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ABSTRACT

The first total synthesis of (–)-lemonomycin has been accomplished in an efficient

and convergent manner.  The synthesis features a highly diastereoselective, auxiliary-

controlled dipolar cycloaddition that forms the bicyclic core and set the absolute

stereochemistry of the natural product.  The resulting diazabicycle was advanced by

Suzuki coupling, diastereoselective hydrogenation, and a highly convergent, completely

diastereoselective Pictet-Spengler cyclization with a glycosyloxy-acetaldehyde.  The

Pictet-Spengler product was then converted to (–)-lemonomycin in three steps.  The

glycosyl portion of lemonomycin was synthesized diastereoselectively from D-threonine.

The synthesis of (+)-cyanocycline A has been approached along two synthetic

routes.  Progress along a silyl ether route led to the discovery of a new diastereoselective

hydrogenation of an unsaturated diazabicyclic to set the C(4) stereochemistry of

cyanocycline A.  The product of this reduction was advanced through a convergent Stille

coupling reaction to an enamide that contains all but six of the heavy atoms of

cyanocycline A with the correct stereochemistry at each of the stereogenic carbons.

Further, the enamide functionality is an ideal precursor for installation of the C(13b)

amino group.

Progress along an oxazoline route has led to the development of a novel dipolar

cycloaddition of an alkynyl oxazoline.  The resulting diazabicycle was advanced through

a convergent Stille coupling reaction and diastereoselective hydrogenation to a late stage

intermediate that contains all but three of the heavy atoms of cyanocycline A and has the

correct relative stereochemistry for cyanocycline A.
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HETCOR heteronuclear correlation (1H-13C)

HMDS hexamethyldisilazide or hexamethyldisilizane

HOBt 1-hydroxybenzotriazole

HPLC high performance liquid chromatography

HRMS high resolution mass spectroscopy
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Hz hertz

IC50 concentration required for 50% growth inhibition

IR infrared spectroscopy

J coupling constant

kcal kilocalories

LAH lithium aluminum hydride

LDA lithium diisopropylamide

L liter

LUMO lowest unoccupied molecular orbital

m meta

m multiplet or milli

µ micro

M mega

m/z charge to mass ratio

m-CPBA meta-chloroperbenzoic acid

Me methyl

MIC minimal inhibitory concetration

min minute(s)

M metal of molar

mol mole(s)

mp melting point

Ms methanesulfonyl

MS molecular sieves
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NBS N-bromosuccinimide

NMO 4-methylmorpholine N-oxide

NMR nuclear magnetic resonance

NOE nuclear Overhauser effect

o ortho

[O] oxidation

p para

PDC pyridinium dichromate

Ph phenyl

pH hydrogen ion concentration in aqueous solution

ppm parts per million

Pr propyl

i-Pr isopropyl

psi pounds per square inch

pyr pyridine

q quartet

R alkyl group

Red-Al sodium bis(2-methoxyethoxy)aluminum hydride

RF retention factor

RNA ribonucleic acid

s singlet

TBAF tetrabutylammonium fluoride

TBDPS tert-butyldiphenyl silyl
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TBS tert-butyldimethylsilyl

temp temperature

Tf trifluoromethanesulfonyl

TFA trifluoroacetic acid

THF tetrahydrofuran

TIPS triisopropylsilyl

TLC thin-layer chromatography

TMEDA tetramethylethylenediamine

TMS trimethylsilyl

TPAP tetrapropylammonium perruthenate

TROC trichloroethoxycarbonyl

t triplet

T thymine

Ts p-toluenesulfonyl

UV ultraviolet

Vis visual wavelength

v/v volume per volume

w/v weight per volume

X halide or trifluoromethanesulfonate

Z zusammen olefin geometry


