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ABSTRACT

The hypersonic inviscid flow over a configuration representing
a small perturbation about a two-dimensional wedge is analyzed.
Eguations and boundary conditions are obtained for a class of general
p@rmz’ba&iam within the framework of Hypersonic Small Disturbance
Theory. A specialisation of this formulation is made to the case whare
the resultant perturbation consists of two semi-infinite flat nlates of
slightly different incidence to the fyeestream. The flow over such a
shape is divided into an outlying uniform region and a central cone-
field. Here, the outlying, uniform region solution is found to be
trivial. The determination of the conefisld gives rise to an elliptic
boundary value problem which is solved with the aid of the Tschaplygin
transformation and other conformal mappings. |

Calculations are presented using the Fourier servies sclution
for the perturbation p‘z’aasaéﬁ indicating the surface loads associated
with the perturbation as well as the shock distortion function. Integral
representations are obtained for the downwash and sidewash pertur-
bations using the pressure solution.

The resulis are compared gualitatively with an analogous lineay
supersonic flow.

Finally, a solution for more general profiles is obtained under
the further restriction that the specific heat ratic y is close to one.
This solution is specialized to the case considered previensly and a
gualitative evaluation of the physical significance of the resulis is

made.
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An intevesting class of gasdynamic problems has recently been
investigated that show promise of giving insight into the field structure
of hypersonic flows., DMoreover, the study of these questions could

lead to the acquisition of techuiques for the analysis of high Mach nurne

e

ber i?ﬁb’ffﬁa?wﬂ%@ phenomena, control surface asrodynamdcs and in a
more general sense, wing camber and twist eifects.

The fundamentsl idea cmployed in the lormulation of these situ-
ations is the construction of a hypersonic flow that can be interpreted
as a small perturbation about ancthsr known flow, henceforth referzed
to as the "bagic flow. ¥ 3Such a perturbation may b L@ achleved by making
appropriate distortions to the body over which the basic flow takes
place. For a sultable class of basic flows,and for 2 sufficiently small

5

serturbation, it mmay be sxpected that a mathematically linecar situation

Low)

]

could arise. Hopefully, and in sharp contrast to the typical hypersonic
small disturbance problem, the boundary conditions could be satisfied
on the undistorted surfaces and the cquations of m@%i@n would be of
linear character. Since the wedge and cone have relatively simple
fislde, they are ideal basic shape choices. In particular, the uniform
flow downstream of the wedge bow shock provides the least complicated

environment for the assessment of the effect of perturbations.

Thus, if the

(3

ge ang v@.@; 8, is vanishingly small, i.e. O{1/B )

as Mm - O, where ‘Mm is the freestream Mach nuwinbey, and further-

mors, if € is another small guantity tending to zero independent of &,



a‘ thickness perturbation of O(8:) produces a disturbance field with
respect to the gas lylng between the shock and body characterizaed by
an effective supersonic-hypereonic similarity parametesr, H o= be 2. |
Here M; is the Mach number behind the bow shock of the undisturbad
wedge flow and ae such, can be thought of 28 an ambient guantity oz
the local conditions about the "nump. * More precisaly, if the require~

@ = 5 n‘ e #
ments of Hypersonic Small Disturbance Theory are assumed valid for

the configuration at hand, Ese‘ﬁ will be much greater than one. In fact if:

£ E » p
i o : fizaed as & -~ O
el o "
ae,
then:

%’5 A8} as /W~ 0

B g‘- 2 %' l/ 2
5'%9\:;,1 f

where vy is the specific heat ratic of the flow. Accordingly, outside
of the cavity bounded by the secondary wave system emanating {from
the bump, the field is hypersonic, uniform and two-dimensional. How-
ever, o necessary condition for the existence of linear supersonic per-

turbations ig that:

;"':g <L 4

For the case at hand, it is obvious that this is the case providing vy is
not too close to ualty., Specifically:

»

3 = fe) as 8— 0
Dieapite the fact that the previocus condition is satisfied, a significant

difference between the hypersonic and linear fields can be anticipated

Ref. I, Mh ster II provides a discussion of Hypersonic Small Distur-
bance a&hw@??a
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In the linear case, the bow shock or ..iach wave which establishes the
entropy and consequantly the vorticit, distribution -lownstrean, is the
locus of Mach cones whose apices are located on the leading =>.Ize of
the wedge. The semi-vertex angle of each cone is equal to ain'll/l\«;m,
so that for the case at hand, thevMach wave is a plane and makes a
constant dihedral angle with the wedge surface along its span. The
entropy jump across this Aach wave or weak shock ig >f the order of
the cube of the characteristic flow “deviation experience-d in traversing
it. . ccordingly, the 2ntro.y ;radi:nt normal to the strea linec is of
the sarne order, and hence, 80 is the vorticity. P creover, 3inc: the
velocity, density and pressure perturbations are of the first order in
the deflection, the field of these variables is to all intents and gur-
poses irrotational.

By contrast, the hypersonic case is characterized by strong
shocks in the basic flow. As will be seen subsequently, the distortion
of these shocks will introduce entropy and vortical perturbations of the
first order in the flow deflection, invalidating the simplifications in-
herent in the irrotationality of the linear field. Furthermore, the topo-
logical structure of the boundaries will change due to the strength of
the shock of the basic field, i. e., the strong hypersonic shock will no
longer be the envelope of the Mach cones. As will be shown presently,
the distortions of the shock wave will be negligible in terms of fixing
the location of the shock boundary for the hypersonic perturbation
problem. However, what is crucial in this case is the fact that indi-

vidual fluid particles carry different entropy levels with them as they
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travel downatream from the shock. Une mathematical implication of
the foregoing is that the initial or boundary values of the dependent
variables are no longer plecewise constants as in the linear case, but
continually varying quantities.

Guiraud, in & previous study (2), has analyzed thin wedges
having two-dimensional distortions within the framework of Hypersonic
Small Disturbance Theory (abbreviated HSD in what follows). Holt and
Yim, in (3a) and (3b), consider two special threes-dimensional distor-
tions on thick wedges for arbitrary supersonic Mach numbers. Hare,
the perturbationsg are about the exact wedge field rather than the
approximate HSD eénvironment as in (2). Nevertheless, since
is in effect Ol) in this case, the associated mathematical problem,
except for some complication in the constants appearing in the boundary
conditions is qualitatively of the same form as that whick would have
been obtained from a three-dimensional perturbation about an analogous
HSD wedge field

A major'pwzien of the present research {given in Part II) will
be concerned with the structure of the cone fields which were cone
sidered only superficially in the analysis of Holt and Yim. For this
purpoege, the HSD flow over the arvangement shown in Eiga?e 1 will be
investigated. In the figure, an infinite span wedge is depicted, having
its port and starboard sections rotated in opposite directions about the
leading edge of the arrangement. The angle of rotation is such that
the resulting "differential flap® configuration represents only a slight
perturbation from the basic wedge profile. Here, a Mach cone having

its axis of symmetry coincident with the x axis and its semi-apex
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angle approximately equal to 1/ M’E divides the flow downstream of the
bow shock into a central cone field, and two outlying constant state
regions. The central conical region has a structure gqualitatively
similar to those occurring in {32). Such a configuration will have fun-
damental aspects, since more interesting flows can be obtained from it
by superposition techniques such as Duhamel's integral. This property
follows as a result of the stipulated linearity of the problem, and is di-
rectly analogous to the conical supersonic flows discussed in {4) and (5).
However, as indicated previously, significant differences do
exist between the HSD and linear supersonic regimes. These will be
made clearer in part Il from a consideration of a configuration analogous
to that of figure 1 within the framework of linearized supersonic thesory.
In the final portion of this work, contained in part Ui, a generali-
zation of the existing results to more arbitrary three-dimensional per~
turbations is given. Here, the body distortions are of ({8€) in the HSD
limit and the further restriction iz made over and above those of HED
theory that '{?Zf -0 as y—1 The solution of the mathematical problem
obtained under this simplifying assumption is called a Newtonian approx-
mation, and gives all the flow prap@%é@g in terms of the arbitrary body
distortion function. From these results,a specialization is made to the
- geometry considered in part II, and the qualitative effects of the Newtonian
apg;:oximaﬁiaa on the previous cone field structure is discussed briefly.
To campleta part 1II, the mathematical problem leading to a "strip
theory" for arbitrary distortional profiles is solved. Here, adjacant
lateral stations do not interact, and the role of the application in previous

sections of certain coordinate distortions is vividly illustrated.
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I, THE FLOW OVER A PAIR OF DIFFERENTIALLY DEFLECTED
PANELS ACCORDING TO HYPERSONIC SMALL DISTURBANCE THECRY

1. Basic Eguations

With the axis convention indicated in figure 1, the flow over the

surface given by:
BETE) =T - 6[E+efl® £ =0 ()

will be studied. Ultimately, these considerations will be specialized
to the case where { = sgn . However, al the outset, to preserve
generality, it will be profitable to consider the arbitrary perturbation.
Moreover, the mathematical formulations of both problems differ only
slightly. & in equation ] is the basic wedge angle, ¢ measures the
deviation from the Mﬁc shape, and finally, b is a characteristic
lateral length to be related to the Mach cone apex angle discuseed
previously. b may be thought of as a wave length depending on the
nature of the lateral perturbative fluctuations for its mode of definition.
The definition of b will be amplified upon presently.

Within this framewozk, the following limit will be considered:

£f

(8) # =—3 fixed a8 8¢ — 0 independently
MZ 8%
® (2)
vy ~—0

M o in equation 2 ie the Mach number of the {reestream and H
is the hypersonic similarity parameter for this problem.
Asg a working hypothesis, the shock will be postulated to have

the following represcntation:
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SETE) =T - sl R+ egl® ) =0 (3)

Clearly, the first member in the brackets of equation 3 represents the

shock elevation for no wedge distortion. Hence, the second is the sffect

resulting from the perturbation. If g, p, P and y respectively repre-
sent the velocity, density, pressure and specific heat ratio of the gas
flowing over the obstacle, then the exact equations governing the inviscid

motion of the medinm are:

Vepqg=0 continuity {4a)
g Vg =- %% | momentum {4b)
q- v -5 = § entropy {4c)
g .
4

The class of flows for which:
Emwi% wh@m.&iaﬁﬁ%éa@ 8~ O {5)

will now be considered. If P(%, 7, %) is a point in the reglion of interest,

{between shock and body and = = Olb) ) ‘a8 & - 0, then

% = Of1)

= C{8) as 8 -0

&

= Of8)

wul

Accordingly, the fellowing coordinate system is selected to keep
the relative position of P with respect to the physical boundaries of

the problem invariant for all 6 as & -= Q.
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=%, y=v/8 ==%/b {6)
For the limiting process described, the following asymptotic

“ ik
expansion for ¢ is assumed:

Q% T ZiM , 8, biE)
4

= T2+ 8%u,+ eu) + o(8%, e %52
+ TLolv + ev) + Of8%,¢ %))
+ R0 86 wlx, v, 23 LA) + O(8%,628))  (7a)

Furthermore, the pressure and density represemtations are:

P

“’""“""ﬁﬁ = éz%il b €pl 4 @{éé. 6% g) (7b)
ﬁm
2 2.2 |
= oglleel 3 085 eT) (7¢)
P |
Noting that:
e & 8.8 18 18
el 2lde e is] e
% o7 sz LO=° T By TUE

and

o - xysﬁg%%(vg%@v)%%éw%% @tea,ﬁg)} {9}

the substitution of the expansions 7 and equations 8 and ¢ into equation
4a gives the succesding aygaré:ﬁmam equations when terms of the indi-
cated orders are retained: |

1)

8o, , Blogyy)

= ey <0 (102)



Ole )s

%g%g‘f%%g«%%‘?w} {105)

Again, in a similar manner, equation 4b gives the ensuing approximate

relations:
z-omentum
(6%
: 8p
g é . 1 <) ;
(%vvgw)ug»’%w {ila)
O{6%¢)
Qgé-v %)u . 22 % {ilb)
Bx o By’" 9, Tx
y-Momentum
O{B):
: ép
9 & - 1 )
(%‘%‘“ ?@%§Vg~'-§;w {12a)
{86 ):
] )
{5 ngg.;)vg*ﬂgu {12b)
z=Momentum
O 86 }e
8 9 _ Po op
gz * YoV = -5 B (13)

Finslly, application of the substitution procedure to eguation 4c gives:

1)

*’%

{i4a)

#
Ll

8 8
lyg gg?

sz.“
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ek
g & ,
(gt Vo s P - W) =0 (14b)

Since the guantities with subscript o, (seroth crder) play the role of
the basic flow properties, they have been treated as constants in the

formulation for the guantities with subscript 1 {first order).

2. Boundary Conditions

To complete the derivation of the appronimste problem, it will
be necessary to determine a set of boundary conditions for the asymptotic
representations of the dependent varviables. In this connection, the
principle baﬁnﬁwi% to be considered are the shock and body surfaces.
In the case of ceriain classes of chstacles whose surfaces are ruled
from a point, an additional boundary, aamalﬁf a2 Mach cone smanating
from the point i to be considered, in order for the problem to be pro-
perly posed in a mathematical sense.

For the case at hand, the shock is agsumed sm possess the
functional continuity properties which allow each infinitesimally small
surface element comprising it to be considered independently of the
others. Furthermore, since the gas is considered inviseid, there exist
no shear forces to change the tangential component of the flow as it
crosses shock. In other words, the perturbation component of the
velocity immediataly behind the wave is normal to it. Formally, this

can be expressed as:

(¢ -UT)xvs=0 ~ {15}



Substitution of equations 7a and 3 into equation 15 yields the following

relationship between terms of OfH¢):
#
Wy = wix, O ¢+ €g,2) = - Vaﬁ- 812 {16a)

i it is assumed that the function w has the required properties,
then it can be developed into the following Taylor's series about the

point {3, Ox, 2)2

W, = i, 0%, 2) + cgw {x, 6%, 2) + Ofc %)
Hence, the boundary condition involving w becomes in the Limit as
€ ~— (0

wit, O, 8) = -~ v A &(2) {16
The determination of the interrelations between the other shock quanti-
jtes, can be facilitated by a consideration of the p@méwm-éim@ao
sional gas motion that exists behind a amall surface elemsnt of the
shock wave. Accordingly, if a Galilean transformation is performed
80 a8 to move the point of observation downstream in the flow with a
velocity U1, the gas ahead of the shock will have zero velocity in the

2

new coordinates. Dehind the shock,it will have the velocity g- UT.

Since this vector is normal to the shock, it can be thought of as having

been produced by a piston whose face is parallel to the shock surface
element. Since the piston is not porous, the magnitede of ite velocity,

up. is the same as the resultamt gas velocity. Thus,

o 53

5 -
8(2) denotes the derivative of g with respect to ite second argument.



ug, = 5‘%’»@?’[ {17)

In this model then, the equivalent wave speed, c, i. e, the speed of the

wave as it moves into the undisturbed gas normal to itself is:

c =zz“§“~%%l {12)

The consideration of the physical conservation laws applied to a
eylinder of gas as the shock passes over it yislds the {ollowing relations
for the pressure Py, density Pioe and velocity Uy of the piston in

terms of the ambisnt quantities E?K and Py

cz - %ﬁ;cuy-' ag’ = {192}
Pp - Py = %C% {19b)
ﬁ@(e - HE) = QIC {19¢}

Application of equation 19 to the case at hand can be effacted by substi-
tution for ugp and ¢ from eguations 17 end 18. Recognizing that
M__ = can be obtainad by letting ay = G, we find:

o
Ev
c= X2 Ubvy (145211 (20)
2

Egquating terms of the same order of magnitude using the expression for

¢, i.@., eguation 18 in 20:

‘V@s = —%;g & éﬁa}
. -2
Ve T 1 By (2ib)

Alaso:



Po» P

F 1 +3 . 2
e = :iZ" 52‘{1 4 26v Jv
@E‘i}’ gj Q&
Thus:
gs% = 'Xf' vaa o2
VB
8
P, = {yl) e~ v {22B)
& P )

Finally, since:
B fw U
@F e

we find that:

.é;;a @@gﬂ%&@s’"i‘ O{6%,¢%)

which implies:

e
o, = %_T (23a)

8

o, =0 {23b)

At the body, the kinematic condition that the normal velocity com-

ponent of the gas is identical to that of the body can be expressed as:

g TB =0 {24)

Thiz veducas to:

%% = Vgii"aﬁa % z)=1l {(25a)

Lt

vy = vix% % 8) = £ _{x 5) {25b)

Throughout the derivation of the boundary conditions, it has been



assumed that the functions p, w» v, p ave sufficiently well behaved to
validate the application of the following representations in the neighbor-
hood of the boundaries:

By, B &lx, wict, 2l s almx 2] + Olg) as € — 0 (26a)

@ = lmmeg 2] = @lmma] + Ofe) as € — 0 {26b)
where

% = (ps vo wo P)

Summary of Eenations and Bound g»y@e:mﬁ&timss

Zeroth ovder:

@% $@Qv o
5% % W" =0, camtim;iﬁty
D 1 %P ak
1 - . zZ-momentumm
© a, ox
1 @pa
QV@ - E- W ¢ yvamSﬁ'?&m
‘o
Pe .
m«n%» =0, energy
%

41 2
?06 - vae
v% = v (0% 2) = 3_%
v =1
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First order:

Dlp - yo) =0

wy & wix, 62, 8) = - v@&@w)@a g&)
v = 2

e =y Bx

(y+ivd,
¥
Py B

Vg E vi{x, %, ) = fx(x. z)

3. Solution of the Zeroth Order Problem

continuity

x-momentum

y=momentum

Zemomentun

energy

The following constant state solution representing the HSD

limit, (/7 =0) of wedge flow, solves the zeroth order equations and

boundary conditions unigquely:

{27a)

(27b)



wlba

- 1
c, = % ~ {27c)

GRS (274)

4, Solution of the First Qz'@aar Problam

Because of the mode of appearance of the backwash, v in the
eguations and boundary conditions, it is possible to determine it after
the hyperbolic system involving 0, v, w and p is solved. That is, it
is possible to construct a properly posed initial value problem for the
latter four guantities by ignoring the x-m@mez;mm equation completely.
In the problem, the shock and body form time-like manifolds which
bear the boundary data. Thus, the following systern is to be considered

using the information obtained from the zeroth order solution:

Do + v,y +tw, = 0 {continuity) {28a)
ov+ d3t By =0 (vertical momentum) {28b)
Dw + Sﬁél. Py =0 {lateral momentum) {28¢c)
Dip - yo) = 0 / {entropy) {284)
where
| b= &+ & (29)

Now, froum the entropy eguation:

’f«-.g;.’%?a = Do | {30)

Substitution of the latter relation for D¢ into the continuity eguation 28a

gives:
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%ﬁ?%ww;@ {31)

Using the zeroth order continuity equation, we may define the stream

function of the undisturbed wedge flow as:
&?’sﬁsy%i Y= 0 v =:{TM (32)
v o y-1° b4 oo Y-
Now on the strearm surfaces:

W, y) = constant

dg=0¢= th o ¥ &?yﬁy

or:
dy _ l%”x 00 _
. B e e =y =1
% ys ] o
o

Hence, the stream surfaces of the basic wedge flow are given by:
§ =y - x = constant {33)

A simplification is obtained by writing the system in the independent

variables (x*, Yy ﬁ). where:

:ﬁ S U= yex s se (34)
Accordingly, under the mapping:

(% yo 2) = (s, 2" ) (35)
the differential operators transform as follows:

, *
B .0 8&x 8oy 8 0 (36a



8 8 oy _ B
5y T B 3y B
8 e 0
¥z £z

&
i’}sm._g

O

Also, we note that when:

vey,= ox= Yix

o= aé;g = {Gul)x = 3%1-3;
Furthermore, when:

YEVg =%

Léizaﬁ;%sﬁ

{36b)

{36c)

{364)

(37)

so that, under the mapping,35, the equations and boundary conditions

for a problem involving p, v and w as dependent variables are:

B
"yﬁ %‘Vd“?W = §
. Y1
Vg p%g:@
’1 -
'wx% z;ze@

K
4]
]
g
w
§
«]
PN
&
&
]
s

(38a)

{38b)

{38¢)

{392)

(39B)

{39¢)
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i

Here, the star notation has been dropped for ‘breviﬁgr and Physicist's

notation has been used, i.e. vix, v, z) = vi=, s z)

4.1. Specialization to the Differential Panel Configuration

Cur considerations will now be concerned with the case for which:

bsdes A=l {40a)

f=xognz {40b)
where:

sgnz =1 for 5> 0

sgn & = -1 for 2<0

An illustration of such a configuration is given in figure L. Under these

circumsatances, the boundary conditions now become:

vy = vix 0, 2) = sgn = {4la)
p.=2v, = — (41b)
Pg = &g © T Bx

w, =g, {4lc)

Obviouely, the eguations of motion are unaffected by this specialization.
The equation satisfied by p can be obtained from the above system by
elimination of the other @ép@u@}em variables by cross differentiation.

Thus, v mmay be eliminated from the first order system,

4
4
-
&ﬁ
)
©
i ™

ff
far
N
s
<
#
]
<
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by differentiating the top equation with vespect to = and the bottom one

with respect to 4. Subtracting, ons obtains:

P
% -1 . =
5 12‘“%;;“‘% ¢

Differentiation with respect to z in equation 38c¢ gives

. {y-1)
Yo Poy

Substitution for w,, in the above equation for p vields finally:

2 g

';';%
Thus, p obeys the wave equation. Here, the gquantity ¢ = y{y-1)/2

(42)

can be shown to be the speed at which pressure waves caused b?y the
bump travel in (4, 2) planes. It is determined solely ﬁmy the basic
flow, like all other propagation characteristics of the disturbed flow
including the capacity to convect mass, momentum and energy. From

the discussion in the introduction it iz apparent that:

e TR (43)
Mg é

4. 2. Determination of the Pressure-Conical Similarity

Returning to the systemn,38 we now note that the mapping:

(% 4 2) — (ax, ais os)
leaves the general form of the equations and boundary conditions invariant,

o
This is the same eqguation for the pressure as obtained in ordinary
linearized supersonic theory.
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providing that the shock and body distortion functions, £ and g axe
assumed homogeneous of order one. A gufficient condition for the
foregolng invariance property to be exhibited is that the dependent
variables éh@mssiv.@a are szeroth order homogeneous. This conical

symmetey allows the dependent variables to be written in the following

form:

& = {9, 2) (44)
where

DTV, W
and

s -E%i. .Fi-

¥ e oCRe ‘zacg (45)

In accord with the restriction indicated previously:
g = xG(Z) {46)

where the coordinates Bave besn normalized for convenience. With
this conical dependence, the panel problem will now be reformulated.
In accord with this, new representations for the boundaries will be

found in the ¥, Z space. For the body:
E‘é’ﬁg%&% B P, =
At the shock

agjs%a E-?-XW%Q"Q%)

To construct the conical form of the fleld equations, it is neces-
sary to determine the transformations of the differential operators

8/8x, 8/8¢s and 8/9z under the mapping (& % ) — (% » & Z), (x = x).



Te note that since ¢ = &{{,2), B&/8x =0. Thus

& _ 8 ¥ @ Z @
Tz 0 %x " x B0 X B2 {47a)
2 2 2 2
2 9 2 8 e 8 2 8
X = i ——y EWE g + Z
B’ 8y ¥ oz’
b 2w gy + 22 B (47b)
‘§§f§ E - fé%g °§;° {47¢)
2 2
“‘“‘g& = ‘“‘g“‘gl “"% {474)
@i@i c“x” 8y
'g%’ = éx 'gﬁ (47¢)
2 2
2.2 8 8
¢ ® = {47£)
et
Hence, the conical form of eguation 42 becomes:
82 2, 8%
Lipl= {{¥ *1)':;2 + 3&*&5@%2 {Z5<1) e @;?;3
?Z‘éﬁ% Z&m }g}-‘-’aﬁ {%3)

It is noted that v and w cbey inhomogeneous wave sguations; and hence,
we expect that their conical forms are inhomogeneous modifications of
equation 48. A study of the regions for which the characteristics of
equation 48 are real gives the result that the unit cizcle %ﬁlfa + 2221 is
a P line for that equation, i.e., the equation is elliptic insids this
circle and hyperbolic outside of it.

For purposes of formulation of the elliptic boundary value problem
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for p, it will be necegsary to obtain its derivatives leading out of the
shock. In accordance with this, the system, 38 and the boundary con-
ditions, 4]l will now be reduced using the fact that the dependent variables

exhibit the conical invariance,44. Thus, eguations 47 and 38 imply:

Lv1/2d Y v s 2p,) - vy - wy =0 (492)
Lv-1/2 Y20 - wv, -zv, =0 (49b)
=M ST Py T WYy z
L{y-1)/2v] 2 - GW, - LW, =0 (49¢)
L Y &Yi "ﬁz &fw% | WZ = .

Proceeding next to the evaluation of the boundary conditions, we note that
Wz 0, 2) = v(0, Z) =sgn 2z = 8gn Z = v, where we have here, as before,

L
limited our considerations to the profile for which { = sgn 3.

A1 the shock we obtain:

p, = 2v_ = p{l(y- 1)/w§1/3 2} =tre, (50a)
= v gmlx6z) = Sy [o- za
Ve T T m@'é@ (50b)

Ap suggested previously, the mode of solution of the system,49
and boundary conditions, 50 for the three-dimensional regiocn, i.e.,
w# 0, (inside MPOTM in figure 2) will be to solve a boundary value
problem for p and determine v and w from the solutions of the
equations of the system using the p solution as a known right-hand side.
To complete the formulation of the p problem it will be neces-

sary to determine its value on certain portions of the Mach circle,



i.e., QT and PM, shown in figure 2. In addition, the value of Py
on TM and QF will be used.

The P line values for p will be obtained by determining the
hyperbolic region conditions. For this domain, a constant state solu-
tion satisfies the equations and boundary conditions. Since the flow
is two-dimensional, w = 0. Also by the boundary condition at the
body:

- - - . & .y
v«avﬁ-vsgnzav&umgx‘ {51)
integrating 51:
g = E—?%%gn 2 + constant

Since the shock perturbation surface will be assumed attached at the

leading edge, we have:

g=y-?-xsgnz

Finally, since p, T2v, =2segnz

pep,=2sgnsz

Summarizing, in the hyperbolic region, the solution is:

v =8gn z {52a)
p=2agnz (52b)
w=E 0 ‘ {52¢c)

g = —-—éixsgnz {524)



Next, the desired values of Py will be determined from the
equations 49 and 50. From equation 49b specialized to the body,

¥ = 0, there results:

/2 e
{Hy-n/20 Y Py ° zvz}g-ﬁm vy =0

Now, it will be assumed that v s sufficiently well behaved to allow

v, = 0 @ag % — 0
E

Furthermore, since:

Vg = v{0,Z) =0
By , =0 = vy
Hence
Proceeding to the determination of Py i g Py o a’ we note that
since '@@s = gonstant and
d¢ _ 8¢ é%s . 8¢ {53)
dz s @"&E K g-g &
where
& = {p, v, w)
then:
ﬁt}?s

and hence:
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where:

/2
a= -ﬁi =) (61a)
1z
w2y ? 2y :
bs - 4f ) {61b)
10 e

Thusg, the unknown shock shape function hae been eliminated from
the problem on the basis of the equalities in 54. In place of 54, the con-~
dition, 60 ggzeciﬁi@é the value of the obligue derivative of p .

To obtain a symmetrical formulation of the p problem, we note

that if:
pﬁ'@“}f}; Z) = P{"‘%: Z)

with p having the required continuity properties, the boundary condition
Py "e.i»fz@ = 0 is automatically satisfied. Accordingly, the final form of
the problem is as indicated in figure 3. |

The operator L. may now be veduced to the Laplacian by means
of the well-known Tachaplygin transformation. This mapping is used
in conical supersonic flow and is discussed thoroughly in references 4
and 5.

Accordingly, if we introduce the polar coordinates:

Y e R gind

Z s R cos §

Then:
2
24, 0 1,8 1 8
Ler®) 2o i (2r - 5 )gs -
U eR BT8R "2 e

and the Tachaplygin's transformation given by:



e V-
851 (é"ﬁ; (é&)
o =d {62b)
maps L. inio
L8218 1 8f

The mapping, 62 can be written more compactly if the complex variables
defined as:

L =R @i%

€ = ge'?

are introduced. Thus, 62 can be expressed as:

2¢
= {&3a)
: 3.—%»!5!2
a1 2,0/2
e=toll-T5l0) (63b)
g

A geometric interpretation of the Tschaplygin transformation
can be made by referving to figures 4o and 4b. Figure 4a depicts the
projection on a unit aphere of point © contained in the plane P. The
polar coordinates in P of this point correspond respectively to the
modulus and argurment of the complex variable ¢ From E, a line is
projected perpendicular to the plane P intersecting at I, a unit sphere
tangent to P at its south pole A. Hence, €, the intersection of the
line BD with the plane P i3 the stereographic projection of the point

D, from the Riemann Sphere, and as such, defines the vector AC. The
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magnitude of AC will be shown $o be egual to the modulus of the com-
plex variable, €. This can be accomplished by referencs to figure 4b,
where a meridional cut is depicted. It is apparent that argument of {
is preserved in the transformation, and hence, the mapping corresponds
merely to a stretching of all position vectors. By the proportionality

of the sides of the similar triangles BAC and EDC, the following vela-
tion is obtained:

2 _1-0-r3Y2
28 28 - R

Solving:

8 =

1-1- Ra)z/z
TR

as was fo be shown.

The stereographic interpretation will be found to facilitate rapid
visualisation of the correspondence between regions in the ¢ ~ € mapping.
Specifically, we will be concerned with the region PQORS and ite bound-
aries as shown in figure 5. In the { plane, PORS is formed by arcs
of the lines, lgl =1 and ¥ = +{{y-1)/24] Ve From the stereographic
model, it can be deduced immediately that the transformation leaves the
unit circle invariant. It is also readily apparent that the interior of the
region bounded by ¢l =1 maps in a one-ic-one manner into the interior
of le] =1 Also under 63, the region Im ¢ < {w«z)/,ay}i/‘? mape into
the annular domain, le « i [2y/({y-1 / “2! 2 [ {y+1)/{y-1)] /2 and similarly,
Im ¢ < - €?*13/£¥33/2;" maps into le + i{é’g/{?gﬁg)}l/zi = [(y+1)/(y-1)] /2

Since
= A p-
Im g, Re { L Qe Ime, ReeX 0



the points, P, {2, B and & have thelr relative orientation preserved
in the mepping.

Cn the basis of the foregoing iézﬁarmmim, the correspondence
between reglons and boundaries in both planes is a8 shown in figere 5,
© where similarly shaded regions are mappings of each other. The
boundaries in the € plane now appear a8 a gseries of arcse from a
system of mutually orthogonal circles. Because of this orthogonality,
it is possible to imbed these boundaries into a bipolay network; oz
equivalently, map them mm a rectangle. Rather than dealing with
eigenfunction expansions based on the bipolar separation solutions, and
tailoring them to fit the conditions on the rather complicated curved
boundaries, a conformal transformation will be sought to change the
boundaries into the rectangular shape. The nature of this mapping
becomes evident when certain repyesentations ave obtained for the bi-

polay circles. Specifically, we envision a netwozk of circles:

mod { $31) = const. = & (64a)

and another family described by
arg { -%%} = congt. = q {64b)
That these two families are orthogonal trajectories of one snother

can be seen from the bilinear transfopmation:

TEEH (65}

Under 65, the £ circles map into circles concentri¢ with the origin of
the ¢ plane, The v family mape into a bundle of rays emanating from

the origin, obviously orthogonal to the clrcles.
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. The cizcular arcs comprising the boundary PURS shown in
the ¢ plane in figure 5 will now be represented in the form of eguation
65. For the cizcle containing the avrc PVQ, the form 643 is appropriate,

since the poles are not on the circumference. ﬁec@rgiﬁgiﬁﬁ

Q‘ﬁe“i @ o= wqﬁ'f“i),~ (65)
oS 6o = m W
where
€p =L 2v/(v-1)] Y2 [pnty-m V2
Thereforve:
e oLzyty-mlVe oy V2 “n
° N [ayfiy-1l % 41

Similarly, for the circle containing the ave RUS:
& =1/5, {68)

The rémiﬂmg portion of the boundary which is the unit circle

passes through the poles. Hence, it is a member of the family 64b.
n shifts by 7 as we move from the right half plane to the left. This
iz shown by reference to figure 6, where a circumferential point in the

right-hand half plane is depicted. ¥rom the notation on the figure:

~a =arg (e -i), B =arglec+i)

Since
c+Banw/2
€-5 _ 7
B8 T T 7 2

Similarly, veferving to figure 6b we obtain:
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a=zarg i~¢€
Pearg -i-¢
And since:

a+pPs af2

o § 4
278 TT1 7 2

As a result of the foreguoing, the boundaries in guestion will map into &

semi-annulay shape in the 7 plans. Furthermore, the transformation

y= ln - T

will transform these boundaries into the desired rectangular shaps,
since here:
Reve=lnmod -7 s=ln

Imvzayg - T=2-9y

The shaded correspondence shown between figure 7 and figure 5 is de-
duced from the conformality property of the mapping, i. e., correspond-
ing regions lie on the left-hand side of an observer making counter~
clockwise circuits around corresponding boundaries in each of the ¢
and ¥ planes.

By way of summary, then, the transformations:

2€

L 31*’772“—2 {63a)
veln g (69)

have enabled us to simplify the rather general elliptic operator and
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h@usﬁd&.riea of the pb problem as formulated in the ¢ plane. This has
been accomplished in two ways; the elliptic operator, L of equation 48
is reduced to the Laplacian, and the original segment shaped region is
now rectangular in appearance.

Despite this tremendous simplification, the transformation of
the boundary conditions into a reasonably compact form under the com-
bined transformation { — ¥ would seem rather {mprobable due to the
somewhat complicated nature of the mappings. Surprisingly, this is
not the case, as will now be shown.

For this purpose, the mappings between the real and imaginary
components of ¢{ and v will first be determined. Accordingly, the

inverse of 69 {s:

.1—@%;
ezzi 5 {70}
+ e ;

Substitution for € from eguation 70 into equation 63a gives:

21 - "Y1+ %)
1+e”1% |1.-e"1%

3

Now if:

v = g4ip

we obtain after some manipulation:

- 2¢%sin ¢+ 31 - 29

¢ 20

l+e

Hence, by equating reals and imaginaries, we obtain finally:

F=-tho , Z =ginp secho {71a, b)



With equations 71, it is now possible to compute the transformation
of the oblique derivative condition, 60, under the mapping { — v,

Accordingly, the partial derivative operators are mapped as follows:

% & . 5.@c§’z£€? -é% - sech ¢ th ¢ sin p gfﬁ, {72a)

9 . 8 72b

gﬁ»ﬁ@sg«isesh@m {72b)
or '

& _ .2 8 N

ﬁ%«-ch a%%ahwahﬁma;ﬁg—g (73a)

giz zgec pchao % {73b)
Now:

g, = th [ (y-1)/24) Y2 (74)
Alsos

Eg=alo,p) [@= p@,%ﬁ {75)

sho, = - [(y-0/tyn] Y2 (76)

ch o = [ 2y/(ys1)} V2 (77)

Substitution for the appropriate quantities from equations 73, 74, 75,
76 and 77 into eguation 60 gives the following condition for the obligue

derivative of p at the shock.
pg ,c; - E ‘é’/g(‘g"l)g 3/3 cin 13 ?ﬂs s = { (?8)
s E“

Next, the condition on the normal derivative at the body will be
considered. The body line ¥ =0 maps into the line o = 0. Agsuming

that:
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shotanpp ~ 0 as - 0 for !g@%(%
¥

we obtain
8| =egt0z)=0 p [0ul =0
5 g o
Since:
plost3) =42 loi<la,]
the condition that p_[ 0, 1] = ¢ can be satisfied, if p is made an even

function of ¢. We now investigate the member of the clase of {p, v, w)
solutions which evolves under the asswmptions that:

(i) p is regular in the elliptic domain and on its boundarvies,

{ii) p is unigue.

Since the b@mﬁawy is mzzﬁa&;@&m in the v plane, the 6 p coe
ordinates ave separable, i.e., solutions Qﬁﬁhe fﬁill@wing formn can E@'

tailored to the boundary conditions:

o
p s »%%i - ;3 ‘&n ch Zuo sin 2np {79}
n=l

The A‘%ﬂ‘ﬁ will be determined from a direct substitution of
equation 79 into 78, Accordingly, we find |

@0
ig%’f@‘?ﬁ}:@ Vae&@ B {% - \}‘ n&ﬁ ch Exwg cos 2ng )

Lot

P n=i
& 2nA_ sh 2nO_ cin 2ap {80)
n=l |

If we set:
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B= [ 2yAy-11 Y2 (81)

B 2 na {82)

‘ %gcw B= , %mﬁ% ch 200+ sh zw@ﬁg cos {2n+ 1))
n-1
+f % ch 2no - sh Bﬁ@’aﬂ cos {2n-1)) }
lotting:
Zn+tl=2ms1
or:
n=me-1, m=2p+l
we have
2B ogpe > B [Zen 2{m-ljo_+ sh Q’Z(m*i)@’ag cos {2me1)
7 eosr= ) B gl ych dm-llot oh 2o 8
msg
‘Tm P
& ?ﬁ&& 5% ch &n@a - gh Rn@'@} cos {Zn-1)p
n-l
%i = 21 35;"3 f%ﬁ)
= ch Zag - gh 3@’@
and the following two-term recursion relation for n=2,3,4,...
B 2 ch 2(n-1)o_+ sh 2{n-1)o
0 Z o )
- {84)

-l % ch znﬁg - gh é%fm&
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the solution of which is:

n l l “k ;
2l = {85)
21 k=2 Tkel

The convergence of the Fourler series for p, (79), will next be
determined. To expedite this process, it will be necessary to form an
asymptotic representation for En/ B .y from equation 84 a8 n — .
This can be easily computed to be:

B P
ﬁn‘ . I 1 “d !@@‘

o % .@
%wi }% 4+ 1

_L-f2y-n/q Y2 1L ayen/ey]Y?
L+ [ 2(y-1)/4) vz 1+f w...g)/gﬁilﬁ'

= 0, 063 for y=17/5

Consider now the series

n
& = X? %ﬁ?’é’.
k=1
wheve
2&3%3
C,=28 chano =e B, @ n— o
Accordingly:
. B ’ B
Qﬁ . 31-%— Eiie’eiwiaal)m l»ez
Can1 »g},%é‘ ® cET lag
2 "2

That is, $ is asymptotically a geometric series, having its common



ratio = ». A necessary condition for absolute convergence of the series,

isthat Um I1C/C_ ,l=r<l, f.e.:
B - OO n “ne-l

|5-1] <] 3+4]

This follows a8 a consequence of D'Alembert's ratio test. The
above ineguality holds for all v Hence, the 5 series is absolutely
convergent. Using the comparison test, we finally deduce that the
series repregsentation for p is absclutely and uniformly counvergent,
verifying our oviginal assertion, {(i).

The first ten Ag's and the pregsure on the body have been come-
puted using an IBM 7090, The rapidity of convergence justifies the use
of only ten terms for engineering calculations. In fact, emploving any
more than this number causes inconsistencies resulting from z»émé«-c}fﬁ
errors and instabilities. Table I gives the values of these coefficiente.

Figures Ba and 8b show the pressure distributions.

4. 3. Calculation of the Shock Distortion Function

Proceeding towerd the evaluation of the rest of the solution, we
now turn our attention to the determination of the distortion function, G,
which can be obtainad by integration of equation 50b and the solution for
» i.e., eguations 79, 83, 84 and 85 collectively. Thus
i F

$ - vyyal V3= Xl

‘ %M&s {86)
B TSIy L LI

To facilitate the indicated guadrature, the above eguation can be



re-expressed in terms of p as the independent variable. Accordingly:

Z = gech g, gin p

dZ = sech o cos p dp = [{y+1)/2v] Y2 cos i dp

Hence:
" S p {T)cos 7
o= Y oampf1-3\ o ar] (872)
' veg/2 sin® 7T
wherpe:
@
5 (r) =27 A ch Zno sin 2ot (87b)
Pg 7 "/, “n OB eRY
n=l

Carrying out the indicated integrations, we cbtain the following repre-

gantation for

Glese p= X - 4 (88)

where

@ n-1
Ny S 208 (2n-2m-l)p
fad ?fif Aﬁa& gﬂﬁ@{ ‘é?ﬁ {{»/ zn” am‘-x
n=l m%{?
- 2nln ltam% | - sin 2np csc ) {89)
and:
®z) = cF(w (90)

It can be seen imnediately that 88 achieves the correct specialization to

satisfy the end conditiona:
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G+3res YL (98)

aince:

H+z)=0

Mumerical calculations were made to generate the curves of G
versus Z and p shown in figures 8¢ and 8d for v = 7/5. Here, it was
found that numeérical quadrature of the integral in equation 87a was a
guicker process for machine calculation than evaluation of the rathey
unwieldly double series in equation 89. An interesting sidelight is the
linear shape of the distortion surface over most of the interaction region
for this vy wvalue. Near the Mach cone, the shock shows a large curva-
ture in order to effect a transition to the outlying planar sections.
Subsequent analysis for vy -- 1 will show that this transition region
shrinks to 2 point, i. ., the shock surface consists of thrae planes;
and the trace of it in conical projection will show kinks at points cor-

responding to the intersections of these planes.

4. 4. Lvaluation of the Velocities

To obtain the remaining portion of the solution involving the
velocities v and w, we rewrite the conical system, 49, using the

pelar coordinates:

=R ain 8 {92a)

@

=y

Z =R cos © : {92b)

as independent variables. Accordingly:



bl

%’% - {sin @% %E%?&e;g’%)vhgﬁﬁﬁ @%w—%ﬁ%}wzg {9 3a)
A ‘ . P,
E.%%’%aggamégﬁ E.%.g%]@ag% L (93b)
Py
ngg 3%‘{605 @gg’;“ 3?:?% .gg}? 3%% J {?3&;

Integrating along a ray @ = constant from the point (R, 8) to the boundary

point, E:E%g%( ), 8] we obtain from eguations 93b and 93¢ the solutions:

R pylp €)

ViR, 8) = v(R,, 0) + *f ‘“g“—mm dp {94a)
?”RB ?g(@» 8)

wiR, 8) = Wﬁﬁﬁv B) + } semrgpetmsns (0 {94b)
WR oe

if we define the quantities

tan 6 = [ (y-1)/(ys1)] /2

v (0s8 <3
Vgavigﬁag)

wo = w{'&f’ig. a)

then the following table gives the appropriate values of Rpe vy and

wy corresponding to the indicated rauges of 8, cf. figure 9.

S Range RE v‘;%” W -

gaswsg 1 1 | 0

9,<0<wd |dcaco |Lp ctnon| -1 y-1)/21Y 260 ctn 0)

w~@@< g =< ‘s%" 3. -1 / 0
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The above values when substituted into eguations 94a and 94b give solu-
tions corresponding to the indicated regions. The complexity of the
integrands has thus far prevented further reduction of the velocity
formulae.

In certain numerical applications, a series representation of
v and w may be desired rather than the integral formulae. The singu-
lar behavior of these quantities would be a necessary determination
prior to the calculation of such series, since their convergence wounld
be affected in the vicinity of the singular points. To handle the fore~

going poseibility, the czolution is tentatively written in the form:

@ =dg t @p

where: ;
&g = singular part of aahzﬁm _
&p = regular part of golution in the form of a Fourier
series
Heuristically, we suspect that v and w both have the origin as
their only singular point, a conclusion more or less intuitively based on
the nature of the boundary conditions and the underlying equations,

Using the solution for p it can be shown that as R — 0:

p =KkR cos 8+ O{R®) (95a)
p, =k + O(R) (95b)
2 R2 4
Py =K, ,R7cos € sin 8=k, >-sin 20 + O(R”) {95¢)
where: @ .

e % ,%“! 3 = :}. - T‘g 2
Kl= ‘%- . a Z_":‘, E}ns KZ T . (81’1 +2)Bn

n=l n=l



v 3
Substitution of equation 95 into equations 93b and 93¢ gives:
R §¥ = o(r?)
r3¥ -1, or?
Integration gives the following singular representations of the velocities:

v = V(8) + O(R?) (96a)

Ky . 2
w= w in R+ W(O) + O{R®) {96b}

8. A Related Problem in Linear Supersonic Flow

To compare the results given above with an analogous linear flow,
we study the configuration shown in figure 10 at low supersonic Mach nume-
bers, i.e. suchthat M m& << 1. Here, the deviation of the sections is |
about the ¥,z plane rather than a wedge as occurred in the HSD case.
Moreover, the flow deflection is of O{8) rather than O8e€) as occcurs
in the HSD regime. Despite these differences, the configurations ave
similar, if y is thought of as playing the vole of ¢ inthe HSD case.

A precise apylié:atﬁm of the HED geometry to linear flow would involve
second order linearized theory, and has not been attempted in the present
work. Physically, the vortical effects of the en&e;;ay gradients arising
from the shock wave difvaction about the X axis, resulting from inter-
action with the Prandtl- Meyer expansion region are negligible, since the
entropy changes and consegquently the vorticity are at most 0(53). The
implications of this fact are that the flow is to all intents and purposes

irrotational, and the velocity components must be compatible with the
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fact that they comprisa a solenoidal vector. The other connotations of
the linearized flow have almaéy been discussed in the introduction.

Since the linear problem has been ﬁreg&ed extensively in the
literature, e.g. reference 4, only a summary of the related mathemati-
cal problem and its solution will be given here.

Accordingly, the equations of motion and boundary conditions of
the linear case are compared with those for the HSD configuration in
Table II. Here, the differences in the constante reflect normalizations
and are not egsential to understanding the conceptual similarity in
appearance of the formulations, the motivating idea in both frameworks
consisting of the notions of small disturbances and the f{act that the
streamlines are practically parallel to the = axis. Applying the pro-
cedures described in reference 4, we obtain for the solution of the linear

piroblem shown in Table II:
a = fgﬁ Re {tan"le} = .
vaRe 1-Z la(e+ 1y

w%-%ln lel

where
1. 101 - 1g13M?
[4

€ =

=2 +iY

o2 /2
za%ﬁ‘ Y=§g’ P= (M= 1)

For the surface pressure, the above formula for p specializes to give:
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o0, 2) = g%sin"z z, 1zZl<1 (97)

In terms of comparison with HSD vesults, it is evident from the
foregoing that to within suitable normalizations and adjustment of levels,
the HSD surface preasure distribution undercuts its linearized counter-
part. This may be concluded from a study of figure 8a. Moreover, the
characteristic non-linear peaking, a feature of the HSD ﬁistgibmimg is
not prasent in the lower Mach number case.

An inspection of the formulae for the linear and HSD cases,
reveals a asimiﬁaritg in the singular behavior at the origin for both flows.
In particular, in this peighborhood, i.e., when €,{ - 0, the representa-

tions for the linear quantities are:

u = «-%% + Olx?) = -p {98a)
vi 1-22 4+ ofe?) (98b)
wi - 2 Iy o) (98¢)

where:

*=mod §
@ =arg &
Comparing equations 98 with equations 952 and 96, we conclude that the

linear and HSD solutions show similarities in their singular character

near the origin.
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1l A NEWTONIAN PERTURBATION APPROXIMATION

1. Lateral Interaction Theory for General Perturbations

In this section, we consider the effect of allowing the specific
heat ratio, vy, of the HSD flow in II to approach one. Since a large
degree of simplification is anticipated, the general non-conical profile

is treated. That is, the body is expressed as:
%a§~ﬁ§+@&a§{§a@ (99)

where the notaticn of 11 is vaed.

The significant parameters will be taken to be ¢ and A, where

_kﬁggwwyzg%gxﬁs A0 (200)

1I/\ reprssents the limiting density ratio immediately behind the shock

wave a8 the free stream Mach number tende to infinity. It will be found
wmewﬁmﬁ mors convenient to use this parameter than other choices in-
volving the difference of y and L

The following three limits are possible as y - Lt

ﬁ)%wa
(1) 5 = o) ag A~ 0
(i) ¥ — o
Here, we will consider only {i), since it permits the boundary conditions

to be satisfied on the undisturbed surfaces, a fact which can easily be

demonstrated from a consideration of the relative ozrders of the coordi-
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nates of disturbed and undisturbed boundaries. Effectively we study
the (y-1) dependence of our previous (¢ - 0) perturbation solution.
The H3D equations aand boundary conditions written in terms of

the density parameter, A are:

p,, * vy tw, =0 (101a)
Apy, + Vy = 0 (101b)
Ag;sz oW, = 0 {101lc)
Ve = vi{x, O, 2) = fx {(162a)
P, = ng = plx, Ax, 2) = agx {102b)
w_ = =g (102c)

8 bt
Equations (101) are hyperbolic, having as one set of characteristics
the Mach cones:

szt =o0

According to theory of hyperbolic systems, the domain of dependence
of a field point P consists of the regions of intersection of the Mach
forecone emanating from P and the unperturbed shock and body.

Ve now restrict our considerations to those bodies which pro-
duce shock distortions having lateral wave lengths, b, which scale as
the forecone apex angle, YA8 as A~ 0. An example of such a shape
ig the differential panel configuration treated in II.

Noting furthermore that the dihedral angle between the undis-
torted shock and body is of O(\) as M — 0, we conclude that the co-

ordinate distortions:



% - L
H o=m, Al o= Sz =z {103)

preserve the similarity of the domain of dependence of P in the limit
{i). A study of equations 102 leads us to postulate the following asymp-

totic expansions for the flow quantities, valid as A = O:

.$ % & B |
sz yep (0,2 )+... {1042}
# % |
R IO R P a s SU (104b)
‘ P
wix, Uy 2;Y) =—-1;—-W*(}f, Wez )b ... (104¢)
K¢
% #
glrazsy) =g (.2 ) +—.. {1044)
E- .
flxz) = £ (xez) | (104e)

The sidewash, w attains its large value as a vesult of the high shock
slopes in the z direction resulting in turn from the similarity assumption
on b. Substitution of squations 103 and 104 into equations 101 and 102

gives the following problem for the starred guantities:

% ® _
Vgt wge=0 {10%a)
7 %
% ]
P atVg=0 {105b)
4 =
e :
Wk = 0 {105¢)
£ # % *
vgav(x,@,z}zvﬁx,@,z)=§$ {106a)
x
% % ® @ B R %
Py = 2&?3 =2pf{e,x,2 )= agy‘% {106b)
# ¥ ‘
W, T -8 g {106¢c)

%
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Proceeding toward the determination of the solution, we first integrate
equation 105¢ partially with respect to x from the shock to arbitrary

x downstream. This gives

w = -g {4 z) (107)

where the star notation has been dropped. Substitution of equation 107
into 105a gives on partial integration with respectto ¢ and use of

equation 106a:

m&%if o o
veigna s | g, ad (108)

g may be now evaluated from the specialization of equation 108 at the
shock, {.e. where Y =3x and use of squation 106b. This gives the

following integral equation fér g:
R a -
ezl = flna)+ | g, (5 2)dd (109)
From equation 109 it is obvicus that equation 108 may be rewritten as:

v =E(xz2) %w, z) - f&é}w& z) (110)

Substitution of equation 110 into 105a and subsequent partial integraticon

gives:
p = 2g (% 2) + (2-d)f__(x, 2)
Specializing to the body:

pp = ol 0, 2) = 2g (s 2) + =E (X, 2)
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Postulating suitable vestrictions on £ and g, we differentiate 109
partially with respect to % to obtain the following inhomogeneous

wave equation for the shock distortion function:

8y ™ 8zz = fux

Under the assumptions of attachment of the perturbation surface as
well as continuity of vertical velocity along the intersection of the
shock and body at the leading edge, we obtain as initial conditions on
g the relations:

g{0, 5] = £{0,z)

g,10.:2) = £,{0, 2)
The solution of this Cauchy initial value problem is obtained by refor-

mulation of it in the following characteristic coordinates:

E=xt oz

il

=X~ 5

Upon integration in the §,n plane and transformation back to the {x, z)

frame, we obtain finally:

e 2+%

P2 ;
ﬁggg~g+§,§§a§+ 3 fxéx%z-g,géég‘
z

2@ =
Jaax

Summary of Solution - CGeneral Perturbation

v =i = 2) - g fis 2] - £{ 2) {11Ga)
WwE . gg(% %) {1105)

B = 2gdx, 5) + (x-4) £, (x 2) {110¢c)



P = plx 0, 2) = xf_ + £ [w-2ziz, 2] dz
B *x js«-x &(xamg) *

. — £ [xta-2, 2} d2 (1104)
z &{n-ziz)
B - - porL 3 4 -~ -
2g = | -z4z, 8)dz + \ £ [wtz~z, 2] dz 110
&= . £ [ %-243, =] J, e {11Ce)

2. Specialisation to Differential Flap Configuration

Applying the formulas of IIL 1 to the case where

f=2xsgnsz
we have
(“z%x L oy fp o gﬁ‘x
2g = } sgn z dz = {sgn z)s
YZex ' i gex
so that finally:
2g = {=+x) egn (zi+x) - {z-x) sgn (2-x) (illa)

From the above expression for g we now can compute the other
flow quantities. For this purpose, it is necessary to evaluate 8y and
g, This may be accomplished by specialization of the integral for-
mulae, or differentiation of the above expression for g. It is also
necesegary to note that all the functions will be defined over an open
space such that the arguments of the sgn functions are never 0. This
corresponds physically to the fact that the fieid point does not lie on

2 2

gither the degenerate Mach cone ;;a~ g =0 or the surface ¥ . 22*: g,

Thus:
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p=agn{{z+ %)+ egnlz - x) | {111b)
v = % agn {z + ) ¢ % sgn {(z - ) {111c)
w = % sgn(z = ) - % sgn {z+ ) {111d)

in order to understand the physical aspects of this flow, it will
be necessary to obtain the remaining guantitics, uw and o I we
aseert that these variables are O[l) as : — 0, they are governed

by the following egquations:

{u+v)e=0 {112a)
{p - @93@* =0 {i12b)

Thesse follow from eguations 1lb and 14b. Since the stagnation enthalpy

is conserved everywhere, we have furthermore that
u = .l {1132)

and

w4 v E; =0 (113b)
Applying 113b at the shock we find that

vy = - Py {114)
integration of equations 112, application of equations 114, 23b and 111 gives:

v 2y (1152)

o=ggnis + x) +sgn(z - x)-sgnfz + d) - sgnlz - ¢)
{115%)

To expedite visualization of the significance of these results,

we introdoce the conical coordinates:
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$ay,

z
X
The above solution rewritten in terms of these variables is:

g = xG

2G = (Z+1) sgn (Z+1) - (Z-1) sgn (Z-1)
p = egn (Z+1) + sgn (Z-1)
-u = 2v =egn(Z+y) + sgn (Z-¥)

2w = sgn (Z-1) - sgn (Z+V)

o = 8gn (Z+1) + egn (Z-1) - sgn (Z+V¥) - sgn (Z-¥)=p - 2v

Figure 1l shows a schematic representation of the flow field.
Here, the line PQ 1is the trace of the shock surface, the lines PM
and QT are the traces of the degenerate Mach cone. The implication
with respect to these traces is that they may be imagined as the pro-
jection of the pertinent boundaries in the plane x = 1. The flow quantities
take on the indicated values in the regions shown in the figure according
to the above formulae.

From an inspection of figure 11 and its three-dimensional
analogue, figure 12, we see that PM and QT are very weak expansion
waves; i. e., a fluid particle moving downstream (essentially along a
ray through the origin) when subjected to the indicated pressure jump
across these surfaces, does not accelerate correspondingly. This fact
can be seen to follow as a consequence of the following momentum

invariant of equations 1llb, 28 and 29:

Diu+v+ X5t p)=o (116)
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Effectively, as y - 1, the density of the flow becomes so large that
sudden changes in the perturbation pressures are ineffective in
changing the perturbation momentum. This is verified from an appli-
cation of the limit (i) to equation 116 and use of eguation 28¢, from
which we conclude that the quantity, v+ v + w, is constant along
lines parallel to ﬂ;m x-axis; i.e. ¥/Z = constant lines in figure 1l

In addition, to the expansion waves present in the fiald of
interest, it is apparent that the lines PN and NQ may be interpretaed
as slip surfaces since the entropy p-0 28 well as the tangential
velocity perturbation are discmﬁm@@mg across them. The above con-
figuration occurs because of the interaction of the central transition
shock with the outlying surfaces.

In considering tﬁa slip surfaces of the solution, we notice a
mass flux across them, in direct contradiction to physical reality.
This apparent paradon is explained by the fact that the mass flux arises
as a result of the approximations madse in the orientation of the various
bcmé.ﬁary surfaces of the problem.

Asp has been suggested previously, the shock shape in the de-

generate three-dimensional region is:
G=2Z {117)

It i{s evident that a sidewash discontinuity exists at the points of attach-

ment to the outlying sections
G=sgn d

A has been previously pointed out in II, figure 8d shows an



already apparent trend to the shape given by equation 117 for vy =1L 4.

3. Steip Theory

If we fail to expand the lateral coordinate suitably, the Mach
forecones become straight lines parallel to the x axis in the limit (i).
Hence, a point iz influenced only by conditions directly upstream of
it and consequently, adjacent lateral sections do not interact as in
Hypersonic Strip Theory (cf. referemce 1 ).

To illustrate, we let:

& %®
% Bx, %ﬁ:g@;ﬁ, 5 =5

Assuming:
* & & &
Pl eyl =p (,d,2 )+...
& B % W
iz bzyyz=vix,b,z )+...
B % & &
wist, Yo 2iy) 2w {x 4,8 )4 ...

COE I
Hx,2) =8 (2,8 })+...
& &

gl 2y) =g (x,2 )+ ...
we have: {stars are dropped)

v, =0

Y

vx%p$a@
wx=€a
vy = vin 0, 2) = £ (x z)

Pg = 2vy = plx %, 2) = 2g_(x, =)

8
2 -
hCE

The solution of which can be readily found to be:
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pE-ily, + 26+ wl_
v = ﬁxéx, z)
w = - £ (i z)

o o= §
o k-

and finally

pﬁﬁp{m@,z)ﬁ%}g‘* xfm

The latter relation corresponds to the classical formula of Busemann,
applied under the assumption of independence of lateral sections.
Here, the first term is the slope or inelastic impact effect, and the

second is the centrifugal force correction.
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TABLE 1

. 63661978

). 48970751 x 10”1

) 26573275 x 1072
. 13263367 x 1072
. 67400558 x 05

. 35331404 x 106
. 19011805 % 107
. 10439105 % 10°8
. 58224602 % 10710
. 32880426 x 10~}
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TABLE 11

¥HM5DT LINEAR
%xﬁh@(@z)j + 38(1 + ev) %=(M 6u)T + 8v] + bwk + ...
+ Kéew
Pa?w .:’P-E?‘m
Wzéﬁ(l'{“éz&)% W=§§3ﬁ
pmli g»mu
£ =u0§1~.c'ea]~£~ £ =z1+60+
o Poo
PX vy iw = 2 -
5 rvk?vwg-—@ ﬁpxﬂé»vy%w =0
. ¥-1 -
u, pxsé} vt Py 0
"'1_, - P
vx%-yzmpw—@ Ve \3}‘}:’ g
wy + dgbp, =0 W, * py =0
- g =0 O = 1 g =0
Py = Y% LY ple
o
B=y-68[x%x+esgnz) =0 B=y-brxsgnz=0
8=y - 6[6%+egl 2l =0 i%lsgr«-gﬁ};:&gg%—l

2 a2,.2. 2y
5y =% «ﬁ(y%z)ué?,-g;;%l
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TABLE 11 {Continued)

HEDT

Vg =vi{x 0, 2) = 8gn 2

4
Py = 2Vg = 3IT 8y
= p(x, lﬁgf»«xg z)

s = "8y

€
n

Py = 2vy\T & Bgn 2

. /2
ppg =Pl tex[les—] =)
c“x

LINEAR

vy = V(% 0,2) = sgn z

Vg S 8gn B = vy,

)
me““a””Esgaﬁ”“ﬁs“pM
WQ=G=WM

{continuity across Mach cone of
P» Uy Vs W)
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FIGURE 3
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FIGURE 6a
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FIGURE 11
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