l e s .  We t h e n  employed methods analogous 

t o  t h o s e  developed by Kolmogorov f o r  t h e  a n a l y s i s  of t u r b u l e n c e  s p e c t r a .  

I f  i t  i s  assumed t h a t  t h e  s i z e  d i s t r i b u t i o n  i n  some subrange depends 

on ly  on t h e  p a r t i c l e  volume, v ,  t h e  c o n s t a n t  f l u x  of p a r t i c l e  volume 

th rough  t h e  s i z e  d i s t r i b u t i o n ,  E, and a  d imens iona l  pa ramete r ,  C ,  

c h a r a c t e r i z i n g  t h e  s o l e  dominant c o a g u l a t i o n  mechanism ( s e e  T a b l e  1) 

s o  t h a t  

n(v) = n(v,E,C) , 

t h e n  t h e  form of n ( v )  can  be determined by dimension31 i n a l y s i s  a l o n e .  

T n i s  i s  ana logous  t o  p o s t u l a t i n g  an  i n e r t i a l  subrangc  of s c a l e s  i n  

which t h e  t u r b p l e n t  energy  spectrsae 2s de te rmined  s o l e l y  by t h e  wave- 

number and t h e  f l u x  of energy  through t h e  subrange  ( e q u a l  t o  t h e  r a t e  



of energy dissipation by viscous stresses at the smallest scales). 

(See, for example, Monin and Yaglom, 1975, Ch. 21). 

Hunt (1980a,b) extended these ideas to hydrosols and 

compared the predictions of his theory with both laboratory and field 

measurements. In particular, he performed experiments on Brownian and 

laminar shear induced coagulation. His theory predicts the following 

size distributions for regions dominated by Brownian, shear and 

differential sedimentation coagulation 

Shear 
1/2 - 2  

n(v) = a sh (E/G) v 

Differential Sedimentation 

He shows (Hunt 1980b, Figure 1) that it is plausible, for a typical 

coagulating hydrosol, that these three mechanisms could dominate in 

regions of successively increasing particle size. 

Hunt's measurements indicated that his system was in a quasi- 

dynamic equilibrium where size distributions taken at progressively 

later times were similar in shape but decreasing in magnitude. This 

unsteadiness was due to the overail particle concentration decreasing 

as a result of t h e  larger aggregates settling to the bottom. Hunt 

measured the varying total suspended volume by light absorbance and 
8 

used the computed rate of volume loss as an estimate for E. He 



explains why this will be an overestimate for the quantity (see Hunt, 

1980a for details), but it is still a useful approximation. The 
1 -5 measured value of E can then be used to normalize size distributions 

( c . f .  equations (3) - (5)) partially correcting for the effects of 

unsteadiness. 

Hunt successfully collapsed much of his data at various times and 

for different experiments at different shear rates by normalizing the 
1 L- 

size distributions not just with E'!, but with the ratio (EIG) and 

non-dimensionalizing the particle volume with the characteristic 

volume at which particles have both Bromian collisions and shear 

induced collisions at the same rate. This characteristic volume, found 

by putting r 
i = r~ 

in the expressions for the relevant collision rates 

in Table 1, is seen to be v = ~f6/(3G), proportional to the ratio of 

the Brohnian and shear parameters. 

For some of the particle types tested the normalized volume 

distributions expressed as functions of nondimensional size provide 

support for the relations (3) and (4) (see in particular Hunt, 1980a, 

Figure 4.9). However, as we have already noted, there are some 

reservations about the experiments, complicated as they are by 

instrumental difficulties and uncertainties about the effects of 

unsteadiness. Also, no one single experiment exhibits a size 

distribution having regions with the equilibrium power laws corres- 

ponding to both Brownian and shear dominated mechanisms. One of 

the main aims of the present study, then, is to provide support or 

otherwise for Hunt's results by means of a computer "experiment". 

J 
This allows a genuine steady state t~ be set up and detailed probing 

of the interaction between Brownian and shear collision mechanisms. 



3 .  COFPUTER SIMULATION 

3 . 1  Genera l  Technique 

S i m u l a t i o n  of s o l u t i o n s  t o  t h e  c o a g u l a t i o n  e q u a t i o n  ( 2 )  

proceeds  by t r a c k i n g  t h e  p o s i t i o n s  and s i z e s  of a  v a r i a b l e  number, K, 

of s p h e r i c a l  p a r t i c l e s  ( t y p i c a l l y  50 < N < 600). Whenever two p a r t i c l e s  

c o l l i d e  t h e y  a r e  c o a g u l a t e d  t o  form a  l a r g e r  ( s t i l l  s p h e r i c a l )  p a r t i c l e ,  

c o n s e r v i n g  p a r t i c l e  volume, t h e r e b y  r e d u c i n g  N by one .  The p o p u l a t i o n  

of p a r t i c l e s  s t u d i e d  t h e r e f o r e  c o n s i s t s  of p a r t i c l e s  s f  u n i t  volume, 

v  and i n t e g r a l  m u l t i p l e s ,  v = i . v  of t h e  u n i t  volume, I n  t h i s  
o  i o  

paper  t h e  s u f f i x  i i s  used t o  d e n o t e  p r o p e r t i e s  of i - f o l d  p a r t i c l e s  

wade up from i e l e m e n t a l  p a r t i c l e s .  Tne c o l l i s i o n  s i m u l a t i o n  a l g o r i t h r  

i s  programmed f o r  a  d i g i t a l  computer.  

The program can a l s o  f u n c t i o n  i n  a  d i f f e r e n t  made i r k  which 

c o l l i s i o n s  a r e  counted b u t  p a r t i c l e s  a r e  n o t  c o a g u l a t e d .  On c o l l i s i o n ,  

one of t h e  p a r t i c l e s  i s  randomly r e p o s i t i o n e d  s o  a s  t o  avoid  r e p e a t e d  

c o l l i s i o n s  of t h e  same p a i r  of p a r t i c l e s .  T h i s  a l l o w s  d i r e c t  measure- 

ment of t h e  c o l l i s i o n  f u n c t i o n ,  B, f o r  any g i v e n  mechanism. These 

r e s u l t s  can  be  used b o t h  t o  v e r i f y  t h e  a n a l y t i c  s o l u t i o n s  g iven  i n  

Tab le  1 and a s  a  check on t h e  c o r r e c t  o p e r a t i o n  of t h e  s i m u l a t i o n .  

P a r t i c l e  mot ions  t a k e  p l a c e  i n  a c u b i c a l  box o r  " c o n t r c l  volu~e" 

of s i d e  L and volume V ( F i g u r e  1 g i v e s  a schemat ic  r e p r e s e n t a t i o n  of 

t h i s  box and a d e f i n i t i o n  of t h e  r e c t a n g u l a r  c o o r d i n a t e  sys tem u s e d ) .  

P a r t i c l e  p o s i t i o n s  a r e  denoted by P ( i )  = ( ~ ~ ( i ) . P ~ ( i ) , P ~ ( f ) ) .  The 

s i m u l a t i o n  employs what a r e  e s s e n t i a l l y  p e r i o d i c  bou>~da ry  sonditions, 

s o  t h a t  p a r t i c k e s  t h a t  have l e f t  t h e  c o n t r o l  volume at %he end of a 

t ime  s t e p  a r e  r e p l a c e d ,  f o r  t h e  n e x t  t i m e  s t e p ,  by image p a r t i c l e s  



Figure 1. schematic diagram of simulation box or "control volume" 
with Cartesian coordiante system and representative particle 
at position (P1, P2 ,  P 3 ) .  Displacement of particle in 
current time step is (91,D2,D3). 



that enter from the opposite side. This type of boundary condition is 

commonly employed in Monte Carlo simulations (see Alder and Wainwright, 

1959) and allows an infinite homogeneous system to be modeled approxi- 

mately by a finite volume. Edge effects are reduced by allowing particles 

to interact with image particles just outside the control volume. The 

slight modifications to these boundary conditions required for laniinar 

and turbulent shearing motions are described in 53.4 and 53.5 below. 
4. 

In order to model a system in dynamic equilibrium, a fixed nunber 

K of particles of unit volume are added to the population at randon 
C 

each time step and any particles that have reached a preset maximur, 

volume v = i .v  are removed from the population. (Typically, 
max max o 

i = 125). The constant addition of small particles is a crude Diax 

attempt to represent, indirectly, the flux of particles into the size 

range from the collision of particles smaller than v . The removal of 
0 

large particles is necessary to limit the total volume density of 

particles in the simulation. It can be physically justified as a crude 

representation of the loss of larger particles from a region by the 

combined action of sedimentation and vertical concentration gradients. 

The procedure of adding small particles and extracting large ones is 

consistent with the hypothesis that collisions between particles of 

similar size are more important and is justified a p s s t e r i o r l  by the 

success of the simulation in reproducing Hunt's (1980b) dimensional 

results. 

A schematic representation of the logical sequence of the simulation 

is given in Figure 2. The simulation starts either by generating a 

monodisperse p'opulation of particles randomly distributed over the 

control volume, or by reading a set of particle positions and sizes 
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R E Q U I R E D  
P A R A M E T E R S  
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A N D  R A D I I  

F i g u r e  2. Summary of  l o g i c a l  s t r u c t u r e  of s i m u l a t i o n  program. 



from a  p r e e x i s t i n g  f i l e .  Th i s  f i l e  i s  e i t h e r  a  s e t  of p a r t i c l e s  of 

given s i z e  d i s t r i b u t i o n  generated by a n  a u x i l i a r y  program, o r  t h e  end 

po in t  of a  p r ev ious  s imu la t i on  t h a t  i s  t o  be cont inued.  Con t ro l l i ng  

parameters  f o r  t h e  s imu la t i on  run a r e  e i t h e r  i npu t  manually o r  read 

from a  f i l e .  

The p a r t i c u l a r  methods f o r  gene ra t i ng  t h e  p a r t i c l e  displacements  

a t  each time s t e p ,  - v ( i )  = (Yl ( i ) ,Y2( i ) ,Y3( i ) ) ,  and updat ing  t h e i r  

p o s i t i o n s  between time s t e p s  a r e  descr ibed  i n  d e t a i l  below i n  connect ion 

wi th  each phys i ca l  c o l l i s i o n  mechanism. Each p a r t i c l e  i s  assumed t o  

 ravel on a  s t r a i g h t  l i n e  pa th  a t  cons t an t  speed dur ing  each time s t e p .  

The a lgor i thm used t o  d e t e c t  p a r t i c l e  c o l l i s i o n s  i s  descr ibed  i n  53.2 

below. 

A t  t h e  end of every  t ime s t e p  t h e  p a r t i c l e  s i z e  d i s t r i b u t i o n  i s  

computed. A f t e r  a p re sc r ibed  number k of t ime s t e p s ,  t h e  s i z e  

d i s t r i b u t i o n ,  averaged over  t ime t = k.At, i s  output  a long  wi th  t h e  

p o s i t i o n s  and s i z e s  of a l l  t h e  p a r t i c l e s  t o  a  f i l e  i n  permanent 

computer s t o r a g e .  The p a r t i c l e  p o s i t i o n s  and s i z e s  a r e  w r i t t e n  over  

t h e  prev ious  copy t o  save s t o r a g e  space.  The l a t e s t  v e r s i o n  i s  then  

always a v a i l a b l e  t o  r e s t a r t  a  run a t  a l a t e r  t ime.  The s imu la t i on  

coz t inues  u n t i l  t h e  r equ i r ed  number of t ime s t e p s  have been completed. 

Time averages  a r e  needed t o  provide  reasonable  p a r t i c l e  s i z e  

s t a t i s t i c s  a s  on ly  a  sma l l  number of p a r t i c l e s  a r e  fol lowed.  Once a  

s imula ted  system h a s  reached a  s t a t i s t i c a l  s t eady  s t a t e  (dynamical 

equ i l i b r ium)  then  long time averages  can be  employed t o  produce w e l l  

converged s t a t i s t i c s .  To fo l low t h e  evo lu t ion  of  a  r a p i d l y  changing 

systerc w i th  any p r e c i s i o n ,  i t  would be  necessary  t o  r epea t  t h e  simula- 

t i o n  many t imes  and compute ensemble averages.  



Most s i m u l a t i o n  r u n s  were  s t a r t e d  w i t h  a  monodisperse  p o p u l a t i o n  

o f  p a r t i c l e s .  The t o t a l  volume of p a r t i c l e s  i n  t h e  s i m u l a t i o n  i n c r e a s e s  

c o n t i n u o u s l y  u n t i l  t h e  f i r s t  p a r t i c l e  grows by c o a g u l a t i o n  t o  v  and 
max 

i s  removed. I n  o r d e r  t o  have r e a s o n a b l e  computa t iona l  times t h e  

volume c o n c e n t r a t i o n ,  Q ,  of suspended p a r t i c l e s  used i n  t h e  s i m u l a t i o n s  

i s  l a r g e r  t h a n  t h a t  o c c u r r i n g  i n  many n a t u r a l  sys tems .  (For  example, 

t y p i c a l l y  4 i s  about  20 p.p.m. i n  H u n t ' s  exper iments  bu t  i s  about  10 '  

l a r g e r  i n  t h e  s i m u l a t i o n  r u n s ) .  S i m u l a t i o n  r e s u l t s  must t h e r e f o r e  be 

checked f o r  dependence on volume f r a c t i o n  of p a r t i c l e s ,  b e f o r e  they  a r e  

a p p l i e d  t o  more d i l u t e  sys tems .  

The s i m u l a t i o n  r e q u i r e s  t h e  g e n e r a t i o n  of r e l a t i v e l y  l a r g e  numbers 

o f  (pseudo-) random numbers from b o t h  uniform and Gaussian d i s t r i b u t i o n s ;  

d e t a i l s  of t h e  numer ica l  methods used a r e  g iven  i n  Appendix A. 

3.2 C o l l i s i o n  a l g o r i t h m  

D e t e c t i n g  which p a r t i c l e s  have c o l l i d e d  a t  each t ime  s t e p  i s  

v e r y  c o s t l y  i n  computer t ime  and s o  an  e f f i c i e n t  method i s  needed. To 

t h i s  end t h e  b a s i c  c o n t r o l  volume i s  d i v i d e d  i n t o  c u b i c  s u b - c e l l s .  The 

c e l l s  a r e  chosen  t o  be a s  s m a l l  a s  p o s s i b l e  c o n s i s t e n t  w i t h  t h e  c o n s t r a i n t  

t h a t  any p a r t i c l e  can  o n l y  c o l l i d e ,  d u r i n g  t h e  n e x t  t ime  s t e p ,  w i t h  

p a r t i c l e s  i n  t h e  same c e l l  o r  t h e  a d j o i n i n g  26 c e l l s .  Each c e l l  i s  

g iven  t h r e e  i n t e g e r  c o o r d i n a t e s  t h a t  d e f i n e  i t s  p o s i t i o n  i n  t h e  c o n t r o l  

volume. For e a c h  p a r t i c l e  t h e  numbers of t h e  c e l l  i t  o c c u p i e s  a r e  

s t o r e d  a l o n g  w i t h  i t s  a c t u a l  p o s i t i o n .  

The f i r s t  s t a g e  i n  check ing  f o r  c o l l i s i o n s  i s  t o  d e t e r m i n e  f o r  

each p a i r  of p a r t i c l e s  whether  t h e y  a r e  i n  t h e  same o r  a d j o i n i n g  c e l l s .  

Only i f  t h i s  is  s o ,  a r e  t h e y  c o n s i d e r e d  c a n d i d a t e s  f o r  a c o l l i s i o n  and 



a d e t a i l e d  c a l c u l a t i o n  performed.  Checking whether  p a r t i c l e s  a r e  i n  

a d j o i n i n g  c e l l s  i s  performed by c o m p u t a t i o n a l l y  f a s t  i n t e g e r  a r i t h m e t i c .  

Given two c a n d i d a t e  p a r t i c l e s  t h e i r  r e l a t i v e  i n i t i a l  p o s i t i o n ,  RP = 
C 

P(1)  - :(2),  and d i s p l a c e m e n t ,  RY = x ( 2 )  - Y(1) ,  are computed ( n o t e  t h e  
5 - - 
d i f f e r e n t  o r d e r i n g  of p a r t i c l e s ) .  Then t h e  c o n d i t i o n  f o r  c o l l i s i o n  i s  

t h a t  t h e  v e c t o r  E.' e n t e r s  t h e  s p h e r e  of r a d i u s  a = r + r .  around t h e  
i J  

p o i n t  RP, a  s i m p l e  g e o m e t r i c a l  t e s t .  T h i s  c o r r e s p o n d s  t o  f o l l o w i n g  

t h e  motion of t h e  two p a r t i c l e s  i n  a  frame of r e f e r e n c e  moving w i t h  

t h e  ( I )  p a r t i c l e  ( s e e  F i g u r e  3 f o r  schemat ic  i l l u s t r a t i o n ) .  

A f u r t h e r  advan tage  of t h e  s u b - c e l l  sys tem i s  t h a t  i t  a l l o w s  f o r  

easy  implementa t ion  of p e r i o d i c  boundary c o n d i t i o n s .  P a r t i c l e s  i n  c e l l s  

a l o n g  any of t h e  b o u n d a r i e s  of t h e  c o n t r o l  volume a r e  a l lowed t o  i n t e r a c t  

w i t h  p a r t i c l e s  i n  t h e  r e q u i s i t e  c e l l s  on t h e  o p p o s i t e  s i d e  of t h e  volume. 

3 . 3  Brownian mot ion 

The the rmal  impact of molecu les  c a u s e  suspended p a r r i c l e s  t o  

perform random motion r e l a t i v e  t o  t h e  b u l k  f l u i d ,  In c o n t r a s t  t o  t h e  

r e c e n t  work of Nowakowski and S i t a r s k i  (1961) ,  t h e  p a r t i c l e s  s t u d i e d  

h e r e  a r e  much l a r g e r  t h a n  t h e  molecu la r  f r e e - p a t h  i n  t h e  f l u i d  and s o  

are  i n  t h e  continuum regime of Brownian mot ion.  Also t h e  t ime  s t e p ,  2, 

of t h e  s i m u l a t i o n  i s  v e r y  much l a r g e r  t h a n  t h e  p a r t i c l e  v i s c o u s  r e l a x a t i o n  

r ime,  tr = 2r2/9v. Theref o r e ,  t h e  r e l e v a n t  p r o b a b i l i t y  d i s t r i b u t i o n  

f u n c t i o n  ( p . d . f . )  f o r  t h e  d i sp lacement ,  x, of a p a r t i c l e  d u r i n g  a  t ime  

~ t e p  i s  (Chandrasekhar ,  1943)  



F i g u r e  3 .  ( a )  Geometry f o r  c o l l i s i o n  a l g o r i t h m .  (b )  Viewed i n  
frame of r e f e r e n c e  i n  which p a r t i c l e  2 i s  a t  r e s t .  



where D i s  t h e  d i f f u s i v i t y  of t h e  p a r t i c l e  

D = k T / ( 6 r u r )  = ) 6 / 6 s r  

Each component of :has a n  inde3enden t  Gauss ian  p . d . f .  

and t h i s  i s  used t o  r e p l a c e  t h e  Brownian motion of t h e  p a r t i c l e s  by a  

f i n i t e  random walk.  A t  each  t ime  s t e p  t h r e e  independen t  random 

components of  d i s p l a c e m e n t  a r e  g e n e r a t e d  f o r  each  p a r t i c l e  from t h e  

c o r r e s p o n d i n g  Gauss ian  d i s t r i b u t i o n  ( s e e  Appendix A f o r  d e t a i l s ) .  

The r.n,s= d i s p l a c e m e n t  i n  any d i r e c t i o n ,  Ax, of a n  I - f o l d  p a r t i c l e  i s  

where ,  
Di = %/6-ri, i s  t h e  p a r t i c l e  d i f f u s i v i t y .  D .  can  b e  o b t a i n e d  

1 

i n  t e r n s  of r h e  d i f f u s i v i t y  D of a n  e l e m e n t a l  p a r t i c l e  by 
0 

P a r t i c l e  c o l l i s i o n s  a re  s i m u l a t e d  on t h e  b a s i s  of s t r a i g h t  l i n e  

t r a j e c t o r i e s  d u r i n g  each t i m e  s t e p .  The q u e s t i o n  a r i s e s ,  t h e r e f o r e ,  of 

t h e  v a l i d i t y  of  t h i s  as a n  approx imat ion  t o  Brotvnian induced c o a g u l a t i o n .  

The r . m . s .  d i s p l a c e m e n t  h a s  been chosen c o r r e c t l y ,  b u t  a p a r t i c l e  of 

mass m unde l -go i lg  Brownian mot ion a c t u a l l y  t r a v e l s  a l o n g  a  t o r t u o u s  

% p a t h  a t  r . m . s .  speed (kT/m) . A t  f i r s t  s i g h t  t h i s  s u g g e s t s  t h a t  t h e  

s i m u l a t i o n  w o d d  u n d e r p r e d i c t  the c o l l i s i o n  r a t e .  However, r e p l a c i n g  

Brownian mot ion  by a f i n i t e  random walk must change t h e  p a i r  d i s t r i b u t i o n  



function, that is to say the probability distribution function for 

the spacing between any given pair of particles. So, while modeling 

Brownian motion by a finite random walk introduces inefficiency into 

the basic collision process it can compensate by increasing the 

probability that any pair of particles are found close together at the 

beginning of a time step. Here, "close together" means a separation 

on the scale of the r.m.s. steplength of the random walk. These matters 

are investigated in detail in Appendix B. Tests with the non-coagulating 

form of the program have shown that satisfactory collision rates for 

monodisperse populaeions of particles are obtained when the ratio ~ x / r  

is about 0.5. It is important to use the maximum possible time step in 

order to minimize computation times. 

3.4 Laminar shear 

The coagulating effects of a velocity gradient are investigated 

by imposing a unifon;, shearing motion on the control volume: 

with G the shear rate, The particles are assumed to move with the fluid 

so their displacement in any time step is just 

This means that we are igroring hydrodynamic interactions between particles. 

This is only defensible as the f i r s r  stage towards a more realistic model. 

The large body of work on particle interactions in low Reynolds number 

flows (see e.g. Mason, 1976, for a review) shows that hydrodynamic forces 

will always come into play in a detailed analysis of collision dyna~ics. 

This is investiga~ed in detail in a subsequent paper. 



Figure  4 shows how a  uniform shea r ing  motion, on average,  moves 

a  f r a c t i o n  of t h e  p a r t i c l e s  out  of t h e  c o n t r o l  volume a t  every time 

s t e p .  I f  they were rep laced  i n  t h e  c o n t r o l  volume accord ing  t o  simple 

p e r i o d i c  boundary cond i t i ons  (P = P I - L ,  whenever P > L) t h e  s imula t ion  1 1 

would be completely d e t e r m i n i s t i c  once i n i t i a l  p o s i t i o n s  had been chosen 

f o r  t h e  p a r t i c l e s .  Each p a r t i c l e  would move i n  a  s t r a i g h t  l i n e  wi th  

f ixed  P and P coo rd ina t e s .  Af te r  a  c e r t a i n  t ime a l l  c o l l i s i o n s  
2 3 

between e x i s t i n g  p a r t i c l e s  would cease  a s  each p a r t i c l e  would have 

swept out  i t s  own t r a c k  through t h e  c o n t r o l  volume. I n  a  r e a l  flow 

t h i s  would not  occur  a s  p a r t i c l e s  a r e  con t inua l ly  meeting "new" p a r t i c l e s .  

Therefore ,  i n  t h e  s imu la t ion ,  when a  p a r t i c l e  l eaves  t h e  volume i t  i s  

rep laced  a t  a  randomly chosen he ight  P on t h e  o t h e r  s i d e  of t h e  c o n t r o l  3 

volume. The random va lue  of t h e  he igh t  P must be chosen from a d i s t r i b u -  3 

t i o n  t h a t  r e f l e c t s  t h e  inc reas ing  f l u x  of p a r t i c l e s  a t  l a r g e r  va lues  of 

P ( s ee  Appendix A ) .  This  s t r a t e g y  l e a d s  t o  a  f u r t h e r  complicat ion:  3 

p a r t i c l e s  may be rep laced  on top  of one ano the r ,  l ead ing  t o  spur ious  

c o l l i s i o n s .  This  i s  almost t o t a l l y  e l imina ted  by checking f o r  such 

p a r t i c l e  ove r l aps  a t  t h e  end of each time s t e p  and randomly moving one 

of each overlapping p a i r .  Th i s  may in t roduce  a few f u r t h e r  over laps  a s  

no f i n a l  check i s  made. An e s t ima te  of t h i s  number i s  a v a i l a b l e   fro^ 

t h e  number of i n i t i a l  ove r l aps ,  which i s  recorded. This  e r r o r  i s  

accep tab le  i n  t h e  l i g h t  of o t h e r  approximations i n  t h e  s imula t ion .  

Overlaps a r e  a l s o  introduced by t h e  process  of adding new elemental  

p a r t i c l e s  a t  each t ime s t e p ,  whatever the  c o l l i s i o n  mechanism. A l l  

t ypes  of ove r l aps  a r e  reso lved  s imultaneously i n  t h e  same manner. 

3.5 Turbulent  shea r  

We wish t o  s imu la t e  t h e  coagula t ion  of smal l  p a r t i c l e s  by 





t u r b u l e n t  flow. The motion of a  suspended p a r t i c l e  can be  i d e n t i f i e d  

wi th  t h e  motion of an a d j a c e n t  f l u i d  p a r t i c l e  provided t h a t  t h e  time 

s c a l e  of t h e  ( f l u i d )  p a r t i c l e  a c c e l e r a t i o n  i s  much g r e a t e r  than  t h e  

p a r t i c l e  r e l a x a t i o n  t ime,  
t r '  t h a t  i s  t o  say ,  i f  i n e r t i a l  e f f e c t s  a r e  

n e g l i g i b l e ,  a s  w i l l  be t h e  case  here .  Then f o r  p a r t i c l e s  of r a d i u s  

sma l l e r  than  t h e  sma l l e s t  s c a l e  of t h e  tu rbu len t  motion ( t h e  Kolrnogorov 

+2 l eng th  s c a l e ,  ( v 3 / c )  1, coagula t ion  r a t e s  a r e  d e t e m i n e d  s o l e l y  by the  

kinematics  of t h e  smal l  s c a l e s  of t h e  tu rbu len t  flow f i e l d ,  i n  p a r t i c u l a r  

'*i % Sy t h e  r . m . s .  s t r a i n  r a t e  ( E / v )  /15 . These small  s c a l e s  a r e  very nea r ly  

isotropic (Batche lor ,  1953).  

Under t h e s e  c o n d i t i o n s ,  two p a r t i c l e s  separa ted  by a  d i s r a n c e  

sma l l e r  t han  t h e  Kolmogorov l eng th  s c a l e  a r e  subjec ted  t o  a  motion t h a t  

can be decomposed i n t o  a  r i g i d  body r o t a t i o n  r ep re sen t ing  the  l o c a l  

v o r t i c i t y ,  and a  l o c a l l y  uniform three-dimensional s t r a i n i n g  motion. 

The r i g i d  body r o t a t i o n  component of t h e  motion has  no e f f e c t  on t h e  

c c l l i s i o n s  of non- in t e rac t ing  p a r t i c l e s  and s o  only t h e  s t r a i n i n g  motion 

(with symmetric v e l o c i t y  g rad ien t  t e n s o r )  i s  modeled. The s t r a i n i n g  

motion w i l l  be  uniform over l eng th  s c a l e s  smal le r  than t h e  Kolmogorov 

micro-scale b u t  t h e r e  i s  no agreement a s  t o  t h e  d u r a t i o n  of t h i s  

s t r a i n i n g  (Monin and Yaglom, 1975).  Two time s c a l e s  a r e  important  f o r  

t h e  smal l  s c a l e  s t r a i n i n g :  t h e  rate of r o t a t i o n  of t h e  p r i n c i p a l  axes 

of s t r a i n  and t h e  r a t e  of change of t h e  magnitude of t h e  p r i n c i p a l  r a t e s  

of s t r a i n .  For t u r b u l e n t  flow a t  h igh  Reynolds.number t h e  r a t e  of 

change of t h e  deformation f i e l d s  of t h e  small  e d i i e s  i s  r e l a t e d  t o  

t h e  Lagrangian t ime mic rosca l e  a (Lumley, 1972).  The t ime s c a l e  of 

t h e  deformation f i e l d  is  X/u', where X i s  t h e  Taylor  microsca le  and u '  

th2  r . m . 5 .  f l u c t u a t i n g  v e l o c i t y .  Cor r s in  (1963) approximates t h e  



r a t i o  of t h e  two a s  

and s i n c e  by d e f i n i t i o n  

and 

we have 

which imp l i e s  t h a t  t h e  s t r a i n  and v o r t i c i t y  f i e l d s  of t h e  smal l  eddies  

remain cons t an t  f o r  a  t ime i n t e r v a l  a t  l e a s t  equa l  t o  t h e  Kolmogorov 

31 t ime s c a l e ,  t = (VIE)  . Thi s  i s  j u s t  t h e  i n v e r s e  of t h e  c h a r a c t e r i s t i c  

s t r a i n  r a t e .  

The e f f e c t  of t h e  r a t e  of r o t a t i o n  of t h e  p r i n c i p a l  axes  of s t r a i n  

on t h e  c o l l i s i o n  r a t e  was i n v e s t i g a t e d  u s ing  t h e  monodisperse,  non- 

coagu la t i ng  v e r s i o n  of t h e  s imu la t i on .  The v e l o c i t y  g rad i en t  was 

s imula ted  s o  t h a t  both t h e  p r i n c i p a l  axes  and p r i n c i p a l  r a t e s  of s t r a i n  

could be  changed independent ly .  The magnitude of t h e  s t r a i n  was kept  

cons t an t  f o r  a  t ime i n t e r v a l  equa l  t o  t h e  Kolmogorov t i m e  s c a l e .  No 

s t a t i s t i c a l l y  s i g n i f i c a n t  d i f f e r e n c e  i n  t h e  c o l l i s i o n  r a t e  was found, 

whatever t h e  t ime s c a l e  of r o t a t i o n  of t h e  p r i n c i p a l  axes  of t i t r a in .  

Therefore  i n  t h e  coagu la t i on  s imu la t i on  both p r i n c i p a l  axec and r a t e s  

of s t r a i n  were v a r i e d  a t  the  same rate. 

Assuming homogeneous, i s o t r o p i c ,  unbounded tu rbu lence  wirh a 

Gaussian v e l o c f t y  g r a d i e n t  f i e l d ,  t h e  elements  of t h e  r a t e  of s t r a i n  

t e n s o r  were chosen randomly t o  s a t i s f y  (Hinze, 1959) 



s u b j e c t  t o  

j = E  and i-k o r  i = t  and j=k and i# j  

k = l  and i=j  and i # k  

i = O  
a l l  o t h e r  combinations 

and kept  cons t an t  f o r  a  time i n t e r v a l  equal  t o  t h e  Kolmogorov time s c a l e .  

The s imu la t ion  proceeds a s  i n  t h e  case  of laminar shear  wi th  p a r t i c l e  

displacements  being given by t h e  product of t h e  t ime s t e p  ( t  ) and t h e  
k 

f l u i d  v e l o c i t y  corresponding t o  t h e  p a r t i c l e  p o s i t i o n .  Now, however, a s  

t h e  motion i s  three-dimensional  and s t o c h a s t i c ,  t r u e  pe r iod ic  boundary 

cond i t i ons  can be used. This  corresponds t o  t h e  c o n t r o l  volume being 

surrounded by cop ie s  which a r e  deformed wi th  t h e  o r i g i n a l .  P a r t i c l e s  i n  

t h e  c o n t r o l  volume a t  t h e  end of one t ime s t e p  can then  be used f o r  t h e  

nex t .  However, i n  pre l iminary  s imu la t ions ,  random f l u c t u a t i o n s  i n  t h e  

number of p a r t i c l e s  were found t o  cause t roub le .  To avoid t h e  program 

h a l t i n g  because of t oo  many o r  no p a r t i c l e s  l e f t  i n  t h e  c o n t r o l  volume t h e  

t o t a l  number was ad jus t ed  a t  each time s t e p  according t o  

where NCOL i s  t h e  number of c o l l i s i o n s  t h a t  had occurred dur ing  t h e  rime 

s t e p  and E t h e  number of e lemental  p a r t i c l e s  added. I n  o r d e r  t o  
C 

s a t i s f y  t h e  above cond i t i on ,  e i t h e r  p a r t i c l e s  were removed a t  random, 



o r  a  p a r t i c l e  whose volume had been chosen a t  random from t h e  e x i s t i n g  

popu la t ion  was added a t  a random p o s i t i o n .  F i n a l l y ,  p a r t i c l e  over laps  

were reso lved  a s  explained i n  5 3 . 4 .  

3 . 6  Mul t ip l e  mechanisms 

Simula t ions  were p e r f ~ r m e d  i n  which t h e  p a r t i c l e  displacement was 

t h e  l i n e a r  sum of a  f l u i d  shea r ing  and a Brownian component. The r e l a t i v e  

magnitude of t h e  Brownian and shear ing  parameters could then be va r i ed  t o  

i n v e s t i g a t e  t h e i r  i n t e r a c t i o n .  

F igure  5 shows t h e  e f f e c t  of changing t h e  r . m . s .  s t ep l eng th  on 

c o l l i s i o n  r a t e  i n  Brownian motion ( see  Appendix B f o r  a  d i s c u s s i o n ) .  

There i s  some s t a t i s t i c a l  s c a t t e r  i n  t h e  r e s u l t s  bu t  t h e  genera l  shape 

of t h e  curve i s  c o r r e c t .  From t h e s e  r e s u l t s  a  s u i t a b l e  time s t e p  can be 

chosen f o r  s imu la t ions  involv ing  Brownian motion. S imi la r  computations 

of c o l l i s i o n  r a t e s  i n  laminar  and t u r b u l e n t  shear  induced coagula t ion  

were performed t o  check t h a t  they y ie lded  t h e  va lues  given by Table 1. 

Th i s ,  indeed,  was found t o  be t h e  case .  The r e s u l t  f o r  t u r b u l e n t  shear  

due t o  Saffman and Turner (1956) has  been amended by a  f a c t o r  of n' from 

t h a t  i n  t h e  o r i g i n a l  paper ,  c o r r e c t i n g  an a l g e b r a i c  e r r o r .  

The development of a  s i z e  d i s t r i b u t i o n  i n  a  t y p i c a l  s imula t ion  

s t a r t i n g  wi th  p a r t i c l e s  a l l  of u n i t  volume v  and undergoing Bromian  
0 

induced coagula t ion  is  shown i n  F igure  6. The s i z e  d i s t r i b u t i o n  i s  non- 

dimensional ized accord ing  t o  equat ion  (3)  and p l o t t e d  loga r i thmica l ly  

a g a i n s t  p a r t i c l e v o l u m e  non-dimensionalized wi th  t h e  u n i t  p a r t i c l e  

volume. The curves p l o t t e d  a r e  smoothed approximations t o  rhe  a c t u a l  
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d a t a  p o i n t s ,  a t  v = i . v  which a r e  r a t h e r  s c a t t e r e d .  The upper p o r t i o n  
0 

of t h e  d a t a  a t t a i n s  a  s l o p e  of -312 once a range  of about  one decade 

i n  volume h a s  been reached.  Then, a s  p a r t i c l e s  of i n c r e a s i n g  s i z e  a r e  

formed, t h e  s l o p e  of t h e  s i z e  d i s t r i b u t i o n  remains t h e  same, bu t  i t s  

a b s o l u t e  l e v e l  d e c l i n e s  g radua l ly .  It reaches  a  s t a t i s t i c a l l y  s t eady  

s t a t e  once t h e  f i r s t  l a r g e  p a r t i c l e  i s  l o s t  from t h e  system. The f i n a l  

s t eady  s t a t e  f o r  t h i s  s e t  of parameters  i s  shown i n  F igure  7 ,  a long with 

t h a t  f o r  a  run a t  a  h ighe r  f i n a l  volume concen t r a t i on  I$ ( t h i s  i s  obtained 

by adding more p a r t i c l e s  a t  each time s t e p ) .  The p o i n t s  p l o t t e d  a r e  a c t u a l  

d a t a  from t h e  s imu la t i ons ,  averaged over  1000 time s t e p s .  Even wi th  t h i s  

time averag ing  t h e r e  i s  s t i l l  some s t a t i s t i c a l  s c a t t e r  i n  t h e  d a t a ,  

e s p e c i a l l y  a t  t h e  lower end of s i z e  d i s t r i b u t i o n  where very  smail  numbers 

of p a r t i c l e s  a r e  a c t u a l l y  involved.  To f u r t h e r  smooth t h e  d a t a  i n  t h e  

r eg ion  v / v  = 20-100 they have been averaged i n  groups of 5 .  
0 

For both t h e s e  runs  v  =125.vo,  a l though t h e  volume d i s t r i b u t i o n  
max 

i s  only p l o t t e d  ou t  t o  v /v  ~ 1 0 0 .  Beyond t h i s  t h e  d a t a  becomes e r r a t i c .  
0 

The two s e t s  of d a t a  a r e  f u l l y  co l lapsed  by t h e  normal iza t ion  used and 

ve ry  c l e a r l y  e x h i b i t  t h e  -3/2 power law expected from Hunt 's  (19802,b) 

theory .  The i n t e r c e p t  of t h e  b e s t  f i t  l i n e  of s l o p e  -3/2 w i th  t h e  a x i s  

v/vo-1 g ives  t h e  cons t an t  a i n  equa t ion  ( 3 ) .  
b 

Figure  8 i s  a  comparison of t h e  s t eady  s t a t e  s i z e  d i s t r i b u t i o n s  f o r  

laminar  shea r  a t  two volume concen t r a t i ons  d i f f e r i n g  by an o rde r  of 

magnitude. Again t h e  d a t a  p o i n t s  a r e  averaged over  1000 t ime s t e p s ,  and 

a r e  co l l apsed  on to  a  s l o p e  of -2 by t h e  normal iza t ion  suggested by 

dimensional  arguments. S imi l a r  r e s u l t s  a r e  shown f o r  t u r b u l e n t  shear  

S 
i n  F igure  9 ,  where t h e  i n v e r s e  of t h e  Kolmogorov time s c a l e ,  ( c /v )  , 

i s  used i n  g l a c e  of G i n  t h e  normal iza t ion  of t h e  s i z e  d i s t r i b u t i o n .  









Again a  -2 power law i s  achieved a t  s teady  s t a t e  and t h e  normalized 

r e s u l t s  a r e  independent of t h e  f l u x  of p a r t i c l e  volume through t h e  s i z e  

range .  Note,  however, t h a t  t h e  i n t e r c e p t  of t h e  d a t a  wi th  t h e  a x i s  

v/v0 i s  l a r g e r  by a  f a c t o r  of n e a r l y  2 than i n  t h e  ca se  of laminar  shea r .  

Th i s  i s  simply a  consequence of t h e  c o l l i s i o n  f u n c t i o n s  g iven  i n  Table 1: 

t h e  exp re s s ions  f o r  laminar  and i s o t r o p i c  t u r b u l e n t  shea r  a r e  i d e n t i c a l  

i f  G i s  rep laced  by 1 .72  (E/v)'. With t h i s  s c a l i n g  t h e  d a t a  of f i g u r e s  

8 and 9 c o l l a p s e .  Th i s  r e s u l t  s t r o n g l y  sugges ts  t h e  equiva lence  of 

laminar  r e c t i l i n e a r  shea r  and three-dimensional  t u r b u l e n t  s h e a r  a s  

coagu la t i ng  a g e n t s ;  a r e s u l t  p r ev ious ly  suggested bu t  no t  v e r i f i e d .  

The next  s e r i e s  of s imu la t i on  runs  i l l u s t r a t e  t h e  e f f e c t  t h a t  t h e  

r a t i o  v /v ( i . e . ,  t h e  s i z e  range covered by t h e  s imu la t i on )  has  on 
max o  

f i n a l  s t eady  s t a t e  s i z e  d i s t r i b u t i o n s  i n  Brownian motion and laminar 

shea r .  F igu re s  10  and I1 g ive  s i z e  d i s t r i b u t i o n s  f o r  t h e  t h r e e  ca se s  

v  /v = 27,125, and 512; a l l  o t h e r  parameters  remaining equa l .  I n  a l l  
max o  

c a s e s  t h e  r e l e v a n t  -3 /2  o r  -2 power law preva i l s ,  For Brownian motion 

t h e  r e s u l t s  f o r  v  /v0=125 and 512 a r e  i n d i s t i n g u i s h a b l e ,  wh i l e  those  
max 

f o r  t h e  s m a l l e s t  s i z e  range a r e  s l i g h t l y  h ighe r  a t  t h e  upper end of t h e  

s i z e  range.  For laminar  shea r  t h e r e  i s  a s l i g h t  bu t  c o n s i s t e n t  d e c l i n e  

i n  l e v e l  wi th  i n c r e a s i n g  s i z e  range.  This  r e f l e c t s  t h e  e x t e n t  t o  which 

t h e  s i z e  d i s t r i b u t i o n  i s  a f f e c t e d  by t h e  c o l l i s i o n s  of t h e  r e l a t i v e l y  

sma l l  number of l a r g e  p a r t i c l e s .  I n  laminar  shea r  t h e  c o l l i s i o n  func t ion  

i n c r e a s e s  w i th  t h e  volume of t h e  p a r t i c l e s  involved f a s t e r  t han  i n  Brownian 

coagu la t i on .  Work on t h e  e f f e c t s  of hydrodynamic i n t e r a c t i o n s  between 

p a r t i c l e s  on coagu la t i on  ( s e e  Adler ,  1981 f o r  most r e c e n t  s t udy )  sugges t s  

t h a t  they a c t  t o  reduce most t h e  c o l l i s i o n  r a t e  between p a r t i c l e s  of widely 

d i f f e r e n t  s i z e s .  Th i s  would probably r e s u l t  Bn weaker dependence of t h e  
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l e v e l  of t h e  s i z e  d i s t r i b u t i o n  ( t he  v a l u e  of a ) on t h e  s i z e  range 
s h  

covered by t h e  s imu la t i on .  Fu r the r  work, wi th  a more s o p h i s t i c a t e d  

s imu la t i on  inco rpo ra t i ng  hydrodynamic i n t e r a c t i o n s ,  w i l l  e l u c i d a t e  t h i s  

p o i n t .  

A consensus of t h e  s imu la t i ons  performed g i v e s  t h e  v a l u e s ,  

which a r e  c l o s e  t o  t h e  range of v a l u e s  found by Hunt (1980a) i n  h i s  exper i -  

ments.  Th i s  comparabi l i ty  of "cons tan ts"  i s  s t r i k i n g  and suppor t s  t h e  

gene ra l  v a l i d i t y  of t h e  s tudy .  

So f a r  a l l  t h e  r e s u l t s  have been f o r  s imu la t i ons  i n  which only one 

c o l l i s i o n  mechanism has  been p re sen t .  We now t u r n  t o  ca se s  where both 

Brownian motion and f l u i d  shea r ing  o p e r a t e .  A new normal iza t ion  of t h e  

s i z e  d i s t r i b u t i o n  and volume v a r i a b l e  i s  now requ i r ed  t o  c o l l a p s e  a l l  t h e  

d a t a .  Following Hunt (1980a) we d e f i n e  a  non-dimensional volume 

+ where R r e p r e s e n t s  t o r  1 . 7 2 ( c / v )  and K.,, i s  as be fo re .  Th i s  i s  such 
sh  

t h a t  t h e  c o l l i s i o n  r a t e s  due Brownian motion and shea r  a r e  equa l  f o r  

p a r t i c i e s  of s i z e  x , - - l .  Then if a normalized s i z e  d i s t r i b u t i o n  i s  

def ined by 

equa t ions  (3)  and ( 4 )  reduce t o  
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and 

n*(x) =' 

Results of three simulations each for laminar and turbulent shear 

with B r o ~ ~ ~ i a n  motion are plotted in this normalized form in Figure 12. 

Lines of slope -3/2 and -2 are plotted for comparison. There is some 

indication of a change in slope around x=1 but it is not conclusive. 

Also, the constants ab and a obtained from (lo), (13) and Figure 12 sh 

are the same (within statistical error) as those obtained from simulations 

with only one collision mechanis~ present, providing some support for the 

hypothesis of non-interference of mechanisms. 

5. DISCUSSION 

The main aims of this study have been: 

1. to study the feasibility of a Monte Carlo simulation of 

both the collision function, 5, and the coagulation 

equation, ( 2 ) ,  for the evolution of a population of 

particles to a steady state; 

2. the investigation of Hunt's (1980a,b) theory for the 

form of the resulting size distribution. 

The simulation method described has proved most successful in 

modeling the coagulating powers of both Brownian and bulk shearing 

mechanisms and the development of steady state size distributions. 

This is in spite of the relatively restricted range of particle sizes 

that can be followed in any one computer run and the somewhat artificial 

strategy of adding new unit particles at each time step. 



The results show that final steady state is rather insensitive to 

the size range covered, and that the size distribution at the upper end, 

(small particles), is not very disturbed by replacing the interactions 

of all small particles with the addition of unit particles at a constant 

rate. These observations are in accord with the striking success of 

dimensional analysis in predicting the observed size distributions. For 

dimensional analysis to be successful the dynamics of the coagulation 

process must be mainly "local" in size space so that further independent 

parameters (such as v and v ) are not important. We expect that 
o max 

accounting for hydrodynamic interactions between particles will decrease 

the dependence of the level of the size distribution, for given volume 

flux, in shear-induced coagulation. Notice that the evolving populations 

of particles start to exhibit the relevant power-law over much of their 

size distribution long before a steady state is reached. 

Hunt's further hypothesis that different collision mechanisms can act 

independently over separate size ranges has been partially c~nfimed. A 

slope of -3 /2  is not very different from one of -2 when there is scatter 

in the data! However, complete resolution of this point would require 

the simulation to cover a greater range of particle sizes. This is not 

feasible with the available computer storage. The perturbation analysis 

of van de Ven and Mason (1977), for the effect of weak shear on Brownian 

coagulation, suggests that when hydrodynamic interactions are considered 

the twc mechanisms may not be strictly additive. 

In conclusion it can be said that, while simple in concept, and using 

acceptaCle computer resources, the simulation method has provided useful 

elucidation of Hunt's hypotheses and experimental results under carefully 



controlled conditions. Further work on the technique to include hydro- 

dynamic interactions and gravitational settling is in progress. 
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APPEhTIX A 

RAETDOM NLWER GENERATION 

Each simiilaeion requires very many (-- lo6) random numbers fron both 

uniform and Gaussian distributions. A sequence of (pseudo-)random numbers 

distributed uniformly on the interval (0,1), denoted URX', are generated by 

the standard congruence method described in Abramowitz and Stegun (1964), 

526.8 (henceforth referred to as AS). These random variates can then be 

scaled to any required uniform distribution. Random variates with Gaussian 

distribution are generated from URK by various algebraic manipulations and 

employing a 6 constant rational function approximation to the inverse of 

the Gaussian cumulative distribution function. Details are given in AS 

526.2.23 and 526.1, The variates so computed are then scaled to the 

required variance. mile the rest of the computer code is in FORTRM 

the random number generator is mitten in assembler language, for 

efficient programming of the algorithm. 



The random number g e n e r a t o r  p roduces  a  r e p e a t i n g  sequence of v a r i a t e s  

whose maximum c y c l e  l e n g t h  is  r e s t r i c t e d  t o  32,768 because  t h e  computer 

used (PDP 11/60)  i s  a  1 6 - b i t  machine. To a v o i d  p o s s i b l e  problems w i t h  

t h e  f i n i t e  r e p e t i t i o n  t ime  of t h e  UFC? t h e  sequence i s  r e s t a r t e d  w i t h  a  

randomly g e n e r a t e d  seed  number f o r  each  b l o c k  of random numbers. The 

randor '  seed  i s  g e n e r a t e d  u s i n g  an  independent  URX g e n e r a t o r  and t h e  

c o n p u t e r ' s  i n t e r n a l  c l o c k .  T h i s  g u a r a n t e e s  d i f f e r e n t  sequences  of randox 

v a r i a t e s  even i f  t h e  same program i s  r e r u n .  Each b l o c k  of random v a r i a t e s  

i s  a  sma l l  f r a c t i o n  of t h e  whole c y c l e .  

I n  t h e  s i m u l a t i o n  of l a m i n a r  s h e a r i n g  mot ions ,  p a r t i c l e s  l e a v i n g  t h e  

box must 5 e  r e p l a c e d  on t h e  o t h e r  s i d e  w i t h  a  v e r t i c a l  c o o r d i n a t e  ( P  ) 
3 

whose p r o b a b i l i t y  d i s t r i b u t i o n  r e f l e c t s  t h e  d i f f e r i n g  f l u x e s  of p a r t i c l e s  

f r o n  t h e  box a t  d i f f e r e n t  h e i g h t s .  T h i s  f l u x  i s  p r o p o r t i o n a l  t o  P and a 
3 

UF," v z r i a r e  may be conver ted  t o  t h i s  l i n e a r  p . d . f .  by t a k i n g  i t s  square - roo t  

F I K I T E  STEPLENGTH AND COLLISION RATE I X  BROi~T1A.K MOTIOK 

The t h e o r e t i c a l  s o l l i s i o n  f u n c t i o n ,  i3, f o r  Brownian induced c o l l i s i o n s  

between p a r t i c l e s  o f  r a d i i  r and r g i v e n  i n  Tab le  1 was computed ( s e e  e . g .  
i j 

Cliartdrasekhar, 1949) by s o l v i n g  a  d i f f u s i o n  e q u a t i o n  f o r  t h e  p a i r  d i s t r i b u -  

t i o n  f u n c t i o n ,  w ( s ) ,  where s i s  t h e  d i s t a n c e  between t h e  p a r t i c l e s .  I n  

p a r t l r u l a r ,  t h e  c o l l i s i o n  furhct:.on i s  g i v e n  by t h e  a s y m p t o t i c  f l u x  t o  t h e  

surface of ;a f i x e d  s p h e r e  o f  r a d i u s  o = r  + r  , w i t h  a t o t a l  d i f f u s i v i t y  
i j 

D = D i + D  The "concen t ra t ion" ,  w, i s  h e l d  a t  z e r o  a t  s=a and u n i t  a t  s==. 
3 

I n i t i a l l y ,  v i s  uniform o u t s i d e  t h e  s p h e r e .  Then a t  l a r g e  t i m e s  t h e  p a i r  

Zistribution f u n c t i o n  i s  g i v e n  by 



whence t h e  r e q u i r e d  r e s u l t :  

I f  t h e  a c t u a l  p a i r  d i s t r i b u t i o n  f u n c t i o n  i n  t h e  f i n i t e  s t e p l e n g t h  

s i m u l a t i o n  was i d e n t i c a l  t o  t h a t  i n  ( A . l ) ,  t h e n  t h e  c o l l i s i o n  r a t e  

measured would be  no l a r g e r  t h a n  one-half  o f  t h a t  i n  ( A . 2 ) ,  however s m a l l  

t h e  s t e p l e n g t h .  T h i s  r e s u l t  can be o b t a i n e d  e i t h e r  by c a r e f u l  e v a l u a t i o n  

of t h e  expec ted  c o l l i s i o n  p r o b a b i l i t y  from t h e  a l g o r i t h m s  used f o r  

g e n e r a t i n g  p a r t i c l e  d i s p l a c e m e n t s  and d e t e c t i n g  c o l l i s i o n s ,  o r  by t h e  

f o l l o w i n g  s i m p l e  argument.  I n  t h e  l i m i t  of Cx << a ,  i . e . ,  v e r y  s m a l l  r . m . s  

s t e p l e n g t h ,  b u t  s t i l l  w i t h  C t  >>  t two p a r t i c l e s  must b e  s o  c l o s e  a t  t h e  
r ' 

b e g i n n i n g  of t h e  t ime  s t e p  i n  which t h e y  c o l l i d e  t h a t  t h e  c u r v a t u r e  of 

t h e i r  s u r f a c e s  may be  n e g l e c t e d .  The problem t h e n  r e d u c e s  t o  t h a t  of t h e  

c o l l i s i o n  of a  d i f f u s i n g  p o i n t  w i t h  an  a d s o r b i n g  p l a n e  and we need o n l y  

c o n s i d e r  t h e  component of t h e  random walk p e r p e n d i c u l a r  t o  t h e  p l a n e .  

Cons ider  now t h i s  one-dimensional problem. The p a r t i c l e  i s  judged 

t o  have c o l l i d e d  w i t h  t h e  p l a n e  i f  i t s  f i n a l  p o s i t i o n  i s  on t h e  f a r  s i d e  

of t h e  p l a n e .  For any g i v e n  f i n a l  p o s i t i o n  on t h e  f a r  s i d e  of t h e  p l a n e  

t h e r e  i s  a  whole c l a s s  of p o s s i b l e  Brownian t r a j e c t o r i e s  l e a d i n g  t o  i t .  

Now each  of t h e s e  t r a j e c t o r i e s  must c r o s s  t h e  p l a n e  f o r  t h e  f i r s t  t ime  

st some p o i n t .  There  w i l l  b e  a n  a s s o c i a t e d  t r a j e c t o r y  d e f i n e d  t o  be  

i d e n t i c a l  w i t h  t h e  o r i g i n a l  u n t i l  t h e  firs: c o n t a c t  w i t h  t h e  a d s o r b i n g  

p l a n e  and t h e n  t h e  m i r r o r  image, i n  t h e  p l a n e ,  of t h e  o r i g i n a l .  A s  t h e  

end-point  of t h i s  a s s o c i a t e d  t r a j e c t o r y  l i e s  on t h e  n e a r  s i d e  o f  t h e  p l a n e  

i t  would n o t  be  judged a c o l l i s i o n  by t h e  c o l l i s i o n  a l g o r i t h m .  Hence t h e  

50 p e r  c e n t  i n e f f i c i e n c y .  



However, f o r  t h e  same r e a s o n ,  t h e  p a i r  d i s t r i b u t i o n  f u n c t i o n  w i l l  

n o t  b e  i d e n t i c a l  i n  t h e  t h e o r e t i c a l  and s i m u l a t e d  c a s e s .  I n  t h e  f i n i t e  

s t e p l e n g t h  c a s e ,  w w i l l  be  l a r g e r  w i t h i n  a  d i s t a n c e  of o r d e r  Cx of s=:. 

T h i s  can compensate f o r  t h e  b a s i c  i n e f f i c i e n c y  of t h e  c o l l i s i o n  a l g o r i t h m .  

The a c t u a l  form of w f o r  a g i v e n  d i s t r i b u t i o n  of s t e p l e n g t h s  and hence t h e  

c o l l i s i o n  f u n c t i o n  cou ld  be  computed by s o l v i n g  t h e  r e l e v a n t  i n t e g r a l  

e q u a t i o n .  T h i s  h a s  n o t  been done a s  y e t ,  b u t  t h e  non-coagula t ing  form of 

t h e  s i m u l a t i o n  h a s  been used t o  de te rmine  t h e  c o l l i s i o n  r a t e  f o r  a  mono- 

d i s p e r s e  p o p u l a t i o n  of p a r t i c l e s  a s  a  f u n c t i o n  of t h e  mean s t e p l e n g t h .  The 

r e s u l t s  of t h i s  "exper imenta l "  d e t e r m i n a t i o n  a r e  shown i n  F i g u r e  5 .  The 

r a t i o  of measured c o l l i s i o n  r a t e  t o  t h a t  p r e d i c t e d  from (A.2) i s  p l o t t e d  

a g a i n s t  t h e  r a t i o  of r . m . s .  d i sp lacement  i n  any d i r e c t i o n ,  bx, and t h e  

p a r t i c l e  r a d i u s  r .  The r a t i o  i s  u n i t y  f o r  Ox/r abou t  0.6 and s o  t x  i s  

chosen a c c o r d i n g l y  i n  a l l  the c o a g u l a t i o n  s i m u l a t i o n s .  
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APPENDIX B 

C MAIN PROGRAM FOR THE MONTE-CARL0 SIMULATION OF PARTICLE 
C COAGULATION (REF: PEARSON, VALIOULIS AND LIST,  1 9 8 3 ,  AND 
C VALIOULIS' PH.D. THESIS, CHAPTER I). 
C BROWNIAN DIFFUSION, LAMINAR SHEAR AND DIFFERm7TIAL SEDIMENTATION 
C INDUCED PARTICLE COLLISIONS. THE PROGRAM INCLUDES HYDRODYNAMIC 
C INTERACTIONS FOR SEDIMENTING PARTICLES. 
C 
C THE COMPUTER CODE I S  ADAPTED FOR CALTECH'S IBM 3 7 0 / 3 0 3 2 ,  
C 
C APTS: NUMBER OF PARTICLES ADDED PER TIME-STEP 
C Dl,DZ,D3: PARTICLE DISPLACEMENTS 
C DIFF: DIFFUSIVITY FOR MONOMER 
C DSK: DIFFERENTIAL SEDIMENTATION PARAMETER 
C DT: TINE STEP 
C GA: STRAIN RATE 
C JCOLL: NUMEER OF COLLISIONS 
C J S R ( 1 ) :  NUMBER OF INTEGRAL MULTIPLES 
C K B ~ ( I ) , K B ~ ( I ) , K B ~ ( I ) :  INTEGERS DEFINING THE SUB-CELL OF PARTICLE I 
C L l , L 2 , L 3 :  NUMBER OF SUB-CELLS 
C N : NUMBER OF PARTICLES 
C NDT: TIHE INTERVALS FOR OUTPUT 
C NT: TOTAL NUMBER OF TIME-STEPS 
C P l , P 2 , P 3 :  PARTICLE POSITIONS 
C R: RADIUS OF MONOMER 
C RMAX: RADIUS OF LARGEST PARTICLE 
C u L ( I )  : DIMENSIONS OF CONTROL VOLUME 
C VOL: CONTROL VOLUME 
c XR(I) : RADIUS OF AGGREGATE CONSISTING OF I MONOMERS 
C 

REAL*4 JSR,JCOLL 
C O ~ O N / P A R T /  ~ 1 ( 1 0 0 0 ) , ~ 2 ( 1 0 0 0 ) , D 3 ( 1 0 8 0 ) ~ P 1 ~ 1 0 0 0 ) , P 2 ( 1 O O O ) ~  

t P 3 ( 1 0 0 0 )  , ~ B l ( l 0 0 0 )  , ~ ~ 2 ( 1 0 0 0 )  , W 3 3 ~ 1 0 0 0 )  , X ( l O O O ) ,  
* J S R ( ~ O O >  ,UL(3> ,BL(3) ,NUM 

COMMON/VALI/ N,R,DT,JCOLL,GA,ANF,W,Ll,L2,L3,DSR,DX,~ICRO 
COMMON /FLAG / KFLAG 

C*** DEFINE CONSTANTS 
EPI=2.51327E+Ol 
KR2 =O 
KR3=0 
KR4=0 
KR5=0 
NUM=456 7 8 9  



C*** CHECK INPUT MODE: TERMINAL, FILE OR RERUN, 
READ(5,81) KFLAG 

81 FORMAT(I~) 
IF(KFLAG.NE.O) GO TO 7 
READ(5,8,ERR=99) N,R,DIFF,GA,DT,NT,NDT,APTS,RMAX,RMICRO 

8 FORMT(I3,4F6.4,214,2F5.2,F5.1) 
READ(~,~~,ERR=~~) DSK,MEFF 

10 FORMAT(F~.~,IZ) 
READ(5 ,13 ,ERR=~~)uL(~) ,uL(~) ,uL(~) ,Ll ,L2 ,L3 

13 FoRMAT(~F~.~,~I~) 
RMAX=R*RMAX 
DX=SQRT(~.*DIFF*DT) 
GO TO 16 

C*** INPUT DATA FOR RERUN 
7 CALL PAREAD 

READ(~,~~,ERR=~~) GA,DSK,RMICRO,MEFF 
11 ~0RMA~(2~6.4,~6.2,12) 

READ(~,~~,ERR=~~) NT,NDT,APTS,RMAX 
15 FoRMAT(~I~,~F~.~) 

~ ~ ~ ~ ( 5 , 1 5 2 , ~ ~ = 9 9 )  Ll,L2,L3 
152 FORMAT(~I~) 

RMAX=R*RMCYI 
DX=SQRT(2.*DT*DIFF) 

* *  COMPUTE DERIVED PARAMETERS 
16 VOL=UL(~~*VL(~~*UL(~~ 

XN C=N / VOL 
FT=DT 
ESPAC=EXP(-ALOG(XNC)/3.) 
s PACR= ES PAC /R 
FTAU=N T*FT 
DFR=DX/R 

C *  OUTPUT PARAMETERS OF RUN AND INITIALISE 
wRITE(~,~~)VOL,N,R,DIFF,GA~DSK,NT,NDT 

18 FORMAT(' VOL ',~10.4,' N ',I4,' RAD ',F10,4,' DIFF ', 
* ~10.4,' GA ',F10.4,' DSK ',~10.4,' NT ',IS,' NDT ',14) 

WRITE(~,~~)DT,APTS 
19 FORMAT(' DT ',E10.4,' APTS ',~8.4) 

WRITE(~,~~)XNC,SPACR,FTAU,DFR 
20 FORMAT(' NCONC ',~10.4,' SPACR ',~10,4,' FTAU ',E10.4, * ' DFR ',E10.4) 

CALL IN IT3 
IN=O 
JCOLL-0 . 
ISTEP=O 
CALL CCOLL~(LN,MEFF,KR~,KR~~KR~,KR~,ISTEP) 
IN=l 



 WRITE(^,^^) BL(1) ,BL(2) ,BL(3) ,RMAX 
21 FORMAT(' BLENG ' ,3(2X,E10.4) ,' RMAX ',~8.4) 

WRITE (1,221 JCOLL 
22 FORMAT(' INITIAL COLLS ',F8.0/) 

WR1~~(1,25) RMICRO 
25 FORMAT(' RMICRO=',F8.2) 

JCOLL=O . 
N IN IT=N 

C*** MAIN LOOP 
DO 1 I=l,NT 

C*** COMPUTE GRAVITY INDUCED DISPLACEMENT 
CALL DIFSED 
IF(DX.LE.O.1E-05) GO TO 261 

C*** GWERATE RANDOM D1SPLACEMFS;ITS 
CALL DISPG(D~ ,XR,R,N,DX,NUM) 
CALL DIsPG(D~,XR,R,N,DX,NUM) 
CALL DIsPG(D~,XR,R,N,DX,NUM) 

C*** COMPUTE SHEAR INDUCED DISPLACEMENT 
26 1 IF(GA.LE.O.1E-05) GO TO 262 

CALL SHDISP 
C*** CHECK FOR COLLISIONS 
26 2 CALL CCOLL~(LN,MEFF,KR~,KR~,KR~,KR~,I) 
C *  UPDATE POSITIONS AND BOX-NUMBERS 

CALL U P D A T E ( A P T S , I , M E F F , K R ~ , ~ ~ ~ ~ ~ , ~ ~ )  
e m ,  SZBEST(I,FT,NDT,NF) 

1 CONTINUE 
C*** COMPUTE FINAL STATISTICS 

TV=APTS% T+N IN IT 
XN L=TV- JCOLL-NF 
FV=TV-XNL*(RMAX/R)**3 
FVOLC=FV*EPI*(R**~)/(~.*VOL) 
IF(TIM.LE.O .O) TIM=TIM+86400. 

C*** PRINT FINAL RESULTS 
IF(APTS. LT. 1. )  WRITE(^ ,241 

24 FORMAT(//' FVOLC IN ERROR') 
WRITE(1,23)JCOLL,TIMsFVOLC 

23 FORMAT(/' NCOLL ',F10.0,' RTIME ',F10.0,' FVOLC ',E12.4//) 
WR1~~(1,251) KR2,KR3,KR4,KR5 

251 FORMAT(/' TIME STEPS FOR REMOVAL: KR2',14,' KR3',14,' KR~', 
* 14,' KR5',14) 

99 STOP 
W D  



C .................................................................... 
C ROUTINE TO DETERMINE WHETHER GIVEN PARTICLES HAVE COLLIDED 
C CALLS COAG 
C 
C 

SUBROUTINE MCOLL~(I~,I~,IN,MEFF,RR~,KR~,KR~,RR~,ISTEP) 
REAL*4 JSR,DT,JCOLL 
COMMON/PART/ ~l(1000) ,D2(1000) ,D3(1000) ,~1(1000) ,~2(1000) , * ~3(1000) ,~~l(l000) ,~~2(1000) ,~~3(1000) ,XR(lOOO) 

* JSR(l00) ,UL(3) ,BL(3> ,NUM 
COMMON/VALI/ N,R,DT,JCOLL,GA,ANF,RMAX,Ll,L2,L3,DSK,DX,RMICRO 
DIMENSION ~ ~ ( 3 1  ,RP(3) 

C*** COMPUTE COLLISION CROS S-SECTION 
SIG~=(XR(I~)+XR(I~))**~ 
IF(IN.EQ.O) GO TO 12 
XR~=XR(II)*RMICRO 
XR2=XR(I2)*RMICRO 
IF(XR~.GE.XR~) GO TO 14 
A=XR1 
PR=XR~ /XRl 
GO TO 13 

14 A=XR2 
PR=XRl/XR2 

13 ~ 0 = 0 . 9 ~ - ( 0 , 7 - 0 , 0 0 5 * ~ ) * * 4 * ( ? ~ 9 ~ - 0 ~ 2 * A ~ * * ~ )  
E~=-(PR-O,~)**~ 
E~=-~.~*EXP(-(O.OO~~*A**~+~.)*PR) 
~3=-( 1 .-0 .~O~*A)*EXP (-0 -6 5*A*( 1 *-PR) ) 
E~=ExP(-~O.*(~.-PR)) 
IF(A.LT.~~.) E4=0. 
EFF=EO+El+E2+E3+E4 
IF(EFF.LT.O.O) EFF=O. 
SIGl=SIG2*EFF 

C*** CHECK FOR WRAP-AROUND 
SHX-0, 
SHY=O . 
SHZ=O . 
LDX=KB~(I~)-KB~(~~) 
IF(IABS(LDX).LE.~) GO TO 3 



SHX=SIGN(UL(~),FLOAT(LDX)) 
3 LDY=KB~(I~)-~~z(I.21 

IF(IABS(LDY).LE.~) GO TO 5 
SHY-SIGN(UL(~),FLOAT(LDY)) 

5 LDZ=KB3(11)-KB3(12) 
IF(IABS(LDZ).LE.I) GO TO 4 
SHZ=SIGN(UL(~) ,FLOAT(LDZ) ) 

4 Pl(I2)=Pl(I2)+SHx 
~2(12)=P2(12)+SH~ 
P3(12)=P3(12)+SHZ 
D~(I~)=D~(I~)+GA*DT*sHZ 

C*** CHECK FOR COLLISION 
IF(IN.NE.O) GO TO 11 

12 Dl(Il)=O.O 
~2(11)=0.0 
~3(11)=0.0 
~1(12)=0.0 
~2(12)=0.0 
~3(13)=0.0 

11 RD(l)=Dl(I2)-Dl(Il) 
~~(2)=~2(12)-~2(11) 
RD(~)=D~(I~)-D~(I~) 
~P(l)=P1(11)-Pl(I2) 
RP(2)=P2(11)-P2(12) 
~P(3j=P3(iIj-P3(12) 
RD~=RD(~)**~+RD(~)**~+RD(~)**~ 
RP~=RP(~)**~+RP(~)**~+RP(~)**~ 
IF(IN.EQ.O) GO TO 10 
DDOTP=RD(~)*RP(I)+RD(~)*RP(~)+RD(~)*RP(~) 
IF(DDOTP.LT.O.OE+OO)GO TO 1 
IF(RD~.LE.O.OE+OO) GO TO 1 
IF((RP~-DDoTP**~/RD~).GT.SIG~) GO TO 1 
IF(RD2.GE.DDOTP) GO TO 2 
IF((RP2+RD2-2.*DDOTP).GT.SIGl) GO TO 1 

2 CALL COAG(I~ ,I~,KR~,RR~,KR~,KR~,IsTEP) 
GO TO 6 

1 Pl(I2)=Pl(I2)-SHX 
P2(12)=P2(12)-SHY 
P3(12)=P3(12)-SHZ 
D~(I~)=D~(I~)-GA*DT*sEz 

6 RETURN 
10 IF(RP~.GT.SIG~) GO TO 6 

CALL PINiT(I2,IN) 
JCOLL=JCOLL+l . 
GO TO 6 
EXD 



..................................................................... 
C FINDS AND COUNTS COIIISIONS 
C 

SUBROUTINE CCOLL3(IN,MEFF,KR2,KR3,KR4,KR5,ISTEP) 
REAL*4 JSR,JCOLL 
COMMON/PART/ ~l(1000) ,~2(1000) ,~3( 1000) ,~1(1000) ,~2(1000), 

ik ~3(1000) ,KBl(lOOO) ,KB2(1000) ,KB3(1000) ,XR(lOOO), 
* JSR(lO0) ,UL(3) ,BL(3) ,NUM 

COMMON/VALI/ N,R,DT,JCOLL,GA,ANF,RMAX,Ll,L2,L3,DSR,DX,RMICRO 
N 1=N-1 
Lll=Ll-1 
L22=L2-1 
L33=L3-1 
DO 100 LI=1 ,N1 
I X ~ = K B ~  (LI) 
IY~=KB~(LI) 
IzI=KB~(LI) 
LIP=LI+l 
DO 1 LT=LIP,N 

C*** CHECK FOR NULL PARTICLES 
IF(KB~(LI).EQ.~) GO TO 100 
IF(KBI(LT).EQ.~) GO TO 1 

C*** TEST FOR ADJACENT BOX-NUMBERS 
IDX=IABS(IX~-KB~(LT)) 
IF(ICX.EQ.L~~) IDX=l 
IF(IDX.GT.~) GO TO 1 
IDY=IABS(IY~-KB~(LT)) 
IF(IDY.EQ.L~~) IDY=l 
IF(IDY.GT.~) GO TO 1 
IDZ=IABS(IZ~-KB~ (LT) ) 
IF(IDZ.EQ.L~~) IDZ=l 
IF(IDZ.GT.~) GO TO 1 
CALL MCOLL~(LI,LT,IN,~FF,KR~,KR~,KR~,KR~,ISTEP) 

1 CONTINUE 
100 CONTINUE 

RETURN 
END 

C ..................................................................... 
C INITIALISES POSITIONS AND/OR BOX NUMBERS 
C 

SUBROUTINE IN IT3 
REAL*4 JSR,JCOLL 
COY&ON/PART/ ~1(1000),~2(1000),~3(1000),~1(1000),~2(1000), 

* P3(1000) ,KBl(lOOO) ,KB2(1000) ,KB3(1000) ,XR(lOOO), 
* ~ ~ ~ ( 1 0 0 )  ,uL(~) ,BL(~) ,NUM 

CO~OM/VALI/ N,R,DT,JCOLL,GA,ANF,RMAX,Ll,L2,L3,DSK,DX,RMICRO 
COMMON /FLAG / KFLAG 



C*** COMPUTE BOX DIMENSIONS 
BL(l)=uL(l) IFLOAT(L1) 
BL(~)=uL(~)/FLOAT(L~) 
BL(~)=uL(~) /FLOAT(L3) 
IF(KFLAG.EQ.I) GO TO 3 
DO 1 1=1 ,N 
NUM=NUM*65539 
IF(NuM. LT.0) NUM=NUM+2147483647+1 
URN=NUbf*O .465661E-9 
pl(I)=u~(l)*uRN 
NUM=NUM*6 5 53 9 
IF(NUM, LT.0) NUM=NUM+2147483647+1 
URN=NUM*O -46 566 1E-9 
P2(1)=UL(2)WRN 
NUM=NUM*65539 
IF(NUM. LT.0) NUM=NUM+2147483647+1 
URN=NUM*0,465661E-9 
P3(1)=UL(3)*URN 
XR(I)=R 

1 CONTINUE 
3 DO 2 I=1,100 
2 JSR(I)=O. 

ANF-0 ,E+OO 
Do 4 I=1 ,N 
KB~(I>=~+INT(P~(I>/BL(IZ~ 
IF(XR(I).LE.~.E-07) KB~(I)=O 
KB~(I)=~+INT(PZ(I)/BL(~)) 
K I B ~ ( I ) = ~ + I N T ( P ~ ( I ) / B L ( ~ ) )  

4 CONTINUE 
RETURN 
END 

C 
..................................................................... 

C GENERATES GAUSSIAN RANDOM DISPLACEMENTS 
C 

SUBROUTINE DISPG(D,XR,R,N,DX,NUM) 
DIrnSION D(1000) ,XR( 1000) 
DO 1 1=1 ,N 
IF(xR(I).LT.~.E-09) GO TO 1 
CALL GRAN(RN,NUM) 
D(I)=DX*SQRT(R/XR(I))*RN+D(I) 

1 CONTINUE 
RETURN 
END 



................................................................... 
SUBROUTINE DIFSED 
REAL*4 JSR,JCOLL 
COMMON/PART/ ~1(1000),~2(1000),D3(1000),~1(1000),P2(1000), 

f P3(1000> ,KB~ (1000) ,KB2(1000) ,~~3(1000) ,XR(lOOO), * JSR(~OO),UL(~),BL(~),NUM 
COMMON/VALI/ N,R,DT, JCOLL,GA,A&F,RMAX,Ll,L2,L3,DSK,DX,RMICRO 
DO 1 I=l,N 
IF(KB~(I).EQ.O.O) GO TO 1 
D~(I)=-(~./~.)*xR(I)**~*DSK*DT+D~(I) 
Dl(I)=O.O 
D2(1)=0.0 

1 CONTINUE 
RETURN 
END 

C 
..................................................................... 

C GENERATES STANDARD N O W L Y  DISTRIBUTED RANDOM NUMBERS 
C USING I AS SEED, RANDOM NUMBER IS X N .  
C 

SUBROUTINE GU (XN ,NUM) 
DATA CO,C~,C~,D~,D~,D~/ 2.515517,0.802853,.010328,1.432788, 

ji .189269, .001308/ 
NUM=NUM*6 553 9 
IF(NUM. LT.0) NUX=NUM+2147483647+i 
VUd-NUN*O .46 566 1E-9 
XK=UW-O,5EOO * 

IF(ABS(~).LE.I.E-O~> GO TO 2 
T=SQRT(-AEC#;(~*~)) 
XNT=T-(cO+T*(CL+C~*T))/(~.+T*(DI+T*(D~+T*D~))) 

1 ~ = s I G N ( ~ T , ~ )  
RETURN 

2 XBT=3.719124 
GO TO 1 
END 

C ..................................................................... 
C COAGULATES PARTICLES 
C 

SUBROUTINE COAG(I~,I~,KR~,KR~,KR~,KR~,ISTEP) 
REAL*4 JSR,JCOLL 
CO-WON/PAI~T/ ~1(1000),~2(1000),~3(1000),~1(1000),P2(1000), * P3(1000) ,~~l(l000) ,~~2(1O00) ,~~3(1000) ,XR(lOOO), 

* ~SR(100) ,UL(3) ,BL(3) ,NUM 
COM~IOH/V~~I/ N,R,DT,JCOLL,GA,ANF,RMAX,L12L2,L3,DSK,DX,RMICR0 

C*** UPDATE TOTAL NUMBER OF COLLISIONS 
JCOLL=JCOLL+l. 



C*** COMPUTE RADIUS OF AGGREGATE 
R3=XR(I1)**3+XR(I2)**3 
XR(I~)=EXP(ALOG(R~)/~.E+OO) 
IF(KR5.NE.O) GO TO 15 
IF(KR4.NE.O) GO TO 16 
IF(KR3.NE.O) GO TO 17 
IF(KR~.NE.O) GO TO 18 
IF(XR(I~).GE,~.*R) KR2=ISTEP 
GO TO 15 

18 IF(XR(I1) .GE.~.*R) KR3=ISTEP 
GO TO 15 

17 IF(XR(I1) .GE.~.*R) KR4=ISTEP 
GO TO 15 

16 IF(XR(I~).GE.~.*R) KR5=ISTEP 
C*** CHECK FOR AND REMOVE LARGE PARTICLE 
15 IF(XR(I~).LT.RMAX) GO TO 1 

x~(11)=0.0~-10 
KB~(II)=O 
KBZ(I~)=O 
KBS(Il)=O 

C*** ZERO PARTICLE 
1 XR(IZ)=O.OE-10 

KBl(I2)=0 
KB2(I2)=0 
K B ~  (r2j=O 
RETERN 
E 3 D  

C 
C* f * * t * * t t *~Q&C~~~Qt~~ t%* * * f . k3 (3 ; * *4 *4 f * * * * * * * * * * * * * * * * * * * * *4 * * * *~ * * * * *  

C CALCULATES SIZE DISTRIBUTION AS FUNCTION OF RADIUS 
C 

SUBROUTINE SZDIST(IT, FT,NDT,NF) 
REAL*4 JSR,  JCOkk 
COMMON/PART/ Dl(lQO0) ,D2(1000) ,~3(1000) ,P1(1000) ,P2(1000) 

* PS( 1000) ,~~1(1000) ,KB2(1000) ,~~3(1000) ,~R(1060), * JSR(~~O),UL(~>,BL(~),NUM 
COMMON/\T~~I/ N,R,DT,JCOLL,GA,ANF,RMAX5L1,L2,L3,DSK,DX,RM1CRO 
N F=O 
JM=O 
DO 2 I=l,1J 
IF(KB~(I),EQ.O? GO TO 2 
IM= I 
N F=N F+ 1 
J R = ~ T ( ~ - E - O ~ + ( ~ ( E ) / R ) * * ~ )  
JM=MAXO( JR, JM) 
IF(JR.GT,HOO) 60 TO 2 
JSR(JR)=JSR(JR)+~, 

2 CONTINUE 



N=IW 
AN F=AN F+NF 
IF(IT-NDT*INT(FLOAT(IT) /FLOAT(NDT)+~ .E-0) N O  GO TO 3 
DO 4 I=1,100 

4 JSR(I)=JSR(I)/NDT 
ANF=AN F/NDT 
CALL SZDOUT(IT,FT,NF,JM) 
DO 5 I=1,100 

5 JSR(I)=O. 
ANF=O .OE+OO 

3 RETURN 
END 

..................................................................... 

C OUTPUTS SIZE DISTRIBUTION 
C 

SUBROUTINE SZDOUT(IT,FT,NF,JM) 
REAL*4 JSR,JCOLL 
COKMON/PART/ ~1(1000),~2(1000),~3(1000) ,~1(1000),~2(1000), 

.fc P3(1000) ,KBl (1000) ,~~2(1000) ,~~3(1000) ,XR(l000), 
j, JSR(l00) ,UL(3) ,BL(3) ,NUM 

CO~OM/VALI/ N,R,DT,JCOLL,GA,ANF,RMAX,L1,L2,L3,DSK9DX,RMICR0 
RTIrn=IT*FT 
 WRITE(^,^^) RTIm,JCOLL,N,NF,ANF,JM,JSR 

20 FORMAT(//,' TIm=",~i0.4,' NCOLL=',F$.~,' N=',14, * C E?F=',I~,' AN2'=',~6.1,' BPAY=',I~,/~/,(?OF~.~)) 
C*** OUTPUT INT  DIATE DATA FOR POSSIBLE RERUN 

R m m D  3 
WRITE (~)N,uL,R,DT,DX,P~,P~,P~,XR 
RE597RPT 
END 

C 
..................................................................... 

C ADDS NEW PARTICLES 
C 

SUBROUT~E PADD(APTS) 
REA.L*4 JSR,JCOLL 
COMMON/PMT/ ~1(1000),~2(1000),~3(1000) ,P1(1000)9P2(1000), 

* P ~ ( ~ ~ O O ) , K B ~ ( ~ O O O ) , K B ~ ( ~ ~ O O ) , K B ~ ( ~ ~ O O ) , X ~ ~ O O O ~ ,  
* JSR(lOO),UL(3),BL(3),NUM 

COMMON/V&I/ N,R,DT,JCOLL,GAsANF,RMAX,L1,L2,L3,DSK,DX,RM1CRO 
IF(APTS.GE.I.) GO TO 1 
NUM=NUM*S 5 53 9 
IF(NUM. LT. 0) MUM=NUM+2%47483647+1 
URN=NUM*0 .46 5661E-9 
IF(URN.GT.APTS) GO TO 3 
NADD=l 
GO TO 4 

1 NADWINT(APTS+~ .E-04) 
4 J=O 

m=1 
DO 2 P=l,M 
IF(KBI(I).NE.~) GO TO 2 



CALL PINIT(I,IN) 
J= J+ 1 
IF(J,EQ,NADD) GO TO 3 

2 CONTINUE 
NN=N+NADD- J 
IF(MN.GT.~OO~) GO TO 5 
Nl=N+l 
DO 6 I=N1 ,NN 

6 CALL PINIT(1,IN) 
N=NM 

3 RETURN 
5  WRITE(^,^) 
7 FORMAT(//' STOPPING BECAUSE N>l000') 

STOP 
EN D 

..................................................................... 

C INITIALISES PARTICLE 
C 

SUBROUTINE PIN IT(I, IN 1 
REAL*4 JSR,JCOLL 
COKLMON/PART/ ~l(1000) ,D~(~OOO) ,~3(1000) ,~1(1000) ,~2(1000), 

-k ~3(1000) ,~~l(loO~) ,~~2(1000) ,~~3(1000) ,XR(lOOO), 
* ~ ~ ~ ( 1 0 0 )  ,uL(~> ,BL(~) ,NUM 

COMMON/VALI/ N,R,DT,JCOLL,GA,mF,RMAX,Ll,L2,L3,DSK,DX,RMICRO 
NUM=NUM*6 553 9 
IF (NUM. LT. 0) NUM=MUH+2147483647+1 
URN=NUM*O .46 566l.E-9 
Pl(~)=uL(l)*Um 
NUM=NUM*65539 
IF(NuM.LT.O) NUM=NUM+2147483647+1 
URN=NUM*O. 46 56 6 1 E-9 
P~(I)=uL(~)*uRN 
NUM=NUM*6553 9 
IF (NUM. LT. 0) NUPl=NUM+2147483647+r 
URN=NUM*O -46 5661E-9 
P~(I)=UL(~)*URN 
KB~(I)=~+INT(P~(I)/BL(~)) 
KB~(I)=~+INT(P~(I)/BL(~)) 
KB~(I)=~+II?T(P~(I) /BL(~)) 
IF(IN.NE.O) XR(I)=R 
RETURN 
EX4 D 



..................................................................... 

C READS STORED RESULTS 
C 

SUBROUTINE PAREAD 
REAL*4 JSR,JCOLL 
COMMON/PART/ ~1(1000),~2(1000),~3(1000),P1(1000),P2(1000), * P3(1000) ,KB~ (1000) ,K~2(1000) ,KB3 (1000) ,XR(lOOO), * JSR(lO0) ,UL(3) ,BL(3) ,NUM 
COMMON/VALI/ N,R,DT,JCOLL,GA,ANF,RMAX,Ll,L2,L3,DSK,DX,RMICRO 
REWIND 2 
READ(~)N,uL,R,DT,DIFF,P~,P~,P~,XR 
RETURN 
END ..................................................................... 

C COMPUTES SHEAR INDUCED DISPLACEMENT 
C 

SUBROUTINE SHDISP 
REAL*4 JSR,JCOLL 
COMMON/PART/ ~l(1000) ,~2(1000) ,D3(1000) ,~1.(1000) ,~2(1000), 

* P3(1000) ,K~l(l000) ,~~2(1000) $~~3(1000) ,X(lOOO), 
* JSR(lOO),ULl,UL2,UL3,BLl,Bk2,BL3,NUM 

CO~ON/VALI/ N,R,DT,JCOLL,GA,ANF,RMAX,Ll,L2,L3,DSK,DX,RMICRO 
DO 1 1=1 ,N 
IF(KB~(I).EQ.~) GO TO 1 
D~(I>=E~(X)+ET~E~A*(P~(I)+~.~*D~(I) ) 

1 CONTINUE 
RETURN 
END 

..................................................................... 

C UPDATES POSITIONS AND BOX-NUMBERS 
C 

SUBROUTINE UPDATE(APTS,IT,MEFF,KR~,KR~,KR~,RR~) 
REAL*4 JSR,JCOLL 
CoMMON/PART/ Dl(1000) ,~2(1000) ,~3(1000) ,~1(1000) I~2(1000) * ~3(1000) ,K~l(l000) ,~~2(1000) ,KB3(1000) ,XR(lOOO), 

* JSR(~OO),UL~,UL~,UL~,BL~,BL~,BL~,NUM 
COMMON/VALI/ N,R,DT, JCOLL,GA,ANF, ,Ll,L2,L3,DSK,DX,RMICRO 
DO 1 1=1 ,N 
IF(KB~(I).EQ.O) GO TO 1 
~2(1)=P2(1)+~2(1) 
IF(PP(I) .LE.O.OE+OO) ~2(1)=~2(1)cuL2 



IF(P~(I) .GT.UL~) P~(I)=P~(I)-UL~ 
PI(I)=P~(I)+D~(I) 
IF(P~(I).LE.~.OE+O~) P~(I)=P~(I)+uL~ 
IF(P~(I).GT.UL~) GO TO 2 
GO TO 9 
P~(I)=P~(I)-UL1 
P~(I)=P~(I)+D~(I) 
IF(P~(I).LE,~.~E-5) GO TO 7 
GO TO 3 
NUM=NUM*6 5 53 9 
IF(NUM.LT.O) NUM=NUM+2147483647+1 
URN=NUM*O .46 5661E-9 
Pl(I)=ULl*URN 
NUM=NUM*65539 
IF(NUM.LT.O) NUM=NUM+2147483647+1 
URN=NUM*O. 46 56 6 1E- 9 
P2(I)=UR2*URN 
F=-P3 (I) 
IK=INT(F/UW+~ .E-5) 
P~(I)=P~(I)+(IK+~>*uL~ 
GO TO 3 
IF(GA.LE.~.~E-~~) GO TO 8 
NUM=NUM*65539 
IF(NUM. LT.0) NUM=NUM+2147483647+1 
URN=NUM*0.465661E-9 
P~(I)=uL~*sQRT(URN) 
P~(I)=DT%A*P~(I)*(P~(I)-UL~)/D~(I) 
KB~(I)=~+INT(P~(I)/BL~) 
KB~(I)=~+INT(P~(I)/BL~) 
KB~(I)=~+INT(P~(I)/BL~) 
CONTINUE 
IF (APTS .LE. 1 .E-04) GO TO 4 
CALL PADD (APTS 
XJC=JCOLL 
m=o 
CALL CCOLL~(IN,MEFF,KR~,KR~,RR~,KR~,IT) 
XN J= JCOLL-XTC 
JCOLL=XJC 
RE'PUW 
END 



APPENDIX C 

C COMPUTER PROGRAM FOR THE SIMULATION OF A RECTANGULAR SEDIMENTATION BASIN 
C 
C Solves the General Dynamic Equation (Ref: Valioulis, Ph.D. Thesis) 
C using the sectional approximation to the particle size spectrum 
C as developed by Gelbard and Seinfeld, 1980. The collision 
C functions are appropriate for a flocculant suspension in water 
C as described in Valioulis' Thesis, Chapter 11. The time-integration 
C is performed using Gear's subroutine on Caltech's IBM 37013032. 
C The arrays are dimensioned for 24 equal cells (settling tank partitions) 
C and 21 particle size sections. 
C 

DIMENSION ~(362)  SOURCE(^^) ,TOUT(2) ,DIAM(21) ,QEFFL(ZOOO) 
COMMON/PHYSPT/AFLROV,VOLUME,EPS 
COMMON/TANK/BL~,BL~,UAVE,USTAR,UL~,UL~,SCOUR~FREQ 
COMMON /VELOC/U~ ,U2 ,U3 ,U4 
DATA TOUT/16200.E+O0,1800O.E+OO/ 

C 
DATA IPRNT/4/ 

C 
C Initialize parameters and flags 
C I D I S C :  =O for continuous input, =I for discontinuous input (step 
C input), =2 for sinusoidal input with frequency FREQ) 
C ISCOUR: =O No scour 
C NEWCOF: =O Use coagulation coefficients from file, =12 Compute 
C new coagulation coefficients 
C 

START=O . 
IDIS C=O 
FREQ=O . 
IS COUR=O 
NEWCOF=O 
TWAT=288. 

C 
C Set number of sections (M), minimum (~iarn(1)) and maximum (~iam(~+1)) 
C particle diameter, length of tank (ULl), depth of tank (uL~), 
C number of horizontal cells (NB~), number of vertical cells ( ~ ~ 2 1 .  

M=15 
DIAM(~ )=I .E-7 
DIAM(M+~)=~ .E-3 
UL1=40. 
UL2=4. 
NB1=6 
NB2=3 



C Logarithmic velocity profile: UAVE is the mean horizontal velocity 
C and USTAR the shear velocity 

UAVE=O ,0053 
USTAR-0.00055 

C 
C Check for scour 

IF(ISCOUR.LE.O) GO TO 53 
FROUDE=UAVE/(SQRT(9.81*UL2)) 
COEFDI=3 .5 9*EXP ( 58,5*FROUDE ) 
SCOUR=l.l7*(EXP(-~.~~/COEFDI)) 
GO TO 54 

53 SCOUR=O. 
54 CONTINUE 
C 
C Compute dimensions of cells 
C 

BLl=ULl /NB1 
BL2=UL2/NB2 
VOLUME=BLl*BL2*1. 
AFLROV=~ . / B L ~  

C 
C Initialise mass concentrations 
C The mass concentations are stored in Q(MKS) in a sequential manner 
C so that IBoX=I+(J-1)"NBl is the index of cell IBOX and 
C MKs=IBOX+(L-l)*KBOX is the mass concentration of section L in cell ZBOX. 
C Q(MKBOX+l) is the mass concentration in the effluent. 
C Q(MKBOX+~) is the mass (per unit volume of tank) deposited. 
C 

IFILE=O 
KBOX=NBlWB2 
MKBOX=M*KBOX 
IF(IFILE.EQ.~) GO TO 509 
DO 1 I=?,MKBOX 

1 Q(I)=START 
GO TO 507 

509 DO 508 I=l,NBl 
DO 508 J=l ,NB2 
IBOX=(J-~)"NB~+I 

508 R E A D ( ~ , ~ ~ ~ , E R R = ~ ~ )  (Q((L-~)*KBOX+IBOX),L=~,M) 
406 FORMAT(~E~~.~O) 
C 
507 Q(M.KBox+~)=O. 

Q(MKBOX+Z)=~. 
C 

TIME=O . 
C 
C Compute section boundaries 
C 

DO 2 I=2,M 
2 DIAM(~)=DIAM(~)*(DIAM(M+~)/DI~))**(FL~AT(I-~)/FL~AT(M)~ 

C 
IF(IDISC.NE.1 .AND. IDISC.NE.2) GO TO 681 



C Discontinuous input 
C Request output every 100 sec 
C 

HEXT=100. 
MAXTIM=LNT(TOUT(~)/HEXT) 
ISTEP=4 
GO TO 682 

c 
C Continuous input 
681 ISTEP=2 
682 IFLAG=l 
C 
C Round is set for IBM 37013032 

ROUNDz5.E-7 
C 
C Output initial parameters 
C 

WRITE(IPRNT,~O) M,NB1 ,NB2 
60 FORY&T(' NUMBER OF SECTIONS=',I3/' NUMBER OF BOXES: NB1=' ,I2, 

*lX,'NB2=',12/) 
WRITE(IPRNT,61) ULlSUL2,BL1,BL2 

61 FORMAT(' TANK LENGTH=',F5.1,' TANK HEIGHT=',F5.1/' BOX LENGTH= 
*',F5.1,' BOX HEIGHT=',F5.1/) 
WRITE(IPRNT,62) UAVE,USTAR,SCOUR 

62 FORMAT(' AVERAGE VELOCITY=',F7.5,' SHEAR VELOCITY=',F7.5, 
-k ' SCOURING PAR.=',F7.5/) 
WRITE(IPRNT,~~O) TOUT(~),TOUT(Z),TOUT(~),TOUT(~) 

610 FORMAT(' TIME STEPS=' ,4E12.4/) 
Ml =M+ 1 
WRITE(IPRNT,~~) (DIAM(I) ,1=1 ,MI) 

63 FORMAT(~~X,'SECTION BOUNDARIES (DImETERs)'1(5~13.8)) 
WRITE(IPRNT,~~) START 

64 FGRYAT(/' EiITIAL i.ikSS=',El3.8/) 
WRITE(IPRNT,~~) TWAT,ROUND 

65 FORMAT(' WATER TEMPERATURE=',F5.1,' K',~X,'ROUND=',E~~.~//) 
C 
C Set parameter for turbulence induced coagulation 

EPS=l . 
C 

IF(NEFJCOF.EQ.~~)  WRITE(^,^) M,DIAM(l) ,DIAM(M+l) 
8 FORMAT(' NUMBER OF SECTIONS=',I3,4X,' DIAM RANGE: ',E10.5,' - ', 

"~10.51) 
c * 

H=26 .*ROUND 
S OUOLD=O . 



C Main loop 
C 

DO 3 ITIME=l,ISTEP 
DELTIM=TOUT(ITIME>-TIME 
CALL SOR(NB1 ,NB2, ITIME, TIME,TOUT(ISTEP) , S O U R C S S  , IDIsC) 
IF(~~~RCE(~).NE.~~U~LD) GO TO 7 
GO TO 18 

7 DO 77 1=1 ,NB1 
DO 77 J=l,NB2 
IBOX=I+( J-~)*NB~ 

77 WRITE(IPRNT,~)I,J,SOURCE(IBOX) 
9 F~RMAT(~OX,'BOX=',~I~,' SOURCE=',E~~.~,'KG/SEC') 

WRITE(IPRMT,~~) FLOW,Ul,U2,U3,U4 
91 FORMAT(//' FLOW RATE=',E~O.~,' ~l=',E10.4,' U2=',~10.4, 

* ' U3=' ,E10.4 ,' U4=' ,E10.4) 
IFLAG=l 
SOUOLD=SOURCE(~) 

18 IF((TOUT(~)-~~~~~.E+~~).GT.~O.E+O~) GO TO 99 
CALL AERSL(M,NB~,NBZ,TIME,DELTIM,Q,SOURCE,DIAT, 
*IFLAG ,NEWCOF ,H, ITIME, SMASS , PERSUS ,HEXT , IDISC TOUT ,QEFFL , FLOW) 
CALL PRAEKO(Q,DIAM,DELTIM,TIME,VOLUME,M,NB~,NSS~ 

*FLOW,PERSUS,MAXTIM,IDISC,HEXT,TOUT(~),T~UT~~~,QEFFL,SOUKCE) 
3 CONTINUE 
99 STOP 

END 
.................................................................... 

SUBROUTINE PMERO(Q,DIBM,DELTIM,TIME,VOLUME,M,NB~,NB~,IPRNT, 
*S~~SS,FLOW,PERSUS,MAXTIM,IDISC,HEXT,TIM~D,TDIS~,QEFFL,SOURCE) 

C 
C This  r o u t i n e  p r i n t s  r e s u l t s  every t ime s t e p  
C 

DIMENSION Q ( ~ ~ ~ ) , Q T ( ~ ~ ~ ) , D I A M ( ~ ~ ) , Q E F F L ( ~ O O ~ ) , Q I N F L ( ~ O O O ) ~  
*SOURCE (24) 
CoMMON/OUTX/DUM1(362) ,DUM2(362) ,DEPSIT(362) s0U~MA~(362) 
CO~ON/TANK/BL~,BL~,UAVE,USTAR,UL~,UL~,SCOUR,FREQ 
C~MMON/RDEQU/RNUM(~O),DNUM(~~) 
COMMON /VELoC/U(4) 
C ~ ~ O N / D I S C O / S U M A X ( ~ ~ ) , S U W I N ( ~ ~ ) , T I ~ , T ~ M I N ~ T S ~ ~ S S R M A X ,  

3r TSRMm,SSRMIN,QEFbW,QEFMIN,OUTDIR,SINUS 
DATA TOTOUT,TOTDEP,DEPDIR/3*O.E+OO/ 



TIMEFF=HEXT 
IF(IDISC.EQ.0) TIMEFF=DELTIM 
IF((TIME+~~.).LT.TIMEND .OR. IDISC.EQ.0) GO TO 101 
TDIS=O . 
MAXl=MAXTIM+ 1 
IF(IDISC.EQ.~) GO TO 108 
DO 120 L=l,MAXl 
SUM=O . 
DO 130 J=l,NB2 
IBOX=(J-1)"~~1+1 
TD=TDIS+FLOAT(L)%EXT 

130 SUM=SUM+SOURCE(IBOX)*(~.+~.~*SIN(~.*~.~~*FREQ*TD)) 
SUM=SUM/FLOW 

120 WRITE(IPRNT,~~~) TD,QEFFL(L) 
103 FORMAT(' TIME=',F10.2,' EFFLUENT CONC.=',E10.4, 

* INFLUENT CONC=',E10.4) 
DO 1200 L=l,MAXl 
SUM=O . 
DO 1300 J=l,NB2 
IBOX=(J-1)w~1+1 
TD=TDIS+FLOAT(L)*HEXT 

1300 SUM=SUM+SOURCE(IBOX)*(~.+O.~*SIN(~.*~.~~*FREQ*TD)) 
SUM=SUM/FLOW 

1200 WRITE(3,406) TD,QEFFL(L),SUM 
406 FORMAT(~E~~.~O) 

GO TO 109 
108 DO 122 L=l,MAXP 

TD=TDIS+FLOAT(L)*HEXT 
122 WRITE(IPRNT,~~~) TD,QEFFL(L) 
110 FORMAT(' TIME=',F10.2,' EFFLUENT CONC.=',E10.4) 
109 WRITE(IPRE;IT,104) TIMAX,TSRW,SSRMAX,TIMIN,TSRP?IN,SSmIN 
i04 FORlrlAT(' TIXE FOR KAX C@iC=',F8.2,' % TS EiEMCjVAi=',EiO.ir, 

*' % SS REMOVAL=',E10.4/' TIME FOR MIN CONC=',F8.2, 
*' % TS REMOVAL=',E10.4,' % SS REMOVAL=',E10.4// 
*' MAXIMUM CONC. (KG/M3)',' MINIMUM CONC. (KG/M3)'/) 

C 
DO 105 L=l,M 

105 WRITE(IPRNT,~O~)SUMAX(L),SUMIN(L) 
106 F O R M T ( ~ X , E ~ ~ . ~ , ~ ~ X , E ~ O . ~ )  
C 

WRITE(IP~T,~~~)QEFMAX,QEFMW 
107 FORY&T(' TOTAL MAX CONC.=',E10.4,' TOTAL MIN CONC.=',E10.4) 



101 KBOX=NBlJtNB2 
MKBOX=KBOX*M 

C 
DO 100 1-1 ,MKBOX 
IF(OUTMAS(I).LE.O.O) OUTMAS(I)=O. 

loo IF(DEPSIT(I).LE.O.O) DEPSIT(I)=O. 
C 

SUM=O . 
DO 1 L=l,M 
QT(L)=O. 
DO 2 I=l,NBl 
DO 2 J=lYNB2 
IBOX=NB~*( J-1 )+I 

2 QT(L)=QT(L)+Q(IBOX+(L-~)*KBOX) 
1 SUM=SUM+QT(L) 

C 
Sl=SUM*VOLUME 
WRITE(IPRNT,~~~)TIME,S~ 

312 FOR~~T(~N~,~~X~'TIME=',E~~.~~' SECP/20X,' TOTAL MASS=',E12.5, 
*' KG",//~~X,'AVERAGE MASS, NUMBER AND VOL CONCENTRATIONS') 
WRITE(IPRNT,~~~) 

314 FORMAT(//~~X,'DIAMETER RANGE (M)',~X,'KG/M~' ,~X,'#/CM~', 
*8X,'PPM0/) 
DO 313 I=l,M 
SL=QT(I)/KBOX 
s~=s~/(~.~~/~.*RNuM(I)*DNuM(I)**~)*~.E-~ 
S3=Sl/RNUM(I )*1 .E+6 

313 ~ITE(IPRE~T,~)DIAM(I),DIAM(I+~)~S~,S~,S~ 
3 FORMAT((~~X,E~O.~,' - ' , ~ 1 0 . 4 , ~ 1 2 . 5 , 3 ~ , ~ 1 0 . 4 , 3 ~ ~ . 4 ) / )  

C 
WRLTE(IPRNT,~~) 

36 FORMAT(/~SX,' MASS W EACH BOX'/) 
DO 4 I=1 ,EBi 
DO 4 J=1 ,NB2 
SUM=O . 
IBOX=NB~*( J-1)+1 
DO 5 L=l,M 

5 SUM=SUM+Q((L-~>*KBOX+IBOX) 
Sl=SUM*VOLUME 

4 WRITE(IPRNT,~)SUM,S~ ,I,J 
6 FORMBT(~OX,'TOTAL=',E~~.~,'(KG/M~)',~X,E~~.~~'KG', 

*' BOX=',I2,1X,I2) 
C 

WRITE(IPRNT,~~) 
37 FORMAT(//~OX,' MASS DISTRIBUTION ALONG THE TANK'/) 



DO 38 1=1 ,NB1 
TSREM=O . 
S SREM=O . 
SUM3=0. 
SUM4=0. 
DO 383 L=l,PI 
SUMl=O. 
DO 381 J=l,NB2 
IBOX=NB~*( J-1)+1 
MKS=IBOX+(L-I)*KBOX 

381 SUM~=SUM~+Q(MKS) 
SLJW=SUM1/(3.14/6 .*REJUM(L)*DNUM(L)**~) /NB2 
S ~ = S U M ~ / N B ~  
TSREM=TSREM+Sl 
IF(L.GE.5) SSREM=SSREM+Sl 
§2=Sl/WUM(L)*l.E+6 
S3=SUM2*1 .E-6 
WRITE(IPRNT,~~~) ISL,S1,S2,S3 

382 FORMAT(' P0SIT=',IZ,' SECTION=',I~,' MASS CONC=',E10.4, 
*' KG/M3',' VOL CONC=',E10.4,' PPM',' NUM CONC=',E10.4,' #/CM~'/) 
SUM3=SUM2+SUM3 

383 SUF%4=SUP14+SUMl /WB~/RNUM(L) 
sUH=(~./~.~~*SUM~/SUM~)**(I~/~,) 
TSREM=~.-TSREM*FLOW/SMASS 
SSREM=I.-SSREM*FLOW/(S~SS*PERSUS) 

38 WR~TE(IPWT,~~~) SUM,TSREM,SSREM 
384 FORHAT(' EQUIVAEmT DIAMETER=',E~~.~,' % TS REMOVAL=',E10.4, 

dt %%s REMOVAL=',EL~.~//) 
C 
C Optional output for detailed information on particle size distribution 
C in the tank 
C WRITE(IPRNT,~~) 
C 37 F o W T ( / / I ~ X , '  M S S  DISTRIIiiiTIij-N' M TANK'/) 
C DO 38 I=1 ,NB1 
C DO 38 J=l ,NB2 
c IBOX=NB~*( J-I )+I 
C DO 38 L=l ,M 
C 38 ~~RITE(IPRNT,~~) I, J,L,Q(KBOX*(L-1 )+IBOX) ,Q(KBOX*(L-~)+IBOX)/ 
C ~r (3.14/6.*RNUM(L)*DNUM(L)**3)*1.E-6 
C 35 FORPLAT(' BOX=" ,213 ,' SECTION=',I3 ,' MASS CONC.=',E10.4,' KG/ 
C *M3" ,' MUM CONC,=',E10.4,' #/CM3'/) 
C 
C Compute total (approximate) mass concentration in deposits 
c 

DEPTf M=O . 
DO 111 1-1 ,NB1 
DO 111 L=l,M 
MKS=KBOX*(L-1)+1 

111 DEPTIM=DEPTIM+DEPSIT(PIKS) 
IF(BEPTIM.LT.~.E-15) GO TO 1110 
C~RDEP=(Q(MKBOX+~)-DEPDIR)/DEPTIM 

Ill0 TOTDEP=TOTDEP+DEPTIM 



C Compute total (approximate) mass concentration in effluent 
C 

SU1142=0. 
DO 112 J=l,NB2 
IBOX=NB~*( J-1 )+NB~ 
DO 112 L=l,M 
MKS=KBOX*(L-~)+IBOX 

112 SUMZ=SU~+OUTMAS (MKS) 
IF(suM~.LT.~.E-~~) GO TO 1120 
COROUT=(Q(KBOX+~)-OUTDIR)/SUU 

1120 TOTOUT=TOTOUT+SU1142 
C 
C Output deposited mass 
C 

s I =Q ( ~ B O X + P  ) *VOLUME 
S2=DEPTHH*CORDEP*VOLUME 
WRITE(IPHNT,~~) Sl,S2 

22 FORMAT(//' CUMULATIVE DEPOSITED MASS=',E12.4,' KG'/, 
~r ' DEPOSITED MASS FOR THE TIME STEP=',E12.4,' KG'//) 

c 
C Output deposition rates during last time step 
C 

LF(DEPTIM,LT.~,E-~~! 60 TO 1111 
J= 1 
DO 11 I=1 ,NRB 
SUM1 = B e  
SUM=O, 
DO 16 L=Z,X.I 
MS=KP:OY,*(L-l)t-I 
SUMI=SUH~+DEP~ IT(MKS ) /RNUM(L) 

16 SUM=SUM+DEPSIT(~S) 
S~=SUM*CORDEP/DELTIM 
S~=SUM~QCQRDEP/DELTIH*~.E+~ 

WRITE(IPmT,S3) I,J,Sl,S2 
13 FORMAT(' BOXe,13,SX,13,' MASS DEP RATE=',E13.4,' KG/(M~-SEC)', 

ilr " VOLUHE DEP FtATE=",E13.4,' #/(cM~-SEC)'/) 
11 COHTINUE 

C" 
C 'i;l~ITE('I:Pm'n",21) 
@ 21 FORMBT(/8X," DEPOSITION RATES FROM BOXES'/) 
c 
C DO 12 L = 1  ,RBI 
C DO 12 L-1 ,B4 
c ES-RBOX*(L-X)+H 
C SUM=DEPSIT~E~~:S>/(~~~~~'~*RNUM(L)*DNUM(L)**~)/DELTIM 
C 12 WRITE(IP-WT,L~) I,J,L,DEPSIT(PIKS)*CORDEP/DELTIM,SUM*CO~EP*~.E-6 
C f4 FQRPIPI,T(" BOX=",213,' SECTION=',I2,' MASS DEP. RATE=',E10.5, 
C *" KC; /~<~-SEC" , "  NUM DEP. RATE=',E10,4,' #/CU-SEC'/) 



WRITE (IPRNT,19) 
19 FORMAT(/ 12X,'AVERAGE DEPOSITION RATES'/) 

DO 17 L=l,M 
SUM=O. 
DO 18 I=1 ,NB1 
~S=KBOX*(L-1)+1 

18 SUM=SUM+DEPSIT(MKS)/DELTIM*CORDEP 
SUM~=SUM/(~.~~/~.*RNVM(L)*DNUM(L)**~)/NB~*~.E-~ 
Sl=SUM/NBl 
S~=S~/RNUM(L)*~.E+~ 

17 WRITE(IPRNT,~~) L,S19S2,SUM3 
20 FORMAT(' SECTION=',I~,' MASS DEP RATE=',E10.4,' KG/M3-SEC', 

*' VOL DEP RATE=',E~O.~,' PPM-SEC",' NUM DEP RATE=',E~O.~, 
*'#/CM3-SECO/) 

C 
C Output effluent mass 
C 
1111 S~=Q(MKBOX+~)*VOLUME 

S 2=SUM2*COROUT*VOLUME 

f ' EFFLUENT MASS FOR THE TIME STEP=',E12.4,' KG0//) 
C 

I=N B 1 
DO 24 J=1 ,NB2 
SUM=O . 
DO 25 k=l ,M 
MKS=KBOX% (L-1) +3% B1 

25 SUM=SUM+OUTWS (MKS ) 
S~=SUM*COROUT/(U(J)*BL~*TIMEFF)*VOLUME 

C 
24 WRITE(IPRNT,~~) I,J,S1 
26 FGR~."AT(' BOX=',213 ,' EFFLUEXT CONC.=',E10.4,' KG/M~'/: 
C 
C Optional output for detailed information on effluent particle size 
C distribution 
C WRITE(IPRNT,~~) 
C 27 FORbfAT(//9X,' MASS DISTRIBUTION M EFFLUENT FROM EACH BOX0/) 
C DO 28 J=l,NB2 
C DO 28 L=I,M 
c MKS=KBOX*(L-1 )+J%B~ 
C SUrlu=VOLUME/ (U (J) *L~*TIHEFF) 
C SUM=OUTMS(~S)/(~~~~/~~*RNUM(L)*DII.!UM(L)**~)*SUM~ 
C Sl=OUTMAS(MKS)*COROUT*SUM3 
C S2=SUM*COROUT*l.E-6 
C 28 WRITE(IPRNT,~~) I,J,L,Sl,SZ 
C 29 FORMAT(' BOX=',213,' SECTION-',I3,' MASS CONC=',E10.4,' KG/M~', 
C *' NUM CONC=',E10.4,' #/CM~'/) 
C 

1~(~2.LT.l.E-15) GO TO 1112 



WRITE(IPRNT,~O) 
30 FORMAT(//~X,' AVERAGE MASS CONC. IN EFFLUENT FROM TANK'/) 

TSREM=O . 
SSREM=O . 
SUM5=0. 
SUM7=O. 
DO 31 L=l,M 
SUM=O . 
DO 32 J=l,NB2 
MKS=KBOX*(L-~)+J"NB~ 
SUM~=VOLUME/(U(J)*BL~*TIMEFF~B~)*COROUT 
SUkf9=SUM9+0UTMAS (MKS ) 

32 SUM=SUM+OUTWS(PIRS)*SUM~ 
TSREM=TSREH+SUM 
IF(L.GE.~) SSREM=SSREM+SUM 
SUM~=SUM/(~.~~/~*EPE~UM(L)*DNUM(L)**~)*~.E-~ 
SUM7=SUM7+SUM3 
SUM6=SUM/RNUM(L) 
SUM5=SUM5+SUM6 
Sl=SUM6*1 .E+6 

31 WRITE(IPRNT,~~) L,SUM,Sl ,SUM3 
33 FORMIIT(' SECTION=',I~,' MASS COKC=",E10.4,' KG/M3', 

*' VOL CONC=',E10.4,' PPM',' NUM CONC=",E10.4,' #/cM~"//) 
S U M = ( ~ . / ~ . ~ ~ * S U M ~ / S U M ~ ) * * ( ~ . / ~ ~ )  
Sl=SUK5*1 .E+6 
TSREH=~.-TSREM*FLOW/SMBSS 
SSREM=~.-sSREM*FLOW/(SMASS*PERSUS) 
WRITE(IP~T,~~) Sl,SUM,TSREM,SSREM 

42 FORMAT(' TOTAL VOLUMETRIC COKC IN EFFLUEET=',E~~.~,' PPM'/, 
-k ' EQUIVALENT DIAMETER=',ElO.4," M",' % TS REMOVAL=', 
3r E10.4,' % SS REMOVAL=',E~~,~//////) 

C 
C Initialise effluant and deposition parmeters 
C 
1112 DO 41 I=l,NBl 

DO 41 J=l ,NB2 
IBOX=NB~*( J-1 )+I 
DO 41 L=l,M 
MKS=(L-~)*RBOX+IBOX 
DEPSIT(MKS)=~. 

41 OUTMAS(MKS)=O. 
C 
C Store cumulative deposited and effluent mass concentrations 
C 

OUTDIR=Q(MKBOX+~) 
DEPDIR=Q(MKBOX+~) 

C 
RETURH 

99 STOP 
EN D 



SUBROUTINE A E R S L ( M , N B ~ , N B ~ , T ~ M E , D E L T I M , Q , S O U R C E , D I ~ D ,  
*IPRNT,IFLAG,NETdCOF,H,ITIME,SMASS,PERSUS3~EXT,IDISC,TOUT,QEFFL, 
*FLOW) 

C 
C This routine calls COEF, to compute the coagulation coefficients, 
C and then GEAR for the time integration 
C 

DIMENSION ~(362)  SOURCE(^^) ,WORK(90000) ,IWORK(362) 3D1AM(21), 
*V(21) ,QT(24) ,X(21) ,TOUT(4) 9 Q ~ ~ ~ ~ ( 2 0 0 0 )  
C ~ M M ~ N / A V G C ~ F / C ~ E F A V ( ~ ~ ~ , ~ ~ ) , S R A T E ( ~ ~ ~ ) , M P A S S , K P A S ~ , K P A S ~ , N B ~ A ,  
WB2B,NB3 ,NB4 ,NDEPST 
COMMON/PHYSPT/AFLROV,VOLUME 
CO~ON/RDEQU/RNVM(~O),DNUM(~O) 
COMMON/OUTX/DUM~(~~~) $DUM2(362) ,D~M3(362) ,OUTMAS(362) 
COMMON /VELOC/U(4) 
COMM~N/DISCO/SUMAX(~~),SUMLN(~~),TIW,TIMIN,TSRMAX,SSRMAX, 

t TSRMIN,SSRMIN,QEFWPQEFMIN,QSTORE,SINUS 
COMMON/TANK/BL~,BL~,UAVE,UST~~UL~~UL~,SCOUR,FREQ 
EXTERNAL DIFFUN 
DATA JTIME/O/ 
DATA SINOLD,SINNEW/2*0.E+00/ 

C 
KBOX=NBl W B 2  
MKBOX=M*KBOX 

C 
C Set pointers 
C 

MPAS S=M 
KPASl=NBl 
KPAS2=NB2 
NB~A=((N-2)*(M-1))/2 
~323=( (M-1 )*XI /2+~szA 
NB~=NB~B+( (M-1 )*M)/2 
N B4=N B3 +M 
NDEPST=NB~+( (M-l)*M) /2 
NUMCOF=NDEPST+M 
MPl=M+l 

C 
I F ( ( T ~ u T ( ~ > - ~ ~ ~ ~ ~ , E ~ ) . G T . ~ O . E + O O )  60 TO 100 
IF(NEWCOF.LT.O) GO TO 1 



C Compute the geometric means of the diameters and the densities 
C of the boundaries of the particle size spectrum 
C 

v(1)=0. 
CALL RHODD(V(~) ,DIAM(~) ,RHO) 
Rl=RHO 
DO 18 1=2,MP1 
v(1)=0. 
CALL RHODD(V(I) ,DIAM(I) ,RHO) 
RNUM(I-1 ) =SQRT(R~*RHO) 
Rl=RHO 
DNUM(I-~)=SQRT(DIAM(I-~)*DIAM(I)) 

18 CONTINUE 
C 
C Compute coagulation coefficients 
C 

IF(NEWCOF,EQ.~) GO TO 777 
C 

CALL COEF(NEWCOF,M,V,ROUND,IPRNT) 
DO 20 1=1 ,NB1 
DO 20 J=1,NB2 
IBOX=NB~*( J-1)+1 
DO 20 K=1 ,NUMCOF 
COEFAV(K,IBOX)=COEFAV(K,~) 

20 CONTINUE 
WRITE(2,300) (coEFAV(K, 1) ,K=1 ,NUM@OF) 

300 Fo~M~lT(5E15.8) 
GO TO 100 

777 DO 303 I=l,NBl 
DO 303 J=1 ,NB2 
IBOX=NB~*(J-1)+1 
R~AD(3,300) (COEFAV(L,IBOX),L=~,NUMCOF) 

303 COETINUE 
C 

NEWCOF=12 
C 
1 NEWCOF=-IABS (NEKCOF) 

C 
C Fractionate the input mass 
C 

CALL D I V I D E ( M , N B 1 , N B 2 , V O L U M E , S O U R C E , S R A T E , D I A T s I T X M E ,  
* PERSUS ) 



C Set parameters for the integration subroutine 
C 

REL= .OO~E+OO 
METH= 1 
MITER=2 
MKBOX2=MKBOX+2 

C 
TrnD=TIME+DELTIM 

C 
C Check for type of input 
C 

IF(IDISC.NE.~ .AND. 1~1sC.NE.2) GO TO 6 
PROD-VOLUME/ ( FLOW*HEXT) 
TEND=TIME+HEXT 

C 
7 QSTORE=Q(MKBOX~) 

SINOLD=SINNEW 
DO 120 I=1 ,MKBOX 

120 OUTMAS(I)=O. 
CALL DGEAR(MKBOX~,DIFFUN,FCNJ,TIME,H,Q,TEND,REL,METH,MITER, 
*IFLAG, IWORK,WORK,IER,COEFAV,NDEPST,M,NB~ ,NBZ ,NSTEPsN~EsSCOUR) 

C 
1F(IFLAG.NE.Z .AND. IFLAG.NE.O) GO TO 8 
TEND=TIME+HEXT 

C 
C Optional for sinusoidal input 
C IF((TIME+~.E-~).LT.TouT(~)) GO TO 11 
C SINNEW=l .+O .5*SIN ( 2  .*~.~~*TIME*FREQ) 
C SINUS=O .5*(SINNEW+SINOLD) 
c PROD~=PROD/SINUS 

PRODl=PROD 
JTIME= JTIME+ 1 
~EFFL(JT~ME+I)=(Q(~-KBoX~)-QSTORE)*P~GEI 
IF((TIME+~.).LT.TOUT(~)) GO TO 11 
IF(QEFFL(JTIME+~).GT.QEFW)GO TO 9 
IF(QEFFL(JTIME+~).LT.QEFMIN)GO TO 10 
GO TO 11 



C Determine maximum and minimum mass concentrations in effluent 
C 
9 OUTALL=O. 

DO 12 J=l ,NB2 
IBOX=NBI*( J-1 )+NB~ 
DO 12 L=l,M 
MKS=KBOX*(L-~)+IBOX 
IF(OUTMAS(MKS>.LT.~,> OUTMAS(MKS)=O. 

12 OUTALL=OUTALL+OUTMAS (MKS ) 
IF(0UTALL.LT.l.E-15) GO TO 11 
COROUT=(Q(MKBOX~)-QSTORE)/OUTALL 
TSREM=O . 
SSREM=O . 
SUM5=O. 
SUM7=O. 
DO 13 L=l,M 
SU~"IAX(L)=O. 
DO 14 J=l,NB2 
MKs=KBoX*(L-l)+J%Bl 
SUM~=VOLUME/(U(J)*BL~%EXT%B~)*COROUT 

14 SUMAX(L)=SUMAX(L)+OUTK$S(MKS)*SUM~ 
TSREM=TSREM+SUMAX(L) 
IF(L.GE. 5) SSREbl=SSREM+SUW(L) 
SUM~=SUMAX(L)/(~.~~/~%UM(L)*DNUM(L)**~) 
SUM7=SUM7+SUM3 
SUM~=SUMAX(L) /RNUM(L) 

13 SUM5=SUM5+SUM6 
C 

SUM=(~./~.~~*SUM~/SUM~)**(~./~.) 
TSRMAX=~ .-TSREM*FLOW/SMASS 
SSRMAX=~.-SSREM*FLOW/(SMASS*PERSUS) 
TIMAX=TrnD 
QEFM=QEFFL~.~TZME+~~ 
GO TO 11 

10 OUTALL=O. 
DO 15 J=l ,NB2 
IBOX=NB~*( J-1 )+NB~ 
DO 15 L=l,M 
MKS=KBOX*(L-~)+IBOX 
IF(OUTYAS(MKS).LT.~.) OUTMAS(MKS)=O. 

i 5 OUTALL=OUTALL+OUTK$S (MKS 
IF(OUTALL.LT.~.E-15) GO TO 11 
COROUT=(Q(MKBOX~)-QSTORE)/OUTALL 
TSREM=O . 
S SREM=O . 
SUM5=O. 
SUM7=O. 



DO 16 L=l,M 
SUMIN (L)-0. 
DO 17 J=l,NB2 
MKS=KBOX*(L-I)+JJ~NB~ 
SUM~=VOLUME/(U(J)*BL~%EXT~B~)*COROUT 

17 SUMIN(L)=SUMIN(L)+OUTE~~~S(MRS)*SUM~ 
TSREM=TS REM+ SUMIN ( L) 
IF(L.GE.5) SSREM=SSREM+SUMIN (L) 
SUM~=SUMIN(L)/(~.~~/~*~UM(L)*NUM(L)**~) 
SUM7=SUM7+SUM3 
SUM~=SUMIN(L)/RNUM(L) 

16 SUM5=SUM!j+SUM6 
C 

SUM=(6./3.14*SUMS/SUM7)**(1./3.) 
TSRMIN=~.-TSREM*FLOW/SMASS 
SSRMIN=~.-~~REM*FL~W/(SMASS*PERSUS) 
TIMIN=TEND 
QEFMIN=QEFFL(JTIME+~) 

C 
11 IF(TEND.GT.(~.+~.E-~)*TouT(ITIME)) GO TO 200 

GO TO 7 
C 
C Continuous input 
C 
6 CALL DGEAR(MKBOX~,DIF~,FCNJ,TIME,H,Q,T'E;N,MITER, 

*IFLAG,IWORK,WORK,IER,COEFAV,NDEPST,M,NBl,NB2,NSTEP,NFE,SCOUR) 
QEFFL(~)=Q(~NBOX~)*V~LUME/(FLOW*TIME) 

C 
IF(IFLAG.EQ.~.OR.IFLAG.EQ.~.OR.IFLAG.EQ.~)RETURN 

8 WRITE(IPRNT,~~)IER,TIME 
27 FORMAT(' GEAR ERROR NuMBER',I~,~X, 

* 3X,'TIME REACHED =',~11.4) 
r f l ~ ~ ~ i i ~ ~ 4 ~ , 2 9 ) ~ ~ ~ ~ ) , ~ = 1 , ~ i j ~ ~ 2 ~  

29 FORMAT(' VALUES OF Q ARRAY'/(~E~~.~)) 
100 STOP 

END 
C*************************************************************** 

SUBROUTINE COEF(NEWCOF,M,V,ROUND~IP~T) 
c 
C This routine computes the sectional coagulation coefficients 
C (Gelbard and Seinfeld, 1980) 
C 

DIMENSION ~(21) ,~(21) ,DEL(~~) 
COY~ON/AVGCOF/COEFAV(~~~ ,24) ,sRAT~(362) $MPASS ,NBl ,NB2 ,NBZA, 
-B2BsNB3 ,NB4 ,NDEPST 
EXTERNAL DEPOST, BETCAL 



NBTYPE = TYPE OF COEFFICIENT CALCULATED 
INNER = 0 INNER LIMITS OF INTEGRATION ARE CONSTANT 

1 CHARGE LOWER INNER LIMIT OF INTEGRATION TO 
ALOG(BASESZ-OUTER INTEGRATION VARIABLE). IN THIS 
CASE FIXSZ IS THE INNER UPPER LIMIT OF INTEGRATION. 

2 CHANGE UPPER LIMIT OF INTEGRATION TO 
BLOG(BASESZ-OUTER INTEGRATION VARIABLE). IN THIS 
CASE FIXSZ IS THE INNER LOWER LIMIT OF INTEGRATION. 

CALCULATE BETA(SUPER-~B,SUB-I,L-1,~) 
STORE WITH I VARYING FIRST FROM 1 TO L-2 

NBTYPE=~ 
INN ER=1 
DO 13 L=3,M 
LW=L-2 
LIBEF=(LW*(L-~) ) / 2  
DO 13 I=l,LM;! 
IER=l 
BASESZ=V(L) 
FIXSZ=X(L) 
CALL GAUSBT(BETCAL,X(I),X(I+~),REL,ABSER,ROUND,~S,IER,IP~T, 
*FIXSZ, BASESZ, INM~,TWAT,NBTYPE) 
IF(IER.NE.~)GO TO 31 
COEFAV(I+LIBEF,IBOX)=ANS/(DEL(I)*(X(L)-X(L-1))) 



C CALCULATE BETA(SUPER-~A,SUB-1,L) AND BETA(SUPER-2B,SUB-1,L) 
C STORE WITH I VARYING FIRST FROM 1 TO L-1 
C 

DO 14 L=2,M 
LMl=L- 1 
LIBEF=(LM~*(L-2)) /2 
DO 14 1=1 ,LM1 
NBTYPE=2 
T".-,-T 
Aun-l 

INN ER=l 
BASESZ=V(L+I ) 
FIXSZ=X(L+~) 
CALL GAUSBT(BETCAL,X(I),X(I+~),R~,ABSER,ROUND,~S,IER,IP~T~ 

*FIXSZ,BASESZ,INNER,TWAT,NBTYPE) 
IF(IER.NE.O)GO TO 31 
COEFAV(NB~A+I+LIBEF,IBOX)=ANS/(DEL(I)*DEL(L~~ 
NBTYPE=3 
IER=1 
INN ER=2 
BASESZ=V(L+~) 
FIXSZ=X(L) 
CALL GAUSBT(BETCAL,X(I),X(I+~),REL,ABSER,ROUND,~S,IER,IP~T, 

*FIXSZ,BASESZ,INNER,TWAT,NBTYPE) 
IF(IER.NE.~)GO TO 31 

14 COEFAV(NB~B+I+LIBEF,IBOX)=ANS/(DEL(I)*DEL(L)) 
C 
C CALCULATE BETA(SUPER-3,SUB-L,L) 
C 

DO 15 L=l,M 
LP1=L+1 
NBTYPE=4 
IER= 1 
QJN ER=i  
REL=1 .E-2 
BASESZ=V(LP~) 
FIXSZ=X(LP~) 
ALV=V(LP~) 
ALV=ALOG(.5*ALV) 
CALL G A U S B T ( B E T C A L , X ( L ) , A L V , R E L , A B S E R , R O U N D , ~ T ,  
*FIXSZ, BASESZ, INNER,TWAT,NBTYPE) 
IF(IER.NE.~)GO TO 31 

C 
IER=l 
COEFAV(NB~+L,IBOX)=ANS 
NBTYPE=4 
INN ER=1 
ALv~=v(LP~)-V(L) 
ALV~=ALCG(ALV~) 
BASESZ=V(LP~) 
FIXSZ=X(LP~) 
CALL GAUSBT(BETCAL,ALV,LV2,REL,ABSER,ROUND,mS,IER,IPmT, 

*FIXSZ,BASESZ,INNER,TWAT,NBTYPE) 



IF(IER.NE.O)GO TO 31 
COEFAV(NB~+L,IBOX)=AWS+COEFAV(NB~+L,IBOX) 

c 
IER-1 
NBTYPE=5 
INNER=O 
BASESZ=X(L) 
FIXSZ=X(LP~) 
CALL GAUSBT(BETCAL,ALV~,X(LP~),R~,ABSER,RO~D,~S,IER,IP~T~ 

*FIXSZ,BASESZ,INNER,TWAT,NBTYPE) 
ANS=ANS+COEFAV(NB~+L, IBOX) 
IF(IER.NE.O)GO TO 31 

15 COEFAV(NB~+L,IBOX)=.~*ANS/DEL(L)**~ 
C 
C DETERMINE THE SECTIONAL COAGULATION COEFFICIENTS FOR 
C SCAVENGING OF PARTICLES IN SECTION L BY THOSE IN SECTION I 
C I.E. BETA(SUPER-4,SUB-1,L) 
C STORE WITH I VARYING FIRST FROM L+l TO M 
C 
C 

NBTYPEz6 
INN ER=O 
DO 12 L=1,MM1 
LPl=L+l 
NBEFR=((L-~)*(~*M-L))/Z 
DO 12 I=LPl,M 
INN ER=O 
BASESZ=X(L) 
FIXSZ=X(LPI) 
CALL G A U S B T ( B E T C A L , X ( I ) , X ( I + ~ ) , R E L , A B S E R , R O ~ T ,  

*FIXSZ,BASESZ,INNER,TWBT,NBTYPE) 
IF(IER.NE.O)GO TO 31 

12  COEFAV(NB~+I-L+NBEFR,IBOX~=ANS/(DEL(I)*DEL(L~) 
c 
C DETERMINE THE SECTIONAL DEPOSITION COEFFICIENTS OF THE L-TH 
C SECTION ON THE J-TH DEPOSITION SURFACE 
&: 

REL=l. E-3 
DO 1 L=l,M 
NBTYPE=7 
IER=l 
CALL GAUS2(DEPOST,X(L) ,X(L+l) ,REL,ABSER,ROUND,AWS,IER,DUM,WAT, 

%BTYPE) 
IF(IER.NE.O)GO TO 31 

1 COEFAV(NDEPST+L, IBOX)=ANS/DEL(L) 
C 
C 

RETURN 
C 
C 
31 WRITE(IPRNT,~)IER,NB~PE 
3 FORMAT( / / '  OUTER INTEGRATION ERROR NUMBER', 13, 

* FOR COEFFICIENT TYPE',I3) 
STOP 
EMD 



SUBROUTINE DIFFUN(MKBOX~,TIME,Q,DQDT) 
C 
C This routine calculates the time derivatives of the General 
C Dynamic Equation 

D I M ~ S I O N  Q(MKBOX~),DQDT(MKBOX~) 
C O ~ ~ N / A V G C O F / C O E F A V ( ~ ~ ~ , ~ ~ ) ~ S ~ T E ( ~ ~ ~ ) , M , N B ~ ~ N B ~ , N B ~ A ~  

JrNB2B,NB3 ,NB4 ,NDEPST 
COMMON /VELOC /U ( 4 )  
C O ~ O N / T A N K / B L ~ , B L ~ ~ U A V E ~ U S T A R , U L ~ , U L ~ ~ S C ~ U R , F R E Q ~ A D I S  
COMMON /OUTX/OUTYAS (362) ,DEPTuB(362) ,DEPs1~(362) ,DUM(362) 

C 
C 

KBOX=NBl %lB2 
MKBOX=MKBOX2-2 

c 
DO 3 L=l,M 
LMl=L-1 
LM2=L-2 
LM1 KBF=LMl *KBOX 
LM2KBF=LM2*KBOX 
L~BF=((E-~)*LM~)/~ 
L2BF=(LMl*LKL) /2 

e 
C Coagulation 



C Removal rate from a section due to scavenging by higher sections 
C 

MM1 =M- 1 
DO 6 1=1 ,NB1 
DO 6 J=l,NB2 
K=NB~*( J-1 )+I 
DO 6 L=l,MMl 
LM1 =L- 1 
LMlKBF=LMl *KBOX 
LBF=(LM~*(~*M-L)) /2 
SUM=O . 
LPl=L+l 
DO 7 N=LP1 ,M 

7 SUM=SUM+COEFAV(NB~+N-L+LBF,K)*Q((N-~)*KBOX+K) 
DQDT(K+LM~KBF)=DQDT(K+LM~KBF)-SUM*Q(K+LM~KBF) 

6 CONTINUE 
C 
C 
C Spatial sources and sinks of particle mass 
C 

SIPJUS=~.+O.~*SIN(~*~~~~*TIME*FREQ) 
C 

DO 8 L=I,M 
DO 8 I=l,NBl 
DO 8 J=l ,NB2 
K=NB~*(J-1)+I 
MKS=K+(L-P)*KBOX 
DQDT(~S)=DQDT(~~K§ )+SRATE(MKS )*SINUS 

-fc -COEFAV(L+NDEPST,K)*Q(~S) 
8 CONTINUE 

C 
C Correct for adjacent cells 
C 
C 1. Settling 
C 

NB22=NB2-1 
DO 9 I=l,NBl 
DO 9 .?-1,NB22 
K=NB~*(J-1)+1 
DO 9 L-1,M 
P~KS=K+(L-~)*KBOI: 
DQDT(~S>=DQDT(MKS)+COEFAV(L+NDEPST,K)*Q(~S+NB~) 

9 CONTINUE 



S IG=O . 
J-1 
DO 90 I=1 ,NB1 
K=NB~*( J-1 )+I 
DO 90 L=l,M 
MKS=K+(L-~)*KBOX 

C 
C Scouring 
C 

DEP~B(MKS)=-C~EFA~(L+NDEPST,K)*Q(MKS~*SCOUR 
DQDT (MKS )=DQDT (MKS ) -DEPTUB (MKS ) 
SIG=SIG+COEFAV(L+NDEPST,K)*Q(MKS)+DEPTUBS) 

90 DEPTUB(MKS)=~. 
DQDT(PEBOX+~ )=SIG 

C 
C 2. Advection 
C 

SUM=O . 
DO 10 I=2,NB1 
DO 10 J=l ,NB2 
IBOX=NB~*( J-1 )+I 
DO 10 L=l,M 
~S=IBOX+(L-I)*KBOX 
OUTHAS (MKS ) =O . 
DQD~(~~)=DQDT(~S)+~Q(~S-~)-Q~MKS)~*U(J)/BL~*SLNUS 

C 
C Compute the rate (kg/(sec-m.3)) at which mass leaves the tank 
C 

IF(I.EQ,NB~) OUTK~S(MKS)=U(J)*Q(~S)/BL~ 
10 SUM=SUbf+OUTMS(MKS) 

DQDT(MKBOX~)=SUM 
C 
C For the first column of ceiis 
C 

I= 1 
DO 12 J-1 ,NB2 
IBOX=NB~*(J-1)+1 
DO 12 L=1,M 
MKS=IBOX+(L-P)*KBOX 
DQDT(MKS)=DQDT(MKS)-U(J)*Q(MKS)/BL~*SEMUS 

12 CONTINUE 
C 
C 3. Vertical turbulent mixing 
C 

IF(NB~~.LT.~) GO TO 19 
DO 13 I=l,NBl 
DO 13 J=2,NB22 
zl=(J-l)*BL2 
Z2= J*BL2 
TUDIF~=O.~*USTAR*Z~*(~ a-~1/~~2)*~~S*SINUS 
TUDIF~=~ .3*~STb&*~2*(1 .-z~/uL~)*ADIS*SINUS 



IBOX=(J-1)%~1+1 
DO 13 L=l,M 
MKS=IBOX+(L-1 )*KBOX 
DQDT(MKS)=DQDT(MKS)-((Q(MK§)-Q(MKS+NB~))*TUDIF~+ 

fr (Q(MKS>-Q(MKS-NB~))*TUDIF~)/(BL~**~) 
13 CONTINUE 

C 
C For the lowest (first) row of cells 
C 
19 J=l 

Z= BL2 
TUDIF=O .3*USTAR*Z*(l .-Z/UL~)*ADLS*SINUS 
SIG=O . 
DO 14 I=l,NBl 
IBOX=NB~*( J-1)+1 
DO 14 L=l ,M 
MKS=IBOX+(L-~)*KBOX 
DQDT(~S)=D~DT(~S)-(Q(~~~KS)-Q~P~KS+NB~))*TUD~F/BL~**~ 

14 CONTINUE 
C 
C For the upper (last) row of cells 
C 

J=N B 2 
z=(J-l)*BL2 
TUDIF=0.3*USTILR*Z*(l .-Z/UL2)*i"rDIS*SIMU§ 
DO 15 I=1 ,NBP 
IBoX=(J-~)J~B~+-I 
DO 15 L==l,M 
MKS=IBOX+(L-~)*KBOX 
DQDT(MKS)=D~DT(MKS)-(Q(~S)-Q~~S-NBI)DIFZ/BL~**~ 

15 CONTINUE 
C 

XETUW 
EXD 

...................................................................... 

SUBROUTINE FCNJ(N,X,Y,PD) 
INTEGER N 
REAL Y(N) ,PD(N,N) ,X 
RETURN 
EXD 

~**-X. .k f t .Jr***Q***3c .k .k .k*f* f3r f t**-k*Jr*t .d ;*3s~**4*t~~t~~~ '" ' '  ~~h~h***fa'ct*********sF--k*% 

BLOCK DATA 
C ~ M M ~ N / ~ U T X / O U T ~ W ~ ( ~ ~ ~ ) , D E , D T U B ( ~ ~ ~ ~ ~ D E P S I T ( ~ ~ ~ ) , ~ U T ( ~ ~ ~ )  
C O ~ O N / D I S C O / S U ~ ( ~ ~ ) , S U P ~ I N ( ~ ~ ) , T E Y ~ , T Z M ~ ~ T S  

* TSHm,SSRMm,QEFMAX,QEFMm,QSTORE,SINUS 
DATA QSTORE,QEFPIAX,QEFH'LN ,s~uS/O. $0. ,IOO. $0 ./ 
DATA OUT,DEPSIT/~~~*~.E+~ 
EN D 



...................................................................... 

C 
SUBROUTINE DGEAR (N,FCN,FCNJ,X,H,Y,XEND,TOL,METH,MITER,INDEX, 
1 IWK,WK,IER, COEFAV,NDEPST,MSECT,NBl ,NB2, 
2 NNSTEP ,NNFE , SCOUR) 

C SPECIFICATIONS FOR ARGUMEX TS 
INTEGER N,METH,MITER,INDEX,IWK(~),IER 
REAL X,H,Y(N> ,xEND,ToL,WK(~) 

C SPECIFICATIONS FOR LOCAL VARIABLES 
INTEGER NERROR,NSAVEl ,NSAVE2 ,NPW,NY,NC3MFC,KFLAG, 
1 JSTART,NSQ,NQUSED,NSTEP,NFE,NJE, 1,NO ,NHWT,KGO, 
2 JER,KER,NN,NEQUIL, IDUMEn(21) ,NLC,NUC 
REAL SDUMMY(4) 
REAL T,HH,HMIN,HMAX,EPSC,UROUND,EPSJ,KUSED,TOUTP, 
1 AYI ,D,DN ,SEPS,DUMMY(39) 

C 
INTEER NDEPST,MSECT,NBl ,NB2 
REAL C O E F A V ( ~ ~ ~ , ~ ~ ) , Y O L D ( ~ ~ ~ ) , D E P O L D ( ~ ~ ~ )  

C 
EXTERNAL FCN,FCNJ 
COMMON IDBAND/ NLC ,NUC 
COMMON /GEAR/ T,HH,HMIN,HMkX,EPSC,UROUND,EPSJ,HUSED,DU, 
1 TOUTP,SDUM,NC,mC,KFLAGa JSTPRTaNSQ,NQUSEDs 
2 NSTEP ,NFE ,NJE,NPW,NERROR9NSAVE1 $NSAVE2 ,NEQUIL, 
3 NY, IDUMMY3N0 ,NHCUT 

C 
CO~ON/OUTX/OUTMAS(~~~> ,DEPTUB(362) OD~PSI~(362) *OUT(362) 

C 
DATA SEPS/Z3C100000/ 

C FIRST EXECUTABLE STATEMENT 
C 

KBOX=NBl'#NBZ 
DC 400 I=1 ,NBL 
DO 400 J=l,NB2 
IBOX=(J-I)"NB~+I 
DO 400 LS=l ,MSECT 
MKS=(LS-~)*KBOX+IBOX 
YOLD(~S)=O. 

400 DEPOLD (MKS) =O . 
C 
c 

IF (MITER.GE.O) NLC = -1 
KER = 0 
JER = 0 
UROUND = SEPS 



C COMPUTE WORK VECTOR INDICIES 
NERROR = N 
NSAVEl = NERROR+N 
NSAVE2 = NSAVEl+N 
NY = NSAVE2+N 
IF (METH.EQ.~) NEQUIL = NY+13*N 
IF (METH.EQ.~) NEQUIL = NY+6*N 
NPW = NEQUIL + N 
IF (MITER.EQ.O.OR.MITER.EQ.~) NPW = NEQUIL 
MFC = ~O*METH+IABS(MITER) 

C CHECK FOR INCORRECT INPUT PARANETERS 
C 

IF (MITER.LT.-2.0R.MITER.GT.3) GO TO 85 
IF (METH.NE.~.AND,METH.NE.~) GO TO 85 
IF (TOL.LE.O.) GO TO 85 
IF (N.LE.O) GO TO 85 
IF ((X-XEND)*H.GE.O.) GO TO 85 
IF (INDEX.EQ.O) GO TO 10 
IF (INDEX.EQ.~) GO TO 15 
IF (INDEX.EQ.-1) GO TO 20 
IF (rnD~x.EQ.3) GO TO 25 
IF (INDEX.NE.~) GO TO 85 

C IF INITIAL VALUES OF H W  OTHER THAN 
C THOSE SET BELOW ARE DESIRED, THEY 
C SHOULD BE SET HERE. ALL YMAX(1) 
C MUST BE POSITIVE. IF VALUES FOR 
C HMIN OR HMAX, TWE BOmDS Old 
C DABS(HH), OTHER 'PglAN THOSE BELOW 
C ARE DESIRED, THEY SHOULD BE SET 
C BELOW. 

DO 5 I=1 ,N 
WK(I) = ABS(Y(I)) 
IF {-WK(1j.XQ.O.j hi(I) = 1. 
WK(NY+I) = Y(I) 

5 CONTINUE 
NC = N 
T = X 
HH = H 
IF ((T+HH).EQ.T) KER = 33 
HMIN = ABS(H) 
HMAX = ABS(X-XEND)*~~. 
EPSC = TOL 
JSTART = 0 
NO = N 
NSQ = NO%O 
EPSJ = SQRT(UR0UND) 
NHCUT = 0 
DuW(2) = 1.0 
DuW(14) = 1.0 
GO TO 30 



C TOUTP I S  THE PREVIOUS VALUE OF XEND 
C FOR USE I N  HMAX. 

l o  H Y I  = ABS(XEND-TOUTP)*~O. 
GO TO 45 

C 
15 HMAX = ABS(XE~D-TOUTP)*~O, 

I F  ((T-XEND)*HH.GE.O.) GO TO 95 
GO TO 50 

C 
2 0  IF ((T-XEND)%H.GE.~.) GO TO 9 0  

JSTART = -1 
NC = N 
EPSC = TOL 

C 
2 5  I F  ((T+HH).EQ.T) KER = 33 

C 
30 NN = NO 

CALL DGRST (FCN,FCNJ,WK(NY+~) ,WK,WK(NERROR+~) ,w~@s~v~l+l), 
1 W K ( N S A V E ~ + ~ )  ,WK(NPW+~)  ,WK(NEQUIL+l) ,IWK,NN) 

C 
KG0 = 1-KFLAG 
GO TO ( 3 5 , 5 5 , 7 0 , 8 0 ) ,  KG0 

C KFLAG = 0 ,  -1, - 2 ,  -3 
35 CONTINUE 

C NORMAL RETURllT FROM INTEGRATOR. THE 
C WEIGHTS YMAX(1) ARE UPDATED. I F  
C DIFFERENT VALUES ARE DESIRED, THEY 
C SHOULD BE SET HERE. A TEST I S  MADE 
C FOR TOL BEING TOO SMALL FOR THE 
C MACHINE PRECISION. ANY OTHER TESTS 
C OR CALCULATIONS THAT ARE REQUIRED 
C AFTER EVERY STEP SHOULD BE 
C INSERTED BERE. I F  INDEX = 3 ,  f IS 
C SET TO THE CURRE;NT SOLUTION ON 
C RETURN. I F  INDEX = 2 ,  HH I S  
C CONTROLLED TO H I T  XERD (WITHIN 
C ROUNDOFF ERROR), AND TEEN THE 
C CURRENT SOLUTION I S  PUT IN Y ON 
C RETURN. FOR ANY OTHER VALUE OF 
C W DEX, CONTROL RETURNS TO THE 
C INTEGRATOR UNLESS XEND HAS BEEN 
C REACHED. THEN LNTERPOLATED VALUES 
C OF THE SOLUTION BRE COMPUTED AND 
C STORED IN Y ON RETURN. 
C I F  INTERPOLATION I S  NOT 
C DESIRED, THE CALL TO E R I N  SHOULD 
C BE REMOVED AND CONTROL TRmSFERRED 
C TO STATEPENT 9 5  W S T W  OF 1 0 5 .  



D = 0. 
DO 40 1-1 ,N 

AYI = ABS(WK(NY+I)) 
WK(I) = AMAX~(WK(I),AYI) 

40 D = D+(AYI/WK(I))**Z 
D = D*(UROUND/TOL)**~ 
DN = N 
IF (D.GT.DN) GO TO 75 
IF (INDEX.EQ.3) GO TO 95 
IF (INDEX.EQ.~) GO TO 50 

45 IF((T-XEND)*HH.LT.~.) GO TO 255 
NN = NO 
CALL DGRIN (xEND,WK(MY+~),NN,Y) 
X = XEND 
GO TO 1055 

C 
255 DO 113 IB=l ,NBl 

DO 113 JB=1 ,NB2 
IBOX=(JB-~)~BI+IB 
DO 113 LS=l,MSECT 
~s=(Ls-I)*KBOX+IBOX 
AVEMAS=o .5*(WK(NY+MKS )+YOLD(MKS) )*(I .-SCOUR) 
DEPTUB(MKS)=COEFAV(LS+MDEPST,IBOX)*AVEMAS*HUSED 
DEPSIT(~~)=DEP~~B(MRS)+DEPSIT(MKS) 
AVEOUT=O.~*(OUTMAS(MKS)+DEPOLD(MKS)) 
ou~(ms )=AVEOUT*HUSED+OUT(MKS) 
DEPOLD (MKS =OUTMAS (MKS 
YOLD (MKS ) =WK(NY+~S) 

113 CONTINUE 
GO TO 25 

C 
50 IF (((T+HH)-XEND)*HH.LE.~.) GO TO 255 

IF (ABS!T-X~E).LE.UR~UP~D*~~~(~~.*ABS(T~,H~"SIX) GO TO 95 
IF ((T-XEND)*HB.GE.O.) GO TO 95 
HH = (XEND-T)*( 1 .-4 .*UROUND) 
JSTART = -1 
GO TO 255 

C ON AN ERROR RETURN FROM INTEGRATOR, 
C AN IMMEDIATE RETURN OCCURS IF 
C KFLAG = -2, AND RECOVERY ATTEMPTS 
C ARE MADE OTKERWISE. TO RECOVER, HH 
C AND HMIN ARE REDUCED BY A FACTOR 
C OF .1 UP TO 10 TIMES BEFORE GIVING 
C UP, 



55 JER = 66 
60 IF (NHCUT.EQ.~O) GO TO 65 

NHCUT = NHCUT+l 
HMIN = HMIN*.l 
HH = HH*. 1 
JSTART = -1 
GO TO 25 

C 
65 IF (JER.EQ.~~) JER = 132 

IF (JER.EQ.~~) JER = 133 
GO TO 95 

C 
70 JER = 134 

GO TO 95 
C 

75 JER = 134 
KFLAG = -2 
GO TO 95 

C 
80 JER = 67 

GO TO 60 
C 

85 JER = 135 
GO TO 110 

C 
$0 JER = 136 

NN = NO 
CALL DGRIN (XEND,WK(NY+~) ,NN,Y) 
X = XEND 
GO TO 110 

C 
9 5 X = T  

DO 100 I=1 ,N 
loo Y(I) = WK(NY+I) 

C 
1055 HSTEP=HUSED-(T-X~D) 
C 

KBOX=NBlWB2 
DO 114 IB=1 ,NBl 
DO 114 JB=1 ,NB2 
IBOX=(JB-~)WBI+IB 
DO 114 LS=l,MSECT 
MKS=(LS-~)*KBOX+IBOX 
AVEKAS=~.~*(Y(~S)+YOLD(MKS))*(~.-SCOUR) 
DEPTUB(MKS)=COEFAV(LS+NDEPST,IBOX)*AVEEIAS*BSTEP 
DEPS IT (ms ) =DEPTUB (MKS ) +DEPS IT (ms ) 
AVEOUT=O.~*(OUTKAS(~~KS)+DEPOLD(MKS)) 
~ ~ T(~~)=A~E~UT*HSTEP+OUT(MKS) 
DEPOLD(MKS)=OUTMAS(~S) 
YOLD(MKS)=Y(MKS) 

114 CONTINUE 
NNFE=NFE 
NN STEP=N STEP 



105 IF (JER.LT.~~~) INDEX = KFLAG 
TOUTP = X 
H = HUSED 
IF (KFLAG.NE.O) H = HH 

110 IER = MAXO(KER,JER) 
9000 CONTINUE 

IF (KER.NE.O.AND.JER.LT.128) CALL UERTST (KER,6HI)(;EAR ) 
IF (JER.NE.O) CALL UERTST (JER,6HDGEAR ) 

9005 RETURN 
END 

................................................................. 
SUBROUTINE RHODD(V,D,RHO) 

C 
C This routine computes the density of the flocs assuming the 
C size-density relationship Eq. 2.6, Chapter 11, in Valioulis' Thesis. 
C 

RHOWAT=1000. 
IF (V.LE.0.) GO TO 1 
RH0=2650. 
I~(v.G~.8.8802~-14) GO TO 5 
~=(6,*~/(3.141592654*~~0))**(1./3) 
RETURN 

5 Dz4.E-6 
DO 10 I=1,1000 
~l=RHOWAT+1.3/(100.*D)**0.9 
F=F1*0,5235987757*D*D*D-V 
DF=F1*1.5707963*D*D-0.0097092232*D*D/D**O.9 
D=D-F/DF 
IF(AB~(F~.LE.(~.~~~*~)) GO TO 14 

10 CONTINUE 
GO TO 15 

14 RHO=RNOWAT+~ .3/(100.*~)**0.9 
RETJW 

1 IF(D.LT.4.E-6)GOTO2 
RHO=RHOWAT+1.3/ (D*l00. )**O.9 
GO TO 3 

2 RH0=2650. 
3 V=O .5235987757*D*D*D*RHO 

RETURN 
15 STOP 

END 



..................................................................... 

c SUBROUTINE RHODD(V,D,RHO) 
C This routine computes the density of the flocs assuming a constant 
C density of 2000kg/m3 for all floc sizes 
ti 

C RHO=2000. 
c IF(V.LE.O.) GO TO 1 
C D=(6.*V/(3.141592654*RHo))**(l1/3.) 
C RETURN 
C 1 V=O .5235987757*D*D*D*RfiO 
C RETURN 
C END 
C 
...................................................................... 

SUBROUTINE DIVIDE(M,NB~,NB~,VOLUHE,SOURCE,SRATE,DIM,IPRNT,IT, 
~t PERSUS ) 

C 
C This routine fractionates the source (kg/m3) according to the 
C power law: Number=constant*(particle volume)**(-bslope) 
C and stores the input mass concentration in SRATE (kg/sec-m3) 

DIMENSION SOURCE(~~),SRATE(~~~),DENS(~~),DIAM(~~),V(~~), 
*CONSTA(~~)  ROMEA AN(^^) ,DIMEAN(21) 
COMMON /VELOC/U(4) 
COMMON/TANK/BL~,BL~,UAVE,USTAR,UL~,UL~,SCOUR 
KBOX=NBl B2 
BSLOPE=3. 
MAX=15 
SUMFRA=O . 
MK=M+ 1 
DO 1 I=l,MK 
v(I)=O. 

1 CALL P!ODD(V(I! ,DIPS?(X) ,DENS(I!! 
DO 2 I=l,M 
RO~AN(I)=SQRT(DENS(I+~)*DE~S(I)) 

2 DI~AN(I)=SQRT(DIAM(I+~)*DIAM(I)) 
DO 21 I = l , W  
SU~RA=ROMEAN(I)*DIME~(I)**(~.-BSLOPE)*~.~~/~.+SU~M 

21 CONTINUE 
WRITE(IPWT,~~~)M,SOURCE(~),DIAM(~),DFSS(~) 

900 FORMAT(' ~1~=',13,2X,3(2X,~10.4)) 
DO 3 1=1 ,RBI 
DO 3 J=l ,NB2 
K=NB~*( J-1)+I 

3 CON STA(K)=SOURCE (K) / s u m  
IF(IT.NE.I) GO TO 12 
WRITE(IPRNT, 10) 

10 FORMAT(' MASS CONC. ',3X,' NUMBER CONC.',~~, 
* ' VOLUME CONC.',3X,' MEAN DIAPIETER',~X,' MEAN DENSITY', 
* 3X,'  SECTION'/' KG/M~ ',6X,'#/CM3 ',SX,' PPM. 

6 , 
* 12~,'M' ,~~X,'KG/M~'//) 



12 SUMl=O. 
TOTVOL=O . 
DO 41 L=l,MAX 
SUM=0 . 
PARNUM=O . 
PARVOL=O . 
DO 4 1=1 ,NB1 
DO 4 J=l ,NB2 
K=NB~*( J-1 )+I 
SUM~=~./(U(J)*BL~%B~) 
PARVOL=PARVOL+CONSTA(K)*D~~AN(L)**(~.-BSL~PE)*SU~*~.~~/~. 
SRATE(KBOX*(L-~)+K)=CONSTA(K)*DIMEAN(L)**(~.-BSLOPE) 

* *ROMEAN(L)/VOLUME*3.14/6. 
SUM=SUM+SRATE(KBOX*(L-~)+K)*VOLUME*SUM~ 
SUM1=SUMb+SRATE(KBOX*(L-1) +K) 

4 PBRMUM=PARNUM+CONSTA(K)*DIMEAN (L)**(-BSLOPE)*SUM~ 
IF(IT.NE.~) GO TO 41 
S l=PBUM*l. E-6 
S2=PARVOL*l.E+6 
WRITE(IPRNT,~~) SUM,S~ ,SZ,DIFIEAN(L) ,ROMEAN(L) ,L 

11 FORKPIT(1XsE10.4,6Xs~1O~4,6X,~10.4,7X,~1O.4,6~,ElO.4, * 7X,I3//) 
TOTVOL=TOTVOL+PARVOL 

41 CONTINUE 
IF(IT.NE,~) RETUW 

6 Compute equiva len t  diameter  i n  e f f l u e n t  
C 

SUM2=0. 
SUM3=0. 
DO 50 J=l,MB2 
SUM=O . 
SiiM4=0. 
IBOX=NB~*(J-1 )+1 
DO 51 L=l,M 
P~RS=IBOX+(L-I)*KBOX 
SUMZSRATE(MKS ) /ROMEAN (L)+SUM 

51 SUM~=SRATE(MKS)/(~.~~/~.*ROMEAN(L)*DIMEAN(L)**~)+SUM~ 
SUM2=SUM+SUM2 

50 SUM3=SUm+SUM4 
~~l.r2=(6./3.14*~~M2/S~U)**(1./3.) 

P V 

G C~~sipuee t h e  % suspended s o l i d s  i n  e f f l u e n t  
c 

SiJM=0 * 
DO 88 I=l,NBl 
DO 88 3=1,NB2 
IBOX=EB1*(J-1)+1 
DO 88 L=5,M 
F~S=HBOX+(L-I )*KBOX 

88 SUFf=SUb+SPATE(li9RS) 



PERSUS=SUM/SUM~ 
Sl=TOTVOL*l .E+6 

C 
WRITE(IPRNT,~~) Sl,SUM2,PERSUS 

48 FORMAT(' TOTAL VOLUMETRIC CONC IN INFLUEXT~' ,E10.4/, * ' EQUIVALENT DIAMETER=',E~~.~/,' % SUSPENDED SOLIDS IN', 
* ' ZNl?LUENT=',E10.4/) 

C 
RETURF! 
rnT D 

............................................................ 
SUBROUTINE SOR(NB1 ,NB2 ,IT, TIME,TDISIN, SOURCE,FLOW, START, IDISC) 

C 
C This routine computes the velocity field and the input 
C mass in SOURCE (kg/sec) 
C 

CO~ON/TANK/BL~ ,BL2 ,UAVE,USTAR,ULl ,UL2 ,SCOUR,FREQ,ADIS 
COMMON /VELOC/Ul $U2 ,U3 $4 
DIMEBSION SoURCE(24) 
KBOX=NBl dnB2 
ADIS=I . 
IF(IT.NE.~) GO TO 7 
START=O .00888 
Z1=0.5*BL2 
Z2=1.5*BL2 
Z3=2,5*Bk2 

C Z4=3,5*BL2 
C V~=UAWE+USTAK/O.~*(~.+ALOC(Z~/UL~)) 

v~=uAvE+usTAR/O.~*(~~+AL~G(Z~/UL~)) 
v~=UAVE+USTAR/O.~*(~.+ALOG(Z~/UL~)) 
V~=UAVE+USTAR/O .3*(1 .+ALoG(z~/uL~)) 
V4=0. 
xr-Tr3 v- v &+V2+V3+V4 
VFLOW=V*BL2 
V=l ./v 
A1 =VI *V 
A2=V2*V 
A3 =V3 *V 
A4=V4*V 

7 IF(IDLSC,EQ.~ .AND. TIM.EQ.TDISIN) ADISZ2. 
SOURCE(~)=A~*START*ADIS 
SOURCE(NB~+~)=A~*START*ADIS 
SOURCE(~%B~+~ )=A3*START*ADIS 

C SOURCE(~%B~+~ )=A4*START 



u1=v1 
U2=V2 
U3=V3 
U4=V4 
FLOW=VFLOW 
DO 11 J=l ,NB2 
DO 11 1=2 ,NB1 

11 sou~c~(~~l*(~-1~+1)=0. 
RETURN 
END .................................................................. 
FUNCTION BETCAL(X,R~ER,ABSER,ROUND,IPRNT,FIXSZ,BASESZ,INNER, 
*TWAT,NBTYPE) 
EXTERNAL BETA 

C 
C This r o u t i n e  c a l c u l a t e s  t h e  inne r  i n t e g r a l  of t h e  s e c t i o n a l  
C coagula t ion  c o e f f i c i e n t s .  
C 

W=FIXSZ 
YE= BASESZ 
IF(INNER.EQ.~) GO TO 3 
YL=ALOG ( BASESZ-EXP (x) ) 
IF(~NER.EQ.~) GO TO 20 
YrJ=PL 
YL=FIXSZ 

C 
3 IER=I. 

ABE=ABSER*ABSER 
REL= .5*RELER 
CALL GAUS~(BETA,YL,W,REL,ABE,ROUND~ANSWR,IER,X,~AT,NB~PE) 

10 BETCAL=AN SWR 
IF(IER,EQ.~) RETURN 

G 
WRITE(IPWT,~) NBTYPE,X,YL,W,IER,REL,A.BE 

4 FORMAT(' INNER INTEFRATION ERROR, BTERAL TYPE',I3, 
* OUTER 'J-ARIMLE=',E12.4,' INNER DOMAIN=',2E12.4,' ERROR=', 
I REL='E12.4,' ABE=',E12.4) 

C 
STOP 

20 ETEST=ABS(W-YL)/(DABS(W)+DABS(YL)) 
IF(ETEST.GT.~~~.*ROUND) GO TO 3 
DELVL=mP (XI / BASESZ 
YMEAN=~ .5*(YU+YL) 
ANSWR=(DELVL+~.~*DELVL"DELVL)*BETA(YPIEAW,X,TWAT,NBTYPE) 
GO TO 10 

C 
END 



C***************************************************************** 

FUNCTION BETA(Y,X,TWAT,NBTYPE) 
C This routine computes the coagulation coefficients due 
C to Brownian diffusion, turbulent shear and gravity settling 
C The collision efficiencies are computed as outlined in Valioulis' 
C Thesis, Section II.2.b. 
C 

COMMON/PHYSPT/AFLROV~VOLUME,EPS 
COMMON/TANK/BL1,BL2,UAVE,USTAR9UL1,UL2 

C 
V=EXP (X) 
U=EXP(Y) 
DX=O . 
DY=0 . 
CALL RHODD(V,DX,RHOX) 
CALL RHODD(U,DY,RHOY) 

C 
C Determine the physical properties of water 
C 

RHOWAT=1000. 
VISCOS=l.O02E-03 
VISCKI=VISCOS/RHOWAT 
RKT=4,1E-22 
HYEFF=l . 

C 
DX=1.2 *DX 
DY=l.Z*DY 
IF(DX,GT.DY) GO TO 9 
RZ=DY*O. 5 
KATIO=DY/DX 
DEN S=RHOY 
GO TO 10 

9 R2=ilX*O.5 
DF;N S=RHOX 
RATIO=DX/DY 

10 RATINV=P./FUTLO 
C 
C Brownian coagulation 
C 

IF(RATIO.GT,~O.) GO 18 6 
HYEFF=0.4207+0,033*RATPO-~9E-~*RATIO**2 
GO TO 5 

6 HYEFF=O .6 52+O ,0055*RATI0-3 -03 5*E-5*RdTIO**2 
5 B E T A B R = ( ~ . / ~ , ) * B K T / V I S C : O S * ( D X + D Y ) * * ~ / ( ~ F F  



C Turbulent shear coagulation 
C 

Z=(EPS-O.~)*BLZ 
C 
C For the log-velocity profile 
C 

EPSILO=USTAR**~/(~.~*Z)*(~.-z/UL~) 
C 
C 
C 
C 

G=SQRT(EPSILO/VISCK~> 
C 

IF(R~.LT.~.E-6) GO TO 201 
POROS=( 26 50 .-DENS) / (26 50 .-RHOWAT) 
IF(PoRoS.LT,~.E-2) GO TO 20 
XI=SQRT(~.+~./(~.-POROS)-~.*SQRT(~./(~.-P~ROS)-~.)) 
XI=SQRT(1800.)/XI 
IF(xI.GT.~~.~~) XI=10.89 
HEFSH1=1.16156-0.22776*XI+O.O111864*XI*XI 
GO TO 203 

20 HEFSHl=O. 
203 RATI2=RATINV*RATIMV 

RATI3=RATI2*FUTIMV 
HEFS~2=-0.403611+9.423~6*RATINV-17.2139*liATI2+9.444*RATI3 
H E F F S H = A W ~ ( H E F S H ~ , B E F S H ~ )  
GO TO 202 

201 ~~~~~~=(-0.9798-1.09705~-3*~A~10+2.2377E-5*~AT10**2- * 1.3297~-7*RATI0**3) / (1 .-2.79224*~AT10) 
202 IF(HEFFSH.LT.~.) GO TO 35 

BETATU=~.~/~.*(DX+DY)**~% 
BETATU= BETATU*HEFFSH 
GO TO 34 

35 BETATU=O. 
C 
C Gravitational coagulation 
C 
36 IF(R~.LE.~.E-6) GO TO 21 

P O R O S = ( ~ ~ ~ O . - D E ~ T S ) / ( ~ ~ ~ ~ ~ - R H O W A T )  
XI=SQRT(3.+4./(1 .-POROS)-~~*SQRT(~./(~.-POROS)-~.)) 
XI=SQRT(1800.) /XI 
XI2=XI*XI 
XI3 =XI *XI *XI 
XI5=XI*XI*XI3 



JEY=2 .*XI2+3 .-3. /XI 
CJEYZ-(XI5+6.*XI3-(~.*XI~+~.*XI~)/XI)/JEY 
DJEYZ3 .*XI3*(1.-1 ./XI)/JEY 
HEFP0Rz1 .-DJEYIXI-CJEYIXI3 
IF(R~.LE.~~,E-~) GO TO 205 
IF(R2.LE.20.E-6) R2=20,E-6 
R22=R2*1.E+6 
1F(R22 .GT,140.) R22=140, 
~O=0.95-(0.7-0.005*~22)**4*(7.~2-0.12*~22+0.001*~22**2) 
El=-(RATINV-0.5)**2 

C 
C Correct E2 for particles larger than 140.E-6 m. 
C 

E~=-~.~*EXP(-(~.~O~~*(R~*~.E+~)**~+~)*RATLNV) 
~3=-(1.-0.007*R22)*EXP(-O .65*~22*(1 .-RATINV)) 
E~=EXP(-~~.*(~.-RATIMV)) 
HEFFDS=EO+El+E2+E3+E4 
GO TO 206 

205 HEFFDS=O.~*RATINV**~/(~.+RATINV)**~ 
206 HEFFDS=DMAX~(HEFFDS,HEFPDR) 

IF(HEFFDS.LT.O.O) HEFFDS=O.O 
GO TO 31 

21 HEF=O.~*RATINV**~/(~.+RATINV)**~ 
31 1F(RATINV.GE.0.4) HEFFDS=DMAXI(HEFFDS,~.~D-~) 

IF(RATINV.LE.O,l .AND. R2.GE.l.E-6) HEFFDS=DW~(HEFFCS,~.~D-1) 
BETAGR=O .7/16 .*~.~~/VISCOS*(DX+DY)**~ 
BETAGR=BETAGR*ABS ( (RHOX-REPOWAT)*DX**~-(~OY-~QWAT]*DY**Z) 
BETAGR=BETAGR%EFFDS 

C 
C Add all coagulation mechanisms 
C 

BETA= BETABR+ BETAGR+ BETATU 
C 
C Convert the integrand for sectionalization by mass 
C 

GO TO (~,~,~,~,~,I),NBTYPE 
1 BETA=BETA/V 

RETURN 
2 BETA=BETA/U 

RETURN 
3 BETA=~.E~O*BETA*(U+V)/(U*~.E~O*V) 
RETURM 
END 



.................................................................... 

FUNCTION DEPoST(X,DUMMY,TWAT,NBTYPE) 
C 
C This  r o u t i n e  computes t h e  depos i t i on  c o e f i c i e n t s  
C 

COMMON /PHYSPT/AFLROV , VOLUME 
C 

V=EXP(X) 
D=O . 
CALL RHODD(V,D,RHO) 

C 
C Determine t h e  phys i ca l  p r o p e r t i e s  of water 
C 

RHOWAT=1000. 
VISCOS=l.O02E-03 

C 
D1=1.2*D 
VTI~RM=(~./~~.)*~.~~*(RI:~-RWOWAT)/VISCOS*D~*D~ 
IF(NBTYPE.EQ.~)  DEPOST=AFLROV*DMAXl(O.M.OO,~ERM) 
RETURE 
END 

C**************************************f;************************** 

SUBROUTINE GAUS~!F,XL,XU,R~ER,AESER,RO~JND~MS~~IEK,EXTR~~, 
* EXTRA2 ,N EXTRA) 

C 
C 
C THIS ROUTINE COMPUTES THE INTERAL OF F(X,EXTRAL,EXTRA~,EXTRA~, 
C NEXTRA) FROM XL TO XU. A TWO POINT GAUSS-LEGEBDRE QUADRATURE 
C FORMULA I S  USED. CONVERGENCE I S  CHECKED BY DIVIDING TEE DOWIN IN 
C HALF AND REAPPLYING THE FORMULA I N  EACH HALF. I F  THE VALUE OF TRE 
C INTEGRAL CALCULATED OVER THE ENTIRE DOMAIN I S  NOT EQUAL TO THE 
C SUM OF THE INTEGRALS IN EACH HALF (WITHIN THE 
C USER SPECIFIED ERROR TOLERANCE), EACH U F  I S  FURTHER DIVIDED 
C INTO HALVES AND THE GAUSS-LEGENDRE FORMULA I S  REAPPLIED. THE 
C PROCEDURE WILL CONTINUE ITERATING (I .E.  S U B D I V I D I N G ) , ~ T I L  
C CONVERGENCE I S  ACHIEVED OR THE W I I v l U M  NUMBER OF ITEMTIONS I S  
C REACHED. THE MAXIMUM NUMBER OF ITERATIONS I S  EI%HER TKE SET 
C DEFAULT VALUE OF 3 0  (WHERE THE FIRST ITERATION I S  FOR EVALUATION 
C OVER THE ENTIRE DOMAIN), OR THE LARGEST NUMBER OF ITERATIONS 
C POSSIBLE WITHOUT SEVERE MACHINE ROUND-OFF ERRORS, mICBEVER I S  
C SMALLER. THE MACHINE ROUND-OFF ERROR CHECK I S  MADE TO IHSUWE 
C THAT THE INTEGRATION DOMAIN I S  NOT TOO SMALL SO AS TG BE 
C INSIGNIFICANT. SINCE THE PROCEDURE I S  ADAPTIVE, ONLY THE REGIONS 
C WHICH ARE NONCONVmGENT ARE DIVIDED INTO HALVES. THIS CODE WAS 
C WAS WRITTEN BY FRED GELBARD, FEBRUARY, 1 9 8 2 .  
C 



DIMENSION A(2 $21) ,~(21) ,~(21) ,ISIDE(~~) 
F ~ ( X D ~ H D ) = O . ~ ~ D * ( F ( X D + . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ % D , E X T R A ~ , E X T W ,  

* N E X T R A ) + F ( X D + . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ % D , E X T R A ~ , E X T R A ~ , N E X T R A ) )  
NMAX=21 

C 
H( l)=XU-XL 
A(2,1)=FuN(XL,H(l)) 
IF(IER.NE.1) GO TO 2 
I F ( ~ O . * A B S ( H ( ~ ) ) / R E L E R . L T . A W ~ ( A B S ( ~ )  GO TO 7 

C 
C CHECK THAT THE SIZE DOMAIN IS NOT TOO SMALL 
C 
2 IF(ABS(XU-XL).GT.~.*ROUND*AMAX~(ABS(XL),ABS(XU))) GO TO 8 

AN SWR=A( 2,l) 
IER=- 2 
RETURN 

C 
C DETERMINE THE MAXIMUM NUMBER OF SUBDIVISIONS BEFORE ROUND OFF 
c ERROR WOULD MAKE IT DIFFICULT TO DISTINGUISH POINTS IN TEE DO PAIR^ 
C 
8 RATIO=AMAX~(ABS(XU/H(~) ,ABS(XL/H( 1) ) ) 

N~=~-IFIX(~.~~~~*ALOG(RATIO*ROUND)) 
C- N~=-IFIx(~.~~~~*AL~~(RATIo*RoUND)) 
C+ ALLOW TWO EXTRA ITERATIONS TO INCREASE CHANCE OF CONVERGENCE 

NMAX=MINO(NMAX,N~ 
IF(NMAX.GT.~) GO TO 10 
IER=-1 
RETURN 

C 
10 ISIDE(1)=2 

DO 1 1=2,NMAX 
ISIDE(I)=2 

1 H ( I ) = . ~ % ~ ( I = ? )  

C 
X(2)=XL 
N=2 

C 
4 SUM=O . 

~ ( 1  ,N)=FUN(X(N) ,H(N>) 
A(~,N)=FuN(x(N)+H(N) ,H(N)) 
SUM=A(l ,N)+A(2,N) 



3 A(ISIDE(N) ,N- SUM 
IF(ISIDE(N).EQ.~) GO TO 5 

6 IF(N.EQ.~) GO TO 7 
N=N-1 
A(ISIDE(N) ,~-1)=~(1 ,N)+A(~,N) 
IF(ISIDE(N).EQ.~) GO TO 6 

C 
C 

5 IS IDE (N) =2 
x(N)=x(N-1)+~(~-1) 
GO TO 4 

C 
C 
9 IER=N- 1 

XL=X(N ) 
XU=X(N)+2 .*H(N) 
RELER=SUM 
ABSER=A(ISIDE(N),N-1) 
RETURN 

C 
7 IER=O 

ANSWR=A(2,l) 
RETURN 
END 

C ~****************************%*********************************%** 
C 

SUBROUTINE GAUSBT(F,XL,XU,RELER,ABSER,ROUND,ANSWR,IER,IPRNT, 
* FIXSZ, BASESZ, INNER,TGAS ,NBTYPE) 

C 
DIMENSION ~(2,21),~(21),H(21),IS1~~(21) 
F U N ( X D , H D ) = O . ~ % D * ( F ( X M - . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ O ~ D ~  

* IPRNT,FIXSZ, BASESZ, ~NER,~AT,NBTE'PE~+ 
* F(XD+.788675134598*HD,RELER,ABSER,R0UND2 
* IPRNT,FIXSZ, BASESZ, INNER,TWAT,NBTYPE)) 

NMAX=21 
H(l)=Xu-XL 
A(~,~)=FUN(XL,H(I)) 
IF(IER.NE.~) GO TO 2 
IF(~O.*ABS(H(~> ) / R E L E R . L T . A M A X ~ ( A B S ( X U )  1) 60 TO 7 

2 I F ( A B S ( X U - X L ) . G T . ~ . * R O U N D * A M A X ~ ( A B S ( ~  GO TO 8 
ANSWR=A(~ ,I) 



IER=-2 
RETURN 
RATIO=AMAX~(ABS(~/H(~) ) ,ABS(XL/H( 1) ) ) 
N~=~-IFIX(~.~~~~*ALOG(RATIO*ROUND)) 
N~=-IFIX(~.~~~~*ALOG(RATIO*ROUND)) 

ALLOW TWO EXTRA ITERATIONS TO INCREASE CftAN CE OF CONVERGENCE 
NW=MINO(NW,N~ 
IF(NMAX.GT.~) GO TO 10 
IER=- 1 
RETURN 
ISIDE(~)=~ 
DO 1 I=Z,NMAX 
ISIDE(I)=2 
~(1)=.5%(1-1) 
X(2)=XL 
N=2 
SUM=O . 
A(~,N)=FuN(x(N) ,H(N)) 
A(Z,N>=FuN(X(N>+H(N) ,H(N)) 
SUM=A(l ,N)+A(2 ,N) 
IF(AB~(~UM-A(I~IDE(N~,N-~))/RELER.LT.ABSSUM+ABSER) GO TO 3 
IF(N.EQ.NMAX) GO TO 9 
N=N+ 1 
IS IDE (N )=I 
x(N)=x(N-1) 
GO TO 4 
A(ISIDE(N ) ,N-1 )=SUM 
IF(ISIDE(N).EQ.~) GO TO 5 
IF(N.EQ.~) GO TO 7 
N=N-1 
A(ISIDE(N) ,N-l)=A(l ,N)+A(~ ,N) 
IF(IsIDE(N).EQ.~) GO TO 6 
IS IDE (N ) =2 
x(N)=x(N-1 )+H(N-1) 
GO TO 4 
IER=N- 1 
XL=X(N) 
XU=X(N)+2.*Ii(N) 
RELER=SUM 
ABSER=A(ISIDE(N) ,N-1) 
RETURN 
IER=O 
ANSWR=A(~,~) 
RETURN 
END 


