

THE FIRST TOTAL SYNTHESIS OF (−)-LEMONOMYCIN
AND
PROGRESS TOWARD THE TOTAL SYNTHESIS OF (+)-CYANOCYCLINE A

Thesis by

Eric Robert Ashley

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2006

(Defended October 31, 2005)

© 2006

Eric Robert Ashley

All Rights Reserved

*To the wonderful people who support me
and the great minds that taught me*

ACKNOWLEDGEMENTS

The work described in this thesis could not have been completed without the support of a great number of people. Primary among them is Professor Brian M. Stoltz, the α and the ω of the Stoltz Research Group. As a first-year professor with a lab already comprising eight people, Brian took the risk of accepting me and Jeff Bagdanoff as the ninth and tenth people for whom he would have to provide projects, bench space, advice, support, and funding. I imagine that a few people called him crazy for taking us, but Brian made the decision and never looked back. In the subsequent five years, Brian has become a great friend and mentor, and has somehow managed to find the space, cash, advice, and leadership necessary to keep a rowdy bunch of chemists like the Stoltz Group moving in the right direction. I will always be grateful for the support he has shown me. Additionally, I need to thank Brian for taking the time to read draft versions of every page of this thesis and correcting a vast number of my errors.

My thesis committee was chaired by Caltech's newest Nobel Laureate, Professor Bob Grubbs. Bob is deservedly admired by everyone in this department. He gave me very good advice about a number of my proposals, and took the time to chat whenever we ran across one another at Brown Gym or on recruiting hikes with prospective graduate students.

Professor Harry Gray has been on my thesis committee since the beginning. I am extremely appreciative of the time he spent reading both my candidacy report and my research proposals and grateful for the critiques and advice. I must also thank Harry for passing me at candidacy, despite that vanadium oxidation proposal.

Professor David MacMillan joined the committee during my fourth year, and asked some of the most perceptive and important questions in my proposal exam. I would also like to thank Dave for the knowledge he passed on to us in his advanced synthesis class and in countless molecule of the month meetings. The success of his research program has also shaped much of the way I think about asymmetric catalysis.

The work in this thesis also could not have been completed without Ernie Cruz and Kevin Allan. Ernie joined the leonomycin effort during my second year and pioneered the synthesis of lemonose. Kevin Allan joined the cyanocycline effort last spring. His enthusiasm for the chemistry and his willingness to try lots of crazy ideas has been a bright spot in the dog days of my graduate career. Kevin and I also share an interest in ABC's Lost, and have enjoyed theorizing about the show on many trips to the Red Door Café. I would also like to thank Tammy Lam, who worked as a SURF student on the leonomycin project.

Jeff Bagdanoff, Sarah Spessard, and Jenn Stockdill have survived the experience of sharing a bay with me. Jeff introduced me to Loveline, Adam Carolla, and Dr. Drew, put up with my incessant playing of Metallica, and meanwhile managed to pass on a lot of knowledge and experimental techniques. Sarah Spessard is acknowledged for exponentially increasing my caffeine addiction by starting the tradition of Red Door runs. Sarah and I also had some great times on the tennis court, at random ACS meetings, and in discussions about Trouble. Rumor has it that she's found a good Trouble now, and I hope it works out. Jenn appeared in the bay in the summer of 2003. She's been a great friend and trusty coffee companion (until she recently gave it up), and has helped me learn about sharing space. She's also been present at and partially responsible for the

occasions that have left me more intoxicated than any other. Here's to the Wine Bodega. Jenn also has a particularly wicked sense of humor, and we garnered far too much fun from making that bay map.

Doug Behenna was my apartment mate for two years in the Cats. I'll always remember the fish, trying to get into the shower before the cleaning lady got there, and discussing lab and federal politics until late in the night. Doug is also a very good chemist, and his ideas and knowledge have been important to many of my successes in the lab.

Eric Ferreira has been a great friend over that past few years. He listened to my endless complaining about the recent state of the Lakers (particularly admirable, considering that he's a Kings fan) and did much to keep me grounded in the worlds of music and sports. Eric also answered an immense number of my chemistry questions, and, importantly, provided the correct information far more often than most.

This thesis would not have been completed without the computer help and editing of Dan Caspi. I've never had to move so many files through so many formats in so many different programs in my life, and I would have been completely lost without the macros and advice he provided.

In the early days of the lab, a few people were invaluable for the experimental advice, overall knowledge of chemistry, and leadership qualities that helped get the Stoltz Group on its feet. Foremost among these is Richmond Sarpong, who joined the lab as a postdoc in the fall of 2000. Richmond answered so many questions and provided so much help to all us youngsters that its truly amazing how much of his own work he was able to accomplish. Richmond is also a great friend and an incredible soccer player.

Taichi Kano had a ton of good ideas for the leonomycin synthesis, and he also tried to teach me some Japanese. Teshik Yoon knows so much about chemistry that he was basically like having a second professor in the MacMillan lab, and I thank him for patiently answering all sorts of questions. Jake Wiener is an incredibly enthusiastic person, a great friend, and a surprisingly good goalkeeper (when he's not breaking people). He also taught me to use all of the MacMillan lab's instruments, for which I am eternally grateful.

My primary escapes from lab have been hiking (thanks 101 Hikes in the Angeles!) and soccer. In addition to Richmond, members of the team were Sean Brown, Mike Brochu, Rob Knowles, Joel Austin, Haiming Zhang, Akio Kayano, Ian Mangion, Tim Funk, and many others. Thanks for getting me out of lab and running around!

The chemistry department staff have been wonderful over the years. Dian Buchness is an incredible person and an absolute godsend whenever I have questions about the department. Paul Carroad found more lab space when we desperately needed it. Rick Gerhart fixed all sorts of broken glassware and built the low temperature reaction apparatus that was used for the final Swern oxidation in the leonomycin synthesis. Mona Shahgholi collected all of the high-resolution mass spectra. Larry Henling managed to collect data from some of the smallest, least-crystalline crystals that have ever been grown, and Mike Day refined that data into the structures presented in this thesis. Scott Ross helped me to obtain NMR characterization on minuscule quantities of late stage intermediates. Tom Dunn fixed much of my electronic equipment, and along with Chris Brandow helped dig supposedly erased files out of the 600 NMR's hard drive. Lynne Martinez helps keep the Stoltz Group going in all sorts of ways.

The editing of this thesis was a team effort. Jenn, Kevin, Dan, Andy Harned, and John Enquist were the key players, and I thank them for their efforts. Any errors that remain, naturally, are my own fault.

My family has always supported me. The love and encouragement from mom and dad, my sister, my grandparents, and all my aunts, uncles, and cousins mean the world to me. Many of my family members prayed for specific reactions to work, and they all hoped for my success. All of them are my role models in life, and I am blessed to be part of their lives.

Nothing that I have done could have happened without my wife Olivia. She supports, loves, encourages, and challenges me every day. She listens to my rants, calms my nerves, and even stays up with me when thesis writing has me too stressed out for sleep. The promise of our life together keeps me excited and hopeful for the future.

ABSTRACT

The first total synthesis of (–)-lemonomycin has been accomplished in an efficient and convergent manner. The synthesis features a highly diastereoselective, auxiliary-controlled dipolar cycloaddition that forms the bicyclic core and set the absolute stereochemistry of the natural product. The resulting diazabicycle was advanced by Suzuki coupling, diastereoselective hydrogenation, and a highly convergent, completely diastereoselective Pictet-Spengler cyclization with a glycosyloxy-acetaldehyde. The Pictet-Spengler product was then converted to (–)-lemonomycin in three steps. The glycosyl portion of lemonomycin was synthesized diastereoselectively from D-threonine.

The synthesis of (+)-cyanocycline A has been approached along two synthetic routes. Progress along a silyl ether route led to the discovery of a new diastereoselective hydrogenation of an unsaturated diazabicyclic to set the C(4) stereochemistry of cyanocycline A. The product of this reduction was advanced through a convergent Stille coupling reaction to an enamide that contains all but six of the heavy atoms of cyanocycline A with the correct stereochemistry at each of the stereogenic carbons. Further, the enamide functionality is an ideal precursor for installation of the C(13b) amino group.

Progress along an oxazoline route has led to the development of a novel dipolar cycloaddition of an alkynyl oxazoline. The resulting diazabicycle was advanced through a convergent Stille coupling reaction and diastereoselective hydrogenation to a late stage intermediate that contains all but three of the heavy atoms of cyanocycline A and has the correct relative stereochemistry for cyanocycline A.

TABLE OF CONTENTS

Dedication -----	iii
Acknowledgements -----	iv
Abstract -----	ix
Table of Contents -----	x
List of Figures -----	xiv
List of Schemes -----	xxi
List of Tables -----	xxiv
List of Abbreviations -----	xxv
CHAPTER ONE: An Historical and Contextual Introduction to Lemonomycin and Cyanocycline A -----	1
1.1 The Tetrahydroisoquinoline Antitumor Antibiotics -----	1
Representative Structures -----	1
Tetrahydroisoquinoline Biosynthesis -----	2
Biological Activity of the Tetrahydroisoquinoline Antitumor Antibiotics -----	4
1.2 Lemonomycin -----	5
Isolation and Biological Activity -----	5
Structural Elucidation of Lemonomycin -----	6
Proposed Mode of Action -----	8
Biosynthetic Proposal for Lemonomycin -----	10
Synthetic Approaches to Lemonomycin -----	11
1.3 Cyanocycline A -----	14
Isolation and Closely Related Compounds -----	14
Biological Activity of Cyanocycline A -----	16
Biosynthesis of Cyanocycline A -----	19
Previous Syntheses of Cyanocycline A -----	20
Evans' Total Synthesis of Cyanocycline A -----	21

Fukuyama's Total Synthesis of Cyanocycline A -----	25
1.4 Conclusion -----	28
1.5 Notes and Citations -----	29
CHAPTER TWO: The First Total Synthesis of (–)-Lemonomycin -----	37
2.1 Synthetic Planning for (–)-Lemonomycin -----	37
Structure and Synthetic Challenges -----	37
Original Retrosynthesis -----	37
2.2 Early Synthetic Work -----	39
Dipole Synthesis -----	39
Optimization of the Dipolar Cycloaddition -----	43
2.3 Second Generation Approach to (–)-Lemonomycin -----	46
Revised Synthetic Plan -----	46
Styrene Synthesis -----	47
Diastereoselective Reduction of the Enamide -----	49
Pictet-Spengler Cyclization -----	50
2.4 Final Synthetic Approach to (–)-Lemonomycin -----	52
Final Synthetic Plan -----	52
Synthesis of the Aminotriol -----	53
Synthesis of Lemonose -----	54
Completion of (–)-Lemonomycin -----	56
2.5 Progress Toward a Catalytic Asymmetric Dipolar Cycloaddition -----	63
2.6 Concluding Remarks -----	65

2.7 Experimental Procedures -----	67
Materials and Methods -----	67
Preparation of Compounds -----	68
2.8 Notes and Citations -----	119
APPENDIX ONE: Synthetic Summary for (−)-Lemonomycin -----	131
Appendix Two: Spectra of Compounds in Chapter Two -----	134
CHAPTER THREE: Progress Toward the Total Synthesis of (+)-Cyanocycline A -----	206
3.1 First Generation Approach Toward (+)-Cyanocycline A -----	206
Synthetic Challenges and Structural Comparison to (−)-Lemonomycin -----	206
Retrosynthetic Analysis: Silyl Ether Route -----	207
Synthetic Progress Along the Silyl Ether Route -----	209
Proposal for Completion of the Silyl Ether Route -----	212
3.2 Second Generation Approach Toward (+)-Cyanocycline A -----	214
Retrosynthetic Analysis: Oxazoline Route -----	214
Synthetic Progress Along the Oxazoline Route -----	215
Proposal for Completion of the Oxazoline Route -----	221
3.3 Progress Toward an Asymmetric Alkyne Dipolar Cycloaddition -----	222
Known Chiral Auxiliaries -----	222
Design and Utilization of a New Chiral Auxiliary -----	224
3.4 Conclusion -----	226
3.5 Experimental Procedures -----	228
Materials and Methods -----	228
Preparation of Compounds -----	229

3.6 Notes and Citations -----	255
APPENDIX THREE: Summary of Synthetic Progress Toward Cyanocycline A -----	261
APPENDIX FOUR: Spectra of Compounds in Chapter Three -----	263
APPENDIX FIVE: Notebook Cross-Reference for New Compounds -----	306
COMPREHENSIVE BIBLIOGRAPHY -----	308
INDEX -----	322
ABOUT THE AUTHOR -----	329

LIST OF FIGURES

Chapter One

Figure 1.1 Representative Tetrahydroisoquinoline Antitumor Antibiotics	2
Figure 1.2 Labeling Studies on Saframycin A	3
Figure 1.3 The Structure and Numbering of Lemonomycin	7
Figure 1.4 Hydrogen Bonding Interactions of Saframycin A with DNA	8
Figure 1.5 The Cyanocyclines, Bioxalomycins, and Naphthyridinomycin	15

Chapter Two

Figure 2.1 Comparison ^1H NMR Spectra of Natural and Synthetic (-)-Lemonomycin	2
--	---

Appendix Two

Figure A2.1 ^1H NMR of compound 128	135
Figure A2.2 IR of compound 128	136
Figure A2.3 ^{13}C NMR of compound 128	136
Figure A2.4 ^1H NMR of compound 129	137
Figure A2.5 IR of compound 129	138
Figure A2.6 ^{13}C NMR of compound 129	138
Figure A2.7 ^1H NMR of compound 119	139
Figure A2.8 IR of compound 129	140
Figure A2.9 ^{13}C NMR of compound 129	140
Figure A2.10 ^1H NMR of compound 132	141
Figure A2.11 IR of compound 132	142
Figure A2.12 ^{13}C NMR of compound 132	142
Figure A2.13 ^1H NMR of compound 133	143

Figure A2.14 IR of compound 133	144
Figure A2.15 ^{13}C NMR of compound 133	144
Figure A2.16 ^1H NMR of compound 136	145
Figure A2.17 IR of compound 136	146
Figure A2.18 ^{13}C NMR of compound 136	146
Figure A2.19 ^1H NMR of compound 138	147
Figure A2.20 IR of compound 128	148
Figure A2.21 ^{13}C NMR of compound 138	148
Figure A2.22 ^1H NMR of compound 149	149
Figure A2.23 IR of compound 149	150
Figure A2.24 ^{13}C NMR of compound 149	150
Figure A2.25 ^1H NMR of compound 150	151
Figure A2.26 IR of compound 150	152
Figure A2.27 ^{13}C NMR of compound 150	152
Figure A2.28 ^1H NMR of compound 147	153
Figure A2.29 IR of compound 147	154
Figure A2.30 ^{13}C NMR of compound 147	154
Figure A2.31 ^1H NMR of compound 157	155
Figure A2.32 IR of compound 157	156
Figure A2.33 ^{13}C NMR of compound 157	156
Figure A2.34 ^1H NMR of compound 154	157
Figure A2.35 IR of compound 154	158
Figure A2.36 ^{13}C NMR of compound 154	158
Figure A2.37 ^1H NMR of compound 156	159
Figure A2.38 IR of compound 156	160
Figure A2.39 ^{13}C NMR of compound 156	160
Figure A2.40 ^1H NMR of compound 142	161
Figure A2.41 IR of compound 142	162
Figure A2.42 ^{13}C NMR of compound 142	162
Figure A2.43 ^1H NMR of compound 158	163
Figure A2.44 IR of compound 158	164

Figure A2.45 ^{13}C NMR of compound 158	164
Figure A2.46 ^1H NMR of compound 159	165
Figure A2.47 IR of compound 159	166
Figure A2.48 ^{13}C NMR of compound 159	166
Figure A2.49 ^1H NMR of compound 161	167
Figure A2.50 IR of compound 161	168
Figure A2.51 ^{13}C NMR of compound 161	168
Figure A2.52 ^1H NMR of compound 162	169
Figure A2.53 IR of compound 162	170
Figure A2.54 ^{13}C NMR of compound 162	170
Figure A2.55 ^1H NMR of compound 163	171
Figure A2.56 IR of compound 163	172
Figure A2.57 ^{13}C NMR of compound 163	172
Figure A2.58 ^1H NMR of compound 165	173
Figure A2.59 ^1H NMR of compound 168	174
Figure A2.60 IR of compound 168	175
Figure A2.61 ^{13}C NMR of compound 168	175
Figure A2.62 ^1H NMR of compound 169	176
Figure A2.63 IR of compound 169	177
Figure A2.64 ^{13}C NMR of compound 169	177
Figure A2.65 ^1H NMR of compound 167	178
Figure A2.66 IR of compound 167	179
Figure A2.67 ^{13}C NMR of compound 167	179
Figure A2.68 ^1H NMR of compound 172	180
Figure A2.69 IR of compound 172	181
Figure A2.70 ^{13}C NMR of compound 172	181
Figure A2.71 ^1H NMR of compound 172	182
Figure A2.72 IR of compound 173	183
Figure A2.73 ^{13}C NMR of compound 173	183
Figure A2.74 ^1H NMR of compound 174	184
Figure A2.75 IR of compound 174	185

Figure A2.76 ^{13}C NMR of compound 174	185
Figure A2.77 ^1H NMR of compound 175	186
Figure A2.78 IR of compound 175	187
Figure A2.79 ^{13}C NMR of compound 175	187
Figure A2.80 ^1H NMR of compound 176	188
Figure A2.81 IR of compound 176	189
Figure A2.82 ^{13}C NMR of compound 176	189
Figure A2.83 ^1H NMR of compound 179	190
Figure A2.84 IR of compound 179	191
Figure A2.85 ^{13}C NMR of compound 179	191
Figure A2.86 ^1H NMR of compound 180	192
Figure A2.87 IR of compound 180	193
Figure A2.88 ^{13}C NMR of compound 180	193
Figure A2.89 ^1H NMR of compound 181	194
Figure A2.90 IR of compound 181	195
Figure A2.91 ^{13}C NMR of compound 181	195
Figure A2.92 ^1H NMR of compound 166	196
Figure A2.93 IR of compound 166	197
Figure A2.94 ^{13}C NMR of compound 166	197
Figure A2.95 ^1H NMR of compound 182	198
Figure A2.96 IR of compound 182	199
Figure A2.97 ^{13}C NMR of compound 182	199
Figure A2.98 ^1H NMR of compound 184	200
Figure A2.99 ^1H NMR of compound 188	201
Figure A2.100 IR of compound 188	202
Figure A2.101 ^{13}C NMR of compound 188	202
Figure A2.102 ^1H NMR of compound 187	203
Figure A2.103 ^1H NMR of $(-)$ -Lemonomycin (1)	204
Figure A2.104 IR of $(-)$ -Lemonomycin (1)	205
Figure A2.105 ^{13}C NMR of $(-)$ -Lemonomycin (1)	205

Chapter Three

Figure 3.1 Structural Comparison of Cyanocycline A and Lemonomycin	206
--	-----

Appendix Four

Figure A4.1 ^1H NMR of compound 207	264
Figure A4.2 IR of compound 207	265
Figure A4.3 ^{13}C NMR of compound 207	265
Figure A4.4 ^1H NMR of compound 204	266
Figure A4.5 IR of compound 204	267
Figure A4.6 ^{13}C NMR of compound 204	267
Figure A4.7 ^1H NMR of compound 209	268
Figure A4.8 IR of compound 209	269
Figure A4.9 ^{13}C NMR of compound 209	269
Figure A4.10 ^1H NMR of compound 211	270
Figure A4.11 IR of compound 211	271
Figure A4.12 ^{13}C NMR of compound 211	271
Figure A4.13 ^1H NMR of compound 212	272
Figure A4.14 IR of compound 212	273
Figure A4.15 ^{13}C NMR of compound 212	273
Figure A4.16 ^1H NMR of compound 203	274
Figure A4.17 IR of compound 203	275
Figure A4.18 ^{13}C NMR of compound 203	275
Figure A4.19 ^1H NMR of compound 213	276
Figure A4.20 IR of compound 213	277
Figure A4.21 ^{13}C NMR of compound 213	277

Figure A4.22 ^1H NMR of compound 201	278
Figure A4.23 IR of compound 201	279
Figure A4.24 ^{13}C NMR of compound 201	279
Figure A4.25 ^1H NMR of compound 225	280
Figure A4.26 IR of compound 225	281
Figure A4.27 ^{13}C NMR of compound 225	281
Figure A4.28 ^1H NMR of compound 223	282
Figure A4.29 IR of compound 223	283
Figure A4.30 ^{13}C NMR of compound 223	283
Figure A4.31 ^1H NMR of compound 224	284
Figure A4.32 IR of compound 224	285
Figure A4.33 ^{13}C NMR of compound 224	285
Figure A4.34 ^1H NMR of compound 222	286
Figure A4.35 IR of compound 222	287
Figure A4.36 ^{13}C NMR of compound 222	287
Figure A4.37 ^1H NMR of compound 221	288
Figure A4.38 IR of compound 221	289
Figure A4.39 ^{13}C NMR of compound 221	289
Figure A4.40 ^1H NMR of compound 255	290
Figure A4.41 IR of compound 255	291
Figure A4.42 ^{13}C NMR of compound 255	291
Figure A4.43 ^1H NMR of compound 226	292
Figure A4.44 IR of compound 226	293
Figure A4.45 ^{13}C NMR of compound 226	293
Figure A4.46 ^1H NMR of compound 220	294
Figure A4.47 IR of compound 220	295
Figure A4.48 ^{13}C NMR of compound 220	295
Figure A4.49 ^1H NMR of compound 227	296
Figure A4.50 IR of compound 227	297
Figure A4.51 ^{13}C NMR of compound 227	297
Figure A4.52 ^1H NMR of compound 228	298

Figure A4.53 IR of compound 228	299
Figure A4.54 ^{13}C NMR of compound 228	299
Figure A4.55 ^1H NMR of compound 237	300
Figure A4.56 IR of compound 237	301
Figure A4.57 ^{13}C NMR of compound 237	301
Figure A4.58 ^1H NMR of compound 248	302
Figure A4.59 IR of compound 248	303
Figure A4.60 ^{13}C NMR of compound 248	303
Figure A4.61 ^1H NMR of compound 250	304
Figure A4.62 IR of compound 250	305
Figure A4.63 ^{13}C NMR of compound 250	305

LIST OF SCHEMES

Chapter One

Scheme 1.1 Biosynthetic Pathway of Saframycin A	4
Scheme 1.2 DNA Alkylation by Saframycin A	9
Scheme 1.3 Biosynthetic Proposal for Lemonomycin	11
Scheme 1.4 Fukuyama's Approach Toward Lemonomycin	12
Scheme 1.5 Magnus' Approach Toward Lemonomycin	13
Scheme 1.6 DNA Crosslinking by Cyanocycline A	18
Scheme 1.7 Biosynthesis of Naphthyridinomycin	20
Scheme 1.8 Evans' Synthesis of Cyanocycline A	22
Scheme 1.9 Completion of the Evans Synthesis	23
Scheme 1.10 Evans' Asymmetric Synthesis	25
Scheme 1.11 Fukuyama's Total Synthesis of Cyanocycline A	26
Scheme 1.12 Fukuyama's Asymmetric Route	27

Chapter Two

Scheme 2.1 Retrosynthetic Analysis of Lemonomycin	38
Scheme 2.2 Retrosynthetic Analysis of Lemonose	39
Scheme 2.3 Synthesis of the Negishi Coupling Partners	40
Scheme 2.4 Negishi Coupling Reaction	41
Scheme 2.5 Unexpected Sulfonyl Transfer Reaction	42
Scheme 2.6 Dipolar Cycloaddition	43
Scheme 2.7 Cycloaddition Optimization with a Simple Dipole	44
Scheme 2.8 Asymmetric Dipolar Cycloaddition	45
Scheme 2.9 Revised Retrosynthesis of (-)-Lemonomycin	47
Scheme 2.10 Synthesis of the Suzuki Substrates	48
Scheme 2.11 Diastereoselective Reduction of the Enamide	50
Scheme 2.12 Pictet-Spengler and Nagata Attempts	51

Scheme 2.13 Final Retrosynthetic Analysis of (–)-Lemonomycin	53
Scheme 2.14 Aminotriol Synthesis	54
Scheme 2.15 Lemonose Synthesis: Preparation of a Key δ -Lactone	55
Scheme 2.16 Synthesis of Lemonose	56
Scheme 2.17 Pictet-Spengler Cyclization	57
Scheme 2.18 Endgame Challenges	57
Scheme 2.19 Alcohol and Arene Oxidation Routes	59
Scheme 2.20 Completion of (–)-Lemonomycin	61
Scheme 2.21 Catalytic Asymmetric Dipolar Cycloaddition	64

Appendix One

Scheme A1.1 Synthesis and Coupling of the Suzuki Substrates	131
Scheme A1.2 Synthesis of the Aminotriol	132
Scheme A1.3 Synthesis of Lemonose	132
Scheme A1.4 Completion of (–)-Lemonomycin	133

Chapter Three

Scheme 3.1 Retrosynthetic Analysis of Cyanocycline A	208
Scheme 3.2 Dipolar Cycloaddition with Methyl Propiolate	209
Scheme 3.3 Stereoselective Reduction of the Unsaturated Diazabicycle	210
Scheme 3.4 Advancement to the Iodoenamide	211
Scheme 3.5 Styrene Synthesis	212
Scheme 3.6 Planned Completion of the Silyl Ether Route	213
Scheme 3.7 Second Generation Retrosynthesis of Cyanocycline A	215
Scheme 3.8 Dipolar Cycloaddition with the Alkynyl Oxazoline	216
Scheme 3.9 Stille Coupling	217
Scheme 3.10 Cyclization Substrate Synthesis	218
Scheme 3.11 Proposed Cyclization by π -Acid Activation	219

Scheme 3.12 <i>N</i> -Bromosuccinimide Mediated Cyclization	220
Scheme 3.13 Proposed Completion of the Oxazoline Route	222
Scheme 3.14 Dipolar Cycloaddition with Known Chiral Auxiliaries	223
Scheme 3.15 Dipolar Cycloaddition with the Phenylmenthol-derived Auxiliary	224
Scheme 3.16 Design of a New Chiral Auxiliary	225
Scheme 3.17 Synthesis and Utilization of the New Auxiliary	226

Appendix Three

Scheme A3.1 Progress on the Silyl Ether Route	261
Scheme A3.2 Oxazoline Route: Synthesis of the Styrene	262
Scheme A3.3 Synthesis of Oxazoline-Olefin Cyclization Substrates	262

LIST OF TABLES**Chapter One**

Table 1.1 Minimal Inhibitory Concentrations (μ g/mL)	5
Table 1.2 Minimal Inhibitory Concentrations for Cyanocycline A	16

Chapter Two

Table 2.1 Suzuki Coupling	49
---------------------------	----

Appendix Five

Table A5.1 Compounds in Chapter Two: The First Total Synthesis of (–)–Lemonomycin	306
Table A5.2 Compounds in Chapter Three: Progress Toward the Synthesis of (+)- Cyanocycline A	307

LIST OF ABBREVIATIONS

$[\alpha]_D$	specific rotation a wavelength of sodium D line
A	adenine
Ac	acetyl
ACN	acetonitrile
Ala	alanine
app	apparent
aq	aqueous
Ar	aryl group
atm	atmosphere
BBN	borabicyclo[3.3.1]nonane
BHT	2,6-di- <i>tert</i> -butyl-4-methylphenol
Bn	benzyl
BOC	<i>tert</i> -butoxycarbonyl
BOM	benzyloxymethyl
br	broad
BSA	<i>N,O</i> -bis(trimethylsilyl)acetamide
Bu	butyl
<i>n</i> -Bu	butyl
<i>t</i> -Bu	<i>tert</i> -butyl
Bz	benzoyl
<i>c</i>	concentration for optical rotation measurement
^{13}C	carbon 13, isotope

/C	supported on activated carbon
°C	degrees Celsius
calc'd	calculated
CAM	ceric ammonium molybdate stain
CAN	ammonium cerium(IV) nitrate
CBZ	benzyloxycarbonyl
CCDC	Cambridge Crystallographic Data Centre
C	cytosine
CSA	camphorsulfonic acid
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCC	1,3-dicyclohexylcarbodiimide
DCE	1,2-dichloroethane
d	doublet
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
DEAD	diethyl azodicarboxylate
DIBAL	diisobutylaluminum hydride
DMAP	4-dimethylaminopyridine
DMDO	dimethyldioxirane
DME	1,2-dimethoxyethane
DMF	dimethylformamide
DMP	Dess-Martin periodinane
DMS	dimethylsulfide
DMSO	dimethylsulfoxide

DNA	deoxyribonucleic acid
dppf	1,1'-bis(diphenylphosphino)ferrocene
dr	diastereomeric ratio
DTT	dithiothreitol
ee	enantiomeric excess
<i>E</i>	entgegen olefin geometry
EI	electrospray ionization
equiv	equivalent(s)
Et	ethyl
EtOAc	ethyl acetate
FAB	fast atom bombardment
g	gram
G	guanine
Gly	glycine
[H]	reduction
h	hour(s)
¹ H	proton
³ H	tritium
HETCOR	heteronuclear correlation (¹ H- ¹³ C)
HMDS	hexamethyldisilazide or hexamethyldisilizane
HOBt	1-hydroxybenzotriazole
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectroscopy

Hz	hertz
IC ₅₀	concentration required for 50% growth inhibition
IR	infrared spectroscopy
<i>J</i>	coupling constant
kcal	kilocalories
LAH	lithium aluminum hydride
LDA	lithium diisopropylamide
L	liter
LUMO	lowest unoccupied molecular orbital
<i>m</i>	meta
m	multiplet or milli
μ	micro
M	mega
<i>m/z</i>	charge to mass ratio
<i>m</i> -CPBA	<i>meta</i> -chloroperbenzoic acid
Me	methyl
MIC	minimal inhibitory concentration
min	minute(s)
M	metal or molar
mol	mole(s)
mp	melting point
Ms	methanesulfonyl
MS	molecular sieves

NBS	<i>N</i> -bromosuccinimide
NMO	4-methylmorpholine <i>N</i> -oxide
NMR	nuclear magnetic resonance
NOE	nuclear Overhauser effect
<i>o</i>	ortho
[O]	oxidation
<i>p</i>	para
PDC	pyridinium dichromate
Ph	phenyl
pH	hydrogen ion concentration in aqueous solution
ppm	parts per million
Pr	propyl
<i>i</i> -Pr	isopropyl
psi	pounds per square inch
pyr	pyridine
q	quartet
R	alkyl group
Red-Al	sodium bis(2-methoxyethoxy)aluminum hydride
R _F	retention factor
RNA	ribonucleic acid
s	singlet
TBAF	tetrabutylammonium fluoride
TBDPS	<i>tert</i> -butyldiphenyl silyl

TBS	<i>tert</i> -butyldimethylsilyl
temp	temperature
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TLC	thin-layer chromatography
TMEDA	tetramethylethylenediamine
TMS	trimethylsilyl
TPAP	tetrapropylammonium perruthenate
TROC	trichloroethoxycarbonyl
t	triplet
T	thymine
Ts	<i>p</i> -toluenesulfonyl
UV	ultraviolet
Vis	visual wavelength
v/v	volume per volume
w/v	weight per volume
X	halide or trifluoromethanesulfonate
Z	zusammen olefin geometry