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Abstract

Since the first communication systems were developed, the scientific community has been

witnessing attempts to increase the amount of information that can be transmitted. In the

last 10–15 years there has been a tremendous amount of research towards developing multi-

antenna systems which would hopefully provide high-data-rate transmissions. However,

increasing the overall amount of transmitted information increases the complexity of the

necessary signal processing. A large portion of this thesis deals with several important issues

in signal processing of multi-antenna systems. In almost every particular case the goal is

to develop a technique/algorithm so that the overall complexity of the signal processing is

significantly decreased.

In the first part of the thesis a very important problem of signal detection in MIMO

(multiple-input multiple-output) systems is considered. The problem is analyzed in two

different scenarios: when the transmission medium (channel) 1) is known and 2) is unknown

at the receiver. The former case is often called coherent and the later non-coherent MIMO

detection. Both cases usually amount to solving highly complex NP-hard combinatorial

optimization problems.

For the coherent case we develop a significant improvement of the traditional sphere

decoder algorithm commonly used for this type of detection. An interesting connection

between the new improved algorithm and the H-infinity estimation theory is established,

and the performance improvement over the standard sphere decoder is demonstrated. For

the non-coherent case we develop a counterpart to the standard sphere decoder, the so-

called out-sphere decoder. The complexity of the algorithm is viewed as a random variable;

its expected value is analyzed and shown to be significantly smaller than the one of the

overall exhaustive search. In the non-coherent case, in addition to the complexity analysis

of the exact out-sphere decoder, we analyze the performance loss of a suboptimal technique.

We show that only a moderate loss of a few dbs in power required at the transmitter will
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occur if a polynomial algorithm based on the semi-definite relaxation is used in place of any

exact technique (which of course is not known to be polynomial).

In the second part of the thesis we consider a few problems that arise in wireless broad-

cast channels. Namely, we consider the problem of the information symbol vector design

at the transmitter. A polynomial linear precoding technique is constructed. It enables

achieving data rates very close to the ones achieved with DPC (dirty paper coding) tech-

nique. Additionally, for another suboptimal polynomial scheme (the so-called nulling and

cancelling), we show that it asymptotically achieves the same data rate as the optimal,

exponentially complex, DPC.

In the last part of the thesis we consider a quantum counterpart of the signal detection

from classical communication. In quantum systems the signals are quantum states and

the quantum detection problem amounts to designing measurement operators which have

to satisfy certain quantum mechanics laws. A specific type of quantum detection called

unambiguous detection, which has numerous applications including quantum filtering, has

recently attracted a lot of attention in the research community. We develop a general

framework for numerically solving this problem using the tools from the convex optimization

theory. Furthermore, in the special case where the two quantum states are of rank 2, we

construct an explicit analytical solution for the measurement operators.

At the end we would like to emphasize that the contribution of this thesis goes beyond

the specific problems mentioned here. Most algorithmic optimization techniques developed

in this paper are generally applicable. While it is a fact that our results were originally

motivated by wireless and quantum communications applications, we believe that the de-

veloped techniques will find applications in many different areas where similar optimization

problems appear.
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Chapter 1

Introduction

In the last several decades we have witnessed enormous advance in all scientific fields. It

is not difficult to recognize that one of the key contributing factors is fast and efficient

information exchange. People from different cultures, different educational backgrounds,

different geographical areas can quickly exchange their knowledge, understanding, and ex-

perience of the natural phenomena around us. The difference in the amount of information

exchange between today and several decades ago is obvious. This difference is even more

obvious between today and a few centuries back. What would be several months of sailing

to convey information between two continents a few centuries ago, today is less than a

second with cell-phones and internet. Clearly, modern technological achievements such as

cell-phones, computers, and internet are playing the crucial role. At this point it is even

unimaginable how rapid information exchange will be in the years, decades, and centuries

ahead, and what kind of devices will provide it. However, what is certain is that the entire

process of information exchange will constantly keep improving.

We live at the time when the most powerful, personally available mobile gadgets to con-

vey information over huge distances are cell-phones and computers. The incredible power

of cell-phones is based on their ability to transmit/receive information as an electromag-

netic wave through the air from almost any location. Of course, the secret of transmitting

information through the air with no wires, cables, etc., has been known for a long time.

However, only with the appearance of small portable devices has the massive use of wireless

communications taken off. The commercial availability of cell-phones and computers within
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the last 20 years has made the entire planet, at any given point, as connected as a small

village. Still, no matter how advanced the current technology seems to be, we always look

for better.

Although modern wireless devices provide great services, some of them (e.g., video-

transmitting) that require high data rate transmissions are still unavailable. In last 10–15

years the idea of using multiple antennas instead of a single antenna at both the receiving

and the transmitting ends of the point-to-point communication system (depicted in Figure

1.1), has become a subject of extensive theoretical and practical research. The main idea is

that adding the antennas should increase the amount of information that can be transmitted.

It in fact was mathematically shown in [95] and [40] that the achievable transmission rate

increases linearly with the number of transmitting/receiveing antennas, provided that the

transmission medium is Gaussian. These results are of course more on a theoretical side.

It still remains an open question how to practically design these systems and achieve the

theoretically predicted performances.

Figure 1.1: Multi-antenna system

One of the most important questions to be resolved is the complexity of the receivers.

The detection at the receiver R of the signals s sent from the transmitter T usually amounts
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to solving hard combinatorial optimization problems. A large portion of this thesis is related

to improving the current detection techniques. Practically, this means that a large part of

this thesis is focused on the design of the new and the improvement of the existing exact

and approximate optimization algorithms for solving these hard problems.

As we have said, the multiple antennas can be employed in the so-called point-to-point

communication. Point-to-point communication assumes that there are two ends of com-

munication, the transmitter and the receiver. Furthermore the assumption in the context

of wireless communications is that they communicate through wireless medium. Another

interesting concept of communicating that wireless medium allows is called broadcast com-

munication. In broadcast communication one transmitter (say a base station) broadcasts

the information that can be received by different users (see Figure 1.2). In the literature

this system is often called a broadcast channel. Similar to point-to-point communication, in

broadcast communication the transmitter and the receivers can be equipped with multiple

antennas. The main idea is that if the transmitter is equipped with, say, m antennas, it can

simultaneously serve m users. However, since the transmission medium is transparent for

all signals, parts of the information intended for one of the users will reach users that are

not intended to receive it. The piece of non-intended information which reaches receivers

may cause them to incorrectly detect the information intended for them. This problem

(commonly known as interference) is caused by the fading nature of the wireless broadcast

medium and is one of the main issues in wireless broadcast systems. The problem of design-

ing the information symbol vectors at the transmitter so that the problem of interference

among the users is as mitigated as possible has been extensively studied during the last

decade. Significant theoretical results related to the performance limits of broadcast chan-

nels have been achieved. Surprisingly, the fading characteristics of the channel can in fact

be utilized so that the expected increase in the overall amount of information that can be

reliably transmitted is achieved.

Before mentioning the significant theoretical achievements in this area, we would like

to briefly mention what the characteristics of interest in a broadcast channel are. Unlike



4

in a point-to-point system, in a broadcast channel we define sum-rate capacity to be the

maximum achievable sum of the rates of information that can be reliably sent to the users.

In addition to this, we can define the achievable rate region as the set of the rates at which

the information can be sent to the individual users. It is not difficult to note that the

sum-rate capacity is the point on the boundary of the rate region that maximizes the sum

of all individual rates.

Figure 1.2: Wireless broadcast system

As we have mentioned above, during the last decade the analysis of the performance

limits of broadcast channels has been the subject of extensive research. Namely, the achiev-

able sum-rate of the Gaussian broadcast channel has recently been computed [101], and a

particular strategy called dirty-paper coding (DPC) introduced in [20] has been proven to

achieve it (see, e.g., [14] and [112]). Furthermore, it also happens that the DPC achieves

all points on the boundary of the rate region of the broadcast channel. However, DPC is a

very complex technique and difficult to implement in practice. In this thesis we introduce

a few alternatives to DPC and analyze their performance.

Of course, many of the theoretical results related to the broadcast channel are very

sensitive to the information that the transmitter has about the transmission medium. In
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fact they all hold under the assumption that the transmitter has full knowledge of the

transmission medium. In this thesis we will focus exactly on this same case when the

characteristics of the broadcast channel don’t change rapidly in time so that they can be

estimated. Furthermore, we will mostly focus on the case where the number of the users

served by the transmitter (base station) is of similar order as the number of the transmitting

antennas. On the other hand we would like to mention that, even when the transmitter has

only a partial information about the channel and the number of the receivers/users is large,

the sum-rate capacity asymptotically scales linearly in number of transmitting antennas m

and doubly logarithmic in the number of users — effectively the same way the sum-rate

capacity of the optimal DPC scales with the number of transmitting antennas and the

number of users (see, e.g., [83]).

1.1 Thesis contributions

This thesis contains three main parts. The first two deal with the problems related to

the multiple-antenna point-to-point and broadcast channels. The third part is somewhat

different and is related to the specific problem of quantum detection in quantum systems.

1.1.1 ML detection

In the first part of the thesis we consider multiple-input multiple-output (MIMO) systems.

A point-to-point communication system which consists of one transmitter and one receiver

equipped with multiple (m) antennas is an example of a MIMO system. As we have said

above, one of the key problems in designing these systems is the complexity of the receiver.

It is very well known that in MIMO systems maximum-likelihood (ML) detection of the

received signals amounts to solving integer least-squares problems which are NP-hard in

worst case. Since NP-hard problems may require a very long time to be solved exactly, it

is of great interest to find efficient algorithms that can be practically implemented.

In Chapter 2 we consider the case of the so-called coherent ML detection in MIMO sys-

tems. The coherent MIMO detection assumes that the receiver knows the channel (trans-
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mission medium). This is a valid assumption if the communication occurs under non-rapidly

changing environmental conditions so that the channel can be estimated. The problem of

MIMO detection then becomes the integer least-squares problem (see, e.g., [49]). Usually

in the context of wireless communications a specific algorithm called sphere-decoder (more

on the sphere decoder can be found in [37]) is used for solving ML detection problems.

Since the algorithm is used in a statistical system as a measure of its quality, a quantity

called the expected complexity is usually considered in the literature (see, e.g., [49]). In

fact, as shown in [49], the expected complexity over the wide range of the signal-to-noise

(SNR) ratios and the dimension of the problem m is smaller than m3. However, when

the SNR decreases and the dimension of the problem grows, the complexity of the sphere

decoder becomes prohibitive. In Chapter 2 we develop a branch and bound modification of

the standard sphere decoder algorithm and demonstrate that it significantly decreases the

size of the search tree compared to the original version of the algorithm. Furthermore, we

establish an interesting mathematical connection between the H-infinity estimation theory

and the lower bounding of the integer least-squares.

In Chapter 3 we consider the case of the so-called non-coherent ML detection in single-

input multiple-output (SIMO) systems with q-PSK signalling. It is well known that the

problem of ML detection in SIMO systems in case of q-PSK signalling reduces to the

integer maximization of the quadratic form. This problem is also known to be NP-hard in

the worst case. In the first part of Chapter 3 we develop the so-called out-sphere decoder

algorithm for solving ML detection problems exactly. The out-sphere decoder represents

a counterpart to the sphere decoder used in the context of coherent MIMO detection. We

additionally analytically establish an upper bound on the expected complexity of the out-

sphere decoder. However, this upper bound turns out to be exponential, which suggests

that solving ML detection in SIMO systems exactly still remains hard. In the second part

of Chapter 3 we consider the scenarios when it is not necessary to solve the ML detection

problem exactly. We introduce several algorithms for solving it approximately and analyze

their performance. As it turns out, they provably perform almost as well as the exact ones.



7

1.1.2 Broadcast channels

In the second part of the thesis (Chapters 4 and 5) we consider a Gaussian broadcast channel.

In Chapter 4 we introduce a few practical schemes based on the linear precoding for the

design of the information symbols at the transmitter in a Gaussian broadcast channel. We

design the precoding strategy: 1) so that the overall sum-rate is maximized and 2) so that

the minimum rate among all users is maximized. The later one is shown to be a quasi

convex problem and solved exactly.

In Chapter 5 we analyze the theoretical limits of a particular non-linear scheme called

vector-perturbation technique introduced in [75]. It turns out that an even simpler version

of it, based on the nulling and cancelling procedure, asymptotically achieves the sum-rate

of the DPC.

1.1.3 Quantum unambiguous detection

In the third part of the thesis (Chapters 6 and 7) we consider quantum systems. More

specifically the problems that we are interested in are related to the quantum detection

theory.

In quantum systems, unlike in classical, the information is stored in special objects

called quantum states. Namely a quantum state is a set of numbers which fully describes

the quantum system. These numbers are usually stored in a vector called a pure state [73].

Furthermore, the state of a quantum system can be a statistical mixture of pure states, in

which case it is called a mixed quantum state [73].

In order to detect in which state a quantum system was prepared we need to construct a

set of quantum measurements. In Chapters 6 and 7 we consider a specific problem of design-

ing an optimal set of measurements that distinguishes unambiguously between a collection

of mixed quantum states. First, in Chapter 6, using arguments of duality in vector space

optimization, we derive necessary and sufficient conditions for an optimal measurement that

maximizes the probability of correct detection. We show that the previous optimal mea-

surements that were derived for certain special cases satisfy these optimality conditions.
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We then consider state sets with strong symmetry properties, and show that the optimal

measurement operators for distinguishing between these states share the same symmetries,

and can be computed very efficiently by solving a reduced size semi-definite program.

In Chapter 7 we consider a specific problem of unambiguous detection between two

mixed quantum states of rank 2 which has been open for quite a while. Based on the general

framework from Chapter 6 we explicitly analytically characterize the optimal measurement

operators. Furthermore, using the same framework we easily obtain an explicit solution of

unambiguous detection between a pure and a mixed quantum state matching an already

known solution obtained in the context of quantum filtering.
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Chapter 2

Coherent ML Detection in
Multi-Antenna Systems — Sphere
Decoder Algorithm

2.1 Introduction

In this chapter we will consider a point-to-point system where each end of the communi-

cation is equipped with several antennas. Such systems are usually called MIMO systems

and a sketch of such a system is shown in Figure 2.1. As mentioned earlier, in the intro-

duction, the main idea behind adding more antennas at the transmitter and/or receiver is

to increase overall throughput (the amount of information that can be transmitted). In-

tuitively we may expect that adding m antennas at the transmitter and receiver should

increase the achievable rate of the system m times compared to the system with only one

antenna. Furthermore, it can actually be explicitly shown (see, e.g. [40] and [95]) that the

overall throughput of the system indeed increases linearly with the number of antennas.

These results are of course more of a theoretical nature. However, they suggest that the

multi-antenna systems should provide very high data rates of ≈ Mbits/s. Of course, these

theoretical results only show what is the achievable limit of the MIMO system. However,

designing a MIMO system so as to achieve this limit is not an easy task. In this chapter

we will address a very important problem which happens to be a significant obstacle in de-

signing MIMO systems: More specifically, we will consider the problem of signal detection
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at the receiver in a MIMO system.

Figure 2.1: Multi-antenna system

Before going exactly to the specific problem, let us elaborate briefly on the the way a

MIMO system works and how it is typically modeled. As can be seen from Figure 2.1, the

system consists of the transmitter T and and receiver R, which both have m antennas. The

transmitter then sends the sequence (vector) of the information symbols s, as depicted in

Figure 2.1. The signals from the vector s are sent as electromagnetic waves through the

transmission medium (air) such that signal si, 1 ≤ i ≤ m is sent from the i-th antenna.

Since the transmission medium is air, the signals sent from any of m transmitter antennas

can reach any of m receiver antennas. It is usually assumed that the signals from different

transmitting antennas are combined in a linear fashion at the receiver. This mathematical

simplification of a real MIMO system is shown in Figure 2.2.

It should also be noted that the signals sent from them-th antenna at the transmitter are

being weakened/strengthened on their way to the j-th antenna at the receiver. In Figure 2.2

this is modeled by adding a factor hjm on this path. Clearly in a similar fashion there can be

defined a full matrix H of the channel coefficients which will model the quality of the path

from the transmitting to the receiving antennas. It is not difficult to imagine that the hji
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Figure 2.2: Mathematical model of multi-antenna system

entry of the matrix H will contain the characteristics of the path from i-th transmitting to

the j-th receiving antenna. In context of wireless communications the matrix H is usually

called the channel matrix. Additionally, signal at the each of the receiving antennas is

corrupted by noise (for the j-th receiving antenna this is shown in Figure 2.2 as quantity

wj). It is not difficult to see that the models from Figures 2.1 and 2.2 can be summarized

in the following equation

x = Hs + w. (2.1)

As we have said earlier, H is the channel matrix and w is the noise vector. To allow

tractability of the model it is usually assumed that the channel matrix coefficients are i.i.d.

Gaussian random variables with zero mean and unit variance. The components of the noise

vector w are also assumed to be i.i.d. Gaussian, independent of the entries of the channel

matrix H, with zero mean and variance σ2.

Now we slowly turn to the problem of MIMO detection which arises in the above-defined

system. Namely, looking at equation (2.1) one can ask a simple question: given the value
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of the vector x (its components are signals received at the receiving antennas, i.e., they

are known to the receiver), can one somehow figure out what the value of the signal vector

s was? In fact this is precisely the question of signal detection in multi-antenna systems.

In the most general setting this question is very difficult. Not only don’t we know the

matrix H, but knowledge of the vector w is also absent. Clearly, following this argument

we recognize that learning H at the receiver is an important question. This has of course

been the subject of extensive research, and in situations where the channel coefficients from

the matrix H are not changing rapidly in time, they can in fact be estimated [47]. The case

when the channel matrix is known at the receiver is usually referred to as the coherent case

of the signal detection in multi-antenna systems. In the rest of this chapter we will assume

communication in the slowly changing environment, so that the channel matrix is known

to us. [We will elaborate more on the non-coherent case, when the channel matrix can not

be estimated, in the following chapter.]

Looking at equation (2.1) we can write

p(x|s,H) =
1√
2π

n e
− ||x−Hs||22

2 . (2.2)

Then we can set the maximization of the probability from (2.2) as a criterion for the

detection of the signal vector s if the received vector x and the channel matrix H are

known. The detected vector sML is then

sML = arg min
s∈D

p(x|s,H) = arg min
s∈D

||x −Hs||22. (2.3)

This criterion for signal detection in MIMO systems is called maximum-likelihood (ML)

detection. It should also be noted that the vector s is restricted to a set D, which in digital

communications is commonly assumed to be a subset of the integer lattice.

It is well known that maximum-likelihood (ML) decoding in many digital communication

schemes reduces to solving the integer least-squares problem given in (2.3), which is NP-

hard in the worst case. On the other hand, it has recently been shown [49] that, over a wide
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range of dimensions N and signal-to-noise ratios (SNRs), the sphere decoding algorithm [37]

can be used to find the exact ML solution with an expected complexity that is often less

than N3. However, the computational complexity of sphere decoding becomes prohibitive

if the signal-to-noise ratio (SNR) is too low and/or if the dimension of the problem m is

too large.

In this chapter, we target these two regimes and attempt to find faster algorithms by

pruning the search tree beyond what is done in the standard sphere decoding algorithm.

The search tree is pruned by computing lower bounds on the optimal value of the objective

function as the algorithm proceeds to descend down the search tree. We observe a trade-off

between the computational complexity required to compute a lower bound and the size of

the pruned tree: the more effort we spend in computing a tight lower bound, the more

branches that can be eliminated in the tree. Using ideas from SDP-duality theory and H∞

estimation theory, we propose general frameworks for computing lower bounds on integer

least-squares problems. We propose two families of algorithms, one of which is appropriate

for large problem dimensions and binary modulation, and the other of which is appropriate

for moderate-size dimensions yet high-order constellations. We then show how in each

case these bounds can be efficiently incorporated in the sphere decoding algorithm, often

resulting in significant improvement of the expected complexity of solving the ML decoding

problem, while maintaining the exact ML performance.

2.2 Sphere decoder and its modification

In this section we recall what the standard sphere decoder is and introduce its branch and

bound modification. We recall that the problem that we are interested in and will be solving

exactly in this chapter has the following form

min
s∈D⊂Zm

‖x −Hs‖2, (2.4)
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where x ∈ Rn, H ∈ Rn×m, and D refers to some subset of the integer lattice Zm. The

main idea of the sphere decoder algorithm [37] for solving the previous problem is based on

finding all points s such that Hs lies within a sphere of some adequately chosen radius ds

centered at x, i.e., on finding all s such that

d2
s ≥ ‖x −Hs‖2

2, (2.5)

and then choosing the one that minimizes the objective function. Using the QR decompo-

sition H =

[
Q1 Q2

]



R

0n−m×m


, where R is m×m upper triangular, and Q1 ∈ Rn×m and

Q2 ∈ Rn×(n−m) are such that Q =

[
Q1 Q2

]
is unitary, we can reformulate (2.5) as

d2 ≥ ‖y −Rs‖2
2, (2.6)

where we have defined d2 = d2
s − ‖Q∗

2y‖2 and y = Q∗
1x.

Figure 2.3: Upper-triangular decomposition — the key component of the sphere decoder
algorithm

Now using the upper-triangular property of R (see Figure 2.3), (2.6) can be further
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rewritten as

d2 ≥ ‖yk:m −Rk:m,k:msk:m‖2 + ‖y1:k−1 −R1:k−1,1:k−1s1:k−1 −R1:k−1,k:msk:m‖2, (2.7)

for any 2 ≤ k ≤ m, where the subscripts determine the entries the various vectors and

matrices run over (e.g., y1:k−1 is a column vector whose components are y1,y2, . . . ,yk−1,

and similarly R1:k−1,k:m is a (k− 1) × (m− k+ 1) matrix and Ri,k, Ri,k+1, . . . , Ri,m are the

components of its i-th row). A necessary condition for (2.6) can therefore be obtained by

omitting the second term on the right-hand side (RHS) of the above expression to yield

d2 ≥ ‖yk:m −Rk:m,k:msk:m‖2. (2.8)

The sphere decoder finds all points s in (2.5) by proceeding inductively on (2.8), starting

from k = m and proceeding to k = 1. In other words, for k = m it determines all one-

dimensional lattice points sm such that

d2 ≥ (ym −Rm,msm)2,

and then, for each such one-dimensional lattice point sm, determines all possible values for

sm−1 such that

d2 ≥ ‖ym−1:m −Rm−1:m,m−1:msm−1:m‖2

= (ym −Rm,msm)2 + (ym−1 −Rm−1,m−1sm−1 −Rm−1,msm)2.

This gives all two-dimensional lattice points that satisfy (2.6); we proceed in a similar

fashion until k = 1. The sphere decoding algorithm thus generates a tree (see Figure 2.4),

where the branches at the (m − k + 1)th level of the tree correspond to all (m − k + 1)-

dimensional lattice points satisfying (2.8). Therefore, at the bottom of the tree (the m-th

level) all points satisfying (2.5) are found. (For more details on the sphere decoder and for
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an explicit description of the algorithm the reader may refer to [37], [23], and [49].)

Figure 2.4: Tree generated by the sphere decoder algorithm

The computational complexity of the sphere decoding algorithm depends on how d is

chosen. In a digital communication context, x is the received signal, i.e., a noisy version of

the symbol vector s transmitted across the channel H,

x = Hs + w, (2.9)

where the entries of the additive noise vector w are independent, identically distributed (iid)

N (0, σ2) random variables. In [49] it is shown that, if elements of H are i.i.d. Gaussian

with zero mean and unit variance and if the radius is chosen appropriately based on the

statistical characteristics of the noise w, then over a wide range of signal-to-noise ratios

(SNR) and problem dimensions the expected complexity of the sphere-decoding algorithm

is low and comparable to the complexity of the best known heuristics, which are cubic.

The above assertion unfortunately fails and the computational complexity becomes in-

creasingly prohibitive if the SNR is too low and/or if the dimension of the problem is too

large (in fact as shown in [58] the expected computational complexity of the sphere decoder
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is always exponential). Increasing the dimension of the problem clearly is useful 1. More-

over, the use of the sphere decoder in low SNR situations is also important, especially when

one is interested in obtaining soft information to pass onto an iterative decoder (see, e.g.,

[52] and [98]). One way to reduce the computational complexity is to resort to suboptimal

methods based either on heuristics (see, e.g., [5]) or some form of statistical pruning (see

[43]). Also, the interested reader may find more about recent improvements and alternative

techniques in [22], [110], [45], [65], and [103].

In this chapter, we attempt to reduce the computational complexity of the sphere de-

coder while still finding the exact solution. Let us surmise on how this may be done. As

mentioned above, the sphere decoding algorithm generates a tree whose number of branches

at each level corresponds to the number of lattice points satisfying (2.8). Clearly, the com-

plexity of the algorithm depends on the size of this tree, since each branch in the tree is

visited and appropriate computations are then performed. Thus, one approach to decrease

the complexity is to reduce the size of the tree beyond that which is suggested by (2.8). To

this end, consider a lower bound on the optimal value of the second term on the RHS of

(2.7):

LB = LB(y1:k−1, R1:k−1,1:m, sk:m) ≤ min
s1:k−1∈D⊂Zk−1

‖y1:k−1−R1:k−1,1:k−1s1:k−1−R1:k−1,k:msk:m‖2,

where we have emphasized the fact that the lower bound is a function of y1:k−1, R1:k−1,1:m,

and sk:m. Provided our lower bound is nontrivial (i.e., LB > 0), we can replace (2.8) by2

d2 − LB ≥ ‖yk:m −Rk:m,k:msk:m‖2. (2.10)

This is certainly a more restrictive condition than (2.8), and so will lead to eliminating more

points from the tree as illustrated in Figure (2.5). Note that (2.10) will not result in missing

1Various space-time codes result in integer least-squares problems where the problem dimension is much
larger than the number of transmit antennas. Also, in distributed space-time codes for wireless relay networks
the problem dimension is equal to the number of relay nodes, which can be quite large ([64] and [61]).

2LB = 0, of course, simply corresponds to the standard sphere decoder.
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any lattice points from (2.5) since we have used a lower bound for the remainder of the cost

in (2.7) (for more on branch and bounding ideas, the interested reader may refer to [70]

and the references therein). Assuming that we have some way of computing a lower bound

LB > 0 as suggested above, we state the modification of the standard sphere decoding

algorithm based on (2.10). The algorithm uses the Schnorr-Euchner (S-E) strategy with

radius update [2]. [Note that in this chapter we consider several modifications of the sphere

decoding algorithm, and all are implemented using Algorithm 1 below. The difference

between the various modifications is how the value of LB in step 4 of the algorithm is

computed. Also, note that in Algorithm 1, given below, D is the full integer lattice, while

later in this chapter, in different modifications of the original algorithm, it will be restricted

to its subsets.]

Figure 2.5: Reduced tree of the branch and bound sphere decoding algorithm

Algorithm 1:

Input: Q, R, x, y = Q∗
1x, d = d̂, ll1:m = 01×m.

1. Set k = m, d2
m = d2, ym|m+1 = ym.
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2. (Bounds for sk) Set ub(sk) = b
q
d2k−(d2−d̂2)+yk|k+1

rk,k
c, lb(sk) = d−

q
d2k−(d2−d̂2)+yk|k+1

rk,k
e,

lk = b lb(sk)+ub(sk)+1
2 c, uk = lk + 1.

3. (Zig-zag through sk)

If llk = 0, sk = lk, lk = lk − 1, llk = 1, otherwise sk = uk, uk = uk + 1, llk = 0.

If lb(sk) ≤ sk ≤ ub(sk), go to 4, else go to 5.

4. If LB(y1:k−1, R1:k−1,1:m, sk:m) + (yk|k+1 − rk,ksk)
2 − d2

k + (d2 − d̂2) > 0, go to 3, else

go to 6.

5. (Increase k) k = k + 1; if k = m+ 1 terminate algorithm, else go to 3.

6. (Decrease k) If k = 1 go to 7. Else k = k − 1, yk|k+1 = yk −
∑m

j=k+1 rk,jsj , d
2
k =

d2
k+1 − (yk+1|k+2 − rk+1,k+1sk+1)

2, and go to 2.

7. Solution found. Save s and its distance from x, d̂ = d2
m − d2

1 + (y1 − r1,1s1)
2, and go

to 3.

Clearly, the tighter the lower bound LB, the more points will be pruned from the tree.

Of course, we cannot hope to find the optimal lower bound, since this requires solving an

integer least-squares problem (which was our original problem to begin with). Therefore,

in what follows we focus on obtaining computationally feasible lower bounds on the integer

least-squares problem

min
s1:k−1∈D⊂Zk−1

‖z1:k−1 −R1:k−1,1:k−1s1:k−1‖2, (2.11)

where, for simplicity, we introduced z(k−1) = z1:k−1 = y1:k−1 −R1:k−1,k:msk:m. Also, in the

rest of this chapter we will assume D = {−M−1
2 ,−M−3

2 , . . . , M−3
2 , M−1

2 }m, the case which

is of interest in communications applications.

Before proceeding any further, however, we note that finding a lower bound on (2.11)

requires some computational effort. Therefore, it is a natural question to ask whether the

benefits of additional pruning outweigh the additional complexity incurred by computing
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a lower bound. An even more basic question, perhaps, is what are the potential pruning

capabilities of the lower bounding technique which we use to modify the sphere decoding

algorithm. To illustrate this, consider a simple lower bound (which is only valid in the

binary case, i.e., if D = {− 1
2 ,

1
2}m) on (2.11), used earlier in [88] and further considered

in Section 2.3, which is based on duality and may be computed by solving the following

semi-definite program (SDP),

max
Λ

Tr(Λ)

subject to Q � Λ, Λ is diagonal, (2.12)

where

Q =




1
4R

T
1:k−1,1:k−1R1:k−1,1:k−1 −1

2R
T
1:k−1,1:k−1z1:k−1

−1
2z
T
1:k−1R1:k−1,1:k−1 zT1:k−1z1:k−1


 .

We mention that bounds of this type are very well known in the literature on semi-

definite programming relaxations. More on them and their history can be found in [109].

Here we would like to only briefly mention the reason for their popularity. Although it is

difficult to prove how tight these bounds are, it turns out that in practice they perform

very well. On top of that, the optimization problem given above is convex (the objective

function is convex and the region of optimization is convex as well) which means that these

bounds can be computed very efficiently using a host of numerical methods [12]. Even more

surprising, it can be proved that they can be computed in polynomial time.

Although these bounds have been known for a very long time, they attracted enormous

interest in the algorithms and optimization areas after the work of [41]. Quite remarkably

in [41] the authors were able to give a hard bound on the performance of the previously

mentioned SDP-relaxation bound for a specific case of the matrix Q. Since then the SDP-

relaxation techniques have become a standard tool in solving complicated combinatorial

optimization problems. Naturally, many of these techniques have also been applied in

detection problems (see, e.g., [94], [68], [1], [63], [57], and [69]). More specifically, in [94]
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and [1] the authors considered applications of SDP relaxation to problems in multiuser

detection in CDMA systems. In [68], [63], [57], and [69] authors applied the SDP relaxation

to the problem of ML-detection in MIMO systems (the same one that we consider in this

chapter). In [69] the authors generalized the applications of the SDP algorithm from binary

to larger constellations, and in [63] the authors proved that under certain conditions related

to the dimension of the problem in high-SNR regime the SDP relaxation is tight.

As demonstrated in these references, the SDP technique can be very powerful in produc-

ing a very good approximate solution of the original integer least squares problem. However

in this work we focus on solving the integer least-squares problem exactly, and therefore we

will only use its lower-bounding feature. It should also be noted that although in general

suboptimal, the SDP technique can sometimes produce the exact solution to the original

problem (for more on when this happens see [57]).
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Figure 2.6: Comparison of the number of points per level in the search tree visited by the
SD and the SDSDP algorithm, m = 100, SNR = 10 db, D = {− 1

2 ,
1
2}m.

After a brief chronology on the SDP relaxations we now turn our attention again to

(2.12). We denote the optimal value of the objective function in (2.12) by LBSDP . Figure 2.6
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compares the number of points 3 on each level of the search tree visited by the basic sphere

decoding algorithm with the corresponding number of points visited by the modified sphere

decoding algorithm which employs LBSDP for additional, lower-bound based, pruning. We

refer to the former as the SD algorithm and to the latter as the SDSDP algorithm. As

evident from Figure 2.6, for a problem of dimension m = 100, SNR= 10dB, and D =

{−1
2 ,

1
2}m (i.e., BPSK modulation), the number of points in the search tree visited by

the SDSDP algorithm is several orders of magnitude smaller than that visited by the SD

algorithm. [The additional pruning of the search tree varies across the tree levels. The

total number of the points visited by the SDSDP algorithm is roughly 106 times smaller

than that visited by the SD algorithm.] Therefore, a good lower bound can help prune the

tree much more efficiently than the standard sphere decoding alone. However, computing

LBSDP requires solving an SDP per each point in the search tree. The computational

effort of solving an SDP is O(k3.5), which is significantly greater than the linear complexity

of the operations performed by the standard sphere decoding algorithm at every visited

node. Furthermore, although the complexity scaling behavior of solving an SDP is provably

O(N3.5), even for moderately large N (30 < N < 70) the real complexity of solving the

SDP given in (2.12) is >> N 3.5. On the other hand the standard sphere decoder performs

per each node a number of operations that is ≈ N . Therefore, there is merit in searching

not only for tight lower bounds such as the one in (2.12), but also for those that may not

be as tight but which require significantly smaller computational effort.

In this chapter we therefore introduce a lower bound LBsdp on the quantity LBSDP

which can be computed with complexity linear in k. The idea is based on efficient propaga-

tion of LBsdp through the search tree. We will show that the lower bound LBsdp significantly

improves the expected complexity of the standard sphere decoder. However, LBSDP defined

in (2.12) (and hence LBsdp) is a valid lower bound only when D = {− 1
2 ,

1
2}m. To address

the case of general D, we derive another family of lower bounds on integer least-squares

problems using ideas from H∞ estimation theory. We show that several lower bounds that

3More on why the number of points may be important the interested reader can find in [13] and [59]
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may otherwise be obtained by relaxing the optimization constraints, are in fact special cases

of our general H∞-based lower bound. When employing the above lower bounds to modify

sphere decoding, we observe a trade-off between the computational complexity required to

compute a lower bound and the size of the pruned tree: the more effort we spend in com-

puting a tight lower bound, the more branches can be eliminated from the tree. We show

that the most computationally efficient among the special cases, the so-called eigenbound,

provides a significant improvement in the expected complexity over the sphere decoding

algorithm.

The rest of this chapter is organized as follows. In Section 2.3 we derive a compu-

tationally efficient lower bound LBsdp on LBSDP . In Section 2.4, we derive the general

H∞-estimation-based lower bound on integer least-squares problem. In Sections 2.5, 2.6,

and 2.8, special cases of this general bound are considered. In particular, the so-called spher-

ical relaxation bound is derived in Section 2.5, the polytope relaxation bound is considered

in Section 2.6, and the eigen bound is studied in Section 2.8. The effects of the aforemen-

tioned bounds on the number of search tree points and/or the total expected complexity

of the modified sphere decoding algorithm are studied throughout. Some simulations are

presented in Section 2.7, and, finally, Section 2.9 contains conclusions and a discussion of

potential extensions of the current work.

2.3 SDP-based lower bound

Let LB
(k−1)
SDP , 1 ≤ k ≤ m denote the optimal value of the following optimization problem,

LB
(k−1)
SDP = max Tr(Λ)

subject to Qk−1 � Λ, Λ is diagonal, (2.13)

where

Qk−1 =




1
4R

T
1:k−1,1:k−1R1:k−1,1:k−1 −1

2R
T
1:k−1,1:k−1z

(k−1)

−1
2(z(k−1))TR1:k−1,1:k−1 (z(k−1))T z(k−1)


 .
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In this section we derive LB
(k−1)
sdp , a lower bound on LB

(k−1)
SDP . To this end, let Λ̂ denote the

optimal solution of

max Tr(Λ)

subject to Q � Λ, Λ is diagonal, (2.14)

where

Q =




1
4R

TR −1
2R

Ty

−1
2y

TR yTy


 .

Let GGT = 1
4R

TR− Λ̂1:m,1:m, where G is a lower triangular matrix. Also, let M = G−1RT .

Using the fact that the matrices G and RT are lower triangular, we obtain

(G1:k−1,1:k−1)
−1 = (G−1)1:k−1,1:k−1,

G1:k−1,1:k−1(G1:k−1,1:k−1)
T =

1

4
RT1:k−1,1:k−1R1:k−1,1:k−1 − Λ̂1:k−1,1:k−1,

and M1:k−1,1:k−1 = (G1:k−1,1:k−1)
−1RT1:k−1,1:k−1. Furthermore, let

λk = (z(k−1))T z(k−1) − 1

4
(z(k−1))TMT

1:k−1,1:k−1M1:k−1,1:k−1z
(k−1), (2.15)

and let

LB
(k−1)
sdp =





∑k−1
i=1 Λ̂i,i + λk if

∑k−1
i=1 Λ̂i,i + λk ≥ 0

0 if
∑k−1

i=1 Λ̂i,i + λk < 0.

(2.16)

Now it is clear that LB
(k−1)
sdp ≤ LB

(k−1)
SDP since

LB
(k−1)
sdp = Tr(diag(Λ̂1,1, Λ̂2,2, . . . , Λ̂k−1,k−1, λk)),

and diag(Λ̂1,1, Λ̂2,2, . . . , Λ̂k−1,k−1, λk) is an admissible matrix in (2.13). On the other hand,

if
∑k−1

i=1 Λ̂i,i + λk < 0, LB
(k−1)
sdp = 0, and clearly LB

(k−1)
sdp ≤ LB

(k−1)
SDP .
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We refer to Algorithm 1 which, in step 4, makes use of LB
(k−1)
sdp as the SDsdp algorithm.

The subroutine for computing LB
(k−1)
sdp is given below. Clearly, using LB

(k−1)
sdp instead of

LB
(k−1)
SDP results in pruning fewer points in the search tree. However, the computation of

LB
(k−1)
sdp is quite a bit more efficient than the cubic computation of LB

(k−1)
SDP . In particular,

unlike in the SDSDP algorithm, we need to solve only one SDP — the one given by (2.14).

Then we may compute LB
(k−2)
sdp recursively from LB

(k−1)
sdp , which requires complexity linear

in k [92]. This is shown next.

Recall that z(k−1) = y1:k−1 − R1:k−1,k:msk:m. It is easy to see that we can compute

z(k−2) from z(k−1) as

z(k−2) = z
(k−1)
1:k−2 −R1:k−2,k−1sk−1. (2.17)

Furthermore, note that p(k−1) = M1:k−1,1:k−1z
(k−1) can be computed recursively as

p(k−2) = M1:k−2,1:k−2z
(k−2)

= M1:k−2,1:k−2(z
(k−1)
1:k−2 −R1:k−2,k−1sk−1)

= M1:k−2,1:k−2(z
(k−1))1:k−2 −M1:k−2,1:k−2R1:k−2,k−1sk−1

= p
(k−1)
1:k−2 − (MR)1:k−2,k−1sk−1. (2.18)

Using p(k−2) and z(k−2) we compute λk−1 from (2.15), and LB
(k−2)
sdp from (2.16). The

computation of LB
(k−2)
sdp in each node at the (m− (k−2))th level of the search tree requires

4(k − 2) additions and 2(k − 2) multiplications. For the basic sphere decoder, the number

of operations per each node at the (m− k + 1)th level is (2k + 17). This essentially means

that the SDsdp algorithm performs about four times more operations per each node of the

tree than the standard sphere decoder algorithm. In other words, if the SDsdp algorithm

prunes at least four times more points than the basic sphere decoder, the new algorithm is

faster in terms of the flop count.

Subroutine for computing LBsdp:

Input: R, y, s, M = G−1RT , MR, p(k−1), z(k−1).
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1. If k = m, solve (2.14) and set Λ̂ to be the optimal solution of (2.14); λk = (z(k−1))T z(k−1)−
1
4(z(k−1))TMT

1:k−1,1:k−1M1:k−1,1:k−1z
(k−1).

2. If 1 < k < m,

2.1 z(k−1) = z
(k)
1:k−1 −R1:k−1,ksk, p(k−1) = p

(k)
1:k−1 − (MR)1:k−1,ksk.

2.2 λk = (z(k−1))T z(k−1) − 1
4 (p(k−1))Tp(k−1).

3 If λk ≥ 0, LB
(k−1)
sdp =

∑k−1
i=1 Λ̂i,i + λk, otherwise LBsdp = 0.

Figure 2.7 compares the expected complexity of the SDsdp algorithm to the expected

complexity of the standard sphere decoder algorithm (SD-algorithm). The two algorithms

are employed for solving a high-dimensional binary integer least-squares problem. The

signal-to-noise ratio in Figure 2.7 is defined as SNR = 10log10
m

4σ2 , where σ2 is the variance

of each component of the noise vector w. Both algorithms choose an initial search radius

statistically as in [49] (the sequence of εs, ε = 0.9, ε = 0.99, ε = 0.999 etc.), and update the

radius every time the bottom of the tree is reached.

As can be seen from Figure 2.7 the SDsdp algorithm can run up to 10 times faster than

the SD algorithm at SNR 4 − 5 db. At higher SNR, the speedup decreases and at SNR 8

db the SD algorithm is faster. We can attribute this to the complexity of performing the

original SDP (2.14). In fact, Figure 2.7, subplot 1, shows the flop count of the SD-sdp, when

the computations of the SDP (2.14) are removed (denoted there as SDsdp-sdp), which can

be seen to be uniformly faster than the SD. Thus, the main bottleneck is solving (2.14) and

any computational improvement there can have a significant impact on our algorithm. In

our numerical experiments we solved (2.14) exactly, i.e., with very high numerical precision

which requires a significant computational effort. This is of course not necessary. In fact

how precisely (2.14) needs to be solved is a very interesting question. For this reason we

emphasize again that constructing faster SDP algorithms would significantly speed up the

SDsdp algorithm.

On subplot 2 of Figure 2.7 the distribution of points per level in the search tree is shown

for both SD and SDsdp algorithms. As stated in [13] and [59], in some practical realizations
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the size of the tree may be as important as the overall number of multiplication and addition

operations. On subplot 3 of Figure 2.7 the comparison of the total number of points kept

in the tree by SD and SDsdp algorithms is shown. As expected the SDsdp algorithm keeps

significantly less points in the tree than the SD algorithm.

Finally on subplot 4 of Figure 2.7, the comparison of the bit error rate (BER) perfor-

mance of the exact ML detector (SDsdp algorithm) and the approximate MMSE nulling

and cancelling with optimal ordering heuristic is shown. Over the range of SNRs considered

here, the ML detector outperforms the MMSE detector significantly, thereby justifying our

efforts in constructing more efficient ML algorithms.

Remark: Recall that the lower bound introduced in this section is valid only if the origi-

nal problem is binary, i.e., D = {− 1
2 ,

1
2}k−1. A generalization to case D = {− 3

2 ,−1
2 ,

1
2 ,

3
2}k−1

can be found in [106]. It is not difficult to generalize it to any D = {− L−1
2 ,−L−2

2 , . . . , L−3
2 , L−1

2 }k−1

by noting that any k − 1-dimensional vector whose elements are numbers from {−L +

1,−L+2, . . . , L−2, L−1} can be represented as a linear transformation of a (k−1)(L−1)-

dimensional vector from D = {− 1
2 ,

1
2}(k−1)(L−1). (The interested reader can find more on

this in [69]). However, this significantly increases the dimension of the SDP problem in

(2.14), which may cause our algorithm to be inefficient. Motivated by this, in the following

section we consider a different framework, based on H∞ estimation theory, which will (as

we will see in Section 2.8) produce as a special case a general lower bound applicable for

any D.

2.4 H∞-based lower bound

In this section, we derive the lower bound LB in (2.10) based on H∞ estimation theory

[90]. In estimation theory H∞ is a concept where the goal is to minimize the worst-case

energy gain from the disturbances to the estimation errors. In what follows we will try to

exploit mathematical similarity between the problem at hand and the H∞ concept.



28

4 6 8 10
10

6

10
8

SNR [db]

flo
p 

co
un

t

Flop count

SDsdp    
SD       
SDsdp−sdp

0 20 40 60
10

0

10
2

10
4

10
6

level

nu
m

be
r o

f p
oi

nt
s 

pe
r l

ev
el

Distribution of points, SNR=4 db

SDsdp
SD   

4 6 8 10
10

2

10
4

10
6

10
8

SNR [db]

to
ta

l n
um

be
r o

f p
oi

nt
s

Total number of points

SD   
SDsdp

4 6 8 10
10

−3

10
−2

10
−1

10
0

SNR [db]

bi
t e

rr
or

 ra
te

BER performance

ML           
null−can MMSE

Figure 2.7: Computational complexity of the SD and SDsdp algorithms, m = 50, D =
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2}50

To simplify the notation, we rewrite (2.11) as

min
a∈D⊂Zk−1

‖b − La‖2, (2.19)

where we introduced a = s1:k−1, b = z1:k−1, and L = R1:k−1,1:k−1.

Consider an estimation problem where a and b − La are unknown vectors, b is the

observation, and the quantities we want to estimate are a and b. In the H∞ framework,

the goal is to construct estimators â = f1(b) and b̂ = f2(b), such that for some given γ,

some β ≥ 0, and some diagonal matrix D > 0, we have

β||a − â||2 + ||b − b̂||2
a∗Da + ‖b − La‖2

≤ γ2 (2.20)

for all a and b (see, e.g., [48]).

Obtaining a desired lower bound from (2.20) is now straightforward. Note that for all
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a and b we can write

‖b − La‖2 ≥ γ−2
(
β||a − â||2 + ||b − b̂||2

)
− a∗Da, (2.21)

and, in particular,

min
a∈D

‖b − La‖2 ≥ min
a∈D

(
γ−2β||a− â||2 − a∗Da

)
+ γ−2||b − b̂||2. (2.22)

Note that the minimization on the right-hand side (RHS) of (2.22) is straightforward

since it can be done componentwise (which is why we chose D > 0 diagonal). Thus, for

any H∞ estimators â = f1(b) and b̂ = f2(b), (2.22) provides a readily computable lower

bound. The issue, of course, is how to obtain the best â and b̂ (and D and γ). To this end,

let us assume that the estimators are linear, i.e., â = K1b and b̂ = K2b for some matrices

K1 and K2 (see Figure 2.8).

- -
?

-

-

-

-

a
L

b− La

K1

K2

â

b̂

Figure 2.8: An H∞ estimation analogy used in deriving a lower bound on integer least-
squares problem.

Introducing c =



D1/2a

b− La


 and noting that

T =



D−1/2 0

LD−1/2 I


−



K1

K2



[
LD−1/2 I

]
=



√
β(I −K1L)D−1/2 −√

βK1

(I −K2)LD
−1/2 I −K2



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maps c to



√
β(a − â)

b − b̂


, from (2.21) we see that for all c it must hold that

c∗T ∗Tc ≤ γ2c∗Ic

(see [48]). Since T is square, this implies either of the equivalent inequalities

TT ∗ ≤ γ2I or T ∗T ≤ γ2I. (2.23)

The tighter the bound in (2.23), the tighter the bound in (2.22). In other words, the closer

γ−1T is to a unitary matrix, the tighter (2.22) becomes. Hence we attempt to choose K1

and K2 to make γ−2TT ∗ as close to identity as possible.

To this end, post multiply T with the unitary matrix

Φ =




∇−1 D−1/2L∗∆−∗

−LD−1/2∇−1 ∆−∗


 .

∇ and ∆ are found via the factorizations

D−1/2L∗LD−1/2 + I = ∇∗∇ and LD−1L∗ + I = ∆∆∗, (2.24)

to obtain

TΦ =



A B

0 C


 (2.25)

where

A =
√
βD−1/2∇−1, B =

√
β(D−1L∗∆−∗ −K1∆), and C = (I −K2)∆. (2.26)

Thus TT ∗ ≤ γ2I implies 

AA∗ +BB∗ BC∗

CB∗ CC∗


 ≤ γ2I. (2.27)
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Note that we have many degrees of freedom when choosing K1 and K2, and wish to make

judicious choices. So, to simplify things, let us choose K2 such that CC∗ = γ2
1I for some

0 ≤ γ1 ≤ γ. (Clearly, this can always be done, since from (2.24) we have that ∆ is invertible,

and the simple choice K2 = I − γ1∆
−1 will do the job.) To make half the eigenvalues of

γ−2TT ∗ unity, we set the Schur complement of the (2, 2) entry of (2.27) to zero, i.e.,

AA∗ +BB∗ − γ2I −BC∗(CC∗ − γ2I)−1CB∗ = 0. (2.28)

Using CC∗ = C∗C = γ2
1I, it easily follows that

BB∗ = (1 − γ2
1

γ2
)(γ2I −AA∗). (2.29)

Using the definitions of A and B from (2.26), we obtain

√
βK1 =

√
βD−1L∗(LD−1L∗ + I)−1 −B∆−1. (2.30)

From the (1,1) entry of (2.27) it follows that

γ2I − (AA∗ +BB∗) ≥ 0,

which is the only constraint on γ. Combining this constraint with the definition of A from

(2.26), the definition of ∇ from (2.24), and the expression for BB∗ from (2.29), we obtain

that

γ2 ≥ β

λmin(D + L∗L)
.

We summarize the results of this section in the following theorem:

Theorem 2.1. Consider the integer least-squares problem (2.19). Then for any γ 2 ≥
β

λmin(D+L∗L) , 0 ≤ γ1 ≤ γ, and any matrices D ≥ 0, B, and ∆ satisfying ∆∆∗ = I+LD−1L∗
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and BB∗ = (1 − γ2
1
γ2 )(γ2I − β(D + L∗L)−1),

min
a∈D

‖b−La‖2 ≥ min
a∈D

γ−2||
√
βa−

√
βD−1L∗(LD−1L∗+I)−1b+B∆−1b||2−a∗Da+

γ2
1

γ2
||∆−1b||2.

Proof. Follows from the previous discussion, noting that

||b − b̂||2 = ||(I −K2)b||2 = ||C∆−1b||2 = γ2
1 ||∆−1b||2

and

AA∗ = β(D + L∗L)−1.

The next corollary directly follows from Theorem 2.1.

Corollary 2.1. Consider the setting of the Theorem 1 and let β = 1. Then

min
a∈D

‖b − La‖2 ≥ min
a∈D

γ−2||a − D−1L∗(LD−1L∗ + I)−1b + Bφ||2 − a∗Da +
γ2
1

γ2
||φ||2,

(2.31)

where B is the unique symmetric square root of (1− γ2
1
γ2 )(γ2I − (D+L∗L)−1), and φ is any

vector of the squared length b∗(I + LD−1L∗)−1b.

It should be noted that we have several degrees of freedom in choosing the parameters

(γ1, γ,D, φ), and we can exploit that to tighten the bound in (2.31) as much as possible.

Optimizing simultaneously over all these parameters appears to be rather difficult. However,

we can simplify the problem and let γ1 → γ. This has two benefits: it maximizes the third

term in (2.31) and it sets B = 0 so that we need not worry about the vector φ. Finally, to
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maximize the first term, we need to take γ as its smallest possible value, i.e., we set

γ2 =
1

λmin(D + L∗L)
.

This leads to the following result:

Corollary 2.2. Consider the setting of the Theorem 2.1 and let β = 1. Then

min
a∈D

‖b−La‖2 ≥ λmin(L
∗L+D)||a−(L∗L+D)−1L∗b||2−a∗Da+b∗(I−L((L∗L+D)−1)L∗)b

(2.32)

Remark: We would like to note that the bound given in the previous Corollary could

have been also obtained in a faster way. Below we show a possible derivation that an

anonymous reviewer has provided to us.

Let D be a diagonal matrix such that D ≥ 0. Then we have

||b − La||2 = a∗L∗La− 2b∗La + b∗b = a∗(L∗L+D)a − 2b∗La + b∗b− a∗Da

= (a−(L∗L+D)−1L∗b)∗(L∗L+D)(a−(L∗L+D)−1L∗b)−b∗L((L∗L+D)−1)L∗b+b∗b−a∗Da

≥ λmin(L
∗L+D)||a − (L∗L+D)−1L∗b||2 − a∗Da + b∗(I − L((L∗L+D)−1)L∗)b

It is not difficult to see that this is precisely the same bound as the bound given in Corollary

2.2. The interested reader can find more on this type of bound in [96] and [79].

In the following sections we show how various choices of the free parameters in the general

lower bound from Theorem 2.1 yield several interesting special cases of lower bounds. In

particular, in Section 2.5 we show that the lower bound obtained by solving a related convex

optimization problem, where the search space is relaxed from integers to a sphere, can be

deduced as a special case of the lower bound from Theorem 2.1. Then, in Section 2.6, we

show that the lower bound obtained by solving another convex optimization problem, where
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the search space is now relaxed from integers to a polytope, can also be deduced as a special

case of the lower bound from Theorem 2.1. Finally, in Section 2.8, we use (2.32) to deduce

the lower bound based on the minimum eigenvalue of L∗L.

2.5 Spherical relaxation

Assume the setting of Theorem 2.1. Let γ1 → γ, β → 0, D = 1
αI, and ∆sph∆

∗
sph = αLL∗+I.

Then

LB
(1)
sph = ||∆−1

sphb||2 −
k − 1

4α
, (2.33)

is a special case of the general bound given in Theorem 2.1 and, therefore, a lower bound

on the integer least-squares problem (2.11). Additionally, since being a special case, it is

less tight than the general bound given in Theorem 2.1. Clearly, to make LB
(1)
sph as tight as

possible, we should maximize (2.33) over α.

Consider the singular value decomposition (SVD) of L, L = UΣV T , where U and V are

unitary matrices, and where Σ is diagonal matrix. Let σi be the i-th component on the

main diagonal of Σ and let r be the rank of L. Also, let q1:k−1 = UT z1:k−1. Then we can

write

LB
(1)
sph =

r∑

i=1

α−1q2
i

σ2
i + α−1

− α−1 k − 1

4
. (2.34)

To maximize over α we differentiate to obtain

dLB
(1)
sph

d(α−1)
=

r∑

i=1

(
σiqi

σ2
i + α−1

)2 − k − 1

4
. (2.35)

Let α̂ denote the value of α which maximizes LB
(1)
sph. Then it easily follows that

r∑

i=1

(
σiqi

σ2
i + α̂−1

)2 =
k − 1

4
. (2.36)

Note that if
∑k−1

i=1 (qi
σi

)2 − k−1
4 ≤ 0, we set α̂−1 = 0. Hence, we can state a lower bound on
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(2.11) as

L̂B
(1)
sph = ‖∆̂−1

sphb‖2 − k − 1

4α̂
, (2.37)

where ∆̂sph is any matrix such that ∆̂sph∆̂
∗
sph = α̂LL∗ + I = α̂R1:k−1,1:k−1R1:k−1,1:k−1

∗ + I,

b = z1:k−1, and α̂−1 is the unique solution of (2.36) if
∑k−1

i=1 (qi

σi
)2 − k−1

4 > 0, and zero

otherwise.

To obtain an interpretation of the bound we have derived, let us consider a bound

obtained by a simple spherical relaxation. To this end, let us denote L̂B
(2)
sph = ‖z1:k−1 −

R1:k−1,1:k−1ŝ1:k−1‖2
2, where ŝ1:k−1 is the solution of the following optimization problem,

min
s1:k−1

‖z1:k−1 −R1:k−1,1:k−1s1:k−1‖2
2

subject to
k−1∑

i=1

s2
i ≤

k − 1

4
. (2.38)

This is a lower bound since the integer constraints have been relaxed to a spherical constraint

that includes {− 1
2 ,

1
2}k. The solution of (2.38) can be found via Lagrange multipliers (see.

e.g., [42]), and it turns out that the optimal value of its objective function coincides with

(2.37). Therefore, we conclude that

L̂B
(2)
sph = L̂B

(1)
sph,

and the lower bound obtained via spherical relaxation is indeed a special case of the general

lower bound given in Theorem 2.1.

We would also like to note that we could get a tighter bound in (2.38) if we replace

inequality with an equality. Although the resulting problem would be non-convex, following

the procedure from [42] and [27] we would obtain a result similar to the one obtained in

(2.37). The difference would be that now in (2.36) α̂−1 would be allowed to take negative

values too. This would certainly give a bound which is tighter than L̂B
(1)
sph. However, in

general we didn’t find that solving (2.36) for negative α̂−1 would be more useful for our

algorithms than solving it only for positive α̂−1. Additionally, we would like to emphasize
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that the bound given in (2.38) is valid for the binary case. It can, however, be used for

M > 2 if the constraint in (2.38) is replaced by
∑k−1

i=1 s2
i ≤ (M − 1)2 k−1

4 . However we

believe that this type of bound is more useful in the binary case.

Now, let us unify the notation and write LBsph = L̂B
(1)
sph = L̂B

(2)
sph. We employ LBsph

to modify the sphere decoding algorithm by substituting it in place of the lower bound in

step 4 of Algorithm 1. The subroutine for computing LBsph is given below.

Subroutine for computing LBsph:

Input: y1:k−1, R1:k−1,k:m, sk:m, R1:k−1,1:k−1.

1. z1:k−1 = y1:k−1 −R1:k−1,k:msk:m.

2. Compute the SVD of R1:k−1,1:k−1, R1:k−1,1:k−1 = UΣV T , V = [v1, ...,vk−1].

3. Set q1:k−1 = UT z1:k−1 and r = rank(R1:k−1,1:k−1).

4. If
∑r

i=1(
qi
σi

)2 > k−1
4 , find λ∗ such that

∑r
i=1(

σiqi

σ2
i +λ∗

)2 = k−1
4 , and compute ŝ1:k−1 =

∑r
i=1(

σiqi

σ2
i +λ∗

)vi and LBsph =
∑r

i=1(
λ∗qi

σ2
i +λ∗

)vi.

5. If
∑r

i=1(
qi
σi

)2 ≤ k−1
4 , set ŝ1:k−1 =

∑r
i=1(

qi
σi

)vi and LBsph = 0.

The computational complexity of finding the spherical lower bound by the above sub-

routine is quadratic in k, and the bound needs to be computed at each point visited by

Algorithm 1. That the complexity is only quadratic may not immediately seem obvious

since we do need to compute the SVD of the matrix R1:k−1,1:k−1. Fortunately, however, this

operation has to be performed only once for each level of the search tree, and hence can

be done in advance (i.e., before Algorithm 1 even starts). Computing the SVD of matrices

R1:k−1,1:k−1, 2 ≤ k ≤ m, would require performing factorizations that are cubic in k for any

2 ≤ k ≤ m. However, using the results from [62] and [46], it can be shown that all m SVDs

can, in fact, be computed with complexity that is cubic in m.

The computational effort required for finding LBsph beyond performing the SVD is

clearly quadratic in k at the (m − k + 1)th level of the search tree. Note that, unlike
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the SVD, these remaining operations do need to be performed per each point visited by

the algorithm. In particular, computing the vector q requires finding U T z1:k−1, which is

quadratic in k. Now, the matrix U T is constant at each level of the search tree, but the

vector z1:k−1 differs from node to node. Clearly, this is the most significant part of the cost,

and the computational complexity of finding LBsph is indeed quadratic.

2.5.1 Generalized spherical relaxation

In this subsection, we propose a generalization of the spherical lower bound. This general-

ization is given by

LBgsph =





LBsph +DLB, if ‖∆̂−1
sphb‖2 − k−1

4α̂ > 0,

0, otherwise,

(2.39)

where, as in (2.37),

LBsph = ‖∆̂−1
sphb‖2 − k − 1

4α̂
,

∆̂sph∆̂
∗
sph = α̂LL∗ + I, L = R1:k−1,1:k−1, b = z1:k−1, q = UTb, L = UΣV T , α̂−1 is the

unique solution of (2.36) if
∑k−1

i=1 (qi
σi

)2 − k−1
4 > 0, and 0 otherwise, and where

DLB = min
a∈D

(
1

α̂
+ λmin(L

∗L))‖a − α̂L∗(α̂LL∗ + I)−1b‖2. (2.40)

Clearly, (2.39) is obtained from (2.32) by setting D = 1
α̂I and is, therefore, a lower bound

on the integer least-squares problem (2.11). Also, since LBgsph ≥ LBsph, the generalized

spherical bound is tighter than the spherical bound. It is interesting to mention that LBgsph

was also obtained in [96] based on a different approach.

We refer to Algorithm 1 with LB = LBgsph as the GSPHSD algorithm. Since the

generalized spherical bound is at least as tight as the spherical bound, we expect that the

GSPSD algorithm prunes more points from the search tree than the SPHSD algorithm.

We give the subroutine for computing LBgsph below.
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Subroutine for computing LBgsph:

Input: y1:k−1, R1:k−1,k:m, sk:m, R1:k−1,1:k−1

1. z1:k−1 = y1:k−1 −R1:k−1,k:msk:m.

2. Compute the SVD of R1:k−1,1:k−1, R1:k−1,1:k−1 = UΣV T , V = [v1, ...,vk−1].

3. Set q1:k−1 = UT z1:k−1 and r = rank(R1:k−1,1:k−1).

4. If
∑r

i=1(
qi

σi
)2 > k−1

4 , find λ∗ such that
∑r

i=1(
σiqi

σ2
i +λ∗

)2 = k−1
4 , and compute ŝ1:k−1 =

∑r
i=1(

σiqi

σ2
i +λ∗

)vi and LBgsph = mina∈D(λ∗+λmin(R∗
1:k−1,1:k−1R1:k−1,1:k−1))‖a−

∑r
1

σiqi

σ2
i +λ∗

vi‖2+

∑r
i=1(

λ∗qi

σ2
i +λ∗

)vi.

5. If
∑r

i=1(
qi

σi
)2 ≤ k−1

4 , set ŝ1:k−1 =
∑r

i=1(
qi

σi
)vi and LBgsph = 0.

At first, the complexity of computing DLB in (2.40) may seem cubic in k; however, it

can actually be reduced to quadratic. Clearly, finding the inverse of α̂LL∗ + I is of cubic

complexity and required in each node of the search tree (L is constant per level but α̂ differs

from node to node). However, instead of inverting the matrix α̂LL∗ + I directly, we can do

it in several steps. In particular, using the SVD L = UΣV T , we can write

α̂L∗(α̂LL∗ + I)−1b = α̂V Σ(α̂Σ2 + I)−1Ub.

Since Σ is a diagonal matrix, the inversion of α̂Σ2 + I is only linear in k. Therefore, the

computationally dominant operation in finding α̂V Σ(α̂Σ2 + I)−1Ub is multiplication of a

matrix and a vector, which requires quadratic complexity. Recall what we argued earlier

in this section: although the SVD decomposition of the matrix L is of cubic complexity, it

can be performed off-line since L is constant on each level in the search tree. Furthermore,

instead of computing separately the SVDs of all matrices R1:k−1,1:k−1, 2 ≤ k ≤ m, we can

employ efficient techniques from [62] and [46] to obtain all relevant matrices in these SVDs

with complexity cubic in m. Therefore, computing DLB is essentially quadratic in k. Since,

computing LBsph is also quadratic, the computational effort required for finding LBgsph in

(2.39) is quadratic as well.
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2.6 Polytope relaxation

In this subsection, we show that the lower bound on the integer least-squares problem (2.11)

obtained by solving the related convex optimization where the search space is relaxed from

integers to a polytope is yet another special case of the lower bound derived in Section 2.4.

Assume the setting of the Theorem 2.1. Let γ1 → γ, β → 0, and ∆plt∆
∗
plt = LD−1L∗+I.

Then

LB
(1)
plt = ||∆−1

pltb||2 −
TrD

4
(2.41)

is a special case of the general bound given in Theorem 2.1 and, therefore, a lower bound

on the integer least-squares problem (2.11). Now, since the matrix D is a free parameter,

we can make the bound (2.41) tighter by optimizing over D. Hence, we can obtain a lower

bound to the integer least-squares problem (2.11) as

L̂B
(1)
plt = max

D≥0
||∆−1

pltb||2 −
TrD

4
. (2.42)

Clearly, L̂B
(1)
plt is also a lower bound on the integer least-squares problem (2.11). Further-

more, since (2.42) allows for any positive semi-definite diagonal matrix D, while (2.33)

allows only for scaled version of identity, it is clear that the bound in (2.42) will be tighter

than the one in (2.33). However, as we will see in the rest of this section, computing (2.42)

is of greater complexity than computing (2.33).

Now, before further discussing and comparing the merits of the bounds defined in (2.33)

and (2.42), we will show that the lower bound (2.42) is equivalent to the lower bound

obtained by relaxing the search space in the integer least-squares problem (2.11) to a poly-

tope and solving the resulting convex optimization problem. In particular, such a relaxation

yields

min ||b − Ld||2

subject to −1

2
≤ di ≤

1

2
. (2.43)
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Let us denote L̂B
(2)
plt = ||b − Ld̂||2, where d̂ is a solution of (2.43). We want to show that

L̂B
(1)
plt = L̂B

(2)
plt . To this end, consider the Lagrange dual of the problem (2.43),

L(ξ) = ||b − Ld||2 +

k−1∑

i=1

ξi(d
2
i −

1

4
)

= d∗(L∗L+ Ξ)d− 2b∗Ld + b∗b − TrΞ

4

= d∗ΩΩ∗d− 2b∗LΩ−∗Ω∗d + b∗b− TrΞ

4
+ b∗LΩ−∗Ω−1L∗b− b∗LΩ−∗Ω−1L∗b

= (Ω∗d− Ω−1L∗b)2 + b∗b− b∗LΩ−∗Ω−1L∗b− TrΞ

4
,

where Ω is any matrix such that ΩΩ∗ = L∗L+ Ξ. Using L(ξ), we can pose a dual problem

to the primal in (2.43) as

max
Ξ

min
d

(Ω∗d− Ω−1L∗b)2 + b∗b− b∗LΩ−∗Ω−1L∗b− TrΞ

4

subject to Ξ ≥ 0, Ξ is diagonal.

Clearly, the previous problem is equivalent to

max
Ξ

b∗b− b∗LΩ−∗Ω−1L∗b − TrΞ

4

subject to Ξ ≥ 0, Ξ is diagonal,

which, after straightforward algebraic transformations involving the matrix inversion lemma,

can be written as

max
Ξ

b∗(I + LΞ−1L∗)−1b − TrΞ

4

subject to Ξ ≥ 0, Ξ is diagonal. (2.44)

Since the primal problem is strictly feasible, the duality gap between the problems in (2.43)
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and (2.44) is zero. Therefore, if we denote the optimal solution of (2.44) by Ξ̂,

L̂B
(2)
plt = b∗(I + LΞ̂−1L∗)−1b− TrΞ̂

4
. (2.45)

Comparing (2.42) and (2.45), we conclude that

L̂B
(1)
plt = L̂B

(2)
plt ,

which implies that the bound on the integer least-squares problem (2.11) is indeed a special

case of the general bound we derived in Section 2.4. To unify the notation, we write

LBplt = L̂B
(1)
plt = L̂B

(2)
plt . We refer to Algorithm 1 which, in step 4, makes use of LBplt as

the PLTSD algorithm. The subroutine for computing LBplt is given below.

Subroutine for computing LBplt:

Input: y1:k−1, R1:k−1,k:m, sk:m, R1:k−1,1:k−1

1. z1:k−1 = y1:k−1 −R1:k−1,k:msk:m

2. LBplt = quadprog (R∗
1:k−1,1:k−1R1:k−1,1:k−1,−2R∗

1:k−1,1:k−1z1:k−1, [], [], [], [],− 1
2 ,

1
2); (quad-

prog is the MATLAB function for solving quadratic optimization problems).

The lower bound studied in this subsection is tighter than the spherical one considered

earlier. It is clear that (2.42) results in a tighter lower bound than (2.33), since (2.42)

includes maximization over all diagonal positive semi-definite matrices D, whereas (2.33)

assumes only the special case D = 1
αI. The geometric interpretation implies the difference

between (2.33) and (2.42) as well. In particular, in (2.33) the set of integers from the

basic problem (2.11) is relaxed to a sphere, while in (2.42) the same set of integers is

relaxed to a polytope, i.e., to a smaller set. However, although the lower bound based on

the polytope relaxation is tighter than the one based on the spherical relaxation, the total

computational effort is not necessarily improved. The reason is the additional computational

effort required to calculate the LBsph per each node; these additional computations are of
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quadratic complexity, while the additional operations for calculating the LBplt are cubic

(see, e.g., [19]). Therefore, there is no general answer to which bound is better for improving

the standard sphere decoding algorithm.

2.7 Performance comparison

In this section we study and compare the performances of the SPHSD, GSPHSD, PLTSD,

SDsdp, and SD algorithms.

2.7.1 Flop count

In Figure 2.9 the average flop count and the distribution of the number of visited nodes

per each level of the search tree are shown for each of the SPHSD, GSPHSD, PLTSD, SD,

and SDsdp algorithms. The parameters of the system are m = 45, D = {− 1
2 ,

1
2}m, and

SNR= 10log10
m

4σ2 . The initial search radius was chosen statistically as in [49] (the sequence

of εs, ε = 0.9, ε = 0.99, ε = 0.999, etc.), and updated every time the bottom of the tree

is reached. As can be seen the SPHSD, GSPHSD, PLTSD, and SDsdp prune more points

than the SD algorithm. Also, as expected the PLTSD prunes more points than the SPHSD

and GSPHSD since it uses a tighter lower bound. However, the large improvement in tree

pruning does not always reflect in improving the overall flop count. The reason is, as we

have already said, the additional amount of computation that has to be performed at each

node of the search tree. For the system parameters simulated on Figure 2.9, we see that the

SDsdp algorithm has the best flop count, the GSPHSD still has a better flop count than the

SD algorithm, and the PLTSD and SPHSD have worse flop count than the SD algorithm.

2.7.2 Flop count histogram

In Figure 2.10 the flop count histograms of the SPHSD, GSPHSD, PLTSD, SD, and SDsdp

algorithms are shown obtained from performing 560 numbers of independent runs of the

algorithms. As before, the parameters of the system are m = 45, D = {− 1
2 ,

1
2}m, and

SNR = 3 [dB]. It can be seen that the GSPHSD and SDsdp have significantly better
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Figure 2.9: Computational complexity and the distribution of the points in the search tree
for SD, SPHSD, GSPHSD, PLTSD, and SDsdp algorithms, m = 45, D = {− 1

2 ,
1
2}45

shaped (shorter tail) histograms than the SD algorithm. This implies that the probability

of encountering large flop counts is significantly less. It should be noted that SPHSD and

PLTSD have longer tails than the SD.

2.8 Eigen bound

In principle, the lower bound (2.32) still requires an optimization over the diagonal matrix

D ≥ 0. A particular choice that may be computationally feasible is D = αI, for some α.

However in this section we focus on an even more simple choice for D. Namely, as noted in

[89], letting D → 0 in Corollary 2.2 we obtain

LBeigb = λmin(L
∗L)min

a∈D
||a− L−1b||2. (2.46)
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We also mention that this bound could have been obtained in an easier fashion as

LBeigb = λmin(L
∗L)min

a∈D
||a − L−1b||2 ≤ min

a∈D
(a− L−1b)∗λmin(L∗L)I(a − L−1b)

≤ min
a∈D

(a− L−1b)∗(L∗L)(a − L−1b) ≤ min
a∈D

||La− b||2. (2.47)

Although this may raise concern that the resulting bound will be too loose, it turns out

that it yields an algorithm with smaller flop count than the standard sphere decoder. The

key observation is that, with D = 0, all the computations required at any point in the tree

are linear in the dimension. (The standard sphere decoder also requires a linear number of

operations per point.) Since it is based on the minimum eigenvalue we refer to this bound

as the eigen bound.

Clearly, since (2.46) can be regarded as a special case of (2.32) it is a lower bound on

the integer least-squares problem (2.11). Note that it appears as if (2.46) may not be a

good bound since λmin(L
∗L) could become very small. However, since the minimization in
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(2.46) is performed over integers, the resulting bound turns out to be sufficiently large to

serve our purposes (i.e., tree pruning in sphere decoding), especially in the case of higher

symbol constellations. Furthermore, we will show that the computation required to find

LBeigb for a node at a level k in the search tree is linear in k.

The key observation which enables efficient computation of LBeigb in (2.46) is that the

vector L−1b can be propagated as the search progresses down the tree. Before proceeding

any further, we will simplify notation. First, recall that

L = R1:k−1,1:k−1 and b = z1:k−1 = y1:k−1 −R1:k−1,k:msk:m.

Let us denote F1:k−1,1:k−1 = R1:k−1,1:k−1
−1, and introduce

f (k−1) = L−1b = F1:k−1,1:k−1z1:k−1 = F1:k−1,1:k−1(y1:k−1 −R1:k−1,k:msk:m). (2.48)

We wish to find a recursion that relates the vector f (k−2) to the already calculated vector

f (k−1).

f (k−1) = F1:k−1,1:k−1(y1:k−1 −R1:k−1,k:msk:m)

=



F1:k−2,1:k−1

Fk−1,1:k−1


y1:k−1 −



F1:k−2,1:k−2 F1:k−2,k−1

0 Fk−1,k−1






R1:k−2,k:m

Rk−1,k:m


 sk:m

=



F1:k−2,1:k−1y1:k−1

Fk−1,1:k−1y1:k−1


−



F1:k−2,1:k−2R1:k−2,k:m + F1:k−2,k−1Rk−1,k:m

Fk−1,k−1Rk−1,k:m


 sk:m

=



F1:k−2,1:k−2y1:k−2 + F1:k−2,k−1yk−1

Fk−1,1:k−1y1:k−1




−



F1:k−2,1:k−2R1:k−2,k:msk:m + F1:k−2,k−1Rk−1,k:msk:m

Fk−1,k−1Rk−1,k:msk:m




(2.49)
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From (2.49), we see that

f
(k−1)
1:k−2 = F1:k−2,1:k−2y1:k−2+F1:k−2,k−1yk−1−F1:k−2,1:k−2R1:k−2,k:msk:m−F1:k−2,k−1Rk−1,k:msk:m.

(2.50)

Similarly,

f (k−2) = F1:k−2,1:k−2y1:k−2 −R1:k−2,k−1:msk−1:m

= F1:k−2,1:k−2y1:k−2 − F1:k−2,1:k−2

[
R1:k−2,k−1 R1:k−2,k:m

]


sk−1

sk:m




= F1:k−2,1:k−2y1:k−2 − F1:k−2,1:k−2R1:k−2,k:msk:m − F1:k−2,1:k−2R1:k−2,k−1sk−1.

(2.51)

Using (2.50) and (2.51), we relate f (k−1) and f (k−2) as

f (k−2) = f
(k−1)
1:k−2 + F1:k−2,k−1Rk−1,k:msk:m − F1:k−2,k−1yk−1 − F1:k−2,1:k−2R1:k−2,k−1sk−1.

(2.52)

All operations in the recursion (2.52) are linear, except for the matrix-vector multiplication

F1:k−2,1:k−2R1:k−2,k−1, which is quadratic. However, this multiplication needs to be com-

puted only once for each level of the tree, and the resulting term is used for computing

(2.52) for all points visited by the algorithm at a level. Therefore, this multiplication may

be treated as a part of pre-processing, i.e., we compute it for all k before actually running

Algorithm 1. Hence, updating the vector L−1b in the (2.46) requires a computational effort

that is linear in k. Furthermore, since it is done component-wise, the minimization in (2.46)

also has complexity that is linear in k. Hence we conclude that the complexity of computing

the eigen bound is linear in k. Also, it should be noted that in addition to standard sphere

decoder we have to compute λk = min eig(F ∗
1:k−1,1:k−1F1:k−1,1:k−1), 1 ≤ k ≤ m. However,

computing these λks requires an effort that is negligible to the overall flop count for the

model parameters that we will consider.

We state the subroutine for computing LBeig below.
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Subroutine for computing LBeig:

Input: R, y1:k−1, sk:m, F = R−1, λk = min eig(F ∗
1:k−1,1:k−1F1:k−1,1:k−1), 1 ≤ k ≤ m,

FR1:k−2,k−1 = F1:k−2,1:k−2R1:k−2,k−1, 1 ≤ k ≤ m, fk1:k−1.

1. If k = m, fk−1 = F1:k−1,1:k−1(y1:k−1 − R1:k−1,k:msk:m); otherwise, f k−1 = fk1:k−1 +

F1:k−1,kRk,k+1:msk+1:m − F1:k−1,kyk − FR1:k−1,ksk.

2. if k > 1, LBeigb = λk mina∈D ||a− fk−1||2, otherwise, LBeigb = 0.

We refer to the modification of the sphere decoding algorithm which makes use of the

lower bound LBeigb as EIGSD algorithm and study its expected computational complexity

in the following subsection.

2.8.1 Eigen bound performance comparison

In this subsection we study the performance of EIGSD algorithm.

In particular, Figure 2.11 compares the expected complexity and total number of points

in the tree of the EIGSD algorithm to the expected complexity and total number of points of

the standard sphere decoder algorithm. We employ both algorithms for detection in a multi-

antenna communication system with 6 antennas, where the components of the transmitted

symbol vectors are points in a 256-QAM constellation. Note that the signal-to-noise ratio in

Figure 2.11 is defined as SNR = 10log10
255m
12σ2 , where σ2 is the variance of each component

of the noise vector w. Both algorithms choose the initial search radius statistically as in

[49] (the sequence of εs, ε = 0.9, ε = 0.99, ε = 0.999, etc.), and employ the Schnor-Euchner

search strategy, updating the radius every time the bottom of the tree is reached. As the

simulation results in Figure 2.11 indicate, the EIGSD algorithm runs more than 4.5 times

faster than the SD algorithm.

In Figure 2.12 the flop count histograms of SD and EIGSD algorithms are shown. As can

be seen, the EIGSD algorithm has a significantly better shaped (shorter tail) distribution

of the flop count than the SD algorithm.
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We would also like to point out that the EIGSD algorithm is not restricted to applications

in communication systems. In Figure 2.13 we show what its potential can be if applied to

a random integer least-squares problem. In the problem simulated in Figure 2.13, H was

generated as an m×m matrix with i.i.d. Gaussian entries and entries of y were generated

uniformly from the interval [−M−10
2 , M−10

2 ]. The problem that we were solving was again

min
s∈Dm

‖x −Hs‖2, (2.53)

where D = {−M−1
2 ,−M−3

2 , . . . , M−3
2 , M−1

2 }. The initial radius dg was chosen as

dg = ||x−H ŝ|| (2.54)

where ŝ is obtained by rounding the components of H−1x to the closest element in D. ŝ

generated in this way is sometimes called the Babai estimate [44]. Figure 2.13 compares
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the expected flop count of the EIGSD and SD algorithms for different large values of M .

As can be seen, the larger the set of allowed integers the better the EIGSD performance.

2.9 Summary and discussion

In this chapter, we attempted to improve the computational complexity of sphere decoding

in the regimes of low SNR and/or high dimensions by further pruning points from the search

tree. The main idea is based on computing a lower bound on the remainder of the cost

function as we descend down the search tree (the standard sphere decoder simply uses a

lower bound of zero). If the sum of the current cost at a given node and the lower bound

on the remaining cost from that node exceeds the cost of an already found solution, then

that node (and all its descendants) are pruned from the search tree. In this sense, we are

essentially using a “branch and bound” technique.

Adding a lower bound on the remainder of the cost function has the potential to prune

the search tree significantly more than the standard sphere-decoding algorithm. However,

more significant pruning of the search tree does not, in general, guarantee that the modified
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algorithm will perform faster than the standard sphere decoding algorithm. This is due to

the additional computations required by the modified algorithm to find a lower bound in

each node of the search tree. Hence a natural conclusion of our work: a lower bound on one

hand has to be as tight as possible in order to prune the search tree as much as possible, and

on the other hand it should be efficiently computable. Led by these two main requirements,

in this chapter we introduced a general framework, based on the H∞ estimation theory, for

computing the desired lower bounds. Several special cases of lower bounds were deduced

from this framework. We explicitly studied four such lower bounds, and employed them

for sphere decoding. The first two correspond to relaxation of the search space to either

a sphere or a polytope, while the third one is a slight generalization of the spherical lower

bound. The last special case corresponds to bounding the integer least-squares problem with

the smallest eigenvalue and requires smaller computational effort than any of the previously

mentioned bounds. In addition to H∞ framework for computing lower bound on the integer

least-squares problem, we introduced an SDP-based framework for computing desired lower

bound relevant in cases when the original problem is binary.
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Simulation results show that the modified sphere-decoding algorithm, incorporating the

lower bound based on the smallest eigenvalue and on the SDP-duality theory, outperforms

in terms of complexity the basic sphere decoding algorithm. This is not always the case

with the aforementioned alternative bounds, and is due to their efficient implementation

which is effectively only linear in the dimension of the problem.

Effectively all algorithms developed in this chapter can be divided in two groups de-

pending on the type of the problem that they were designed for. The first group (SDsdp,

GSPHSD, SPHSD, PLTSD) is specifically designed for binary problems, while the second

group (EIGSD) is specifically designed for higher-order constellation problems. From the

results that we presented, the SDsdp, GSPHSD, and EIGSD algorithms seem to outper-

form the standard SD in the simulated regimes in terms of flop-count. Furthermore the

distributions of their flop counts have a significantly shorter tail than the distribution of

the SD. However, SPHSD and PLTSD don’t perform as well as the standard SD in terms of

the flop count and flop count histogram. These results suggest that using a lower-bounding

technique is useful, but only if the lower bound can be computed in a fast manner.

We should also point out that, although we derived it in order to improve the speed of

the sphere decoding algorithm, the general lower bound on integer least-squares problems

is an interesting result in itself. In fact, the proposed H∞ estimation framework for the

efficient computation of lower bounds on the difficult integer least-squares problems may

find applications beyond the scope of this thesis.

The results we present indicate potentially significant improvements in the speed of the

sphere decoding algorithm. However, we should note that the proposed H∞-estimation-

based framework for bounding integer least-squares problems is only partially utilized. In

fact, there are several degrees of freedom in the general H∞-based bound that are not fully

exploited. It is certainly of interest to extend the current work and use the previously

mentioned degrees of freedom to further tighten the lower bound. If, in addition, this can

be done efficiently, it might even further improve the speed of the modified sphere decoding

algorithm.
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Chapter 3

Non-coherent ML Detection in
Multi-Antenna Systems

In multi-antenna communication systems, channel information is often not known at the

receiver. To ensure the practical feasibility of the receiver, the channel parameters are

often estimated via the transmission of training symbols and then employed in the design of

signal-detection algorithms. Such a scenario is possible when the environmental conditions

are not changing rapidly and was considered in the previous chapter. However, in some

applications, due to limited systems resources and/or rapid time variation of the channel

parameters, explicitly learning the channel coefficients becomes infeasible. In this chapter we

consider the problem of maximum-likelihood (ML) detection in single-input multiple-output

(SIMO) systems (see Figure 3.1) when the channel information is completely unavailable

at the receiver and when the signalling at the transmitter is q-PSK. It is well known that

finding the solution to this optimization requires solving the integer maximization of a

quadratic form which is, in general, an NP-hard problem.

In this chapter we consider solving this problem exactly and approximately. To solve

it exactly we introduce the so-called out-sphere decoder algorithm, which we consider as

a counterpart to the standard sphere decoder used in coherent detection and discussed in

the previous chapter. In addition to developing the out-sphere decoder, we analyzed its

complexity as well. Since the problem has a natural statistical setup, we considered the

expected value of its complexity. We provided an explicit analytical upper bound on the

expected complexity of the out-sphere decoder.
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Figure 3.1: Single-input multiple-output (SIMO) system

Besides developing the exact out-sphere decoder, we propose an approximate algorithm

which is based on a certain modification of a standard semi-definite program (SDP) relax-

ation. We derive a bound on the pairwise error probability (PEP) of the proposed algorithm

and show that the algorithm achieves the same diversity as the exact maximum-likelihood

(ML) detector. Furthermore, we prove that in the limit of large system dimension this

bound differs from the corresponding one in the exact ML case by at most 3.92 dB if the

transmitted symbols are from a 2- or 4-PSK constellation, and by at most 2.55 dB if the

transmitted symbols are from an 8-PSK constellation. This suggests that the proposed

algorithm requires moderate increase in the signal-to-noise ratio (SNR) in order to achieve

performance comparable to that of the ML detector but with often significantly lower com-

putational effort.

3.1 Introduction

Multi-antenna wireless communication systems are capable of providing reliable data trans-

mission at very high rates. The channel in such systems is, in principle, unknown to the
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receiver and needs to be estimated either prior to, or concurrently with, the detection of

the transmitted signal. However learning channel coefficients requires time and energy,

which in environments with rapidly changing conditions and limited system resources can

be impractical. In this chapter we study the problem of ML detection when the channel

information is unavailable at the receiver. The system that we study has a single transmit

antenna and multiple receive antennas.

We assume a standard flat-fading channel model for multi-antenna systems similar to

the one used in the previous section (see Figure 3.2),

X =

√
ρT

M
sh +W. (3.1)

Here T denotes the number of time intervals during which the channel remains constant,

M = 1 is the number of the transmit antennas; N is the number of the receive anten-

nas; ρ is the signal-to-noise ratio (SNR); X is a T × N matrix of received symbols; s is

a T × 1 transmitted symbol vector comprised of components si, for which it holds that

si = 1√
T
e

j2rπ
q , r = 1, . . . , q, and q is an integer power of 2; h is an 1 × N channel matrix

whose components are independent, identically distributed (i.i.d.) zero-mean, unit-variance

complex Gaussian random variables; and W is an N × T noise matrix whose components

are i.i.d. zero-mean, unit-variance complex Gaussian random variables. Furthermore, we

assume that the components of h and W are uncorrelated and that T ≥ N , which is often

the case in practice.

The rest of this chapter is organized as follows. In Section 3.2 we recall what the

criterion for non-coherent ML-signal detection is. In Section 3.3 we propose an algorithm

(which we call out-sphere decoder) for solving the problem of non-coherent ML detection

exactly and analyze its expected complexity. In Section 3.4 we consider solving non-coherent

ML detection problem approximately. First in section 3.4.1 we propose a trivial polynomial

time algorithm that achieves full diversity. In Section 3.4.2 we introduce an SDP-based

approximate algorithm for solving the ML-detection problem. In Section 3.4.3 we compute
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Figure 3.2: Mathematical model of SIMO system

its pairwise error probability (PEP). In Section 3.4.4 we asymptotically analyze the PEP

performance in the case of large system dimensions. In Section 3.4.5 we briefly comment

on the complexity of the proposed algorithms. In Section 3.5 we summarize the obtained

results and suggest several possible directions for a future work.

3.2 Non-coherent ML detection

As stated in [51] the criterion for non-coherent ML-detection of the system given in (3.1)

can be written as

sML = arg max
s∈S

exp(−Tr{[I + kss∗]−1XX∗})
πTNdetN [I + kss∗]

, (3.2)

where k = ρT and S = { e
j2π

q√
T
, e

j4π
q√
T
, . . . , 1√

T
}T . Now, using the matrix inversion lemma and

the fact that s∗s = 1 we obtain

sML = argmax
s∈S

exp(−Tr{[I − 1
kss

∗]−1XX∗})
πTN (1 + k)N

= arg max
s∈S

Tr{X∗ss∗X}.
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Therefore, the optimization problem one needs to solve can be written as

max
s∈S

Tr (XX∗ss∗) (3.3)

which is a discrete optimization problem since the set S is discrete. (Since s∗s = 1 precisely

the same optimization problem is obtained if the optimization criterion used is joint channel

estimation and signal detection [87]). (3.3) is a very difficult problem, in fact NP-hard.

In the following sections we will introduce several algorithms for solving it exactly and

approximately.

3.3 Exact non-coherent ML detection

In this section we will consider solving (3.3) exactly. In [99] the case q = 2 was considered.

The sphere decoder algorithm [37] was employed to solve (3.3) exactly. However, for some

parameters of the system, the sphere decoder may be computationally costly. Here we will

introduce an alternative to the standard sphere decoder and analyze its expected complexity.

Before proceeding further to facilitate the exposition we will assume that throughout

this section T = N = m and recall that the system model is as shown in Figure 3.3.

Then clearly the SIMO system can be modeled by the following equation

X =
√
ρmsh +W, (3.4)

where s is a m×1 transmitted symbol vector comprised of components si for which it holds

that si = 1√
T
e

j2rπ
q , r = 1, . . . , q, and q is an integer power of 2, h is an 1×m channel matrix

whose components are independent, identically distributed (i.i.d.) zero-mean, unit-variance

complex Gaussian random variables, and W is an m×m noise matrix whose components

are i.i.d. zero-mean, unit-variance complex Gaussian random variables. It is not difficult

to see that (3.3) can be rewritten as
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Figure 3.3: Mathematical model of SIMO system T = N = m

max
s∈S

Tr (XX∗ss∗) (3.5)

where S = { e
j2π
q√
m
, e

j4π
q√
m
, . . . , 1√

m
}m.

3.3.1 Out-sphere decoder

In this section we introduce an exact algorithm for solving (3.5). The main idea of the

algorithm is based on finding all points s such that X ∗s lies outside a sphere of some

adequately chosen radius ds = λm2, i.e., on finding all s such that

d2
s ≤ ‖X∗s‖2

2, (3.6)

and then choosing the one that minimizes the objective function. Using theQR-decomposition

of X∗ = QR (Q is unitary matrix, R is upper triangular matrix), we can reformulate (3.6)

as

d2 ≤ ‖Rs‖2
2. (3.7)
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Figure 3.4: QR factorization

Although (3.7) resembles to the standard sphere decoder used for the minimization

problem, it is fundamentally different. To see the main difference let us recall that in the

standard sphere decoder applied for minimization of a quadratic form we have

d2 ≥ ‖Rs‖2
2 = ‖Rm,msm‖2 + ‖R1:m−1,1:m−1s1:m−1 +R1:m−1,msm‖2

⇒ d2 ≥ ‖Rm,msm‖2.

However for the maximization problem in (3.7)

d2 ≤ ‖Rs‖2
2 = ‖Rm,msm‖2 + ‖R1:m−1,1:m−1s1:m−1 +R1:m−1,msm‖2

6⇒ d2 ≤ ‖Rm,msm‖2.

Therefore in order to find all s such that (3.7) is satisfied we need a different approach. In

what follows we describe how this problem can be overcome.

Using the upper-triangular property of R (see Figure 3.4), (3.7) can be further rewritten
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as

d2 ≤ ‖Rk:m,k:msk:m‖2 + ‖R1:k−1,1:k−1s1:k−1 +R1:k−1,k:msk:m‖2, (3.8)

for any 2 ≤ k ≤ m, where the subscripts determine the entries the various vectors and

matrices run over (e.g., R1:k−1,k:m is a (k−1)×(m−k+1) matrix and Ri,k, Ri,k+1, . . . , Ri,m

are the components of its i-th row). A necessary condition for (3.7) can therefore be obtained

by upper-bounding the second term on the right-hand side (RHS). Let

UB(sk:m) ≥ max
s1:k−1∈Sk−1

‖R1:k−1,1:k−1s1:k−1 +R1:k−1,k:msk:m‖2.

Then we have a necessary condition for (3.6)

d2 ≤ ‖Rk:m,k:msk:m‖2 + UB(sk:m). (3.9)

The sphere decoder finds all points s in (3.6) by proceeding inductively on (3.9), starting

from k = m and proceeding to k = 1. In other words, for k = m it determines all one-

dimensional lattice points sm such that

d2 ≤ |Rm,msm|2 + UB(sm),

and then, for each such one-dimensional lattice point sm, determines all possible values for

sm−1 such that

d2 ≤ ‖Rm−1:m,m−1:msm−1:m‖2 + UB(sm−1:m)

= |Rm,msm|2 + |Rm−1,m−1sm−1 +Rm−1,msm|2 + UB(sm−1:m).

This gives all two-dimensional lattice points that satisfy (3.7); we proceed in a similar fashion

until k = 1. We refer to this algorithm as out-sphere decoder. The out-sphere-decoder

algorithm thus generates a tree (see Figure 3.5), where the branches at the (m − k + 1)th

level of the tree correspond to all (m − k + 1)-dimensional lattice points satisfying (3.9).
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Therefore, at the bottom of the tree (the m-th level) all points satisfying (3.6) are found.

Figure 3.5: Tree search

In order to complete the algorithm we need a way of computing UB(sk:m). For this

we will use well known SDP relaxation technique (the interested reader can find more on

SDP relaxation in [41] and on its applications in ML detection in wireless communications

in [68], [63], [69], and [57]). Let

UB(sk:m) ≥ max
s1:k−1∈Sk−1

‖R1:k−1,1:k−1s1:k−1 +R1:k−1,k:msk:m‖2

= max
ak∈Sk

a∗
kQkak = OPTk−1.

Then SDP dual/relaxation gives

max
ak∈Sk

a∗
kQkak ≤ UB(sk:m) = min

Λ
Tr(Λ)

subject to Λ � Qk,Λ is diagonal.

It can be shown

αOPTk−1 ≥ UBSDP
k−1 ≥ OPTk−1. (3.10)
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It was shown in [71] that if Qk−1 � 0 is real and q = 2

αr =
π

2
. (3.11)

It was shown in [84] and [114] that if Qk−1 � 0 is complex

αc =
4π

(q sin π
q )

2
. (3.12)

Using these results we will now analyze the expected complexity of the out-sphere de-

coder algorithm.

3.3.2 Expected complexity of the out-sphere decoder

In this section we compute an upper bound for the expected complexity of the out-sphere

decoder introduced in the previous section. Effectively we will compute the probability

that each point in the tree which would correspond to the exhaustive search is actually in

the tree of the out-sphere decoder. To make the problem tractable we will here make the

approximative assumption that the matrix X from (3.5) has i.i.d. real/complex Gaussian

entries with zero-mean and unit-variance. In some sense this is an emulation of a very

low-SNR regime where the matrix W should be dominant in the matrix X and where

the complexity of the out-sphere decoder should be the highest. So it is reasonable to

believe that in the higher-SNR regime that would be of interest in practical consideration,

the complexity of the out-sphere decoder would be upper-bounded by the value computed

based on the assumption that the values of matrix X from (3.5) are i.i.d. Gaussian.

3.3.2.1 The real case

In this subsection we will assume q = 2, and that the elements of h and W are i.i.d real

zero-mean unit-variance Gaussian. Now it relatively easily follows that all points from the

same level are equally likely to be in the search tree. Let pjk, 1 ≤ j ≤ 2m−k+1 denote the

points from the level m−k+1 of the search tree T from Figure 3.5. Further let Pk(p
j
k ∈ T )
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be the probability that pjk is in the search tree T . Clearly the expected complexity of the

out-sphere decoder ECosd can be computed as

ECosd =

m∑

k=1

2m−k+1∑

j=1

Pk(p
j
k ∈ T ).

Since, Pk(p
j
k ∈ T ) = Pk(p

i
k ∈ T ) = Pk(pk ∈ T ), for any i 6= j we have

ECosd =

m∑

k=1

2m−k+1Pk(pk ∈ T ). (3.13)

Now, let us consider in particular the probability that a fixed point from level k, 0 < k ≤ m

pk is in the search tree. Clearly, from (3.9), (3.10), and (3.11) we have

Pk(pk ∈ T ) = Pr(d2 ≤ ‖Rk:m,k:msk:m‖2 + UB(sk:m))

≤ Pr(d2 ≤ ‖Rk:m,k:msk:m‖2 + αr max
s1:k−1∈Sk−1

‖R1:k−1,1:k−1s1:k−1 +R1:k−1,k:msk:m‖2

≤ 2k−1Pr(d2 ≤ ‖Rk:m,k:msk:m‖2 + αr‖R1:k−1,1:k−1s1:k−1 +R1:k−1,k:msk:m‖2).

(3.14)

It is not that difficult to note that the two summands on the right-hand side of the inequality

inside the probability from (3.14) are independent. Hence after applying Chernoff bound

we obtain

Pk(pk ∈ T ) ≤ 2k−1Ee−µd
2
Eeµ‖Rk:m,k:msk:m‖2

Eeµαr‖R1:k−1,1:k−1s1:k−1+R1:k−1,k:msk:m‖2
(3.15)

where µ > 0 is Chernoff parameter to be chosen later. Since

‖Rk:m,k:msk:m‖2 + ‖R1:k−1,1:k−1s1:k−1 +R1:k−1,k:msk:m‖2 = ‖Rs‖2

we have

Eeµ‖Rk:m,k:msk:m‖2+µ‖R1:k−1,1:k−1s1:k−1+R1:k−1,k:msk:m‖2
= Eeµ‖Rs‖2
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and by independence of ‖Rk:m,k:msk:m‖2 and ‖R1:k−1,1:k−1s1:k−1 +R1:k−1,k:msk:m‖2 we fur-

ther have

Eeµ‖Rk:m,k:msk:m‖2
Eeµ‖R1:k−1,1:k−1s1:k−1+R1:k−1,k:msk:m‖2

= Eeµ‖Rs‖2

⇒ Eeµ‖R1:k−1,1:k−1s1:k−1+R1:k−1,k:msk:m‖2
=

Eeµ‖Rs‖2

Eeµ‖Rk:m,k:msk:m‖2 . (3.16)

Plugging (3.16) into (3.15) we obtain

Pk(pk ∈ T ) ≤ 2k−1e−µd
2
Eeµ‖Rk:m,k:msk:m‖2 Eeµαr‖Rs‖2

Eeµαr‖Rk:m,k:msk:m‖2 . (3.17)

It is straightforward to see that ‖Rs‖2 is chi-square distributed with m degrees of freedom

and ‖Rk:m,k:msk:m‖2 is chi-square distributed with m − k + 1 degrees of freedom. Let

β = m−k+1
m . Then we easily obtain

Pk(pk ∈ T ) ≤ 2k−1e−µd
2

(
(1 − 2µmαrβ)

β
2

(1 − 2µmβ)
β
2 (1 − 2µmαr)

1
2

)m
. (3.18)

Denoting d2 = λm2 and connecting (3.13) and (3.18) we have

ECosd ≤
m∑

βm=1

2me−µm
2λ

(
(1 − 2µmαrβ)

β
2

(1 − 2µmβ)
β
2 (1 − 2µmαr)

1
2

)m
. (3.19)

Looking at (3.19) we note that for a certain β upper bound on the expected complexity on

the right-hand side will be larger than 2β . For these βs clearly the better choice for upper

bound is 2β. However, there will be a critical βc, such that the upper bound from (3.19)

becomes smaller then the upper bound 2β obtained from the exhaustive search. It is not

that difficult to see that 2βc will be the highest number of points preserved on average at

any level of the tree. Hence we have

ECosd ≤ m2βcm
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where βc is the solution of

2e−µmλ
(

(1 − 2µmαrβ)
β
2

(1 − 2µmβ)
β
2 (1 − 2µmαr)

1
2

)
= 2βc

and µ is a parameter to choose so that βc is as small as possible. Since optimization over µ

appears to be rather difficult we choose µ =
1−αr

λ
2αrm

. Finally we have that βc is the solution

of

4e−( λ
αr

−1) λ

αr

(
1 − (1 − αr

λ )βc

1 − (1 − αr
λ ) βc

αr

)βc

= 4βc .

We summarize the results from this subsection in the following theorem.

Theorem 3.1. Consider the SIMO system from (3.4). Assume that components of h and

W are i.i.d. real Gaussian with zero-mean and unit variance and that si ∈ {− 1√
m
, 1√

m
}.

Further assume that the out-sphere decoder is used for solving an ML detection problem in a

SIMO system described by (3.4). Its expected complexity ECosd (averaged over the channel

and noise statistics) can be upper bounded in the following way

ECosd ≤ mqβcm.

The constant βc can be obtained as solution of

4e−( λ
αr

−1) λ

αr

(
1 − (1 − αr

λ )βc

1 − (1 − αr
λ ) βc

αr

)βc

= 4βc

where λ = d2s
m2 , ds is the initial radius, and αr = π

2 as given in (3.11).

It is interesting to note that, using the replica methods from statistical physics, it was

shown in [24] that

lim
m→∞

d2
s

m2
= λopt =

(√
2

π
+ 1

)2

.

If λ in the previous theorem is chosen as λopt we have the following corollary.

Corollary 3.1. Assume λ =
(√

2
π + 1

)2

and m is large. Then βc = 2
3 and we obtain an
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upper bound on the expected complexity of the out-sphere decoder

ECosd ≤ m2
2m
3 << 2m.

The bound obtained in the previous corollary is still exponential. However, the exponent

is 2/3 of the exponent in the exhaustive search.

3.3.2.2 The complex case

In this subsection we will assume that si = 1√
T
e

j2rπ
q , r = 1, . . . , q, q is an integer power of

2, and the elements of h and W are i.i.d complex zero-mean unit-variance Gaussian. It is

not difficult to check that (3.13) can be rewritten as

ECc
osd =

m∑

k=1

qm−k+1Pk(pk ∈ T ). (3.20)

It is also relatively easy to see that (3.14) can be rewritten as

Pk(pk ∈ T ) ≤ qk−1Pr(d2 ≤ ‖Rk:m,k:msk:m‖2 + αc‖R1:k−1,1:k−1s1:k−1 +R1:k−1,k:msk:m‖2).

(3.21)

Following the derivation from the previous subsection we easily obtain that (3.17) has the

following counterpart in the complex case

Pk(pk ∈ T ) ≤ qk−1e−µd
2
Eeµ‖Rk:m,k:msk:m‖2 Eeµαr‖Rs‖2

Eeµαr‖Rk:m,k:msk:m‖2 . (3.22)

However, since R and s are complex, we have that ‖Rs‖2 is chi-square distributed with 2m

degrees of freedom and ‖Rk:m,k:msk:m‖2 is chi-square distributed with 2(m− k+ 1) degrees

of freedom. Let β = m−k+1
m . Then we easily obtain

Pk(pk ∈ T ) ≤ qk−1e−µd
2

(
(1 − 2µmαcβ)β

(1 − 2µmβ)β(1 − 2µmαc)

)m
. (3.23)
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Denoting d2 = λm2 and connecting (3.20) and (3.23) we have

ECc
osd ≤

m∑

βm=1

qme−µm
2λ

(
(1 − 2µmαcβ)β

(1 − 2µmβ)β(1 − 2µmαc)

)m
. (3.24)

Similarly to the previous section we find the critical value βc as solution of

qe−µmλ
(

(1 − 2µmαrβ)β

(1 − 2µmβ)β(1 − 2µmαc)

)
= qβc

and µ as a parameter to choose so that βc is as small as possible. Since optimization over

µ appears to be rather difficult, we choose µ =
1−αc

λ
2αrm

. Finally we have βc as the solution of

qe−( λ
αr

−1) λ

αr

(
1 − (1 − αr

λ )βc

1 − (1 − αr
λ ) βc

αr

)βc

= qβc

We summarize the results from this subsection in the following theorem.

Theorem 3.2. Consider the SIMO system from (3.4). Assume that components of h and

W are i.i.d. complex Gaussian with zero-mean and unit variance. Additionally assume that

s ∈ { e
j2π
q√
m
, e

j4π
q√
m
, . . . , 1√

m
}m and that q is an integer power of 2. Further assume that the

out-sphere decoder is used for solving an ML detection problem in a SIMO system described

by (3.4). Its expected complexity ECc
osd (averaged over the channel and noise statistics)

can be upper bounded in the following way

ECc
osd ≤ mqβcm.

The constant βc can be obtained as solution of

qe−( λ
αr

−1) λ

αr

(
1 − (1 − αr

λ )βc

1 − (1 − αr
λ ) βc

αr

)βc

= qβc

where λ = d2s
m2 , ds is the initial radius, and αc = 4π

(q sin π
q
)2

as given in (3.12).
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3.4 Approximate non-coherent ML detection

As we have seen in the previous section the out-sphere decoder solves the problem of non-

coherent ML detection exactly. For large dimensions m of the problem in the real case its

expected complexity is significantly smaller than the exhaustive search. However, it still

remains true that the computational complexity of the out-sphere decoder is upper-bounded

by an exponential function which suggests that for large m the algorithm may be difficult

to implement. Hence in this section we consider the scenarios when it is not necessary that

the problem of non-coherent detection is solved exactly but rather approximately. We will

introduce several polynomial algorithms and analyze the quality of their approximation. As

a measure of their success, the probability of error will be considered.

Effectively in this section, we focus on finding a computationally efficient approximate

solution to (3.3). In particular, we will focus on solving a relaxed version of (3.3)

max
Q≥0,Qii=1

Tr (XX∗Q). (3.25)

(This is a well-known semi-definite programming (SDP) relaxation, often used for obtaining

approximate solutions to difficult combinatorial problems. The interested reader can find

more on this relaxation in [41] and [79] and on its applications in communications in the

excellent references [68], [63], [69], [1], [94], and [57]. Here we only mention the fact that

solving (3.25) can be done by a host of efficient polynomial time methods [12], [109], and

[79]. Furthermore, we would also like to point out that a similar relaxation was successfully

introduced for the problem of blind detection in the case of the orthogonal space-time block

codes [66] and in the context of coherent detection with M-PSK signalling in [67].)

3.4.1 A simple rounding algorithm

In order to gain more intuition about the problem at hand and to further understand

the difficulties, in the rest of this section we introduce a simple polynomial time (in fact

quadratic) approximate algorithm for solving (3.3) when q = 2, while leaving the detailed
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analysis of (3.25) for section 3.4.2.

Now, let Q̄ be the solution of

max Tr (XX∗Q)

subject to −1 ≤ Qij = Qji ≤ 1, 1 ≤ i, j ≤ T, i 6= j

Qii = 1, 1 ≤ i ≤ T. (3.26)

Furthermore, let r be a vector with zero-mean unit-variance Gaussian i.i.d. components.

Let ŝr = sgn(Qr) be the detected codeword. [Remark: in the rest of the chapter we will

use the shorter term codeword when we refer to the transmitted/detected symbol vector s,

although our system does not assume any error correcting code.] We refer to this procedure

of detecting a codeword as Algorithm Round (AR). Although this algorithm is very simple,

and certainly not original, it turns out that it has the same diversity performance as the

exact ML. To see this we will compute its pairwise error probability (PEP). We would like

to point out, that in order to facilitate the derivations, we assume that as stated above,

q = 2. However, we mention that our proofs can be generalized to the case of arbitrary q.

Clearly, since the objective in (3.26) is a linear function the optimum will be achieved

at an extreme point of the region of optimization. This means that Q̄ij ∈ {−1, 1} for any

i, j (if it happens that the (i, j)-th component of XX ∗ is zero, we can set the corresponding

(i, j)-th component of Q̄ to say 1). It is not difficult to check that there are 2
T (T−1)

2 possible

candidates for Q̄. Let {Q1, Q2, . . . , Q
2

T (T−1)
2

} be this set of all possible candidates for Q̄.

Clearly, for one of them (say, Qt) it is true that Qt = T sts
∗
t . It is also easy to check that

if Q̄ = Qt then ŝr = st (or ŝr = −st, which is easily resolved by a pilot symbol). Then it

easily follows that the probability of Algorithm Round making an error (i.e., not detecting

st) is

Pe(Algorithm Round) =

2T (T−1)/2∑

t=1

PAR(error|stis sent)P (stis sent)

where PAR(error|stis sent) can be upper-bounded in the following way:
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PAR(error|stis sent) ≤
∑

Qi,i6=t
PAR(Qiis detected|stis sent). (3.27)

First, let us note that

PAR(Qiis detected|stis sent) ≤ PAR(Tr(XX∗Qi) ≥ TTr(XX∗sts
∗
t )|stis sent). (3.28)

Now we compute an upper-bound on PAR(Tr(XX∗Qi) ≥ TTr(XX∗sts∗t )|stis sent).

Since we assume that st was transmitted, it holds that X =
√
ksth+W where, as earlier,

k = ρT . Replacing this value for X in (3.28), we obtain

PAR(Tr(XX∗Qi) ≥ TTr(XX∗sts
∗
t )|stis sent) = P (Tr(




h

W




∗

Qn




h

W


 ≥ 0|st is sent),

(3.29)

where

Qn =



√
ks∗t

I


 (

Qi
T

− sts
∗
t )

[√
kst I

]
=



√
ks∗t

I



[
Li st

]


Di 0

0 −1






L∗
i

s∗t



[√

kst I

]

=



√
ks∗tLi

√
k

si st






Di 0

0 −1






√
kL∗

i st s∗i
√
k s∗t


 ,

and Li is unitary, and Di is a diagonal matrix such that Qi = TLiDiL
∗
i . Although it is

possible to compute explicitly the probability in (3.29), we will find that it is sufficient to

find its Chernoff bound. In particular,

PAR(Tr(XX∗Qi) ≥ TTr(XX∗sts
∗
t )|stis sent) ≤ min

µ
Ee

µ(Tr(

2
6664
h

W

3
7775

∗

Qn

2
6664
h

W

3
7775))

=

∫
e

−Tr(

2
6664
h

W

3
7775

∗

(I−µQn)

2
6664
h

W

3
7775)

dhdW

πN
=

1

det(I − µQn)N
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We first simplify the determinant in the denominator as

det(I − µQn) = det(I − µ



L∗
i (ksts

∗
t + 1)Li (k + 1)L∗

i st

(k + 1)s∗tLi (k + 1)






Di 0

0 −1


)

= det



I − µL∗

i (ksts
∗
t + 1)LiDi µ(k + 1)L∗

i st

−µ(k + 1)s∗tLiDi 1 + µ(k + 1)




where we used the fact that det(I −XY ) = det(I − Y X). Then we can further write

det(I − µQn) = (1 + µ(k + 1))det(I − µL∗
i (ksts

∗
t + 1)LiDi +

µ2(k + 1)2

1 + µ(k + 1)
L∗
i ksts

∗
tLiDi)

≥ (1 + µ(k + 1))det(I − µI − µL∗
i ksts

∗
tLiDi +

µ2(k + 1)2

1 + µ(k + 1)
L∗
i ksts

∗
tLiDi)

=
(1 + µ(k + 1))

(1 − µ)−rank(Qi)
det(I + L∗

i sts
∗
tLiDi(

−µk(1 + µ(k + 1)) + µ2(k + 1)2

(1 − µ)(1 + µ(k + 1))
)

=
(1 + µ(k + 1))

(1 − µ)−rank(Qi)
det(1 + s∗tLiDiL

∗
i st(

−µk(1 + µ(k + 1)) + µ2(k + 1)2

(1 − µ)(1 + µ(k + 1))
)

=
(1 + µ(k + 1))

(1 − µ)−rank(Qi)
det(1 + s∗tQist(

−µk(1 + µ(k + 1)) + µ2(k + 1)2

(1 − µ)(1 + µ(k + 1))
).

The second line is true since (I ≥ Di = L∗
iLiDi) ⇒ det(I) ≥ det(Di) and the eigenvalues

(diagonal elements of TDi) of the T × T symmetric matrix Qi with entries from the set

{−1, 1} are in the interval [−T, T ]. After some further algebraic transformations we obtain

det(I − µQn) ≥ (1 − µ)rank(Qi)−1(k + 1)(V (it)
r − 1)(−µ+ ξ(1)

r )(−µ+ ξ(2)
r )

with

ξ(1)r =
V

(it)
r − 1 +

√
(V

(it)
r − 1)2 + 4(1−V (it)

r )(k+1)
k2

2(V
(it)
r − 1)k+1

k

ξ(2)r =
V

(it)
r − 1 −

√
(V

(it)
r − 1)2 + 4(1−V (it)

r )(k+1)
k2

2(V
(it)
r − 1)k+1

k

and V
(it)
r = s∗tQist. Although our results will hold for any SNR, to make writing less tedious
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in the rest of this section we consider only the case of large SNR. Therefore the previous

results simplify to

PAR(Tr(XX∗Qi) ≥ TTr(XX∗sts∗t )|stis sent) ≤ 1
(
µ(1 − µ)rank(Qi)k(1 − V

(it)
r )

)N . (3.30)

In order to make the previous bound as tight as possible we minimize the right-hand side

over µ. Let µ̂ be the optimal µ. It is not difficult to see that it holds

µ̂ =
1

1 + rank(Qi)
.

Choosing this value for µ, (3.30) becomes

PAR(Tr(XX∗Qi) ≥ TTr(XX∗sts
∗
t )|stis sent) ≤ 1

(
1

rank(Qi)+1
(1 − 1

rank(Qi)+1
)rank(Qi)k(1 − V

(it)
r )

)N .

(3.31)

Replacing the previous inequality in (3.27) we finally obtain

PAR(error|stis sent) ≤
∑

Qi,i6=t
PAR(Qiis detected|stis sent)

≤
∑

Qi,i6=t

1
(

1
rank(Qi)+1

(1 − 1
rank(Qi)+1

)rank(Qi)k(1 − V
(it)
r )

)N

≤
∑

Qi,i6=t

1
(

1
T+1(1 − 1

T+1)Tk(1 − V
(it)
r )

)N

≤ 2T (T−1)/2 max
i6=t

1
(

1
T+1(1 − 1

T+1 )Tk(1 − V
(it)
r )

)N . (3.32)

Recall that in the case of the exact ML detection, which requires algorithms — none of

which are of polynomial complexity, we have for the same probability of error

PML(error|stis sent) ≤
∑

si,i6=t

1

(k (1−V (it))
4 )N

≤ 2T max
i6=t

1

(k (1−V (it))
4 )N

(3.33)
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where V (it) = s∗i sts
∗
t si.

We summarize the previous results in the following theorem.

Theorem 3.3. Consider the problem of non-coherent ML detection for a SIMO system

described in (3.1). Assume that the codeword st was transmitted. Then the probability that

an error occurred if AR algorithm was applied to solve (3.3), can be upper bounded in the

following way

PAR(error|stis sent) ≤
∑

Qi,i6=t

1
(

1
T+1(1 − 1

T+1)TρT (1 − V
(it)
r )

)N .

Proof. Follows from the previous discussion.

The performances of the ML and the AR algorithms are shown in Figure 3.6. In the

simulated system we chose T = N = 10 and 4- PSK, i.e., q = 4. As can be seen, the AR

algorithm indeed has the same diversity as the exact ML algorithm. As expected, since the

AR algorithm is only an approximation, it has a coding loss. According to Figure 3.6 this

coding loss is roughly 1 dB for the simulated system.

In addition to the AR and the exact ML, the performance of a simple heuristic to which

we refer as MRC is shown on Figure 3.6. The MRC heuristic is based on the use of a

training symbol to first estimate the channel. As mentioned earlier, in order to avoid the

sign ambiguities when solving (3.3) one of the components of vector st (say, the first) has to

be known at the receiver. Based on that, the receiver can form an estimate of h as the first

row of the matrix X. Then the rest of the components of the vector s can be determined

according to the maximal combining ratio (MRC) rule.

The previous MRC heuristic is relatively simple. We denote a solution that it outputs

as sMRC and summarize it below.

MRC-algorithm (given for q = 2; for q ≥ 4 it can be defined analogously):

Input: X, q = 2, Xi,1:N -the i-th row of X.

1. Let ĥ = Xi,1:N .
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2. sMRCi = sign(ĥX∗
i,1:N ).

In some sense this is a simplified version of the AR algorithm. The MRC algorithm

differs from the AR algorithm in the fact that it does not compute the entire matrix XX ∗,

but rather only its first row. Therefore, the MRC is a faster algorithm than the AR.

However, as Figure 3.6 suggests, it does not perform as well as the AR or the exact ML

algorithm.
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Figure 3.6: Comparison of symbol error rate, AR, ML, MRC, and SDP q=4, T=N=10

Clearly, comparing (3.32) and (3.33), it follows that the AR algorithm has the same

diversity (the exponent of the SNR ρ) as the exact ML algorithm. Of course, since the AR

algorithm is only an approximation, the exact ML algorithm still has significant advantage

in the coding gain. This explains why the performance (symbol error rate) of the AR

algorithm is somewhat worse than the performance of the exact ML. In order to bridge this

gap in practical performance, in the following section we introduce the well known SDP

relaxation to construct an algorithm whose theoretical performance (in terms of diversity)
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will match those of the AR and the exact ML. However, unlike AR, new SDP-relaxation-

based algorithm will have significantly smaller coding loss, which will reflect on a symbol

error performance almost identical to the one of the exact ML. In fact we can give a proven

bound on the coding loss.

3.4.2 SDP relaxation

In this subsection we return to the main topic of this section, namely to the analysis of an

SDP-based algorithm for solving the ML-detection problem in the non-coherent case. More

on this subject can be found in [86].

Recall that in a SIMO system when the channel information is not available at the

receiver ML detection is equivalent to solving the following problem

max
s∈S

Tr (XX∗ss∗). (3.34)

As we have already mentioned in the previous section, we will be interested in the analysis

of

max
Q≥0,Qii=1

Tr (XX∗Q), (3.35)

which is the well-known SDP relaxation of (3.34). Let Q̂ and sML denote the solutions to

(3.35) and (3.34), respectively. Then since (3.35) is a relaxation of (3.34) it holds that

Tr (XX∗Q̂) ≥ TTr(XX∗sMLs
∗
ML). (3.36)

What is a bit more interesting is that it can be shown (see [71], [84], and [114]) that

αTr(XX∗Q̂) ≤ TTr(XX∗sMLs
∗
ML), (3.37)

where α is a constant. More precisely, if q = 2 then as shown in [71] α = 2
π , and if q ≥ 4

then as shown in [84] and [114] α = (q sin(π/q))2

4π . Clearly, for any value q ≥ 2 we have that

2
π ≤ α ≤ π

4 .
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Now, let L be any lowest rank matrix such that LL∗ = Q̂, and r be a vector with

zero-mean unit-variance complex Gaussian i.i.d. components. Let φ be vector of phases of

components of Lr. If 2πm−π
q ≤ φi <

2πm+π
q , 1 ≤ i ≤ T , m is an integer, then φ̂i = 2πm

q .

Finally let

ŝ =
ejφ̂√
T
. (3.38)

Then one can write (see [71], [84], and [114])

αTr (XX∗sMLs
∗
ML) ≤ E|rTr(XX∗ŝŝ∗). (3.39)

To make the connection between (3.37) and (3.39) clearer, we will repeat several of the

most critical steps used in their derivation in the case when q = 2 in [71]. Let G = XX ∗.

Then the following facts follow from [71]

TTr (XX∗sMLs
∗
ML) ≥ TE|rTr(XX∗ŝŝ∗) = TE|rTr(Gŝŝ∗)

= TE|r
∑

i,j

Gij ŝiŝ
∗
j =

∑

i,j

GijE|r(T ŝiŝ
∗
j)

=
2

π

∑

i,j

Gijarcsin(Q̂ij) =
2

π

∑

i,j

Gijarcsin(Q̂) (3.40)

where arcsin(Q̂) is a matrix whose i, j-th component is arcsin(Q̂ij). Nesterov then in [71]

continued and proved the main point

arcsin(Q̂) ≥ Q̂. (3.41)

Combining (3.36), (3.40), and (3.41) we finally have

TTr (XX∗sMLs
∗
ML) ≥ TE|rTr(XX∗ŝŝ∗) =

2

π
Tr(Garcsin(Q̂))

≥ 2

π
Tr(GQ̂) ≥ 2

π
TTr(GsMLs

∗
ML) =

2

π
TTr(XX∗sMLs

∗
ML).

(3.42)



76

Now, (3.37) and (3.39) easily follow from (3.42).

Effectively (3.39) states that one can construct a suboptimal solution to (3.34) which

has a guaranteed performance. Of course, strictly speaking, the performance is guaranteed

only in the expected sense. However, if we repeat the randomized procedure a sufficient

number of times, we are very likely to obtain an instance with a cost whose value is greater

than the true expectation. In fact, it was shown in [34] that, with certain modifications, the

expectation in (3.39) can indeed be omitted. Hence, there is a polynomial time algorithm

which provides a suboptimal solution to (3.34), ŝ, such that

αTr (XX∗sMLs
∗
ML) ≤ Tr (XX∗ŝŝ∗). (3.43)

We refer to the previous procedure of generating ŝ as SDP algorithm and give its explicit

steps below.

SDP algorithm:

Input: X, q, count = 0, Obj = 0, φ̄ = 0.

1. Solve (3.25). Let Q̂ be the optimal solution.

2. Find the lowest rank L such that LL∗ = Q̂. Let rQ be the rank of Q̂.

3. count = count + 1

3.1. Generate rQ × 1 vectors rr and ir with i.i.d. zero-mean unit-variance Gaussian

components. If q = 2 then r = rr, else r = 1√
2
(rr + ir

√
−1).

3.2. Let φ be the vector of phases of components of Lr. If 2πm−π
q ≤ φi <

2πm+π
q , 1 ≤

i ≤ T , m is an integer, then φ̂i = 2πm
q .

3.3. If Obj ≤ Tr(XX∗φ̂φ̂∗) then Obj = Tr(XX∗φ̂φ̂∗) and φ̄ = φ̂.

3.4. count = count + 1.

4. If count ≤ 10 go to 3.
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5. Let φ̂ = φ̄, ŝ = ejφ̂√
T

.

The previously described SDP algorithm is obtained based on the relaxation (3.25)

of the original ML detection problem (3.3). Recall that the AR algorithm described in

the previous section was based on the relaxation (3.26) of the same original ML detection

problem (3.3). Assume that the AR has smaller probability of error than SDP. Then it has

to happen that AR sometimes finds solution while SDP does not. If AR finds a solution

then from (5) we have that Q̄ = sts
∗
t . However, this solution is also admissible in (3.25),

i.e., the SDP can find it too.

What can happen is that there may be some other Q producing the same value of the

objective in SDP in (3.25) which may not be admissible in AR in (3.26). However, since the

objective is linear, this can happen only if some of elements of the matrix XX ∗ are zero.

Given that the problem is of statistical nature and that all random variables are continuous

the probability of this event is zero. Therefore the probability of error of the AR algorithm

can not be lower than the probability of error of the SDP algorithm.

Of course, it is possible to go around this point by slightly modifying the original SDP

depending on whether XX∗ has zeros or not. The modification would be that after solving

(3.25) SDP fixes the positions of the matrix Q, which correspond to the positions of zeros

in XX∗ the same way the AR does.

Lemma 3.1. Consider the problem of non-coherent ML detection for a SIMO system de-

scribed in (3.1) in the high-SNR regime. Assume that the codeword st was transmitted.

Then the probability that an error occurred if the SDP algorithm was applied to solve (3.3),

PSDP (error|stis sent), can be upper bounded in the following way

PSDP (error|stis sent) ≤ PAR(error|stis sent) ≤ const.

ρN
.

Proof. Follows from the previous discussion.

From the previous Lemma it is clear that the SDP algorithm will achieve the same

diversity as the exact ML and the AR algorithm.
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The performance of the SDP algorithm is shown in Figure 3.6. As we have already

said, in the simulated system we chose T = N = 10 and 4-PSK (i.e. q = 4). As can be

seen from Figure 3.6, the SDP algorithm indeed has the same diversity as the exact ML

algorithm. Also, as expected, since the SDP-algorithm is only an approximation, it has a

coding loss. However, according to Figure 3.6 this coding loss is almost negligible compared

to the coding loss from which the AR and the MRC algorithms suffer. This in fact is

an interesting point. It effectively states that if we have available limited computational

resources at the receiver then a simple AR algorithm which is much faster than the SDP

can be implemented while guaranteeing full diversity with a small coding loss. However, if

computational resources at the receiver are somewhat larger, then Figure 3.6 suggests that

the coding loss can in fact be almost completely eliminated using the SDP algorithm.

Although the coding loss which the SDP algorithm suffers is negligible, we were not able

to quantify it explicitly. In order to do that we now introduce a slight modification of the

SDP algorithm. Assume that ŝ is the solution of SDP algorithm. Then let

s̄ = arg maxs,|s∗ŝ|2≥αTrXXss∗ (3.44)

where α is as defined earlier. We refer to the algorithm whose solution is s̄ as SDPLS

algorithm (shortened for SDP algorithm+Limited Search) and give its explicit steps below

SDPLS algorithm:

Input: X, q, count = 0, Obj = 0, φ̄ = 0.

1. Solve (3.25). Let Q̂ be the optimal solution.

2. Find the lowest rank L such that LL∗ = Q̂. Let rQ be the rank of Q̂.

3. count = count + 1

3.1. Generate rQ × 1 vectors rr and ir with i.i.d. zero-mean unit-variance Gaussian

components. If q = 2 then r = rr, else r = 1√
2
(rr + ir

√
−1).
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3.2. Let φ be vector of phases of components of Lr. If 2πm−π
q ≤ φi <

2πm+π
q , 1 ≤ i ≤

T , m is an integer, then φ̂i = 2πm
q .

3.3. If Obj ≤ Tr(XX∗φ̂φ̂∗) then Obj = Tr(XX∗φ̂φ̂∗) and φ̄ = φ̂.

3.4. count = count + 1.

4. If count ≤ 10 go to 3.

5. Let φ̂ = φ̄, ŝ = ejφ̂√
T

.

6. Solve (3.44). Let s̄ be the solution.

[Remark: We used 10 rounding iterations in the description of the SDPLS algorithm.

We would like to emphasize that there is no particular reason which would explain what

is the optimal number of these iterations. We used 10 and obtained decent performance.]

Roughly speaking, the main idea of the SDPLS algorithm is to improve on SDP by doing

an additional limited search over the codewords which have the squared inner product with

ŝ greater than α. With this improvement we will be able to provide sound proofs regarding

the coding loss of the SDP relaxation in the following section.

3.4.3 Computing the PEP

In this section we compute the PEP-type bound on the probability of error of the SDPLS

algorithm. The probability of error can be written as

Pe =

qT∑

t=1

P (error|stis sent)P (stis sent). (3.45)

In the remainder of this section, we derive an upper bound on the P (error|stis sent). To

facilitate this derivation, let us assume that there is a Genie who can tell us if the ŝ found

in (3.38) is such that |ŝ∗st|2 < α. We formulate a slightly modified version of the SDPLS
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algorithm and refer to it as the Genie. Its solution ŝ1 is such that

if |ŝ∗st|2 < α ŝ1 = ŝ

if |ŝ∗st|2 ≥ α ŝ1 = s̄ (3.46)

where ŝ is as found in (3.38). The probability of error for the Genie algorithm is given by

P ge =

qT∑

i=1,i6=t
Pg(error|stis sent)P (stis sent) (3.47)

where Pg(error|stis sent) denotes the probability that an error occurred if the codeword

st was sent and Genie algorithm was applied. Clearly, our SDPLS algorithm will have

smaller probability of error than the Genie. Namely, the Genie and SDPLS differ in the

case when |ŝ∗st| < α. The Genie keeps ŝ as a solution which is incorrect since |ŝ∗st| < α < 1

implies ŝ 6= st. Since in the only case when they differ Genie certainly makes a mistake,

it can not have smaller probability of error than SDPLS. Therefore if we prove that Genie

attains a certain probability of error, then SDPLS does so too. Hence, we concentrate on

bounding the probability of error of the Genie, i.e., on bounding Pg(error|stis sent). The

bound obtained this way will also be a bound on the probability of error of the SDPLS. To

this end, note that

Pg(error|stis sent) = P (ŝ1 6= st) = P (∃i : ŝ1 = si 6= st) ≤
∑

si 6=st

P (ŝ1 = si 6= st)

≤
∑

|s∗i st|2<α
P (ŝ1 = si 6= st) +

∑

|s∗i st|2≥α
P (ŝ1 = si 6= st). (3.48)

Let us consider P (ŝ1 = si 6= st, |s∗i st|2 < α) in more detail. (For brevity of notation, in the

following expressions we omit that everything is conditioned on st being transmitted, and

that |s∗i st|2 < α.) So,

P (ŝ1 = si 6= st) = P (ŝ1 = si 6= st|ŝ1 = ŝ)P (ŝ1 = ŝ) + P (ŝ1 = si 6= st, ŝ1 6= ŝ). (3.49)
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Let us define function C as C(s) = TrXX∗ss∗. Furthermore, let E denote the event that

(ŝ1 = si 6= st, ŝ1 6= ŝ). Clearly, E implies that C(si) = C(ŝ1) ≥ C(ŝ) ≥ αC(sML) ≥ αC(st),

which further means that C(si) ≥ αC(st). Using this, we obtain P (ŝ1 = si 6= st, ŝ1 6=

ŝ) ≤ P (C(si) ≥ αC(st)). Also, following similar argument, it is not difficult to see that

P (ŝ1 = si 6= st|ŝ1 = ŝ)P (ŝ1 = ŝ)) ≤ P (C(si) ≥ αC(st)). Replacing the obtained inequalities

in (3.49) we have

P (ŝ1 = si 6= st, |s∗i st|2 < α) ≤ 2P (C(si) ≥ αC(st)). (3.50)

Now, let us consider P (ŝ1 = si 6= st, |s∗i st|2 ≥ α). It is not that difficult to see that

P (ŝ1 = si 6= st, |s∗i st|2 ≥ α) ≤ P (C(si) ≥ C(st)). (3.51)

In order to precisely establish (3.51) we need the following implication

(ŝ1 = si 6= st, |s∗i st| ≥ α) =⇒ |ŝ∗st| ≥ α.

We will show that the previous implication holds using a contradiction argument. Assume

that it is not correct. Then it means that (ŝ1 = si 6= st, |s∗i st| ≥ α) is true and |ŝ∗st| ≥ α is

not true. If |ŝ∗st| ≥ α is not true then |ŝ∗st| < α is true. Then ŝ1 = ŝ is true as well. Further

we have si = ŝ1 = ŝ and |s∗i st| = |ŝ∗st| < α. This is a contradiction since it was assumed

that (ŝ1 = si 6= st, |s∗i st| ≥ α) is true and hence |s∗i st| ≥ α. Therefore the implication

(ŝ1 = si 6= st, |s∗i st| ≥ α) =⇒ |ŝ∗st| ≥ α.

is indeed true.

Substituting (3.50) and (3.51) in (3.48), we finally obtain

Pg(error|stis sent) ≤
∑

|s∗i st|2≤α
2P (C(si) ≥ αC(st)) +

∑

|s∗i st|2≥α
P (C(si) ≥ C(st)). (3.52)
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Let

Pit||s∗i st|2<α = P (C(si) ≥ αC(st)|stis sent, |s∗i st|2 < α)

Pit||s∗i st|2≥α = P (C(si) ≥ C(st)|st is sent, |s∗i st|2 ≥ α).

In the remainder of this section, we compute bounds on Pit||s∗i st|2<α and Pit||s∗i st|2≥α.

Pit||s∗i st|2<α = P (Tr(X∗si)(X∗si)∗ ≥ αTr(X∗st)(X∗st)∗|st is sent). (3.53)

Since we assume that st was transmitted, it holds that X =
√
ksth +W where, as earlier,

k = ρT . Replacing this value for X in (3.53), we obtain

Pit||s∗i st|2<α = P (Tr(




h

W




∗

Qn




h

W


 ≥ 0|st is sent), (3.54)

where

Qn =



√
ks∗t

I


 (sis

∗
i − αsts

∗
t )

[√
kst I

]
=



√
ks∗t

I



[
si st

]



1 0

0 −α






s∗i

s∗t



[√

kst I

]

=



√
kψ∗

it

√
k

si st






1 0

0 −α






√
kψit s∗i
√
k s∗t


 ,

and ψit = s∗i st. Although it is possible to compute explicitly the probability in (3.54), we

will find that it is sufficient to find its Chernoff bound. In particular,

Pit||s∗i st|2<α ≤ min
µ
Ee

µ(Tr(

2
6664
h

W

3
7775

∗

Qn

2
6664
h

W

3
7775))

=

∫
e

−Tr(

2
6664
h

W

3
7775

∗

(I−µQn)

2
6664
h

W

3
7775)

dhdW

πN
=

1

det(I − µQn)N
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where {µ|I − µQn ≥ 0}. We first simplify the determinant in the denominator as

det(I − µQn) = det(I − µ



kψitψ

∗
it + 1 (k + 1)ψit

−α(k + 1)ψ∗
it −α(k + 1)1


).

After some further algebraic transformations we obtain

det(I − µQn) = (k + 1)α(V (it) − 1)(−µ+ ξ(1))(−µ+ ξ(2))

with

ξ(1) =
V (it) − α+ 1−α

k +

√
(V (it) − α+ 1−α

k )2 + 4α(1−V (it))(k+1)
k2

2α(V (it) − 1)k+1
k

ξ(2) =
V (it) − α+ 1−α

k −
√

(V (it) − α+ 1−α
k )2 + 4α(1−V (it))(k+1)

k2

2α(V (it) − 1)k+1
k

and V (it) = ψitψ
∗
it. As earlier, our results can be made precise so that they hold for any

SNR. However, to make writing less tedious in the rest of this section we consider only the

case of large SNR. Assuming µ = 1
2 , the previous results simplify to

Pit||s∗i st|2<α ≤ 1

(k (α−V (it))2

4(1−V (it))
)N
. (3.55)

To compute the bound on P (C(si) ≥ C(st)|stis sent, |s∗i st|2 ≥ α) we will use a well-known

result from the literature (see, e.g., [51])

Pit||s∗i st|2≥α ≤ 1

(k (1−V (it))
4 )N

. (3.56)

Now we can substitute the results from (3.55) and (3.56) in (3.52) and obtain

Pg(error|stis sent) ≤
∑

|s∗i st|2<α
2

1

(k (α−V (it))2

4(1−V (it))
)N

+
∑

|s∗i st|2≥α

1

(k (1−V (it))
4 )N

= Bpep(ρ). (3.57)

Recall that in the case of the exact ML detection, which requires algorithms, none of which
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are of polynomial complexity, we have for the same probability of error

PML(error|stis sent) ≤
∑

|s∗i st|2<α

1

(k (1−V (it))
4 )N

+
∑

|s∗i st|2≥α

1

(k (1−V (it))
4 )N

= Bpep
ML(ρ). (3.58)

Clearly, comparing (3.57) and (3.58) it follows that the SDPLS algorithm based on the well-

known SDP relaxation (slightly refined here for the purposes of the valid proof) has the same

diversity as the exact ML and the AR algorithm. Of course, since the SDPLS algorithm

is only an approximation, the exact ML solution still has an advantage of ( 1−V (it)

α−V (it) )
2 in the

coding gain. However, as the analysis conducted in Section 3.2 hints (and the simulation

result on Figure 3.6 confirms) the AR algorithm has a significantly bigger coding loss than

the SDPLS algorithm analyzed in this section.

It should also be noted that a very similar result related to the diversity of the SDP-

based algorithm in the context of coherent (channel known at the receiver) ML detection

has recently been shown in [60].

We summarize the previous results in the following theorem.

Theorem 3.4. Consider the problem of non-coherent ML detection for a SIMO system

described in (3.1) in high-SNR regime. Assume that the codeword st was transmitted. Then

the probability that an error occurred if SDPLS algorithm was applied to solve (3.34) can

be upper bounded in the following way

P (error|stis sent) ≤
∑

|s∗i st|2<α
2

1

(ρT (α−V (it))2

4(1−V (it))
)N

+
∑

|s∗i st|2≥α

1

(ρT (1−V (it))
4 )N

.

Proof. Follows from the previous discussion.

3.4.4 Asymptotic analysis, T → ∞

In this section we explicitly compute the ratio of the bounds on the probability of error

(P (error|stis sent) and PML(error|stis sent)) in the case when T → ∞. We first explicitly

analyze the special case q = 2 which corresponds to 2-PSK. Afterwards we derive the
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corresponding results for general q-PSK.

3.4.4.1 q = 2

In this section we will compute in the limit of large T the following quantity

Kα =
∑

|s∗i st|2<α

1

( (α−V (it))2

(1−V (it))
)N
. (3.59)

Let xmin =
⌊
T (1−√

α)
2

⌋
. Then it is not difficult to see that

Kα =

T−(xmin+1)∑

x=xmin+1

(
T

x

)
1

(
(α−( T−2x

T
)2)2

(1−( T−2x
T

)2)
)N
. (3.60)

Before proceeding further let us examine more carefully the behavior of
(T
x

)
when T is large.

First let x = p1T . Then we have that
(T
x

)
= T !

(p1T )!(p2T )! , where p1 + p2 = 1. Furthermore

we have that

lnT ! = (T +
1

2
) ln T − T +

1

2
ln(2π) + ln(1 + O(

1

T
)) (3.61)

and similarly

ln(piT )! = piT lnT +
1

2
lnT + piT ln pi +

1

2
ln pi − piT +

1

2
ln(2π) + ln(1 + O(

1

T
)). (3.62)

Combining (3.61) and (3.62) we obtain

(
T

x

)
=

T !

(p1T )!(p2T )!
=

eTH(p1)

√
2Tπp1(1 − p1)

(1 + O(
1

T
)) (3.63)
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where H(p1) = −p1 ln p1 − (1 − p1) ln (1 − p1) is the entropy function. Replacing (3.63) in

(3.60) and assuming T → ∞ we further have

Kα =

T−(xmin+1)∑

x=(xmin+1)

eTH(x/T )

√
2πx(1 − x/T )

1

( (α−(1−2x/T )2)2

1−(1−2x/T )2
)N

=

∫ 1−(xmin+1)/T

(xmin+1)/T
T
eTH(p1)(1 + O( 1

T ))√
2Tπp1(1 − p1)

dp1

( (α−(1−2p1)2)2

1−(1−2p1)2
)N
. (3.64)

To solve the previous integral we will use the saddle point method. Let

g(p1) =
T (1 + O( 1

T ))
√

2Tπp1(1 − p1)(
(α−(1−2p1)2)2

1−(1−2p1)2
)N
.

The saddle point method gives

Kα = eTH(p0)g(p0)

√√√√ 2π

T d2H(p1)
dp21

|p1=p0
(1 + O(

1

T
)) (3.65)

where p0 is solution to dH(p1)
dp1

= 0. Then it easily follows

p0 =
1

2
,H(p0) = ln 2, g(p0) =

T√
Tπ/2α2N

,
d2H(p1)

dp2
1

|p1=p0 = 4.

Using all of this (3.65) becomes

Kα =
2TT√
Tπ/2α2N

√
π

2T
=

2T

α2N
(1 + O(

1

T
)). (3.66)

We summarize the previous analysis in the following theorem.

Theorem 3.5. Consider the problem of non-coherent ML detection for a SIMO system de-

scribed in (3.1) in high-SNR regime. Assume that the elements of the transmitted codeword

st are chosen from 2-PSK constellation and that T → ∞. Let Bpep(ρ) defined in (3.57)

be the PEP type bound on the probability that an error occurred if SDPLS algorithm was

applied to solve (3.34). Let Bpep
ML defined in (3.58) be the PEP type bound on the probability
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that an error occurred if an exact ML algorithm was applied to solve (3.34). Then

Bpep(ρ/α2) ≤ Bpep
ML(ρ)(1 + O(

1

T
)).

and

10 log
1

α2
= 3.92dB.

Proof. The fact that if q = 2 then α = 2
π was proved in [71]. The rest follows by combining

(3.57), (3.58), and (3.66).

3.4.4.2 General q

In this subsection we generalize the result for 2-PSK to q-PSK. In q-PSK case the elements

of a vector si are from the set Z = { 1√
T
, e

j2π
q√
T
, e

j4π
q√
T
, . . . , e

j2(q−1)π
q√
T

} and as shown in [84] and

[114] α = (q sin(π/q))2

4π . As in the previous subsection, let zl = s∗ilstl and z = [z1, z2, . . . , zT ].

Clearly the elements of z are also from the set Z. Let x1, x2, . . . , xq be the numbers of

elements in z that are equal to 1
T ,

e
j2π
q

T , e
j4π
q

T , . . . , e
j2(q−1)π

q

T , respectively. Then it easily

follows that

|s∗i st|2 = [((T −
q−1∑

i=1

xi) cos(
2(q − 1)π

q
) +

q−1∑

i=1

xi cos(
2(i − 1)π

q
))2

+ ((T −
q−1∑

i=1

xi) sin(
2(q − 1)π

q
) +

q−1∑

i=1

xi sin(
2(i − 1)π

q
))2]/T 2.

Let pi = xi/T, 1 ≤ i ≤ q, p = [p1, p2, . . . , pq−1], and

f(p) = ((1 −
q−1∑

i=1

pi) cos(
2(q − 1)π

q
) +

q−1∑

i=1

pi cos(
2(i − 1)π

q
))2

+((T −
q−1∑

i=1

pi) sin(
2(q − 1)π

q
) +

q−1∑

i=1

pi sin(
2(i − 1)π

q
))2.
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Then as in (3.60) we have

Kα =
∑

f( x

T
) < α

Pq−1

i=1
xi ≤ T

0 ≤ xi

(
T

x1x2 . . . xq−1

)
1

(
(α−f( x

T
))2

1−f( x

T
)

)N . (3.67)

It is not difficult to see that (3.63) can be generalized in the following way

(
T

x1x2 . . . xq−1

)
=

T !

(p1T )!(p2T )! . . . (pqT )!
=

eTH(p)

(2Tπ(1 −∑q−1
i pi)

∏q−1
i=1 pi)

(q−1)/2
(1+O(

1

T
)).

(3.68)

Then as in (3.64), replacing (3.68) in (3.67) we have

Kα =

∫
f(p) < α

Pq

i=1
pi ≤ T

0 ≤ pi

eTH(p)((1 −∑q−1
i=1 pi)

∏q−1
i=1 pi)

− 1
2 (1 + O( 1

T ))dp

T−(q−1)(2Tπ)
q−1
2

(
(α−f(p))2

1−f(p)

)N .

Let p0 = [1/q, 1/q, . . . , 1/q] be the solution of dH(p)
dp = 0 and let H(H(p)) be the Hessian

of H(p). Further let

g(p) =
((1 −∑q−1

i=1 pi)
∏q−1
i=1 pi)

− 1
2

T−(q−1)(2Tπ)
q−1
2

(
(α−f(p))2

1−f(p)

)N (1 + O(
1

T
)).

Then, since entropy is a convex function, we can as in (3.65), write

Kα = eTH(p0)g(p0)

(
2π

T (detH(H(p))|p=p0)
1/(q−1)

) q−1
2

(1 + O(
1

T
)). (3.69)

It is easy to see that

H(p0) = ln q,detH(H(p))|p=p0 = qq, h(p0) = 0, g(p0) =
T q−1(qq)

1
2

(2Tπ)
q−1
2 α2N

(1 + O(
1

T
)).
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Replacing these values in (3.69) we finally obtain

Kα = eT ln q T q−1(qq)
1
2

(2Tπ)
q−1
2 α2N

(
2π

T (qq)
1

q−1

) q−1
2

(1 + O(
1

T
)) =

qT

α2N
(1 + O(

1

T
)). (3.70)

We summarize the previous analysis in the following theorem:

Theorem 3.6. Consider the problem of non-coherent ML detection for a SIMO system

described in (3.1) in high-SNR regime. Assume that the elements of the transmitted code-

word st are chosen from q-PSK (q ≥ 4) constellation and that T → ∞. Let Bpep(ρ) defined

in (3.57) be the PEP-type upper bound on the probability that an error occurred if SDPLS

algorithm was applied to solve (3.34). Let Bpep
ML defined in (3.58) be the PEP-type upper

bound on the probability that an error occurred if an exact ML algorithm was applied to

solve (3.34). Then

Bpep(ρ/α2) ≤ Bpep
ML(ρ)(1 + O(

1

T
)).

Furthermore, assume that there are two SNRs — ρSDP and ρML — such that Bpep(ρSDP ) =

Bpep
ML(ρML)(1 + O( 1

T )). Then it holds

∆ρ(q) = ρSDP − ρML ≤ 20 log

(
4π

(q sin(π/q))2

)
dB.

We further have ∆ρ(4) = 3.92, ∆ρ(8) = 2.547 dB, ∆ρ(16) = 2.21 dB, and

lim
q→∞

∆ρ(q) = 2.0982 dB.

Proof. Follows by combining (3.57), (3.58), and (3.70).

Effectively, Theorem 3.6 states that if a codeword was transmitted then its averaged

(averaging is over all other codewords) bounds on pairwise probabilities of error in the case

of exact ML and approximate SDP detection differ by at most ∆ρ(q) dB.
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3.4.5 Computational complexity

At the end, let us elaborate briefly on the theoretical complexity and the practical number

of operations of the SDPLS algorithm that we have proposed. By carefully inspecting it, one

can note that due to the modification of the conventional SDP randomized algorithm, our

SDPLS algorithm, is, strictly speaking, no longer polynomial. However, for most practical

cases the additional amount of operations on top of the basic SDP core of the algorithm

is effectively negligible. To examine this let us study the case of 2- and 4-PSK (for q-PSK

similar arguments can be established). Note that the additional amount of the arithmetic

operations is equal to the number of the vectors s, |Sc|, which satisfy inequality |s∗ŝ|2 ≥

α = 2
π . These vectors can be found through exhaustive search. Clearly, in the case of 2-PSK

this number can be upper-bounded as

|Sc| ≤
⌊
T (1 −√

α)

2

⌋(
T

bT (1−√
α)

2 c

)
≤ T 4.2, if T < 60,

where we have assumed that for T < 60 the number of arithmetic operations required for

solving an SDP is 604.2. In the 4-PSK case we can numerically obtain

|Sc| ≤
∑

f( x

T
)≥α,0≤xi≤T,x1 6=T

(
T

x1x2x3

)
≤ T 4.71 ≤ T 4.8, T ≤ 24

where we have assumed that the number of arithmetic operations required for solving an

SDP of dimension T ≤ 24 is at least T 4.8.

However, for large T ,
( T
xmin

)
= 2TH(xmin/T )√

2πxmin(1−xmin/T )
(1 + O( 1

T )) (where H is the entropy

function), and one can show that

|Sc| ≥
(

T

bT (1−√
α)

2 c

)
=

2TH(b(1−√
α)/2c)

√
2πxmin(1 − xmin

T )
(1 + O(

1

T
)) =

20.47T

√
0.1817πT

(1 + O(
1

T
)).

The previous expression implies that the additional amount of computation introduced to

ensure the validity of our proof is indeed exponential, while of course in the limit of large

T the complexity of solving SDP becomes O(T 3.5). However, the exponential constant is
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two times smaller than in the exhaustive search. Therefore, in communications, where the

dimension of SIMO systems is smaller than 60 and 2-PSK signalling is used, or where the

dimension of SIMO system is smaller than 24 and 4-PSK signalling is used, the required

number of arithmetic operations for our algorithm is similar to the corresponding number

of required operations for the basic SDP.

3.5 Discussion and conclusion

In this chapter we considered the non-coherent ML detection in single-input multiple-output

communication systems with q-PSK signalling.

To solve the problem exactly in the first part of this chapter we introduced the out-sphere

decoder algorithm as an analogue to the standard sphere decoder used in the coherent de-

tection. The main contribution was analytical characterization of the algorithm’s expected

complexity.

In the second part of this chapter we proposed a modification of the SDP relaxation

for solving approximately the non-coherent ML detection in SIMO systems. The computed

PEP implies that the performance of the algorithm is comparable to that of the optimal

ML solution, but is obtained at potentially significantly lower computational complexity.

Namely, we proved that the SDP relaxation achieves the same diversity as the exact ML.

Furthermore, we proved that a modification of the SDP relaxation has Chernoff bound on

the PEP-type bound on the probability of error within a constant factor of the corresponding

bound in the exact ML case.

In addition to the analysis of the PEP performance of a modification of the standard

SDP-based method for solving non-coherent ML detection, we introduced a simple rounding

algorithm. The algorithm seems naive at first and reminds one of its counterparts (nulling

and cancelling (NC), zero-forcing (ZF)) in coherent ML detection. However, while NC and

ZF don’t perform as well as the exact ML in coherent ML detection, the rounding algorithm

that we have introduced for non-coherent detection performs very well. In fact not only

does it perform very well, but it actually provably achieves the same diversity as the exact
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ML. Numerical experiments confirmed that this indeed is true. On the other hand, since

the rounding algorithm is only an approximation, it has a coding loss compared to the exact

ML. However, as simulation results showed, this coding loss indeed exists but is no more

than 1 dB for the reasonable system dimensions.

At the end we would like to mention several possible directions for a future work. First

of all, we would like to say that although our modified SDP relaxation for non-coherent

detection requires number of arithmetic operations similar to that of the SDP, strictly

speaking it is not a polynomial time algorithm. Therefore it would be of a great interest

if one could construct a provably polynomial time algorithm which has the same PEP

performance as the one we derived in this chapter. Also, in this chapter we only analyzed

a simple SIMO system. It would be interesting to see how the results proved here can be

generalized to the MIMO case. Another important consideration would be adapting the

introduced algorithms for different types of signalling (e.g., general QAM).
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Chapter 4

Gaussian Broadcast Channel —
Linear Precoding Schemes

In the previous two chapters we considered the so-called point-to-point communication

where one or both ends (transmitter/receiver) of the communication were equipped with

several antennas. In this and the following chapter we will consider a different concept

called broadcast communications.

The sketch of a communication system where such a concept is employed is shown

in Figure 4.1. As can be seen, the system basically consists of a transmitter T which

broadcasts information to the several (M) users/receivers Ri, 1 ≤ i ≤ M . The main

difference compared to the point-to-point system from the previous two chapters is that

now one transmitter is communicating with several receivers at the same time. In a general

setting, the transmitter and each of the users can be equipped with many antennas as well.

However, in this thesis we will mostly focus on the case when the transmitter is equipped

with many antennas (typically M) and each user is equipped with one antenna.

The whole transmission process then goes (as is typical in wireless systems) via electro-

magnetic waves through the transmission medium (air). The different encoded information

(si, 1 ≤ i ≤ M) is being sent from each transmitting antenna. Since the transmission

medium is air, signals from each transmitting antenna are reaching each of the users. The

users are then combining them and trying to extract the piece of the information the trans-

mitter intended to send specifically to them.

As can immediately be seen, the main idea behind the concept of the broadcast channel
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Figure 4.1: Wireless broadcast channel

is that by using several antennas the transmitter can simultaneously send different sets of

data to different users. If the transmission medium were ideal (as would be the case in

a wire-line system) then the signals sent from a particular antenna from the transmitter

would reach only the intended user. However, since the transmission medium is air, the main

problem becomes interference that can happen at each of the receivers. Namely, assume

that the signal si from the i-th antenna is intended for the i-th user. The i-th signal will

then certainly reach the i-th user. However, since there are no physical obstacles, portions

of the other signals sj, j 6= i will reach the i-th receiver as well and interfere with the si.

This interference then of course can cause the receiver to recognize incorrectly what was the

original signal si. This simple argument immediately suggests that very important features

of a wireless broadcast channels are the transmission medium (often called channel), the

design of the information symbol vectors s at the transmitter, and their detection at the

receivers. In this and the following chapter we will focus on the design of the information

symbol vectors so that the interference effects of an open transmission medium are as

mitigated as possible.

We will consider the amount of information that can be transmitted as a parameter
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of quality of the broadcast system at hand. The overall amount of the information which

equals the summation of the amount of information transmitted to each user is often called

the sum-rate. The sum-rate capacity is defined as a maximal sum-rate that can be achieved

on a broadcast channel. The sum-rate capacity of the multi-antenna broadcast channel has

recently been computed. However, the search for efficient practical schemes that achieve

it is still ongoing. In this and the following chapter, we focus on schemes with linear

preprocessing of the transmitted data. We first propose a linear precoding design so that the

sum-rate is maximized. In terms of the achievable sum-rate, the proposed linear technique

significantly outperforms traditional channel inversion methods. It is relatively easy to note

that sometimes the overall sum-rate is maximized when some of the individual rates are

very small. In applications where we would like for every user to be served with the same

amount of information as all the other ones, this may be an unfair design. Hence to address

the fairness of serving all users with a similar amount of information from the transmitter,

we consider the problem of maximizing the minimum rate among all users (the so-called

max-min problem). This problem is shown to be quasi convex and is solved exactly via a

bisection method.

4.1 Introduction

The broadcast channel described above was introduced in [21]. Since then it has been a

subject of extensive research. The most fundamental question is characterization of its

capacity region. The capacity region is defined as a set of all individual rates that can be

achieved simultaneously by the users. A particular point on the boundary of this region

which maximizes the sum of all individual rates corresponds to the above-mentioned sum

capacity. A significant progress in analysis of the capacity region and the sum-rate capacity

of the broadcast channel has been achieved recently. It was shown (see, e.g., [14], [100],

[101], and [111]) that the sum-rate capacity of the Gaussian broadcast channel is achieved

by a scheme called dirty-paper coding (DPC) in the case where the full channel state

information (CSI) is available at both the transmitter and the receivers. In [83] it was
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shown that the same scaling law for the sum-rate capacity can be achieved even if only

partial CSI is available at the transmitter. Furthermore, in [105] the authors showed that

any point in the capacity region of the broadcast channel can be achieved by DPC. In [112]

and [75], non-linear techniques that attempt to approach those limits have been considered.

However, these schemes are often computationally prohibitive when the number of transmit

antennas is large. In this chapter we attempt to provide a less computationally extensive

alternative to the previously considered schemes.

We will assume a standard system model for the broadcast channel from Figure 4.1 with

M transmit antennas and M users, described by

r = Hs + w, (4.1)

where H is an M × M fading channel matrix whose entries are i.i.d. zero-mean, unit

variance, complex Gaussian random variables, and w is an M × 1 vector whose entries

are also i.i.d. zero-mean, variance σ2 complex Gaussian random variables which represent

additive noise at each receiver. Furthermore, s is an M × 1 vector of signals sent from the

transmit antennas, and r is an M × 1 vector whose components are the received signals

at each user. The transmitted vector s is assumed to be obtained by linear preprocessing

of the information vector u, i.e., s = kGu, where u =

[
u1, u2, ..., uM

]T
, ui is the symbol

intended for the i-th user, 1 ≤ i ≤ M , and where k is a scaling coefficient which ensures

that the power constraint is satisfied. The equivalent system model is shown on Figure 4.2.

We organize this chapter in the following way; first in Section 4.2 we propose two

possible schemes for designing the preprocessing matrix G. In Section 4.3, we propose a

possible scheme for determining the optimal value of the scaling coefficient k under the

constraint of linear preprocessing at the transmitter. In Section 4.4, we describe how to

combine the schemes from Sections 4.2 and 4.3. Finally, in Sections 4.5 and 4.6 we give

simulation results, a brief discussion, and several conclusions. A complementary version of

this chapter appeared in [93].
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Figure 4.2: Mathematical model of a wireless broadcast channel

4.2 Finding optimal preprocessing matrix G

In this section, we find the optimal preprocessing matrix G, assuming an average transmit

power constraint, E‖s‖2 = 1. Without loss of generality, we will assume that Euu∗ = I.

Then E‖Gu‖2 = Etr(Guu∗G∗) = tr(G∗G) and thus k = 1/
√

tr(G∗G). Hence, from (4.1)

we obtain

r =
HGu√
tr(G∗G)

+ w. (4.2)

The matrix G in (4.2) should be designed to optimize the performance of the overall

system in terms of both the rate as well as the bit-error rate. Often encountered in the

literature is the solution employing a regularized pseudo-inverse of the channel matrix H,

i.e., G = H∗(βI+HH∗)−1, where the coefficient β is typically chosen to maximize the signal-

to-interference-and-noise ratio (SINR) (see, e.g., [75]). However, optimizing for SINR does

not necessarily imply that the total sum rate will be maximized. This justifies the search

for a better choice for the matrix G.

We consider two optimization criteria for the design of the preprocessing matrix G.

First, we maximize the total sum rate over the space of all M ×M complex matrices G. As
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we shall see, this optimization results in a strategy where at each channel use, a subset of

users is chosen and data transmitted only to those users. Second, we consider the problem of

optimal preprocessing that maximizes the minimum rate among all of the users. Extensive

simulations imply that the best BER performance of the system is achieved when the two

strategies are combined, i.e., when a subset of users is selected and then the minimum rate

among the users in that subset is maximized.

4.2.1 Maximizing the sum rate over G

We assume that each user treats the interference as noise. Therefore the sum rate of the

broadcast channel (4.2) is given by R =
∑M

m=1 log

(
1 +

|Pp HmpGpm|2
σ2tr(G∗G)+

P
n6=m|PpHmpGpn|2

)
.

The optimal choice for the matrix G is the solution to the optimization problem

max
G

R. (4.3)

A closed-form analytic solution to (4.3) does not appear easy to find. In fact, even an

efficient algorithm that is guaranteed to numerically solve (4.3) does not seem within reach.

We thus will present an iterative scheme that may converge to a local optimum. Before

proceeding any further, we will find it useful to define numm =
∣∣∣
∑M

p=1HmpGpm

∣∣∣
2
, and

denm = σ2tr(G∗G) +
∑M

n=1,n6=m

∣∣∣
∑M

p=1HmpGpn

∣∣∣
2
. The following lemma gives a necessary

condition for the optimal G.

Lemma 4.1. Denote

∆ = diag(
(HG)11
den1

, ..,
(HG)ll
denl

, ...,
(HG)MM

denM
)

and

D = diag(
num1

den1(den1 + num1)
, ...,

numl

denl(denl + numl)
, ...,

numM

denM (denM + numM )
).

Then any G which is a solution of (4.3) is of the form G = ((σ2trD)I +H∗DH)−1H∗∆.
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Proof. It is sufficient to show that ∂R
∂Gkl

= 0 ⇒ G = ((σ2trD)I + H∗DH)−1H∗∆. It is

straightforward to show that

∂R

∂Gkl
=
Hlk(HG)∗ll

denl
−

M∑

m=1

nummHmk(HG)∗ml
denm(numm + denm)

−
M∑

m=1

σ2G∗
klnumm

denm(denm + numm)
.

Setting each of these derivatives to zero, we obtain H ∗∆ − H∗DHG − (σ2trD)G = 0, or

equivalently G = ((σ2trD)I +H∗DH)−1H∗∆.

Thus ∂R
∂Gkl

= 0 ⇒ G = ((σ2trD)I +H∗DH)−1H∗∆, which concludes the proof.

Using Lemma 1, we state the following iterative algorithm for solving (4.3).

D0 = I,∆0 = I, i = 0, R−2 = 107, R−1 = 108

Repeat while |Ri−2 −Ri−1| ≥ 10−3

1. Gi = ((σ2trDi)I+H
∗DiH)−1H∗∆i, Ri =

∑M
m=1 log

(
1 + |(HGi)mm |2

σ2tr(G∗
iGi)+

P
n6=m|(HGi)mn |2

)
.

2. numm = |(HGi)mm|2, denm = σ2tr(G∗
iGi) +

∑M
n=1,n6=m |(HGi)mn|2.

3. Di+1 = diag( num1

den1(den1+num1)
, ..., numl

denl(denl+numl)
, ..., numM

denM (denM+numM )
).

4. ∆i+1 = diag( (HGi)11
den1

, .., (HGi)ll

denl
, ..., (HGi)MM

denM
), i=i+1.

end

We refer to using the matrixG obtained from the previous iterative procedure as Method 2.1.

Since H∗((σ2trD)I+HH∗)−1 = ((σ2trD)I+H∗H)−1H∗, the initial value G0 coincides with

the one obtained by the regularized pseudo-inverse (see, e.g., [75]). Simulation results pre-

sented in the following sections imply that such a choice of initial value leads to an iterative

process that converges to a local optimum after a fairly small number of iterations (roughly

15 on average), although we have no formal proof of convergence at this time. In Figure 4.3,

the comparison of the sum rate achieved by Method 2.1 and the sum rate achieved by the

regularized pseudo-inverse are compared to the sum capacity of the broadcast channel. As

can be seen, although we have no formal proof for that, Method 2.1 significantly decreases

the gap between regularized pseudo-inverse and the sum capacity. In addition, as illustrated
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in Figure 4.3, the plain channel inverse, obtained for α = 0, is significantly outperformed

by the regularized pseudo-inverse.
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Figure 4.3: Comparison of the sum rate of Method 2.1 to the sum rate of reg. pseudo-inverse
and to the sum capacity of broadcast channel, M = 6 antennas/users

4.2.2 Maximizing the minimum rate over G

Instead of maximizing the sum rate, one may demand that the worst (active) user gets as

large a rate as possible. This criterion leads to the following optimization problem

max
G

min
i

log

(
1 +

|(HG)ii|2
σ2tr(G∗G) +

∑
j,j 6=i |(HG)ij |2

)
. (4.4)

The previous problem (or problems similar to it) have been studied and various algorithms

for solving it have been suggested throughout the literature (see, e.g., [15], [10], [102], and

[107]). Here we suggest another way of solving it based on interior point methods. Define
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B = HG. Then (4.4) can be written as

max
B

min
i

|Bii|2
σ2tr(B∗H−∗H−1B) +

∑
j,j 6=i |Bij|2

. (4.5)

Without loss of generality, we can assume that the optimal Bii are real and positive. Let

vec(B) denote a vector comprised of columns of matrix B. Then we can write

σ2tr(B∗H−∗H−1B) = σ2vec(B)∗(I ⊗H−∗H−1)vec(B).

Denoting F = I ⊗H−∗H−1, x =



<(vec(B))

=(vec(B))


 and T =



<(F ) −=(F )

=(F ) <(F )


 we have

σ2tr(B∗H−∗H−1B) = σ2x∗Tx.

Define 2M 2×2M2 matrix K(ij) with K
(ij)
(j−1)M+i,(j−1)M+i = K

(ij)
M2+(j−1)M+i,M2+(j−1)M+i

= 1

and zeros otherwise. Combining all of the above, (4.5) can be rewritten as

min
x

max
i

x∗Wix

x2
(i−1)M+i

subject to x(i−1)M+i > 0, 1 ≤ i ≤M

xM2+(i−1)M+i = 0, 1 ≤ i ≤M, (4.6)

where Wi = σ2T +
∑M

j=1,j 6=iK
(ij). Note that Wi is positive semi-definite because matrices

T and K(ij) are positive semi-definite. To solve (4.6), we first prove the following lemma.

Lemma 4.2. The optimization problem (4.6) is quasi convex.

Proof. We first need to prove that function fi(x) = x∗Wix

x2
(i−1)M+i

is quasi convex. We can write

fi(x) = gi(x)
x(i−1)M+i

, where gi(x) = x∗Wix
x(i−1)M+i

. Let us show that the function gi(x) is convex

for x(i−1)M+i > 0. To do so, we need to show that gi(θx + γy) ≤ θgi(x) + γgi(y), where

θ + γ = 1, 0 ≤ θ, γ ≤ 1. This is equivalent to showing that
y(i−1)M+i

x(i−1)M+i
x∗Wix − 2x∗Wiy +

x(i−1)M+i

y(i−1)M+i
y∗Wiy ≥ 0. Since Wi is symmetric and positive semi-definite, it can be written
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as Wi = R∗
iRi. From the Cauchy-Schwartz inequality it follows that x∗Wiy = x∗R∗

iRiy ≤

||Rix||2||Riy||2 =
√

x∗Wixy∗Wiy, from which it follows that

y(i−1)M+i

x(i−1)M+i
x∗Wix− 2x∗Wiy +

x(i−1)M+i

y(i−1)M+i
y∗Wiy

≥
(√

y(i−1)M+i

x(i−1)M+i
x∗Wix−

√
x(i−1)M+i

y(i−1)M+i
y∗Wiy

)2

≥ 0.

Therefore, function gi(x) is convex for x(i−1)M+i > 0. Since the ratio of a convex and a

linear function is quasi convex, and since the pointwise maximum of quasi convex functions

is quasi convex (see, e.g., [12]), we conclude that the objective function in (4.6) is quasi

convex.

Remark: When preparing the final version of [93], we became aware of related work

[107], where the authors deal with a similar problem. There they present another proof of

the quasi convexity of (4.6), using a different approach.

We use the bisection method combined with the interior-point method (implemented

in software package SeDuMi) to solve (4.6). Once we find the optimal x in (4.6), we

determine B such that x =



<(vec(B))

=(vec(B))


. Then we calculate G as G = H−1B. We refer

to using the matrix G found by the aforementioned procedure as Method 2.2. Figure 4.4

shows the comparison of max-min rate of the Method 2.2 and max-min rate of regularized

pseudo-inverse and plain-channel inverse. It also shows an upper bound on the value of

the achievable max-min rate obtained by dividing the sum-rate capacity by the number of

users.

The technique described in Section 4.2.1 maximizes the sum rate of the multi-antenna

broadcast system under the linear data processing constraint. The individual rates resulting

from the maximization (4.3), however, may differ significantly. This disparity is inherent to

the optimization (4.3), since (4.3) essentially denotes the maximization of ‖v‖1 (i.e., norm-1

of the vector v). It is well known that in the process of maximizing the norm-1 of a vector,

a few components of the vector are suppressed while the remaining ones are boosted up.
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Figure 4.4: Comparison of the max-min rate of Method 2.2 to the max-min rate of reg.
pseudo-inverse and to the upper bound obtained from the sum capacity of broadcast channel,
M = 6 antennas/users

Thus in Section 4.2.1 the sum rate is maximized at the expense of the weakest few users,

who are ignored. [Note: Transmitting data over many channel uses provides fairness.] The

symbols intended for the remaining strong users may be modulated with higher modulation

schemes, thus overcompensating for the sum rate seemingly lost by transmitting only to a

subset of users.

On the other hand, as a result of the disparity among the individual rates (and hence

among the SINRs and BERs of individual users), the average BER of the system may suffer.

To compensate for the loss in average BER, we employ Method 2.2 on the subset of strong

users selected for transmission by Method 2.1. We formalize this combination of Method

2.1 and Method 2.2 in the following way

1. Obtain G using Method 2.1.

2. Denote the set of indices which correspond to zero-columns of G by I0.
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3. Denote a submatrix of H comprised of rows 1 ≤ i ≤M , i /∈ I0 by Hsub.

4. Apply Method 2.2 on Hsub to obtain B; set G = H∗
sub(HsubH

∗
sub)−1B.

As it turns out, maximizing the minimum individual rate among the selected strong

users results in fairly equal (and high) SINRs. We refer to the previous combination of

Method 2.1 and Method 2.2 as Method 2.

4.3 Finding the optimal scaling coefficient k

We start with the basic model (4.1) and assume that the preprocessing matrix G is obtained

by simple inversion of the channel matrix H, i.e., G = H−1. For this choice of G, in this

section, we propose a way of scaling the magnitudes of the information signal u so as to

minimize the average BER. [Note that in Section 4.4 we will show how to employ this signal

scaling technique to the more general case of the optimal G obtained in Section 4.2.]

To minimize the average BER, one needs to maximize the minimum SINR at receivers.

To this end, in [75] authors suggest perturbation of information signals by appropriately

translating original M -QAM signal constellation in complex space. In this section we sug-

gest a similar idea but focus on perturbations (in fact, radial scaling) of M -PSK constel-

lation. An advantage of constraining ourselves to PSK constellations is in the simplicity

of decoding. Since the signal points are perturbed only radially, rather than vertically or

horizontally as in QAM, the angular information has not changed. Therefore, no side in-

formation about the signaling scheme (i.e., the nature of the perturbation) is needed at the

receiver. In other words, each user’s decoder makes simple angular decisions. The decoder

is no longer necessarily ML but it is efficient and practical since it requires no additional

information from the transmitter. [Our simulation results indicate that the performance of

this sub-optimal ML decoder is almost identical to the optimal one.]

By fixing G = H−1 and representing u via its phases and magnitudes, we can rewrite

(4.1) as

r = kHH−1Φum + w, (4.7)
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where u = Φum and Φ is the diagonal matrix of phases of u, and where um is the vector of

magnitudes of u. Note that due to the use of a PSK modulation scheme, the information to

be transmitted is contained in Φ. We are concerned with designing optimal magnitudes of

the signals, i.e., designing the um. The relevant power constraint now becomes the one on

instantaneous, rather than average, transmission power. This means that the corresponding

form to (4.2) can be written as

r =
HH−1Φum√

u∗
mΦ∗H−∗H−1Φum

+ w (4.8)

where u∗
mΦ∗H−∗H−1Φum = 1

k2 . Now we want to optimize the scaling coefficient while

keeping magnitudes of u greater or equal to 1. Effectively we want to move signals um

radially away from the origin (see Figure 4.5). This will result in magnitudes of the com-

ponents of the received vector r that are at least as large as if there were no signal scaling

at all. This requires solving the following optimization problem

min u∗
mΦ∗H−∗H−1Φum

subject to umi ≥ 1, 1 ≤ i ≤M. (4.9)

This problem is convex and can easily be solved exactly by a host of numerical methods

(see, e.g., [12] and the references therein). More importantly, we can show that the solution

of this problem is equal to the solution to

max
um1 ,um2 ,...,umM

min
i

u2
mi

u∗
mΦ∗H−∗H−1Φum

subject to umi ≥ 1, 1 ≤ i ≤M, (4.10)

which is the problem of maximizing the minimum SINR in system (4.8). Denoting by

ûm the solution to (4.10), we see that the transmitted signal should have the form of

s = H−1Φdum√
dum

∗Φ∗H−∗H−1Φdum

. We refer to this signal scaling policy as Method 3. As mentioned

earlier, although the magnitudes of optimal u will generally be different than 1, the receivers
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will still be able to decode the received signals by considering their angle, since s has the

same phase matrix Φ as u.

Figure 4.5: A sketch of radial signal scaling

4.4 Combined method

In Section 4.3, we employed the signal scaling scheme to optimize the BER in a system

that uses G = H−1 for data preprocessing. In this section, we combine the signal scaling

with the optimal preprocessing matrices G found in Section 4.2. This is done in stages. In

particular, assume that Method 2.1 is used to find G which maximizes the sum rate of the

channel. Then, to minimize the average BER of the users, we employ signal scaling for such

G. Instead of solving (4.9) (which assumed G = H−1), we now need to solve optimization

min u∗
mΦ∗Ĝ∗ĜΦum

subject to umi ≥ 1, 1 ≤ i ≤M (4.11)
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where Ĝ is G found by Method 2.1. The above problem is convex and thus can be solved

exactly via efficient convex optimization techniques. If we denote solution of (4.11) by ûm,

the optimal transmitted signal s is given by s =
bGΦdum√

dum
∗Φ∗ bG∗ bGΦdum

. We refer to the above

algorithm as Method 4.

4.5 Simulation results

In this section we briefly discuss simulation results of the suggested methods for linear

preprocessing. Figures 4.6 and 4.7 show that Method 2.1 performs at least as well as the

regularized pseudo-inverse in terms of BER while, due to the use of a higher modulation

scheme, provides significantly higher sum rate. Figure 4.6 also shows that Method 2, due

to the additional minmax optimization of SINRs, performs even better than Method 2.1

in terms of BER. Figure 4.8 shows that the simple scaling strategy gives a better BER

performance than the pseudo inverse. Finally, Figures 4.9 and 4.10 show that both Method

2 and Method 4, outperform the pseudo-inverse in terms of both the BER and the sum

rate. All plots were done using uncoded sequences of information bits at the transmitter,

modulated with symbols from standard PSK constellations as denoted below the figures.

4.6 Conclusion

In this chapter, we have proposed two criteria for the design of the precoding matrix in a

multi-antenna broadcast system. First, we maximized the sum rate, and then we showed

how to maximize the minimum rate among all users. The latter problem is shown to

be quasi convex and solved exactly. The precoding techniques are constrained to linear

preprocessing at the transmitter. In addition to precoding, we have employed a signal

scaling scheme that minimizes the average BER of the users. The signal scaling scheme

is posed as a convex optimization problem, and solved exactly via interior-point methods.

Finally, we have combined the precoding with signal scaling. The combined scheme can be

efficiently applied in practice. In terms of the achievable sum rate, the proposed technique
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significantly outperforms traditional channel inversion methods, while having comparable

(in fact, often superior) BER performance.
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Chapter 5

Gaussian Broadcast Channel —
Asymptotic Analysis of a
Particular Nonlinear Scheme

As we have said in the previous chapter, the sum-rate capacity of the multi-antenna Gaus-

sian broadcast channel has recently been computed. However, the search for computation-

ally efficient practical schemes that achieve it is still in progress. When the channel state

information is fully available at the transmitter, the dirty-paper coding (DPC) technique

is known to achieve the maximal throughput, but is computationally infeasible. In this

chapter, we analyze the asymptotic behavior of one of its alternatives — the recently sug-

gested so-called vector-perturbation technique. We show that for a square channel, where

the number of users is large and equal to the number of transmit antennas, its sum rate

approaches that of the DPC technique. More precisely, we show that at both low and

high signal-to-noise ratio (SNR), the scheme under consideration is asymptotically optimal.

Furthermore, we obtain similar results in the case where the number of users is much larger

than the number of transmit antennas.

5.1 Introduction

The limits of performance of multi-antenna Gaussian broadcast channel are currently the

subject of extensive research (see, e.g., [14], [101], and the references therein). As we

have mentioned in the previous chapter, when the channel state information (CSI) is fully
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available at the transmitter, the so-called dirty-paper coding (DPC) technique achieves the

capacity of multi-antenna broadcast channel [105]. However, the DPC scheme is exponen-

tially complex and appears to be difficult to implement in practical systems. To this end,

various heuristics with suboptimal performance but efficient implementation have recently

been proposed. In [35], vector quantization is used in combination with powerful coding

schemes to achieve a large fraction of the promised capacity. In [75], a technique referred

to as the vector-perturbation technique (VPT) was proposed, and further considered in

[108]. Simulation results presented there indicate that the proposed technique achieves

performance close to the optimal one.

In this chapter, we analyze the theoretical limits of the VPT [75]. In particular, we show

that when the number of users in the broadcast system is large, the sum rate achievable

by the VPT approaches the sum rate achievable by the DPC scheme, both in the low- and

the high-SNR regime. While the scheme introduced in [75] and further studied in [108] is

practically feasible, the worst-case complexity of its implementation is still exponential. On

the other hand, our proof for lower bounding the asymptotical sum-rate performance of the

VPT is constructive and based on an algorithm that is polynomial in the number of users.

A complementary version of this chapter can be found in [91].

We assume the standard broadcast channel model similar to the one considered in the

previous chapter,

y = Hs + v, (5.1)

where H is a K ×M matrix whose entries are independent, identically distributed (i.i.d.)

complex Gaussian random variables CN (0, 1), K is the number of users, M is the number

of transmit antennas, v is a K × 1 noise vector whose entries are independent of entries in

H and i.i.d. Gaussian random variables with zero-mean and σ2 = 1/ρ variance, and s is an

M×1 vector which is transmitted over the channel. Furthermore, we impose the constraint

E‖s‖2 = 1; hence, the receivers do not need to know instantiations of the channel. (The

case ‖s‖2 = 1, considered in [75], can be treated similarly and leads to similar results.)

Since we focus on analyzing the asymptotic performance of the vector-perturbation
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technique, we start by reviewing it in the next section.

5.2 The vector-perturbation technique

Following [75], we consider the scenario where the number of antennas on a transmitter is

equal to the number of users, i.e., K = M . [Later in this chapter we will consider the vector-

perturbation technique for K � M and generalize our results to that case.] Furthermore,

we assume that the entries of the K × 1 symbols vector u intended for the users are the

points in a QAM constellation.

Figure 5.1: VPT scheme

The vector-perturbation technique [75] (see Figure 5.1) relates the transmitted vector s

to the information vector u as follows,

s =
H−1(u + τ l̂)√

E||H−1(u + τ l̂)||2
, (5.2)

where τ is an a priori determined positive constant, and where l̂ is the solution to the
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following optimization problem

l̂ = argminR(l)∈ZM ,I(l)∈ZM ||H−1(u + τ l)||2. (5.3)

Note that R(l) and I(l) denote the real and the imaginary part of the vector l, respectively.

The main idea behind (5.3) is to eliminate (or to minimize) the power penalty which happens

in the case when the so-called zero-forcing (ZF) scheme (obtained for l̂ = 0 in (5.2)) is

applied.

The signals received by the kth user are of the form

yi =
ui + τ l̂i√

E||L−1(u + τ l̂)||2
+ vi, 1 ≤ i ≤ K, (5.4)

where L is a lower-triangular matrix in the LQ-decomposition of H, i.e., H = LQ, and Q

is a unitary matrix. Decoding of these signals is simple, and the only processing required

from the receivers is scaling by

√
E||H−1(u + τ l̂)||2 [75].

5.3 Case K = M

In this section, we analyze the VPT for K = M . Before proceeding any further, we slightly

modify the perturbation technique as follows. Let D be a diagonal matrix such that

D = diag(L1+β
1,1 , L1+β

2,2 , . . . , L1+β
n,n ), (5.5)

where β is any integer such that β ≥ 0. Instead of transmitting s as given by (5.2), we

define s to be

s =
H−1D(u + τ l̂)√

E||H−1D(u + τ l̂)||2
. (5.6)
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Consequently, the signal received at the ith user becomes

yi = L1+β
i,i

ui + τ l̂i√
E||L−1D(u + τ l̂)||2

+ vi, 1 ≤ i ≤ K. (5.7)

We refer to this scheme as the diagonal vector perturbation technique (DVPT). From (5.7)

it follows that the sum rate of the DVPT can then be computed as a summation of the sum

rates of K decoupled channels,

RDV PT = E
K∑

i=1

log
(
1 + L

2(1+β)
i,i

ρ||ui + τ l̂i||2
E||L−1D(u + τ l̂)||2

)
. (5.8)

We are interested in bounding the value of RDV PT ; to this end, it will be useful to first

derive a few inequalities.

Although the use of the VPT on broadcast channels performs well in practice, it requires

solving (5.3), which is NP-hard. Use of the sphere decoding (or any other) algorithm may

often be infeasible. Therefore, we employ a heuristic nulling and canceling [40] technique

to solve (5.3). To this end, let us denote B = L−1D. Clearly, Bi,i = Lβi,i. Generate

llb = llbr + jllbc according to the nulling and canceling procedure as follows,

llbr1 = b−R(u1)

τ
c

llbc1 = b−I(u1)

τ
c

llbr2 = b−B2,2R(u2) + R(B2,1(u1 + τllb1 ))

B2,2τ
c

llbc2 = b−B2,2I(u2) + I(B2,1(u1 + τllb1 ))

B2,2τ
c

...

llbrK = b−BK,KR(uK) +
∑K−1

i=1 R(BK,i(ui + τllbi ))

BK,Kτ
c

llbcK = b−BK,KI(uK) +
∑K−1

i=1 I(BK,i(ui + τllbi ))

BK,Kτ
c.
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Since for any two real numbers a and b holds that |a− bb ab c|2 ≤ b2, we obtain

|ui + τllbi |2 ≤ 2τ2B2
i,i. (5.9)

Careful examination of the previous procedure reveals that any time we obtain l lbri = 0, we

can change it to either llbri = 1 or llbri = −1 and still preserve the validity of (5.9). Thus in

addition to (5.9), we can also establish a lower bound on |ui + τllbi |2 depending on the sign

of ui or llbi ,

|ui + τllbi |2 ≥ | − |R(ui)| − j|I(ui)| + τ(1 + j)|2

≥ | − maxi|R(ui)| − jmaxi|I(ui)| + τ(1 + j)|2 = ζ. (5.10)

We may now begin our derivation of a bound on RDV PT . To facilitate fluent presentation,

we first treat the low-SNR case, and then generalize the results to any SNR.

5.3.1 Low SNR regime (ρ → 0)

For ρ→ 0, we have

RDV PT = E

K∑

i=1

log
(
1 + L

2(1+β)
i,i

ρ||ui + τ l̂i||2
E||L−1D(u + τ l̂)||2

)

= K + ρ

∑K
i=1EL

2(1+β)
i,i ||ui + τ l̂i||2

E||B(u + τ l̂)||2
+ O(ρ2).

Using (5.10) to lower bound the numerator and (5.9) to upper bound the denominator of

the fraction in the expression above, and using the fact that L2
i,i are i.i.d. random variables

with χ2
2(K−i+1) distribution, we have
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RDV PT ≥ K + ρ
ζ
∑K

i=1 E(L2
i,i)

1+β

2τ2
∑K

i=1 E(L2
i,i)

β
+ O(ρ2)

= K + ρ
ζ
∑K

i=1

∏1+β
k=1(2(K + 1 − i) + 2(k − 1))

2τ2
∑K

i=1

∏β
k=1(2(K + 1 − i) + 2(k − 1))

+ O(ρ2)

≥ K + ρ
ζ
∑K

i=1(2(K + 1 − i))1+β

2τ2
∑K

i=1(2(K + 1 − i) + 2(β − 1))β
+ O(ρ2). (5.11)

Therefore, we can write

lim
K→∞

RDV PT
K

≥ 1 + 2ρ
ζ(1 + β)

2τ2(2 + β)
. (5.12)

Let w be the width of a QAM constellation, i.e., let w = 2maxu max{maxi|R(ui)|,maxi|I(ui)|}.

Clearly, ζ ≥ 2(τ − w
2 )2. Then for τ � w

2 , and for β → ∞, K � β, we can write

limK→∞
RDV PT
K

≥ 1 + 2ρ. (5.13)

The results stated in (5.11), (5.12), and (5.13), imply that the sum rate of the diagonal

vector-perturbation technique scales linearly with the number of users. In fact, this result

may be established directly from (5.11). However, in order to tighten the coefficients in

front of ρ, we derived (5.13) as well.

We summarize our results in the following theorem.

Theorem 5.1. Consider communication in low-SNR regime (ρ → 0) over a square Gaus-

sian broadcast channel using the diagonal vector-perturbation technique with parameters

β ≥ 1 and τ ≥ w, where w is the width of a QAM constellation. Then

lim
K→∞

RDV PT
K

≥ 1 + 2ρ(1 − w

2τ
)2

1 + β

2 + β
.

Proof: Follows from the discussion above.
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Corollary 5.1. Let all assumptions of Theorem 5.1 hold. Furthermore, let τ � w, β → ∞,

and K
β � 1. Then

lim
K→∞

RDV PT
K

≥ 1 + 2ρ.

5.3.2 General SNR

For simplicity, in this subsection we fix β = 0. Similar to the procedure in Section 5.3.1, we

use (5.10) to lower bound the numerator and (5.9) to upper bound the denominator of the

fraction in the expression given in (5.8),

RDV PT = E

K∑

i=1

log
(
1 + L2

i,i

ρ||ui + τ l̂i||2
E||L−1D(u + τ l̂)||2

)

≥ E
K−1∑

i=1

log(1 + ρ
ζL̂2

i,i

2τ2K
)

= Elog

K−1∏

i=1

(1 + ρ
ζ

2τ2K
L2
i,i).

Applying the arithmetic-geometric mean inequality, it can easily be shown that

K−1∏

i=1

(1 + ρ
ζ

2τ2K
L2
i,i) ≥ (1 + ρ

ζ

2τ2K
(
K−1∏

i=1

L2
i,i))

1
K−1 )K−1.

Then, we have

RDV PT ≥ (K − 1)Elog(I + ρ
ζ

2τ2K
(

K−1∏

i=1

L2
i,i)

1
K−1 )

≥ (K − 1)log
(
1 + ρ

ζ
∏K−1
i=1 (E((L2

i,i)
−1))−

1
K−1

2τ2K

)
. (5.14)
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Using the fact that L2
i,i are i.i.d. random variables with χ2

2(K−i+1) distributions, and the

Stirling’s formula to approximate the factorial, we obtain

RDV PT ≥ (K − 1)log
(
1 +

ρζ(
∏K
i=2 2(K − i+ 1))

1
K−1

2τ2K

)

≥ (K − 1)log(1 +
2ρζ(K − 1)!

1
K−1

2τ2K
)

≥ (K − 1)log
(
1 +

2ρζ

2τ2e

)

≥ (K − 1)log
(
1 +

2ρ

e
(1 − w

2τ
)2
)
. (5.15)

It is worth pointing out that for ρ→ ∞ we can also upper bound the value of RDV PT .

Instead of (5.14), using Jensen’s and the arithmetic-geometric mean inequalities we can

write

RDV PT ≤ Elog
(
ρK
∏K
i=1 L

2
i,i

∏K
i=1 ||ui + τ l̂i||2

(
∑K

i=1 ||ui + τ l̂i||2)K
)

≤ log
(
ρK
∏K
i=1 EL

2
i,i

KK

)

≤ log
(
(2ρ)K

K!

KK

)

≤ Klog(
2ρ

e
) + O(logK). (5.16)

The results from this subsection are summarized in the following theorem.

Theorem 5.2. Consider communication over square Gaussian broadcast channel using the

diagonal vector-perturbation technique with parameters β = 0 and τ > w
2 , where w is the

width of a QAM constellation. Then

lim
K→∞

RDV PT

K log
(
1 + 2ρ

e (1 − w
2τ )

2
) ≥ 1.

Proof: Follows from (5.15).
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Corollary 5.2. Let assumptions of Theorem 5.2 hold. Also let ρ→ ∞. Then

lim
K→∞

RDV PT
K logρ

= 1.

Theorems 5.1 and 5.2 imply that when the diagonal vector-perturbation technique (with

appropriate parameters) is employed for communication over Gaussian broadcast channel,

the sum rate scales linearly with the number of users. Furthermore, in high-SNR regime

the scaling law is not only linear in the number of users, but also optimal, i.e., equal to that

of the capacity-achieving DPC technique.

5.4 Case K � M

In this section, we study the asymptotic behavior of the VPT and DVPT schemes for K �

M . We should point out that this regime (in particular, the case
logK
M ≥ const.,K → ∞)

was considered in [83], where it was shown that, in limit, the maximum throughput may be

achieved with only partial CSI at the transmitter. The VPT and DVPT, on the other hand,

require full CSI; however, since we have shown that these simple schemes asymptotically

achieve the maximum throughput when the number of transmit antennas and users is the

same, it is of interest to extend these results to the K �M case as well.

A generalization of the results to the K � M case is relatively straightforward. In

particular, at any transmission interval we select a subset of M users to which we transmit.

Define H(k) = H(k−1)M+1:kM,(k−1)M+1:kM . Let λmink be the minimal eigenvalue of the matrix

H∗
(k)H(k), and let ξ = arg maxk∈{1,2,...,b K

M
c}λ

min
k . Then we transmit to the users (ξ− 1)M +

1, (ξ−1)M+2, . . . , ξM , employing the DVPT with H(ξ). Let L̂ be a lower-triangular matrix

from the LQ-decomposition H(ξ) = L̂Q, where Q is unitary. Then, instead of (5.14) we can

write

RDV PT = E

M∑

i=1

log(1 + ρ
ζL̂2

i,i

2τ2M
) ≥M log

(
1 + ρ

ζ

2τ2ME((λminξ )−1)

)
.
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Further, using results from extreme value theory, it can be shown that lim K
M

→∞E((λminξ )−1) →
M

2log K
M

(see, e.g., [83]). The results from this section are summarized in the following theo-

rem.

Theorem 5.3. Consider communication over tall Gaussian broadcast channel ( KM → ∞)

using the diagonal vector perturbation-technique with parameters β = 0 and τ > w
2 , where

w is the width of a QAM constellation. Then

lim
K
M

→∞

RDV PT

M log
(
1 + 2ρ

M2 log
K
M

) ≥ 1.

Proof: Follows from the discussion above.

In case of high-SNR (ρ→ ∞) we have the following corollary.

Corollary 5.3. Let assumptions of Theorem 5.3 hold. Also let ρ→ ∞. Then

lim
K
M
,ρ→∞

RDV PT
M log(ρlogK)

≥ 1.

The previous corollary says that the sum rate of the VPT asymptotically achieves the

same sum rate as the DPC.

Remark: We point out that, using the same selection of users as suggested in this

section, it is easy to show that, under the assumptions of the previous corollary, even the

ZF scheme asymptotically achieves the same sum rate as the DPC.

5.5 Conclusion

In this chapter, we studied the asymptotic performance of the achievable throughput on the

Gaussian broadcast channel with vector-perturbation preprocessing. We derived explicitly

the achievable sum rate scaling laws in the case when the perturbation preprocessing is
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applied at the transmitter. As it turns out, those scaling laws match the already-known

capacity-achieving scheme (DPC) scaling laws in the case when the CSI is available at the

transmitter. Furthermore, unlike the DPC, our scheme is simple and can be implemented

in polynomial time.



123

Chapter 6

Quantum Unambiguous Detection

In the previous chapters we considered the design and applications of different optimization

and algorithmic techniques in the context of classical communications (multi-antenna sys-

tems, wireless broadcast channels). In this chapter we will focus on the quantum systems.

More specifically, we will consider the problem of quantum detection.

In quantum systems, unlike in classical, the information is stored in special objects

called quantum states. Namely a quantum state is a set of numbers which fully describes

the quantum system. These numbers are usually stored in a vector called pure state [73].

Furthermore, the state of a quantum system can be a statistical mixture of pure states, in

which case it is called mixed quantum state [73].

As we have said, in this and the following chapter we consider the quantum detection

problem. In order to detect in which state a quantum system was prepared we need to

construct a set of quantum measurements. We will consider a specific problem of designing

an optimal set of measurements that distinguishes unambiguously between a collection

of mixed quantum states. Using arguments of duality in vector space optimization, we

derive necessary and sufficient conditions for an optimal measurement that maximizes the

probability of correct detection. We show that the previous optimal measurements that were

derived for certain special cases satisfy these optimality conditions. We then consider state

sets with strong symmetry properties, and show that the optimal measurement operators

for distinguishing between these states share the same symmetries, and can be computed

very efficiently by solving a reduced-size semi-definite program.
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6.1 Introduction

The problem of detecting information stored in the state of a quantum system is a fun-

damental problem in quantum information theory. Several approaches have emerged to

distinguish between a collection of non-orthogonal quantum states. In one approach, a

measurement is designed to maximize the probability of correct detection [54], [53], [16],

[74], [6], [29], [30], [26]. A more recent approach, referred to as unambiguous detection

[55], [25], [76], [56], [78], [17], [18], [32], is to design a measurement that with a certain

probability returns an inconclusive result, but such that if the measurement returns an

answer, then the answer is correct with probability 1. An interesting alternative approach

for distinguishing between a collection of quantum states, which is a combination of the

previous two approaches, is to allow for a certain probability of an inconclusive result, and

then maximize the probability of correct detection [32].

We consider a quantum state ensemble consisting of m density operators {ρi, 1 ≤ i ≤ m}

on an n-dimensional complex Hilbert space H, with prior probabilities {pi > 0, 1 ≤ i ≤ m}.

A pure-state ensemble is one in which each density operator ρi is a rank-one projector

φiφ
∗
i , where the vectors φi, though evidently normalized to unit length, are not necessarily

orthogonal.

Chefles [17] showed that a necessary and sufficient condition for the existence of un-

ambiguous measurements for distinguishing between a collection of pure quantum states is

that the states are linearly independent. Necessary and sufficient conditions on the optimal

measurement minimizing the probability of an inconclusive result were derived in [33]. The

optimal measurement when distinguishing between a broad class of symmetric pure-state

sets was also considered in [33].

The problem of unambiguous detection between mixed state ensembles has received

considerably less attention. Rudolph et al. [82] show that unambiguous detection between

mixed quantum states is possible as long as one of the density operators in the ensemble

has a non-zero overlap with the intersection of the kernels of the other density operators.

They then consider the problem of unambiguous detection between two mixed quantum
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states, and derive upper and lower bounds on the probability of a conclusive result. They

also develop a closed-form solution for the optimal measurement in the case in which both

states have kernels of dimension 1.

In this chapter we develop a general framework for unambiguous state discrimination

between a collection of mixed quantum states, which can be applied to any number of

states with arbitrary prior probabilities. For our measurement we consider general positive

operator-valued measures [53], [77], consisting of m+ 1 measurement operators. We derive

a set of necessary and sufficient conditions for an optimal measurement that minimizes the

probability of an inconclusive result by exploiting principles of duality theory in vector space

optimization. We then show that the previous optimal measurements that were derived for

certain special cases satisfy these optimality conditions.

Next, we consider geometrically uniform (GU) and compound GU state sets [29], [30],

[28], which are state sets with strong symmetry properties. We show that the optimal

measurement operators for unambiguous discrimination between such state sets are also

GU and CGU respectively, with generators that can be computed very efficiently by solving

a reduced-size semi-definite program.

Before proceeding to the detailed development, we provide in the next section a state-

ment of our problem.

6.2 Problem formulation

Assume that a quantum channel is prepared in a quantum state drawn from a collection

of mixed states, represented by density operators {ρi, 1 ≤ i ≤ m} on an n-dimensional

complex Hilbert space H. We assume without loss of generality that the eigenvectors of

ρi, 1 ≤ i ≤ m, collectively span1 H.

To detect the state of the system a measurement is constructed comprising m+ 1 mea-

1Otherwise we can transform the problem to a problem equivalent to the one considered in this chapter
by reformulating the problem on the subspace spanned by the eigenvectors of {ρi, 1 ≤ i ≤ m}.
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surement operators {Πi, 0 ≤ i ≤ m} that satisfy

Πi ≥ 0, 0 ≤ i ≤ m;

∑m
i=0 Πi = I. (6.1)

The measurement operators are constructed so that either the state is correctly detected, or

the measurement returns an inconclusive result. Thus, each of the operators Πi, 1 ≤ i ≤ m

correspond to detection of the corresponding states ρi, 1 ≤ i ≤ m, and Π0 corresponds to

an inconclusive result.

Given that the state of the system is ρj, the probability of obtaining outcome i is

Tr(ρjΠi). Therefore, to ensure that each state is either correctly detected or an inconclusive

result is obtained, we must have

Tr(ρjΠi) = ηiδij , 1 ≤ i, j ≤ m, (6.2)

for some 0 ≤ ηi ≤ 1. Since from (6.1), Π0 = I−∑m
i=1 Πi, (6.2) implies that Tr(ρiΠ0) = 1−ηi,

so that given that the state of the system is ρi, the state is correctly detected with probability

ηi, and an inconclusive result is returned with probability 1 − ηi.

It was shown in [17] that for pure-state ensembles consisting of rank-one density opera-

tors ρi = φiφ
∗
i , (6.2) can be satisfied if and only if the vectors φi are linearly independent.

For mixed states, it was shown in [82] that (6.2) can be satisfied if and only if one of the

density operators ρi has a non-zero overlap with the intersection of the kernels of the other

density operators. Specifically, denote by Ki the null space of ρi and let

Si = ∩mj=1,j 6=iKj (6.3)

denote the intersection of Kj , 1 ≤ j ≤ m, j 6= i. Then to satisfy (6.2) the eigenvectors of

Πi must be contained in Si and must not be entirely contained in Ki. This implies that Ki

must not be entirely contained in Si. Some examples of mixed states for which unambiguous
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detection is possible are given in [82].

If the state ρi is prepared with prior probability pi, then the total probability of correctly

detecting the state is

PD =
m∑

i=1

piTr(ρiΠi). (6.4)

Our problem therefore is to choose the measurement operators Πi, 0 ≤ i ≤ m to maximize

PD, subject to the constraints (6.1) and

Tr(ρjΠi) = 0, 1 ≤ i, j ≤ m, i 6= j. (6.5)

To satisfy (6.5), Πi must lie in Si defined by (6.3), so that

Πi = PiΠiPi, 1 ≤ i ≤ m, (6.6)

where Pi is the orthogonal projection onto Si. Denoting by Θi an n × r matrix whose

columns form an arbitrary orthonormal basis for Si, where r = dim(Si), we can express Pi

as Pi = ΘiΘ
∗
i . From (6.6) and (6.1) we then have that

Πi = Θi∆iΘ
∗
i , 1 ≤ i ≤ m, (6.7)

where ∆i = Θ∗
iΠiΘi is an r × r matrix satisfying

∆i ≥ 0, 1 ≤ i ≤ m;

∑m
i=1 Θi∆iΘ

∗
i ≤ I. (6.8)

Therefore, our problem reduces to maximizing

PD =
m∑

i=1

piTr(ρiΘi∆iΘ
∗
i ), (6.9)

subject to (6.8).
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To show that the problem of (6.9) and (6.8) does not depend on the choice of orthonormal

basis Θi, we note that any orthonormal basis for Si can be expressed as the columns of Ψi,

where Ψi = ΘiUi for some r × r unitary matrix Ui. Substituting Ψi instead of Θi in (6.9)

and (6.8), our problem becomes that of maximizing

PD =

m∑

i=1

piTr(ρiΨi∆iΨ
∗
i ) =

m∑

i=1

piTr(ρiΘi∆
′
iΘ

∗
i ), (6.10)

where ∆′
i = Ui∆iU

∗
i , subject to

∆i ≥ 0, 1 ≤ i ≤ m;

∑m
i=1 Ψi∆iΨ

∗
i =

∑m
i=1 Θi∆

′
iΘ

∗
i ≤ I. (6.11)

Since ∆i ≥ 0 if and only if ∆′
i ≥ 0, the problem of (6.10) and (6.11) is equivalent to that of

(6.9) and (6.8).

Equipped with the standard operations of addition and multiplication by real numbers,

the space B of all Hermitian n×n matrices is an n2-dimensional real vector space. As noted

in [82], by choosing an appropriate basis for B, the problem of maximizing PD subject

to (6.8) can be put in the form of a standard semi-definite programming problem, which

is a convex optimization problem; for a detailed treatment of semi-definite programming

problems see, e.g., [3], [4], [72], and [97]. By exploiting the many well-known algorithms for

solving semi-definite programs [97], e.g., interior point methods2 [72], [3], the optimal mea-

surement can be computed very efficiently in polynomial time within any desired accuracy.

Using elements of duality theory in vector space optimization, in the next section we

derive necessary and sufficient conditions on the measurement operators Πi = Θi∆iΘ
∗
i to

maximize PD of (6.9) subject to (6.8).

2Interior point methods are iterative algorithms that terminate once a pre-specified accuracy has been
reached. A worst-case analysis of interior point methods shows that the effort required to solve a semi-
definite program to a given accuracy grows no faster than a polynomial of the problem size. In practice,
the algorithms behave much better than predicted by the worst case analysis, and in fact in many cases the
number of iterations is almost constant in the size of the problem.
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6.3 Conditions for optimality

6.3.1 Dual problem formulation

To derive necessary and sufficient conditions for optimality on the matrices ∆i, we first

derive a dual problem, using Lagrange duality theory [11].

Denote by Λ the set of all ordered sets Π = {Πi = Θi∆iΘ
∗
i }mi=1 satisfying (6.8) and

define J(Π) =
∑m

i=1 piTr(ρiΘi∆iΘ
∗
i ). Then our problem is

max
Π∈Λ

J(Π). (6.12)

We refer to this problem as the primal problem, and to any Π ∈ Λ as a primal feasible

point. The optimal value of J(Π) is denoted by Ĵ .

To develop the dual problem associated with (6.12) we first compute the Lagrange dual

function, which is given by

g(Z) =

= min
∆i≥0

{
−

m∑

i=1

piTr(ρiΘi∆iΘ
∗
i ) +

+ Tr

(
Z

(
m∑

i=0

Θi∆iΘ
∗
i − I

))}

= min
∆i≥0

{
m∑

i=1

Tr (∆iΘ
∗
i (Z − piρi)Θi) − Tr(Z)

}
, (6.13)

where Z ≥ 0 is the Lagrange dual variable. Since ∆i ≥ 0, 1 ≤ i ≤ m, we have that

Tr(∆iX) ≥ 0 for any X ≥ 0. If X is not positive semi-definite, then we can always choose

∆i such that Tr(∆iX) is unbounded below. Therefore,

g(Z) =





−Tr(Z), Ai ≥ 0, 1 ≤ i ≤ m,Z ≥ 0;

−∞, otherwise,
(6.14)
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where

Ai = Θ∗
i (Z − piρi)Θi, 1 ≤ i ≤ m. (6.15)

It follows that the dual problem associated with (6.12) is

min
Z

Tr(Z) (6.16)

subject to

Θ∗
i (Z − piρi)Θi ≥ 0, 1 ≤ i ≤ m;

Z ≥ 0. (6.17)

Denoting by Γ the set of all Hermitian operators Z such that Θ∗
i (Z−piρi)Θi ≥ 0, 1 ≤ i ≤ m

and Z ≥ 0, and defining T (Z) = Tr(Z), the dual problem can be written as

min
Z∈Γ

T (Z). (6.18)

We refer to any Z ∈ Γ as a dual feasible point. The optimal value of T (Z) is denoted by T̂ .

6.3.2 Optimality conditions

We can immediately verify that both the primal and the dual problem are strictly feasible.

Therefore, their optimal values are attainable and the duality gap is zero [97], i.e.,

Ĵ = T̂ . (6.19)

In addition, for any Π = {Πi = Θi∆iΘ
∗
i }mi=1 ∈ Λ and Z ∈ Γ,

T (Z) − J(Π) =

= Tr

(
m∑

i=1

Θi∆iΘ
∗
i (Z − piρi) + Π0Z

)

≥ 0, (6.20)
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where Π0 = I −∑m
i=1 Θi∆iΘ

∗
i ≥ 0. Note, that (6.20) can be used to develop an upper

bound on the optimal probability of correct detection Ĵ . Indeed, since for any Z ∈ Γ,

T (Z) ≥ J(Π), we have that Ĵ ≤ T (Z) for any dual feasible Z.

Now, let Π̂i = Θi∆̂iΘ
∗
i , 1 ≤ i ≤ m and Π̂0 = I −∑m

i=1 Π̂i denote the optimal measure-

ment operators that maximize (6.9) subject to (6.8), and let Ẑ denote the optimal Z that

minimizes (6.16) subject to (6.17). From (6.19) and (6.20) we conclude that

Tr

(
m∑

i=1

Π̂iΘ
∗
i (Ẑ − piρi)Θi + Π̂0Ẑ

)
= 0. (6.21)

Since ∆̂i ≥ 0, Ẑ ≥ 0 and Θ∗
i (Ẑ − piρi)Θi ≥ 0, 1 ≤ i ≤ m, (6.21) is satisfied if and only if

ẐΠ̂0 = 0 (6.22)

Θ∗
i (Ẑ − piρi)Θi∆̂i = 0, 1 ≤ i ≤ m. (6.23)

Once we find the optimal Ẑ that minimizes the dual problem (6.16), the constraints

(6.22) and (6.23) are necessary and sufficient conditions on the optimal measurement opera-

tors Π̂i. We have already seen that these conditions are necessary. To show that they are suf-

ficient, we note that if a set of feasible measurement operators Π̂i satisfies (6.22) and (6.23),

then Tr
(∑m

i=1 ∆̂iΘ
∗
i (Ẑ − piρi)Θi + Π̂0Ẑ

)
= 0 so that from (6.20), J(Π̂) = T (Ẑ) = Ĵ .

We summarize our results in the following theorem:

Theorem 6.1. Let {ρi, 1 ≤ i ≤ m} denote a set of density operators with prior probabilities

{pi > 0, 1 ≤ i ≤ m}, and let {Θi, 1 ≤ i ≤ m} denote a set of matrices such that the columns

of Θi form an orthonormal basis for Si = ∩mj=1,j 6=iKj, where Ki is the null space of ρi. Let

Λ denote the set of all ordered sets of Hermitian measurement operators Π = {Πi}mi=0 that

satisfy Πi ≥ 0,
∑m

i=0 Πi = I, and Tr(ρjΠi) = 0, 1 ≤ i ≤ m, i 6= j and let Γ denote the

set of Hermitian matrices Z such that Z ≥ 0, Θ∗
i (Z − piρi)Θi, 1 ≤ i ≤ m. Consider the

problem maxΠ∈Λ J(Π) and the dual problem minZ∈Γ T (Z), where J(Π) =
∑m

i=1 piTr(ρiΠi)
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and T (Z) = Tr(Z). Then

1. For any Z ∈ Γ and Π ∈ Λ, T (Z) ≥ J(Π).

2. There is an optimal Π, denoted Π̂, such that Ĵ = J(Π̂) ≥ J(Π) for any Π ∈ Λ.

3. There is an optimal Z, denoted Ẑ and such that T̂ = T (Ẑ) ≤ T (Z) for any Z ∈ Γ.

4. T̂ = Ĵ .

5. Necessary and sufficient conditions on the optimal measurement operators Π̂i are that

there exists a Z ∈ Γ such that

ZΠ̂0 = 0 (6.24)

Θ∗
i (Z − piρ)Θi∆̂i = 0, 1 ≤ i ≤ m, (6.25)

where Π̂i = Θi∆̂iΘ
∗
i , 1 ≤ i ≤ m, and ∆̂i ≥ 0.

6. Given Ẑ, necessary and sufficient conditions on the optimal measurement operators

Π̂i are

ẐΠ̂0 = 0 (6.26)

Θ∗
i (Ẑ − piρi)Θi∆̂i = 0, 1 ≤ i ≤ m. (6.27)

Although the necessary and sufficient conditions of Theorem 6.1 are hard to solve, they

can be used to verify a solution and to gain some insight into the optimal measurement

operators. In the next section we show that the previous optimal measurements that were

derived in the literature for certain special cases satisfy these optimality conditions.

6.4 Special cases

We now consider two special cases that were addressed in [82], for which a closed-form solu-

tion exists. In Section 6.4.1 we consider the case in which the spaces Si defined by (6.3) are
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orthogonal, and in Section 6.4.2 we consider the problem of distinguishing unambiguously

between two density operators with dim(Si) = 1, 1 ≤ i ≤ 2.

6.4.1 Orthogonal null spaces Si

The first case we consider is the case in which the null spaces Si are orthogonal, so that

PiPj = δij , 1 ≤ i, j,≤ m, (6.28)

where Pi is an orthogonal projection onto Si. It was shown in [82] that in this case the

optimal measurement operators are

Π̂i = Pi = ΘiΘ
∗
i , 1 ≤ i ≤ m. (6.29)

In Appendix 6.9 we show that in this case, the optimal solution of the dual problem can be

expressed as

Ẑ =

m∑

i=1

piPiρiPi. (6.30)

It can easily be shown that Ẑ and Π̂i of (6.30) and (6.29) satisfy the optimality conditions

of Theorem 6.1.

6.4.2 Null spaces of dimension 1

We now consider the case of distinguishing between two density operators ρ1 and ρ2, where

S1 and S2 both have dimension equal to 1. In this case, as we show in Appendix 6.10, the

optimal dual solution is

Ẑ =





d1P1, d2 − d1|f |2 ≤ 0;

d2P2, d1 − d2|f |2 ≤ 0;

d2(Θ2 + sΘ⊥
2 )(Θ2 + sΘ⊥

2 )∗, otherwise,

(6.31)
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where Pi is an orthogonal projection onto Si, Θ⊥
2 is a unit norm vector in the span of Θ1

and Θ2 such that Θ∗
2Θ

⊥
2 = 0, and

di = piΘ
∗
i ρiΘi, 1 ≤ i ≤ 2;

s = f∗

e∗

(√
d1

d2|f |2 − 1
)

;

f = Θ∗
2Θ1;

e = (Θ⊥
2 )∗Θ1. (6.32)

The optimal measurement operators for this case were developed in [82], and can be written

as

{Π̂i}2
i=1 =





Π̂1 = P1, Π̂2 = 0, d2 − d1|f |2 ≤ 0;

Π̂1 = 0, Π̂2 = P2, d1 − d2|f |2 ≤ 0;

Π̂1 = α1P1, Π̂2 = α2P2, otherwise,

(6.33)

where

α1 =
1−

q
d2|f |2

d1

1−|f |2 ;

α2 =
1−

q
d1|f |2

d2

1−|f |2 . (6.34)

We now show that Ẑ and Π̂ of (6.31) and (6.33) satisfy the optimality conditions of

Theorem 6.1. To this end we note that from (6.33),

{∆̂i}2
i=1 =





∆̂1 = 1, ∆̂2 = 0, d2 − d1|f |2 ≤ 0;

∆̂1 = 0, ∆̂2 = 1, d1 − d2|f |2 ≤ 0;

∆̂1 = α1, ∆̂2 = α2, otherwise.

(6.35)
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From (6.31)–(6.35) we have that if d2 − d1|f |2 ≤ 0, then

Θ∗
1(Ẑ − p1ρ1)Θ1∆̂1 = d1 − Θ∗

1p1ρ1Θ1 = 0;

Θ∗
2(Ẑ − p2ρ2)Θ2∆̂2 = 0;

ẐΠ̂0 = Ẑ(I − Π̂1) = d1Θ1Θ
∗
1 − d1Θ1Θ

∗
1 = 0. (6.36)

Similarly, if d1 − d2|f |2 ≤ 0, then

Θ∗
1(Ẑ − p1ρ1)Θ1∆̂1 = 0;

Θ∗
2(Ẑ − p2ρ2)Θ2∆̂2 = d2 − Θ∗

2p2ρ2Θ2 = 0;

ẐΠ̂0 = Ẑ(I − Π̂2) = d2Θ2Θ
∗
2 − d2Θ2Θ

∗
2 = 0. (6.37)

Finally, if neither of the conditions d1 − d2|f |2 ≤ 0, d2 − d1|f |2 ≤ 0 hold, then

Θ∗
1(Ẑ − p1ρ1)Θ1∆̂1 =

= (d2(f
∗ + e∗s)(f∗ + e∗s)∗ − d1)

1 −
√

d2|f |2
d1

1 − |f |2

=


d2|f |2

(√
d1

d2|f |2

)2

− d1


 1 −

√
d2|f |2
d1

1 − |f |2

= 0, (6.38)

Θ∗
2(Ẑ − p2ρ2)Θ2∆̂2 = (Θ∗

2ẐΘ2 − d2)
1 −

√
d1|f |2
d2

1 − |f |2

= 0, (6.39)

and

ẐΠ̂0 = Ẑ − ẐΠ̂1 − ẐΠ̂2

= Ẑ − ∆̂1ẐΘ1Θ
∗
1 − ∆̂2ẐΘ2Θ

∗
2. (6.40)
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To show that ẐΠ̂0 = 0, we note that

ẐΘ1Θ
∗
1 = d2(|f |2 + s∗ef∗)Θ2Θ

∗
2

+ d2(s|f |2 + ss∗ef∗)Θ⊥
2 Θ∗

2

+ d2(e
∗f + s∗|e|2)Θ2Θ

⊥∗
2

+ d2(se
∗f + ss∗|e|2)Θ⊥

2 Θ⊥∗
2 , (6.41)

and

ẐΘ2Θ
∗
2 = d2Θ2Θ

∗
2 + d2sΘ

⊥
2 Θ∗

2. (6.42)

Substituting (6.41) and (6.42) into (6.40), and after some algebraic manipulations, we have

that

ẐΠ̂0 = Ẑ − ∆̂1ẐΘ1Θ
∗
1 − ∆̂2ẐΘ2Θ

∗
2 = 0. (6.43)

Combining (6.36)–(6.43) we conclude that the optimal measurement operators of [82] satisfy

the optimality conditions of Theorem 6.1.

6.5 Optimal detection of symmetric states

We now consider the case in which the quantum state ensemble has symmetry properties

referred to as geometric uniformity (GU) and compound geometric uniformity (CGU). These

symmetry properties are quite general, and include many cases of practical interest.

Under a variety of different optimality criteria the optimal measurement for distinguish-

ing between GU and CGU state sets was shown to be GU and CGU respectively [29], [30],

[33], [32]. In particular it was shown in [33] that the optimal measurement for unambiguous

detection between linearly independent GU and CGU pure-states is GU and CGU respec-

tively. We now generalize this result to unambiguous detection of mixed GU and CGU state

sets.
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6.6 GU state sets

A GU state set is defined as a set of density operators {ρi, 1 ≤ i ≤ m} such that ρi = UiρU
∗
i

where ρ is an arbitrary generating operator and the matrices {Ui, 1 ≤ i ≤ m} are unitary

and form an abelian group G [39], [30]. For concreteness, we assume that U1 = I. The

group G is the generating group of S. For consistency with the symmetry of S, we will

assume equiprobable prior probabilities on S.

As we now show, the optimal measurement operators that maximize the probability of

correct detection when distinguishing unambiguously between the density operators of a

GU state set are also GU with the same generating group. The corresponding generator

can be computed very efficiently in polynomial time.

Suppose that the optimal measurement operators that maximize

J({Πi}) =

m∑

i=1

Tr(ρiΠi) (6.44)

subject to (6.8) and (6.5) are Π̂i, and let Ĵ = J({Π̂i}) =
∑m

i=1 Tr(ρiΠ̂i). Let r(j, i) be the

mapping from I × I to I with I = {1, . . . ,m}, defined by r(j, i) = k if U ∗
j Ui = Uk. Then

the measurement operators Π̂
(j)
i = UjΠ̂r(j,i)U

∗
j and Π̂

(j)
0 = I −∑m

i=1 Π̂
(j)
i for any 1 ≤ j ≤ m

are also optimal. Indeed, since Π̂i ≥ 0, 1 ≤ i ≤ m and
∑m

i=1 Π̂i ≤ I, Π̂
(j)
i ≥ 0, 1 ≤ i ≤ m

and
m∑

i=1

Π̂
(j)
i = Uj

(
m∑

i=1

Π̂i

)
U∗
j ≤ UjU

∗
j = I. (6.45)

Using the fact that ρi = UiρU
∗
i for some generator ρ,

J({Π̂(j)
i }) =

m∑

i=1

Tr(ρU∗
i UjΠ̂r(j,i)U

∗
j Ui)

=

m∑

k=1

Tr(ρU∗
k Π̂kUk)

=

m∑

i=1

Tr(ρiΠ̂i)

= Ĵ . (6.46)
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Finally, for l 6= i,

Tr
(
ρlΠ̂

(j)
i

)
= Tr

(
UlρU

∗
l UjΠ̂r(j,i)U

∗
j

)

= Tr
(
UsρU

∗
s Π̂r(j,i)

)

= Tr
(
ρsΠ̂k

)

= 0, (6.47)

where Us = U∗
j Ul and Uk = U∗

j Ui and the last equality follows from the fact that since l 6= i,

s 6= k.

It was shown in [32] and [30] that if the measurement operators Π̂
(j)
i are optimal for

any j, then {Πi = (1/m)
∑m

j=1 Π̂
(j)
i , 1 ≤ i ≤ m} and Π0 = I −∑m

i=1 Πi are also optimal.

Furthermore, Πi = UiΠ̂U
∗
i where Π̂ = (1/m)

∑m
k=1 U

∗
k Π̂kUk.

We therefore conclude that the optimal measurement operators can always be chosen to

be GU with the same generating group G as the original state set. Thus, to find the optimal

measurement operators all we need is to find the optimal generator Π̂. The remaining

operators are obtained by applying the group G to Π̂.

Since the optimal measurement operators satisfy Πi = UiΠU
∗
i , 1 ≤ i ≤ m and ρi =

UiρU
∗
i , Tr(ρiΠi) = Tr(ρΠ), so that the problem (6.9) reduces to the maximization problem

max
Π∈B

Tr(ρΠ), (6.48)

where B is the set of n× n Hermitian operators, subject to the constraints

Π ≥ 0;

∑m
i=1 UiΠU

∗
i ≤ I;

Tr(Πρi) = 0, 2 ≤ i ≤ m. (6.49)

The problem of (6.48) and (6.49) is a (convex) semi-definite programming problem, and
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therefore the optimal Π can be computed very efficiently in polynomial time within any

desired accuracy [97], [3], [72], for example using the LMI toolbox on Matlab. Note that

the problem of (6.48) and (6.49) has n2 real unknowns and m + 1 constraints, in contrast

with the original maximization problem (6.9) subject to (6.8) and (6.5) which has mn2 real

unknowns and m2 + 1 constraints.

6.7 CGU state sets

A CGU state set is defined as a set density operators {ρik, 1 ≤ i ≤ l, 1 ≤ k ≤ r} such that

ρik = UiφkU
∗
i for some generating density operators {ρk, 1 ≤ k ≤ r}, where the matrices

{Ui, 1 ≤ i ≤ l} are unitary and form an abelian group G [28], [30]. A CGU state set is in

general not GU. However, for every k, the operators {ρik, 1 ≤ i ≤ l} are GU with generating

group G.

Using arguments similar to those of Section 6.6 and [32] we can show that the optimal

measurement operators corresponding to a CGU state set can always be chosen to be GU

with the same generating group G as the original state set. Thus, to find the optimal

measurement operators all we need is to find the optimal generators Π̂k. The remaining

operators are obtained by applying the group G to each of the generators Π̂k.

Since the optimal measurement operators satisfy Πik = UiΠkU
∗
i , 1 ≤ i ≤ l, 1 ≤ k ≤

r and ρik = UiρkU
∗
i , Tr(ρikΠik) = Tr(ρkΠk), so that the problem (6.9) reduces to the

maximization problem

max
Πk∈B

r∑

k=1

Tr(ρkΠk), (6.50)

subject to the constraints

Πk ≥ 0, 1 ≤ k ≤ r;

∑l
i=1

∑r
k=1 UikΠkU

∗
ik ≤ I;

Tr(Πkρik) = 0, 1 ≤ k ≤ r, 2 ≤ i ≤ l. (6.51)
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Since this problem is a (convex) semi-definite programming problem, the optimal generators

Πk can be computed very efficiently in polynomial time within any desired accuracy [97],

[3], [72]. Note that the problem of (6.50) and (6.51) has rn2 real unknowns and lr + 1

constraints, in contrast with the original maximization which has lrn2 real unknowns and

(lr)2 + 1 constraints.

6.8 Conclusion

In this chapter we considered the problem of distinguishing unambiguously between a col-

lections of mixed quantum states. Using elements of duality theory in vector space optimiza-

tion, we derived a set of necessary and sufficient conditions on the optimal measurement

operators. We then considered some special cases for which closed-form solutions are known,

and showed that they satisfy our optimality conditions. We also showed that in the case

in which the states to be distinguished have strong symmetry properties, the optimal mea-

surement operators have the same symmetries, and can be determined efficiently by solving

a semi-definite programming problem.

An interesting future direction to pursue is to use the optimality conditions we developed

in this chapter to derive closed-form solutions for other special cases.

6.9 Proof of (6.30)

To develop the optimal dual solution in the case of orthogonal null spaces, let

Θ =

[
Θ1 Θ2 ... Θm

]
,

and define a matrix Θ⊥ such that

[
Θ Θ⊥

]
is a square, unitary matrix, i.e.,

[
Θ Θ⊥

]∗ [
Θ Θ⊥

]
= I.
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Denoting Z =

[
Θ Θ⊥

]
Y

[
Θ Θ⊥

]∗
, the dual problem can be expressed as

min
Y

Tr

([
Θ Θ⊥

]
Y

[
Θ Θ⊥

]∗)
(6.52)

subject to

Θ∗
i

[
Θ Θ⊥

]
Y

[
Θ Θ⊥

]∗
Θi ≥ Θ∗

i piρiΘi, 1 ≤ i ≤ m;

Y ≥ 0. (6.53)

Using the orthogonality properties of Θi and Θ⊥, the problem of (6.52) and (6.53) is equiv-

alent to

min
Y

Tr(Y ) (6.54)

subject to

Yi ≥ Θ∗
i piρiΘi, 1 ≤ i ≤ m;

Y ≥ 0, (6.55)

where

Y =




Y1

Y2

. . .

Ym

0




. (6.56)
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Since Tr(Y ) =
∑m

i=1 Tr(Yi), a solution to (6.54) subject to (6.55) is

Ŷ =




Ŷ1

Ŷ2

. . .

Ŷm

0




, (6.57)

where

Ŷi = Θ∗
i piρiΘi, 1 ≤ i ≤ m. (6.58)

Then,

Ẑ =

[
Θ Θ⊥

]
Ŷ

[
Θ Θ⊥

]∗
=

m∑

i=1

piPiρiPi, (6.59)

as in (6.30).

6.10 Proof of (6.31)

To develop the optimal dual solution Ẑ for one-dimensional null spaces, we note that Ẑ lies

in the space spanned by Θ1 and Θ2. Denoting by Θ a matrix whose columns represent an

orthonormal basis for this space, Ẑ can be written as Ẑ = ΘŶΘ∗, where the 2 × 2 matrix

Ŷ is the solution to

min
Y

Tr(Y ) (6.60)

subject to

Φ∗
1Y Φ1 ≥ d1; (6.61)

Φ∗
2Y Φ2 ≥ d2; (6.62)

Y ≥ 0. (6.63)
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Here Φi = Θ∗Θi and di = piΘ
∗
i ρiΘi for 1 ≤ i ≤ 2.

To develop a solution to (6.60) subject to (6.61)–(6.63), we form the Lagrangian

L = Tr(Y ) −
2∑

i=1

γi(Φ
∗
i Y Φi − di) − Tr(XY ), (6.64)

where from the Karush-Kuhn-Tucker (KKT) conditions we must have that γi ≥ 0, X ≥ 0,

and

γi(Φ
∗
iY Φi − di) = 0, i = 1, 2; (6.65)

Tr(XY ) = 0. (6.66)

Differentiating L with respect to Y and equating to zero,

I −
2∑

i=1

γiΦiΦ
∗
i −X = 0. (6.67)

If X = 0, then we must have that I =
∑2

i=1 γiΦiΦ
∗
i , which is possible only if Φ1 and Φ2

are orthogonal. Therefore, X 6= 0, which implies from (6.66) that (6.63) is active. Now,

suppose that only (6.63) is active. In this case our problem reduces to minimizing Tr(y∗y),

whose optimal solution is y = 0, which does not satisfy (6.61) and (6.62).

We conclude that at the optimal solution (6.63) and at least one of the constraints (6.61)

and (6.62) are active. Thus, to determine the optimal solution we need to determine the

solutions under each of the 3 possibilities — only (6.61) is active, only (6.62) is active, both

(6.61) and (6.62) are active — and then choose the solution with the smallest objective.

Consider first the case in which (6.61) and (6.63) are active. In this case, Ŷ = ŷŷ∗ for

some vector ŷ, and without loss of generality we can assume that

Φ∗
1ŷ = d1. (6.68)
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To satisfy (6.68), ŷ must have the form

ŷ =
√
d1Φ1 + ŝΦ⊥

1 , (6.69)

where Φ⊥
1 is a unit norm vector orthogonal to Φ1, so that Φ∗

1Φ
⊥
1 = 0, and ŝ is chosen to

minimize Tr(Ŷ ). Since,

Tr(Ŷ ) = ŷ∗ŷ = d1 + |ŝ|2, (6.70)

ŝ = 0. Thus, Ŷ = d1Φ1Φ
∗
1, and Tr(Ŷ ) = d1. This solution is valid only if (6.62) is satisfied,

i.e., only if

Φ∗
2Ŷ Φ2 = d1|f |2 ≥ d2. (6.71)

Here we used the fact that

Φ∗
2Φ1 = Θ∗

2ΘΘ∗Θ1 = Θ∗
2Θ1 = f, (6.72)

since ΘΘ∗ is an orthogonal projection onto the space spanned by Θ1 and Θ2.

Next, suppose that (6.62) and (6.63) are active. In this case, Ŷ = ŷŷ∗ where without

loss of generality we can choose ŷ such that

Φ∗
2ŷ = d2, (6.73)

and

ŷ =
√
d2Φ2 + ŝΦ⊥

2 , (6.74)

where Φ⊥
2 is a unit norm vector orthogonal to Φ2, and ŝ is chosen to minimize Tr(Ŷ ). Since

Tr(Ŷ ) = d2 + |ŝ|2, ŝ = 0, and Tr(Ŷ ) = d2. This solution is valid only if (6.61) is satisfied,

i.e.,

Φ∗
1Y Φ1 = d2|f |2 ≥ d1. (6.75)

Finally, consider the case in which (6.61)–(6.63) are active. In this case, we can assume
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without loss of generality that Φ∗
2ŷ =

√
d2. Then,

ŷ =
√
d2Φ2 + ŝΦ⊥

2 , (6.76)

where ŝ is chosen such that

Φ∗
1Ŷ Φ1 = d1, (6.77)

and Tr(Ŷ ) = ŷ∗ŷ is minimized. Now, for ŷ given by (6.76),

Ŷ = d2Φ2Φ
∗
2 + |ŝ|2Φ⊥

2 Φ⊥∗
2 + ŝ

√
d2Φ

⊥
2 Φ∗

2 + ŝ∗
√
d2Φ2Φ

⊥∗
2 , (6.78)

so that

Φ∗
1ŶΦ1 = d2|f |2 + |ŝ|2|e|2 +

√
d2ŝe

∗f +
√
d2ŝ

∗f∗e

= |
√
d2f + ŝ∗e|2, (6.79)

where we defined Θ⊥
2 = ΘΨ⊥

2 , and e and f are given by (6.32). Therefore, to satisfy (6.77),

ŝ must be of the form

ŝ =
1

e∗

(
ejϕ
√
d1 − f∗

√
d2

)
, (6.80)

for some ϕ. The problem of (6.60) then becomes

min
ϕ

1

|e|2
∣∣∣ejϕ

√
d1 − f∗

√
d2

∣∣∣
2
, (6.81)

which is equivalent to

max
ϕ

<
{
ejϕf

}
. (6.82)

Since

<
{
ejϕf

}
≤
∣∣ejϕf

∣∣ = |f |, (6.83)
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the optimal choice of ϕ is ejϕ = f∗/|f |, and

ŝ =
f∗

√
d2

e∗

( √
d1√
d2|f |

− 1

)
. (6.84)

For this choice of ŝ,

Tr(Ŷ ) = d2 + |ŝ|2

= d2

(
1 +

|f |2
|e|2

( √
d1√
d2|f |

− 1

)2
)

4
= α. (6.85)

Clearly, α ≥ d2. Therefore, to complete the proof of (6.31) we need to show that α ≥ d1.

Now,

|e|2(α− d1) =

= |e|2(d2 − d1) + |f |2
(√

d1

|f | −
√
d2

)2

= (1 − |e|2)d1 + (|e|2 + |f |2)d2 − 2
√
d1

√
d2|f |

= (|f |
√
d1 −

√
d2)

2

≥ 0, (6.86)

where we used the fact that

|e|2 + |f |2 = Θ∗
1Θ2Θ

∗
2Θ1 + Θ∗

1Θ
⊥
2 (Θ⊥

2 )∗Θ1

= Θ∗
1Θ1 = 1, (6.87)

since Θ2Θ
∗
2 + Θ⊥

2 (Θ⊥
2 )∗ is an orthogonal projection onto the space spanned by Θ1 and Θ2.
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Chapter 7

Unambiguous Detection of Two
Mixed States of Rank Two

In this chapter we consider the problem of the optimal quantum unambiguous detection

between two mixed quantum states. More specifically, we consider two mixed quantum

states of rank 2 which lie in a Hilbert space of dimension 4. Using duality theory and

the framework developed in the previous chapter we explicitly characterize the optimal

measurement operators. Furthermore, as a by-product of our framework, we obtain a

closed-form solution of unambiguous discrimination between a pure and a mixed quantum

state.

7.1 Introduction

As mentioned in the previous chapter, the quantum unambiguous detection is a somewhat

recent approach in distinguishing among a collection of quantum states. It was initially

introduced in [55] and further considered in [25] and [76]. As we have seen, the main

idea was to allow for inconclusive result of the measurement procedure. In return, if the

measurement produces an answer, then that answer is correct with probability 1. An

interesting variation of this approach is maximization of the probability of correct detection

[32] and [38]. This approach has attracted significant attention in the last several years (for

a recent survey on the topic see, e.g., [9]).

Bounds on the efficiency (the maximum probability of correct detection) of unambiguous
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discrimination and conditions for achieving them in different scenarios were studied in [113],

[82], [36], [104], and [81]. Applications of semi-definite programming in finding the optimal

measurement operators were considered in [33], [31], and [115].

While in the previous chapter we considered general problem of unambiguous quantum

detection without restricting the number of quantum states at hand, in this chapter, we

restrict ourselves to a specific case of unambiguous discrimination of two mixed quantum

states. A special case of this problem, when one of the states is pure and the other one is

mixed, was solved analytically in [8]. Additionally, in [82] a bound on maximal probability

of correct detection in the case of unambiguous discrimination of two general mixed states

was derived. Furthermore it was shown that the bound is tight in the case when one of the

states is pure, thus matching the result of [8] obtained in the context of quantum filtering.

In [7] the authors derive an analytical solution for unambiguous discrimination of a special

class of two mixed states. Namely, the authors analyze the case when two mixed states

are uniformly mixed, i.e., when their representations in Jordan bases correspond to their

spectral representations. In [50] another special case of two quantum states connected

by a unitary transformation is linked to the previous one and solved analytically as well.

However, in the most general case, analytically solving the unambiguous discrimination of

two mixed states still remains a very difficult task. It is interesting to note that in [80], the

authors showed that the problem of unambiguous discrimination of any two mixed states

can always be reduced to the problem of distinguishing two states of rank d that lie in a

2d-dimensional Hilbert space. It should also be noted that in [7], the authors emphasized

the incredible difficulty of solving that problem for an arbitrary d, while still believing that

the case when d = 2 may be within reach. In this chapter we solve the problem when d = 2.

A complementary version of this chapter can be found in [85].

7.2 Problem formulation

Assume that we have two quantum states ρ1 and ρ2. Further, assume that their rank is

2 and that they lie in a 4-dimensional Hilbert space. Quantum unambiguous detection
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technique assumes the existence of the three measurement operators {Πi, 0 ≤ i ≤ 2} that

satisfy

Πi = Π∗
i ≥ 0, 0 ≤ i ≤ 2;

∑2
i=0 Πi = I. (7.1)

As usual, Tr(ρjΠi), i > 0 represents the probability that if the system is prepared in state

ρj the detected state is ρi. Since unambiguous discrimination doesn’t allow for incorrect

detection it must hold

Tr(ρjΠi) = 0, 1 ≤ i, j ≤ 2, i 6= j. (7.2)

From (7.2) it is clear that the eigenvectors of Π1 have to be in the null space of ρ2 and the

eigenvectors of Π2 have to be in the null space of ρ1. Let Θ2 be the matrix whose column

represents an orthonormal basis of the null space of ρ1, and analogously Θ1 be the matrix

whose columns represent an orthonormal basis of the null space of ρ2. Clearly, Θ1, Θ2 are

4× 2 matrices. Using introduced matrices Θs we can represent the measurement operators

of interest as Πi = Θi∆iΘ
∗
i , i = 1, 2, where ∆i = ∆∗

i ≥ 0 and ∆s are of the corresponding

dimensions. It is then easy to see that maximizing the probability of correct detection is

equivalent to solving (see, e.g., [50], [7], [82], and [31])

max
∆1=∆∗

1≥0,∆2=∆∗
2≥0

2∑

i=1

piTr(ρiΘi∆iΘ
∗
i )

subject to Θ1∆1Θ
∗
1 + Θ2∆2Θ

∗
2 ≤ I (7.3)

where pi, 1 ≤ i ≤ 2 is a priori probability that system was prepared in state i. As shown

in [31] the dual of the previous primal problem can be written as

min
Z=Z∗

Tr(Z)

subject to Θ∗
i (Z − piρi)Θi ≥ 0, 1 ≤ i ≤ 2

Z ≥ 0.
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Denoting by Di = Θ∗
i piρiΘi, i = 1, 2 we get the following formulation of the dual problem

min
Z=Z∗

Tr(Z)

subject to Θ∗
iZΘi ≥ Di, 1 ≤ i ≤ 2;

Z ≥ 0. (7.4)

In order to solve (7.3) we will first solve the dual problem and then find the solution of the

primal based on the conclusions about the optimality conditions given in [31].

7.3 The dual problem

It is easy to see that the problem in (7.4) is equivalent to

min
Z=Z∗,m1,m2

Tr(Z)

subject to Θ∗
1ZΘ1 = D1 +m1m

∗
1

Θ∗
2ZΘ2 = D2 +m2m

∗
2

Z ≥ 0 (7.5)

where m1, m2 are 2 × 2 matrices. Denote by Θ⊥
2 a 4 × 2 matrix such that

[
Θ2 Θ⊥

2

] [
Θ2 Θ⊥

2

]∗
= I

and by F and E 2 × 2 matrices such that Θ1 = Θ2F + Θ⊥
2 E. Since, Z is Hermitian we

can write Z = AA∗ where A is some 4 × 4 matrix (it can in fact be shown that in case of

optimal Z, A can even be represented as 4× 2 matrix). Then the second constraint in (7.5)

becomes

Θ∗
2AA

∗Θ2 = D2 +m2m
∗
2. (7.6)

From (7.6) we get

A = Θ2

√
D2 +m2m

∗
2K + Θ⊥

2 S (7.7)
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where K is a 2× 4 matrix such that KK∗ = I,
√
D2 +m2m∗

2 is any positive square root of

the Hermitian matrix D2 +m2m
∗
2, and S is any 2 × 4 matrix. From the first constraint in

(7.5) we have

Θ∗
1AA

∗Θ1 = D1 +m1m
∗
1

and

Θ∗
1A =

√
D1 +m1m∗

1L (7.8)

where L is a 2× 4 matrix such that LL∗ = I, and
√
D1 +m1m∗

1 is any positive square root

of the Hermitian matrix D1 + m1m
∗
1. Using the representation of Θ1 given earlier and A

obtained in (7.7) we have

Θ∗
1A = Θ∗

1(Θ2

√
D2 +m2m∗

2K + Θ⊥
2 S)

= F ∗√D2 +m2m∗
2K +E∗S (7.9)

Now, replacing result from (7.9) in (7.8) we get

F ∗√D2 +m2m∗
2K +E∗S =

√
D1 +m1m∗

1L. (7.10)

From now on, in order to avoid tedious discussion of degenerative low-rank cases we will

assume that E is invertible. Then from (7.10) we easily have

S = E−∗√D1 +m1m
∗
1L−E−∗F ∗√D2 +m2m

∗
2K. (7.11)
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Using the expression for S form (7.11) we have

TrZ = TrSS∗ + Tr(D2 +m2m
∗
2)

= Tr(E−∗(D1 +m1m
∗
1)E

−1)

− Tr(E−∗√D1 +m1m∗
1LK

∗√D2 +m2m∗
2FE

−1)

− Tr(E−∗F ∗√D2 +m2m
∗
2KL

∗√D1 +m1m
∗
1E

−1)

+ Tr(E−∗F ∗(D2 +m2m
∗
2)FE

−1)

+ Tr(D2 +m2m
∗
2). (7.12)

Let W =
√
D2 +m2m

∗
2FE

−1E−∗√D1 +m1m
∗
1. Then, it is straightforward to see that L̂

and K̂ such that

L̂K̂∗ = W ∗√(WW ∗)
−1

(7.13)

minimize the right side of the previous expression. Then solving (7.5) is equivalent to solving

min
m1 ,m2

g(m1,m2) (7.14)

where

g(m1,m2) = Tr(E−∗(D1 +m1m
∗
1)E

−1) − 2
√
WW ∗

+ Tr(E−∗F ∗(D2 +m2m
∗
2)FE

−1) + Tr(D2 +m2m
∗
2)

W =
√
D2 +m2m∗

2FE
−1E−∗√D1 +m1m∗

1.

Let m̂1, m̂2 be the optimal solutions of (7.14) and let ∆̂1, ∆̂2 be the optimal solutions of

(7.3). In the following section we show how from m̂1, m̂2 and optimality conditions derived

in [31] ∆̂1 and ∆̂2 can be found.
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7.4 Optimality conditions

Let Ẑ be the optimal solution of (7.5). Then optimality conditions from [31] read as

(Θ∗
1ẐΘ1 −D1)∆̂1 = m̂1m̂1

∗∆̂1 = 0 (7.15)

(Θ∗
2ẐΘ2 −D2)∆̂2 = m̂2m̂2

∗∆̂2 = 0 (7.16)

Ẑ − ẐΘ1∆̂1Θ
∗
1 − ẐΘ2∆̂2Θ

∗
2 = 0. (7.17)

Before solving (7.17) let us compute its terms Ẑ, Σ1 = ẐΘ1∆̂1Θ
∗
1, and Σ2 = ẐΘ2∆̂2Θ

∗
2.

Σ1 = (Θ2

√
D2 + m̂2m̂2

∗K̂ + Θ⊥
2 Ŝ)(K̂∗√D2 + m̂2m̂2

∗Θ∗
2 + Ŝ∗Θ⊥∗

2 )

× (Θ2F + Θ⊥
2 E)∆̂1(F

∗Θ∗
2 +E∗Θ⊥∗

2 ).

After some computations we get

Σ1 = Θ2((D2 + m̂2m̂2
∗)F ∆̂1F

∗ +
√
D2 + m̂2m̂2

∗K̂Ŝ∗E∆̂1F
∗)Θ∗

2

+ Θ⊥
2 (ŜK̂∗√D2 + m̂2m̂2

∗F ∆̂1F
∗ + ŜŜ∗E∆̂1F

∗)Θ∗
2

+ Θ2((D2 + m̂2m̂2
∗)F ∆̂1E

∗ +
√
D2 + m̂2m̂2

∗K̂Ŝ∗E∆̂1E
∗)Θ⊥∗

2

+ Θ⊥
2 (ŜK̂∗√D2 + m̂2m̂2

∗F ∆̂1E
∗ + ŜŜ∗E∆̂1E

∗)Θ⊥∗
2 .

Similarly we have

Σ2 = (Θ2

√
D2 + m̂2m̂2

∗K̂ + Θ⊥
2 Ŝ)(K̂∗√D2 + m̂2m̂2

∗Θ∗
2 + Ŝ∗Θ⊥∗

2 )Θ2∆̂1Θ
∗
2

and after some computations

Σ2 = Θ2(D2 + m̂2m̂2
∗)∆̂2Θ

∗
2 + Θ⊥

2 ŜK̂
∗√D2 + m̂2m̂2

∗∆̂2Θ
∗
2.
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Of course we have also

Ẑ = (Θ2

√
D2 + m̂2m̂2

∗K̂ + Θ⊥
2 Ŝ)(K̂∗√D2 + m̂2m̂2

∗Θ∗
2 + Ŝ∗Θ⊥∗

2 )

and after some computations

Ẑ = Θ2(D2 + m̂2m̂2
∗)Θ∗

2 + Θ⊥
2 ŜŜ

∗Θ⊥∗
2

+ Θ2

√
D2 + m̂2m̂2

∗K̂Ŝ∗Θ⊥∗
2 + Θ⊥

2 ŜK̂
∗√D2 + m̂2m̂2

∗Θ∗
2.

Since Ẑ = Σ1 + Σ2 then equalling the vector coefficients next to Θ2Θ
⊥∗
2 in Ẑ and Σ1 + Σ2

we have

√
D2 + m̂2m̂2

∗K̂(K̂∗√D2 + m̂2m̂2
∗F + Ŝ∗E)∆̂1E

∗ =
√
D2 + m̂2m̂2

∗K̂Ŝ∗.

Combining (7.10) and the previous equation we finally obtain

∆̂1 = E−1E−∗ −
√
D1 + m̂1m̂1

∗−1
L̂K̂∗√D2 + m̂2m̂2

∗FE−1E−∗ (7.18)

where L̂K̂∗ is a function of m̂1, m̂2 and is given in (7.13). In a similar manner equaling the

vector coefficients next to Θ2Θ
∗
2 we have

∆̂2 = I −
√
D2 + m̂2m̂2

∗−1
K̂(K̂∗√D2 + m̂2m̂2

∗F + Ŝ∗E)∆̂1F
∗

= I −
√
D2 + m̂2m̂2

∗−1
K̂L̂∗√D1 + m̂1m̂1

∗∆̂1F
∗ (7.19)

where K̂L̂∗ = (L̂K̂∗)∗ and L̂K̂∗ is given in (7.13). Clearly, given m̂1, m̂2, ∆̂1 and ∆̂2 can be

obtained from equations (7.18) and (7.19). In the following section we determine m̂1, m̂2,

∆̂1, and ∆̂2.
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7.5 Solving the primal and dual problems

It is clear from (7.3) that ∆̂1 and ∆̂2 can have different rank. It is not difficult to see that

there are 6 different cases for ranks of ∆̂1 and ∆̂2. In this section we analyze all of them

and provide an explicit characterization of optimal solutions.

7.5.1 Rank-2 ∆s

If ∆̂1 and ∆̂2 both have rank 2 then from (7.15) and (7.16) it easily follows that m̂1 = m̂2 =

0. Then ∆̂1 and ∆̂2 can easily be obtained from (7.18) and (7.19).

7.5.2 One of ∆s is zero

These two cases are straightforward. Directly from (7.3) it follows that if ∆̂2 = 0 then

∆̂1 = I. Also if ∆̂1 = 0 it easily follows ∆̂2 = I.

7.5.3 One of ∆s has rank 2, the other rank 1

Without loss of generality we will assume that ∆̂1 is of rank one and ∆̂2 is of rank two.

The case when ∆̂2 is of rank one and ∆̂1 is of rank two is completely symmetric.

If ∆̂1 is of rank one then from (7.15) we have that m̂1 is 2 × 1 vector. Furthermore,

from (7.16) we have that m̂2 = 0. Then (7.14) can be simplified to

min
m1

g(m1) (7.20)

where

g(m1) = Tr(E−∗(D1 +m1m
∗
1)E

−1) − 2

√√
D2FE−1E−∗(D1 +m1m

∗
1)E

−1E−∗F ∗
√
D2

+ Tr(E−∗F ∗(D2)FE
−1) + Tr(D2).
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Furthermore, solving (7.20) is equivalent to solving

min
v

Tr(vBv∗) − 2Tr
√
D + vv∗ (7.21)

where S =
√
D2FE

−1, SE−∗D1E
−1S∗ = UDU∗ v = U∗SE−∗m1, B = U∗S−∗S−1U , U

is a unitary matrix, and D is diagonal matrix. Clearly if v̂ is a solution of (7.21) then

m̂1 = E∗S−1Uv̂. Without loss of generality we can assume v =




√
v1

√
v2e

jφ


, v1, v2 are real,

and v1 ≥ 0, v2 ≥ 0. Further, let B =




b11 b12e
jβ

b12e
−jβ b22


, D =



d1 0

0 d2


, and b12 ≥ 0. After

some algebraic transformations (7.21) can be written as

min
v1,v2,φ

v1b11 + v2b22 + 2
√
v1v2b12 cos(φ+ β)

− 2

√
d1 + d2 + v1 + v2 + 2

√
v1d2 + v2d1 + d1d2. (7.22)

Let v̂1, v̂2, φ̂ be the optimal solution of (7.22). Then clearly, φ̂ = −β+π and (7.22) becomes

min
v1,v2

v1b11 + v2b22 − 2
√
v1v2b12 − 2

√
d1 + d2 + v1 + v2 + 2

√
v1d2 + v2d1 + d1d2. (7.23)

Quite remarkably it can be shown that the previous problem is convex. Hence the optimal

solution can be found after derivation. Let x = d1 + d2 + v1 + v2, y = v1d2 + v2d1 + d1d2,

and L = v1b11 + v2b22 − 2
√
v1v2b12 − 2

√
x+ 2

√
y. Then we have

∂L
∂v1

= b11 −
√
v2/v1b11 −

1 + d2√
y√

x+ 2
√
y

= 0

∂L
∂v2

= b22 −
√
v1/v2b11 −

1 + d1√
y√

x+ 2
√
y

= 0. (7.24)
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Let k =
√

v2
v1

. After some algebraic transformations from (7.24) we obtain

h(k) =
√
y =

d2(b22 − b12/k) − d1(b11 − kb12)

b11 − kb12 − (b22 − b12/k)

v1 = (h(k)2 − d1d2)/(d2 + k2d1). (7.25)

Replacing (7.25) in (7.24) we finally have

b11 − kb12 −
1 + d2

h(k)

d1 + d2 + (1 + k2)h(k)2−d1d2
d2+k2d1

+ 2h(k)
= 0. (7.26)

Letmink = min{−b22+
√

(b11 − b22)2 + 4b212,−b22 d2d1 +
√

(b11 − b22
d2
d1

)2 + 4b212
d2
d1
} andmaxk =

max{−b22 +
√

(b11 − b22)2 + 4b212,−b22 d2d1 +
√

(b11 − b22
d2
d1

)2 + 4b212
d2
d1
}. Since k ≥ 0 and

h(k) ≥ 0, it can be shown that optimal k̂ is the unique solution of (7.26) from the

interval [ b11+mink
2b12

, b11+maxk
2b12

]. This solution can then easily be obtained (e.g., using bi-

section method). Then v̂1 can be obtained from (7.25). Finally, we have v̂2 = k̂2v̂1,

m̂1 = E∗S−1U




√
v̂1

√
v̂2e

j(−β+π)


, and ∆̂1, ∆̂2 from (7.18), (7.19). This concludes the case

when one of ∆s is of rank 1 and the other one is of rank 2.

7.5.4 Both ∆s are rank 1

When ∆̂1 and ∆̂2 are rank one we solve directly the primal problem given in (7.3). Let

∆1 = δ1δ
∗
1 and ∆2 = δ2δ

∗
2 . Then (7.3) becomes

max
δ1,δ2

Tr(δ∗1D1δ1) + Tr(δ∗2D2δ2)

subject to Θ1δ1δ
∗
1Θ

∗
1 + Θ2δ2δ

∗
2Θ∗

2 ≤ I. (7.27)

It is not difficult to show that for optimal δ1 and δ2 holds δ∗2Θ∗
2Θ1δ1 = 0 and δ∗1δ1 =

δ∗2δ2 = 1. Let Θ∗
2Θ1 = PΣQ∗ where PP ∗ = QQ∗ = I and Σ =



1/σ1 0

0 1/σ2


. Let

s1 = Q∗δ1, s2 = P ∗δ2, and let s⊥2 be unit norm vector such that s∗2s
⊥
2 = 0. Further,
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let s2 =




a

√
1 − a2ejψ


 , 0 ≤ a ≤ 1. Then it easily follows that s1 = Σ−1s⊥2 ξ where ξ =

1/
√
s⊥∗
2 Σ−∗Σ−1s⊥2 = 1/

√
σ2

1 − a2(σ2
1 − σ2

2). LetM = Σ−∗Q∗D1QΣ−1 =




m11 m12e
jγ2

m12e
−jγ2 m22


,

P ∗D2P =




d11 d12e
jγ1

d12e
−jγ1 d22


, m12 ≥ 0, and d12 ≥ 0. After some algebraic transforma-

tions (7.27) can be written as

max
0≤a≤1,ψ

m11(1 − a2) +m22a
2

σ2
1 − a2(σ2

1 − σ2
2)

+ a2d11 + (1 − a2)d22

+ 2d12

√
a2 − a4 cos(ψ + γ1) −

2
√
a2 − a4m12 cos(ψ + γ2)

σ2
1 − a2(σ2

1 − σ2
2)

. (7.28)

The optimal ψ can be given as cos ψ̂ = c1/
√
c21 + c22, c1 = 2d12 cos γ2 − 2m12 cos γ1

σ2
1−a2(σ2

1−σ2
2)

, c2 =

2m12 sin γ1
σ2
1−a2(σ2

1−σ2
2)

− 2d12 sin γ2. Then (7.28) simplifies to

max
0≤a≤1

F(a) (7.29)

where

F(a) =
m11(1 − a2) +m22a

2

σ2
1 − a2(σ2

1 − σ2
2)

+ a2d11 + (1 − a2)d22

+
√
a2 − a4

√
(

2m12

σ2
1 − a2(σ2

1 − σ2
2)

− 2d12 cos γ)2 + 4d2
12 sin2 γ.

and γ = γ1−γ2. Further, let z = ξ2 = 1/(σ2
1−a2(σ2

1−σ2
2)). Then (7.29) can be transformed

to

max
1

max{σ2
1

,σ2
2
}
≤z≤ 1

min{σ2
1

,σ2
2
}

F(z) (7.30)
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where

F(z) = (m11 +m22)z +
(d11 −m11z)(σ

2
1 − 1/z) + (d22 −m22z)(1/z − σ2

2)

σ2
1 − σ2

2

+

√
(σ2

1 − 1
z )(

1
z − σ2

2)

|σ2
1 − σ2

2 |
√

(2m12z − 2d12 cos γ)2 + 4d2
12 sin2 γ.

(7.31)

To find a solution to (7.30) we differentiate (7.31).

∂F
∂z

=
m22σ

2
1 −m11σ

2
2

σ2
1 − σ2

2

+
d11 − d22

z2(σ2
1 − σ2

2)
+

1

|σ2
1 − σ2

2 |
×

m2
12((σ

2
1 + σ2

2) + 2d12
m12

cos γ(σ2
1σ

2
2 − 1

z2
)) − d2

12
z(d21+d22)−2

z3√
(σ2

1 − 1
z )(

1
z − σ2

2)
√

(m12z − d12 cos γ)2 + d2
12 sin2 γ

= 0.

(7.32)

Let ẑ be a solution of (7.32). Then we have â =
(σ2

1−1/ẑ)

σ2
1−σ2

2
, ŝ2 =




â

√
1 − â2ejψ̂


, ŝ2

⊥ is a

unit vector such that ŝ2
∗ŝ2⊥ = 0, δ̂1 = QΣ−1ŝ2

⊥√ẑ, and δ̂2 = P ŝ2. Since in general there

may be several (at most 8) solutions ẑ of (7.32), we choose the one which produces δ̂1 and

δ̂2 that maximize (7.3). This concludes the case of rank 1 ∆s.

7.6 Summary

In this section we summarize the results from the previous section.

Lemma 7.1. Let ∆̂1 and ∆̂2 be the solutions of (7.3). Further assume that they are both

of rank 2. Then we have

∆̂1 = E−1E−∗ −
√
D1

−1
L̂K̂∗√D2FE

−1E−∗

∆̂2 = I −
√
D2

−1
K̂L̂∗√D1∆̂1F

∗

where L̂K̂∗ =
√
D1E

−1E−∗F ∗√D2

√√
D2FE−1E−∗D1E−1E−∗F ∗√D2

−1
.
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Proof. Follows from the previous discussion.

Lemma 7.2. Let ∆̂1 and ∆̂2 be the solutions of (7.3). Further assume that ∆̂1 is of rank

2 and ∆̂2 = 0. Then we have

∆̂1 = I, ∆̂2 = 0.

Similarly if ∆̂2 is of rank 2 and ∆̂1 = 0 we have

∆̂1 = 0, ∆̂2 = I.

Proof. Follows from the previous discussion.

Lemma 7.3. Let ∆̂1 and ∆̂2 be the solutions of (7.3). Further assume that ∆̂1 is of

rank 1 and ∆̂2 is of rank 2. Then ∆̂1 and ∆̂2 are given by (7.18) and (7.19) respectively,

where m̂1 = E∗S−1U




√
v̂1

√
v̂2e

j(−β+π)


,v̂2 = k̂2v̂1, k̂ is the unique solution of (7.26) from

the interval [ b11+mink
2b12

, b11+maxk
2b12

], v̂1 = (h(k̂)2 − d1d2)/(d2 + k̂2d1), h(k) is as introduced in

(7.25), E,S, U, β, b11, b12 are as introduced below (7.21), and mink,maxk are as introduced

below (7.26).

Proof. Follows from the previous discussion.

If ∆̂1 is of rank 2 and ∆̂2 is of rank 1 then they can be determined in a similar fashion.

However, since this case is completely symmetric to the one that we have already analyzed

in the interest of saving the space we omit its analysis here.

Lemma 7.4. Let ∆̂1 and ∆̂2 be the solutions of (7.3). Further assume that they are both

of rank 1. Then ∆̂1 = δ̂1δ̂1
∗

and ∆̂2 = δ̂2δ̂2
∗

where δ̂2 = P ŝ2, ŝ2 =




â

√
1 − â2ejψ̂


,

â =
(σ2

1−1/ẑ)

σ2
1−σ2

2
, δ̂1 = QΣ−1ŝ2

⊥√ẑ, ŝ2⊥ is a unit vector such that ŝ2
∗ŝ2⊥ = 0, P,Σ, Q are as

defined below (7.27), ψ̂ is as defined below (7.28), and ẑ is solution of (7.32) which produces

δ̂1, δ̂2 that maximize (7.3).
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Proof. Follows from the previous discussion.

We unify the previous lemmas in the following theorem.

Theorem 7.1. Let ∆̂1 and ∆̂2 be the solutions of (7.3). Then they correspond to those ∆̂1

and ∆̂2 from the previous lemmas which maximize (7.3).

Proof. First we note that the ranks of ∆̂1 and ∆̂2 can be at most 2. It is also easy to see

that the cases when sum of their ranks is less than 2 can never happen. Hence there are

only 6 cases left and they are all covered by previous lemmas. Which of these 6 cases is the

solution is determined according to the value of the objective in (7.3) that they produce.

The one which produces the largest value of objective in (7.3) is the solution. This ends

the proof.

7.7 Unambiguous discrimination between pure and mixed

state

In this section we briefly look at the unambiguous discrimination between a pure and a

mixed state. This problem was also considered earlier in [8]. Here we provide a solution

based on the framework developed earlier in this chapter. The problem formulation is again

as in (7.3), i.e.,

max
∆1=∆∗

1≥0,∆2=∆∗
2≥0

2∑

i=1

piTr(ρiΘi∆iΘ
∗
i ). (7.33)

However, the dimensions of the matrices Θ1,Θ2, ∆1,∆2 are now different. Namely, Θ2 is an

(l+1)×1 unit norm vector, Θ1 is a (l+1)×l matrix such that Θ∗
1Θ1 = I, ∆1 is l×l hermitian

positive semi-definite matrix, ∆2 is a positive scalar. As earlier Di = Θ∗
i piρiΘi, i = 1, 2, and

F = Θ∗
2Θ1.(Note that now D2 is a scalar and F is a row vector.) Mimicking the procedure

given earlier in this chapter the following theorem can be proved:

Theorem 7.2. Let ∆̂1 and ∆̂2 denote the solution of (7.33). Then it holds

∆̂1 = I − (

√
D2 + m̂2m̂2

∗
√
F (D1 + m̂1m̂1

∗)F ∗ − 1)
F ∗F

1 − FF ∗
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∆̂2 = 1 −
√
F (D1 + m̂1m̂1

∗)F ∗
√
D2 + m̂2m̂2

∗(1 − FF ∗)
+

FF ∗

1 − FF ∗

where m̂1 and m̂2 are depending on the values D1,D2,and F given as





m̂1 = 0, m̂2 =
√
FD1F ∗ −D2, D2 ≤ FD1F

∗

m̂1 =

√
D2(FF ∗)2−FD1F ∗F ∗

FF ∗ , m̂2 = 0, D2 ≥ FD1F ∗

(FF ∗)2

m̂1 = 0, m̂2 = 0, otherwise.

Proof. Omitted.

It is not difficult to check that the solution given in Theorem 7.2 matches the one

obtained in [8] in the context of quantum filtering.

7.8 Conclusion

In this chapter we considered the problem of distinguishing unambiguously between two

general mixed quantum states of rank 2. We provided an explicit analytical characterization

of the optimal measurement operators. Additionally, using developed framework we derived

an analytical solution for unambiguous discrimination of a pure and a mixed quantum state.
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Chapter 8

Summary and Future Work

At the end we would like to briefly summarize the contributions of the thesis and present

several possible directions for future work.

8.1 ML detection

In the first part of the thesis (Chapters 2 and 3) we considered the problems of ML detection

in multiple-input multiple-output (MIMO) systems in wireless communications.

As we have seen the problem of coherent ML detection in MIMO systems amounts to

solving an integer least-squares problem. The so-called sphere decoder algorithm is com-

monly used in wireless communications to solve this problem. In this thesis we developed

an improved branch and bound version of the standard sphere-decoding algorithm and

demonstrated through simulations its performance. The improved version of the algorithm

significantly outperforms the original algorithm in terms of the size (the number of the

visited points) of the search tree. Improved lower bounding technique of the original sphere

decoder algorithm is the key component of the new algorithm. The new lower bounding

assumes efficient computing of lower bounds on the integer least-squares problem.

In this thesis we considered only several types of lower bounds based on geometrical

relaxations of the discrete space, SDP relaxations, minimum eigenvalues etc., and demon-

strated their usefulness. However, constructing new lower bounds, that can be at least

as tight and efficiently computable as the ones considered in this thesis would be of great
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interest. Also, the lower bound based on the SDP relaxation was only used for the so-called

binary case. Generalizing it to the non-binary (higher order QAM constellations) cases so

that it still remains efficiently computable seems to be a promising direction for future work

as well. Finally, one could note that we only demonstrated the efficiency of the improved

versions of the standard sphere decoder algorithm through simulations. Quantifying it an-

alytically still remains an important open problem. More specifically, it would be a great

theoretical and practical result to explicitly compute the average size (the average number

of the visited points) of the search tree of the improved branch and bound version of the

standard sphere decoder algorithm.

For the exact non-coherent ML detection we developed the out-sphere decoder algo-

rithm and analytically upper bounded its expected complexity. Additionally, we considered

approximative non-coherent ML detection. We analytically characterized the quality of

performance of several known approximative algorithms. Again, carefully looking at the

problems that we considered in the case of non-coherent ML detection, one can note that

we restricted ourselves to the single-input multiple-output (SIMO) systems with q-PSK

signalling. In would be of great interest to see if our results can be generalized to MIMO

systems with general QAM signalling.

8.2 Broadcast channels

In the second part of the thesis (Chapters 4 and 5) we considered a Gaussian broadcast

channel.

In Chapter 4 we introduced a few practical schemes based on the linear precoding for

the design of the information symbols at the transmitter in a Gaussian broadcast channel.

We designed the precoding strategy: 1) so that the overall sum-rate is maximized and 2)

so that the minimum rate among all users is maximized. The later one was shown to be a

quasi convex problem and solved exactly in polynomial time. However, to solve the former

one (maximization of the overall sum rate) we introduced an iterative algorithm which has

no guarantee to be globally optimal. Designing a globally optimal algorithm to maximize
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the sum rate of a broadcast channel with linear precoding is an important open problem.

Furthermore, it should be noted that we only considered scenarios where the receivers/users

are equipped with a single receiving antenna. Generalization of our techniques to the case

where the users are equipped with several antennas seems as an interesting direction for

future work.

In Chapter 5 we analyzed the theoretical limits of a particular non-linear scheme called

vector-perturbation technique. We were able to show that an even simpler version of it,

based on the nulling and cancelling procedure, asymptotically achieves the sum-rate of the

optimal dirty-paper coding (DPC).

8.3 Quantum unambiguous detection

In the third part of the thesis (Chapters 6 and 7) we considered quantum systems. More

specifically the problems that we were interested in are related to the quantum unambiguous

detection.

In Chapter 6, we derived necessary and sufficient conditions for an optimal measurement

that maximizes the probability of correct detection of quantum states. We showed that the

previous optimal measurements that were derived for certain special cases satisfy these op-

timality conditions. Furthermore, using the powerful tools of convex optimization theory

we developed a framework to numerically solve the problem of quantum unambiguous de-

tection. We then considered state sets with strong symmetry properties, and showed that

the optimal measurement operators for distinguishing between these states share the same

symmetries, and can be computed very efficiently by solving a reduced size semi-definite

program.

In Chapter 7 we considered a specific problem of unambiguous detection between two

mixed quantum states of rank 2 which had been open for quite a while. Based on the general

framework from Chapter 6 we explicitly analytically characterized the optimal measurement

operators. Furthermore, using the same framework we easily obtained an explicit solution

of unambiguous detection between a pure and a mixed quantum state matching an already
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known solution obtained in the context of quantum filtering. Providing analytical solutions

for other special cases of unambiguous detection between states with rank greater than

2 seems to be very challenging. Any improvement in that direction would certainly be a

great result. Also, it should be noted that the quantum unambiguous detection is only one

possible way of detecting quantum states. Inventing different types of quantum detection

is an interesting direction for future work as well.

Finally, we would like to emphasize the importance of optimization theory in general.

As this thesis demonstrated, different types of optimization techniques easily find their

applications in many (if not even all) different scientific areas. It is, therefore, easy to

recognize that development of the advanced algorithmic optimization techniques is of great

scientific interest.
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