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ABSTRACT 

This paper i s  concerned with the problem of explaining the 

anomalous decrease in turbulent skin friction observed in the turbulent 

blow sf very dilute polymer solutions. 

The experimental evidence for dilute solutions i s  summarized. 

The ,polymer molecule in solution i s  examined from a theoreti- 

cal point of view, using the Rouse model, It i s  found that the model 

predicts that the moBecuPe will locally store energy as  a function of 
& 

elhe local strain rate of the solution. 

The experimental evidence i s  reexamhed and i t  i s  concluded 

that the anomalous decrease in turbulent momentum transport results 

because the molecules manage to alter the energy balance of the small 

disturbances a t  the edge s f  the viscous sublayer, By slightly altering 

this balance the molecdes allow viscous dissipation to destroy -dis- 

turbances which would have had sufficient energy to grow had the 

molecules not been present. By decreasing the number of small dis- 

turbances which grow per unit area and time and move out from the 

edge of the viscous sublayer, the addition of polymer molecules d t i -  

mately changes the structure of the turbukence in the outer part of the 

boundary layer, This change results in Power Reynolds stresses and 

hence lower turbulent momentum transport. 

With the help of the relation for local energy storage derived 

from the Rouse model, parameters a re  developed to characterize 

the phenomenon, These parameters appear to be easeful in under- 

standing the experimental evidence to date, 
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I. SUMMARY 

I- 1 Introduction 

The reduction of turbulent skin-friction drag may very well 

represent the key to substantial improvements in the performance of 

our existing ships and submarines. 

Experimentally it has been observed that the drag of bodies 

may be substantially reduced by injecting into the body's boundary 

layer small amounts of high-mole cular -weight material. To date, 

this phenomenon has not been understood. No theory has  been sug- 

gested which can predict this effect. 

Thus, Lf one wishes to determine whether a dilute aqueous 

solution of locust bean gum will be effective in reducing the drag of 

a torpedo, one has f i r s t  to mix a soliutioan and then squirt this solution 

into the turbulent boundary layer sf the rapidly moving torpedo, E 

the torpedo goes faster ,  then locust bean gum works, This practical 

approach to the problem i s  typical of much of f i e  current research 

on drag reduciion. 

1-2 Method of Approach 

h this thesis we have approached the problem from a differ- 

ent point of view, We have f i r s t  summarized f i e  existing experimen- 

tal evidence relating to the behavior of dilute p o l p e r  soliutions in 

turbulent flows, Then we take the existing theory for dilute polymer 

solutions and show that this theory implies that polymer moliecules 

can locally store energy, Under certain restrictive conditions the 

magnitude of this energy may be exactly calculated, Thir&iyp we 



examine the experimental evidence and conclude that in order to 

explain the effect one must study the way in which the turbulence i s  

generated, This conclusion differs somewhat from that of previous 

investigators. Fourthly, we perform an estimate of the magnitudes 

of the terms involved in the energy balance of the turbulence. From 

this estimate we develop parameters suitable for characterizing the 

observed effect. Then finally we demonstrate that this theory pre- 

dicts the observed phenomena, 

1-3 Results 

This theory predicts not only if an additive will be effective, 

but also how much of an effect will take place, ABB one needs to know 

is  the concentration and temperature of the solution a t  the edge of the 

viscous sublayer, the polymer's moliecuPar weight and distribution, 

the turbuleme wall s t ress  expected, and the ggintrinsic v i s ~ o s i t y ' ~  of 

the solution. 

Furthermore, this thesis sheds some Bight on the related 

problems of shear degradation in turbulent flows and the effect of 

wall conditions on the structure of wall turbulence. 

1-4 Recommendations 

It i s  suggested that careful experiments be performed using 

bractio.nated samples in an apparatus similar to that used by Shin 

(l945), The existing data i s  suggestive but more careful measure- 

ments a re  needed to really test  this theory over a variety sf Reynolds 

nrnanbera and polymer solutions. 



11. INTRODUCTION 

11-1 Definition of a Dilute Solution 

Staudinger (1 930) was the first  to characterize polymner solu- 

tions using viscosity measurements. Viscosity measurements a r e  

relatively easy to make and provide the experimenter with much use- 

ful information about the physics of polymer solutions, 

Throughout this thesis references will be made to "the intrin- 

sic viscosity" of a polymer solution. High -moPecuPar -weight polymer 

moPecdes possess the ability to increase greatly the viscosity of the 

solvent in which they a re  dissolved, This is  a mangestation of the 

voluwrinous characte r of randomly coiled long chain moleciu8e s . The 

intrinsic viscosity represents the capacity of a given polymer to 

enhance the viscosity of a solution, It i s  defhed as:: 

where qs i s  the viscosity of the solution, qo Is the viscosity of the 

solvent and c i s  the weight concentration of the solution. 

By a ssdilute s ~ l u t i o n ' ~  we mean that the polymer molecules 

may be considered to exist a s  long chains separated extensively from 

each other by pure solvent, We arbitrarily define a dilute solution 

a s  one for which the ratio of the total effective volume of the mole- 

cules to the total volume of the solution i s  Be s s  than one hundredth, 

It i s  assumed that polymer-polymer interaction and/or entanglement 

does mot occur, 

This i s  a restriction on the volume concentration of the 



solution. In practice, one needs a restriction on the weight concen- 

tration of a solution. An estimate of the restriction on the weight 

concentration of a "dilute solution" may be made by noting that ac- 

cording to the Einstein viscosity relation (A. Einstein, 1906), 

Here 9 is  the small ratio of the total effective volume of the mole- 

cules to the total volume of the solution, Thus throughout this thesis 

we mean by a "dilute solution" a high-molecular-weight linear poly- 

mer  solution for which 

We consider soliutioms a s  concentrated when (3) does mot hold, 

For  examplie, a t  2 5 ' ~  am aqueous solution of poly(e&Bnylene 

oxide) of six million molecular weight has an intrinsic viscosity of 

2 x l ~ - ~ ( ~ p m w ) - ' .  Thus an aqueous solution of this polymer with a 

concentration of only l 80ppmw would by our definition be considered 

concentrated, A 1 Oppmw solution would be conside red dilute, 

11-2 The ProbPem 

Measurements made over the last eighteen years indicate 

that turbulent momentum transport may be greatly decreased by the 

addition of minute quantitie s of high -molecular -weight polymer mole - 
a l e s  to Newtonian solvents. This decrease in turbulent momentm 

transport a t  a given Reynolds number i s  customarilly measured as a 

decrease in the turbulent skin coefficient. 
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Investigators have noted reductions in skin friction of a s  much 

a s  eighty percent for  a great variety of wall turbulence experiments. 

Simultaneou&ly no non-Newtonian effects have been observed for 

these same solutions in the wakes of grids and h the mean velocity 

profile of a round jet. 

When dilute polymer solutions a r e  tested in laminar flow by 

conventional viscometry it i s  noted that non-Newtonian fluid proper - 
ties a r e  not evident within the accuracy of the experiment, Further,  

! ' 

if anything, the measured steady state viscosity, of the solution actu- 
, $ < I \  

ally increases, The density of these dilute solutions i s ,  to many 
I 

significant figures, identical with that sf the sqlvents used. 
I / 

Since hydrodynarnicists normally regard dynsity and vis- 
I 

cosity a s  thy only relevant properties oB: a fluid, it seems paradoxi- 

cal that turbulent flows of dilute solutions can behave so  differently 

from their solvents . 
En the Bast eighteen years formidable mathematical talents 

have been employed in order to attempt to explain, even qualitatively, 

this paradox, Yet there has  been little progress. The reason for 

this is evident, On one hand, the s 'simple'P Newtonian turbulent 

boundary layer problem is many times older and yet it defies exact 

analysis, On the other hand, the properties sf dilute polymer solu- 

tions a r e  not well understood. Exact codstitutive laws do not exist 

for these dilute so8utions. Even if they did, they a r e  likely to be 

very complicated and defy experimental cheeks. Tke csmbimtisn 

sf these two difficult problems is the problem under consideratisn. 



Turbulent momentum transport in Newtonian fluids i s  primar- 

ily an inertial phenomenon. Thus once a turbulent motion i s  estab- 

lished, it is the large scale disturbances which determine the rate 

of momentum transport. These large scale disturbances, once 

formed, a r e  relatively unaffected by the viscosity of the fluid. 

The major problem inherent in explaining elhe paradox Pies in 

reconciling two readiiy measurable facts, namely, momentum 

transport in wall turbulence is  drastically reduced and this change 

is accomplished by only slightly changing the effective viscosity 

of %he fluid, a quantity which, in itself, appears to play only a minor 

role in turbulent momentum transport. 

I.I-3 Previous Expe r h e n t a l  h e  s tigations of the Turbulent Flow 

of Dilute Solutions 

Toms (8  948) appears to have been the first to quantitativew 

measure the anomalous behavior of dilute solutions in h r b u l e d  pipe 

flow, He measured the flow rates of solutions of poly(mefiylme%ha- 

crylate) in monochlorobenzene through a variety of s traight tubes, 

These flow rates were plotted versus polymer concentration a t  dif - 
ferent pressure gradients. The nature of f i e  now r4gime prevailing 

under particular conditions was Bound by a simple modEPication of 

Reynolds' s color-filament experiment, 

By carefully distinguishing between the laminar a d  turbulent 

flow r d g h  es  , Toms noted that the addition of polymer to mono - 
chlorobermzene always resulted in a decrease of flow rate in laminar 



flow, However, in turbulent flow a t  a constant pressure gradient, 

the flow rate increased with polymer concentration up to a certain 

optimum concentration after which it started to gradually decrease. 

In recognition of Toms' s pioneering research this anomalous 

behavior will in the res t  of this thesis be referred to a s  "the Toms 

Effect". 

Toms s remarkable re  sult was not given the recognition it 

deserved until the Office of Naval Research became interested in the 

problem in 1962. With their assistance, scientists from a variety 

of fields have investigated the Toms Effect. 

Since this thesis is primarily concerned with the behavior of 

dilute solutions, the notable work of Dodge and Metzner (1 9591, 

Shaver and Merri l l  (1 959) Wipken and Path (1 9 4 3 ) ,  Savhs  (1 9641, 

and Metzner and Park  (1 964) will not be discussed, All of these 

scientists have performed turbulent pipe flow experiments with a 

variety of very concentrated sollutions, %ra general, they have found 

that substantial reductions in wall s t ress  a r e  possible due to p o l p e a  

addition until the increase in the P'viscositysP of the solution gets so 

Barge that gains made due to the Toms Effect a r e  lost  again due to 

the higher dissipation of the solution, Thus if a solution is  pumped 

through a pipe a t  constant turbulent flow rate and the pressure gra-  

dient required to maintain this flow rate measured and plotted versus 

concentration, then one finds a curve of the shape shown in Figure 1 ,  

Most of the points shown in Figure 1 a r e  for concentrated 

solutions. Thus the data in Figure l are of little interest to us o W e  

assume that it is understood why the Toms Effect eventually 





disappears a s  the concentration is  raised. We a r e  primarily inter- 

ested in how and why the Toms Effect ar ises ;  Shin's thesis (1965) 

i s  recommended for  those interested in a full discussion of the dis- 

appearance of the Toms Effect. 

Pruit t  and Crawford (1 963) ,  Fabula (1 9631, and Hoyt and Fab- 

ula (1 964) deserve much credit for calling attention to the fact that 

the Toms Effect can be observed (indeed, becomes most prominent) 

a t  polymer concentrations for which the solutions a r e  truly dilute. 

They also demonstrated that the Toms EfJEect is not restricted to 

solutions of a few polymers in a few solvents. Rather the Toms Effect 

may be observed im any dilute polymer solution provided only the 

moPeeu8ar weight of the polymer is  Barge, 

Of the many polymers they tr ied,  they found that poly(efiylene 

oxide) manufactured commercialPy by Union Carbide under the trade 

name of Polyox produced the most striking results* Experimenters 

since 1964 have tended to use PsPyox in preference to other polymers 

for this reason, Further since the U. S. Navy has supported most 

of the research on the Toms Effect, the solvent has tended to be 

water or  sea water. 

By 1945 it  had become apparent to most investigatsrs that the 

molecubar parameters of the polymer samples being used, the con- 

centration sf the solution and, in some mysterious way, the wall 

s t ress  a r e  important parameters in the Toms Effect, It was further 

suspected by many that the Toms Effect might well be associated 

with wall turbulence. 

Thus in B 965 Pruita, and Crawford published a repoat titled: 



"Effect of Molecular Weight and Segmental Constitution on the Drag 

Reduction of Water Soluble Polymer so. Despite the title,  they never 

actually measured the molecular weights of the samples they used. 

Neither did they fractionate their  samples to determine the effect of 

the molecular weight distribution on the Toms Effect, Thus most  of 

their results  must be considered to some extent p r e l h i n a r y  and 

qualitative. The molecular weights they give a r e ,  with one excep- 

tion, those given by the manufacturer. 

Their report  includes pipe flow data ow some 16 polymer 

samples. All of these were dissolved im tap water, A typical curve 

from this data is reproduced in Figure 2. 

ILn Figure 2, the black line i s  the curve for $he turbulent wall 

s t r e s s  in a ,4114 inch ID smooth pipe due to the turbulent flow of tap 

water in that pipe. The circles represent the behavior oB a 2 ppmw 

Polyox YSR -301, The solution behaves just Pike water until an  ssonset'P 

2 wall s t r e s s ,  T*, of $0 dynes/cm 

At this wall s t r e s s  the Toms Effect begins to take place, As 

the wall s t r e s s  becomes la rger  the Toms Effect appears to get larger  

up to apoint ,  Then it appears to decrease again, 

The triangles represent the behavior of a 18 ppmw so8utionn 

of the same polymer, Once again an onset wall s t r e s s  is observed, 

2 this t h e  a t  about 15 dynes/cm . As the wall s t r e s s  becomes la rger  

the Toms Effect appears to get l a rger  up to a point, Then it appears 

to begin to disappear, 

F o r  a 50 ppmw solution, however, there appears to be no 

onset wall s t ress ,  Hnn other words, transition and the Toms Effect 



Flow Study of Solutions of 11.6 Million Molecullaa Weight Pollyox 

Pruitt and Grawford (1 9651, p, 41 

Figure 2 
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take place simultaneously. 

Pruit t  and Crawford (1965) noted that the actual molecular 

weight of the sample "may have been less  than one half the valueff of 

four million given by the manufacturer, They base this statement 

on intrinsic viscosity data. Thus we assign a value of l , 6 f l X 10 4 

to the sample of Pofyox WSR -309. Pruitt  and Crawford used, 

For  higher molecular weight Polyox a t  moderate wall s t resses ,  

Pruit t  and Crawford (1965) observed substantial shear degradation of 

the molecules, By this it is meant that f%e results depended on the 

number of times the solutions a r e  pumped through the pipe, 

Many observers have noted this effect in turbulent flows of 

dilute polymer solutions. This effect is  of some interest especially 

since it is  customarily not observed in laminar fiows, This effect 

will be treated in some detail in Chapter 111, The impcartant point 

here is  that the results of the higher molecular weight material  a r e  

suspect because the manufacttarergs rnoPecealaa weight may bear little 

relationship to the actual molecular weight of the polymer mollecules 

in the experiment. 

Table 1 presents a l is t  of onset wall s t resses  for the two 

lowest molecular weights of tbe Polyox Pruitt  and Crawford (1 965) 

tested. 

It shoulid be noted that for a given sample, the product of the 

onset s t ress  times the solutionq s concentration is approximately 

constant. This experimental result escaped Prpnitt and Crawford, 

The far right hand coltua~mn in Table B may be ignored for the present, 





The maximum reduction in wall s t r e s s  possible would occur 

if laminar flow were maintained a t  all Reynolds numbers. In practice, 

the turbulent wall s t r e s s  measured in the flow of a dilute solution, T 
8'  

a t  a given Reynolds number i s  somewhat greater  than the extrapolated 

laminar wall s t r e s s ,  T but l ess  than the turbulent wall s t r e s s  I 

measured in the flow of the solvent. To. Thus as a measure  of the 

effectiveness of an additive a t  a given Reynolds number we define 

"the percent approach to laminar flowtf, E, as: 

x 100% 

constant Reynolds number 

Metzner and P a r k  ( P  9631, Metzner and Park  ( P  9641, Prui t t  and Craw - 
ford (1 965), and Shin (1 965) have aP1 called this function by different 

symbols and names and have used i t  to quantitatively characterize 

the Toms Effect. 

F o r  a variety of polymers in water Prui t t  and Crawford (1965) 

found that the maximum value s f  % that could be obtained was, within 

5'3% , 8070. This remarkable result  is apparently independent of poly- 

m e r ,  pipe size o r  Reynolds number for  a pipe flow Reynolds number 

range of 3,000 to 1 00,000, This result  was also found independently 

by Hoyt and Fabula (1 964). 

Shin (1965) tested a variety of aqueous Polyox solutions and 

poly(isobuty1ene) solutions in a narrow -gap Couette viscorneter , The 

outer cylinder was spun rapidly enough to insure fully developed 

turbulent flow, Torques on the h e r  cylipder were electronically 

measured and pliotted versus  time by a recorder. 
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Thus Shin (1 965) was able to study the behavior of small  vol- 

umes of dilute solution subjected to turbulent flow. By extrapolating 

the torque readings back to zero t h e  and by using new sample solu- 

tions whenever appreciable mechanical degradation was suspected, 

Shin was able to eliminate the effects of mechanical degradation due 

to turbulent shear from h is  data. 

Shin (1 965) emphasized the great  importance of molecular 

weight in  his  thesis. The molecular weights of the samples used 

were  measured using light scattering techniques, SimulltaLneouely, 

Shim. measured fie intrinsic viscosity of his samples, 

He found that for  aqueous Folyox solutions a% 2 5 ' ~  

and for poBy(Is~butylene) FIB9 in cyclohexane at 2 5 ' ~  

- 
where Mw is  the weight average molecular weight of the sample. 

These measurements agree well with previous investigations, 

Shin (1965) was thus able to accurately characterize his  solu- 

tions. His data represent  a very significant contribution towards a m  

understanding of the Toms Effect. His data a r e  presented in Figures 

3 and 4, 

Figure 3 is a graph of the percent change in $Larbulerra$ wall. 

s t r e s  s for  four samples of undegraded, l inear,  mblended lPoBy03~. 

The wall s t r e s s  for  the solution which would have been obtained hard 

2 the flow remained laminar is 219 dynes/cm , 
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Figure 4 shows Shin's data for  percent reduction in wall s t ress  
..- 

plotted versus  concentration for  PIB of four different molecular 

weights dissolved in cyclohexane. The l ap ina r  wall s t r e s s  i s  222 

Until May 1965 all published measurements of the Toms Effect 

had been made with wall turbulence. These experiments covered tur-  

bulent pipe flow, bodies moving through water, rotating disks and 

circular  Couette flow. 

Gadd (1 965) appears to be the f i r s t  to publish results  fo r  a 

f ree  turbulent flow, Uhfortunately he reported only the results  of one 

experiment. He squirted a round jet of dyed solution out of a capillary 

tube into a tank of clear solution of the same strength. The solution 

used was a concentrated aqueous Polyox solution, 

The resulting flow was photographed and compared with a 

similar  jet of water into water, The ReynoPds number based on the 

diameter of the capillary tube was 900, GaddD s photograph shows 

clearly that the stability of the jet i s  seriously al tered by the mole- 

cules, However, i t  does not say anything about f i e  turbulence. 

,Gadd9s work was followed by that sf Jackley (1966). Jackley 

studied the mean velocity profile of a f ree  turbdemt round jet growing 

in a large tank in order  to determine whether the Toms Effect results  

from polymer molecules directly "damping the turbdencePP, Jackley 

found that when dilute aqueous polymer solution was pumped into 

similar  s tagmant solution,' a mean velocity profile resulted which 

beyond ten diameters of the nozzPegs rnseath could not be distjiPrguished 

from that of distilled water. Thus Jackley concluded that ~e Toms 



Effect is  "a phenomenon of the wall1t. 

Fabula (1966) after an extensive and detailed investigation 

concluded from his measurements that for dilute solutions no meas- 

urable changes take place in the grid turbulence energy spectrum, 

For  concentrated solutions (c [q ] = .27) ,  Fabula observed a depres- 

sion in the spectral energy level a t  higher frequencies due to polymer 

addition. However, when the increase in viscosity due to addition 

i s  taken into account, Fabula found no evidence of non-Newtonian 

effects. 

White (1 946) has pe rforrned some unpublished experiments on 

the effect of high strain rate on the Toms Effect. These experiments 

a re  reported in some detail in Chapter VP, 

PP-4 Previous Theoretical Investigations of Turbutent Flow of 

Dilute Solutions 

Numerous attempts have been made to gualitatively explain 

the Toms Effect, However, all of these attempts with the possible 

exception of Tulin's work (1 964) have been u n s u c ~ e s s f d ~  

It i s  very easy with eighteen years s f  experimental evidence 

to find fault with explanations based on wall slip (Oldroyd, B 9481, 

shear-thinning (Shaver and MerrilP, l 9591, a two-dimensional 

boundary-layer stability argument (Boggs and Tompsen, P9$4),  aniso- 

tropic viscosity (MerriPl, 1965) or  "the solvent-sequestering ban 

theoryDD (Shin, 1965). These must be Booked on as  theories which 

a re  not supported by the experimental evidence, 

BTnmPortunatePy Tulinf s work (1966) is availlablle only in the 
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form of an abstract.  It seems,  however, that Tulin's approach is 

very similar  to that taken in  this thesis. He begins, a s  do we, by 

considering the mechanics of long, flexible, macromolecular chains 

in dilute solution. He calculates, a s  do we, the entropy and dissipa- 

tion associated with the motions of the molecules. However, Tulin 

seems from his  abstract to believe that it is necessary to go beyond 

small  s trains to produce changes in internal energy large enough to 

ultimately produce the Toms Effect. Apparently he was not aware 

of Shin's work. Fur ther  he appears to have used the Rouse theory 

in the high strain rggime in order to calculate what he calls the 

ifradiation dampingls, There is some reason to believe that the Rouse 

theory does not apply a t  high strain rate,  Further,  Tulin concludes 

that the Toms Effect var ies  quantitatively with the product, (csncen- 

tration X dmo~ecula r  weight ). 

As Gadd (1 966) points out, the exp8anation of the Toms Effect 

must  be sought, not so much in the dissipation of turbulence, but 

rather in i ts  generation, This realization is the only real  theoretical 

progress that has been made since l 948. 

PH-5 The Object of this Thesis 

The object of this thesis i s  threefold, F i r s t ,  the object is to 

develop a theory which will quantitatively predict the Toms Effect, 

This theory must in addition: 

i) Explain why an onset wall s t r e s s  exists and predict i ts  

value. for a given situation, 

iil) Explain why free  turbulent flows a r e  unaffected by polymer 



addition, 

iii) Develop parameters suitable fo r  characterizing the Toms 

Effect. 

Secondly, the object of this thesis i s  to explain why shear 

degradation takes place in turbulent, while it  i s  customarily not ob- 

served in laminar flow. 

It is the third and final object of this thesis to present data 

cove ring: 

i) The turbulent pipe flow of dildte aqueous solutions of 

poly(methacry1ic) acid a t  a variety of pHs, concentrations and two 

mole cuPar weights. 

ii) The effect of high strain ra tes  on the Toms Effect. 

(White, i1966), 
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III, THEORY OF ENERGY STORAGE AND DISSIPATION 

111-1 Introduction - Some Definitions 

In a dilute solution the polymer molecules may be considered 

to exist a s  long chains separated extensively from each other by pure 

solvent. Implied in the notion of a dilute solution i s  the assumption 

that the forces of attraction between the polymer and solvent a re  

greater than those between polymer and polymer. Otherwise pre- 

cipitation would occur, 

A good solvent i s  one in which each polymer molecule tends to 

exclude all others from the volume which it occupies. If the solvent 

chosen for a given polymer becomes progressively poorer a s  the 

temperature i s  lowered, eventually a temperature may be reached 

where the polymer molecules distribute themselves over the volume 

like hypothetical point molecules which exert no forces on one 

another. This temperature is  called the - theta temperature. hf the 

temperature i s  much below the theta temperature, precipitation 

occurs, It i s  customary to call soPvents near the theta temperature, 

poor solvents, 

A linear polymer chain consists of a series of monomer units 

connected together by valence bonds, The: motion of one segment of 

the chain will u l tha te ly  affect the motions of the other segments, 

Any attempt to describe the allowable motions of the polymer chain 

in a dilute sollutian should take into account both intramolecular and 

intermolecular effects. 

In order to take into account intermolecular effects one 
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would need to know something about the forces of attraction between 

polymer and polymer and between polymer and solvent. Although 

much is  known about this sort  of thing, it  i s  not convenient to analyze 

the situation in which the environment of a polymer chain comprises 

only solvent molecules. It i s  customary to assume that direct con- 

tacts of a segment of one molecule with segments of other molecules 

and with remotely connected segments of the same molecule merely 

contribute to the viscous force which opposes the thermal motions of 

the segment. 

Pn order to exactly take into account the intramolecular forces 

influencing the motions of the chain, one would require knowledge 

about the exact nature of the bonding along the chain, the variation 

in the potential energy due to rotation about bonds, the effects of 

excluded volume and so forth, At the present time this exact prob- 

lem is  unsolved. 

111-2 Rousev s Theory for a Dilute Polymer Solution 

In 1953 Rouse (1953) proposed a theory of tihe linear visco- 

elastic properties of dilute polymer solutions. In Rouseg s model sf 

a polymer molecule short-range effects due to excluded volume, 

fixed bond angles, hindered rotation about bonds and so forth a r e  

not treated explicitly. Instead it  is assumed that an analysis of these 

short-range effects has yielded the result that the f~uctnatic~ns of the 

end-to-end length of a polymer molecule dissolved in a stagnant 

solvent a r e  very nearly Gaussian. 

This assumption results from very simple qualitative con- 

siderations. High-molecular-weight linear polymer molecules a r e  



assumed to be many thousand times longer than they a r e  thick and 

to be extremely flexible. Since in a stagnant solution no direction 

in space i s  preferred,  the distribution function of the end-to-end dis- 

tance, r ,  must  be independent of any rotation of coordinate axes, 

Thus the equilibrium distribution function, ?k , must be a function 
0 

2 of r . Let an  orthogonal coordinate system be located a t  one end 

of the molecule and let  r be specified in t e r ~ s  of the x-, y- and z- 

2 2 2 2  components of the other end of the molecule. Then r = x ty tz . 
The simplest assumption that can be made i s  that x, y and z a r e  

statistically independent. This, of course, i s  plausible only if r 

does not approach the full extended PengtR of the chain. Since the 

molecule is extremely flexible, i t  i s  expected that f d l  extension 

would be extremely unlikely and that, therefore, the a s  sumption 

of statistical independence is  a good one, The assumption of sta- 

tistical independence and the realization that *o is a function of r 2 

together imply that 9 i s  a Gaussian distribution, 
0 

W ouse) s contribution does nod; lie in his  assumption that the 

end-to-end length of a polymer molecule in a stagnant solvent is 

very nearly Gaussian, This has been known for years ,  His contri- 

bution l ies rather in his assumption that a polymer molecule may be 

divided into N equal submolecules. Each submolecule is a portion 

of the polymer chain just long enough so that, a t  eqjuilibrim, the 

separation of i t s  ends obeys, to a f i r s t  approximatiom, a Guassian 

probability function, This second assumption should be looked on 

a s  an assumption designed to replace the exact description of the 

polymer molecule by an approximate one which is readilly amenable 
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to quantitative treatment, The validity of this assumption rel ies on 

the effective flexibility of the molecule. Since this cannot be directly 

determined, we can only measure the worth of this assumption by the 

agreement of what it  predicts with experience. 

Consider an  ensemble of a very large number of isolated, 

independent systems, each consisting of one polymer molecule im- 

mersed in a volume V of solvent, It is understood that these systems 

represent molecules in different dynamical states. Each of these 

polymer moPecu%es is considered to be made up of N equal, statis- 

tically identical submolecules joined in linear sequence, the ends of 

(he submolecules being labeled 8, 1, 2, , . . , N, 
We chose a fixed inertial system of Cartesian coordinates. 

th The location of the j - end in this system is  denoted by the point 

bjs Yj s 2.1, where j equals 0, 1, 2, . . . , N, 
3 

The configuration of a polymer chain in any one d p a m i c a l  

stage can now be represented by a single point in a 3N-9-3 dimensional 

configuration space, By taking the number sf systems in the easem- 

ble large enough, the probability density o r  distribution function. 9 

can be introduced so that, if a system i s  chosen a t  random from the 

ensemble, &he probability that the configuration point representative 

of i t s  dynamical state is in dxodyodzodxl . . dzN is @(xO.. , ., z N 

dxodyodzodxl . . a dzNa 

Rouseqs assumption that the separation of the ends of the sub- 

molecuBe s at equi l ib r im obeys a Gaus sian probability function 

implies (hat the equilibrium configuration distribution function q0 is: 



Here,  the parameter b2 i s  the mean square projected length of the 

submolecule, 

This equilibrium distribution function represents tihe situation 

when the solution is not being deformed. The physical concept which 

i s  the basis of Rouse's theory i s  that a velocity gradient in the solu- 

tion reduces the number s f  configurations available to the polymer 

molecule. The primary effect of the velocity gradient i s  to ca r ry  

each segment of each molecule along with the liquid. This a l ters  

to some new distribution %fgr, The moIecu'3.e~ a r e  not simply stretched 

out parallel to local s treamline s be cause the coordinated Brownian 

motion of the submolecules tends to destroy this ordered state and 

return -iP back to %, the distribution which maximizes the configura- 

tional entropr sf the pqlymer chains, 

En Rousess theory the velocity gradient is thought of a s  an 

ordering prdcess which is opposed by the Brownian motion sf the sub- 

molecules, oP a disordering process. The result of these two effects 

is a new distribution function !Po It i s  the purpose of Rouse's theory 

to calculate 9 a s  a function of the PocaP velocity field, 

Et has been assumed that all configurations have the same - 
internal energy, Thus the increase in Helmholtz f r ee  energy due to 

the velocity gradient results only from changes in the configurational 

entropy. If the perturbed Helmholtz f ree  energy is! designated by F, 

then the increase: is given by: 



where S = Mn?k. 

The negative spatial gradient of AF' represents the driving 

force tending to restore the system to ec&ilibrium. This must be 

equal to the driving force which tends to throw the system out of 

equilibrium. The latter force is  produced by the flow of solvent 

through the molecule. 

Rouse assumed for simplicity that the viscous force on the 

whole length of the submolecule could be assumed to act  only a t  the 

ends of f i e  submoPecuPe, He further assumed that, to a f i r s t  approx- 

imation, the velocity field is not locally disturbed by the presence 

of the molecule. Let (uj , vj , w.) be the velocity components of the 
3 

solvent a t  (x., yj, 2.) where both a r e  referred to a fixed inertial 
J 3  

system of Cartesian coordinates. (gj, 9j, ij) a r e  the velocity com- 

th ponents of the j- end. (uj -kj, v -9 w. -8 . )  a r e  the slip-velocity 
j j ' ~ ~  

th 
components. The viscous force driving the j- end out of equilibrium 

is assumed to be linearly proportional to the local slip velocity. 

Equating the viscous force to the force tending to restore f i e  system 

to equilibrium produces in three directions: 



Here f i s  an arbitrary constant, k is  Boltzmann's constant, T i s  the 

temperature of the solution and j = 0, 1 ,  2, . . . , N. It i s  conven- 

ient to define a time T such fiat: 

Then (91, (1 0) , and (1 1 ) may be rewritten: 

Polymer molecules a re  neither made nor destroyed. Thus 

continuity in configuration space requires that: 

The problem of solving ( 1 4 )  for 9 as  a function of a given 

impressed velocity field (u v , w ) is ,  in general, very difficult. 
j' j j 

The rest  of this section is devoted to dev8loping a coordinate trans - 
formation which, for a special type of velocity field, transforms (16) 

to an equation which may be solved exactly, Rouse was never able 

to do this, The method used i s  essentially that of Blatz (1 9661, 

The f i rs t  transformation transforms the physical coordinates, 

(xj , yj , z . )  to what a re  called the stretch coordinates, (kj pj v. )*  
J J 

W e  define: 



and 

j=0 

The vector (\ p,. v ) is  proportional 
o to) the vector locating 

the center of mass of the moPecuPe with respect to origin of the iner- 

tial frame. On the scale of the molecule (about 1000 g)  we assume 

that the velocity field may be approximated by 

He re  y . . i s  independent of the spatial coordinates but may 
U 

depend on time, Since the impressed velocity field i s  assumed in- 

compressible, 



On the scale of the molecule it i s  assumed that a l l  velocity 

fields, be they laminar or  turbulent, may be approximated by (1 9). 

It i s  convenient a t  this point to define the Rouse matrix R 

a s  a (N x N) matrix such that 

Rouse o riginally pointed out that a coordinate transformation 

was a t  the heart  of the problem of solving (1 6 )  and was the f i rs t  to 

recognize the value of W. In order to see the relevance of R consider 

the equations of motion of the noPecuPe in the x-direction, namely, 

F i rs t ,  the velocity components u. a re  substituted into (131, From 
J 

(1 9) this implies -that 

Thus 



Subtracting the second equation from the f i rs t ,  dividing the 

result through by b and then substituting in the definitions of the 

stretch coordinates implies that (1 3)  becomes 

However, (17) and (18) imply that 

and 

Thus 

Here R a r e  the coefficients of the Rouse matrix,  
jk 
From this point forward we will a&sume that the usual sum- 

mation convention holds. Thus the repeated subscripts in (26) a r e  
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to be summed from one to N. From now on, unless otherwise stated, 

the subscripts will always range from one to  N. 

The substitution of (26) into (22) implies that (in the stretch 

coordinates) (1  3)  becomes 

where 

= 7yij v 
(P= 1, 2, 3 and j = B ,  2 ,  3 )  

(27) may be somewhat simpPjifie@ by noting that from (7) and 

(17) 

Thus 

a - - \ 
BXk 

Further ,  

By virtue of our choice of velocity field eke distribution function 

must  be independent of the arbi t rary  origin s f  the inertial frame, 

Thus P cannot depend on Xo, po o r  v 
0 
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Thus (27) may be rewritten 

Similar arguments may be applied to (14) and (15), the equations of 

motion for the molecule in the y - and z-directions, h terms of the 

stretch variables, (14) and (1 5) become: 

and 

81 n 9  air = E l  41.98 p . + O  v.+R. v - R  - j 31 J 32 J 33 J jk k jk Bvk 

Using (23), (24) and (25), (1 6) becomes in the stretch var- 

iable s : 

The f i r s t  three terms on the right hand side of (35) a re  asss-  

ciated with the position of the center of mass of the mo1ecde in the 

inertial reference frame . Their sum i s  identically zero because s f  
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the choice of velocity field. 

Thus 9 becomes a function of 3N stretch variables and time. 

The equation which must now be solved i s  (36) ,  where (36) i s  formed 

by substituting (32) ,  (33) and (34) into (35).  (36) is shown on the next 

page. This equation i s  identical with 931a&zf s (1 966) Equation 26. 

A glance a t  (36) is sufficient to determine that a second trans- 

formation i s  necessary. The 3N stretch variables ( A  p v . )  must 
j 9  j f  J 

be transformed to the 3 N  set  of variables (6j, e j ,  qj). These must 

be chosen such that R is diagonalized. 6., E and q. a r e  called the 
J j 9 

diagonalizing variables. In order  to choose them correctly,  we 

examine the Rouse matr ix  in Appendix A. 

In Appendix A we find that R has N distinct eigenvalues, ek, 

where: 

Then we find the matr ix  A such that A is orthogonal and such 

that the coefficients of A,  Ajk. satisfy the equation: 

RijAjk = ekAik. k not summed 

We find that: 

We can now define the diagonalizing variables as 

5. = A 
J Tjk % 

E =a T 
j jk 9 
qj = A T jk 'k 



a;" 
R" 
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T Here A a r e  the coefficients of the transpose of A,  or ,  in this 
j k 

special case,  of A. 

Thus 

(40) and (41) may now be used to transform ( 3 6 )  from the 

stretch variables to the diagonalizing variables . Then noting that 

A is orthogonal and satisfies (38) ,  ( 3 6 )  becomes in the new coordi- 

nate system (42). 

This equation was solved approximately by Rouse by setting 

a l  but e12 equal to zero and by assuming that I could be expanded 

in a power ser ies  of C3 times qo. Ell2 was assumed small. Rouse B. 2 

used his result to calculate the added dissipation resulting from 

p o l m e  r addition, 

Pao (1 962) and Zimm (1 955) have attempted to somewhat 

modify Rouse's theory and have then solved equations similar to 

(42) using power ser ies  techniques, Neither mentions the energy 

storage in the polymer molecules due to the deformatisn of the so- 

Putione 

Blatz (1 966) appears to have been the f i r s t  to solve (42) 

exactly for the special. case of simple shear in which eEZ is the only 

non-ze ro  component of 8.. . 
13 

Using Bla$zf s method, the solutions of (42) a r e  straighaforward 
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but tedious. In an effort to emphasize the physics a s  distinguished 

from the mathematics of this problem, the two exact solutions used 

in the next two sections will merely be written down a s  t r ia l  solu- 

tions. These t r ia l  solutions can be then substituted into (42) and thus 

it can be proved that they satisfy (42) for  the two velocity fields 

chosen. 

Appendix B i s  recommended for readers  interested in syn- 

thesizing their  own solutions. 

In -3  Extension of Rouses s Theory to Include Energy Storage 

In order to ve r3y  that (42) produces the same results  Rouse 

(1953) originally derived for small  s t ra in  rate and to extend Wsusess 

results  to large strain ra te ,  we choose the flow field: 

A1 of the other y.. are se t  equal to zero. 
1.J 

Rouse argued that physically this choice of flow field is equiva- 

lent to assuming that the moPecules a r e  being subjected to a sinusoid- 

ally oscillating linear plane strain field. Presumably this could be 

approximately created by applying a shearing s t r e s s  to the solution 

with a plane surface lying in the plane y = 8 sf a right-handed system 

of Cartesian cbordinates. The surface executes simple harmonic 

motions in the x-direction with an angular frequency @. The velocity 

gradient var ies  rapidly with y, the distance from the oscillating sur  - 
face, 

Despite this rapid variation, the molecules a r e  small  enough 
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(1000 A across )  so that for frequencies below 60 kc, the velocity 

gradient var ies  by less  than five percent over the entire volume per-  

vaded by the molecule. Thus (43) would appear to be a good local 

approximation for this experiment. 

Substitution of (43) into (42) produces, with a bit of rearrang-  

ing, (44). The t r ia l  solution for this equation will be (45). (44) and 

(45) a r e  shown on the next page. Substitution of the trial solution (45) 

into (44) proves that this solution i s ,  in fact, the correct  one. 

The viscoelastic properties of the solution may now be calcu- 

lated. 

The shearing s t r e s s  which will produce a velocity gradient 
* 

= or coswt in a liquid with a complex viscosity q = 
Yl2 0 ?, -mq 2 

is t I2$  where 

The ra te  at which work is done by the application of this shear-  

ing s t ress  to a unit volume of solution is P where: 

2 = a (q cos wt + q2 sinwtcoswt) 
0 1 (51) 

The ra te  a t  which work i s  done on a given molecule in the en- 

semble i s  the scalar  product of the velocity of the solvent with 

respect  to the center of mass  sf the molecule t imes the forces  tending 

to res tore  each sf the ends of the submolecdes back to equilibrium, 

This rate of work, D, equals: 





o r  using (40) and (41): 

The ensemble average of D times the number of molecules 

per unit volume, n, i s  what Rouse calls P , o r  the average power rn 

absorbed by the molecules per unit volume of solution. Thus 

Wieh the use of (45) and (29) this integral may be exactly evaluated. 

This i s  done in Appendix C ,  The result is that: 

This result  i s  exactly equal to Rouse ' s  Ql'B53) equation for 

P Because of the method Rouse uses to calculate +, he assumes 
m 

that (55) i s  limited to small values of T a  coswt, HPI fact, he specifi- 
0 

cally qualifies his  result by stating that "terms containing powers o$ 

a higher than the second Rave been d i s r ega~ded '~ .  Since (55), as 

derived here ,  does not depend on any restrictions on the magnitude 

of a coswt, Rouse's qualification i s  unnecessary, (55) may be r e -  
o 

garded a s  a general result of the Rouse model, valid a t  large values 

of cm! coswt, The validity of t he  Rouse model at high s t ra in  rate may 
0 

be debated, However, our result shows that S weaknesses a r e  

present,  they a r i s e  from the model rather khan from the mathematics. 



Adding (55) to the energy input into the solvent, 

2 2 P = q a! cos w t  s 0 0 

and comparing the result  with (51 ) shows that: 

where q i s  f i e  viscosity of the solvent, (56) and (57) a r e  identical to 
0 

Consider now the case for  which w = 0, This i s  the case for 

steady flow, (57) indicates that q equals zero, The addition of poly - 2 

m e r  molecules to a solvent increases the viscosity of the solvent by 

an amount Aqiwhere: 

With the! use sf (48) and (37)  this becomes: 

N 

7 /8 sin Z(ni/2~-!- 2) 

Here c i s  the weight concentration of the soBueion and M is the molec- 

ular  weight of the polymer sample. 

N is typically larger  than one hundred. Thus for small  values 

of i ,  the sine is excellently approximated by i t s  argument. F o r  

larger  values of i the t e rms  in the s m  a r e  negligible anyway. Thus 

to a good approxba t ion ,  



or  summing, 

The intrinsic viscosity i s  directly accessible from experimen- 

tal data. It is  defined a s  

- Pim A'l - 

which using (61) becomes 

Thus 

( 6 3 )  is the simplest way in which the parameters in the Rouse 

model, T and N, may be related to the readily measurable quantities, 

M, T and [q 1. It is  a well-known and very useful result. 

The energy stored by the polymer mo'becdes can jEiplrally be 

caBculated. The He1mholtz free energy for a given mo%ecde in the 

ensemble i s  assuming the internal energy i s  constant 

The average molecu%e in the ensemble thus has an average energy 

csrresponding to 



where V i s  the configuration volume. With the use of (45) this inte- 

gral  may be exactly evaluated. This is done in Appendix D. The 

energy stored by altering the average configurational entropy of the 

average molecule is thus 

- L  
K~ 

i s  defined in (46). The energy stored per unit volume by the 

polymer molecules is  thus W where 

(68) is  a new result,  Rouse and his  followers were primarily inter- 

ested in the dissipation produced by polymer addition, Thus Rouse, 

Bueche, Zimm and Pao do not calculate the energy storage arising 

from the conafigurationaB entropy reduction in the flow of dilute 

soPutionse ($8) is  fundamental for a n  understanding s f  the Toms 

Effect. This will be discussed at some length in the next chapter. 

The energy stored 'by the polymer moltecealle s has been cal- 

culated by assuming that the internal energy of a polymer moPecuele 

i s  independent of the particular configuration the molecule happens 

to adopt, 'This assumption is based on the results of numerous 

experiments performed over the Past 162 years,  TreHoar (1958) 
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gives a full account of the evidence supporting this assumption 

and shows that for high-polymers subjected to extensions not 

exceeding 230 per cent of the undeformed length, this assump- 

tion i s  an excellent one. 

This assumption combines with the f i rs t  and second laws 

of thermodynamics to imply that the infinitesimal and reversible 

deformation of high polymers involves a reversible transforma- 

tion of work into heat. 

The work done by the fluid in stretching the polymer 

molecules out along streamlines is stored a s  heat in the solvent. 

Bf the velocity gradient decreases, the thermal agitations of 

the solvent surrounding the polymer moBecule s cause the poly- 

mer  moleculies to return to the more coiled, thus shortened, 

form. As the molecules contract they do work on the fluid, 

For  infinite s h a l  reversible changes , &he change in heat con- 

tent s f  the solvent must exactly equal the work done by the 

molecule s . 
In a real sense, the energy stored due to the rate of 

deformation of the polymer solution i s  stored not - in the poPymer 

molecules , but rather in the solvent a s  heat. 

Pa-4 Possible Mechanism for Degradation 

On the scale of the molecule (1 000 %) it seems unlikely that 

there i s  any inherent difference between unsteady laminar flows and 

turbulent flows. The current laminar flow Idah (MerrfiB e& aH. P 9621 



indicates that changes in the molecular weight of the polymer a r e  

relatively slight and do not seem to follow a pattern that would be ex- 

pected if scission were occurring. On the other hand, when these 

same solutions a r e  placed in bottles and shaken, i,e, , placed in a 

turbulent flow, the molecular weight a s  estimated by intrinsic vis- 

cosity measurements appears to drop with time to a given plateau 

value for a given level of agitation. This plateau value does not 

appear to depend on the initial molecular weight of the sample used. 

This apparent degradation appears to take place to some 

extent in all turbulent flows s f  dilute solutions, 'll'iiae explanation of 

this effect may Pie in the fact that rn ost conventionaP lamhart flow 

experhemts do not contain velocity fields sf the form shown in ($9), 

Mere y i s  a constant, n 

The Plow field defined by (69) will exist locally in .$Lorbralent 

flows for times much longer than T over lengths large compared with 

the size of the molecde. Physically local regime s of the type shown 

in (49) exist due to the relative motion of one element of fluid towards 

another or  the motion of an element of fluid towards a wall, 

For  this simple flow field (42) becomes (70 ) .  The trial  s o h -  

tion flor (70) will be (71 ), (70) and (?I)  are shown on the next page, 

Substitution of the t r ia l  solution (71) into (70) proves $Plat this solution 

in fact, the correct  one. 





The mean internal energy stored by a polymer molecule sub- 

jected to this flow field may be directly calculated using (65). Inte- 

gration produces the result that 

N 
1 2 

V ~ T  = 3 ~ / 2  (I t i n  in)  t 1/2zln(-) 1 -ei I- I )  (73) 
i= 1 

- 
Obviously a s  the largest Bi, e l ,  approaches one, F grows without 

bound. 

Physically the flow field chosen corresponds to the case of two 

steady "jets" of solution flowing in from plus and minus y -infinity, 

The jets meet a t  the origin and flow out along the x- and z-axes, h 

this type of flow field, it i s  expected that the polymer molecules 

would be stretched in planes perpendicular to the y-axis, This 

stretching will produce a tension along the length of tihe molecule, 

This tension will be applied for long times and a s  the moleculies ex- 

tended length increases, this tension will sirmcrease, If this tension 

is large enough and acts long enough, the probability of breaking 

bonds in the central part of the chain will become close to one. K 

the Rouse model there i s  no way of estimating the force necessary 

to break the molecular chain, However, if the chain i s  going to break, 

it should take place when the molecuPe begins to become fully extended, 

sr when the energy starts to become infinite, (73) suggests that 

this takes place when 
m 

With f i e  use of (63), (74) implies that the critical strain sate required 



* 
to break the molecules up should be y where: n 

Merrill  e t  al. (1 962) have suggested that the "rate of change 

of shear s t r e s s f t  is the more important variable in determining 

whether molecufar scission will occur rather than steady shear 

s t ress .  The preceding analysis suggests that Merrill  e t  aP, (1962) 

may not be quite correct.  The degradation appears to result from a 

steady flow field of a certain type not customarily fomd in laminar 

flows, 

A check on this theory could be accomplished by setting up 

two opposing jets of dilute polymer solution, This wodd partiaUy 

simulate the flow field under consideration, The intrinsic viscosity 

of the solution leaving the impact point could be plotted versus y 
W. 

and y steadily increased. It would be expected that the h t r k s i c  
n 

viscosity of the solution would begin to drop when y reached the n 

critical value shown in (75). 

In- 5 Qualitative Approach Using Dimensional Analysis 

The preceding discussion of energy storage by polymer mole- 

cules has concentrated on applying a rather formidable mathematics% 

theory to a rather idealized model. There i s  a tendency in this dis- 

cus sion to lose sight of the physics sf the situation, Therefore, it 

is physically instructive to note that the basic assumptions involved 

in this theory may be used to derive a linearized version of (4%) 

using nothing more sophisticated than dimensionaP analysis. 
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For  the case of a locally steady shear flow w = 0 and KT' be- 

1 

comes, using (46): 

- 2  
K. = 1 f (ri\) 2 

3 (i not summed) (76) 

a 

Thus the energy per unit volume stored by the moPecules is using (68): 

F o r  the case where ri(YO is  less  than one, (77) may be approximated 

by (78) where: 

Recalling that the eigenvalues of the Rouse matrix a r e  e, where: 
P 

we note that aplsst sf f i e  energy stored will csme from f i e  contribu- 

tions of the f i r s t  few eigenvalues. Thus approximating ei by: 

2 . 2  
e =  3 

(79) 
( ~ f 1 ) ~  

substituting this into (78) and summing, assuming N is large, pro- 

duces: 

which using (63) becomes: 

Now examine f i e  problem of energy stbiage from a physical 



point of view. Assume that a small number of molecules a r e  added 

to a solvent and that they dissolve so that they a r e  homogeneously 

distributed in the solvent. If the solvent is a t  r e s t  the energy of these 

molecules per unit volume will be a function of nkT, where n is the 

number of molecules per unit volume, k is h301tzmanmss constant and 

T i s  the temperature of the solution. 

Now subject a small volume of this fluid to a strain rate 
o 

The forces produced by the interaction of the molecular coils with 

the solvent do work on the solvent and provide an additional mecha- 

nism for  energy dissipation, This will o w  a macroscopic scale be 

measured a s  an  increase in the viscosity of f i e  solvent. Gall this 

change in viscosity Aq. 

The interaction forces also do work on f i e  molecular coils by 

tending to stretch fie molecules out along streamlines. This work 

i s  the energy stored in the molecules due to a,. The energy stored 

in the moleculles is  a function of the strain in the molecules, The 

strain 3-1 the molecuPes i s  a function of the forces  applied to the mole- 

cules. The forces a r e  a function only of a)o9 hq and nkT. Thus the 

energy stored in the molecules per unit voPume, W, is only a function 

of ao, Aq and nkT. By dimensional analysis, 

This function f i s ,  in general, unknown, However, for f i e  

special case of small %, i t  is customary to assume fiat high- 

molecular -weight polymer s deform a s  Hookean springs, In Rouse' s 

model this assumption is equivalent to  assuming that the separation 



of the ends of the submolecule obeys a Gaussian probability function. 

It i s  also customary to assume that the local viscous forces 

on the molecule a re  directly proportional to the relative motions of 

sections of the molecule and the solvent. In the Rouse model this 

justifies the force balance in the three directions a s  represented by 

(91, (1 0 )  and ( I  1). 

Since Hookean springs store energy a s  their strain. squared, 

these molecules store energy a s  their strain squared, o r  a s  the PocaP 

forces squared or  a s  the local fluid strain rate squared, This result 

combines with (82) to produce 

which i s ,  rearranging terms,  

which for dilute solutions becomes: 

This result i s  exactly the same a s  ( $ I ) ,  the result from 

Rousess theory derived under the same a s s u p t i o n s .  The propor- 

tionality constant i s ,  of course, not determined by this qualitative 

approach. 

111-6 Discussion sf the Validity of the ResuPts 

Wousegs theory for the energy dissipated by a dilute polymer 

eslutPon was quickly followed by measurements (Rouse and SitteP, 
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1 953) of the viscoelastic properties of dilute solutions of polystyrene 

in toluene and of palyisobutylene in various solvents. The measure- 

ments were made a t  frequencies ranging from 220 cycles up to 60 kc. 

Excellent agreement was obtained between theory and experiment. 

Since Rouse's theoretical results a s  represented by (56), (57) and 

(63) contain no adjustable constants, this theory pro-vides a good first 

approximation to the viscoePastic properties of dilute solutions of 

polymers in good solvents. 

We have shown that the Rouse model predicts that f i e  intrinsic 

viscosity should be independent of uo regardless of 0 . Figure 5 
0 

presents typical data for polystyrene fractions in toluene. It i s  clear 

from Figure 5 that for  low molecular weight material the Rouse 

model i s  adequate. For  high moEectalar weights, however, there 

seems to be a problem. The theory does not predict the observed 

dependence of intrinsic viscosity on strain rate, 

Zimm (1 9568 attempted to modify Rouse's model. to include 

the effects of hydrodynamic interactions. However, his caPcdated 

intrinsic viscosity also does not depend on ao. He aHributed this 

discrepancy to a defect in the Rouse model. 

Others have attempted to clarify this probPem, Considerable 

controversy has centered on determining the exact defect in f i e  Rouse 

model, The reader i s  referred to the work of T a k a m ~ r a  QB958), 

Peterlina. and Copic (B956), Cerf (1959) and Pao (P96Z), h order to 

get some physical insight into this problemp we consider the simpPest 

possible mow-trivsal flow field, namelyp the case in the first exact 

solution where w = 0,  
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In the diagonalizing coordinates, (1 3) ,  (14) and (1 5) become 

with this choice of flow field (86), (87) and (88) where: 

In this coordinate system with this flow field (45) implies that: 

Differentiating (89) with respect to qi implies that: 

Thus the Rouse model does not allow for coupling between the 

forced motions in the x-y plane and the random fiuc&uatioaas 51 the 

z-direction. This follows physically from the assumption of the sta- 

tistical independence of the three projections of the separation of the 

ends of a submolecule, 

In the x-y plane there i s  a coupliimg of the motions of the ends 

a s  represented by (84) and (87). Solution s f  these for the motions of 

the ends can be st  be accomplislhed by introducing fie transformation: 

Qi not s m m e d )  (91) 
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In the (61, ei) coordinate system the equations of motion for 

the N ends become after some algebra: 

6 ; - w  i E i (i not summed) (93) 

t i  = -w. 61 (i not summed) 
1 1  (94) 

where 

- wi - CYo (i not summed) 

Suppose that we pick a molecule out sf the ensemble, Suppose 

we a re  given the fact that the iG end at t E O is located at 

(6 hi. eoi9 qOi) in (6t, f i ,  q.) 1 space. We ask what is the subsequent 

motion of this end in this space. 

(88) y d  (90) imply that the end remains for all  subsequent 

th time in the plane Q = qoi. In thig plane the i- end's motion is de- i 

scribed by (93) and (94), These equations may be rewritten:: 

where the dots represent derivatives with respect to t h e ,  The 

initial conditions and these differential equations require &a& the 

ig end move according to the relations: 



Thus in this coordinate system the ends move in elliptical orbits. 

These equations may be rewritten in the diagonalizing coordinates: 

For  large a0 these become 

a @o e .& e .t 
P B 

6i = (-  7 + 6 .) sin (-;--I + tioi cos (-1 'oi o r  T (1 02) i 
2ei e .t e .t 

P B 
E~ = (- 6oi - eoi) sin [TI + eoi cos(--) T (1 03) 

For  the ensemble average molecule for large aouo: 

Here i i s  not summed. 

We originally chose coi and 6 (or equivalently 6'  .) by f i rs t  
oi o P 

picking a mole~u le  a t  random from the ensemble and them by simply 

th noting f i e  location s f  the i- end at t= 0, h order to investigate 

the behavior of the average molecule we now equate the ensemble 

2 average values of 6i and ~5 with their respective time average values. 

The hvo resulting equations a re  then solved for i;oi and foi, the initial 

conditions of the average molecule. The result is fhae: 



th Thus the average molecule moves such that its i d  end moves for 

large crot according to the relations: 

Here i is not summed. 

(1 09) implies that fo r  large o0 the average stretch in the y- 

direction becomes independent s f  @a! , Thus built into the Rouse model 
0 

is  the notion that no matter how much the molecules a re  stretched 

out in tihe x-direction due to the flow field, there i s  ns change in the 

average magnitude of the stretches in the y- and a-directions, Real 

moPecuPes have a finite length, Thus as the stretch in the x-direction 

starts to approach the full extended length of the molecde, the 

stretches in the y- and a-directions should go to zero. Thus i t  is 

not expected that this model will predict the correct high strain be- 

havior sf the solution, 

PIX- 7 .  Qualitative Extension to Large Strain Rate 

A guess at the correct high strain rate dependence of energy 

storage and dissipation may be made from a h e n ~ i s t i c  argument, 

For  strain rates less  than el  /T we have shown that the energy stored 

Ilscafly per wit voluear~e i s  



and 

As the strain rate becomes large compared to e1/7 we expect the 

Rouse model will no longer represent the physical situation and we 

expect the intrinsic viscosity to vary with a Since the molecules o * 

a re  becoming stretched out along streamlines it might be expected 

that the limiting value approached by the intrinsic viscosity would by 

analogy with the Einstein viscosity relation be: 

where V i s  the effective volume occupied by a molecule, M i s  f i e  e 

molecular weight of the moPecule and A i s  Avsgadrof s number. The 

effective voBme occupied by a molecule should be directly propor- 

tional to the moPecdar weight of the molecde if the molecule is 

almost completePy stretched out. Thus (1 11 1) suggests that: 

P im [q] + constant 

@OT 
4 c*P 

B 

Data in this region a r e  difficult to obtain primarily because in most 

conventional instruments for measuring intrinsic viscosity either the 

strain rates a r e  too Bow or there i s  some question whether the poly- 

mer  scoBp1.tion i s  in laminar flow, By way of a numerical example, 

polystyrene with a molecular weight of one million dissoBved in 
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toluene resuires a strain rate large compared with 20,600 sec-I 

before the molecules begin to become stretched out along stream- 

line s. 

Energy storage is even a more difficult subject on which to 

speculate. The behavior of the Rouse model at high strain rate 

has been shown not to resemble the behavior of actual moleceelles, 

Thus we a r e  left with an expression similar to ( $ 2 )  which was de- 

rived from dimensional considerations. 

This function may be expanded in even powers s f  the strain rate, 

laa view s f  (I B 2) this becomes: 

(113 

The a. a re  a series of constants and it i s  impossible t s  say anything 
3. 

about their relative size without resorting t s  experiments, The inn- 

teresting thing about (113) i s  that the energy stored by the p o l p e r  

moPecuPes depends on odd powers sf the mslecu.lar weight, 
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IV. EFFECT OF POLYMERS ON THE TURBULENT ENERGY BALANCE 

IV- 1 Introduction 

In the previous chapter a dilute polymer solution was consid- 

e r ed  from a molecular point of view. Rouse's model was used in a 

systematic fashion to approximate the behavior of a single molecule 

subjected to both Brownian motion and a velocity field composed of 

spatially constant velocity gradients. It was shown in Appendix B 

that the equation implied by the model may be solved exactly, 

That polymer molecules store energy has long been known 

from experiment. However, i t  is  not generally realized that the 

simple Rouse model quantitatively predicts the amount of energy 

locally stored a s  a function of the local strain ra te ,  the concentra- 

tion, and readily measurable molecuPar parameters , F o r  POW strain 

ra tes  excelBen& agreement i s  obtained between the theory for energy 

dissipation and measurements of energy dissipation, The Rouse 

results contain no adjustable constants so this theory must be con- 

sidered a good f i r s t  approximation to the viscoelastic properties of 

dilute solutions of polymers in good solvents, Thus it i s  expected 

that the predicted energy storage will also agree with experiments, 

HPa this chapter, the effect of the polymer molecules on the 

behavior of the solvent will be considered from a macroscopic point 

s f  view, lirn the final section of this chapter these views will be 

equated by a s  sunning tihat the energy stored per unit volume of sslu- 

tion is proportional to the number of molecules per mi& v o 8 ~ e  times 

the energy stored in each molecule, The mion  s f  these two views 
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produces a theory which predicts the Toms Effect. 

IV-2 A Constitutive Law - Two Assumptions 

Our f i r s t  assurnption is  that a dilute polymer solution is in- 

compressible. Experiments performed by Ellis (1 966) indicate that 

4 for 10 ppmw polyethylene oxide (Mw = 3 x 10 ) in water a t  room tem- 

perature the speed of sound does not differ from that of water with a 

similar a i r  content to a t  least  one part  in one hundred, Similar r e -  

sults have been reported by Hoyt and Tulin, Thus for a dilute solu- 

tion we assume a constitutive law of the form: 

where tik is a Cartesian s t ress  tensor, p is the hydrostatic pressure. 

6* i s  the Kronecker delta, qo i s  the Newtonian viscosity of the sol- 

vent, e* is  the rate of deformation tensor, po i s  the density of the 

solvent and Q& is a Cartesian tensor expressing the contribution of 

the polymer molecules to the behavior of the solution. 

In principle, @ik might be determined at  some point in a flow 

field by measuring a t  that position tiks p and e q and p a r e  a s -  
&' o 8 

s u e d  to be known. Knowing tik. p and e could be determined ik9 ik 

from (1 114). K practice, however, @ i s  unknown, ik 

There exist in the literature many speculations a s  to what 

eh. might look like for different situations. Theas one comes across  & 

t e rms  such as 'Stoke sian fluid' ' , 'power -Paw fluidP ' (which includes 

pseudoplastic and dilatant fluids), Bingham fluid, Reine r -Rivlin 

fluid, RivLin-Ericksen fluid, simple fluid'P, Bvscecond-order 
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etc.. The particular choice of 8ik depends on the experimental 

evidence. If a model appears to work, it is adopted. 

For  dilute solutions the problem of choosing a model i s  com- 

plicated by the experimental fact that in every known laminar flow 

experiment the s t ress  contribution of the solvent far  exceeds the 

s t ress  contribution of the polymer molecules. In fact, steady lam- 

inar flow experiments indicate that for dilute solutions the ratio of 

the s t ress  contribution of the polymer molecules to the viscous 

s t ress  is  l ess  than o r  equal to c [q] where c is the weight csncen- 

tration and [q] is the intrinsic viscosity of the solution at low strain 

rate, Thus experhental ly  it appears that: 

~ ~ * ~ / ~ ' l , e ~  1 (i and k not summed) 

F o r  dilute solutions c[q] is  typically less  than one hundredth. 

Thus s t ress  measurements accurate to at least  one part  in one 

thousand a r e  necessary before the true nature of may be meas- 

ured, 

h the absence of accurate s t ress  measurements investigators 

have adopted n m e r o u s  constitutive relations for dilute soHutions, 

For example, Boggs and Tompsen (1966) set  @jPjl equal to the expres- 

sion shown in (1 1 6): 

where the acceleration, a. ,  is given by: 
J 



Bu. 
a. = + + UkUj,k 

J 

Here the comma indicates differentiation in a Cartesian coordinate 

system, v and v arb constants, u. a re  the components of the 2 3 J 

velocity field in the three directions, and the usual summation cow- 

vention is assumed. 

Shaver and MerriPl (1959) ,  Metzner and Reed (1955)s and 

Dodge and Metzner (1959) have had some success using a power law 

model of the form 

s 
s t ress  = b (strain rate) (1 18) 

to express f i e  rheolsgy of the laminar and turbuBent pipe flow of 

concentrated polymer solutions. b and s a re  parameters which r e  - 
main constant over extended ranges s f  strain rate for a given soPutiom, 

Spriggs , Huppler and Bird (1 966) tabulate no Pe s s than twenty 

dsferent rheo8ogica8 models for vis coelastic fluids, They present 

experimental data which tend to support some s f  these models, 

However, in general, the specific choice s f  constitutive law which 

describes the behavior of dilute solutions is open to extended debate. 

Rather than enter into 'this debate our assmptionn will be that 

@.. i s  eonknown, but that in principle it could be measured, If it were 
=%I 

measured we assume that in general one would find &a* 

(i and j not summed) 

This assuranptisn is  consistent with current experimental results, 

There may exist a flow field in which (1 P 9) does not hold, However, 
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to date it appears not to have been discovered. 

IV-3 The Toms Effect: A Wall Phenomenon 

In Chapter I1 we discussed the measurements which indicate 

that turbulent momentum transport can be markedly altered even in 

very dilute solutions. Momentum transport i s  determined in turbulent 

flows by the Reynolds s t resses ,  These Reynolds s t resses  a r e  pro- 

duced primarily by disturbances which, once formed, a r e  insensitive 

to the viscous stresses.  Since we have assumed in (119) that the 

s t resses  produced by the addition 0% p o % p e r s  a r e  very much 

smaller than these viscous s t resses ,  a small quantity, we conclude 

that the polymer rnoPecuPes cannot alter the turbu'lence once it has 

been formed. 

This conclusion is  very important, Previous investigators 

have suggested that the polymer molecules directly @damp the turbu- 

BencePg , The assumption stated in (1 B 9) makes this mechanism for 

the Toms Effect impossible. 

Hn free turbulent flows the effects of viscosity a r e  removed 

from those turbulent motions which control the mean motion. The 

effects of viscosity a r e  rather relegated to the small scale eddies 

which take part  in the final decay and the proddctiori of heat, Poly- 

m e r  mo%ecule addition should slightly influence this f ina l  decay but 

should not influence the turbulent motions which control f i e  mean 

motion, Thus we expect that the structure in grid and free-jet  

turbulence should in no measurable way differ from the structure 

found in the Elow sf &he solvent under s i m l a r  conditions, Thus 
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measurements of grid and free  jet turbulence should provide an excel- 

lent indirect check for (1 19). 

Fabula (1 966) has published a detailed experimental study of 

grid turbulence in dilute high-polymer solutions. The major purpose 

of this investigation was to determine the effects of the non-Newtonian 

properties of polymer solutions upon the grid-turbulence energy spec- 

trum. 

The turbulence was generated by towing a grid of regularly 

spaced bars through a tank of stagnant fluid. At a sufficient distance 

from the grid to insure spreading and mixing of the turbulent wakes 

of the bars ,  hot-film sensors were used to measure the instantaneous 

longitudinal velocity. From this signal the longitudinal, one -dimen- 

sional wavenumber spectrum was determined for water a t  various 

temperatures for a wide variety s f  aqueous polymer solutions, 

Faibula concluded from his measurements that for dilute solu- 

tions no measurable changes took place in the grid-turbulence energy 

spectrum, F o r  concentrated solutions (c[q = ,27), Fabula observed 

a depression in the spectral level a t  higher frequencies due to polymer 

addition. However, when the increase in viscosity due to polymer 

addition was taken into account, Fabula found no evidence of now- 

Newtonian effects. 

Jackley (1966) studied the mean velocity profile sf a f ree  

turbulent round jet growing in a large tank in order to determine 

whether the Toms Effect i s  the result of polymer moPecules g s d i r e c t l ~  

damping the turbulencegP , JacMey found that when dilute aqueous 

soPutiow was pumped into similar stagnant soPution, a mean velocity 
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profile resulted which, beyond ten diameters of the nozzle mouth, 

could not be distinguished from that of distilled water. Jackley 

concluded that the Toms Effect i s  "a  phenomenon of the wallt1. 

Thus the best experimental evidence to date appears to 

support (1 l 91, 

lCV -4 A Qualitative Explanation 

Hra wall turbulence the effects of initial conditions never 

completely disappear from the structure of the turbulence. 

hmed ia t e ly  adjoining the wall there is  a thin layer sf fluid 

in which the mean velocity, U1 ( x ~ ) ,  varies linearly with the dis - 
t a m e  from the wall, xZ, This velocity i s  small 6roughout the 

layer,  varying from zero a t  the wall itself to values of the order 

of ten times the friction velocity, UT a t  the outer edge of the: 

layer. Here,  

'L is the turbulent wall s t ress  and p i s  the density of the fluid. 

We call this thin layer the viscous sublayer. 

The viscous sublayer is  characterized by small but high f r e -  

quency velocity fluctuations. Lan fact, the local turbulence level, 

U l (  where is the' local root-mean-square value s f  the 

velocity fluctuations in the flow direction, r ises  to a maximum value 

a t  the wall, Thus the flow is  highly disturbed al l  the way to the wall, 

These disturbances in the velocity field a r e  produced by the 

motions of volumes of fluid in the outer part of &ltae boundary layer. 

This outer part  of the boundary layer is ai. region where the viscous 
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stresses  a r e  everywhere small compared to the Reynolds stresses. 

The velocity fluctuations a r e  of a scale very much Larger and of f re -  

quencies very much lower than those in the viscqus sublayer. In 

fact, the characteristic time scales of the turbulence in this outer 

region a re  so long that a sample volume of turbulent fluid could be 

transported a considerable distance by a convective motion without 

undergoing a large change in its structure o r  identity, These large 

volumes of fluid eventually interact with the wall and with each other 

to Sorm smaller,  but higher frequency disturbances. 

h the outer part of the boundary layer these small, violent 

disturbances decay into heat. Close to the wall, B1swever2 these 

small disturbances tend to grow because they can locally extract 

energy from the local velocity profile through their Reynolds stresses. 

ShultaneousBy these small disturbances tend 40 lose energy because 

their gradients locally dissipate energy into he+$& Pm polymer solu- 

tions these small disturbances tend to store elmergy in the polymer 

molecule s , 

Hf a small disturbance extracts more energy locally than i t  

loses, it will grow, The disturbances 2 o r  vortices, so generated 

move out from the wall a s  they are  convected downstream, Thus 

smalll disturbances a t  the edge of the viscous sublayer ultimately 

become part sf  the structure of the turbulence in the outer part of 

the boundary layer and ultimately become responsible for the Weym- 

olds s t resses  s f  the turbulent flow. 

The idea f ~ ~ m e n m t a l  to this theory 9s that the large scale 

disturbances which produce the W eynolds s t re  s se s some distance 



downstream were,  a t  an ear l ier  time, small disturbances a t  the edge 

of the viscous sublayer some distance upstream. 

Once the small disturbances s tar t  to grow the effect of the 

polymer molecules may be neglected. All the polymer molecules do 

is slightly a l ter  the energy balance of the turbulent fluctuations close 

to the wall, By slightly altering this balance, the molecules allow 

viscous dissipation to destroy disturbances which would have had 

sufficient kinetic energy to grow had the polymer moPecules not been 

present, 

By decreasing the number of disturbances which grow per unit 

a rea  and time and move out from the edge sf the viscous sublayer, 

the addition of the polymer molecuPes ultimately changes the structure 

sf the turbulence in the outer part of the boundary layer, This change 

results in Power Reynolds s t resses  and hence f i e  Toms Effect, 

IV-5 A Quantitative Explanation of the Toms Effect 

The equations of motion for an irncompres~ibPe fluid in the 

absence of body forces may be written 

l 
U. + U.U. = - t.. 

z 9 t  J x,j p q,j 

Let U. be a steady mean flow field and ui be the components 
P 

of the turbulent velocity fluctuations. Let T.. be a steady mean Car- 
=.I 

tesian s t ress  tensor and t!. be the turbulent s t ress  flluctuations, Let 
U 

a bar over a quantity imply re time mean value, niamely, 

T - P X =  P h  X dt 
' k + ~  -T 
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Thus the velocities and s t resses  can be rewritten 

t.. = T.. + t!. 
1J U U 

where 

- 
u. = Ui and f. = T.. 

1 1J 1J 

Substituting (1 23) and (1 24) into (11 211, multiplying the result- 

ing equation through by u' and then averaging the resulting equation i' 

produces 

The qualitative argum ent in the preceding section suggests 

that we consider this equation in the neighborhood of a wall. F o r  

s h p l i c i t y p  consider a dilute solution moving with a steady mean 

velocity U (x ) along a flat plate in the xl -direction. l 2 

Xf we introduce length scales L and L representative of the 1 2 

x1 - and x2-directions, respectively, the narrowness of the boundary- 

layer region leads to the conclusion that L ~ / L ~  << 1. 

By virtue s f  the continuity equationmi the velocity scales 91' P 

and rZ repre sentative of the typical velocities parallel and normal 

to the plate should satisfy the requirement that 

Despite the presence of the wall, it will be a s s m e d  that the 



turbulent intensities in the various directions a r e  sti l l  of the same 

order  of magnitude. Accordingly, it will be assumed that i t  i s  pe r -  

missible to consider one velocity sca le ,  V ,  for  u! where i = 1 ,  2, 3 .  
1 

V i s  assumed smal l  compared with I? 1"  

Now consider the constitutive law 

t. .  = -p6.. + 2qo eij + po aij 
U 1J 

(1 14) 

Let  pt  and 9' represent  the turbulent fluctuations of p and @... v i s  
i j  1J 

the kinematic viscosity of the solvent. Then 

It is  worthwhile to note that incompressibility requires  that 

v u!u' 
2 v 2 = -v (u! .) i- (ui ) 

I ip  jj 1 9  J jj 

L 
p ' /p  i s  assumed,  close to the wall, to be of the o rder  V 

Thus assuming the correlation coefficients a r e  a l l  of o rder  1 ,  

(1 26) may be rewritten (Townsend (1 956))  

2 - 1 - u!@! + t e r m s  of o rder  V r l L 1  
1 1292 (130) 

2 
The f i r s t  two t e rms  in (130) a r e  both of o rder  V r l ~ i l  and 

represent  the local ra te  of turbulent production and dissipation. 

3 -J. Their  difference produces a smal l  positive term of order  V L 2 * 

This difference drives the right hand side of (1 30). 



The third term i s  customarily called the "advection" or  

"energy diffusion" term. The latter is  perhaps a more descriptive 

term for what is  taking place. The third term represents the net 

rate a t  which energy is diffusing from the edge of the viscous sublayer 

towards the outer part of the boundary layer. 

For  turbulent flows of Newtonian solvents it has been observed 

(Townsend, 1956) that while changes in the energy diffusion term have 

no immediate effect on the turbulent intensity or s t resses  in the outer 

park of the boundary layer,  they do have a cumulative effect which is 

felt some distance downstream. Thus by altering this third term one 

can al ter  the structure of the turbulence, 

The fourth term represents the contribution sf the polymer 

molecules to this energy balance. For  very, very dilute solutions 

2 it  i s  to be expected that this term will be of order  V F~L;' or  

smalle lr, Then (1 38) will be, to an excellent approximation, identical 

with the case for flow of a Newtonian solvent. Thus there should be 

ns  Toms Effect, 

However we define the dirnensjlodess parameter H such that 

As W begins to approach one, presumably the rate energy is 

diffusing from the edge s f  the sublayer towards the outer part of &he 

boundary layer will be changed, F o r  H much greater than one, 

nothing can be said. 



Measuring velocities in dilute polymer solutions is difficult 

enough. Measuring the fluctuating part of an  unknown portion of a 

s t ress  tensor i s ,  a t  the present time, impossible. Thus the success 

of this analysis res ts  on our ability to estimate ut)j2, without having 

to perform direct measurements. 

IV-6 An Estimate of H 

In this chapter the effect of the polymer molecules on the 

behavior of the solvent has been considered from a macroscopic point 

of view, Rather than examine the behavior of the molecules individu- 

ally, we have assumed that the effect of polymer addition might 

comceptualBy be measured a s  an additional term in a constitutive 

relation, namely, p @. . . (This a s  same s that the polymer molecuPes 
1J 

a r e  homogeneously distributed throughout the solvent. ) 

Polymer molecules store energy, The average ra te  work is 
0 

done, E, by the s t ress  contribution of the moleedes  @. . , during Po 11 

the deformation of the flowing fluid is 

This must equal the average local rate of change of internal energy 

of the molecules, fjV. In Chapter 111 we have shown that each molecule 

stores energy a s  a function of the local strain rate, Fo r  dilute poly- 

m e r  solutions subjected to low strain rates we have shown that the 

energy stored per unit volume by the molecules due to a strain rate 

a. is just 



where 

(81) was obtained by assuming that the energy stored per unit 

volume of solution i s  proportional to the number of molecules per 

unit volume times the energy stored im each molecule. (This assumes 

that the solution is dilute. ) 

For  the purposes of this estimate we assume 

Since the followimg argument involves only an order sf magnitude 

analysis, the shortcomings of this generalization a r e  not signsicant. 

Thus the average local rate s f  change of internal energy of the mole- 

cules % is  

Here E.. and e ! .  a re  the mean and fluctuating parts of the rate 
1.J =.I 

of deformation tensor. 

FOP flow past a flat plate in the xl -direction, close to the 

plate, most of these terms a re  small and 

2 % = U ( u V  el. 2 13 1.2 + 

negligible term e 

S h l l a r l y  (132) becomes 



which for flow past a flat plate in the xl-direction, close to the plate, 

becomes 

6 = b(QjZU;), + negligible terms 

Equating (137) and (138) produces the result that to f i rs t  order 

Thus, assuming that it is  permissible to consider one scale, 

9, for $j2' then the magnitude of this scale must be of Ule order of 

9 

where 1 is  a length scale characteristic of a disturbance, Thus H 

may be estimated from 131)  a s  (141) where 

H --, 

Implied in the notion that close to the wall energy production 

very nearly equals dissipation i s  the relation 

Thus 
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Thus from (141) and (143) 

The Patter three terms may be identified a s  follows: 

Thus tkne viscosity of the solvent drops out s f  the first  term. 

In the second and third terms r1 and L2 may, for the purpose 

of estimating H, be equated with U1 (xZ) and x x2 i s  the distance 2' 

from the plate and U1 (x2) is  the velocity along the plate, 

The law of the wall 

for a Newtonian solvent i s  (when Reynolds number i s  high and the 

pressure either constant or the adverse gradients are not excessive) 

remarkably insensitive to conditions in the outer part of the boundary 

layer. Thus it i s  quite relevant for estimating (W /U a s  a function B a 



X2 of (UT 7 )  for dilute solutions. 

For  very, very dilute solutions where no Toms Effect takes 

place, (146) will in general hold. As the concentration is raised to 

the point where the Toms Effect begins, (146) will s tar t  to change, 

However, for a fir s t  approximation of the relationship between 

X2 (ul/uT) and (UT--). (146) will be used. 

3/2 *2) - 1 /2 Figure 6 shows (U1/uT) (UT 7 plotted versus (UT y) X2 

using the law s f  the wall. From this graph it i s  clear that a t  fie edge 

3 /2 Xz)-l/2 oftheviscous sublayer, ( u ~ / u ~ )  ( U T 7  l o e  

h conclusion, for dilute polymer solutions the Toms Effect 

should start  taking place when P1[ s tar ts  to approach one, H is esti- 

mated from (145) and Figure 6 a s  
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V. COMPARISON O F  THEORY WITH EXPERIMENT 

V-1 Discussion of Theory 

As  I.I approaches one, we expect that significant amounts of 

energy, which would ordinarily have been convected away from the 

wall in the form of turbulent disturbances, will be convected away 

stored in polymer molecules. H is  a dimensionless measure of the 

effect of the molecules on the rate turbulent energy is diffusing from 

the wall. 

In Chapter Ui we introduced the function E, the percent ap- 

proach to laminar flow, E is a dimensionPess measure of the 

structure of the turbulence responsible for the turbulent momentum 

transport of the flow, 

H a s  defined by (1131) is  a dimensionlieas measure of the effect 

of the p o l p e r  moPecules on the structure of this; %ta-rbuIence. Thus 

for a given Reymo%ds number flow and a given wall flow geometry, 

L must be a unique function sf HI. 

Since the structure of wall turbulence does not depend 

strongly on Reynolds number above transition, we do not expect 

L to be strongly dependent on Reynolds number, 

As H becomes greater than one, subject to the restriction 

that the solution remains dilute, it is not clear what will happen, 

Our estimate of H required use s f  the law of the wall, Presumably 

changes in the structure of the turbulence (due to  changes 31 the 

energy balance a t  the edge of the viscous sPPB31ayer) will be reflected 

in changes in the law sf the wall. 



Physically, however, we expect that the elastic te rms  in the 

boundary layer will s tar t  to stabilize most of the disturbances. Thus 

the sublayer will become effectively thicker. There will be fewer 

disturbances , but each will have, on the average, larger  Reynolds 

s t resses ,  Some of these disturbances will still be able to extract 

energy from ,the mean velocity gradient and,grow, Because of the 

latter effect, it seems unlikely that laminar flow will ever be reached, 

Thus, theoretically we expect that if H were plotted against 

L, then one would find a functional relationship bqtween these two 

parameters similar to that shown in Figure 7. 

Here when I3 i s  small, L i s  zero, As H approaches one, Id 

begins to r ise ,  As H becomes large,  % approaches a constant value 

sf less  than 180 percent, This theory does not predict the exact 

mafiernatical form s f  the relationship between lip and H, To do this 

would require a detailed howledge s f  the relationship betmeen the 

structure s f  the turbulence a t  the edge sl the viscsus sublayer and 

in the outer par t  of the boundary layer, One would also need to h o w  

the relationship between this structure and E, 

Perhaps this would be made pos sibPe by postuliating a model 

which behaves in some approximation like real  wall turbulence. A 

model of this kind might help provide insight into the whole problem 

s f  wall turbulence, much a s  the Rouse model helps provide insight 

into the behavior of dilute polymer solutions, 

It should be reemphasized that our quantitative estimate of 

H a s  represented by (147) i s  limited to solutions subjected to - Bow 

strain rates,  By this it i s  meant that the local strain rate: 





which from (63) and (79) means that: 

Roughly, this means that the turbulent wall s t ress  must be 

less  than, at  a minimum, ~ o R T A ~ ]  M. For Polyox in water a t  2 5 * ~ ,  

using (5), 

Figure 8 shows the region of validity of (1.88) for PoPyox 

soPutions. Shin (P 966) and Pruitt and Crawfords s (1 965) data a re  

indicated by triangles and circles , It i s  evident that except for the 

higher molecular weight material, these data a re  all in the Bow 

strain rate rkgime, 

It should be further noted that H i s  very sensitive to the 

mo1ecdar weight s f  the sample used. Thus .if a polymer sample 

i s  degraded or blended with another sample, the resulting molecular 

weight.distributionn must be known before H can be accknrately deter- 

mined, 

This m a y  be done a s  follows: 

Consider a heterogeneous polymer in a so~ution so dilute 

that individual molecules can be considered to contribute to energy 

storage independently of one another. Then from (147) - 
(i not summed) 





where Hi, ci, Mi and [?] are the contribution to  H , c , M and [?] due 

th to the i- species. In general, it i s  experimentally observed that 

w h e r e g a n d  ca! a re  constants, (5) and ( 6 )  a re  specific examples of 

this general relationship. Substituting (1 52) into (1 51 ) and summing 

over i p r l o d ~ ~ e s  

However, H is  usually calculated by taking the value of the 

intrinsic viscosity measured from a viscosity measurement a d  a 

value of the molecular weight measured using light- scattering, o r  

the weight average molecular weight. Thus 

Thus dividing (1 54) into (1  53) produces the: correction factor 

E where:: 

Were Mo is  the molecular weight of the monomer, ( M ~ / M ~ ) =  i 

which equals the degree of polymerization and (ci/c) = W. which 
B 

equals the weight fraction of the sample with degree of pslymeriza- 

tiom i, Thus 



Thus if w. is known, 2 may be evaluated using (156). In 
1 

principle, for polymers formed by monomer addition without t e r -  

mination, poly(ethy1ene oxide) for exampAe, (Floty, 1940) 

M represents the number of monomers reacted per initiator, Pf (157) 

is substituted into (f 5Q), the sums may be exactly evaluated for a= l. 

Thus, for a=  l ,  

For  high-molecular weight polymers pr is typically large 

3 compared with 18 . Thus E equals one and. ]HI calculated e qua8 s 

Hac tua~  to an excellent approximation. 

h practice, the idealized situation a s  represented by (1 57) is 

not realized unless great care is  taken in the preparation and hand- 

Ping s f  solutions. Since it is current practice to examine the Toms 

Effect using aqueous Polyox solutions, it i s  relevant to examine the 

pitfalls inherent in the use of these sollutions, 

Union Carbide makes Polyox in a variety s f  molecular 

weights for industrial use. 

The industrial specification is that a 5% solution by weight 

should, a t  a specified strain rate, have a viscosity between two 

specified values. Ef a batch does not meet specification, material 
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of different molecular weights is  added until it does. From these 

blends, commercial samples a re  taken. 

These samples have been used by experimenters to attempt 

to define the Toms Effect. Thus it i s  a matter of luck if an experi- 

menter s tar ts  with a blend or with a heterogeneous sample. 

As soon a s  a dilute solution i s  mixed, degradation begins. 

Polyox solutions a re  sensitive to chemical (see Appendix E), mechaa- 

ical (see Chapter 111), and perhaps biological degradation (see 

Appendix E). Thus a s  soon a s  the solutions a re  mixed, wi begins 

to change. This can to some extent be prevented by using air-free 

distillled water, by not shaking the solutions, and by keeping the 

solutions under nitrogen in a cool, dark place, 

Outdoor tanks and recirculating systems emphatically will 

not produce good results. 

There is  some reason to believe that the data presented inn 

Table P and Figures 3 and 4 a re  for undegraded and mblended 

samples. Further there is  reason to believe that, to date, no other 

data available in the literature is for undegraded polymer samples 

subjected to low strain rates, 

Thus these data will be used for testing the theory, 

V - 2  Comparison of Theory with Experiment 

Our theory predicts that the Toms Effect shoealld become 

visible when H approaches Hcritical where H4 critical should be 

of the order of .01. From (3.471, 
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From (159) it is  clear that if one onset wall s t ress  and poly- 

mer  concentration i s  known, then all  other solutions formed using 

this polymer sample and solvent must obey the relation 

c7* = ( C 7  *) known = constant 

This result i s  in quantitative agreement with the experimen- 

tal data in Table 1, 

(1 $0) explains why there i s  no f 'onset9g s t ress  for the 50 pprnw 

solution shown in Figure 2. For  this case T* should knave been 

2 2 3 dynes/cm , Transition takes place a t  4 dynes/cm . Thus tran- 

sition and &]he Toms Effect take place shuPtaneousPye 

For  each of the five solutions in Table 1,  Hcritical may be 

calculated. Thus for the first  solution: 

The other values of Hcritical may be calculated from the data 

in Table 1 ,  They a re  shown in the right hand column s f  Table l. 

The data, a s  they stand, indicate that HcriticaB equals .82. This 

i s  in excellent agreement with the theory, 

Further excellent agreement is  found if the data from ShinD s 

thesis i s  plotted in terms of E and He The computatisln procedure 

i s  quite straightforward. All of the data shown in Figures 3 and 4 

a r e  put in numerical form. There a r e  thirty different points cover - 
ing two different polymers in two different solvents, covering eight 
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difierent molecular weights and 30 different concentrations. The 

Reynolds numbers a r e  also different. 

Fo r  each of these thirty points, H and L a r e  calculated using 

(131) and (4), F o r  our theory to be valid, this must produce a curve 

of the form shown in Figure 7. 

Figure 9 presents the results of this calculation for the 

Polyox data shown in Figure 3 .  The remarkable superposition of 

Shin's Polyox data is strong evidence that the parameters,  L and H, 

developed by this theory a r e  the correct  ones for describing the 

Toms Effect, It should be noted that the Toms Effect begins a t  

H = . 8 2 ,  which is consistent with Pruitt  and Crawford's data. 

Figure 11 0 presents the results s f  this calculation for Shing s 

PIB data, The scatter here may result from uncertainties in the 

PIB data. S t  may also result from the defects inherent in the Rouse 

model, 

Figure 1 P compares the data for PoPyox in water and PIB in 

cyclohexane. The resulting differences may be due to e r r o r s  inher: 

ent in the data (especially in the effects of molecdar  weight distr i-  

bution). 

lit seems that high molecular weight polymers sf ethylene 

oxide have broad molecular weight distributions in spite of the fact 

that the theory predicts otherwise (FBory, 1940). EPias ( l 9 Q l )  
- - 

experimentally found ratios of Mw to Mm in the range of 10 to 20. 

His work was done im water using the techniques of eaPtracentrifuga- 

tiom and osmometry. 
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Work done in Union Carbide laboratories (Koleske, 1966) is 

in general agreement with Elias' s findings . 
If E is arbitrari ly set equal to 1.52 for the Polyox data and 

1.00 for the PIB data then the agreement is much better. The result 

is shown in Figure l 2. 

V-3 Conclusion 

The mqjor problem inherent in explaining the Toms Effect 

l ies in reconciling two facts: f i rs t ,  momentum transport in wall 

turbulence is drastically reduced by polymer addition and, secondly, 

this reduction is accomplished without a significant change in either 

fie solventPs density o r  viscosity. 

'This paradox may be resolved by realizing that the contribu- 

tion s f  the p o l p e r  moPecules should not be compared with the local 

energy dissipation, a relatively large quantity, but should be com- 

pared with the rate energy is diffusing from the sublayer towards 

the main flow,, This Patter quantity i s  sma81, but extremely M u e n -  

tial, By altering i tB  the polymer molecules al ter  the structure of 

the turbulence and hence the wall stress.  

The ratio of the contribution of the polymers to this small 

diffusion te rm is called H. One of the objects of this theory is to 

develop parameters for characterizing the Toms Effect. H and L 

a r e  these parameters. 

F o r  the special case 0% low strain rate and diIute soPution, 

we have demonstrated that H may be quantitatively estimated and 

that this estimate requires no arbi t rary constants, 'lr%lua we a r e  
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able to predict the onset of Toms Effect quantitatively. Experirnen- 

tally it  appears to take place consistently where H equals . 02 .  

The very nature of this explanation precludes the possibility 

of discovery of a Toms Effect in f ree  turbulent flows. If the lat ter  

event is, in the future, observed for  a single dilute solution, then 

o u r  explanation for  the Toms Effect must be incorrect. 
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VI. LARGE H 

VI-1 Discussion of the Case for  H Large Compared With One 

In Chapter I1 we defined a dilute solution a s  one where 

In Chapter V we pointed out that low strain rate means essentially 

that 

lOWT 
7 < -  (a $2) 
" irlm 

These two restrictions combine to restrict H a s  defined by (147') to 

values of less  than 2. Thus when one i s  talking about large H,  one 

i s  discussing an experiment which does not meet the restrictions 

developed in earlier ehapte r s . 
The simplest restriction to relax i s  that of Pow strain rate, 

For  the full meaning of this and i ts  effect on the Rouse model, the 

reader i s  referred to Chapter HPH. Essentially we now assume that 

the energy stored by the polymer molecules a t  high strain rate is 

Here the higher order terms in (113) a re  neglected, FOP the present 

(1 4 3 )  should be looked on a s  the simplest a s s m p t i s n  which might be 

made, but not nece s sar  ily a valid one. 

(l 4 3 )  i s  of the same form a s  (81 ), Thus the argument in 

Chapter HV i s  unaltered and we conclude that for high strain rate - 
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The proportionality constant in (164) i s  unknown since the Rouse 

theory certainly does not apply. Thus in the high strain case there 

i s  an arbitrary constant which must be determined by experiment. 

VI-2 A Law of the Wall for  a Viscoelastic Boundary Layer 

On the basis of experience we asswne that the mean fPow in 

a smooth pipe, U, may be characterized by six independent vari-  

ables, p ,  p, a ,  y, T~ and I. Here a is  the radius of the pipe and y 

i s  the distance from the wall. We assume that the effects of the 

molecules may be characterized by- a length scale 1.  Thus, in 

gene raP 

We suspect that in a viscoelastic sublayer, the radius of the 

pipe enters in only in the elastic part  of the profile determination, 

Thus tentatively we write for our Paw of the wall 

This i s  a special case s f  (165). h principlep there i s  no reason why 

(1 66) should be preferred over other possible choices, In practice, 

(166) might be tested with experiment if we h e w  what 4 i s  physically. 

Assume now that H for large strain-rate i s  s f  the form shown 

in (1 44) and that the proportionality constant i s  known, Thus i t  i s  

meaningful to discuss H large compared to one, 

By H large compared to one, we mean fiat the viscoelastic 

terms a re  greatly stabilizing the boundary layer and that it i s  getting 
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thicker. For  large H we assume that viscosity i s  of secondary im- 

portance in determining the velocity profile throughout the pipe. 

Thus for  large H we assume a law of the wall of the form 

By examining the argument used to derive EQ in Chapter PV, 

we conclude that the viscoelastic length scale, 1, if i t  exists, must 

scale a s  

for large H in dilute solutions. [q ] , i s  the intrinsic viscosity of 

the solution a t  infinite strain rate, 

VZ-3 Velocity Defect Law for Large H 

The difference between the maximum velocity U at the rn 

center of the pipe and the velocity anywhere else in the core is 

called the. "velocity defect". U, -U will be determined by the tur- 

bulent %Iuctuations in the core which have been a s s m e d  independent 

of p and 1 for dilute solutions regardless s f  H, Thus the velocity 

defect law must be exactly the same a s  that for the turbulent pipe 

f low of fthe solvent o r  

Here )( i s  independent of the nature s f  the wall conditions and i s  

moreover a univer saP constant of turbulept flow, Experimentally 

it i s  fomd [ScPllichting, 1961) that for both rough and smooth pipes 



(1 69) becomes 

u -u m - = 5.75 log (5) 
** Y 

We shall assume that (170) is valid for  the flow of dilute 

polymer solutions a t  large Reynolds number through pipes. 

VI-4 Resistance Law for Large H 

If there exists a region in the pipe where both (170) and 

(1 67) apply then in that region: 

- - q (3) = 5.75 log (5) 
U7 a Y 

Further  if one assumes that the flow in the core is indepen- 

dent of direct  effects of viscosity9 (165) becorhes 

Thus 

Thus (P 71) becomes 

( 1  - ( 1  = 5.75 log (2) 
a Y 

Since 1, a and y a r e  independent variabless (175) implies that in 

that region: 

- =  I 1 T($ = 5.75 log (z) + Co 
UT 



Here, C i s  an arbitrary constant. 
0 

The velocity defect law, (1 69), may be integrated over the 

pipe's cross -sectional a rea  to obtain 

V i s  the mean velocity of flow in the pipe, This equation will be 

fairly good provided the boundary Payer remains fairly thin, Sub- 

stituting (1 76) into (178): 

The constant derived by integrating the profile now gets stuck in the 

arbitrary constant Co so that the final result becomes 

The definition of the friction factor, P, varies from author to 

author. We prefer: 

Here Qp -p i s  the pressure difference between two static pressure B. 2 

taps a distance E apart on a pipe, D is the diameter of the pipe, p is 

the density sf the solution and V is the mean flow velocity in the 

pipe, An equivalent definition i s  



Thus our resistance law becomes 

1 21 - = 2.0 log(-) + constant 
6 D 

o r  more simply 

l P - = log(-2) + constant 
dr D 

Recalling that from (1 68)  

suggests that: 

2 2 
B l l l m r l ,  - I log(%) + log 
6 Po D ~ R T  

+ constant 

This i s  a result which may be directly checked with experi- 

ment, The experiment would involve the use of a capillary tube 

because large wall s t resses  a r e  required, 

It would he desirable to use a single polymer sample initially. 

In this case, for a variety of dilute solutions: 

B c - = log(-) + constant 
fljr Po 

This result is independent of Reynolds number, provided (168) is 

valid, 

Many experimenters in the literature report their data in 

t e rms  of "friction pressure drop", o r  (pl-pZ) for a given L, versus 
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V. It is interesting to see what the effects of a viscoelastic boundary 

layer would look like in this coordinate system. A glance a t  (181) 

shows that in general 

Thus for a given sample put through a given capillary tube, 

using (1 861, 

here k1 and k2 a r e  held constant in the experiment. In general, 

VI-5 Comparison of Theory with Existing Data 

White (1964) has performed experiments with some dilute 

Polyox WSR381 solutions in the te s t  apparatus schematically shown 

in Figure 13, 

Essentially this i s  a miniature pipeflow facility powered by 

a small Dm@, motor whose speed can be continuouslty varied over a 

ten-ts-one ratio. The motor in turn acts through a gear box and 

linear actuator to drive the plunger of a 5 cc hypodermic syringe a t  

various preselected speeds. Fluid velocities from 4 ft/sec to 

40 ft/sec can be obtained in the six-inch long test  section, This 

corresponds to a water Reyno1ds number range of P 200 to P 2,000 

for the 0.023 of an inch inside diameter s t a ide  s s -steel hypodermic 

tubing used in Whitegs experiments, The two pressure taps a r e  3 



Inner Diam , 

hree-way Valve 

- 5 cc Hypodermic Syringe 

White @ s Apparatus 

Figure f 3 
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inches apart and a re  connected to two separate strain gage pressure 

transducers whose outputs a re  recorded on an oscillograph, The 

exact fluid velocities a re  calculated from the time required for the 

plunger to move a measured distance near the end of i ts  stroke. The 

filling cup at the top of the apparatus also acts as the receiving vessel 

when a test i s  in progress. 

For White's experiment, 

We arbitrarily set: 

If c is measured in ppmw, V in ft/sec and p -p in psi, we predict 2 B 

that for WSR308 in WhiteDs apparatus a t  2 4 ' ~ ~  

From (1928, the predicted values of V for c = -5, B , 2,  5,  P 0, 30 

ppmw for pressure drops ranging from P O  to P 08 psi may be calcu- 

lated, These values a re  shown in Table 2, Figure B 4 shows White9 s 

actual data for g: = .5, 8 , 2, and 30 ppmw WSR38lt solutions, Figure 

15 compares the theoretically predicted dependence s f  V on c and 

Ap with White s: data. 

The agreement for the Bower concentratione is excelPent, As 

the solution starts to get cancentrated, presumably the integrated 

velocity defect law begins to get altered by a serious thickenjlplg of 

the boundary layer, 
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This agreement suggests that the Toms Effect will disappear 

at high strain rate. This has been observed but has previously been 

attributed solely to mechanical degradati~n of the molecules. 
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VII. THE TOMS EFFECT USING POLYELECTROLYTES 

VII-1 An Experiment 

It is well known (Katchalsky et  al., 1951) that aqueous solu- 

tions of polymethacrylic acid, PMAA, possess the remarkable 

property that in the presence of dilute acid 

while in a basic solution this dependence changes dramatically to 

[qj a M~~~ (1941 

Physically in basic solutions sites on the molecular chain 

become ionized and repel one another, Thus the coil expands and 

turns  into a rigid rod. In more real  t e rms ,  changing the pH from 

4 to 6% increases the intrinsic viscosity s f  an aqueous solution of 

400,000 molecular weight PMAA 220 times. 

A glance at  (81) shows that this may have a dramatic effect 

on H and hence the Toms Effect. Further,  since the pH can be 

.changed reversibly, one should be able to switch on and off the Toms 

Effect by merely alternately adding acid and base to a dilute solution, 

A sample of polymethacrycPic acid, PMAA, was kindly 

donated by Dr, W .  Peticolas of IBM. This sample was fractionated 

by the method described by Arnold and Overbeck (19§0), The first 

two fractions were saved, The molecular weights of these fractions 

5 5 
were determined a s  4.8 * .5 X B O  and 4.0 - 5  X 10 easing fhe 

viscssity-moPecuPar weight relation of Katchalsky and Eisenberg 
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(1 951 1. 

Aqueous solutions of these fractions were mixed and forced 

through a stainless steel capillary tube, .046" in inner diameter. 

This pipe flow apparatus is essentially a larger  version of that 

shown in Figure 12. The actual apparatus used is described in 

detail by Hoyt (1965). The pressure drops between two points on 

the pipe were measured. The velocity was held constant, 

At 211. lo@, this device forces pure water through this tube 

at B 2.45 rneters/sec. This implies that for this device the Reynolds 

number for the flow of water is B 5, P 80, Further.  

for this case. From these numbers, E may be calculated for each 

of the sollutions. Table 3 presents the data for the .40 million 

molecular weight material for pH less  than 6 and for pH greater 

than 7, The solutions were made basic by adding a drop or  4x0 

of conc NaQH. 

From Table 3 it i s  clear that the Toms 1GPfect may be pro- 

duced by merely changing the pH of a dilute poliyellectrolyte solution, 

The viscosity of the basic solutions depends on strain rate, 

This is not surprising. However, for reasons which a r e  not well 

mderstood (see Nature, Vol 174, Dec. 10, 11955, p. 1189) concew- 

trated basic solutions of P U  possess the interesting property 

that their viscosity appears to increase with strain rate. 
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For  example, the 3,070 ppmw solution with a pH of 6.6 was 

placed in a ser ies  of Ubbelohde viscometers. The strain rate a t  the 

wall (assuming a Newtonian fluid) can be estimated from the time it 

takes the sample to flow through the viscometer. It was found that 

(q -q )/q decreased with decreasing strain rate for this particular s o  0 

solution. The exact results a r e  shown in Figure 16. 

This behavior is interesting because this same solution pro- 

duces in turbulent flow an L of 65.0. Those who believe that "shear 

thinningss produces the Toms Effect might well study these concen- 

trated solutions of PMAA. 

5 F o r  the 4.8 x P O  molecular weight material,  similar r e -  

sults were found. These a r e  tabulated in Table 4, 

A more graphic demonstration of the effect of pH on solution 

may be seen in Figure 17. Here an unfractionated sample of PMAA 

is  mixed with water to produce s large volume of 100 ppmw solution. 

The pH of this solution is 4.85. The pH 0% this solution was altered 

by adding small amounts of concemtrated acid or  base. These solu- 

tions were forced through Hoytss turbulent flow rheameter and pH 

plotted versus L, 

As expected the Toms Effect can be produced or  removed 

a t  will merely by altering the pH of the solution, 







TABLE 3 

Data for Turbulent Pipe Flow of Dilute 

5 Aqueous Solutions of 4.0x10 Molecular Weight PMAA 

Concentration of 
Solution (ppmw) 

E for 
pH< 6 

E for 
PH > a 



TABLE 4 

Data for The Turbulent Pipe Flow of Dilute 

5 Aqueous Solutions of 4.8X10 Molecular Weight P W  

Concentration of 
Solution (ppmw) 

B2,9 

38.7 

64.5 

129 

258 

4 04 

809 

L for 
p H <  6 

L for 
pH > 7 
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VIII. APPENDICES 

A - The Rouse Matrix 

The matrix R is well known. Hildebrand (1952) points out 

that it appears in the problem of determining the small deflections 

of a tightly stretched string due to a number of concentrated forces 

applied at  equally spaced points along the string. 

The eigenvalues of R may be calculated by solving the canoni. 

cal equation by difference algebra. We denote the determinant of the 

(1 x l ) r n a t r i x  [R.. - e 6 . . ]  by the symbol D1. (1 4 1  4 N). Thus, 
43 1.J 

for example, if 1 equals 3 ,  Dg equals the determinant of the matrix: 

The various D are! related to  one another by the recursion I 

relations: 

We define initial conditions a s  Do = 1 and Del = 0 and let  

The solution for the difference equation (198) becomes: 

Yk -1 Yk D 1 = % e  + Bke (k not s m m e d )  



The constants, A and Bk, may be determined for a given k by use k 

of the initial conditions. Thus 

D should be equated to zero in order to determine the eigenvalues of N 

the (N X N) Rouse matrix. 

Thus to insure that DN = 0, 

Thus 

2 e k =  4 sin (+$-I 

The coefficients of the matrix A must satisfy (381, namely, 

(R.. - e 6 . . )  Ajk = 0 
13 k ZJ 

(38) 

where lit: i s  not summed, This i s  equivalent to the set  of recursion 

rePations: 

(2-ek)Alk - AZk = 0 

-A 
i-B ,k + (2-ek)Aik - -Aitlek = 0 ( 2 4  i 4 N-1) 

-A 
N-P ,k + (2-ek)AN9 = 0 

(k not summed) 

The normalized solution of these recursion relations is: 



Thus the Rouse matrix possesses the unusual property that 

its normalized modal matrix A is symmetric. 



B - Solution of (42) 

Blatz (1966) was the f i rs t  to note that (42) may be reduced to 

a f i rs t  order partial differential equation by a 3N-iterated use of the 

two-sided Laplace transform. These transforms a r e  defined a s  

follows: 

These transforms may be readily inverted for the cases 

under consideration by the use of the idemtity shown in (26)4), 

In terms of the 3 N  transform variables, pi, q. and r and 
1 i v  

t h e ,  (42) becomes (207) where (207) is  shown on fie next page, 

Here use has been made of the facts that the fluid i s  incsmpressibPe 

and that the s m  of all the eigenvafues sf R i s  2Nb 
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The equations for the characteristics for (207) a r e  given by 

the 3Nt2 set: 

Here 8.. a r e  the nine diarnensiodesa strain. rates associated 
=J 

with this problem. They a re  in general only fun~ t j ion~~  of time , W e  

shall now consider &wo possible local flow fields, The f i r s t  will be 

the Rouse flow field where: 

APB of the other 8. .  a r e  set  equal to zero. 
XI 

The second will be the flow field where: 

Here yn is a constant and all the other 8.. a re  set  equal to zero. 
U 

Other flow fields may be chosen, These %wo were chosen 

for their simpPicity. 



F o r  the f i r s t  flow field, integration of the equation for the 

characteristics, (208), implies that: 

where T~ a re  the retardation times of the molecule as defined by (48). 

P Q. and R. are integration constants along characteristics and are 
i' n 1  

independent of t h e ,  

Thus from (2081, 

(21 1) may be substituted into (21 2) and tihe resulting equation 

integrated with respect to time. The integration constant i s  evaluated 

using the result that a s  a! goes to zero, must approach where 
0 - P o  

The result of this integration a s  a function of pi, qi and r. is: 
P 

N 2 2 'E h.p. +b .p.q. + qi + ri 
k = exp 1 1  1 1 1  

- - n=B 2 

where 

(i not summed) 



and kappa and iota a re  defined in (46) and (47) respectively, (215) 

may be readily inverted by repeated use of (206). When this i s  done 

i t  i s  found that: 

For the second flow field, integration of f i e  equatiome for eke 

characteristic s produces: 

Thus from (2081, 
N 

(1 not summed) 

Then we sePlbstitute (214) into (ZE?), integrate with respect to the 

parameter t, evaluate the constant using (2B3), and tihen express 

the resulting 9 in terms of pi, qi and r.. The result i s  that: - - 1 

E 2 = exp- ¶ f +  2 i=l 

(218) may be inverted using (286), This produces using (204) and (72): 

2 2 2 
exp - +[(I - O i N i  + ( i + Z B i ) ~ i + ( l  -Bi)qi ] (71) 
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C - Evaluation of P, 

N 
P = nkTaocosw t n m )d6.d~.dq. (54) 

1 J J J  

In order to evaluate Pm it is useful to note that: 

Examination of (45) suggests fiat if w e  define a new csordi- 

nate system (61, E qi) such that 

e. E . ) K  6' = (6j- (,j not summed) 
j 

Further (45) implies %hat 

which from (221) kpBies: 



According to (54) this sum is  to be averaged over the config- 
th 

uration space. Consider just the i- term of this sum,  With the aid 

of (219), (220) and (45) its average i s  just bi. 

Thus 

P = nkTao cosw t m 2 Li 
i= l 

Using (47), (225) becomes: 



D, - Evaluation of AF 

The average energy storage per molecule arising from the 

entropy reduction produced by the flow of dilute solutions is in general: 

where V is the configuration volume. In the (6:  E . #q.) space defined 
3 3 3  

For Rouses s flow field the distribution function + is: 

- 3 ~ / 2  N + = dad 2 2 2 n xi exp - 1/2 ( 6 ;  + E~ + q . )  
1 (45) i=l 

Thus, 

Thus, 

- 2  (46) implies that when the solution i s  stagnant (a = O), K~ equals 
0 

one. Thus the change in the mean Helmholltz f ree energy due to the 

deformation s f  the solution is .@, where: 

- 
E = F  - F 

N la, =O 

i=P - 2 PCP is defined in (46). 
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E - Autoxidation and Biological Degradation 

If a Polyox sample i s  neither aged nor subjected to excessive 

heat o r  light, i t  will remain stable. However, as soon as water is 

added, chemical degradation begins to take place. Schematically the 

reaction is a s  follows (McGary, 1960): 

One of the oxygen-carbon bonds in the polymer chain is at- 

tacked by atmospheric oxygen present in the water. Thus: 

Then this oxygen-oxygen bond i s  severed by catalytic decomposition 

due to certain metal  ions, such a s  ferrous,  copper and silver ions, 

Thus a cuprous ion i s  oxidized: 

Then the resulting cupric ion i s  reduced: 

The net result is to leave? the polymer chain severed. 

McGary (1948) observed that the quality of water used in the 

preparation of the polymer solution has a pronounced effect on the 

stability- of the viscosity of the solution. F o r  example, tap water, 

which contains chlorine and me ta Uic sal ts ,  gives solutions having 

lower initial viscosities and poorer long-term stability. Distilled 

water stored in glass containers gives the most  stable solutions. 

Shin (1965) has observed that sollutions may be stabilized by 

adding .38% formaldehyde, He sugge sted that the degradation was 



due to "bacterial attack on the polymers". The formaldehyde, he 

claimed, killed the bacteria and hence prevented them from eating 

the Polyox. This conclusion i s  surprising in view of his evidence 

that the solution underwent a rapid followed by a relatively slow rate 

of degradation. For example, Shin found that ' ' solutions of Polyox 

Coagulant normally had an intrinsic viscosity of between 20 and 

28 d l / g  immediately after preparation, the exact value depending 

upon the time of stirring". Within a week the intrinsic viscosity 

dropped to 18 dl/g, "Once it reached 18, the rate of degradation 

thereafter became relatively slow. For  instance, in one case it took 

three months for the intrinsic viscosity to Ball from 18 to B 1.4 

In our view, this evidence does no& support the hypothesis of 

biological degradation. Presumably the bacteria continue to multiply 

until al l  their food is  gone or  the solution becomes toxic. Pn the 

former case the degradation rate should increase with time and the 

intrinsic viscosity should go quite rapidly to zero, HP1 the latter 

case,  the intrinsic viscosity should go to a constant value and remain 

there for long periods of time, much a s  the properties of "toxicg' 

.38% aqueous formaldehyde solution remain constant for five weeks 

a& a time. Neither of these predictions a r e  supported by experiment. 

Formaldehyde is one s f  the most reactive organic chemicals. 

Unde rr alkaline conditions, silver, gold, cuprous , cupric and ferrous 

ions a r e  a l l  reduced to metals by formaldehyde, (Walker, 1953) 

Thus it is possible that the addition of formaldehyde reduces +&Re 

metal Pons in the solution to a form in which they a r e  ineffective a s  
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catalysts. Alternatively formaldehyde may be converted to formic 

acid by the atmospheric oxygen and thus actively compete for oxygen 

with the polyethylene oxide. 

In either event, it i s  not clear from the evidence that the 

action of bacteria i s  important in the degradation of Polyox solutions. 
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