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Abstract

In many disciplines of engineering it is often convenient, for analysis and design
purposes, to approximate the real behavior of physical systems by mathematical
models. For some applications however, and in particular when one wishes to design a
high performance controller, the differences between the behavior of the mathematical
model and the physical system can be crucial to the performance of the final design.
The theory of robust control attempts to take into account these inherent inaccuracies
in the model, and provide systematic analysis and design techniques in the face of
this “uncertainty.”

These goals can be restated as formal mathematical problems. In order to handle
more realistic descriptions of physical systems, one has to allow more sophisticated
models, and this leads to more difficult mathematical problems. In this thesis we
will consider both the theoretical and computational aspects of such problems. In
particular we will consider robustness in the presence of both real (e. g., parametric)
and complex (e. g., dynamic) structured uncertainty.

This leads to a consideration of the general mixed p analysis and synthesis prob-
lems. Some special cases of the analysis problem can be solved exactly, but the general
problem is in fact NP hard, so that in order to develop solutions for large problems
with reasonable computational requirements, we will adopt a scheme of computing
and refining upper and lower bounds. By exploiting the theoretical properties of the
problem, we are able to develop practical algorithms, capable of handling mixed u
analysis problems with tens of parameters, in computation times that are typically
of the order of minutes. This is despite the fact that the mixed u problem appears
to have inherently combinatoric worst-case behavior.

For the synthesis problem a new “D,G-K iteration” procedure is developed to
design a stabilizing controller which attempts to minimize the peak value across fre-
quency of mixed g. The scheme utilizes a combination of some new results from the
mixed g upper bound problem with the Hs, optimal control solution. The theoretical
results developed here have already been successfully applied to a number of real en-
gineering problems, and some of these applications are briefly reviewed, to illustrate
the advantages offered by the new analysis and synthesis techniques.
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Chapter 1

Introduction

Real physical systems cannot be exactly described by mathematical models. Nev-
ertheless it is often convenient for analysis and design purposes to approximate the
real behavior of physical systems by mathematical models, and this technique is em-
ployed in many disciplines of engineering. For many purposes these nominal models
are adequate, and the engineer may design an appropriate controller on that basis.

However in some circumstances, and in particular for high performance systems, it
is possible that a control design may perform well in simulation on the nominal model,
and not even be stable when implemented on the real physical system. The problem
arises from the fact that the model is not sufficiently accurate in some aspect, and the
high performance controller is attempting to exploit knowledge of the system that is
incorrect! The theory of robust control attempts to take into account these inherent
inaccuracies in the model, and provide systematic analysis and design techniques in
the face of this “uncertainty.” Moreover, since the primary motivation is for high
performance controllers, we wish to quantify in which aspects, and to what extent,
the model may not be relied upon. In this way the control design may still exploit
the knowledge of the system that is reliable.

In order to restate these goals as mathematical problems, one considers a nominal

model subject to a perturbation. Given a property of the nominal model, we say that



it is “robust” if it holds not only for the nominal model, but also for the model subject
to all allowed values of the perturbation. Two properties that we will be especially
concerned with are stability and performance, where we will measure performance
via the maximum gain from disturbance to error of the closed loop system. These
definitions will all be made rigorously in chapter 2, but for now we can see that these
concepts lead us naturally to two basic types of robustness questions. Firstly we have
the analysis question: Given a closed loop model and perturbation set, is the stated
property robust? Then there is the more difficult synthesis question: Given an open
loop model and perturbation set, can we design a controller so that the closed loop
system meets the required robustness condition? This thesis will be largely concerned
with answering these two questions.

The above definitions are fairly standard in the robust control community. Note
however that one may consider a variety of possible assumptions to place on the prior
knowledge we have about the perturbation, and this leads to a number of different
robustness paradigms. In order to handle more realistic descriptions of physical sys-
tems, one has to allow for more sophisticated models and perturbation sets, and this
leads to more difficult mathematical problems.

In order to pose a meaningful problem, we assume that the perturbation is (norm)
bounded. Our robustness measure will then be in terms of the smallest perturbation
for which the stated property fails to hold. We will consider a perturbation set, or
uncertainty description, which allows for structured perturbations. In particular we
will consider perturbations which may be block diagonal, with any number of blocks.
In fact this description is very general, and we will see in chapter 2 that a great many
robustness problems can be rearranged to fit into this framework. Problems involving
many different perturbations, entering different components of the model, can be
rearranged into one large block diagonal perturbation to the whole system. This
set-up leads us to consider the structured singular value, y, which is a mathematical

function measuring robustness with respect to such (structured) uncertainty.



We will consider briefly the history of the structured singular value, and some
related concepts, in section 1.1. For now we simply note that the initial research in
this field has concentrated on the complex u problem, where it is assumed that all the
blocks of the perturbation may assume complex values. This paradigm works well
for many problems, and in particular it is appropriate when the perturbation is being
used to represent unmodeled dynamics, which are assumed stable and bounded, but
otherwise unknown.

In recent years a great deal of interest has arisen with regard to problems involving
parametric uncertainty. These parameters may be coefficients in a differential equa-
tion, or may represent physically meaningful quantities, such as masses, aerodynamic
coefficients, etc. In any case the uncertainty is naturally modeled with perturbations
which are not only norm bounded, but also constrained to be real. Allowing these real
perturbations in the uncertainty description leads us to consider mixed p problems,
where the perturbation may contain both real and complex blocks.

The presence of these real blocks substantially complicates the u problem, so that
the techniques developed to deal with complex u problems are no longer adequate. In
this thesis we will develop methods to address both the analysis and synthesis ques-
tions for the mixed p problem. This will enable us to consider robustness problems
for systems subject to both parametric and dynamic uncertainty.

In order to tackle the mixed u problem we need to develop a substantial amount of
mathematical and computational machinery, drawing on results from linear algebra,
complex analysis, functional analysis and computational complexity theory among
others. We briefly outline how this development will proceed in section 1.2, but it is
important to bear in mind that, despite the level of mathematical abstraction, this
theoretical research has a solid engineering motivation. In fact the techniques we will
present in this thesis are currently being utilized at various industrial and academic
sites, and a number of successful applications of these tools to practical engineering

problems have already appeared in the literature.



1.1 Historical Review

This section is not intended to give a comprehensive review of the development of
the structured singular value, and associated robustness concepts. The intention is
merely to review some of the key ideas most relevant to this research, so as to place
the present work in context. It is always possible to trace back a given piece of work
to earlier influences, but an appropriate starting point for this review is the small gain
theorem introduced by Zames [84] in 1965. This provided an exact robust stability
test with respect to unstructured dynamic uncertainty.

A number of robust stability results were obtained for this type of problem, al-
lowing for a single norm bounded perturbation (see, e. g., Willems [77] (1971), and
Safonov [67] (1980)). This work heralded the use of singular values as an impor-
tant tool in robust control. These exact results for unstructured uncertainty provide
sufficient conditions for robust stability with respect to structured uncertainty. It be-
came apparent however that for many problems these results are too crude, and it is
necessary to exploit the structure of the problem to get a less conservative condition.

Several researchers looked at this problem, and the notion of rearranging the
problem into block diagonal form and then using scaling matrices to reduce the con-
servatism gained acceptance (see [66] (1978) for an early example). The (complex)
structured singular value, u, was introduced by Doyle [23] in 1982 as a systematic
means of dealing with such problems. This paper introduced the use of both upper
and lower bounds for such problems, and stressed the need for viable methods of
computation. In addition it was shown that robust performance problems could also
be handled within the same framework.

The complex u theory was subsequently extended considerably by a number of
researchers. An important element of this research was the emphasis on efficient com-
putation schemes for upper and lower bounds, rather than exact computation. Fan
and Tits looked in some detail at these problems [28] (1986), and Packard developed
a lower bound for the complex y problem [59] (1988). In addition the complex y syn-



thesis problem was also studied, and Doyle proposed the “D-K iteration” procedure
[24] (1985) as a means to tackle the problem (see also Stein and Doyle [74] (1991)).
This theoretical research lead to the release of the p-Tools toolbox [3,7] by Balas et al.
in 1991. This commercially available software package contains the algorithms neces-
sary to implement (a large part of) the complex y analysis and synthesis techniques,
and these methods are now routinely applied to large engineering problems.

At the same time analysis problems involving only parametric uncertainty were
also being considered, but from a somewhat different viewpoint. The idea was to con-
sider polynomials with perturbed coefficients, where the perturbations are restricted
to be real. The starting point for this research was Kharitonov’s celebrated result
on interval polynomials [37] (1979). Kharitonov developed an exact robust stability
check for a problem with real parametric uncertainty. This result sparked enormous
interest in this approach, and a number of results for this type of problem were ob-
tained, such as the edge theorem by Bartlett et al. [11] in 1988. These results provided
a variety of exact robust stability tests (see [71] (1989) and [10] (1993) for reviews).
Unfortunately the problem class studied was very restrictive, so that the results were
of limited value for engineering applications. Furthermore the solutions typically in-
volved checking the vertices or edges of some polytope in the parameter space, so
that they become computationally intractable for large problems.

Several researchers adopted an algorithmic approach to these analysis problems,
seeking to tackle them by computing and refining upper and lower bounds. The use
of Branch and Bound was suggested by de Gaston and Safonov [19] (1988) and Sideris
and Sanchez Pefia [70] (1989). This enabled less restrictive uncertainty descriptions
to be considered, but the problem of exponential growth in computation remained.

The possibility of considering both parametric and dynamic uncertainty in the p
framework was suggested by Doyle [24] (1985). The starting point for the research
in this thesis is given in [29] (1991), where Fan et al. consider the mixed u analysis

problem, and develop an upper bound.



1.2 Organization of the Thesis

Following the introductory material in chapter 1, the thesis begins with a formal
definition of the mixed p problem in chapter 2. In addition the concept of Linear
Fractional Transformations is introduced, and this is used to show how many types
of robustness problems can be re-cast in terms of computing mixed p.

The properties of the mixed u problem itself are considered in chapter 3. It
is shown that many of the basic properties of complex p generalize easily to the
mixed case. However there are important fundamental differences between mixed
and complex g, and in this regard the properties of continuity and computational
complexity are considered in some detail (see [58,16]). In particular we find that
the mixed p problem is NP hard. This has profound implications for the viability
of certain approaches to tackling the mixed p problem, and motivates the approach
taken for the remainder of the thesis.

Since we wish to come up with tractable solutions for large problems, these results
motivate us to look for approximate solutions, and in chapter 4 we present upper and
lower bounds for the mixed p problem. The mixed p problem is first re-cast as a real
eigenvalue maximization problem, and the lower bound is derived by a consideration
of the conditions required for a local maximum. This leads to a power iteration for
a lower bound. The upper bound is from [29], and takes the form of a linear matrix
inequality minimization problem.

The properties of these bounds are examined in some detail in chapter 5, and in
particular we consider under what circumstances one can guarantee that p equals its
upper bound. This material is rather technical, and probably only of interest to those
already familiar with the corresponding results for the complex u case, although in
fact the machinery used here for the more general mixed case is simpler than the
earlier approaches for the complex case (see [56]). This chapter also considers some
particular special cases of mixed p, where one can get stronger results than for the

general problem.



Chapter 6 is concerned with the practical computation of the theoretical bounds
from chapter 4. The bounds are reformulated so as to be amenable to efficient com-
putation, and algorithms are developed to do the job. This computational software
is now commercially available, and we present some results from our extensive nu-
merical experience with the algorithms. In the course of this development we note
that the upper bound has an alternative formulation as a singular value minimization
problem. This gives an interesting interpretation of the upper bound in terms of
a small gain type condition, and turns out to be very useful later for the synthesis
problem.

Further advances in the computational aspects of the analysis problem are con-
sidered in chapter 7. Some work on adaptive power iteration schemes [75] is briefly
presented. The use of Branch and Bound schemes, to iteratively refine the bounds,
is also considered [51]. These techniques give us the means to compute upper and
lower bounds with as small a gap as desired. Of course the computational require-
ments become prohibitive if we ask for very small gaps on large problems (as the NP
hardness results predict).

In chapter 8 we consider an important special case in detail: the rank one mixed
p problem. In fact one can convert a number of “Kharitonov-type” robustness prob-
lems into special cases of the rank one mixed u problem. It is then shown that for
this special case exact calculation is possible, since y is identically equal to its upper
bound (which is convex). This provides an interesting link between the p and polyno-
mial approaches, although we note that the results are of limited use for engineering
purposes, because of the restrictive assumptions inherent to the problem.

Chapters 9 and 10 are concerned with the mixed p synthesis problem. Some
technical machinery, on State Space factorization theory, is developed in chapter 9.
This is then used in chapter 10 to develop a “D,G-K iteration” procedure for the
mixed p synthesis problem. The development proceeds by combining the mixed u

upper bound results from chapter 6 with the solution to the Hs optimal control



problem (see [21]). The resulting procedure is an extension of the “D-K iteration”
procedure for complex p synthesis, and finds a stabilizing controller attempting to
minimize the peak value across frequency of mixed p.

Throughout this work an important emphasis is placed on developing solutions
which can be efficiently computed. All the results presented have been implemented in
software, and in chapter 11 we consider some applications of these results. In addition
to some example problems, results are presented from a number of applications to
real engineering problems. Examples of both simulation and experimental data are
presented, along with the analysis and synthesis results. Finally, in chapter 12, we

conclude the thesis with a look at some directions for future research in this area.



Chapter 2

The ;¢ Analysis Framework

In this chapter we give a brief introduction to the structured singular value, x, and its
role in the robustness analysis of linear systems. The machinery of Linear Fractional
Transformations, LFT’s, is also briefly presented. These two topics are intimately
related, and both have received a great deal of attention over the years. We will only
present a few highlights from the panoply of research results obtained in these areas,
and we refer the reader to [57] and the references therein for a more comprehensive
review of these ideas. Note that until recently most of the research effort has focused
on the complex p problem (see [57] for example), rather than the more general mixed
case we are concerned with here. However all of the general LFT machinery for u
problems carries through easily to the mixed case, and the results in this chapter will

be presented for the mixed case.

2.1 Notation and Definitions

First of all we need to establish some notation, and some basic definitions, that will
be used for the remainder of this thesis. The notation we will use is fairly standard
and is essentially taken from [29] and [81]. In the following suppose that M is a

complex matrix, and z a complex column vector:



10

R Field of real numbers

Rrxm Real matrix with n rows and m columns

R" Real column vector with n elements

C Field of complex numbers

cnxm Complex matrix with n rows and m columns

c Complex column vector with n elements

MT Transpose of matrix or vector M

M* Complex conjugate transpose of matrix or vector M
G Largest singular value of a matrix

,u Structured singular value of a matrix

p Spectral radius of a matrix

PR Real spectral radius of a matrix

A Largest (real) eigenvalue of a Hermitian matrix
Amin Smallest (real) eigenvalue of a Hermitian matrix
Ak k** largest (real) eigenvalue of a Hermitian matrix
Tr Trace of a square matrix

det Determinant of a square matrix

Re Real part of a matrix

Im Imaginary part of a matrix

Ker Kernel of a matrix

Arg Argument of a complex scalar

Sgn Sign of a real scalar

Co Convex hull of a set
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|M|F Frobenius norm of matrix or vector M: |M|r = \/TI‘W
|| Euclidian norm of vector : |z| = Va*x

|00 Infinity norm of a vector z € C*:  |z|eo = maxi<i<n ||

Iz k x k identity matrix

0 k x k zero matrix

Ok xcr k X r zero matrix

RM Space of real-rational proper transfer matrices

RLoo Subset of RM with no jw axis poles

RHo Subset of RM with no poles in Re(s) > 0

[ Plloo Infinity norm of a (stable) transfer matrix P(s)

Is defined to be

— Implies

— Is implied by

—s Implies and is implied by
O Q.E.D.

Occasionally we will drop the subscripts from I and 0, whence they denote identity
and zero matrices respectively, of the appropriate size. For a transfer matrix P(s),

then we denote its State Space representation by

AlB
C\D

For some of the above terms a little more explanation is appropriate: the real spectral

P = = C(sI—A)7'B+D. (2.1)

radius pg(M) = max{|A|: X is a real eigenvalue of M}, with pr(M) = 0 if M has no

real eigenvalues. For a transfer matrix P € R'Hoo, then

IPlloc = supo(P(iw)). (22)
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The structured singular value, u, is a measure of the robustness of a system, and is

defined formally below.

The definition of x is dependent upon the underlying block structure of the un-
certainties, which is defined as follows. Suppose we have a matrix M € C"*" and
three non-negative integers m,, m., and m¢ (with m = m, + m; + m¢g < n) which
specify the number of uncertainty blocks of each type. Then the block structure
K(me, me, me) is an m-tuple of positive integers

K= (ki, .. s kmp kmpt1, - - o kmptmes Emp+metls -« - km)- (2.3)
This m-tuple specifies the dimensions of the perturbation blocks, and we require

Yoity ki = n in order that these dimensions are compatible with M. This determines

the set of allowable perturbations, namely define

Xic = {A = block diag (6] Tk, - - -, 65 Thnr » 85Tk s1s -+ s 8% T, 1o
AL, AG) 8T €R, 6 € C,AY € Chmrtme+ixXbmrime+iy  (2.4)

Note that Xy C C™*™ and that this block structure is sufficiently general to allow
for (any combination of) repeated real scalars, repeated complex scalars, and full
complex blocks. The purely complex case corresponds to m, = 0, and the purely real
case to m, = mg = 0.

Note also that all the results which follow are easily generalized to the case where
the full complex blocks need not be square, and the blocks may come in any order.
In fact the analysis and synthesis software we will describe in subsequent chapters
has been written for the more general case. Although this generalization adds little
difficulty to the problem, it does makes the notation somewhat cumbersome, and so,

for ease of presentation, we will restrict our attention to the set-up in (2.4).

Definition 2.1 (Structured Singular Value [23]) The structured singular value,
pxc (M), of a matric M € C*™™ with respect to a block structure K(my,me,mc) is
defined as

-1
prc(M) = (AIQ%K{E(A) cdet (I — AM) = 0}) (2.5)
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with px(M) =0 if no A € X solves det (I — AM) = 0.

In order to develop some of the subsequent theoretical results about x and it’s bounds,
we need to define some sets of block diagonal scaling matrices (which, like x itself,

are dependent on the underlying block structure).

Qc={AeXk:6 €[-11],686 = 1,APAS =1, 3 (2.6)
U ={U € Qi : U*U = I,} (2.7)
D = { block diag (2 D1, ..., e Dy Do 11, .., Doy 20
e I1y,) < 0 € [—g —g-],o < Di = D} € Ch*ki 0 < d; € R)(2.8)
Dy = {block diag (D1, .., Dm,+m., Tty i vns ooy dmg i) -
D; = D} € CF*ki g, ¢ R} (2.9)

Dk={De€Dx:D>0}={DeDx:6;=0,i=1,...,m,} (2.10)

ﬁ/g = {block diag (Dl, ‘o 7Dmr+mc7d1Ikmr+mc+17 .. -;dmcIkm) :
det (D) # 0,D; € CF>¥i g, £0,d; € C} (2.11)
Gx = {block diag (G1, ..., Gm,, Ok 15+ - -5 Ok) : Gi = GF € CRXR}  (2.19)

Gx = {block diag (g1, . - -, gn,, On,) : gi € R} (2.13)

where n, = "% k; and n, = n — n,.

2.2 Mixed p and Linear Fractional
Transformations

Two of the main reasons why y has proved to be such a useful tool for robustness
analysis are that it answers the question of well posedness of a Linear Fractional

Transformation, and it satisfies a certain property called the “Main Loop Theorem”
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Figure 2.1: Robust stability u analysis framework

(see [56]). These statements will be made more explicit later, but for now consider
the constant matrix feedback interconnection in figure 2.1, where A € Xx represents
a structured perturbation to the nominal matrix M € C**®,

This feedback loop represents the loop equations

u= Mv

v = Au.

Note that these equations give (I, — MA)u = 0 and (I, — AM)v = 0, so that we
have a unique solution if and only if I, — MA is non-singular, whence the solution
isu=wv=0. If [, - MA is singular then there are infinitely many solutions, with
|u| and |v| arbitrarily large. In this case the feedback loop is not well posed, or is in
some sense “unstable.” Note that I, — MA is guaranteed to be non-singular for all
A € X with 7(A) < 1if and only if yxc(M) < 1. Thus we see that u is defined to be
the answer to the robustness question of well posedness or “stability” of the constant
matrix feedback loop shown in figure 2.1.

Now we will state the feedback interpretation of x more rigorously. Consider a
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matrix M € C™"*" partitioned as

My M
M=| TP (2.14)

with My, € C™M*™ Mye € C"2%"2 and ni+ng = n. Suppose we have block structures
Xy, and X, compatible with My; and My respectively, then the block structure
X defined as

Xg = {A = block diag (A1,A2) : A1 € Xk, Ag € XICQ} (2.15)

is compatible with M. Now given any Ay € X, the LFT Fy(M,A,) is said to be
well posed if and only if there exists a unique solution to the loop equations shown

in figure 2.2, namely

u = Mijiv+ Miad
e = Mo1v + Maod

v = Aju.

It is easy to see that Fy (M, A1) is well posed if and only if (I, — M31A1) is invertible.
When the LFT is well posed it is defined to be the unique mapping from d — e,
i. e., the vectors e and d satisfy e = Fyy(M, A1)d, where

Fu(M, A1) = Mag + Moy Ay (In, — M1y A1)~ Mys. (2.16)

Note that in the above derivation we always assume that the feedback loop is closed
around the top inputs and outputs, and hence we obtain an upper LFT (denoted F,).
This is without loss of generality, simply by reordering the inputs and outputs, but in
any case one can analogously define lower LFT’s and prove similar results for them.
In fact one can generalize this definition of LFT to incorporate Redheffer’s “star
product” [63], and we refer the reader to [57,22] for a more in-depth treatment of the

general properties of LFT’s.
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Figure 2.2: Robust performance p analysis framework

Transfer functions represent an important example of LFT’s. Consider the State

Space realization of a discrete time system

) ) e
Yk C D Up UL

then its transfer matrix is

G(z) =D+ C(zI — A)™'B = F,(M, —i—]) = Fy(M,8I).
Note that this is an LF'T on a constant real matrix M, with a repeated complex scalar
parameter §, which is associated with the (inverse of the) frequency variable z.
Systems with uncertainty can also be easily represented using LFT’s. One natural
type of uncertainty is unknown coefficients in a State Space model. The following
simple example is taken from [57]. Begin with a familiar idealized mass-spring-damper
system, as shown in figure 2.3.

Suppose m, ¢, and k are fixed but uncertain, with

m = m(l 4+ wpném)
c=¢(1+ wb)
k=k(1+ w0k ).
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Figure 2.3: Mass-spring-damper system

where 6y, ¢, 01, are all uncertain real scalars that are known to lie in the interval
[-1 1], but are otherwise unknown. The known parameters m, ¢, k represent the
nominal values of m,c, k respectively, and the known weights wy,,w., wg serve to
normalize the uncertainty range to the unit ball.

Then defining 1 = y and z2 = y we can write the differential equation in State

Space form:
T T
( ) = Fy(M,A) ( f) A = diag(6m, b¢, 61,)
Y

—we —wp =k —=¢ 1 7

—Wm 5 m  m mm

0 0 0 0 ¢ 0

M= 0 0 0 E 0 0
0 0 0 0 1 0

R S

0 0 0 I 0 0 |

Thus we obtain an LFT on a known matrix M, with the uncertainties collected
together in a diagonal matrix A. Note that this is exactly the problem formulation
assumed for the u analysis framework. More generally, the perturbed State Space

system

Tyl = A(5)$L+B(5)uk
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yr = C(6)zp+ D()ug

where ¢ is a vector of parameters that enter rationally can be written as an LFT on
a diagonal matrix A made up of the (possibly repeated) elements of §.

A fundamental property of LFT’s that contributes to their importance in linear
systems theory is that interconnections of LFT’s are again LFT’s. For example,
consider a situation with three components, each with an LFT uncertainty model.
The interconnection is shown in figure 2.4. By simply reorganizing the diagram,
collecting all of the known systems together, and collecting all of the perturbations
(the A;’s) together, we end up with the diagram in figure 2.5, where P depends
only on G, G2, G and the diagram layout. Note how unstructured (or structured)

uncertainty at the component level becomes structured uncertainty at the system level.

Y1 : dl
=~ =
Ul
Ay dy As
- 7 Gy Y2

el

Figure 2.4: Example interconnection of LFT’s

Note that problems involving additive and/or multiplicative uncertainty are spe-

cial cases of linear fractional uncertainty descriptions. Furthermore by using the
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A1 0 0
0 Ay O
0 0 Ags
Y1 P d17 d2
Y2 Ui

Figure 2.5: Macroscopic representation of figure 2.4

above rearrangements we can convert problems with additive and/or multiplicative
uncertainty, or indeed any interconnection of systems with uncertainty entering in a
linear fractional manner, into the standard y analysis set-up of figure 2.1. Thus by
allowing structured uncertainty entering the problem in a linear fractional way, we
have a very general set-up that captures a great many robustness problems. Fur-
thermore by allowing mixed real and complex uncertainties, we can capture both
parametric and dynamic uncertainty in one unified framework, and we will see that
we can consider both robust stability and performance problems in the same setting.
Additional information on LFT’s and how they arise in engineering problems is found
in [22].

The following two theorems, which address robust stability and performance ques-
tions for LF'T feedback interconnections of constant matrices, were proven for complex

uncertainty descriptions in [56].
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Theorem 2.1 (Well Posedness) Let M € C"™" and 0 < g € R. The LFT
Fu(M,Ay) is well posed for all Ay € Xi,,5(A1) < -é— if and only if px, (M11) < B.

Theorem 2.2 (Main Loop Theorem) Let M € C™" and 0 < § € R. Then
pg(M) < B if and only if pux,(M11) < B and for all Ay € X, 5(A1) < % we have

These results extend trivially to the mixed case, the proofs being identical to those
given in [56] for the complex case (there are a number of minor variations to these
theorems which similarly extend to the mixed case). For a more complete feedback
interpretation of these results see [56] and the references therein.

These two theorems are at the heart of the complex u analysis methodology. The
fact that they are still true in the mixed case means that mixed p still provides an
ezact test for robust stability and robust performance problems, but now with real
uncertainties allowed. The LFT machinery for rearranging various robustness prob-
lems into p problems (such as converting robust performance problems into robust
stability problems as above) is also applicable to the mixed case, so that mixed p
retains its versatility and applicability to a large class of problems. Note in particular
that problems of robust stability of a polynomial with perturbed real coefficients (or
a ratio of such polynomials for that matter) are yet another example of linear frac-
tional uncertainty, and hence can be recast as mixed u problems (see section 8.1 for
example).

The structured singular value can be used to quantify robustness margins for
a linear system with linear fractional uncertainty. Specifically, suppose that M in
figure 2.2 is a real-rational, proper transfer matrix, denoted by P(s), of size (n; +
ng) X (ny + ng), and block structures Xx, C C™"*™ and Xy, C C"?*™2 are given.

Partition P(s) in the obvious way.

Pii1(s) Pia(s)

P(s) =
() le(s) Pzz(s)
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For A; € Xk, , consider the interconnection shown in figure 2.2, with M = P(s). For
any A1 € Xi,, Fu (P(s),A1) is the transfer function from d — e.

It is easy to show that the structured singular value is not necessarily a norm
(or even a semi-norm), since it doesn’t necessarily satisfy the triangle inequality.
Nevertheless it does satisfy a scaling property (see section 3.1, property (a)), and so
in some sense is related to the size of the matrix, and so we introduce the following
notation: for a transfer matrix P € RHoo, and a block structure K of appropriate

dimensions, define the “u-norm” of P as
1Pl = sup pxc(P(jw)).
weR

Now consider A € Xy to be a block structure partitioned compatibly with P. We
allow A; to be arbitrary, but assume that Aj is a single complex full block. This is
a “performance block” and will give us a robust performance test for the Hso norm.
Since the uncertainties are typically used to cover unmodeled dynamics, then we wish
to be able to consider perturbations to P which are themselves dynamical systems,
with the block diagonal structure of the set Xj. Associated with any block structure
Xic, let M (X)) denote the set of all real-rational, proper, stable, block diagonal

transfer matrices, with block structure like Xjc:
M (Xg) :={A € RHw : A(jw) € Xi for all w € R}

The following two theorems address robust stability and performance questions for
LFT’s of linear systems, and give rise to the most common usage of u: as a frequency

domain robustness test.

Theorem 2.3 (Robust Stability) Suppose that P € RHoo and we have a real
scalar B > 0. Then for all Ay € M (Xx,) with ||A1]l,, < B, the perturbed closed-loop
system is well-posed and stable if and only if

| =

| Prallxc, = SUp fuky (P11(jw)) <
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Theorem 2.4 (Robust Performance) Suppose that P € RHso and we have a real
scalar B > 0. Then for all Ay € M (Xy,) with ||Aq]|,, < B, the perturbed closed-loop

system is well-posed, stable and

12 (P, A1) o = sup 7B (P(jw), Aa(ju)] <

™|~

if and only if

1Pl = sup prc(P(iw)) < 5.

weR B

These results mean that we can evaluate the robustness properties of a closed loop
system, by using a frequency evaluation of . Note that at any given frequency
point we have a constant matrix p problem, for which we can use the upper and
lower bounds to be discussed in chapter 4. Note also that the block structure X,
is inherited from the problem description, whereas we consider the augmented block
structure X)c because of the result in theorem 2.4. In summary then, the peak value
on the u plot of the frequency response determines the size of perturbations that the
loop is robustly stable (and/or performing) against.

Note from earlier that we can write transfer functions as LFT’s. This allows us to
remove the frequency search from the above tests by including the frequency variable
as one of the uncertain parameters (a repeated complex scalar block). The u test
then looks for the worst case parameter values, and hence the worst case frequency,
at the same time. In this way we obtain a one-shot test, involving a constant matrix
p problem, for the worst case p value across frequency. Note that since we wish to
treat the frequency variable as a disk uncertainty, this State Space y test is naturally
applied to discrete time systems. However by employing a bilinear transformation
from the half plane to the disk, we can obtain similar results for continuous time
problems as well, and we refer the reader to [56] for the appropriate results, which
generalize easily to the mixed case. This State Space u test has several interesting
connections to Lyapunov theory, and stability with respect to nonlinear uncertainties,
and for a more detailed exposition of these topics we refer the interested reader to

[22,56,34,57,44,69] and the references therein.
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Chapter 3

The Mixed ; Problem

In this chapter we examine some of the underlying properties of the mixed y problem,
and compare them with the appropriate complex p properties. It is seen that whilst
mixed g inherits many of the properties of complex g, in some aspects the mixed p
problem can be fundamentally different from the complex p problem. In particular
recent results on the issues of continuity and NP completeness are reviewed [64,20,58].

These results have profound implications, particularly for the computational aspects

of the mixed y problem.

3.1 Basic Properties of Mixed u

In this section we will present some basic properties of the mixed x problem and
contrast them with the corresponding results for the complex u problem (see [23]).
Note that these are fundamental properties of the p problem itself, and have nothing
to do with the choice of bounds or method of computation one may use for the
problem.

It is not at all obvious how to compute y from the definition in (2.5), since
this definition implicitly involves an optimization problem which is not convex. In
fact we will see that the computation of u is, in general, a difficult problem, for a

number of reasons, and a large part of our effort will be geared towards obtaining
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good approximations to p. Let us first start by examining some of the properties
of the mixed u problem. From the definition of mixed x in equation (2.5), one may

readily derive the following properties (the complex u versions of these were originally

presented in [23]):

(a) prc(YM) = |y|pc(M) for all M € C**™ and v € R.
(b) px(In) =1 for any block structure.
(c) pr(A) =7(A) for all A € Xi.
(d) me=0,mc=0,mc=1 — ux(M)=35(M).
() mp=0,mc=1mc=0 — px(M)=p(M).
() mr=1,me=0,mc=0 — px(M)=pp(M).
(g) For any M € C"*" the following sequence of inequalities holds
pR(M) < pic(M) < 7(M).
(h) For all A € Xy, Q € Qk then QA € Xx,AQ € Xk with 7(QA) < F(A),
7(AQ) < 7(A).

(i) For all A € Xx,U € Uk then UA € Xx,AU € Xx with 7(UA) = 7(A),
T(AU) =75(A).

(3) DAD™! = Afor all A € X and D € D (including D € Dy).
(k) prc(QM) = p(MQ) < ux(M) for all M € C™™ and Q € Q.
(1) pc(UM) = px(MU) = pic(M) for all M € C™" and U € Uy.

(m) p(DMD™Y) = pyc(M) for all M € C™*™ and D € Dx (including D € D).
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(n) For any M € C™" the following sequence of inequalities holds
< < inf 7 -1
fax pr(UM) < Jnax pr(QM) < pc(M) < D1€n£,C g(DMD™)
where we could equivalently use
pax pr(MU) = max pp(UM), Gaz< pr(MQ) = max pr(QM)

(o) Forall A € X there exist U,V € U and ¥ = diag(oy . ..o,) with o; € R, 03 >
0 such that A = UXV*.

Note that there are important differences between some of these properties and their
complex p versions (see [23]). In particular the function pg may be replaced by p in
any of the above for complex y problems.

The scaling property (a) follows immediately from the definition of y in (2.5).
This property is fundamental to the use of y as a measure of the robust stability (and
performance) margin of a given system, since it implies that p is related to the size
of the worst case destabilizing perturbation. Note that this property holds for v € C
for complex u problems.

Properties (b) - (f) are special cases for which u is easily computed. Note from
property (d) that  for a single full complex block reduces to the maximum singular
value, and in property (e) we see that u for a single repeated complex scalar block
reduces to the spectral radius. Thus y can be thought of as a generalization of both
of these quantities, and the fact that for unstructured uncertainty we have i =79,
leads to the term structured singular value.

In order to obtain property (g) we first need the following lemma, which may be

easily proven from the definition of u.

Lemma 3.1 Suppose we have two block structures X, and Xx,, both of which are
compatible with matrices in C"*". If we have Xy, C Xx, then for any M € C"™ ™ g
follows that

fuc, (M) < puc, (M). (3.1)
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Note that for any uncertainty structure Xy C C™*™ we always have that
{A:A =6, e R} C{A:Ae X} C{A:AeC™} (3.2)

so that applying lemma 3.1 to the above, together with properties (d) and (f), we
find that for any M € C™"*™ and any compatible block structure K

pr(M) < (M) < 7(M) (3.3)
which is property (g). Note that for complex p problems we have
p(M) < (M) < 5(M). (3.4

These inequalities form the starting point fqr schemes to compute upper and lower
bounds for x. We will see that, roughly speaking, we will use a scaled (real) spectral
radius condition as our lower bound for u, and a scaled maximum singular value
condition as our upper bound for .

The next idea exploited in the list of properties is to examine those scalings which
affect either of the quantities pp or @, but do not affect u. Note that eigenvalues
are invariant to similarity transformations, but are not invariant to unitary matrices.
However for singular values the opposite is true: singular values are invariant to
unitary matrices, but are not invariant to similarity transformations. It turns out
that yu is invariant to an appropriate subset of unitary matrices, and to an appropriate
subset of similarity transformations. This is discussed in more detail below.

Properties (h) and (i) follow from the definitions of the sets U and Qx. Note
that we have Uy C Qx C Xk, so that all these sets represent allowable perturbations.
Applying properties (h) and (i) to the definition of x (2.5) we obtain properties (k)
and (I). Property (1) states that x is invariant to matrices in U (which are block
unitary). Note however that from property (k) we see that u is not necessarily
invariant to matrices in Qy (which may not be unitary, since the real parameters are

not restricted to be on the boundary of the allowable set).
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Applying properties (k) and (1) to the lower bound inequality in (g) we obtain the

improved (scaled) lower bound inequalities in (n).
< <
pax PrR(UM) < max pRIQM) < pxc(M)
For complex p problems this becomes
M) < pr(M).
Jaax p(QM) < pc(M)

We said earlier that matrices in Qy are not necessarily p invariant, since they are
not necessarily block unitary. The reason that we introduce the set Qi (instead of
just working with Uyc) is that it will be seen in section 4.1 that the second inequality
in (n) is in fact an equality, whereas the first inequality is not. This contrasts with
the complex p case where Qx = Uy so that one may always assume the worst case
perturbation is unitary and p-invariant (note also that one may still assume the
complex blocks of the worst case perturbation are unitary for mixed problems). This
is an important distinction between real and complex perturbations. The worst case
value for a real parameter may occur at an internal point, whereas for a complex
parameter the worst case value is always on the boundary. This is treated in detail
in section 4.1.

Note that the set Dy is constructed with a block structure complementary to that
of Xj, so that it commutes with all matrices in Xx (and hence Qx and Uy as well),
which is property (j). This immediately leads to property (m) which is sufficiently

important that we state it separately as a lemma.

Lemma 3.2 For any matriz M € C™*", and any compatible block structure K then

for all D € Dy
p(M) = p(DMD™). (3.5)

Since Dk C Dx we have that @ is invariant to similarity transformations with matrices

in Dy, and applying this to the upper bound inequality in (g) we obtain the improved
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(scaled) upper bound inequality in (n)
< inf 7 -,
pc(M) < it Z(DMD™)
We state these improved upper and lower bound results as a lemma.

Lemma 3.3 For any matriz M € C™*" | and any compatible block structure K

< < inf 7 -1, .
Jaax prRIQM) < prc(M) < DlEI%)C g(DMD™) (3.6)

For complex u problems then we have

Jax p(QM) < pxc(M) < inf F(DMD™?). (3.7)
These bounds form the basis for computation techniques for complex y problems
(for additional material on upper and lower bounds for complex yu see [28] and [59])
This upper bound is exact for complex block structures with 2m. + m¢ < 3 (see
[55]) but is not exact for any block structures with m, # 0. In fact it is (usually)
possible to improve on this bound for mixed y problems with m, # 0. The mixed p
upper bound presented in [29], and examined in section 4.6, is never worse than this
standard complex p upper bound, and is frequently much better.

A great deal of research has been carried out with regard to complex p prob-
lems, and the bounds in (3.7). They are not guaranteed to be “tight” for a general u
problem, but in fact they usually are for problems of engineering interest. Practical
implementations of these bounds have been developed, and efficient software is avail-
able for their computation (see [3] for details of the pu-Tools toolbox). In addition an
array of interesting theoretical results have been derived, and we refer the reader to
[57] for a detailed review of the complex p problem. A good deal of the work in this
thesis will be geared towards extending these results and methodologies to the more

general mixed g problem.



29

3.2 Continuity of Mixed u

In order to examine the continuity of the p problem we first reformulate the definition

in (2.5) as a (real) eigenvalue maximization problem. Define the unit ball in the
perturbation set as
BXk = {A € Xx:7(A) <1}. (3.8)

Then the following lemma follows almost immediately from the definition of u.

Lemma 3.4 For any matrix M € C™ ™, and any compatible block structure K
M) = AM). .
pxc (M) e pR(AM) (3.9)
Now for complex g problems this becomes

pi(M) = max p(AM).

Since BXx C C™*™ is a compact set, and p is a continuous function, it follows that
complex y is also a continuous function of the problem data [23].

In general for mixed p problems however we only have the expression (3.9). Al-
though BXjc C C™ ™ is still a compact set, the function pg is not necessarily a
continuous function, but rather only upper semicontinuous. As a result we can only
conclude in general that mixed p is upper semicontinuous, as stated in the following

lemma.

Lemma 3.5 (Upper Semicontinuity of Mixed yu [58]) Mized p is an upper semi-
continuous function of the problem data. Equivalently, suppose we have M € C"*",

and a compatible block structure KC. Then for any f > 0 such that pic(M) < 3, there

exists € > 0 such that pc(M) < B for all M € C™™ with 5(M — M) < e.

See [58] for more details on the continuity properties of mixed x, and [65] for more
details on the notion of upper semicontinuous functions. Note that one can construct
examples of real y problems where p is discontinuous in the problem data (see [9] for

example).
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The fact that real u can be discontinuous clearly adds computational difficulties
to the problem, since any method involving some type of search (e. g., frequency re-
sponse) must address the possibility of missing a point of discontinuity. Note that for
an upper semicontinuous function one may have an isolated point which is larger than
its neighbors (see figure 3.1), so that by missing this point one would underestimate
the peak value of y, or in other words overestimate the robust stability margin for
your problem (roughly speaking the size of the smallest destabilizing perturbation is
—};) In fact the example from [9] has a sequence of polynomials which converge to a
limiting polynomial, but the robust stability margin of the limit polynomial is less

than the limit of the stability margins of the convergent polynomials.

oM

\ 4

Figure 3.1: Upper semicontinuous function

More importantly however the fact that real x4 can be discontinuous in the problem
data sheds serious doubt on the usefulness of real y as a robustness measure in such
cases. This is because the system model is always a mathematical abstraction from the
real world, and is only computed to finite precision, so that it would seem reasonable

to require that any type of robustness measure we use be continuous in the problem

data.
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It is shown in [58] how to regularize these problems by essentially adding a small
amount of corﬁplex uncertainty to each real uncertainty. By doing this a small amount
of phase uncertainty is added to the gain uncertainty. It is then shown that the new
mixed g problem is continuous. This regularization seems reasonably well motivated
from an engineering point of view, where unmodeled dynamics would always produce
some phase uncertainty.

Furthermore it is shown in [58] that mixed p problems containing some complex
uncertainty are, under some mild assumptions, continuous even without the regular-
ization procedure outlined above (whereas purely real s problems are not). To be
more explicit suppose we have a matrix M partitioned as in (2.14) and block struc-
tures X, Xk,, X as in section 2.2. Further assume we have arranged the problem
so that Xy, consists of purely real uncertainties and X, consists of purely complex

uncertainties. Then the following theorem was proven in [58].

Theorem 3.1 (Continuity of Mixed u [58]) Suppose we have a matriz M € C**"
and block structures Xic,, Xic,, Xp as above. Then if px,(M11) < pg(M), p is con-

tinuous in the problem data at M.

Note that it is always true that px, (M11) < pug (M), so that the condition px, (Mi1) <
g (M) can be interpreted as meaning that the complex uncertainties enter nontriv-
ially into the problem. Some condition of this type is clearly required since we can
always trivially construct discontinuous mixed g problems from discontinuous real u
problems by simply padding them out with zeroes. These issues are treated in greater
depth in [58] where they also develop alternative conditions under which mixed p is
continuous. The continuity issue is also considered in [40], where the authors examine
the continuity properties of the mixed y upper bound.

These results, and in particular theorem 3.1, are reassuring from an engineer-
ing viewpoint since one is usually interested in robust performance problems (which
therefore contain at least one complex block), or robust stability problems with some

unmodeled dynamics, which are naturally covered with complex uncertainty. Thus
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in problems of engineering interest, the potential discontinuity of u should not arise,

although conditioning of 4 computation could be a problem and needs more study.

3.3 NP Completeness of Mixed u

The theory of computational complexity is concerned with the tractability of com-
putational problems. There are many important concepts in this area that can have
a dramatic impact on the development of practical computation schemes for a given
problem. In particular we will be concerned here with the notion of NP complete
(and NP hard) problems. We refer the reader unfamiliar with these concepts to [31]
for more than the very brief exposition we will present here.

The theory of NP completeness deals with decision problems, i. e., problems with
a “YES/NO” answer. In particular we will be interested in the decision problem: “Is
p 2 k77 for a given real positive scalar k. We will refer to this decision problem as
the “u recognition problem.” Note that any lower bounds we have on the compu-
tational difficulty of a given decision problem immediately become lower bounds on
the computational difficulty of the associated evaluation problem. This follows since
if we can evaluate p, then that immediately gives us an answer to the x recognition
problem. Thus when we loosely refer to a (evaluation) problem as being NP com-
plete, we mean that the associated decision problem is NP complete, and hence the
evaluation problem is NP hard (i. e., at least as hard as an NP complete problem).

The following theorem follows almost immediately from recent results in [64].

Theorem 3.2 (NP Completeness of Real y) The real u recognition problem, for
M € R"™"™ and Xk = {A = diag(6],...,8%) : 6T € R}, is NP complete.

The main ideas behind this result are as follows. Rohn and Poljak showed in [64]
that the interval matrix problem, for a real matrix and unit intervals, is equivalent to
the “max-cut” problem, which is known to be NP complete. A simple rearrangement

converts that interval matrix problem into the above real x problem, as shown below.
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Suppose we have an interval matrix problem, i. e., we have a matrix M € R"*", and

we have an element by element uncertainty structure:
Xrat ={A€eR™": |Ay| <1lfori=1,...,nand j =1,...,n}.

Then the interval matrix problem asks: “Does there exist A € X runt such that M+ A
is singular?” This problem can be transformed into the standard u framework by

simply choosing L € annz, R e anx”, and Ay € R™*7” such that
A =LAR

where the new uncertainty structure, Ay, is diagonal and the elements of A are strung
out along the diagonal of A;. This is a standard transformation (see [39] for more
details), and L, R are known constant matrices, independent of A. Thus we have

A4 € Xx where my = n?,m, = 0,m¢ =0 and
K=(1,...,1).

Now if M is singular then the decision problem is trivially answered as a “YES,” and

if not then we have:

det (M +A) = det (M + LAgR)
= det (M(I+ M™1LA4R))
= det (M)det (I +(RM™1L)Ay)

so that

det (M +A)=0 «— det(I+(RM™IL)Ay) =0
The question “Does there exist Ay such that I + (RM~1L)A, is singular?” is a
real y recognition problem. Thus we have that the given interval matrix problem
polynomially reduces to a real x problem, and so it follows that this real u problem

is NP complete as well.

While these results do not apply to the complex only case, we have the following

new result from [16].
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Theorem 3.3 (NP Hardness of Mixed p [168]) The general mized p recognition
problem, for M € C™*™ and any compatible block structure K, is NP hard.

Note that since the special case in theorem 3.2 and the general case in theorem 3.3
are both NP hard, it follows that any problem “between” these two problems is also
NP hard (e. g., the general real y problem for M € C"*").

The results in [16] are based on the fact that the indefinite (constrained) quadratic

programming problem given by maximizing over x the expression

* * ‘
e |z* Az + p*z + | (3.10)

for A € R™", 2,p,b;,b, € R", and ¢ € R can be recast as a mixed u problem.
This rearrangement uses simple block diagram LFT manipulations, and the main
loop theorem (see section 2.2). It can be shown easily from known results that the
indefinite quadratic programming problem in (3.10) is NP hard, and it follows that
the mixed g problem is NP hard as well.

One might wonder if these computational complexity results are due to the fact
that we allow pure real u problems as a special case of mixed p problems. Recall that
the discontinuity of mixed p was no longer a possibility if we restricted our attention
to a certain class of non-trivial mixed y problems (which are motivated by engineering
considerations). Unfortunately this is not the case for the computational complexity

results.

Theorem 3.4 (NP Hardness of Non Trivial Mixed u [16]) The mized y recog-

nition problem, for M € C"*"™ and a compatible block structure K as in theorem 3.1,

ts NP hard.

This result means that we must deal with the issue of NP hard computation, even
for non-trivial mixed p problems. Note also that combining this result with theorem
3.1, it follows that the mixed p recognition problem is still NP hard when we restrict

our attention to the class of continuous mixed x problems [16].
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It is still a fundamental open question in the theory of computational complexity to
determine the exact consequences of a problem being NP hard, and we refer the reader
to [31] for an in depth treatment of the subject. However, it is generally accepted
that a problem being NP hard means that it cannot be computed in polynomial time
in the worst case. It is important to note that being NP hard is a property of the
problem itself, not any particular algorithm. The fact that the mixed p problem
is NP hard strongly suggests that given any algorithm to compute y, there will be
problems for which the algorithfn cannot find the answer in polynomial time. This
means that for all practical purposes even moderately large examples of such problems
are computationally intractable.

For the reader not familiar with these concepts, we offer the following illustration.
Consider the example in table 3.1. There we have tabulated two different growth
rates versus problem size. For each growth rate we have assumed that it represents
two different algorithms, one which can solve a size 10 problem in 10 seconds, and
one which can solve a size 10 problem in 0.01 seconds. The first growth rate is n3
(where n is the problem size). This is a polynomial time growth rate, and is typical of
algorithms for eigenvalues, singular values etc. The second growth rate is 2*. This is
an exponential (non-polynomial) time growth rate, and is typical of algorithms which
require one to check all the edges or vertices of some polytope.

It is readily seen that given an algorithm with a polynomial time growth rate we
can apply the algorithm to larger and larger problems with a reasonable increase in
the computational requirements. In contrast, for the exponential time growth rate
the increase in computational requirements is quite dramatic, and for even moderate
sizes the problem rapidly becomes intractable. It is important to note that even if the
exponential time algorithm is much faster on small problems it still rapidly becomes
impractical as the problem size increases. The overriding implication of all this is
that if we wish to be able to handle fairly large problems, we must have polynomial

time algorithms, regardless of the speed on small problems. The fact that the mixed
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Growth Problem Size (n)
Rate 10 20 30 40 30
0.01 0.08 0.27 0.64 1.25

seconds | seconds | seconds | seconds seconds

n3 10 1.33 4.50 10.67 20.83

seconds | minutes | minutes | minutes | minutes

0.01 10.24 291 124.3 348.7

seconds | seconds | hours days years
2" 10 2.84 1214 340.5 | 3.49 x 105
seconds | hours days years years

Table 3.1: Comparison of polynomial and exponential time growth rates

¢ problem is NP hard means that we cannot expect to find such algorithms if we
attempt to solve the general problem exactly for all cases.

These results strongly suggest that it is futile to pursue exact methods for com-
puting u in the purely real or mixed case for even moderate (less than 100) numbers
of real perturbations. One approach to overcoming this difficulty is to consider special
cases of the general problem, which may be easier to solve. The difficulty with this
approach is that one would like the resulting algorithm to be widely applicable to
a large number of engineering problems, and it may be that the special cases that
are easily solvable are too restrictive. For this reason we have concentrated on the
general problem, rather than adopt this approach. Nevertheless, since special cases
have been the focus of so much research, we will devote some time to considering
those special cases for which computation of u is relatively easy. In the remainder of

this section, we briefly discuss some of the general issues associated with computation
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of p and special cases. Some of these special cases will be treated in more detail in

chapters 5 and 8.

3.3.1 Problems with Special Structure

In light of the NP completeness results given earlier, it is natural to ask if there are
special cases of the mixed yu problem that are relatively easy to compute. Essentially
all such cases can be shown to involve problems where it can be verified a priori that u
is equal to its upper bound, and can therefore be computed as a convex optimization
problem (see section 4.6 where the upper bound is presented in detail). Unfortunately,
as we will see, these special cases are relevant to very few problems of engineering
interest.

Although it is somewhat artificial, it is useful to separately consider the nominal
system and the uncertainty structure (respectively P and A in figure 3.2), as one can
get easily computable special cases from restrictions on each one. In the case of the
nominal system, P, computation is easier when it is highly structured, whereas less
structure on the uncertainty, A, makes computation easier. Of course, problems mo-
tivated by real engineering applications typically have general, unstructured nominal
systems combined with highly structured uncertainty, exactly the opposite of what is
ideal for computation.

For simplicity, consider the standard problem of robust stability for the system in
figure 3.2 where A is assumed to be norm bounded by 1. The least structured A would
be a single block which would be allowed to be an arbitrary nonlinear, time-varying
operator. In that case the small gain condition [84] is necessary and sufficient, and
the test is simply || P||o, < 1. This is still true when A is restricted to be causal, and
further restricted to either linear time-varying (LTV) or linear time-invariant (LTT).

Additional structure on A leads to u tests of varying complexity, but some special
cases exist when p is equal to its upper bound. If A is block diagonal with any number

of LTV perturbations then recent results, obtained independently by Shamma [69]



38

>

Figure 3.2: Standard robust stability problem

and Megretskii [46], show that the exact test for this case is equivalent to an upper
bound for a complex u problem. Also, if A consists of 3 or fewer LTI full blocks, then
p is equal to its upper bound. In general, pu is not equal to its upper bound for more
complicated uncertainty structures, unless additional structure is imposed on the P.

The role of structure on P will be considered briefly in the next subsection.

3.3.2 Restrictions on P and “Kharitonov-Type” Results

A popular research program over the last few years has focused on extending
Kharitonov’s celebrated result [37] on interval polynomials, one whose coefficients
lie in intervals, to more general uncertainty structures. Kharitonov showed that one
need only check 4 polynomials to determine stability of the entire family of interval
polynomials. Several additional results have since been proven for other special cases,
such as polynomials whose coefficients are affine in some real parameters (see [11] for
example), and the solutions typically involve checking the edges or vertices of some
polytope in the parameter space. It can be shown that restricting the allowed pertur-
bation dependence to be affine (or further restricting to interval polynomials) leads

to a real y problem on a transfer matrix which is rank one.
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The rank one problem is studied in detail in in chapter 8, and it will be seen that
for the rank one case we can guarantee a-priori that u equals its upper bound, so
that the u problem is computationally tractable. In fact we will see that for this case
one can even develop exact analytic expressions for u. Note however that this “rank
one” assumption is very restrictive. Typically robustness problems motivated by real

physical systems do not satisfy this assumption.

3.3.3 Implications for Computation Schemes

Recall that the NP completeness results strongly suggest that exact methods for
computing x in the purely real or mixed case will be computationally intractable (in
the worst case) for even moderate (less than 100) numbers of real perturbations. We
have seen that we can indeed find special cases of the u problem that beat the NP
hardness of the general problem, and are computationally tractable. Unfortunately
the restrictions we have to put on the problem to achieve this are quite severe, and
so the engineering applicability of these special cases is rather limited.

Since the general mixed y problem is NP hard, we will not attempt to solve it ex-
actly, but rather obtain good bounds (with reasonable computational requirements).
Furthermore, recent results [20] suggest that even approximate methods are also NP
hard, so we will not expect good worst case behavior from our algorithms, but rather
aim for good typical behavior.

In short we will aim to develop practical algorithms for medium size problems.
Here medium size means less than 100 real parameters, and “practical” means avoid-
ing exponential (nonpolynomial) growth in computation with the number of param-
eters for the problems which arise in engineering applications. Practical algorithms
for other NP complete problems exist and typically involve approximation, heuristics,
Branch and Bound, or local search. The results we will present in chapters 4-7 are
aimed at developing an intelligent combination of all these techniques, and hence a

practical algorithm for the mixed p problem.
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Chapter 4

Upper and Lower Bounds

In the previous chapter we found that, in general, it is difficult to compute x exactly,
so we will focus our effort on the development and computation of upper and lower
bounds. Such bounds are useful in their own right however, since an upper bound
gives a (possibly conservative) limit on the size of allowable perturbations, and a
lower bound yields a “problem perturbation,” together with an indication of the
conservatism that may be present in the upper bound. Important issues now become
the efficient computation of the bounds, the degree to which they approximate y, and
techniques for refining the bounds for a better approximation. In this chapter we will
concentrate on the first two of these issues, and the third one will be considered in
chapter 7.

For the purely complex case a tractable upper bound was suggested in [23] involv-
ing a singular value minimization (3.7). Computation schemes for lower bounds have
been developed involving a smooth optimization problem, due to Fan and Tits [28],
and a power algorithm, due to Packard et al. [59]. Whilst the purely complex case
is by no means completely solved, these methods are now routinely applied to large
engineering problems.

The mixed case however is a fundamentally more difficult problem. An upper

bound was presented by Fan et al. [29] which involves minimizing the eigenvalues of a
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Hermitian matrix. This is the upper bound we will use here, and it will be presented
in section 4.6. The development of a practical scheme to compute this bound will be
deferred to chapter 6.

For the most part this chapter is concerned with the problem of computing a
lower bound for y in the mixed case. It is shown in section 4.1 that mixed p can
be obtained as the result of a (nonconvex) real eigenvalue maximization. Sections
4.2 through 4.5 present several important theoretical characterizations of the mixed
1 problem, including the generalization of the y decomposition to the mixed case in
section 4.4. This leads to the development of a power algorithm to compute a lower
bound for the mixed u problem, which is presented in section 4.5. The algorithm not
only provides a lower bound for p, but has the property that y is (almost) always
an equilibrium point of the algorithm. This power algorithm is an extension to the
mixed case of Packard’s algorithm [59], which in turn is an extension of standard

power iterations for eigenvalues and singular values.

4.1 Lower Bound as a Maximization

The lower bound (3.6) for the mixed case is a real eigenvalue maximization problem,
namely

max M) < M).

g p(@M) < (M)
In the purely complex case (m, = 0) we can replace pg by p and it was shown by
Doyle [23] that in fact this lower bound is equal to p. This reduces the complexity of

the problem in (3.9), namely
Jnax pR(AM) = (M)

since, for complex perturbations, maximization over Qx amounts to maximization
over the boundary of the set BXx (i. e., unitary perturbations). This leads to efficient
computation schemes for the complex u lower bound. In this section we show that

the lower bound for the mixed case (3.6) also holds with equality, and hence it is
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still sufficient to consider the complex uncertainties on their boundary. We note,
however, that the definition of Qy requires us to search over the full range of the real

perturbations. The following lemma is taken from [23].

Lemma 4.1 ([23]) Let p: C* — C be a (multivariable) polynomial and define 8 =
min{|z|eo : p(2) = 0}. Then there exists a z € CF such that p(z) = 0 and for every i,
|2i| = B

This is now used to prove the main result of this section.

Theorem 4.1 For any matrizc M € C™ ™, and any compatible block structure K

Juax pr(QM) = pc(M). (4.1)
Proof: Trivial from (3.6) if px(M) = 0. So assume ux (M) = 8 > 0, and this value is
achieved for some perturbation A, i.e., det (/—AM) = 0 and 7(A) < % Now fiz the
real perturbations at these “optimal” values (67 = 3[,@ =1,...,m,; with |(§{| < 713-)
Then allow the complex part of A to vary and consider minimizing o(A) subject to
det (I — AM) = 0. Performing an SVD on A we obtain det (I — UXV M) = 0 where

U and V are (block diagonal) unitary matrices and
DM CH T PP N S 1 NN A | S (SN ¢

with k = 3 .41 ki This is a polynomial in 6%,...,65, ,7{,...,7f and so ap-
plying lemma 4.1 we have a solution with |[§§| = ... = lgfncl =¥ =...= 4| = %
and B > B. Now suppose B > [, say B = [+ € for some € > 0, then since the roots of
a polynomial are continuous functions of the coefficients we can find a § > 0 so that
2 . 2 € .
|6f =67 < é6,i=1,...,m, — |6 =65 < 51 =1,...,me

N € .
e =351 < Si=1, k.

Then move each |67| down by g and we can find a A solving det (I — AM) = 0 with
7(A) < % contradicting the definition of g. Thus B = f and it is now easy to check
that for this solution A = Q € Q) with pR(Q]W) = [ = pux(M). O
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4.2 Facts from Matrix Theory and Linear
Algebra

This section presents some basic facts from matrix (perturbation) theory and linear
algebra we will need in section 4.3. The material on eigenvalue perturbation theory

in section 4.2.1 is fairly standard and is presented without proof (see [36] for further

details).

4.2.1 Eigenvalue Perturbation Theory

Suppose we have a complex matrix M(t) € C"*" depending analytically on the real
parameter . Then denote My := M(0) and suppose that this matrix has a distinct
(i.e., algebraic multiplicity one) eigenvalue Ao, with right and left eigenvectors zg

and yo respectively, i. e., we have (after normalizing the eigenvectors appropriately)

yoro = 1
Mozog = Xozo
yoMo = Xoyg.

Then for ¢ in a sufficiently small neighborhood of the origin M (%) has an eigenvalue
A(t), with right and left eigenvectors z(t) and y(t) respectively, all of which depend

analytically on ¢, i.e., we have
y()'=() = 1
M®@)z(t) = At)z(t)

yr (M) = AB)y*()

with A(0) = Ao, z(0) = @0, and y(0) = yo. Thus we can differentiate this eigenvalue

with respect to ¢ and this yields

A(0) = y(0)* M(0)2(0) = y§ M (0)eo. (4.2)
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4.2.2 Linear Algebra Lemmas

The following two linear algebra lemmas are due to Packard [59].

Lemma 4.2 ([59]) Lety € C" and € C" be non-zero vectors. Then there exists
ad e R,d >0 such that y = dz if and only if Re (y*Gz) < 0 for every G € C"*"
satisfying G + G* < 0.

Lemma 4.3 ([59]) Lety € C" and z € C™ be non-zero vectors. Then there exists a
Hermitian, positive definite D € C™*™ such that y = Dz if and only if y*=z € R and

y*z > 0.

Now define the closed half-space in the complex plane as, for some scalar 1 € R (see

figure 4.1 for illustration)
HY = {z: Re(e/¥2) < 0}. (4.3)
Then we have the following elementary linear algebra lemmas.

Lemma 4.4 Given any set of complezx scalars Z = {z; : 1 =1,...,m} and any real

scalar v, then Z C HY if and only if "™ 1 cijz; € HY for all real non-negative scalars

ai,t=1,...,m.

Proof: («—) For each z; choose a, =1 and o; = 0 for ¢ # k.

(—) For any set of real non-negative scalars ¢;,¢ =1,...,m, we have
. m
Re (e'”/’ E aizi>
=1
m .
= ZaiRe (ej¢zi) <0. O

1=1
Lemma 4.5 Given any set of complex scalars Z = {z; : 1 = 1,...,m} define \ :=
S oz where a0 =1,...,m are real non-negative scalars. Then X is not real and

T

positive for any choice of the above ofs if and only if Z C HY for some i € (=5 Z).



45

Im

HY

Figure 4.1: Closed half-plane H?

Proof: («—) By lemma 4.4 Z C HY implies A € H¥ and hence Re(eJ¥)) < 0.
Suppose X is real and positive. Then this implies Re (eJ’/’) < 0 which means ¢ ¢
(—% %) which is a contradiction.

(—) Assume ) is never real and positive. Now suppose Z ¢ HY for any 1 €

(=% %). First choose 1 = 0. Then we must have at least one z € Z with Re(z) > 0.
Now we choose 2; as the element with Re(z) > 0 having minimum |Arg (z)| (which
must be non-zero). Now choose 1 = Arg (%), and define i) = % — . Then since

Z1 € H'/;, we must have a (non-zero) 22 € Z with 29 & . Suppose
Z1 = ri(cos® + jsin ), 2y = ro(cos ¢ + jsin ¢).

Then by our choice of 2; and 2 straightforward trigonometry yields the following
facts: |sin ¢| > |sine)|, Sgn (sin ¢) = —Sgn (sin ), | cos ¢| < |cos |, and if | cos ¢| =

| cost| then cos@d = cost. Now choose &1 = Then we

S TN N T
mTemy] 20d &2 = g
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have
S A aa Cos Ccos
A=0d4u21 + boie = .¢ .¢.
|sing| * |sin¢)|
Thus \ is real and positive which is a contradiction. O

4.3 Characterization of a Maximum Point

We are interested in computing px(M), which by (3.9) and (4.1) is given by
(M) = max pr(AM) = max pr(QM).

For reasons of tractability we choose to consider the problem maxgeg, pr(QM).
However since this is a nonconvex problem we will in general only be able to find
local maxima, and there exist examples with strictly local maxima. Thus we will
obtain a lower bound for pxc(M) (which is the global maximum). We would like this
lower bound to be “tight” (i.e., close to u) and so we wish to rule out maxima of
pr(QM) which we know are only local. Thus we only consider @) € Qx which are
local maxima of pr(QM) with respect not only to ) € Q but also to @ € BXy. In
this section we will develop a characterization of such local maxima.

Note that for any Q € Q) and any A € BXy, then QA € BXx and AQ € BXk.
Now suppose some matrix Q € Qx achieves a local maximum of pr(QM) over @) €
BXx. Then it is easy to show that the matrix M = @M has a local maximum
of p R(Q]\%) over Q) € BXx at Q = I. However since the real elements of @ are not
restricted to be on their boundary we can say more than this. For any matrix ) € Qx

(see (2.6)) define the index sets
J(@Q)={t<m,: 6| =1} (4.4)
J(@Q)={i <m,:|6]| <1} (4.5)
and define the allowable perturbation set

BA(T,J)={A€Xx:|8]|<1,ie,|6l|<1+eicd,

169) < 1,i=1,...,ma(AY) <1,i=1,...,m¢c}. (4.6)
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We see that, for sufficiently small € > 0, for any @ € Qx and any A € BAL(T(Q), 7(Q))
then QA € BXx and AQ € BXx. The point of all this is that if some matrix Q € Qy
achieves a local maximum of pr(QM) over @ € BX¢ then the matrix M := QM has
a local maximum of pr(QM) over Q € BA(T(Q), J(Q)) (for some € > 0) at Q = T
(and in fact the converse is true provided we assume that for every i, 67 # 0).

The notation here is unfortunately rather cumbersome and tends to obscure what
is really a rather simple concept. All that the above says is that if we are at a
maximum point with some of the real perturbations at interior points (we do not
need to consider this possibility for the complex perturbations) then we stay inside
the allowable set, and cannot increase the function, if we move these up or down (in
magnitude).

We introduce one further piece of notation. Suppose M € C"*™ has an eigenvalue
A with right and left eigenvectors # and y respectively. Then partition = and y

compatibly with the block structure as

_ - - -
Ty Yry
:‘CTmr mir
Ty Yeq
T = , Yy = (4.7)
mcmc ycmc
TCy Yo,
i :Cc’mc i L yCmc i

where @,;,yp; € CF, zp, ye, € Chmrti zc;, Yo, € CFmr+me+i These will be referred to
as the “block components” of x and y, and we define the “non-degeneracy” assumption

to be that for every i (in the appropriate set), |y, zr| # 0, |y%ze;| # 0, lyc;||zc;| # 0.

Theorem 4.2 Suppose the matric M € C™*™ has a distinct real eigenvalue g > 0

with right and left eigenvectors x and y respectively, satisfying the non-degeneracy
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assumption. Further suppose that pr(M) = Xo. Then if the function pp(QM) attains
a local mazimum over the set Q € BA(JT,J) (for some e > 0) at Q = I then there
exists a matriz D € f?}c, with 0; = £7 for every ¢ € J, and a real scalar Ve (=% %),
such that y = €% Dz.

Proof: First we parametrize the perturbation set. Consider G € X with
G = block diag (97 Tk, - - > Gy Tk » 95 kmp 11+ - > Ine Ty bme > G- - Go)  (4.8)
and the added restrictions
9 <0 , ieJ
Re(g) <0 , i=1,...,m, (4.9)
G +GS* <0 , i=1,...,me.
Now it can be shown that for some § > 0 then the set of all matrices E(t) := (I +
Gt)(I — Gt)~! for G as above and t such that t7(G) € [0 §) is an open neighborhood
of BA(J,J) about E(0) = I. So now define the matrix R(t) := E(t)M. Then it
is clear that pp(QM) has attained a local maximum over the set Q € BAf(J,j) at
@ = I if and only if pr(R(t)) has attained a local maximum over t > 0 at t = 0 for

arbitrary G as above.
Since R(0) = M has a distinct real eigenvalue Ag we have (for some non-empty
interval about the origin) an analytic function A(Z), with A(0) = Ao, and A(¢) an

eigenvalue of R(t). Thus we can differentiate to obtain
AM0) = y*R(0)z = 2y*GMz = 2)0y*Ga. (4.10)
In block notation this becomes

Me mc
A(0) = 2X (Z B Yriry + D gy T + Y&, Gfﬂfc,-) . (4.11)

=1

Define the set of points
Z={z:i=1,...,m}={gjyrar :i=1,...,m} U

{giveee; ii=1,...,m} U {ya.GZ-C:zzci e=1,...,mc} (4.12)



49

with the obvious identification for the elements z;. Now since we are at a maximum
point we have that A(0) is never real and positive. Thus, noting that we may in-
dependently scale g, g, Gic by arbitrary non-negative scalars and still satisfy (4.9),
then applying lemma 4.5 to (4.11) and (4.12) gives that this is true if and only if
Z C HY for some 3 € (—Z Z) for each G € X satisfying (4.9). Furthermore since
any summation of G’s satisfying (4.9) also satisfies (4.9), lemma 4.5 gives that this
is true if and only if there is one H¥ which works for every G, i.e., there exists
€ (—Z Z) such that Z C HY for all G € Xx satisfying (4.9). From the definition
of HY in (4.3), and G in (4.8),(4.9) this is equivalent to

Re (ej¢gry:ixri) <0 , forall g e Rwithg; <0, i=1,...,m,

Re (ej¢g{y:iwri) <0 , forall gy €R, ieJ (4.13)

?

Re (engfy:iwci) < for all ¢f € C with Re(g{) <0, i=1,...,m,

0
Re (ej¢yginmci) <0 , forall Gic with Gic + G,'C* <0,:=1,...,m¢

for some ¢ € (=5 %). It is now easy to check that the above conditions may be

equivalently expressed as:

Re(eVyrz,) >0 , i=1,...,m,
Re(Vyra,)=0 , ied (4.14)
ejd’y;.:vci €0o0) , t=1,...,m

Re (e0Vy&,G%c,) <0, forall GY with GY + GF* <0, i=1,...,mc.

Note that in the pure complex case the normalization condition y*z = 1 implies
¥ = 0. Since the scalar e/ terms may simply be absorbed into one of the vectors
we can apply lemmas 4.2 and 4.3 to each block component of 2 and y to obtain the

equivalent conditions

I3

Yry = ejwejeiDiwn , 0< D= D:: 0; € [_

l, i=1,...,m,

,ied

ol

Yry = 6j¢6j0iDi$ri , 0<D; = D:» 0; =

Do | A0
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ycz:6j¢sz0z s 0<D1=D:(, 1=1,...,m

yo, = &¥dizc, , 0<d;i €R, i=1,...,mc. (4.15)

Stacking these relations in matrix form yields y = e¥ Dz with D of the required form.

O

Remarks: We note from the proof that we immediately have a partial converse
to theorem 4.2, namely that if y = /¥ Dz under the above assumptions, then no
directional derivative (in the above sense) of the eigenvalue achieving pr(GQM) over
the set @ € BAe(j, j) is real and positive at Q = I.

This alignment condition is particularly clear when interpreted from a geometric
viewpoint. Consider the example illustrated in figure 4.2, which shows the block
components, y,. zr; and y; zc;, for an example with three real blocks and any number
of complex blocks. The block component y; zr; is associated with an internal real
parameter. If we think of these components as vectors in the complex plane, then
it is clear from (4.11) that with this alignment condition we can only generate A in
the half-space HY for any allowable G. Thus we cannot make X real and positive.
Furthermore if we do not satisfy the alignment condition then one can easily choose
@ so that the summation (4.11) makes A real and positive.

Note that we have made two technical assumptions in the above theorem, namely
that the maximum eigenvalue was distinct, and that the block components of the
eigenvectors satisfy the non-degeneracy assumption. Both of these assumptions will
hold generically, and furthermore we believe that theorem 4.2 and all the results
which follow can be extended to the case where both of these assumptions are re-
moved. However this extension appears to require substantial additional technical
complication. The primary motivation for the theory developed here is to lead to-
wards a power algorithm to compute a lower bound for the mixed p problem, and
so we will not pursue these technicalities here (note that the power iteration from

section 4.5 is applicable even for the cases where these assumptions do not hold).
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Figure 4.2: Alignment condition on eigenvector block components

4.4 A Decomposition at u

Theorem 4.2 gives us a characterization of a maximum point of pr(QM) in terms
of an alignment of the right and left eigenvectors of QM. This leads directly to the

following decomposition.

Theorem 4.3 Suppose Q € Qi achieves a local mazimum of pr(QM) over @ €
BXx, and that the eigenvalue achieving pr(QM), denoted 8, is distinct and positive.
Then f the right and left eigenvectors of QM, denoted x and y respectively, satisfy
the non-degeneracy assumption, there exists a matriz D € Dy with D? € Dy and

0; = +% fori € J(Q) such that
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QDMD™'(Dz) = pBDz
(z*D*)QD*M(D*)™! = pz*D* (4.16)

with B < pc(M). Furthermore if the above mazimum is global then = px(M).

Proof: Since Q € Qk is a local maximum of pr(QM) over ) € BX), the matrix
M := QM achieves a local maximum of pr(QM) over Q € BA(T(Q),J(Q)) (for
some € > 0) at Q = I. Now apply theorem 4.2 to conclude y = YDz with D € Dy
and 0; = +3 fori € J(Q). Now define D as the unique matrix such that D € Dy
and D? = D. Substitution of this into the right and left eigenvalue equations of QM
and simple manipulations (note that for any @) € Qx and any D € f)}c, Q and D
commute) yields the results in (4.16). Finally note that from theorem 4.1 we have

that 8 < ux(M), and if the above maximum is global then 8 = px(M). O

Remarks: Employing simple manipulations of (4.16) yields a partial converse of this
theorem. If we have a decomposition as in (4.16) with 8 real and positive and z non-
zero, then we have that f is an eigenvalue of QM with right and left eigenvectors z
and y respectively (thus £ is a lower bound for uxc(M)) where y = rel¥ D2z with D as
above, r a positive real scalar (which we could thus absorb into D), and % € [-Z T].
Thus defining D = rD? we have y = &3 Dz with D as in theorem 4.2 and ¥ € -3 3.
If we add the further technical assumption that we are not in the special case of
0; = £ foralli=1,...,m; and m, = 0,m¢ = 0 then we have ¢ € (=% J).

It is well known that for the purely complex case we have a decomposition at p
(see Packard et al. [59] and related work by Daniel et al. [18]) and (4.16) extends this

result to the mixed case (m, # 0).

Thus we (almost) always have a decomposition at u of the form (4.16), and any
such decomposition gives us a lower bound for y. Now we reformulate this condition

into a set of vector equations.
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Lemma 4.6 Suppose we have matrices QQ € Qi with 67 # 0 fori =1,...,m; and
D € Dx with D* € Di and §; = +7 fori € J(Q). Then we have a non-zero vector

%, and a real positive scalar [ such that
QDMD™Y(Dz) = BDz
(*DHQD*M(D*)™' = B&*D* (4.17)
if and only if there exists a matriz D € Dic with 0; = +3 fori € j(Q) and non-zero
vectors b, a, z,w such that
Mb=pfa M*'z=pw
b=Qa b=D"lw
z2=Q*QDa z=Q%w. (4.18)

Proof: (—) Define z = Dz and b,a,z,w as

Finally define D = D? and the result follows.

(«—) Defining D as the unique matrix D € Dy such that D? = D, and 2 = b the
result follows directly. O |

Remarks: We note that the assumption 67 # 0 for ¢ = 1,...,m, was included to
ensure that ) was non-singular. This assumption was used in showing the necessity

of (4.18) but was not required to show sufficiency of (4.18).

4.5 A Power Algorithm for the Lower Bound

In light of lemma 4.6 the problem of computing a lower bound for px (M) is reduced
to one of finding a solution to the set of equations in (4.18) which gives us a decom-

position as in (4.16). We would like to develop an algorithm for computing such a
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solution, and in order to do this we first note that if we partition b, a, z, w compatibly

with the block structure as in (4.7) then the set of constraint equations

b= Qa b=D"1lw
z=Q*QDa z=Q%w

can be broken down into a series of m similar independent constraint equations on
the block components (since ) and D are block diagonal). These equations are of ‘
three types corresponding to a repeated réal scalar block, a repeated complex scalar
block, or a full complex block. We now consider a generic constraint of each type.

The following two lemmas are due to Packard [59].

Lemma 4.7 (Repeated Complex Scalar Block [59]) Let b, a,z,w € C* be non-
zero vectors with a*w # 0. Then there exists a complex scalar ¢ with |¢| =1, and a

complex matriz D € C*** with 0 < D = D* such that

b=qa b= D"lw
z = q*qDa z=q*w
if and only if
* *
-2 b= " (4.19)

Z=—w = ——oua.
|w*al |a*w]

Lemma 4.8 (Full Complex Block [59]) Let b,a,z,w € C* be non-zero vectors.

Then there exists a complex matriz Q € C**F with Q*Q = I, and a real positive

scalar d such that
b= Qa b=d 1w

z = Q*Qda z = Q™w
if and only if
z=-—a b= -—uw. (4.20)

Now we consider a repeated real scalar block, bearing in mind that we have additional

constraints if the real perturbation is not on the boundary (i.e., for i € J(Q)).
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Lemma 4.9 (Repeated Real Scalar Block) Let b,a,z,w € CF be non-zero vec-
tors with a*w # 0. Then we have a real scalar q with |q| < 1, a real scalar § € [-F 7],

and a complex matriz D € C*** with 0 < D = D* such that

b=qa b=e D1y

*

z = ¢*qe’?’ Da z=q*w

with § = £ for |q| < 1 if and only if

z = qu b=qa (4.21)
with
Re(a*w) >0 for ¢g=1
Re(a*w) <0 for g= -1 (4.22)
Re(a*w) =0 for |q| < 1.
Proof: (—) Immediately we have 2 = qw and b = qa. Thus a*w = %b*w =

%ejgw* (D*)7lw. Now ¢ = 1 implies Arg (a*w) = 6 and hence Re (a*w) > 0. Similarly
g = —1 implies Arg(a*w) = 0 + 7 and hence Re (a*w) < 0. Finally |¢| < 1 implies
Arg (a*w) = 0 or 0 + 7 with = 7. Thus Arg(a*w) = £7 and so Re (a*w) = 0.

(+—) Immediately we have b = ¢ga and 2z = ¢*w, and so b*w = ga*w. Denoting
0 = Arg (b*w) we see that for ¢ = 1 Re(a*w) > 0 which implies Re (b*w) > 0 and
so § € [-% Z]. Similarly for ¢ = —1 Re(a*w) < 0 which implies Re (6*w) > 0 and
so § € [T Z]. Finally for |¢] < 1 Re(a*w) = 0 which implies Re (b*w) = 0 and so
0 = £Z. Now b*(e™%w) is real and positive and so applying lemma 4.3 we have a

matrix D with 0 < D = D* such that b = e Dw. Define D = D~! and we have
b=e 3D 1w and z = ¢*w = ¢*e? Db = ¢*qei? Da. O

These lemmas now allow us (with a few technical assumptions) to eliminate the

matrices @ and D from (4.18). In order to avoid the notation becoming excessive we
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consider a simple block structure with m, = m; = m¢ =1 for the remainder of this
section. We stress that this is purely for notational convenience, and that the general
formulae for an arbitrary block structure, as defined in section 2.1, are simply obtained
by duplicating the appropriate formulae for each block. So given K = (k1,ka, k3) the

appropriate scaling sets become

Qqup = { block diag (¢"Ix,, ¢°Ir,, QF) : ¢" € [-11],¢*¢° = 1,Q9*Q° = I;} (4.23)
v
3)
0 < D; = Df e Ck*ki 0 < deR). (4.24)

Doy = {block diag(engl,Dz,dIk3):0€[—%

We partition b, a, z, w compatibly with this block structure as

b1 ai 21 wi
b= b |, a=1ay |, 2=z | w=| wy (4.25)
b3 as 23 w3

where b;, ai, z;, w; € CFi. Then we obtain our final form of (4.18) as in the following
theorem (which will form the basis of a power iteration to compute a lower bound for
px(M)).
Theorem 4.4 Suppose we have vectors b,a,z,w € C" partitioned as in (4.25) with
bi,ai, zi, w; # 0 and ajwi,a3ws # 0. Then there exist matrices Q € Qgyup and D €
Dsup, and a positive real scalar 8 such that
Mb = fa M*z = pw
b= Qa b=D"1w
z=0Q*QDa z=Q%w
with 0 € [-5 5] and 0 = £7% for |¢"| < 1 if and only if

Mb = Ba
whas w3

z1 = qui Zy = i wa z3 = l—-—!-ag (4.26)
|whas| |as]

M*z = Bw
aswg as

b1 = qay by = ——ay by = —Llws

|agw2] |03
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for some real scalar q € [—1 1] with

Re(ajwi) >0 for ¢=1
Re(ajw1) <0 for ¢g=-1 (4.27)

Re(ajwi) =0 for |q¢| <1

Proof: Apply lemmas 4.7, 4.8 and 4.9 to the appropriate block components. O

Remarks: Since the relationships (4.26) and (4.27) are unaffected if we multiply b
and a by an arbitrary positive real scalar «, and z and w by an arbitrary positive
real scalar =y, then in searching for solutions to these equations we may impose the

additional restriction |a| = |w| = 1.

Any solution to (4.26) and (4.27) immediately gives us a decomposition as in
(4.16) and hence f is a lower bound for ux(M). We also note that, under certain
technical assumptions (as given), there always exists a solution to these equations
with 8 = px(M). Since we would like to find the largest 8 we can that solves (4.26)
and (4.27), we now propose finding a solution to this system of equations via the

following power iteration:

ﬂk+1ak+1 = Mb;
*
Py = Gh1w1 toppy = kL SR
k41 T + k E4+1 T * k k41 T k41
Wo, A2k 41 |a’3k+1 |
A *
Brr1wrtr = M zpp (4.28)
*
ab w
I 92 Y2 . !a3k+1|
b1k+1 = qk+101344 b2k+1 S — ] b3k+1 = ’ | 3k+1
A2 41 W2k 41 W3 41
where G471 and {r+1 evolve as
|01,
~ A k *
a1 = Sgn (gx) +Re(a1k+1w1k)
|a1k+1!
. . af . .
If |Ggq1] =1 Then Grp1 = oot Else Gr41 = Gr41 (4.29)

|Gkl
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. . |61,
Qp41 = Sgn (Qk-l-l) Ial £ l + Re (aik+1w1k+l)
k+1
. . Q41 R .
If |&gya| =1 Then 41 = 3 + Else 41 = Gpy1
|6kt

and Bri1, Brt1 are chosen positive real so that |agy1| = |wpe1| = 1.

It is now straightforward to verify that if the algorithm converges to some equilib-
rium point then we satisfly the appropriate constraints on each block component and
hence by lemmas 4.7, 4.8, and 4.9 we have non-zero vectors b, a, z,w € C", matrices

Q € Quup, D € Dgyp, and positive real scalars B, B such that

Mb = Ba M*z = Bw
b=Qa  b=D"'w (4.30)

z2=Q"QDa z = Q*w.
Thus if 3 = /3 then we satisfy (4.18) and so have a decomposition as in (4.16), and
hence 3 is a lower bound for ux(M) (associated with a local maximum of pr(QM)).
We note that if # # 3 then we have not found a decomposition as in (4.16). However
from (4.30) we find that QMb = Bb and w*QM = Bw*. Thus we have that both 3
and f3 are real positive eigenvalues of QM, and so by lemma 3.3, max(83, B) still gives

us a lower bound for ux(M).

Note that the equilibrium points of the algorithm are unaffected if we multiply
the terms Re (a}‘k+lw1k), Re (a’{k+1w1k+1) by arbitrary real positive scalars, and hence
we may employ this degree of freedom to select scaling parameters so as to aid con-
vergence. The various issues associated with developing a practical implementation

of the power iteration, and the performance of the resulting algorithm, are discussed

in chapter 6.

4.6 The Upper Bound

Now let us consider an upper bound for p. As we noted earlier, one could, for

the purposes of the upper bound, cover the real perturbations with complex ones



59

(and then use the complex p upper bound) since this would cover the admissible

perturbation set Xjx. Thus we obtain the familiar upper bound from complex u

theory
< inf @ -1, .
pc(M) < inf F(DMD™) (431)
In order to facilitate comparison with the mixed y upper bound from [29], note that
we can reformulate this bound via the following equivalences (for M € C™ ™ and

D e ch):

F(DMD™ )< B «— XN(DMD Y (DMD™')) < 52
— D'M*D*MD™' — 5%, <0
— M*D?’M — 5%2D? <.
Since D? € D if and only if D € Dy this leads to the equivalent upper bound
< i i : M* — 32D <0}, .
pre(M) < inf  min {8:M*DM - B°D < 0} (4.32)
Note however that the above approach does not exploit the phase information that
is present in the real perturbations, and hence this bound is frequently poor for mixed
problems. The upper bound presented in [29] does exploit this phase information and
gives a bound which is never worse than the standard upper bound from complex p

theory and is frequently much better. In order to present their result we first define

the function @4 (M, D, G) for matrices M € C*"*™ D € Dy, and G € G as

®o(M,D,G) = N(M*DM + j(GM — M*G) — aD). (4.33)
The following theorem, which gives an upper bound for the mixed p problem is taken
from [29].

Theorem 4.5 (Mixed p Upper Bound [29]) For any matric M € C™™", and

any compatible block structure K suppose ay is the result of the minimization problem

max{a: ®,(M,D,G) > 0} (4.34)

DeDy,Gedy | aeR
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then if ax < 0 we have px(M) =0, otherwise
prc(M) < /o (4.35)

We can reformulate this upper bound via the following lemma.

Lemma 4.10 For any matrices M € C™*" and D € D, G € Gi then
I;lgﬂ%({a : ®o(M,D,G) >0} = raneinr_\%{a : 9o (M, D,G) < 0}. (4.36)

Proof: Follows straight from the definition of ®4(M, D, &) and continuity of eigen-

values. O

Applying this lemma to theorem 4.5 we find that the mixed g upper bound can be

prc(M) < 4/max(0, o) (4.37)

alternately expressed as

where ay is now given by

inf  min{a: M*DM + j(GM — M*G) — oD <0}. (4.38)

Oy =
DeDy,GeGx a€ER

This expression for the upper bound can in turn be rewritten as

(M) < f  min {#: M*DM +j(GM —M*G) — F*D <0}. (4.39)

DeD%cI}Geg;c 0<BER

Comparing (4.39) and (4.32) it is clear that the mixed p upper bound in (4.39) is
always at least as good as the standard upper bound from complex p theory in (4.32),
since we recover the complex yu upper bound by enforcing the choice G = 0,,. The G
scaling matrix, which is allowed to be non-zero only for the blocks corresponding to
real parameters (see the definition of Gx in section 2.1), exploits the phase information
that we have about the real parameters to obtain a better upper bound.

The derivation of this mixed p upper bound is as follows. Suppose we have a
feasible @ € Q, i. e., @M has a real positive eigenvalue, or pr(QM) > 0. Then we

have a real positive scalar 0 < v € R, and a vector z € C"*™ with = # 0 such that

QMz = ~z.
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Since 7(Q) < 1 it follows that for any feasible z

Vel = QM|
< F(Q)|Mz|?
< |Mz|?

so that for any feasible  and v we have
e*(M*M — 42I1,)z > 0.
Now note that for this z, and any G € Gx we have

2*GMz = %IIZ*M*Q*GMCL'

= l:1:"‘M"‘GQZ\JQ:
= ;/*J\I*Ga:
so that for any G € Gx and any feasible  we have
2 (GM — M*Q)z =0 (4.40)
and so it follows that for such z

e (M*M +j(GM — M*G) —~*I,)z > 0. (4.41)

It is now easy to check, using proof by contradiction, that if we have G € Gx and

0 < B € R such that
(M*M +j(GM — M*G) — #*I,) <0 (4.42)

then v < S for all feasible v, and hence py (M) < f. Now since p is invariant to
similarity transformations with D € Dy (see lemma 3.2), we may apply this argument

to Mp = DM D™ instead of M, to reach the conclusion that if we have

(MHMp +3(GMp — MpG) — f*1,) <0 (4.43)
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then px(M) < . Multiplying on the left and right by D does not affect the definite-

ness of this expression and we obtain
(M*DM +3(GM — M*G) — 82D) <0 (4.44)

where D = D? € Dx and G = DGD € Gx. Since these transformations may
be inverted as D = ﬁ%,G = b_%éb_% then the existence of D € D}C,é € Gk
satisfying (4.44) also implies px(M) < f. Minimizing this expression over § and the
D, G scaling matrices gives us the upper bound in (4.39), which is equivalent to the
expression in theorem 4.5.

The basic principle behind the complex p upper bound (see (4.31) or (4.32)), which
we derived in section 3.1, was to improve the crude @ bound via transformations that
are p-invariant (and exploit the structure of the problem). Note that here we also
employ that technique to introduce the D scaling matrices to the problem. However
a quite different technique is employed to introduce the G scaling matrices. There we

exploit the fact that the G scaling matrices do not alter the expression
a*(M*DM +j(GM — M*G) — §°D)z

for any feasible z, though they can affect the expression for general z € C**™  and

hence they can affect the definiteness of the expression
(M*DM +j(GM — M*G) — D).

In fact one can also derive an expression for this mixed p upper bound in terms of
scaled maximum singular values, and we will do so in chapter 6. With this expres-
sion for the upper bound there is another interesting interpretation of the GG scaling
matrices: we can still think of the mixed y upper bound in terms of covering the
real parameter uncertainty with complex or disk uncertainty, but now the G scales
allow us to use off-axis disks (see figure 4.3). One can also think of this as a scaled
small gain condition (see [84]), and for additional interpretation of the mixed p upper

bound we refer the interested reader to [34].
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Im

Centered Disk Off Axis Disk

Figure 4.3: Covering real parameters with disks

The above minimization (4.39) involves a Linear Matrix Inequality, LMI, where
the matrices D and G enter the problem in a linear fashion. This is very important

since it implies that for fixed oo € R the function
AX(M*DM +j(GM — M*G) — aD) (4.45)

is convex in both D and G (this is easily shown using the Rayleigh Quotient expression
for Hermitian matrices). It is also easy to check (via the Rayleigh Quotient) that
for fixed D € Dg,G € Gi the above expression (4.45) is a strictly monotonically
decreasing function of a. In fact we will see in chapter 5 that the minimization over
a may be simply computed as an eigenvalue problem. Thus at any point (D, G)
we can easily compute the « level attained, and for any «a level we have that the
LMI minimization over D and G is convex. In other words we have a quasi-convex

optimization problem so that all local minima are global, and hence this bound is
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computationally tractable. The practical computation of the mixed px upper (and
lower) bounds will be treated in chapter 6 (see also [83]), and in the next chapter we

consider some of the properties of these bounds.
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Chapter 5

Properties of the Bounds

This chapter studies the relationship between u and its bounds for the mixed case.
Sections 5.1-5.3 are devoted to developing a theoretical framework for examining the
equivalence between u and its upper bound. It is hoped that this framework can then
be used to identify for which block structures and/or classes of matrices the upper
bound is identically equal to x, and hence can be computed exactly (the upper bound
being a convex problem). Some results in this direction are presented, and in section
5.4 we examine several special cases of the general mixed u problem. In particular we
consider the rank one case and its relation to “Kharitonov-type” analysis methods,
using the above framework. This will be treated in more detail in chapter 8. The
extension of the concept of ‘i values’ to the mixed case is presented in section 5.5.
It is shown that yu is the largest of a number of u values, which are associated with
local maxima of the lower bound function and stationary points of eigenvalues of the
upper bound function (the largest such eigenvalue being associated with the upper
bound). This provides a theoretical link between the upper and lower bounds, and

can be used to generate guesses for the optimal value of one from the other.
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5.1 Characterizing the Minimum of the Upper
Bound Function

We will first consider the computation of a descent direction for the upper bound
function in (4.34). This can in principle be used in a steepest descent algorithm to
compute the upper bound. Our main purpose in computing it here, however, is to
examine the conditions for being at a stationary point, and from these to develop some
properties of the upper bound. In particular we will be concerned with characterizing
the conditions under which a given pair of scaling matrices, Dy € Dx,Go € Gk,
represent the optimal scaling matrices for the mixed g upper bound from theorem
4.5. It is convenient here to work with the LMI form of the mixed p upper bound
given in (4.37, 4.38). Note that this can be easily reformulated via the following

lemma.

Lemma 5.1 For any matriz M € C™*" and any D € Dx,G € Gk
Eneiﬂ%{a : (M*DM +j(GM — M*G) — aD) < 0}
is the unique value @ satisfying
MM*DM +j(GM — M*G) —aD) = 0.

Proof: Follows straight from the Rayleigh Quotient and a simple continuity argu-

ment, since D > 0. O

We begin our investigation of this upper bound function with a simple lemma regard-

ing the perturbation of negative semidefinite matrices.

Lemma 5.2 Suppose we have matrices A € C"™" and B € C™™*", with A < 0.
Define S = {z € C" : z*Ax = 0,|z| # 0}. Then we have that A+ tB < 0 for
sufficiently small 0 <t € R if and only if either S =0, or 2*Bzx <0 for allz € S.

Proof: (—) Since we have that for all = # 0

t*(A+tB)x = 2*Az + tz* Bz < 0
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with ¢t > 0, then if for any = # 0 we have 2* Az = 0, for that £ we must also have

z*Bx < 0.

() If S =0 then A <0, and so A+ tB < 0 for sufficiently small £ > 0 by a simple
continuity argument. Suppose instead that S # 0, but z* Bz < 0 for all z € S. Define
S =8N B where B = {z: |z| = 1}. Then & C S is compact and so by continuity
there exists a set V O &, which is open in B, with z*Bz < 0 for all z € V. Thus we

have

z*(A+tB)z = z*Az + tz*Bz < 0

forallz € V, for any t > 0. If B\V = () we are done immediately, so assume B\V # 0.

Now B\V is compact and so both z*Az and z* Bx achieve maxima on B\)V. Suppose

we have
max z¥Axr = —«a
z€B\V
max z*Bz =
z€B\V

with a > 0 since B\V NS = 0. If 8 < 0 then z*(A + tB)z < 0 for all z € B\V for
any t > 0 and we are done, so assume 3 > 0. Then we have

o

7

Thus we have z*(A 4 tB)x < 0 on B\V for sufficiently small ¢ > 0. Combining this

t*(A+tB)z=2"Az+tz"*Bz < —a+13 <0 for i<

with our earlier result we have that for sufficiently small ¢ > 0, 2*(A + ¢tB)z < 0 for
all z € B, and hence A+tB <0 . ]

Note that the proof of this lemma uses simple linear algebra arguments, and
does not require any results about analyticity (or even continuity for that matter)
of eigenvalues. Note also that clearly one can prove an analogous result for positive
semidefinite matrices. This lemma immediately provides us with a characterization of
when we are at the minimum of the upper bound function, or alternately a means of

checking if a given D, G pair represents a descent direction, as stated in the following

theorem.
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Theorem 5.1 Suppose we have matrices M € C™*", Doy € Dx and Gy € Gk and a

real scalar o € R such that
AM*DoM + j(GoM — M*Gy) — aDy) = 0.
Then Dy, Gy are the minimizing arguments of the problem
pep g [grleiﬂ%;{a . (M*DM +j(GM - M*G) — aD) < 0}] (5.1)
if and only if there does not exist a pair D € Dy, G € G such that
z*(M*DM + j(GM — M*G) — aD)z <0 (5.2)

for all x # 0 with z*(M*DoM + j(GoM — M*Gy) — aDy)z = 0.

Proof: Since the minimization is convex we always have a descent direction unless
we are at a (global) minimum. Note that in order to have a descent direction for the
upper bound function we need to be able to find a pair D € Dy, G € G such that
for sufficiently small ¢ > 0 (so that Do + ¢D > 0) we have € > 0 such that

(M*(Do + tD)M + j((Go + tG)M — M*(Go +1G)) — (a — €)(Dy + tD)) < 0.

Clearly this is equivalent to the existence of D € Dy, G € G such that for sufficiently

small ¢ > 0 we have
(M*(Do +tD)M + j((Go + tG)M — M*(Go +tG)) — a(Do +tD)) < 0
(since Do +tD > 0). But now define

A = (M*D()]W + j(GoM —M*Go) — aDy)
B = (M*DM +3j(GM — M*G) —aD)

and apply lemma 5.2. O

Now we consider the problem of choosing a D, G pair which is the steepest descent

direction, or alternately verifying that no such D, G pair (i.e., no descent direction)
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exists. Note from theorem 4.5 that we are only concerned with reducing the value of
the upper bound function if & > 0 (otherwise we already have that the upper bound
equals i) and so we make the substitution § = y/a. Now suppose we have matrices
Dy € Dy and Gy € Gx and a real scalar 8 > 0 such that
X(M*DoM +j(GoM — M*Go) — 2°Dp) = 0
with r eigenvalues coalesced at zero. Further suppose that the corresponding eigen-
vectors are given by Uy € C™*" where
(M*DoM +3(GoM — M*Gyo) — f2Do)Up = 0
and UiUp = I,. Then we know from theorem 5.1 that —D,—G (for D € Di,G € gx)
is a descent direction if and only if
e (M*DM +j(GM — M*G) — D)z > 0 (5.3)
for all z # 0 with 2*(M*DoM + j(GoM — M*Gy) — aDp)z = 0. Defining
Amin = _min _ y* (U7 (M*DM +j(GM — M*G) — B°D) Up)n  (5.4)

n€CT,|n|=1

we see that this is equivalent to requiring that Apin > 0, which states that the matrix
Us (M*DM +3(GM — M*G) — 6°D) Uy (5.5)

is positive definite. Now define Vy = MUy and partition Up, Vp compatibly with the

block structure as
_ - - -

Aq J1
Am, I,
By K
Uy = , Vo = (5.6)
B, K,
Ch Ly
i Chne | | L |
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where A, J; € Ckx" By K; € Chmrtixr (O L; € Chmr4me+iX™ Then with this
notation the matrix Uj (M*DM +ij(GM — M*G) — ﬁzD) Up may be rewritten as

sy (JpDidi — BPAIDiA) + LI § (AFGidi — JFGi A +

e (K;Dmmm — B2B! Dy, +iB ) + Y7C d; (L;‘Li - ﬂ2cgfc,-) . (5.1)

Now substituting this expression into (5.4), then taking traces (since all the quantities

are scalar) and exchanging the order of multiplication yields upon rearrangement

S T (Di(Jign* Jf — B2 Ai* AY)) +
. S Tr (§Gi (Jmn*A}‘ — Aiqn*J})) +
/\min = min
e la=1 | sme Tr( meti(Kirp* K7 — 8 Bay* BY)) +
e g ( *(LLi — B2C;Ci)n)

(5.8)

We would like to rewrite this expression as an inner product, so first of all we define

the following set of block diagonal Hermitian matrices

Zx = {block diag (Z1, - -, Zmytmes 2115, srmosns- - s ZmeThms Z1s- -+ Zmy )
Z; = 7¥ € CF¥ki 4 e R, Z;i = 2} e Chi*kiy (5.9)

which together with the inner product
P,T € Zx (P, T) =Tr (PT) (5.10)

forms a real inner product space. With these definitions (5.8) takes the form

Amin = _min (D, P" 5.11
min neél;ljgl:l( , P") (5.11)
where P"7 € Z is defined by
P! = Jam*JF - BFPAmn*Ar, i=1,...,m,
Povi = Km’?*f(f —B*Bim*Bf, i=1,...,m,

pi = n*(LiLi— B*CiCi)y, i=1,...,m¢

A

Pl = j(Jimm" A} — A Jf) , i=1,...,my (5.12)

)
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and D € Zx is defined as D = block diag (D, G) with G = block diag (G1,. . ., Gm,).
Now we define the generalized gradient set Vy as the set of all such P",i.e.,

Vy={P"€ Zg: PZ,",p;],Pi’I asin (5.12),n € C",n| = 1} (5.13)

where Y = (M, Dy, Gy, 3). Thus we obtain the (generalized gradient) expression (5.8)
for a fixed D, G pair as a minimization of an inner product over a compact subset of

the inner product space

Anin = Prrelgly(D,P). (5.14)

What we’ve shown with this development is that the question of whether or not
there exists a D, G pair for which —D, —G is a descent direction for the upper bound
function is equivalent to the existence of a De Zy for which Apin given by (5.14) is
strictly positive. This question can now be answered using some results from convex

analysis. Denoting the convex hull of a set X by Co (X) we have the following.

Theorem 5.2 ([56]) Suppose X is a finite dimensional real inner product space, and
' is a compact subset of X. Then there exists an & € X such that minger(Z,y) >0
if and only if 0 & Co (I).

This result immediately provides us with an answer to the question of the existence

of a descent direction.

Theorem 5.3 Suppose we have matrices M € C™*™ Uy € C™*" (r < n) and a real
scalar B > 0. Then there exists a D € Dx,G € Gx such that the matriz

U (M*DM + j(GM — M*G) — ?D)Up

is strictly positive definite if and only if 0 & Co (Vy).

Proof: Following the development in this section it suffices to simply apply theorem

5.2 to (5.14). O

Furthermore supposing in theorem 5.2 that 0 ¢ Co (I') then a method to compute

such an 2 is given in [56]. This allows us to compute a D € Zx for which Apin > 0
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and hence a D, G pair which is a descent direction. In fact the point D turns out to be
the minimum point in Co (Vy) and hence corresponds to a D, G pair representing the
steepest descent direction. Putting all this together gives our final characterization

for the minimum of the upper bound function.

Theorem 5.4 Suppose we have mairices M € C™"*", Dy € Di and Gy € Gx and a

real scalar B > 0 such that
X(M*DoM + j(GoM — M*Gy) — °Do) =0

with r eigenvalues coalesced at zero. Further suppose that the corresponding eigenvec-

tors are given by Uy € C™*" where
(M*DoM + j(GoM — M*Go) — 2Do)Us = 0

and UjUy = I,. Then Dy, Gy are minimizing arguments of the problem (with mini-

mum value o = (%)

: . (M . agten < .
DeDicrffGeg;c [Enelﬁ{a (M*DM + j(GM — M*G) — aD) < 0}] (5.15)

if and only if 0 € Co (Vy).

Proof: Apply theorem 5.1 and theorem 5.3. O

This theorem provides us with a means to check whether or not we have achieved
the minimum of the upper bound function, in terms of the properties of the set Vy.
We will use this expression in section 5.3 to examine the equivalence between mixed

p and its upper bound.

5.2 Connections with the Generalized Gradient

Note that the approach taken in the previous section to computing a descent direction
for the upper bound function did not involve any differentiation. It is interesting

then to consider how this approach relates to computing the generalized gradient,



73

and this is the subject of this section. In fact we will see that one obtains exactly the
same characterization from either approach, although substantially more machinery
is required for the generalized gradient approach followed in this section. The reader
uninterested in this comparison could skip to section 5.3 without loss of continuity.
We note from (4.34) that we are interested in computing derivatives of eigenvalues
of a Hermitian matrix, and so we are guaranteed the analyticity of properly chosen
branches (for both eigenvalues and eigenvectors). However since we are minimizing
the maximum eigenvalue, the eigenvalues may well be coalesced, and so we must
compute a generalized gradient for the (possibly) repeated eigenvalues [23]. For the

sake of computation we rewrite the upper bound function in (4.34) via the following

lemma.

Lemma 5.3 For any matrices M € C"*", D € Dx and G € Gx the unique value «

satisfying
A M*DM +j(GM — M*G) —aD) =0

is given as the largest generalized eigenvalue of the generalized eigenvalue problem
(M*DM + j(GM — M*G))u = aDu (5.16)

(with generalized eigenvalue and eigenvector as o and u respectively).
Proof: Follows straight from the Rayleigh Quotient and a simple continuity argu-.
ment, since D > 0. O

Now note that the generalized eigenvalue problem (5.16) can be rewritten as a stan-

dard eigenvalue problem
(MHMp +j(GMp — MHG))ii = ol (5.17)

where we have made the substitutions

A

D = D3
Mp = DMD™!



i = Du. (5.18)

This is now used to compute the generalized gradient of the upper bound function in
(4.34). Once again we are only concerned with reducing the value of this function if
a > 0 (otherwise we already have p) and so we make the substitution f = 1/a. Now
since the left-hand side of the eigenvalue equation (5.17) is for a Hermitian matrix

we can perform an eigenvalue decomposition on this matrix
MEMp +j(GMp — M5G)) = US3U* + WAW* 5.19
D D B
where U,W,Eﬂ,A satisfy

Y = diag(B,...,0)
A = diag(M\i,..., dar) A < B2 foralli

( o ) (W) = I, (5.20)

W*
(with Xg € R™7, U e Cr*r A € R~ 1/ € C"*"~" where r is the number of

generalized eigenvalues coalesced at 3%). Thus making use of the equivalence between

(5.16) and (5.17) we obtain the generalized eigenvalue decomposition
(M*DM + j(GM — M*G)) = DUSZU*D + DWAW*D (5.21)
where U = D10 and W = D='W satisfy
( UDU  U*DW ) _ ( Iy Opsner ) | 5.2)
wW*DU W*DW On—rxr In—r
So that post multiplying (5.21) by U we finally obtain
(M*DM +j(GM — M*G))U = DUS}. (5.23)

These expressions (5.21,5.22,5.23) are valid for arbitrary D € Dg and G € Gk, so

now suppose we are at a point Dy € Dy,Gy € Gx, with r generalized eigenvalues



5

of the upper bound function coalesced at A2 > 0, and wish to move in a direction
D € Dx,G € G, i.e., consider D(t) = Dy + Dt and G(t) = Gy + Gt for some real
scalar ¢ (note that D(t) € Dy, G(t) € G for sufficiently small ¢). Then from the
earlier discussion we can choose analytic matrices U(t) and X3(t) = diag (5;(t)) with
24(0) = B(0)Ir = BI, such that U(t), Xg(t), D(t), G(t) satisfy (5.21,5.22,5.23). Thus
we can substitute for U(t), Xg(t), D(t),G(t) in (5.23) and differentiate with respect
to t to obtain

. : . DOU()Zs()Sp(t)+
(M*DM +j(GM — M*G))U(t) + .
(M* DM +j(GOM — MG (@) DITE)4(8)Z(%)
+ D(H)U(t)%5(t) + DU(1)Z3(2).
(5.24)
Now substitute for U(t),X4(t), D(t), G(t) in (5.21,5.22) to derive
U*(8)(M*D($)M + §(GE)M — M*G(t))) = S2()U*(t)D(). (5.25)

Finally premultiplying (5.24) by U*(t), then substituting for (5.25) and evaluating
the expression at ¢ = 0 eliminates U (t) and yields upon simplification

. 1 . N

35(0) = %U* (M*DM +(GM — M*G) — 8°D) U (5.26)
where U = U(0). In practice we would not necessarily be able to compute U (which
corresponds to the correct choice of branch for the analytic matrix of generalized

eigenvectors), but it is easy to show that for any matrix Uy € C™*" satisfying
(M*DoM + j(GoM — M*Gy) — 52Do)Up = 0 (5.27)

and normalized such that UjDoyUy = I, then U = UpK for some unitary matrix
K € C™" and hence on substituting this into (5.26) we obtain

: 1
K¥5(0)K* = %U({ (M*DM +j(GM — M*G) — B°D) Us. (5.28)

Since K is unitary and 25(0) is diagonal this represents an eigenvalue decomposition

and so the derivatives of the r generalized eigenvalues coalesced at 5% are given as the
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etgenvalues of the matrix
Us (M*DM +j(GM — M*G) — 8°D) Us. (5.29)

We state this as a theorem.

Theorem 5.5 Suppose we have matrices M € C"*", Dy € Dx and Gy € Gy and a

real scalar B > 0 such that
XM*DoM +j(GoM — M*Go) — Do) =0

with r generalized eigenvalues coalesced at the mazimum B2. Further suppose that the

generalized eigenvectors are given by Up € C"*" where
(M*DoM + j(GoM — M*Gy) — 8>Do)Us = 0

and U DoUy = I,. Then the derivatives of the r generalized eigenvalues coalesced at

B% are given as the eigenvalues of the matriz
U (M*DM +j(GM — M*G) — B2D) Us. (5.30)
Collecting all this together immediately gives us the following theorem.

Theorem 5.6 Suppose we have matrices M € C"*", Dy € Dx and Gy € Gk and a

real scalar B > 0 such that
XM*DoM + j(GoM — M*Go) — 82Dg) = 0

with r generalized eigenvalues coalesced at the mazimum B%. Further suppose that the

generalized eigenvectors are given by Uy € C™*" where
(M*DoM + j(GoM — M*Go) — B2Do)Us = 0

and UUy = I,. Then Dy,Go are minimizing arguments of the problem (with mini-

mum value o = B?)

. . (M . e < .
DEDl;cl}fGeg;c [gleln%{a (M*DM + j(GM — M*G) — aD) < O}] (5.31)
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if and only if for all D € Dx, G € Gx the matriz
Us (M*DM +3(GM — M*G) — B°D) Uy
is not positive definite.
Proof: First we note that we can find Uo € C™*" such that
Us (M*DM +j(GM — M*G) — 8°D) Uq
is positive definite, with
(M*DoM + j(GoM — M*Go) — 2Do)lp = 0
and US‘DOU’O = I, if and only if we can find Uy € C™*" such that
Us (M*DM +3(GM — M*G) — 8°D) U
is positive definite, with
(M*DoM + j(GoM — M*Go) — 8%Do)Us = 0
and U§Uy = I,. Given one simply choose the other via

A

Up = UO(UJDOUO)_% and Uy = Up(U300)~

and it is easy to verify that the stated properties hold.
Now from theorem 5.5 we can find a descent direction D, G for the upper bound
function ®4(M, Do, Go) at Do, Gy if and only if we can find D € ﬁ;c, G € gk such

that all the eigenvalues of the Hermitian matrix
U3 (M*DM +3(GM — M*G) — D) Uy
are strictly negative, or alternately strictly positive (just choose £D,+G), where

(M*DoM + j(GoM — M*Go) — B2Do)Up = 0
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and (75‘ Dy Ij’o = I,. Thus we have a descent direction if and only if we can make the
matrix
Us (M*DM +§(GM — M*G) — 8°D) Us

positive definite. Since the minimization is convex we always have a descent direction
unless we are at a (global) minimum. O

The characterization in theorem 5.6 is exactly the one we arrived at in (5.5), and
the rest of the analysis proceeds from that point exactly as in section 5.1. Thus we
find that the simple perturbation analysis we performed in section 5.1 did in fact give
us the generalized gradient descent directions, although the machinery of analytic

functions was not required.

5.3 When u Equals the Upper Bound

We are interested in examining the conditions under which the upper bound described
in the preceding sections has actually achieved p, and when this can be guaranteed.
It is apparent from theorem 5.4 that it is the set Vy which determines when we
are at the minimum of the upper bound function, and in fact this set is also closely
related to the question of equality with p. First of all we note that it is possible that
the “inf” in (4.34) may not be achieved, and so we cannot directly apply theorem
5.4 since Dy, Gy are not defined. In order to address these difficulties we will now
introduce some new definitions.

Suppose that we have 8 > 0 as a candidate solution of the minimization problem
(4.34) (note that we need only concern ourselves with the case that 8 > 0 since
otherwise we have p = upper bound = 0 immediately). Then we must be able to find

sequences D*, G* 8 with D* € Di,G* € G such that
XM*D*M + j(G*M — M*G*) — BiD") =0

and B | B. Then noting that we can always normalize each element of the sequence

such that 7(block diag (D*, G*)) = 1 we can always choose D*, G* bounded so that
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by passing to a subsequence we have D* — Dy and G* — Gy with Dy € ﬁ;c, G € Gk

and Dy > 0. Furthermore we have
ANM*DoM + j(GoM — M*Gy) — 2Dg) =0

with (say) r eigenvalues coalesced at zero. So now define Uy € C™*" as any matrix
satisfying
(M*DoM + j(GoM — M*Go) — 52Do)Up = 0

and normalized such that UjUy = I, and as before define Vj = MUy. Then we
define the block components of Up, V5 by (5.6) as before. Note that if the minimization
problem (4.34) is achieved then these definitions coincide with those previously given.

Now suppose we have n € C",|n| = 1 and ¢ = (q1,-.-,9m,) with ¢ € [-1 1].
Then we define the block diagonal matrix P7? € Zy as

PP = @i Y = B Amn A, i=1,..m,

(3

PM. = Kum*Kf—B*Bim*Bf, i=1,...,m.

P = (L - OO, =1, mo
PP = qi(Jmm*Af — Aam*JE), i=1,...,m, (5.32)

and we define <7y as the set of all such P™9, i.e.,

{7)) = {PM € Zj : Pin,q,pzy,q,pin,q asin (5.32),n € C", || = 1,

q=(q1,---,qm,), ¢ € [-11]}. (5.33)

Note that the set <7y is closely related to Vy, and in particular Vy C @y for any
Y. The reason we have introduced <7y is that this set determines whether or not p

equals its upper bound.
Theorem 5.7 Suppose we have M € C™*" together with Dy, Gy and > 0 as defined
in the preceding discussion. Then B = px(M) if and only if 0 € VA73;.

Proof: The style of proof follows that for the purely complex case (see [56]), by

proving the equivalence of the following four statements:
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1. 0 € Vy.

2. There exists n € C", |p| = 1 and @ € Qx such that QVon = pUo.
3. There exists z € C",|z] = 1 and @ € Qk such that QMz = Bz.
4. B = px(M).

1—2 By definition 0 € ﬁy implies that for some n € C",|p| = 1 and some ¢ =
(q17 .. 'anr)7Qi € [—1 1] we have

GImn*JF — BPAqn*AY = 0, i=1,...,m,

Kigm*K! — ﬂzan*Bztk = 0, :=1,...,m¢
n*(LfLi — B°CiCiyn = 0, i=1,...,mg
jgi(Jiqm*AY — Aiqn*JY) = 0, ¢=1,...,m,. (5.34)

The first equation implies that we have phases el such that g;el% Jin = BAm,
and substituting these into the fourth equation then yields £¢;Jin = BAin.
The second equation gives us phases ei% such that ei% K;n = BB;n. The third
equation gives |L;n| = [|Cin| which implies that there exist unitary matrices
Q; such that Q;L;n = BC;n. Stacking these relationships up in block diagonal

form gives statement 2.

2—1 The block components of the relationship QVyn = SUpn immediately give that
the equations in (5.34) hold and hence 0 € Vy.

2—3 Substituting for V5 = MUy in statement 2, and then defining z = Upn gives

statement 3.
3—2 Since 7(Q) < 1, QMz = Bz implies

1 1 L 1
|D¢Mz| > |QDEMz| = |DiQMz| = |D¢ z|. (5.35)
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Also it can be shown (see section 4.6 or [29]) that since z satisfies QMz = (z,
then
x*(GoM — M*Go)m =0

for any Go € Gx. Thus we have ‘
¥ (M*DoM + j(GoM — M*Go) — B*Do)z = |D§'M:c|2 - ﬁ2|D§m|2. (5.36)
So that applying (5.35) we obtain
z*(M*DoM + j(GoM — M*Gy) — B?Dyo)z > 0.

Since the matrix (M*DoM + j(GoM — M*Gy) — $%Dy) is negative semidefinite
this implies

z*(M*DoM + j(GoM — M*Go) — 52 Do)z = 0
and hence by Rayleigh Quotient theory z = Uyn for some n € C",|p| = 1.
Substituting for z = Upn and MUy = Vj gives statement 2.

3—4 Statement 3 implies 8 < pxc (M) but we already have f > px(M) and hence
B = px(M).

4—3 This follows immediately from theorem 4.1. O

Note that when then upper bound minimization problem (4.34) is achieved then by
theorem 5.4 we have 0 € Co (Vy) and hence, since Vy C Vy, we have 0 € Co (Vy).
We conjecture that in the general case the following holds, whether or not the “inf”

is achieved in (4.34).

Conjecture 5.1 Suppose we have M € C™*™ together with Dy, Gy and > 0 as de-
fined in the preceding discussion. Then oy = (% solves the upper bound minimization

problem

. . (M . gy < .
Depggegx [gnel%{a (M*DM + j(GM — M*G) — aD) < 0} (5.37)

A

if and only if 0 € Co (Vy).
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Note that whenever we can show (for some class of block structure K and/or some
class of matrices M) that 0 € Co (@y) implies 0 € VA73; then, if true, this conjecture
(with theorem 5.7) implies that p (for these classes) is identically equal to its upper
bound from theorem 4.5. It is hoped that this framework can be used to establish
when this equality can be guaranteed for the mixed case. This will be a subject of
further research.

The equivalence between p and its upper bound is of particular interest since the
upper bound is a convex optimization problem (see section 4.6), and hence can be
computed exactly. Note that although the lower bound from (4.1) is always equal to
p if one finds the global maximum, it is a nonconvex problem (and hence one cannot
guarantee to find the global maximum).

As an illustration of the use of this machinery, consider the following theorem,

which was originally presented in [29], and is proven here using the methods developed

above.
Theorem 5.8 ([29]) Suppose we have M € C"*"™  then provided the infimum in
(4.84) is achieved and the corresponding largest eigenvalue of

(M*D()M -l—j(GoM - M*Gg) - aDo)

is distinct, then pic(M) equals its upper bound from theorem 4.5.

Proof: Suppose 8 > 0 is the upper bound from theorem 4.5. If 3 = 0 we are done
immediately, so assume 8 > 0. Then since the upper bound is achieved theorem 5.4

implies 0 € Co (Vy). Since the corresponding largest eigenvalue of
(]W*DQJW -I-j(GoM — ]W*GU) — aDo)

is distinct the set Vy is a single point (see (5.12) and (5.13)) and so 0 € Vy. But
now Vy C Vy, so 0 € Vy and hence by theorem 5.7, 8 = px(M). a
Note that for this case we have that 0 € Vy. It can be shown, using methods

similar to the proof of theorem 5.7 (see theorem 6.3 later), that this means we can
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choose the worst case perturbation @ € Qi so that in fact @) € Ui. In other words
the worst case perturbation is on a vertex. This limits the applicability of the above
result, since we know that this is often not the case. The reason for this restriction
is the assumption that the infimum is achieved, and in fact we can extend this result

to remove this limitation.

Theorem 5.9 Suppose we have M € C"*" together with Do,Go and f > 0 as in

theorem 5.7. Then if the mazimum eigenvalue of
M*DoM —I—j(GoM — M*Go) — ﬂzDo

is distinct, B = px(M).

Proof: If 3 = 0 the result is trivial (since 3 is an upper bound for px(M)), so assume
B > 0. Choose z as the unit norm eigenvector, corresponding to the maximum

eigenvalue. Then it is easy to check, via proof by contradiction and lemma 5.2, that

we must have

*(M*DM — f*D)x > 0 forall D€ Dy
X (GM — M*G)z > 0 forall G € Gg.

But now by continuity, and the definition of Dy, Gx, this implies that in fact we have

*(M*DM — 3?D)z > 0 forall D€ Dx,D >0
¥ (GM — M*G)z = 0 forall G e Gk. (5.38)

Now suppose that (Mz); and z; represent one of the block components of (Mz) and
z. Further suppose that D; and G; represent the corresponding block for D and G.
We will consider separately the three types of block components. In each case we will
choose every other block of D and G to be identically zero.

Consider first a full complex block. Choose D; = I and (5.38) implies that
|(Mz)i] > B|z;]. Thus there exists a matrix A;, with 5(A;) < 1, such that A;(Mz); =

Bzx;.
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For a repeated complex scalar block we immediately have the above. Then choose
D; as a positive semidefinite matrix with a kernel spanned by (Mz);. Thus we have
Di(Mz); = 0, so that applying (5.38) we find that D;z; = 0. By construction of
D; this implies there exists a complex scalar &;, such that §;(Mz); = Bz;, and from
earlier we may take |&;| < 1.

For a repeated real scalar block we immediately have the above. Now choose
G; = I and (5.38) implies that z}(Mz); = (Mz)fz;. Substituting for the above this
implies 6|(Mz);|? = &;|(Mz);|? and so we may take 6; € R.

Applying the above relationships to each block component, and stacking them up,
we obtain A € BX such that

AMz = Bz.

Thus 8 < (M) and hence 8 = pi(M). O

Note that here we do not assume the infimum in the upper bound is achieved,
and we find that the worst case perturbation is not necessarily on a vertex. Of course
for the complex blocks we can always restrict our attention to the boundary of the
uncertainty set, but for the real uncertainties this is not the case. In fact there is a
strong association between the presence of internal reals, and the infimum not being

achieved in the upper bound, and this will surface again in chapters 6 and 8.

5.4 Special Cases

In this section we consider the application of the results developed above to several
special cases of interest. The rank one matrix case will receive a preliminary treatment

here, and will be treated in detail in chapter 8.

5.4.1 Some Simple Special Cases

Here we consider some elementary special cases for which computation of yx is easy.

These results are simple extensions of results for the complex p case and we include
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them here for completeness. First note that for Hermitian matrices we can trivially

obtain the following result.

Lemma 5.4 For any Hermitian matric M € C™*™ and any compatible block struc-
ture IC, then uxc(M) =o(M).

Proof: Noting that for a Hermitian matrix, pp(M) = p(M) = 7(M), the result
follows from (3.3) . O

Next we consider positive matrices, i. e., matrices whose elements are positive real
numbers. For these matrices there is a wealth of results from Perron-Frobenius theory
(see [33] for example), regarding eigenvalues and singular values, and these lead to

the following result for p.

Lemma 5.5 For any positive matriz M € R™™ and any compatible block structure

K with mg =0 (i. e., only scalar uncertainties), then pic(M) = p(M).

Proof: Since M is positive then from standard properties of positive matrices we have
that there is a real positive eigenvalue equal to p(M) (so that pr(M) = p(M)), and
furthermore the corresponding right eigenvector may be taken to have all its elements
real and positive (see theorem 8.2.11 in [33]). By duality it follows that we may take
the left eigenvector to be positive as well. Thus denoting A = p(M), we have positive
(hence non-zero) vectors z,y such that
Mz = Az

yI'M = /\yT.
Since the vectors z,y are positive we may simply define

Yi

di=,/[—= for i1=1,...,n
Z;

and D = diag(dy,...,d,) satisfies D € Dx and y = D?z. It is easy to check that the
vector w = Dz is positive (and hence non-zero) and satisfies
DMD'w = Jw
wIDMD™' = o7,
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Thus we obtain

(DMD YT (DM D™ )w = Nw.
Since the matrix (DM D~Y)T(DM D) is positive, the fact that w is positive implies
that it corresponds to the maximum eigenvalue (see corollary 8.1.30 in [33]), so that
p(DMDY)T(DMD1)) = A? and hence (DM D™) = X\ = p(M) = pr(M). By
lemma 3.3 this implies that p(M) = ux(M). O
These two cases are not of too much interest in themselves since they are rarely
encountered in practice. However they may be of some interest in providing crude
bounds for more general problems. One example of such an application for the com-
plex u problem is provided in [68] where the optimal scalings for the positive matrix
case are used to approximate the optimal scalings for a more general y problem.

Now consider the class of matrices that have the structure

0 M2
M= (5.39)
My 0O

with Myo € C™*"2 My € C"2*™ and ny+ngo = n. Suppose we have block structures

Xy, C C™M>™ and X, C C"2*"2, then the block structure X defined as
X = {A = block diag (A1, Az) : A1 € Xy, Az € X, } (5.40)

is compatible with M.

Lemma 5.6 For p problems as above and any 0 < k € R,
o | 0 Mg - 1
2 hd
MMy o0 F
if and only if

pR(Azj\fmAlMlz) < forall A; € BXK;I,Az € BX/Cz.

ol
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Proof: The proof of this lemma is almost identical to the proof for the complex case

given in table 11.4-1 of [47], namely
o | 0 M
Py <
My O
0 M
— Ki k <1
Moy 0

o AMip
— det k #0  forall Ay€BXx,As € BXy,

o

—AoMsy 1
e det (I — 22MudMa) £ 0 forall Ay € BXx,,As € By,
—  pr(AaManA1Mis) < % for all A; € BX),, A2 € BA),. O

Combining this lemma with the special cases listed in properties (d)-(f) in section
3.1, we obtain the results listed in table 5.1. For comparison the complex p version

of these results is given in table 11.4-1 of [47].

Case Block Structure Constraints ”126 ( 0 M )
My 0
1 Xy, = CMX™ Xy, = C"2X™2 T(Mi2)Ta(Maq)
2 Xic, = {5cjn1 10°€ C},mrz =0 NICQ(M21M12)
3 my, =0, X, = {6y, : 6° € C} pic, (M2 May)
4 | X, = {6°In; 1 6° € C}, Xy, = {6°Iny : 6 € C} | p(M1sMa1) = p(Ma21 My2)
5 X, = {6"I,, : 6" € R} tic, (Ma1 M)
6 Xy, = {671, : 6" € R} txcy (M2 May)
T | Xy, ={6"1y, : 6" € R}, Xy, = {671, : 6" € R} | pr(M12M21) = pp(Ma1M12)

Table 5.1: Simple special cases of mixed p
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5.4.2 The Rank One Case and “Kharitonov-Type” Results

Here we present a preliminary examination of the the rank one mixed p problem. This
will be studied in detail in chapter 8, where it will be seen that this rank one case
corresponds to the so called “affine parameter variation” problem for a polynomial
with perturbed coefficients which has also been examined in detail in the literature,
and for which several celebrated “Kharitonov-type” results have been proven (see [11]
for example).

The mixed p problem when M is rank one is studied in [17]. The authors develop
an analytic expression for the solution to this problem, which is easily computable,
having sublinear growth in required computation with the problem size. The authors
then examine several “Kharitonov-type” results from the literature, and they note
that all these problems can be treated as special cases of “rank one u problems” and
are thus “relatively easy to solve.” Even the need to check (a combinatoric number
of) edges is shown to be unnecessary.

This rank one case can also be addressed within the framework developed here
for examining the equivalence between u and its upper bound. First we need a

preliminary lemma.

Lemma 5.7 Suppose we have vectors u,b € C™. Let M € C™ ™ be given by
M = w* + vu*. (5.41)

Then M cannot have a non-zero repeated eigenvalue.

Proof: In fact we will prove something stronger than the stated result. Note that
M is a Hermitian matrix of rank at most two. Thus M has at most two non-zero
eigenvalues, and all eigenvalues are real. If M has less than two non-zero eigenvalues
then we are done immediately so assume that M has two non-zero eigenvalues A;
and Ay. We will show that these eigenvalues are of opposite sign. First note that

by projecting into the eigenspace of A;, A2 we may without loss of generality assume
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u,v € C2. Then we have

vl - e[

= det ([uv])(det ([vu]))* = —det ([uv])(det ([uv]))* = —|det ([uv]) 12 < o.
Thus det (uv* + vu*) = AtAg < 0. O

The following theorem gives a partial answer to the rank one mixed p problem.

Theorem 5.10 Suppose we have a rank one matrix M € C™ ™, then provided the

infimum in (4.84) is achieved, pic(M) equals its upper bound from theorem 4.5.

Proof: Suppose # > 0 is the upper bound from theorem 4.5. If § = 0 we are done
immediately, so assume 8 > 0. Suppose D, G are the minimizing arguments of the
upper bound problem (4.34). Then we claim that the maximum eigenvalue (which is
zero) of the matrix

M*DM +j(GM — M*G) — 8D (5.42)
is distinct. To see this first note that there is a one-to-one correspondence between

the zero eigenvalues of (5.42) and the zero eigenvalues of
MpMp +3(GMp — MHG) — %I, (5.43)

where Mp = DMD~% and G = D"3GD"2 (see the substitutions in (5.16) and
(5.17)). Since f > 0 we are done by the eigenvalue shift property if the matrix

MpMp +j(G'MD — MBG’)

cannot have a non-zero repeated eigenvalue. But now M rank one implies that Mp
is rank one and so we have vectors z,y € C"*" such that Mp = zy*. Substituting

for this we obtain

MHMp +j(GMp — MHG) = ya*zy* + j(Gzy* — yz*G).
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Let v = z*z and v = Gz and we obtain

yatzy* + j(Gey® —ya*G) = ~yyy* +juy* —jyv* =

y (%y* —jv*) + (—gy +J’v) yto= y2t oyt

where z = 2y + ju. Hence by lemma 5.7 the claim is proven. The result now follows

from theorem 5.8. O

In fact theorem 5.10 extends to the general case (where the infimum may not
be achieved). However the proof is fairly involved and is deferred to chapter 8 (see
also [78]). This theorem (with its extension) says that for such problems y equals its
upper bound and is hence equivalent to a convex problem. This reinforces the results
of [17] and offers some insight into why the problem becomes so much more difficult
when we move away from the “affine parameter variation” case to the “multilinear”
or “polynomial” cases (see [70]). These correspond to p problems where M is not
necessarily rank one, and hence may no longer be equal to the upper bound and so
may no longer be equivalent to a convex problem (note that there exist rank two
matrices for which p does not equal its upper bound).

These results also underline why there are no practical algorithms based on “edge-
type” theorems, as the results appear to be relevant only to a very special problem.
Furthermore, even in the very special “afline parameter case” there are a combinatoric

number of edges to check.

5.4.3 Real Matrices

As we noted earlier it is always possible to obtain an upper bound for a mixed pu
problem simply by treating the real parameters as complex, and using the standard
complex p upper bound (see [55] for example). However the upper bound from
theorem 4.5 is frequently much better than the complex u upper bound because of
the extra degrees of freedom we have in choosing the G scaling matrix (note that if we

restrict ourselves to G = 0, we recover the complex y upper bound). The G scaling
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matrix exploits the phase information we have about the real parameters in order to
reduce the bound. However it is not always possible to improve upon the complex u

upper bound via the G scaling matrix as is illustrated by the following results.

Theorem 5.11 Given a matric M € R™ ™ and any block structure K define the

following subsets of Dy and G
Drx ={D € D : D € R*™*"} (5.44)
Gri = {G € Gk : jJG € R"™*"}. (5.45)

Then we have that

i i : < = 1 i : < .
peritheq, [2g(e 2 0EDO SO =, inf o [migler: (4,,6) <o)
(5.46)
Proof: First define the quantities
= i i : < .
o DEDicn,gegx I:glelﬂl%{a’ ®,(M,D,G) < 0}] (5.47)
Y= i i : < . .
pepheane (7115 9, D,6) <0} (545)

Then clearly we have that a, < &. Now suppose we have D € Dy.,G € G and o € R
such that
M*DM +;(GM — M*G) — aD < 0.
Split D and G into their real and imaginary parts as D = Dr + jD;, G = Gr + Gy
with Dg, D7, Gr,G1 € R™ ™. Then it is easy to show that Dg, G g are real symmetric,
and Dy, G are real skew symmetric. Now we have that
M*DM + j(GM — M*G) —aD <0

— *(M*DM + j(GM — M*G) —aD)z <0 VzeC"

— 2T (MTDM +j(GM — MTG) —aD)z <0 Vz € R
Now we note that (MTDM +j(GM — MTG) — aD) = S + jW where

S =MTDpM +j((GG1)M — MT(3G1)) — aDg
W=MTD;M+ GrM — MTGg — aDj.
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It is easy to check that S is real symmetric, and W is real skew symmetric, so that

2T (S +jW)z = 2T Sz Vz € R*. Thus we have

T (MTDM +3(GM — MTG) — aD)z <0 Vz € R
—s 2T(MTDgrM +j((GG1)M — MT(§G1)) — aDR)x <0 Vz € R"
—  (M*DrM +j((43Gr)M — M*(jG1)) — aDr) < 0.

Similarly we can show that D > 0 — Dpgr > 0 and so Dp € Dry,(jG1) € Gric

which gives & < oy and hence o, = &. O

Basically theorem 5.11 says that when computing the upper bound for real ma-
trices we may restrict our attention to purely real D € Dx (i.e., D € D is real
symmetric) and purely imaginary G € Gx (i.e., G € Gx is of the form G = j@
where G is real skew symmetric). As a consequence of this we immediately obtain

the following theorem.
Theorem 5.12 Suppose we have a real matriz M € R™™ and a block structure K
with k; =1 fori=1,...,m; (i.e., none of the real scalars are repeated), then

inf [min{a:@a(M,D,G) go}] — inf [min{a:q)a(M,D,On) 30}]
DeDx,GeGk LaeR DeDpri LaER
(5.49)

where Dy is defined as in theorem 5.11.

Proof: Apply theorem 5.11 to conclude we may restrict our attention in the left-hand
side of (5.49) to D € Dy, G € Grx. Now note that for this block structure (none
of the real scalars are repeated) then G is diagonal (and Hermitian) and hence pure

real. Thus we have Grx = {0,}. O

Note that theorem 5.12 says that for u problems involving real matrices where none
of the real scalars are repeated then the choice G = 0, in the upper bound is optimal,
or in other words the mixed u upper bound equals the complex u upper bound. This
is an important class of problems. For instance one encounters u problems where

M 1is real when it is constructed from State Space ‘A, B, C, D’ matrices. Note that
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theorem 5.12 does not apply if any of the real parameters are repeated, and in fact it
is easy to construct examples involving real matrices with repeated real parameters
where G = 0, is not optimal.

It is interesting to note that by further restricting this class to purely real p

problems we can obtain a “vertex result.”

Lemma 5.8 ([25]) Suppose we have a real matriz M € R™*™ and a block structure
K with my = n and me = mg = 0. Further suppose that k; =1 for: =1,...,m,
(i. e., none of the real scalars are repeated), then it suffices to consider perturbations

at the vertices of the allowed perturbation set.

Proof: Follows immediately from the fact that det (I, — AM) for A € X is a real-

valued multilinear function of the ] ’s. a

The vertices of a problem set are those points where every parameter is at an extremal
value. For these problems then we can compute u exactly by checking a finite number
of points. Note however that the required computation grows exponentially with
problem size, so that this result is only applicable to small problems. This should not
surprise us of course, since we know from section 3.3 that even this restricted class of

the mixed u problem is NP hard.

5.5 A Characterization of u Values

We conclude this chapter by considering an interesting connection between the mixed
p upper and lower bounds, namely the p values of a matrix M (with respect to
some block structure K). Roughly speaking the y values are those values of 8 in
@Mz = Bz (for Q € Qx) which correspond to local maxima of the real eigenvalues
of QM. Hence they are lower bounds for ux (M), with the largest of them in fact
being equal to px(M). Note that these values are associated with the existence
of a decomposition as in (4.16). In this section we show that these values are also

associated with stationary points of eigenvalues of the upper bound function. In order
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to state this more precisely we need some additional definitions. Suppose we have

B > 0 and matrices Dy € Dx, Gy € G with Dy > 0 such that for some k&
M (M*DoM +3(GoM — M*Go) — B2Dg) = 0 (5.50)

with (say) r eigenvalues coalesced at zero. So now define Uy € C*"*" as any matrix
satisfying

(M*DoM + j(GoM — M*Gyo) — B2Do)Up = 0 (5.51)
and normalized such that UsUy = I, and as before define Vj = MUy. Then we define
the block components of Uy, V by (5.6) as before, and for any n € C",|n| = 1 and
q=1(q1,---,9m,) with ¢; € [-1 1] we define the block diagonal matrix P"? € Zx by

(5.32) as before. Now we define the set @y,k as the set of all such matrices, i.e.,

@y,k ={P™" € Zx: Pz-"’q,py’q,ﬁi"’q asin (5.32),n € C",|n| =1,

q=(q1,---,qm,), ¢ € [-11]}. (5.52)

The set ﬁy,k plays the same role as @y defined earlier except that now we are
requiring that the k** eigenvalue of (M* Do M +j(GoM — M*Go) — %2 Dy) is zero, and
not necessarily the largest eigenvalue. The precise characterization of the p values of

a matrix M is stated in the following two theorems:

Theorem 5.13 Suppose we have matrices M € C" ", Q € Qx, D € Dx with
D? € D and 0; = £ fori € J(Q) satisfying a (lower bound) decomposition as in
theorem 4.3, i. e., we have a non-zero vector x € C™ and a positive real scalar 3 such

that

QDMD™Y(Dz) = BDz
(z*D*)QD*M(D*)™' = Baz*D*.

Then there exist matrices D € YB}C, Ge Gx with D > 0 such that for some k

M(M*DM +§(GM — M*G) — g2D) =0
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and 0 € @y,k (with Y = (M, D, &, 8)). Furthermore if |6;] < Thorale=1,...,m,
then D > 0.

Proof: First we split the matrix D as D= D?=Dp + jD; where

Dp = block diag (cosfy D1, ..., c080m, Dy, Dimyi1, - -y Dy +mes

70 (PP M

~

Dy = block diag (sinfy D1, . .., $infm, Dy, 0k, 415 Okn)-

Note that Dy = Dj, and Dp = D%} with Dp > 0. Now define D = Dpg and
G = —BD;1Q, so that D € Dk with D >0 and G € Gx. Note also that if [6;] < 7 for

allt=1,...,m, then D > 0. From the lower bound decomposition we immediately

obtain

M*Q*D*z = fD%z.

Thus substituting for z = %QM.’I) and D? = Dy + jDr we obtain

(M*Q*QDrM +j(M*Q*QDiM — 3°Dy) — B°Dg)z = 0.
Note that Q*QDr = Dg = D and furthermore

(M*Q*QDiM — B*°Dp)z = (BM*Q*D; — fD1QM)x
= (GM — M*Q)z
so that we have
(M*DM +3(GM — M*G) — 82D)z =0 (5.53)

and hence \p(M*DM +j(GM — M*G) — f2D) = 0 for some k. Now equation (5.53),
together with Q Mz = Bz, implies that 0 € ﬁy,k (see proof of theorem 5.7). O

Theorem 5.14 Suppose we have matrices M € C"** D € Dy, G € Gx with D >0

and a positive real scalar B such that for some k

M(M*DM + j(GM — M*G) — D) =0
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and 0 € ﬁy,k (with Y = (M,D,é,ﬁ)) Then under some non-degeneracy assump-
tions (stated in the proof) we have matrices Q) € Qx, D € Dy with D? € Dy and
0; = £5 fori € j(Q) satisfying a (lower bound) decomposition as in theorem 4.8,
i.e., we have a non-zero vector x € C" such that
QDMD™Y(Dz) = BDz
(z*D*)QD*M(D*)~! = pz*D*.
Proof: Since 0 € ﬁy,k we have a matrix () € Qx and a non zero vector z € C" such
that
QMz = Pz

(M*DM +3(GM — M*G) — 82Dz = 0 (5.54)

(see proof of theorem 5.7). Now if we partition the vectors z and Mz compatibly

with the block structure as in (4.7) then it is easy to show from the above that for

1=1,...,m,

lgil <1 —  |Di(Ma)i| = |Dizi| =0 (5.55)
just note that 7(Q)) < 1 and use similar arguments to theorem 5.7). This implies
g p

that
Q*QDMz = DM=. (5.56)

Now we make the first non-degeneracy assumption that |¢;| # 0 for¢ =1,...,m, and

we define Dg = D and D; = —%—CA}'Q"I. Then from (5.54) and (5.56) we obtain
(M*Q*DQM + j(GM — M*G) — 2Dz = 0.
Substituting for Q Mz = Sz yields upon rearrangement
M*Q*(Dgr +jDr)z = B(Dr +jDr)z. (5.57)

Now we consider the block components (see (4.7)) of the vector (Dg + jDr)z. For

¢t =1,...,m,; define the vectors

v = (Dgi + Dr;)z;.
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Then we have that

Vi @i = o Dpwi + jai Dyz;.

Since by construction Dg = D%, Dr = D} and Dg > 0 this implies
oo — o dWi
Vi Ti = rie’ (5.58)

for real scalars r; > 0 and ¥; € [-5 ]. Now we make the second non-degeneracy
assumption that for s = 1,...,m, we have r; # 0. Then the relations (5.58) imply

the existence of matrices D; € C**ki with D; = D;‘ and D; > 0 such that (see lemma
4.3)

i = (D +iDr;)zi = e Dz (5.59)
and furthermore from (5.55) it can be shown that 1; = +% for i € J(Q). Now define

the matrix D as

D = block diag (e“j'/’lf)l, oo, eme D ﬁm,.ﬂ, ey f)mr+mc,

Now we make the final non-degeneracy assumption that D is non-singular (which
amounts to assuming that the appropriate block components of D are positive def-

inite rather than just positive semidefinite). Then we have that D € Dx and by

construction

(Dg +jD1)z = Da. (5.60)
So that substituting (5.60) into (5.57) we obtain
M*Q*Dz = 8Dx. (5.61)

Finally we define D as the unique matrix D € Dy such that D? = D ¢ Drc. (Note
that we have 0; = &7 for i € J(Q).) Then by construction this satisfies

QMz = pfz
M*Q*D*:z = BD%z.
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Simple manipulations of these equations yield the required (lower bound) decompo-

sition. O

These theorems provide us with a direct theoretical link between the upper and
lower bounds for . The proofs provide the formulae to construct D, @ for the upper
bound function from @, D for the lower bound decomposition, and vice versa. Thus
given a stationary point for one function we can find a stationary point for the other,
and hence we can generate guesses for the optimal scaling matrices for one bound
from the optimal scaling matrices for the other. This connection was established for
the complex case in [59], and is closely related to the “(Major) Principal Direction
Alignment” ideas (also for the complex czise) in [18,38]. It is important to note here
that whilst the matrix (M*DM + j(GM — M*G) — 42D) has a zero eigenvalue, it is
not necessarily the largest eigenvalue, and hence § is not necessarily an upper bound
for px(M). In fact each such 3 is a lower bound for u, with the largest of them equal

to u.
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Chapter 6

Practical Computation of the

Bounds

In this chapter we examine the computational aspects of the upper and lower bounds
for the mixed g problem from chapter 4 (see also [29,81]). Important issues to be
considered here are the efficient computation of the bounds and the degree to which
they approximate u. In chapter 7 we will also consider techniques for refining the
bounds for a better approximation (at an additional computational cost).

Here we develop a practical algorithm to compute the upper and lower bounds.
This has been implemented as a Matlab function (m-file) “rmu,” and is currently
available in a test version in conjunction with the p-Tools toolbox [7]. The theo-
retical bounds described in chapter 4 require some reformulation before they can be
implemented in an efficient manner, and this is described in sections 6.1 and 6.2, to-
gether with details of the algorithm construction. The bounds involve solving certain
optimization problems, and it is shown that the specific structure of these problems
can be exploited so as to speed up the computation considerably. Some results from
our extensive numerical experience with the algorithm, regarding both the quality
of the bounds and the computation time, are presented in section 6.4. These re-

sults are very encouraging, and in particular it appears that one can handle medium
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size problems (less than 100 perturbations) with reasonable computational require-
ments. Note that this could involve optimizing several thousand parameters, so that a

straightforward application of brute force optimization techniques would be unwieldy.

6.1 The Lower Bound Algorithm

First we note that the lower bound from section 4.5 takes the form of a power itera-
tion (4.28,4.29), and each iteration of the scheme is very cheap, requiring only such
operations as matrix-vector multiplications and vector inner products. This gives rise
to a lower bound algorithm which is much faster than would be obtained by directly
solving (4.1) via standard optimization techniques (although this maximization is
carried out implicitly by the power iteration). However there is another motivation,
besides speed, for this power iteration approach. As we noted earlier the maximiza-
tion defining p in lemma 3.4 is nonconvex. Of course this means that we will not
be able to guarantee to find the global maximum, but in order to find as good a
bound as possible we would like to avoid local methods, such as gradient search. The
power iteration approach developed in chapter 4 is not based on moving towards the
nearest local maximum, but rather attempting to find the largest point satisfying the
stationarity conditions of a local maximum. In this way we attempt to find a global
maximum, rather than just a local one.

In this section we will discuss some of the issues that are involved in developing
a practical implementation of the power algorithm. First we note that for the purely
complex case, m, = 0, this algorithm reduces to that of Packard [59], and hence many
of the comments made there also apply here. In particular we note that there is a

potential problem with the algorithm if any of the following occur:
e Mby =0 (or M*z;41 =0) —  apy1 (or wgyq) is not well defined.
° |a,,|=0 —  Gp41 and/or @pqq is not well defined.

o |a3 wy| =0 — 2y, and/or by, is not well defined.
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o |a3,| =0 or |ws,|=0 — 23, and/or b3, is not well defined.

If any of these occur then one possibility is to simply restart the algorithm from a
new point (i.e., a new by, wy and &z). Of course it is possible (though not generic)
that one of the above conditions will recur. For this reason the above strategy is not
adopted in our code. In fact if one examines the above conditions then it can be
seen that is still possible to define a sensible iteration even if some of the above occur
(some terms may be arbitrary and they can simply be assigned some nominal values
or left at their current values). In this way it is possible to protect the code from
“divide by zero” errors when any of the above occur, and this has been implemented
in the “rmu” code.

Consider the following two special cases of the complex u problem:
o my=0,m:=0,mg=1 — px(M)=35(M).
o my=0,m;=1mc=0 — pux(M)=p(M).

Then, as was pointed out in [59], the povvér iteration for these cases reduces to
iteration schemes to find G(M) and p(M) respectively (i.e., (M) in both cases).
For these cases then we have that the iteration is guaranteed to converge and find
pxc(M). Unfortunately this is not the case in general, and in fact we do not even
have guaranteed convergence. The convergence properties and performance of the
algorithm will be discussed in section 6.4, and in chapter 7 we will consider some
more sophisticated schemes which can in principle guarantee convergence, but for
now we consider what can be done if the algorithm does indeed fail to converge.

Suppose we have a matrix M € C™*" partitioned as

My M
M- 11 Mg (6.1)
Moy Moo
with M3 € C*1*"1 Moy € C"2%™2 and ny+ny = n. Suppose we have block structures

Ak, and Xy, compatible with Mj; and May respectively, then the block structure
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Xfc defined as
X = {A = block diag (A1, A2) : A1 € X, Az € X, } (6.2)

is compatible with M. Further assume we have arranged the problem so that X’ K, con-
sists of purely real uncertainties (X, C R™*"1) and X), consists of purely complex

uncertainties (Xj, C C"2*"2). Then we have the following lemma.

Lemma 6.1 Suppose we have a matric M € C"™ " as above, a perturbation A €
X, 7(A) < 1 as above, and a real scalar oo > 0. If det (I, — Mléél) = 0 define

B = «, else define B as

A MiA
5= p(Az (M22+M21?1(In1 _Mu 1)‘1M12>). (6.3)

o
Then min(e, 8) < pxc(M).

Proof: If we had det (I, — Mlé—él) = 0 then A = block diag (%1, On,) sets det (I, —
AM) = 0 so that min(a, ) = a < px(M). Otherwise define A as the maximum
eigenvalue from (6.3) so that A = Bel? for some € [0 2x]. Then if 8 = 0 clearly
min(a, B) < px(M), and otherwise A = block diag (%1, e“je%z) sets det (I,—AM) =
0 so that min(a, 8) < px(M). O

This lemma gives us a means to compute a lower bound for x given candidate
guesses for the perturbation and the lower bound, provided we are not in the pure
real case, m¢ = m¢ = 0 (whence our bound is « if det (I, — Mlgv—A—l) = 0 and zero
otherwise). This case is discussed in more detail in section 6.4. It turns out that one
can always obtain candidate guesses for the perturbation and the lower bound from
the current values of the b, a, z, w vectors even if the scheme has not converged. Thus
one can implement the power algorithm so that it always returns a lower bound for
t, regardless of convergence, and the “rmu” code is implemented in this fashion. Of
course it is still desirable that the power iteration converges since in that case one

has more faith that the lower bound obtained is a good one (i.e., close to ).
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Finally we consider the problem of computing initial guesses to start the iteration.
One possibility would be to use the results from chapter 5, where the concept of “u
values” is proven for the mixed case (see also [80]). One could compute the mixed p
upper bound and then use one of the maximizing eigenvectors to construct the initial
guess for the power iteration (since this procedure produces exactly the right initial
guess when the maximizing eigenvector is distinct). We will see however that the
mixed p upper bound is usually more expensive to compute than the lower bound,
and so it is certainly too expensive to use as a scheme for computing initial guesses
for the lower bound, unless one wishes to compute both bounds anyway. However it
turns out that if one wishes to compute both bounds it is advantageous to compute
the lower bound first (see [83] and section 6.2), and so we do not use this approach
to compute the initial guesses for the lower bound. Note however that for numerical
reasons it is desirable to “balance” the matrix before starting the lower bound power
iteration, and this is the first step in Packard’s scheme for computing the initial
guesses by and wy for the complex p power algorithm [59]. It would also seem to be a
cheap way to generate reasonable first guesses here. The basic outline of the scheme
is:

Algorithm 6.1 (Lower Bound Initial Guess)

1. Compute a D € Dy which approzimately solves inf pep, 5(DMD™1). This can
be done using a generalization of Osborne’s method (see [83]).

2. Compute M = DMD=. The matriz M is now “balanced.”

8. Compute by as a right singular vector of M associated with 'E(]Vl), and set

w1 = by.

Note that mixed u is invariant to the transformation in step 2, (i.e., ux(M) =
puic(M)) so that this step is valid. Furthermore the transformation in step 2 is highly
recommended since it not only aids in the initial guess computation, but numeri-

cally preconditions the matrix (see [53]), and can greatly improve the power iteration



104

performance. Having obtained first guesses for these vectors the power iteration is
started on M using by and wq, with the first guess for &g simply chosen as |as| = ]%If
with sgn(éz) chosen so as to minimize |b;, — dga1,|. Finally we note that the trans-
formation to M is a precursor to the upper bound computation as well (see section
6.2, and also [83]), so that this initial guess computation is particularly cheap when

one wants to compute both upper and lower bounds (as is usually the case).

6.2 The Upper Bound Algorithm

Since the upper bound is a convex problem there are a whole array of numerical tech-
niques one could use to tackle this minimization. Note however that for even medium
size problems (n < 100) then depending on the block structure X, the optimiza;tion‘
over the D and G scaling matrices could involve optimizing several thousand parame-
ters. Therefore, in order to tackle such problems with reasonable computation times,
a straightforward application of brute force optimization techniques will not suffice.
Instead we will exploit the specific structure of this problem, so as to develop an
efficient algorithm, which can handle problems of this size.

The algorithm implementation relies heavily on the fact that the upper bound

may be reformulated several different ways, as stated in the following theorem.

Theorem 6.1 Suppose we have a matrir M € C™" and a real scalar B > 0. Then

the following statements are equivalent:

I. There exist matrices D; € Dy, Gy € Gx such that:
X (M*DiM +§(GiM — M*Gy) - §2D;) < 0. (6.4)
II. There exist matrices D;; € Dy, Gy € G (or Dir € D, Gyt € G) such that:
X (Mp,, Mpy, +3(GrMp,;, — Mp,,Gur)) < 7 (6.5)

where we denote Mp = DM D!,
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III. There exist matrices Dy € Dy, Grr € Gx (or Dirr € Di,Grr € G) such

that:
v ( (44—%& ~ ij> (In + G?H)‘%) <1 (6.6)
IV. There exist matrices Dyy € Dy, Grv € Gx (or Drv € Dy, Grv € Gx) such that:
[ ((In +G%)7i (% —jGIv) (In + G%)‘*) <. (6.7)

Proof: First note that for any of the forms in (6.5), (6.6), (6.7), we may convert
between D € Dy, G € Gic and D € Dy, G e Gy in the following way. Given D €
Dy, G € Gk perform an eigenvalue decomposition on G € G to give G = UAU* (with
U unitary, A diagonal and real). It is then easy to check that D = U*D € Dx and
G = A € G work. To go the other way, take D € Dy, G € Gx and perform a polar
decomposition on D € Dy to give D=vp (with V unitary, P Hermitian positive
definite). It is then easy to check that D = P € Dx and G = V*GV € Gx work. Thus
it suffices to prove the equivalence between I, II, 111, IV for D;, D;;, D;1r, Div € Dx
and Gy, Grr, G, Gry € Gx.

We will show that I — II — III — IV — 1. Suppose I is true, then we have
D € Dy, G € Gx satisfying

M*DiM +j(G/M — M*G;) — 8%D; < 0.

-1
Multiply by D; * on both sides (which will not affect the definiteness of the expression)

to get
-1 -1 1 -1 -1 -1
D; *M*DMD; 2 +j(D;2G:MD;? — D; 2M*G,D; ) — A1, <0.

1 _1 _1
Thus defining Dy; = Df € Dy, Giy = D; Gy D; ? € Gi and rearranging we obtain
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expression II. Now note that we have

M}, Mp,; +3(GiMp,, — M}, Grr) < B,
N 72 (Mb, My, +3(GrMp,, — Mp, Grr)) < I
- () (Be9)-% < u
: (44-i51) (5 -5%) < o
= (M) e ) (i) e B d) <
- () e ) <

so that defining Dy = Dy € Di and Gy = g’# € Gk we have expression III. Now
define D = (In + G%H)%DIH € Dy and we have

My _1
[ ((In + G?n)_% (—EQ —‘.]G1n> (In + G%u ‘11) <L

Perform an polar decomposition on D to give D=vVP (with V unitary and P Hermi-
tian positive definite). Then it is easy to see that defining D;y = P € Dx and Gy =
V*GrV € Gk we have expression IV. Finally we note that by essentially reversing the
above steps it is straightforward to verify that given D;v € D, Grv € Gi satisfying
expression IV, the matrices D; € Dy, G; € G given by Dy = Dyy (I, + G%V)_%DW
and G; = 8D Grv(In + G%V)‘%DIV satisfy expression I. O

Remarks: The equivalence between I, I1, I11 for D;, D;;, Di; € Dy and Gr,Grr, G €
Gx was shown in [29]. Note from the proof that we can easily obtain the formulae
to convert between the various forms (there are several more equivalent forms, slight

variations on the above, which can also easily be obtained).

These different formulations, whilst mathematically equivalent, have quite differ-
ent numerical properties. For the purposes of developing an upper bound algorithm,
we will be concerned mostly with the formulations in (6.4) and (6.7). It follows from

(6.7) that one may develop an alternative form of the mixed px upper bound.
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Theorem 6.2 Suppose we have a matriz M € C™*™ and a compatible block structure
K. Then we have that
A bMDt A
prc(M) < inf |inf {[5’ T ((I—}- Gz)_% (—-——— —jG) I+ Gz)_%> < 1}
DG—D_K; BER IB
Gegx 0
(6.8)

Furthermore this upper bound is equivalent to the one in (4.39).

Proof: Compute B4 as the solution to the minimization problem in (6.8). Then we
have sequences Dr e Dy, GF e G, Br > 0 such that
A (D)t :
v ((I + (G (—[EL —ij) (14 (Gk>2>-%) <1
k
and B | B« with B, > 0. Thus by theorem 6.1 we can find sequences D* € Dy, G* €

Gx such that
M*D*M + j(G*M — M*G*) — BiD* < 0.

Since B | B+ > 0 we have that the upper bound in (4.39) is at most 3., and hence
pc(M) < B

Now suppose we compute B as the solution to the mixed g upper bound in (4.39).

Then we can find sequences D7 € Dy, G € G, 5; > 0 such that

M*D'M +j(G'M — M*G?) — BiD’ <0
with 55 | B and 3 > 0. Defining the sequence [}j = B; + % then we have that

M*D'M +j(GM — M*G?) — B2Di < 0
with Bj l ﬂA > 0 and Bj > 0. Thus by theorem 6.1 we can find sequences Di €
Dy, G € Gx such that

v ((I +(G9)2) (fjjf‘fééj)_l _j(;f) (I+ (éj)z)—%> <1
J

Since Bj l B with [3]- > 0 we have that the bound from (6.8) is at most A. O
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Each of these two different formulations of the upper bound problem has its own
advantages. The problem statement from (4.39) has the advantages that it is linear
in the matrices D and G, and is convex (and hence one will not have problems
associated with local minima). The problem statement from (6.8) has the advantages
that one is trying to minimize the norm of a given matrix (which offers some numerical
advantages), that D enters the problem exactly as in the standard complex y upper
bound, that G enters the problem in a balanced symmetric fashion, and that G is
now a real diagonal matrix.

The upper bound algorithm implemented here uses a mixture of the formulations
in theorem 6.1. Initially we tackle the problem in the form of (6.8). Here we can use
some methods from the complex p bounds, together with various other techniques,
to obtain a fairly good estimates of D,G and B. These are then converted into an
initial guess for the problem in the form of (4.39) and the algorithm then proceeds to

improve on these. More specifically the algorithm proceeds as follows:

Algorithm 6.2 (Mixed p Upper and Lower Bounds)

1. First we balance the matriz. This proceeds by computing the scaling matriz D
to solve inff)eﬁ;c |DMDY|p using a generalization of Osborne’s method [53]
(as in the standard complex p upper bound). The matriz M = DMD™1 is then

balanced, and this procedure generates our initial guess for D € Dy.

2. The lower bound is now computed using the algorithm from section 4.5, applied

to the balanced matriz M.

3. Now we have a lower bound, and E(M) serves as a first guess for the upper
bound. This is then improved upon in the following way. For any fized level of
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