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Abstract

This thesis consists of two parts. The first part describes a specially designed high-speed

imaging system installed at the Sustained Spheromak Physics Experiment (SSPX). Thou-

sands of images have been obtained at SSPX using a high-speed, 1280 x 1024 pixel, cooled

and intensified CCD camera with double frame capability, and show unprecedented details

of the SSPX plasma. From these images, three different stages were identified according to

distinct plasma features. These stages are breakdown and ejection, sustainment, and decay.

During the breakdown and ejection stage, J×B forces push the plasma and stretches

the initial vacuum field into the flux conserver. As the plasma enters the field of view of the

camera, undulations in the expansion front are visible. These undulations are caused by fil-

aments formed in the gun region, and merge as they travel towards the flux conserver and

rotate around the chamber axis. In less than 100 μs after breakdown, a transient plasma

column is formed. Just microseconds after this, the column bends impulsively and seem-

ingly merges in the toroidal direction (around the axis of the chamber). It is conjectured

that the bending precedes a reconnection event that leads to magnetic flux amplification.

Images taken during the sustainment stage show the presence of a central column

which is very stable. Some images suggest nested current channels in this column. Com-

parisons of column diameter measurements versus numerical modeling (using the COR-

SICA code) are presented here. Bright and distinct patterns were observed on the surface

of the source cathode, and appear to be related to the sustainment column and open flux

surfaces. These patterns elongate toroidally in a constant direction which depends on the

bias field polarity. It is conjectured that the pattern motion is caused by E × B drifts, or

J ×B effects near the cathode surface.
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Most of the hardware was specially designed for the high-speed imaging system,

including a double-branch fiber bundle that was used to produce rough tomography (at

midplane) of the transient central column. The algorithm used for tomographical recon-

struction is based on a maximum entropy restoration method that was also used to improve

noisy and blurry images.

The second part of this thesis describes a 60-element magnetic probe array that was

constructed using miniature commercial chip inductors. The coils are oriented in orthogo-

nal directions to yield three-dimensional information. The probe has been used to investi-

gate magnetic evolution at the Caltech Spheromak Experiment.
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Chapter 1

Introduction

1.1 Spheromaks

Spheromaks are plasmas (ionized gases) with very large internal currents and internal mag-

netic fields and are in a nearly force-free equilibrium [1]. This means that currents and

magnetic fields are essentially aligned. In mathematical terms, force free equilibrium in

plasmas can be expressed as J×B ' 0, which implies that the current J is parallel (and
thus proportional) to the magnetic fieldB. Using Ampere’s law,∇×B = µ0J, the follow-

ing expression is readily obtained

∇×B =λB (1.1)

where λ is effectively an eigenvalue.

The spheromak is considered a plasma confinement concept and is toroidal in na-

ture. However, this concept has the interesting property that no materials such as magnetic

field coils or vacuum vessels link the torus (unlike other magnetic confinement configura-

tions, e.g. the Tokamak [2], the Stellarator [3,4] or the Reversed Field Pinch [5]). The first

wall (or first closed magnetic flux surface) of a spheromak is topologically a sphere. Both

toroidal and poloidal fields exist within this first wall, and the flux surfaces in which these

fields exist are closed. These are indeed defining characteristics of a spheromak and re-

sult from plasma self-organization that tends to the so-called Taylor (or minimum energy)

states [6,7]. In a relaxed state, the confinement of plasma by magnetic fields involves sym-

metry [1]. Lundquist [8] was the first to report the solution to Equation 1.1 in cylindrical
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geometry. He showed that this equation provides the simple solution

B =B
³
J1(λr)θ̂ + J0(λr)ẑ

´
(1.2)

where J0 and J1 are Bessel functions and B is a constant.

It is possible to solve Equation 1.1 in spherical geometry [9]. In this case, the poloidal

flux Ψ can be determined by evaluating the field Br that intercepts a dome-shaped surface

with a constant radius r subtending a conical angle θ about the z axis. The resulting ex-

pression for Ψ is

Ψ =
2πrB0a

λ(r2 + z2)

Ã
sin
¡
λ
√
r2 + z2

¢
λ
√
r2 + z2

− cos
³
λ
√
r2 + z2

´!
(1.3)

Figure 1.1 shows a plot with contours of constant Ψ. Although the flux configuration is

axisymmetric, the magnetic field on those surfaces is helicoidal. This condition makes

numerical modeling of spheromaks inherently difficult, making experiments necessary in

order to validate the theory. Interestingly (and presented here only as a curiosity), the

contours obtained from Equation 1.3 are mathematically the same as the ones obtained in

a special type of purely hydrodynamic configuration known as Hill’s vortex ring [10, 11].

Figure 1.2 shows an example of a very laminar vortex ring produced in a laboratory using

smoke in air. Note the similarity between the contours shown in Figure 1.1 and the ones in

Figure 1.2.

Spheromaks have been produced in laboratories around the world using various meth-

ods [13, 14] . Scientific research of these configurations has traditionally been geared to-

wards the goal of building controlled thermonuclear fusion reactors. However, since spher-

omaks arise from turbulent states by relaxing to organized (or at least less turbulent) states,

it is believed that this configuration occurs in nature. Thus, spheromak research is rele-

vant to other fields, such as astrophysical jet mechanics [15], solar prominence formation
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Fig. 1.1. Plot of contours of constant Ψ for a field that satisfies Equation 1.1. The vertical
axis corresponds to the z direction, and the horizontal axis to the r direction. The first wall
corresponds to the circumference with radius r = 1.5. Arbitrary units used on both axes.

and evolution [16–18], magnetospheric dynamics [22], and magnetic reconnection [20,21].

These and other applications are described in detail by Bellan in reference [23].

1.2 Bounded versus unbounded spheromaks

Until recently, all laboratory spheromaks had bounded walls, i.e., where the first wall of

the spheromak conforms to the shape of the vacuum chamber in which it is created. These

chamber walls are also used as flux-conserving boundaries, preventing the magnetic field

in the closed flux surfaces from escaping the chamber (at least on the timescale of the

experiment). As mentioned in the previous section, the main goal of spheromak research

is controlled thermonuclear fusion. For this reason, plasma confinement time, density,
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Fig. 1.2. Structure of a smoke ring. Image by R. H. Magarvey and C. S. MacLatchy [12],
reproduced with kind permission of the National Research Council of Canada.

and temperature are important parameters. If a spheromak fusion reactor is ever built, the

plasma temperature will have to be greater than 100,000,000 K.

Although recent experimental results at the Sustained Spheromak Physics Experi-

ment (SSPX, see Chapter 2) are encouraging [24,25], temperatures and confinement times

achieved in spheromaks are still orders of magnitude lower than those required for fusion

conditions. Thus, spheromak formation, sustainment, decay, and plasma-wall interactions

are ongoing areas of research crucial to fusion applications.

Many space plasmas, in contrast, have the property of being unbounded. These plas-

mas might be held together by gravity (like the Sun and other stars), or by magnetohy-

drodynamic (MHD) effects (like solar prominences), or by a combination of both (like

astrophysical jets). For the cases in which spheromak physics is relevant, the evolution of
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space plasmas might be topologically different from the evolution of bounded spheromaks,

even though the configurations might be similar after Taylor relaxation.

In any spheromak experiment (bounded or unbounded), the details of helicity in-

jection and how it can cause instabilities are poorly understood. Magnetic helicity, K =R
A · BdV (where B = ∇ × A), is the measure of the linkage of magnetic flux. If a

plasma obeys ideal MHD (i.e., the plasma remains ‘frozen’ to the field lines), then the total

helicity for that plasma remains constant [7]. The formation and sustainment of spher-

omaks can be modeled using concepts of helicity injection and decay [26]. At Caltech,

experiments are carried out to investigate the detailed physics of helicity injection in un-

bounded spheromaks1. A magnetized coaxial planar plasma gun [27] fires plasma into a

large (1.3 m diameter and 2 m long) vacuum chamber. The evolution of the spheromak’s

magnetic topology is studied on the sub-microsecond time-scale using high-speed photog-

raphy [28] and magnetic probes (see Chapter 8, also published in Reference [29]). Even

though the plasma gun is axisymmetric, photographs reveal the formation of reproducible

non-axisymmetric flux tubes (see Figure 1.3).

The study of bounded and unbounded spheromaks is helping elucidate the complex

dynamics involved in creating these self-organized configurations and the instabilities that

could destroy them.

1 The Caltech spheromak facility is the only experimental laboratory reported to date in which the sphero-
maks produced are considered unbounded.
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Fig. 1.3. Example of bounded and unbounded spheromak formation. Left, early formation
of the SSPX plasma. The walls of the cathode and anode act as a flux conserver. Chamber
axis is vertical. Right, kink formation in the unbounded Caltech spheromak facility (image
courtesy of S. C. Hsu and P. M. Bellan). Chamber axis is horizontal.

1.3 Why are spheromaks attractive candidates for
thermonuclear fusion?

The answer lies in the topological simplicity of the reactor chamber and magnetic system,

and the ability to contain high plasma betas2 [30]. Compared to the tokamak (consid-

ered the ‘conventional’ magnetic fusion concept), a spheromak reactor would result in a

much smaller mass, overall dimensions, and cost. Studies performed in the 1980’s [31,32]

showed that the mass of the fusion power core would be on the order of 500 tons. In con-

trast, the International Thermonuclear Experimental Reactor (ITER) [33], a tokamak that if

built will produce the first burning plasma that could yield fusion power 10 times the input

power, is expected to have a mass of 20,000 tons.

2 Plasma beta, or β, is the ratio of hydrodynamic to magnetic pressure, i.e., β ≡ 2µop/B2, where p is the
plasma pressure, B is the magnetic field, and µo is the permeability of free space.
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Of all the known fusion reactions, the deuterium-tritium (D-T) reaction has the high-

est reaction rate for the lowest temperature, 60 keV3. Even at temperatures of 10 keV (which

are more likely for practical fusion reactors) the D-T reaction rate is still higher than all oth-

ers by at least an order of magnitude [34]. This fact, together with the extremely low costs

expected for obtaining deuterium and tritium, makes D-T the best candidate for the first

commercial fusion energy reactor. The D-T reaction yields a total of 17.6 MeV [35]

D+ T→ He4 (3.5 MeV)+ n (14.1 MeV) (1.4)

which is about an order of magnitude higher than the nuclear yield per fuel mass in typical

fission reactors. The ionized alpha particles (He4) would be trapped inside the closed mag-

netic flux surfaces (until removed through divertors), but the neutrons would easily escape

across the magnetic field. A way to slow down the neutrons produced in a fusion reaction

would be to use liquid metal and molten salt walls. This would be a way of converting

neutron kinetic energy into thermal energy for commercial energy generation, without the

problem of activating or damaging the reactor walls.

A recent study by Moir et al. [36] proposes a spheromak fusion reactor with liquid

molten salts and liquid metal walls. Figure 1.4 shows this design next to the more detailed

ITER design. Note that both designs are approximately equal in size. However, liquid

walls would be easier to implement in a spheromak reactor due to its simple shape.

It is very likely that ITER will be the first experimental device to study the physics of

burning and magnetically confined plasmas under reactor-relevant conditions. The design

and engineering of materials and components to withstand harsh neutron bombardment and

temperature conditions will also be a valuable contribution to future commercial fusion en-

ergy reactors. Hopefully, the parallel research and development of alternative concepts like

3 The temperature associated with 1 eV is 1.1604× 104 K.
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Fig. 1.4. Left: Liquid wall spheromak reactor design by Moir et al. [36] (reproduced with
kind permission of the author). Fusion power 2500 MW, energy amplification Q = 20.
Liquid walls conform to the shape of the reactor by centrifugal forces from the rotation
of the reactor walls (mechanisms complexity not shown). Right: Artist concept of the
ITER design [37] (reproduced with kind permission of ITER). Fusion power 500 MW,
energy amplification Q = 10. Energy conversion from neutron to electrical power is not
incorporated in the ITER design. The spheromak, unlike the tokamak, has no coils linking
the closed magnetic surfaces.

the spheromak will benefit from the knowledge gained from ITER, resulting in commer-

cially viable and environmentally friendly energy production reactors in the near future.

1.4 Motivation behind the present work

The motivation behind the work in this thesis is to further understanding of spheromaks.

To aid in the study of phenomena such as reconnection and filamentation, a high-speed

imaging systemwas installed at the Sustained Spheromak Physics Experiment (SSPX). The

imaging system has the advantage of being completely passive and remote (does not perturb
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the plasma), and its field of view covers most of the plasma volume. With phenomena such

as filamentation and plasma-surface interactions being important in any magnetic fusion

configuration, photographic images provide researchers the unique opportunity to visualize

these features with a great level of detail. Images allow, to some extent, the possibility of

measuring the size and position of these features. If several images per shot are acquired,

it is sometimes possible to also measure their displacement and velocity (the camera used

at SSPX provided two images per shot). These characteristics made the high-speed camera

system a stand-alone diagnostic. Furthermore, the capability to synchronize the images

to known signals (typically plasma breakdown) allowed the coordination of the camera

timing with other diagnostics installed on SSPX. Thus high-speed images served also as a

complement to other diagnostics.

Another important diagnostic for plasmas is the signal from magnetic probes. At

SSPX, magnetic probes are placed at the walls of the flux conserver. Measurements from

these probes serve as constraints for numerical reconstruction codes. Given these con-

straints and certain assumptions, the magnetic field can be estimated for all the plasma

volume during a given shot. Unfortunately, non-axisymmetric complex structure in the

magnetic field usually cannot be reconstructed using these codes. To measure this com-

plex structure, probes immersed in the plasma are necessary. However, at SSPX the ability

to produce high-temperature plasmas is very important, and thus these intrusive probes are

undesired since plasma interaction with the surface of probes might create impurities that

decrease, through atomic line radiation, the maximum temperature achievable in a plasma

shot.

At the Caltech Spheromak Experiment the cleanliness requirements are not as strin-

gent as at SSPX. Although at Caltech the spheromaks produced are considered unbounded,

it is also interesting to investigate how magnetic fields evolve in this configuration. For
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this reason, a multielement magnetic probe was installed at the Caltech Spheromak Exper-

iment. The probe consists of sixty commercial miniature chip inductors that are arranged

in a linear array of twenty clusters (20 mm apart from each other). Each cluster measures

the magnetic field in three orthogonal directions, thus yielding three-dimensional informa-

tion of the magnetic field at the probe location. The probe has been used to create contour

maps of the magnetic flux from the unbounded spheromaks produced at Caltech.

1.5 Organization of this thesis

This thesis consists of two parts and a summary (Chapter 9). The first part covers the imple-

mentation in SSPX of the high-speed imaging system and the measurements obtained with

it, and it spans chapters 2 through 7. The second part covers the details of the multielement

magnetic probe, and is presented in Chapter 8.

The breakdown of the high-speed imaging part is as follows. A description of SSPX

is presented in Chapter 2. The high-speed imaging hardware, including details of the op-

tics, vacuum equipment, the camera, and remote operation of the equipment, are presented

in Chapter 3. A classification of stages according to features seen in the high-speed images

during a plasma shot in SSPX, is presented in Chapter 4. Measurements of the sustain-

ment central column diameter (boundary of the open field lines) using high-speed images,

and comparison to CORSICA (an MHD equilibrium reconstruction code), are presented in

Chapter 5. Measurements and analysis of bright patterns observed near the surface of the

cathode (inner electrode), are presented in Chapter 6. An image restoration method based

on the maximum entropy principle (applied to information theory), and an adaptation of

this method to rough tomography using only two projections, are presented in Chapter 7.
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Chapter 2

The sustained spheromak physics experiment

2.1 Introduction

In this chapter, an overview of the Sustained Spheromak Physics Experiment, SSPX, is

presented. The SSPX is funded by the United States Department of Energy, and has been in

operation at Lawrence Livermore National Laboratory (LLNL) since 1999. The motivation

for SSPX is to explore the viability of the spheromak configuration as a thermonuclear

fusion reactor. This experiment is aimed to address basic questions about the physics of

spheromaks:

• How do currents in the spheromak plasma produce the spheromak configuration?

• How well do spheromak magnetic fields contain hot plasma?

This experiment, however, is intended to handle relatively cool temperatures (< 1 keV),

not fusion level temperatures (about 10 keV), and is considered part of a group of concepts

[1] that are classified as alternative1 to the tokamak for fusion. In the scale of experimental

magnetic fusion experiments, SSPX is relatively small in size, but with a diverse set of

diagnostics. Figure 2.1 shows a picture of the outside of the vacuum chamber.

SSPX uses a magnetized coaxial gun to form and sustain the configuration by inject-

ing helicity, K ≡ R A · Bd3r, into a flux conserver. The total helicity in a spheromak is
1 In the U. S. they are called Innovative Confinement Concepts, or ICC’s.
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Fig. 2.1. Picture of the SSPX vacuum vessel, and the diagnostics around it. SSPX team
members shown in this image (from left to right): Reg Wood, Chris Holcomb, and Harry
McLean. Image courtesy of Dave N. Hill.

proportional to the stored magnetic energyW ,

2µ0W = λK (2.1)

where λ comes from the force free field solutions to ∇ × B = λB. The outer shell of

the flux conserver serves as one electrode of the coaxial gun (typically the anode), and the

inner shell serves as the other electrode (typically the cathode).

Helicity decays on a resistive time scale even for a weakly resistive plasma, unless

there is a source that compensates for that decay. For a coaxial magnetized plasma gun, the

rate of helicity injection is 2ψgV , and so the helicity balance equation can be written as

dK/dt = 2ψgV −K/τK (2.2)
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Fig. 2.2. Left: Installation of the flux conserver into the SSPX vacuum chamber. Right:
Cuttaway view of the flux conserver. Images courtesy of Dave N. Hill.

where V is the gun voltage, ψg is the gun magnetic flux, and τK is the helicity decay time.

Therefore, for a sustained spheromak, dK/dt ≈ 0.
Figure 2.2 shows the 1-meter diameter flux conserver. The outer shell of the flux

conserver has an opening that is held together by an array of posts. This opening is about

5 cm wide and is used for giving access to plasma diagnostics. The posts ensure good

electrical conductivity between the lower and upper parts of the flux conserver shell. To

create and sustain spheromaks, the SSPX facility has a large capacitor bank that can deliver

peak currents > 400 kA, and sustain currents > 200 kA for more than 2 ms. The total

plasma duration is 4 ms for a typical experimental shot (see Figure 2.3). Figure 2.4 shows

a side view of the SSPX chamber, with the CORSICA numerical MHD reconstruction [2]

of magnetic flux contours during sustainment. Open and closed magnetic flux surfaces are

expected inside the flux conserver during gun current sustainment.
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Fig. 2.3. Typical gun current (in amperes; upper frame) and voltage (in volts; lower frame)
at SSPX.

2.2 Operation parameters

The goals of SSPX [3] include the following parameters: n = 0.5 − 3 × 1020 m−3, Te ≈
Ti = 0.1− 0.5 keV, B = 0.5− 1.5 T, and Ip = 0.5− 1.5MA. Recent experimental results
have increased the level of understanding of fluctuations in the spheromak plasma [4] and

have led to a new mode of operating the SSPX gun [5]. This new mode gives the highest

gun voltage during sustainment and the highest sustained helicity injection rate observed in

SSPX. The more recent plasma parameters for a typical experimental shot [6] are presented

in Table 2.1.
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Fig. 2.4. SSPX with CORSICA modeling of equilibrium field profile. Image courtesy of
Dave N. Hill.

2.3 Bias flux configuration options

The SSPX machine has 9 coils that can be used to produce a bias magnetic field for every

plasma shot. All the coils can be selected individually for a particular shot. The coils and

their identification numbers are shown in Figure 2.5. Depending on the combination of

coils chosen and the polarity of the current in each coil, different configurations of the bias

magnetic field can be produced. Some of those configurations are shown in Figure 2.6.

2.4 Diagnostics

SSPX is one of the best diagnosed experiments considered alternate to the tokamak. Figure

2.7 shows the main diagnostics and their position in the SSPX machine, and Figure 2.8

shows the position of the edge magnetic probes on a side view of the flux conserver. The
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Fig. 2.5. Bias magnetic field coils at SSPX. Each coil is given a unique identification num-
ber, and can be operated independently from the others. Image courtesy of Dave N. Hill.

Fig. 2.6. Different bias flux configurations at SSPX. (a) Standard flux. (b) Modified flux.
(c) BCS. (d) BCM. (e) BCH. (f) BCH2. Images courtesy of Dave N. Hill.
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Fig. 2.7. Top view of SSPX diagnostics. Image courtesy of Dave N. Hill.

Fig. 2.8. Toroidal location of magnetic probes. Two arrays of magnetic probes at the wall
of the flux conserver are shown: at 90 ◦ and at 292 ◦. Image courtesy of Dave N. Hill.
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Radius of magnetic axis (m) 0.31
Minor radius (m) 0.23

Discharge current (kA) 200
Toroidal current (kA) 400
Edge poloidal field (T) 0.2
Pulse length (ms) 3.5

Electron temperature (eV) 20-200
Lundquist number, S 105
Fluctuations (kHz) 20
Plasma density (m−3) 5× 1019

Table 2.1. Typical SSPX plasma parameters.

diagnostics are listed in Table 2.2. Rows 1 through 24 in Table 2.2 are described byMcLean

et al. in Reference [7]. The high-speed imaging system in row 25 is described in detail in

Chapter 3.

Diagnostics are normally armed (or prepared) before each plasma shot. The trigger

signal for a particular diagnostic usually comes from the closing of the discharge capaci-

tor bank switch, or from a sensor that measures plasma breakdown and gun current. The

diagnostics can be operated independently. All the data recorded by the diagnostics is dig-

itized and compiled in a computer server that can be accessed through the Internet (usually

restricted to SSPX team members).
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Diagnostic Measures Time resolved? Spatial profile?
1. Profile Thompson scattering ne, Te Gated - single meas. Yes
2. CO2 laser ne Yes Two chords
3. USPR ne, fluctuations Yes Yes
4. Transient Internal Probe InternalBt, fluctuations Yes Yes
5. 16 ch. photodiode bolo array Prad energy loss distribution Yes Yes
6. 3 ch. filtered bolo array Prad,Wrad Yes Views midplane
7. 1 channel thermistor Wrad Integrating Views midplane
8. SPRED spectrometer Wrad, Te, Spectral rad. Integrating Single chord
9. Ion doppler spectrometer Ti, Vi Yes Can view select. chords
10. Wall magnetic probes Bp,Bt at wall Yes Wall profile in z, theta
11. Flux conserver Rogowskis Flux conserver posts current Yes Slot profile in theta
12. Visible spectrometer Impurities Integrating Single chord
13. Hard x-ray Runaway electrons Yes Single point
14. VUV monochrometers Line ratios, impurities, Te Yes Two chords
15. MidplaneHα array Neutral hydrogen Yes Yes - 10 chords
16. InjectorHα Neutral hydrogen Yes Single chord
17. Injector TV camera Discharge visible light Gated - single point Yes
18. Midplane TV camera Discharge visible light Gated - single point Yes
19. Bank Rogowskis Cap. bank current,Winput Yes NA
20. Injector voltage Injector voltage,Winput Yes NA
21. Bank room TV camera Monitors for arcs Yes Yes
22. Injector room TV camera Monitors for arcs Yes Yes
23. Residual gas analyzer Vacuum sys. H2O, evolved gas Yes NA
24. Vessel pressure Vacuum sys., gas valve ops. Yes NA
25. High-speed ICCD camera Discharge visible light Gated - double point Yes

Table 2.2. List of SSPX diagnostics. Rows 1 through 24 are described in detail in Reference
[7]. Row 25 is described in Chapter 3.
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Chapter 3

Design and construction of the high-speed
imaging diagnostic

3.1 Introduction

In this chapter, a description is presented of the design, construction, and operation of the

high-speed imaging diagnostic for the Sustained Spheromak Physics Experiment, SSPX.

The purpose of this diagnostic is to obtain images of the SSPX plasma during a discharge

and use those images to

• help understand spheromak formation dynamics,

• measure, together with other diagnostics, quality of confinement,

• help in validating theory and numerical modeling of the SSPX spheromak,

• help in troubleshooting malfunctions of the equipment.

Various pieces of hardware had to be specially designed, built, and tested to accom-

plish this. A wide field of view and high-resolution are desired in order to obtain the most

information from a single photograph. This principle was taken as the driving requirement

in the design of the high-speed imaging system installed in SSPX. In addition to this re-

quirement, operation, safety and machine constraints also had to be taken into account.

The total set of requirements as agreed with the SSPX team during the design phase are

summarized in Table 3.1:
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1. The re-entrant ports shall be high-vacuum compatible.
2. Components exposed to plasma shall withstand ~40 MW of radiated power
and 0.2 T fields during ~2ms, repeating every 3min.

3. To view the entire flux conserver, a high angular field of view is
desired ( >90deg ).

4. The vacuum components shall be bakeable to 200 oC.
5. All components shall be serviceable and removable.
6. The system shall withstand gettering.

Table 3.1. Design requirements for the high-speed imaging system

A description of the hardware is presented in the sections below and is organized

as follows. The vacuum hardware needed to obtain optical access to the flux conserver

is presented in Section 3.2. The high-speed camera is presented in Section 3.3. Optical

access to the flux conserver was challenging. However, it was possible to obtain images

from up to two different views simultaneously with specially designed lenses and coherent

optical fiber bundles. Details of the optical hardware are presented in Section 3.4. The

manufacturer of the high-speed camera specified that the camera should not be operated in

strongmagnetic fields. For this reason, a magnetic shield had to be designed and installed to

attenuate the field near the camera. Details of the magnetic shield are presented in Section

3.5. Camera mounts and supports are presented in Section 3.6.

3.2 Vacuum system

The SSPX vacuum chamber uses standard metal seal flanges1 to maintain high-vacuum.

This same standard was used for the re-entry port vacuum flanges used in the high-speed

imaging system. All the metal components were made from 304 or 316 grade stainless

steel. Both types of stainless steel are non-magnetic and do not interact chemically with

1 This type of flanges are commonly known as ConFlat, CF or knife-edge flanges.
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other materials and gases used in the SSPX vacuum chamber. The vacuum system flanges,

ports and mechanisms (those that would remain attached to the chamber during baking)

were chosen or built to withstand an equilibrium temperature of 200 oC, as specified in

Table 3.1.

3.2.1 First generation re-entry port system

It was determined that the camera lens should be placed close to the edge of the flux con-

server to have a high angular field of view (design requirement 3 in Table 3.1). However, it

was not desired to modify the shape of the flux conserver or drill holes through it. For this

reason, the width at the midplane opening (∼ 5 cm) of the flux conserver was taken as an
additional constraint.

The SSPX port originally assigned to the high-speed imaging diagnostic was located

at SSPX toroidal position 22.5 ◦ (see SSPX schematics in Chapter 2), and had an 8 inch CF

flange. The nominal inner diameter of an 8 inch flange is 6 inches. This inner dimension

constrained the distance to the flux conserver at which the camera could be placed, since

the high-speed camera (which is bigger than 6 inch on any of its sides) would not fit inside

the re-entry port.

In order to take visible light photographs, a window was required in the re-entry port.

The window used in this design was made of sapphire. Gettering, which is the process of

depositing a thin film of contaminant-trapping material in plasma-facing components, was

of concern because it could coat the window. Titanium is used as the gettering material

at SSPX. Although the transmissivity of light through an exposed window is almost un-

changed on a single gettering session, over many sessions the window eventually becomes

opaque. For this reason, a shutter was designed and installed on the re-entry port to protect

the window.
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Fig. 3.1. Computer rendering of the first generation re-entry port. Upper left: plasma facing
side of the port. The shutter mechanism is seen in closed configuration. Upper right: rear
view of the re-entry port. Optics and other components can be placed inside the port and
remain at atmospheric pressure. Note: Colors added for clarity. Most parts are stainless
steel or ceramic. Bottom: exploded view of the re-entry port. 1) Bellows with support and
flange. Used to transmit force between the shutter and latch mechanisms while keeping
vacuum. 2) Bolts 1/4-28 x 1 inch. 3) Bolts 8-32 x 3/4 inch. 4) Latch mechanism. 5)
Re-entry shell. The bigger OD is 8 inch. The knife-edge (not shown) is on the shutter side.
6) Shutter mechanism. 7) Small re-entry shell with window.

The complete design of the first generation re-entry port is shown in Figure 3.1. It

was called the first generation re-entry port because it was the first high-speed imaging

port to be installed at SSPX, with a window so close to the plasma. The latch shown in

Figure 3.1 was operated manually, making it necessary for a member of the SSPX team to

close the shutter before every gettering session, and open it for imaging. The shutter could

be left open or closed during experimental runs, and if the camera was not in operation,

it was decided to leave it closed to reduce damage to the window (from direct plasma

impingement) during plasma shots.
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Fig. 3.2. Schematic view of the position of the first generaiton re-entry port in SSPX. Left:
top view showing re-entry port installed at the 22.5 ◦ port. Right: side view. Note in both
views that the small part of the re-entry port is very close to the inner edge of the flux
conserver. Images courtesy of Harry S. McLean.

Figure 3.2 shows a schematic view of the position of the re-entry port in SSPX. Figure

3.3 shows a computer 3D rendering of the re-entry port in open and closed configurations

as viewed from the inside of the flux conserver. The ceramic disk shown in this figure is

the widest component of the shutter mechanism and has a diameter of 1.54 inch (39 mm).

There was enough clearance between any of the components of the re-entry port or

shutter mechanism, and the flux conserver (including the posts that hold the flux conserver

shell) to avoid mechanical interference and minimize the possibility of electrical arcs that

could damage the mechanisms. In SSPX, induced currents could be strong enough to spot-

weld metal components together. For that reason, care was taken that none of the moving

parts had metal-to-metal moving joints. Instead, metal-to-ceramic joints were used for the

vacuum components of the shutter mechanism, and metal-to-teflon was used for the latch

mechanism, which was at atmospheric pressure.

The first generation re-entry port was tested for mechanical operation and leaks at the

Caltech spheromak vacuum chamber before installing it on SSPX. All tests at Caltech were
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Fig. 3.3. First generation re-entry port viewed from inside the flux conserver (FC). The
posts that hold the outer shell of the flux conserver are not shown for clarity.

satisfactory. Once shipped to SSPX, it was leak-checked again and then installed in the

SSPX chamber. Images were successfully taken through the re-entry port’s window using

the high-speed camera.

The shutter mechanism eventually failed (by getting stuck and remaining in the open

position) after hundreds of plasma shots taken over more than three months. The window

was also damaged (metal-coated) so severely that it was not possible to continue taking

images through it.

3.2.2 Failure analysis of the first generation re-entry port system

It was not possible to know the cause for the shutter mechanism failure until the re-entry

port was taken off the SSPX vacuum chamber. Visual inspection of the shutter mechanism

revealed that its components had been repeatedly impacted by energetic plasma. Direct

plasma impingement caused sputtering, melting and deformation of metal surfaces. This

plasma impingement also caused erosion of ceramic surfaces in a manner analogous to

the desert wind and sand eroding the nose of the Great Sphinx in Egypt. Sputtering was

possibly the cause for the window being metal-coated, since sputtered particles from metal
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Fig. 3.4. Failure of the shutter mechanism. Melting, sputtering and erosion by direct
plasma impingement caused the mechanism to get stuck.

surfaces could land anywhere, including the nearby window. Figure 3.4 shows a picture

of the shutter mechanism after failure. The ceramic disk and bushings shown in the figure

were white and smooth before operation in SSPX. After hundreds of plasma shots, erosion

is clearly visible at the edge of the disk.

The window was salvaged and returned to excellent operation condition by carefully

removing the metal coating. This was done by polishing the window with a diamond paste

using a specially designed drill bit to create a rotary mini-polisher.

3.2.3 Second generation re-entry port system

It was decided to redesign the first generation re-entry port after inspection of the damaged

window and shutter mechanism. A new set of design requirements was created based on

the failure analysis of these components. In addition to the requirements in Table 3.1, the

following specifications were made to provide a new guideline for the re-entry port system

redesign:

• The shutter should be placed as far from energetic plasma as possible, while

effectively protecting from gettering.
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• A removable or retractable port is desirable to minimize damage from sputtering and

prolong the window lifetime.

The shutter in the resulting new design was made of Macor (a machinable ceramic)

and was much simpler and remained farther away from the plasma than the previous shutter.

The window port was made retractable via a bellows and thus could be moved away from

the plasma when not in use. The maximum stroke length of the bellows was 7 inch.

This new version of the high-speed imaging re-entry port is shown in Figure 3.5

and Figure 3.6. Three identical re-entry port systems were fabricated to take advantage of

available ports in SSPX. All three ports and shutters were installed on SSPX at the same

time. To the time of writing of this chapter, the ports had withstood thousands of plasma

shots and are in good operating condition.

3.2.4 Electromechanical controls and interlock design

A remotely operated ball drive actuator (shown in Figure 3.6) was used to move the port

into and away from the flux conserver. A special controller box was designed and built to

provide power to the motor of the actuator. Three units of this controller were built, each

corresponding to a different re-entry port unit. Figure 3.7 shows the assembled controller

box.

To protect the window, the re-entry port was moved away from the flux conserver

before the getter process was activated. This was done by manually selecting the direction

of travel at the controller box. An interlock was installed between the getter controller and

the re-entry port controllers to prevent damaging the window from gettering in the event

that the SSPX operator forgets to retract the re-entry ports. The wiring diagram of the

controller box and the interlock system is shown in Figure 3.8. Two limit switches installed
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Fig. 3.5. Cuttaway view of the SSPX chamber with the second generation re-entry port.
Upper images show the re-entry port retracted and the shutter protecting the window from
gettering. Middle images show the port moved close to the edge of the flux conserver.
Bellows not shown in these images. The lower image shows the re-entry port with the
bellows, in the retracted position.
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Fig. 3.6. Exploded view of the second generation re-entry port. The part numbers starting
with SPX were created for this project. The engineering drawings corresponding to those
part numbers are archived with the Caltech Plasma Physics Group.
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Fig. 3.7. Controller box for the ball drive actuator of the second generation re-entry port.

on the re-entry port allowed flexibility on choosing the re-entry port position close to and

away from the flux conserver.

3.3 High-speed camera system

Photographing plasmas is a challenging task, because of the speed at which features change

in the plasma. Typical plasma duration in spheromak experiments ranges from a few mi-

croseconds to milliseconds, with plasma light intensity and topology varying dramatically

in these time ranges. Plasma features (filaments, spots, etc.) cannot be photographed with

commercial film or CCD cameras because their shutters are not fast enough. Even if they

were, the film or CCDs are not sensitive enough at the required short exposure times. To

overcome these problems, a specialized camera is used which has light intensifiers and
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Fig. 3.8. Electrical wiring diagram for the controller box of the second generation re-entry
port and interlock for the SSPX getter. Courtesy of Robert Geer, LLNL.
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Fig. 3.9. High-speed camera used to photopraph SSPX plasmas. The dimensions of the
DiCam-Pro unit are 120(W) × 180(H) × 340(L)mm. The camera was ordered with a
standard Nikon lens mount. Image courtesy of The Cooke Corporation.

electronic shutters (gates) that allow nanosecond shutter speeds and photon-counting capa-

bilities.

Experience with the spheromak plasma imaging at Caltech was helpful in choosing

an appropriate camera to capture SSPX plasmas. After review of several brands and types

of cameras, it was decided to use the DiCam-Pro camera from The Cooke Corporation [1].

The camera, shown in Figure 3.9, included a fiber optic cable, a PCI board installed on a

computer, and the software to control the camera and process the images taken with it. The

specifications for intensified CCD (or ICCD) for this camera are shown in Table 3.2.

12-bit dynamic range
Shutter down to 3 ns
Sensor resolution: 1280× 1024 (VGA)
ICCD Cooled down to −12 ◦C
2 images per shot with interframe time down to 500 ns
25 mm MCP image intensifier
Spectral sensitivity: 280 nm to 1000 nm.

Table 3.2. Specifications of the DiCam-Pro ICCD.
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Operation of the camera was simple once the camera was installed at SSPX. A user

needed only to turn on the power to the camera, wait about three minutes (for the elec-

tronics to be cooled down), and run the software on the system computer. The trigger for

the camera was a low-voltage electronic signal that came from the SSPX gun current sen-

sors, and thus most of the timing of the images was programmed with respect to plasma

breakdown.

3.3.1 Remote control and operation of the high-speed camera

The computer used to control the DiCam-Pro had the Windows ME operating system [2].

A program called VNC [3] was installed on this operating system. This program, like many

others commercially available, allows for the control of the host computer by a remote user

over the Internet, as if the user was sitting in front of the host computer. The Internet

connection between the SSPX control room at Livermore, and any computer at Caltech is

fast enough to allow a reliable operation of VNC. Given this, it was possible to control the

high-speed camera (situated at LLNL, over 300 miles away) from Caltech.

Interaction with a computer outside the LLNL’s network, specially when download-

ing data from an experiment, required special approval from LLNL’s management. Strict

LLNL policies required two levels of security on the communication between computers at

SSPX and Caltech. The first level was a firewall for the entire LLNL network. Authoriza-

tion to allow a remote computer’s IP address through the firewall was required for every

session. The second level was the encryption of all communication using a program called

VPN [4]. Both levels of security required a username and a one-time password (OTP)2.

2 One-time passwords, or OTPs, are passwords that contain two parts. The first one is chosen by the user and
can be considered permanent (hence the name one-time). The second part is a six-digit number that randomly
changes every thirty seconds. For this second part, a device given to each user (similar to a stopwatch) tells
the number that is sinchronized with the main server. The user must type both parts of the password before
every session.
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Communication with team members at the SSPX control room was essential when

operating the high-speed camera remotely. During experimental campaigns, a chat window

on an Internet browser (also inside the secure connection) was used between teammembers

at the SSPX control room and the remote user controlling the high-speed camera. The chat

channel was dedicated to SSPX operations, and only authorized users could login in. All

text typed through the chat channel was recorded and archived in a LLNL server.

3.4 Optics

The dimension constraints mentioned in Section 3.2 and the dimensions of the high-speed

camera (see the caption of Figure 3.9) made it necessary to place the camera away from

the flux conserver. However, to obtain a high angular field of view as required in Table

3.1, it was necessary to have a wide-angle lens as close as possible to the edge of the flux

conserver. To bridge this gap between the lens and the camera, a relay lens was used. In

the following sections, the different relay lenses used in the high-speed imaging system at

SSPX are presented, including the double fiber bundle used to obtain simultaneous images

from two different ports.

3.4.1 First generation relay lens

The first generation relay lens was specially designed for the first generation re-entry port

(Section 3.2.1). Off-the-shelf relay lenses do exist for industrial and commercial applica-

tions. However, none of these were useful for the high-speed imaging system at SSPX.

The main reason was that the outer diameter of the relay lenses was too big to fit in the

re-entry port. For this reason, a specially designed relay lens had to be constructed to fit in
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the re-entry ports of the high-speed imaging system. Only wide angle lenses that would fit

through the small re-entry port’s inner diameter (35.14 mm) could be used.

A ray tracing computer program called OLIVE [6], distributed by Edmund Industrial

Optics (EOI) [7], was used to design the optical layout for the relay lens. Achromat lenses

from EOI were chosen to relay the light from the wide angle lens to the high-speed camera.

The distance between optical components inside the relay lens, as well as the theoretical

aberrations at the image plane were calculated using OLIVE. Figure 3.10 shows the theo-

retical performance of the first generation relay lens calculated with OLIVE. Figure 3.11

shows the assembled relay lens. The wide angle lens used was a Computar 2.6 mm, format

1/3", CS mount (part number T2616FICS-3)3.

All mount components of this relay lens were specially designed and fabricated at

Caltech. The achromat lenses were mounted on internally threaded tubes that could be

screwed on to externally threaded ones that served as extensions. Internal locking rings

were used on these tubes to fix the lenses in place. External locking rings (the same diame-

ter as the external tubes) were used to secure the distance between tubes. To focus the lens

on the high-speed camera, or any other camera with a Nikon mount (or an adapter for this

mount) it was only necessary to loosen the external locking rings, and thread or unthread

the tubes to increase or decrease the distance between lenses.

The image quality obtained with this relay lens was limited mostly by the alignment

of the tubes in which the wide angle lens and the achromat lenses were mounted. In par-

ticular, the alignment of the wide angle lens was critical to obtaining high-quality images.

An image relayed through the misaligned optical system could end up blurred at the cam-

era, or even disappear completely. If the relay lens was not centered in the re-entry port, or

3 Other commercial lenses were also used, but the computar lens was used for most of the images taken
with the high-speed imaging system.
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Fig. 3.10. Theoretical performance of the first generation relay lens. The paraxial data is
measured at every surface where there is a transition in the refractive index (acrhomats have
three surfaces).

the lens was accidentally moved against the walls of the re-entry port (or pressed strongly

against the re-entry port window), then mechanical stresses would cause the entire relay

lens to deform. This deformation was caused by the slight play between the threads of con-

necting tubes, not by individual tubes deforming, since these were fabricated from rigid

aluminium.

To prevent blurred images, the lens was aligned with the port at the beginning of

every shot campaign. Image centering was verified by taking images without plasma and

identifying known features inside the flux conserver (e.g., the opening of the flux conserver,

the posts that hold it together, or the inner electrode).
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Fig. 3.11. First generation relay lens. This lens was designed to fit the first generation
vacuum re-entry port. The position of the optical elements inside the tubes, and the part
number of each element from EIO is indicated by arrows. The nominal length of the relay
lens was 560 mm.

3.4.2 Second generation relay lens

The change in the high-speed imaging system to the second generation re-entry port (Sec-

tion 3.2.3) required a relay lens with almost double the length of the first generation relay

lens. Calculations using the OLIVE [6] software showed that the use of the achromat lenses

from the first generation relay lens would yield images that would be too blurred to distin-

guish plasma features like filaments or cathode spots. Furthermore, with the availability of

three different viewing ports, a relay lens that could change in length without loss in per-

formance was desired. Even though the second generation re-entry ports were identical,

equipment from other diagnostics near each of the three re-entry ports imposed different

constraints on the space available for the high-speed imaging system. Therefore, a com-

pletely new relay lens design was necessary.
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Experience with the first generation relay lens was useful in designing the second

generation one. A schematic of the design4, as well as the theoretical performance of the

achromat pair (calculated using OLIVE), is shown in Figure 3.12. This design has several

advantages with respect to its predecessor. In the previous design, to focus the lens it was

necessary to adjust two or three tubes in the lens; a process that could be time-consuming.

Focusing was much faster with the second generation design because different ele-

ments could be adjusted independently. The adjustment of the wide angle lens was done by

looking directly at the image formed on the wider side of the fiber taper. The distance be-

tween the fiber taper and the first achromat lens could also be checked independently since

the image formed after the achromat is focused at infinity (rays are collimated, that is, par-

allel to the optical axis). Varying the distance of the projection plane (in a dark room, for

example) should not change the image if the first achromat is at the focal distance from

the fiber taper. For this reason, the distance between achromats (labeled χ in Figure 3.12)

could be arbitrarily varied without affecting the image at the focal plane of the system.

Another advantage of having collimated light between the achromats was that inter-

ference filters5 could be placed between those two lenses without affecting the focusing of

the lens. A picture of the assembled second generation relay lens is shown in Figure 3.13.

From all the optical systems used in the high-speed imaging system, this relay lens had the

best resolution.

3.4.3 Double-branch coherent optical fiber bundle

The availability of three different optical viewports in SSPX opened the possibility of ob-

taining plasma images simultaneously from different angles. To do this, the first idea con-

4 There is a patent pending by C. A. Romero-Talamás and P. M. Bellan on this relay lens design.
5 Interference filters require collimated light and perpendicular to their surface to operate optimally [8].
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Fig. 3.12. Theoretical performance of the second generation relay lens. Calculations with
the OLIVE softare start at the right of the fiber taper. The paraxial data is measured at every
surface where there is a transition in the refractive index (acrhomats have three surfaces).

sidered was to simply purchase more high-speed cameras. This idea was quickly discarded

because of the high-cost of the cameras. Instead, a double-branch fiber bundle was de-

signed such that it could be used with the existing high-speed camera. Two bundles of

coherently arranged optical fibers (that is, the matrix position of each fiber, or pixel, is the

same on both ends of each bundle) were fused together on a single end. The double image

obtained on the single end was relayed to the high-speed camera, where the two images

were captured as a single image. The two images were then digitally separated and stored

using simple computer routines.
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Fig. 3.13. Second generation relay lens. A monochromatic CCD camera was used to test
the performance of the relay lens. Nominal length of this optical system: 914 mm.

The double-branch optical fiber bundle was designed at Caltech, and commissioned

to Schott Optics [9] for fabrication. The finished product is shown in Figure 3.14. The

characteristics of the double-branch fiber bundle are listed in Table 3.3.

Length of each branch: 4.5 m
Resolution: 50 lines/mm
Optical area of each bundle: 6× 6 mm2
Bundle rotation: 360 ◦
Bend radius: 4 inch
Maximum temperature: 120 ◦C

Table 3.3. Double-branch optical fiber bundle characteristics.

The double-branch fiber bundle had some advantages and disadvantages with respect

to the first and second generation relay lenses. Besides the obvious advantage of simulta-

neously obtaining images from two different ports, the length and flexibility of the bundles

was very convenient. Once the single end was mounted on the camera, the bundles could

be routed around the chamber and inserted into different ports without the need of align-

ment. The camera did not need to remain close to the ports, or even be mounted on a tripod.

Furthermore, the flexible stainless steel conduit (covered with shrink tube for electrical in-
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Fig. 3.14. Double-branch, coherent optical fiber bundle. Left: full view of the coherent
bundles. Center: close-up of the cladding of both branches. Right: using a magnifying lens,
two distinct images of the same object (a photographic camera) are seen at the common end
of both fiber branches.

sulation) that protects the optical fibers was sturdy enough that no special care was needed

when handing the bundles.

The disadvantage of the double-branch fiber bundle with respect to the relay lenses

was the decrease in resolution. Having two images in the same ICCD meant the resolu-

tion was at best half of that of the relay lenses. Stray light was also a problem. During

the fabrication of the fiber bundles, the optical fibers for a given branch were arranged in

non-coherent subgroups that formed one pixel. Those subgroups were bundled and glued

together on both ends of the fiber, and formed the coherent matrix that displayed the im-

ages. It was possible that non coherent light ‘leaked’ through the space between pixels.

This unwanted light increased the noise and the blurriness in the images captured by the

camera. This negative aspect of the double-branch fiber bundle made it unfit for plasma

images during sustainment of the SSPX discharge because the signal-to-noise ratio in the

images was too low. Nevertheless, images taken during the formation phase with the fiber

bundles were acceptable because features were bright, and thus the signal-to-noise ratio

was high.
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Fig. 3.15. Theoretical performance of the double fiber bundle relay lens.

3.4.4 Relay lens for the double-branch fiber bundle

A relay lens was required to convey the images formed at the single end of the double-

branch fiber bundle to the high-speed camera. In this case there were no constraints on

the length or size of the relay lens since the high-speed camera could be placed away from

the ports or other equipment around the SSPX chamber. These lenses can actually be

purchased from a number of manufacturers. However, off-the-shelf relay lenses for fiber

bundles usually have no magnification in the image. To maximize the use of the ICCD area

in the high-speed camera, we decided to design and build a relay lens with a magnification

power of 2.5. The theoretical performance of the resulting relay lens is shown in Figure

3.15. A picture of the assembled lens taken during a test at Caltech is shown in Figure 3.16.
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Fig. 3.16. Relay lens for the double fiber bundle.

3.5 Magnetic shield for the high-speed camera

Representatives from the Cooke Corporation [1] recommended that the DiCam-Pro high-

speed camera should not be exposed to magnetic fields stronger than6 5 × 10−4 T. The
stronger fields expected at midplane, near the SSPX vacuum chamber wall where the high-

speed camera was located, were approximately 3×10−2 T [5] (when all the bias coils were
used in BCS configuration; see Chapter 2). Therefore, an attenuation of 100 was required

for the strongest magnetic field near the high-speed camera.

The materials selected to build the magnetic shield were galvanized steel and a high

magnetic permeability material called mu-metal. The mu-metal was purchased from a com-

pany called The MµShield Company [10]. This company also provided technical support

to design a shield with the dimensions and attenuation required for the high-speed camera.

The formula they recommended for the shield calculations was

A =
µt

d
(3.1)

6 The reason given was that it could damage some of the trigger electronics.
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Fig. 3.17. Magnetic shield. Left: exploded view. The DiCam-Pro is seen inside (without
the Nikon mount adapter). Right: Assembled magnetic shield. The dimensions of the
shield are 200mm× 225mm× 475mm.

whereA is the desired attenuation, d is the shield diameter (the longest side, in a rectangular

cross-section), µ is the permeability, and t is the mu-metal thickness. A mu-metal thickness

of 1.02mm was chosen. For this thickness, the MµShield support engineers determined

that the permeability of the mu-metal immersed in a 5×10−4 T non-oscillating field would
be about 10 × 103. A shield diameter of 225mm was chosen based on the dimensions of
the high-speed camera enclosure. For these numbers, an attenuation factor of about 45 is

obtained.

The shield was built and tested using large pancake coils7 (approximately 70 cm in

diameter). The magnetic field without the shield near the pancake coil was measured to

be 2.8 × 10−2 T. To achieve a field inside the shield of 2.8 × 10−4 T (i.e., an attenuation
of A = 100), layers of galvanized steel (separated by layers of plastic) were added to the

inside of the shield until the required attenuation was reached. The finished magnetic shield

is shown in Figure 3.17.

7 These coils are used in the Plasma Waves experiment of the APh77 course at Caltech.
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3.6 Camera mounts and supports

The field of view of the high-speed imaging system was very sensitive to the distance

between the wide angle lens and the re-entry port window. To obtain the maximum field

of view, it was desired to have the wide angle lens as close to the re-entry port window

as possible. For this reason, sliding plates were specially designed and built to achieve

millimetric precision in the positioning of the lens near the window. The plates are shown

in Figure 3.18.

With the first generation re-entry port, the use of the plates was as follows. The lower

plate (labeled 3 in the exploded view) was bolted to a heavy duty tripod head (Bogen,

model 3057). The high-speed camera inside the magnetic shield was bolted onto the upper

plate (labeled 4, with the screws labeled 2). The two plates could slide smoothly even

when the camera was mounted on them. Once the lens was set at the desired distance

from the window, the two plates were secured using four bolts (labeled 1). The camera

tripod (Bogen, model 3036) was bolted to the floor to prevent movement of the camera if

accidentally hit during service to nearby SSPX diagnostics. The camera mounted on the

plates and the tripod is shown in Figure 3.19.

The sliding mechanism was modified for use with the second generation re-entry

ports. The moving re-entry port required the upper plate to be connected to the re-entry

port, such that the camera could move in and out, and the relay lens would remain fixed

with respect to the port window. Sliding rails with ball bearings were adapted to fit between

the plates, and thus allow a very smooth sliding of the camera when the re-entry port was

moved. This was done to prevent overheating the ball drive actuator (shown in Figure 3.6).
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Fig. 3.18. Camera mount plates.
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Fig. 3.19. Camera (inside mu-metal shield) mounted on sliding plates and tripod. The
sliding direction allowed by the camera mount plates is indicated by the arrow on top.
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Chapter 4

Identification of plasma stages in SSPX using
high-speed imaging

4.1 Introduction

Images of the Sustained Spheromak Physics Experiment (SSPX) plasma were obtained

during thousands of experimental shots. These images were taken at various times during

the shots (typical shot duration 4 ms) and revealed characteristics in the plasma that were

common to most shots, even though the conditions of the shots were varied according to

the purpose of each experimental campaign. These characteristics can be grouped in three

stages, depending on the discharge time at which the images were taken. The first stage is

the breakdown and plasma ejection from the gun into the flux conserver region. The second

stage is the gun current sustainment. The third stage is the gun current decay. These stages

are indicated on a typical gun current trace in Figure 4.1.

Description of these stages, along with the typical images during those stages, are

presented in the sections below. For reference, the view of the flux conserver (without

plasma), as seen through the relay lens and the high-speed camera, is shown in Figure 4.2.

The horizontal field of view inside the flux conserver is almost 1 meter, limited only by the

window edge in the re-entry port and the edges of the flux conserver opening at midplane.

The vertical field of view is more than 0.5 meters.

Most of the images shown below were taken from hydrogen plasmas. Only some

of the images taken during the breakdown and ejection stage correspond to helium shots.
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Fig. 4.1. Plasma stages at SSPX. The three stages used to identify plasma images are shown
above a typical gun current trace. In the time range indicated with a question mark (?) no
features can be seen because the plasma is either ‘burned out’, that is, no light in the visible
range comes out of the plasma, or there is bright plasma too close to the window (analogous
to dense fog covering the windshield of a car). The initial and final times of each stage is
approximate.

Fig. 4.2. Interior view of the flux conserver as seen through the relay lens and the
DiCam-Pro high-speed camera. The shaded area on the diagram on the right corresponds
to the field of view of the camera.
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Images from these shots show features that are similar to those in hydrogen shots, but are

brighter and move slightly slower (probably because helium is heavier than hydrogen).

Color was added to all images, using a special program compiled with the software called

IDL [1], to illustrate light intensity levels.

4.2 Breakdown and plasma ejection

In this stage the plasma typically breaks down in the gun region, outside the field of view of

the camera. Breakdown time is considered t = 0 for all the images presented below. After

breakdown, J×B forces rotate and push the plasma into the flux conserver region. As the
plasma travels into the flux conserver, it drags and deforms the magnetic field. This process

is shown in Figure 4.3. Initially, only the bias field is present in the vacuum chamber, and

is constant in time. A gas is then puffed in the gun region and after some time the high

voltage switch is closed to initiate the breakdown. A detailed description of what has been

observed during this stage with the high-speed camera now follows.

In a few tens of microseconds after breakdown, the plasma enters the field of view

of the high-speed camera, as seen on the left image in Figure 4.4. Just a few microseconds

later, as the plasma continues traveling along the axis of the gun, some structure can be ob-

served (right image in Figure 4.4). The structure typically observed resembles descending

theater curtains due to its undulations. At this stage, the expansion speed of these ‘curtains’

into the flux conserver region is in the order of 50 km/s. As the plasma continues filling the

rest of the flux conserver, the undulations merge to form a more uniform expansion front.

This merging is partly caused by the plasma rotating around the axis of the gun.

The plasma expansion into the flux conserver is inherently three-dimensional since

the plasma moves radially (inwards), toroidally, and axially, as it balloons into the flux
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Fig. 4.3. Deformation of magnetic flux surfaces during the breakdown and ejection stage.
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Fig. 4.4. Shot 8045. Left image: t = 30 µs. Right image: t = 35 µs. Gas used: hydrogen.

conserver. This ballooning can be interpreted as a helicoidal expansion plus a radial pinch

towards the axis of the gun. The helicoidal part of the motion describes a ‘barber pole’

trajectory around the inner electrode. An example of this ‘barber pole’ motion is shown in

Figure 4.5. A bright spot (indicated with an arrow) is identified on the left image. After five

microseconds, the bright spot moved toroidally almost as much as it has traveled along the

axis of the gun. Note that some filaments are visible on the image on the right, probably

created in the gun region. There is evidence of filamentation in the gun region from the

scratches left by filaments that travel down the gun region. This instability in SSPX has

been studied extensively by Ryutov et al. [4].

It should be noted that in the images obtained at this stage, the distance traveled by

the spot in the radial direction cannot be discerned from the high-speed images (which, af-

ter all, are two-dimensional projections1). However, images like those shown in Figure 4.6,

taken at later times, suggest that at this stage the plasma moves much faster helicoidally

(describing the ‘barber pole’ motion) than radially. In these images the expansion front

1 The double-brach fiber bundle, which could have helped in making three-dimensional measurements, was
not used for this purpose because the resolution was not high enough to measure translation of small or fine
features in the plasma.
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Fig. 4.5. Shot 8036. Left image: t = 30 µs. Right image: t = 35 µs. Gas used: hydrogen.
Arrows indicate the change in position of the bright spot seen on both images.

reaches the bottom of the flux conserver (about 50 cm traveled from the edge of the elec-

trode) faster than it reaches the center of the inner electrode (about 25 cm away from the

edge). In fact, plasma stagnates at the bottom of the flux conserver before reaching the cen-

ter of the electrode, and a central column becomes more apparent. This is shown in Figure

4.6. We refer to this column as the transient central column, because it is very short-lived,

as it will be shown below.

Filamentation along the transient central column is sometimes visible. These fila-

ments are probably the evolution of filaments observed at earlier times, like those in Figure

4.5. Figure 4.6, for example, shows filaments in the left side of both images. The filaments

seem to be ‘stretching’ along with the plasma.

As time progresses, the diameter of the central column decreases and the overall in-

tensity of light emitted is diminished. This is possibly due to a higher ionization percentage

of the gas, as seen in Figure 4.7.

It has been observed in some images that plasma rotates around the central column.

Shown in Figure 4.8 are two images of the same shot, only 3 µs apart. In the lower half
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Fig. 4.6. Shot 8162. Left image: t = 50 µs. Right image: t = 53 µs. Gas used: hydrogen.

of these images, a filament seems to wrap around the column, extending from close to the

bottom of the flux conserver, to almost midplane. This elongation suggests that plasma

moves helicoidally around the central column. From the right image in Figure 4.8, the

pitch angle of this helicoid is estimated to be about 20 ◦.

The transient central column bends impulsively just a fewmicroseconds after it began

forming (hence the name ‘transient’). Figure 4.9 shows a very faint column on the left

image. This column seems to have vanished (right image) just after five microseconds.

The current from the gun, however, continues to increase uninterrupted (just like in Figure

4.1). The apparent vanishing of the central column is probably caused by a very high degree

of ionization, such that no light is emitted by the plasma (for the case of hydrogen) or light

is emitted outside the wavelength range of the high-speed camera (for the case of helium

or impurities).

Capturing impulsive changes of the transient central column proved to be very chal-

lenging. Although many images were obtained to get more details of this process, none

showed more detail than that shown in Figure 4.9, even when decreasing the time between

images to less than one microsecond. How the plasma rearranges itself shortly after the
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Fig. 4.7. Shot 8200. Left image: t = 50 µs. Right image: t = 55 µs. Gas used: hydrogen.

transient column bends, continues to be a mystery since the gun current flows uninter-

rupted. However, it is conjectured that this impulsive bending precedes a reconnection

event that leads to flux amplification [2]. Namely, the transfer of toroidal flux (azimuthal

to the chamber axis) to poloidal magnetic flux (the transient central column). At a meeting

of the Innovative Confinement Concepts group (May 2004), Bellan proposed a topological

constraint of two full turns in a flux rope (or column in our case) for flux to be amplified and

helicity be conserved in the time scale of the reconnection event. This two-turn constraint

applied to SSPX is shown in Figure 4.10. If only one turn occurs before reconnection,

then the helicity content would increase discontinuously (i.e., a stepwise jump)2. Ongoing

research at SSPX is expected to provide further insight into this important physical process.

After the bending event, there is a black out time for the high-speed camera, since no

imaging was possible during those times. This black out time is indicated with a question

mark (?) in Figure 4.1. Imaging of the plasma during this time could perhaps be done with

other gases (used as tracers and injected at selected times) to maximize the light emitted

2 More details on the geometric interpretation of helicity can be found in Reference [3].
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Fig. 4.8. Shot 8164. The times of these images are, with respect to breakdown: t = 70 µs
(left) and t = 73 µs. The gas used on this shot was helium. For this gas, plasma moves
slower than hydrogen. However, the evolution of the plasma is the same as with hyrdrogen.

from the plasma features during small periods of time. However, this approach was not

attempted in the present work.

4.3 Sustainment

Plasma continues to be mostly ionized by the time gun current sustainment is achieved

(flat portion of the curve in Figure 4.1). There are, however, some characteristic features

seen in high-speed images taken during this stage. Two of these characteristics are present

throughout sustainment. The first characteristic is the formation of a faint central column

that is much more stable (in time) than the column described in the previous section. We

call this column the sustainment central column. The second characteristic is the spot and

pattern formation in the electrodes. Of most interest are the patterns formed on the end

surface of the cylindrically shaped cathode (inner electrode), which evolve in time and

appear to be related to plasma drifts.
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Fig. 4.9. Shot 8175. Left image: t = 80 µs. Right image: t = 85 µs. Gas used: helium.

Images of these two characteristics during the sustainment stage are presented be-

low. However, details and measurements of the sustainment central column are presented

in Chapter 5, and details of the patterns formed on the electrodes, their drifts, and the im-

plications they have on the current profile, are presented in Chapter 6.

Early in this stage there are no cathode patterns or indications of a central column. As

mentioned earlier, a plasma column (or other features) could be there, but the plasma either

does not emit light, or it does not emit it in the visible range of the high-speed camera.

Only some bright spots at the flux conserver midplane can be seen, probably caused by

wall recycling and plasma impingement on the posts that hold the flux conserver together

(see Chapter 2 for diagrams of the SSPX flux conserver). Sometimes, there is also a bright

glow at the edge of the cathode, as shown in Figure 4.11. Spot appearance at the midplane

could last tens to hundreds of microseconds, but their position and intensity could vary in

just a few microseconds.

The bright spots at the midplane eventually disappear. Shortly after that, spots on

the inner electrode start to appear. Figure 4.12 shows two spots that formed at the surface

of the electrode. The figure also shows a faint boundary on the left image (arrow above
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Fig. 4.10. Bending of the transient central column, and the two-turn constraint for flux
amplification. The images on Figure 4.9 correspond to somewhere between frames (a) and
(c). The red area in frame (e) shows where reconnection occurs, resulting in a flux rope
linked as in frame (f).
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Fig. 4.11. Shot 9038. Left image: t = 520 µs. Right image: t = 525 µs. Gas used:
hydrogen.

midplane), which could indicate the presence of the sustainment central column or a wide

current sheet. Other images taken under similar conditions showed how the spots varied

rapidly in intensity (in just a few microseconds), but not in their location on the cathode

surface. These spots seemed to have served as footpoints for the patterns that appeared and

evolved during the sustainment stage.

The spots grow in number over time-scales of tens to hundreds of microseconds.

At the same time, patterns start to elongate from these spots. The elongation could be

over hundreds of microseconds and extend over centimeters on the cathode surface. It was

observed in some images that two or more different patterns could merge or intersect each

other, sometimes forming a single and longer pattern. Figure 4.13 shows an example of the

appearance of these patterns during the sustainment stage. Notice how the pattern indicated

on the upper part of both images elongated considerably over two hundred microseconds.

The detailed behavior of these patterns during the sustainment stage is discussed in Chapter

6.

Indicated also in Figure 4.13 are the boundaries of what was identified as the sus-

tainment central column. This central column differs from the transient central column
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Fig. 4.12. Shot 9024. Left image: t = 740 µs. Right image: t = 745 µs. Gas used:
hydrogen. Arrows indicate initial spot formation on the cathode, and the appearance of a
faint boundary that could indicate the presence of a plasma column or sheet.

(Section 4.2) in its lifetime. The sustainment central column survives much longer than the

transient column. Measurements of the column diameter during the sustainment stage are

presented in Chapter 5.

Interframe times of a few microseconds to hundreds of microseconds (in increments

of tens of microseconds and shutter times of a few microseconds) were used to study the

behavior of the sustainment central column. It was found that this column does not move

or bend significantly (like the transient central column) during the sustainment stage. The

intensity of the light coming from the column remains low mainly because the gas is mostly

ionized. On the other hand, the intensity of the patterns coming from the cathode surface

is very bright, and possibly caused by glowing neutrals being recycled near the surface.

Towards the end of the sustainment stage, the patterns continue to elongate and cover

most of the cathode’s planar surface, as shown in Figure 4.14. Also shown in this figure are

bright and wide patterns near the divertor opening. Just like the patterns on the cathode,

these patterns evolve in time. Nevertheless, they seem to vary in intensity and position

around the divertor on a much faster time-scale than the cathode patterns. It is possible that
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Fig. 4.13. Shot 10407. Left image: t = 1000 µs. Right image: t = 1200 µs. Gas used:
hydrogen. Arrows indicate the pattern that most noticeably elongated (upper), and the faint
boundaries of the sustainment central column (horizontal arrows on right image).

these patterns are caused by runaway electrons that scrape the bottom of the flux conserver

(which is also the anode).

Note the dim glow around the divertor on both images of Figure 4.13. The patterns

near the divertor are very dim (or non-existent) at the beginning of the sustainment stage,

and become brighter as time progresses.

4.4 Decay

At this stage the gun current decreases and recombination of plasma into neutrals increases.

Features that were previously dim, start to become brighter thanks to more neutrals glow-

ing. At the beginning of the current ramp-down, all the features seen during sustainment

remain (the central column, and the cathode and anode patterns). However, changes in

the central column do occur. As current decreases, the diameter of the central column in-

creases. For example, Figure 4.15 shows two images taken during the decay stage, with

arrows indicating the diameter of the column near midplane. The image on the right shows
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Fig. 4.14. Shot 10409. Left image: t = 2500 µs. Right image: t = 2700 µs. Gas used:
hydrogen.

a column that is brighter and wider. The increase in diameter at the height indicated by the

arrows is about 15 percent on the second image.

The column diameter continues to increase until at some point the column drastically

seems to break into filaments, like those shown in Figure 4.16. On both images, the cathode

displays some patterns similar to those seen at previous times, but these patterns seem

segmented, like ‘strings of pearls’. Note that the glow on the cathode shown on the right

image could still be caused by recycling at the surface since the current flowing into the

cathode is still a few kiloamperes.

Near the end of the gun current discharge, no more filaments or other features are

seen in the images, except for the cathode patterns that eventually fade away. A discussion

about the filamentation process at this stage is also presented in Chapter 6.
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Fig. 4.15. Shot 10420. Left image: t = 3300 µs. Right image: t = 3500 µs. Gas used:
hydrogen.

Fig. 4.16. Shot 10436. Left image: t = 3900 µs. Right image: t = 4000 µs. Gas used:
hydrogen.
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Chapter 5

Measurements of the SSPX sustainment
central column diameter using high-speed

imaging

5.1 Introduction

A central column is expected during gun current sustainment at the Sustained Spheromak

Physics Experiment (SSPX). This central column is believed to carry most of the gun cur-

rent, and is formed by open field lines that intercept the cathode (mostly at the flat end and

the edges of the cylindrically shaped cathode) and the anode (also the flux conserver) at

various locations. The sustainment central column is sometimes referred to as the ‘hole’ of

the spheromak, because the edge of the column represents the boundary between open and

closed magnetic surfaces. Closed magnetic surfaces are expected to be completely con-

tained inside the flux conserver, that is, no field lines from the closed surfaces intercept the

flux conserver walls.

Measurements of the central column diameter were obtained during gun current sus-

tainment, using high-speed imaging. These measurements were made from images taken

during several experimental runs with similar plasma parameters. The modified flux con-

figuration (see Chapter 2) was used, with a gun flux of 28 mWb. The gas used for all the

shots was hydrogen. The gas valve plenum pressure used was about 140 psig. Gettering

was performed on most of the runs every third shot to ensure clean plasmas. Reproducibil-
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ity between shots of a given run was verified by looking at traces from diagnostics like gun

current, gun voltage, and edge magnetics.

This chapter is organized as follows. The method used to find the column diameter

from the high-speed images is described in Section 5.2. The column diameter measure-

ments for a large number of shots are presented in Section 5.3. A comparison of some

of these results to CORSICA [1], an MHD equilibrium code widely used in SSPX, are

presented in Section 5.4.

5.2 Column diameter measurement method

This section describes the method used to measure the central column diameter using high-

speed images. All the images used for the measurements were taken through the second

generation relay lens (Chapter 3). This lens yielded the best contrast of all the lenses used

in the high-speed imaging system. Contrast was important because the sustainment central

column was very faint, specially close to midplane.

To increase image contrast and minimize thermal noise in the DiCam-Pro camera,

a microchannel plate gain of 30 percent was selected for all the shots. Exposures of up

to ten microseconds were also used to increase contrast. These long exposures had the

disadvantage of a slight decrease in image resolution. The resulting resolution was of

approximately 1 cm near the central column (∼ 0.5 m away from the lens).
The acquired images were then digitally processed for further contrast enhancement.

The processing was done with Mathematica [2] software. However, before the images

could be opened with Mathematica, it was necessary to convert them from 16-bit TIFF

format to 8-bit TIFF or JPEG format1. Once loaded to Mathematica, the images were

1 The DiCam-Pro camera has its own image format. With the DiCam-Pro software, the images can be
converted to 16-bit TIFF. However, Mathematica 5.0 can only read 8-bit TIFF or other standard 8-bit formats.
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re-scaled and saved as two-dimensional arrays with 256 levels of gray per pixel (array

element). The contrast of this array could be changed using the following operation on

every pixel

bij =

µ
aij −Min[A]

Max[A]−Min[A]

¶n

(5.1)

where bij is the new value of the pixel at array location (i, j), aij is the original value at

that location,Min[A] andMax[A] are the minimum and maximum values of the original

image array stored in variable A, and n is the contrast exponent. This contrast exponent

was chosen such that the edges of the column near midplane could be distinguished.

A typical image after contrast enhancement is shown in Figure 5.1. The top image

is the original plasma image (after digital coloring). The middle image is the contrast en-

hancement of the top image, using an exponent of n = 2.3 in Equation 5.1. The bottom

image represents the relative intensity of a row of pixels just above midplane. The verti-

cal dotted lines on the middle and bottom images represent the boundaries of the central

column.

The high-speed imaging system has the advantage over many other SSPX diagnostics

of having access to almost all of the flux conserver region, and not just the midplane section.

This was very useful when finding the edges of the column. That was because, although

the edges were typically too faint at midplane, they became more pronounced towards the

cathode. This allowed for the measurement to be made just above midplane, and using

extrapolation of a straight line over a small distance (about 10 cm) the edge at midplane

was estimated.

The central column boundaries were chosen manually for every image2. Attempts

were made to automate this process by including known edge detection algorithms inMath-

2 Manually here referrs to a user visually identifying the edges of the central column and recording them
one by one.
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Fig. 5.1. Top: image of shot 10418 at t = 2300 µs. Middle: contrast enhancement of
the top image to find the central column; the vertical lines mark the center column edges,
measured just above midplane. Bottom: relative pixel intensity corresponding to Row 360
in the middle image (after correction for the slight angle of the midplane opening with
respect to the horizontal axis of the image).
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ematica. Two different edge detection algorithms were tested: the Sobel edge detector, and

the Roberts edge detector [3,4]. However, it was found that the uncertainty in the edge po-

sition was much greater than in the manual approach. The total uncertainty in the manual

measurements, including the uncertainty due to limited resolution, was of ±1.5 cm. After
the edges were selected, their pixel positions were recorded and the width of the plasma

column was found (in pixels) by substracting these two values.

A scaling factor was used to convert from pixels to centimeters. This factor was

found by measuring the width in pixels of known features (e.g., the opening at midplane,

the opening at the divertor, the distance between posts) in shots with no plasma, and com-

pensating for their distance from the camera lens. For example, the opening at midplane (5

cm) and one meter away from the lens took 28 pixels of the image loaded in Mathematica.

The same feature would have taken 56 pixels if placed at 0.5 meters from the lens.

5.3 Column diameter measurements

The sustainment central column measurements are shown in Figure 5.2. Five different runs

were chosen for their similarities in operation parameters. Due to the limitation of the high-

speed camera to obtain only two images per shot, it was not possible to describe precisely

the change in diameter of the central column throughout a shot. However, the data indicates

a slight column diameter increase (on average) towards the end of the shot.

The best correlation of the column data to SSPX diagnostics was found with the in-

verse of the poloidal edge magnetic traces. That is, the rate of decrease in poloidal magnetic

field at the flux conserver wall correlates well with the rate of increase of the column di-

ameter. A sample of the diagnostic traces is shown in Figure 5.3. These plots show typical

traces for the gun current, voltage, and the poloidal and toroidal magnetic fields near the
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Fig. 5.2. Measured column radius versus time. A total of 92 data points from six different
runs (indicated with different symbols) were used for this plot. The uncertainty in these
measurements is ±1.5 cm (except for the data poins near 4 ms, which had more than ±3
cm uncertainty).

flux conserver wall near midplane. Notice the slope in the poloidal traces on the left plots.

The slope decreases towards the end of the shot, until sharply decaying in less than two

hundred microseconds.

It is possible that the decrease in magnetic signal at the walls is a consequence of

the loss of closed magnetic flux (due to resistive decay), and this in turn decreases the

magnetic pressure on the column, allowing it to expand. The central column eventually

breaks off into filaments (Chapters 4 and 6), but this happens during current decay. No

closed magnetic surfaces are expected after this filamentation event.
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Fig. 5.3. Traces for gun current in units of ampere (top), gun voltage in volts (second from
top), and edge magnetics in teslas (bottom six). These traces represent typical data for
the shots used in the column radius measurements. For the magnetic traces: mp stands for
magnetic probe; the first three digits indicate the position of the probe in degrees around
the flux conserver; the following letter p or t, referrs to poloidal or toroidal, respectively;
the last two digits indicate that the probes are few centimeters above midplane.
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Fig. 5.4. Sample CORSICA output. The purple line in the flux conserver region marks the
boundary between open and closed flux surfaces.

5.4 Measurements and CORSICA

A subset of the shots shown in Figure 5.2 was selected to compare the measured column

diameter with calculations from CORSICA [1]. This MHD equilibrium code uses the edge

magnetic data (like the one shown in Figure 5.3) as boundary conditions to reconstruct the

magnetic profile. Figure 5.4 shows a sample CORSICA output after reconstruction of the

magnetic profile of an experimental shot. The marks (red crosses) along the outer boundary

of the flux conserver indicate the position of the edge magnetic probes.

The radius of the central column calculated by CORSICA is the distance from the

chamber axis to the first closed magnetic surface (purple line in Figure 5.4) at midplane.

Axial symmetry is assumed in CORSICA, and thus the calculated central column has a

circular cross section.
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Fig. 5.5. Measured and CORSICA column radius versus time. Selected shots are presented
here.

The shots selected for the comparison span the sustainment and decay stages, and

were all taken on the run of October 14, 2003. These shots are a subset of shots 10418 to

10436, shown in Figure 5.2). They were chosen because their traces of gun current and

edge magnetics have the least shot-to-shot variation. The CORSICA computations were

done at the SSPX computer facilities [5], while the images measurements were done at

Caltech. The results are shown in Figure 5.5, and they follow closely the experimental

results.

5.5 Limitations of the measurement method

For the measurements shown in Figure 5.2, it was assumed that the column was centered

in the flux conserver and had a circular cross section. However, this might not be the case.

If the column had a non-circular cross section (for example, elliptical) and at every shot
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was oriented randomly (or if the column rotates about its axis), the diameter measured with

the high-speed camera could have varied as much, or more, as the variation seen in Figure

5.2. One way the issue of the cross-section could be resolved, is by having several views

of the central column during the same shot, and perform a tomographic reconstruction of

the column3.

Another limitation of the method used here is the positioning of the column. It was

assumed that the column was centered on the axis of the flux conserver. Deviations from

the center could lead to an incorrect reading of the diameter of the column. For example, a

column that is too close to the lens would give the impression of being much bigger than it

really is if it is considered to be on axis.

The off-axis deviation was estimated for the measurements above in the following

way. The column edges were first found, as described in the previous sections. With the

position of the column edges known, a midpoint between these edges was found. The po-

sition of that midpoint was compared to the center of the flux conserver (which was known

from calibration of the image to known features), and the distance between the midpoint

and the center of the flux conserver was recorded as the off-axis deviation. The measured

deviation for the shots presented here was found to be within one or two centimeters, which

is comparable to the error in finding the edges.

Even with the mentioned limitations, it might be possible use the column diameter

measurements like the ones presented here to further constrain CORSICA, and obtain mag-

netic profile reconstructions with even higher precision. Additional studies using a combi-

nation of the diagnostics and methodology presented here should help to further understand

the formation and evolution of bounded spheromaks.

3 The double-branch fiber bundle (Chapter 3) was tested for this purpose, but it was found that the images
from the branches were inadequate to distinguish the edges of the column.
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Chapter 6

Measurements of cathode pattern drifts using
high-speed imaging in SSPX

6.1 Introduction

During the sustainment part of the current discharge at SSPX, distinct bright patterns were

observed close to the electrode surfaces. The most striking patterns were seen on the

end face of the cylindrically shaped cathode. These cathode patterns are azimuthally seg-

mented, approximately concentric to the cathode axis, and appear at discrete radial posi-

tions. In contrast, the anode patterns which are located near the divertor region are much

less well defined than those on the cathode.

Since the DiCam-Pro camera can take two successive images in a SSPX plasma shot,

it is possible to study the temporal evolution of these patterns. The cathode pattern mor-

phology did not vary significantly for periods < 100 µs, but for times > 100 µs the cath-

ode patterns elongated toroidally and always in the same direction. Measurements obtained

from more than thirty shots (at fixed SSPX operational parameters) show that the direction

of rotation or elongation of the patterns is counterclockwise. Reversal of the gun bias mag-

netic field reversed the elongation direction. This suggests the motion is due to E × B

drifts near the surface of the cathode. The direction of rotation or elongation of the patterns

on the anode could not be easily measured since the patterns changed at a faster time-scale

than that of the patterns observed on the cathode. Nevertheless, some of the images suggest

that the anode patterns elongate in a clockwise direction.



82

Fig. 6.1. Interior view of the flux conserver as seen through the relay lens on the
DiCam-Pro. The upper dotted elipse represents the area of interest on the cathode (in-
ner electrode). The lower dotted elipse represents the area of interest of on the anode (and
flux conserver).



83

Two types of measurements were performed. The first was based on the visual iden-

tification of pattern change with respect to time. The elongation of the patterns was calcu-

lated by comparing the change in coordinates of the leading edge of the patterns from two

subsequent images. The second method was based on a systematic correlation of intensity

changes in discrete annular regions. Both methods are discussed in detail in the sections

below.

6.2 Stretching of the electrode images for measurements

In order to measure features on the cathode and anode regions, we found it convenient to

crop the images to include only the region of interest (marked with dotted lines in Figure

6.1) and then to ‘stretch’ the resulting images, as shown in Figure 6.2. This stretching gives

the impression of looking at the electrodes as if the camera were placed at the axis of the

chamber (i.e., rotated π/2 radians and translated ∼ 0.5 meters into the chamber) as shown
in Figure 6.3. For the position of the camera lens and the size of the cathode, an aspect

ratio of ∼ 0.8 was used to map the patterns observed on the electrodes.
It was assumed that the bright features would be close to the electrode surface, such

that the stretched images would show the actual shape of the features. However, some

distortions exist that cannot be easily corrected. These distortions come from the electrode

regions where the surface is either not flat or not parallel to the opening of the flux conserver

at midplane. The cathode measurement distortions occur at the edges (which are rounded

and smooth) and correspond to the dotted line shown in the upper part of Figure 6.1. The

anode distortion due to stretching is at the axis, where the flux conserver opens into what

is called the divertor region.



84

Fig. 6.2. Example of image cropping and stretching. The image to the left is the view of
the flux conserver as seen through the lens of the ICCD camera. The image on the right is
used for measurements. Shot 10418 at 2.3 ms.

Fig. 6.3. Schematic diagram of the optical field of view of the cathode surface before
stretching the image (left) and the apparent field of view after stretching (right). The cam-
era lens is placed where the two rays cross. The ratio of the two images before and after
stretching is L1

L2
= hda

d1d2
. The length da can be chosen to be the distance before stretching

from the lens (sitting at midplane on the left image) to the cathode surface at the axis of the
chamber.
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The aforementioned distortion is negligible for the measurements at the cathode,

since most of the patterns occur near the center of the electrode. For the anode region

the distortion is significant. As will be shown below, the method used to measure the pat-

tern elongation accommodates for distortions, such that the results are unaffected.

6.3 Visual identification and measurement of pattern change at
the cathode surface

In this method, pairs of images corresponding to the same shot are compared in order to

visually identify those patterns that change in time. A center of rotation in the images is

first chosen. Then, the coordinates of those parts of the patterns that changed are recorded.

Since the time between images is known, the angular and linear displacement of a given

pattern can be estimated, along with the rate of change of the patterns. Figure 6.4 shows an

example of pattern change identification. With the aid of a computer program, the images

are displayed side by side; the user of the program can then simply select (with the com-

puter cursor) the part of the images that show change in the patterns, and the coordinates

of each selection are recorded. The recorded coordinates are used to estimate the radius of

rotation, displacement and velocity of the features. In all the images used for these mea-

surements, changes were observed not only in the length of some patterns, but also in the

light intensity coming from the patterns. These intensity changes were not taken into ac-

count in the method presented in this section since they are difficult to quantify visually.

Intensity changes are quantified in the second method (presented in the following section).

It is important to mention that only those patterns that were distinguishable from

other patterns in pairs of subsequent images were measured and recorded, as shown in
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Fig. 6.4. Example of manual identification of cathode pattern elongation. The center of ro-
tation is identified manually (green dots), as well as the patterns to be measured (labeled A
through D). The red arrows indicate approximate elongation in counterclockwise direction.
Shot 10404, ∆t = 0.2 ms
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Figure 6.4. If patterns merged or were too close to other patterns, or if they were too faint

to visually distinguish changes, then those pattern changes were not measured.

For images with an inter-frame time of ∆t = 0.2 ms, the average cathode pattern

elongation (from 18 different shots with a total of 79 data points) is 2.3 cm ±1.7 cm.
Figures 6.5 and 6.6 show the results for pattern elongation linear velocity and angular

velocity and are composed of 112 data points from 25 different shots. The time range

between image pairs of every shot is between 0.2 ms and 0.4 ms.

6.3.1 Reversed bias magnetic field

The bias magnetic field was reversed for the same machine operation parameters as those

used for the measurements presented above. The measured pattern elongation and velocity

remained essentially the same as those presented above, but the patterns elongated in the

opposite toroidal direction. Correlation of light-intensity changes of the patterns to their

radial position in the cathode (method presented below) was not performed in this case.

However, visual inspection of the intensity changes indicates that they are the same as for

the case presented for the non-reversed bias field.

6.4 Correlation of intensity changes in discrete annular regions

This section describes the method used to measure intensity changes between images of

the same plasma shot. In order to measure intensity changes systematically, a computer

program was created to calculate and store the intensity values as a function of the radius

r and the angle θ. For a given ∆r the program calculates, for both images of a shot, the

average intensity values as a function of θ. These average intensity values are kept in one-



88

Fig. 6.5. Cathode pattern elongation velocity vs. radius. ∆t ranges from 0.2 ms to 0.4 ms.
Positive elongation velocity refers to counterclockwise rotation.

Fig. 6.6. Angular velocity of patterns vs. radius. ∆t ranges from 0.2 ms to 0.4 ms.
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dimensional vectors, V1 and V2, corresponding to every annular region of width ∆r in a

specified range, [Rmin , Rmax]. A correlation operation is then made between the vectors

and is defined as

Vc(r, θs) =
NX
n=1

f1(r, θ) · f2(r, θ + n) (6.1)

with

fi(r, θ) =

½
0 if ∂

∂θ
Vi(r, θ) ≥ 0

∂
∂θ
Vi(r, θ) if ∂

∂θ
Vi(r, θ) < 0

for i = 1, 2 (6.2)

where N is the number of θ-elements in each vector, and θs is the shift angle between

vectors. The value of θs at which the maximum of Vc occurs corresponds to the most

likely value of intensity shift between patterns. Partial differentiation ofVi with respect to

θ, keeping only the negative values of the f functions, helps in defining uniqueness in the

maximum value ofVc (see Figure 6.7).

The computer program inputs required from the user areN ,∆r, Rmin, Rmax, and the

center of rotation of the patterns. In order to match roughly the resolution (in pixels) of the

stretched images, and for simplicity, N = 360 was used. At every θ location, an average

intensity value was found across each ∆r slice.

The cathode images were subdivided into forty slices of∆r = 5 pixels (6.2 cm), from

Rmin = 25 pixels (3.1 cm) to Rmax = 225 pixels (27.8 cm, which corresponds roughly to

the visible cathode radius). Figure 6.9 shows the results for calculations of the average

cathode pattern intensity shift, ∆θ, for images with ∆t = 0.2 ms. The average value for

the entire cathode surface is ∆θ = −5.1± 38.5 degrees. Note in Figure 6.9 that the error
bars are much bigger than the average variation of the data, and therefore it is difficult to

say much about the behavior of the patterns from that plot. However, the data indicates

that the variation of the light emitted from the neutrals occurs on a faster time scale than

the inter-frame time (i.e., ∆t = 0.2). The radii values at which the peaks of ∆θ shift occur

are also of significance. After taking the average of all cathode images (from ∆t = 0.2
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Fig. 6.7. Difference between correlation analysis with and without differentiation (keeping
only the negative part) of a given signal S. (a) Signal S and its derivative at t = to. (b)
Signals at t = to +∆t. (c) Correlation Sc of the signals shown in (a) and (b). Note that the
correlation of the differentiated signals yields a precise difference of the ’elongated’ angle
between signals, θC − θB, while the correlation of the raw signals has uncertainty (flat top)
at the maximum value.

Fig. 6.8. Anode stretched image with radial boundaries for computing pattern intensity
shift.
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Fig. 6.9. Average cathode pattern intensity shift vs. radius.
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to ∆t = 0.4, shown on the left of Figure 6.10), and filtering the resulting image with

a convolution operation using a Gaussian kernel to remove some of the noise, bands of

intensity are seen corresponding to the regions where it is most probable to find patterns

during sustainment of the SSPX discharge. Moreover, the bands also correspond to the

strongest peaks found in Figure 6.9, as shown in Figure 6.10.

The anode exhibits much thicker and bigger patterns than the cathode. In this case,

a single slice was used with ∆r = 90 pixels (11.1 cm), from Rmin = 135 pixels (16.7 cm)

to Rmax = 225 pixels (27.8 cm). The boundary used is shown in Figure 6.8. The average

anode intensity shift found is∆θ = −1.4± 4.5 degrees.

6.5 Plasma drifts

6.5.1 E ×B drifts

From the images analyzed above, it is certain that the patterns seen on the cathode and

anode move with time. The patterns also seem to have a preferential direction of rotation

or elongation (at least for the cathode), depending on the direction of the bias magnetic

field near the cathode. This could be due to plasma drifts. The possibility that E×B drifts

[1] are the source of rotation of the cathode patterns is examined here.

The magnetic field must intersect the cathode in order to have azimuthal E × B

drifts. Since the initial condition has a vacuum magnetic field intersecting the cathode (in

modified flux configuration), it is assumed the total magnetic flux remains essentially the

same throughout the experiment. The justification comes from the characteristic diffusion

time of magnetic flux through the cathode material. This is calculated from the magnetic
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Fig. 6.10. Average image (left) composed of 25 different cathode images. The image on
the upper right represents a contour relief of the image on the left. The pattern tracks on
the averaged image are marked by the red arrows. The plot in the middle corresponds
to relative intensity values along the horizontal of the upper right image, where the red
arrows point. The plot at the bottom is the same as in Figure 6.9 (notice the horizontal
axis is reversed to match the arrows; for clarity, the error bars are removed and the aspect
ratio exaggerated). The red dotted circular segment represents the boundary of the cathode.
Units are in centimeters.
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diffusion equation

∇2B = 1
α

∂B

∂t
(6.3)

where α = 1/(µoσ), µo is the magnetic permeability and σ is the conductivity of copper.

Although the flux conserver is tungsten coated, the effect of the tungsten will be neglected

due to its small thickness, 100 µm [2]. On simple dimensional grounds, the characteristic

time τd for the field to permeate or decay through the thickness δ of the flux conserver is

τ d ∼ δ2

α
(6.4)

For δ = 0.012m, τd ∼ 10ms, which is much longer than the 0.2−0.4ms inter-frame time
of the images discussed here. Therefore, the total flux going through the electrode should

not change significantly on the time scale of the measurements presented here (nor do we

expect it to change much during the entire plasma shot).

In order to estimate the electric field, the potential drop across the cathode ionization

sheath must be estimated. For completeness, the expression for the potential drop is derived

here (derivations and related information about sheath voltages can also be found in [4–6]).

The derivation below is for non-magnetized plasmas. However, it was found theoretically

by Chodura [7] and experimentally by Tonegawa et al. [8] that the potential drop across

the ionization sheath is only weakly dependant on the angle and magnitude of the magnetic

field through the sheath.

First, it is assumed that the ionization sheath is constant and that the cathode has

the simple geometry shown in Figure 6.12. A 1-dimensional potential drop will also be

assumed, i.e., no edge effects. The total current drawn between the electrodes is

jc = e(Γecw − Γicw) = −e(Γeaw − Γiaw) = −ja (6.5)

where ja and jc are the anode and cathode currents, Γeaw and Γiaw are electron and ion

fluxes at the anode wall and Γeaw and Γiaw are electron and ion fluxes at the cathode wall,
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Fig. 6.11. Potential profile between electrodes. The voltage applied is Va − Vc and the
sheath dimensions for the anode and cathode are ∆A and ∆C , respectively. The plasma
potential is Vp.
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respectively. We express the voltage applied between the electrodes, V , as

V = Va − Vc (6.6)

where Va and Vc are the anode and cathode sheath voltage drops, respectively. For the

electron velocity distribution near the electrode walls, we assume aMaxwellian distribution

[9]. The one-way electron flux density at the anode is

Γeaw =
1

4
nce exp(

eVa
kTe

) (6.7)

with the average electron thermal speed ce calculated for a Maxwellian distribution as

ce =

µ
8kTe
πme

¶1/2
(6.8)

Assuming isothermal conditions inside the sheath, i.e., Te = Ti, the ion acoustic velocity

inside the sheath is

cs =

µ
k(Te + Ti)

mi

¶1/2
=

µ
2kTe
mi

¶1/2
(6.9)

The ion flux at the anode wall is simply

Γiaw = ncs (6.10)

Equation 6.10 implies that the ion speed for both sides of the sheath (i.e., near the electrode

wall and near the bulk plasma) is the same.

For the cathode, the ion flux is the same as for the anode (for sufficiently large nega-

tive bias, which is the case in our experiment), but for the electron flux at the cathode

Γecw =
1

4
nce exp(

eVc
kTe

) (6.11)

Combining equations 6.5 and 6.10 we have

Γeaw + Γecw = 2ncs (6.12)
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Fig. 6.12. Schematic of the ionization layer, ∆, at the cathode.



98

Expanding the left hand side of the equation above, and using Equation 6.6, we can solve

for the voltage drop at the cathode

Vc =
kTe
e
ln

µ
(16π)1/2(me/mi)

1/2

1 + exp(eV/kTe)

¶
(6.13)

For a hydrogen plasma (me/mi)
1/2 = 2.33×10−2 [10], and for sufficiently negative values

of V , exp(eV/kTe) ≈ 0. Equation 6.13 becomes

Vc = −1.8kTe
e

(6.14)

To calculate the electric field across the sheath of the cathode, we use Ez = −∂V/∂z

Ez ≈ 2kTe
e∆

(6.15)

where ∆ is the characteristic thickness of the sheath, as shown in Figure 6.12.

To estimate the magnitude and direction of the magnetic field near the cathode sur-

face, high-speed images as well as typical equilibrium calculations from CORSICA nu-

merical simulations of MHD equilibrium [11,12] were used (see Figure 6.13).

High-speed images during current sustainment in SSPX (with exposures of several

microseconds) suggest nested current sheets in the central plasma column that map to the

cathode surface and create the patterns that we have measured. From these observations we

conjecture that ions travel to the cathode through discrete flux surfaces. The most probable

radii for these flux surfaces can be inferred from the rings formed in the top-right image in

Figure 6.10.

Numerical MHD calculations and high-speed imaging independently suggest that the

magnetic field penetrates the cathode surface at an angle (see Figure 6.14 and Figure 6.15

near the cathode region at t = 3600 µs). For the calculations below, we will assume that

all magnetic field lines enter the cathode at an angle of ∼ 30 degrees.
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Fig. 6.13. Typical SSPX MHD equilibrium in modified flux [12] (image courtesy of E. B.
Hooper). The open flux surfaces (intercepting the cathode near r = 0) were used to get an
approximate value for the radius of curvature of the B field in the scrape-off layer (SOL).

Fig. 6.14. Apparent radius of curvature of field lines near the cathode. (Note: Radius not
to scale.) Shot 10418.
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Using the same numerical values used by Ryutov et al. in [3], the plasma density and

magnetic field strength are, respectively: ne ∼ 5 × 1019 m−3, B ∼ 0.2 T. The Br and Bz

components of the magnetic field can now be approximated to be

Br = B cos(30) = 0.17 T (6.16)

and

Bz = B sin(30) = 0.1 T (6.17)

For the thickness of the cathode sheath, ∆ = 0.05 m is used (based on the thickness of the

measured cathode patterns, not on the Larmor radius, as is sometimes used). If we assume

Te ∼ 10 eV, then
Ez = 0.4× 103 V/m (6.18)

It will be assumed thatEr is small (with respect toEz) on the grounds of good conductivity

of the cathode material and the plasma near it. It will also be assumed thatEθ is small since

the gun current is constant (no polarization currents).

Although it is difficult to measure the toroidal component of the magnetic field,

Bθ, an approximate estimation of the magnitude near the cathode can be performed using

Ampere’s law, I
dl ·B = µ0I (6.19)

For a circular integration contour and constant B this gives

Bθ =
µ0I

2πr
(6.20)

The gun current at SSPX is typically sustained at about I = 2 × 105A. To obtain an
approximate value of Bθ near the cathode, an assumption is made that the current per unit

area on the cathode end face is constant (and all the current reaches the cathode on that

face only). Using Equation 6.20, Bθ = 0 T at r = 0, linearly increasing to Bθ = 0.16 T at

r = 0.25 m.



101

The general expression for the E ×B drift velocity in cylindrical coordinates is

vE×B =
E×B
B2

=
(EθBz −BθEz)r̂+ (EzBr −ErBz)θ̂ + (ErBθ − EθBr)ẑ

B2
r +B2

θ +B2
z

(6.21)

Images of the cathode during the sustainment stage indicate that pattern elongation occurs

only in the θ direction (except at the cathode edge, where there is a slight elongation in the

r direction). With this constraint, the terms in the r and z directions of the drift equation

must balance to zero. However, if Bθ is of the same order as Br and Bz then the term in

the r direction would not balance to zero. Therefore the assumption that the gun current

is evenly distributed, implying a linearly increasing Bθ, must be incorrect. Having a small

Bθ near the axis of the cathode implies that most of the current is conducted at the edges

of the central column and the cathode (and possibly in the gun region, outside the field of

view of the camera).

The resulting expression for the E ×B drift near the cathode surface is

v(E×B)θ =
EzBr

B2
r +B2

z

(6.22)

Substituting the values from expressions 6.16, 6.17 and 6.18, the magnitude of the E × B

drift velocity in the θ direction is v(E×B)θ ∼ 1.7 km/s.
According to the results shown in Figure 6.5, the drift velocity has been overestimated

by about an order of magnitude. Since Te was given for the bulk plasma, it is likely that

Te << 10 eV for the cathode sheath. Indeed, if Te ∼ 2 eV is used, then the estimate

of drift velocity gives the same order of magnitude as the measurements in Figure 6.5,

i.e., vE×B ∼ 0.35 km/s. It is also possible that Er is considerable (due perhaps to flow

asymmetries, as will be discussed in Section 6.7.2) and that Ez is bigger than is estimated

here, but they balance in the θ component of Equation 6.21. Note that Equation 6.22 applies

mainly at radii smaller than ∼ 15 cm. It is possible that Bθ sharply increases towards the

cathode edge, thus changing the direction of elongation near that region.
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Most images suggest that patterns at the cathode edge elongate in both the r and θ

directions. However, elongation and velocity in the r direction were not quantified, since

changes in that direction are smaller (and harder to measure) than in the θ direction.

6.5.2 Curvature drifts

The estimated radius of curvature near the cathode is approximately Rc = 15 cm for sec-

tions of open flux surfaces near the edge, as shown in Figure 6.13.

The plasma drift due to curvature in the magnetic field [13] can be expressed as

vcurv =
2W||
qB2

Rc ×B
R2c

(6.23)

where W|| is the energy of the ions along the flux tube arriving at the cathode. Using the

same assumptions and values as in the previous section, vcurv ∼ 0.14 km/s in the θ direc-
tion. It is important to mention that curvature drifts depend on the charged particle sign,

and thus electrons should move in the θ direction opposite to that observed in the images.

Along their path, these electrons could excite neutrals that would emit light. Elongation of

the cathode patterns in both directions was not observed; therefore it is unlikely that drifts

due to curvature are considerable.

6.5.3 Plasma flow due to J ×B forces near the cathode surface

The modeling of spheromaks is based on the assumption that currents in the plasma are

aligned with the magnetic field and create a nearly force free configuration. However, it

is possible that near the SSPX cathode this assumption is incorrect and the forces associ-

ated with magnetic fields and the sustainment current cause the plasma to rotate toroidally,

causing the pattern movement observed in the high-speed images.
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There are no expected polarization currents during sustainment, therefore Jr = 0 is

assumed. Since there is no radial elongation observed, the radial component of the J×B
force must balance to zero, thus

JθBz = BθJz (6.24)

The resulting expression for a purely toroidal force near the cathode surface is

(J×B)θ = JzBr (6.25)

This expression is similar to Equation 6.22.

Note that plasma rotation due to J × B forces is fundamentally different from E ×
B drifts. A continuos force would imply an acceleration of the plasma. However, the

measurements shown in Figures 6.5 and 6.6 were taken at different times throughout the

sustainment stage, and thus suggest that the elongation velocity is approximately constant

for the entire stage. Therefore, if J ×B forces are responsible for this rotation, then these

would have to be intermittent or have dissipation (i.e., viscosity).

To date, there are no measurements of the current profile near the cathode, and thus

the components of the current and their spatial distribution are not known well enough to

quantify their effect on the observed pattern elongation.

6.6 Filamentation of current near the cathode

Images taken during the decay phase of a typical SSPX shot suggest the presence of flux

tubes or channels near the cathode. In Figure 6.15 current is decaying and the plasma

temperature is colder than during sustainment, allowing for more recombination and hence

more light emitted by neutrals. At t = 3600 µs the filaments are already visible (marked

with the white arrow) and apparently extend to the bottom of the flux conserver. At t =

3800 µs structures are more diffuse. There is also presumably a drastic change in magnetic
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configuration between the first and second images (i.e., loss of closed magnetic surfaces),

but patterns can still be observed on the cathode. Structures attached to the cathode also

become more diffuse and less defined, like the one marked by the two white arrows on the

right image in Figure 6.15. After the gun current has decayed to a low enough value (∼ 50
kA), the features seen in the plasma start to get dimmer. At this stage, there are plenty of

neutrals, but little plasma to interact with them and make them glow. Figure 6.16 shows

filamentation of the current arriving at the cathode. Since dI/dt is large and negative at this

stage, we expect a polarization current to ‘untwist’ the flux channels, and so the field lines

should straighten out. Note that the cathode patterns remain throughout this stage, but no

patterns are seen anywhere on the anode.

6.7 Discussion and conclusions

From the measurements presented above, it is clear that cathode patterns elongate in a con-

stant toroidal direction. This is especially true for radii < 15 cm. For greater radii values,

some elongation in the radial direction was observed but was too small to be quantified.

Elongation of the cathode patterns was measured for intervals greater than 0.1 ms between

images of the same shot. For the anode, the patterns move on a time-scale much faster than

0.1 ms and are not as well defined as those at the cathode. All measurements were made

from images taken during current sustainment.

6.7.1 Drifts and the hollow current profile of the central column

Taking into account the magnetic field shape and strength at the cathode surface, and es-

timating the electric field across the ionization sheath of the cathode, calculations indicate

that E × B drifts might be responsible for the elongation of the patterns. It was found
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Fig. 6.15. Filamentation mapping to the cathode during the deacy phase of the current in
SSPX. As the current decreases, the recombination of plasma to neutrals increases and
emits more light that is captured by the camera. Shot 10432.

Fig. 6.16. Filamentation observed during current decay. No closed flux surfaces are ex-
pected at this stage.
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that Bθ and Er must be small close to the cathode axis in order for the patterns to elon-

gate only in the θ direction. It is possible that Bθ and Er become significant towards the

cathode edge, thus changing the elongation direction. This would also explain the small r

component in the elongation of the patterns near the edge.

A very important implication of smallBθ near the cathode end-face is that most of the

current is not collected on that face. However, the discharge current still has to arrive at the

cathode somehow, so if the pattern elongation direction is towards the edge, it is possible

that most of the current reaches the round face (somewhere outside the field of view of

the high-speed camera). Ryutov, Cohen and Hill [3] reported ‘chicken track’ marks on the

round face, near the edge of the SSPX cathode. Those marks cannot be explained using the

expressions derived in their paper (which provides a phenomenological model for plasma

filamentation and the tracks that it leaves on the cathode during breakdown and ejection

from the SSPX gun). This hints at the sustainment central column as being like a ‘hollow’

conductor close to the cathode, with most of the current going through the edge of the

column, but with enough on the inside to create patterns on the cathode end-face.

6.7.2 Flow asymmetries

For any given plasma shot, the patterns never elongated at the same angular rate. The shot

to shot variation in the elongation rates with respect to radii, and the variation in intensity of

the light coming from the patterns, indicate that the temperature (and therefore the voltage)

across the ionization sheath varies significantly throughout the current sustainment phase

of SSPX.

Extensive theoretical and experimental investigations of the ionization sheath and

scrape-off layer (SOL) have been carried out mainly for tokamaks. Cohen and Ryutov [15]

present a unified picture of the drift phenomena on open field lines and derive the boundary
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conditions necessary to describe convection and flow asymmetries near ionization layers

for magnetic confinement devices. In their analysis (which includes an extensive list of

references to previous work), they find that, for a magnetic field intercepting a wall (or

layer of neutrals) at a shallow angle, plasma asymmetries driven by convection near the

surface wet the surface only at some locations. These asymmetries cause cross-electric

fields (in our case radial or toroidal) that can drive currents. In all the images analyzed,

it was evident that the patterns at the cathode were elongating in a toroidal direction that

depends on the sign of the B field and that one side of each individual pattern stays fixed.

Besides E × B drifts, it is possible that the cross-electric fields at the ionization sheath,

especially near the cathode edge, are responsible for such elongation.

During current sustainment, the plasma is expected to have currents across B-field

lines near the cathode only due to flow asymmetries. When the current decays, pattern

elongation is also observed. However, it is possible that at this stage E ×B and curvature

drifts are small, but polarization currents due to flow asymmetries and due to dI/dt < 0

are big and responsible for the elongation observed.

6.7.3 Nested flux surfaces and current filamentation

We now conjecture that the patterns observed on the cathode are projections of the open flux

surfaces that carry currents. This means that current flows only at discrete radial locations

along the central column. The outermost open surface can be identified from the change in

brightness of the central column or ‘hole’ of the spheromak (Chapter 5). Note that MHD

equilibrium analysis of the spheromak configuration allows for a continuum of open flux

surfaces (both open and closed).

Although there are no closed flux surfaces expected late in the decay of the SSPX gun

current, filaments and cathode patterns observed during that stage are also an indication of
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discretization of flux surfaces. In Figure 6.16 for example, some of the filaments clearly

map to the patterns on the cathode. Those same filaments extend from the cathode to the

bottom of the flux conserver (near the divertor opening), and a slight helical twist on each

of them is also apparent.

It is important to point out that the MHD equilibrium solutions obtained from COR-

SICA do not contain details of filamentation. The fact that filamentation is found in the

plasma, however, does not contradict the MHD solutions. The plasma can flow in filaments

and still be attached to distinct flux surfaces. Plasma filamentation (driven by pressure gra-

dients or by currents) has been widely studied for other magnetic confinement concepts

with open and closed field lines (see, for example, [16–21]). Even though the sustainment

central column of SSPX has stabilizing curvature in the magnetic field (concave towards

the plasma) and the magnetic field intercepts highly conducting plates, filamentation is still

present. Berk et al. [22] developed a model to address this issue. Their model predicts

a rapidly growing flute-like instability based on the electron temperature gradient across

field lines (i.e., parallel to the electrodes). At SSPX, there are no measurements of the

temperature profile near the electrodes. However, if it is assumed that the light-intensity

profile measured from images correlates to electron temperature, then the middle plot in

Figure 6.10 indicates that there is a radial temperature profile near the cathode. Based on

the E × B calculations presented above, it is reasonable to expect that the colder plasma

temperature occurs at the cathode axis and increases towards the edge (i.e., with a profile

inverted to that shown in the middle plot in Figure 6.10, due possibly to the low ionization

percentage at the axis, with high neutral glow, and high ionization percentage towards the

edge, with low neutral glow).

The apparent constant cross-section of the filaments can be explained by the model

proposed by Bellan [23], in which current-carrying flux tubes that are bulged can become
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thin and uniform by accelerating (and thus ingesting) plasma due to non-conservative J×B
forces. Once the cross-section of a flux tube is constant throughout its length, the pumping

effect ceases. The temperature gradients mentioned above, coupled to the pumping effect

when there are perturbations from equilibrium (i.e., J×B 6= 0), could be responsible for
the fast change of brightness of the patterns observed on the electrodes.
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Chapter 7

Image restoration and tomography in SSPX
using the maximum entropy principle

7.1 Introduction

High-fidelity imaging of the Sustained Spheromak Physics Experiment (SSPX) plasmas

proved to be a challenging task. The most common problems encountered were blurriness

and noise in the images. Blurriness resulted if the optics were misaligned, if there was

stray light or undesired reflections going into the camera, or by aberrations [1] caused

by limitations in the optics (Chapter 4). Image noise can be caused by spurious signals

(mainly from thermal noise1) being amplified in the camera micro-channel plate (MCP) or

in other electronics. Both of these problems can substantially degrade the image quality,

and ultimately, the information that can be extracted from these images.

All the blurring mechanisms of an imaging system can be lumped into a single func-

tion, which is typically referred to as the point-spread function2 (PSF). Image blurring can

then be stated as the convolution of the real image (the image before it enters the instru-

ment) with the PSF (which might include noise). In this sense, image restoration becomes

a deconvolution problem.

Digital image processing is an active area of research, and thus numerous methods

exist to digitally restore and enhance, to some extent, blurry and noisy images (see for

1 To minimize thermal noise amplification, the DiCam-Pro has a cooling system to lower the temperature
to -12 ◦C.
2 Some authors also refer to the PSF as a degradation function, or instrument function.



112

example [2–6, 8]). Of particular interest here is the maximum entropy restoration method

[6,8], which is based on the Shannon concept of entropy as an information measure3. This

method has the advantage of being robust for sets that are small or incomplete, i.e., have

missing pixels [11]. This robustness contrasts with Fourier-based methods for which, in

incomplete sets, the phases of the Fourier components are either inaccurate or unknown;

because of these inaccuracies, the resulting reconstructions with Fourier-based methods

often have artifacts. The maximum entropy algorithm and its implementation as a method

for image restoration is derived here.

Interestingly, tomography, which is the cross-sectional imaging of an object recon-

structed from transversal projections, can also be formulated as a convolution problem [12].

The larger the number of projections from different angles, the more precise the reconstruc-

tion will result. Medical imaging is the main application of tomography and has motivated

the development of vast amounts of literature in the subject. However, mathematical meth-

ods geared for medical applications often assume that large data sets (typically hundreds

to thousands of precision projections) are available. These methods become inappropriate

for reconstruction when data sets are small. Therefore, anyone seeking to use tomographic

techniques on small data sets and obtain the best possible reconstruction, normally has to

tailor a method to their particular application. This is the case for the tomographic recon-

struction of the SSPX transient central column from images taken with the double-branch

fiber bundle.

Reconstruction of sections from the SSPX transient plasma column from only two

projections is presented here. This tomographic method was created specifically for the

geometrical and data-limited constraints of SSPX. The method is a combination of the

3 E. T. Jaynes [9, 10] discusses in detail the fundamental implications of the maximum entropy concept
applied to information theory.
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above mentioned algorithm for image restoration, and a simple tomographic technique

known as summation method [13]. However, since only two projections were used for the

reconstructions, severe limitations were found with respect to other tomographic methods.

Regardless of these limitations, this method was found useful in studying properties of the

transient plasma column, in a way complementary to the images shown in Chapter 4.

This chapter is organized as follows. The maximum entropy algorithm is derived for

completeness in Section 7.2. The characterization of the SSPX high-speed imaging system

PSF using the double-branch fiber bundle, and the second generation relay lens (Chapter

3), is presented in Section 7.3. Examples of restored images using the maximum entropy

method are also presented in this section. A derivation of the tomographic technique used

here to reconstruct parts of the SSPX transient column is presented in Section 7.4. Recon-

structions using this method with simulated patterns, as well as with actual images, is also

presented in this last section.

7.2 Maximum entropy image restoration

In this section the maximum entropy restoration method and a computational algorithm to

implement it are derived. The derivation of the maximum entropy method is largely based

on the work of Wilczek and Drapatz [6], and the implementation algorithm is based on

notes by Bellan [7].
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7.2.1 The restoration method

Image acquisition with a linear image formation system, such as a photographic camera,

can be described by the convolution equation

g(x, y) =

Z ∞

−∞

Z ∞

−∞
h(x− ξ, y − η)f(ξ, η)dξdη (7.1)

where f is the true image brightness, h is the point-spread function (PSF) of the camera, and

g is the image after being captured by the instrument. The problem of image restoration is to

find f given g and h. In digital images (i.e., captured with CCD cameras), the information

is inherently discretized. Therefore, it is appropriate to use summations instead of integrals.

For convenience, single indexing will be used in the rest of the derivation.

Measurement errors are always present in a real imaging system. These errors might

include noise in the capturing device, and thus need to be taken into account. Equation 7.1

can be expressed as

gk + ek =
nX
i=1

hikfi , k = 1, ...,m (m < n) (7.2)

where ek is the unknown error at every pixel. In the present derivation it is assumed that

the point-spread function h does not lose information (no edge effects) when operating on

f . Therefore the requirement m < n implies that h does not operate at the edges of the

image, but somewhat inside only. This results in the total image brightness being the same

for g and f (this will become useful later in the derivation).

Equation 7.2 is ill-conditioned, and thus the true distribution f cannot be found ex-

actly with the available information. Instead, an approximate solution that can produce an

‘acceptable’ distribution f will be sought. With this in mind and following the same ap-

proach as Gull and Daniell [11], the noise is assumed to have a Gaussian distribution. With

this assumption, the expression
Pn

k=1 e
2
k/σ

2
k, where ek is the error at every pixel and σk is
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the standard deviation of that error, has a χ2 probability distribution [14]. This expression

will become useful in the derivation of the method, and the implementation algorithm. The

standard deviation of the error at every pixel can be measured for the imaging system, for

example, by making repeated measurements of a white screen (or any spatially constant

background that does not change between measurements).

With these statistical assumptions of the measurement errors, the maximum entropy

restoration method is outlined in the following steps:

1. Determine the value needed to obtain a confidence level close to 1 (say, 0.99) in the

χ2 probability distribution function with ν = m degrees of freedom. That is, obtain

the value of χ2 that yields P (χ2|m) = 0.99 in the χ2 distribution function:

P (χ2|ν) = 1

2ν/2Γ(ν/2)

Z χ2

0

t
ν
2
−1e

t
2dt (7.3)

The solution for χ2 can be found in several ways: numerically, that is, with the help

of a computer; from asymptotic approximations (e.g. Severo and Zelen [15]); or ifm

is relatively small (< 100), the χ2 can be found using tables (e.g. Spiegel [16]). The

result is stored in the variable Ω. If the error has zero mean, then

mX
k=1

e2k
σ2k
= Ω (7.4)

2. Determine the total intensity γ received by the original image f . Using the assumption

that h does not lose information (in Equation 7.2), γ is found by adding the total

intensity received through the imaging system in g, and thus

γ =
nX
i=1

fi (7.5)

3. The only admissible solutions fi are those that satisfy equations 7.2, 7.4, and 7.5.

From these admissible solutions, select the one that maximizes the Shannon entropy
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function

S = −
nX
i=1

fi log(fi) (7.6)

7.2.2 The restoration algorithm

The Lagrange multiplier method is used to maximize equation 7.6, subject to constraints

7.2, 7.4, and 7.5. The Lagrangian L of the system is

L(f1, ..., fn, e1, ..., em, λ0, ..., λm, µ) = −
nX
i=1

fi log fi − λ0

Ã
nX
i=1

fi − γ

!

−
mX
k=1

λk

Ã
nX
i=1

hikfi − gk − ek

!

−µ
Ã

mX
k=1

e2k
σ2k
− Ω

!
(7.7)

To maximize L with respect to the unknowns fi and ek, their partial derivatives

∂L/∂fi and ∂L/∂ek are set to zero. After some algebra, partial differentiation gives the

following equations for fi and ek

log fi = −1− λ0 −
mX
k=1

λkhik , i = 1, ..., n (7.8)

ek = λk
σ2k
2µ
, k = 1, ...,m (7.9)

Using Equation 7.5, λ0 can be eliminated from Equation 7.8. After rearranging, this sub-

stitution yields

fi(λ1, ..., λm) = γ
exp (−Pm

k=1 λkhik)Pn
p=1 exp (−

Pm
k=1 λkhpk)

(7.10)

The above expression for fi now contains only m variables, and can be substituted into

Equation 7.2 to yield
nX
i=1

hikfi(λ1, ..., λm)− λk
σ2k
2µ
− gk = 0 , k = 1, ...,m (7.11)
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Substituting Equation 7.9 into Equation 7.4 gives

1

4µ2

mX
k=1

λ2kσ
2
k − Ω = 0 (7.12)

Equations 7.11 and 7.12 represent the system ofm+1 equations to solve for the Lagrange

multipliers λ, and thus for the true image g.

7.2.3 Iterative method for finding λ

The practical implementation of the maximum entropy method to restore the SSPX images

is described below. This implementation is adapted from notes by Bellan [7] on maximum

entropy methods. It should be noted that Wilczek and Drapatz used a Newton iteration

method to solve the system of equations derived in the previous section. However, this

method could be computationally expensive. The system of equations derived in the appli-

cation of Wilczek and Drapatz involved about 102 different values of λ (unknowns), which

can be solved in a reasonable amount of time and with enough stability in modern comput-

ers. However, the plasma images taken at SSPX had about 106 pixels, and thus the same

number of unknowns. For this reason, it was decided against a Newton iteration method,

and in favor of an iterative scheme that took advantage of pre-programed matrix operations

in commercial software like Mathematica [17] or IDL [18]. Tensor notation is more appro-

priate than single indexing in this case. Nevertheless, single indexing will be used in the

expressions below for consistency with the expressions derived in the previous section.

The procedure now is to start off with an initial guess for all λk and µ. For λk the

choice was

λ0k = log(fi + ε) (7.13)
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where the arbitrary value ε << min(fi) was added to prevent indeterminate values if fi

was zero. The choice for µ was

µ0 =
1

Ω

nX
i=1

log(fi + ε) (7.14)

where ε has the same purpose as in Equation 7.13. These choices yielded a fast convergence

of the algorithm, although almost any choice did, since the iterative scheme was robust in

this sense.

Solving for the Lagrange multiplier µ in Equation 7.12 gives

µ =
1

2

vuut mX
k=1

λ2kσ
2
k

Ω
(7.15)

The linear λk term in Equation 7.11 suggests that the expression can be solved iteratively.

Substituting Equation 7.15 into 7.11 and solving for the linear λk term, the iteration ex-

pression is obtained

λnewk =
2µold

σ2k

nX
i=1

hikfi(λ
old
1 , ..., λoldm )− gk (7.16)

For the iteration of µ, Equation 7.15 is modified to give

µold =
1

2

vuut mX
k=1

¡
λoldk

¢2
σ2k

Ω
(7.17)

This iteration method was found to converge to in about ten iterations. Examples of

image restoration using this iterative scheme and measured h (PSF) are presented in the

section below.

7.3 The point-spread function and image restoration

Measurements of point-spread functions (PSF) for the SSPX high-speed imaging system

and some examples of image restoration, are presented in this section. The PSF, that is, the

amount by which the signal from a single pixel is spread over adjacent pixels, may cause
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Fig. 7.1. Setup for the PSF measurements. The second generation relay lens and the dou-
ble-branch fiber bundle were measured with this setup. With the lens inside the enclosure,
the only light allowed was through the pinhole.

undesired blurring and inaccuracies in an image. Knowledge of the PSF is essential for

the restoration of images using the maximum entropy method described in the previous

section.

7.3.1 The point-spread function

Two different PSF measurements are presented here. The first measurement corresponds to

the second generation relay lens, and the second to the double-branch fiber bundle (Chapter

4). To measure the PSF of both optical systems, a light-proof enclosure with a 100 µm

pinhole was built. A strong light source was placed outside the box to create a ‘point

source’ inside the box. The wide angle lens in both cases was placed 78 cm away from the

pinhole, as shown in Figure 7.1. The distance between the lens and the pinhole was chosen

such that the pinhole diameter would be equal or less than the size of a pixel in the final

image.
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Fig. 7.2. Point-spread function (PSF) measurements for the second generation relay lens
(top) and the double-branch fiber bundle (bottom).

The measurements on both cases were done with a 10% gain on the micro-channel

plate (MCP) and exposures of 150 ms (to increase the signal to noise ratio). The results

are shown in Figure 7.2. The values were saved as matrix arrays for later use as the h

functions in the maximum entropy restoration method. Note that the PSF from the second

generation relay lens seems to spread out more than the PSF for the double-branch fiber

bundle. However, plasma images showed that the best quality obtained was from the relay

lens. The difference could be in the amount of stray light that was generated in the different

systems. The density plots shown in Figure 7.2 have high signal-to-noise ratios (compared

to plasma images). However, the integration time for these images was much longer than

for the plasma images.
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It should be mentioned that these PSF measurements were done only for pixels at the

center of the screen. At the edges there were distortions caused by the wide-angle lenses.

Nevertheless, these regions of higher distortions usually fell outside the field of view where

plasma was seen, and thus normally were not taken into account.

7.3.2 Image restoration using the maximum entropy method

The maximum entropy method described above was used to restore SSPX plasma images.

Two examples are presented here. No other processing, e.g. coloring or filtering, was

done to these images, and the restoration was done at the original resolution. The standard

deviation σ of the noise, required for the iteration equations 7.15, 7.16, and 7.17, was not

measured for all gain ranges of the MCP. However, by measuring σ for a small area in each

image (usually an area not illuminated by the plasma), and assuming that σ is constant for

all the pixels and MCP gain levels, then σ ≈ 1 was considered a good approximation.
The first restoration example is for an image taken with the first generation relay

lens (Chapter 3), and is shown in Figure 7.3. The original image is shown on top, and

the restored image at the bottom. The major features (the plasma column, the opening at

midplane, the bright spots, etc.) are seen on both images. However, the restored image

shows finer and sharper details. This level of image definition was achieved after twelve

iterations in the restoration method. Note that the PSF measured for the second generation

relay lens (shown at the top of Figure 7.2) was used for the image in this example4, which

was taken with the first generation relay lens, and seems to have worked well. Images taken

with the second generation relay lens and restored with the maximum entropy method have

similar results as the one shown here. However, this example was chosen to show the

4 We were unable to measure the PSF for the first generation relay lens, since parts of it were ‘canibalized’
and modified to construct the second generation relay lens.
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Fig. 7.3. Restoration of an image taken with the second generation relay lens. Shown here
is the image before restoration (top), and after restoration (bottom) with the maximum
entropy method. Shot 8181. t = 55 µs. Gas used: hydrogen.

efficacy of the restoration method with an image that is particularly noisy, but contains

sharp column edges.

The second example is for an image taken with the double-branch fiber bundle. The

procedure and number of iterations were the same as in the previous example, but the PSF

(shown at the bottom of Figure 7.2) was measured specifically for this optical system. The

result is shown in Figure 7.4. Just like in Figure 7.3, the main features are seen on both

the original and the restored images, but the restored image is cleaner and shows a sharper
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Fig. 7.4. Restoration of an image taken with the double-branch fiber bundle. Shown here
is the image before restoration (top), and after restoration (bottom) with the maximum
entropy method. The left image was taken from the 157.5 ◦ port in SSPX, and the right
image from the 270 ◦ port. The rotation of each view is due to rotation of the fiber branches
inside the ports. Shot 10375. t = 50 µs. Gas used: hydrogen.

boundary of the central column. This is useful for the purpose of computer tomography, as

will be shown in the following section.

7.4 Two-dimensional tomography of the SSPX transient
plasma column

Tomography of the SSPX transient plasma column, and the method used to compute it, are

presented in this section. The method is based on a novel extension of the maximum en-
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tropy restoration method presented in Section 7.2. The method was created to reconstruct

the cross-section of the SSPX plasma from images taken with the double-branch fiber bun-

dle, which provided only two views per shot (e.g., Figure 7.4). This two-view limitation

is in contrast with conventional (mostly medical) applications of tomography, in which

dozens or hundreds or more views are available for high-fidelity reconstruction. For the

method presented here, however, the availability of only two views imposes limitations on

the resolution and complexity of the shapes that can be reconstructed. Thus, rather than

pursuing precise reconstructions, the method is tailored to investigate changes in position

and width of the column (or other features) from coarse reconstructions.

It should be noted that plasma tomography has been done before in plasma cham-

bers with a reduced number of views (see for example [19–23]), including one that used a

maximum entropy method [22]. However, the method presented here takes advantage of

the image restoration algorithm presented above, such that only slight modifications to that

algorithm are required to obtain a tomographic algorithm.

The method, the limitations, and some examples, are presented in the following sec-

tions.

7.4.1 The tomographic method

The first step in the tomographic method is to create a reconstruction grid. It is convenient

to make this grid such that it follows the rays that map to both cameras (or detectors). This

is illustrated in Figure 7.5. The grid cells do not have equal areas, and thus do not have

equal weight when assigning intensity values in the reconstruction space. To give the cells

equal weight, the area of each cell is calculated and stored in a weight matrixW .

The grid cells that fall outside the field of view (FOV) of one camera need to be

included if they fall within the FOV of the other camera. Note that no grid cells are included



125

Fig. 7.5. Two-dimensional tomographic grid. The reconstruction area only where the rays
intersect inside the circumference (flux conserver). The cameras, placed immediately out-
side the circumference, capture the information that is then projected and combined ray
by ray back into the reconstruction area. The thick (red) lines represent the field of view
(FOV) of both cameras.

if they fall outside both FOVs. In Figure 7.5, the FOV of each camera is marked with

thick (red) lines. If both cameras have the same FOV and resolution (number of pixels),

the W matrix is simply a triangular matrix. The assignment of the grid cells and their

reconstruction weight is done only once for a given angle between the two views.

The second step in this method is to combine the data from the two views and situate

it in the reconstruction grid. This is done with the summation method, which is finding the

intersection of two rays from two views and assigning the sum of the projected values to

the grid cell where both rays intersect. For example, if the ith ray, g1i , from the first camera
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Fig. 7.6. The point-spread function (PSF) created by the summation method. The signals
received by two perpendicular detectors (a) and (b) from a point source, are combined to
produce a ‘smeared’ reconstruction (c) of the point source. The PSF for this case is shown
in (d).

is being combined with the jth ray, g2j , from the second camera, then the combination

matrix G is assigned the value g1i + g2j at cell Gij . The summation of two rays is shown in

Figure 7.5 with two shaded rays. The cell at which both rays intersect (darker cell in the

figure) is assigned the sum of the intensity from both rays. Rays that fall outside the FOV

of one camera are assigned the intensity value of zero for that camera. This is a sort of

zero-padding to make the G matrix rectangular.

The third step is to create a point-spread function (PSF). This PSF serves the same

function as the one in the sections 7.2 and 7.3. However, in this case the PSF is not created

by cameras or detectors, but by the summation method used to populate the G matrix.

Thus, in this method the PSF could be considered a ‘numerical’ PSF, since the summation

method spreads the signal from a point over the range of the rays that capture the signal.

This spreading is shown in Figure 7.6. Indeed, the PSF shown in this figure was used for

all the reconstructions presented in this chapter.

The tomographic method now follows the same steps as for the maximum entropy

restoration derived in the previous section. In this sense, the G matrix is like an image

that needs restoration, and the PSF is known for that image. However, unlike the PSFs
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measured in Section 7.3, here the PSF spreads the information over a wider range in the

image (i.e., the G matrix). This wider spreading imposes a limitation for restoration, since

it is equivalent to trying to restore an image that is extremely blurred. Another limitation

comes from the number of projections. It is possible that features in the reconstruction

plane were blocked from the two cameras by other features during data acquisition. Thus,

these hidden features cannot be resolved from only two projections.

With these limitations, it is clear that this method is not appropriate if high-fidelity

reconstruction is desired. However, the coarse reconstruction resulting from this method is

useful in finding the position of features like the transient central column or thick filaments

that might be present. Even though the sustainment central column (Chapter 5) falls within

this category of features, it was unfortunately not possible to reconstruct it because of the

low contrast5 (caused by a highly ionized plasma) near midplane.

It is worth mentioning that the summation method can be extended to more than only

two projections. In this case, a PSF would have to found based on the angle and number of

the projections. For example, if there are five projections, the PSF would be a star shaped

version of the one shown in Figure 7.6. However, the grid generation would be different

from the one presented here. Details of the extension to more than two views are out of

the scope of this chapter, and the interested reader is referred to the work of Holland and

Navratil [22], and Terry et al. [19], for a discussion about the generation of a grid for a few

projections. Of course, if many projections are available, more conventional methods are

advisable for tomographic reconstruction.

5 Low contrast is a common problem for other tomographic techniques [24].
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7.4.2 Tomographic reconstruction

Examples of reconstructions using the tomographic method described above, and its limi-

tations, are presented in this section. To test the method, a number of reconstructions using

simulated signals were made. The results are shown in Figure 7.7. Columns (a) and (b)

represent the simulated signals received by two detectors positioned 112.5 ◦ apart, just like

the detectors shown in Figure 7.5. The simulated signals are Gaussian functions, and are

shown in column (c). The tomographic reconstructions with the input signals from columns

(a) and (b), are shown in column (d). Two hundred beams were used for each detector.

The first striking difference between the original Gaussian contours and the recon-

structed ones, is the distortion of the contours. This is inherent to the summation method

and the irregular grid used. That is, there is only a limited amount of spread caused by

the summation method that can be corrected with the PSF used in the maximum entropy

restoration method.

Note that all the Gaussian functions are identical. These functions simulate dense

plasma filaments with identical characteristics, all within the FOV of both detectors. When

the signals are integrated (along the line of sight of each detector) and recorded by the hy-

pothetical detectors, it might not be evident that all the signals have the same characteristics

or that the number of peaks seen in the detectors correspond to the number of hypothetical

columns. In fact, the layout of these columns was chosen such that some would overshadow

others.

The layout of these simulated signals is considered a ‘tough’ test for the reconstruc-

tion method. The limitation in the number of features that can be reconstructed is evident

from these tests, since lower contrast (or less contours in the reconstructed figures) results

as the number of features in the reconstruction area increases. For example, the recon-
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Fig. 7.7. Comparison between simulated reconstructions. See text for details.
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structed cross-sectional image in the second row of Figure 7.7 show clearly the contours

for two columns. However, the reconstruction for three columns shows only two that are

of significant intensity, and a third column that is very faint. The small contours represent

less than five percent of the maximum intensity after reconstruction.

Another problem that may occur when reconstructing cross-sections with multiple

features, is the confusion in their position. This is shown in the last row in Figure 7.7,

which shows the test for four columns. The reconstruction is not only faint for some of the

columns, but it is also inaccurate in their position.

Based on the above tests, it was accepted for the present work that the position and

contrast of features was accurate for a maximum of two features, to within 2 cm (not count-

ing the deformation of the features). With these limitations in mind, the cross-section of

features visible by the high-speed imaging system through the double-branch fiber bundle,

were reconstructed for the midplane section. An example is presented here using the im-

ages shown in Figure 7.4. Of course, the restored version of these images was used for this

reconstruction. After digitally rotating the images, a row of pixels was taken from each im-

age. These rows of pixels are the input signals for the reconstruction algorithm (just like

columns (a) and (b) in Figure 7.7).

The result from this reconstruction is shown in Figure 7.8. It is possible that due to the

limitations mentioned above, the actual shape of the sustainment central column was not

exactly as it appears in the figure. Nevertheless, it is clear that the column is not centered at

the axis of the flux conserver. This is perhaps also apparent from the full images. However,

there is no depth perception from these images, and thus it is not possible to measure the

location of the column this way. Therefore, the reconstruction method presented here might

be useful in characterizing the position and size of the transient plasma column (Chapter 4)

in the SSPX discharge.
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Fig. 7.8. Cross section reconstruction of a transient central column at midplane. A row
of pixels is selected from the midplane section on both images. Using the reconstruction
method detailed in this chapter, the approximate position and size of the plasma column
is found. The position of the views is indicated outside the reconsruction diagram on the
right. The circumference depicts the boundary of the SSPX flux conserver.

7.5 References

[1] E. Hecht and A. Zajac. Optica, (Addison-Wesley Iberoamericana S. A., Mexico,
1986), pp. 185 - 204.

[2] S. E. Umbaugh, Computer vision and image processing, a practical approach using
CVIP tools, (Prentice Hall PTR, Upper Saddle River, 1998), Chapters 3 and 4.

[3] G. X. Ritter and J. N. Wilson, Handbook of Computer Vision Algorithms in Image
Algebra, (CRC Press, New York, 2001), Chapter 2.

[4] S. E. Reichenbach and S. K. Park, IEEE Trans. Signal Processing 39, 2263 (1991).

[5] C. L. Fales, F. O. Huck, J. A. McCormick, and S. K. Park, J. Opt. Soc. Am. A 5,
300 (1988).

[6] R. Wilczek and S. Drapatz, Astron. Astrophys 142, 9 (1985).

[7] P. M. Bellan, Personal communication, June 25, 2003.

[8] B. R. Frieden, J. Opt. Soc. Am. 62, 511 (1972).

[9] E. T. Jaynes, Phys. Rev. 106, 620 (1957).



132

[10] E. T. Jaynes, Phys. Rev. 108, 171 (1957).

[11] S. F. Gull and G. J. Daniell, Nature 272, 686 (1978).

[12] S. Webb, The physics of medical imaging, (IOP Publishing Ltd, Bristol, 1988), pp.
111 - 119.

[13] G. T. Herman, Image reconstruction from projections, the fundamentals of comput-
erized tomography, (Academic Press, Inc., New York, 1980), pp. 108 - 110.

[14] W. W. Hines, D. C. Montgomery, D. M. Goldsman, C. M. Borror, Probability and
Statistics in Engineering, fourth edition, (John Wiley and Sons, Inc., Hoboken,
2003), pp. 205 - 208.

[15] N. C. Severo and M. Zelen, Biometrika 47, 411 (1960).

[16] M. R. Spiegel, Manual de fórmulas y tablas matemáticas, (McGraw Hill, Mexico,
1991), p. 259.

[17] Mathematica 5.0, Wolfram Research, Inc., http://www.wolfram.com/, August 20,
2004.

[18] IDL Software, Research Systems, Inc., http://www.rsinc.com/idl/, August 20, 2004.

[19] S. D. Terry, D. Q. Hwang, H. S. McLean, et al., Rev. Sci. Instrum. 71, 4119 (2000).

[20] Y. Nagayama, S. Tsuji, K. Kawahata, et al., Jpn. J. Appl. Phys. 20, 779 (1981).

[21] R. S. Granetz and P. Smeulders, Nucl. Fusion 28, 457 (1988).

[22] A. Holland and G. A. Navratil, Rev. Sci. Instrum. 57, 1557 (1986).

[23] Y. Liu, A. Yu, and B. J. Peterson, Rev. Sci. Instrum. 74, 2312 (2003).

[24] S. Webb, The physics of medical imaging, (IOP Publishing Ltd, Bristol, 1988), pp.
94 - 96.



133

Chapter 8

Multielement magnetic probe using
commercial chip inductors

(Note: This chapter was published by C. A. Romero-Talamás, P. M. Bellan, and S.

C. Hsu1, in Review of Scientific Instruments, Volume 75, August 2004, pp. 2664 - 2667.)

8.1 Introduction

Magnetic probes are widely used in measurements of current-carrying plasmas [1, 2], but

multi-element and compact arrays are often difficult and tedious to make when winding

coils manually [3–5]. The part-to-part uniformity of hand-wound, millimetric size coils is

usually poor since it is difficult to keep the wire aligned for every turn. Alignment and

separation between coils can also become difficult if there is no substrate or fixture on

which to mount the coils.

To give an idea of the difficulties in fabricating millimetric size coils, we compare the

pick-up coils used in our probe, to those used in probes reported by Granetz et al. [6] and

Takahashi et al. [7]. Hand-winding 3 cm x 8 mm coils with #30 AWG wire (as reported

by Granetz et al.), is very different from hand-winding 2.9 mm x 2.0 mm coils with a wire

of size #42 (used in our probe). The diameter of a #30 wire is 0.254 mm, and the diameter

of a #42 wire is 0.0635 mm, therefore the cross-sectional area of a #42 wire is 16 times

smaller than that of a #30 wire and consequently the mechanical strength is also much

smaller. Wire of #42 size can easily break if pulled too hard by hand. Takahashi et al.

1 Current address: P-24 Plasma Physics Group, Los Alamos National Laboratory, NM 87545.



134

present a novel way of fabricating induction coils using thick-film technology. However

the dimensions per coil that they used are too big (of the order of 1 − 2 cm) to create a
multi-element and compact array probe, especially if the probe is to be immersed in the

bulk plasma.

The probe array presented here is designed for use in spheromak research, and has a

combination of off-the-shelf components and custom computer-designed parts. The custom

parts were machined to high precision with numerically controlled machine tools using

information from computer-generated drawings. The coils are commercial chip inductors

with precise dimensions and excellent consistency. The probe has a modular design for easy

assembly and mounting on the chamber, and for easy component replacement if necessary.

Spheromaks [8] are self-organizing, toroidal, axisymmetric magnetohydrodynamic

configurations in which the magnetic fields are produced almost entirely by currents flow-

ing in the plasma. Although spheromak research is geared mainly to achieve the goal of

thermonuclear fusion, spheromak physics is also relevant to the study of how plasma mag-

netic topology evolves.

At Caltech, spheromaks are created in a large cylindrical vacuum chamber using a

planar gun [9] (see Figure 8.1). Since spheromaks in the Caltech chamber expand freely

and translate away from the gun, a magnetic probe can be fixed in front of the gun; the

recorded signals can then be combined to produce contour maps of the spheromak as it

flows past the probe [10].

8.2 Design and construction

Sixty commercial chip inductors with fifty-two turns each (inductance = 5 ±0.1µH) were
used (Coilcraft Inc., model 1008CS-472XGBB). The nominal dimensions of the chip in-
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Fig. 8.1. Cutaway view of the Caltech vacuum chamber. Magnetic probe (labeled B-dot)
is placed in front of the planar spheromak gun. The spheromak gun is 50.8 cm in diameter,
and the chamber dome is 137 cm in diameter.
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Fig. 8.2. Plastic retention fixture for induction coils. Two clusters are shown. The cluster
on the right contains the inductor coils, with the direction of the B field that they measure
indicated.

ductors are 2.8mm× 2.9mm× 2.0mm. The inductors were inserted into a Delrin plastic
retention fixture that was fabricated to precise specifications using numerically controlled

machining (see Figure 8.2). The spacing between clusters is 20mm; thus the effective

probe length is 380mm.

Pairs of twisted magnet wires (38-gauge) were soldered to the terminals of the induc-

tors. Each twisted pair of wires connects to a BNC panel jack, and the signal of each coil is

recorded using 100 MHz, 12-bit analog to digital converters (ADC). The soldering of the

wires was done manually using a precision jig made to hold the wires in place on top of
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each terminal during the soldering operation. A special grinding machine (Carpenter Mfg.

Co., model 88-D) was used to strip the insulation enamel from the wires.

Teflon tape was wrapped around the subassembly of the plastic fixture, chip inductors

and magnet wires to prevent damage during the insertion of the assembly into its housing.

The housing was made of quartz tubing to prevent electrical interaction with the plasma.

The coils, plastic fixture, and wiring remain at atmospheric pressure, since the housing is

vacuum tight. The probe diameter is 8.4mm.

To connect the quartz tube to the rest of the housing, Torr-seal vacuum epoxy was

used to fix the quartz tube to a standard Swagelok VCO socket gland. A tight fit of the

plastic fixture into a Swagelok elbow prevents the subassembly from rotating after assem-

bling the probe and tightening the vacuum seals. The coil cables were soldered to three

20×2-pin insulation displacement connector sockets (3M, model 517-89140-0001), which
were then inserted into a metal box that serves as an EMI shield and panel for the BNC

connectors.

The mechanical support of the probe is achieved through a 1 in diameter, highly pol-

ished stainless steel tube. The tube is connected to the probe housing through a combina-

tion of standard Swagelok connectors and custom-made welded reducers. Once mounted

on the vacuum chamber, the probe can slide in the Z direction and also rotate in the θ

direction. The vacuum seal is achieved by an O-ring seal around the 1 in diameter tub-

ing, mounted on a 2.75 in flange. A high-precision, double linear bearing (McMaster-Carr,

model 64825K87) mounted on the outside of the chamber assures that the 1 in diameter

tubing remains parallel to the Z direction (see Figure 8.3). The double linear bearing also

relieves the O-ring seal from any load that could result from the weight of the probe and

the 1 in diameter tube. Even though the entire probe assembly is very rigid, care was taken

to ensure that the probe position would not be affected by deflection or sagging from the
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Fig. 8.3. External view of the magnetic probe mounted on the Caltech vacuum chamber.
The 2.75 in. O-ring seal flange is attached to the vacuum chamber flange. Note: Probe
connectors and EMI shield not shown.

weight of the tubing or its connectors. Positioning measurements were carried out for the

50 cm range of motion required in our experiments. Positioning in the θ direction was mea-

sured with a tilt indicator attached to the 1 in diameter tubing at the outside of the vacuum

chamber. In a 50 cm displacement range no deflection was detected, to within 1mm preci-

sion in the positioning of the probe. All measurements were carried out with respect to the

axis of the planar spheromak gun shown in Figure 8.1. Fiducial marks were placed on the

tubing to facilitate alignment when moving the probe between experimental runs.
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8.3 Operation principle and calibration

Using Faraday’s law, the induced voltage in a loop of conducting material in the presence

of a time-varying magnetic field is V = −dΦ/dt, where Φ is the magnetic flux through
the loop. If every coil has N turns with an area A, the induced voltage can be expressed as

V = −NA (dB/dt). For practical purposes, the values N and A can be lumped into one

constant, which we will refer to as the NA value.

To obtain theNA value for every coil, a Helmholtz coil was used to produce a known

magnetic field. Since the current through the Helmholtz coil is known, the expression for

calibration becomes

NA =
a
R t
to
Vcoil(t

0)dt0¡
4
5

¢3/2
µon [I(t

0)]tto
(8.1)

where a, I(t), and n are respectively the Helmholtz coil radius, current, and number of

turns, and Vcoil(t0) is the voltage across the terminals of the pick-up coil.

For every cluster of coils, a calibration operator was defined for precise measure-

ments, since it is possible that a given coil can pick up unwanted signal (i.e., different

from the intended direction) at the interface between the soldered wire and the coil. The

calibration operator subtracts the unwanted signals and is defined as follows

C =

 1 −CRθ −CRZ

−CθR 1 −CθZ

−CZR −CZθ 1

 (8.2)

with the components of the operator defined as

Cij =
NAperp

j

NAi
(8.3)

withNAperp being theNA value for the pick-up of a signal by a coil oriented perpendicular

to the direction being measured (also the direction of the B field). The true field is then

B = C ·Bm (8.4)
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where Bmi = −1/NAi

R t
to
Vi(t

0)dt0.

The average value for the effective NA was found to be 1.21× 10−4m2 for the probe
presented here. All the coils were absolutely calibrated in the probe assembly using a

pulsed capacitor bank power supply that rings at 280 kHz. The relative uncertainty of the

calibration system, including the power supply for the Helmholtz coil and the digitizers

was 0.48%. The average absolute value for the off-diagonal elements of the calibration

operator was found to be 0.076.

The relative difference of NA values between clusters was found to be 2.4% for the R-

direction coils and 4.3% for the θ and Z-direction coils. The main reason for such variation

in the θ and Z-direction coils is the small wire loop that results at the interface of each

coil and its leads. Given the thin wire used, it was difficult to twist the wire tightly at the

interface with the chip inductor without breaking the wire. In the R-direction the variation

comes mainly from the inductance tolerance of the commercial chip inductors used.

The phase shift between the known magnetic field signal and the probe signal at the

digitizers was also measured during calibration. The difference in phase between the two

signals yielded a time lag in the probe current of 114± 17 ns. The electrical circuit for any
given coil in the probe and its corresponding digitizer channel is shown in Figure 8.4. The

equation for the coil current is

L
dI

dt
+ I(Rd +Rc) = φo cos(ωt) (8.5)

whereRd is the digitizer and cable impedance (50Ω), Rc is the coil and coil lead resistance

(12Ω), L is the inductance of the coil and I is the current through the circuit. The right

hand side represents the voltage source due to the time dependent flux linked by the coil.

This flux is due to the external magnetic field,B×NA. The solution for the above equation
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Fig. 8.4. Equivalent circuit for each coil in the magnetic probe, including the transmission
line to the digitizer. Measured values are L = 6.17 µH, Rc = 12 Ω and Rd = 50 Ω.

can be written as

I(t) =
φop

(Rd +Rc)2 + ω2L2
cos(ωt− θ) (8.6)

with θ = tan−1(ωL/(Rd+Rc)) being the phase shift. For the values shown in Figure 8.4,

θ = 0.173 rad, or equivalently a time lag in the signal of∆t = 99ns is obtained.

8.4 Measurements

Figure 8.5 shows an example of the raw signal (dB/dt) and integrated signal (B) at a radius

of 12 cm from the axis of the chamber (see Figure 8.1). The sampling time for the raw data

is 0.01 µs, and the integration was performed numerically [11].

Using the Single Shot Propagation Inference (SSPI) method described by Yee and

Bellan [10], it is possible to obtain approximate information on magnetic topology from a

single discharge. Figure 8.6 shows a contour plot of data from the entire magnetic probe ar-

ray; the contours represent surfaces of constant magnetic flux, ψ(r, zp) =
R r
0
2πr0Bz(r

0, zp)dr0,

where zp is the axial coordinate in the frame of reference of the plasma. The propagation

velocity of the plasma was estimated to be Vp = 1.5 cm/µs from images taken with a 16-

frame, gated, intensified CCD camera (DRS Hadland Imacon 200). The probe was placed
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Fig. 8.5. Digitizer and integrated signals of the cluster found at R = 12 cm.
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Fig. 8.6. Contours of constant ψ (in units of mWb). Contours are drawn along the vertical
axis every 0.5 mWb. The top (closed) contour represents 10.6 mWb. The probe was placed
22.5 cm away from the planar gun. Shot #4855.

at z = 22.5 cm from the planar gun (z = 0). Assuming constant Vp and using the transfor-

mation zp = z − Vpt, we find that the range of time shown in Figure 8.6, 10µs to 65µs,

corresponds to 97.5 cm to 15 cm (note that the direction of the distance axis reverses with

respect to the direction of the time axis). Thus, the time axis in Figure 8.6 can be trans-

formed to a distance axis to obtain spatial information of the magnetic flux along the Z

direction .
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Chapter 9

Summary and recommendations

9.1 High-speed imaging

The high-speed images, which captured the visible atomic radiation from the plasma and

neutrals (see Appendix A), revealed unprecedented detail of the Sustained Spheromak

Physics Experiment (SSPX) plasma. The images showed the presence of features, such

as filaments, in various locations and times throughout the discharge. With the capability

to take up to two images and to precisely time them (typically with respect to breakdown),

it was possible to identify the movement of these filaments and electrode patterns at any

given discharge. In some cases, it was also possible to measure their displacement and ve-

locity. The camera has access to most of the volume where spheromaks are formed, since

it has a wide angle view of the inside of SSPX and the plasma is optically thin for the

most part of a typical discharge. Precise image timing also allowed the synchronization of

images with other diagnostics. Thus, the high-speed imaging system provided not only a

diagnostic in itself, but a complement to existing diagnostics at SSPX.

Thousands of images have been obtained with the high-speed imaging system. Three

different stages were identified during the plasma shots according to the distinct plasma

features observed. These stages are: breakdown and ejection, sustainment, and decay.

During the breakdown and ejection stage, plasma comes out of the gun and into the flux

conserver region in the first hundred microseconds after breakdown. A short-lived plasma

column (oriented in the axial direction) is formed shortly after the plasma is first seen at
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the flux conserver. After about five microseconds, the column bends and disappears seem-

ingly merging with the toroidal plasma. This bending and disappearing seem to happen

in less than one microsecond and proved to be extremely elusive to the camera, because

the shot to shot reproducibility of features during this stage could be done to within two or

three microseconds. Even when image timing was synchronized with the bending event,

the plasma (either hydrogen or helium) became so highly ionized that no light could be

captured by the camera shortly after the bending. How the plasma rearranges itself during

that time continues to be a mystery, since the gun current flows uninterrupted.

During the sustainment stage, patterns on the end-face of the cathode (inner elec-

trode) were observed to elongate consistent with the theory of E × B drifts (and possibly

J × B forces). The pattern velocity was measured to be ∼ 0.25 km/s in the toroidal di-
rection, describing trajectories in the form of circular segments located at discrete radial

locations on the surface of the cathode.

It is conjectured that ifE×B drifts are responsible for the cathode pattern elongation,
then the sustainment current profile is hollow. That is, most of the current flows at the

edge of the sustainment central column in order for the patterns to move in a toroidal-only

direction. It is also conjectured that the cathode patterns are caused by current filaments

carrying relatively small amounts of current along open field lines inside the hollow profile.

These conjectures contrast with the commonly assumed peaked current profile at the axis of

the chamber. To the time of writing of this thesis, measurements of voltage, magnetic field,

and current profile near the cathode surface, needed to identify the cause for the pattern

drifts, have not been performed. A recommendation for future work is thus to measure

these parameters locally and compare to the high-speed imaging findings. Understanding

the cathode patterns could shed light in the formation and evolution of closed (and open)
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magnetic flux surfaces, and in the engineering and geometrical considerations for future

cathode designs.

During the sustainment stage, information from the high-speed imaging system has

also been used to compare the width of the sustainment central column with the CORSICA

code. The comparison showed that the CORSICA reconstructions are in good agreement

with the measurements. The typical sustainment column radius is about 12 cm, increasing

slightly towards the end of the sustainment stage. All the shots used for the comparison had

very similar parameters and were created using the modified flux configuration. However,

to fully benchmark the central column reconstruction of CORSICA (or any other MHD

equilibrium code) using high-speed imaging measurements, a wider variation in the central

column diameter is recommended (changing, for example, the flux configuration).

The sustainment stage ends when the current starts to ramp down. The decay stage

then begins. At this last stage, the central column and the cathode patterns are still present.

As the gun current decreases, the central column diameter increases and at some threshold

(about 50 kA), the column breaks up into many filaments. No closed magnetic surfaces

are expected after this break up. The cathode patterns also change, going from the long

circular patterns seen during the sustainment stage, to a more segmented version resembling

a ‘string of pearls’ in the decay stage. Future studies of this stage are recommended to

include cathode measurements similar to those proposed during the sustainment stage, and

investigations of the filamentation of the central column, which is relevant to magnetic

reconnection.

The high-speed images were not free of noise and some blurriness. The noise was

created mainly in the camera, and the blurriness in the optics. An algorithm based on the

maximum entropy principle applied to information theory was implemented to restore the

images. For the images presented here, the measure of restoration was subjective. However,
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the results shown in Chapter 7 are considered good and acceptable improvements over the

unrestored images. Many of the restored images were used in the cathode pattern and

column diameter measurements.

The maximum entropy restoration method was modified to produce tomographical

reconstructions of the transient column cross-section (at midplane) seen during the break-

down and ejection stage. The reconstructions are considered ‘rough’ because only two

projections were available from the double-branch optical fiber bundle. Tests with sim-

ulated projections showed that, although the shape of the column could not be discerned

accurately with only two projections, the location of the column in the flux conserver could

be found within a few centimeters of error. Poor contrast in the projections was also a lim-

itation on precise reconstructions. A recommendation for future work is to improve the

projection contrast (using perhaps relay lenses instead of fiber bundles), and increase the

number of projections. Detailed investigation of the transient column evolution (position,

size, brightness, etc.) could shed light into the helicity injection process during that early

stage in the plasma shots.

9.2 Multielement magnetic probe

The multielement magnetic probe presented in this thesis was designed and built using

a combination of off-the-shelf and custom-made parts. The probe was installed at the

Caltech Spheromak Experiment and has been used to investigate the magnetic topology

and evolution of the unbounded spheromaks produced there. The linear array of miniature

chip inductors yields three-dimensional information of the magnetic field that evolves with

the plasma. It was shown here that using the Single Shot Propagation Inference method,

it is possible to obtain approximate information on magnetic topology of an expanding
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spheromak in a single shot. Using this approximate information, contours of constant flux

were constructed.

More probes are needed to achieve better accuracy in the magnetic measurements.

Using the same off-the-shelf components and custom designs used in the probe presented

in this thesis, more probes could be built and inserted in the Caltech chamber through

different ports (provided there are sufficient number of digitizers to record all the signals).

However, an increase in the number of probes leads to a higher degree of perturbation

in the plasma being measured. Thus, a recommendation for future work is to measure

this perturbation effect. This could be done by inserting ‘dummy’ probes (i.e., obstacles

similar to the finished probes) and measuring the change in magnetic signals using the

existing probe. These measurements would also be relevant to other types of probes or

obstacles inserted in the plasma, not only magnetic probes.
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Appendix A

Correlation between bright features in the
images and the plasma

All the plasma images presented in this thesis were taken in the visible light range.

This visible light came from atomic line emission1 of neutral hydrogen (mostly Hα; hy-

drogen is the gas most commonly used at SSPX and the Caltech Spheromak Experiment)

and helium, depending on the gas used during a particular shot. Because neutrals can eas-

ily escape electric and magnetic fields, it is important to question the relation between the

light captured by the high-speed camera, and the plasma behavior. Are the neutrals sim-

ply entrained by the plasma and their glow telling the position and behavior of filaments

and similar features, or are the glowing neutrals unrelated to the position of these plasma

features?

The answer to this question is not trivial. It is possible that during a given shot, part

of the emitted light is related to the plasma features and then later it is not. However, in the

plasmas imaged for this thesis there is evidence that suggests the light indeed corresponds

to plasma features. For example, the plasma images in Figure A.1 show the correspon-

dence between the expanding plasma and its toroidal magnetic field (the other two field

components are shown in Figure 8.5). The position of the multielement magnetic probe

(see Chapter 8) is indicated with a dotted line in each image. The leftmost image shows the

plasma shortly after breakdown. The vacuum magnetic field (i.e., the field prior to break-

1 Photon emission by an atom (or a molecule) arises from the de-excitation of the particle from a higher
internal energy state to a lower one. The processes by which a neutral particle in a plasma gains the energy to
release a photon are complex. Details of these processes are beyond the scope of this section, and are found
in textbooks such as those by Messiah [1] and Griem [2].
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Fig. A.1. Toroidal magnetic field produced by the plasma at the Caltech Spheromak Exper-
iment. The dotted line on each image represents the position of the multielement magnetic
probe. The other two field components for this shot are shown in Figure 8.5.

down) has no toroidal component, and thus the only way to have a magnetic signal is if the

plasma produces a toroidal field.

The sequence shown in Figure A.1 demonstrates how the probe receives no signal

until the bright features reach the probe. In this particular example, the sharp increase in

the signal is probably caused by the field at the plasma-vacuum boundary, and later by the

vacuum field produced by the central column. After the column seemingly detaches from

the gun (rightmost picture), plasma light intensity decreases rapidly and becomes too dim

to photograph with the high-speed camera. Thus, light captured by the high-speed camera

indicates the presence of plasma, but plasma can also exist without being detected by the

camera.

At SSPX the situation is similar. Figure A.2 shows the correspondence between the

images and the magnetic signals recorded by the probes mounted on the flux conserver
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Fig. A.2. Correspondance between magnetic traces (in units of Tesla) and the images cap-
tured by the high-speed camera at SSPX. The traces are from probes arranged vertically (at
90 ◦ toroidal location) just above midplane. The bottom plot correspond to a probe about
5 cm above midplane, followed by a probe at 10 cm; the third plot corresponds to a probe
at 20 cm above midplane. The vertical lines correspond to the time of the first image (top)
and the second image (bottom) five microseconds later. The upper plots correspond to the
current (top) and the voltage (second from top), in ameperes and volts, respectively.

walls (see Chapter 3 and Figure 2.8 for more details). In this case, however, the correspon-

dence cannot be determined accurately because the probes are just out of the field of view

of the camera. Nevertheless, the qualitative behavior is the same as in the previous exam-

ple. The vertical dotted lines across the plots correspond to the times at which the images

were taken. As the plasma travels down from the gun and into the flux conserver (form-

ing the theater curtains described in Chapter 4) the magnetic signal increases in the vertical

array of probes along the flux conserver wall (lower three plots in the figure).
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It should be noted that, although the presence of bright features in the images is inter-

preted as being the plasma, the apparent vanishing of those bright features from one image

to the next has, in general, a different interpretation between the Caltech Spheromak Exper-

iment and SSPX. At Caltech, the vanishing of the features is attributed to the disconnection

of the plasma from the gun. That is, the plasma ceases to receive external power, the ion-

ization percentage decreases, and thus there are less hot ions and electrons to excite the

neutrals that emit light. At SSPX, in contrast, the plasma remains coupled to the gun and

the decrease in plasma light intensity is attributed to a very high degree of ionization, to the

point that there are few or no neutrals that irradiate (visible) light.

A.1 References
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