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ABSTRACT

This paper is concerned with the problem of explaining the
anomalous decrea‘se in turbulent skin friction observed inthe turbulent
flow of very dilute polymer solutions.

The experimental evidence for dilute solutions is summarized,

The polymer molecule in solution is examined from a theoreti-
cal point of view, using the Rouse model. It is foundvthat the model
. predicts that the molecule will 1oca11y stm:e energy as a function of
the local strain rate of the solution.

The experimental evidence is reexamined and it is concluded
that the anomalous decrease in turbulent momentum transport results
because the molecules manage to alter the energy balance of the small

disturbances at the edge of the viscous sublayer. By slightly altering
~ this balancethie molecules allow viscous dissipation to destroy dis-
turbances which would have had sufficient energy to vgrow had the
‘molecules not Been present. By decreasing the number of ‘small dis~
turba.ﬁces which‘ grow per unit area and time and move out from the
edge of the viscous sﬁblayer, the eddition'of polyﬁmer molecules ulti-
métely changes the structure of the turbulence in the outer part of the
boundary layer., This change results in lower Reynolds stresses and
hence lower tu;rbulenf momentum transport,

With the help of the relation for local energy storage deri{red
from the Rouse model, parameters are developed to characterize
the pheIgiovmemm° These parameters appear to be useful in under-

standing the expei'imental evidence to date.
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I. SUMMARY

I- 1 Introduction

The reduction of turbulent skin-friction drag may very well
represent the key to substantial imprbvements in the performance of
our existing ships and submarines.,

Experimentally it has been observed that the drag of bodies
may be substantially reduced by injecting into the body's boundary
layer small amounts of high-molecular-weight material. To date,
this phenomenon has not been understood. No theory has been sug-
ge sted which can predict this effect.

T‘hms9 if one wishes to determine whether a dilute aqueous
solution of locust bean gum will be effective in reducing the drag of
a ‘torpedo, one has first to mix a so‘lutio’n‘ and then squirt this solution
into the tﬁrbulent boundary layer of the rapidly moving torpedo. If
‘the torpedo goes faster, then locust bean gum works. This practical
approach to the problem is typical of much of the current research

on drag reduction..

I-2 Method of Approach

In this thesis we have approached the problem from a differ-
ent point of ;vie‘we We have first summarized the existing experimen-
tal evidence relating to the behavior of dilute polymer solutions in
turbulent f16WS. Then we take the existing theory for dilute polymer
solutions and show that this theory implies that polymer molecules
can 1oca11y store energy. Under certain restrictive conditions the

magnitude of this energy may be exactly calculated. Thirdly, we
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examine the éxperimental evidence and conclude that in order to
explain the effect one mi;st study the way in which the turbulencev is
generated, This conclusion differs somewhat from that of previous
investigators. Fourthly, we perfdrm an estimate of the magnitudes
of the terms‘ imfolved in the energy balance of the turbulence. From
this estimate we develop parameters suitable for characterizihg the
observed effect, Then finally we demonstrate that this theory pre-

dicts the observed phenomena.

I-3 Results

This theory predicts not only if an additive will be effective,
but also‘how much of an effect will take place. All one needs to know
is the concentration and temperature of the solution at the edge of the
viscous sublayer, the polymer's molecular weight and distribution,
‘thetu'rbul'én‘t wall stres’;‘s expected, and the "intrinsic viscosity' of
the éoluﬁtione

Furthermore, this thesis sheds some light on the related
problems of shéar degradation in turbulent ﬂowé and the effect of

wall conditions on the structure of wall turbulence.

I-4 Recommendations

It is suggestéd that careful experiments be performed using
fractionated samples in an apparatus similar to that used by Shin
(1965). The exiéting data is suggestive but more careful measure-
ments are needed to feally test this theory over a variety of Reynolds

numbers and polymer solutions.
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II., INTRODUCTION

II-1 Definition of a Dilute Solution

Staudinger (1930) was the first to characterize polymer solu-
tions using viscosity measurements. Viscosity measurements ére
relatively easy to make and provide the experimenter with much use-~
ful information about the physics of polymer solutions.

Throughout this thesis references will be made to "'the intrin-
sic viscbsity" of avpolym‘er solution, High-molecular -weight polymer
moieculeé possess the ability to increase greatly .the viscosity of the
solvent in which they are dissolved. This is ‘a manife station of the
"volu.‘mi.nous character of randomly coilledlong‘ chain molecules, Thé
intrinsic viscosity-represents the capacity of a given polymér to
enhance the viscosity of a sblution. It is defined as:

) = e (Tl ) m

c ™o o
where ‘nsr is the viscosity of the solution, L is the viscosity of the
solvent and c is the weight concentration of the solution.

By a "dilute solution' we mean that the polymer molecules
may be considered to exist as long chains separated extensively from
each other by pure solvent, We arbitrarily define a dilute solution
as one for which the ratio éf the total effective volume of the mole-
cules to the total volume of the solution is less than one hundredth.

It is assumed that polymer-polymer interaction and/or entanglementv
does not occur,

This is a restriction on the volume concentration of the
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solution, In practice, one needs a restriction on the weight concen-
tration of a solution. An estimate of the restriction on the weight
concentration of a ""dilute solution'" may be made by noting that ac-

cording to the Einstein viscosity relation (A, Einstein, 1906),
c[n] = 2.5¢ (2)

Here ¢ is the small ratio of the total effective volume of the mole-
cules to the total volume of the solution. Thus throughout this thesis
“we mean by a '"dilute solution' a high-molecular-weight linear poly-

mevr solution for which

2

c[n] < 2.5 x10° (3)

We consider solutions as concentrated when (3) doés not hold.

For example, at 25°C an aqueous solution of poly(ethylene
dxide) of six miﬂion molecular weighf ’has an intrinéic viscosity of
2 X 10-3(pprzmiv))-1 . Thus an aqueous solution of this polymér with a
‘covnéehtration of only 100ppmw would by ‘our definition be considered.

concentrated. A 10ppmw solution would be considered dilute.

11-2 The Problem

‘Measurements made over the last eighteén years indicate
fha‘t turbulent momentum transport may be greatly decfeased by the
addition of minute guantities of high -molécular-wéight polymer mole-
cules to Newtonian s'olw}ex_lts. This d‘ecr:ea‘se in turbulent momentum
;i:r'ansport at a given Reynolds number is customarily measured as a

décrease ‘in the turbulent skin coefficient,



-5-

Investigétors have noted reductions in’:’skin friction of as much
‘as eighty perceht’for a great variety of wall turbulence experiments..
'Si_multaneoufély no non-Newtonian effects have been observed for
these same ‘s;,o‘lu[tion‘s in the wakes of grids and in the mean velocity
prdfile of a round jet.

When dilute polymer solutions are teéted in laminar flow by
conventional viscometry it is noted that non-Newtonian fluid proper-
ties are not evidént, within the accuracy of the w‘a’};pe‘;‘r'imentg‘: Further,

" if anythigg, !the measured steady state viScosityE pf(lffhe'solution a,cvtu- -
ally increases. The density of these dil‘ute; s‘olutiqnls i{s,itq: many
significant f?gures, identical with that of the ;Ls“qliy:ex}’tts,usleydg

}S:ince hydrodynarﬁicists normally regg?id d?gsity and vis-
cosity as the only relevant properties of a fluid, it seems paradoxi-
éal that turbulent flows of dilute solutions can behave so differently
from their solvents.

In the 1ast‘ eighteen years formidable mathematical talents
have been employed in order to attempt to explain, even qualitatively,
this paradox. Yet there has been little progress. The reason for
this is evident. On one hand, the "'simple'' Newtonian turbulent
boundary layer problem is many times older aﬁd yvet it defies exact -
analy’siso On the other hand, the properties of dilute polymer solu-
tions are not well understood. Exact corstitutive laws do not exist
for these dilute solutibns. Even if they did, they are likely to be
very comblicated'and defy experimental checks. The combination

of these two difficult problems is the problem under consideration.
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Turbulent momentum transport in Newtonian fluids is primar-
ily an inertial phenbmenon. Thus once a turbulent motion is estab-
lished, it is the large scale disturbances Which determine the rate
of momentum transport. These large scale disturbances, once
:formed, are relatively unaffected by the viscosity of the fluid.

The major problem inherent in explaining the paradox lies in
‘reconciling two readily measurable facts, namely, momentum
transport in wall turbulence is drastically reduced and this change
is accomplished by only slightly changiﬁg the effective viscosity
| of the ’ﬂui&, a quantity which, in itself, ‘appears to play only a minor

role in turbulent momentum transport.

II-3 Previous Experimental Investigations of the Turbulent Flow

of Dilute Solutions

Toms (1948) appears to have"been the first to quantitatively
. measure the anomélous behavior of dilute solutions in turbulent pipe
' ﬂow,‘ He measured the flow rates of solutions of poly(methylmetha-
‘crylate) in monochlorobenzene ﬁhrough a variety of straight tubes. V
These flow rates were plotted versus polymér concentration at dif-
- ferent pressure gradients. The nature of the flow régime prevailing
‘under particular conditions was found by a simple modification of
Reynolds's color-filament experiment.

By carefully distinguishing between the laminar and turbulent
flow régimes, Toms noted that the addition of polymer to mono-

chlorobenzene always resulted in a decrease of flow rate in laminar
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flow, Ho_vveve‘r, in turbulent flow at a constant pressure gradient,
the ﬂow’raté increaéed with p‘élymdf concentration up to a certain -
optimum concentration after which it started to gradually decrease.

In recognition of Toms's pioneering research this anomalous
behavior will in the rest of this thesis be referred t6 as '"the Toms
Effect",

Toms's remarkable result was not given the rec‘o'g’nition it
deserved until the Office of Naval Research became interested in the
‘problem in 1962. With their assistance, scientists frofn a variety
of fields have investigated the Toms Effect.

Since this thesis is primarily concerned with the behavior of
dilute solutions, the notable work of Dodge and Metzner (1959),
Shaver and Merrill (1959), Ripken and Pilch (1963), Savins (1964),
and Metzner and Park (1964) will not be discussed. All of these
scientists have performed turbulent pipe flow experiments with a
variety of very concentrated solutions., In general, they have found
that substantial reductions in wall stress are possible due to polymer
addition until the increase in the wiscosity'! of the solution gets so
large that gains made due to the Toms Effect are lost again due td
the higher dissipation of the solution. Thus if a solution is pumped
through a pipe at constant turbulent flow rate and the pressure gra-
dient required to maintain this flow rate measured and plotted versus
‘concentration, then one finds a curve of the shape shown in Figure 1.

Moét of the‘points shown in Figure |l are for concentrated '
solu;tions; Thus the data in Figurelare of little inferest tous. We

assume that it is understood why the Toms Effect eventually
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disappears as the concentration is raised. We are primarily inter-
ested in how and why the Toms Effect arises; Shin's thesis (1965)
is recommended for those interested in a full discussion of the dis-
appearance of the Toms Effect.

Pruitt and Crawford (1963), Fabula (1963), and Hoyt and Fab-
ula (1964) deserve much credit for calling attention to the fact that
the Toms Effect can be observed (indeed, becomes most promment)
‘at polymer concentrations for which the solutions are truly dilute.
They also demonstrated that the Toms Effect is not restricted to
solutions of a few polymers in a few solvents. Rather the Toms Effect
may be observed in any dilute polymer solution provided only the
molecular weight of the polymer is 1é,rgee

Cf the many polymers bthey tried, they found that poly(ethylene
oxide) manufactured commercially by Union Carbide under the trade
name of Polyox produced the most striking results, Expervimenteirs
since 1964 have tended to use Polyox in preferencé to other polymers
for this reason, Further since the U, S. Navy has supported most
of the re_seafch bn the Toms Effect, the solvent hasb tended to be
water or sea water.

By 1965 it had become apparent to most investigators that the
moleculari ?arameters of the polymer samples being used, the con-
centration of the solution and, in some mysterious way, the wall
stress are important parameters in the Toms Effect., It was further
Suspécted by many that the Toms Effect might well be as sociated
with wall turbulence.

Thus in 1965 Pruitt and Crawford published a report titled:
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"Effect of Molecular Weight and Segmental Constitution on the Drag
Reduction of Water Soluble Polymers', Despite the title, they nevér
actually; measured the molecular weights of the samples they used.
Neither‘did th‘éy fractionate their samples to determine the effect of
the molecular weight. distribution on the Toms Effect. Thus most of
their resulﬁs must be considered to some extent preliminary and |
qualitative. The molecular weights they give are, with one excep-
tion, those given by the manufacturer.

Their report includes pipe flow data on some 16 polymer
sé;.mples. All of these were dissolved in tap water, A typical curve
from this data is reproduced in Figure 2.

In Figure 2, the black line is the curve for the turbulent wall
‘stress in a 416 inch ID smooth pipe due to the turbulent flow of tap
water in that pipe. The circles represent the behavior of a 2 ppmw
Polyox WSR-301. The solution behaves just like water until an "onset"
wall stress, 7%, of 60 dynes/cmze

At this wall stress the Toms Effect begins to take place. As-
the wall stress becomes larger the Toms Effect appears to get larger
\ixp to a -point, Then it appeé.rs to decrease again. |

The triangles represent the behavior of a 10 ppmw solution
of the same f)olymerg Once again an onset wall stress is observed,
this time at about 15 dynes/cmz. As the wall stress becomes larger
the Toms Effect appears to get larger up to a point. Then it appears
to begin to disappear.

For a 50 ppmw solution, however, there appears to be no

onset wall stress, In other words, transition and the Toms Effect
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take place simultaneously.

Pruitt and Crawford (1965) noted that the actual molecular
weight of the sample ""may have been less than one half the value'’ of
four million given by the manufacturer. They base this statement
on intrinsic viscosity data. Thus we assign a value of 1.6 1 X ];O6
to the sample of Polyb# WSR -301 Pruitt and Crawford used,

For higher moleculér weight Polyox at moderate wall stresses,
Pruitt and Crawford (1965) observed substantial shear degradation of
the molecules, By this it is meant that the results depended on the
number of times the solutions are pumped through the pipe.

Many observers have noted this effect in turbulent flows of
dilute polymer solutions. This effect is of some interest especially
since it is cusfomarily not observed in laminar flows. This effect
will be treated iﬁ some detail in Chapter III. The important point
here is that the results of the higher molecular weight material are
suspect because the manufacturer's molecular weight may bear little
relationship to the actual molecular weight of the polymer molecules
in the experiment,

Table 1 presents a list of onset wall stresses for the two
lowest molecular weights of the Polyox Pruitt and Crawford (1965)
tésted..

It should be noted that for a given sample, the product of the
onset stress times the solution's concentration isapproxi;mateiy
constant. This experimental result escaped Pruitt and Crawford.

The far right hand column in Table 1 may be ignored for the present.
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The maximum reduction in wall stress possible would occur
if laminar flow were maintained at all Reynolds numbers. In practice,
the turbulent wall stress measured in the flow of a dilute solution, Ty
at a given Reynolds number is somewhat greater than the extrapolated
laminar wall stress, Tys but less than the turbulent wall stress
nheasured in the flow of the solvent, T,» Thus as a measure of the
effectiveness of an additive at a given Reynolds number we define

"the percent approach to laminar flow'", L, as:

'rQ ) TS
o {

constant Reynolds number

Metzner and Park (1963), Metzner and Park (1964), Pruitt and Craw -
ford (1965), and Shin (1965) have all called this function by different
symbols and names and have used it to quantitatively character“ize

the Toms Effect.

For a variety of polymers in water Pruitt and Crawford (1965).
found that the maximurﬁ value of L that could be obtained was, within
5% , 80%. This remarkable result is,apparenttly independent of poly‘—
i‘n‘er, pipe sizelor Reynolds number for a pipe flow Reynolds number
range of 3,000 to 100,000, This result was also found independently
by Hoyt and Fabula (1 964).

Shin (1965) tested a variety of aqueous Polyox solutions and
poly(isobutylene) solutions in a nar.row-gap Couette viscometer., The
outer cylindér was spun rapidly enough to insure fully developed
_turbulent flow, Torques on the inner cylinder were electrbnically

measured and plotted versus time by a recorder.
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Thus Shin (1965) was able to study the behavior of small vol-
umes of dilute solution subjected to turbulent flow., By extfapolating
ﬂle torqﬁe readings back to zero time and by usihg new sample solu-~
tions whenever appreciable mechanical dégradation was suspected,
Shin was able to elimin’ate the effects of mechanical degradation due
t;,o'turbulent shear from his data.

Shin (1965) emphasized the great importance of molecular
weight ixi his thesis. The molecular weights of the samples used
were measured using light scattering techniques. Simultaneously,
Shin measured the intrinsic viscosity of his samples.

He found that for aqueous Polyox solutions at 25°C
[n] = 1.03x10"* M_""® ai/gm (5)
and for poly(isobﬁtylene), PIB, in cyclohexane at 25°C

4™ %9 q1/gm, (6)

[n] = 2.65x 10 -

s

where Mw is the weight average molecular weight of the sample.
These meaéuremen‘ts agreevwell with previous investigations,

Shin (1965} Was thus able to accurately characterize his solu-
tioné; His data represent a very significant contribution towardsvan
understa,ndihg of the Toms Effect. His data are presented in Figures
3 and 4.

Figure 3 is a graph of the percent change in turbulent wall
stress for four sampies of undegra&ed, linear, unblended Polyox.
The wall stress for the solution which would have been obﬁained had

the flow remained laminar is 219 dYneS/szo
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Figure 4 shows Shin's data for perceﬁt reduction in wall stress
plotted versu&s concentration for PIB .of four different molecular
,weights' dissolved in cyclohexane. The la;niéar wall stress is 222
dynes/cm Z.

Until May 1965 all published measuréments of the Toms Effect
had been m’ade with wall turbulence., These éxperiments, covered tur-~
bulent pipe ﬂow, bodies moving through Wa.tejrs rotating disks and
circular-Coueéte flow.

Gadd (1965) appears to be the first to publish results for a
free turbulent ﬂdw, Unfortunately he reported'only“’the results of one
experiment. He ‘squirted a round jet of dyed solution out of a capillary
tube into a tank of clear solution of the same strength. The solution
‘'used was a concentrated aqueous Polyox solution.

| The resulting flow was photographed and compared with a
-similar jet of water into water., The Reynolds number based on the
diameter of the éapillary tube was 900. Gadd's photograph shows
:clearly that the‘ stability of the jet is seriously altered by the mole-

cules. However, it doe's ﬁot say anythihg about the turbulence.

Gadd's work was followed by ‘that of Jackley (1966). Jackley
studied the mean‘velocity profile of a free turbulent round jet growing
in a large tank in vorder to determine whether the Toms Effect results
from polYmer- molecules directly "damping the turbulence'. Jackley
found that when dﬂute aqueous polymer solution was pumped into
similar stagnant solution, a mean velocity profile resulted which
beyond ten diameters of the ﬁozzle‘s mouth could not be distinguished

from that of distilled water. Thus Jackley concluded that the Toms
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Effect is "a phenomenon of the wall',

Fabula (1966) after an extensive and detailed investigation
chcluded from his measurements that for dilute solutions no meas-
urable changes take piace in the grid turbulence energy spectrum.
For concentrated solutions (c[n] = .27), Fabula observed a depres-
sion in the spectral energy level at higher frequencies due to polymer
addition. However, when the increase in viscosity due to addition
is ‘ta.kenbinto‘accouknt, Fabula found no evidence of non-Newtonian
effects.

White (1966) has performed some unpublished experiments on
the effect of high strain rate on the Toms Effect. These experiments

are reportec‘i in some detail in Chapter VI,

II-4 Previous Theoretical Investigations of the Turbulent Flow of

Dilute Solutions

Numerous attempts have been made to qualitatively explain
the Toms Eff@qté However, all of these attempts with the possible
exception of Tulin's wori{ (1966) have been unsuccessful,

It is very easy with eighteen years of experimental evidence
to find fault with explanations based on walll slip (Oldroyd, 1948),
shear-thinni.ng (Shaver and Merrill, 1959), ’a two-dimensional
boundary-layer stability argument (Boggs and Tompsen, 1966), aniso-
tropic viscosity (Merrill, 1965) or "the solvent-sequestering ball
thevory" {Shin, 1965). These must be looked on as theories which
are not supported by the experirnental evidence.

Unfortunately Tulin's work {(1966) is available only in the
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form of an abstract. It seems, however, that Tulin's approach is
very simiiar to that taken in this thesis, He begins, as do we, by
considering the mechanics of long, flexible, macromolecular chains
in dilute solution. He calculates, as do we, the entropy and dissipa-
tion assdciated with the motions of the molecules, However, Tulin
seems from his abstraét to believe that it is necessary to go beyond
small strains to produce chbanges in internal energy large enough to
ultimately éroduce the Toms Effect. Apparently he was not aware
of Shin's WQrk.S Further he appears to have used the Rouse theory
in the high strain régime in order to calculate what he calls the
"'radiation damping'. There is some reason to believe that the Rouse
theory does not apply at high strain rate. Further, Tulin concludes

that the Toms Effect varies quantitatively with the product, (concen-

tration X vmolecular weight }.

As Ga&d k1966) points cut, the explanation of the Toms Effect
must be sought, not so much in the dissipatioﬁ of turbulence, but
rather in its.generati‘on. This realization is the only real theoretical

progress that has been made since 1948,

II-5 The Object of 'this Thesis

The object of this thesis is threefold. First, the object is to
~develop a theory which will quantitatively predict the Toms Effect.
This theory must in addition:

i) Explain why an onset wall stress exists and predict its
value for a given situation,

ii) ‘E’xplain why free turbulent flows are unaffected by polymer
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addition.
iii) Develop parameters suitable for characterizing the Toms
Effect.

Secondly, the object of this thesis is to explain why shear
degradation takes place in turbulent, while it is customarily not ob-
served in laminar flow.

It is the third and final object of this thesis to present data
covering:

i) The turbulent pipe flow of dilute aqueous solutions of
poly(methacrylic) acid at a variety of pHs, concentrations and two
molecular weights.

ii) The effect of high strain rates on the Toms Effect.

(White, 1966).



22 -

III. THEORY OF ENERGY STORAGE AND DISSIPATION

II1-1 Introduction - Some Definitions

In a dilute solution the polymer molecules may be considered
to exist as long chains separated extensively from each other by pure
solvent. Implied in the notion of a dilute solution is the assumption
that the forces of attraction between the polymer and solvent are
greater than those between polymer and polymer, Otherwise pre-
cipitation would occur.

A good solvent is one in which each polymer molecule tends to

exclude all others from the volume which it occupies. If the solvent
chosen for a given polymer becomes progressively poorer as the
temperature is lowered, eventually a temperature may be reached
where the polymer molecules distribute themselves over the volume
like hypothetical point molecules which exert no forces on one

another. This temperature is called the theta temperature. If the

temperature is much below the theta temperature, precipitation
occurs, It is customary to call solvents near the theta temperature,

.poor. solvents,

A linear polymer chain consists of a seriées of monomer units
connected together by valence bonds. The motion of one segment of
the chain will ultimately affect the motions of the other segments.
Any attempt to describe the allowable motions of the polymer chain
in a dilute solution should take into account both intramolecular and
intermolecular effects.

In order to take into account intermolecular effects, one
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would need to know something about the forces of attraction between
polymer'and polymer and between polymer and solvent. Although
much is known about this sort of thing, it is not convenient to analyze
the situation in which the environment of a polymer chain comprises
only solvent molecules. It is customary to assume that direct con-
tacts of a é«egment of one molecule with segments of other molecules
and with remotely connected segments of the same molecule merely
contribute to the viécous force which opposes the thermal motions of.
the segment.

In order to exactly take into account the intramolecular forces
influencing the motions of the chain, one would r’equire knowledge
about the exact nature of the bonding along the chain, the variation
in the potential energy due to rotation about bonds, the effects of
excluded volume and so forth. At the present time this exact prob-

lem is unsolved.

1I1I-2 Rouse's Theory for a Dilute Polymer Solution

In 1953 Rouse (1953) proposed a theory of the linear visco-~
elastic properties of dilute polymer solutions. In Rouse's model of
a polymer molecule short-range effects due to excluded volume,
fixed bond angles, hindered rotation about bonds and so forth are
not treated explicitly. Instead it is assumed that an analysis of these
short-range effects has yielded the result that the fluctuations of the
end-to-end length of a polymer molecule dissolved in a stagnant
solvent are very nearly Gaussian.

This assumption results from very simple qualitative con-

siderations. High-molecular-weight linear polymer molecules are
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assumed to be many thousand times longer than they are thick and
to be extremely flexible, Since in a stagnant solution no direction
in space is preferred, the distribution function of the end-to-end dis-
tance, T, must be independent of any rotation of coordinate axes.,
Thus the equilibrium distribution function, \I’o, must be a function
of rz;. Let an orthogonal coordinate system be located at one end
of the molecule and let r be specified in terms of the x-, y- and z-
components of the other end of the molecule. Then r2 = x2+y2+zz.
The simplest assumption that can be made is that x, y and z are
statistically independent. This, of course, is plausible only if r
does not approach the full extended length of the chain. Since the
molecule is extremely flexible, it is expected that full extension .
would be extremely unlikely and that, therefore, the assumption
of statisticai independence is a good one. The assumption of sta-
fisﬁical independence and the realization that ‘I’O is a function of r
together imply that \I'O is a Gaussian distribution.

‘Rouse’?s contribution does not lie in his assumption that the
end-to-end length of a polymer molecule in a‘stagnant solvent is
very nearly Gaussian. This has been known for years. His contri-
bution liés rather in his assumption that a polymer molecule may be
‘divided into N equal submolecules. Each submolec;ule is a portioﬁ
of the polYmer chain just long enough so that, at equilibrium, the
sep(aratio‘n of its ends obeys, to a first approximation, a Guassian
probability function. This second assumption should be looked on

as an assumption designed to replace the exact description of the

polymer molecule by an approximate one which is readily amenable
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to quantitative treatment. The validity of this assumption relies on
the effective flexibility of the molecule. Since this cannot be directly
determined, we can only measure the worth of this assumption by the
agreement of what it predicts with experience,

Consider an ensemble of a very large number of isolated,
independent systems, each consisting of one polymer molecule im-
mersed in a volume V of solvent. It is understood that these systems
represent molecules in different dynamical states, Each of these
polymer molecules is considered to be made up of N equal, statis-
tically identical submolecules joined in linear sequence, the ends of
the submolecules being labeled 0, 1, 2, . . . , N,

We chose a fixed inertial system of Cartesian coordinates.
The location of the jt—h- end in this system is denoted by the point
(xjg Yj’ Zj)’ where jequals 0, 1, 2, . . . , N.

The configuration of a polymer chain in any one dynamical
state can now be represented by a single point in a 3N+3 dimensional
configuration space. By taking the number of systems in the ensem-
ble large enough, the probability density or distribution function ¥
can be introduced so that, if a system is chosen at random from the
ensemble, the probability that the configuration point representative
of its dynamical state is in dxodyodzodx1 o o e dzN is ‘If(xo, ooy zN)
dxodyodzodxl o o dzN.

Rouse's assumption that the separation of the ends of the sub-
molecules at equilibrium obeys a Gaussian probability function

implies that the equilibrium configuration distribution function ﬁlc is:
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N 2 2 2
_ (x,-x. )"+ (y.-y. )+ (z,-2. )
(Z”bz) 3N/Zexpz_ i Tj-1 3’2‘] 1 i -1 (7)
2b

j=1

Here, the parameter b2 is the mean square projected length of the
submolecule.

This equilibrium distribution function represents the situation
when the solution is not being deformed. The physical concept which
is the basis of Réuse's theory is that a velocity gradient in the solu-
tion reduces the number of configurations available to the polymer

| molecule. The primary effect of the velocity gradient is to ca‘rry
eéch segment of each molecule along with the liquid. This alters \I'o
to some néw distribution ¥, The molecules are not simply stretched
out parallel to local streamlines because the coordinated Brownian
motion of the submolecules tends to destroy this ordered state and
return ¥ back to \IIO, the distribution which maximizes the configura-
tional entropy of the 'pqumer chains,

In Rouse's tlieo_ry the velocity gradien“t’is‘i thought of as an
ordering process ‘which is opposed by the Brownian motion of the sub-
r.n‘olec_:ules,‘or a disordering proééss. The result of these two effects
is é. new distribution function ¥. It is the purpose of Rouse's theory
to calculate ¥ as a function of the local velocity field.

It has been assumed that all configurations have the same
internal energy. Thus the increase in Helmholtz free energy due to
thé velocity gradient results only from changes in the configurational
eﬁtropy. If the perturbed Helmbholtz free energy is des»ignated by F,

then the increaseé is given by:
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AF = F_F =+U-TS-U_+ TS
o o) (o]

]

-TS + TS_= - kT{n (q;/q,o) (8)

where S = kinW,

The negative spatial gradient of AF represents the driving
force tending to restore the system to equilibrium. This must be
equal to thé ariving force which tends to throw the system out of
equilibrib.m., The latter force is produced by the flow of solvent
through the molecule.

Rouse assumed for simplicity that the viscous force on the
whole length of the submolecule could be assumed to act only at the
ends of the submolecule. He further assumed that, to a first approx-
imatiovn, fhe velocity field is not locally disturbed by the presence
of the molecu-le, Let (uj s Vi wj) be the velocity components of the
solvent at (x., ’yj, Zj) where both are referred to a fixed inertial

Ld @

syste‘m of Cartesian coordinates., (xj, ¥ %j) are the velocity com-

ponents of the j@- end. (uj -Scj, vj -§rj, Wj-'%j)‘ are the slip-velocity
components, The viscous force driving the j_-@- end out of equilibrium
is assumed to be linearly proportional to the local slip velocity.

Equating the viscous force to the force tending to restore the system

to equilibrium produces in three directions:

flu,-%.) = - %%F— = KT -;x— ﬂn(%’——) (9)
J J 5 j o
. IAF 3] v
flv.-Vy.) = = =2— = kT x—1 10
(VJ YJ) ayj ayj‘ n("Fo) { )

fw-5) o, = k’I’ﬁ—z}- ﬂn(-g-) (11)
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Here f is an arbitrary constant, k is Boltzmann's constant, T is the
temperature of the solutionand j=0,1, 2, . . « , N, It is conven-

ient to define a time T such that:
= 2
T = fb /kT (1 Z)

Then (9), (10), and (11) may be rewritten:

. o 2 0 N4

X‘j = ‘U.j - b /T-afx—jﬂn (—_‘IT—) (13)
grj = v‘j -b /.,- len(‘l’ — (14)
o 2 o

Zj - Wj -b /Tfa—z—j—fn (—\I';:) (15)

Polymer molecules are neither made nor destroyed. Thus

continuity in conﬁguration space requires that:

oy z_a;__(xqfn——(yww-—-—(z\m (16)
=0 g ’

The problem of solving (16) for ¥ as a function of a given
hnpressed velocity field (uj, vj, Wj) is, in general, very difficult.
The rest of this section is devoted to developing a coordinate trans-
formation which, for a special type of velocity field, transforms (16)
to an equation which may be solved exactly. Rouse was never able
to do this. The method used is essentially that of Blatz (1966).

The first transformation transforms the physical coordinates,

(xj, Yj’ z.), to what are called the stretch coordinates, (hj, p.j, vj).
We define:
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X, - X, A
> M et S
j b
Y. = V..
pJ=J—5—J——1- ) 1<j<N (17)
Z, = &. 1
v, = 172
J b W,
and
N , ~
Ay = z NF1
j=0
N
Vi
bo = [, NI ? (18)
520
N
Zl
Vo © Z N+L
j=0 7

The vector (h,o, Py vo) is proportional to.the vector locating
the center of mass of the molecule with respect to origin of the iner-
tial frame. On the s‘cale of the molecule {about 1000 X) we assume

that the velocity field may be approximated by

u, T v Xt Yo v vz g

[/
o
N

%, + N (19)

i T Yar X t YV T ¥pyz; 0

<
B

Wi Y31 % tY¥3, vy tovzsz oz

Here 'Yij is independent of the spatial coordinates but may
depend on time. Since the impressed velocity field is assumed in-

compressible,

Yip T ¥yt ¥a3 =0 (20)
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On the scale of the molecule it is assumed that all velocity

fields, be they laminar or turbulent, may be approximated by (19).
It is convenient at this point to define the Rouse matrix R

as a (N X N) matrix such that

P
2 "'l O . * ) 0 0
-1 2 -1 ] 0
O "1 2 o [
[Rjk] (21)
0 0 @ ° @ © Z "1
0 0 © © @ o “'1 2 J
-

Rouse originally pointed out that a coordinate transformation
was at the heart of the problem of solving (16) and was the first to
recognize the value of R. In order to see the relevance of R consider
the equations of motion of the molecule in the x-direction, namely,

2

b 8 ¥
X, = a, = — z— Ins— 13
x; 3 T ij ‘1’0 (13)

First, the velocity components uj are substituted into (13). From
{19) this implies that
5
- b™ 8 '
ST ST (PY AR FELH ?&g‘“i}g
j = 09 19 s 926 g N

Thus



-31 -~

2
. _ b~ 9 b4
*.o10% V¥ iV iz - ~'a'x"“j_'in ¥

j-—-l,'z,...,N

Subtracting the second equation from the first, dividing the
result through by b and then substituting in the definitions of the

stretch coordinates implies that (13) becomes

s _ b, 0 9 v
?Lj—yllhj""llzﬂj““ﬁg,"j‘r(-a;c—; ',E;:i)lnw; (22)
j = ly 29 6o ¢ o 9 N
However, (17) and (18) imply that
-8 1 g 0 o .
ij N+1 6}\.0 axj 8?\3_,_1

j,:"l; 29 °© & v g N-1

and
g _ 1 2] ]
o T T 3 AN (24)
[o} (o) 1
] 1 ] 9
b = : + {25)
axN N+1 Bk\.o 87\.N
Thus
8 8 ]
b { - ) = R, {26)
axj ij__l jk 3,

Here Rjk are the coefficients of the Rouse matrix.
From this point forward we will a'ssume that the usual sum-

mation convention holds. Thus the repeated subscripts in (26) are
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to be summed from one to N. From now on, unless otherwise stated,
the subscripts will always range from one to N,

The sﬁbstitution of (26) into (22) implies that (in the stretch

coordinates) (13) becomes

s ] W
TA.J = Oukj + elzp.j + 913 Vj - R.lk_éf;!n?o
(27)
- - . a w
B PR P LA E ROt Y w2
where
eij = Tyij, (28)
(i=1,2,3andj=1, 2, 3)
(27) may be somewhat simplified by noting that from (7) and
(17)
3N 1,,2, 2, 2
En‘I’o—-fZ——ﬂnZ'lr-—z-(?\.j-i-pj-ﬁ'vj) (29)
Thus
2 gnw =- (30)
,B)Lk o Ak
Further,
0 _ 9o -
v @«zlo-mzzan = 0 (31)

By virtue of our choice of velocity field the distribution function
must be independent of the arbitrary origin‘of the inertial frame.

Thus ¥ cannot depend on 7\.0, By OT V .
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Thus (27) may be rewritten

_ 3
Ay = 0 ) H Ry A 0t 85y - Rioa t» ¥

(32)
Ao = 81125 F Oy, F 0)3Y,

Similar arguments may be applied to (14) and (15), the equations of
motion for the molecule in the y- and z-directions. In terms of the

stretch variables, (14) and (15) become:

- 3
(33)
o = Oayhe T 0500, 1 8537,
and
o I4nW¥
(34)
‘ T‘.’o = 931)\0 * 932”0 + E)331’0
Using (23), (24) and (25), (16) becomes in the stretch var-
iables:-

.
ij

e S TR 8 ..
O‘I’) + TN (P-O‘I’) + T (VO‘I’)
o o o
(35)
7] ¢ ] o g ,.
+ 75%— (Kj‘l') + '5-*1;' (P»j‘I') + 'é';}'(vj‘l’)

The first three terms on the right hand side of (35) are asso-

ciated with the position of the center of mass of the molecule in the

inertial reference frame. Their sum is identically zero because of
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the choice of velocity field,

Thus ¥ becomes a function of 3N stretch variables and time.
The equation which must now be solved is (36), where (36) is formed
by substituting (32), (33) and (34) into (35). (36) is shown on the next
page. This equation is identical with Blatz's (1966) Equation 26.

A glance at (36) is sufficient to determine that a second trans-
formation is necessary. The 3N stretch variables (Xj, p.j, vj) must
be transformed to the 3N set qf variables (Gj, Ej’ nj). These must
be chosen such that R is diagonalized. 6j’ Gj and nj are called the

diagonalizing variables. In order to choose them correctly, we

examine the Rouse matrix in Appendix A.
In Appendix A we find that R has N distinct eigenvalues, €

where:

_ .2 ak '
e, = 4 sin (m (37)
Then we find the matrix A such that A is orthogonal and such

that the coefficients of A, Ajk’ satisfy the equation:

RijAjk = ekAikg k not summed (38)

We find that:

_ 2 . Jdkw
Ay = \,‘N?i sin =) (39)

We can now define the diagonalizing variables as

_.T
5j - ATjk Ak
€. = A", {40)

_ AT
‘ﬂj-—A jk Yk
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Here AT‘. are the coefficients of the transpose of A, or, in this

jk

special case, of A,

Thus
9 a
— 2 A
axj jk aak
0 9
= A, = (41)
8p.j jk 8ek
0 9
2 = A 2
ij jk 3nk

(40) and (41) may now be used to transform (36) from the
stretch variables to the diagonalizing variables. Then noting that
A is orthogonal and satisfies (38), (36) becomes in the new coordi-
nate system (42).

This equation was solved approximately by Rouse by setting

all but 0. , equal to zero and by assuming that ¥ could be expanded

12
in a power series of 6, times ¥ . 6., was assumed small. Rouse

12 o 12
used his result to calculate the added dissipation resulting from
polymer addition.

Pao (1962) and Zimm (1955) have attempted to somewhat
modify Rouse's theory and have then solved equations similar to
(42) using power series techniques. Neither mentions the energy
storage in the polymer molecules due to the deformation of the so-
lution.

Blatz (1966) appears to have been the first to solve (42)
exactly for the special case of simple shear in which 612 is the only
non-zeroc component of Gija

Using Blatz's method, the solutions of (42) are straightforward
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but tedious., In an effort to emphasize the physics as distinguished
from the mathematics of this problem, the two exact solutions used
in the next two sections will merely be written down as trial solu-
tions. These trial solutions can be then substituted into (42) and thus
it can be proved that they satisfy (42) for the two velocity fields
chosen,

Appendix B is recommended for readers interested in syn-

thesizing their own solutions,

III-3 Extension of Rouse's Theory to Include Energy Storage

In order to verify that (42) produces the same results Rouse
(1953) originally derived for small strain rate and to extend Rouse's

results to large strain rate, we choose the flow field:

Yy 2 = a_ coswt {43)

All of the other Yij are set equal to zero.

Rouse argued that physically this choice of flow field is equiva-
lent to assuming that the molecules are being subjected to a sinusoid-
ally oscillating linear plane strain field. Presumably this could be
approximately created by applying a shearing stress to the solution
with a plane surface lying in the plane y = 0 of a right-handed system
of Cartesian cbordinates. The surface executes simple harmonic
motions in the x-direction with an angular frequency w. The velocity
gradient varies rapidly with y, the distance from the oscillating sur-
face.

Despite this rapid variation, the molecules are small enough
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{1000 X across) so that for frequencies below 60 kc, the velocity
gradient varies by less than five percent over the entire volume per-
vaded by the molecule. Thus (43) would appear to be a good local
approximation for this experiment.

Substitution of (43) into (42) produces, with a bit of rearrang-
ing, (44). The trial solution for this equation will be (45). (44) and
(45) are shown on the next page. Substitution of the trial solution (45)
into (44) proves that this solution is, in fact, the correct one.

The viscoelastic properties of the solution may now be calcu-
lated.

The shearing stress which will produce a velocity gradient
Y15 = ozo coswt in a liquid with a complex viscosity 14{= ny - V-1 n,

is tlz, where

12 : .
t = aa(nlcoswt+nzs1nwt) (49)

The rate at which work is done by the application of this shear-

ing stress to a unit volume of solution is P where:

12

P t aocoswt (50)

= ao(nlcoszwt + n, sinwtcoswt) (51)

The rate at which work is done on a given molecule in the en-
semble is the scalar product of the velocity of the solvent with
respect to the center of mass of the molecule times the forces tending
to restore each of the ends of the submolecules back to equilibrium.

This rate of work, D, equals:
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)

D= a, coswt kT B An v (52)
i o
or using (40) and (41):
= 2 o
D= al kT coswt €; 861 in q}o (53)

The ensemble average of D times the number of molecules
per unit volume, n, is what Rouse calls Pm’ or the average power

absorbed by the molecules per unit volume of solution. Thus

Pm = nﬁ kToz coswt II S:YS:}:& d6 de. dn (54)

With the use of (45) and (29) this integral may be exactly evaluated,

This is done in Appendix C. The result is that:

: N 7.(coszwt+'r.wsinwt cos wt)
o nsz X 2

(55)

Pm ) 1+ (wt )2
i=1 : i
This result is exactly equal to Rouse 's (1953) equation for
Pm. Because of the method Rouse uses to caléulate'&}:, he assumes
that (55) is limited to small values of 7@ coswt. In fact, he specifi-
cally qualiﬁes‘his result by stating that "terms containing powers of
o higher than the secéﬁd have been disregarded'. Since (55), as
derived here, does not depend on any restrictions on the magnitude
of a_coswt, Rouse's qualification is unnecessary. {55) may be re-
garded as a general result of the Rouse model, valid at large values
of «:uacoskwt‘a The validity of the Rouse model at'high strain rate may

be debated. 'How’ever, our result shows that if weaknesses are

preseni:, they arise from the model rather than from the mathematics.
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Adding (55) to the energy input into the solvent,

P = n azéoszwt
8 o o

and comparing the result with (51) shows that:

N
nl—no+nkTZ'ri/l 0Ty (56)
i=1
N |
o 2 2 2
g = nkT z w'ri/l ooy (57)
i=1

where LS is the viscosity of the solvent. (56) and (57) are identical to
Rouse's (1953) (29b) and (29&).

Consider now the case for whichw = 0, This is the case for
steady flow. ' {(57) indicates that n, equals zero. The addition of poly-
mer molecules to a solvent increases the viscosity of the solvent by

an amount An'where:

N
An = nkT Z TS (58)
i=1
With the use of (48) and (37) this becomes:
N
An= S22 z 7 /8 sin®(mi/2N+2) (59)
i=1

Here c is the weight concentration of the solution and M is the molec-
ular weight of the polymer sample.

N is typically larger than one hundred. Thus for small values
of i, the sine is excellently approximated by its argument. For
larger values of i the terms in the sum are negligible anyway. Thus

to a good approximation,
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N

2
A = cRT'r(lz\IH) z ;-2 (60)
2T .
i=1
or summing,
cRT(N+1)%r
An= =M — (61)

The intrinsic viscosity is directly accessible from experimen-

tal data. It is defined as

which using (61) becomes

(n] = RT(N+1)%r

12Mn (62)
o

Thus
r(N+1)% = 1zn_M[n]/RT (63)

(63) is the simplest way in which the parameters in the Rouse
model, T and N, may be related to the readily measurable quantities,
M, T and [n]. It is a well-known and very useful result.

The energy stored by the polymer molecules can finally be
calculated. The Helmholtz free energy for a given molecule in the

ensemble is assuming the internal energy is constant
F= -kT 4oy + U, (64)

The average molecule in the ensemble thus has an average energy

corresponding to
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F = -kT ‘S‘ penpdv + U_ (65)

where V is the configuration volume., With the use of (45) this inte-
gral may be exactly evaluated. This is done in Appendix D, The
energy stored by altering the average configurational entropy of the

average molecule is thus

AF =F - I’Z (66)
N
_ kT -2
- kI Z tnk; (67)
i=1

k-2 is defined in (46). The energy stored per unit volume by the

polymer molecules is thus W where

= CRT Z !nK (68)

(68) is a new result. Rouse and his followers were primarily inter-
ested in the dissipation produced by polymer addition. Thus Rouse,
Bueche, Zimm and Pao do not calculate the energy storage arising
from the configurational entropy reduction in the flow of dilute
solutions. {(68) is fundamental for an understanding of the Toms
Effect. This will be discussed at some length in the next chapter.

The energy stored by the polymer molecules has been cal-
culated by assuming that the internal energy of a polymer molecule
is independent of the particular configuration the molecule happens
to adopt. This assumption is based on the results of numerous

experiments performed over the last 162 years. Treloar {1958)
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gives a full account of the evidence supporting this assumption
and shows that for high-polymers subjected to extensions not
exceeding 230 per cent of the undeformed length, this assump-
tion is an excellent one,

This assumption combines with the first and second laws
of thermodynamics to imply that the infinitesimal and reversible
deformation of high polymers involves a reversible transforma-
tion of work into heat.

The work done by the fluid in stretching the polymer
molecules out along streamlines is stored as heat in the solvent.
If the velocity gradient decreases, the thermal agitations of
the solvent surrounding the polymer molecules cause the poly-
mer molecules to return to the more coiled, thus shortened,
form. As the molecules contract they do work on the fluid.

For infinitesimal, reversible changes, the change in heat con-
tent of the solvent must exactly equal the work done by the
molecules.

In a real sense, the energy stored due to the rate of
deformation of the polymer solution is stored not in the polymer

molecules, but rather in the solvent as heat.

Ili-4 Possible Mechanism for Degradation

On the scale of the molecule (1000 X) it seems unlikely that
there is any inherent difference between unsteady laminar flows and

turbulent flows. The current laminar flow data {Merrill et al. 1962)
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indicates that changes in the molecular weight of the polymer are
relatively slight and do not seem to follow a pattern that would be ex-
pected if scission were occurring. On the other hand, when these
‘same solutions are placed in bottles and shaken, i.e., placed ina

turbulent flow, the molecular weight as estimated by intrinsic vis-

cosity measurements appears to drop with time to a given plateau
value for a given level of agitation. This plateau value does not
‘appear to depend on the initial molecular weight of the sample used.
This apparent degradation appears to take place to some
extent in all tur'bﬁlent flows of dilute solutions. The explanation of
this effect may lie in the fact that most conventional laminar flow

experiments do not contain velocity fields of the form shown in (69),

u =y x/2
v o= -y y (69)
W=y z/2

Here Y, is a constant.

The flow field defined by (69) will exist locally in turbulent
flows for times much longer than 7 over lengths large compared with
the size of the molecule. Physically local regimes of the type shown
in (69) exist due to the relative motion of one element of fluid towards
another or the motion of an element of fluid towards a wall.

For this simple flow field (42) becomes (70). The trial solu-
tion for (70} will be (71}, (70) and (71) are shown on the next page.
Substitution of the trial solution {71) into (70) proves that this éolution

is, in fact, the correct one.
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The mean internal energy stored by a polymer molecule sub-
jected to this flow field may be directly calculated using (65)., Inte-

gration produces the result that

N
2
e 1,41
F/kT = 3N/2 (1 +In2n)+1/2 E £n(1_ei) ‘1+zei)

i=1

(73)

Obviously as the largest Gi, 91 s approaches one, F grows without
bound.

Physically the flow field chosen corresponds to the case of two
steady "jets" of solution flowing in from plus and minus y-infinity.
The jets meet at the origin and flow out along the x- and z-axes, In
this type of flow field, it is expected that the polymer molecules
would be stretched in planes perpendicular to the y-axis., This
stretching will produce a tension along the length of the molecule.,

This tension will be applied for long times and as the molecules ex-
tended length increases; this tension will increase., If this tension

is large enough and acts long enough, the probability of breaking

bonds in the central part of the chain will become close to one. In

the Rouse model there is no way of estimating the force necessary

to break the molecular chain. However, if the chain is going to break,
it should take place when the molecule begins to become fully extended,
or when the energy F starts to become infinite. (73) suggests that

this takes place when

YT (N+1)%
—

Y Y,

- n =
1 2e

= 5 » 1 (74)
1 8 sin“(x/2N+2) 2r

o

With the use of (63), (74) implies that the critical strain rate required
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: *
to break the molecules up should be yn‘where:

2
* = oz RT _
'n 6[n]n M (75)

Merrill et al. (1962) have suggested that the ''rate of change
of shear stress' is the more important variable in determining
whether molecular scission will occur rather than steady shear
stress., The preceding analysis suggests that Merrill et al, (1962)
may not be quite correct., The degradation appears to result from a
steady flow field of a certain type not customarily found in laminar
flows.

A check on this theory could be accomplished by setting up
two opposing jets of dilute polymer solution. This would partially
simulate the flow field under consideration. The intrinsic viscosity
of the solution leaving the impact point could be plotted versus Yn
and Yy steadily increased. It would be expected that the intrinsic
viscosity of the solution would begin to drop when Yy, reached the

critical value shown in (75),

IIT-5 Qualitative Approach Using Dimensional Analysis

The preceding discussion of energy storage by polymer mole--
cules has concentrated on applying a rather formidable mathematical
theory to a rather idealized model. There is a tendency in this dis-
cussion to lose sight of the physics of the situation., Therefore, it
is physically instructive to note that the basic assumptions involved
in this i;heory may be used to derive a linearized version of (68)

using nothing more sophisticated than dimensional analysis,
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For the case of a locally steady shear flow w= 0 and x;z be -
comes, using (46):
-2 2 .
K,© o= 14 ('Tiao) ; (i not summed) (76)

Thus the energy per unit volume stored by the molecules is using (68):
N

W= S5 ) a1+ (na)?) (77)

i=1

For the case where 7,0 is less than one, (77) may be approximated

by (78) where:
- N 2
_ cRT Tao
W= S ( : ) (78)
i=1

Recaliing that the eigenvalues of the Rouse matrix are ei where:

e 4 e 2T
e; = 4 sin" (557 (37)

we note that most of the energy stored will come from the contribu-
tions of the first few eigenvalues. Thus approximating e, by:
2.2
, T
e, = —t— (79)
(N+1)

substituting this into (78) and summing, assuming N is large, pro-

duces:

cRT(-rac;)z(N+,l y4

720 M (80)

W =

which using (63) becomes:
e 12 2

cM[n]%n 5

- +BR T (6]

Now examine the problem of energy storage from a physical
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point of view, Assume that a small number of molecules are added
to a solvent and that they dissolve so that they are homogeneously
distributed in the solvent. If the solvent is at rest the energy of these
molecules per unit volume will be a function of nkT, where n is the
number of molecules per unit volume, k is Boltzmann's constant and
T is the temperature of the solution.

Now subject a small volume of this fluid to a strain rate o e
The forces produced by the interaction of the molecular coils with
the solvent do work on the solvent and provide an additional mecha-
nism for energy dissipation. This will on a macroscopic scale be
measured as an increase in the viscosity of the solvent. Call this
change in viscosity An.

The interaction forces also do work on the molecular coils by
tending to stretch the molecules out along streamlines. This work
is the energy stored in the molecules due to a . The energy stored
in the molecules is a function of the strain in the molecules. The
strain in the molecules is a function of the forces applied to the mole-
cules. The forces are a function only of ozo, Avn and nkT. Thus the
energy stored in the molecules per unit volume, W, is only a function

of @ s ‘An and nkT. By dimensional analysis,

a An
nk"W'T = f(niT’) (82)

This function f is, in general, unknown., However, for the
special case of small a s it is customary to assume that high-
molecular -weight polymers deform as Hookean springs. In Rouse's

model this assumption is equivalent to assuming that the separation
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of the ends of the submolecule obeys a Gaussian probability function.

It is also customary to assume that the local viscous forces
on the molecule are directly proportional to the relative motions of
sections of the molecule and the solvent. In the Rouse model this
justifies the force balance in the three directions as represented by
(9), (10) and (11).

Since Hookean springs store energy as their strain squared,
these molecules store energy as their strain squared, or-as the local
forces squared or as the local fluid strain rate squared. This result
combines with (82} to produce

aiAnz

W o mrﬂ(T (83)

which is, rearranging terms,

2 CZ‘\’]ZM
W o (..éﬂ. —_0 aZ (84)
My cRT o

which for dilute solutions becomes:

2 2
cMln]®n_
o (85)

RT °

o

This result is exactly the same as (81), the result from
Rouse's theory derived under the same assumptions. The propor-
tionality constant is, of course, not determined by this qualitative

approach,

[II-6 Discussion of the Validity of the Results

Rouse's theory for the energy dissipated by a dilute polymer

solution was quickly followed by measurements (Rouse and Sittel,
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1953) of the viscoelastic properties of dilute solutions of polystyrene
in toluene and of polyisobutylene in various solvents. The measure-
ments were made at frequencies ranging from 220 cycles up to 60 kc.
Excellent agreement was obtained between theory and experiment,
Since Rouse's theoretical results as represented by (56), {57) and
(63) contain no adjustable constants, this theory provides a good first
approximation to the viscoelastic properties of dilute solutions of
polymers in good solvents.

We have shown that the Rouse model predicts that the intrinsic
viscosity should be independent of o regardless of o . Figure 5
presents typical data for polystyrene fractions in toluene. It is clear
from Figure 5 that for low molecular weight material the Rouse
model is adequate. For high molecular weights, however, there
seems to be a problem. The theory does not predict the observed
dependence of intrinsic viscosity on strain rate.

Zimm (1956) attempted to modify Rouse's model to include
the effects of hydrodynamic interactions. However, his calculated
intrinsic viscosity also does not depend on @ . He attributed this
discrepancy to a defect in the Rouse model.

Others have attempted to clarify this problem. Considerable
controversy has centered on determining the exact defect in the Rouse
model. The reader is referred to the work of Takamura (1958},
Peterlin and Copic (1956}, Cerf (1959} and Pao (1962). In order to
get some physical irisight into this problem, we consider the simplest
possibl_e non-trivial flow field, namely, the case. in the first exact

solution where w = 0.
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In the diagonalizing coordinates, (13), (14) and (15) become

with this choice of flow field (86), (87) and (88) where:

s d

T8 = Tae, - ei%-i-,en (&?‘;) (86)
_ 9

’Téi = -ei-é—é—i- In (—lp\!é-) (87)

Ty = -ei-a-%—i— n (?p%) (88)

In this coordinate system with this flow field (45) implies that:

N 2
(6,-7.¢ €.)"
in Yy = - 1/22 [1n(1+(7_a- 2y e L i 0d g2 (g9;
¢ i © A i
o - H{r.a )
i=1 i o
Differentiating (89) with respect to 3 implies that:
9 1n(_‘l£_) = 0 {(90)
Bni ,q)o

Thus the Rouse model does not allow for coupling between the
forced motions in the x-y plane and the random fluctuations in the
z-direction. This follows physically from the assumption of the sta-
tistical independence of the three projections of the separation of the
ends of a submolecule.

In the x-y plane there is a coupling of the motions of the ends
as represented by (86) and (87). Solution of these for the motions of

the ends can best be accomplished by introducing the transformation:

§.-T.00 €,

6'i = -—}#—-}—éo—f—l—- (i not summed) (91)
91+(7iao)

€. = € (92)
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In the (6%, ei) coordinate system the equations of motion for

the N ends become after some algebra:

2F - . ‘ :
6i = W, €, (i not summed) (93)
éi = W, G'i (i not summed) (94)
where
%
CH = — (i not summed) (95)
T ao
44 (—2)

i
Suppose that we pick a molecule out of the ensemble, Suppose
we are given the fact that the iﬂl end at t = 0 is located at
(GZ)ig €i° noi) in (6%, €5 ni) space. We ask what is the subsequent
motion of this end in this space,
(88) a\ﬁad (90) imply that the end remains for all subsequent
time in the plane Ny = Nyie In this plane the & end's motion is de-

o1

scribed by (93) and (94). These equations may be rewritten:

§
o

2
’o‘; w8 = (96)

e 2
€. tw, €,
1 i 1

i
(=

{(97)

where the dots represent derivatives with respect to time. The
initial conditions and these differential equations require that the

i-té end move according to the relations:

V= ¢ ,sin, t + &', .
51 €,; sinw, t ) 0 COSW, t (98)

)
]

' L3 .
5 o3 Sinw, t + €3 COSW, t {(99)
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Thus in this coordinate system the ends move in elliptical orbits,

These equations may be rewritten in the diagonalizing coordinates:

-€_.-2(71. )ze Hroa )6 .
6. =—2—22 22 2 02 O )aimwt+ & . coswt (100)
1 ) 1 (o} 1
Vl + (r.a )
1 O
6o:l-('riao)ﬁoi
€. = sinw.t + € _, cosw.t (101)
1 Ol 1

i .
Vl + (Tiao)z

For large @  these become

6.=(-Z—a—q€ .+ 6 ) sin(eit)+6 .cos(—e-f-) {(102)

1 ei s ¥ 8 01 T 01 T

€. = <Zei & .-¢ .)sin <_-eit)+ € .cos(———eit) (103)
o1 T 1 T

i TO oi
o

For the ensemble average molecule for large a:

il

=2 2
5 1/2(r ao/ei) (104)
T2 = 1 (105)

Here i is not summed.

We originally chose €o; and 6oi (or equivalently 6:)1) by first
picking a molecule at random from the ensemble and then by simply
noting the location of the i-?t-}3 end at t= 0. In order to investigate
the behavior of the average molecule we now equate the ensemble
average values of 6i2 and eiz with their respective time average values,
The two resulting equations are then solved for goi and Eoi’ the initial
conditions of the average molecule, - The result is that:

_ Ta
501 © ‘ei ) >> 1 (106)
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€o; ~ 1 (107)

Thus the average molecule moves such that its:i-‘-:-h*- end moves for

large doraccording to the relations:

TQ

6, = ( e.o)cos(eit/'r) (108)
1

€, = sin(eit/'r) + cos(eit/'r) (109)

n = 1 (110)

Here i is not summed.,

(109) implies that for large a, the average stretch in the y-
direction becomes independent of & e Thus built into the Rouse model
is the notion that no matter how much the molecules are stretched
out in the x-direction due to the flow field, there is no change in the
average magnitude of the stretches in the y- and z-directions. Real
molecules have a finite length. Thus as the stretch in the x-direction
starts to approach the full extended length of the molecule, the
stretches in the y- and z-directions should go to zero; Thus‘ it is
not expected that this model will predict the correct high strain be-

havior of the solution,

I11-7. Qualitative Extension to Large Strain Rate

A guess at the correct high strain rate dependence of energy
storage and dissipation may be made from a heuristic argument.
For strain rates less than el/'r we have shown that the energy stored

locally per unit volume is
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2 2 2
cM[n]"n; a
= S5R T (81)
and
[n]= IOHDRT (62}
12 noM

As the strain rate becomes large compared to el/"r we expect the
Rouse model will no longer represent the physical situation and we
expect the intrinsic viscosity to vary with Q. Since the molecules
are becoming stretched out along streamlines it might be expected
that the limiting value approached by the intrinsic viscosity would by
analogy with the Einstein viscosity relation be:

AVe
[l = —4 (111)

where Ve is the effective volume occupied by a molecule, M is the
molecular weight of the molecule and A is Avogadro's number. The
effective volume occupied by a molecule should be directly propor-
tional to the molecular weight of the molecule if the molecule is
almost completely stretched out. Thus {111) suggests that:

lim [n] - constant (112)

o T

1
Data in this region are difficult to obtain ’primarﬂy because in most
conventional instruments for measuring intrinsic viscosity either the
strain rates are too low or there is some‘ques‘i:ion whether the poly-
mer solution is in laminar flow, By way of a numerical example,

polystyrene with a molecular weight of one million dissolved in
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toluene requires a strain rate large compared with 20,000 sec"1
before the molecules begin to become stretched out along stream-
lines,

Energy storage is even a more difficult subject on which to
speculate. The behavior of the Rouse model at high strain rate
has been shown not to resemble the behavior of actual molecules,

Thus we are left with an expression similar to (82) which was de-

rived from dimensional considerations,

a An
W_o_ oo
akT - fqET (82)

This function may be expanded in even powers of the strain rate.

In view of (112) this becomes:
2 2. 4 4

an M an M
_ cRT o 'o An ‘ [IKe) An
W= (ao+a1( RT ) <n0c>+az( RT ) (noc>+”°)

(113}

The a;are a series of constants and it is impossible to say anything
about their relative size without resorting to experiments. The in-
teresting thing about (113) is that the energy stored by the polymer

molecules depends on odd powers of the molecular weight.
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IV. EFFECT OF POLYMERS ONTHE TURBULENT ENERGY BALANCE

IV-1 Introduction

In the previous chapter a dilute polymer solution was consid-
ered from a molecular point of view. Rouse's model was used in a
systematic fashion to approximate the behavior of a single molecule
subjected to both Brownian motion and a velocity field composed of
spatially constant velocity gradients. It was shown in Appendix B
that the equation imﬁlied by the model may be solved exactly.

That polymer molecules store energy has long been known
from experiment. However, it is not generally realized that the
simple Rouse model quantitatively predicts the amount of energy
locally stored as a function of the local strain rate, the concentra-
tion, an& readily measurable molecular parameters, For low strain
rates excellent agreement is obtained between the theory for energy
dissipation and measurements of energy dissipation. The Rouse
results contain no adjustable constants so this theory must be con-
sidered a good first approximation to the viscoelastic properties of
dilute solutions of polymers in good'solven‘ts_-*.0 Thus it is expected
that the predicted energy storage will also agree with experiments.

In this chapter, the effect of the polymer molecules on the
behavior of the solvent will be considered from a macroscopic point
of view. | In the final section of thisbhapter these views will be
equated by: assumvinlg that the ‘energy' stored per unit volume‘;bf solu-
tion is proportional to the number of molecules per unit volume tirnés

the energy stored in each molecule, The union of these two views
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produces a theory which predicts the Toms Effect,

IV-2 A Constitutive Law - Two Assumptions

Our first assumption is that a dilute polymer solution is in-
compressible. Experiments performed by Ellis (1966) indicate that
for 10 ppmw polyethylene oxide (MW =3 X 106) in water at room tem-
perature the speed of sound does not differ from that of water with a
similar air content to at least one part in one hundred, Similar re-
sults have been reported by Hoyt and Tulin, Thus for a dilute solu-

tion we assume a constitutive law of the form:
tik = —paik + Z‘no € + Po @ik {114)

where tik‘_is a Cartesian stress tensor, p is the hydrostatic pressure,

6., is the Kronecker delta, n, is the Newtonian viscosity of the sol-

ik
vent, e, is the rate of deformation tensor, Po is the density of the
solvent and ‘I)ik is a Cartesian tensor expressing the contribution of
the polymer molecules to the behavior of the solution.

In principle, q)ik might be determined at some point in a flow
field by measuring at that position tik’ p and e Mo and p, are as-
sumed to be known. Knowing tis P and € q”ik could be determined
from (114). In practice, however, q)ik is unknown.

There exist in the literature many speculations as to what
tliik might look like for different situations. Thus one comes across
terms such as ''Stokesian fluid'', "'power-law fluid'' (which includes
pseudoplastic and dilatant fluids), Bingham fluid, Reiner-Rivlin

fluid, Rivlin-Ericksen fluid, ''simple fluid"', ''second-order fluid'’,
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etc.. The,{pa‘rticular choice of q’ik depends on the experimental
evidence. If a model appears to work, it is adopted.

For dilute solutions the problem of choosing a model is com-
plicated by the experimental fact that in every known laminar flow
experiment the stress contribution of the solvent far exceeds the
stress contribution of the polymer molecules. In fact, steady lam-
inar flow experirnents indicate that for dilute -solutions the ratio of
the stress contribution of the polymer molecules to the viscous
stress is less than or equal to c[n] where c is the weight concen-
tration and [n] is the intrinsic viscosity of the solution at low strain

rate., Thus experimentally it appears that:
) < 2 p
g:vo<I>ik/2‘n°<=:ik c[n] (i and k not summed) (115)

For dilute solutions c[n] is typically less than one hundredth.
Thus stress measurements accurate to at least one part in one
thousand are necessary before the true nature of (I)ik may be meas-
ured,

In the absence of accurate stress measurements investigators
have adopted numerous constitutive relations for dilute solutions.
For example, Boggs and Tompsen (1966) set q’j‘l equal to the expres-
sion shown in (116):

¢I>j1 =v, (aj 1 + a, . + zuk’j uk,’l)

9 4

{116)
+ v3(uj,k + uk,j)(uk,ﬁ + u, ,k)

where the acceleration, aj, is given by:
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du,
aj = 73_1-:1+ ukuj,k (117)

Here the comma indicates differentiation in a Cartesian coordinate
system. v, and vy are constants, uj are the components of the
velocity field in the three directions, and the usual summation con-
vention is assumed.,

Shaver and Merrill (1959), Metzner and Reed (1955), and
Dodge and Metzner (1959) have had some success using a power law

model of the form
stress = b (strain rate)s {118)

to express the rheology of the laminar and turbulent pipe flow of
concentrated polymer solutions. b and s are parameters which re-
main constant over extended ranges of strain rate for a given solution,
Spriggs, Huppler and Bird (1966) tabulate no less than twenty
different rheological models for viscoelastic fluids. They present
experimental data which tend to support some of these models.,
However, in general, the specific choice of constitutive law which
describes the behavior of dilute solutions is open to extended debate.
Rather than enter into this debate our assumption will be that
&.. is unknown, but that in principle it could be measured. If it were

1}

measured we assume that in general one would find that:

. s ° e
poq)ij/znoeij cin] (i and j not summed) (1;9)

This assumption is consistent with current experimental results.

There may exist a flow field in which (119) does not hold. However,



-64-

to date it appears not to have been discovered,

IV-3 The Toms Effect: A Wall Phenomenon

In Chapter II we discussed the measurements which indicate
_that turbulent momentum transport can be markedly altered even in
very dilute solutions. Momentum transport is determined in turbulent
flows by the Reynolds stresses. These Reynolds stresses are pro-
duced primarily by disturbances whiéh, once formed, are insensitive
to the viscous stresses. Since we have assumed in (119) that the
stresses produced by the addition of polymers are very much

smaller than these viscous stresses, a small quantity, we conclude
that the polymer molecules cannot alter the turbulence once it has
been formed.

This conclusion is very important. Previous investigators
have suggested that the polymer molecules directly "'damp the turbu-
lence''. The assumption stated in (119) makes this mechanism for
the Toms Effect impossible.

In free turbulent flows the effects of viscosity are removed
from those turbulent motions which control the mean motion. The
effects of viscosity are rather relegated to the small scale eddies
which take part in the final decay and the production of heat. Poly-
mer molecule addition should slightly influence this final decay but
should not influence the turbulent motions which control the mean
motion. Thus we expect that the structure in grid and free-jet
‘turbulence should in no measdrable way differ from the structure

found in the flow of the solvent under similar cohditionso Thus
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measurements of grid and free jet turbulence should provide an excel-
lent indirect check for (119).

Fabula (1966) has published a detailed experimental study of
grid turbulence in dilute high-polymer solutions. The major purpose
of this investigation was to determine the effects of the non-Newtonian
properties of polymer solutions upon the grid-turbulence energy spec~
trum,

The turbulence was generated by towing a grid of regularly
spaced bars through a tank of stagnant fluid. At a sufficient distance
from the grid to insure spreading and mixing of the turbulent wakes
of the bars, hot-film sensors were used to measure the instantaneous
longitudinal velo’citya From this signal the long‘itudinal, one~-dimen-
sional wavenumber spectrum was determined for water at various
temperatures for a wide variety of aqueous polymer solutions.

Fabula concluded from his measurements that for dilute solu-
tions no measurable changes took place in the grid-turbulence energy
spectrum. For concentrated solutions (c[n] = +27), Fabula observed
a depression in the spectral level at higher frequencies due to polymer
addition. However, when the increase in viscosity due to polymer
addition was taken into account, Fabula found no evidence of non-
Newtonian effects,

Jackley (1966} studied the mean velocity profile of a free
turbulent round jet growing in a large tank in order to determine
whether the Toms Effect is the result of polymer molecules ''directly
damping the turbulence''. Jackley found that when dilute agqueous

solution was pumped into similar stagnant solution, a mean velocity
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profile resulted which, beyond ten diameters of the nozzle mouth,
could not be distinguished from that of distilled water. Jackley
concluded that the Toms Effect is "a phenomenon of the wall",
Thus the best experimental evidence to date appears to.

support (119).

IV-4 A Qualitative Explanation

In wall turbulence the effects of initial conditions never
completely disappear from the structure of the turbulence.

Immediately adjoining the wall there is a thin layer of fluid
in which the mean velocity, Ul(xz), varies linearly with the dis-
tance from the wall, X0 This velocity is small throughout the
layer, varying from zero at the wall itself to values of the order
of ten times the friction velocity, U_, at the outer edge of the
layer. Here,

U, = VTw/p (120)
T is the turbulent wall stress and p is the density of the fluid.

We call this thin layer the viscous sublayer.

The wviscous sublayer is characterized by small but high fre-
quency velocity fluctuations. In fact, the local turbulence level,
V-:t;—::'—;/Ul(xz);. where \/:,TZ— is the'local root-mean-square value of the
velocity fluctuations in the flow direction, rises to a maximum value
at the wall. Thus the flow is highly disturbed all the way to the wall.

‘These disturbances in the velocity field are produced by the

motions of volumes of fluid in the outer part of the boundary layer.

This outer part of the boundary layer is a region where the viscous
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stresses are everywhere small compared to the Reynolds stresses,
The velocity fluctuations are of a scale very much larger and of fre-
quencies very much lower than those in the viscous sublayer. In
fact, the characteristic time scales of the turbulence in this outer
region are so long that a sample volume of turbulent fluid could be
transported a considerable distance by a convective motion without
undergoing a large change in its structure or identity. These large
volumes of fluid eventually interaci: with the wall and with each other
to form smaller, but higher frequency disturbances,

In the outer part of the boundary layer these small, violent
disturbances decay into heat., Close to the wall, however, these
small disturbances tend to grow because they can locally extract
energy from the local velocity profile through their Reynolds stresses.
Simultaneously these small disturbances tend to lose energy because
their gradients locally dissipate energy into heat. In polymer solu-
tions these small disturbances tend to store energy in the polymer
molecules,

If a small disturbance extracts more energy locally than it
loses, it will grow. The disturbances, or vortices, so generated
move out from the wall as they are convected downstream. Thus
small disturbances at the edge of the viscous sublayer ultimately
become part of the structure of the turbulence in the outer part of
the boundary layer and ultimately become responsible for the Reyn-
olds stresses of the turbulent flow.

The idea fundamental to this theory is that the large scale

disturbances which produce the Reynolds stresses some distance
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downstream were, at an earlier time, small disturbances at the edge
of the viscous sublayer some distance upstream.

Once the small disturbances start to grow the effect of the
polymer molecules may be neglected. All the polymer molecules do
is slightly alter the energy balance of the turbulent fluctuations close
to the wall. By slightly altering this balance, the molecules allow

viscous dissipation to destroy disturbances which would have had

sufficient kinetic energy to grow had the polymer molecules not been
present.

By decreasing the number of disturbances which grow per unit
‘area and time and move out from the edge of the viscous sublayer,
the addition of the polymer molecules ultimately changes the structure
of the turbulence in the outer part of the boundary layer., This change

results in lower Reynolds stresses and hence the Toms Effect.

IV-5 A Quantitative Explanation of the Toms Effect

The equations of motion for an incompressible fluid in the

absence of body forces may be written

. , +

1
a, .= =t . 1
it uJul,J pt (121)

RV

Let Ui be a steady mean flow field and u;,_ be the components
of the turbulent velocity fluctuations. Let Tij be a steady mean Car-
tesian stress tensor and t'i. be the turbulent stress fluctuations. Let

a bar over a quantity imply a time mean value, namely,

T
X = 1lim él,f S X dt (122)
T =» o0 . e
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Thus the velocities and stresses can be rewritten

— 1
w, = U, +u} (123)
t..=T.. +t'. (124)
ij ij oy
where
u.=U, and t..=T.. (125)
1 1 1) 1j

Substituting (123) and (124) into (121), multiplying the result-

ing equation through by u%, and then averaging the resulting equation

produces
ul ul U, +l[ .u‘.z-i-u'. u‘;z] .=-§- t. . ua {126)
i7) "4,j 2175 i AR P S~ Bt P B

The qualitative argument in the preceding section suggests
that we consider this equation in'the neighborhood of a wall. For
simplicity, consider a dilute solution moving with a steady mean
velocity U, (xz) along a flat plate in the x, -direction.

If we introduce length scales L1 and szrepresentative of the
%y - and xz-directions, respectively, the narrowness of the boundary-
layer region leads to the conclusion that LZ/.LI << 1

By virtue of the continuity equation, the velocity scales I‘l
and I‘Z representative of the typical velocities parallel and normal
to the plate should satisfy the requirement that

r L

2 2
N2 << ] (127)
LYRARR

Despite the presence of the wall, it will be assumed that the
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turbulent intensities in the various directions are still of the same
order of magnitude. Accordingly, it will be assumed that it is per-
missible to consider one velocity scale, V, for u'i where i=1, 2, 3.
V is assumed small compared with 1"1.

Now consider the constitutive law

= - +
tij p6ij Zno eij + Po (I)ij (114)

Let p' and q>'ij represent the turbulent fluctuations of p and (IDijn v is

the kinematic viscosity of the solvent. Then

Tt
SAdie L g LT o T (128)
p pO 151 i 153] 171315

It is worthwhile to note that incompressibility requires that

i

— 2 v 2
[ - 1
v N v (ui,j) t = (u) ),jj (129)

p'/p is assumed, close to the wall, to be of the order VZ.
Thus assuming the correlation coefficients are all of order 1,

(126) may be rewritten (Townsend (1956))

_ 1 2 _ 1 1 12
v (ui,j) = +u2(p /p + uy /2)’2

e 2 -1
Tl .
- ui¢i2,2 + terms of order V TlLl (130)

The first two terms in (130) are both of order VZI‘lLil and

represent the local rate of turbulent production and dissipation.
Their difference produces a small positive term of order V3L£1,

This difference drives the right hand side of (130),
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The third term is customarily called the ''advection'' or
""energy diffusion'' term. The latter is perhaps a more descriptive
term for what is taking place. The third term represents the net
rate at which energy is diffusing from the edge of the viscous sublayer
towards the outer part of the boundary layer.
For turbulent flows of Newtonian solvents it has been observed
(Townsend, 1956) that while changes in the energy diffusion term have
no immediate effect on the turbulent intensity or stresses in the outer
part of the boundary layer, they do have a cumulative éffect which is
felt some distance downstream. Thus by altering this third term one
can alter the structure of the turbulence.
The fourth term represents the contribution of the polymer
molecules to this energy balance. For very, very dilute solutions
it is to be expected that this term will be of order VZFIL? or
smaller. Then (130) will be, to an excellent approximation, identical
with the case for flow of a Newtonian solvent. Thus there should be
no Toms Effect.

However we define the dimensionless parameter H such that

POV Ty B
u

e | %22 (131)
2
1 1 i
ublp'/e +ui”/2) ,

As H begins to approach one, presumably the rate energy is
diffusing from the edge of the sublayer towards the outer part of the
boundary layer will be changed. For H much greater than one,

nothing can be said.
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Measuring velocities in dilute polymer solutions is difficult
enough. Measuring the fluctuating part of an unknown portion of a
stress tensor is, at the present time, impossible. Thus the success
of this analysis rests on our ability to estimate W without having

to perform direct measurements.

IV-6 An Estimate of H

In this chapter the effect of the polymer molecules on the
‘behavior of the solvent has been considered from a macroscopic point
of view. Rather than examine the behavior of the molecules indi{ridu-
ally, we have assumed that the effect of polymer addition might
.conceptually be measured as an additional term in a constitutive
relation, namely, p@ija (This assames that the polymer molecules
are homogeneously distributed throughout the solvent.)

Polymer molecules store energy. The average rate work is
done, ﬁ, by the stress contribution of the molecules, Po@ij’ during

the deformation of the flowing fluid is

E=1{p i) ) {(132)

..u.)
o ij j,i

This must equal the average local rate of change of internal energy

of the molecules, W. In Chapter III we have shown that each molecule

stores energy as a function of the local strain rate. For dilute poly-

mer solutions subjected to low strain rates we have shown that the

energy stored per unit volume by the molecules due to a strain rate

a_ is just
[¢]

W = A ai (81)
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where

2.2
cM[n]"n

5RT (133)

(81) was obtained by assuming that the energy stored per unit
volume of solution is proportional to the number of molecules per
unit volume times the energy stored in each molecule. (This assumes
that the solution is dilute.)

For the purposes of this estimate we assume.

W = 4A o2

ij (134)
Since the following argument involves only an order of magnitude
analysis, the shortcomings of this generalization are not significant,

Thus the average local rate of change of internal energy of the mole-

T e
cules Wis

W= 4A [uke%]’k (135)

: 2
— !
= 4:A(U] e

+ 4A (ule'l,

Z
i), x ¢330,k (136)

+8A (uicea'ij Eij),k + 4A(UkE ij),k

Here Eij and e]'.Lj are the mean and fluctuating parts of the rate
of deformation tensor.
For flow past a flat plate in the %y -direction, close to the

plate, most of these terms are small and

W.= 4A (u), e‘ij2 ) 5 F negligible terms (137)

Similarly {132) becomes
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E = (pd..U + plel.ul)

.U)) . .ul) .
J J .1 J1 31
which for flow past a flat plate in the xl-d‘irection. close to the plate,

becomes
E = pwgz + negligible terms (138)
Equating (137) and (138) produces the result that to first order
PR ] 5= 4A (u‘zezij)'z (139)

Thus, assuming that it is permissible to consider one scale,

¢, for ¢52, then the magnitude of this scale must be of the order of

¢ = () (140)

where £ is a length scale characteristic of a disturbance. Thus H

may be estimated from (131) as {141) where

A. V2
v (s 5@
Po 2

H=
3L-1

VL,

M
4A 2
= D) -5 (141)
Po ﬂ3

Implied in the notion that close to the wall energy production

very nearly equals dissipation is the relation

2
ver 2
— & 5 (142)
2 2
Thus
I \3/2
( 13) z( 1 (143)
J4 sz



-75-

Thus from (141) and (143)

3/2

Hz(p) ( zlv) (144)
()"

pL

4AU i 2 r, 3/2 UL, 3/2
()3 () ()

4AU 3/2 1/2
L ()
pov T

The latter three terms may be identified as follows:

4AU:f 4cM[n %0

2 BelvERT

O =(4cM[n 1274 )

0 W

5RT

Thus the viscosity of the solvent drops out of the first term.

In the second and third terms I"l and L2 may, for the purpose
of estimating H, be equated with Ul(xz) and Xye X, is the distance
from the plate and U1 (xz) is the velocity along the plate.

The law of the wall

U x2
)+ 5.10 (146)

UI/UT = 5,75 log {

for a Newtonian solvent is (when Reynolds number is high and the
pressure either constant or the adverse gradients are not excessive)
remarkably insensitive to conditions in the outer part of the boundary

layer. Thus it is quite relevant for estimating (UI/UT) as a function
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*2
of (UT TR ) for dilute solutions.

For very, very dilute solutions where no Toms Effect takes
place, (146) will in general hold. As the concentration is raised to
the point where the Toms Effect begins, (146) will start to change.
However, for a first approximation of the relationship between

X
v 2 v .
(Ul/U'r) and (U_r—!-,—-), (146) will be used. 3}

. 3/2 *¥2.-1/2
Figure 6 shows (UI/UT) / (U'r T) / plotted versus (Uq_ —;é)

using the law of the wall. From this graph it is clear that at the edge

x
/Z(U i)-l/z ~ 10,

i 3
of the viscous sublayer, (UI/UT) .

In conclusion, for dilute polymer solutions the Toms Effect
should start taking place when H starts to approach one. H is esti-

mated from (145) and Figure 6 as

8c M[n] ZTW )
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V. COMPARISON OF THEORY WITH EXPERIMENT

V-1 Discussion of Theory

As H approaches one, we expect that significant amounts of
energy, which would ordinarily have been convected away from the
wall in the form of turbulent disturbances, will be convected away
stored in polymer molecules. H is a dimensionless measure of the
effect of the molecules on the rate turbulent energy is diffusing from
the wall.

In Chapter II we introduced the function L, the percent ap-
proach to laminar flow, L is a dimensionless measure of the
structure of the turbulence responsible for the turbulent momentum
transport of the flow,

H as defined by (131) is a dimensionless measure of the effect
of the polymer molecules on the structure of this turbulence. Thus
for a given Reynolds number flow and a given wall flow geometry,
L must be a unique function of H,

Since the structure of wall turbulence does not depend
strongly on Reynolds number above transition, we do not expect
L to be strongly dependent on Reynolds number,

As H becomes greater than one, subject to the restriction
that the solution remains dilute, it is not clear what will happen.,
Our estimate of VH required use of the law of the wall, Presumably
changes in the structure of the turbulence (due to changes in the
energy balance at the edge of the viscous sublayer) will be reflected

in changes in the law of the wall,
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Physically, however, we expect that the elastic terms in the
boundary layer will start to stabilize most of the disturbances. Thus
the sublayer will become effectively thicker, There will be fewer
disturbances, but each will have, on the average, larger Reynolds
stresses. Some of these disturbances will still be able to extract
energy from the mean velocity gradient and grow. Because of the
latter effect. it seems unlikely that laminar flow will ever be reached,

Thus, theoretically we expect that if H were plotted against
"L, then one would find a functional relationship between these two
parameters similar to that shown in Figure 7.

Here‘ when H is small, L is zero. As H approaches one, L
Begins to rise. As H becomes large, L approaches a constant value
of less t}ian;}OO percent. This theory does not predict the exact
mathematical form of the relationship between L. and H. To do this
would require a detailed knowledge of the relationship between the
structure of the turbulence at the edge of the viscous sublayer and
in the outer part of the boundary layer. One would also need to knoiv
the relationship between this structure and L.,

Perhaps this would be made possible by postulating a model
which behaves in some approximation like real wall turbulence. A
‘model of this kind might help provide insight into the whole problem
of wall turbulence, much as the Rouse model helps provide insight
into the behavior of dilute polymer solutions,

It should be reemphasized that our quaﬁtitative estimate of
H as represented by (147) is limited to solutions subjeéﬁed to low

strain rates, By this it is meant that the local strain rate:
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a < e /7 (148)

which from (63) and (79) means that:
2
7 RT
o — (149
°©  12[n]n M )
Roughly, this means that the turbulent wall stress must be

less than, at a minimum, 10RT/[n] M. For Polyox in water at 25°C,

using (5),

13 ‘1.78

'rw < 2,4 % 10+ M dynes/c:rn2 {1 50)

Figure 8 shows the region of validity of {148) for Polyox
solutions, Shin (1966) and Pruitt and Crawford's (1965) data are
indicated by triangles and circles. It is evident that except for the
higher molecular weight material, these data are all in the low
strain rate régime.

It should be further noted that H is very sensitive to the
molecular weight of the sample used. Thus if a polymer sample
is degraded or blended with another sample, the resulting molecular
weight distribution must be known before H can be accurately deter-
mined.

This may be done as follows:

Consider a heterogeneous polymer in a solution so dilute
that individual molecules can be considered to contribute to energy

storage independently of one another., Then from (147)

2
i 8c.iMi[n]i-rW
i RT

{i not summed) (151)
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where H,, c;, M, and [n] ; are the contribution to H, ¢, M and [n] due

to the i—t?— species, In general, it is experimentally observed that

[n]; =AM (152)

1

where# and « are constants. (5) and (6) are specific examples of
this general relationship. Substituting (152) into (151) and summing

over i produces

2
86F 7, 2a+1
Hactual = (““‘R“T"‘“) zciMi (153)
]

However, H is usually calculated by taking the value of the
intrinsic viscosity measured from a viscosity measurement and a
value of the molecular weight measured using light-scattering, or

the weight average molecular weight. Thus

ZMFYC.' 2 Zc. .M.
87’wc g 1 ; b
Hcalculated SA\ET c c (154)

Thus dividing (154) into (153) produces the correction factor

& where:

2atl
Hactual Z (e;/e)My/M )"

] i
S T H icutated [ © 2 (153)
calculate i o
N (7;‘: (T:_)(Mi/Mo) ) (Zi‘,(ci/c)(Mi/Mo?

Here Mo.is the molecular weight of the monomer, (Mi/Mo)= i
which equals the degree of polymerization and (Ci/c) =w, which
equals the weight fraction of the sample with degree of polymeriza-

tion i. Thus
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© 2a+1
w. 1

Z

— i=1
Z w, i Z w.i
i=1 * =1 *

Thus if w, is known, = may be evaluated using (156). In
principle, for polymers formed by monomer addition without ter-
mination, poly(ethylene oxide) for example, (Floty, 1940)

-v, (i-2)

= IV e v
v, = GF) T (157)

v represents the number of monomers reacted per initiator. If (157)
is substituted into (156), the sums may be exactly evaluated for a= 1.
Thus, for a=1,

— (v+1)2 (l/v + 25v + 15 + 10v2‘+ v3)
= 2

(158)
v (v+3+ 1/v)3

For high-molecular weight polymers v is typically large

compared with 103. Thus = equals one and H equals

calculated

Hactual to an excellent approximation.

In practice, the idealized situation as represented by (157) is
not realized unless great care is taken in the preparation and hand-
ling of solutions. Since it is current practice to examine the Toms
Effect using aqueous Polyox solutions, it is relevant to examine the
pitfalls inherent in the use of these solutions.

Union Carbide makes Polyox in a variety of molecular
weights for industrial use.

The industrial specification is that a 5% solution by weight

should, at a specified strain rate, have a viscosity between two

specified values, If a batch does not meet specification, material
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of different molecular weights is added until it does., From these
blends, commercial samples are taken,

These samples have been used by experimenters to attempt
to define the Toms Effect. Thus it is a matter of luck if an experi-
menter starts with a blend or with a heterogeneous sample.

As soon as a dilute solution is mixed, degradation begins,
Polyox solutions are sensitive to chemical (see Appendix E),mechan-
ical (see Chapter III), and perhaps biological degradation (see
Appendix E), Thus as soon as the solutions are mixed, w, begins
to change. This can to some extent be prevented by using air-free
distilled water, by not shaking the solutions, and by keeping the
solutions under nitrogen in a cool, dark place.,

Outdoor tanks and recirculating systems emphatically will
not produce good results.

There is some reason to believe that the data presented in
Table 1 and Figures 3 and 4 are for undegraded and unblended
samples. Further there is reason to believe that, to date, no other
data availablé in the literature is for undegraded polymer samples
subjected to low strain rates.

Thus these data will be used for testing the theory.

V-2 Comparison of Theory with Experiment

Our theory predicts that the Toms Effect should become

visible when H approaches Hcritical’ where Hcritical should be
of the order of .01. From (147),
2, %
_ 8cMinjT (159)

Hcritical - RT
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From (159) it is clear that if one onset wall stress and poly-
mer concentration is known, then all other solutions formed using

this polymer sample and solvent must obey the relation
. - * =
cT™ = (cT )known = constant (160)

This result is in quantitative agreement with the experimen.
tal data in Table 1.

(160) explains why there is no ''onset'' stress for the 50 ppmw
solution shown in Figure 2. For this case 7* should have been
3 dynes/cmz. Transition takes place at 6 dynes/cmzo Thus tran-

sition and the Toms Effect take place simultaneously,

For each of the five solutions in Table 1, Hcritical may be
calculated. Thus for the first solution:
" _ 8x10”"%(5x10%) (3x10%)%(600)
critical (8.3X107) (300)
- -2
= 1.7X10 (161)

The other values of H may be calculated from the data

critical
in Table 1. They are shown in the right hand column of Table 1.

The data, as they stand, indicate that H equals .02, This

critical
is in excellent agreement with the theory.
Further excellent agreement is found if the data from Shin's
thesis is plotted in terms of L and H. The computation procedure
is quite straightforward. All of the data shown in Figures 3 and 4

are put in numerical form. There are thirty different points cover-

ing two different polymers in two different solvents, covering eight
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different molecular weights and 30 different concentrations. The
Reynolds numbers are also different,

For each of these thirty points, H and L are calculated using
(131) and (4). For our theory to be valid, this must produce a curve
of the form shown in Figure 7.

Figure 9 presents the results of this calculation for the
Polyox data shown in Figure 3. The remarkable superposition of
Shin's Polyox data is strong evidence that the parameters, L and H,
developed by this theory are the correct ones for describing the
Toms Effect. It should be noted that the Toms Effect begins at
H = .02, which is consistent with Pruitt and Crawford's data.

Figure 10 presents the results of this calculation for Shin's
PIB data. The scatter here may result from uncertainties in the
PIB data. It may also result from the defects inherent in the Rouse
model,

Figure 11 compares the data for Polyox in water and PIB in
cyclohexane, The resulting differences may be due to errors inher-
ent in the data (especially in the effects of molecular weight distri-
bution).

It seems that high molecular weight polymers of ethylene
oxide have broad molecular weight distributions in spite of the fact
that the theory predicts otherwise {(Flory, 1940). Elias (1961)
experimentally found raf,ios of '1‘\71; to '1\71: in the range of 10 to 20.
His work was done in water using the techniqués of ultracentrifuga-

tion and osmometry,
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Work done in Union Carbide laboratories (Koleske, 1966) is
in general agreement with Elias's findings.
If ¥ is arbitrarily set equal to 1.52 for the Polyox data and
1.00 for the PIB data then the agreement is much better, The result

is shown in Figure 12.

V-3 Conclusion

The major problem inherent in e.xplaining the Toms Effect
lies in reconciling two facts: first, momentum transport in wall
.turbulence is drastically reduced by polymer addition and, secondly,
‘this reduction is accomplished without a significant change in either
the solvent's density or viscosity.

This paradox may be resolved by realizing that the contribu-
tion of the polymer molecules should not be compared with the local
energy dissipation, a relatively large quantity, but should be com-
pared with the rate energy is diffusing from the sublayer towards
the main flow. This latter quantity is small, but extremely influen-
tial. By altering it, the polymer molecules alter the structure of
the turbulence and hence the wall stress.

The ratio of the contribution of the polymers to this small
diffusion term is called H. One of the objects of this theory is to
develop parameters for characterizing the Toms Effect. H and L
are these parameters, |

For the special case of low strain rate and dilute solution,
we have demonstrated that H may be quantitatively estimated and

that this estimate requires no arbitrary constants. Thus we are
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able to predict the onset of Toms Effect quantitatively. Experimen-
tally it appears to take place consistently where H equals .02,
The very nature of this explanation p:egludes the possibility
of discovery Qf a Toms Effect in free turbulent flows. If the latter
event is, in the future, observed for a singleﬂ dilute solution, then

Quf explanation for the Toms Effect must be incorrect.
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VIi. LARGE H

VI-1 Discussion of the Case for H Large Compared With One

In Chapter II we defined a dilute solution as one where
[n]c < 2.5x1072 (3)

In Chapter V we pointed out that low strain rate means essentially

that

< 10RT (162)
w o [nlMm

These two restrictions combine to restrict H as defined by (147) to
values of less than 2, Thus when one is talking about large H, one
is discussing an experiment which does not meet the restrictions
developed in earlier chapters.

The simplest restriction to relax is that of low strain rate.
For the full meaning of this and its effect on the Rouse model, the
reader is referred to Chapter III. Essentially we now assume that

the energy stored by the polymer molecules at high strain rate is

22 2
chlgn, M,
We —ar— o] (163)

Here the higher order terms in (113) are neglected. For the present
(163) should be looked on as the simplest assumption which might be
made, but not necessarily a valid one.

{(163) is of the same form as (81). Thus the argument in

Chapter IV is unaltered and we conclude that for high strain rate
Z
cM[n] T w

"7 (164)

H <
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The proportionality constant in (164) is unknown since the Rouse
theory certainly does not apply. Thus in the high strain case there

is an arbitrary constant which must be determined by experiment.

VI-2 A Law of the Wall for a Viscoelastic Boundary Layer

On the basis of experience we assume that the mean flow in
a smooth pipe, U, may be characterized by six independent vari-
ables, p, B, a; y, Tw and £, Here a is the radius of the pipe and y
is the distance from the wall., We assume that the effects of the
molecules vmay be characterized by a length scale £. Thus, in

general,

U.a
U _ T {
7[7;- ¢( & X,_) {165)

We suspect that in a viscoelastic sublayer, the radius of the
pipe enters in only in the elastic part of the profile determination,

Thus tentatively we write for our law of the wall

U_y
U _ T ¥
_— = 3( = _Xa2> {166)

U
T

This is a special case of (165). In principle, there is no reason why
(166) should be preferred over other possible choices. In practice,
(166) might be tested with experiment if we knew what £ is physically.

Assume now that H for large‘ strain-rate is of the form shown
in (164) and that the proportionality constant is known, Thus it is
meaningful to discuss H large compared to one.

By H large compared to one, we mean that the viscoelastic

terms are greatly stabilizing the boundary layer and that it is getting
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thicker. For large H we assume that viscosity is of secondary im-
portance in determining the velocity profile throughout the pipe.

Thus for large H we assume a law of the wall of the form
- vy
= ¥ (=5) (167)

By examining the argument used to derive H in Chapter IV,
we conclude that the viscoelastic lengm_scale, £, if it exists, must

scale as

2 2
,  cn) o M
0% —2 0o (168)
Po RT
for large H in dilute solutions. [n], is the intrinsic viscosity of

‘the solution at infinite strain rate.

VI-3 Velocity Defect Law for Large H

.The' difference between the maximum velocity Um at the
center of the pipe and the velocity anywhere else in the core is
called the ''velocity defect'', Um—U will be determined by the tur-
bulent fluctuations in the core which have been assumed independent
of p and £ for dilute solutions regardless of H, Thus the velocity
defect law must be exactly the same as tﬁat for the turbulent pipe
flow of the solvent, or

Um-U

U
T

=L 4n® (169)
X y

Here x is independent of the nature of the wall conditions and is

moreover a universal constant of turbulent flow, Experimentally

it is found (Schlichting, 1961) that for both rough and smooth pipes
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(169) becomes

u_-U

m = ol
U'r = 5,75 log (Y) (170)

We shall assume that (170) is valid for the flow of dilute

polymer solutions at large Reynolds number through pipes.

Vi-4 Resistance Law for Large H

If there exists a region in the pipe where both (170) and

(167) apply then in that region:

U
2 -y & = 5.7510g (-3) (171)
T a

Further if one assumes that the flow in the core is indepen-

dent of direct effects of viscosity, (165) becornes

U 1
o = 8d., 2 (172)
.
Thus
Im Qa,d (173)
U_ " *a
T
= T (%) (174)

Thus {171) becomes
£ Ly, - a.
() - 1[/(;52:) = 5,75 log (y) (175)

Since £, a and y are independent variables, (175) implies that in

that region:

Om T&) =57510g B+ C (176)
U'T' Tl T cg i3 o
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= y&¥) = 5.75 log (_!;)2:) +C, (177)
a a ‘
Here, C(‘) is an arbitrary constant.
The velocity defect law, (169), may be integrated over the

pipe's cross-sectional area to obtain
V = Um -3.75 UT (178)

V is the mean velocity of flow in the pipe. This equation will be
fairly good provided the boundary layer remains fairly thin. Sub-

stituting (176) into (178):

vV o g
ﬁ;-s.75 log () +C_ - 3.75 (179)

The constant derived by integrating the profile now gets stuck in the

arbitrary constant Cb so that the final result becomes

~ =
5 =
T

5.75 log(x) + G (180)

The definition of the friction factor, f, varies from author to

author. We prefer:

f= ) () (181)

Here (pl —pz) is the pressure difference between two static pressure
taps a distance L apart on a pipe, D is the diameter of the pipe, p is
the density of the solution and V is the mean flow velocity in the
pipe. An equivalent definition is

o S(UT)Z
= 8(~ (182)
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Thus our resistance law becomes

A1 - 2.0 log(%e-) + constant (1’83)
Vf
or more simply"
1 22
—= log(——z) + constant (184)
D

Recalling that from (168)

[n ]
o (——) (———————-——)R T , (168)

suggests that:

2 2
1 c I.Tl]aono M
— = log{=) + log —— (185)
Vi Po D“RT

+ constant

This is a result which may be directly checked with experi-
ment. The experiment would involve the use of a capillary tube
because largé wall stresses are required,

It wc‘;ﬁld» be desirable to use a single polymer sample initially.
In this g:ase,‘ for a variety of dilute solutions:

_— log(—-?—)' + constant (186)

Vi Po
This result is independent of Reynolds number, provided (168) is
valid.

Many experimenters in the literature report their data in

terms of ''friction pressure drop'’, or (pl -pz) for a given L, versus
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V. It is interesting to see what the effects of a viscoelastic boundary
layer would look like in this coordinate system. A glance at (181)

shows that in general
3 1
v = (—41:) E2) (p,-py)* (187)
f

Thus for a given sample put through a given capillary tube,

using (186),

[

Vo= K (log (7::) + kz) (p; -P,) (188)

here k, and kz are held constant in the experiment. In general,

1

i

_[2D\?
ko= (31‘:) (189)

VI-5 Comparison of Theory with Existing Data

White (1966) has performed experiments with some dilute
Polyox WSR301 solutions in the test apparatus schematicaliy shown
in Figure 13.

Essentially this is a miniature pipeflow facility powered by
a small D.C, motor whose speed can be continuously varied over a
ten-to-one ratio. The motor in turn acts through a gear box and
linear actuator to drive the plunger of a 5 cc hypodermic syringe at
various preselected speeds. Fluid velocities from 6 ft/sec to
60 ft/sec can be obtained in the six-inch long test section. This
corresponds to a water Reynolds number range of 1200 to 12,000
for the 0.023 of an inch inside diameter stainless-steel hypodermic

tubing used in White's experiments. The two pressure taps are 3
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«- Filling Cup

Pressure

Taps Y

[

Test Pipe
.023 in,
Inner Diam,

-
; ; “Three-way Valve

—- 5 cc Hypodermic Syringe

Variable-speed Motor

Cear Box ==

White's Apparatus

Figure 13
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inches apart and are connected to two separate strain gage pressure
transducers whose outputs are recorded on an oscillograph., The
exact fluid velocities are calculated from the time required for the
plunger to move a measured distance near the end of its stroke. Thre
fﬂling cup at the top of the apparatus also acts as the receiving vessel
when a test is in progress.

For White's experiment,
-1,
k) = (114 psi™")2 ft/sec (190)
We arbitrarily set:

k, = 12.60 {191)

If ¢ is measured in ppmw, V in ft/sec and P,-Py in psi, we predict

that for WSR301 in White's apparatus at 24°C,

i
2

V = (logc + 6.60) (.114 Ap) (192)

From (192), the predicted values of V forc= .5, 1, 2, 5, 10, 30
ppmw for pressure drops ranging from 10 to 100 psi may be calcu-
lated, These values are shown in Table 2, Figure 14 shows White's
actual data for ¢ = .5, 1, 2, and 30 ppmw WSR301 solutions. Figure
15 compares the theoretically predicted depen&ence of V on ¢ and
Ap with White's data.

The agreement for the lower concentrations is excellent. As
the solution starts to get concentrated, presumably the integrated
velocity defect law begins to get altered by a serious thickening of

the boundary layer.
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This agreement suggests that the Toms Effect will disappear
at high strain rate. This has been observed but has previously been

attributed solely to mechanical degradation of the molecules.
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VII. THE TOMS EFFECT USING POLYELECTROLYTES

VII-1 An Experiment

It is well known (Katchalsky et al., 1951) that aqueous solu-
tions of polymethacrylic acid, PMAA, possess the remarkable

property that in the presence of dilute acid

0.5

[n] = M (193)

while in a basic solution this dependence changes dramatically to

2.0

Physically in basic solutions sites on the molecular chain
become ionized and repel one another. Thus the coil expands and
turns into a rigid rod. In more real terms, changing the pH from
4 to 8 increases the intrinsic viscosity of an aqueous solution of
400,000 molecular weight PMAA 220 times.

A glance at (81) shows that this may have a dramatic effect
on H and hénce the Toms Effect, Further, since the pH can be
.changed reversibly, one should be able to switch on and off the Toms
Effect by merely alternately adding acid and base to a dilute solution.

A sample of polymethacryclic acid, PMAA, was kindly
donated by Dr. W, Peticolas of IBM. This sample was fractionated
by the method described by Arnold and Overbeck (1950). The first
two fractions were saved. The molecular Weights of these fractions

5

were determined as 4.8 + .5 X10° and 4.0 .5 X 10° using the

viscosity;molecular weight relation of Katchalsky and Eisenberg
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(1951).

Aqueous solutions of these fractions were mixed and forced
through a stainless steel capillary tube, .046'' in inner diameter.
This pipe flow apparatus is essentially a larger version of that
shown in Figure 12. The actual apparatus used is described in
detail by Hoyt (1965). The pressure drops between two points on
the pipe were measured. The velocity was held constant.

At 21.1°C, this device forces pure water through this tube
at 12.65 meters/sec. This implies that for this device the Reynolds

number for the flow of water is 15,100, Further.

3
Ii

5.59 X 10° dynes/cm® (195)

T .85 X 103 d‘:ynes/c:m2 {196)

£

for this case. From these numbers, L may be calculated for each
of the solutions. Table 3 presents the data for the .40 million
molecular weight material for pH less than 6 and f_orva greater
than 7. The solutions were made basic by adding a drop or two
of conc NaOH,
From Table 3 it is clear that the Toms Effect may be pro-
duced by merely changing the pH of a dilute polyelectrolyte solution.
The viscosity of the basic solutions depends on strain rate,
This is not surprising. However, for reasons which are not well
understood {see Nature, Vol 176, Dec. 10, 1955, p. 1119) concen-
trated basic solutions of PMAA possess the interesting property

that their viscosity appears to increase with strain rate.
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For example, the 3,070 ppmw solution with a pH of 6.6 was
placed in a series of Ubbelohde viscometers. The strain rate at the
wall (assuming a Newtonian fluid) can be estimated from the time it
takes the sample to flow through the viscofneter. It was found that
('qs-no)/no decreased with decreasing strain rate for this particular
solution. The exact results are shown in Figure 16.

This behavior is interesting because this same solution pro-
duces in turbulent flow an L of 65.0. Those who believe théf ""shear.
thinning'' produces the Toms Effect might well study these concen-
trated solutions of PMAA,

For the 4.8 X lOSvmolecular weight material, similar re-
sults were fdund, These are tabulaf:ed in Table 4.

A more graphic demonstration of the effect of pH on solution
may be seen in Figure 17. Here an unfractionated sample of PMAA
is mixed with water to producé a lérge volume of 100 ppmw solution.
The pH of this solution is 4.85. The pH of this solution was altered
by adding small amounts of concentrated acid or base. These solu-
tions were forced through Hoyt's turbulent flow rheometer and pH
plotted versus L.

As expected the Toms Effect can be produced or removed

at will merely by altering the pH of the solution.
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TABLE 3

Data for Turbulent Pipe Flow of Dilute

Aqueous Solutions of 4, 0X1 0° Molecular Weight PMAA

Concentration of L for L for
Solution (ppmw) pH<6 pH> 7
12.1 0.0 1.9

12.3 0.0 1.3
36.3 0.0 7.0
36.9 0.0 5.1
60.6 0.0 10.8
61.4 0.0 10.2

121 0.0 17.0

123 0.0 17.0

242 0.0 26.3

246 0.0 27.8

378 0.0 32.2

384 0.0 34.6

758 0.0 42.4

766 0.0 46.8
3,034 0.0 59.4

3,070 0.0 65.0
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TABLE 4
Data for The Turbulent Pipe Flow of Dilute

Aqueous Solutions of 4.8Xl1 05 Molecular Weight PMAA

Concentration of L for L for
Solution (ppmw) pH< 6 pH>17
12.9 0.0 3.8
38.7 0.0 8.9
64.5 0.0 12,7
129 0.0 21.6
258 0.0 33,0
404 0.0 42.5

809 0.0 51.4
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VIiIi., APPENDICES

A - The Rouse Matrix

The matrix R is well known. Hildebrand (1952) points out
that it appears in the problem of determining the small deflections
of a tightly stretched string due to a number of concentrated forces
applied at equally spaced points along the string,

The eigenvalues of R may be calculated by solving the canoni.
cal equation by difference algebra. We denote the determinant of the
(2 X £) matrix [Rij - e ksij] by the symbol Dﬂo (1 <4 €N). Thus,

for example, if £ equals 3, D3 equals the determinant of the matrix:

[ Z—ek -1 0
-1 Z-ek -1 (197)
1] -1 Z—ek

L 4

The various D.@ are related to one another by the recursion

relations:

D {198)

Dy =(2-¢)Dy_; - D, ,

We define initial conditions as Zi:)0 = 1 and D‘1 = 0 and let

o2 %k
= 2-2 coshy, = -4sinh” —= (199)

®x )

The solution for the difference equation (198} becomes:

£ Yk ‘ -4 yk
D£ = Ak e + Bke‘ {k not summed) {200)
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The constants, Ak and Bk’ may be determined for a given k by use

of the initial conditions. Thus

sinh(£+1)y,

Py = —omhy, (201)

l1<4 <N

DN should be equated to zero in order to determine the eigenvalues of
the (N X N) Rouse matrix.

Thus to insure that DN = 0,

_ wkV=1
Vi T TNFTT (202)

Thus

_ .2, 7wk
ek—4sm (—(———;-)2 NET (37)

The coefficients of the matrix A must satisfy (38), namely,

(Rij - ey Gij) Ajk =0 (‘38)

where k is not summed. This is equivalent to the set of recursion

relations:
(2-ep )iy - Ay =0

At lEe AL SALL =0 (2<i < N-1)

~A + {2-e o

N-1,k A

KN,k T

{k not summed)

The normalized solution of these recursion relations is:
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_ 2 kT
A = YT S (ke (39)
Thus the Rouse matrix possesses the unusual property that

its normalized modal matrix A is symmetric.
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B - Solution of (42)

Blatz (1966) was the first to note that (42) may be reduced to
a first order partial differential equation by a 3N-iterated use of the

two-sided Laplace transform. These transforms are defined as

follows:
® -piﬁi N
gy = S..S‘ ye I dﬁi {203)
-0 1
® -qiei N
g = 5.5 ye II dei {204)
= . 1
® Mg N
i: X‘..Sh.‘:ke Hdni (205)
— oo —— 1

These transforms may be readily inverted for the cases

under consideration by the use of the identity shown in (206},

exp(azyz +by+c) =

~ 2 2
1/2vr a 5 exp[- (-;(—a.) -% - yX - (%) +c] dx (206)

- 00

a# 0

In terms of the 3N transform variables, Pys 9 and T and
time, (42) becomes {(207) where (207) is shown on the next page.
Here use has been made of the facts that the fluid is incompressible

and that the sum of all the eigenvalues of R is 2N,
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The equations for the characteristics for (207) are given by

the 3N+2 set:

dt dp. dqi

= 1 =
T (e;=8,10p;-8,,9;-85, 7 7 -0;,p;+(e;-8,5)q,-05,r;

dr, d!ni
i - =
-0, .p.-0,,q.f(e.-8_Jr. * N
13 1 23 1 1 33 1 ze.(p.z+q.2+r-2)
p 01T

(i is not summed) {208)

Here eij are the nine dimensionless strain rates associated
with this problem. They are in general only functions of time. We
shall now consider two possible local flow fields, The first will be

the Rouse flow field where:

e = T @ coswT {209}

12

All of the other eij are set equal to zero.

The second will be the flow field where:

TYn
8y =3 = 933
(210)
9,25 -TYy

Here Y, is a constant and all the other beij’ are set equal to zero.
Other flow fields may be chosen. These two were chosen

for their simplicity,
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For the first flow field, integration of the equation for the

characteristics, (208), implies that:

t/27T,
=P.e 1
Pi =%y
t‘./?.'ri a
qi=Qie - pi (—5—'> sinwt (211)
t/27T.
r.=R., e i
i i

where T, are the retardation times of the molecule as defined by {48).
Pi’ Qi and Ri are integration constants along characteristics and are

independent of time,

Thus from (208),

N 2 2 2
dﬂng_ pi+qi+ri 212)
r-ram Z7, (21

i

(211) may be substituted into (212) and the resulting equation
integrated with respect to time. The integration constant is evaluated

using the result that as @ goes to zero, Y must approach io where
A
i‘-o = exp > {213)

The result of this integration as a function of P;» 9 and T, is:

N [hipf+2" Pt ap T }
= I ex (214)
g i=1 P 2
where
2 -2 .
h.=, + K, {i not summed) {215)
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and kappa and iota are defined in (46) and (47) respectively, (215)
may be readily inverted by repeated use of (206). When this is done

it is found that:

-3N/2 N |
_ 1 12 2, .2,.2
g = (27) irr-ll K; exp - > [Ki(éi- LiEi) tet ni] (45)

For the second flow field, integration of the equations for the
characteristics produces:
(ei- 91 1 )2 /T
(ei-ezz)t/'r
g, = Qi e {i not summed) {216)

(ei-633)t/7

Thus from (208},

N
T diny = ei(pi2+q§+r§) (217)

L =1

Then we substitute (216) into (217), integrate with respect to the
parameter t, evaluate the constant using (213), and then express

the resulting Y in terms of P;» 9 and T The result is that:

N e, e, e,
= II exp > [(———-—-—) P, +<‘——_'—')q- + ( — )r.](zw)
i i=1 2 ei-ell 1 ei 922 1 E;T;; i
(218) may be inverted using (206). This produces using (206) and (72}):
-3N/2 N 1/2
$ = (27) I (1+29i) (l-ei) X
i=1

exp - [ (1 -ei)af+ (1+zei)eiz+(l ~9i)nf} (71)
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C - Evaluation of Py,

Pm = nkTa cosw t H 5§S¢€ ln (_l}l__) dGJdEJdnJ (54)

In order to evaluate Pm it is useful to note that:

oo 1
_-éx
S. X e dx = 0 (219)
- 00
and
T L O £ 3
5 x e dx = e dx = (2m) (220)
-0 -0

Examination of (45) suggests that if we define a new coordi-

nate system (6%, €5 'qi) such that

6! = (6.-, €.)K, i not summed 221)
j (J j J) j (J ) (
then
d6.de.d (2 )’3N/2 i L6124 ¢2 +n%)| ds'de.d
. . . = m - 35{0, €. . s [ .
pdb de dn, 1 exp -z(d; g Ty ;d€;dn;

{(j not summed) (222)

Further (45) implies that

2 2

537 zng— = ,%% (8)% - 89 (i not summed)  (223)
1 [e] 1
which from (221) implies:
N
9 L - 2 1 v
€; aai In ‘I’o = E [ui € Hxi Ki) €; Gij (224)

i=1
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According to (54) this sum is to be averaged over the config-
uration space. Consider just the i—ﬂ-l- term of this sum., With the aid

of (219), (220) and (45) its average is just i..

Thus
N
P =nkTa coswt z v, {225)
m o i
i=1
Using (47), (225) becomes:
N T.(coszwt + w'risin‘wtcoswt)
P =g nsz 2 ~ (55)
m 2 2

1 +w, 7.
i1
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D - Evaluation of AF

The average energy storage per molecule arising from the

entropy reduction produced by the flow of dilute solutions is in general:

AF = -kTS\b&xLl;dV (65)
v

where V is the configuration volume. In the (63’€jmj) space defined

by (221):
N N
dv = II 48, de, dTS = II g, = dé! de, dn, {226)
j=1 J 3 j=1 J J 3 3

For Rouse's flow field the distribution function ¢ is:

-3N/2 N 2 2 2
$ = (27) I k., exp-1/2(6“+e; +n%) (45)
i=1 1 1 i 1
Thus,
N N
2. 2.2
Iny = -3N/2 in 27+ Ink, - 1/2 (6:" + ¢ +n)
i=1 i=1
Thus,

2

N
F/kT = 1/2 (1 + 3N fn 27) +1/2 Z In K (227)

i=1
(46) implies that when the solution is stagnant (ao = 0), Ki_z equals
one, Thus the change in the mean Helmholtz free energy due to the

deformation of the solution is AF, where:

AF = F - fl (66)
N 0, =0

AF = kT/2 Zmn fci‘z (67)
i=1

K{Z is defined in (46).
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E - Autoxidation and Biological Degradation

If a Polyox sample is neither aged nor subjected to excessive
heat or light, it will remain stable. However, as soon as water is
added, chemical degradation begins to take place. Schematically the
reaction is as follows (McGary, 1960):

One of the oxygen-carbon bonds in the polymer chain is at-

tacked by atmospheric oxygen present in the water. Thus:
2R-0-R‘+02-'* 2R -0 -0 -R'

Then this oxygen-oxygen bond is severed by catalytic decomposition
due to certain metal ions, such as ferrous, copper and silver ions.

Thus a cuprous ion is oxidized:

H,0+R -0-0-R! +Cut =R -0 +CuT+OH +HO - R’

Then the resulting cupric ion is reduced:
H,0+R-0-0-R'+Gu'' =R -0-0-+Cu +H +HO-R!

The net result is to leave the polymer chain severed.

McGary (1960) observed that the quality of water used in the
preparation of the polymer solution has a pronounced effect on the
stability of the viscosity of the solution. For example, tap water,
which contains chlorine and metallic salts, gives solutions having
lower initial viscosities and poorer long-term stability. Distilled
water stored in glass containers gives the most stable solutions.

Shin (1965) has observed that solutions may be stabilized by

adding .38% formaldehyde. He suggested that the degradation was
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due to ''bacterial attack on the polymers''. The formaldehyde, he
claimed, killed the bacteria and hence prevented them from eating
the Polyox. This conclusion is surprising in view of his evidence
that the solution underwent a rapid followed by a relatively slow rate
of degradation. For example, Shin found that ''solutions of Polyox
Coagulant normally had an intrinsic viscosity of between 20 and
28 d{ /g immediately after preparation, the exact value depending
upon the time of stirring''. Within a week the intrinsic viscosity
dropped to 18 df/g. ''Once it reached 18, the rate of degradation
thereafter became relatively slow. For instance, in one case it took
three months for the intrinsic viscosity to fall from 18 to 11.4 df/g."
In our view, this evidence does not support the hypothesis of
biological degradation. Presumably the bacteria continue to multiply
until all their food is gone or the solution becomes toxic. In the
former case the degradation rate should increase with time and the
intrinsic viscosity should go quite rapidly to zero. In the latter
case, the intrinsic viscosity should go to a constant value and remain
there for long periods of time, much as the properties of ''toxic''
.38% aqueocus formaldehyde solution remain constant for five weeks
at a time. Neither of these predictions are supported by experiment.
Formaldehyde is one of the most reactive organic chemicals.
Under alkaline conditions, silver, gold, cuprous; cupric and ferrous
ions are all reduced to metals by formaldehyde. (Walker, 1953)
Thus it is possible that the addition of formaldehyde reduces the

metal ions in the solution to a form in which they are ineffective as
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catalysts. Alternatively formaldehyde may be converted to formic
acid by the atmospheric oxygen and thus actively compete for oxygen

with the polyethylene oxide.

In either event, it is not clear from the evidence that the

action of bacteria is important in the degradation of Polyox solutions.
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